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1. Limitations of Stationary Chains • 

The field of Markov chains applies to a wide range of subject 

matter. The.assumption that the transition probabilities of a 

Markov chain be stationary leads to a rich body of theorems, which 

serve as a good first approximation to the real world. There are, 

nevertheless, very many real situations to which the model of a 

stationary chain {Markov chain with stationary transition probabilities) 

is inappropriate. 

This paper develops a matrix approach [cf. Lipstein (1965, 1968)] 

for studying nonstationary chains. We explore the notion of 

causative matrix which, when multiplying a transition probability 

matrix, yields the itmnediately subsequent one. The special model 

involving constant causative matrix is studied in detail. 

The general case of nonstationary chains has received only 

little attention in the literature. Hajnal (1956, 1958), Mott 

(i957, 1959) and Sarymsakov (1961) appear to be the only papers in 

English. Linnik (1948), (1949), Sarymsakov (1953), (1956), (1958) 

and Sarymsakov and Mustafin (1957) study the subject in Russian. 

All of these papers consider nonstationary chains from a point 

of view different to ours. We show that the basic descript~ve 

characteristics of nonstationary chains can be captured and described 

by means of a sequence of causative matrices. 

Nonstationary chains are ·characterized by either convergent 

or divergent behavior. When convergent the c~ain is tending toward 

complete independence as represented by a Bernoulli process • 



We contend that nonstationary chains1 in general can be studied 

more effectively through identification of a functional relationship 

between their causative matrices. The constant chain constitutes 
! 

·, I' . . 

a special case of such a relationship. Higher order nonatationary 

chains may be susceptible to systematic study through the derivation 

of higher order causative matrices analogous to higher order differences 

or differentials. I 
I A stationary chain is a stochastic p
1
rocess containing a finite 
I 

number n of states E1, E2 , ••• , En suci that 

(a) there is :an initial distributio~ (a1, a2 , ••• , an), where 
, I . 

~ is the probability that the first· state is Ek, and 
l 

(b) there is a transition probability matrix 

I 
I 
I 
! 

P11 P12 ••• Pln 

P21 P22 ... P2n 
p= , . . 

• • • . • • 

... 
where pij. is the conditional probability of Ej occurring given 

that E1 is the present state. In view 9f {a) and {b), we have 

o·~ a1 ~ 1 and I: ai = 1 

0 ~ pij ~ 1 and for all i, I: ~ij = 1. 
j ! 

This transition probability is stationary when it is constant 

over time; that is if Ej occurred at time t and Ei at t-1, 
i 

is stationary when independent of t. As defined above, a 

chain is both finite and discrete; 
I 

it has a finite number n of 

- 2 -

I 
~ 

I 
la. 

~: 

i 

u 



-

-

-

..., 

states and the time intervals are discrete. 

Real world situations in which the transition probabilities 

vary over time include epidemiology and learning theory [cf. Harary· & 

Lipstein (1962)]. Much criticism [cf. Ehrenberg (1965), Massy & 

Morrison (1968), Ehrenberg (1968)] has been leveled at applying 

stationary chains in such situations. The change in empirical 

stimuli over time results in changes in the probability values. 

There are many other situations in which a stationary chain is 

applied, even though it is not realistic, since it is essentially 

the only way which can be handled analytically. 

In a nonstationary chain, after the initial probability factor 

has been invoked, the probabilistic situation is completely described 

by a sequence of transition matrices !J_, ~, !..3, •••• Each of these 

ma.trices !.«: contains the conditional probability distributions 

which hold at time t, given the status at time t-1. In the 

stationary case, all these transition matrices ~ are the same. 

If at least two of the transition ma.trices are different, then the 

chain is nonstationary. Another kind of special case results from 

those situations in which the general transition matrix at time t, 

namely te, has as its entries pij = fij(t). In this.case, every 

entry is a function of t. In this case the probabilistic behavior 

of the entire nonstationary process is known when f is given. 

But there are many situations in which only the first few 

transition matrices ~ are known and the problem is to predict the 

future behavior of the chain. This is the problem of real interest 

in studying chains, both stationary and nonstationary. In the case 

of stationary chains, the prediction of future behavior of the events 

- 3 -



is well known [cf. Kemeny and Snell (196,0), Styan & Smith (1964)). 

The graphical structure of the chain contributes additional 

information as mentioned in Harary and Lipstein {1962), and Harary, 

Norman, & Cartwright (1965). Our co~cer'n is to devise methods for 
• I 

a similar treatment of nonstationary chains. 
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2. Causative Matrices. 

Consider a nonstationary chain as given by a sequence of 

transition matrices t 1, ?e, r.,
3

, •••• In order to describe the 

change occurring from each of these transition matrices to the 

next, we introduce an accompanying sequence of matrices £1, fe, ... , 
which will be called causative matrices defined by the following 

equations: 

(2.1) 

Each causative matrix can be immediately expressed in terms of 

the transition matrices, provid~d they are a11 nonsingular: 

(2.2) £1 = ii~, and in general, £c = t;~+i · 

We emphasize that the causative matrices· C are merely devices 
---t 

for describing the change involved between each transition matrix and 

the next one. 

