A MATRIX APPROACH TO NONSTATIONARY CHAINS

by

Frank Harary, ${ }^{*}$ Benjamin Lipstein, ${ }^{+}$and George P. H. Styan ${ }^{\S}$

University of Minnesota Technical Report No. 120

May 20, 1969
*University of Michigan
${ }^{+}$Sullivan, Stauffer, Colwell \& Bayles; Inc., New York
$\S_{\text {University }}$ of Minnesota
CONTENTS

1. Limitations of Stationary Chains GPHS
2. Causative Matrices FH
3. Two-state Nonstationary Chains GPHS
4. Other Nonstationary Chains BL
5. References GPHS

1. Limitations of Stationary Chains.

The field of Markov chains applies to a wide range of subject matter. The assumption that the transition probabilities of a Markov chain be stationary leads to a rich body of theorems, which serve as a good first approximation to the real world. There are, nevertheless, very many real situations to which the model of a stationary chain (Markov chain with stationary transition probabilities) is inappropriate.

This paper develops a matrix approach [cf. Lipstein (1965, 1968)] for studying nonstationary chains. We explore the notion of causative matrix which, when multiplying a transition probability matrix, yields the immediately subsequent one. The special model involving constant causative matrix is studied in detail.

The general case of nonstationary chains has received only little attention in the literature. Hajnal (1956,1958), Mott (1957, 1959) and Sarymsakov (1961) appear to be the only papers in English. Linnik (1948), (1949), Sarymsakov (1953), (1956), (1958) and Sarymsakov and Mustafin (1957) study the subject in Russian.

All of these papers consider nonstationary chains from a point of view different to ours. We show that the basic descriptive characteristics of nonstationary chains can be captured and described by means of a sequence of causative matrices.

Nonstationary chains are characterized by either convergent or divergent behavior. When convergent the chain is tending toward complete independence as represented by a Bernoulli process.

We contend that nonstationary chains' in general can be studied more effectively through identification of a functional relationship between their causative matrices. The constant chain constitutes a special case of such a relationship. Higher order nonstationary chains may be susceptible to systematic study through the derivation of higher order causative matrices analogous to higher order differences or differentials.

A stationary chain is a stochastic process containing a finite number n of states $E_{1}, E_{2}, \ldots, E_{n}$ such that
(a) there is an initial distribution ($a_{1}, a_{2}, \ldots, a_{n}$), where a_{k} is the probability that the first state is E_{k}, and
(b) there is a transition probability matrix

$$
\stackrel{P}{P}\left[\begin{array}{cccc}
p_{11} & p_{12} & \cdots & p_{1 n} \\
p_{21} & p_{22} & \cdots & p_{2 n} \\
\vdots & \vdots & & \vdots \\
p_{n 1} & p_{n 2} & \cdots & p_{n n}
\end{array}\right]
$$

where $p_{i j}$ is the conditional probability of E_{j} occurring given that E_{i} is the present state. In view of (a) and (b), we have

$$
\begin{aligned}
& 0 \leq a_{i} \leq 1 \text { and } \Sigma a_{i}=1 \\
& 0 \leq p_{i j} \leq 1 \text { and for all } i, \sum_{j} p_{i j}=1
\end{aligned}
$$

This transition probability is stationary when it is constant over time; that is if E_{j} occurred at time t and E_{i} at $t-1$, $p_{i j}$ is stationary when independent of t. As defined above, a chain is both finite and discrete; it has a finite number n of
states and the time intervals are discrete.
Real world situations in which the transition probabilfties vary over time include epidemiology and learning theory [cf. Harary \& Lipstein (1962)]. Much criticism [cf. Ehrenberg (1965), Massy \& Morrison (1968), Ehrenberg (1968)] has been leveled at applying stationary chains in such situations. The change in empirical stimuli over time results in changes in the probability values. There are many other situations in which a stationary chain is applied, even though it is not realistic, since it is essentially the only way which can be handled analytically.

In a nonstationary chain, after the initial probability factor has been invoked, the probabilistic situation is completely described by a sequence of transition matrices ${\underset{\sim}{P}}_{1},{\underset{\sim}{P}}_{2}, \underline{P}_{3}, \ldots$. Each of these matrices ${\underset{\sim}{f}}^{\text {t }}$ contains the conditional probability distributions which hold at time t, given the status at time $t-1$. In the stationary case, all these transition matrices ${\underset{\sim}{t}}$ are the same. If at least two of the transition matrices are different, then the chain is nonstationary. Another kind of special case results from those situations in which the general transition matrix at time t, namely ${\underset{\sim}{t}}$, has as its entries $p_{i j}=f_{i j}(t)$. In this case, every entry is a function of t. In this case the probabilistic behavior of the entire nonstationary process is known when f is given.

But there are many situations in which only the first few transition matrices ${\underset{\sim}{f}}^{t}$ are known and the problem is to predict the future behavior of the chain. This is the problem of real interest in studying chains, both stationary and nonstationary. In the case of stationary chains, the prediction of future behavior of the events
is well known [cf. Kemeny and Snell (1960), Styan \& Smith (1964)]. The graphical structure of the chain contributes additional information as mentioned in Harary and Lipstein (1962), and Harary, Norman, \& Cartwright (1965). Our concern is to devise methods for a similar treatment of nonstationary chains.

Consider a nonstationary chain as given by a sequence of transition matrices ${\underset{\sim}{1}}_{1},{\underset{\sim}{P}}_{2},{\underset{\sim}{P}}_{3}, \ldots$ In order to describe the change occurring from each of these transition matrices to the next, we introduce an accompanying sequence of matrices ${\underset{\sim}{1}},{\underset{-}{ }}_{C_{2}}, \ldots$, which will be called causative matrices defined by the following equations:

Each causative matrix can be immediately expressed in terms of the transition matrices, provided they are all nonsingular:

We emphasize that the causative matrices ${\underset{\sim}{c}}^{c}$ are merely devices for describing the change involved between each transition matrix and the next one.

In these terms, a stationary chain is that special case obtained by taking every ${\underset{G}{t}}=I$, the identity matrix of order n. of course when all the transition matrices are different, none of the causative matrices will be the identity. We note that the assumption that every ${\underset{t}{t}}$ is nonsingular is not a strong restriction of generality. The reason is that even a small change in the values of the entries of a singular matrix will result in nonsingularity [cf. Householder (1964)]. To illustrate, given the two stochastic matrices:

$$
{\underset{\sim}{P}}_{1}=\left(\begin{array}{ccc}
.7 & 0 & .3 \\
.2 & .8 & 0 \\
.1 & 0 & .9
\end{array}\right) \quad{\underset{P}{e}}^{P_{2}}=\left(\begin{array}{rrr}
.9 & 0 & .1 \\
0 & .8 & .2 \\
.3 & 0 & .7
\end{array}\right)
$$

we find ${\underset{\mathrm{G}}{1}}^{1}={\underset{\sim}{1}}_{-1}^{{\underset{P}{2}}^{2}}=\left(\begin{array}{clc}1.2 & 0 & -.2 \\ -.3 & 1.0 & .3 \\ .2 & 0 & .8\end{array}\right)$.

It is not entirely coincidental that the causative matrix C_{1} in this example resembles the identity matrix in the sense that the diagonal entries are near 1 and the other entries near 0 .

