¢

INFERENCE IN MULTIVARIATE NORMAL
POPULATIONS WITH STRUCTURE
PART 2: INFERENCE WHEN

CORRELATIONS HAVE STRUCTURE

by
George P. H. Styan
Technical Report No. 115

February 14, 1969

University of Minmnesota

Minneapolis, Minnesota

Second half of a dissertation accepted in partial fulfillment for the
degree of Doctor of Philosophy in Mathematical Statistics at Columbia
University. Research supported in part by Contract F 41609-67-C-0032,
School of Aerospace Medicine, with Teachers College, Columbia University,
Part 1 was issued August 9, 1968 as Techmnical Report No, 111.



TABLE OF CONTENTS

PREFACE ® 00 00O PB LR ENOLE0O000 000000 CSELOIEIEBOIOCEIENOIEOEOROCOEOIOIEOIEOEEOITSIE 1

ACmMEDGEmNTS ® 9 0 08 00000000 0480000080 OSL L ELNLOPPINERPIOIOSIPIOIOIEDSIPBITESEES h
III. INFERENCE WHEN THE CORRELATIONS ARE EQUAL BUT UNKNOWN

3.1 Maximum Likelihood EStimates .....eeeeceescccencaces 6

3.2 Matrix of Second Derivatives at Solutions of the
Maximum Likelihood EQUAtions .....eeeeesesssee 1k

3.2.1 Case Of ﬁ=o 9 @ 00008 0000 0000000000000 O0 16
3‘2.2 Case of 6*0 @ O 0 000 000000000000 NP GONEECESECOCDS 16
3.3 Bounds for Solutions of the Maximum Likelihood
Equations ® 9 0 000 0000 00O O OO OO SO ONEOSNOIPIOIOCEOSTPOSEOEOSETOSO 26
3!3.1 Case of O<6<1 ® 0 0 00 00000000000 EN e 27
3‘3.2 Case o£ -1/q<6<0 ® 0 00000 0O OSTOSOEBNNEIEPSIEPIEOIOSES 38
3.4 Selected Values of the Bounds, with Applications

to the Determinant of Second Derivatives,
SpeCial Cases 9 0 0 00 0000 000 O OO SO OISO OO e PEIEEECEOSECEE l+2

3.4.1 Bounds Independent Of P veveeecvocscsasess 43

3.4.2 Tables and Charts for Selected Values when
qu 9 0 0 0 08 0 ¢ 0 060 S OO OGS OO OO SO OSSN GSSIOEE S OSGOSOS )+3

3.h‘3 Case of p=3 ® 0 0 0 ¢ 0 000 00000 VOO PO S L OSSOSO 59

3.4.4 Case of all Sample Correlation Coefficients
with Same Sign ® 0 0 0 0 0 O 000 PO PSSO OE PSSO QOO 73

3.5 Iterative Solution of the Maximum Likelihood

Equations ® 0 © 00 0.0 0 0 0 050 00080 P B OO AEEN NN NN 0NN 75
3,6 Efficiencies of the Sample Quantities ............. 6
3.7 Case of Variances Equal but Unknown ......eoceeeees. 78
3.8 Case of Variances KNOWN .eeeeeecosscecocsocaneeasss O3

3.8.1 Ca8€ Of P = 2 wevevrevesnnseesonsneanceaees BT
IV . MHER CORREMTI ON STRUCTURES ® 0 6 5 0 0060 0608 008 0000088 s P 0 90
REFER'ENCES EEXEEEREEREERERRERENEN NI I I I N I I N BN A I BRI B BB BRI R B BB B 98

INDEX To NOTATION 2 000 000000000000 0800000000000 0RELN00000OCCTSECCIOS 101

- ii =



3.3.1

3.3.2

3.1

3.k.2

3.4.3

3ou.h

3.4.5

3oho6

3.h.7

3.4.8

3.4.9

3.k.10

3.4.11

LIST OF TABLES

Preferred bounds for K2 ; i = 1,..., p, when
O<6<1 @ 0 0 00 0000000 0P OO O OO OO OO SO SOOOSIOEOINPRENINPOSEILINPOIETPOTETES 37

Preferred bounds for K2 ; i = 1,..., p, when
- 1/q<6<0 G 0 0 0 0 00 000 000 8OO0 P OO OO OISO OIOSEPRPIEOIOSEOEPINPOEOSOEOSEPBDEOEIOE hl

Bounds for X? independent of p, as given by

Corollary 3.3.1 H 6=0(.01)1 Seevecscecsssrecrsenncee Ll'h
Upper bounds for i? from (3.3.11) ; § = .025(.025)
«250(.050).750(.025).975, p = 4(1)10(5)50 ¢eeeeveeees 45
Lower bounds for X? from (3.3.11/38) ; p = .01(.01)
.10(.05).95, p = 4(1)10,25,50 eveevrrecanns ceveceees BT
Lower bounds for ﬂ? from (3.3.62) for p = 4 and

5 and limiting values (3.4k.3) ; fq = -%%(%6)%% eeese 50
Upper bounds for Xi from (3.3.62/65) ; § = -29/30q
(1/30q)-1/30q, P = h(1)8 R R R I I A B T N R A AN S P AT ) 52
Upper bounds for K? from (3.3.62/65), (3.4.4) ;

p = -29/30q(1/30q)-1/30q, P = 9,10,25,50 tecevees eese 53
Values of (3.4.5) ; ¢ = .10(.01).40, p = 4(1)15,

(Positive entries imply |E1| > 04) ceeees cesesecnnas 55
Values of (3.4.5) ; § = .10(.01).40, p = 20(5)50(10)

100. (Positive entries imply |§4| >0.) ceeieneanes 56
Values of upper bounds for X? sufficient for

|§q| >0 from (3.4.10) ; =1 - Jp/q(29 + J p/q)/30,

(V' p7a(1 - J/p/qa)/30), 1 - Jplq(1 + 29/ p/q)/30,

p = h,5,6,8,10 R R I I I N R I 9s0000000s00 e e 58

Bounds for ii when p = 3 from (3.4.18-20/24) ;
B = = bT5(.025) 0975 eeeeecocsscsesasasacssacssansanns 61

Selected values of § and K2, i = 1,2,3 based on
7035 sample'correlation matrices ..eseee ceeeesnennass 69

- iii -



3.k.1
3.Lk.2

3.4.3
3.h.h

3.8.1

LIST OF FIGURES

Plot of bounds for x§ $ 0< P <1 tiirirnecneoanaans
Plot of bounds for ﬁi 3 =1/ <P <0 tiiiiienennen
Bounds for K? when p=3 @ 0 & 0 08 0 000 0600200 P OSSO PPES

Selected values of § and X? from 7035 sample
correlation matrices, with best theoretical bounds

frOm Figure 3.’4’.3 000 06000000000 PSOOGOGICGOOIEOIEOOICOROIOPOIEOEOPOIEOLOS

Efficiency of sample correlation coefficient r and

*
sample covariance r when variances are known and

p = 2 ® 0 0000000060000 0000600000500 0000006050060 0000000s000

- iv -

L8
51

T0

89



PREFACE

This report extends the results of Styan (1968) to the situation
where the correlations are all equal but unknown (Section III). 1In
Section IV we extend the results of Anderson (1966, 1968) to the case
where the correlation matrix, or its inverse, can be expressed as
an unknown linear combination of given matrices, We assume that the
variances and mean vectors are unspecified.

Most of the literature dealing with structure for the correlation
matrix where the mean vectors and variances are unspecified is recent.
Bartlett & Rajalakshman (1953), Bartlett (1954), Kullback (1959), p. 30k,
and Kullback (1967) gave criteria for testing the hypothesis of a
given correlation matrix., Anderson (1963), Lawley (1963), and Gleser
(1968) considered testing all correlations equal while Kullback (1959),
p. 320, Kullback (1967), and Cole (1968) presented tests for homogeneity
of correlation matrices, A general discussion, summary, and some new
results are given by Olkin (1967) and Aitkin, Nelson, & Reinfurt (1968).
In a factor analysis context, Joreskog (1963) simplified the estimation
problem, replacing the diagonal elements in the inverse of the corre-
lation matrix by ones. Olkin (1967) and Corsten (1968) tested equality
of two correlation coefficients in a trivariate population. Votaw
(1948), Halperin (1951), Olkin & Pratt (1958), and Hijek (1962) examined
the case of equal variances and correlations in regression problems
(cf. also Selliah (1964) and Olkin (1967) for this case with unspecified
mean vectors). Han (1967, 1968) tested all variances equal given homo-
geneity of the correlation coefficients, Patterned correlation matrices
arising in econometrics are studied by Goldberger (1964). Additional
references on these and related topics will be found in Anderson, Das

Gupta, & Styan (ca. 1970).