In these terms, a stationary chain is that special case obtained 

by taking every ft=!, the identity matrix of order n. Of course 

when all the transition matrices are different, none of the causative 

matrices will be the identity. We note that the assumption that 

every f-t is nonsingular is not a strong restriction of generality. 

The reason is that even a small change in the values of the entries 

of a singular matrix will result in nonsingularity [cf. Householder (1964)]. 

To illustrate, given the two stochastic matrices: 

- 5 -



( 

.7 O 

t1 = .2 .8 
.1 0 

we find £1 = ti~ = ( 
1.2 

--3 
.2 

(

' .9 

~ = 0 

.3 

0 

1.0 

0 

- .2 ) 
.3 
.a 

I 

0 

.8 
0 

.1 ) 

.2 

.7 

It is not entirely coincidental that the causative matrix £1 in 

this example resembles the identity matrix in the sense that the 

diagonal entries are near 1 and the other entries near O. 

The causative matrices £c: have all, been those which multiply 

the probability matrix !-t at each time stage t on the right to 

obtain the next matrix f.c:+i· There is no! priori reason ~or choosing 

right multiplication for this purpose rather than left. Thus we may 

refer to the matrices ft as right causative matrices and.introduce 

the corresponding sequence E,t of left causative matrices induced 

by the nonstationary chain whose probability matrix sequence is 

,E.1 , f.e, ... , by the equations 

(2.3) 

Analogously to (2.2) we have when each !t is nonsingular 

(2.4) -1 
.P.1 = !.e!.1 

· -1 -1 
Ee = t3"£e ' • • • ' ~ = lt:+1?.t • . • . 

The left and right causative matrices are different in general. Just 
I 

as the action on a given matrix M by a permutation matrix A on - -
the left,~, permutes the rows of l!, and on the right,~, permutes 

its columns, a corresponding effect is found with left and right 

- 6 -
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causative matrices emphasizing the rows and columns respectively. 

In the language of binary relations., this phenomenon is known as 

"directional duality" [cf. Harary, Norman and Cartwright {1965)]. 

An example involving 2 x 2 matrices will illustrate this point: 

( 

.8 

.2 

.2 ) _ ( .9 , !'.e -

.8 .2 

= ( _ 1.13 

.03 

.1) 

.8 

-1 ( 01.17 
= Ee!.1 = 

On the other hand, when the roles of ,t
1 

and, fe are interchanged 

in this 2 x 2 example, so that 

.1) and 

.8 . 

we find that 

.11) 

.97 
and -1 ( .86 

Q.1 = !e!.1 = O 

We will use right causative matrices for the remainder of this 

section. 

By a (right) constant chain we will mean a nonstationary chain 

t 1 , Ee,••• in which all the (right) causative matrices are eq¥al; 

we will call this matrix c. In this case we verify at once that -
(2.5) s 

P =PC, s = O, 1, •••• ----t+s ---t-

Since £ = F_~~ = ~1?_
3

, it follows at once that r
3 

is expressible 

in terms of !i and ~ by the equation 

- 7 -



In genera~,- we find that 

(2.6) -1 
~+l = !t:!t:-1~. 

Therefore every transition matrix !c: of a constant chain may be 

expressed in terms of ~ and ~ by the equations 

p = :;;.,,c 
= p (P-1 p ,t-2. 

-2 -1 -~ ' 
t = 2, 3, ... 

By definition of a constant chain, every transition matrix is determined 

C are given, and in fact P_t = P Ct-l -1:.... as soon as ti and 

follows from (2.5). Considerable information about a constant chain 

can be obtained from C alone. -
To ease the algebra we set !_1 = !l· Then if ~ (u, v) denotes 

the transition probability matrix from time periods u to v, we 

have 

(2.8) 

where 

Hence 

(2.9) 

P (t +r, t +r+l) 
- 0 0 

r = O, 1, ••• , 

Q=Pl =P (t, t +1). 
- - - 0 0 

The starting point 

P {t, t +r+l) 
- 0 0 

= Q •QC • Q c2 • 
....... -- ..._.., --- --- . . . 

= T -r ,. 

t 
0 

is arbitrary. 

say, is the.transition probability matrix from time periods t to 
0 

t +r+l. The limiting properties of a constant chain depend on the 
0 

convergence or divergence of 2~ and T , as r ~ m. Lipstein (1965) 
- -r 

r conjectured that £_ diverged only when the largest characteristic root 

of C exceeded one in absolute value, and implied that if all roots of 

C equalled unity, then £. = I. That this is not so will be illustrated 

in section 3 for the case of 2 states. 
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A causative matrix is similar to a stochastic matrix, in that it 

has unit row sums; it may, however, have negative elements. 

LEMMA 2.1. Let Q and R be stochastic matrices of order n. Then if -- - -- - ---------- --- -----
g_ is nonsingular, the causative matrices 

(2.10) C D 
-1 

= ~ g_ , 

have~~ of unity but may have negative elements. 

