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ABSTRACT 

Information and Questionnaires 

in Statistical Inference 

George T. Duncan 

497 words 

A charging scheme based on the resolution of questions strikes 

a new direction from the approach of Claude Picard, Theorie des 

Questionnaires, Gauthier-Villars, Paris (1965). The relationship 

between questionnaire theory and noiseless coding theory is explored. 

Graph theoretic methods are used to obtain results valid for codes 

in which words are constructed from arbitrary mixtures of alphabets, 

as well as arborescence questionnaires, i.e., those having repre

sentation as rooted, directed trees. A charge of log d for each 

resolution d question is justified by an equity principle. Using 

this charging scheme an extended noiseless coding theorem shows 

that the average charge for a heterogeneous questionnaire is bounded 

below by the Shannon entropy. ·This result is shown to hold for 

both finite and countable state spaces. The decision theoretic 

problem of choosing a questionnaire to resolve a finite state space 

is examined. Certain admissibility and essentially complete class 

results are obtained which indicate the structure of optimal hetero

geneous questionnaires. In particular it is shown that, for an 

essentially complete class of questionnaires, charges for state 

determination are ordered inversely to state probabilities. The 

regions of minimum charge are shown to be convex. If the state 

space has a finite number, m, of elements, then an essentially 

complete class of questionnaires has an average charge depending 
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only on the (m - 2) largest state probabilities. An initial 

resolution m question gives the minimax questionnaire, while 

equally likely state probabilities give a least favorable prior 

distribution and log m is the lower value of the game. 

A dynamic programming approach is used to provide an algorithm 

for finding an optimal questionnaire. Approximations to the 

dynamic programming algorithm are proposed and evaluated. 

A charging scheme for a lattice questionnaire is presented 

which maintains the Shannon entropy as a lower bound on average 

questionnaire charge. The fact that this lower bound can be attained 

allows a characterization of the Shannon entropy in terms of 

average questionnaire charge to be developed. 

Certain information theoretic results based on the Shannon 

entropy function are extended to results about uncertainty functions, 

as defined by DeGroot (Ann. Math. Statist. 33 (1962) 404-419). -- --- = 
Results of Renyi (Studia Scientarium Mathematicarum Hungarica 2 

= 

(1967) 249-256) concerning data reduction and sufficiency are 

generalized. Countable state space results are achieved through a 

version of Jensen's inequality which is valid for a function from 

sequence space. Payment schedules for a forecaster which allow no 

profit in dishonesty and promote diligence are studied. The relation

ship between uncertainty functions which are Bayes risk functions 

and payment schedules which emphasize the value of information are 

studied. Information in an observable random variable X about a 

random parameter 0 is defined as the average reduction in uncertainty 

about 0 given X. Minimum average questionnaire charge is examined 
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George T. Duncan 

as an uncertainty function. Questionnaire information is compared 

to Shannon information. By simultaneously determining a sufficiently 

large numuer of parameter realizatlons, the questionnaire iuformation 

per parameter realization may be ma.de arbitrarily close to the 

Shannon information per parameter realization • 
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Chapter I 

Introduction and Summary 

The present knowledge of a Bayesian decision maker is 

reflected in his probability distribution over the possible 

states of nature. The decision maker will order the actions 

available to him according to their Bayes risk. Unfortunately, 

it often happens that no act'ion has an acceptably small Ba.yes 

risk, and therefore the decision maker is unwilling to choose 

any action. In such a situation, the decision maker is advised 

to modify his probability distribution through one or more of 

three techniques. 

First, he may accunrulate further information in a statistical 

fashion through experimentation. Chapter IV of this paper, 

continuing in the tradition of DeGroot (1962), will extend certain 

information theoretic results based on the Shannon (1948) entropy 

function to results about uncertainty functions. In particular 

it will generalize results of Renyi (1967) which are concerned 

with data reduction and sufficiency. The generalizations to a 

countable state space are achieved through the use of a version 

of Jensen's inequality valid for a function from sequence space, R00
• 

Second, the decision maker may employ a forecaster who is 

then given the responsibility of producing a more satisfactory 

probability measure. Payment schedules for the forecaster are 

studied, in Chapter IV, which allow "no profit in dishonesty" and 

"promote diligence." The first property is related to "keeping 

- 1 -



a forecaster honest," introduced by McCarthy (1956). Attention 

is also given to payment schedules which emphasize the value of 

information to the decision maker, a concept introduced by 

Marschak (1959). 

Third, the decision maker may have available a sure sequential 

procedure or strategy for separating the state space until the 

true state is found. Picard (1965) calls such a procedure a 

questionnaire. Depending on the field in which it is applied, 

a questionnaire may be called a diagnostic schedule, a trouble

shooting routine, a taxonomic key, a weighing design, a search 

scheme, or even a "Twenty Questions" game strategy. The majority 

of this paper is devoted to the development of a theory of 

questionnaires in which the questioner is allowed complete freedom 

in the resolution of the questions to be used at any stage of the 

questioning. A charge will be incurred depending on the nature 

of the questionnaire, and, in particular, (most often) on the 

resolution of the questions asked. This strikes a new direction 

from the approach of Picard and others, such as Petolla (1969) 

and Dubail (1967). 

Chapter II emphasizes the relationship between questionnaire 

theory and noiseless coding theory. In this chapter a specific 

charge of log d for each resolution d question is justified 

by appealing to an equity principle. Graph theoretic methods are 

used to generalize Kraft's (1949) theorem to obtain a result valid 

for codes where words are constructed from arbitrary mixtures 

of alphabets, as well as arborescence questionnaires, i.e., those 
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having representation as rooted, directed trees. This allows 

an extended noiseless coding theorem to be proved which provides 

that the average charge for a heterogeneous questionnaire is 

bounded below by the Shannon entropy. A condition for equality 

is given which connects a state probability with the number of 

questions of each resolution required to determine that state. 

The only charge based on the resolution d of a question which 

permits this theorem is log d. It is also shown that equality 

is attained between Shannon entropy and average questionnaire 

charge if and only if each question is Shannon efficient, i.e., 

partitions the state space into sets of equal probability. The 

Shannon lower bound theorem is generalized to a countable state 

space. Some discussion is given of the continuous state space 

in terms of e-entropy. A charge dependent theory of lattice 

questionnaires is developed which allows a characterization of 

the Shannon entropy in terms of minimum average questionnaire 

charge. 

Chapter III examines the decision theoretic problem of choosing 

a questionnaire to resolve a finite state space. The states are 

ordered so that p1 ~ p2 ~ ••• ~pm where p = (p1 , p
2

, ••• , pm) 

is the probability vector over the state space. A questionnaire 

is called admissible if for all such probability vectors no 

questionnaire is preferred to it and strictly preferred for some p. 

The explicit form of the optimal questionnaires are obtained for 

m = 3 and m = 4. The regions of optimality are shown to be convex 

in the probability simplex for any m. Certain admissibility and 
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essentially complete class theorems are obtained which indicate 

the structure of optimal heterogeneous questionnaires. It is 

shown that there exists an essentially complete class of 
. 

questionnaires with state charges ordered inversely to state 

probabilities. Further, the set of questionnaires whose 

average charge depends only on p through p1 , p
2

, ••• , Pm_
2 

form an essentially complete class. The questionnaire consisting 

of an initial resolution m question is shown to be minimax, 

p* = (!, !, ... , !) is least favorable, and log m is the lower m m m 

value of the game. A dynamic prograunning approach is used to 

provide an algorithm for finding an optimal questionnaire. An 

essentially complete class result substantially reduces the 

number of partitions which tm.1st be examined in using this algorithm. 

Approximations to the dynamic progrannning solution are considered. 

In Chapter IV the information in an observable random variable 

X about a random parameter 8 is defined as the average reduction 

in uncertainty about 8 given X. Minimum average questionnaire 

charge is examined as an uncertainty function. Questionnaire 

information is compared to Shannon information. By simultaneously 

determining a sufficiently large number of parameter realizations, 

the questionnaire information per parameter realization may be 

made arbitrarily close to the Shannon information per parameter 

realization. 

Payments to a forecaster are considered which are connnensurate 

with the value of the forecast to a questioner. 

It is noted that the choice of a questionnaire has implications 

for an individual's subjective probability. 
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. . Chapter II 

State Determination and Noiseless·Coding 

1. Fundamentals. 

1.1. Introduction. 

It is commonly recognized among workers in information theory 

that the instantaneous codes of noiseless connnunication theory 

correspond to schemes of questioning which anticipate unambiguous, 

truthful replies. Implicitly, this is evident from Barnard's 

(1951) treatment of a weighing design problem; it is made somewhat 

more explicit, in the same context, by Kerridge (1961). In fact, 

such standard textbooks on information theory as Ash (1965) use 

this correspondence to illustrate, with simple examples, their 

material on coding. 

A scheme for specifying the questioning procedure might be 

described by a variety of labels. These can include a diagnostic 

schedule, a trouble-shooting routine, a taxonomic key, a "Twenty 

Questions" game strategy, a search scheme, or,as above, a weighing 

design, all depending on the field of application. A generic 

term which might encompass all of these is questionnaire. A 

questionnaire deals with a finite or countably infinite state 

space. The task of a questionnaire is to single out one state which 

has some unique characteristic. 

An introduction to the subject of questionnaires is given 

by Claude Picard in his book Theorie des Questionnaires (1965). 

He uses some of the results of communication theory, in particular, 
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the Huffman (1952) coding scheme, to obtain a "best" questionnaire 

in a certain class. The intimate relationship between question

naire theory (in the homogeneous case where each question has 

the same number of possible responses) and coding theory is spelled 

out in more detail in further work by Picard (1969). Loosely 

speaking, this correspondence identifies one _symbol from an 

alphabet containing exactly d characters with one question 

having d possible responses. 

The fundamental noiseless coding theorem of co1ID11Unication 

theory was first presented by Shannon (1948); it has a questionnaire

theoretic analogue. This has been more or less evident to many 

researchers who have attempted to apply information theory to a 

variety of fields. Examples include the work on group testing by 

Sobel {196o), the brief discussion of search theory by Campbell 

(1968), and the mathematical treatment of one aspect of taxonomy 

by MacDonald (1952). 

Looking at the problem of state determination from the 

viewpoint of a questionnaire suggests a generalization of the 

noiseless coding theorem which is proved in this chapter. {The 

generalization is in a different direction from that of Billingsley 

(1961).) The fundamental notions of questionnaires and noiseless 

coding are developed in this chapter to provide sufficient back

ground for the theorem. 

1.2. Definition of a Questionnaire. 

Picard (1965) treats a questionnaire in a very useful graph

theoretic manner. This formalizes the quite natural representations 
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which can be found throughout the literature, and as early as 

Shannon and weaver (1949). The graph theory used by Picard is 

standard and may be found in such books as Flament (1963). 

It is within the spirit of modern mathematics to follow a 

slightly different approach and construct a set-theoretic foundatiop 

for questionnaire theory and then.to demonstrate the extensive and 

illuminating interplay with graph theory. First, rather informally, 

a questionnaire may be thought of in terms of three components: 

(1) a state space ® containing a finite or countable number of 

elements, (2) a countable set w of arbitrary symbols used 

purely for convenience, and (3) an operator Q which acts in a 

particular way on the subsets of the state space. 

Thus a questionnaire may be treated as a triple (®, w, Q). 

The elements of ® are called states and denoted by 0, while 

* subsets of ® are denoted, generically, by ®. When Q operates 

* * on ®, the result is a family whose elements are subsets of ® 

plus, possibly, elements chosen from w. The union of those image 

* * sets which are subsets of ® nrust equal ®. The set containing 

the empty set is not in any of the image sets. {This means that 

no node corresponds to the empty set.) 

A graph-theoretic representation is then determined: first 

identify the state space,®, with a point, to be called the root. 

Then establish a point {node) for each set in the image families 

under Q. Allow a directed edge to join any particular node with 

each of the nodes corresponding to sets in the image family. 

{The graph-theoretic terminology used here will be primarily that 
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of Ore (1962).) It should be noted that the root has the distinction 

of being the only node which has no edge directed into it. There 

are no isolated nodes in the graph. 

Now, given a graph-theoretic representation, the questionnaire 

(®, w, Q) is also determined. Thus, in this context, one may speak 

of graphs or operators on sets interchangeably. 

Figure 2.1 is an example of the graph-theoretic representation 

of a valid questionnaire for resolving ® = {0
1

, 0
2

, ••• , 0
7
). 

<
E\J 

t_ 0
2 

0·~ 
·2 

{01, e2, ... , e7} {02, e3•···· e1~e3, e4, 

02, 

05, 06' 

07} 

Figure 2.1 

This is a quite general type of questionnaire. Notice 

first that each question does not necessarily partition the set 

on which it acts. Second, perhaps because of the nature of the 

questioning "device" or "format," not all "responses" may be 

"informative" about the true state. Hence the introduction of the 

w-nodes. 

Attention will be focused on a fixed state space with several 

operators, Q, defined on it. Thus, it will usually cause no 

confusion to use the same symbol, Q, to denote, simultaneously, the 

questionnaire, the operator, and the graph representation. 
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With this as background, we will now attempt to make the 

foregoing precise: 

Let O = ® U w be the universal set, where ® is a finite 

or countable set, called the state space, and w is an arbitrary 

countable set of symbols {w1 , w2 , ..• } with the property that 

® n w = 0. If A is an arbitrary set, IAI will denote the 

cardinality of A. 

Definition 2.1. A question, J1, is a mapping from a particular 

* * @ c ® into 22® u w. It is required that 

(i) 

and 

* * u ® = ®' 
* * ® a ®ci~(q® )n2H 

(ii) if * * ® &: q® , then a 
* The function q may be said to be the question at @. 

* Definition 2.2. An answer,_!, to a question, q at ®, is a 

* mapping from q® to one of its elements. 

Definition 2.3. A questionnaire, g, is the extension of q 

to the domain of all subsets of ®· Therefore, a questionnaire, Q, is a 

@ 2® mapping from 2 into 2 U w with three specific stipulations: 

* ® If we define r by r = Q® n 2 , then 
@* 

{i) r C 2 , 

(ii) * * u ® = ® ' 
* 

0: 

® er a 
and 

(iii) * {0} ' * if (8) er, then ® • a 0: 

- 9 -



Definition 2.4. 

and is defined by 

-1 The operator Q maps 2® into 

( 1.2 .1) -1 * ( * * * Q ® = ®a: Q®a = ® } • 

Note that -1 Q , when applied to a node of the graph, gives 

its direct antecedants. It will actually only be used when Q 

is such that the right hand side of (1.2.1) is either a singleton 

or empty, except in Definition 2.5 to follow. 