In Section III we find closed-form expressions for the maximum

likelihood equations for the variances and common correlation coefficient,

Again as in Section II [Styan (1968)] these cannot be solved analytically

in general, and we inquire about uniqueness of the solution. We fail
to prove uniqueness in all cases but study in detail the matrix H of
second derivatives of £, a decreasing linear function of the log-
likelihood. Using the arithmetic mean/geometric mean and Cauchy-Schwarz
inequalities we obtain various tight bounds on the solutions of the
maximum likelihood equations. These bounds are tabulated extensively
and some are sketched., We apply these bounds to a criterion obtained
from the Marshall and Olkin (1964) strengthened form of the Kantorovich
inequality. When positive the criterion implies positive definiteness
of the second derivative matrix, H., As a consequence we show positive
definiteness for a wide range of values of §, the maximum likelihood
estimate of the common correlation coefficient, Given {, it follows
from Section II [Styan (1968)] that the solutions for the variance esti-
mates are uniquely determined., We also study the case where all sample
correlations have the same sign and obtain other bounds.

In the case of three dimensions, uniqueness of the solution is
established. Using a new algorithm developed from the Newton-Raphson
process by Brown (1966), we generated and solved 7035 sets of maximum
likelihood equations in 3 minutes central processor time on the CDC 6600
computer. This suggested a surprising inequality between § and r,
the average sample correlation coefficient, which we prove using an
interesting inequality based on the difference between the differences
in the Cauchy-Schwarz and arithmetic mean/geometric mean inequalities.

Representative values of the solutions for the 7035 sets were compared
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against the theoretical bounds, and the latter were found to be rather
tight, We evaluate the asymptotic efficiencies of the sample estimates
and find the average sample correlation coefficient fully efficient;
the efficiency of the variances equals that of the modified estimator
found in Section II [Styan (1968)]. We conclude Section III with the
case where the variances are known, and so only a single parameter is
to be estimated, The resulting maximum likelihood equation is a cubic.
We extend the result for the two-dimensional case by Kendall & Stuart
(1967) to prove that as the sample size increases, the probability that
there is only one real solution and this lies in the desired interval
tends to ome,

In Section IV we consider the case where either the correlation
matrix or its inverse is expressed as an unknown linear combination of
given matrices. The nonlinear maximum likelihood equations are more
complicated than those in the previous sections but again are obtained
in closed form. When the inverse correlation matrix has this so-called
linear structure, we find that both the principal diagonal submatrices
of the second derivative matrix are positive definite, We are, however,
unable to establish positive definiteness of the whole matrix which
would lead to uniqueness of solution.

The notation used is the same as that in Styan (1968). Vectors
are denoted by lower case letters, matrices by capital letters, and
both have wavy underlining to denote bold face print. Transposition
is indicated by a prime, with row Qectors always appearing primed
[cf. Halperin (1965)]. The generating element of a vector or matrix
is given in curly brackets. When A 1is a square matrix, tr A denotes

its trace, |A| its determinant, and Chjé. its j-th characteristic root.
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The diagonal matrix formed from A is denoted édg = (all’ ypseees app)dg
We use I for the identity matrix, e for the column vector with each
component unity, and Ej for the column vector with each element zero
except for the j-th which is unity [cf. Bodewig (1959)]. Matrix
differentiation techniques follow Dwyer (1967).

As far as convenient, an estimate of a parameter is indicated by
the Latin letter corresponding to the Greek letter for the parameter,
and the matrix analogue of a scalar quantity is denoted by the capital
letter corresponding to the lower case letter for the scalar., An
exception is the scalar parameter p (rho) which we use for correlation
coefficient. We indicate the population correlation matrix by R
instead of 2'(capita1 rho). Another exception is the population
covariance matrix which we denote by E; reserving X for summation,
The sample analogue of L is indicated by C = szeX/N, where

X' = (ﬁj”"’ EN) is the p X N matrix of observations and

-

C, =L-ee'/p
is the centering matrix of order p [cf, Sharpe & Styan (1965)].

If x 1is a random vector, E(x) denotes its expected value and
V(x) its covariance matrix, If y is another random vector, the
covariance matrix between x and y, E(xy') - E(x)E(y'), is denoted
cov(§) z). L is the joint likelihood and ¢ 1is a decreasing linear
function of log L [cf. (2.1.8) in Styan (1968)]. The end of a proof

is indicated by (qed). The symbol § denotes section number and

cf, means compare or see, while ca, stands for circa or about.
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ITI. INFERENCE WHEN THE CORRELATIONS ARE EQUAL BUT UNKNOWN

3.1 Maximum Likelihood Estimates,

The problem we now consider is the same as that described in

§2.1 but with
(3.1.1) R = (1-p)L + pee’,

where p is unknown., We will use the same notation and many of the
results derived in Section II of Styan (1968).

We will estimate the unknown variances and unknown common corre-
lation coefficient by the method of maximum likelihood. We study the

problem in terms of
-1
(3.1.2) x~=p_c1( ),

*
where, as in (2.3.12) ,the elements of A are ratios of sample to
population standard deviations. Following §2.1, and using (2.3.%)

and (2.7.1), maximizing the likelihood is equivalent to minimizing
1p-1 ()
(3.1.3) ¢ =2"(R %R\ - 2e'n"77 + log [B| + 2 log [D],

which we achieve by differentiation with respect to A and p. R is
the sample correlation matrix. Differentiating (3.1.3) with respect

to A givés
3 -1 (-1)
(3.1.8) s =20(R RN -2""1
similar to (2.3.6). As in (2.9.2), we have that

(3.1.5) R =1s (L-gtegyee'h -5y <e <L

*
Equations, theorems, etc, with leading symbol 2 or A are in Styan (1968).
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‘To ease the notation we will write

(3.1.6) q=p-1,

and as in (2,9.10),

(3.1.7)  a = (1-p)(4p[p-1]) = 1 + p(p-2) - p3(p-1)
= (1-p)(14pq)

1t

1+ p(q-1) - p3q.

Thus

-1 1
(3.1.8) R *R‘“zi:;;"—

~

Rl

R,

which differentiated with respect to p yields

(3.1.9)  Z(Em) =L Ledy,
(1-p)2 & 7

Since |[B| = (1-p)%(14pq), we may write the part of ¢ involving

p as

(3.1.10) & = 7' (R7R)A + q log (1-p) + log (14pq)

so that

ot L‘Z\. _ l+p2q . 4
o (1-p)2 o2

(3.1.11) R\ - Egﬂ .
Setting (3.1l.4) and (3.1.11) equal to zero yields the following:

THEOREM 3.1.1, The maximum likelihood equations for the variances

and common correlation coefficient in a p-dimensional normal population

are

>

fla)t = Lo g - B gg -
(3.1.12) (R *RJZ\,*l_ﬁ’\ zBRL=1%

o~



and

(3.1.13)  (14$q)?K'R - (146%q)R'RR = &fpq.

-
R and R are the maximum likelihood estimate and sample correlation

matrices, X(-l) is the Hadamard inverse of X which contains ratios

of sample to maximum likelihood estimate standard deviations, and

& = (1-p)(14q), where § is the maximum likelihood estimate corre-

lation coefficient and q = p-1l,.

Equation (3.1.12) is the same as (2.9.4t) except that we have
replaced p with §. Equation (3.1.13) is new and may not hold in
§2.9 with p instead of §.

Premultiplying (3.1.12) by &(145q)X' and subtracting (3.1.13)

leads to

(3.1.14)  L'RL = p(145q).
Substituting this in (3.1.13) gives
(3.1.15) £'R =p,

which substituted in (3.1.1k) yields
(3.1.16) 6 = = £ R-DE-

If &_: e, then f would be r, the average sample correlation coefficient.
Aitkin, Nelson, & Reinfurt (1968) independently obtained (3.1.12)

through (3.1.16) in scalar notation; Han (1967) gave (3.1.12) and

(3.1.13) only. As observed by these writers, (3.1.12) through (3.1.16)

cannot in general be solved analytically (cf. §2.3). When R has

-8 -
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constant row sums, however, a closed form solution is immediate. This
. . -1
occurs if and only if K "*R has constant row sums. Unless p =2

this is possible only with probability zero. We obtain, as in (2,3.14),

(3.1.17) (f{l*l})g= ne,

say, and _&("l) = pe. Since K'K = p, we have p® = 1. Thus K=e
and § =r. Also Re = (l+rq)e, so that the average of the correlation
coefficients in any row of R 1is also r. When p =2, the sample
covariance matrix C = i‘,' and (3.1.17) is always true,

1f § = 0, then from (3.1.12), X = :_(-1). Since K'R = p, we
obtain X =e. From (3.1.16), e'(R-I)e = O, so that r = O, In this
case, however, we do not necessarily have (B:;E_)g_ = 0. We will study
later whether r = 0 always implies g = O.