Proof~ Let e = (1, 1, ••• , 1) 1 be a column vector with each com-

ponent unity. Then g_=._ Re Hence 
. -1. 

and = = e. Q e = e so - - - -
C g_-1_ =- -1 Similarly De Examples of C e = = Q e = e. = e. - - - --
and D with at least one element negative were given above, just below 

( 2 • 4) . ( qed) 

It follows from Lemma 2.1 that a causative matrix has a character­

istic root of unity. When all other roots are less than one in absolute. 

value Cr converges to et' as r ~ ~, where t' is the left~hand 

characteristic vector of C corresponding to the unit root {the right-

hand vector is ~- Lipstein (1965) suggested that in such a case T 
-r 

also converged to :_~'· This is immediate only for £_ stochastic; 

it may happen that C is not stochastic but T and t' 
-r 

have all 

elements nonnegative. In this latter case we have been unable to prove 

in general that T and Cr have the same limit, since the number of 
-r 

component matrices in the product T increases with 
-r 

r. In section 

3 we study the situation for the two state case. The results of 

Hajnal (1956, 1958), Mott (1957, 1959), and Sarymsakov (1961) do not 

seem. to assist in obtaining more general results. 

Another question taken up in section 3 is when does T cease to 
-r 

be stochastic (£_ nonsto·chastic )? That is, what values can C take on 

so that the chain may have a constant causative matrix? 

- 9 -



3. Two-state Nonstationary Chains 

In this section we assume that the nonstationary chain has two 

states with constant causative matrix 

(3.1) 

thus 

(3.2) 

and 

(3.3) 

C = ( u, 1-u ) , 
u-1, 1-u+).. 

= ~ \ = ( a, 1-a ) -1 ( c , 1-c ) 

1-b, b 1-d, d 

u = be - ( 1-a)(l-d) 
a+b-1 

tr(R)-1 c+d-1 1 = a+b-1 = -
tr(g_}-1 

= 
a+d-ad+bc-1 

a+b-1 

is the non-unit characteristic root of J. It follows immediately that -
C8 has characteristic roots· 1 and As, so that tr{C8

) -
Hence we may write 

(3.4) s = 1, 2, • 

= 
s 

1 + A. • 

. . ' 

where we take u1 = u. To evaluate u we find from cs+l = ccs = c 8 c 
·s' - - -

that 

(3.5} s s 
u -A +UA. s = U-A+AU; s s = 1, 2, •••• 

When A. = 1·, we obtain u 1 = u -l+u, while otherwise s+ s 

(3.6) u = [u->,...+>,...
8

{1-u)]/(1->,...). s 

Hence 

I s(u-1)+1; A. = 1 
(3.7) u = . s u->,...+>,...8 (1-u) 

l A. /: 1 1->,... 

From this we obtain: 

- 10 -
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THEOREM 3.1. The limit of us is given by 

Lim u 
s s ... 00 

u->... =--1 - >.. , -1<>..<l 

= 1; >.. = 1, u = 1 

= + 00 or is undefined, otherwise. 

THEOREM 3. 2. 

1 

When ~ = -1, u is both Cesaro- and Euler-summable 
s ------

~ 2(u+l). 

Proof. Let 
1 n 1 n 

t = - Eu = -2n E (u + 1 + (-1)
8

(1-u)). 
n n s=l 8 s=l 

Then 

Thus 

tn = u+21 + (1-u) ~ (-1)8 
2n s=l 

even 

u+l (1-u) 
=2 - 2n 

t ... .!(u+l) 
.n 2 

Let 

as n --+ 00, 

n odd. 

80 U 
s 

is Cesaro-summable to 1 
2(u+l). 

n 
w = -

2
1 E (n)kn-s(l-k)s[u + 1 + {-1)8 +1{1-u)], for some O < k < 1. 

n 
O

s s= 

Then 

u+l (1-u) n 
= 2 - 2 (2k-l) • 

- 11 -



1 Since O < 2k-l < 1, w n ... 2(u+l) 

summable to ½Cu+l). (qed"} 

as n .... co, so u 
8 

is Euler-

THEOREM 3. 3. When A= +l, u I= 1, u s 
is neither Cesaro- nor Euler-

summable. 

Proof. Let 
1 n 1 n 

t = - E u = - E (s(u-1) + 1). 
n n scl 8 n s=l 

Then t = 1 (n+l)(u-1) 
n + 2 

which diverges as n ... co. Let 

n 
wn.= !: <:)kn-s(l-k)8 [(s+l)(u-1) + 1]; 0 < k < 1. 

s=O 

Then 

m . 
= u + (u-1)[ t c;)km-t(l-k)t](l-k)n; m = n-1, t = s-1, 

t=O 

which diverges as n - co. (qed) 

COROLLARY 3.1. The limit of £8 i~ given by 

Lim £8 
= ~(u-A, 1-u~/(l-A), 

s- 00 

when -1 < A < 1. 

Proof. Directly from Theoran 3.1 and (3.7). (qed) 

COROLLARY 3.2. ~ A =-1, £s is Cesaro- alld Euler-summable to 

COROIJ.,ARY 3.3. When A = +1, s C is neither Cesaro- nor Euler-summable 

unless u = 1 in which case Cs I • ...... 

