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ABSTRACT 

Dar-Shong Hwang 

320 words 

Interval Estimation of Functions of Bernoulli Parameters 

With Reliability and Biomedical Applications 

The reliability of series, parallel and other systems is 

expressible in terms of polynomials in Bernoulli parameters, p .• 
1. 

For products of two or more parameters the Lehmann-Scheffe theory 

of exponential families applies when the components are sampled· by 

the inverse binomial rule. For example if X, Y are the number of 

successes before failures on two populations of components, 

then the conditional distribution of X given Y - X depends only 

on p1P2 , the reliability of a series system. This conditional 

distribution is shown to be related to hypergeometric functions. 

In the most general case considered, a conditional distribution is 

given which depends only on the quotient 9 = p1p2 ••• Pk /pip; ••• P~ 
1 2 

where the p's are parameters of k
1 

+ k
2 

Bernoulli populations. 

A second technique is 11UDJltiple stage compounding." It is known 

that if Y is Poisson, EY = X, and if X given Y = y is binomial 

(y, p), then X is Poisson, EX= Xp. This fact is exploited by 

taking for example a binomial observation x
1 

from population 1, 

where the sample size is a Poisson variate having known mean X, 

and then taking a second binomial observation x2 from population 

2, where the number of trials is the observed value of x
1

• Then 

p
1
p

2 
can be estimated from the value of x2 , which is Poisson with 

mean Xp
1

p
2

• Similar methods can be used to estimate any rational 

function of Bernoulli parameters • 
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Lieberman and Ross have described a technique for estimating 

reliability when time failure has an exponential distribution. We 

show that their technique applies also in our Bernoulli model. The 

product of Bernoulli parameters is the type of function that can be 

estimated by this technique, so that the reliability of series and 

parallel systems can be treated. The method depends on properties 

of independent geometric random variables X and Y; for example, 

the fact that min{X, Y) and Ix - YI are independently distributed. 

The results described in the first paragraph are also shown 

to apply to biomedical problems including estimation of the difference 

of two bacterial densities, comparison of two Yule's birth processes, 

and comparison of two effectiveness indices. 
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CHAPTER I 

INTRODUCTION AND NOTATIONAL CONVENTIONS 

1.1 Introduction and Summary. 

If are two Bernoulli populations with parameters 

respectively, various functions of p1 and 

p1- p2 , the product p1p
2

, the ratio p1/p2 

like the difference 

are relevant in various 

real-life problems, and it is of practical importance to be able 

to estimate these functions. In recent years, statisticians and 

reliability engineers have been interested in estimating the reliability 

of a complex system {a piece of equipment, an aircraft, a missile, 

etc.) based on tests of its components. If components operate 

independently and each component assumes only two states of performance, 

success or failure, then we have a so-called "attribute failure 

model" and the system reliability can be expressed as a function of 

Bernoulli parameters. Interval estimation of such functions is the 

main objective in our investigation. 

Suppose TT., i = 1, 2, ••• , k, are k 
l. 

of a system with component reliabilities 

independent components 

p .• 
1 

There are two basic 

reliability functions, namely, the reliability of a series system 

and that of a parallel system R2 : 

Many authors have written about constructing confidence limits for 

- 1 -



R
1 

and R
2 

(or special cases} using various approximations. Among 

them Buehler (1957) and Harris (1968) use Poisson approximation to 

estimate R
2

, Madansky (1965) uses a chi-square distribution 

approximation to estimate R
1 

and R2 while Rosenblatt (1963) 

employs normal approximation. 

ordinary binomial sampling. 

All of these approaches assume 

In Chapter II, we assume inverse binomial sampling and find 

that if (using notation defined below in Section 1.2) 

X . ._ NB{r., 1-p.), i = 1,2, ••• , k1 l. ]. 1. 

and 

Y. 
J 

NB{sj, 1-pj), j = 1,2, ••• , k2 

are the k1 + k
2 

resulting negative binomial r.v.'s, then the 

conditional distribution of x1 given the observed differences 

Xi- x1 = wi, i = 2,3, ••• , k1 , and the observed sums Y. + Xl = V., 
J J 

j = 1,2, ••• , k2 , is a distribution depending on the parametric 

function 9 = p1p2 ••• pk /pip~··· pk only. 
1 2 

In Chapter III, we apply this result and treat the special 

case k
2 

= 0 and 9 = R1• The resulting distribution is found to 

be expressible in terms of generalized hypergeometric functions, 

and exact confidence limits for the product of any number of Bernoulli 

parameters are constructed. With simple relabeling, the method 

also gives confidence limits for R
2

, the reliability of a parallel 

system. By randomization, our confidence limits can be made to 

be "uniformly most accurate unbiased" in Lehmann's sense. Under 

usual assumptions about approximating a negative binomial r.v. by 

- 2 -
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a Poisson r.v., our exact solution for a parallel system tends to 

Harris' (1968) Poisson approximation, as one would expect. 

A general class of systems called "monotonic" or "coherent" 

structures which includes parallel and series systems as special 

cases have been discussed by various authors. The reliability of 

a system in this class is a polynomial in its component reliabilities. 

In Chapter IV we introduce a nrultiple stage compounding technique 

which considerably augments the class of functions one can estimate. 

The class includes any polynomial, and more generally, any rational 

function of Bernoulli parameters. The basic idea is that in drawing 

binomial samples from a Bernoulli population, the sample sizes 

should be determined by the outcomes of a known Poisson distribution. 

The technique provides interval estimates of every system reliability 

in the attribute failure model. By randomization, many of them 

can be made to be ''uniformly most accurate" in a certain class. 

The technique is easily extended to cover the case of a multistate 

failure model. It also provides a non-parametric solution for 

estimating the system reliability in the variable failure model, 

irrespective of the underlying time to failure distribution used 

(section 6.1). 

In Chapter V we discuss a method of estimating the reliability 

of a series or a parallel system using "left-over information." 

The method is a counterpart of Lieberman and Ross' (1970) solution 

for the exponential time-to-failure model. 

In Chapter VI we use the relationship between the exponential 

distribution and the Poisson process to estimate the reliability 

- 3 -
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of a series system when the individual component has an exponential illlll 

time-to-failure model {section 6.2). We also discuss applications 

of the results obtained in Chapter II to some biomedical problems 

including estimation of the difference of two bacterial densities, 

comparison of two Yule's birth processes and comparison of two 

effectiveness indiceso 

1.2 Notational Conventions. 

Throughout the thesis we shall adopt the following notational 

conventions. Except when they are encountered for the first time 

in the sequel, we shall not define them again • 

TT TT ~ i, J 

q~ 
J 

r.v. : 

CDF 

PMF 

PGF 

IBS 

means the . th 
1 Bernoulli population. When 

there are two sets of Bernoulli populations, TT~ will 
J 

denote the j
th 

Bernoulli population in the second set. 

the probability of success for the Bernoulli population 

0 < p. < 1. 
1 

the probability of success for the Bernoulli population 

equal to 1 - p.; i.e., probability of failure for 
1 

the population TTi. 

equal to 1 - p~; i.e., probability of failure for 
J 

the population 

Random variable. 

Cumulative distribution function. 

Probability mass function. 

Probability generating function. 

Inverse binomial sampling. 

- 4 -
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RHS : 

LHS : 

MSCP : 

Right hand side. 

Left hand side. 

Multiple stage compound Poisson (see Section 4.2.1). 

X -NB{r, q): means X is a negative binomial random variable with 

parameters r and q; more precisely, it means 

(1.1) 

X - GD(p) : means X is a geometric random variable with parameter p. 

(1.2) 
X 

P{X = x} = pq, x = 0,1,~, ••• where q = 1 - p. 

X -B(n, p) means X is a binomial random variable with parameters 

n and p; and 

(1.3) P{X = x) (n) x n-x = p q , X = 0,1,2, ... , n. 
X 

means X is a Poisson random variable with parameter A. 

(1.4) ) -A x, I P{X = x = e A x., x = 0,1,2, •••• 

T - Exp{A) means T is an exponential r.v. with parameter A> 0. 

(1.5) ( ) -At fT t = Ae , t > 0 • 

X -Gamma(n,A):means X is a gatmna r.v. with parameters n > 0, A> 0. 

(1.6) 

d 
X -+ X 

n 

( ) Xn n-1 -AX 
fX X = f{iiY X e , X > 0. 

means the sequence of r.v.'s xl' x2, .•• , 

converges in distribution to the r.v. X. 

- 5 -
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F{a, b, c; z): 'the hypergeometric function. u 
{l 

a•b a a+l)b b+l) 
(1.7) F{a, b, c; z) = + l•c z + l•2•c c+l z2 u 

+ a a+l) ~+2 b b+l) b+2 z3 + } 
l•2•3•c c+l c+2 •••• u 

See Whittaker and Watson (1915). u 
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CHAPTER II 

INFERENCE ABOUT THE QUOTIENT OF PRODUCTS OF BERNOULLI PARAMETERS 

Let TTl, TT2' • • • , TTk 
1 

and I I I b TTl' n2 , ••• , TTk e 
2 

kl+ k2 

independent Bernoulli populations with parameters p1 , p
2

, ••• , pk 
1 

and I I I 
P1' P2' • • •' pk 

2 
respectively. In this chapter we describe 

how to apply inverse binomial sampling to make statistical inferences 

about the parametric function 

(2.1) e 
P1P2• • .pk 

1 . 

The product p1p
2 

and the quotient p
1
/p

2 
of two Bernoulli parameters 

are special cases of practical interest. Our aim is to get rid of 

nµisance parameters by devising suitable sampling rules so that it 

is possible to make exact probability statements about e and obtain 

statistical tests and confidence limits for e having certain 

optimum properties. 

2.1 Design of Experiments. 

The sampling method we use is inverse binomial sampling in 

which the number of successes (or failures) of the experiment on 

each population is fixed, while the sample size is random. 

This type of sampling plan apparently was first used by J.B.S. 

Haldane (1945) in estimating abnormal blood corpuscle proportions. 

Later it was used for example in bacteria counting {Sandelius, 1950), 

animal population estimation (Chapman, 1952), and reliability testing 

for exponential populations (Nadler, 196o). 

- 7 -



The IBS plan as applied to our present problem will be conducted 

in the following way: 

For each of the Bernoulli populations TTi, i = 1,2, ••• , k1 , we 

continue to perform independent, identical trials sequentially 

until 
th 

ri failure (i = 1,2, ••• , k1 ) is encountered where each 

r
1 

is any positive integer fixed in advance of the experiment. 

Then the sampling is terminated. Let Xi denote the number of 

successes encountered prior to the occurrence of the r 1
th failure. 

Then it is well-known that Xi -NB(ri, qi), i.e., Xi has a 

negative binomial distribution with parameters 

probability law is given by (1.1). 

and q .• The 
l. 

Similarly, for each of the Bernoulli populations ' ' ' 111' 112 ~ • • • ' 11k ' 
2 

we do inverse binomial sampling until failure (j = 1,2, ••• , k2 ) 

is encountered, where each sj is any positive integer fixed in 

advance of the experiment. Let denote the number of successes 

encountered prior to the occurrence of the th s. failure. 
J 

Then 

Yj -NB(sj, qj). Thus we have k1 + k2 independent negative 

binomial random variables x1 , x2 , ••• , Xk; Y
1

, Y2 , ••• , Yk • 
1 2 

2.2 Derivation of a Probability Distribution Involving Only a. 
Let x = (x1, ... , xk ), Y = 

1 
y = (y1 , ••• , yk ). Then 

2 

(2.2) 

kl k2 

P(x = x, Y = y) = rr rr 
i=l J=l 

ri+x.-1 s.+yj-1 x. r. y. s. 
( l. )( J ) l. 1 ' J ' J 

x. y. pi qi pj qj 
l. J 

where x. = 0,1,2, ••• , y. = 0,1,2, •••• We assume without loss of 
l. J 

generality k1 > O. Let random variables Wiand Vj be defined by 

- 8 -
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(2.3) 

w 
(2.4) P{w1 = w1, U = u) = C{w1, u)e l 

where e is defined by (2.1) and 

r 1+w1-1 r
1 

w1 
kl k2 r.+w.+w1-1 

(2.5) c(w1 , u) = ( w )ql pl Tl' 1T ( 1. w:+wl ) 
1 i=2 j=l 

and the range of the variables is 

w1 = 0,1,2, ••• 

The new parameter 9 is the desired parametric function we are 

interested in, other parameters in (2.4) are nuisance parameters 

of which we wish to eliminate. To get rid of nuisance parameters, 

we find the conditional distribution of w1 given U = u: 

(2.6) 
wl 

= u) = b{w
1

, u)e I~ b{t, u)et 
t 

where 

- 9 -



(2.7) b{w1 , u} 

and where w1 is any non-negative integer satisfying max{O, max (-w.}) 
2~i~kl 

1 

The values of t in the summation in the denominator ~ w1 ~ min vj. 
l~j~k2 

are the same as the values of w1 • 

The reasons for the restriction of the values of the conditioned 

random variable w1 to the double inequality can be seen briefly 

as follows: In (2.6), once the first conditioning random variable 

w2 is given to be a definite value {an integer), w
2

, say, then 

noting the definitions of w2 and w
1

, we know the conditioned 

random variable w1 can take only those non-negative integral values 

greater or equal to Likewise, once w. = w. 
1 1 

for 

some i = 3,4, ••. , k1 is given, w1 can only assume the integral 

values ::: max{O, -wi}. But w1 = w1 is conditioned by the conditions 

w2 = w2 , w
3 

= w3, ••• , Wk = wk simultaneously; therefore the 
1 1 

possible values of w1 = w1 must satisfy 

max{O, -w2} ~ w1, 

max(O, -w
3

) ~ w1, 

simultaneously. This implies w1 must satisfy max {max{O, 
2~i~kl 

which can be reduced to max {O, max (-w i}} ~ w1 • 
2:::;i:::;kl 

Similar observations lead to the other inequality 

- 10 -
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We note the conditional distribution (2.6) is easily verified 

to belong to the one parameter exponential family. It depends 

only on the parameter e, not on the individual (pi)'s and (p ~) 's. 
J 

Thus statistical inferences about 0 can be made from this conditional 

distribution. The disappearance of all nuisance parameters is also 

assured by Lehmann and Scheffe's remarkable theorem about exponential 

families (see, for example, Lehmann (1959), Chapter 2, Lemma 8). 

We note the joint distribution of the k1+ k
2 

negative binomial 

random variables in (2.2) can be rewritten as 

(2.8) 

where 

and 

P{X = x, Y = y} = A(p, p')h(x, y) 

kl k2 
• exp{x1 log 9 + ~ (x1- x.)log p. + ~ (y.+ x1)1og p~), 

i=2 1 1 j=l 1 
J 

A(p, p') 

h(x, y) 

kl r. 
]. 

= TT qi 
i=l 

k2 
TT 

j=l 

s. 
q' J 

j 

k k 
1 r.+x.-1 2 s.+y.-1 

= TT ( 1 1 
) TT ( J J }, 

i=l xi j=l Yj 

which is seen to belong to the (multi-parameter) exponential family 

by straightforward identification. By Lemma 8, p. 52 of Lehmann 

(1959), the conditional distribution of x1 given Xi- x1 = wi, 

i = 2,3, ••• , k1 and Yj + x1 = vj, j = 1,2, ••• , k2 again belongs 

to the (one parameter) exponential family and depends on the parameter 

log p
1
p2 ••• pk /pip2 ... p~ only, not on the nuisance parameters 

1 2 
log pi, i = 2,3, ••• , k1 and log pj, j = 1,2, ••• , k2 • Making the 

transformation (2.3), and noting the logarithm function is one to 

- 11 -



o~e, it is equivalent to say the conditional distribution of w1 

given U = u again belongs to the (one parameter) exponential family 

and depends on the desired new parameter 8 only. 