The causative matrices ${\underset{\sim}{t}}^{\text {have } a l l \text {, been those which multiply }}$ the probability matrix ${\underset{\sim}{t}}$ at each time stage t on the right to obtain the next matrix ${\underset{\sim}{t+1}}$. There is no a priori reason for choosing right multiplication for this purpose rather than left. Thus we may refer to the matrices ${\underset{\sim}{t}}$ as right causative matrices and introduce the corresponding sequence ${\underset{\sim}{t}}$ of left causative matrices induced by the nonstationary chain whose probability matrix sequence is ${\underset{\sim}{P}}_{1},{\underset{\sim}{P}}_{2}, \ldots$, by the equations

Analogously to (2.2) we have when each ${\underset{\sim}{t}}$ is nonsingular

The left and right causative matrices are different in general. Just as the action on a given matrix M by a permutation matrix A on the left, $A M$, permutes the rows of M, and on the right, $M A$, permutes its colums, a corresponding effect is found with left and right
causative matrices emphasizing the rows and columns respectively. In the language of binary relations, this phenomenon is known as "directional duality" [cf. Harary, Norman and Cartwright (1965)]. An example involving 2×2 matrices will illustrate this point:

$$
\begin{aligned}
& {\underset{1}{P}}_{1}=\left(\begin{array}{ll}
.8 & .2 \\
.2 & .8
\end{array}\right),{\underset{R}{P}}_{{\underset{P}{2}}}=\left(\begin{array}{ll}
.9 & .1 \\
.2 & .8
\end{array}\right)
\end{aligned}
$$

On the other hand, when the roles of ${\underset{\sim}{P}}$ and, ${\underset{\sim}{P}}$ are interchanged in this 2×2 example, so that

$$
{\underset{P}{P}}=\left(\begin{array}{ll}
.9 & .1 \\
.2 & .8
\end{array}\right) \quad \text { and } \quad{\underset{P}{P}}^{P_{Q}}=\left(\begin{array}{cc}
.8 & .2 \\
.2 & .8
\end{array}\right)
$$

we find that

We will use right causative matrices for the remainder of this section.

By a (right) constant chain we will mean a nonstationary chain ${\underset{\sim}{1}}_{1},{\underset{\sim}{P}}_{2}, \ldots$ in which all the (right) causative matrices are equal; we will call this matrix $\underset{\sim}{C}$. In this case we verify at once that
(2.5) $\quad{\underset{T}{T+s}}={\underset{\sim}{P}}^{C^{s}}, s=0,1, \ldots$
 in terms of ${\underset{\sim}{P}}_{1}$ and $\underset{\sim}{P}$ by the equation

$$
{\underset{\sim}{P}}_{3}=P_{2}{\underset{\sim}{-1}}_{-1}^{P_{2}},
$$

In general, we find that
(2.6) $\quad{\underset{\sim}{t+1}}={\underset{\sim}{P}}_{t} \stackrel{P}{t-1}_{-1}^{P_{t}}$.

Therefore every transition matrix ${\underset{\sim}{f}}^{\underset{t}{r}}$ of a constant chain may be expressed in terms of ${\underset{\sim}{P}}_{1}$ and ${\underset{\sim}{P}}_{2}$ by the equations

By definition of a constant chain, every transition matrix is determined as soon as ${\underset{\sim}{P}}_{\mathcal{P}}$ and $\underset{\sim}{C}$ are given, and in fact ${\underset{\sim}{X}}_{t}={\underset{\sim}{P}}^{\mathcal{C}}{\underset{\sim}{t-1}}^{\text {-1 }}$ follows from (2.5). Considerable information about a constant chain can be obtained from $\underset{\sim}{C}$ alone.

To ease the algebra we set ${\underset{\sim}{P}}_{1}=\underline{Q}$. Then if $\underset{\sim}{P}(u, v)$ denotes the transition probability matrix from time periods u to v, we have
(2.8) $\underset{\sim}{P}\left(t_{0}+r, t_{0}+r+1\right)=\underline{Q} \underline{C}^{r} ; r=0,1, \ldots$,
where $\underset{\sim}{Q}={\underset{\sim}{P}}_{1}=\underset{\sim}{P}\left(t_{0}, t_{0}+1\right)$. The starting point t_{0} is arbitrary. Hence

$$
\begin{align*}
\underline{P}\left(t_{0}, t_{0}+r+1\right) & =\underline{Q} \cdot \underline{Q} \underset{\sim}{C} \cdot \underline{Q} \underline{C}^{2} \cdot \ldots \underline{C^{r}} \tag{2.9}\\
& =\prod_{s=0}^{\mathbf{r}}\left(\underline{Q}{\underset{\sim}{c}}^{s}\right)=\underset{\sim}{\mathbf{T}},
\end{align*}
$$

say, is the transition probability matrix from time periods t_{0} to $t_{0}+r+1$. The limiting properties of a constant chain depend on the convergence or divergence of $\underset{\sim}{C^{r}}$ and $\underset{\sim}{T}$, as $r \rightarrow \infty$. Lipstein (1965) conjectured that ${\underset{\sim}{c}}^{\mathbf{r}}$ diverged only when the largest characteristic root of $\underset{\sim}{C}$ exceeded one in absolute value, and implied that if all roots of $\underset{\sim}{C}$ equalled unity, then $\underset{\sim}{C} \equiv \underset{\sim}{I}$. That this is not so will be illustrated in section 3 for the case of 2 states.

A causative matrix is similar to a stochastic matrix, in that it has unit row sums; it may, however, have negative elements. LEMMA 2.1. Let \mathbb{Q} and $\underset{\sim}{R}$ be stochastic matrices of order n. Then if Q is nonsingular, the causative matrices

$$
\begin{equation*}
\underline{C}=Q^{-1} \underline{R} \tag{2.10}
\end{equation*}
$$

$$
\underline{D}=\underline{R} \underline{Q}^{-1}
$$

have row sums of unity but may have negative elements.
Proof: Let $e=(1,1, \text {. ., } 1)^{\prime}$ be a column vector with each component unity. Then $\underline{Q} \underset{\sim}{e}=\underline{R} \underset{\sim}{e}=$. Hence $\mathcal{Q}^{-1} \underset{\sim}{e}=\underset{\sim}{e}$ and so $\underset{\sim}{e}=\dot{Q}^{-1} \underline{R} \underset{\sim}{e} \underline{Q}^{-1} \underset{\sim}{e}=$. Similarly $\underset{\sim}{e} \underset{\sim}{e}$. Examples of $\underset{\sim}{C}$ and $\underset{\sim}{D}$ with at least one element negative were given above, just below (2.4).(qed)

It follows from Lemma 2.1 that a causative matrix has a characteristic root of unity. When all other roots are less than one in absolute value ${\underset{\sim}{c}}^{r}$ converges to $\underset{\sim}{\ell^{\prime}}$ as $r \rightarrow \infty$, where ℓ^{\prime} is the left-hand characteristic vector of $\underset{\sim}{C}$ corresponding to the unit root (the righthand vector is e). Lipstein (1965) suggested that in such a case ${\underset{\sim}{r}}^{\mathbf{T}}$ also converged to $\underset{\sim}{\mathcal{E}} \mathbb{Z}^{\prime}$. This is immediate only for $\underset{\sim}{C}$ stochastic; it may happen that $\underset{\sim}{C}$ is not stochastic but $\underset{\sim}{T}$ and \mathcal{L}^{\prime} have all elements nonnegative. In this latter case we have been unable to prove in general that $\underset{\sim}{T}$ and ${\underset{\sim}{r}}^{\mathbf{r}}$ have the same limit, since the number of component matrices in the product T_{r} increases with r. In section 3 we study the situation for the two state case. The results of Hajnal (1956, 1958), Mott (1957, 1959), and Sarymsakov (1961) do not seem. to assist in obtaining more general results.

Another question taken up in section 3 is when does I_{r} cease to be stochastic (́ㅜ́nonstochastic)? That is, what values can $\underset{\sim}{C}$ take on so that the chain may have a constant causative matrix?

3. Two-state Nonstationary Chains

In this section we assume that the nonstationary chain has two states with constant causative matrix

$$
\begin{align*}
\underset{\sim}{c} & =\left(\begin{array}{ll}
u, & 1-u \\
u-\lambda, & 1-u+\lambda
\end{array}\right), \tag{3.1}\\
& =\underline{Q}^{-1} \underset{\sim}{R}=\left(\begin{array}{cc}
a, & 1-a \\
1-b, & b
\end{array}\right)^{-1}\left(\begin{array}{cc}
c, & 1-c \\
1-d, & d
\end{array}\right) ;
\end{align*}
$$

thus

$$
\begin{equation*}
u=\frac{b c-(1-a)(1-d)}{a+b-1}=\frac{a+d-a d+b c-1}{a+b-1} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda=\frac{c+d-1}{a+b-1}=\frac{\operatorname{tr}(\underline{R})-1}{\operatorname{tr}(\underline{Q})-1} \tag{3.3}
\end{equation*}
$$

is the non-unit characteristic root of $\underset{\sim}{c}$. It follows immediately that ${\underset{\sim}{c}}^{\mathbf{s}}$ has characteristic roots 1 and λ^{s}, so that $\operatorname{tr}\left({\underset{\sim}{c}}^{s}\right)=1+\lambda^{s}$.

