
.. 1 ;': 

l..i 

u 
L 

u 
I r 

1 I w 

w 
r 

I : 
\J 
I 

u 
I 

u 
u 
/ u 
u 
u 
~ 
i :? 

lJ 
\ I u 
u 
I I 

1-J 

·u 

BAYESIAN SINGLE SAMPLING ACCEPTANCE PLANS 

FOR FINITE LOT SIZES 

by 

Poul Thyregod 

Technical Report No. 157 

April 1971 

University of Minnesota 

Minneapolis, Minnesota 



SCHOOL OF STATISTICS 

ERRATA to Technical Report No. 157 

Bayesian Single Sampling Acceptance Plans For Finite Lot Sizes. 

Professor A. Hald has kindly pointed out to me that form.ila (27) on 

p. 13 is incorrect. The formula should be 

(27) p {nlw) = c + i f(n+l)(c+l(w) • 
C n + 

The correction necessitates the following changes: 

p. 13, line 8 from the bottom: The last sentence in the paragraph should 

be: In the subsequent example we shall prove that the result also 

holds for the Bernoulli distribution. 

p. 14: Formula (28) is changed to: 

-A d(n, c} = c + ~ A d{n+l, c), 
n n + c 

p. 14 Formula (29) is changed to: 

d(n+l, c+l) - d(n, c) = A d(n+l, c} + A d(n, c) = n - ~ A d(n+l, c). c n n + c 

p. 14, lines 8-14 (the end of the paragraph): Should read: from (29) 

that d(112+1, c+l) < d{n2 , c) and therefore we have 

which shows that d(n, c0{n)) is decreasing also for n = n
2

• Thus 

it has been proved that d(n, c0{n)) is a decreasing function of n. 

p. 18: The paragraph following formula (39) is replaced by: In table 1 

we have listed the set of possible plans for n < 30. The table 

also gives the decision loss corresponding to these plans. 

p. 19: Table 1 should be replaced by page 2 of this note. 

Finally, the Pascal distribution on p. 6 should be: 



~~ 

TABLE 1 

Table of d{n, c0{n)) for n < 30. k (w) = k (w) = 0.2, k (w) = w s r a 

and dW(w) = 4(1-w)3dw. f{x(w) = wx(l-w)l-x for x = 0, 1. 

n 

0 

1 

2 

3 
4 

5 
6 

7 
8 

9 
10 
11 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

c
0

(n) 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

2 

2 

2 

2 

2 

3 

3 

3 

3 

3 
4 

4 

4 

4 

4 

5 

5 
5 

5 
5 

d(n, c
0

{n)) 

.06553600 
.03886933 
.02744076 
.02267886 
.02109156 
.02109156 
.01705115 

.01462691 

.01332155 

.01278875 

.01278874 

.01114040 

.01007382 

.00945757 

.00918925 

.00918924 

.00829486 

.00769442 

.00733517 

.00717350 

.00717350 

.oo661232 

.00622719 

.00599184 

.00588378 

.00588378 

.00549893 

.00523090 

.00506476 

.oo498744 
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1. Introduction and Summary. 

We shall consider the following two-decision problem: Let 

x
1

, x
2

, ••• , XN denote N independent identically distributed non

negative random variables with density f(x(w) and let w itself be a 

random variable with cumulative distribution function w(w). Based on 

the observation of n of the variables, the observer chooses one of two 

possible terminal actions, accept or reject, say, with consequences 

depending on the remainder N - n variables. The consequences will be 

measured in terms of the cost incurred per item and we shall assume that 

the cost of inspecting, accepting and rejecting an item are given as 

* * k (X), k (X) 
s a 

* and k (X), respectively, additive over the items. 
r 

In quality 

control applications with lot by lot inspection N will usually denote 

the lot size and n the sample size. 

A sampling plan or strategy is determined by the sample size n and 

a decision rule specifying the action as function of the sample outcome. 