- 12 -
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We now turn out attention to the limit of (3.6)- as r tends 

to co. We obtain 

THEOREM 3.4. When - 1 < A. < +l and -1 -~ a+b-1 < 1, the limit 

co 

(3.8) Lim E_(t, t+r+l) = n (~8
) = Lim £8 

= .!:_(U-A., 1-u)/'(l-A.). 
r .... co s=O s-+ co 

Proof. From ("3.2) and (3.7), 

(3.9) 9.£.s =[us+ ~s~a-i), 1 - us - ~s(a-1~] 
u - b')... , 1 - u + bA. s s 

=A +')...
8

B say. -s _, 

Then 

!s~ = ~ which is idempotent rank one 

BA = 0 
~ -

( 3.10) AB= (b - u (a+b-l))e(-1, 1) 
-s- s -

( 3.11) s ( )s-1 B = a+b-1 B - -
When -1 < a+b-1 < 1, then 

Lim !_
8 

= Q• 
s-+ 00 

We claim that 

r 

(3.12) F_(t, t+r+l) = n (9£8
) 

s=O 

where ~l = !_, u0 = 1. 

(s = 1, 2, ••• ). 

r+l 1 ( ) 
= t A.V: 2r-t+l A Bt 

-r-t-, 
t=O 

- 13 -



To prove {3.12) we see that for r = 1, 2, 3 we have 

(~ + p)(!1 + X.!,) = !.1 + ~ + X.!2 {r = 1) 

(~ + !H!1 + X.!H¾e + A 2!) = ~ + "-2~1! + X. 1+2~2 + "-1+2!3 ( r = 2) 

(~ + !H!1 + X.!_)(~ + A 2p_)(~3 + A 3!) = !3 + A 3 !el + A 2+ 3 !1!2 

+ x.1+2+3~3 

+ Al+2+3!4 (r = 3). 

Since 
r r-t 1 1 
Ek - E k = ~ [r{r+l) - (r-t){r-t+l)] = ~ t(2r-t+l) 

k=O k=O 

we can now prove {3.12) by induction by verifying that 

r+l 1 ( ) E X.~ 2r-t+l A Bt(A + x,r+lB) 
-r-t- -r+l -t=O 

r+2 1 ( ) 
= E x,2'1 2r-u+3 A Bu; um t+l. 

u=O -r-u+l-

We investigate the limit of (3.12) by rewriting it as 

(3.13) 

From (3.9) and Theorem 3.1 we have that A ~ e(u-A, 1-u)/(l-A) --r 

-1 
(EksO), 
k::O 

as r ~ ~. To establish the full result we need only prove that the 

second term in (3.13) converges to zero. We may write it as 

(3.14) 
r+l 1 ( ) 
E A2 t 2r-t+l A B {a+b-l)t-1 

-...r-t­t=l 

using (3.11). Whence using (3.10) we may write it as 

- 14 -
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(3.15) [ ~ A½t(2r-t+l)(a+b-l)t-l(b _ "\, (a+b-l))](-1 1) 
t=l -t . -1 1 

+ A~(r+l)(a+b-l)r!• 

The last term clearly converges to zero since -1 <A< 1 and 

-1 < a+h-i < 1. To establish the full result we need only now 

prove that the expression in square brackets converges to zero. 

We have 

~ l'l½t:{2r-t+l)( b l)t (lu-Aj+IAlr-tll-ul) 
+ L, I\ a+ - ' 1-X 

t=l .. 

... 0 as r ... co. (qed) 

COROLLARY 3.4. ~ >-.. = 1 and u = 1, ~ £ = !, ~ when -1 < a+b-1 < 1, 

then 00 

Lim t{t, t+r+l) = n 2, = Lim 2,r+l = !_(1-b, 1-a)/{2-a-b) • 
r ... co s=O r--t :00 

COROLLARY 3.5. When >-.. = 1 and u ·./= 1 (-1 < a+b-1 < l] . ~ 

t(t, t+r+l) diverges. 

Proof. In this case we can write (3.14) as 

(3.16) 
r+l r+l . t L 

!r + I: ~-t!t = !.r + t !r-t(a+b-1) -~ 
t=l t=l 

· r t 1 · 
= A + {a+b-l)rB + I: (a+b-1) - (b-(a+b-l)((u-l){r-t)+l))e(-1,1). 
~ - ~l -

- 15 -
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The (1, 1) element is from (3.9): 

r t 1 r t 
r(u-l)+l+(a+b-l)r(a-1) + (a-1) E (a+b-1) - + (u-1) E (a+b-1) (r-t) 

t=l t=l 

r t r t r . t 
= r(u-1) E (a+b-1) +(a-1) E (a+b-1) -(u-1) E t{a+b-1) +i 

t=O tmO t=l 

= [r(u-l)+(a-1)](1-{a+b-i)r+l)(2-a-b)+(2-a-b)2 -(u-l)(a+b-l+r(a+b-l)r+2_(r+l)(a+b-l)r+l) 