Before going to the discussion of statistical inferences about 

e, it should be pointed out that the above conditional distribution 

technique in getting rid of nuisance parameters can be generalized 

to include more general parametric functions: .9' = quotient or 

ratio of two product terms; each product term is a mixture of (p.)'s, 
1. 

(q.) 1s, (p~)'s and (q!)'s. 
1. J 1. 

2.3 Statistical Inferences About e. 

As shown in the previous section, the probability distribution 

(2.6) depends on the single parameter 9 only. Therefore, as usual, 

one-side and two-side conditional tests about the hypothetical values 

of e can be obtained by observing w· 
1 

given the observed values 

of w2 , ••• , Wk and v1 , ••• , Vk. Since the joint distribution 
1 2 

of the original random variables is seen in (2.8) to belong to the 

exponential family, we can apply Lehmann and Scheffe's theorem about 

uniformly most powerful unbiased tests for the multiparameter 

exponential family (see Theorem 3, p. 134 of Lehmann (1959)) and 

write down the tests of hypothesis which might be of interest about 

e(eo, el, 92 below being specified values): 

Null Hypothesis Alternative Hypothesis 

kl: 8 > 90 

k'. 1· 8 > 80 

H2 : 9 < 91 or 9 ::: 92 k2: e1 < a< e2 

H3: 91 ~ 9 ~ 02 k3: a< e1 or 0 > 02 

H4: 0 = 90 k4: 9 + 90 • 
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4 - .-, . ' 
._. For example, let a be the size of the test, 0 <a< 1, 

... 

and suppose the observed value of w1 is k and that of U is 

u in (2.6). Then to test H1: 9 ~ e0 against the alternatives 

k
1

: 9 > e0 , we reject H1 if k 2: c{u), where the critical value 

c{u) > 0 is, under 8 = e0 , the smallest number satisfying 

(2.9) 

Since we are dealing with discrete distributions, for most 

values of e
0 

under null hypothesis, the size of our test is 

actually less than a. To obtain tests with size exactly equal 

to a, randomization at the critical value c(u) can be employed. 

In that case, the test would have the property of being uniformly 

most powerful unbiased. 

One and two-sided confidence intervals can be constructed as 

follows: 

Let O <a< 1. Upon observing w1 = k, the upper confidence 

limit e2(k, u) (having confidence level 1 - a) conditioned on 

the observed U = u is 

(2.10) 

and thus 

P{9 < e2(k, u)ju = u} 2: 1 - a. 

The corresponding 1 - a lower confidence limit for a is 

(2.11) 

- 13 -



and thus 

P(9 2: e1{k, u)ju = u) 2: 1 - a. 

The problem created by the discreteness of the distribution mentioned 

in hypothesis testing has similar bearing in interval estimation here. 

We note by proper randomization, the confidence limits e1(k, u) 

and e2{k, u) can be made to have the property of being uniformly 

most accurate unbiased (see Lehmann (1959), Chapter 4). 
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CHAPTER III 

APPLICATION TO RELIABILITY PROBLEMS 

We come now to the problems which originally motivated the 

writing of this thesis. One area in the statistical reliability 

theory which has received much attention in recent years is the 

following: A system (for example, electronic equipment, aircraft, 

missle, etc.) is built up from several components. Some systems 

will function successfully if and only if every component of it 

operates successfully. This type is called a "series system." If 

all the components serve the same purpose and the successful operation 

of anyone of them guarantees the proper functioning of the system 

itself, then we have a "parallel system." For example, a manual 

brake and an automatic brake in a braking system form a parallel 

system. More complex systems may have both series-connected and 

parallel-connected components. In any case, one is interested in 

assessing the reliability, defined as the probability of successful 

operation of the entire system. It may turn out that testing the 

system as a whole is quite expensive and sometimes not even feasible, 

while testing the individual component is cheaper, feasible and more 

informative. Clearly it would be desirable to make inferences about 

system reliability based on testing data of individual components. 

This method of estimating system reliability is also useful for 

exploratory system design and will be our primary concern in this 

chapter. 

It is assumed that by analysis of the system structure, the 

system reliability R can be expressed as a function of the individual 

- 15 -



reliability of the components. Data obtained from testing individual 

components may be available in one of two forms: "attribute data" 

or "variable data." 

3.1 Attribute Failure Model. 

Component data in the form of "success" or "failure" are called 

attribute data and are analysed in terms of Bernoulli populations. 

When a component from population TTi' i = 1,2, ••• , k is tested, 

it either succeeds or fails, with probabilities p. and q., where 
1. 1. 

q. + p. = 1, 0 < p. < 1, and the component outcomes are mutually 
1. 1. 1. 

independent.- This is often called the "attribute failure model." 

Assuming there are k components in a system, it is obvious that 

in this model, the system failure probability is for 

the parallel system and 1 - p1p
2 

••• pk for the series system, while 

the system reliability is 8 = 1 - q1q2 ••• qk and 8 = p1p2 ••• Pk 

respectively. In any case, the problem reduces to constructing 

confidence limits for the product of k Bernoulli parameters. For 

a system which is comprised of components connected in both parallel 

and series, a more complicated expression for the system reliability 

is needed. 

Starting with Buehler (1957), nruch has been written about the 

problem by various writers from academic, industry and military 

establishments. As far as I am aware, every writer treats the 

problem from the viewpoint of fixed sample size approach, sometimes 

called positive binomial sampling, which leads to binomial distributions, 

and great difficulties--both theoretical and practical--are encountered, 

so that no one seems to have made exact confidence limit statements 
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about the e's. Instead various large sample approximations were 

introduced, notably the Poisson approximations of Buehler (1957), 

Harris (1968) and others, the chi-square distribution approximations 

of Madansky (1965), Myhre and Saunders (1965), the normal approximations 

through maximum likelihood estimators of Rosenblatt (1963), DeCicco 

(196o), 'and Thomas (1960). For rather complete literature surveys 

in this area, see Rosenblatt (1963) and Mann (1970). 

In view of the difficulties encountered in the fixed sample 

size approach, it is interesting to see what one can accomplish by 

adopting random sample size approach. It turns out that if we adopt 

the inverse sampling plan as described in Chapter II, we find the 

product function 0 = p1p
2 

••• pk is just a special case of the 

more general parametric function 

(3.1) 

treated in Chapter II. 

3.2 Statistical Inferences About Reliability of Series and Parallel 

Systems. 

If we set k1 = k and k2 = 0 in (3.1), then the parameter a 

* becomes 0 = p1p
2 

••• pk which is the reliability expression for 

the series system of k components in our present context. Thus 

results obtained in Chapter II provide tests and confidence limits 

* for 9. As before, the observed random variable, X., i = 1,2, ••• , k 
1. 

would be the number of successes occurring prior to the th r. 
]. 

failure. 

If we are dealing with a pa~allel system, we simply relabeled the 
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random variables Xi' i = 1,2, ••• , k to be the number of failures 

(instead of successes) encountered prior to the occurrence of the 

rith success in each of k Bernoulli populations, the resulting 

conditional distribution in Equation (2.6) will depend on the 

parameter 8 = q1q2 ••• qk, and this can be used to construct 

confidence limits for the parametric function 1 - q1q2 ••• qk, the 

reliability of a parallel system. 

The simple way by which we can handle both the series system and 

the parallel system is not always shared by procedures used by other 

writers. For example, the Poisson approximation approach can handle 

parallel system but not series system. In reliability problems, 

failure probabilities q., i = 1,2, ••• , k are small. Therefore, 
1. 

by taking sample size large enough, one can approximate an original 

binomial random variable by a Poisson random variable, thus making 

inference about 1 - q1q2 ••• qk' the reliability of a parallel system. 

But in a series system, the reliability is p
1
p

2 
••• pk' where 

pi= 1 - qi is close to 1. Therefore, Poisson approximation does 

not provide a satisfactory approximation. 

We have seen that mathematically speaking, the difference between 

analysis for a parallel system and a series system under our IBS plan 

amounts only to a simple relabeling of the random variables involved. 

Therefore, we will briefly sununarize the results for the series 

system of k (::: 2) components only: 

As in Chapter II, let w1 = x1, w1 = Xi- x1 , i = 2,3, ••• , k. If 

we define 
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and 

then the conditional distribution of w1 given U = u {from (2.6)) 

is 

(3.2) 

where 

(3.3) b 1 (w
1

, u) 

* 0 = P
1
P

2 
••• Pk and w1 is any non~negative integer satisfying 

(3.4) max ( 0, max ( -w i ) } S w 1 < 00 • 

2~i~k 

The values of t in the summation in the denominator run through 

all possible values of w1 in (3.4). 

The distribution (3.2) can incidentally be expressed in terms 

of generalized hypogeometric functions. We do this for k = 2 in 

section 3.3. 

Having found the distribution (3.2) depending on the desired 

* parameter 9 only, it is a routine job to conduct tests of hypothesis 

and constructions of confidence limits for * e . For example, let 

0 <a< 1. Upon observing w1 = k, the 1 - a upper confidence limit 

* a2(k, u) conditioned on the observed U = u is: 

(3.5) * * e2{k, u} = sup(9: 

and thus 
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* * P{8 < e2 (k, u)IU = u) ~ 1 - a. 

* The corresponding 1 - a lower confidence limit for 6 is 

(3.6) * el{k, u) = 

and thus 

* * P{9 ~ e1(k, u)IU = u) ~ 1 - a. 

Remarks about using randomization to obtain uniformly most accurate 

unbiased confidence limits mentioned at the end of Chapter II are 

also applicable here. 

3.3 Estimating the Product of Two Bernoulli Parameters. 

In this section we discuss some specific properties of the 

particular case of * * 9 by taking k = 2; that is, 9 becomes A= p1p2 , 

the product of two Bernoulli parameters. Physically this represents 

the reliability of a series system of two components TT
1

, TT
2 

(the 

method to be developed is easily adapted to treat the reliability 

of a parallel system, as commented upon before). It is highly 

desirable to find some convenient, known function which can be 

used to express the conditional distributions and facilitate computation. 

It turns out that the hypergeometric function is involved. Some 

interesting special cases will be mentioned and finally approximations 

appropriate for parallel systems will be given. 

3.3.1 Probability distributions depending on A= p1£2 • 

The definition of the hypergeometric function F(a, b, c; z) 

given in (1.7) involves three parameters a, band c > 0. The 

series is absolutely convergent when lzl < 1. For our purposes, 
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a, b, C will be positive integers; z will be a real number with 

jzf < 1. By straightforward rearrangement in each term of F(a, b, c; z), 

it is seen that the function can be expressed as 

00 

(3.7) F(a, b, c; z) = 6 f{a, b, c; z, n), 
n=0 

where 

f(a, b, c; z, n) = r(~~~~b) r a+n)r b+n) z 
n 

(3.8) r c+n =-r. n. 

Here r(x), x > 0, is the familiar gamma function. 

as the partial sum: 

Define F (a, b, c; z) 
X 

(3.9) F (a, b, c; z) 
X 

X 

= 6 f(a, b, c; z, n). 
n=0 

Then F (a, b, c; z) = F(a, b, c; z). 
00 

We shall see presently that the conditional distribution (3.2) 

can be expressed in terms of F (a, b, c; z) and F(a, b, c; z). 
X 

When k = 2, (3.2) becomes (note w2 is replaced by w): 

(3.10) 
x

1 
00 

P"- (x1 = x1 1x2 - x1 = w) = b'(x
1

, w)l / ~ b'(t, w)11.t, 
t=max(0,-w) 

where 

b 1 (x
1

, w) 
r

1
+x

1
-l r

2
+w+x

1
-1 

= ( x )( w+x ), 
1 1 

and Max(0, -w) ~ x1 < 00 • 

Case 1: If w ~ 0, then (3.10) becomes 

(3.11) PA(X1= x1IX2- Xl= w) 
X 00 

= b'(x1, w)11. 
1/ °Eb'(t, w)11.t, x

1
= 0,1,2, ••.• 

t=0 
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Each term of the sum in the denominator can be written as 

(3.12) 

where f(a, b, c; z, n) is defined in (3.8). The numerator of (3.11) 

is just one of the individual terms of the sum in the denominator 

and therefore it can be expressed as the RHS of (3.12) with t 

replaced by x1• Thus using (3.7), (3.11) becomes 

• 
I , ... , .., . 

(3.13) 
f(r1, r

2
+w, w+l; A, x1) 

PA(X1= x1lx2- X1= w} = F(rl' r2+w' w+l; A) , x1= 0,1,2, •••• 

Introducing (3.9), the CDF of the conditional distribution (3.13) is 

given at non-negative integer values of x by 

{3.14) 

as we promised to show. 

Case 2: If w < 0, then by defining Y = x1+ w, the distribution of 

the translated r.v. Y can be found in a way similar to Case 1, 

and by translating back to the original r.v. x1, we have 

(3.15) 
f(r2 , r 1-w, 1-w; A, x1+w) 

F ( r 
2 

, r 
1 

-w , 1-w·; A) 

x1 = -w, -w+l, -w+2, •••• 

The CDF form of (3.15) is: 

(3.16) 
F (r2, r 1-w, 1-w; A) 

I ) x+w 
PA (Xl ~ x X2 - Xl = w = -F-( r-

2
-,-r-

1
---w-, ........ l--w-;____,,.A_)_ 

x = -w, -w+l, -w+2, •••• 
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Combining (3.14) and (3.16), the cumulative distribution function 

of x1 given x2- x1 = w, w = o, .± 1, .± 2, ••• , is: 

--1 F x ( r l' r 2 +w, l+w; A) /F ( r l , r 2 +w, l+w; A) , if w ~ 0 

(3.17) P{x1:5 xlx2- x1= w) 
Fx+w(r2 ,r1-w,l-w; A)IF(r2 ,r1-w,l-w; "'-),if w < O 

where x is an integer > 0 if w ~ O; and an integer > -w if 

w < o. 

By analogy with the incomplete gamma function and incomplete 

beta function, it is appropriate. to call the distribution (3.17) the 

"incomplete hypergeometric function." 

As a corollary to the conditional distributions (3.13), and 

(3.15) we can incidentally find the probability distribution of the 

difference of two negative binomial random variables. 