A Bayesian sampling plan with respect to! distribution W(w) is a 

sampling plan that minimizes the overall expected cost under w(w). 

Since the distribution of N exchangeable random variables allows 

a representation of the form 

(1) 
N 

fN(x1 , x2 , ••. , xN) = J IT f(xilw)dW(w) 
i=l 

(see, e.g., the paper by Blum and Hanson (1960)} it follows that we may 

obtain a Bayesian sampling plan for an exchangeable prior distribution 

as the Bayesian sampling plan with respect to the distribution w(w) in the 

representation (1) of the prior. Under the extra assumption of simple 

random sampling a Bayesian sampling plan with respect to w(w) will be 

an optimal invariant Bayesian sampling plan for prior distributions 

~~, ••• , xN,L satisfying fN(Dti) = J f(N)(Exilw)dw(w) with f(N) 

denoting the N-fold convolution of f(xlw) with itself. 
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The model was originally introduced by Guthrie and Johns (1959) who, 

in their paper, gave asymptotic expansions for the Bayesian sampling plans 

under linear costs. Hald (1960) discussed the determination of the 

optimal {Bayesian) sampling pians in the linear case with Bernoulli random 

variables. In a later paper Hald (1967) gave asymptotic expansions for 

the Bayesian sampling plans under weak assumptions on the cost and the 

sampling distribution f{xlw). Raiffa and Schlaiffe·r (1961) discussed 

the case where f{xlw) is normal and gave a graphical solution to the 

optimization problem for a normal distribution of w. A set of tables 

of optimal sampling plans for the Bernoulli case under a two-point distri

bution were published by Hald (1965), but, apart from these relatively 

simple situations, the literature does not contain many examples of optimal 

sampling plans. A possible explanation is that the computational effort 

involved in the determination of these plans has seemed too great even 

for a computer. 

In a previous paper by Hald and Thyregod (1971) it was shown that 

the Bayesian sampling plans for the mean of a Poisson process enjoyed 

certain monotomicity properties, a result which greatly reduced the 

amount of computation necessary to tabulate the optimal sampling plans. 

The purpose of the present paper is to show that these properties are 

shared by the optimal sampling plans for a more general class of sampling 

distributions f(xlw). 

Throughout the paper we shall assume that f(xlw) belongs to the 

exponential family of distributions, and moreover that f is a Polya 

frequency function with monotone likelihood ratio. The cost difference 

- 2 -
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* * k {X) - k {X) is assumed to have only one change of sign. It is shown r a 

in Section 2 that the Bayesian sampling plan for this problem is of the 

form: take a sample of size n and base the decision on the event 

x1 + ••• + X < c. n-

In Section 3 we discuss the decision loss for a decision rule 

characterized by the sample size and the acceptance number (n, c), say. 

The main result is given in Theorem 1 which states that the optimal 

acceptance number is a monotone function of the sample size. Section 4 

contains a proof of the intuitively reasonable result that the optimal 

sample size is an increasing function of N. 

It is shown that the theory covers the following connnon situations: 

a. Sampling for defectives, X Bernoulli. 

b. Sampling for number of defects, X binomial or Poisson. 

c. Life testing, X Pascal or gannna. 

Finally, it is shown in an example how the results of the paper may be 

used to simplify the tabulation of the optimal sampling plans as a 

function of lot size. 

The fundamental results in Section 2 and 3 are simple consequences 

of basic results in the general theory of distributions with monotone 

likelihood ratio, or sign regular functions (of order 2), and therefore 

we shall conclude with a brief characterization of these distributions • 

A non-negative function f(x, y) is said to be sign regular if 

there exists a number e either +1 or -1 such that 

(2) e{f{x, y)f(x', y') - f(x, y'}f{x', y)} ~ 0 for x ~ x', y ~ y'. 

If e in (2) is positive the function will be called totally positive 

otherwise, i.e., for e = -1, f is said to be reverse sign regular. If 

- 3 -
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a totally positive function may be written as a function g(x-y) of the 

difference of x and y where g(u) is a density of a random variable, 

we shall call g(u) a Polya frequency. 