(2-a-b)2 

= (2-a-b)-2 ((2-a-b)(l-b)-(a-l)(a+b-l)r+l(2-a-b) 

+ (u-l)[r(2-a-b)-r(a+b-l)r+l(2-a-b)-a-b+l-r(a+b-l)r+2 

+ (r+l)(a+b-l)r+l]} 

. _ (i-b)+r(u-1) + (a+b-l)r+l((l-a)(2-a-b)+(u-1))+(1-a-b)(u-1) ~ 
00

• 

- 2-a-b (2-a-b )2 ( qed) 

COROLLARY 3.6. ~ a + b = 2 (a+b-1 = 1) ~ 9,_ = ! and ~ 

-1 <A.< 1, ~ limit 

00 

Lim !_(t, t+r+l) = Il £8 = Lim £r(r+l)/2 = ~(u-A., 1-u)/(l-A.). 
~ co S=O ~ co 

COROLLARY 3.7. When a+ b = 0 (a+b-1 = -1) then a= b = 0 and 

when -1 <A.< 1, the limit 

00 

Lim f_(t, t+r+l) = Il 9£8 
= Lim £,8 = !_(u-A., 1-u)/(1-A.). 

r ... co s=O s~ co 

Proof. Theorem 3. 4 holds through (3 .13) which we can write as 

(3.17) 

- 16 -
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The first term of (3.17), is by (3.9) equal to .!:,(ur, 1-ur) and 

the (1, 1) element of this converges to (u-~)/(1-~) as required. 

We now prove that the other terms in (3.17) converge to zero and 

the corollary is established. The third term of (3.17), using (3.11), 

is 

(3.18) 

and the 

~½r(r+l)(-l)r(-1' 1) o, 0 

(1, 1) element thereof clearly converges to zero. The 

second-term of (3.17), using (3.11) and (3.10),is 

(3.19) . ~ A½t{2r-t+l)A Bt = ~ A½t{2r-t+~){-l)t-1A B 
-t"-t- -t:-t-t=l t=l 

_ ~ ,½t(2r-t+l)(-l)t-lu. e(-1, 1). 
- ~ A r-t-

t=l 

The (1, 1) element is 

(3.20) 

Let 

and 

since 

(3.21) 

s = r 

~ x½t(2r-t+l)(-l)t{u-A+Ar-t(l-u))/(l-X) 
t=l 

= ~ ~ A½t(2r-t+l)(-l)t + 1-u ~ A½t(2r-t+l)+r-t(-l)t. 
1-X t=l 1-X t=l 

r . 
:E A½t(2r-t+l)(-l)t. Then s

1 
= -A, s

2 
= -A2 (1-A) = -A2 (1-tS

1
) 

t=l . 

r 1( ) . r'1c ) 
8 r = Ar E A~ 2r-t+l -r(-l)t = Ar(-l+ EA~ 2r-t+l -r(-l)t) 

t=l t=2 

r-1 1 ( ) 
= Xr(-l) + E x2'1 2r-u-l (-l)u+l 

U=l 
u = t-1. Thus 

s = -Ar(l + s 1), r = 2, 3, •••• r r-

- 17 -



Now 1s1 1 = 1'., ls-2 1 = l1'.l 2 ll+s11 :S 11'.1 2 + 1'i.1 3 :S 211'.1 2
, and 

(3.22) lsrl :S 11'.lr + 11'.lrlsr-11 

so that by induction 

(3.23) lsrl :S rl1'.lr• 

00 

Consider the infinite series ~ rl1'.lr. Then by d1Alembert 1 s test 
r=l 

this series is convergent, since 

I 1r+1 
lim (r+l) ~ = lim [ r;l] IA. I = IA. I < 1 · 

[cf. Example p. 44 of Hyslop ( 1954) ] • Hence r I A. I r -+ 0 . and so 

!s.rl -+ 0 [cf. Hyslop (1954) p. 30 Theorem 8). Thus the first term of 

(3.20) converges to zero. The second term is (1-u)/(1-A.) times 

(3.24) ~ A.½t{2r-t+l)+r-t(-l)t = 

t=l 
r~l A.~{2r-u+l)(-l)u, u = t+l 
1.1=2 

and so also converges to zero. This completes the proof. (qed) 

COROLLARY 3. 8. 

and the limit 

00 

When a+ b = 2 (a+b-1 = 1, a= 1, b = 1) 

(3.25) n 9£.s = Lim Cr(r+l)/2 
S=O r-+ OO - • 

then Q a I, - - -

_ 0 1 
When A. = 1, £ = !. ~ ( 3. 25) = 1 • ~ A. = -1; c, d = O; £ = ( 1 0 ) 

r 
~ n g£_8 

= t(t, t+r+l) is Euler- ~ Cesaro-sumnable ~ ½ !=_'. 
S=O 

COROLLARY 3.9. ~ a + b = 0 {a+b-1 = -1; a, b = 0) ~ 

9_ = (~ ~), U = 1 - d, "A. = 1 - C - d • ~ A. = 1, £_ = !., ~ limit 

- 18 -
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r 

Lim n 9£s = Lim g_r(r+l)/2, 
r .... co s=O ~ co 

r 

and n g£8 _!!. Euler-~ Cesaro-summable ~ 
S=O O 1 nr s -- nr £s+l A = -1, £ = ( 1 0 ) = g_, · g£ and 

s=O s=O 

~·-r 
Il9£s 

S=O 

When 

is Euler-

and Cesaro-summable to ¼ee'. 2_ 

r 
COROLLARY 3.10. When -1 < a+b-1 < 1 and A = -1, ~ n _g£

8 is 
s=O 

Cesaro-summable to e(w, 1-w}, where -------- -

Proof. 