If xi -Ni3(ri, qi}, pi= 1 - qi, i = 1,2, and if x1 and x2 

are independent, then 

(3.18) 

where 

ct = max ( 0, -w) , a = max ( 0, w) , 

rl+a-1 r2+a-1 rl r2 
c(rl,r2) = ( ct )( S )ql 42 ' 

w = o, + 1, .± 2, + 3, •••• 

In particular, 
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Using this result, the incomplete hypergeometric function (3.17) 

can be written in a single expression: 

Fx+a(r1-+a, r 2-t-a, 1 + lwl; l) 
(3.19) P{x1 ~ xlx2- x1 = w) = - -

x = a, a+l, a+2, ••• 

w = o, .:!: 1, .:!: 2, ••• 

and the corresponding PMF (3.13) and (3.15) can be put in a combined 

form: 

(3.20) P(X1= x11x2- x1 = w} = 
f(r1-kY, r 2-t-a, 1 + lwl; A, x1-a) 

F(r1-kY, r2+~, 1 + lwl; A) 

x1 = a, a+l, a+2, ••• 

w = 0, .:!: 1, .:!: 2, •••• 

The probability generating function for (3.19) is innnediately found 

to be the ratio of two hypergeometric functions: 

(3.21) ~(t) = F(r1+a, r 2+a, 1 + lwl; lt)/F(r1-+a, r 2~, 1 + lwl; A). 

We see ~(t} is convergent for lltl < I or ltl < 1/p1p2 • Noting 

the simple formula dd F(a, b, c; z) = ab F(a+l, b+l, c+l; z}, the 
Z C 

mean of this distribution is found by straightforward computation: 

• 
t ~ 

~ . i 

(3.22) 
X(r1-+a)(r2+a) F(r1-+a+l, r 2~+1, 2 + lwl; X) 

E(Xl lx2- X1= w) = - _ .. • 

Similarly, the variance can also be obtained easily, but the algebraic 

expression involved is somewhat complicated and will not be given here. 
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3.3.2 Some special cases. 

Some special cases ·of the CDF (3.19) or _its corresponding probability 

mass function (3.20) are interesting. The case with either r 1 = 1 

or r
2 

= 1 reduces to the nega:tive binomial distribution or "truncated 

negative binomial distribution," depending on the sign of the value 

of the conditioning r.v. Let us first consider 

Case A: r 1 = r 2 = 1. 

In this case we test both components 

encounters first failure. The PMF (3.20) becomes: 

(3.23) 

until each of them 

for w > 0. This is a geometric distribution with parameter 1-p
1
p

2
• 

Note the interesting fact that the conditioning value w disappears-

the distribution is the same for all values of w = 0,1,2, •••• The 

corresponding CDF is 

For later use, we note further that since w ~ 0, therefore 

min(x1 , x2 ) = x1 , and from (3.23), we have 

(3.24) 

a fornrula whic_h also holds for w < O. Since this does not depend 

on w, the unconditional distribution is the same: 

This result has been noted previously by Ferguson (1965). The signifi-
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cance of the r.v. min(x1 , x
2

) is that in our series system of 

two components, if we use IBS to test the "system" as a whole until 

first system failure, the r.v. X describing number of system 

successes prior to first system failure is exactly the r.v. 

{X = x) = {The series system first fails at trial number x + 1} 

= (Either component n1 first fails at trial number 

X + 1 

X + 1) 

or component tt2 
fails at trial number 

= {Either x1 = x or x2 = x) 

= {Min(x1, X2) = x). 

Another way to look at the same matter is to find the distribution 

of X directly. In a series system of two independent components, 

the probability of (system) success in a trial is p1p2 , while 

probability of failure is l-p
1
p2 , it follows X -GD(l-p1p2), the 

same as that of min(x1 , x2 ), as we claimed. 

The above remark about min(x1 , x2 ) is closely related to 

another point of practical interest: In using the conditional 

distribution P{X1= x1 1x2= x1= w) to analyze experiment outcome, 

we have assigned the r.v. x
1 

to component tt
1 

and x2 to component 

n
2

• The assignment is of course arbitrary. But it is important to 

keep the~ assignment of r.v.'s to components in the subsequent 

experiments (if there are any), otherwise the analysis may lead to 

"testing the system," instead of "testing the components," and 

possibly lose information also. To see this, suppose when x1 ~ x2 

- 26 -
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is observed, we associate x1 to component n1 , and x
2 

to 

but if x1 > x2 , we associate x 1 to TT2 and x2 to n1 • 

little reflexion shows that the conditioned r.v. x1 in 

TT2; 

A 

P{X1= x1 1x2- x1= w) actually becomes min(x1 , x2 ) in this practice. 

But min(x1 , x2 ) has already been shown to be equivalent to the 

r.v. X in "testing the system." The_possible loss of information 

is now seen from the fact that the r.v. min(x1 , x2 ) utilizes only 

the smaller of the two observations x1 , x2 , not both of them. 

Next let us consider 

Case B: r 2 = 1, r 1 = an_ arbitrary positive integer. 

In this case we test component n
1 

until r
1 

failures, and 

test component TT2 until first failure. The PMF (3.20) becomes: 

Case Bl: If w ~ 0, 

(3.25) P{X1= x1 jx2- X1= w) 
r 1+x

1
-l r

1 
x

1 = ( )(1-A) A , x1 = 0,1,2, •••• 
xl 

This is a NB(r
1

, 1-A) distribution and is free of the observed 

value w of the conditioning r.v. W. Note this is exactly the 

distribution one would obtain if he "tests the system" until r
1 

(systems) failures. The CDF is obtained either from (3.19) or 

directly from (3.25): 

(3.26) P{x1 ~ xlx2- x1 = w) = 
x r +x -1 r x 
~ ( 1 1 )( l-A) 1 A 1 

X x1=0 1 

= 1 1_A(r1 , x+l), x = 0,1,2, ••• , 

where 

( ) r{m+n) rx m-1( n-1 
Ix m, n = r(m)r(n) ~ t 1-t) dt 
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is the incomplete beta function which has been extensively tabulated 

by K .• Pearson (1932) • Note that (3.26) is also free of w. 

Case B2: If w < O, then (3.20) becomes 

(3.27) 

(3.28) 
r +t-1 r 

( 1 t )(1-l) 1 At 

(3.29) = -w , -w+ 1, -w+2 , ••• , 

which is not free of w. Note in (3.28) the numerator is an individual 

term of NB(r1, 1-A) with the first {-w-1) terms missing, while 

-i 
/ r_ ., 

the denominator is an adjusting factor to sum the remaining probabilities 

to unity. For this reason, (3.29) can be called a "truncated negative 

binomial distribution" truncated at -w. Its CDF is obtained from 

(3.19) or directly from (3.29) 

(3.30) 

x r +x -1 r x 
E ( 1 1 )(1-A) 1 A 1 

X x1=-X 1 

P(Xl ~ xlx2- xl = w) = 1 - Il-A(rl, -w) 

I 1_A(r1, x+l)- I 1_A(r1,-w) 
= 1 - I 1_A(r1, -w) 

x = -w, -w+l, -w+2, •••• 

Again Pearson's tables can be used. 

Finally consider 

Case C: r 1 = 1, r 2 = an arbitrary positive integer. 

This case is similar to Case B just discussed. The cases 

w ~ 0 and w < 0 correspond to the cases w < 0 and w > O in 

Case B respectively. 
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3.4 Approximation for Parallel Systems. 

Recall that the conditional distribution given by (3.20) is 

appropriate for a series system of two components. In this section 

we obtain a corresponding conditional distribution for a parallel 

system. Then we develop a Bessel function approximation for this 

distribution. Generalization to any number of components follows. 

Finally, a different type of approximation involving the known 

distribution of the product of two gamma r.v.'s is indicated. 

If we relabel the r.v.'s xl and x2 in (3.20) to represent 

numbers of failures prior to the th and th success respectively, rl r2 

then we obtain a conditional distribution appropriate for a parallel 

system of two components: 

(3.31) 

where µ = qlq2, 

f(rl+a, r2+a, 1 + lwl; µ, xl-a) 

F(r1-+a, r 2+a, 1 + lwl; ~) 

a, a are defined immediately after Equation (3.18), 

x1 = a, a+l, a+2, ••• 

w = o, + 1, .± 2, •••• 

Note that 1 - µ is the system reliability for this parallel system 

case, and (3.31) can be used to construct confidence limits for µ, 

and hence for 1 - ~- Now to derive an approximating distribution, 

we note the failure probabilities and are usually very small, 

and therefore must be comparatively very large in order to 

observe a few failures. With this in mind, the assumptions in 

Theorem 3.1 below are probably appropriate. 
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Theorem 3.1 (Bessel function approximation). 

Let Xi -NB{ri, pi), i = 1,2, be two independent negative 

binomial r.v.'s. If ri ~ m, qi= 1 - pi~ 0 i = 1,2, in such a 

way that (r1-+a){r2+a)q1q2 = A remains fixed, where A is a 

positive constant, then for each x1 , w, (3.31) has the limiting 

distribution: 

{3.32) 

x1-¥W/2 
P{x

1 
= x

1
jx

2
- x

1 
= w) ~ __ A _____ _ 

xl ! (xft-w) !I lwl (2JT ) 

where 

(3.33) I (x} = (~)v ~ x2/4 k 
v 2 k=O k.r v+k+l 

is the modified Bessel function of order v. For our purpose v 

will be a non-negative integers and x > o. The proof is given in 

Appendix A. It essentially involves checking that limit of infinite 

sums is the infinite sum of limits using uniform convergence and 

Stirling's formula. 

We note that if X - P0(A) and Y - P0(µ,) are two independent 

Poisson r.v.'s with parameters A and µ,, then it follows from 

Harris (1968) that we have the probability mass function: 

y+(w/2) 
P(Y = YIX - Y = w) = ____ p ____ _ 

y!(y+w) !I lwl (2,/p) 

where 

p = AIJ, 

y = a, a+l, a+2, ••• , a= max(O, -w); 

w = o, ± 1, :!:. 2, ••• , 
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and this is exactly of the same form as the limiting distribution 

(3.32). This is somewhat expected as one can see from the mode of 

convergence of Theorem 3.1. 

More generally, if there are k > 2 components in a parallel 

system, we observe 

Define the r.v.'s Wi, i = 1,2, •• ~, k and the vectors U and u 

as in (3.2). We obtain the conditional distribution of w1 given 

U = u by relabeling (3.2): 

wl 
= b{w1, u)e / E b'{t, u)et 

t 

where b'{x, y) is defined in (3.3), 

and w
1 

satisfies the double inequalities (3.4). Note 1 - a is 

the system reliability in this case. 

Corollary 3.1. 

Let Xi -NB{ri, pi), i = 1,2, ••• , k be k independent r.v.'s. 

If ri-+ 00 , qi= 1 - pi-+ 0, i = 1,2, ••• , k in such a way that 
k 
TT r.qi = p remains fixed, where p is a positive constant, then 

i=l l. 

for each w1 and u = {w2 , ••• , wk), (3.34) has the limiting value 

(3.35) 

where 

h( w 1' p) / ~ h( t, p) 
t 

k t 
p = TT r. q . , and 

i=l 1 1 

h(t, p) = -~P __ _ 
k 

t ! TT ( t+w. ) ! 
i=2 

1 
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Another approximation for a parallel system is to observe that 

if X -NB(r, p), then the r.v. Y', defined as Y' = 2p{r+X) converges 

to x2 (2r) in distribution as p ~ o. (See Chapman (1952)). It is 

also true d Y = 2pX ~ x2 {2r). Thus if Xi -NB(ri, pi), i = 1,2, then 

where u1 -x2 {2r1), i = 1,2. Now u1, u2 are two independent chi

square r.v.'s and the density fu{u) of the product Us u1u2 follows 

from Malik (1968-) 

(3.36) ,u>O 

where K {x) is the modified Bessel function of the second kind of 
r 

order r. It follows V = x1x2 = Y1Y2/4p1p2 has approximately the 

density function 

(3.37) , V > 0. 

This can be used to construct approximate confidence limits for 

p1p2 if both p1 and p2 are small, for any values of r 1 and 

r
2 

not necessarily large. Unlike previous solutions, the confidence 

limits constructed here are unconditional. 

3.5 Other Parametric Functions and Other Systems. 

So far our discussion has been centered on creating probability 

distributions depending on the parametric function 0 in (2.1) and 

its particular cases which are relevant to a_purely series or purely 

parallel systems of the attribute failure model. It should be pointed 

- 32 -

I : 

la.I 

I i 
..i 

I 
~ 

I 

I ; 

~ 



,: . '' 

-

1..1· 

out that in the expression for 0 in (2.1), if we replace some or 

( q ~) 's, and let 
J 

e' 
represent the new parametric function, then a distribution depending 

on 91 only can also be obtained and statistical inference about 

for each failure probability q. (or q ! ) in e', we sample the 
1. 1. 

corresponding Bernoulli population (or n!) until th 
(or TTi r. 

1. 1 

th p. (or p ~) in a', we. sample until si ) success; while for each 
J J 

th s_th) similar to (2.6) can r j (or failure. Then a distribution 
J 

be obtained which depends on the desired e'. 
3.5.1 A parallel-series system. 

We now discuss a way to provide confidence limits for the' 

reliability of a system having both parallel and series elements. 

Suppose there are three independent, dissimilar components 11
1

, 11
2 

and in a given system. Four different ways have been found to 

connect them (P stands for system reliability in each configuration). 
s 

a. All components are in series, and P - pp p 
s - 1 2 3· 

b. All components are in parallel, and Ps = 1 - q
1

q2q
3

• 

c. Two in parallel form a subsystem and the third component is 

connect to it in series. Here P
8 

= (l-q1q
2

)p
3

• 

d. Two in series form a subsystem and the third component is 

connected in parallel to it. Here Ps = 1 - (1-p
1

p
2

)q
3

• 

We have already given confidence limits for cases a. and b. Case c. 

and d. can be called "Parallel-series systems." We shall now find 

a distribution depending on the 

treated in a similar way. 

,, 
p 

s 
in Case c. 
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Lemma 3.1. (Mixture of a negative binomial distribution and a binomial 

distribution.) 

Suppose X - NB(r, p1) and (YIX = n) - B(n, p
2
), then 

Y -NB(r, p1/(l-q1q2)). In particular, if p1 = p2 = p, then 

Y -NB(r, 1/(l+q)), where q = 1 - p. 

Proof: 

The probability generating function (PGF) of X is: 

When X = 1, the PGF of {YIX = 1) is: 

By a theorem for the PGF of a random sum (see, Feller{l968),p. 287), 

the PGF of Y is: 

which we recognize to be the PGF of Y -NB{r, p1/(l-q1q2)). 

To find confidence limits for P in Case c., we perform IBS 
s 

'J 

on component n1 until th r 1 success. If X represents the outcome, 

then X - NB{r, p1). Suppose n is the observed value of X, we 

perform ordinary binomial sampling on component n
2 

until n 

observations are obtained. Let (YIX = n} represent the outcome. 

IBS on components n1 , n2 and n
3 

until first success, first 

failure, and r
3
th failure, respectively. Let x1, x2 , and x

3 
represent the outcomes. Then x1 - NB(l, p1), x2 - NB(l, q2 ) and 
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... 

x
3 

-NB{r
3

, q
3
). Thus we have four independent negative binomial 

r. v. 's Y, X l , x2 and X 
3 

• Let W l = X 
3

, W 2 = X l - X 
3

, W 
3 

= X2 - X 
3 

, 

V = Y + x
3

, as in (2.3). By (2.6) we have 

= b{x, u)ex/ ~ b{t, u)et, where 
t 

r +x-1 
b{x, u) = ( 3 X )(r+;::-1), 9 = (1-qlq2)p3 

and x is any non-negative integer satisfying max(O, max (-w.)) < x < v. 
2~i~3 1. -

The values of t in the summation in the denominator are the same as 

the above-mentioned values of x. 