The following properties of sign regular functions will be used 

without further reference,(proofs may be found in the monograph by Karlin 

(1968)). 

2. 

a. Let f and g be sign regular and let W denote a sigma-finite 

measure. Then the composition 

h(x, z) = J f(x, y)g(y, z)dW(y) 

is reverse sign regular if either f or g {but not both) is reverse 

sign regular and totally positive otherwise. 

b. Let f be sign regular and let W denote a sigma-finite measure 

such that J f(x, y)dW(y) exists for every x. Let h(y) have at 

most one sign change and assume further that g(x) = J f(x, y)h(y)dW(y) 

exists for every x. Then g(x) has at most one sign change and 

moreover, if g actually changes sign, h and g will exhibit the 

same sequence of signs when f is totally positive and the reverse 

sequence of signs when f is reverse sign regular. 

c. If g(u) is a one-sided Polya frequency, i.e., g(u) = 0 for 

u < O, then then-fold convolution of g with itself, 

g{n)(u) = g*g* ••• *g{u), is a Polya frequency and moreover g{n){u) 

is totally positive in n and u. 

The Probability Model. 

We shall consider the situation described in the introduction and 

assume that the distribution of the random variable Xi is absolutely 
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continuous with respect to counting measure or Lebesgue measure on the 

positive real axis with a density of the form 

f{xlw) = B(w)h(x)exp[xA(w)] 

where A(w) is a non-decreasing function of w and h(x} is a Polya 

frequency function satisfying h(x) = 0 for x < O. The assumptions 

imply that f(xlw) is totally positive in x and w and that in 

' 
addition f{xlw) is a Polya frequency function. 

Defining f{n){xlw) as then-fold convolution of f with itself 

we find 

(3) f{n){xlw) = [B(w)]~(n){x)exp[xA(w)], 

where B(w) satisfies 

(4) [B(w)]-n = J h{n)(x)exp[xA(w)]dµ{x), 

µ denoting counting measure or Lebesgue measure. Since h(x) is a 

Polya frequency we find that h{n){x) is totally positive in n and 

x and hence the composition (4) with exp[xA(w)] yields a function 

which is totally positive in n and w. Thus [B(w)]n and subsequently 

f(n){xlw) are reverse sign regular in n and w. 

It follows that the set 

(5) I = {x e Rlh{n)(x) > 0) 
n 

is an interval on the real line or on the set of non-negative integers. 

Furthermore, the marginal density of x, 

(6) 

is positive if and only if x e I • n 

- 5 -
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Example 1. 

It is easy to verify that the following distributions satisfy the 

assumptions above. 

a. The Bernoulli distribution, f{x)w) = wx(l-w)l-x for x = 0,1 

and O < w < 1. 

b h d b ( I ) = (l-w)w
x-1 • Te geometric istri ution, f x w for x = 1,2, ••• 

and O < w < 1. - -
c. The Poisson distribution, f(xlw) = wxe-w/x! for x = 0,1, ••• 

and w?:: O. 

d. The exponential distribution, f(xfw) = w-le-x/w for x > O 

and w > o. 

From (3) we find that the exponential family is closed under convolution 

and moreover that h(r)(x), r = 2,3, ••• is a Polya frequency and therefiore 

g(x)w) = f(r)(xlw), r = 2,3,4, ••• satisfies the assumptions if f does. 

Thus a, b and d above may be extended to 

e. The binomial distribution, f{xlw) = {r)wx(l-w)r-x, x = 0,1, ••. , r, 
X 

0 < w < 1. - -
f. The Pascal distribution, f(xfw) 

O<w<l and 

g. ( I ) r-1 -r -x/w/ , The ganuna distribution, f x w = x w e r. , O ~ x, 0 < w, 

integer r. 