We now show that (3.1.12) and (3.1.13) have at least one solution.

We will study later the question of whether there is only one.

LEMMA 3.1.1, For any positive definite correlation matrix R of

order p and any p x 1 wvector u,

(3.1.18) u'Ru < pu'u,

o~

Proof. By definition u'Rufu'u < chl(l‘}_), the largest characteristic
root of R, Since tr R =p and R is positive definite, chl(li) < p.

Hence the result, We note that if R 1is positive semi~definite equality

~

occurs in (3.1,18) when R = vv', where v'v = chl(li) = p, Vv is pro-

~

portior{al to u, and has each component plus or minus one. (qed)

THEOREM 3.1.2. The maximum likelihood equatioms in Theorem 3.1.1 admit

at least one real solution which i‘i consistent,

-9 -



Proof, Using Theorem 2.3.2 it suffices to show that &p - 4 when
p - -1/q or when p — 1. Apart from terms which remain finite as

p - -1/q, we have from (3.1.8) and (3.1.10) that &p is
(3.1.19)  A'RA/p(L4pq) + log (14pq) = log (%9),

where k = A'RA/p >0 and 6 = 1/(l+pq). Thus %p - 40 as 0 = 4o,

When p - 1 we find the corresponding expression for %p to be

é.').f.. Z‘.’..'R-sz\-.. ko, .q
(3.1.20) yrny (1 - E—T—]+ q log (1-p) = log (e "/6%),

where now k = A'A(1-A'RA/pA'A) > O from Lemma 3.1.1, and @ = 1/(1-p).
Thus &p - 40 as @ — 4o, as before. Consistency follows from

Chanda (1954). (qed)

We examine the range for any § which satisfies (3.1.12) and

(3.1.13).

THEOREM 3.1.3. For any solution f# to the maximum likelihood equations

in Theorem 3.1.1,

(3.1.21) -=X<

-y
RS

a 1
h (R-I) < p <=c¢h,(R-I) <1
¢ p(~ ~) -— P - q ]_(-..-...)

A~

and g_ positive definite, where q = p-1.

Proof. By .definition of characteristic root (cf. Rao (1965), p. 50),
we have from (3.1.14) and (3.1.15) that 0 < chp(g) < R'RA/R'K =
1+pq< chl(g) < p, using positive definiteness of R and Lemma 3.1.1,
Subtracting I or 1 éhroughout and dividing by q gives (3.1,21).

Since R has roots 1 -§ and 1 + fq it is positive definite. (qed)

-
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It follows from a result of Brauer and Perron (cf. Marcus & Minc

(1964), p. 145), that for any positive definite matrix A of order

p
P, chl(é) <max I |aij . Applying this to (3.1.21) yields

1 j=

P P
1 . A
(3.1.22) - g min (1, max I lrijl) < p < max % z Irijl‘
i j=1 i j=1
J#i j#i

We have given bounds for {. In §3.3 we will give bounds for X? ;
i=1,..., P, in terms of § and in §3.4 we will present tables and
charts for special cases, -

It follows then from Theorem 2,3.2 that for any value § satis-
fying (3.1.12) and (3.1.13), the corresponding values for X (and
so §‘2)) are uniquely determined. We will study later the question
of uniqueness of {; if there is more than one value of { we take
that which provides the absolute minimum of (3.1.3). We thus take

the solution minimizing
(3.1.23) q log (1-p) + log (l+pq) - 23'1(").

Equations (3.1.12) and (3.1.13) admit a consistent solution
since regularity conditions I-IV of §2.3 are satisfied [cf., Chanda

(1954)] and so the usual asymptetic theory applies,

N

1]
THEOREM 3.1.4, The limiting distribution of /N (g_(e) - 9_(2)', p-p)

is multivariate normal with mean Qf and covariance matrix

——

-Ae(——eg-; I+ p2ee'[— L — + -:;‘])Ag, (ap/p)g(g)
2a+pp 20t+pp .
(3.1.24) 2 .
1]
(on/p)a(®)", o?/pq

- 11 -



Proof. It suffices to establish (3.1.24). From (2.3.19) we see that
the covariance matrix in question is the inverse of

e
(3.1.25) (g

]
where Y' = (g‘a) , p) and tu is as given by (2.3.20). We first

show that
(3.1.26)
From (3.1.11)

a& G(-l)'Dao(-l)
(3.1.27) B B
% (1-p)2

. (42q) (-1)', (-1) _ ppg
2 T e

H

=DRD
~~

oL 24
Wy . _P _P{l4p"q) ppq _
(3.1.28) E(Bp ) = (1-p)? 051-95 « =0

Combining (3.1.28) with (2.3.24) establishes (3.1.26).

where C as in (2.1.6). Since E(Eu) = ARA, we obtain

As in (2.3.25), we may therefore write
N\ 3¢ -2 )N

%E 2] o] ~
32& . 5y 9, YA azt;z: 32\%59 30(271 ’
(3.1.29) E ?ﬁﬁ§$' = E - ;gzu S2h %
-~ 1
2 ’ 1 apaz&;b, aaz 2 s

where A =D A
~HN

the diagonal matrix formed from &u, (3.1.29) becomes

1 . (2)' 1 -2
. Substituting o\ /3¢ = -5 A
g8 o /og z AA

[ 3%e azau:
Fe, 0%, 0| | R Arhua e | % o
(301030) E —_—ra'YaY = . E 322’ 823, , .
~ e~ o', 1 1A o', 1
4 ————% A, O

-12 -
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From (3.1.4) we find that

%L -2
(3.1.31) g =2(B %R + A°),

similar to (2.3.18). Using (3.1.9); we have further that
2
(3.1.32) g;gp = o[——p - 2R,
(1- 9)2 o?

Finally from (3.1.11) we obtain

N .
(3-1.33) o™t = + 2_ (Q-1—3Pq~p3q2)_7t'§]t _ Pﬂ(l’*‘p q) .

¥ (1-p) 3 ' o2
Hence
(3.1.34)  E( aaL”‘) = 8% 0 G £ 9
LB =l e, s
where
HE*R + 1), -pag/e
(3.1.35) ¢-= .

-pqe'/a, pq(1+p3q)/o®
We can invert (3.1.34) provided G 1is nonsingular, We evaluate
|| and then le by the so-called Frobenius-Schur method (cf. Bode-

wig (1959), p. 217 and Rao (1965), pp. 28-29). From Table 2.9.1 we

recall that
(3.1.36) 2(R *R + A) = —— (1_; £ ee'),

' ' -1,
so that pq(l+p3q) - 2p%¢2%e' (R *R +1) "e = pq. Hence |G| =
|%(R: *R + I)|pq/e® > 0. so that G is nonsingular. The element in
the bottom right-hand corner of g:l is therefore o2/pq. Above it

we have

- 13 -



2u

(3.1.31) -
2a+pp 2

(1 + B ee")(pala) (@/pa)e = apele.

1

Thus the upper left-hand corner of g; is

2 . 2
(3.1.38) < > (o + %&- ee') + (op/p)(pa/a®)(ap/p)ee’
20-+pp
= By pPed(—— 4 ).
2ortpp 2 2a+pp2
Hence

P, -1 (430
(3.1.39) %E(Waﬁ)J; = 2\

b

~

which is (3.1.24). (qed)

|—~—2°-'—- I + pZee’( LI -3-), ong/p_'
| 2014pp 2 204+pp2

Q’Pf}_‘/P, cve/pq Q

3.2 Matrix of Second Derivatives at Solutioms 2£ the Maximum Likelihood

Equations,

We now study the question

of uniqueness of solution of the maxinum

likelihood equations by examining the matrix of second derivatives of

¢ given by (3.1.31) through (3.1.33), when its elements satisfy (3.1.12)

and (3.1.13).