For Cased., we need a distribution depending on system failure 

probability Pf= 1 - Ps = (1-p1p2 )q
3

, and this can be found by 

interchanging the labels for success and failure in Case c. 

3.5.2 A series system with some identical components. 

If we have a purely series system consisting of i. 
J 

components 

of type j, j = 1,2, ••• , k and 

system reliability is 

(3.39) 

i. being any positive integer, the 
J 

where is the reliability of each type j component, j = 1,2, ••• , k. 

This is, of course, a special case of (3.2) and IBS on each of the 
k 

N = 'E i. components is required in order to obtain a distribution 
. 1 J J= 

like (3.2) which depends on P in {3.39). Another way to accomplish 
s 

this purpose is to do IBS on each type of component, thereby reducing 

the number of samples from N to k. Let us illustrate this by 
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taking a series system of three components n1, n2 , n~ 

them (n
2 

and n') 
2 

are identical. Then P
8 

• 
, . -, 

' 
two of 

We perform 

IBS on ni until 
th r 1 failure and obtain the r.v.'s xi -NB(r1 , qi), 

i = 1, 2. By Lehmann and Scheffe 1s Theorem mentioned in Section 2.2, 

it is easy to see the conditional distribution: 

(3.40) 

depends on the system reliability P only. Although this method 
s 

cuts down sampling efforts, the distribution becomes "more discrete" 

in the sense that probabilities of (3.40) are spread among fewer 

sample points, and randomization becomes more important. 
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CHAPTER IV 

COMPOUND PROBABILITY DISTRIBUTIONS AND THEIR APPLICATIONS 

Let the r.v. X have the distribution function FX(x; e) for 

each given value of the parameter 9. Suppose now that e itself 

is a r.v. Y having distribution function Fy(y). Then the absolute 

(or marginal) distribution of X is sometimes called a "compound 

distribution," and Y is called th.e "compounder." In the present 

reliability problems, the usefulness of the compounding technique 

depends on its ability to produce desired reliability expressions 

in the compound distribution. We have already used this technique 

in Lemma 3.1 where the compounder is X -NB(r, p1) and the 

compound distribution ~f Y) is found to be negative binomial. The 

technique produces th~- probability distribution (3.38) which depends 

on the desired reliability expression (1-q1q2 )p
3 

for a parallel

series ·system. In this chapter we exploit the properties of the 

compound Poisson distribution and find confidence limits for a large 

class of functions of -·Bernoulli parameters. A special case of these 

functions is the reliability expression of any monotonic system 

consisting of independent components in the attribute failure model. 

It is conjectured, that .the technique is also applicable to the non

monotonic systems. As we shall see later, the basic feature of our 

approach is to require that the number of observations taken fromany 

Bernoulli population be a r.v. fpllowing a known Poisson distribution.The 

distribution tA~oretic facts which we use are given for example by Feller 

(1968), p. 301, and have been used previously by Paulson (1967) in a 

binomial selection problem. In practice, this can be carried out using 

the cGmputer-generated uniform random variates or the published tables 

of the Poisson distribution such as General Electric Co. (1962) and a 
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table of random numbers, such as Rand Corporation (1955). 

4.1 Compound Poisson Distributions and System Reliability. 

Let Y - P 
0

()..), where ).. is any positive number fixed in 

advance of the binomial sampling. Suppose (XIY = n) -B(n, p). 

Then it is well known that 

(4.1) 

X is called a compound Poisson r.v. In the practical sampling 

situation§ if n = O, we take X = o. Now if Y -P0()..i) and 

(4.2) 

then 

The Xi will be independent when the Yi are. The conditional 

distribution of x1 given that x2- x1 = w2 , ••• , Xk- x1 = wk is 

found {see Harris (1968)) to depend on the product of the k Poisson 
k 

parameters 8 = {)..1p1)()..2p2 ) ••• (~pk) = )..(p1p2 ••• pk), where ).. = _rr )..i. 
1=1 

For example, when k = 2, we have (see the discussion following 

Theorem 3.1 of Section 3.4): 

x+(w/2) 
P{x

1 
= xlx

2
- x

1 
= w} = ___ µ. ______ _ 

x! (x+w) !I lwl (2Jµ.) 

where 

§In the practical situations the case Y = 0 is very unlikely, 
because the sample size usually desired is moderate, say 30 or more. 
If we choose ).. to be 30, then P{Y = O} is negligible. 

- 38 -

, 
( 

'I , 
i ! 
l..j 

; 

' I 
i..J 

I 

..J 

i 
I.I 



w = o, ~ 1, + 2, ~ 3, ••• 

x = a, a+l, a+2, ••• 

a= max(O, -w) 

and llwl is the Bessel function defined in (3.33). 

Since Ai is preassigned, i = 1, 2, we can 

use this conditional distribution to construct confidence limits 

for More _generally, confidence limits for the reliability 

9' = p
1

p
2 

••• pk of a series system can be found. 

To find confidence limits for the reliability 8" = 1 - q1 q2 ••• qk 

of a parallel system, no additional sampling is required. We simply 

let z
1 

= n
1

- x
1 

denote the number of failures observed in the 

i
th sample. Then Z P (~ q) i - 0 ""i i 

and the same technique is seen 

to apply. 

4.2 Multiple-Stage Compound Poisson Distributions and System Reliability. 

In the previous section, each of the k binomial distributions 

was compounded individually with a Poisson distribution to give k 

compound Poisson distributions. We shall loosely call this type of 

compounding procedure "horizontal compounding." Instead of this 

procedure, if we perform the compounding process successively on the 

k binomial distributions as shown below, a single "multiple-stage" 

compounding Poisson distribution. results and interesting facts 

relevant to the estimation of the system reliability emerge. 

4.2.1 Multiple-stage compound Poisson distributions and the estimation 

of various functions of Bernoulli parameters. 

Let Y - P 0 (:>..), where :>,. > 0 is preassigned. Suppose 
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(4.3)' 

then, u before: 

(4.4) 

Row auppoae 

Then, by the••• argument, 

Repeating this proceH, and lettiag k N aay poaitive integer, suppose 

Then 

(4.5) 

where e a , 1, 2 ••• Pt• The cliatrilNtioa of x1 can 1,e called the 

first stage or aingle stage cnpouad ••i••• dlatribution, while 

that of x2 , x
3

, ••• , Xk can tie called a aecoad atage, a third stage, ••• , 
~ . . . 

k atqe or a MSCP (llalt~ple-ltap C1110UM Potaaon) diatr~bution. 

Rote that whenever a aav ol,aecvatlon of Y la generated (as 

cleecl'ibed in Section 4.1), ve can 10 tlirouab the k-atage compounding 

proc•as described abcwe and obtain a 11811 obaervation of ~·' Thus 

§If the obaervecl ni ia aero for tlae 1th atage, 1 < k, we 
take "It - o. 

-"° -
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-
a sequence of observations Xk, ~ , ••• , Xk , ••• on the Poisson 

1 2 n 
r.v. Xk can be obtained and the problem of constructing confidence 

limits for A0 or equivalently for 0 (because A is known) reduces 

to the elementary problem of finding confidence limits for the para

meter of a Poisson distribution. 

We shall call the type of compounding procedure for obtaining 

a MSCP r.v. "vertical compounding." • 

The parameter 0 is the reliability of a series system. For 

the reliability of a parallel system 9" = 1 - q1q2 ••• qk, we observe 

the number of failures in the compounding process and obtain at the 

kth stage: 

(4.6) 

which can be used to construct confidence limits for 9". 

As in the familiar case of constructing confidence limits for 

the parameter of a Poisson distribution, the lower or upper confidence 

limit for e and 9" constructed from (4.5) and (4.6) can be made 

to be uniformly most accurate by randomization. 

From the k Bernoulli populations we have created MSCP r.v.'s 

Xk and Zk whose parameters involve the product of Bernoulli 

parameters. More generally, let 

(4.7) 

where 

f(p, q) 
k k 6i y. 

- TT TT pi q J 
i=l j=l j 

61 = 0 or 1, yj = 0 or 1, i, j = 1,2, ••• , k; 

p = (p1,•••, pk), q = (q1,•••, qk) 

be any product of the P's 
i 

and It is clear that by the same 

vertical compounding technique we can create 
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a sum X of MSCP r.v.'s so that the parameter of the Poisson r.v. 

X involves the sum of the products f(p, q) of Bernoulli parameters 

(using the fact that the sums of k independent Poisson r.v.'s is 

• 
,I 

. ' 
~ 

.j 

i.j 

a Poisson r.v. whose parameter is the sum of the individual parameters). ~ 

Furthermore, we show that given a real polynomial A(p, q) of any 

arbitrary degree in the (parameter) variables pi and qj of 

p and q, we can crea~e a Poisson r.v. w whose parameter is 

A(p, q) - C, where C is the known constant term of A(p, q). To 

see this, we know A{p, q) can be expressed as 

(4.8) A{p, q) 
m 

= ~ A f (p, q) + C 
1 V V 

V= 

.... 

~ 

..., 

..i 

where Av's are arbitrary real coefficients, m is a positive integer, ._J 

and each f has the form (4.7) except that the exponents 6., y. 
i i 

can be 0,1,2, •••• For each product term A f (p, q), we note its 
V V 

sign is determined by the sign of A. 
V 

If A > 0 for all v, then 
V 

we can, as before, create a Poisson r.v. X whose parameter is 
ti 

EA f (p, q) = A(p, q) - C {we treat pi as: vv 
V 

ti 
Pi = PiPi••• Pi, ti-fold 

and the same for 
mj 

qj ). If A < 0 
V 

for some v, then there is no 

way we can create a MSCP r.v. whose parameter is the negative term 

A f (p, q), and the above procedure fails. One way to overcome this 
V V 

difficulty is to observe that we can express Avfv(p, q) as a sum 

~ 

..J 

I 

..i 

-' 

w 

w 

of several positive product terms and the constant A. More precisely, i.J 
V 

let ~·=-A > o. Then as we show by example in the next paragraph, 
V V 

- 42 -

i I 
1..1 

.i 

u 



.. 

. 
~ . \ 

(4.10) ).. f (p, q) = ).; 1 ~ f (p, q) +).. 
V V V i Vi V 

where fv {p, q) > 0 is of the same form as 
i 

powers ti, mj of the variables 

those of f (p, q). 
V 

P's i 
and 

f (p, q), only the 
V 

q's 
j 

may be less than 

The rule calls for expressing one of the q 's (or p. 's) in i l. 

terms of 1-q) 
i 

in each step, so that the original 

negative term >.. f (p, q) are split into two new product terms, one 
V V 

positive, one negative. Observe that the new negative product term 

has one less factor.in its product now. The process is continued as 

long as there are still negative product terms. Example: let >.. = -1, 

More examples are given in P' pf Table 4.1. 
s 

Substituting (4.10) into (4.8), and doing the same conversion 

for each negative term in (4.8), we obtain at the end that A(p, q) 

can be expressed as a sum of positive product terms plus a constant 

C', where C' is a known constant obtained from combining C with 

the negative constants >.. 's 
V 

in the conversion process. And the 

problem recuces to the case where >.. > 0 
V 

for all v mentioned 

above. 
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One final extension is the following: 

If A1(p, q), A
2

(p, q) are two polynomial of the form (4.8), 

then R(p, q) = A1(p, q)/A2(p, q) is a rational function of the 

Bernoulli parameters p, q. Let i = 1,2. Since we can create a 

Poisson r.v. W. with 
1. 

where Ci is a constant, it is _clear that we can arrange w1 , w
2 

I 

' ,I , • ._ 

to be independent, and find that the conditional distribution of w
1 

given the difference w2 + w1 = w, depends on the ratio [A
1
(p, q) - c

1
J/ 

[A2 (p, q) - c2 J only. Since in (4.11), Ci is a known constant, 

thus if Y -P0(ci), then Y + Wi -P0(Ai(p, q)). Thus we can 

construct confidence limits for this rational function of the Bernoulli 

parameters. 

4.2.2 Applications to the monotonic structures and other systems. 

Sampling considerations. 

One ilIDllediate application of the above result is that we can 

construct confidence limits for the reliability of a large class of 

systems called monotonic structures or systems when their components 

are independent (Mine (1959), Barlow and Proschan (1965)). Birnbaum, 

Esary and Saunders (~961) call them coherent structures. The class 

includes series, parallel, "fail-safe," and r-out-of-k systems. A 

monotonic structure assumes only two states of performance, either 

complete success or complete failure; so does each of its components. 

Thus it is natural to treat them using Bernoulli r.v.'s. In the 

following discussion, the meaning and definitions of the terms like 
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structure function ~' cut, path as well as the results in (4.12) 

below are given in Chapter 7 of Barlow and Proschan (1965). Our purpose 

here is to.show that the reliability of a monotonic structure can 

be expressed in terms of a polynomial in the Bernoulli parameters of 

the component populations. 

Let x = (x
1

, x
2

, ••• , ~) where xi is the indicator function. 

indicating the success or failure of component TTi' i = 1,2, ••• , k. 

Correspondingly, let X = (x1, x2 , ••• , Xk), where Xi is the Bernoulli 

r.v. associated with xi. The reliability of a monotonic structure 

with structure function q,(x} is given by Eq,(X). It is known.(see, 

' for example, Barlow and Proschan (1965)) that a monotonic structure 

can be represented in terms of paths Aj, j = 1,2, •.• , r of the 

structure and 

(4.12) 

where 

and 

(4.13) 

Thus 

and 

(4.14) 

r 
cp(x) = 1 - TT (1 - aj(x)] 

j=l 

is the binary function associated with the path 

aj{x) = TT X.' j = 1,2, ••• , r. 
. A 1. 
1.E; j 

r r 
q,{x) = 1 - TT [ 1 - TT X ] 

j=l ie.A i 
j 

Ecp{X) = 1 - E(l - TT x1 )(1 - TT x.) ••• (1 TT x.). 
ie.Al ieA 1 ieA ). 

2 r 
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Since x
1

, ••• , Xk are independent Bernoulli r.v.'s, and 

EXi = p1, i = 1,2, ••• , k, it is clear that after multiplying the r 

factors under the expectation sign and then take expectation, we 

can express each resulting term in the form: 

(4.15) 

where oi = O if ti= 0 and 61 = 1 if t. = 1,2, •••• Thus 
1. 

E,(x) is expressed as a polynomial in the Bernoulli parameters pi, 

• 

i = 1,2, ••• , k, and we can construct confidence limits for it as shown 

in the previous section. It should be pointed out that the structure 

function ,(x) can be represented in terms of cuts of the system. 

In ~hat case the system reliability E,(x) can be expressed in terms 

of a polynomial in which each individual term is in the form: 

where yi, as in (4.7), is either O or 1, i = 1,2, ••• , k. 

For non-monotonic systems consisting of independent components 

in the attribute failure model, the system reliabilities can also 

be expressed in terms of a polynomial in the Bernoulli parameters 

(of the components), so that the technique developed in the previous 

section should be applicable. 