Definition 2.5. A questionnaire, Q, is valid if Q-1{0i} 

is not empty for i = 1, 2, •••• 

Definition 2.6. A state, ei, is said to be determined at 

stage is the smallest integer such that 

Definition 2.7. A questionnaire, Q, is said to be an 

* arborescence questionnaire if the sets in Q® are disjoint for 

all * ® C ®. 

The reason for the choice of the term arborescence is that 

such questionnaires have a graph representation as a rooted, 

directed tree. There is precisely one edge directed into each 

node beyond the root. Since the graph is connected, there is 

then exactly one path to each of the terminal nodes. 

Definition 2.8. A questionnaire is called a lattice question

naire if it is not an arborescence questionnaire. 

* Definition 2.9. A question, q at ®, is said to have 

* * resolution d if the sets in q® are disjoint and jq® I= d. 

Definition 2.10. A questionnaire will be called homogeneous 

if each question has the sane resolution; it will be called 

- 10 -
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. . heterogeneous if the question resolutions may be different. 

Note that a questionnaire which is either homogeneous or 

heterogeneous must be an arborescence questionnaire. 

2. Arborescence Questionnaires. 

2.1. General. 

The class of questionnaires which have arborescence repre

sentation has many interesting connections with the instantaneous 

codes of conununication theory. This section will be devoted to 

an exploration of these connections. 

Figure 2.2, below, gives a typical homogeneous questionnaire 

in rooted, directed tree form. 

{l\} 

el' e2' e3} e2} 

03} 

{04} 

04, 05, 06} {05} 

(06} 

Figure 2.2 

Here all questions are of resolution 3 and would often be called 

ternary questions. 
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On the other hand, a heterogeneous questionnaire might appear 

as in Figure ~.3. 

< {01} 

(01' 02} (02} 

{01, 02, 03, 04, 05} 

~

{03} 

{ 0 3 ' 04 , 0 5 { 04 J 
(05} 

Figure 2.3 

Notice that this second questionnaire includes both resolution 2 

(binary} and resolution 3 (ternary} questions. 

A useful set of terminology is provided by viewing a 

questionnaire as an asexual family tree and using botanical and 

geneological terms interchangeably. Metaphors will be mixed 

whenever it seems convenient. 

. . ·-, 

~ > 

r ' o;, 

, , ) " 

• i 

I 

Ii.I 

~--
I .~ 

i ...., 

i.j 

~ 

~ 

la.I 

I 

...i 

I 

I.. 

'-' 

I 

J 

I i 

With this representation, each node of the tree can be ~ 

associated either with a set from a particular partition of ® 

{finite or countably infinite} or an element from the set w. The 

questionnaire will be valid if and only if it contains 

i = 1, 2, ••• as nodes. 

(0. J 
1. 

The operator Q, when applied to a node, yields its offspring. 

-1 Conversely, the operator, Q , will yield the father of a node. 
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2.2. Noiseless Coding and Homogeneous Questionnaires • 

In order to demonstrate the connection between questionnaire 

theory and noiseless coding theory, it is useful to have available 

some of the basic terminology of coding similar to that presented 

by Ash (1965). A finite collection of code characters is given. 

It is called the alphabet and code words are formed from it by 

juxtaposition. The code is uniquely decipherable if every finite 

sequence of code characters corresponds to, at most, one message. 

A sequence A is a prefix of a sequence B if B may be written 

as AC for some sequence C. Then a code having the property 

that no code word is a prefix of another code word is called 

instantaneous. 

An instantaneous code is specified by a dictionary which 

prescribes one or more code words for each message which might be 

sent. A graph-theoretic representation can be constructed from 

the dictionary by reading each code word from left to right. As 

the first character is read, edges are established emanating from 

a root; the number of edges is equal to the number of characters 

in the alphabet used. This process is repeated from the farther 

node of the edge actually indicated by the code word. When the 

word has been read, the terminal node is identified with the message. 

This construction is continued for each of the code words in the 

dictionary. Appropriate connections are made in the graph if 

more than one code word corresponds to a single message. If there 

is a one-to-one correspondence between code words and messages, 

the resulting graph will be an arborescence; but whatever the form 
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of the resulting graph, there will exist a questionnaire with 

this graph-theoretic representation. Note that some terminal 

nodes may not correspond to any message. Such terminal nodes 

might be identified with elements from the set w. 

In communication theory, there is a very compelling frequency 

basis for assigning a probability measure to the message space 

and designing a coding scheme to meet optimality criteria 

accordingly. Within the context of questionnaire theory, there 

is usually a nonrepeatability of circumstances, as is often the 

case in search theory, which calls for a subjective interpretation 

of any probability measure over the state space. The effective 

design of a questionnaire depends on this probability measure. 

Definition 2.11. The symbol p = (p1 , p
2

, ••• ) will denote 

the probability vector over the state space such that P(B. 
1 

is 

the true state)= pi, i = 1, 2, •••• 

A basic quantity used in coding theory is the Shannon entropy. 

Definition 2.12. The Shannon entropy, H(p), is defined by 

(2.2.1) 

where p = (p1 , ••• , pm) is a probability vector, and, in order 

to maintain continuity, 0 log O is taken to be O. 

Picard (1969) essentially gives the immediate translation 

of the noiseless coding theorem as stated by Ash (1965). This 

might be stated in questionnaire-theoretic language in the following 

form: 
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"Let Q be a valid homogeneous questionnaire of resolution 

d for determining e contained in ® = (e1 , .•. , em} and N(Q) 

be the random number of questions required. Then for each given 

probability vector p, 

(2.2.2) 

Equality is obtained iff -n. pi= d 1., where 

questions required under Q to determine e " i" 

m 

- ~ p. logdp .. 
. 1 l. l. 
l.= 

is the number of 

Ash further notes {in this translated form) that there 

exists a questionnaire of resolution d with 

m m 
(2.2.3) - ~ p. logdp. ~ E N( Q) < - 6 p. logdp. + 1, 

i=l l. l. p i=l l. l. 

or 

(2.2.4) 

This theorem suggests the possibility of a generalization to 

arbitrary heterogeneous questionnaires; appropriate charges need 

to be made based on the resolution of the questions asked. 

2.3. Charges for Heterogeneous Questionnaires. 

There are two basic approaches to the study of heterogeneous 

questionnaires. The first, which Picard (1965) and, following 

him, Petolla (1966, 1969) take, is to consider the number of 

questions of each resolution as being fixed. An optimization 

problem is then to assemble these questions into a valid question

naire which will have mininu1m average length. The second approach, 
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which is followed here, is to attempt to determine an appropriate 

charge for a question based on its resolution. The optimization 

problem will involve minimizing the average charge for a valid 

questionnaire where complete freedom is allowed in the choice of 

the resolution of the questions used. (A completely general formu

lation of the charge for state resolution is presented in Parkhomenko 

(1969) and Petolla (1969). That approach is not followed in this 

chapter. However, many of the results of Chapter III will be 

valid for a general charge formulation.) 

In considering this problem of charge determination, it is 

first of all evident that questions of higher resolution should 

incur higher charges. Thus, if c(d) denotes the charge for a 

resolution d question, we would require c(d) ~ c(d') if d ~ d'. 

To obtain a more precise determination, the following principle 

may be invoked: 

It is desired to determine relative charges for device A 

and device B; there is assumed available an ordinal perforn:ance 

criterion which relates A and B. Equity requires that if device 

A accomplishes no less than device B, the charge for A should 

not be less than the charge for B. Symbolically, this amounts 

to choosing a charge function C(•) such that, 

A> B implies C(A) ~ C(B) 

where A> B indicated that A dominates B according to the 

performance criterion. 

- 16 -
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•• 
Application of this principle to questionnaires requires a 

very definite specification of the charging system. First, charges 

will be assessed for each question that is actually utilized in 

the questionnaire {this depends ori which state is true, naturally). 

Second, the charge shall only depend on the resolution of the 

question asked and not, in particular, on the question's position 

in the questionnaire. 

It is also necessary to have a precise notion of the performance 

criterion to be employed. Since the charging scheme determines 

charges in terms of question resolution, it is reasonable to 

compare the performance of two homogeneous questionnaires, one 

of resolution 2, i.e., composed entirely of binary questions, and 

one of resolution d, where d is an arbitrary integer greater 

than 2. Their performance will be evaluated in terms of the ratio 

of their average lengths. Each is set the task of resolving a 

state space, where one questionnaire's job may be bigger than another 

in the sense that its state space may contain more elements. The 

comparison will be made under conditions most favorable to each. 

For homogeneous questionnaires, these are known by the usual 

noiseless coding theorem {see section 2.2) to occur when each 

state has equal probability. 

If there are 2m states in ®, the true state can be found 

after exactly m questions. That this result is the best obtain

able is confirmed by the usual noiseless coding theorem. On the 

other hand, if there were dn states in ®, the true state could 

be found after exactly n resolution d questions. Thus, if 

- 17 -



positive integers m n 
m and n could be found so that 2 = d, 

the appropriate relative charge for the resolution d question 

would be ~ = log2d. Since, when d is not a power of two, 

log
2

d will be irrational, it will usually not be possible to 

find such an m and n. So, in general, proceed by a straight

forward procedure in the Dedekind cut spirit and note 

(2.3.2) 

where 

sup A(m, n) = 
m,n 

log
2

d = inf B(m, n) 
m,n 

(2.3.2a) A(m, n) = { ~ 
n 

m ii ~ log2d, m and n positive integers} 

and 

(2.3.2b) B(m, n) = { ~ 
n 

m ii~ log2d, m and n positive integers}. 

Then given 
mo 

~ > O, we can choose (mo, no) 

while 

and (~, nl) so that 

- e A(m, n) 
no 

and ~ e B(m, n) 
nl 

(2.3.3) 
mo ml 

log d - -2e < - < log2d < - < log2d + -2e 2 -n- -n-o 1 
mo no 

Now with - e A(m, n), a state space with d states can be 
no 

resolved in n
0 

m 
resolution d questions. Also,~ state space 

with 2 O states can be resolved with m
0 

binary questions. 
mo 

2 is less than 
no mo 

d • Thus, - is too small a charge for a 
no 

But 

resolution d question. Similarly, it is argued that ~ is too 
nl 

large a charge. Thus 

(2.3.4) log 2d - ~ ~ c{d) ~ log2d + ! . 

Then, since e is arbitrary, take 
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(2.3.5) 

as the charging scheme satisfying the stated principle. Results 

which are valid for an arbitrary base logarithm will be stated in 

the form "log d"; if the base is important it will be given, as 

in "log
2
d." A choice of base 2 for the logarithm establishes 

a convenient charge of 1 unit for a binary question. 

2.4. Noiseless Coding and Heterogeneous Questionnaires. Finite 

State Case. 

This section will generalize a theorem of Kraft (1949) to 

heterogeneous questionnaires. An extended noiseless coding theorem 

can then be proved which provides that the average charge for a 

heterogeneous questionnaire is bounded below by the Shannon entropy. 

A condition for equality in terms of the state probabilities and 

the number of questions of each resolution required is given. 

The log d charging scheme is shown to be the only one yielding 

this theorem. It is further proved that the Shannon lower bound 

is obtained by a valid questionnaire iff each question is Shannon 

efficient, i.e., partitions the state space into sets of equal 

probability. It is shown that there exists a questionnaire with 

average charge strictly bounded above by the Shannon entropy plus 

one, and that this is the best upper bound available in general. 

Suppose that the state space,®, is assumed finite so that 

l@I = m < oo. Let the valid questionnaire, Q, be given. Terminal 

nodes, y. (i = 1, .•• , r}, of Q may be identified with {8.} 
i i 

(i = 1, ••• , m) or w • ( i = m + 1, ••• , r ) • 
i 

- 19 -
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made of the number of questions of each resolution, d, required 

to reach yi. This quantity can be denoted by nid. 

Definition 2.13. If ki is the smallest integer such that 

-k. 

then 

(2.4.1) 

1. 
Q Yi = ®, 

k. 

nid = l X{d}(IQQ-JY1l),X{d}(x) = {~ 
j=l 

d=x 
otherwise • 

Then the average charge for Q can be expressed as 

m ex> 

(2.4.2) E C(Q) = ~ ~ p.nidlog
2
d. 

p i=l d=l 1. 

Note that for l@I = m, consideration may actually be 

restricted (with no loss in terms of average charge) to questions 

of, at most, resolution m. 

The usual noiseless coding theorem can now be generalized to 

provide bounds on the average charge for an arbitrary heterogeneous 

questionnaire. The first step is to obtain a generalization of 

the "only if" part of a theorem due to Kraft (1949) (Kraft's 

theorem is Theorem 2.3.1 in Ash (1965)): 

Theorem 2 .1. 

If a questionnaire Q is valid and uses precisely nid 

resolution d questions to determine 0i (i = 1, ••• , m), then 

CX) 

(2.4.3) 
m 

~ n -n 
d id < 1. 

i=l d=l 

Proof: 

The questionnaire Q will determine, through equation (2.4.1) 

a vector w = {w
1

, w2 , ••• ) where 
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.... 

(2.4.4) max nid 
i=l, ••• ,m 

(d = 1,2, .•• ). 

(Note that the maximum need only be taken over indices, i, associated 

with terminal nodes which are assigned to 0-values. This is 

because, by the definition of a questionnaire, w-terminal nodes 

are brothers of terminal nodes which are assigned to 0-values 

and hence use the same number of questions of each resolution.) 

The basic strategy of the proof is to extend the graph Q 

to a graph Q so that Q uses precisely wd resolution d 

questions in reaching any of its terminal nodes. This can be done 

by noting the deficiency in resolution d questions at each yi, 

A tree is then constructed from each y., which 
1. 

repairs this deficiency by successively constructing questions of 

the appropriate resolution. As an example of this,consider the 

following graph, Q: 

{el} 

{02} 

{e3} 

{84) 

Figure 2.4 

This would be extended to the graph, Q, with the following form: 
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I 
Figure 2.5f 

I 

I 
It is now desired to determine the total number of terminal 

nodes of the graph, Q. . Fix an index : i. The terminal nodes of 

Q which are descendents of v1 all may be reached after exactly 

wd resolution d questions. The or~ler in which these questions 

are asked will depend on i. Thus,inithe example,descendents of 
I 

{e1 } which are terminal nodes of Q /are reached by a (2, 2, 3) 
I 

pattern for the resolution of questio~is, while descendents of w
5 

which are terminal nodes of Q are d~ached after a (2, 3, 2) 

pattern. Now,for any fixed pattern,a!combinatorial tree could be 
I 

constructed illustrating the tm1ltiplic:ation principle and thereby 
00 Wdi 

{using connnutativity) having TT d i terminal nodes. Since this 
_ d=l I co wd 

is true for any pattern, Q nust have1 TT d terminal nodes. 
d=l 
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...... 
• • If {nid: d = 1, 2, ••• } gives the number of questions of 

ooTT dw d-nid 
each resolution required to determine ei by Q, then 

d=l 
terminal nodes will have been added to produce Q provided 

wd + nid for some d; otherwise no terminal nodes will have been 

added. Let C be the set of all indices, i (i = 1, ••• , m), such 

that {e.} 
]. 