3. The Cost Function and the Decision Loss. 

We shall assume that the cost of inspecting, accepting or rejecting 

* * * an item of quality X is given by k (X), k (X) and k (X), respectively, s a r 

* * and that the cost difference k (X) - k (X) changes sign at most once. 
a r 
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For simplicity we shall assume that the actions have been labeled such 

* * that the change is from negative to positive values of k - k. 
a r 

Defining ka(w) = ~lw[k:(x)] and kr(w) = Exlw[k;{x)] we deduce from 

the total positivity of f{xlw) that l(w) = k (w) - k (w) has at most 
- a r 

one sign change, from negative to positive values of 1. 

Let n be fixed and consider a decision rule specified by the region 

of acceptance An, i.e., we accept if (x1, ••• , Xn) e An, reject otherwise. 

Since, for given w, the first n observations are independent of the 

remaining N - n variables we find the following expression for the 

expected cost 

where 

(8) * k ( w) = Ex I [ k (x) ] s w s 

and P(A lw) denotes the conditional probability of acceptance, the 
n 

operating characteristic. We shall assume that, in the long run, sampling 

is at least as costly as the terminal actions, i.e., 

(9) E[k (w)] > max(E[k (w)], E[k (w)]) • 
s - r a 

If the true process parameter w was known the best procedure would be 

to accept all items if k (w) < k {w) and reject otherwise, which procedure 
a - r 

would lead to the minimal cost 

(10) K. =NJ k (w)dW(w) uun m 

with 
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(11) k (w) = m 
k (w) 

r 

for w e na 

for we 0 r 

and O ={we O: k {w) < k (w)} , 0 = 0\0. To avoid trivialities we 
a a - r r a 

shall assume that O and O are non-empty and that the distribution a r 

w(w) assigns positive mass to both sets. 

We note that if the average quality of the items is known the minimal 

cost will be K:n = NJ Exlwk:(x)dW(w) with k:{x) = k:{x) if 

* * * * ka(x) ~ kr(x) and km(x) = kr(x) otherwise. Since both Kmin and 

* Kmin are independent of the sampling plan we may determine the optimal 

* sampling plan by minimizing K - Ki or K - Ki instead of K. mn mn 

In the following discussion we shall work with the loss relative to 

K. rather than the cost incurred. From (7) and (11) we find the regret 
min 

(12) R = K - K. = no + (N-n){6 + J l(w)P(A lw)dw(w)) min s r - n 

with 

(13) 6 = J (k (w) - k (w))dw(w) s s m 

and 

(14) 

denoting the loss due to inspection and rejection, respectively. The 

acceptance loss is found analogously as 

(15) 6 = J (k (w) - k (w))dW(w) • a a r 

The form of the regret (12) permits us to reduce the optimization 

problem considerably as shown in the following lemna. 

Lenuna 1. 

The optimal decision rule is equivalent to a rule of the form: 

Accept if Sn~ c with Sn= x1 + ••• + Xn' reject otherwise. 

- 8 -
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Proof: 

Since S is sufficient for w in the conditional distribution of 
n 

X given w, an optimal decision rule can be based on S. Observing that 
n 

the loss is monotone and that the density of S is totally positive 
n 

in S and w we find that the class of monotone procedures form a 

complete class for the decision problem and therefore the optimal rule 

must be monotone, i.e., based on the event s < c. n-

In view of the above result we may restrict ourselves to consider 

sampling plans characterized by two numbers (n, c), say, where n is 

the sample size, the acceptance number is c and the decision rule is 

as given in the lennna. The operating characteristic for the sampling 

plan (n, c} is P(n, c, w) = £c f(n}(xlw)d~(x) and the expected decision 

~J?.!E~is 

(16) d(n, c) =or+ f _!(w)P(n, c, w)dW(w) • 

Introducing the posterior risk, 

l
J !(w)f(n){x(w)dW{w)/f{n)(x) 

(17) l{n, x) = 

0 

we find 

(18) 

for x € I n 

otherwise, 

The following theorem gives an important property of d(n, c). 