If the reliability P of a system (monotonic or not) can be 
s 

expressed in terms of a polynomial in its component parameters p, q, 

then 

(4.16) 
m 

P = ~ A-vfv(p, q) + C 
8 v=l 
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as in (4.8). Without loss of generality, assume A f (p, q) > 0 for . . vv 

each v. In (4.16), a component parameter p. (or q.) may appear 
i i 

in more than one product term A f (p, q). Therefore, to apply the vv 

vertical compounding techn~que, more than one binomial sample from 

this component is needed. For example, in a parallel-series system 

(Fig. 4.o) with three components n1, i = 1,2,3, we have: 

~ 

~ ps = (l-qlq2)p3 = P3P1 + P3P2ql • 

Here P3 

Figure 4.o. A parallel-series system • 

appears in both product terms of p • 
s 

If by vertical 

compounding, we create 

wl - p o<AP3P1) 

and 

w2 - p o(AP3P2q1) 

to obtain 

w = w1. + w2 -P0 (AP 
8
), 

we would need two binomial samples from component TT
3 

in the process 

of obtaining W (it is seen that two binomial samples from TTl are 

also needed). We now describe a method to reduce multiple samples 

from the same component and show that in two special classes of PS, 

a and a, one binomial sample from each component is sufficient to 

estimate P • 
s 

Let TTi, i = 1,2, ••• , k be the k independent components (similar 

or dissimilar) of a system with parameters p or q {defined 
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innnediately after (4.7) ). For j = 1,2, ••• , k, define a recursive 

fornn.ila as follows: 

(4.17) 

with 

where 

P(j) = 61 (1-u.) + 6.u P(j-l) 
s j J J j s 

p(o) = 1 
s 

6j = O or 1, j = 1,2, ••• , k 

6j = 0 or 1, j = 1,2, ••• , k 

and (u1 , u2 , ••• , uj) is either a permutation of (p1 , p
2

, ••• , pj) 

or of (q1 , q2 , ••• , qj). For example: 

(1) '(l ) ps = 61 -ul + 6lul 

p~2 ) = [6~(1-u2 ) + o2u2(6i(l-u1 ) + 61u1)] 

P~3) = (6)(1-u3) + 63u3[6~(1-u2) + 62u2(6i(l-u1) + 61u1)]}. 

Note the way P(2 ) is built up from p(l), and p( 3) is built up 
s s s 

from p(2 ). For the parallel-series system mentioned above, P can 
s s 

be written as 

ps = p~3) = (O(l-p3) + P3[(l-ql) + ql(O(l-p2) + p2)]) 

or 

ps = p~3) = P3[Pl + ql(p2)] 

and this belongs to the class a to be specified below. 
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We now specify the classes G and B in terms of (4.17). Let 

ki, i = 1,2, ••• ,, t, :and t be positive integers. Suppose a system 
t 

consists of k = ~ ki components. Then for t > 1 define 
i=l 

t {k.) 
Cl= {P: P can be expressed as p = C + ~ p 1. ) 

s s s - i=l s ' 

and for t > 2 define 

t {k.) 
B= {P : p can be expressed as p =· C + TT p 1. } 

s s s i=l s 

where C = O or 1. For each Ps e G, we shall create a single 

MSCP r.v. w to estimate P · for s' 
P e B we shall create 

s 
t > 1 

MSCP r.v.'s w1, w2 , ••• , wt, and use the conditional r.v. 

to estimate P • The procedures 
s 

are best illustrated by considering examples. In the next section 

we consider a system which consists of four components TT., i = 1,2;3,4, 
l. 

with corresponding component reliabilities pi, i = 1,2,3,4. We 

also consider other well-known systems in Section 4.2.4. 

4.2.3 Reliability estimation for a system of four components. 

Ten possible ways have been found to connect four components (~ee 

Shooman (1968), p. 131). The ten system configurations and their 

reliabilities Ps are listed in Table 4.1. The configurations are 

easy to understand. For example, the first system is a purely series 

system, while the tenth system is a purely parallel system. 

each case is obtained by inspection. We also rewrite P 
s 

p in 
s 

in the 

alternate form P' of which the eight systems (1, 2, 3, 4, 5, 8, 9 
s 

and 10) are in the desired form C + P(k). Therefore they belong to 
- s 

the class G (with t = 1), and the remaining two systems (6 and 7) 
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involve product forms. They belong to the class B (with t = 2 

in both systems). We shall first illustrate the procedure for a 

using system 1 in Table 4.1. (This is for illustration purposes 

• 
.. 

. ' . 

only; actually for system 1, it is simpler to use the form Ps = P1P2P
3
P4, 

as in deriving (4.5)). We have 

(4.18) 

First multiply out inside the braces in (4.18) (the original order 

of terms should not be disturbed) to obtain another form of 

Call it 

(4.19) 

* p : 
s 

p'. 
s 

I I 

I I 

~ 

* ~ For each term within the braces of P, we wish to find a corresponding 
8 

(compound) Poisson r.v. whose parameter is this particular term 

multiplied by a known constant A. These Poisson r.v.'s should be 

independent so that the sum of them is again a Poisson r.v. whose 

parameter is X (p* ± C). In (4.19), we need to create four inde-

~pendent Poisson r.v.'s Xi, i = 1,2,3,4, with 

(4.20) X4 - PO(Aq4) 

x3 - P o(Xp4q3) 

x2 - P oCXP4P3q2) 

xl - P o<"'-P4Pl2q1) 

* so that X = x1 + x2 + x
3 

+ x4 - P0(A(l-P 
8
)). We recall in a first 
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Table 4.1. Reliability Configuration for Four Independent, Dissimilar 

Components. 

System Configuration 

1. 0 ~ 0 ~ 0 ~ 0 ~ 0 

2. ~ 2 

3. <£> :• 0 
llz ,, 

4. G3?> 

5. ~ • 

6. ~ 

p 
s 

P1P2P3P4 

P3P4(1-qlq2) 

P4(l-qlq2q3) 

1-qlq2(1-P3P4) 

1-ql ( -P2P3P4) 

= (pl+q1(P2P3P4)} 

P' 
s 

{Alternate Form of P~) 

l+{q4+P4[q3+P3(q2+P2(ql))]} 

P4P3[P1+ ql(p3)] 

P4(P3+43[P2+42(P1)]} 

l-(qlq2[q3+P3( 44)]} 

l-(ql(q3tP3(q4+P4(q2))]1 

l-(l-P1P3)(l-P2P4) l-(q3+P3(ql)J(q4+P4(q2)J 
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Table 4.1 {cont.). 

7. ~ 
~ 

8.~ 
~ 

9. 

10. 

<@ ., 
• 

~ 
.... 

J 

• 

' 

(1-qlq2)(1-q3q4) {P2+<I2(P1)J(P4+q4(P3)} 

P1{l-q2(l-P3P4)} l-{q1+P1[q2(q3+P3(q4))]} 

l-ql{l-p2(l-q3q4)} P1+q1(P2[P3+q3(P4)]} 

l-q1q2q3q4 P4+q4(P3+q3(P2+q2(pl)]} 
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• 

stage compound Poisson distribution, the number of successes and 

failures are independent r.v.'s (see Feller (1968), p. 301). 

Clearly this also holds true in any higher stage compound Poisson 

distribution. The implication of this unexpected result is that 

in our compounding process, both the information about the number 

of successes and the number of failures can be utilized. The 

form of P in the classes· G and ta are designed to systematically 
s 

exploit this property. 

Let Y -P
O

(A) where A is preassigned. The order of taking 

binomial samples is indicated by the order of appearance of the 

component parameters or in the form P ' • 
s 

In our example 

we should take one sample from each of the four components in the 

order TT4' TT3' TT2 

procedure: 

and The following four steps explain the 

Step 1. Compound component with Y. § Let 

be the numbers of failures and successes in 

trials, where y is the observed value of Y. We have 

and 

and X X' 4' 4 are independent. can be used to estimate the first 

parametric term of P~, i.e., q4. 

Step 2. Compound component TT3 with X4, using the observed 

value x' 4 = x' 4 in Step 1. Let x3 = x3 and X' I 3 = x3 be the number 

of failures and successes in x' I trials. We have: 4 = x3 + x3 

§This is a shortened expression to mean that we do binomial 
sampling on the component TT4 with sample size determined by an 
observation of a Poisson r.v. Y. This is true for TT, i=l 2 3 4 i , ' , • 
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and x3, x3 are indep~ndent. x3 can be used to estimate the 

second parametric term of P:, i.e., p4q3. 
Step 3. Compound component. n2 with x3, using th~ observed 

value x3 = x3 in Step 2. Let x2 = x2 , x2 = x2 be the numbers 

of failures and successes in x3 m x
2 

+ x2 trials. We have: 

and x2 , x2 are independent. x2 can be used to estimate the third 

parametric term of P~, i.e., P4P
3
q

2
• 

Step 4. Compound component n1 with x2, using the observed 

value x2 = x2 in Step 3. Let x1 = x1, Xi = xi be the numbers of 

failures and successes in x2 = x1 + xi trials. We have 

and x1, Xi are independent. We need only x1 to estimate the 

last parametric term of P:, i.e., , 4,
3

p2q1• This finishes the 

sampling process. 

In looking back, we see in each step we did a compounding which 

requires a binomial sample from the relevant component, and in 

• 
'. 

total we draw four binomial samples, one for ~ach of the four components 
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as we desired. The relationship b~tween the r.v.'s we have created 

can be depicted as in Figure 4.1. From the independence of Xj 

and x! 
J 

for each j it is seen that are jointly 

independent. Therefore 

(4.21) 

or X - P 
0

(>-..{ 1-P ~)) as desired. 

Figure 4.1. Relationship between the r.v.'s created. 

If p (=! 6, then p can be written in the form: 
s s 

t (k.) 
(4.22) p = C + TT p 1. t > 1, C is known. s - i=l 

s , 

For each fixed i, we take k. binomial samples and create a MSCP 
1. 

r.v. W. with 
1. 

as in the case for a with t = 1. A.> 0 is a known constant. 
1. 

- 55 -



The r.v.'s w1, ••• , Wt are independent. Then by the result derived 

in Section 4.1 the conditional distribution: 

P(w1 = zlw2- w1 = z2 , ••• , wt- w1 = zt) 

t (ki) 
depends on the parameter A rr P , where A= 

i=l s 

t 
rr Ai' as desired. 

i=l 
We illustrate this case using System· 6 in Table 4.1. We have 

This is in the form (4.22) with C = 1, t = 2 and k1 = k2 = 2 

(kl) 
ps = q3 + P3(ql) 

(k2) 
ps = q4 + P4(q2). 

As in the case for class a with t = 1, we create: 

using one binomial sample from each of the two components n
3

, n1• 

Similarly, we create: 

using one binomial sample from each of the two components 

By generating independent observations from Yi -P0(1i), i = 1,2, 

w
1 

and w
2 

are seen to be independent. Then by the result in 

Section 4.1, the conditional distribution: 
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4.2.4 Other well-known systems. 

System 6 is a special case of the so-called "series-parallel 

system." Its general form has t series subsystems connected in 

parallel, Bach series subsystem has ki components connected in 

series (Fig. 4.2). 

reliabilities of the 

Let p11 , p12 , ••• , pik be the component 
th i 

i subsystem, i = 1,2, ••• , t. Then 

Figure 4.2. General "series-parallel system." The system reliability 

is given in (4.23). 

t 
(4.23) ps = 1 - rr (1 - P11P12••• p.k ). 

i=l 
1 

i 

(Compare the p 
s 

can be written in the form (4.17). 

for system 1 in Table 4.1). Therefore, 

Ps of the general "series-parallel system" belongs to the class a. 

Similatly, system 7 is a special case of the "parallel-series 

system" whose general form is shown in Figure 4.3 • 

.___,--· 
Figure 4.3. General "parallel-series system." The system reliability 

is given in (4.24). 
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Here 

(4.24) 

When compared to (4.23), the P of the general "parallel-series 
s 

system" is seen to belong to ~. 

• 

Another well-known system is the "r-out-of-k system" which 

consists of k components and will function if any r out of k 

components function, where 1 < r < k. (The cases r = 1 and r = k 

correspond to a purely parallel and a purely series system,respectively, 

which have already been discussed and will be ruled out here.) The 

system reliability P in this case is somewhat complicated even s 

with independent components assumption and small number of k. As 

mentioned in the previous section, this type of system is a special 

case of the monotonic system. Therefore the compounding technique 

can be used to estimate its Ps. 

to neither class a nor class 8. 

It turns out that the P belongs 
s 

Therefore more than one binomial 

sample is needed from some of the components unless in the special 

case where the k components are identical. In this latter case: 

(4.25) 

where p is the probability of success of an individual component. 

We see (4.25) can be written in terms of the incomplete Beta function: 

(4.26) 

which is readily seen to be a strictly_ increasing function of p, 
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and confidence limits for P are obtained from confidence limits 
s 

for p by simple transformation, as indicated in (4.26). When 

the components are not identical, then in the case k = 3, the only 

possible value of r is r = 2. In this 2-out-of-3 system, we have 

and we need five binomial samples in using the compounding technique 

(one for n1 , two for each of n2 , n
3
). When k = 4, r can be 2 

or 3. In the 3-out-of-4 system: 

and we need 9 binomial samples (one for n1 , 2 for n
2

, 3 for n
3

, 3 for n
4

). 

4.3 Generalization to Multistate Failure Models. 

So far we have been concerned with the attribute failure model 

in which both the system and components are capable of assuming 

one of two states of performance in a trial•-success or failure, 

and binomial r.v.'s describe them well. In many cases, a component 

may assume one of three or more states of performance in each trial, 

and multinomial r.v.'s are needed to describe them. We know in 

N Bernoulli trials, if N -P0(A), then the numbers of successes 

and failures are independent. There is a corresponding result for 

the multinomial distribution: if El, E2, • • •, E are the r r possible 
r 

outcomes in a trial with P(E.) = Pi, i = 1,2, ••• , r, ,J p.= 1. 
]. 

i=l 
]. 

Let Xi= number of occurrence of the outcome E. in N trials, 
]. 

i = 1,2, ••• , r; we know the distribution of (X X X) is l' 2, ••• , r-

multinomial. Now suppose the trial number N is a r.v. with 
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then the absolute distribution of Xi is 

and x1, x2 , ••• , Xr are independent (Feller (1968), p. 301). We 

can apply the vertical and horizontal compounding technique to this 

case and establish confidence limits for a system whose components 

involve multiple states of performance. We illustrate the idea 

by an example. In Shooman (1968) p. 144-145, we see a semiconductor 

diode assumes three mutually exclusive states in a trial: it may 

operate properly, it may fail because of open-circuit or it may fail 

because of short circuit. Thus if outcome x represents good, 
g 

outcome xs shorted and outcome x
0 

opened, with P(xg) = p1, 

P(xs) = p2 , and P(x
0

) = p
3

, then 

The reliability Ps of a single diode is: 

Now if two identical diodes are connected in series, then the system 

fails if either diode opens or if both short. The paths are: 

To find confidence limits for this P, we perform N trials on 
s 
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the given diode where N -P0(l), A> 0 is known. Let x1 , x
2

, x
3 

represent the numbers of occurrences of good, shorted and opened 

in the N trials. Then 

xl ·- P o(A-P1) 

x2 - P o(A-P2) 

x3 - Po(AP3) 

and xl, x2, x3 are independent. Given the observed values xl = xl, 

x2 = x2 , x
3 

= x
3

, if we perform xl trials on the diode, and let 

yl' Y2, y3 represent the numbers of good, shorted and opened in 

x1 = Y1 + Y2 + y
3 

trials, then 

yl - p O(Apl 2 ) 

y2 -PO(AP1P2) 

y 3 - p 0("'P1P3) 

and Y1 , Y2 , Y
3 

are independent. Now perform x2 trials on the 

diode, and let z
1

, z
2

, z
3 

be the numbers of occurrence of each 

state. Then 

zl - p o(AP2P1) • 

We see 

Yl + Y2 + 21 -Po(A-(P12 + 2P1P2)) 

which can be used to construct confidence limits for p • 
s 
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4.4 Approximations. 