- C is identified with a terminal node of Q; let C be 

the set of all indices, i, such that {0i} is not identified with 

a terminal node of Q. Then since (ei} cannot be a descendent 

of (ejJ, the following accounting inequality holds: 

(2.4.5) 

But then since i e C requires wd = nid' equation (2.4.5) can be 

written as 

oo w -n. oo w -n oo w 
( 2 • 4 • 6) ~ C )] d d 1.d + lJ )] d d id ~ n d d • 

ieC =1 ieC =1 d=l 
oo wd 

Hence dividing by n d in (2.4.6), 
d=l 

(2.4.7) 
oo -n oo -n 

" n1 d id + " n1 id LJ LJ d ~ 1. 
ieCc d=l ieC d=l 

Therefore inequality (2.4.3) follows. D 

It is interesting to note that, unlike the situation in the 

homogeneous case, the converse to the theorem is false, i.e., it 

is not necessarily possible to construct a valid questionnaire from 

{nidJ merely because they satisfy (2.4.3). As an example of this 

consider: m = 3 with n12 = 1 = n23 = n32 = n
33 

and n
13 

= 0 = n
22

• 

Th 1 . i b i d ( 4 ) . -1 0 0 -1 -1 -1 en equa 1.ty so ta ne in 2 •• 3 s1.nce 2 3 + 2 3 + 2 3 = 1. 

But no questionnaire of the form given exists. 
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A restatement of the previous theorem is possible in coding 

theory terminology. In this context,a message is coded as a 

finite sequence of characters. Suppose that one extends the usual 

convention that each character is chosen from an alphabet with a 

total of d characters and allows the characters to be chosen 

arbitrarily from distinct alphabets having 1, 2, 3, ••• characters 

each. Thus a word may be mixed with regard to the alphabet 

employed. Now given a particular word, Bi, one can count the 

number of characters from each alphabet actually used. This quantity 

might be called nid• Then we have t e following restatement of 

Theorem 2.1: 

Corollary 2.1. 

Denote by ad an alphabet with recisely d characters. 

Let nid (i = 1, ••• , m; d = 1, 2, ••• ) 

from ad which are employed in the 

be the number of characters 

th 
code word. Then an 

instantaneous code must satisfy inequ lity (2.4.3). 

Now the questionnaire in its gra h-theoretic form may have 

terminal nodes which are not assigned to B-values (instead they 

are assigned w-values}. In terms of oding theory, Fano (1961) 

describes a code with this representa ion as not being complete. 

If all terminal nodes are assigned to B-values then equality will 

prevail in (2.4.3), according to Coro lary 2.2 to follow. 

Definition 2.14. A questionnair Q (whether arborescence or 

lattice} is said to be adapted to as ate space ® if Q maps 

2® into 22 ®. 
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i.. .. Corollary 2 .2 • 
• • 

Let Q be a questionnaire operator. Then Q is adapted to 

® if and only if 

(2.4.8) 
m m -n. 
6 n d id = 1. 
i=l d=l 

Proof: 

Only if Q has no elements from w in its image may each 

terminal node in the questionnaire be classified as either a 8i 

terminal node of the original graph or as a descendent of such a 

node. Then equality will hold in (2.4.5). Therefore (2.4.8) is 

affirmed by the argument of the proof of Theorem 2.1. D 

Based on Theorem 2.1,a generalized noiseless coding theorem 

can be obtained which guarantees that the average charge for a 

valid heterogeneous questionnaire is bounded below by the Shannon 

entropy. 

Theorem 2.2. 

Let ® = (01 , ••• , 0mJ be a finite state space and 

p = (p1, ••• , pm) be a probability vector. If Q is a valid 

heterogeneous questionnaire and C(Q) is the random charge based 

on log d for each resolution d question, then 

(2.4.9) H(p) ~ E C(Q). 
p 

Equality is attained if and only if nid = 0 for all d > m and 

(2.4.10) 
-nid 

d (i = 1, ••• , m), 

where is the number of resolution d questions specified 

by Q to determine ei. 
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Proof: 

The proof makes use of a basic inequality of information 

theory {derivable from Jensen's inequality) and Theorem 2.1. 

The basic inequality is 

m m 
(2.4.11) - _6 pi log pi :5, - 'E pi log q1 1.=l i=l 

, / .. 
. , , 

I ·u 

• i..i 

I I 

I , 
' I 

where Li 
m m 

(2.4.lla) 6 pi = 6 qi = 1 
i=l i=l 

and 

(2.4.llb) pi, qi~ 0 (i = 1, ••• , m). 

Equality is obtained if and only if 

(2.4.12) p. = q. for all i = 1, ••• , m. 
1. 1. 

Now define qi {i = 1, ••• , m) to satisfy (2.4.lla, b) by 

00 -n m 00 -n 
<2 .4.13) qi = n d id, 6 n d id. cr::1 i=l 1::1 
But then 

(2.4.14) 

using basic properties of the logarithm. 

Theorem 2.1 shows that the last term on the right hand side 

of equation (2.4.14) is nonpositive. Thus inequality (2.4.11) 

requires that 
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m m co 

(2.4.15) ~ p. log pi :::: ~ ~ p. n. d log d 
i=l i i=l d=l ii 

which gives equation (2.4.9) by Definitions 2.11 and 2.12. 

Now if (2.4.10) is satisfied and nid = 0 for d > m, then 

(2.4.16) 
m m ft -nid m m 

- ~ P-r log pi = - ~ pilog d = ~ 'E p.nidlog d 
i=l ~ i=l d=2 i=l d=2 i 

m oo 

= ~ }J p . n id log d = E C ( Q) • 
i=l d=l i p 

On the other hand if equality is obtained in (2.4.9) then we use 

the "only if" part of equation (2.4.12) and by equation (2.4.14), 

(2.4.17) 

so 

(2.4.18) 
m co -n 
~ )Jld id = 1. 

i=l 

Suppose there existed d > m + 1 such that nid > O. But 

since by (2.4.18) Q is adapted to ®, then l@I ~ m+l which 

is a contradiction of the definition of ®· Therefore (2.4.10) holds.O 

Theorem 2.2 establishes the Shannon entropy as a lower bound 

on the average charge for a questionnaire. The lower bound will 

be called the Shannon lower bound. Determined also is a condition 

in terms of the number of questions of each resolution required 

by the questionnaire for the Shannon lower bound to be met. 

Corollary 2.2 and the proof of Theorem 2.2 give the iuunediate 

corollary: 
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Corollary 2.3. 

A questionnaire Q has an average charge which meets the 

Shannon lower bound for some probability vector if and only if 

Q is adapted to ®· 

Theorem 2.2 allows a further justification to the use of 

the charge log d for each question of resolution d. 

Corollary 2.4. 

Let the charge for a resolution d question be c{d). 

(2.4.19) 
m m 
~ E pinidc(d) ~ H(p) 

i=l d::2 

j -nid 
with equality iff p. = d 

l. :::2 

(2.4.20) c(d) = log d. 

Proof: 

is equivalent to 

Then 

Sufficiency is established by Theorem 2.2. For necessity, 

consider any arbitrary integer d' greater than 2. Then for 

m = d' 
1 and pi= cf'", H(p) = log d'. Now there exists a valid 

questionnaire with 

(2.4.21) 

So 

(2.4.22) 

nid = D 
d' d' 

d = d' 

d + d' 

~ ~ pinidc(d) 
i=l d=2 

for all i. 

d' 
= ~ ¼,- c(d' ), 

i=l 

which must equal log d'. Thus, c(d') = log d'. D 
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) . A result which parallels Theorem 2.2 to some extent is 

presented in Dubail (1967). There, in order to study the hetero

geneous questionnaire case, a concept of generalized entropy is 

introduced. It is shown that this generalized entropy provides 

a lower bound on the average length of a questionnaire. Equality 

is attained as in Theorem 2.2. Now Theorem 2.2 and the result of 

Dubail are trivially equivalent for homogeneous questionnaires. 

In the simplest example of a heterogeneous questionnaire, it can 

be shown that Theorem 2.2 implies Dubail's result but not conversely. 

No more general correspondence between the two results has been 

shown. 

An anrusing exposition by R. T. Cox (1961) of the game of 

"Twenty Questions" suggests a different outlook on the problem 

of equality between entropy and average questionnaire charge. 

(Games of this type have been called. "taxonomic games" by Tribus, 

Shannon, and Evans (1966).) In this particular game, only 

questions which allow "yes-no" responses are allowed in the quest 

for revelation of the "true state." That is, only resolution 2 

or binary questions are allowed. Here it is generally {for 

example, Bartlett (1951)) considered to be good strategy to ask 

questions which "split the state space in half." More formally, 

one would seek to ask questions which partition the state space 

into two sets, each of equal probability. Also, in many problems, 

e.g., ranking or tournament problems, it is the inability to make 

such splits which causes the difficulty. References here include 

Burge (1958), Ford and Johnson (1959), and Hadian (1969). 
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In our more general situation, it is useful to have the 

following definition: 

Definition 2.15. 

A resolution d question is called Shannon efficient if it 

partitions ® into d sets of equal probability. 

In terms of this definition, we deduce the following result: 

Theorem 2.3. 

The Shannon lower bound is attained by a valid questionnaire 

Q if and only if each question is Shannon efficient. 

Proof: 

We shall make use of the well-known defining property of 

Shannon entropy, the generalized grouping axiom, which states 

that for ad-fold partition of ® into @
1

, ••• , ®d: 

(2.4.22) H(p) = H(q) + ~ q1H(p(i)) 
i=l 

where 

(2.4.22a) q = (q1, ••• , qd) 

with 

(2.4.22b) qi= P(@1 ) (i = 1, ••• , d), 

and p(i) is the vector whose components give the conditional 

probability that the true state is any particular state of @1 

given that the true state is in ®1· 
®· 

First note that Q contains subquestionnaires, Q 1 (1 = 1, •.. , d), 

which resolve @1 (i = 1, ••• , d), respectively. Also, 

(2.4.23) E C(Q) 
p 

d ®1 
= log d + ~ qi E (if ( Q ) • 

i:cl p 
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. ' .. - . 
... . " .. . .. .... .. Now, by Theorem 2.2, 

(2.4.24) (i = 1, ••• , d). 

Hence, 

(2.4.25) ~ q.H(p(i)) < ~ q E C(Q
81

) LJ LJ • (·) • 
i=l 1 i=l 1 

p 
1 

Further, 

(2.4.26) H(p) < E C(Q). 
- p 

Therefore equality can hold in (2.4.26) only when 

(2.4.27) H(q) = log d. 

But (2.4.27) requires 

(2.4.28) 

Thus the first question of Q must be Shannon efficient. 

The same argument can be applied to the first question in each 

of the state spaces,®·· Continuing this process it is shown 
1 

that for equality to hold in (2.4.26) every question urust be 

Shannon efficient. 

An iterative expansion of (2.4.22) shows that the converse 

is valid, i.e., if every question is Shannon efficient, equality 

must hold in (2.4.26). 0 

It is well-known (see equation 2.2.4) in information theory 

that there exists a binary code (a homogeneous questionnaire of 

resolution 2) whose average length (charge) is strictly bounded 
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above by the Shannon entropy plus 1. Thus it is immediate that 

there exists a heterogeneous questionnaire with the same upper 

bound, i.e., 

(2.4.29) inf E C(Q) < H(p) + 1. 
Q p 

It is of interest to consider whether the bound (2.4.29) can be 

improved upon in the heterogeneous case. The answer to this is, 

in general, no. This can be seen from the following argument: 

Consider the case when there are m states with p1 = ½ and 

P2 = = pm = 2(m-1) • 
1 Here the Shannon lower bound is achieved 

by a questionnaire, Q, which has the tree representation of 

Figure 2 .6. 

'v/ ~{83} 

{em} 

Figure 2.6 

This follows from Theorem 2.3 or by direct computation. There

fore, Q has an average charge which is no higher than any other 

questionnaire for that probability vector, p. Further, it is 

quite clear and can be shown that Q will be best in this sense 

for any probability vector of the form 

Pie= 1 - {m-l)e and e: 
P2 = 

where 

(2.4.30) 
1 

e ~ 2{m-l) • 
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• < -
,. ' 

. "' . .. .. . ~ ..... - .. Then E C(Q) = 1 + (m-l}e log (m-1) and 
Pe 

(2.4.31) H(pe) = (1 - (m-l)e) log l-(!-l)e + (m-l)e 
1 log - • 
e 

Consider taking the limit in (2.4.30) and (2.4.31) as e ~ 0. 

Obtained is 

(2.4.32) 

and 

(2.4.33) 

Therefore, 

lim E C(Q) = 1 
e~ O Pe 

(2.4.34) lim E C(Q) = lim H(pe) + 1. 
e-t O Pe ~ 0 

Thus, e may be chosen so that the average charge for the best 

questionnaire is arbitrarily close to the Shannon entropy plus 1. 

2.5. Countable State Case. 

It is desirable to generalize the results of the previous 

section to the case when the state space is countably infinite. 

Here one complication presents itself--the countable version of 

Shannon entropy is an infinite series which may diverge to + ~. 

Nevertheless, a count~ble variety of noiseless coding theorem is 

available as 

Theorem 2.4. 