Theorem 1. 

and 

Let c0{n) = inf{x e R: x e In) 

c
0

{n) = sup{x e In: l{n, x) < 0) 

results hold. 

if A{n, x) > 0 for all x e I 
- n 

otherwise. Then the following 

.. 9 -
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a. d(n, c) is non-increasing for c < c0(n) and non-decreasing 

for c > c
0

(n) with a mininrum when c = c0(n). 

b. min R(n, c, N) = R(n, c
0

(n), N) for n < N. 
C 

c. c
0

(n) is non-decreasing with n. 

Proof: 

The existence of c
0

(n) is immediately verified if 

* 
I 

n 
is finite. 

If In is infinite we may choose a value w e Or carrying positive 

prior probability and construct a sequence (n1 , x1), (n2 , x
2

), ••. wich 

* n. ~ ~ such that the posterior density tends to concentrate around w. 
1. 

Thus we find l(ni, x
1

) > 0 for i sufficiently large. Now we note 

that since f(n)(xlw) is reverse sign regular in n and w it follows 

that l(n, x) has at most one sign change (from positive to negative 

values) as ~ varies and hence X(ni, xi)> 0 implies X(n, x.) > 0 
1 

for n < n .• We may thus determine a value x. e I satisfying l(n, x.) > O 
1. 1 n 1. 

and hence find c0(n) < xi which proves the existence of c0(n). 

Restricting ourselves to x e I we find that f(n)(xlw) is totally 
n 

positive in x and w and hence we have 

(19) ~ 
"-(n, x) (>) 0 

~ 
for x (>) and x e I n 

Using (18) we find that an increase by 6 of the acceptance number c 

yields a contribution l(n, c+6)f(n)(c+6) to the decision loss and 

therefore, in view of (19) we conclude the proposition a. 

To prove b. we simply note that the regret depends on c only 

through the decision loss d(n, c). 

Using again the fact that X(n, x) varies from positive to negative 

values as n increases we may finally verify Proposition c. 

- 10 -
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The following corollary concludes the discussion of the decision 

loss as a function of the acceptance number only. 

Corollary 1. 

The decision loss satisfies the relation 

with 6a and or given by (14) and (15) respectively. 

Proof: 

Consider first x < c0(n). We then find from Proposition a and 

the form of the decision loss (18) that d(n, x) :Sor. For c?:: c0(n) 

it follows analogously that d{n, x) :Slim d(n, c). Letting c _. oo in 
C-t oo 

(16) we find 

(21) d(n, c) _. 6r + J _!(w)dw(w) 

since P(c, n, w) _. 1. The proof is completed by the observation that 

6 + J l(w)dW(w) = 6 • r - a 
We shall conclude this section with a discussion of the decision 

loss as a function of the sample size. 

To facilitate the discussion the following notation is introduced, 

(22) pc{nlw) = P(n, c, w) - P(n+l, c, w), n = 1,2, •••• 

Note that pc gives the distribution of the waiting time until the first 

crossing of the level S = C n in an infinite series of sample results, 

i.e., we have p {nlw) = P[T(c) = n] 
C 

where the random variable T{c) 

denotes the largest index k for which Sk :Sc in an unlimited series 

of independent observations of a variable with density f(xlw). 

- 11 -
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Noting that 

(23) ~ d(n, c) = - J l(w)p {n(w)dW(w) for n = 1,2, ••• , 
n - C 

where ~n 

we obtain 

Theorem 2. 

denotes the usual forward difference operator,~ f{n) = f(n+l) - f{n), n 

Let pc(nlw) be reverse sign regular in n and w and totally 

positive in c and w. Then there exists an integer n
0

(c) such that 

d{n, c) is non-increasing for n < n
0

(c) and non-decreasing for n > n0(c). 

Moreover n
0

(c) is non-decreasing with c. 

Proof: 

The proof will be omitted since it is analogous to the proof of 

Theorem 1. 