Hence we may write
(3.4) $\quad \stackrel{{\underset{c}{c}}_{s}^{c}}{ }=\left(\begin{array}{ll}u_{s}, & 1-u_{s} \\ u_{s}-\lambda^{s}, & 1-u_{s}+\lambda^{s}\end{array}\right) ; \quad s=1,2, \ldots$,
where we take $u_{1} \equiv u$. To evaluate u_{8}, we find from ${\underset{\sim}{c}}^{s+1}={\underset{\sim}{c}}^{s}={\underset{\sim}{c}}^{s} \underline{C}$ that
(3.5) $u_{s+1}=u_{s}-\lambda^{s}+u \lambda^{s}=u-\lambda+\lambda u_{s} ; s=1,2, \ldots$

When $\lambda=1$, we obtain $u_{s+1}=u_{s}-1+u$, while otherwise

$$
\begin{equation*}
u_{s}=\left[u-\lambda+\lambda^{s}(1-u)\right] /(1-\lambda) \tag{3.6}
\end{equation*}
$$

Hence

$$
u_{s}=\left\{\begin{array}{ll}
s(u-1)+1 ; & \lambda=1 \tag{3.7}\\
\frac{u-\lambda+\lambda^{s}(1-u)}{1-\lambda} ; \lambda \neq 1
\end{array} .\right.
$$

From this we obtain:

THEOREM 3.1. The 1 imit of u_{s} is given by

$$
\begin{aligned}
\operatorname{Lim}_{s \rightarrow \infty} u_{s} & =\frac{u-\lambda}{1-\lambda} ;-1<\lambda<1 \\
& =1 ; \lambda=1, u=1 \\
& = \pm \infty \text { or is undefined, otherwise. }
\end{aligned}
$$

THEOREM 3.2. When $\lambda=-1$, u_{s} is both Cesaro- and Euler-summable to $\frac{1}{2}(u+1)$.

Proof. Let

$$
t_{n}=\frac{1}{n} \sum_{s=1}^{n} u_{s}=\frac{1}{2 n} \sum_{s=1}^{n}\left(u+1+(-1)^{s}(1-u)\right)
$$

Then

$$
\begin{aligned}
t_{n} & =\frac{u+1}{2}+\frac{(1-u)}{2 n} \sum_{s=1}^{n}(-1)^{s} \\
& =\frac{u+1}{2} ; n \text { even } \\
& =\frac{u+1}{2}-\frac{(1-u)}{2 n} ; n \text { odd. }
\end{aligned}
$$

Thus $t_{n} \rightarrow \frac{1}{2}(u+1)$ as $n \rightarrow \infty$, so u_{s} is Cesaro-summable to $\frac{1}{2}(u+1)$.
Let

$$
\mathrm{w}_{\mathrm{n}}=\frac{1}{2} \sum_{\mathrm{s}=0}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{~s}} \mathrm{k}^{\mathrm{n}-\mathrm{s}}(1-\mathrm{k})^{\mathrm{s}}\left[\mathrm{u}+1+(-1)^{\mathrm{s}+1}(1-\mathrm{u})\right] \text {, for some } 0<\mathrm{k}<1
$$

Then

$$
\begin{aligned}
w_{n} & =\frac{u+1}{2}+\frac{(1-u)}{2} \sum_{s=0}^{n}\binom{n}{s} k^{n-s}(1-k)^{s}(-1)^{s+1} \\
& =\frac{u+1}{2}-\frac{(1-u)}{2}(2 k-1)^{n}
\end{aligned}
$$

Since $0<2 k-1<1, w_{n} \rightarrow \frac{1}{2}(u+1)$ as $n \rightarrow \infty$, so u_{s} is Eulersummable to $\frac{1}{2}(u+1)$. (qed)

THEOREM 3.3. When $\lambda=+1, u \neq 1, u_{s}$ is neither Cesaro-nor Eulersummable.
Proof. Let $t_{n}=\frac{1}{n} \sum_{s=1}^{n} u_{s}=\frac{1}{n} \sum_{s=1}^{n}(s(u-1)+1)$. Then $t_{n}=1+\frac{(n+1)(u-1)}{2}$ wihich diverges as $n \rightarrow \infty$. Let

$$
\dot{w}_{\mathrm{n}}=\sum_{\mathrm{s}=0}^{\mathrm{n}}\left(\mathrm{n}_{\mathrm{s}}^{\mathrm{n}}\right) \mathrm{k}^{\mathrm{n}-\mathrm{s}}(1-\mathrm{k})^{\mathrm{s}}[(\mathrm{~s}+1)(\mathrm{u}-1)+1] ; 0<k<1 .
$$

Then

$$
\begin{aligned}
w_{n} & =u+(u-1) \sum_{s=1}^{n}\binom{n}{s} s k^{n-s}(1-k)^{s} \\
& =u+(u-1)\left[\sum_{t=0}^{m}\left(m_{t}^{m}\right) k^{m-t}(1-k)^{t}\right](1-k) n ; m=n-1, t=s-1
\end{aligned}
$$

which diverges as $n \rightarrow \infty$. (qed)

COROLLARY 3.1. The limit of ${\underset{\sim}{c}}^{s}$ is given by

$$
\operatorname{Lim}_{s \rightarrow \infty}{\underset{c}{s}}_{s}^{s} \underset{\sim}{e}(u-\lambda, 1-u) /(1-\lambda)
$$

when

$$
-1<\lambda<1
$$

Proof. Directly from Theorem 3.1 and (3.7). (qed)
COROLLARY 3.2. When $\lambda=-1, \underline{C}^{\mathrm{s}}$ is Cesaro- and Euler-sunmable to

$$
\frac{1}{2} \underset{\sim}{e}(u+1,1-u) .
$$

COROLLARY 3.3. When $\lambda=+1,{\underset{\sim}{c}}^{\mathbf{s}}$. is neither Cesaro- nor Euler-summable unless $u=1$ in which case $\underset{\sim}{C} \equiv \underline{I}$.

We now turn out attention to the limit of (3.6) as r tends to ∞. We obtain

THEOREM 3.4. When $-1<\lambda<+1$ and $-1<a+b-1<1$, the limit
(3.8)

$$
\operatorname{Lim}_{r \rightarrow \infty} \underline{P}(t, t+r+1)=\prod_{s=0}^{\infty}\left(\underline{Q} C^{s}\right)=\operatorname{Lim}_{s \rightarrow \infty} \underline{C}^{s}=\underline{e}(u-\lambda, 1-u) /(1-\lambda) .
$$

Proof. From (3.2) and (3.7),
(3.9)

$$
\begin{aligned}
Q C^{s} & =\left[\begin{array}{lr}
u_{s}+\lambda^{s}(a-i), & 1-u_{s}-\lambda^{s}(a-1) \\
u_{s}-b \lambda^{s}, & 1-u_{s}+b \lambda^{s}
\end{array}\right] \\
& =e\left(u_{s}, 1-u_{s}\right)+\lambda^{s}\binom{1-a}{b}(-1,1) \\
& =A_{-s}+\lambda^{s} \underline{B}, \text { say. }
\end{aligned}
$$

Then

$$
\begin{aligned}
& A_{s} A_{t}=A_{t} \quad \text { which is idempotent rank one } \\
& {\underset{\sim}{S}}^{A_{S}}=0
\end{aligned}
$$

(3.10) $\quad{\underset{A}{f}}^{\underline{B}}=\left(b-u_{s}(a+b-1)\right) \underline{e}(-1,1)$
(3.11) $\quad{\underset{B}{B}}_{s}^{s}=(a+b-1)^{s-1} \underset{\sim}{B} \quad(s=1,2, \ldots)$.