Suppose the state space,®, is countably infinite. Then the 

average charge for a valid questionnaire is never less than the 
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countable Shannon entropy. If the entropy is finite, there 

exists a valid questionnaire with average charge not greater 

than the entropy plus 1. Thus we have 

(2.5.1) H(p) < inf E C(Q) < H(p) + 1 
- p -Q 

where 

00 

(2.5.2) H(p) = - 'E pi log p .• 
i=l 1 

Proof: 

Define 

HM(p) 
M 

(2.5.3) = - ~ p log p - oMlog 6M 
i=l i i 

where 

6M = PM+l + PM+2 + • • • • 

We note that 

where QM denotes any questionnaire determining the true state 

among {e1J, .•. , {BM}, {BM+l'•••l• Now 

(2.5.5) 

and 

(2.5.6) 

(2.5.7) 

M 
- 'E p

1
log pi ... H(p) (finite or + oo) as M ... oo, 

i=l 

M H (p) ... H(p) as M ... oo. 
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Let us first suppose that H(p) is finite. Then by taking 

limits as M ... 00 in (2.5.4), we obtain 

H(p} ~ y ~ H(p} + 1 

where y = lim inf E C(QM). Now we wish to establish the existence 
M-+00 Q p 

M of a questionnaire resolving ® with an average charge arbitrarily 

close to y. First define 

and choose positive integers, M(k) (k = 1, 2, ••• ), such that 

(2.5.l0} (i) M = M(l), 

4 (ii) M(k) < M(k+l), 

and 

{iii) p (k} + ••• 
M +1 

(k) 
+ p (k+l) :5 6M 

M 

{k) 
(iv) P (k) + ••• + P (k+l) > 6M • 

M +1 M +l 

Since we are dealing with finite sets in each case, we can 

* * * let QM, Q (l) (2 ), Q (2 ) (3) , ••• be the best questionnaires 
M , M M , M 

for determining the true state among {61, ••• , 8 (l)J, {0 (l) , ••• ,e (2 )J' 
M M +1 M 

{6 (2 ) , ••• , 6 (
3
)J, ••• , respectively. Then QM* can be extended 

M +l M 
to determine the true state in all of ® in the following manner: 

Figure 2.7 
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* If we call this extended questionnaire, Q(M) , we note that 

* * the additional charge for Q(M) over QM is 

(2.5.11) I: qk{M){k + EPC{Q*{k) {k+l))) 
k=l M ,M 

where 

(2.5.12) qk(M) = (p (k) + ••• + p (k+l)) (k = 1, 2, ••• ). 
M +1 M 

Now we note that expression (2.5.11) can be no bigger than 

(2.5.13) 

(k+l) 
co (k) oo M p. pi co 

~ k6M + 6 qk(M)(- 6 {M) log (M)) + 6 qk(M). 
k=l k=l (k} qk qk k=l 

i=M +1 

This result follows from (2.4.29) and (2.5.10). Then by (2.5.9) 

expression (2.5.13) may be rewritten as 

(2.5.14) 

{k+l) 
co 1 k 1 co M pi 

6il + 6k(2) - ) + (- 6 ~ Pi log,. /v\), 

k=l k=l i=ik) +1 

which in turn equals 

co 00 M(k+l) 
(2.5.15) 56M + (- _'B pi log pi) + 6 6 pi log qk(M). 

1.=M k=l i=M(k)+l 

Now as M~ co, the first term of (2.5.15) clearly goes to 

zero while the second term must also go to zero since it is the 

tail of a convergent series (H(p) is assumed finite}. Consider 

the third term of (2.5.15). We make use of the basic inequality 

of information theory (2.4.11) to write 

co ik+l) pi qk(M) 00 

(2.5.16) 'E 6 6 log 6 ~ 6 
k=l. M(k) l M M k=l 

1.= + 

i.k+l) 
"' p. p 
LJ 

6 
1 log _!, 

i=M(k)+l M 6M • 
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But this is equivalent to 

(2.5.17) 

Again using the fact that the entropy has been assumed finite, we 

have the third term of (2.5.15) going to zero as M ~ oo. 

Therefore, we have demonstrated the existence of a positive 

* integer M so that the questionnaire Q(M) has an average charge 

arbitrarily close to lim inf E C(QM) = y. Hence from (2.5.8) 
M-+ oo QM p 

we have established the conclusion, (2.5.1), to our theorem. 

Suppose now that H(p) = +x>. We have that 

(2.5.18) it1(p} < inf E C(QM) < inf E C(Q) 
-QMP Q p 

where Q is any questionnaire to determine 0 e ®· But 

( 2 • 5 • l 9) '1( p) t H ( p) = -fw; 

so 

inf E C(Q) = -fo>. 0 
Q p 

Consider two specific examples in the countable state case. 

i. Geometric probability case. Suppose the probabilities are 

given by 

(2.5.21) i-1 ( p. = p q i = 
1. 

1, 2, •.• ; 0 < p < 1; q = 1 - p) 

so that 

00 

H(p) = - ~ Pi log pi = - ( f. log p + log q } • 
i=l q 
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1 Note that for p = q = 2 , we have H(p) = 2 which is the limit 

of truncated entropies and is attainable by a questionnaire. 

ii. Poisson probability case. Here we let 

(i = O, 1, ••• ; 12: 0). 

Then 

H(p) = -1 log 1 + 1 loge+ log i! • 

This entropy is finite since the series converges by the ratio 

test. 

2.6. Continuous State Case. 

Conceptually, it is often useful to for1In.1late problems so 

that the state space,®, is continuous. Then the true state 

may be treated as the realization of a continuous random variable, 

1 e, with range, say, the real line, R. Note that considerably 

more structure has been imposed on the state space than in previous 

cases. Analogous to the Shannon entropy in the finite or countable 

state case, we can define the differential entropy or Wiener 

entropy (Wiener, 1948) as 

(2.6.1) H(B) = - f p(e) log p(B)dB, 

where p(•) is a probability density function (with respect to 

Lebesque measure) of the random variable, e. 

As has been pointed out by Kolmogorov (1965) and Moran (1951), 

the differential entropy is fundamentally of a different character 

than the entropy that has been previously considered here. It 
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.. 
does not admit a direct combinatorial interpretation in terms of 

questionnaires. 

Further, from a practical point of view, it is not necessary 

to know the exact state, 8, which is operational in a particular 

situation, but only a value which is "sufficiently close" to 8. 

Therefore, we will assume that ® is a metric space with a 

metric, p, in order to deal with this mathematically. Kolmogorov 

(1956), again, provides the clue on how to handle this problem 

by introducing the concept of e-entropy. We will admit a second 

random variable, Tl, jointly measurable with a. A basic requirement 

on Tl is that, for a preassigned e, 

(2.6.2) P(p(T]. - 0) :Se)= 1. 

The interpretation is then clearcut. If we know the value of Tl, 

we shall, almost surely, know the value of 8 within e. In order 

to be back in our familiar combinatorial framework, where question

naires are possible, we shall require Tl to be at most countably 

valued. 

For p(•) fixed, we now define W to be the set of joint 
e 

probability measures of 8 and ~ satisfying (2.6#2) where ~ is 

discrete. We further define 

(2.6.3) H (8) = 
e 

inf 
Tl 

( e, 1l)ew 

I(B, Tl), 

e: 

where I(B, Tl) is the usual mutual information in ~ about 0 

(or vice-versa). The right hand side of (2.6.3) may be written in 

the alternative forms 
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(2.6.4) 

and 

(2.6.5) 

inf [H(8) - EH(8l11)] = H(8) - inf EH{8I~) ,, ,, 

inf [H(~) - EH(~l8)]. ,, 
If we now require that given 8, 11 is almost surely constant, 

we will have 

(2.6.6) H(11l8 = 0
0

) = o for each 0
0

• 

Hence 

(2.6.7) inf I( 8, 11) = ,, inf H(~) 
11 

This corresponds to some extent to the intuitive feeling that a 

"cheap" 11 (in terms of questionnaire charges) which meets the 

e-requirements is one in which 1(0, 11) is small. 

3. Lattice Questionnaires. 

3.1. Origin. 

A lattice questionnaire has a graph representation showing 

more than one path leading to some terminal node. Thus there is 

at least one question which does not partition the set on which 

it acts. A lattice questionnaire adapted to ® = {0
1

, 0
2

, 0
3

, 04} 

might appear as in Figure 2.8 below: 

< 
(81, 

® 

(03' 

02, 

04} 

Figure.2.8 
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This class of questionnaires is introduced by Picard (1965, 

1968) • 

The following examples are illustrative of situations in 

which lattice questionnaires might arise: 

a. Addition algorithm. 

Consider x, ye {O, 1, 2, 3}. Write x and y in binary 

notation and use the usual addition algorithm to obtain x + y. 

The results of the steps of the algorithm can be shown by the 

lattice questionnaire in Figure 2.9 below: 

(1} 

{1, 3, 5) (3) 

{5} 

Figure 2.9 

b. Uniform distributions. 

Suppose a random variable is available which is distributed 

either uniform on (0, 2) or uniform on (1, 3). We denote the 

first case as state e
1 

and the second as state e
2

• If we 

continue random sampling until the true state is determined, the 

lattice questionnaire will have the form: 
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{01 J 

~ ~eel, 02)· ... (etc.) 

(02) 

Figure 2.10 

Here the true state would be determined only with probability one. 

c. Taxonomy. 

Osborne (1963) discusses the use of lattice questionnaires 

for biological classification purposes when there is some 

possibility of receiving the "wrong" answer to a question. He 

refers to these questionnaires as "reticulated keys" and examines 

their effectiveness under a restricted model for the errors. 

d. Discrete search for a maximum. 

Sought is an optimal setting of controllable variables. 

The response is assumed to be deterministic and unimodal. In this 

context, discussion of various single variable search schemes is 

contained in Wilde (1964). For illustration, consider a very 

special case in which 4 settings of the controllable variables are 

possible. Using the property of unimodality,there are 8 possible 

configurations of responses. The actual configuration is not of 

interest, but only which setting produces the highest response, 

i.e., the location of the mode. As an example, there is the search 

scheme represented in Figure 2.11 below, with the positions evaluated 

indicated in parentheses. 
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it' 
. . . 

.-..., ... 

(1, 3) 

2 low {0 } 

( 2) ____,.,,. . 1 

~{8}~ 2 high 2 2 high 

4 low __ ~,.{0 , 0 (2)-~)1,41.,._{83} 
04} (4)- 2 3 2 low 

~(04) 

Figure 2.11 

This is a lattice questionnaire. 

3.2. Charging Scheme for a Lattice Questionnaire. 

There is no obvious charging scheme for a lattice questionnaire. 

This section will propose a charge structure in this case which 

is intuitively satisfying but contains indeterminate elements. 

This flexibility will be exploited to obtain a charging scheme 

which will extend the validity of the Shannon lower bound result 

to arbitrary lattice questionnaires. 

To every lattice questionnaire, there corresponds a unique 

arborescence questionnaire. Every path to a terminal node is 

allowed to lead to a distinct terminal node in the tree. Thus a 

number of artificial atates are introduced, say m., for the 1th 
1. 

state. As an example, the lattice questionnaire given in Figure 2.12 

below 

Figure 2.12 
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has the corresponding tree representation shown in Figure 2.13. 

04") 

Figure 2.13 

This section will concern itself with lattice questionnaires 

which are adapted to a finite state space ® = {e1, ••• , emJ. Now 

suppose probability p1 is allotted to the i th state. Then 

it is reasonable to assess the average charge of the arborescence 

questionnaire as 

where the pir are restricted by 

mi 
6 Pir = pi 

r=l 

but for the time being are otherwise arbitrary. The {~irJ are 

determined as the usual charges {based on log d for each 

resolution d question) along the r th path to a terminal node 

- 44 -

-. . 
) 

, (, ._ 

1 > , " . • . ,. 

! I 
I 

~ 

', I 
,. l..i 

1 

\ I 
I I ... 

~ 

I ... 
', i 

~ 

I 

..I 

I 

1..-l 

I i 

i I 

i j 

~ 



-
.-

11111111 ... 

.... 

.... 

> ,• 

. . . 
• 1" • 

... associated with state 8 .• Based on this representation, a 
]. 

charging scheme is sought for the lattice questionnaire. 

The basic desideratum employed i& the maintenance of the Shannon 

lower bound {Theorem 2.2) including the possibility of equality 

between average charge and entropy for some value of the probability 

vector. The simplest (but not the only) approach to this is to 

make a modification in the usual charge for the first question 

of the questionnaire. 

Suppose the first question has an image family containing 

d sets. Then a corrected charge c (less than log2d) is sought 

for the first question. The object is to obtain a modified charge 

structure which will give the Shannon lower bound. First, the 

following definition is useful: 

Definition 2.16. 

A probability vector 

are called compatible if 

(o) 

(o) 
p and a charge structure 

(3.2.1) 
pj 

- log (O} = ~j - ~ 
pk 

for all j,k= 1, ••• , m 

where 

Note that given {~ir} there exists a unique compatible vector, 

(o) 
p • 

Theorem 2.5. 

Let the valid lattice questionnaire Q have the associated 

charge structure Let (o) 
p 
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vector and let C be determined by 

(3.2.3) c = (log d - I; p
1 

(o)q,
1

) + H(p (o)), 
i=l 

where d is the resolution of the first question. Then a charge 

for determining the i th state of 

(cpi - log d) + C 

will maintain the Shannon lower bound for every p and the 

questionnaire will be efficient at (o) 
p • 

Before proceeding to the proof of the theorem, consider 

some implications of this charging scheme. First, since by 

Theorem 2.2, 

(3.2.4) ~ Pi(o)cp. > H(p(o)), 
i=l 1 

-

it follows by the definition of c, equation (3.2.3), that 

(3.2.5) C ~ log d. 

Thus c is a discounted charge, where the amount of discount 

depends on the nature of the lattice questionnaire. 

Second, if,in fact,the questionnaire has arborescence repre

sentation, then 

(3.2.6) (o) -
- log pj - cpj 

follows from equation (3.2. 1) and Corollary 2 .3. In this case equality 

is obtained in (3.2.4). Thus ~ fortiori there is no discount in 

the charge for the first question. 
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Proof of Theorem 2.5: 

Let p be an arbitrary probability vector. Then it is 

sufficient to show that 

m 

(3.2.7) .~ pi(c - log d + cpi) ~ H(p), 
1.=l 

with equality if£ p = p(o). 

This statement(3.2.7) is equivalent to 

(3.2.8) ~ ( p . - pi ( 0) )cp . > H ( p ) - H ( p ( 0) ) ' 
i=l 1. 1. -

by the definition of c. Now since p(o) is compatible with the 

charge structure, 

(3.2.9) log pi(O) + cpi = log pk(O) + cpk (i, k = 1, ••• , m}. 

Now {3.2.9) implies 

(3.2.10) ~ (o) m (o) 
--~ pi log p. + L) picpi = log pk + ~ (k = 1, ••. , m), 

i=l 1 i=l 

which in turn implies 

(3.2.11) 
m (o) m m (o) (o) m ( ) 
~ Pi log P. + ~ picpi = ~ Pk log pk + 6 p O co.. • 

i=l 1. i=l k=l k=l k Tk 

But (3.2.ll) implies that 

(3.2.12) 
m (o) m ( ) ( ) ~ (p. - pi )cp. = - ~ p. log pi O - H(p O ) • 

i=l 1. 1. i=l 1. 