The vertical compounding technique discussed in the previous 

sections requires that at the first stage of compounding, the size 

of the binomial sample be determined by a known Poisson distribution. 

We now discuss a way to eliminate this requirement and provide 

approximate solutions for estimating certain functions of Bernoulli 

parameters. 

At the beginning of Section 4.2.1, we considered the problem 

of estimating the function 9 = p1p2 ••• pk using the MSCP r.v. 

xk, where 

Recall that in obtaining an observation of Xk, we start the sampling 

process by generating a value n1 from Y - P 
0

(A). Let us now 

discard the r.v. Y and concentrate on the given k Bernoulli 

populations TTi, with parameter pi, i = 1,2, ••• , k. It might 

happen that one of the pi's, say p1 , is very small. If we obtain 

a large binomial sample with sample size n
1 

from the corresponding 

population n1 , and let v1 denote the number of successes, then 

It is well-known that v 1 can be approximated by the Poisson r.v. 

u1 where 

Now use the r.v. u1 to play the role of the Poisson r.v. Y in 
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i. -
... generating the sample size for the next binomial sample from 

population n2 • If v1 = v1 is the observed value of v
1

, we then 

take u1 = v1 • Let x
2 

be the binomial r.v. describing the 

outcome of sampling from n2 given the sample size v1 • Then 

Continuing in the same fashion as in obtaining a MSCP r.v., at 

the k
th 

stage we have a MSCP r.v. Xk where: 

and confidence limits for 0 can be established as before. 

Note that in this new approach we eliminate the requirement 

of generating the binomial sample size for n1 at the first stage 

of sampling, and instead of exact confidence limits, we obtain 

approximate confidence limits. Clearly the procedure will work for 

estimating the following two classes of functions: (i) Any 

product of Bernoulli parameters as long as there is one (or more) 

parameter whose value is very small. For example, the reliability 

of a parallel system 0 = 1 - q1q2 ••• qk' where the failure probability 

q1 , i = 1,2, ••• , k are usually very small. (ii) Any sum of products 

of Bernoulli parameters in which each product term has one or more 

small parameters. 

Table 4.1. 

For example, the p' 
s 

of the system 4 and 5 in 

It happens that the procedure also works for a series system. 

We shall estimate P' = 1 - P • 
s s 

Now for k = 2, 3, P' can be expressed as follows: 
s 
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k = 2, p~ = 1 - P1P2 = ql + q2pl 

k = 3, p; = 1 - P1P2P3 =· q2 + q3p2 + P3P2ql 

Both of these alternative forms belong to class (ii) above. There

fore, we can use the new procedure to estimate 1 - p
1

p
2 

and 

1 - p1p2p
3

• The general k components case follows easily. 
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CHAPTER V 

SOME PROPERTIES OF INDEPENDENT GEOMETRIC RANDOM VARIABLES 

AND THEIR APPLICATION TO RELIABILITY PROBLEMS 

Lieberman and Ross (1970) have described a technique for 

estimating reliability when time to failure has an exponential 

distribution. In this section we show that their technique applies 

also in our Bernoulli model. 

Recall that in Section 3.3.2, we discussed a series system 

consisting of two components TT1 , TT2 • If we do IBS on TT. until 
l. 

first failure, i = 1,2, and let x1 , x2 represent the outcome, then: 

We have stated that Y utilizes only the smaller of the two observations 

x
1

, x
2

• Thus it loses "information," and is not the best r.v. to 

use in estimating the system reliability P s -- p1p2 • By examining 
, 

the matter further, it is seen the information lost is max(x
1

, x
2

). 

We now propose a way to estimating p1p
2 

by using Y and the 

"leftover information." The procedure can be extended to cover 

systems with k components where the system reliability is p
1
p

2 
.•• pk, 

k being a positive integer. First we need to establish some facts 

about the geometric r.v.'s. 

5.1 Some Properties of Independent Geometric r.v.'s. 

Ferguson (1965) has proved that if X. - GD(l-p.), i = 1,2, 
1 l 

are independent, then the r.v.'s Y = Min(x
1

, x
2

) and V = x
2

- x
1 

are independent. This fact will be used later. We now prove results 

of related interest. 
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Theorem 5.1. 
: I 
I I I , .... 

Let Xi -GD(l-pi), i = 1,2, be two independent geometric r.v.'s. 
: I 

w 
Then: 

(5.1) 

and 

(5.2) 

(5.1) means when x
2 
~ x1, the distribution of the difference lx

2
- x1 I -..i 

is geometric with the same parameter as that of the larger of x2 , x1• 

interesting fact is that p1 , which is the parameter of the smaller of 

x2 , x1 , is not involved in the distribution. Similar coUD11ents apply 

to (5 .2). 

Proof: 

For x = 0,1,2, ••• 

P{lx2- x1 1 = x, x2- x1 ~ o) 
P{lx2- xii= xlx2 ~ xl} = P(x2- xl ~ o} 

= 
P{x2- x1 = x) 

00 

~ P{X
2

- x
1 

= y) 
y=0 

It follows from (3.18) that for w = 0,1,2, ••• 

Therefore (5.1) is true. The proof of (5.2) is similar. 
00 

The events {x1 ~ x2) = _U {X2- x1 = i) and the event 
1=0 

{Min(x
1

, x
2

) = w) are independent. This follows easily from 

Ferguson's result mentioned above. Therefore 

(5.3) 
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We now can easily show: 

Theorem 5.2. 

Let xi -GD(l-pi), i = 1,2, be independent. If x1 ~ x2 , 

then Min(x
1

, x2 ) and jx2- x1 1 are independent. 

Theorems 5.1 and 5.2 will be useful for estimating p1p2 , as 

we will show later. To estimate p1p2 ••• pk, k > 2, we need more 

general results as presented in Theorems 5.3 and 5.4. 

Theorem 5.3. 

Let Xi -GD(l-pi), i = 1,2, ••• , k, be independent geometric 

r.v.'s. Define wi - lxi+l- xii, i = 1,2, ••• , k-1. Then 

(5.4) 
k k w. 

= (1 - rr p.)( rr p.) 
1 

j=i+l J j=i+l J 

w.= 0,1,2, ••• 
L 

i = 1,2, ••• , k-1. 

Again the conditioned r.v. is geometric. Note the disappearance 

of the parameters of the smallest i r.v. 's 

x 1 , x2 , ••• , Xi in the condition x1 ~ x2 ~ ••• S Xk. Example: 

if k = 4, then when x 1 ~ x2 ~ x 3 
~ x4 , we have: 

wl - lx2- xl I - GD(l-p2Pl4), 

w2 - lx3- x2l - GD(l-p3p4), 

w3 - lx4- x3I - GD(l-p4 ). 

The proof starts with the observation that 
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• , .> 

P{x. 1-x.~,j=l,2, ••• ,i-l,i+l, ••• ,k-1,x. 1-x.~o,lx. 1-x.l=W.} 
J+ J 1.+ . 1. 1.+ 1. 1. =---------------------------------

P(Xj 1-xj~O,j=l,2, ••• ,i-1,k+l, ••• ,k-1,X. 1-X.=W.} 
+ 1.+ 1. 1. =---------------------------

P(X. 1-X.~O,j=l,2, ••• ,k-l) 
J+ J 

The denominator can be written as: 

00 00 00 

(5.5) 

00 00 

= 

.f,., j 
J 

= 1,2, ••• , k-1} 

00 00 j 
~ ~ P·{X1=m, X. l=m+ 6 t., 

t
1

=O m=O J+ i=l 1 

j=l,2,3, ••• , k-1} 

Applying similar arguments to the numerator, we obtain the result 

(5.4). 

Having found the distributions of W., i = 1,2, ••• , k-1 we 
1. 

shall next show that wO, w1, w2 , ••• , Wk are jointly independent, 

where wO = Min(x1 , x2 , ••• , Xk). First we find that 

(5.6) 

This is easily seen from the fact: 

yl s Min(Xl, x2) -GD(l-plp2) 

Y2 = Min(Xl, x2, X3) = Min(Yl, x3) -GD(l-P1P2P3) 

y3 s Min(Xl' x3, X4) = Min(Y2' X4) -GD(l-P1P2P3P4)-
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Then obviously: 

Corresponding to (5.3), it is not difficult to show that the events 

(5.7) 

WO= 0,1,2, •••• 

We can now prove a generalized version of Theorem 5.2. 

Theorem 5. 4. 

Let X. -GD(l-p.), i = 1,2, ••• , k, be independent. Let 
:L :L 

Wi = lxi+l- Xii, i=l,2, ••• , k-1, and let w0 = Min(X1 , X2 , ••• , Xk). 

Given that x 1 ~ x2 ~ ••• < Xk, the r.v.'s w0 , w1 , ••• , wk-l are 

independent. 

Proof: 

We have to show that for each vector (w0 , w1 , ••• , wk_1) 

P (wo = wo, wl = wl' • • ·' wk-1 = wk-1 I xl ~ x2 ~ • • • ~ xk} 

k-1 
= TT p (w. = w. I x1 < x

2 
< • . . ~ xk}. 

i=O :t :t - -

The right-hand side is easily found from (5.7) and Theorem (5.4) 

to be: 

k-1 k k w. 
(5.8) TT (1 - TT p.)( TT p.) i. 

i=O j=i+l J j=i+l J 

The left-hand side can be written as: 
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(5.9) P{Xl = WO' x2- xl = w1,•••, Xk- xk-1= wk-1} / P{Xl :s x2 :S···:S Xk) 

k-1 
= P{X1= WO' X2= wo+ wl, ••• ,Xk= i~Owi} / P{Xl :s x2 :s .•. :s xk), 

using (5.5) for the denominator here it is easily seen (5.9) is equal 

to (5 .8). 

Let us define 

V = Max(X1 , i = 1,2, ••• , k) 

and 

R = V - w0 = Max ( X . , i = 1 , 2 , ••• , k) - Min ( X . , i = 1 , 2 , ••• , k) • 
1 1 

We note that if the X. 's have identical distributions. Then R 
1 

becomes the sample range from a geometric distribution. It is clear 

from Theorem 5 .4 that w0 and R are independent when x
1 

:S x2 ~ ••• :S Xk, 
k-1 

because R = ~ W .• 
i=l 1 

By repeatedly applying Theorems 5.3 and 5.4, it is interesting 

to visualize a hierarchy of independent geometric r.v.'s. For example 

if k = 4 then when x 1 :S x2 :S x
3 

:S x4 , we have Figure 5.1. 

Figure 5.1. Hierarchy of independent geometric r.v.'s. 
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i > 

(1) In the first row are the four original geometric r.v.'s which 

have been ordered. 

(2) Given that x1 ~ x2 ~ x3 
~ x4, we create (by Theorems 5.3 and 

5.4) four independent geometric r.v.'s. w0 , w1 , w2 , w3• W(l)' w( 2 )' 

w(
3

) in the second row are the ordered values of w1 , w2 , w
3

• 

(3) Given that W(l) ~ w( 2 ) ~ w(
3
), we create (again by Theorems 

5.3 and 5.4) three independent geometric r.v.'s 

u0 = Min(Wi, i = 1,2,3) 

U., i = 0,1,2 where 
1 

and in the third row are the ordered values of u1 , u2 • 

(4) Similarly given that U(l) ~ u(2 ), we create two independent 

geometric r.v.•s V., i = 0,1 where 
1 

v0 = Min(Ui, i = 1,2) 

With k = 4, there are 4 + 3 + 2 = 9 geometric r.v.'s created in 

three "stages" as shown in Figure 5.1; the r.v.'s within each stage 

are independent. In general, for any k original independent 

geometric r.v.'s, we can generate k + (k-1) + ••• 

new geometric r.v.'s in (k-1) stages. 

+ 2 _ k(k+l) _ l 
- 2 

5.2 Application to the Estimation of System Reliability. Two 

Components Case. 

We now apply the results obtained in the previous section to 

the estimation of system reliabili~y Ps. First let Ps = p
1
p

2
, 

the reliability of a series system with two components n
1

, n
2

• 
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The sampling procedure is the inverse binomial sampling used 

in Chapters 2 and 3. For component n1 , i = 1,2 we observe 

the number of successes prior to the first failure for the 

component, 

Let xli' i = 1,2, ••• , p1 
be a set of observations for x1• 

(For convenience, we use the same symbol for a r.v. and its observed 

value.) Similarly, let x2j, j = 1,2, ••• , n2 be a set of n
2 

observations for x2 • To do the analysis, define U and V as: 

By Theorems 5.1 and 5.2 

Case A. If x1 ::: x2 , then U and V are independent, and 

U - GD(l-p1p2 ) 

V - GD(l-p1). 

Case B. If x1 S x2 , then U and V are independent, and 

U - GD(l-p1p2 ) 

V - GD(l-p2 ). 

Thus, in Case A, U can be used as an observation to estimate p
1
p

2
, 

while the "leftover" information V can be combined with another 

observation for x2 , say X~, to form U' = Min(V, x;), which is 

GD(l-p
1
p

2
), and u' becomes another observation for estimating p1p2 • 
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Similarly, in Case B, U is an observation for estimating p1p2 , 

while the "leftover information" V can be combined with another 

observation for x1 , say Xi, to form u' E Min(V, Xi) which is 

GD(l-p1p2 ) and U' becomes another observation for estimating 

p
1
p

2
• We see that in any case, in order to utilize the observed 

value of V, we pick the next observation from the component whose 

observed value is Min(x1 , x2 ), corresponding to the fact that 

Min(x
1

, x
2

) has been used to estimate p1p2 • It is best to illustrate 

the procedure by an example. 

Suppose we have five observations for x1 : x11 = 2, x 12 = 3, 

x
13 

= 6, x14 = 5, x15 = 1 and four observations for x2 : x21 = 8, 

x22 = 1, x
23 

= o, x24 = 4. Then u1 = Min(2, 8) = 2 -GD(l-p1p2 ), 

v1 = 12-81 = 6 - GD(l-p2 ). Since 2 ~ 8, we have Case B. Therefore 

we should combine v1 = 6 with the next observation for xl which 

is 3. Treating v1 as x
2

, we have: u2 = Min{3, 6) = 3 -GD(l-plp2), 

V2 = 13-61 • 3 - GD(l-p2 ). Here 3 ~ 6, and this is Case B; we 

should combine v
2 

= 3 with the next observation for x
1

, which 

is 6. Treating v2 as x2 , we have: u
3 

= Min(6, 3) = 3 -GD(l-p
1
p2), 

v
3 

= 16-31 = 3 -GD(l-p1). Here 6 ~ 3, and this is Case A. Therefore 

we combine v
3 

= 3 with the next observation for x
2

, which is 1. 