When $-1<a+b-1<1$, then

$$
\operatorname{Lim}_{s \rightarrow \infty}{\underset{B}{s}}^{s}=0
$$

We claim that

$$
\text { (3.12) } \quad \underset{\sim}{P}(t, t+r+1)=\prod_{s=0}^{r}\left(\underline{Q} C^{s}\right)=\sum_{t=0}^{r+1} \lambda^{\frac{1}{2} t(2 r-t+1)}{\underset{A}{r-t}}^{B^{t}}
$$

where $A_{1} \equiv I, u_{0} \equiv 1$.

To prove (3.12) we see that for $r=1,2,3$ we have

$$
\begin{aligned}
& \left(\underline{A}_{0}+\underline{B}\right)\left(\underline{A}_{1}+\lambda \underline{B}\right)=\underline{A}_{1}+\lambda{\underset{\sim}{A}}_{0} \underline{B}+\lambda \underline{B}^{2} \quad(r=1)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\underline{A}_{0}+\underline{B}\right)\left(\underline{A}_{1}+\lambda \underline{B}\right)\left(\underline{A}_{Q}+\lambda^{2} \underline{B}\right)\left(\underline{A}_{3}+\lambda^{3} \underline{B}\right)=\underline{A}_{3}+\lambda^{3} \underline{A}_{2} \underline{B}+\lambda^{2+3} \underline{A}_{1} \underline{B}^{2} \\
& +\lambda^{1+2+3}{ }_{A_{0} B^{3}} \\
& +\lambda^{1+2+3}{\underset{B}{ }}^{4}(r=3) .
\end{aligned}
$$

Since $\quad \sum_{k=0}^{r} k-\sum_{k=0}^{r-t} k=\frac{1}{2}[r(r+1)-(r-t)(r-t+1)]=\frac{1}{2} t(2 r-t+1) \quad\left(\sum_{k=0}^{-1} k \equiv 0\right)$,
we can now prove (3.12) by induction by verifying that

$$
\begin{aligned}
& \sum_{t=0}^{r+1} \lambda^{\frac{1}{2} t(2 r-t+1)} A_{r-t} \underline{B}^{t}\left(A_{r+1}+\lambda^{r+1} \underline{B}\right) \\
&=A_{r+1}+\lambda^{r+1} A_{r} B+\sum_{t=1}^{r+1} \lambda^{\frac{1}{2} t(2 r-t+1)+r+1} A_{r-t} B^{t+1} \\
&=\sum_{u=0}^{r+2} \lambda^{\frac{1}{2} u(2 r-u+3)} \underbrace{}_{r-u+1} \underline{B}^{u} ; u=t+1
\end{aligned}
$$

We investigate the limit of (3.12) by rewriting it as

$$
\begin{equation*}
A_{r}+\sum_{t=1}^{r+1} \lambda^{\frac{1}{2} t(2 r-t+1)} A_{r-t} \underline{B}^{t} \tag{3.13}
\end{equation*}
$$

From (3.9) and Theorem 3.1 we have that $A_{r} \rightarrow e(u-\lambda, 1-u) /(1-\lambda)$ as $r \rightarrow \infty$. To establish the full result we need only prove that the second term in (3.13) converges to zero. We may write it as

$$
\begin{equation*}
\sum_{t=1}^{r+1} \lambda^{\frac{1}{2} t(2 r-t+1)} A_{r-t}{\underset{ }{B}(a+b-1)^{t-1}}^{t} \tag{3.14}
\end{equation*}
$$

using (3.11). Whence using (3.10) we may write it as

$$
\begin{align*}
& {\left[\sum_{t=1}^{r} \lambda^{\frac{1}{2} t(2 r-t+1)}(a+b-1)^{t-1}\left(b-u_{r-t}(a+b-1)\right)\right]\left(\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right)} \tag{3.15}\\
& \quad+\lambda^{\frac{1}{2} r(r+1)}(a+b-1)^{r} \underset{B}{ } .
\end{align*}
$$

The last term clearly converges to zero since $-1<\lambda<1$ and $-1<a+b-1<1$. To establish the full result we need only now prove that the expression in square brackets converges to zero. We have

$$
\begin{aligned}
& \left|\sum_{t=1}^{r} \lambda^{\frac{1}{2} t(2 r-t+1)}(a+b-1)^{t-1}\left(b-u_{r-t}(a+b-1)\right)\right| \leq \sum_{t=1}^{r}|\lambda|^{\frac{1}{2} t(2 r-t+1)}|a+b-1|^{t-1} b \\
& \quad+\sum_{t=1}^{r}|\lambda|^{\frac{1}{2} t(2 r-t+1)}(a+b-1)^{t} \frac{\left(|u-\lambda|+|\lambda|^{r-t}|1-u|\right)}{1-\lambda} \\
& \quad<|\lambda|^{r} b \sum_{t=1}^{r}|a+b-1|^{t-1}+\frac{\left(|\lambda|^{r}|u-\lambda|+|\lambda|^{2 r-1}|1-u|\right)}{1-\lambda} \sum_{t=1}^{r}|a+b-1|^{t} \\
& \quad=\frac{|\lambda|^{r} b\left(1-|a+b-1|^{r}\right)}{1-|a+b-1|}+\frac{\left(|\lambda|^{r}|u-\lambda|+|\lambda|^{2 r-1}|1-u|\right)\left[|a+b-1|-|a+b-1|^{r+1}\right]}{(1-\lambda)(1-|a+b-1|)} \\
& \quad \rightarrow 0 \text { as } r \rightarrow \infty . \quad \text { (qed) }
\end{aligned}
$$

COROLLARY 3.4. When $\lambda=1$ and $u=1$, then $\underset{\sim}{C}=I$ and when $-1<a+b-1<1$, then

$$
\operatorname{Lim}_{r \rightarrow \infty} \underset{P}{P}(t, t+r+1)=\prod_{s=0}^{\infty} \underset{\sim}{Q}=\operatorname{Lim}_{r \rightarrow \infty} Q^{r+1}=\underset{\sim}{e}(1-b, 1-a) /(2-a-b) .
$$

COROLLARY 3.5. When $\lambda=1$ and $u \neq 1[-1<a+b-1<1]$. then $P(t, t+r+1)$ diverges.

Proof. In this case we can write (3.14) as

$$
\begin{aligned}
& =A_{r}+(a+b-1)^{r} \underset{\sim}{r}+\sum_{t=1}^{r}(a+b-1)^{t-1}(b-(a+b-1)((u-1)(r-t)+1)) \underset{(-1,1)}{ } .
\end{aligned}
$$

The (1, 1) element is from (3.9):

$$
\begin{aligned}
& r(u-1)+1+(a+b-1)^{r}(a-1)+(a-1) \sum_{t=1}^{r}(a+b-1)^{t-1}+(u-1) \sum_{t=1}^{r}(a+b-1)^{t}(r-t) \\
& \quad=r(u-1) \sum_{t=0}^{r}(a+b-1)^{t}+(a-1) \sum_{t=0}^{r}(a+b-1)^{t}-(u-1) \sum_{t=1}^{r} t(a+b-1)^{t}+1
\end{aligned}
$$

$$
=\frac{i r(u-1)+(a-1)]\left(1-(a+b-i)^{r+1}\right)(2-a-b)+(2-a-b)^{2}-(u-1)\left(a+b-1+r(a+b-1)^{r+2}-(r+1)(a+b-1)^{r+1}\right)}{(2-a-b)^{2}}
$$

$$
\begin{aligned}
= & (2-a-b)^{-2}\left\{(2-a-b)(1-b)-(a-1)(a+b-1)^{r+1}(2-a-b)\right. \\
& +(u-1)\left[r(2-a-b)-r(a+b-1)^{r+1}(2-a-b)-a-b+1-r(a+b-1)^{r+2}\right. \\
& \left.\left.+(r+1)(a+b-1)^{r+1}\right]\right\} \\
= & \frac{(1-b)+r(u-1)}{2-a-b}+\frac{(a+b-1)^{r+1}((1-a)(2-a-b)+(u-1))+(1-a-b)(u-1)}{(2-a-b)^{2}} \rightarrow \infty
\end{aligned}
$$

COROLLARY 3.6. When $a+b=2(a+b-1=1)$ then $Q=I$ and when $-1<\lambda<1$, the limit

$$
\operatorname{Lim}_{r \rightarrow \infty} \underset{\sim}{P}(t, t+r+1)=\prod_{s=0}^{\infty}{\underset{\sim}{c}}^{s}=\operatorname{Lim}_{r \rightarrow \infty}{\underset{\sim}{c}}^{r(r+1) / 2}=\underset{(u-\lambda, 1-u) /(1-\lambda)}{e}
$$

COROLLARY 3.7. When $a+b=0(a+b-1=-1)$ then $a=b=0$ and when $-1<\lambda<1$, the limit

$$
\operatorname{Lim}_{r \rightarrow \infty} \underset{\sim}{P}(t, t+r+1)=\prod_{s=0}^{\infty} \underset{\sim}{Q C^{s}}=\underset{s \rightarrow \infty}{\operatorname{Lim} C^{s}}=e(u-\lambda, 1-u) /(1-\lambda)
$$

Proof. Theorem 3.4 holds through (3.13) which we can write as
(3.17) $\quad A_{r}+\sum_{t=1}^{r} \lambda^{\frac{1}{2} t(2 r-t+1)} A_{T-t} \underline{B}^{t}+\lambda^{\frac{1}{2} r(r+1)}{\underset{B}{B}}^{r+1}$.