Now 
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by the fundamental inequality of information theory. Therefore, 

the validity of(3.2.8) is affirmed and the theorem is proved. D 

3.3. Characterization of Shannon Entropy. 

Let C denote any class of questionnaires (arborescence 

or lattice) and let C(Q) be the charge described in the preceeding 

section (this includes the charge for arborescence questionnaires 

described in Section 2.3 as a special case}. 

The function KC defined by 

(3.3.1) KC(p) = inf E C(Q) 
QeC P 

is a continuous, concave, piecewise linear function which has 

points of tangency with the Shannon entropy function, H(p). 

The number of points of tangency depends on the size of the class 

For each p which admits an efficient questionnaire, there is a 

point of tangency. 

A natural question is whether an enlargement from the arbor

escence class of questionnaires to include the lattice class will 

provide a characterization of the Shannon entropy in terms of 

average charges for a questionnaire. The answer to this is 

affirmative. 

Theorem 2.6. 

If £ is the class of all questionnaires (arborescence or 

lattice), 

(3.3.2) 
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Proof: 

Since K
1

(p) is continuous and concave, it is sufficient 

to demonstrate that given a probability vector, p, with rational 

components, there exists a lattice questionnaire, Q, which is 

efficient. Now efficiency of Q requires that 

(3.3.3) 
p j 00 

- log - = cp. - cpk = ~ (nJ.d- n.d)log d, (j,k = 1, ••• , m) 
pk J d=2 k. 

where it is recalled that nid is the number of resolution d 

questions required by Q to determine ei. Then 

(3.3.4) Pk ~ (njd- ~d) 
- = l d 
pj =2 

(j, k = 1, ••• , m). 

pk 
If p has rational components, then - may be expressed as 

pj 
for some integral r and s. Therefore, for the sake of 

r 
s 

definiteness, the prime factorization theorem may be invoked to 

specify a unique {njd- ~dJ. This gives a consistent set of 

equations for {~dJ. If nd = (n1d, ••• , nmd), the solutions will 

be of the form 

(3.3.5) nd = b + je (j = o, 1, 2, ••• ) 

where e is them-vector with each component one. 

Then the lattice questionnaire, Q, can be constructed so as 

to satisfy the constraints. First ask an initial resolution m 

question. An arborescence questionnaire constructed from this 

"base" will then have m "primary" branches. The i th branch 

will lead to a subtree reserved for determining the .th 
1 state 

(i = 1, ••• , m). From the i th node of the initial question, 
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construct the subtree so as to have the required number of questions 

of each resolution needed to determine ei. Identify one of the 

terminal nodes having the requisite number of questions of each 

resolution with ei. This process will leave some of the terminal 

nodes unidentified. Now in a cyclical manner, establish an 

edge from each such terminal node in the {i + l)st subtree to 

the 1
th 

node of the initial question (i = 1, ••• , m-1); direct 

those in the first subtree to the mth node of the initial 

question. The result of this procedure is a lattice questionnaire 

having the required charge structure for efficiency at p. 

As an example of this construction,consider the case when 

m = 2 and p1 = .6. Then 

P1 .6 3 
P2=A=2· 

Thus, using the prime factorization form, 

nl3 - n23 = 1 

and 

nl2 - n22 = -l 

while all other differences are zero. Therefore, it is possible 

to let n
13 

= 1, n
23 

= O, n12 = 1, n22 = 2. The lattice question

naire is then constructed in stages as follows: 

Stage 1. 

Figure 2.14a 
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Stage 2. 

Stage 3. 

{01' 02} 

{E\} 

{02} 

Figure 2.14b 

Figure 2.14c 

{01} 

{01' 02} 

{Bl, 02} 

{02} 

This is a lattice questionnaire which is efficient for 

P = (p1 , P2 ) = (.6, .4). 0 
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Chapter III 

Optimal Heterogeneous Questionnaires 

1. Motivation. 

This chapter examines arborescence questionnaires exclusively. 

It is assumed that a charge ~i is assessed when the state ei 

is found to be true. This charge ~i is a function of the 

questionnaire Q which has been employed; thus it might be written 

~i(Q). The charging scheme is at this level of generality for all 

of the results of this chapter unless it is necessary to restrict 

the class of charging schemes. The restrictions may take the form 

of ma.king the charge depend only on the resolution of the questions 

used or as far as charging the specific amount log
2

d for each 

resolution d questions used. This last charging scheme is of 

course the one discussed in Chapter II. 

The basic aim of the chapter is to attempt to·find a "best" 

questionnaire. It is therefore useful to find essentially complete 

classes of questionnaires having readily identifiable characteristics. 

Further, it is desirable to have an algorithm for actually finding 

a "best" questionnaire. Such an algorithm will be developed in 

this chapter. 

2. Comparison of Questionnaire Charges. 

Suppose now that a charging scheme, i.e., a method of assessing 

charges for any·questionnaire Q has been fixed. Thus for any 

questionnaire Q the charge for determining that state ei is 

true, the quantity ~.(Q), will be known. 
1 
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We will assume that the individual designing the questionnaire, 

who might be called a questioner, wants to find a questionnaire 

which has a small average charge. The average would be computed 

according to the questioner's prior distribution on the state 

space. 

Definition 3.1. 

Let a probability vector, p, on ® be given. Then the 

average charge for resolution of ® by Q is defined by 

(2.1) 
l@I 

E C(Q) = ~ p.cpi. 
p i=l 1. 

If ® is finite, we will write 

(2.2) Isl = m. 

In the sequel, it is assumed with no loss of generality that 

the states of ® have been renumbered so that p1 2:: p2 2:: •••• 

The concern of this section will be with the comparison of 

questionnaires in terms of their average charges. Thus if Q
1 

and Q
2 

are valid questionnaires, and p is a probability vector 

with pl 2:: p2 ~ ... 2:: pm, the following definitions prove helpful: 

Definition 3.2. 

Q1 and Q
2 

are called charge-equivalent at p iff 

(2.3) 

In this case we write 

(2.4) 
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Definition 3.3. 

Q
1 

and Q2 are called charge-equivalent iff 

(2.5) Q
1 

p Q
2 

for all p. 

We shall denote this by 

(2.6) Ql -Q2. 

Definition 3.4. 

Ql is said to be preferred at p to Q2 

(2.7) E C(Q1) < E C(Q2). p - p 

This will be written 

(2.8) Ql ~ Q2. 

And then analogously to Definition 3.3 we have 

Definition 3.5. 

Q1 is said to be preferred to Q2 iff 

(2.9) Q1 ~ Q2 for all p. 

This is denoted by 

(2.10) Ql > Q2. 

iff 

Now Definitions 3.2 and 3.4 provide a complete ordering 

of the valid questionnaires on ® with respect to a fixed prob

ability vector p. Definitions 3.3 and 3.5 yield a partial 

ordering of the valid questionnaires on ®· 
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Ital 
.. .,. . . . Much of the previous work on questionnaire theory has been 

done with reference to the length of a questionnaire: 

(2.11) 

Definition 3.6. 

The {average) length of Q is 

E L(Q) 
p 

where state ei is determined at stage k .• 
1. 

The desire to study the selection of a questionnaire on 

the basis of charges suggests the following definition: 

Definition 3.7. 

* A valid questionnaire Q has minimum average charge with 

respect to p if 

* Q > Q for all Q 
p 

or 

(2.12) * E C(Q) = inf E C(Q) 
p Q p 

where Q is a valid questionnaire. 

Definition 3.8. 

A valid questionnaire * Q is tight in a class 

(2.13) * E L( Q ) = inf E L ( Q) • 
P QeG P 

Definition 3.9. 

* 

a if 

A valid questionnaire Q is optimal with respect to p 

it is tight in the class of questionnaires with minimum average 

charge with respect to p. 
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Definition 3.10. 

A charging scheme {~i} is said to be question based if a 

charge is ma.de for each question used to determine 9i as the 

true state; a question based charging scheme is called resolution 

increasing if the question charge, c, is a function only of the 

question resolution, d, and 

(2.14) c(d) > c(d') if d > d'. 

3. The Admissible Class of Questionnaires. 

The task set is to resolve a finite state space® while 

sustaining the minimum average charge. Except in the trivial 

case when m = 2, there will be no one questionnaire which will 

be preferred uniformly in p. Nevertheless, for each fixed p, 

there will exist at least one questionnaire with minimum charge. 

The class of all such questionnaires over p is the one of interest. 

Definition 3.11. 

The class a is the admissible class of questionnaires iff 
m 

for each valid Q, Q ea is equivalent to the nonexistence of 
m 

* * a valid Q with Q > Q and 

* E C(Q) < E C(Q) 
p p 

for some probability vector p with p1 ~ p2 ~ •••• Note that 

the restriction on p only amounts to a relabelling of the states. 

Theorem 3.1. 

Suppose the charging scheme is resolution increasing. Let 

(®, w, Q) be a questionnaire. If Q is not adapted to ®, then 
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~ • • ~ .. Q is not admissible • 

Proof: 

Let Q be the questionnaire which deletes all branches leading 

to nodes in w in Q. Then Q > Q with strict dominance for all 

p with nonzero components. 0 

4. Optimal Questionnaires when m = 3 and m = 4. 

To give concreteness to the discussion of optimal question

naires, it is useful to examine some special cases which are easy 

to work out explicitly. Suppose that the log
2

d charging scheme 

is used. In the m = 2 case there is clearly only one question

naire of interest~-the one calling for a single binary question. 

When l@I = m is larger, the number of questionnaires that must 

be examined can be considerably reduced by ordering the states so 

that p1 ~ p2 2: ••• 2: Pm· Then in the m = 3 case, there are 

two tight admissible questionnaires of interest. They have the 

arborescence representation given in Figure 3.1. 

~{01] 
QA: and QB: {82} 

~} (83} 

Figure 3.1 

Their average charges are 

(4.1) 

and 

(4.2) 
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Thus QA t QB provided p1 ~ 2 - log23 :: .42. The regions of 

optimality can be shown on an interval for p1, or more suggestively 

1 
by graphing i;f EPC(Q) and H(p) (where p2 = p

3 
~ 2 (1 - p1)) 

against p1 • 

1. 

1.5, 

1. 

.1 

1/3 1/2 

Figure 3.2 

inf E C(Q) 
Q p 

~ 
H(p) 

1 

p 

Notice that inf E C(Q) is tangent to H(p) at the two points 
Q p 

(p1 , H(p1)) = (1/3, log 3) and (p1, H(p1)) = (1/2, 3/2). 

Naturally these two points correspond to p = (1/3, 1/3, 1/3) 

p = (1/2, 1/4, 1/4), respectively, where Shannon efficient 

questionnaires are possible. 
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Going one step beyond the m = 3 case, it is possible to 

examine in detail the m = 4 case. Here an essentially complete 

class of tight questionnaires has precisely 4 elements. Their 

arborescence representation and average charge are shown below: 

Ql: 

Q2=< 

Q3:~ 

Q4: 

{01} 

{02} 

(03} 

{04} 

••{82 J 

EPC(Q1) = 2 

Figure 3.3a 

EPC(Q2 ) = 1 + log 3 - (p1 + p2 ) 

{03} 

{04} 

Figure 3.3b 

/{02} EPC(Q
3

) = 1 + (1 - p1 )log 3 

(03} 

{04} 

Figure 3.3c 

{03} EPC(Q4) = 3 - 2pl - P2 

{04} 

Figure 3.3d 
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Notice that the average charge for any questionnaire in 

this class is a function of pl and p2 (remember p1 2: p2 ~ 

has been assumed). By comparison of these average charges, 

regions in the permissible subset of the {p1 , p
2

). plane can be 

found where each of these questionnaires is optimal. These regions 

are shown in Figure 3.4 below with the points where Shannon 

efficient questionnaires are possible located • 

• 50 

.33 

.25 

0 
.25 .50 .75 1.00 

1- log 3 

Figure 3.4 
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5. The Interchange Operation on a Questionnaire. 

An existing questionnaire can sometimes be improved in 

terms of its expected charge property by interchanging the role 

of two states in the questionnaire. This can be considered as 

an operator on the questionnaire Q. 

Definition 3. 12. 

The questionnaire is formed by changing the domain of 

Q from subsets of (81,•••, e , ••• , e , ••• } to subsets of 
r s 

e ' ••• ' s e ' ••• } • r 
The operator is said to interchange 

e and e. An interchange of e and e gives an expected 
r s r s 

charge which can be expressed by 

l@I 
k. 

1. 

lqq-j (eiJI (5.1) E C(IsQ) = ~ pi ~ log p r 
i+r,s j=l 

Then (valid in fact for any charging scheme) 

(5.2) E C(Q) - E C(IsQ) = (p - p )(~ - ~ ). p pr r s s r 

6. Structure of Optimal Questionnaires. 

The structure of optimal questionnaires, particularly in 

terms of their charges, is investigated in the theorems below. 

(It is assumed that the states have been renumbered so that 

••• > p ; 
- m 

note that the results are independent of the 

specific log d charging scheme.) 

Theorem 3.2. 

Suppose p
1 

> p
2 

> ..• > Pm· Then every admissible question-
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naire has cp
1 
~ cp

2 
:S • • • ~ cpm. In general, there exists· an 

essentially complete class of questionnaires with cp1 ~ cp2 :S ••• :S cpm. 

Proof: 

Let Q be an admissible questionnaire. Choose r < s 

and suppose p > p • 
r s 

For the first conclusion of the theorem, 

it is sufficient to show cp < cp. Suppose, on the contrary, that 
r - s 

cp > cp. Let Q be the questionnaire which interchanges the role 
r s 

of 0 and 0 in Q. Then the following statements are equi-
r s 

valent: 

(6.1) cpr > cps 

(6.2) (pr - ps)cpr > (pr - ps)cps 

(6.3) prcpr + pscps > pscpr + preps 

(6.4) E C ( Q) > E C (Q) • p p 

But this last statement (6.4) contradicts the admissibility of Q. 

To demonstrate the second conclusion to the theorem, note 

that if Q' is an arbitrary valid questionnaire with cp > cp 
r s 

for r < s, the questionnaire Q* which interchanges the role of 

0 and 0 is preferred to Q1 (as above with possible equality 
r s · · 

in (6.2) and thereafter). D 

Theorem 3.3. 

Suppose l@I = m < oo, and the charging scheme is question based. 

The set of questionnaires, B, whose average charge depends on p only 
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through p1 , p2 , ••• , pm_2 forms an essentially complete class. 