Treating v
3 

as x1 , we have: u4 = Min(3, 1) = 1 -GD(l-p
1
p
2

), 

v4 = 13-ll = 2 -GD(l-p1). Here 3 ~ 1, using Case A, we combine 

v4 = 2 with the next observation from x
2

, which is 2. Treating 

v4 as x1 , ~e have: u5 = Min(2, 2) = 2 -GD(l-p1p2), v5 = 12-21 = 

0 -GD(l-pl). Note Max(Xl, X2) = Min(Xl' x2) = 2. so that v5 
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can be GD(l-p
1

) or GD(l-p2 ), (either one can be used). We use 

v
5 

-GD(l-p
1
), i.e., we are treating this case as Case A. Thus 

we should combine v
5 

= 0 with the next observation for x
2

, which 

is 4. 

Continue in the same way. We obtain: 

When is obtained, the next observation should be from x
2

, 

but there is not any observation from x
2 

available. Therefore 

the process is terminated there. 

In looking back, we have "manufactured" 7 observations for 

U -GD(l-p1p2 ), i.e., 2, 3, 3, 1, 2, 0, 4, out of the 5 + 4 = 9 

original observations for x 1 and x
2

; we see that 

(5.10) Y = 2 + 3 + 3 + 1 + 2 + 0 + 4 = 15 

is an observation from NB(7, l-p1p
2

), and confidence limits for p
1
p

2 

can be easily constructed. The simplicity of the calculation involved 

appears to be an advantage of this procedure. Note there is one 

observation (the value 1 from xl) whose infornetion is not used. 

In general, if we have nl and n2 observations for xl and x2 

respectively, we can manufacture n observations for u, where 

(n + n - 1) - n 1 2 

is the number of observations wasted. Note also that in the example 

given, we worked with the original observations in the order: 2, 3, 6, 

from x
1 

and 8, 1, O, 4 from x
2

• If we alter the order, say, to 

1, 2, 3, 6, 5 from x1 , and let 8, 1, 0, 4 from x2 remain the 
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same, we see u1 becomes Min(l, 8) = 1 instead of Min(2, 8) = 2 

as given in the example. Thus the same set of original observations 

may lead to different values for Y in (5.10), and also to different 

confidence limits. The simple alternative sampling procedure 

described below provides one way to avoid these two problems. The 

analysis of data remains the same; only the way observations are 

taken is different. 

Instead of fixing sample sizes nl and n2 separately as we 

did before, let the combined sample size N(= n1+ n2 ) be fixed. 

Then take one observation each of x1 and x2 , say x11 , x21 , 

and do exactly the same analysis as we did in obtaining u1 and 

v
1 

before. If x11 ~ x21 , take one observation x12 of x1 ; if 

x
11 

~ x21 , take one observation x
22 

of x
2

, and do the same analysis 

as before in utilizing the leftover information. Continue in this 

fashion until we obtain N observations of both x1 and x
2 

{the 

sample size ni for Xi, i = 1,2, will not be known until N is 

reached). In this way we shall always obtain N - 1 observations 

for U, out of the N original observations. The difference of 1 

represents the left over information VN-l from the last stage analysis. 

It is clear that if we observe Y., the number of failures 
1 

prior to the first success, then 

Y . - GD ( 1-q . ) , i = 1, 2 , 
l. 1 

and the same procedure can be used to construct confidence limits 

for the reliability of a parallel system Ps = 1 - q
1
q

2 
• 

- 75 -



5.3 Application to the Estimation of System Reliability. Three 

or More Components. 

To generalize the procedure to a series or parallel system with 

k =:: 3 components, we apply Theorems 5.3 and 5.4 in addition to 

Theorems 5.1 and 5.2. We shall illustrate the k = 3 components 

case. Here Ps = p1p2p
3

• For component ni, i = 1,2,3, as before, 

we observe X.: the number of successes prior to the first failure 
1. 

for the i
th 

component, Xi -GD(l-pi). Let Xij' j = 1,2, ••• , ni 

be a sample of ni observations from Xi, i = 1,2,3. To analyse 

the data, let: 

We have 

= the 
.th 
1. 

p(i) = 1 - q{i) = the parameter of x(i)· 

u = x(l) 

v = x(2)- x(l) 

w = x( 3)- x(2 )9 

Define 

By Theorems 5.3 and 5.4, conditioned on the observed ordering, 

U, V, W are independent and: 

U - GD(l-p1p2p
3

) 

V - GD(l-p(2l( 3)) 

W - GD(l-p( 3)). 

U can be used as an observation to estimate p1p2p
3

, while V and 
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W are the "leftover information." It is clear if we combine V 

with a new observation from X(l)' say X(l) to form 

U' = Min(V, X(l)) -GD(l-p1p2p
3
), then u' becomes another observation 

for estimating p1p
2

p
3

• By Theorem 5.1, the leftover information 

v' = jv - x(l)I is 

Case A. V' -GD(l-p(2 )p( 3)) if V ::'. X(l)' or 

In Case A, we should take another observation X(l) of X(l) so 

that Min(V', X(l)) -GD(l-p1p2p
3

). In Case B, we combine W, which 

has not been used so far, and v', so that Y1 = Min(W, V') -GD(l-p(l)p(3)) 

and go on to pick one observation x(2 ) from x(2 ), so that 

Min(Y1, X(2 )) - GD( 1-p1 P2P3). A numerical example follows: let 

n1 = 4, n2 = 3 = n3, and 

For component 1Tl' xn = 1, 

For component 1T2, x21 = 2, 

For component 1T3, x31 = 6, 

Table 5.2 demonstrates the procedure. 

the quantity Z is from GD(l-p.). 
1. 

x12 = 7, x13 = 1, xl4 = 5 

x22 = 8, x23 = 4 

x32 = 9, x33 = 3. 

The notation Z - p. means 
l. 

There are four colunms in the 

table, the symbol * placed between the coluum "Observations" and 

the coluum "Leftover A," means the corresponding r.v.'s in these 

two colunms are independent. A similar remark applied to the symbol 

* between corresponding quantities in "Leftover B" and "Leftover c." 

Under colunms "Leftover A" and "Leftover B·;" we find the instruction 

"next observation from Xi," indicating which component should provide 
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the next observation. This instruction is dictated by the component 

parameter pi which is lacking in the distribution of the quantity 

immediately above the instruct~on. For example, in the stage where 

we observe x
22 

= 8 -p
2

, the quantity placed immediately above the 

instruction "next observation from x
3
" is 2 = Min{4, 2) -p1p

2
• 

Here p
1
p

2 
lacks p

3
, so the instruction says that the next observation 

should be from component n
3

• And, in the next stage we combine 

a new observation x
32 

= 9 from component n
3 

with the leftover 

information in the previous stage: 2 = Min{4, 2) -p
1
p

2
• The 

utilization of previous leftover information in Table 5.2 

is indicated by the arrows. 

Note the procedure terminated at the stage which created u
7

, 

because at that stage, the instruction says we should take an observation 

from x2 , but we have used up all the available observations from 

x
2

• The leftover information in every stage except the last one is 

utilized and we "manufactured" 7 observations for U where 

out of 4 + 3 + 3 = 10 original observations. The sum of these 7 

values (1 + 1 + 4 + 2 + 1 + 1 + 4 = 14) is considered to be from 

can be constructed. 

Note, upon termination, there is one observation, namely x
33 

= 3, 

not used. This problem of possible waste of observations can be 

handled using a sampling procedure analogous to the alternative 

sampling procedure discussed in k = 2 case. With obvious modification, 

the procedure is applicable to a parallel system. 
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Table 5.1. Illustration of the Procedure for k = 3. 

Observations Leftover A 

* 

Leftover B 

l= I 2-11-- p2p
3 

Next observation 
from x1 

Leftover C 

* 4=16-21- p 
3 

* 6=11-71- pl , 4=Min(6,4 )- p1p
3 

* 2=14-61- Pl 
Next observation 
from x

2 

* 4=(8-4(-p2 , 2=Min(4,2)-p1p2 * 2=14-2I-P2 
Next observation 
from x

3 

* 7=19-21- P3 , 2=Min(7 ,2)- P2P3 * 5=17-2 I- P
3 

Next observation 
from x1 

5=17-21- p 
3 

* 4=15-ll- Pl , 4=Min(4,5)- P1P
3 

* 1=14-51- p
3 

Next observation 
from x

2 

* 0=14-41- P1 ' 0=Min(0,l)-plp3 * l=lo-11- P3 
Next observation 
from x

2 
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CHAPTER VI 

OTHER RELIABILITY APPLICATIONS AND APPLICATION 

TO BIOMEDICAL PROBLEMS 

So far our main concern is about the attribute failure model 

and its generalization--the multistate failure model. In this 

chapter we shall briefly discuss the "variable failure model" using 

results of previous chapters. After that we shall mention some 

application of our previous results to biomedical problems. 

6.1 A Non-Parametric Method for the ''Variable Failure Model." 

The so-called "variable failure model" involves a time factor 

and describes the behavior of "time to failure" using various 

continuous distributions. Examples are the exponential, the gamma, 

the Weibull, and the extreme value distributions. In these cases, 

one may speak of reliability of a component as probability of 

successful operation of that component at least to a given fixed 

time t 0 , sometimes called the "mission time." If FT{t) is the 

CDF of the r.v. T which stands for "time to failure" of the 

component involved, then R = 1 - FT(t0 ) = P{T > t 0} is the 

reliability of the component. 

Now suppose a system is made up of k > 2 components, each 

one of them having a time to failure distribution FT (t.), with 
• 1. 
1. 

mission time a., i = 1,2, ••• , k. Then the component reliability 
l. 

is 1 - FT_{ai) for component i = 1,2, ••• , k. As in the case of 
1. 

the attribute failure model, one practical problem is to estimate 

system reliability when it can be expressed as a function of the 
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component reliabilities 1-Fi (a1), i = 1,2, ••• , k. The solution is 
i 

not easy. However a non-parametric type solution is readily 

available. For each r.v. Ti, define a Bernoulli r.v. 

1 if T. < a. 
xi 

]. - 1. 
= 

0 if T. > a. . 
1. 1. 

'lhus we obtain k Bernoulli r.v. 's X., i = 1,2, ••• , k 
]. 

X. as: 
1. 

with 

parameter pi= 1 - FT.(a1), and techniques derived in the previous 
l. 

chapters for the attribute failure model are applicable in constructing 

confidence limits for the system reliability. The next section 

discusses a more efficient method to estimate the reliability of 

a series system consisting of k independent components having 

exponential time to failure distributions. 

6.2 Confidence Limits for an Exponential-Failure-Time Series System 

and for the Difference of Poisson Parameters. 

In the special case in which a system consists of k > 2 compo-

nents in series, and the time to failure for each component follows 

the exponential law with parameter Ai' i = 1,2, ••• , k, confidence 

limits for the system reliability R have been found using failure 

times data of individual component (see Lentner and Buehler (1963), 

El Mawaziny (1965)). The following alternative sampling scheme 

provides a simple solution for this problem involving much less 

computation. 

For component 1, we test one item from it until it fails, then 

test another item from it until it fails {~his can be called replace

ment testing). Continue in this fashion until a predetermined total 
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testing time to is reached .. Then stop testing component 1. Let 

Tl be the time elapsed until the first failure, and for j 2: 2, let 

T. be the time elapsed from the {j-1 )th failure to the .th 
J 

J 

failure. It is clear that (T. 1 is a sequence of i.i.d. r.v. 's 
J 

with the common exponential distribution 

T - Exp(>i.1 ). 

The T.'s are called inter-arrival times, and it has been shown {see, 
J 

for example, Parzen (1962), p. 174) that if the inter-arrival times 

fTj} are exponentially distributed with parameter >i.1 , then the 

renewal counting process (N1(t), t 2: 0) is a Poisson process with 

intensity A1 • In other words, for any time t > O, the number of 

failures N1{t) occur during the period from O to t is a 

Poisson r.v. with 

In particular, 

where t = t 0 is the predetermined total testing time. 

Similarly, for each i, i = 2,3, ••• , k, if we use the same 

testing procedure until the same total testing time t 0 is reached, 

then 

where Ni(t
0

) = number of failures occur for component i during 

the period from O to t 0 • Let 
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-

- Clearly 

Since t
0 

is preassigned, construction of confidence limits for 
-et 

0 e Al+ A
2 

+ ••• + Ak' (and hence for system reliability R = e O) 

reduces to the elementary problem of finding confidence limits for 

the parameter for a Poisson distribution. 

The same technique can be applied when the inter-arrival time 

Y is distributed in such a way that a known function X = g(Y) has 

the exponential distribution. For example, let X = g(Y) = / so 

that time to failure Y has the Weibull CDF 

F(y; ~, 9) = 1 - exp(-/'/e), 

where a is known, and 8 is unknown. Since X =-/' is exponentially 

distributed, the Poisson technique can be used. 

We have appealed to the Poisson process for estimating the sum 

of the parameters of the exponential distributions. It is interesting 

to mention here that one can appeal to the exponential distribution 

for estimating the difference of parameters of two Poisson processes. 

(Birnbaum (1954) treated this estimation problem using Chebyshev's 

inequality, but the solution does not seem to be satisfactory.) Let 

(X(t), t > 0), (Y(t), t > 0) be two independent Poisson processes 

with parameters or intensities A1 , A
2 

respectively. Suppose we 

are interested in estimating the difference of the two intensities 

Al - A2 • It is well-known that the inter-arrival times of a Poisson 
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process are independent, identical exponential distributions with 

the same parameter as the Poisson process. It follows that the sum 

of the n inter-arrival times x1 , x2 , ••• , Xn from the process 

{X(t), t > 0) has a gamma distribution with parameters n and A1 , 

n being a positive integer. Thus 

X e Xi + x2 + • • • + Xn - Gamma ( n, A1 ) • 

Similarly, if Y
1

, Y
2

, •·•• are inter-arrival times from the process 

{Y(t), t > 0), then 

+ Ym - Gamma (m, A2 ). 

Since it has been shown that the conditional density of the r.v. X 

given the sum X + Y depends on A1- A2 only, confidence limits 

for A1- A2 can be constructed. (See Lentner and Buehler (1963).) 

The rest of the chapter will discuss applications to some 

biomedical problems. 

6.3 Confidence Limits for the Difference of Two Bacterial Densities. 

In the dilution method in bacteriology, a bacterial culture is 

diluted in a certain volume of water, from which a number of samples 

of fixed size v are taken and tested for the presence or absence of 

bacteria. '!be result of each sample is a Bernoulli variable with 

probability of success {at least one occurrence of bacteria) 

and probability of failure -AV q = e where A is the density of 

bacteria in the volume v. Procedures for estimating A have been 
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discussed by various authors (see Cochran (1950)). If one is inter

ested in using the dilution method to find the difference of two 

bacterial densities, i.e., A1- A
2

, the following method is applicable. 

We continue taking samples of fixed size v from each of two kinds 

of diluted water with the same volume until th 
rl 

are observed. For the first kind of bacteria, let 

and th 
r2 successes 

X = number of failures encountered prior to the occurrence 

of the th 
rl success. 

Similarly, for the second kind of bacteria, let 

Then 

Y = number of failures encountered prior to the occurrence 

of the r th 
2 

success. 

-A V 

X;.. NB(r1 , 1-e l ), 

-AV 
Y - NB(r2, 1-e 2 ). 