I1f the solution maximizes

2L %L
: M’ A
(3.2.1)
i FL
ap aZL_ ? 3,02

say, is positive definite. If

the likelihood, then the matrix

this is so whenever (3.1.12) and (3.1.13)

are satisfied, then the solution must be unique, using Theorem 3.1.2

-1k -
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(cf. Theorem 2,3.2), For if ¢ has two (or more) relative minima
then it must have at least one relative maximum, which would make
H negative definite,

Since the regularity conditions I-IV of Section 2.3 are satisfied
here, it follows from Chanda (1954) that the second derivative matrix
H, evaluated at a consistent solution, will be positive definite with
probability tending to unity as the sample size N approaches infinity.

It seems, however, that H may be positive definite for any fixed
sample size in parallel to our result in Section II. This would lead
to the much more powerful conclusion that the likelihood equations
admit a unique solution, even for small samples. It follows from Theorem
2.3.2 that for a particular solution @ the corresponding value of §ﬂ2)
is uniquely determined.

In his doctoral dissertation, Han (1967) extensively studied the
maximum likelihood estimation problem when the corre lations are all
equal but unknown, and the variances are unspecified. He did not, however,
examine the question of uniqueness of solution but concentrated on solving
the likelihood equations by the Newton-Raphson process. He obtained in
closed form an estimate for the variances which is‘asymptotically normal
and efficient, We consider this in Section 3.5.

We now study in detail the question of positive definiteness of the
second derivative matrix H in (3.2.1) for fixed sample size N. Two
different versions arise according as f = O (EO’ say) or $4£0 (El’
say). We easily establish EO- positive definite but have difficulty
in finding the same result for 51' We show, however, that El is

positive definite for a wide range of values of positive § and arbitrary

p >4 and in all cases when p =3 (cf. §3.h.3).

- 15 -



3.2.1 Case .O_f. ﬁ =z 0,

When § =0 we found in §3.1 that R =e and e'(R-I)e = O.
This solution maximizes the likelihood when from (3.1.31) through

(3.1.33),

]
.

(3.2.2) [%L, 2(1-R)e
3.2.2 H =
= {2e'(zR), Pq

is positive definite.

It suffices to show |§°| > 0. Using the Frobenius-Schur method,

we obtain

(3.2.3)  |H,] = 2%(pa - &' (1-B)%)

= 2%P(p® - &'R%) > 2%P(p - pe'Re) = O,

1
from Lemna 3.1,1 with u = 2

-~

e, since e'Re = p. Hence the solution

~—

f =0, E_: e maximizes the likelihood,
We note that Ej(§f£)§.= O does not necessarily imply that

(R-L)e = O.
3.2.2 Case of f # O.

When P # O, we obtain from (3.1,12) that

(3.2.8)  ®=EE . gy,

—~~

Substituting this in (3.1.32), and (3.1.1%) and (3.1.15) in (3.1.33),

and using (3.1.31) gives

- 16 -



CTe@e + 1), 2. (et g
(3.2.5) B = |, . vo(-1) e
gL+ F2)R - A1, pa(145%q)/82
From Theorems 2.3.2, 3.1.3, and A.2.1, it follows that the leading

P X p submatrix of H, 1is positive definite, Thus for any particular

~1
solution §, the vector X (and hence §F2) = Q?ﬁfﬂQ)) is uniquely
determined. To show that only one value is possible for § (given R
and D), it suffices to show that the determinant of (3.2.5) is positive.
We have

20 | HEmad®), - (uerrtl

p262 | 1 - (2R, papR(14%)

We have not been able to prove that (3.2.6) is positive in general.
Before considering special cases, we have the following:

THEORFM 3.2.1. A necessary and sufficient condition for H, to be

] == 2=

positive definite is that any one of the following inequalities is

satisfied, in which case they are all satisfied:

(3.2.7)  p(1#%q) > 28" (B = + A7,
(3.2.8) MR -2(F =+ AR > 0,

(3.2.9) &(2)-[91*&_ 2(§ I + Q-llﬁ(g) > 0,

where 6 = ﬁjlhh-l,

q .
(3.2.10) = (g'i&(Q))?/wjL < pqfZ.
i=1

1

where a§*§+9h=wdi3hh"”%

- 17 -



(3.2.11)  p(1489)? > 2R'R(E o + A7) RS,
(3.2.12) R'R[MR' - 2(3;1*§‘+ 2) 1t > o,

(3.2.13)  |3ER R + A ) = KR'/p(1452q)| > 0.

L

Proof, It suffices to show that (3.2.7) through (3.2.13) are equivalent

to || >o.
In (3.2.6) we add (1+/3q)R' times the first p rows to the
last row, and then add the first p columns times (1+5QQ)2, to the

last column to yield

o2p e+ 18, %
(3.2.14)  |H| == . .
p2&? L' P(1453q)

Expanding (3.2.14) by the Frobenius-Schur method leads directly to

(3.2.7) and (3.2.13). From (3.1.14) and (3.1.15) we have that

(3.2.15) R'(BR)L = R'[(1-6)L + FRIR

p(1-F) + fp(1+fq)

p(1+53q).

Substituting this in (3.2.7) gives (3.2.8) immediately. Factoring out
5. on both sides of the part in square brackets leads to (3.2.9). We
note that if §‘= R then (3.2.9) would be satisfied as a consequence
of Theorem 2.5.1. However, §’= R implies 2_: DRD = C and this is
only so when there is no structure spécified on Z& We notice, though,

that "(3.1.12) may be written as (§;1*§)2’= e, while we have from

* - -
Appendix A that for any R, (g_l*g)g_= e, with E_l*g‘ having minimum

* ) A
Appendix A appeared in Styan (1968).

- 18 -
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A

: . . -1 :
characteristic root unity. Since Q "*R  has a characteristic root

of unity with corresponding vector e, we may write

[V

A q
(g_l*§_+ I) =ece'/p+ ZTuulw

(3‘2'16) — i=1 i~ i,

where ulu. = §,., and u'e = 0. The w. are the characteristic
~i~j ij ~~ i
roots (other than unity) and the u, the normalized characteristic
vectors (other than e/,/p) of %(§:1*5'+ I). We note that éflﬁi

has the same characteristic vectors with corresponding roots 2wi— 1.

Hence
[ ’ q
(3227 2@ '@+ DB 2 p 4 2 @R,
i=1

Substituting this in (3.2.7) leads directly to (3.2.10).

It remains to derive (3.2,11) and (3.2.12). 1In (3.2.6) we add
the first p columns times §(14§q)X to the last column, and then
add ((1+pq)X' times the first p rows to the last row and obtain

using (3.2.4)

229 HE e+ ), &

(1-5)2(1480)" ' p2(14$q)?

— o~

(302.18) Ilill =

L d

Expansion by the Frobenius-Schur method leads to (3.2.11), while

(3.2.12) follows by substitution of (3.1.1L). (qed)

We have expanded |H1| in various ways based on the Frobenius-
Schur principle. Another approach is to reduce Iﬁll to a determinant
of one less order by elementary row and column operations.

with § = @flﬁ@fl, as in (3.2.9), we may write (3.2.1L) as

Ll

(3.2.19) |u,] 2? IS M), &(2)
Y- = 4 ' .
2 g T (@) . p(1+62q)

- 19 -



We add columas 2 through p to column 1 and then rows 2 through
p to row 1, Recalling from (3.1.12) and (3.1.15) that (éjl*R e=e
and 31852) = p, we obtain for the determinant in (3.2.19),

P € P
' 2
(3.2.20) e Gy gi ) ,

P &ie)', p(1+62q)

1 5-1
where G, = (0, ;q)(g, *R + 1)(0, ;q)' and R, = (0, ;q)g; We now
subtract column 1 from column p + 1, and from columns 2 through p

(after division by p), to give

P> 9_" 0
(3'2021) E_’ 9_1"9‘9;_' /P’ &52)"9_ .