Proof: 

Let Q be an admissible questionnaire whose charge depends 

. (m-2) ( ) on p 1 and p, i.e., for some fixed p = p
1

, ••. , p 
2

, 
m- m m-

there exists (p 
1

, p) and (p' 
1

, p' ) such that 
m- m m- m 

(6.5) E ( 2 ) C(Q) + E ( 2 ) C(Q) • 
(pm- ,(pm-l'pm)) (pm- ,(p~-1 'p~ )) 

Then it must be shown that for each p there exists Q e B 
p 

such that Q > Q. First it is noted that (6.5) implies 
p p 

(6.6) + rn 1- ' + ' Pm-l~m-1 PmTm T Pm-1 ~m-1 pm ~m· 

But e 1 and 0 are not offspring of the same node (requiring 
m- m 

~ 1 =~)since m- m 

(6.7) ' ' p 1 + p = p 1 + p • m- m m- m 

* Therefore there exists a state et e {01, ••• , 0m_
2

) which is a 

sibling of e since a node can never be an only child. 
m 

Let Q be the questionnaire which interchanges the role of 

et and em-1 in Q, i.e., 

(6.8) - m-1 
Q = It Q. 

Then 

(6.9) E ( 2) C(Q) < E ( 2) C(Q) 
(pm- ,(pm-l'pm)) - (pm- ,(pm-l'pm)) 

is equivalent to 
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(6.10) 

* since q,t = q,m because et and 8 are brothers under Q 
m 

and the charging scheme is question based. But (6.10) is 

equivalent to 

(6.11) q,m ~ q,m-1' 

which is confirmed for an essentially complete class of question

naires by Theorem 3. 2. D 

An examination of the results for the m = 3 and m = 4 

case suggests an important property of the subset of the probability 

* simplex where a given questionnaire Q is preferred to all 

others. These subsets might be termed regions of minimum average 

charge. Then, regardless of the charging scheme used, we have 

Then 

( 6.12) 

and 

(6.13) 

Theorem 3.4. 

Regions of minimum average charge are convex. 

Proof: 

Suppose q* has minimum average charge at p(l) and p(2 ). 

* E (lf (Q ) = 
p 

inf E ( 1,c(Q) 
Q p 

* E ( 2 )C(Q) = inf E ( 2 )C(Q). 
p Q p 

Now choose O <A< 1. It is sufficient to show that 

(6.14) inf E (l) (2 )C(Q). 
Q X.p +( 1-X. )p 
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(6.15) 
Isl 

inf E (l) (2 )C(Q) = inf 0 (i\p (l)+ (1-i\)p. (2 ))cp. (Q) 
Q AP +(1-i\)p Q i=l i i i 

which in turn is no less than 

( 6.16) 
l@I 

i\ inf ~ p . ( 1 ) cp i { Q) + { 1-i\) inf ~ p ( 2 ) cp. ( Q ) 
Q i=l i Q i=l i i 

* * = AE (l)C(Q) + (1-i\)E (2 )C(Q ). 
p p 

Further, 

(6.17) 

* * = i\E (l)C(Q) + (1-i\)E (2 )c(Q ). 
p p 

Therefore, 

(6.18) * E (l) (2)C(Q) :'.::: inf E (l) (2)C(Q). 
i\p +(1-A)P Q i\p +(1-i\)p 

Since the reverse inequality in {6.18) is obvious, equality holds 

in (6.14). D 

Theorem 3.5. 

Suppose I@(= m. Then if the charging scheme is log
2
d, 

* the questionnaire Q consisting of an initial resolution m 

* question is minimax and the distribution p = (1/m, ••• , 1/m) is 

least favorable.and log m is the maximin or lower value of the game. 
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Proof: 

Note that 

(6.19) * H(p) = log m 

and since a resolution m question has charge log m, Theorem 2.2 

gives 

(6.20) 

Now 

( 6.21) 

* log m = inf E *C(Q) = E C(Q ). 
Q p p 

m 
E C ( Q ) = ~ p . cp

1 p i=l 1. 

and for an essentially complete class of questionnaires, 

(6.22} 

by Theorem 3.2. Therefore since p1 > p2 > .•• > p, E C(Q) 
- - - m p 

is maximized with respect to p when pl= p2 = ••• =pm, i.e., 

* when p = p • Thus 

(6.23) 

which imp lies 

( 6.24) inf E *C(Q) > inf E C(Q) 
Q p - Q p 

and then 

( 6.25) inf E *C(Q) > sup inf E C(Q). 
Q p - p Q p 
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But it is inunediate that 

(6.26) inf E *C(Q) ~ sup inf E C(Q) 
Q p p Q p 

so equality obtains in {6.25). * Therefore Q is minimax, * p 

is least favorable, and log mis the maximin value of the game. D 

7. Determining an Optimal Questionnaire. 

7.1. Huffman Coding. 

Suppose now that the charging scheme assesses a charge of 

log
2

d for each resolution d question used. Then within the 

class of homogeneous questionnaires of any fixed resolution d, 

an optimal questionnaire can be found using the well-known Huffman 

(1952) coding scheme. (Note that, for a homogeneous questionnaire, 

average charge minimization is equivalent to average length mini

mization.) This optimization procedure has been generalized by 

Picard (1965) to the class of heterogeneous questionnaires in 

which the number of questions of each resolution which may be 

used is fixed. Different costs are introduced by Petolla (1969). 

It is not clear that the Huffman procedure admits a generalization 

to optimization within the broader class of arbitrary resolution 

heterogeneous questionnaires. However, a dynamic programming 

procedure can be used to provide an algorithmic solution to the 

optimization problem. 

7.2. Dynamic Programming Solution. 

Let ® = {e1 , e2 , ••• , em}. Suppose P is a (d-fold) 

partition of ® with elements ®i(i = 1, ••• , d) • Thus 
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d 
. U ®j = ® and ®1 n ®j = r/J for i + j. 
J=l 

Further let qj be the probability of ®j and pk(j) be the 

normalized and renumbered probabilities of the states of ®·· 
J 

Then for any valid questionnaire Q, 

d 
(7.2.1) E C(Q) = log d + !) q.E C(Q.) 

p j=l J p J 

where Q. resolves 
J 

®·. Then, writing 
J 

(7.2102) K(p) = inf E C(Q), 
Q p 

equation (7.2.1) implies that 

d 
(7.2.3) K(p) = inf [ log d + ~ q j E C ( Q j ) ] • 

P,Ql, ••• ,Qd j=l p 

Therefore, 

d 
(7.2.4) K(p) = inf [ log d + ~ q j inf E C ( Q j ) ] , 

p j=l Ql, ••• ,Qd p 

and finally, 

(7.2.5) K(p) = inf [log d + ~ qf(P(j))]. 
p j=l 

Established by this argument is the validity of the Principle of 

Optimality of Dynamic Progranmdng {Bellman (1957)). Equation (7.2.5) 

provides the fundamental functional equation which allows a 

straightforward algorithmic determination of a minimum average 

charge questionnaire. 
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.... 

... The function K has the following important properties: 

Let p = (p1, ••• , pm). Then 

(i) K is continuous and concave; K is piecewise 

linear; 

(ii) if m = 1, K(p) = 0 for all p; 

(iii) if m = 2, K(p) = 1 for all p; 

(iv) H(p) ~ K(p) < H(p) + 1 for all p (Theorem 2.2); and 

explicitly showing the dependence of K on m, 

(v) Km-l (p) < Km(p) ~ log m for all p and m > 2. 

Now when m is large the number of partitions which must be 

examined is very large, indeed. Therefore it is useful to be 

able to restrict the class of partitions which 1m1st be examined. 

Theorem 3.6. 

Let Q8 = [9t, ®2,•••, ®d]. Write ®r < 8
8 

if e. e ® 
1 r 

and 8 j e ®s implies i < j. If pl ~ p2 2: ••• 2: pm, then the 

class of questionnaires satisfying 

(7.2.6) 

and 

is essentially complete. 

Proof: 

By Theorem 3.2 the class, 31, of admissible questionnaires 

satisfying , 1 :5 , 2 :5 ••• :5 ~d is essentially complete. Let 

3
2 

be the class of those questionnaires in 31 which also 

satisfy (7.2.6).It is now asserted that 32 is essentially complete. 
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To show this, choose Q e 31 - 32 • Then there exist e1 and 9j 

with i < j so that ei e ®r and 8. e ® with r > s. 
J s 

It 

is asserted that IiQ has an average charge which is no greater 

than that of Q. Assuming this for the moment, then each pair 

of states which fail to conform to the strictures of (7.~~6) may 

be interchanged with no loss in average charge. Then there will 

exist an essentially complete class of questionnaires satisfying 

(7.2.6); therefore 32 will be essentially complete. 

Thus it 11D.1St be shown that 

(7 .2 .8) E C(Q) - E C{IJi.Q) > O. 
p p -

But by (5.2) this is equivalent to 

(7.2.9) (pi - pj){q,j - q,i) ~ o, 

which is affirmed since both_fa~tors are nonnegative. 

Now to complete the proof it is asserted that if Q e 3
2

, 

then (7.2.7)holds. Suppose, on the contrary, that Q e 32 but 

(7.2.7)fails. Then there exist ® < ® but I® I> I® 1- Since r s r s 

Q e 31 , if A and ~ are arbitrary probability vectors on ®r 

and ®, respectively, 
s 

I® I r I® I s 
(7.2.10) ~ 

i=l 
A.q, < IJ 

J. r -
i j=l 

~jq, ' sj 

where q, and ~ denote charges for state determination in 
r 1 sj 

® and ®, respectively. r s 

Let Q be the questionnaire which replaces the subquestionnaire 

Qs with Qr and identifies terminal nodes lexicographically 
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f •• 

until the states of ® are exhausted and then assigns the 
s 

remaining terminal nodes to elements from the set w. Then 

since 

(1.2.11) 
l@sl 

X cp < 6 i r. . 1 l. J= 

(7.2.12) ~> Q (strictly), 

and hence Q is not admissible. But this is a contradiction of 

Q e g
2

• Hence if Q e 3
2

, then (7.2.7) must hold. D 

We now proceed to count the number of partitions which must 

be examined, i.e., the number of partitions which satisfy (7.2.6) 

and (7.2.7).The number of such partitions is the number of non

trivial unordered partitions of the integer m. This combin

atorial problem is discussed in Hall (1967) and some typical 

values are given below: 

m 4 

p{m)-1 4 

5 

6 

10 

41 

25 

1957 

50 

204,225 

100 

Lehmer (1964) gives an asymptotic expression for p{m) of the 

form 

1 

4m,/3 
[ (2m) 1/2] exp TT 3 

and also a systematic method for generating the partitions. 

The results of this section, in particular equation (7.2.3), 

provide an algorithm for determining an optimal questionnaire 

for any m. 
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7.3. Optimality and Shannon Efficiency~ 

The Huffman coding scheme is essentially a backward optimi

zation procedure. A very simple-minded forward procedure would 

attempt to apply Theorem 2.3 and construct Shannon efficient 

questions to the farthest possible stage. Picard (1965) has 

given an example to show that this procedure can fail. Neverthe

less, an attempt in the direction of Shannon efficiency should 

be made--as is verified by the following theorem: 

Theorem 3.7. 

At any stage of questioning, the optimal question {partition 

of the conditional state space) must satisfy 

where a resolution d question is asked and the offspring have 

probabilities q1 , ••• , qd. This gives a necessary condition for 

optimality. 

Proof: 

It is sufficient to consider the first stage of questioning. 

By equation (2.4.29) of Chapter II 

(7.3.2) K(p) < H(p) + 1. 

But then by equations (2.4.22) of Chapter II and (7.5), 

(7.3.3) 

This imp lies 
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~ q.[K(p(j)) - H(p(j))] < H(q
1

, ••• , qd) - log d + 1. 
. 1 J J= 

But the left hand side of(7.3.4) is nonnegative by Theorem 2.2 

and hence 

(7.3.5) 

Then since the entropy is bounded above by log d, the conclusion 

to the theorem follows. 0 

7.4. Approximation to the Dynamic Programming Solution. 

The dynamic programming solution requires that in order to 

make the optimal partition at the first stage of questioning one 

nrust go forward to the later stages and determine mininrum costs 

of questioning. The procedure would be considerably simplified 

if the best first-stage partition could be based entirely on 

first-stage calculations. An approximation to the optimal procedure 

which allows this is available from the following considerations: 

Choose a partition of ® so that 

(7.4.1) 

Then since 

(7.4.2) 

K(p) = log d + ~ q .K( p ( j)) • 
j=l J 

d d 
log d + 6 q .H(p (j)) < log d + I) q .K(p ( j)) 

J - J j=l j=l 

d 
< log d + ~ ql(P(j)) + 1. 

j=l 
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This suggests choosing a question at each stage so that 

(7.4.4) 
d 

log d + ~ q.H(p(j)) 
j=l J 

is minimized. But by equation (2.4.22) of Chapter II this equals 

Therefore minimizing expression (7.3.2) is equivalent to minimizing 

(7.4.6) log d - H(q1 , ••• , qd). This says that Shannon efficient 

questions are to be asked at each stage. As noted in the previous 

section, this procedure is not necessarily optimal. However in 

the m = 3 case it does produce optimal results, In the case 

of m = 4, the regions suggested by this procedure are given 

below, in Figure 3.5. Note that this procedure cannot be optimal 

since the regions are not convex (see Theorem 3.4). These 

approximate regions may be compared with the exact results shown 

in Figure 3.4. 
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Chapter IV 

Questionnaires, Uncertainty, and Statistical Inference 

1. Information from Uncertainty Fune tions. 

Consider the problem posed in Chapter I of selecting the true 

state in a state space. Chapters II and III have been devoted 

to a study of the sure procedure of a questionnaire for identifying 

this true state. In these past two chapters it was made quite 

clear that the average charge that the decision maker anticipates 

for this determination depends on his prior probability measure 

over the state space. If this measure is relatively diffuse, the 

average charge calculated from the subjective probability will 

tend to be large. As was indicated in Chapter I, the decision 

maker might then choose to collect data which would engender a 

more concentrated measure via Bayes' Theorem. This would then, 

among other things, allow a "cheaper" questionnaire to be produced. 

It is profitable to examine this process of data collection in 

quite general terms in the spirit of DeGroot (1962) and then 

specialize to the questionnaire case. 

The decision maker has now chosen to be an experimenter whose 

initial uncertainty about the true value of 0 in a finite or 

countably infinite state space is expressed concisely by U(p), 

where U designates any one of a class of uncertainty functions 

and p is a probability vector. The restrictions placed on the 

class are that the function U be nonnegative, continuous and 

concave. (This definition is conformable with that of DeGroot 

(1970) rather than DeGroot (1962).) 
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An information measure based on the uncertainty function, 

U, can then be defined. The experimenter chooses to observe a 

random variable X whose sampling distributions are known. 