It is easy to verify that the assumptions of the theorem are satisfied 

for the distributions a) - e) in Example 1. In particular, the 

assumptions are satisfied for these distributions when n is restricted 

to integer multiples of r, r = 2, 3, ••• , only. Thus it follows that 

the conclusions of the theorem hold for all the distributions discussed 

in Example 1. 

It should be noted that the assumptions of Theorem 2 are automatically 

fulfilled in the case where observation of the waiting time T(c) = n 

gives rise to the same likelihood function as the event s = c. n 
As the 

following lemma indicates we may obtain even stronger results in this 

particular case. 

Lemma 2. 

Let f(xlw) be absolutely continuous with respect to Lebesgue measure • 

If pc{nfw) = k{n, c)f(n){cjw) with k{n, c) independent of w, then 

d{n, c0{n)) is non-increasing. 
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Proof: 

From 

(24) ~ d(n, c) = - k(n, c)d'(n, c) n C 

we have 

since d~(n, c) 2: O for c = c0(n). But d(n+l, c) is minimized when 

c = c
0

(n+l) and hence 

(26) d(n+l, c0(n+l))::: d(n+l, c0(n)) • 

Combining (25) and (26) we get d(n+l, c0(n+l)) ~ d(n, c0{n)) which 

proves the proposition. 

The lemma applies when f(xlw) is the exponential distribution and 

therefore the conclusion of the leunna also holds when f{xlw) is a 

gannna distribution with integer shape parameter. Moreover it follows 

from a result by Hald and Thyregod (1971) that d{n, c0{n)) is non

increasing when f{xlw) is the Poisson distribution. The following 

example shows, however, that the result is not generally true. 

Example 2. 

Let f(xlw) be the Bernoulli distribution, f{xlw) = wx(l-w)l-x for 

X = 0, 1. It is well known that the distribution of S is binomial, 
n 

f(n)(xlw) = c;)wX{l-w)n-X for X = 0, 1, •.. , n, and that the waiting

time distribution is the Pascal distribution, p {nlw) = (n)wc+l(l-w)n-c 
C C 

for n = c, c+l, ••• such that we have 

(27) ( I ) n + 1 (n+l) 
p n w = 1 f (c+ljw) 

C C + 

- 13 -
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and therefore, 

(28) 

which leads to 

(29) d{n+l, c+l) - d(n, c) ( ) ( ) n - C ( ) = 6 d n+l, c + 6 d n, c = -
1 

6 d n+l, c • 
C n C + C 

Consider now n1 > 0 and let C = co(nl). From {28) we find that d{n, C) 

is decreasing if 6 d(n+l, c) > O, i.e., as long as c0(n+l) = c. Letting 
C 

n2 denote the first value of n such that 6 d{n+l, c) < 0 we conclude 
C 

from (29) that d{n2+1, c+l) > d(n2 , c
0

{n2 )). Now it is easy to 

construct cases where c
0

(n2+1) = c + 1, {an example has been provided in 

Example 3), and therefore we conclude that d{n, c
0

{n)) will not in 

general be decreasing. However, in the next section we shall show that 

the possible optitinlm sample sizes correspond to decreasing sections of 

d(n, c
0

{n)) and thus, in the present example we may simply rule out n
2 

as a candidate for an optimum sampling plan. 

4. 

(30) 

The Regret Function and the Optimal Sampling Plan. 

From (12) and (16) we find the regret 

R(n, c, N) = n6 + (N-n)d{n, c) 
s 

for n = O, 1, ••• , N, 

where we have defined the loss corresponding to the best singular strategy, 

n = 0, as d(O, c} = min{6 , 6) a r 
and 

To simplify the discussion of R as function of the lot size N, 

we shall formally extend the definition above to cover non-negative real 

values of N. We shall put 
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(31) R( N) __ {N68 n, c, 
no

8 
+ (N-n)d(n, c) 

for O < N < n 

n<N 

The graph of (31) is a polygonal line consisting of two segments with 

slopes 6 and d(n, c). 
s 

follows from (20) that R 

Now, define 

Since we have assumed max(6, 6} < o 
r a - s 

is a concave function of N. 