. (3 .26) 

where 

w = ½(c+d)(d-b) + (1-d) 

1 + (c+d-1) 2
. 

r r+l 1 ( ) . n 9£s = A + I: (-l)2t 2r-t+l (a+b-l)t-lA B 
s=O -"'!" t=l -r-t-

= e(u, 1-u) + ~ (-l)½t(2r-t+l)(a+b-i)t-lA B 
- r r -'t'-t-t=l 

u = ½(l+u+(-l)r(l-u)}, r 

! = cl;a)(-:L, 1) 

!r-tB = (b-ur-t(a+b-l))z..(-1, 1). 

The last term of ( 3-26) converges to O as r ... co. The (1, 1) 

element of the remaining terms in (3.26) is 

- 19 -
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(3.27) 

(3.28) 

u -r 
r 1 ) ·1 
E (-1)~{2r-t+l (a+b-l)t- {b - ur-t{a+b-1)) 

t=l 

= ½{u+l) + ½{-1)r(l-u) - b ~ (-l)½t(2r-t+l)(a+b-l)t-l 
t=l· 

r 1 ( 
+ ½(u+l) E (-1)~ 2r-t+l)(a+b-l)t 

t=l 

r 1 ( 
+ ½(1-u) E (-1)~ 2r-t+l)+r-t(a+b-l)t 

t=l 

r 1 . 

= ½(u+l) + (½{u+l){a+b) - (b+u)) t (-1)~{2r-t+l){a+b-l)t-l 
t=l 

+ ½(1-u){-l)½r(r+l){a+b-l)r. 

The last term converges to O as r ~ oo. It remains to consider the 

second term in (3.28). Let 

(3.29) 
r 1 

sr = E (-l)2t(2r-t+l) t-l. t=l µ 'µ = a+b-1. 

Then 

(3.30) s = (-l)r - µ - µ2 s 2 ; r > 3, 
r r- -

since 

~-

s = r 
(-l)r + (-l)r+{r-1)µ + (-l)r+{r-l)+{r-2}µ2 + ••• +(-l)r+ ••• +lµr-1 

= (-l)r + µ{-l)r+{r-l}(l+µ[(-l)r-2+(-l)(r-2}+(r-3)µ 

+ ••• + (-l)(r-2)+ ••• +lµr-3]) 

( )r 11.2 s • = -1 - µ - ~ r-2 

- 20 -
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--

Let t = s2 and v = s2 · 1,' r = 1, 2, •••• Then .tr and r r r r- , 

vr are conve~gent sequences with limits t and v, say. From 

(3.30)_· we see that t = (l-µ)/(1+µ 2 ) and v = -.(1+µ)/(1+µ 2 ). Hence 

sr is Cesaro-summable to (u+v)/2 = -µ/(i+µ 2 ). Thu·s. (3.28) is 

Cesaro-summable to 

(3.31) 

(3.32) 

½{u+l) - µ [½(u+l){a+b) - {b+u)]. 
(1+µ2) 

With A= -1, a+ b - 1 = 1 - c - d. Hence 

b _ b be - (1-a)(l-d) 
+u- + a+b-1 

= b(l-c-d) + be·- (1-a)(l-d) 
a+ b - 1 

= 1 - d~ 

Also u + 1 = 2 - d - b =a+ c. Substituting in (3.31), we get 

(3.33) \(a+b) - _µ__ [½(a+c~{a+b) - (1-d)]. 
l+µ.2 I 

Simplifying (3.33), we obtain 

_!__ [½{a+c)(l-µ) + µ(1-d)] 
1-+µ2 

which reduces to 

{3.35) ½(c+d)(d-b) + (1-d) 

1 + (c+d-1)2 
(qed) 
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We may summarize the above results on the limiting behavior .of 
r 

cs and !.r = sno (~) in the following two tables: 

TABLE 3.1. Limiting Behavior of Cs 

(-1, +1) 

+1 (u = 1) 

+l (u ./: 1) 

-1 

* 

lim us = (C
8

\ 1 

{u-k)/(1-k) 
[Theorem 3.1] 

1 [Theorem 3.1] 

none [Theorem 3.3] 

* ½(u + 1) 
[Theorem 3.2] 

Cesaro/Euler sum. 