]
P §§2) -e',  pgp®

~

Substituting back into (3.2.19) yields

Gree'/p 370

(3.2.22) [H,|

2p | 1-2
2 5 é, |p

2)! o
&i ). e, pgp

(-1)0(-1)" (-1)
222, A-RTRTT e Ky - K
T aoszen 1yt ’
RS R - §§ v, paf?

ot

where Xl = elﬁ_ and

(3.2.23) A, = 30,1 )(ﬁfl*R + R’Q)(o 1)
e e | 2\ ~g/ = =T ~ =g/

Our choice of eliminating the first row and column was quite

1N

arbitrary; (3.2.22) is equally valid with the definitions of G o

“_1’

- 20 -



3]

(3.2.22) useful for computing |§1

reduction establishes positive definiteness of Ei- gg:/p and

, and ﬁl modified for any other row and column. We will find

. We note that the method of

A

method leads only to expressions even less tractable than those con-

1
- &i"l)gi’l) /p. Expansion of (3.2.22) by the Frobenius-Schur

sidered in Theorem 3.2.1.

The inequalities (3.2.7) through (3.2.13) lead to various conditions
which are sufficient, but may not be necessary to assure |§1| > 0. Any
sufficient inequality will not be useful if it is not satisfied when

‘R =e, p=r. We develop one sufficient condition which does hold in

~ —~

this special case, Let us write

in keeping with (3.2.23), and

(3.2.25) y=%/Jp.

Expanding (3.2.14) by the Frobenius-Schur method we obtain
6 2p 1 AD 1 -1 /6202

(3.2.26) [H,| = 27 |Alp(14p%q-y'A "Y) /6545,

Clearly 1+62q-y'é:11_> 0 1is equivalent to (3.2.7). We study this
inequality. From the Cauchy-Schwarz and Kantorovich Inequalities

(cf. e.g., Marcus & Minc (1964), pp. 61, 110, & 117), we have

(22?)  (¥'y)? < (rayay < 2 (2,

where 0 < m < ch(A) <M, Substituting (3.2.24) and (3.2.25) in

(3.1.12) and (3.1.15) gives y'y = y'Ay = 1. Thus (3.2.27) simplifies to

- 21 -



1

(3.2.28) 1 <y'A'y < (44m)Z/Ldm,

Equality on the left-hand side is attained if and only if y 1is a
characteristic vector of A. This is so only in the special case

L£=e, p=r. Then

—~

—1
(3.2.29)  |B;| = 2P |H(® R + D) |pa/a?,

where R = (1-r)IL + ree', as in (2.9.7), and a = (1-r)(l4rq). Since

(3.2.29)is positive, the solution £ = e, § = r, provides at least a

P

local maximum of the likelihood when R has constant row sums,

When r = 0, (3.2.29) becomes

(3.2.30) || = 2°Ppa.

This equals (3.2.3), however, only when e'(R-I)Z%e = 0, that is,

Y

(E—};_)g_ = 0. Our development in this section has assumed (3.2.4) which
does not apply when § = 0. This restriction implies Re = (l+qr)e

when § £ 0. Thus when g_'gg_ = p we need not necessarily have Re = e

»n

for the solution to be L =¢, § =1 =0.

From (3.2.28) we inmediately see that

(302.31) l'é—ll - 1 Z 0’

while a reversal of this would have established (3.2.26) positive,
note that (3.2.31) follows directly from (3.2.17)., Moreover from

(3.2.28),
(3.2.32) 0<y'Aly -1 < (M-m)2/h¥m,

This suggests that the inequality

- 20 -
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(3.2.33)  (M-m)2 < bam33q

might be sufficient to establish |§_1| > 0. When p = 2, however,
(3.2.33) does not hold for all r in (-1, 1). To see this we find

from (3.1.8) and (3.2.2L4) that
(3.2.34) traAs= Hp + tr L-Q) + p3qp/2&.

When p=2,L=¢, p=r, &=1-r2, Substituting we find

tr A =2 + r?/1-r2, But A has only 2 roots when p =2 and one

of these is. 1. He;lce the other is 1/1-r2. Thus (M-m)2 = (r2/1-r2)2

and UMmiZq = 4r2/1-r2. Hence (3.2.33) holds if and only if r2 < 4(1-r2),

that is for r in (-2/J5 , 2//5). This interval lies wholly

within (-1, 1) so (3.2.33) is not of use in establishing |g1| > 0.
Marshall & Olkin (1964) strengthened the Kantorovich Inequality,

Wwith y'y = 1, as in our case, they proved that

1

(3.2.35) Xx'ATY < (M+m- y'Ay)/Mm,

Substituting Yy'Ay = 1 we obtain in contrast to (3.2.32),
(3.2.36) 0 <y'A"ly - 1< (M-1)(1-m)/m.

This shows immediately that

(3.2.37)  ch (A) <1 <chy(a).

By definition of characteristic root, however, we also have (cf. Rao
(1965), p. 50), that chp(é) < y'ay/y'y < chl(é). Since y'Ay =1y'y =1
we obtain (3.2.37).

We see that (3.2.36) is stronger thar (3.2.32) by noting that

-23 -



(3.2.38) Kgaﬁ)a - (Mflgil“m) B [(M—l)ﬂﬁm(m-l)]a > o,

This leads to the following:

THEOREM 3.2.2. A sufficient condition for H

1 to be positive is that

(3.2.39) (M-1)(1-m) < $ZqMm,

where 0 <m< ch[%(§;1*§,+ ﬁje)] < M. The inequality (3.2.39) is

satisfied for the special case of f{ =e, § =r #0 when R has

constant row sums,

Proof., We have only to prove the second part, When R has constant

row sums, A = %(ET1*§'+ 1), and from Corollary A.2.l we have that
(3.2.50) (1 + —=) < ch(A) < H(1 + =)
cee. e 1+rq’ — -2 1-r

when r > 0. The inequality (3.2.40) is reversed when r < 0., Either

way we obtain
(3.2.41) 4(M-1)(1-m) = r2q/a,
(3.2.42)  4Mm = (2+rq)(2-r)/a,

where we write M, m for the bounds in (3.2.40). Hence (3.2.39) is

satisfied whenever

(3.2.43)  (2+rq)(2-r) > 1.

That is whenever r lies between the roots of the quadratic

qrel- 2(q-1)r - 3 =0,

(32.) -1-(/reget -1+ (Eader -,
q .

q

-2k -
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Thus (3.2.43) holds for all r in (- % , 1) and the theorem is

proved. (qed)

COROLLARY 3.2.1. A sufficient condition for H, to be positive definite

1

is that (3.2.39) holds with

. 1 1 1 1 a~
2. om = + = oM = — >0
(3 5) T84 S g + pe p s
m

(3.2.46) om N R 2M=—1—.e—+-1—;,5‘<o,

]

2 2 2.
where Xm. < ﬁi < XM ;

Proof, Since chl(g) + chl(yj >ch(U + V) whenever U and ¥V are

i = 1,.00, P.

symmetric (cf. Marcus & Minc (1965), p. 208 for a more general result),

we have
(3.2.47) 2 ch[%(ﬁ,_’l*g + _?ge)] < chl(E'l*g) + 72;12 .
By Corollary A.2.1, we find using (2.9.3) that

(3.2.48) e (RM) < en (B7)

which is 1/(1-§) when § > O. This proves the right-hand side of

(3.2.45). The left-hand side and (3.2.46) follow similarly, (qed)

We evaluate various bounds Xi and Xﬁ in §3.3 and apply them
to Corollary 3.2.1 in §3.4. We conclude this section by proving

|H1| > 0 for a particular value of §.

THEOREM 3.2.3. When § = 1/(1 +,p) the matrix g = is positive

definite.
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Proof. We establish (3.2,13), which using (3.1.8) may be written as

the determinant of

(3.2.49) A== I - 2 M+ At - 8 AR srIAH
TIPS (142)p = s

being positive, The first matrix in parentheses has q equal roots

of 1/1-f and a simple root of

1o _ep __ pPqipp-l
10 (14f2q)p  (1-8)(1+82q)

(3.2.50)

The second matrix in parentheses has q equal roots of unity and a

simple root of
(3.2.51) 1 - pf/@ = -(f%q + 26 - 1)/4.

when § = 1/(1 +./p), (3.2.50) and (3.2.51) are zero. Otherwise they
differ in sign for § in (- %, 1). While £ is a characteristic
vector of the first parenthesized matrix corresponding to (3.2.50) it
is not a characteristic vector for the remainder of (3.2.49). Hence

H, is positive definite, (qed)

In Theorem 3.1.3 we gave bounds for . We now develop bounds for
Xi s i=1,..., p in terms of {§. While of interest in themselves,

these bounds will enable us to compute the quantities in Corollary 3.2,1

and thus obtain further information about the positive definiteness of H..