(32) Ro(N) = inf R(n, c, N) for N > 0 • 
n,c 

Obviously R
0 

is a concave function of N and moreover R
0 

may be 

obtained as the pointwise mininn.tm of the family R(n, c0(n), N}, 

n = o, 1, 2, •••• Since R(n, c0(n}9 N) = N6s for n > N and 

it 

R(n, c
0

(n), N) :5 N6s if n < N it is clear that the minimum exists and 

that it is obtained for a sample size n(N) satisfying O :5 n(N) :5 N. 

The following lenuna gives a necessary condition for the optimal sample 

size. 

Lemma 3. 

Let R0(N) = R(n1, c0{n1}, N) for some N > o. If R0(N) < N6s then 

Proof: 

Let O :5 n < n1 and consider 

Since n1 is optimal it follows that p < 0 and furthermore we find 

from R0(N) < Nos that n1 < N. Thus 

- 15 -



.. 

-

... 

It is easy to verify that the middle term in (34) is zero only when 

d(n, c0(n)) = 6s and since by assumption d(n1, c0(n1)) < 6s we finally 

get (33). 

Theorem 3. 

Let (n(N), c(N)) denote the optimal sampling plan for a lot of 

size N. Then there exists a version of n(N) which is non-decreasing 

with N. Moreover c(N) = c
0

(n(N)) is non-decreasing for this choice 

of n{N). 

Proof: 

The graph of R0(N) is a polygonal line with the property that the 

slope of the line connecting successive vertices is decreasing. The 

slope of R0(N) is given by d(n, c0(n)) with n = n(N) if N is 

not a vertex. 

Consider N1 < N2 not belonging to the set of vertices and let 

n1 = n(N1), n2 = n{N
2

). Since R0 is concave we conclude that 

d{n1 , c0(n1)) ~ d{n2 , c0{n2 )). If we tentatively assume that n
2 

< n
1

, 

the preceding lennna leads us to the contradictory result 

d(n1 , c0{n1)) < d(n2 , c0(n2 )). Hence we must have n
1 
~ n

2
• If 

R0(N1) = N1os = N1d(O, c0(o)), we may choose n(N
1

) = O such that the 

conclusion is also valid in this case. 

The proof of the monotonicity of n(N) is now imnediate, noting that 

we may choose n{N) = n(N-) if (N, R0(N)) is a vertex. 

Finally, the monotonicity of c(N) follows from Theorem 1 • 
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Example 3. 

Assume that each item in a lot may be classified as either defective 

or acceptable and assume that lots originate from a Bernoulli-process where 

the process-parameter w varies from lot to lot according to the beta-

distribution dW(w) = 4(1-w) 3dw for 0 < w < 1. - - Finally let the costs 

per item of inspection, rejection and acceptance be given by the following 

table 

Quality of item 

Action acceptable defective 

inspect 0.2 0.2 

reject 0.2 0.2 

accept 0 1 

We then find k (w) = w, k (w) = k (w) = 0.2 so the break-even quality a s r 

wr = 0.2 and moreover we have the same loss for all singular strategi4s 

6 = 6 = 6 = 0.065536. a r s 

The marginal distribution of the number of defective items in the 

sample is the Polya distribution, 

(35) for x = O, 1, ••• , n, 

and fhe posterior risk is simply the difference between the mean in the 

posterior distribution of w and the cost of rejecting an item, i.e., 

(36) 
1 + X 

l(n, x) = 5 - 0.2 n+ 
for x = O, 1, ••• , n. 