-AV 
Therefore, by taking k1 = k2 = 1, w1 = X, v1 = X + Y, p1 = e 1 

-AV 
and Pi= e 2 in (2.6), we have for x = 0,1,2, ••• , k, k = 0,1,2, ••• , 

r 1+x-1 r 2+k-x-1 (A1-A2)vx 
( x )( k-x )e 

P(X =xix+ Y = k) = k r +j-1 r +k-j-1 (A -A )vj 
E ·( l ) ( 2 )e 1 2 

j:r:O j k- j 

which depends on the desired difference of two bacterial densities 

A1- A2 only. Thus a confidence interval for {A1- A
2

) can be 

found by the usual method • 

The success of the above method hinges on the fact that the 

probability of success p can be expressed in terms of the exponential 
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function 1 - -AV 
e In general, if one is interested in constructing 

confidence intervals for the difference of two Bernoulli parameters 

pl- P2 or equivalently q -2 
q

1
, and if both pl and P2 are small 

(or both ql and q2 are small) so that it is reasonable to 
-p -p 

assume that 1 - pi= e 
i 
·, pi = 1 -

i i = 1,2, then using qi = e , 

the IBS plan to take observations from the two Bernoulli populations, 

one can use the above described method to find an approximate 
-p -p -q -q 

confidence interval for e 2/e 1 (or e 2/e 1 ), and hence for 

If are neither close to 

0 nor close to unity, then the usual normal approximation is applicable. 

6.5 Comparing Two Yule's Birth Processes. 

Suppose we have a population of objects which can generate (or 

give "birth" to) new objects, and that objects do not disappear 

( or "die") from the population. Let P X(x; m, t) be the probability 

distribution of the r.v. X which represents the number of objects 

in the population at time t. Suppose x = m when t = O. If 

A> 0 is the growth rate, then 

(x-1) -UJAt( -At)x-m PX{x; m, t) = m-l e 1-e , x = m, m+l, •••• 

This is called Yule's birth process. 

If there are two populations whose growth patterns can be 

described by Yule's process, one interesting problem is to compare 

the growth rates A1 , A
2 

of the two populations. For this purpose, 

we change the form of PX(x; m, t) by a simple translation Y = X - m. 

Then 
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Thus Y -NB{m, e-At). For population 1, let 

-A
2

t 
Y1 ,_·NB(~, e ). 

For population 2, let 

-A1t 
Then by taking 1,_ = k2 = 1, w1 = Y1 , v1 = Y2+ Y1 , p1 = 1-e , 

-A t 
and Pi= 1-e 2 in (2.6), we have for y1 = 0,1,2, ••• , k; 

k = 0,1,2, ••• , 

(6.1) 

where 

and where 

k 
P { yl = Y 1 I yl + y2 = k} = c ( y l , k) / !} c { j , k) 

j=0 

n;_+j-1 m +k-j-1 p 
c(j' k) = ( j )( 2 k-j )(f )j 

-At 
i 

pi= 1-e , i = 1,2, 

1 

The conditional distribution (6.1) 

can be used to test hypotheses about Al and A2 • For example, take 

We note that Al S A2 iff 

-A t -A t 2 1 (1-e )/(1-e ) < 1. 

Thus the problem is reduced to testing: 

Clearly the distribution (6.1) can be used. Under the hypothesis 

p2/p1 = 1, we use the identity{Feller (1968), p. 65). 
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k m +y -1 m +k-y -1 
~ ( 1 1 ){ 2 1 ) 

Y1=0 Y1 k-yl 

and the distribution (6.1) takes a much simpler form: 

ml+yl-1 m2+k-yl-l 
( y )( k-y ) 

(6.2) P{Y1= Y1IY1+ Y2= k} = --m-~+-m-
2
-+""""k--1--

1
-

( k ) 

y1= 0,1, ••• , k; 

k = 0,1,2, •••• 

We recognize this distribution as the so-called "negative hyper

geometric distribution" with parameters m1+ m2 , m1 and k. It is 

closely related to the "hypergeometric waiting time distribution." 

6.5 Comparison of Two Proportions--9 = p1/p
2

• Percentage Change 

and Effective Indices. 

In various applied statistical fields, particularly in biomedical 

investigations, one of the most often encountered problems is to 

compare two proportions and of Bernoulli populations 

n1, n
2

• For example, one may wish to compare the success rate such 

as cure rate of an experimental method or drug with that of a 

standard method or drug. Two measures of comparison appear to be 

intuitively reasonable. One may measure the difference of the two 

proportions ~ = p1- p2 , or equivalently ~ = q
2

- q1• Alternatively, 

one may measure the ratio of the two proportions 9 = p1/p2 • Whether 

~ or a should be used is not always clear. (A similar problem 

occurs in comparing two Poisson parameters.) We note 9 can be 

employed to define a useful quantity cp: 

cp=l-9= 

- 88 -

. . , I i 
I.I 

! I 

1-.i 

I I 

I 

i.J 

I 

i 
I.I 

I : 

~ 

I 
...i 

i ! 

I i 
~ 



-

-

) 

... 

~ is interpreted as the percentage increase (or decrease) between 

the two populations. A second useful quantity related to e is 

the so-called effectiveness index Let and be the 

success rates of an experimental method and a standard method respectively. 

Let qi = 1 - pi, i = 1,2, be the corresponding failure rates. Then 

(6.3) '= 
P2- P1 
1 - p 1 

(6.4) 
ql- 42 

= ql 

The two forms are easily seen to be equivalent. In both forms, the 

denominator 1 - P.i = q1 is the failure rate of the standard method 

and is also the maximum difference possible between the experiment~l 

and the standard. Thus in form (6.4), C measures the reduction 

of failure rate made by the experimental over the standard (q
1

- q
2

) 

relative to the maximum possible improvement (l-p1). While in form 

(6.3), C measures the increase of success rate in terms of the 

maximum possible improvement. Greenwood and Yule (1915) called C 

"efficiency." 'fhe name "effectiveness index" is proposed by Hovland, 

Lumsdaine and Sheffield (1949). The readers are referred to these 

two papers for detailed discussion of ,:. We want to establish 

confidence limits for 0, ~ and C• Since C = 1 - q2/q1 , the 

problem reduces to that of constructing confidence limits for the 

ratio of two Bernoulli parameters. We shall illustrate the case of a. 
Bross (1954) found an approximate confidence interval for 0 

using a Poisson approximation; Noether (1957) employed a normal 

approximation. An easy application of the theory developed in 
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Chapter II provides an exact solution. We employ IBS plan on 

populations TT., i = 1,2, until 
). 

th 
ri failure occurs. If X. 

). 

denotes the number of successes prior to the 
th r. failure, then 

). 

= 0,1,2, ••• , k; k = 0,1,2, ••• 

(6.5) 

where 

h(t; k) 

Since (6.5) depends on 9 only, it can be used to construct confidence 

limits for a. By relabeling Xi's to represent number of failures 

prior to the th 
ri success, the same procedure can be used to find 

confidence limits for the ratio q
1

/q
2

• A binomial approximation 

will be briefly mentioned. 

Let r 1 - oo, r 2 - oo, r 1/(r1+ r 2 ) - p, where 0 < p < 1 is a 

constant. Then, by Stirling's formulas, (6.5) has the limiting 

distribution B(k, 
9
9P) (see Appendix B). It is interesting to 
p+q 

note that the same limiting distribution can also be obtained under differ-

ent setof assumptions. ri - oo, pi - 0, such that r 1p1 - Ai where 

Ai is a positive constant, i = 1,2. We simply note these assumptions 

make it possible to approximate Xi by V., where 
). 
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Now it is well known that 

P{v1 = x1 1v1+ v2 = k) 

is B(k, A), where 

ep/( 0p+q). 

Al 

},.. = ~'l+ X2 We see that },.. is the same as 

Another approximation is to use the fact mentioned at the end 

of Section 3.4 that when p. is small, X. - NB(r., p.), i = 1,2, 
1. l. 1. l. 

can be approximated by Chi-square or gamma distribution. The distri-

bution of the quotient of two independent gamma r.v.'s is known. 

Using this, it can be shown W = x1/x
2 

has approximately the density 

fw(w) 

r 
~1 

( 
r +r 

w 1+0w) 1 2 

,w>O 

where 0 = P/P2 • 

Sometimes it is desired to compare two effectiveness indices 

Ci and '2· For example, a new medical treatment is administered 

to two groups of subjects (examples: two ethnic groups or two groups 

of people belonging to the same race but living in different localities 

such as Japanese living in Japan and American Japanese). Each type 

of subject has a control group and an experimental group. Thus there 

are four groups with success rates 

C for type 1 subjects is: 

p2- pl 
C1 = 1 - p 

1 

and for type 2 subjects: 

p, _ p' 
2 1 

C2 = 1 - p' 
1 

pl' P2 
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Let qi= 1 - p1 , q~ = 1 - PI, i = 1,2. To compare c1 and '2, 
we note that c1 > c2 iff 1 - c1 < 1 - C2 iff qe/q1 < q~/qi, 

which is equivalent to 

(6.6) 

The quantity y is the ratio of the products of Bernoulli 

parameters; therefore it is a special case of 9 = p1p
2 

••• Pk/ 
1 

in Chapter 2. For each of the four groups of subjects, 

we observe the number of failures prior to the th 
r. 

1 
success, 

i = 1,2,3,4. We shall obtain four negative binomial r.v.'s: 

xi -NB(ri, pi), i = 1,2 

x3 - NB{r3, Pi) 

x4 - NB{r4 , p~). 

Let u = (w4, v
2

, v3}. Then from equation (2.6) we have: 

(6.7) P{x1 = x1 1x4- x1 = w4 , x2+ x1 = v2 , x
3 

+ x1 = v
3

} 

.xl t 
= b{x1 , u)J / 6 b{t, u)y , 

t 

where 

b(t, u) 

and the ranges of values of the variables are: 

w4 = -x1 , -x1+1, -x1+2, ••• 

vj = x 1 , x1+1, x 1+2, ••• , j = 2,3 

x
1 

is a non-negative integer satisfying max(O, -w4) S x
1 

S Min(v2 , v
3

) 

t has the same range of values as x1 • 
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Clearly we can use (6.7) to test the hypothesis 

HO: C1 = '2 

because H
0 

is equivalent to y = 1. 
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APPENDIX A 

PROOF OF THEOREM 3.l 

Using (3.7) and (3.8), (3.31) can be written as: 

<(' 

co 

1' "' ,.,.. ··--

(A. l} P (x1 = x1 I x2- x1 = w} = A ( r 1 , r 2 ; µ, x1 - a) I _E A ( r 1 , r 2 ; µ, j) 
J=O 

where 

A{r
1

, r
2

; µ, t) 
r(rl+a+t) r(r2+~+t) 

= r(rl+a) r(r2~) 

t 
~ 

r(l+lwT+tl't-! • 

Suppose for n = 1,2, ••• , Xln' x2n are negative binomial r.vo's, 

Xi - NB{r. , pi ), i = 1,2, where r. - oo, q. = 1 - p. - Osuch n in n in 1.n in 

that (r1n..a)(r2n+f3)q1q2 = A as n - oo, and x1n is independent 

of x2n for each n. Then from (1): 

co 

i i 
i I 

l.i 

i.J 

...i 

i 

-i 

--
--
1111111 

: I 
'-

I I 

I.I 

(A.2) P(X1n= x1lx2n- Xln= wJ = A(rln' r2n; µ, xl-a)/.EO A(rln' r2n; µ, j;_j 
J= 

Now 

A(rln' r2n; µ, t) = 
t 

(r ln ..a) 

I {r2n~) 

By Lemma 1 of Appendix B, for any a> O, as x - oo 

(A. 3) 

Therefore 

(A.4) 

r(x+a) 

x'T(x) 
- 1. 

At 
lim A ( r 

1 
n, r 

2
n; µ , t ) = _ , • _ 1 1 _ . <. , o 

n-+ 00 
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( ~ ··" 
. . 

If we can justify that 

(A.5) lim {lim g (n)} = lim (lim g (n)} m m 
11""' 00 IJl"'+ 00 JD-+ 00 n-,t 00 

m 
·where 

have: 

gm(n) = E
0 

A{rln' r 2n; µ, y), then using (A.4), we shall 
y= 

(A.6) 

. E '),..y 

• y=O r(l+!w!+y)y! 

x1+(w/2) 
'),.. =------------

xl ! ( xl +w) ! I I w I (a/~) 

as claimed by the theorem. 

Now we show that the interchange of the two limit operations 

in (A.5) is permissible. For this purpose we appeal to the "iterated 

limit theorem" (see, for example, Apostle (1957), p. 374, Theorem 13.2) 

by showing that on the left side of (A.5): 

A. The iterated limit lim {lim gm(n)} exists. 
11""' 00 IJl"'+ 00 

B. lim g (n) converges uniformly for all n. 
m 

For A: We note for any fixed n, the limit 

(A. 7) g(n) = lim g (n) 
m 

m-+ 00 

exists, n = 1,2, •••• This is so because the RHS of (A.7) is 

r(1!1wl) F(rl-ta; r 2+t3, l+lwl; µ), which is finite. Next observe 

that 

g(n) > g(n+l) > 0 for all n. - -
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(Applj the observation that in (A.3), r(x+a) monotonically decreases 
r(x)xa 

to unity as x increases.) Therefore lim g(n) = a say, exists, and 
n-+ 00 

assertion A. is proved. For B., we see that for all n = 1,2, ••• , 

and all m = 1,2, ••• 

(A.8) f g (n) - g(n)I 
m 

But from {A.7), we have 

CX) 

= I ~ A{rln' r2n; µ, y)j 
y=m+l 

CX) 

< f ~ A(rll' r21; µ, y)f 
y=m+l 

= jg (1) - g(1)l. 
m 

lim g (1) = g(l). 
m 

Therefore, given e > 0 
~ 00 

there exists M(e) such that 

(A.9) I gm ( 1 ) - g ( 1 ) I < e , for a 11 m 2: M( e ) • 

Applying this result to (A.8), we have that for any e > O, there 

exists M(e) such that fgm(n) - g(n)I < e, for all m,::: M(e) and 

all n = 1,2, •••• Thus g (n) converges to g(n) uniformly for 
m 

all n. This proves B., and hence the theorem. 
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APPENDIX B 

BINOMIAL APPROXIMATION TO THE DISTRIBUTION (6.5) 

The following lennna is a consequence of Stirling's formula. 

Lemma 1. 

Let A(a, x) = r(x+a)/x~(x), where a> o, X > Oo Then 

lim A(a, x) ~ 1 for any a> o. 
x-+ 00 

let 

Then 

To show that (6.5) can be approximated by a binomial distribution, 

r +t-1 r +k-t-1 
f(rl, r2, t, k) = ( 1 t )( 2 k-t ) 

k! rl t r2 )k-t 
f(r1 , r 2 , t, k)/f(r1+ r 2 , k) = '(k )' (---) ( t. -t • r 1+ r 2 r 1+ r 2 

• A(t, r 1 )A(k-t, r 2 )A(k, r 1+ r 2 ). 

By letting r 1 - 00, r 2 - 00, r 1/(r1+ r 2 ) - p, 0 < p < 1. We have 

by Lennna 1 

Now, if we divide numerator and denominators of the right hand 

side of (6.5) by f(r1 + r 2 , k) we obtain 

k 
E (k)pt(l-p)k-t9t 

t=O t 

X k-x 
=(~)A 1(1-A) 1, 

1 
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which is a B(k, A) distribution with A= (_p_a_e+ )·, q = 1 - P• p q 
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