3.3 Bounds for Solutions of the Maximum Likelihood Equatioms.

In Theorem 3.1.3we proved that any p satisfying the maximum

likelihood equations (3.1.12) and (3.1.13) must lie between - - 1,

q
where q = p - 1. We now obtain bounds for the components of Eﬂg),

- 26 -
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i.e., the ratios of sample to maximum likelihood estimate variances,
in terms of §. Tables and charts to illustrate these bounds will
be presented in the next section.

The maximum likelihood equation (3.1.12) may be written in scalar

notation as

(3.3.1) (1 + f(a-1) X% = 6K, jii Rirgg+ @5 1=100, p.

We obtain bounds for Xi and Xi by applying the following inequalities

to (3.3.1). From the Cauchy-Schwarz inequality we have

(3.3.2) (e'R)® < e'ek'R = p5,

from (3.1.15). Thus

P
(3.3.3) z ﬁj <vp.
j=1

We also apply the arithmetic mean/geometric mean inequality
2 2
Two cases arise according as § >0 or § <O.
3.3.1 Case of 0<f <1,

When f > O applying (3.3.3) to (3.3.1) gives, since Tis <1
(1 #3),

(3.3.5) (1 +B(a-1))R2 < pR,(p-R)) + & 5 1 = L,.., b,
Thus Xi must lie between the roots of the quadratic equation
(3.3.6) (1 +pFq)RS - fpk, - & =0,
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which are

bp + %0 + 48(1+5q)
(3.3.7) 2(T+q)

One root of (3.3.7) is negative since L&(1+fq) > 0. We will study

only the other root, which is positive,and which provides an upper bound

for Xi s i=1,000, Po

Since Ty >-1(i+ j), applying (3.3.3) to (3.3.1) also yields
(3.3.8) [1+ A(a-1)1%5 > - PR (p-R)) +@ 5 i=1,..., p.
Thus ﬁi must lie outside the roots of the quadratic equation
(3.3.9) {1 +8(a-2)IRF + 6ok, - & =0,

which are

-pp * /522 + bl 145(q-2)]
(3.3.10) 2T1 + p(a-2)] ‘

One root of.(3.3.10) is negative and of no interest., The other root
is positive and provides a lower bound for ii , 1=1,..., p. We thus

have the following:

THEOREM 3.3.1. The solutions of the maximum likelihood equations

(3.1.12) and (3.1.13) satisfy,when 0 <p <1, & = (1-§)(1+fq), q =

!

)
t

b

aAD_D ~ ~ ~ ~ a2 2 Fy A
/8202 + b8l 145(a-2)] - fp W 8202 + b8(148q) _+ Pp
(3.3.11) T+ (a-2)] <A< 2(19q)

i = l,o'o’ P-

As § tends to O, the bounds in (3.3.11) both tend to 1. As §
approaches 1, however, the bounds tend to O and 1 respectively,

Tables and charts of (3.3.11) follow in §3.L.

- o8 -
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Additional bounds for Xi, independent of p, follow from (3.3.11).

We may write the upper bound as

2 A
(3.3.12) -———-li—-w—— +1-§ + -———Jl——jy- .
W(p + 2£)2 2(p + =5)

A+—“—.
(9 >

As p increases,.(3.3.12) increases monotonically to 3(/5-%p + 1).
Similarly the left-hand side of (3.3.11) decreases monotonically to
%(VFE:EF - 1), To see the monotonicity for the lower bound we note
that szgz;' - a expanded as a Taylor series gives O0(x/a), and

x > 0 1in our case, Hence we have the following:

COROLLARY 3.3.1. For any value of p, the solutions of the maximum

likelihood equations (3.1.12) and (3.1.13) satisfy,when 0< § <1,

(3.3.13) 0<3(3-25 - J5-5) <R2 < 3(3 - 26 +J58),
(3.3.1k) X? <iG3+J5) ;i=1,..., p.

As 5 approaches O the bounds in (3.3.13) tend to ,.3820 and
2.6180 respectively, correct to four decimal places, As {§ approaches
1, however, the bounds tend to O and 1 respectively. Thus for any
value of p >3 and 0<§ <1, X? is at most 2,6180 to four decimal
places. Tables and a plot follow in §3.k.

The application of (3.3.4) to (3.3.1) yields bounds which are
weaker than those in Theorem 3.3.1 and Corollary 3.3.l. Since
-1< Ty <1 (i +# j), we obtain

(3.3.15) -3 = (8% + X§) < R+8(e-1)RE - 8< 15

X (X? + R3); i=1,..., p.
J#i J#i J

Using (3.1.15) we reduce (3.3.15) to
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(3.3016) 1"M <X2<1+ﬂlwe—)‘; i=1,ooo’ P,

1+3tp 1+tp

where
(3.3.17)  t=3(q-1) = %p - L.

We now show that the bounds (3.3.16) are weaker than (3.3.11). For

the upper bound this is so provided

(3.3.18)  W(14pq)2 + 28EAHA) o ( [az280145q) + pp)2.

1+£p

Using 2(1+0q) = 2(1+tp) + fp, we write (3.3.18) as

424
(3.3.19)  4(14$q)® + hqf& + 05 iiip > 2§ + h&(14Pq) + 28p,/ pEp2ha(14Pa)

Cancelling terms and dividing through by 2pf gives

(3.3.20) 2(14tp) + === 1+t 4/~552 + 4&(1+8q) .

Squaring both sides yields

q262&2 a2 2 u& L 2 AN A2 2 AV2Y_
(3.3.21) EI—-:;; > p%pZ + b&(148q) - 4(1+t5)® - bqpd = pZp2+i(&-(1+t5)2)=0,
+tp

establishing (3.3.18). For the lower bound we will find

(3.3.22)  (/3%0% ha(1Bu) - Bp)® > U(14pu)? - 2BLLEBN(1r0)”

where

(3.3.23) u=gq-2=p-3.

Using 2(1+fu) = 2(1+3tf) - Pp, we write (3.3.22) as

(3.3.24)  287p2 + U&(1+Pfu) -2Ppy AZpE+4&(1+pu) > U(1+pu)2- hqp(148)(1+pu)

4 2pgp2(1+8) (1+Bu)
1+3tp
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Cancelling terms and dividing through by 2pf gives

(3.3:25)  2(1e3ep) - LU > [ 522 4 uausn) .

Squaring both sides yields

q262(1+5)2(1+pu)?
(1+3tp)2

(3.3.26) > 5%p2 + b(1+pu)(@ + qB(1+p)]

- b(1+Bu)® - $%p® - LpB(1+fu)

= b(1+pu) (2ht + fq - pu - Pp) = O,

establishing (3.3.22). '

As p approaches 0; the bounds (3.3.16) both tend to 1 as do
(3.3.11)., As § approaches 1, however, the bounds (3.3.16) tend to
-t/ (1+3t) and 1 respectively, while (3.3.11) tend to O and 1.

The bounds in Corollary 3.3.1 are paralleled by
(3.3.27) max(0, (1-26)/3) <R <3 -28<3,

by letting p tend to » in (3.3.16). It follows that (3.3.27) is
weaker than (3.3.13) and (3.3.14).
We obtain a further set of bounds by using (3.1.14) in (3.3.1).

We will use the following:

LEMMA 3.3.1, For any symmetric matrix A = {aij} of order p =gq + 1,

( 8) P q9 P Q9 P
30302 E a,, = 2 2 a, . = 2 2 a ..
o1 0 o kegel B o1 keger K

J#i AL kA

Proof. The right-hand side of (3.3.28) may be written
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(3.3.29) E( 7 T oa )+ ; e
3.3'29 z a s z a, . + 2 . = 2 a. .e s + a + 9
PR S BT S L v - S E i IO

j#i

where €5 = 1 if i >3+ 1, and zero otherwise. Thus (3.3.29)

becomes
i-1 P P
(3.3.30)  a,.+ T a,= I a_.. (qed)
j=l M geiqn ik gy 1
j#i

Applying Lemma 3.3.1 to (3.3.1) yields

q P

(3.3.31)  [L+8(a-1)IR2 -&=p(3pap - = = AR
j=1 k=j+1 J
A ki

krjk)’

using (3.1.14). Since T <1 (j# k), we obtain

q P
(3.3.32)  [1+8(a-DIF - & -2paf® <52 T RN .

j=1 k=j+1

jéi ki

"Applying the Cauchy-Schwarz and arithmetic mean/geometric mean
inequalities to (3.3.32)leads to the same new set of bounds in contrast
to our earlier results of Theorem 3.3.1 and (3.3.16). We introduce

the q x 1 wvector

(303.33) Eo = (Xl’noog Xi_lsxi+1,°"’ Xp)' H i = 1""’ p'

1

The right-hand side of (3.3.32) is 3§ times the sum of the off-

"

A
diagonal elements in gigi"

(3.3.34) e'(§;8;")e - tr §,0!.