Then the information content in X about e (relative to 

U) is defined by 

(1.1) Iu{e, X) = U(p) - EU{p(X)) 

where p(x) is the posterior probability vector given X = x 

and the expectation is computed according to the unconditional 

distribution of X. 

DeGroot shows that {for a finite state space) the information 

content in X about e is nonnegative. It follows that the 

widely used Shannon information is nonnegative since the Shannon 

entropy is an uncertainty function. The role of Shannon information 

in the design of experiments is discussed by Lindley (1956, 1957). 

It is important to realize that the appropriate formulation of 

information may well depend on the context within which it is 

employed. Therefore it is useful to examine the properties of 

information defined over a wide class of uncertainty functions. 

An important tool in developing results about uncertainty 

functions is Jensen's inequality. A desire to have results for 

a countable state space motivates the following section. 

2. A Generalized Jensen's Inequality. 

Jensen's inequality is often stated for a convex function 

of a k-dimensional random vector. As given by Ferguson (1967, p. 76) 

it has the form: "Let f(x) be a convex real-valued function 
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defined on a nonempty convex subset S of Ek, arid let Z be a 

k-dimensional random vector with finite expectation EZ for 

which P(Z es)= 1. Then EZ es and 

(2.1) f(EZ) ~ Ef(Z)." 

We will find it useful to generalize this result to obtain 

a convexity inequality valid for a real-valued map from sequence 

00 
space, R. If x e R

00

, x = (xl' x2, ••• ) 
1 . 

where xi e R (1 = 1, 

(2.2) 

The usual norm on R
00 

would be the t 2 norm given by 

2 

llxllt 
2 

00 

= ~ X 2 
i=l i • 

The metric associated with this norm induces the ordinary product 

00 
topology on R and hence the usual Borel sets, f/°, on R

00
• 

It will be convenient to use a different norm defined by 

(2.3) llxll 
00 i 

= 'E Ix. I /2 • 
i=l 1. 

2, ••• ) • 

This norm is not equivalent to the t 2 norm since if x = {e, e, e, ... ), 

then, for e > O, 

(2.4) 

while 

(2.5) 

llxll = e 

2 

llxll t
2 

00 

= ~ E:2 = + 00 

i=l 
for every e. 

It will be useful to have two lemmas which establish the 

relationship between real-valued continuous functions on {R00
, II •II) 

and real-valued continuous functions on (R
00

, 11 •llt ) • 
2 
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Lemma 4.1. 

Let g and ~ be the topologies which are induced on R00 

by II •II and 11 •llt , respectively. Then ~ cg • 
2 

that 

(2.6) 

Proof: 

Let O e J . Then if y e O, there exists e > 0 such 

00 

{x: ~ (yi - x 1 )2 < e) c O. 
i=l 

Now O e g since there exists 6 > 0 such that 

(2.7) 
00 

{x: ~ jyi - xij/2
1 < 6} co. 0 

i=l 

Lemma 4.2. 
1 * 00 l * Denote the open sets of R by 12 • If U: (R , ~ ) -+ (R , B ) 

00 1 * is continuous and cJ c 3, then U: {R , g) ... {R , B ) is continuous. 

Proof: 

o e e* implies u-1(o) e 'd cg_ 0 

The following two lemmas will affirm necessary convergence 

properties: 

Lemma 4.3. 

If (Xi~=l is a uniformly integrable collection of random 

variables on a probability space {n, a, P), then 

(2.8) 

and hence 

(2.9) 

00 i 
~ E Ix. I /2 < oo 

i=l 
1 

00 • 

~ Elxil/21 
... O as n ... oo. 

i=n+l 

- 79 -



Proof: 

Uniform integrability of {x1 }~=l asserts that given e > O, 

there exists c > 0 such that 

(2.10) J lxildP < e 

{lxil~} 

for all i = 1, 2, •••• 

Then 

(2.11) for all i = 1, 2, ••• , 

and therefore (Elx1 1 }~=l is uniformly bounded. 

But then (2.8) and (2.9) are affirmed. D 

Lemma 4.4. 

If (xi}~=l is a uniformly integrable collection of 

random variables on a probability space, (0, G, P), then 

(2.12) 

(2.13) 

00 • 

~ IX. I /2
1 

-+ 0 a. s. as n -+ 00. 

i=n+l 
1 

Proof: 

Let 

Define Sn to be the minimal a-field such that x
1

, ••• , Xn 

are measurable. Then B c B l for n = 1, 2, •••• n n+ 

Further 

(2 .14) 
~ 

E n(s - s) = Elx l/2n+l > o 
n+l n n+l - ' 

B 
where En(•) denotes the conditional expectation with respect to 
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Therefore is a submartingale. 

Now 

(2.15) sup Elsnl = sup E 
n n 

00 • 

sup 6 E IX. I /2 1
• 

n i=l 1 

But this last expression in (2.15) is finite by Lemma 4.3. 

Therefore by the submartingale convergence theorem (see, for 

example, Loeve (1963; p. 393)), there exists an integrable 

random variable S such that 

(2.16) 

Thus 

(2.17) 

00 

S ~ S a.s. as n ~ co. n co 

S - S ~ 0 a.s. as n ~ 00 
co n 

and hence (2.12) is true. D 

We are now in a position to prove a generalized Jensen's 

inequality. 

Theorem 4.1. 

Let (0, a, P) be a probability space, (R1, B) be the real 

numbers with their Borel sets, and (R
00

, 8
00

) be the space of 

sequences of real numbers together with the Borel sets induced 

by the t 2 norm. Let X:(O, a, P) ~ (R
00

, 8
00

) and X = {x1, x
2

, ••. ) 

1 
where Xi:(O, a, P) ~ (R, B) (i = 1, 2, ••• ). Suppose {x1}~=l 

is a uniformly integrable collection of random variables and 

define E(X) = (EX1 , EX2 , ••• ). Le·t V:(R
00

, 8
00

) ~ (R1, B) be a 

continuous, concave function. Define 

(2.18) 
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and suppose that V(n(n}X) ~ G(X} {n = 1, 2, ••• ) where G is 

an integrable function. 

Then 

(2.19) EV(X) ~ V(EX). 

Proof: 

Now 

(2.20) 

which goes to zero a.s. as n ~ oo by Lemna 4.4. Hence the continuity 

of V and Lemmas 4.1 and 4.2 allow us to write 

(2.21) v(x) = lim V(n{n)x) a.s. 
n 

and then taking expectations, 

(2.22) EV(X) =Elim V(n{n)x). 
n 

But by Fatou's lemma, 

(2.23) E(lim V(n(n)x)) ~ lim inf EV(n(n)x). 
n n 

Now Jensen's inequality in Rn shows that 

(2.24) 

and hence 

(2.25) lim inf EV(n(n)x) ~ lim inf V(En(n)x). 
n n 

But 
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00 

[EXi[ /2i ~ 
00 

(2.26) IIETT(n/ - EXII ~ 0 = 
i=n+l i=n+l 

using the convexity of absolute value. 

But 

(2.27) 
00 • 

0 E I Xi I /2.1. ... 0 a. s . as n ... 00 

i=n+l 

by Lennna 4.3. Therefore, by continuity of V, 

(2.28) lim inf V(ETT(n)x) = V(EX) 
n 

EjXil /2i 

and combining this with (2.22), (2.23), and (2.25) we see that 

(2.18) is established. 0 

For our purposes the following corollary will suffice: 

Corollary 4 .1. 

Let p be a random probability vector on a countable state 

space; let U be an uncertainty function. Then 

(2.29) EU{p) ~ U{Ep). 

Proof: 

By definition the components of p are uniformly bounded 

and U is nonnegative. Therefore the conditions of Theorem 4.1 

are met. D 

It is noted that a result similar to Theorem 4.1 might be 

obtained by establishing a supporting hyperplane theorem in R
00 

with a method of proof similar to that in Lemma B.1.2 of Karlin 
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(1959, p. 398). A proof similar to that of Ferguson (1967, p. 76) 

might then be attempted. Naturally it would be necessary to 

avoid induction on the dimension of the space. 

3. Data Reduction. 

R~nyi (1962, 1965, 1967) has discussed problems of statistic~l 

inference with reference to Shannon information. His particular 

concern (1967) is with the question of sufficiency of a statistic. 

This aspect can also be examined for more general information 

formulations as we shall demonstrate. 

First establish the following countably additive structure: 

Let (0, G, P) be a probability space; let ® be a discrete space 

and (Rk, Rk) be k-dimensional Euclidean space together with 

its Borel sets. Suppose X and 8 are jointly distributed 

random variables so that (X, ~ maps {O, a, P) into (Rk x ®, 

Bk X 2®). 

Denote by a' c G the minimal a-field such that X is measurable. 

Allow T(X) to be an arbitrary measurable map into (Rk, 8k). Note 

that T is a statistic in the usual sense. Let G" c G' be the 

minimal a-field such that T is measurable. 

Define the function X(eJ by 

{3.1) 

where X(e.} is the indicator function of the singleton set 
1 

containing 0 .• Then taking expectations, 
1 

{3.2) 
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(3.3) 

and 

(3.4) 

Each of these expectations is a map to the probability simplex. 

Now let U be a concave, continuous map from the simplex 

to the nonnegative reals, i.e., U is an uncertainty function. 

With this rather elaborate structure we can state the 

following lemma: 

Lenuna 4.5. 

If U is an uncertainty function, then 

(3.5) 

Proof: 

First write 

(3.6) 

But since U is concave,apply the generalized Jensen's inequality 

(Corollary 4.1) for conditional expectations to obtain 

(3.7) 

Now 

(3.8) 

since G:" c G:' and the lennna. is established. 0 

This lemma provides a basis for the assertion that "data reduction 

never increases information." The following theorem is more 
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general than the result (1.11) by R6nyi (1967) in that U is 

an arbitrary uncertainty function and the state space is allowed 

to be countable rather than finite. 

Theorem 4 .2. 

Let U be an uncertainty function. Then 

(3.9) 

Proof: 

Note that by definition 

(3.10) 

and 

(3.11) 

Thus the theorem is equivalent to Lemma 4.5. D 

Corollary 4.2. 

Let U be an uncertainty function. Then 

(3.12) 

Proof: 

Let T(X) be a constant. Then 

(3.13) 

and therefore 

( 3. 14) Iu(e, T(X)) = o. 
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l ~ .... . . The result then follows from (3.9). D 

This corollary generalizes the "if" portion of Theorem 2.1 

by DeGroot (1962) to a countable state space. 

The result of Renyi (1967) that data reduction via a sufficient 

statistic loses no Shannon information will now be generalized. 

First, we will define a statistic T(X) to be sufficient for 9 

if it yields the same posterior distribution as X does 

(technically, almost surely}. 

Definition 4.1. 

Suppose T and X induce sub-a-fields, a" and G', respe~tively. 

Then T is sufficient for e if 

a.s. 

Theorem 4.3. 

Let U be an uncertainty function. If T is a sufficient 

statistic, then 

(3.15) 

Proof: 

Sufficiency of T is equivalent to 

(3.16) a.s. 

Equations (3.10) and {3.11) then give the theorem. D 

The concluding remarks of Halmos and Savage (1949) are 

interesting in this context: 
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"We think that confusion has from time to time 
been thrown on the subject by {a} the unfortunate use 
of .the term "sufficient estimate," (b) the undue 
emphasis on the factorability of sufficient statistics, 
and {c) the assumption that a sufficient statistic 
contains all the information in only a technical sense 
of 'information' as measured by variance." 

Remark (a} seems to have been heeded, while remark (b) was 

met by Bahadur (1954). The results of this section are intended 

to be conformable with the spirit of remark (c). 

4. Questionnaire Information and Shannon Information. 

As was suggested in Section 1 of this chapter, a decision 

maker who ultimately is going to make use of the sure device of 

an arborescence questionnaire for determination of the true state, 

might first perform an experiment X. Naturally, the questioner 

would attempt to choose that experiment which would tend to 

lower his average charge in using a questionnaire. In this context, 

it is reasonable to define the questionnaire information in X 

about Se®, a finite or countably infinite state space, by 

(4.1) IK{0, X) = K(p) - EK(p(X)) 

where K was defined in Chapter III by 

(4.2) K(p) = inf E C(Q). 
Q p 

The infimum is taken over all valid, arborescence questionnaires. 

This quantity might then be interpreted as the value of the 

experiment X in terms of questionnaire charges. 

Now since K is a continuous, concave function, it follows 

from Corollary 4.2 that 
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(4.3) 

The usefulness of this information content, as is suggested 

above, lies in the design of experiments. The experimenter has 

available an optimality criterion which leads to calling an 

* experiment X optimal in a class a if 

{4.4) 

for all Xe a. Naturally,an optimal experiment may not exist 

in a particular situation. 

The Shannon information has been proposed for use in 

experimental design in this same manner by Lindley (1956, 1957). 

DeGroot (1962, 1970) discusses sequential optimal experimental 

design for general concave uncertainty functions. In a regression 

framework, Draper and Hunter (1967) show an equivalence between 

an information optimal experimental design and a Bayes optimal 

experimental design. Normality is assumed (for both errors and 

prior) and the Wiener entropy is used as the uncertainty function 

since the state space is uncountable. The Bayes criterion used 

is minimization of the determinant of the expected posterior 

mean square error matrix. 

Questionnaire information has a very close relationship to 

Shannon information. Shannon information might be denoted by 

IH(e, X) and is defined by using the Shannon entropy as an 

uncertainty function in the general definition. Thus, 

IH(e, X) = H(p) - EH(p(X}). 
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As one step in demonstrating this relationship, consider the 

following: 

Theorem 4.4. 

If ® is finite, 

if ® is countably infinite, 

Proof: 

By the results of Chapter II, in the finite case, 

(4.8) H(p) :S K(p) < H(p) + 1. 

Further, 

(4.9) H(p{x)) :S K(p(x)) < H(p(x)) + 1 

which implies 

(4.10) EH(p(X)) :S EK(p(X)) < EH(p(X)) + 1. 

Therefore, 

(4.11) H(p) - EH(p(X)) - 1 < K(p) - EK(p(X)) < H(p) - EH(p(X)) + 1. 