The first term of (3.17), is by (3.9) equal to $e\left(u_{r}, 1-u_{r}\right)$ and the $(1,1)$ element of this converges to $(u-\lambda) /(1-\lambda)$ as required. We now prove that the other terms in (3.17) converge to zero and the corollary is established. The third term of (3.17), using (3.11), is

$$
\lambda^{\frac{1}{2} r(r+1)}(-1)^{r}\left(\begin{array}{rl}
-1, & 1 \tag{3.18}\\
0 & 0
\end{array}\right)
$$

and the (1,1) element thereof clearly converges to zero. The second term of (3.17), using (3.11) and (3.10), is

$$
\begin{align*}
\sum_{t=1}^{r} \lambda^{\frac{1}{2} t(2 r-t+1)} A_{r-t} \stackrel{B^{t}}{ } & =\sum_{t=1}^{r} \lambda^{\frac{1}{2} t(2 r-t+1)}(-1)^{t-1} A_{r-t} \xrightarrow{B} \tag{3.19}\\
& =\sum_{t=1}^{r} \lambda^{\frac{1}{2} t(2 r-t+1)}(-1)^{t-1} u_{r-t} e(-1,1) .
\end{align*}
$$

The (1,1) element is

$$
\begin{equation*}
\sum_{t=1}^{r} \lambda^{\frac{1}{2} t(2 r-t+1)}(-1)^{t}\left(u-\lambda+\lambda^{r-t}(1-u)\right) /(1-\lambda) \tag{3.20}
\end{equation*}
$$

$$
=\frac{u-\lambda}{1-\lambda} \sum_{t=1}^{r} \lambda^{\frac{1}{2} t(2 r-t+1)}(-1)^{t}+\frac{1-u}{1-\lambda} \sum_{t=1}^{r} \lambda^{\frac{1}{2} t(2 r-t+1)+r-t}(-1)^{t} .
$$

Let $s_{r}=\sum_{t=1}^{r} \lambda^{\frac{1}{2} t(2 r-t+1)}(-1)^{t}$. Then $s_{1}=-\lambda, s_{2}=-\lambda^{2}(1-\lambda)=-\lambda^{2}\left(1+s_{1}\right)$
and

$$
\begin{aligned}
s_{r}=\lambda^{r} \sum_{t=1}^{r} \lambda^{\frac{1}{2} t(2 r-t+1)-r}(-1)^{t} & =\lambda^{r}\left(-1+\sum_{t=2}^{r} \lambda^{\frac{1}{2 t}(2 r-t+1)-r}(-1)^{t}\right) \\
& =\lambda^{r}(-1)+\sum_{u=1}^{r-1} \lambda^{\frac{1}{2} u(2 r-u-1)}(-1)^{u+1}
\end{aligned}
$$

since $u=t-1$. Thus

$$
\begin{equation*}
s_{r}=-\lambda^{r}\left(1+s_{r-1}\right), r=2,3, \ldots . \tag{3.21}
\end{equation*}
$$

Now $\left|s_{1}\right|=\lambda,\left|s_{2}\right|=|\lambda|^{2}\left|1+s_{1}\right| \leq|\lambda|^{2}+|\lambda|^{3} \leq 2|\lambda|^{2}$, and

$$
\begin{equation*}
\left|s_{r}\right| \leq|\lambda|^{r}+|\lambda|^{r} \dot{\mid}_{\mathbf{s}_{r-1}} \mid \tag{3.22}
\end{equation*}
$$

so that by induction
(3.23) $\quad\left|s_{\mathbf{r}}\right| \leq r|\lambda|^{r}$.

Consider the infinite series $\sum_{r=1}^{\infty} r|\lambda|^{r}$. Then by d'Alembert's test this series is convergent, since

$$
\lim \frac{(r+1)|\lambda|^{r+1}}{r \mid \lambda}=\lim \left[\frac{r+1}{r}\right]|\lambda|=|\lambda|<1
$$

[cf. Example p. 44 of Hyslop (1954)]. Hence $r|\lambda|^{r} \rightarrow 0$ and so $\left|s_{\mathbf{r}}\right| \rightarrow 0 \quad$ [cf. Hyslop (1954) p. 30 Theorem 8]. Thus the first term of (3.20) converges to zero. The second term is (1-u)/(1- λ) times

$$
\begin{equation*}
\sum_{t=1}^{r} \lambda^{\frac{1}{2} t(2 r-t+1)+r-t}(-1)^{t}=-\sum_{u=2}^{r+1} \lambda^{\frac{1}{2} u(2 r-u+1)}(-1)^{u}, u=t+1 \tag{3.24}
\end{equation*}
$$

and so also converges to zero. This completes the proof. (qed)

COROLLARY 3.8. When $a+b=2(a+b-1=1, a=1, b=1)$ then $Q=I$, and the limit

$$
\begin{equation*}
\prod_{s=0}^{\infty} \mathrm{QC}^{s}=\operatorname{Lim}_{r \rightarrow \infty} \underline{C}^{r(r+1) / 2} \tag{3.25}
\end{equation*}
$$

When $\lambda=1, \underset{\sim}{C}=I$ and $(3.25) \equiv I$. When $\lambda=-1 ; c, d=0 ; \underline{C}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and $\prod_{s=0}^{r} Q C^{s}=P(t, t+r+1)$ is Euler- and Cesaro-summable to $\frac{1}{2} e^{\prime}$.

$$
\begin{aligned}
& \text { COROLLARY 3.9. When } a+b=0 \quad(a+b-1=-1 ; a, b=0) \text { then } \\
& \underline{Q}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), u=1-d, \lambda=1-c-d \text {. When } \lambda=1, \underline{c}=I \text {, the 1imit }
\end{aligned}
$$

$$
\operatorname{Lim}_{r \rightarrow \infty} \prod_{s=0}^{r} \mathcal{Q C}^{s}=\operatorname{Lim}_{r \rightarrow \infty} \underline{Q}^{r(r+1) / 2}
$$

COROLLARY 3.10. When $-1<a+b-1<1$ and $\lambda=-1$, then $\prod_{s=0}^{\mathrm{r}} \mathrm{QC}^{\mathrm{s}}$ is Cesaro-summable to $\underset{(}{e}(w, 1-w)$, where

$$
w=\frac{\frac{1}{2}(c+d)(d-b)+(1-d)}{1+(c+d-1)^{2}}
$$

Proof.

$$
\begin{align*}
\prod_{s=0}^{r} Q C^{s}= & A_{r}+\sum_{t=1}^{r+1}(-1)^{\frac{1}{2} t(2 r-t+1)}(a+b-1)^{t-1} A_{r-t} \underline{B}^{B} \tag{3.26}\\
= & e e^{\left(u_{r}, 1-u_{r}\right)+\sum_{t=1}^{r}(-1)^{\frac{1}{2} t(2 r-t+1)}(a+b-1)^{t-1}{ }_{-}^{A} r-t{ }^{B}} \\
& +(-1)^{\frac{1}{2} r(r+1)}(a+b-1)^{r} \underline{B}
\end{align*}
$$

where

$$
\begin{aligned}
& u_{r}=\frac{1}{2}\left(1+u+(-1)^{r}(1-u)\right), \\
& \underline{B}=\binom{1-a}{b}(-1,1) \\
& {\underset{\sim}{r}}^{r} t^{B}=\left(b-u_{r-t}(a+b-1)\right) \underset{(-1,1) .}{ }
\end{aligned}
$$