Using (3.1.15), tr éiéi = fgi% =p - X?, while analogous to (3.3.2),

)
§;)2 < e'e-

(3.3.35) (e’ 818, = a(p-12),
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Thus (3.3.34) is at most (q-l)(p-Xi). Substituting in (3.3.32)

yields
(3.3.36) [+ B(a-1)112 - & - $pap® < tB(p-12),

using (3.3.17). On the other hand we have from (3.3.4) that the

right-hand side of (3.3.32) is at most 2§ times

q
(3330 = 3 (R + 2
4

j=1 k=j+1
j#L kéd
A ' ~
which is % the sum of the off-diagonal elements of 2§§2) + gie)gf = B,

(2 a2
say. Since e'Be = Eﬁffffjﬁg ) = 2q(p-X§) and tr B = nggg ). 2(p-X§)
we find that (3.3.37) equals (q—l)(p—X?). Substitution in (5.3.32)

yields (3.3.36) once more. This leads to the following:

THEOREM 3.3.2. The solutions of the maximum likelihood equations (3.1.12)

and (3.1.13) satisfy,when 0<p§ <1, t = 3(q-1) = 3p - 1,

(3.3.38) 1 - E‘*—"-(-}—-‘3-1<7:2<1+-'M—1i"—) ; i=1,..., pP.

1+tp 1+3tp

Proof. We may write (3.3.38) as
(3.3.39)  (1+2tP)RZ < 1 + 268 - B2 + Ipaf® + £8(p-12),

which simplifies directly to the right-hand side of (3.3.38). Since

r,, > -1 (j # k) we have that the left-hand side of (3.3.32), and

jk
thus that also of (3.3.36) is greater than minus the respective right-
hand side. This reverses the inequality in (3.3.39) with the last

term becoming - tﬁ(p-X?). Simplifying completes the proof, (qed)
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As p approackes O both bounds in (3.3.38) tend to 1. As
p approaches 1, however, the bounds tend to 1 and 1+ (2tq/1+3t)
respectively, in contrast to those in (3.3.11) which tend to O énd
1 and those in (3.3.16) which tend to -t/1+3t and 1 respectively.
As p tends to o« the bounds in (3.3.38) explode. As indicated by
the tables and charts in §3.4 the bounds (3.3.38) and (3.3.11) overlap

in general. We do, however, have the following:

THEOREM 3.3.3. The solutions 2£ the maximum likelihood equations

(3.1.12) and (3.1.13) satisfy,when 0< <1, & = (1-§)(1+0q),

S2
2 _ | 5702 + 44(1+pq) + fp | £q(1+8)
(3.3.40) xi < [ 5(1+74) J <14+ T35 Lk, 5,...
(3 2 hl) [v/ﬁ2p2 + h&(1+ﬁu) '- p y <1 tqp 1-3) < %2 _ L
-3 5(1+p0) " Teep . A P=3

for 1 =1,..., p, where u = p-3 = q-2, t = 3(q-1) = 3p - 1,

Proof. To show (3.3.40) it suffices to prove the upper bound in

(3.3.16) less than that in (3.3.38),

(3.3.h2) 1+ BB oy, taf(l4B)

1+tp 1+3tp

which holds provided
(3.3.43)  t(t+3)3® + (t-1)38 + t-1 > 0.

When p=1L4, t = 2p-1 =1 and (3.3.43) is satisfied. For p =5, 6,...,

t > 1, and (3.3.43) is always satisfied if its discriminant is negative,
(3.3.44)  (e-1)* - he(e-1)(e43) < 0.

Substituting t = Zp-1 in (3.3.44) we see after some algebra that we need
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(3.3.45) 2p2 - 10p + 16 <O,

which is so provided p 1lies between the roots 10 + VFEB which are
about 1.8 and 18.2. Thus (3.3.40) is established for p = 4, 5,..., 18.

For p = 19, 20,..., (3.3.43) has real roots, the larger of which is

-(t-1)2 1)t he(e-1
(3.3.1|_6) ( + ‘/(;t(t):+3)t(t )(t+3L s

which is negative, Thus (3.3.43) holds with § > 0 and (3.3.L0)
is established for p =Lk, 5,....

We prove (3.3.41) first for p = 3. Then u =0 and so we need

2
(3.3.47) [V 9% + L& ‘435] <1-80p

2 1+545

Since 9% + L& = ($+2)3, (3.3.47) reduces to
(3.3.48) 32 -p-1<o0.

The roots are 1 + J 3 or -.T, 2.7 approximately. Thus (3.3.41)

holds when p = 3. For p =4, we want

2
(3.3.49) [“/hﬁa * §£;+§) - 2f ] <1 .- 38(-f)

which after considerable algebra reduces to

(3.3.50) 2+ 38 - 3p2< eqfhaa + &(1+p) .
Squaring both sides and cancelling common terms leads to
(3.3.51) 38% - 25 -5<0.

The roots are -1 and 5/3 which establishes (3.3.41) also for

p=L. (qed)
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We have therefore shown that for p = 4, 5,... the upper bound
(3.3.11) and for p = 3, 4 the lower bound (3.3.38) are preferred.
Let us now compare the upper bounds (3.3.11) and (3.3.38) when p = 3.

We see that (3.3.11) is stronger when

/ 2
N 9% + L&(1+25) + 3B A(1+p)
(3.3.52) [ 5(1225) <1+ —L—TB— .

Expanding the left-hand side and cancelling some terms yields

~ 2 ~
(3.3.53) 3/ 9% + ba(12p) < ALLEELL50) _ g5,

Squaring both sides yields the cubic

a3

(3.3.54) 2585 + 398° - 10 > O.

This cubic has its local maximum at p = -78/75 and local minimum
at p = O. Hence there is only one positive root, which equals ,4463
to four places of decimals. Thus (3.3.38) is stronger for {§ below
this root while (3.3.11) is stronger above.

The lower bounds (3.3.11) and (3.3.38) tend to O and 1 respectively
as p approaches 1, but (3.3.38) explodes as p becomes large. We

see that the lower bound (3.3.38) is positive only if
(3.3.55) 1+t > tqp(1-5),

or for p outside the roots of the quadratic tgp® - 2t35 + 1 = 0,
which are

(3.3.56) t i A'/ t2 - Q/t

q

As p becomes large so does t = 2p-1 and (3.3.56) approaches O and 1.
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For p = 10, for example, t = 4 and (3.3.56) is .032 and .857 to three
places of decimals, Values of (3.3.56) are tabulated in §3.4k. We
summarize our results in the following:

TABLE 3.3.1.

Preferred bounds for X? ; 1=1,..., p> when 0 < § <1,

p_| Lower Bound Upper Bound

3| (3.3.38) (3.3.38) 0 <p < .hh63
(3.3.11)  .Bk63<p <1

L | (3.3.38) ' (3.3.11)

>5 | (3.3.38) for § near O or 1 (3.3.11)
(3.3.11) otherwise

We close this section by giving bounds for the average of
q = p-1 Xi's. These are obtained by applying (3.1.15) to (3.3.11)

and (3.3.38).

THEOREM 3.3.4. The solutions of the maximum likelihood equations

(3.1.12) and (3.1.13) satisfy,when 0<p <1, & = (1-)(1+pq),

. A ~ ~ A A~ ALD L AD -
(3.3.57) 1 - bpy/ 52p2 + ba(1+Bq) - 28(1-28t2+5%q) < K?

2q(1+pq)2
<1, /807 + U6(1eb) - 2B(1bt(ps2)-F2au)
2q(1+pu)?
t5(1+p) T2 t5(1-8)
(3.3.58) 1 - —1§L3Tpr <R <1+ ‘§'—1+ta ,

for j=1,..., p, where u =q-2 = p-3, t = 5(q-1) = 3p - 1, and

- _.l
(3.3.59) X =3
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For p

L, 5,... (3.3.57) provides the stronger lower bound while

i

for p

3, 4 (3.3.58) gives the stronger upper bound.