;\: /· ': 
,- • . t:· 

..... ' 

--
lim C8 

!,_(u-l, 1-u)/(l-X) 
[Corollary 3.1] 

C e I - [Corollary 3.3) 

.none 

*' ½!,{u+l, 1-u) 
[Corollary 3.2] 

TABLE 3.2. Limiting Behavior of T = fr
0

(QCs) 
-r S= -

k 

(-1, +1) 

+1 

-1 

-1 < a+b-1 < 1 

e(u-k, 1-u)/(l-k) 
- [Theorem 3.4] 

e(l-b, l-a)/(2-a-b); 
- u = 1 

[Corollary 3.4] 
divergent; u • 1 

[Corollary 3.5] 

* 

a, b = 0 

as at left 
[Corollary 3. 7] 

* .!.ee' 2_ 
[Corollary 

* ½ee' 

3.9] 

a, b = 1 

as at left 
[Corollary 

T e I 
-r -
[Corollary 

* ke' 

3.6 

3.8 

] 

] 

e(w, 1-w) 
- [Corollary 3.10] 

2_ 
[Corollary 3.9] 

2_ 
[Corollary 3.8) 

* Cesaro/Euler sum. 
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The notion of a chain with constant causative matrix is appropriate 
. r 

only when !.r = s!ro ( ~
8

) is stochastic. When C is itself stochastic -
it follows directly that T is also stochastic. We find, however, that 

-r 

T may be stochastic without C , having all elements nonnegative. We 
-r 

study the situation for the case of two states. 
r 

The product matrix !.r = s~O (9£.8 ) has a limit in the two-state 

case if and only if -1 <A< 1 ('fheorem 3.4), or A= 1 and u = 1. 

The latter case will be disregarded in what follows since then C = I 

and the chain is stationary. We enquire first for conditions that T 
-r 

has a stochastic limit. From Theorem 3.4 the limit is 

(3.36) !_(u-A, 1-u)/(l-A) · 

where -1 < A < 1. Thus (3.36) is stochastic if and only if O s_ (u-A)/(1-A) ~ 1, 

or 

(3.37) 

We now find the condition that C is stochastic. From (3.1) we 

require O ~ u ~ 1 and O ~ u-A ~ 1. That is 

(3.38) max (o, A)~ u ~ min (1, l+A). 

When O ~A< 1, (3.38) is the same as (3.37) so that sUo (~) is stochastic 

if and only if C is stochastic (0 ~A< 1). 

When -1 <A~ O, the situation differs. From (3.38) we obtain. 

(3.39) 0 ~ u ~ l+A 

co 

and (3.37) may hold without (3.39) being satisfied. That is, 
8

~
0 

(S£.,s) 

is stochastic but C is not, provided -1 <A~ O and 

(3.40) -1 < A ~ u < 0 or 0 < l+A < u ~ 1. 

We now show that (3.36) is stochastic whenever -1 <A~ o. We need the 

.- 23 -



following: 

-~ LEMMA 3 .1. Whenever A < 0, the inequality 

(3.41) X ~ u ~ 1, 

holds, where X is the non-unit characteristic root of C and u its 

leading element. 

Proof. From (3.2) and (3.3), we have that 

(3.42) be - .{1-a){l-d) u = a+b-1 

be - (1-a)(l-d) + c{a-1} + c(l-a) 
= a+ b - 1 

= c + (1-a)L 

Similarly we may write 

(3.43) u = bX + (1-d). 

Thus u = X + c - aX ~ A, and u = 1 - d + bX ~ 1, when A< O, from (3.43). 

· Hence the result. (qed) 

Since (3.41) and (3.37) are the same, we find that for -1 < X ~ O, 

the limit (3.36) is always stochastic. In addition we find the following 

more powerful result: 

LEMMA 3.2. Whenever -1 < X ~ O, the matrix 9£_8 is stochastic for all ---------
s = 0, 1, 2, • 0 ., where is the non-unit characteristic root of C. - - ---- ------- - -. -
Proof.. Using -(3.9) it suffices to prove that 

(3.44) u 
s - b'

8 
1 I\ ~ • 

Since X is syDDnetric in a and bit suffices to show the first of the 

- 24 -
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... 
inequalities in (3.44). From (3.7) and (3.42) we may write this as 

(3.45) 

h iddl i b · c(l-'s) - a'{l-,s-l) Te m e quant ty may e written ~ ~ ~ which is 

component-wise nonnegative. To see the right-hand side of (3.45) we 

note that c(l-A8
) - aA{l-As-l) ~ i - As - aA{l-A8

-
1) = 1 - A+ 

· s 1 
1(1-a)(l-A - ) ~ 1 - i. (qed) 

We summarize the above results as: 

THEOREM 3. 5. Let A be the non-unit characteristic root of the causative -------
matrix c. Whenever O ~ 1 < 1, 

8
~

0 
{gs8) is stochastic if and only if 

C is. Whenever -1 < 1 ~ O, g£_s is stochastic for all s = 0, 1, ••• , 

and~!!!. sfio (9£.s) !!!!!, s!o (g£_s), but C is then only stochastic provided 

(3.46) O ~ u ~ 1 + i, 

where u is~ leading element of C. 

From the above we note that when O ~ 1 < 1, s!o (gs8) is not stochastic 

whenever C is not stochastic. This occurs if and only if -. 
or O < u < 1 < 1. 