The last term of (3.26) converges to 0 as $r \rightarrow \infty$. The (1, 1) element of the remaining terms in (3.26) is
(3.27) $u_{r}-\sum_{t=1}^{r}(-1)^{\frac{1}{2} t(2 r-t+1)}(a+b-1)^{t-1}\left(b-u_{r-t}(a+b-1)\right)$

$$
\begin{aligned}
= & \frac{1}{2}(u+1)+\frac{1}{2}(-1)^{r}(1-u)-b \sum_{t=1}^{r}(-1)^{\frac{1}{2} t(2 r-t+1)}(a+b-1)^{t-1} \\
& +\frac{1}{2}(u+1) \sum_{t=1}^{r}(-1)^{\frac{1}{2} t(2 r-t+1)}(a+b-1)^{t} \\
& +\frac{1}{2}(1-u) \sum_{t=1}^{r}(-1)^{\frac{1}{2} t(2 r-t+1)+r-t}(a+b-1)^{t}
\end{aligned}
$$

$$
\begin{align*}
= & \frac{1}{2}(u+1)+\left(\frac{1}{2}(u+1)(a+b)-(b+u)\right) \sum_{t=1}^{r}(-1)^{\frac{1}{2} t(2 r-t+1)}(a+b-1)^{t-1} \tag{3.28}\\
& +\frac{1}{2}(1-u)(-1)^{\frac{1}{2} r(r+1)}(a+b-1)^{r} .
\end{align*}
$$

The last term converges to 0 as $r \rightarrow \infty$. It remains to consider the second term in (3.28). Let

$$
\begin{equation*}
s_{r}=\sum_{t=1}^{r}(-1)^{\frac{1}{2} t(2 r-t+1)} \mu^{t-1} ; \mu=a+b-1 \tag{3.29}
\end{equation*}
$$

Then

$$
\begin{equation*}
s_{r}=(-1)^{r}-\mu-\mu^{2} s_{r-2} ; r \geq 3 \tag{3.30}
\end{equation*}
$$

since

$$
\begin{aligned}
s_{r}= & (-1)^{r}+(-1)^{r+(r-1)} \mu+(-1)^{r+(r-1)+(r-2)_{\mu^{2}}+\ldots+(-1)^{r+\ldots+1} \mu^{r-1}} \\
= & (-1)^{r}+\mu(-1)^{r+(r-1)}\left(1+\mu\left[(-1)^{r-2}+(-1)^{(r-2)+(r-3)_{\mu}}\right.\right. \\
& \left.\left.+\ldots+(-1)^{(r-2)+\ldots+1_{\mu}}{ }^{r-3}\right]\right) \\
= & (-1)^{r}-\mu-\mu^{2} s_{r-2} .
\end{aligned}
$$

Let $t_{r}=s_{2 r}$ and $v_{r}=s_{2 r-1}, r=1,2, \ldots$ Then t_{r} and v_{r} are convergent sequences with limits t and v, say. From (3.30) we see that $t=(1-\mu) /\left(1+\mu^{2}\right)$ and $v=-(1+\mu) /\left(1+\mu^{2}\right)$. Hence s_{r} is Cesaro-summable to $(u+v) / 2=-\mu /\left(1+\mu^{2}\right)$. Thus (3.28) is Cesaro-summable to

$$
\begin{equation*}
\frac{1}{2}(u+1)-\frac{\mu}{\left(1+\mu^{2}\right)}\left[\frac{1}{2}(u+1)(a+b)-(b+u)\right] . \tag{3.31}
\end{equation*}
$$

With $\lambda=-1, a+b-1=1-c-d$. Hence
(3.32) $b+u=b+\frac{b c-(1-a)(1-d)}{a+b-1}$

$$
\begin{aligned}
& =\frac{b(1-c-d)+b c-(1-a)(1-d)}{a+b-1} \\
& =1-d .
\end{aligned}
$$

Also $u+1=2-d-b=a+c$. Substituting in (3.31), we get

$$
\begin{equation*}
\frac{1}{2}(a+b)-\frac{\mu}{1+\mu^{2}}\left[\frac{1}{2}(a+c)(a+b)-(1-d)\right] . \tag{3.33}
\end{equation*}
$$

Simplifying (3.33), we obtain
(3.34) $\frac{1}{1+\mu^{2}}\left[\frac{1}{2}(a+c)(1-\mu)+\mu(1-d)\right]$
which reduces to
(3.35) $\frac{\frac{1}{2}(c+d)(d-b)+(1-d)}{1+(c+d-1)^{2}}$. (qed)

We may summarize the above results on the limiting behavior of ${\underset{\sim}{C}}^{s}$ and ${\underset{\sim}{r}}_{r}={\underset{S}{T}}_{T}^{r}\left(\underline{\sim}^{s}\right)$ in the following two tables:

TABLE 3.1. Limiting Behavior of ${\underset{\sim}{c}}^{\mathbf{s}}$

λ	$\lim u_{s}=\left(\underline{c}^{s}\right)_{11}$	$\lim \underline{\sim}^{\text {s }}$
$(-1,+1)$	$\begin{aligned} & (u-\lambda) /(1-\lambda) \\ & \quad[\text { Theorem 3.1] } \end{aligned}$	$\underset{\quad \underset{[\text { Corollary 3.1] }}{e}(u-\lambda, 1-u) /(1-\lambda)}{ }$
$\begin{aligned} & +1(u=1) \\ & +1(u \neq 1) \end{aligned}$	1 [Theorem 3.1] none [Theorem 3.3]	$\underset{\sim}{\mathrm{C}} \equiv \mathrm{I} \quad[\text { Corollary 3.3] }$ none
-1	* $\frac{1}{2}(u+1)$ [Theorem 3.2]	${ }^{*} \frac{1}{2} e(u+1,1-u)$ [Corollary 3.2]

TABLE 3.2. Limiting Behavior of $\underset{\sim}{T}={\underset{\mathbf{S}}{=0}}_{\boldsymbol{r}}^{\left(Q_{\sim}^{s}\right)}$

λ	$-1<a+b-1<1$	$\mathrm{a}, \mathrm{b}=0$	$\mathrm{a}, \mathrm{b}=1$
$(-1,+1)$	$\underset{[\text { Theorem } 3.4]}{e(u-\lambda, 1-u) /(1-\lambda)}$	as at left [Corollary 3.7]	as at left [Corollary 3.6]
+1	$\begin{gathered} e(1-b, 1-a) /(2-a-b) ; \\ u=1 \\ {[\text { Corollary } 3.4]} \\ \text { divergent; } u \neq 1 \\ {[\text { Corollary 3.5] }} \end{gathered}$	$\begin{aligned} & *_{\frac{1}{2}} \frac{{ }^{2} e e^{\prime}}{} \\ & \text { [Corollary } 3.9 \end{aligned}$	${\underset{\sim}{r}}^{r} \equiv I$ [Corollary 3.8]
-1	$\begin{aligned} & \text { * } \stackrel{e}{\sim}(\mathrm{w}, 1-\mathrm{w}) \\ & {[\text { Corollary } 3.10]} \end{aligned}$	```* *I ee' [Corollary 3.9]```	${ }^{\frac{1}{2}}{ }^{\prime} e^{\prime}$ [Corollary 3.8]

[^0]The notion of a chain with constant causative matrix is appropriate only when ${\underset{\sim}{T}}^{T}=\prod_{s=0}^{r}\left(\underline{Q C}^{s}\right)$ is stochastic. When $\underset{\sim}{C}$ is itself stochastic it follows directly that ${\underset{\sim}{T}}^{r}$ is also stochastic. We find, however, that ${\underset{\sim}{r}}$ may be stochastic without $\underset{\sim}{C}$ having all elements nonnegative. We study the situation for the case of two states.