From (18), (35) and (36) we obtain the decision loss 

~ l+x )(n+3-x /(n+4) (37) d(n, c) = 0.065536 + LJ <n+5 - 0.2 3 ) 4 
x=O 
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and the regret function 

.065536n + (N-n}d(n, c) for c = 0,1, ••• , n 
(38) R(n, c, N) = n = 1,2, ••• , N 

.065536N for n = 0 or n > N. 

It is easy to verify that A{n, x} < 0 iff x < n/5 and therefore 

c
0

(n} is the largest integer strictly less than n/5 or, equivalently 

c
0

(n} = c for 

(39) 5(c-l) < n < 5c, c = 0, 1, 2, •••• 

It should furthermore be noted that the remark made in Example 2 applies 

in this case since c
0

(n) run~ through con~ecutive integers, and 

therefore we may exclude the left endpoint of (39) from the set of 

possible optimal plans. In Table 1 we have listed the reduced set of 

possible plans for n < 30. The table also gives the decision loss 

corresponding to these plans. 

In order to tabulate n(N) we shall determine R
0

(N) by successively 

determining 

* N) min min R{n, N} R
0
(i, = c, 

114 C 

* for i = o, 1, 2, ...• The graph of RO is a polygonal line with decreasing 

slopes. Moreover has at most one point of intersection with 

R(i+l, c0(i+l), N) and therefore we may easily determine R~(i+l, N) 

from its predecessor. The first few steps of this procedure lead to 

* Ro(o, N) = R(O, o, N), 

* R0(1, N) = R(l, O, N} for 1 < N 

and 
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TABLE 1 

Table of d{n, c
0

{n)) for n < 30. The points of increase have been 

exeluded. k (w) = k (w) = 0.2, k {w) = w and dW{w) = 4(1-w)3dw. 
s r a 

I x( )1-x f(x w) = w 1-w for x = O, 1. 

n ' c0(n) d{n, c0(n)) 

0 I 0 .06553600 
1 0 .03886933 
2 I 0 .02744076 

3 0 .02267886 

4 0 .02109156 
6 1 .01705115 

7 1 .01462691 

8 1 .01332155 

9 1 .01278875 

11 2 .01114o4o 

12 2 .01007382 

13 2 .00945757 
14 2 .00918925 
16 3 .00829486 

17 3 .00769442 
18 3 .00733517 

19 3 .00717350 
21 4 .00661232 

22 4 .00622719 

23 4 .00599184 
24 4 .00588378 
26 5 .00549893 

27 5 .00523090 
28 5 .00506476 

29 5 .oo498744 
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Ro(2, N) = Ro(l, N) * ~* 
R(2, O, N) 

for N < 4 

for 5 ~ N. 

Continuing the process we finally obtain the list of optimal sampling 

plans displayed in Table 2. 

TABLE 2 

Optimal sampling plans for the Bernoulli distribution k (w) = k (w) = 0.2, r s 

k (w) = w and dW(w) = 4(1-w) 3c:1w. a 

N I n I C 

-
1 - 4 1 0 

5 - 11 2 0 

12 - 28 3 0 

29 - 47 7 1 

48 - 76 8 1 

77 - 102 12 2 

103 - 144 13 2 

145 - 179 17 3 
18o - 232 18 3 
233 - 275 22 4 

276 - 340 23 4 

341 - 390 27 I 5 
391 - 467 28 5 

It is obvious that the algorithm suggested in the above example will 

work for any combination of loss function, prior distribution and sampling 

distribution satisfying the assumptions of the present paper. The 

algorithm is well-suited for description in a programming language, 

allowing the use of subroutines to compute 6, 6 , 6 and d{n, c
0
(n)). a r s 

In a tentative FORTRAN-program we used one single subroutine to compute 
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the decision loss for the case with linear costs, Bernoulli sampling 

distribution and a beta prior, another subroutine to cover the analogous 

situation but with a two-point prior; the remaining parameters of the 

cost functions and the prior distribution were given as input parameters 

to the program. The program needed about 20 seconds of computing time 

on an IBM 7090 computer to produce a table of optimal sampling plans for 

N < 200000~ 
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