In these cases we find that ~s tends monotonically to a matrix which is 

not stochastic and which is also the limit of T. We can, therefore~ find 
-r 

the largest value of s such that 92_8 is a stochastic matrix. 

THEOREM 3.6. Let 1 be the non-unit characteristic root of the causative 

matrix £_, and u its leading element. s Then QC tends monotonically to a -- - --------
limit matrix which is not stochastic, and QC8 is a stochastic matrix·, -- - - ----------
provided 

(3.48) 0 < A < 1 < u, 

- 25 -



(3.49) s 
A (d-b) ~ aA - c; 0 < u < A < 1, 

when a+ b - 1 > O, where g_ has diagonal elements a and b and 9£_ -
has diagonal elements C and d, and_ provided -
(3.50) As(b-d) ~ bA - d; 0 < A < 1 < u, 

(3.51) A
8

(a-c) ~ aA - C; 0 < u < A < 1, 

when a+ b - 1 < O. 

Proof. When O < A < 1 < u, we have from (3.42) that 1 < u = c +(1-a}A < 

C + 1 - a. Hence 

(1,1) and (2,1) 

(3.52) u -

c > a, and 

elements of 

A - As ( c-a}. , 
1 - A 

similarly from {3.43) we find b > d. The 

~s from (3.9) and {3.7), are respectively 

which both increase monotonically to [(u-A)/(1-1)] > 1 when u > 1. When 

a+ b - 1 > O, A< 1 implies c + d <a+ b so that c - a< b - d. In 

this case the first quantity in (3.52) is the larger and does not exceed 1 

provided (3.48) holds. When a+ b - 1 < O, the second quantity in (3.52) 

is the larger· and does not exceed 1 provided (3.50) holds. The proof of 

(3.49) and (3.51) follows similarly. {qed} 

•. . 

To compute values of c and d such that (3.48) through (3.51) hold for 

fixed a, b and s = 2, 3, • . . , we transform the inequalities to the 

{A, u)-plane. For {3.48) we obtain 

(3.53) u ~ 1 + "-
8

(1-a){l-1'.) 

1 - As 

when a + b - 1 > O and O < A < 1 < u. When s = 1 (3.53) reduces to 

u ~ 1 + A(l-a) 9r c ~ 1 using (3.42). Similarly for (3.49) we obtain 

{3.54) u ~ A -
As(l-b){l-1) 

1 - As 
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.., 

when a+ b 1 > 0 and O < u <A< 1. When s = 1 {3.54) reduces to 

u ~ bA or d ~ 1 using (3.43). 

To find the values of C and d for fixed a,b and s = 2, 3, . . . ' 
we increment A from Oto 1 and find the appropriate bound for u. We then 

solve for c and d using 

(3.55) 

(3.56) 

c = u - (1-a)A, 

d = 1 - u + bA, 

which follow directly from (3.42) and (3.43) respectively. 

We illustrate the above relationships for the particular case of 

a= .6 and b = .9. In Figure 3.1 we show the unit square in the {c,d) 

plane truncated by the diagonal lines denoting A= -1 (c+d = ½) and 

A= +1 (c+d = 1½). The lines u = 0 {4d + 9c = 4), u =1 

(4d + 9c = 9), u = l+A (6d+c = 1), and u = A {6d+c = 6) form a 

parallelogram{gwi.thin the above region, with corners (1,0), (.4,.1), 

(.6,.9), and (O,l)o Within this parallelogram £_ is stochastic and 

• Q_£_s SO 1.S for all s = 1, 2 •••• The region below and to the left 

of the parallelogram but above and to the right of A= -1 forms two 

triangles~and@ in which ~ is not stochastic but ~s is stochastic 

for all s = 1, 2, 0 • • • The reflection of these two triangles about 

c+d = 1 gives the remaining region~~aod@ · where g£8 converges ; the 

convergence, however, while monotonic,is to a nonstochastic limit and 

so in triangles@and@ is stochastic only for s such that (3.48) and 

(3.49) are satisfied. The triangle @ is enlarged in Figure .3.2, where 

the bounds such that g£_8 is stochastic are shown for s = 2, 3, 4, 10. 

In the region to the right of the curve labelled s = s
0

, but within the 
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s 
triangle, ~ is stochastic only for s = 1, 2, ••• , s0-1. We note 

2 I that QC is not stochastic for just over half the region given by - . 10 the triangle, while QC is not stochastic for almost all the.region. -
The curves in Figure 3.2 were found by computing {3.53), (3.55) and 

(3.56). The limit point at X = 1 was found by substituting 

l + X + ••• + xs-l = {l-As)/(1-X) into (3.53) and then setting 

A= l to yield 

(3.57) u ~ 1 + (1-a)/s. 

The corresponding va1ues of c and d follow from (3.55) and (3.56) as 

{3o58) c = a + (1-·a)/s; d = b - (1-a)/.s. 
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Figure 3.1. Regions in the (c,d) plane~ stochastic QCs. -
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Figure 3.2. ! region~ (c,d) plane where 9£_8 is stochastic only·~ s < s
0
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