The product matrix $T_{r}=\prod_{s=0}^{r}\left(Q C^{s}\right)$ has a limit in the two-state case if and only if $-1<\lambda<1$ (Theorem 3.4), or $\lambda=1$ and $u=1$. The latter case will be disregarded in what follows since then $\underset{\sim}{C} \equiv \mathbb{I}$ and the chain is stationary. We enquire first for conditions that $\underset{\sim}{T}$ has a stochastic limit. From Theorem 3.4 the limit is

$$
\begin{equation*}
e(u-\lambda, 1-u) /(1-\lambda) \tag{3.36}
\end{equation*}
$$

where $-1<\lambda<1$. Thus (3.36) is stochastic if and only if $0 \leq(u-\lambda) /(1-\lambda) \leq 1$, or

$$
\begin{equation*}
\lambda \leq u \leq 1 \tag{3.37}
\end{equation*}
$$

We now find the condition that $\underset{\sim}{C}$ is stochastic. From (3.1) we require $0 \leq u \leq 1$ and $0 \leq u-\lambda \leq 1$. That is

$$
\begin{equation*}
\max (0, \lambda) \leq u \leq \min (1,1+\lambda) \tag{3.38}
\end{equation*}
$$

When $0 \leq \lambda<1,(3.38)$ is the same as (3.37) so that $\prod_{0}^{\infty}\left(Q_{0}^{s}\right)$ is stochastic if and only if $\underset{\sim}{C}$ is stochastic $(0 \leq \lambda<1)$.

When $-1<\lambda \leq 0$, the situation differs. From (3.38) we obtain

$$
\begin{equation*}
0 \leq u \leq 1+\lambda \tag{3.39}
\end{equation*}
$$

and (3.37) may hold without (3.39) being satisfied. That is, $\prod_{0}^{\infty}\left(\underline{Q} \mathrm{C}^{s}\right)$ is stochastic but $\underset{\sim}{C}$ is not, provided $-1<\lambda \leq 0$ and

$$
\begin{equation*}
-1<\lambda \leq u<0 \quad \text { or } \quad 0<1+\lambda<u \leq 1 \tag{3.40}
\end{equation*}
$$

We now show that (3.36) is stochastic whenever $-1<\lambda \leq 0$. We need the
following:
LEMMA 3.1. Whenever $\lambda<0$, the inequality
$\lambda \leq u \leq 1$,
holds, where λ is the non-unit characteristic root of C and u its
leading element.

Proof. From (3.2) and (3.3), we have that
(3.42) $u=\frac{b c-(1-a)(1-d)}{a+b-1}$

$$
\begin{aligned}
& =\frac{b c-(1-a)(1-d)+c(a-1)+c(1-a)}{a+b-1} \\
& =c+(1-a) \lambda .
\end{aligned}
$$

Similarly we may write

$$
\begin{equation*}
u=b \lambda+(1-d) \tag{3.43}
\end{equation*}
$$

Thus $u=\lambda+c-a \lambda \geq \lambda$, and $u=1-d+b \lambda \leq 1$, when $\lambda<0$, from (3.43). Hence the result. (qed)

Since (3.41) and (3.37) are the same, we find that for $-1<\lambda \leq 0$, the limit (3.36) is always stochastic. In addition we find the following more powerful result:

LEMMA 3.2. Whenever $-1<\lambda \leq 0$, the matrix QC $^{\mathbf{S}}$ is stochastic for all $s=0,1,2, \ldots$ where λ is the non-unit characteristic root of \underline{C}.

Proof. Using (3.9) it suffices to prove that
(3.44)

$$
0 \leq u_{s}+\lambda^{s}(a-1), \quad u_{s}-b \lambda^{s} \leq 1
$$

Since λ is symmetric in a and b it suffices to show the first of the
inequalities in (3.44). From (3.7) and (3.42) we may write this as

$$
\begin{equation*}
0 \leq c-\lambda a+\lambda^{s}(a-c) \leq 1-\lambda . \tag{3.45}
\end{equation*}
$$

The middle quantity may be written $c\left(1-\lambda^{s}\right)-a \lambda\left(1-\lambda^{s-1}\right)$ which is component-wise nonnegative. To see the right-hand side of (3.45) we note that $c\left(1-\lambda^{s}\right)-a \lambda\left(1-\lambda^{s-1}\right) \leq 1-\lambda^{s}-a \lambda\left(1-\lambda^{s-1}\right)=1-\lambda+$ $\lambda(1-a)\left(1-\lambda^{s-1}\right) \leq 1-\lambda$. (qed)

We summarize the above results as:
THEOREM 3.5. Let λ be the non-unit characteristic root of the causative matrix C. Whenever $0 \leq \lambda<1, \operatorname{lif}_{0}\left(\underline{Q} C^{s}\right)$ is stochastic if and only if $\underset{\sim}{C}$ is. Whenever $-1<\lambda \leq 0, \underline{Q C}^{s}$ is stochastic for all $s=0,1$, . .,

$$
\begin{equation*}
0 \leq u \leq 1+\lambda, \tag{3.46}
\end{equation*}
$$

where u is the leading element of $\underset{\sim}{C}$.

From the above we note that when $0 \leq \lambda<1,{ }_{s} \mathbb{I N}_{0}^{\left(Q^{s}\right)}$ is not stochastic whenever $\underset{\sim}{C}$ is not stochastic. This occurs if and only if

$$
\begin{equation*}
0<\lambda<1<u \quad \text { or } \quad 0<u<\lambda<1 \tag{3.47}
\end{equation*}
$$

In these cases we find that ${\underset{\sim}{\mathrm{Q}}}^{\mathrm{S}}$ tends monotonically to a matrix which is not stochastic and which is also the limit of ${\underset{\sim}{r}}$. We can, therefore; find the largest value of s such that $\mathcal{Q C}^{s}$ is a stochastic matrix.

THEOREM 3.6. Let λ be the non-unit characteristic root of the causative matrix C, and u its leading element. Then $\mathcal{Q C}^{\mathbf{S}}$ tends monotonically to a limit matrix which is not stochastic, and $\underline{Q C}^{s}$ is a stochastic matrix, provided

$$
\begin{equation*}
\lambda^{s}(c-a) \geq b \lambda-d ; \quad 0<\lambda<1<u \tag{3.48}
\end{equation*}
$$

$$
\begin{equation*}
\lambda^{s}(d-b) \geq a \lambda-c ; \quad 0<u<\lambda<1, \tag{3.49}
\end{equation*}
$$

when $a+b-1>0$, where Q has diagonal elements a and b and $Q C$ has diagonal elements c and d, and provided

$$
\begin{array}{ll}
\lambda^{s}(b-d) \geq b \lambda-d ; & 0<\lambda<1<u \\
\lambda^{s}(a-c) \geq a \lambda-c ; & 0<u<\lambda<1 \tag{3.51}
\end{array}
$$

when $a+b-1<0$.

Proof. When $0<\lambda<1<u$, we have from (3.42) that $1<u=c+(1-a) \lambda<$ $c+1$ - a. Hence $c>a$, and similarly from (3.43) we find $b>d$. The $(1,1)$ and $(2,1)$ elements of $\underline{Q C}^{\text {s }}$ from (3.9) and (3.7), are respectively (3.52) $\frac{u-\lambda-\lambda^{s}(c-a)}{1-\lambda} ; \quad \frac{u-\lambda-\lambda^{s}(b-d)}{1-\lambda}$,
which both increase monotonically to $[(u-\lambda) /(1-\lambda)]>1$ when $u>1$. When $a+b-1>0, \lambda<1$ implies $c+d<a+b$ so that, $c-a<b-d$. In this case the first quantity in (3.52) is the larger and does not exceed 1 provided (3.48) holds. When $a+b-1<0$, the second quantity in (3.52) is the larger and does not exceed 1 provided (3.50) holds. The proof of (3.49) and (3.51) follows similarly. (qed)

To compute values of c and d such that (3.48) through (3.51) hold for fixed a, b and $s=2,3$, . ., we transform the inequalities to the (λ, u)-plane. For (3.48) we obtain

$$
\begin{equation*}
u \leq 1+\frac{\lambda^{s}(1-a)(1-\lambda)}{1-\lambda^{s}} \tag{3.53}
\end{equation*}
$$

when $a+b-1>0$ and $0<\lambda<1<u$. When $s=1$ (3.53) reduces to $u \leqslant 1+\lambda(1-a)$ or $c \leq 1$ using (3.42). Similarly for (3.49) we obtain

$$
\begin{equation*}
u \geq \lambda-\frac{\lambda^{s}(1-b)(1-\lambda)}{1-\lambda^{s}} \tag{3.54}
\end{equation*}
$$

when $a+b-1>0$ and $0<u<\lambda<1$. When $s=1$ (3.54) reduces to $\mathrm{u} \geq \mathrm{b} \lambda$ or $\mathrm{d} \leq 1$ using (3.43).