Then (4.6) follows by definition. The countably infinite case 

is similar with possible equality in (4.8) (see Theorem 2.4). D 

If the task set is to determine a sequence of realizations 

of ~, as might be the case in a quality control application, a 
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... ~ .. "block coding" scheme indicates a further tightening of the 

relationship between questionnaire information and Shannon 

information. (The "block coding" idea is discussed in Ash 

(p. 39; 1965).) 

The questionnaire information per 0-determination may be 

ma~e arbitrarily close to the Shannon information by simultaneously 

determining a sufficiently large number of 0-values. This is 

established by the following theorem: 

Theorem 4.5. 

Let ®n denote then-fold Cartesian product of copies of ® 

(finite or countably infinite). Let -'1) '2iCn) µ = (e' , ... , e ) 

finite sequence of n random variables with values in n 
® • 

be a 

They may be arbitrarily jointly distributed with probability vector, 

p~, over the elements of ®n (mn of them in the finite case). 

Then given e > 0 there exists n such that 

(4.12) 

Proof: 

Under the stated conditions, Theorem 4.4 shows that there 

exists a questionnaire Q which resolves ®n satisfying 

(4.13) 

Hence, 

(4.14) 

So choose 

1 1 1 l 
- IH(µ, x) - - < - IK(~, X) < - IH(~, x) n n-n -n 

1 
+-. n 

n so that .! < e n 
and the theorem fol lows • D 
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Corollary 4. 3. 

Suppose (eCl), x
1
), ••• , (in), Xn) is a finite sequence 

of n jointly distributed random variables, independent and 

identically distributed. Suppose a(i) (i = 1, ••• , n) takes 

values in ® while if e j e ®, P ( e j } = p j ( j = 1, ••• , m) and 

p = (p
1

, ••• , pm). Then given e > 0 there exists n such that 

(4.15) 

Proof: 

Note that under the conditions of the corollary, 

H(pµ,) = nH(p). D 

Therefore in the particular sense of these results, it 

might be said that the "asymptotic" value of the experiment X 

in terms of questions is IH{e, X). 

5. Forecasters and Questionnaires. 

5.1. Payment Schedules for Forecasters. 

The decision maker who finds that his probability measure 

over the state space is unsatisfactory may have another alternative 

to the statistical approach. This is the use of a forecaster, 

or the employment of expert opinion to produce a probability 

measure which is more acceptable. 

Naturally, it is in the interest of the decision maker to 

devise a payment schedule for the forecaster's services which will 

motivate the forecaster to be most efficient. 

forecaster has two aspects: 
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First, an efficient forecaster should be most diligent in 

his activities, which might perhaps involve collecting and 

analyzing data, or even consulting others, so that he may, a priori, 

be close to certainty as to the true state. 

Second, an efficient forecaster should report his findings 

to his client accurately. 

The first aspect deserves to be examined further according 

to the nature of the process by which the true state is determined. 

One possible model is that the true state is determined by some 

actual, physical random process which is inviolable in the sense 

that its probability structure is not changed by "conditioning." 

The true states are, to use the standard terminology, elementary 

outcomes. In this case, the best the forecaster might hope for 

is to determine the probability measure, PT, which governs the 

process. One would imagine that in most cases he would actually 

succeed in establishing a probability measure, PF, which would 

only approximate PT. Note that in this context, while PT 

F may have a frequency interpretation, P is particular to the 

forecaster and hence should be interpreted in a personal or 

subjective sense. 

Very often a decision maker is faced with "one of a kind" 

decisions,making it highly artificial to imagine the true state 

of nature as being generated by some random process. In this 

F situation, the forecaster might seek a probability measure, P, 

which approximated a distribution placing probability one on the 
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true state. This might then be considered a degenerate case of 

the previous situation. Naturally,prudence would dictate not 

going beyond ones state of knowledge in this endeavor. In 

either case, the forecaster will actually report to his client 

a third probability measure, PR. 

The goal of the payment schedule is to provide encouragement 

to the forecaster to act efficiently. Thus the forecaster 

should be encouraged to present a PR which is a close approximation 

to PT. In attempting to devise such a payment schedule, a very 

important distinction between the two situations that the fore

caster might face must be taken into consideration. This distinction 

is that,in the second situation, PT may well become revealed at 

some time in the future while this is necessarily not the case 

in the first situation. Thus a more definitive assessment of the 

forecaster's effectiveness is possible in the second situation 

and hence stronger statements can be made as to what constitutes 

a desirable payment schedule. 

Concentrating then on the second situation, suppose 8 is 

observed to occur and the state space ® is discrete. Then it 

is known that T p (8} = 1. Therefore a reasonable payment schedule 

encourages the forecaster to develop PT so that PF{8} is 

close to one. This would mean, in particular, that the payment 

schedule should depend on e. Symbolically, therefore, the payment 

schedule might be represented as a function h from the Cartesian 

product space of the parameter space and the space of probability 
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measures on the parameter space to the real numbers; the actual 

payment would be F h{ e, P ) • It is desirable in this situation 

to have 

(5.1.1) h{B, PF)> h(B, PF') if PF { e) > PF ' { e). 

Such a payment schedule is said to encourage diligence. If 

possible equality were allowed in (5.l.l), the payment schedule 

would be said to~ discourage diligence. 

This requirement (5.l.l) is satisfied by many of the coI1D11only 

proposed payment schedules. For example, any linear function of 

the following: 

(5.1.2) logarithmic: F 
h(ei, P) = log pi 

(5.1.3) 
F ~ p.2 quadratic: h(Bi, P) = 2p1 -

j J 

(5.1.4) spherical: h( 0. , PF) = p / { 6 
1. j 

211/2 p j , 

provided that in (5 .1.3) and (!:; .1.4), 0 p .2 remains fixed. This 
j J 

last, in a sense, keeps the variability of the probability estimates 

constant. 

The logarithmic payment schedule is discussed by Good (1952), 

the quadratic payment schedule is suggested by de Finetti (1962), 

and the spherical payment schedule is examined by Toda (1963). A 

discussion of 11D.1ch of the literature is contained in Winkler (1967). 

However, the client, who nrust make the payment, does not 

F know P. Instead what is reported to him is PR. 
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the client's interest that PR accurately reflect PF. Indeed, 

he would want the two measures to identically coincide. McCarthy 

(1956) has said that a payment schedule encourages honesty if 

the forecaster believes his average earnings will be maximized 

if and only if PR= PF, i.e., 

(5.1.5) F R E Fh(B, P) ~ E Fh(0, P) 
p p 

for all PR, 

with equality if and only if PR= PF. All of the above payment 

schedules encourage honesty. Dropping the "only if" portion of 

the above definition gives a payment schedule in which there is 

~ profit in dishonesty. 

Aczel and Pfanzagl (1966) consider payoff functions h with 

the property that 

(5.1.6) 

Thus the payoff is required to be a function only of the forecasted 

pi when e. 
]. 

is realized. Clearly,in such a situation,diligence 

is encouraged when g is strictly increasing. Aczel and Pfanzagl 

(1966) show that the logarithmic payoff is the only differentiable 

payoff in the class determined by (5.1.6) for which there is no 

profit in dishonesty. 

5 .2. Payments Based on the Value of Information·. 

Marschak (1959) draws a distinction between "amount of 

information" and "value of information." He suggests the Shannon 

entropy as a possible measure of the amount of information in a 
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forecast, while suggesting that the value of information urust 

be specific to the needs of the buyer of the information. This 

idea is also discussed by Hurley (1964). 

We will discuss the value of information in the context of 

statistical decision theory. In a statistical decision problem 

we are given an action space A and a loss function L, assumed 

to be nonnegative and bounded, on ® X A. The decision maker will 

buy from the forecaster a probability measure on ®, say p. He 

may then carry out further experimentation of his own--producing 

a random variable X with a known sampling distribution depending 

on e. He will have chosen a decision function 

Bayes risk {provided one exists), i.e., if 

(5.2.1) r{6, p) = E(e,x)L{B, 6(X}), 

then 

(5.2.2) * r(6, p) ~ r(6, p) for all 6. 

* 6 with smallest 

A particular e
0 

e@ will then be realized and the decision 

maker will sustain a loss of L(B0 , 6(x}} where x is the sample 

value actually obtained from his experiment. 

We now assert that a reasonable payoff to the forecaster, 

fully in accord with the value of the information given to the 

decision maker, would be a linear function of the risk associated 

with e
0

• Thus if 

R(B, 6) = Exlff(0, 6(X)), 
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we propose a payoff of 

* a - bR{BO, 6 ) 

where a is a flat fee and b is a nonnegative constant reflecting 

extent of penalty. 

This payoff function does not depend on observations obtained 

by the decision maker in his experimentation; this would appear 

to be fair to the forecaster. Further the following theorem 

demonstrates that under this payment schedule the forecaster will 

find no profit in dishonesty. 

Theorem 4.6. 

Assume that Bayes decision functions exist for each probability 

* distribution on ®· Let 6F and * ~ be Bayes decision functions 

with respect to probability distributions, PF and PR, respectively 

on ®· Then a payment schedule which is a linear function of 

the risk evaluated at 

Proof: 

* 6 and e
0 

allows no profit in dishonesty. 

We want to show that the forecaster believes his average 

payment will be maximized when PR= PF, i.e., 

(5.2.4) * F J * R J {a - bR{Bo, 6F )dP 2:: {a - bR{Bo, 6a, )dP. 

But (5.2.4) is equivalent to 

(5.2.5) f R(0, 6F*)dPF ~ J R{B, ~*)dPF 

which is true by definition of * 6F • 0 
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One aspect of the payment schedule discussed in this section 

which merits attention is the fact that the forecaster is necessarily 

drawn more closely into the decision maker's problem. Presumably 

in the negotiation of the constants a and b ,in (5.2.3),the 

forecaster would have to be informed of the decision maker's loss 

function and the nature of the experimentation which the decision 

maker plans to carry out. This "identification of interests" 

might conceivably be desirable in some circumstances but in others 

it might well be better to develop a payment schedule which would 

avoid such disclosures {or even advance planning of experimentation). 

As Marschak (1959) has pointed out, the logarithmic payment 

schedule might be used in this latter situation. It enjoys the 

double advantage of encouraging both diligence and honesty. Another 

payment schedule which mi.ght be considered for use in this context 

is discussed in the next section. 

5.3. The Client is a Questioner. 

Suppose now that the client is a questioner concerned with 

a finite state space. He will be making use of the probability 

vector that the forecaster reports, PR, in order to effectively 

design a questionnaire. Then it seems reasonable to base the 

payment to the forecaster on the amount it will cost the questioner 

* to determine the true state using the best questionnaire, Q , he 

can construct with PR. * Thus Q satisfies 

(5.3.1) * E RC(Q) = 
p 

inf E RC(Q). 
Q p 

A simple form of payment schedule would be of the following form: 
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R * h(Bi, P) = a - bcpi(Q) 

where a is a positive constant meant to reflect a basic flat 

fee, b 

* 
is a positive constant giving extent of penalty, and 

cp/Q ) is the charge to determine the true state * ei using Q 

It might first be noted that the payment schedule given by 

(5.3.2) fails to encourage diligence. This is evident from the 

m = 4 case discussed in Chapter III where for p1 = .35 and 

p
2 

= .23, Q
3 

> Q
2

; whereas the domination reverses for p
1 

= .40 

and p2 = .30. But cp1(Q
3

) = 1 and q,1(Q2 ) = log 3. 

On the other hand it is an innnediate corollary of Theorem 4.6 

that the payment schedule 5.3.1 does not discourage honesty. 

Corollary 4.4. 

Under payment schedule (5.3.2) there is no profit in 

dishonesty. 

6. 

Proof: 

* Identify q,i (Q ) * with R(0
0

, 6 ) 

Subjective Probability. 

in Theorem 4.6. D 

Suppose it is desired to know something of a person's 

subjective probability in a particular context. The most definitive 

statements about this probability can be made by proceeding 

normatively with a Rational Man, well-schooled in the construction 

of questionnaires. The basic approach is to observe how he goes 

about this construction. From these observations, one would hope 

to infer the nature of his subjective probability. The Rational 

Man will be assumed to make decisions according to an ordering 
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of possible decisions by their Bayes risk with weights given by 

his subjective probabilities. He will be neither a risk taker 

nor a risk avoider. It is intended to confront the Rational Man 

with a finite state space made up of m states, precisely one 

of which--not initially specified to the Rational Man--is 

designated as "true." He wi•ll be entitled to know the location 

of the true state among the various sets of a partition of the· 

state space. This will be done according to the rules of a 

questionnaire upon payment of the appropriate charge. 

Since the questionnaire consisting of a single resolution m 

question--the minimax questionnaire--is always available, with 

charge log m, the Rational Man will be rewarded with a payment 

of log m upon discovery of the true state, thereby achieving 

a partial balance between payments and charges. 

Suppose the event A is under consideration. Identify this 

event with state e
1

• Partition Ac into two arbitrary sets 

and identify them with states e2 and e
3

. Then confront the 

Rational Man with a choice of four questionnaires: 

/ { 01) 

Ql:~(021 
{03} 

{01} 

Figure 4.la 
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Q3: 

Q4: 

{E\J 

{83) 

{01) 

{02} 

Figure 4.lb 

Some statement can be ma.de about his subjective probability 

for A from his choice. Namely, 

Choice P(A) 

Ql 1/3 _5 P(A) _5 2 - log23 

Q2 P(A) 2: 2 - log23 

Q3 P(A) ,5 1/3 

Q4 P(A) _5 1/3 

Suppose there are two disjoint events A1 and A
2

; he can 

be confronted with an essentially complete class of questionnaires 

of order 4: 

A: 

B: 

{81} 

(82) 

(83} 

{84} 

(82} 

,.,., .-(83) 

{84) 

- 102 -

(one of this type) 

(four of these) 

i 

• ~ I 

.::;• .. 
'• 

I.I 

~Jr 

., ~ 

1...1 

i i 

~ 

... 

~ 

... 

~ 

~ 

~ 

~ 

~ 

~ 

I ' 

! i 
~ 

LJ 
i 
I I 

~ 

la.I 

u 
I ' 

J 



' - , . 
• ~ • ~ >~ 

- ' ~ 

.... 4 

~ 

~ 

i..l 

mi 

-
.... 

I.I 

'-

laj 

..i 

-
'-

... 

al 

.... 

-
..i 

-

" 

C: 

D: 
{03} 

{04} 

(03} 

(84} 

Figure 4.2 

(12 of these) 

(6 of these) 

A selection of one of these will provide bounds on the probabilities, 

P(A1) and P(A2). 

A special problem exists when P(A) > 1/2 since no distinction 

between questionnaires will require P(A) > 1/2. This can be 

handled by independently tossing a fair coin and looking at 

P(AnH) • 
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