To find the values of c and d for fixed a, b and $s=2,3, \ldots$, we increment λ from 0 to 1 and find the appropriate bound for u. We then solve for c and d using

$$
\begin{align*}
& \mathrm{c}=\mathrm{u}-(1-\mathrm{a}) \lambda, \tag{3.55}\\
& \mathrm{d}=1-\mathrm{u}+\mathrm{b} \lambda, \tag{3.56}
\end{align*}
$$

which follow directly from (3.42) and (3.43) respectively.
We illustrate the above relationships for the particular case of $\mathrm{a}=.6$ and $\mathrm{b}=.9$. In Figure 3.1 we show the unit square in the (c, d) plane truncated by the diagonal lines denoting $\lambda=-1 \quad\left(c+d=\frac{1}{2}\right)$ and $\lambda=+1 \quad\left(c+d=1 \frac{1}{2}\right) . \quad$ The lines $u=0 \quad(4 d+9 c=4), \quad u=1$ $(4 d+9 c=9), u=1+\lambda \quad(6 d+c=1)$, and $u=\lambda \quad(6 d+c=6) \quad$ form a parallelogram(1)within the above region, with corners (1,0), (.4,.1), (.6,.9), and (0,1) 。 Within this parallelogram $\underset{\sim}{\mathcal{C}}$ is stochastic and so is QC^{s} for all $\mathrm{s}=1,2 \ldots$. . The region below and to the left of the parallelogram but above and to the right of $\lambda=-1$ forms two triangles(2a) and (2b) in which $\underset{\sim}{\mathcal{C}}$ is not stochastic but ${\underset{\sim}{C}}^{s}$ is stochastic for all $s=1,2$, The reflection of these two triangles about $c+d=1$ gives the remaining regions(3a)and (3b) where QC^{s} converges; the convergence, however, while monotonic, is to a nonstochastic limit and so in triangles (3a) and (3b) is stochasticonly for s such that (3.48) and (3.49) are satisfied. The triangle (3a) is enlarged in Figure 3.2, where the bounds such that QC^{s} is stochastic are shown for $\mathrm{s}=2,3,4,10$. In the region to the right of the curve labelled $s=s_{0}$, but within the
triangle, $Q^{Q^{s}}$ is stochastic only for $s=1,2, \ldots, \ldots s_{0}-1$. We note that QC^{2} is not stochastic for just over half the region given by the triangle, while QC^{10} is not stochastic for almost all the region. The curves in Figure 3.2 were found by computing (3.53), (3.55) and (3.56). The limit point at $\lambda=1$ was found by substituting $1+\lambda+\ldots+\lambda^{s-1}=\left(1-\lambda^{s}\right) /(1-\lambda)$ into (3.53) and then setting $\lambda=1$ to yield

$$
\begin{equation*}
u \leq 1+(1-a) / s \tag{3.57}
\end{equation*}
$$

The corresponding values of c and d follow from (3.55) and (3.56) as
(3.58)

$$
c=a+(1-a) / s
$$

$$
d=b-(1-a) / s
$$

Figure 3.1. Regions in the ($c, \mathrm{~d}$) plane for stochastic QC^{s}.

Region	\underline{C}	QG $^{\mathrm{s}}$ stochastic
1	stochastic	all s
$2 \mathrm{a}, 2 \mathrm{~b}$	not stochastic	all s
$3 \mathrm{a}, 3 \mathrm{~b}$	not stochastic	s bounded by (3.48/49)

Figure 3.2. A region in (c, d) plane where QC^{s} is stochastic only for $\mathrm{s}<\mathrm{s}_{\mathrm{O}}$.

4. References

Ehrenberg, A. S. C. (1965). An appraisal of Markov brand-switching models. J. Marketing Res., 2, 347-362.

Ehrenberg, A. S. C. (1968). On clarifying M and M. J. Marketing Res., 5, 228-229.

Hajnal, J. (1956). The ergodic properties of non-homogeneous finite Markov chains. Proc. Cambridge Philos. Soc., 52, 67-77.

Hajna1, J. (1958). Weak ergodicity in non-homogeneous Markov chains. Proc. Cambridge Philos. Soc., 54, 233-246.

Harary, Frank, and Lipstein, Benjamin (1962). The dynamics of brand loyalty: a Markovian approach. Operations Research, 10, 19-40.

Harary, Frank, Norman, Robert Z., and Cartwright, Dorwin (1965). Structural Models: An Introduction to the Theory of Directed Graphs. Wiley, New York.

Householder, Alston S. (1964). The Theory of Matrices in Numerical Analysis. Blaisde11, New York.

Hyslop, James M. (1954). Infinite Series. (Fifth Edition.) Oliver and Boyd, Edinburgh and London.

Kemeny, John G., and Sne11, J. Laurie (1960). Finite Markov Chains. Van Nostrand, Princeton.

Linnik, Yu. V. (1948). Inhomogeneous Markov chains. (In Russian.) Dok1. Akad. Nauk SSSR, 60, 21-24.

Linnik, Yu. V. (1949). On the theory of inhomogeneous Markov chains. (In Russian.) Izv. Akad. Nauk SSSR, Ser. Mat., 13, 65-94.

Lipstein, Benjamin (1965). A mathematical model of consumer behavior. J. Marketing Res., 2, 259-265.

Lipstein, Benjamin (1968). Test marketing: a perturbation in the market place. Management Science Ser. B, 14, 437-448.

Massy, William F., and Morrison, Donald G. (1968). Comments on Ehrenberg's appraisal of brand-switching models. J. Marketing Res., 5, 225-228.

Mott, J. L. (1957). Conditions for the ergodicity of non-homogeneous finite Markov chains. Proc. Royal Soc. Edinburgh Sect. A., 64, 369-380.
Mott, J. L. (1959). The central limit theorem for a convergent non-homogeneous finite Markov chain. Proc. Royal Soc. Edinburgh Sect. A., 65, 109-120.
Sarymsakov, T. A. (1953). On the ergodic principle for non-homogeneous Markov chains. (In Russian.) Dokl. Akad. Nauk SSSR, 90, 25-28.

Sarymsakov, T. A. (1956). On the theory of inhomogeneous Markov chains. (In Russian.) Dok1. Akad. Nauk UzSSR, 8, 3-7.

Sarymsakov, T. A. (1958). Inhomogeneous Markov chains. (In Russian.) Dok1. Akad. Nauk SSSR, 120, 465-467.

Sarymsakov, T. A. (1961). Inhomogeneous Markov chains. Theory Prob. Appl., 6, 178-185.

Sarymsakov, T. A., and Mustafin, Kh. A. (1957). On the ergodic theorem for inhomogeneous Markov chains. (In Russian.) Trudy Sredneaziatskil Gosudarstvennyi Universitet Tashkent, Ser. Fiz.-Mat. Nauki, 74 (15), 1-37.

Styan, George P. H., and Smith, Harry, Jr. (1964). Markov chains applied to marketing. J. Marketing Res., $\underset{\sim}{1}(1)$, 50-55.

5. Acknowledgements.

This paper has benefited from the advice and encouragement of Professors T. W. Anderson and Ronald A. Schaufele, as well as David G. Doren. The authors thanks Miss Susan Kirkpatrick and Gerald C. Duchaine, Jr., for typing the manuscript, and David J. Swenson for drawing the diagrams.

[^0]: * Cesaro/Euler sum.