Proof, Substituting (3.1.15) in (3.3.11) and (3.3.38) yields(3.3.57)
and (3.3.58) respectively after some algebraic manipulation. The

proof of the theorem is completed using Theorem 3.3.3. (qed)

Another set of bounds for X? are obtained by applying (3.1.15)

to (3.3.16),

(3.3.60) 1 -ﬂl‘ﬁ'—)d§< P ) R T

1+tp 1+3tp

While of a much simpler form than (3.3.57), the bounds (3.3.60) are

weaker, as shown by the discussion comparing (3.3.16) with (3.3.11).
3.3.2 Case of - 1/q < p <0,

Many of our results for {§ > O carry over immediately to the
case of P < O, but with the signs reversed. Some results, however,

become vacucus when § < O,

Applying (3.3.3) to (3.3.1) we obtain
(3.3.61) [1+6(q—1)]ﬁ§ > 6Xi(p-Xi) +& ;i=1,..., P,

cf. (3.3.5), and so Xi must lie outside the roots of (3.3.6). The
positive root given in (3.3.7) now provides a lower bound for Xi,
i=1,..., p. Similarly the positive root in (3.3.10) gives an upper

.bound., We combine these bounds as the following:

THEOREM 3.3.5. The solutions of the maximum likelihood equations

(3.1.12) and (3.1.13) satisfy,when - 1/q < § < O,
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(3.3.62) L5702 + h&(143a) 4 Bp _ g o o B50° + B&(1ePu) - P
2(1+pq) i 2(1+6u) s

for 1i=1,..., p, where u = p-3 = ¢-2 and @ = (1-f)(1+8q).
As { approaches O we saw in §3.3.1 that the bounds in (3.3.62)
both tend to 1, As J approaches - 1/q, however, the bounds tend
to O and %p respectively, Since - 1l/q ténds to O as p
goes to «, we have no counterpért to Corollary 3.3.1 for § < O,
Applying (3.3.4) to (3.3.1) again yields a weaker set of bounds

than we obtained with (3.3.3). Parallel to (3.3.16) we find

(3.3.63) 1+ 300B) . f2< - W) 5 L, e

- 1+4tp 1+3tp

The upper bound in (3.3.63) is only valid for
(3.3.64) - 1/3t < p<O.

For p =3 and L, (3.3.64) is always satisfied since then 3t <gq.
But for p > 5, 3t > q and so - 1/3t > - 1/q and the valid range

is restricted to (3.3.64). As { approaches 0O we saw in §3.3.1
that the bounds (3.3.63) both tend to 1. As § = - 1/q the lower
bound in (3.3.63) tends to -1, while the upper bound tends to 3 for
p =3. When p >L the upper bound explodes as § = - 1/3t > - 1/q.

Applying Lemma 3.3.1 to (3.3.1) yields as counterpart to Theorem

3.3.2:

THEOREM 3.3.6. The solutions of the maximum likelihood equations (3.1.12)

and (3.1.13) satisfy,when - 1/q < <0, t = q-1) =3%p - 1,

(3‘3'65) X? < 1 -ﬂg-l_;p—)' ; i = 1’000’ P’

1+tp .
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and with max (- 1/3t, - 1/q) < $ <0,

>

(3.3.66) 1+ 5BUHD) cq2 iy g o,

1+3tp i
As already observed, max (- 1/3t, - 1/q) = - 1/q for p =3, k
and = - 1/3t for p>5. As J approaches O the bounds (3.3.65)

and (3.3.66) both tend to 1 as shown for (3.3.38). As { approaches
- 1/q the upper bound (3.3.65) tends to q, while the lower bound
tends to O fof p=3. When p>1L the lower bound explodes as
p—~-1/3t > -1/q. As p — e both bounds diverge. We will see in
§3.4 that the upper bound (3.3.62) is stronger than (3.3.65) for
p > 5 through {3 just above - 1/q,

We have the following slightly stronger counterpart to Theorem

3.3.3:

THEOREM 3.3.7. The solutions g£ the maximum likelihood equations

(3.1.12) and (3.1.13) satisfy,when - 1/q < § <0, & = (1-§)(1+fq),

2
2 tq5(1-5) 8%p® + 48(1+Bu) - fp
(3.3.67) Xl <1- —_].TE-E_ < [ al‘*'auj » P = 3’ )-I-,

2
(3.3.68) [/9;)2 + Le(1+25) + 30] <1+ R.QZ’;Q_) < xﬁ (p = 3),

2(1+2p) T+135

and with - 1/3t < § <0,

(3.3.69) 1 4 £ab(1+d) <:[V/32P2 + b8(1+Bq)

2
dp 2 _
143t 5(1+8q) J <Rp=hk 5.,

for i =1,..., p, where u =p-3=q-2 and t

—

L(q-1) = 3p - 1.

Proof. It suffices to establish (3.3.68), since (3.3.67) and (3.3.69)

follow immediately from Theorem 3.3.3. To prove (3.3.68) we require
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o

(3.3.52) which now holds provided the cubic [from (3.3.54)]
(3.3.70) 258 + 358° - 10 < 0.

Since the cubic is negative between its local maximum and minimum (3.3.68)

follows. (qed)
We summarize our results in the following:

TABLE 3.3.2.

Preferred bounds for X? ;i=1,..., p when - 1/q < p <o,

P Lower Bound ___Upper Bound B
3 (3.3.66) (3.3.65)
Y (3.3.62) (3.3.65)
>5 (3.3.62) (3.3.62) for {5 nearer O
(3.3.65) for { nearer - 1l/q

We conclude with bounds for the average of q = p-1 Xi's. The

counterpart of Theorem 3.3.4 is:

THEOREM 3.3.8. The solutions of the maximum likelihood equations

(3.1.12) and (3.1.13) satisfy,when - 1/q < $ <0, & = (1-§)(1+8q),

1+ 5o/ %92 + U8(14u) - 2B(14pt(pi2) - °qu)
2q(1+pu)?

(3.3.71)

- spJ 522 + 4&(1+da) - 25(1-25t2+pq)
< e <1 - ’
E : 2q(1+5q)®

tp(1-58)
(3.3.72) 1+ Tith <

32
3

where u = p-3 = q-2 and t = —é—(q-l) = %’P -1
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and with max (- 1/3t, - 1/q) < $ <0,

T tB(1+3)
(3.3.73) <1~

f_‘l‘f_ j=1l,¢e¢., p, where X? = (Eiaéj X?)/q. For p = 3, 53.3.73)

is the stronger upper bound, while for p > 4, (3.3.71) provides the

stronger upper bound., For p = 3, & (3.3.72) is the stronger lower

bound.

We notice that (3.3.73) only gives an upper bound for § > max
(- 1/3t, - 1/q). Thus for p > 5, (3.3.73) gives no upper bound for
- 1/q < § < - 1/3t. Another set of bounds for K? are obtained in

parallel to (3.3.63),

(3.3.74) 1+§£ﬂ3r2 <A <1 2U—"?ll;j=1,...,p.

1+3tP j T T 1+th

These are of a much simpler form than (3.3.71) though weaker., Moreover

the upper bound is not valid for - 1/q <3< - 1/3t, p > 5.

3.4 Selected Values of the Bounds, with Applications to the Determinant

of Second Derivatives., Special Cases,

We now evaluate numerically the bounds obtained in §3.3. We present
tables and charts of these values and examine their relative strengths.
We also apply these results to Coroilary 3.2.1, in an attempt to prove
positive the determinant IEJI of second derivatives, where E&
defined by (3.2.5). This would show that the maximum likelihocd equations

is
(3.1.12) and (3.1.13) admit a unique real solution. By computation

we find our bounds tight enough to show IE&I > 0 for a wide range.of

positive values of § when p >L4; when J is negative our bounds
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are inadequate for use in Corollary 3.2.1, We examine the case p = 3
'in detail and prove analytically that |§1| >0 for p> -.2465 (to
four decimal places). We found [§1| > 0 for the remaining range of
p, analytically when two Ki's are equal, and by numerical evaluation
otherwise, We establish a surpfising inequality that § and r, the
average sample correlation coefficient,satisfy. We obtain further
bounds on Xi when all sample correlation coefficients have the same
sign, and in that case find Iﬂll >0 whenever $>0, p>3 and

6<O’P=30

3.k.1 Bounds Independent of bp.

In Corollary 3.3.1 we obtained bounds for Xi with 5> 0,
independent of the value of p. Since J must be larger than -1/(p-1),
no such bounds are possible with § < 0. The bounds (3.3.13) are
tabulated in Table 3.4,1 for 5 = 0 (.0l)1 and sketched in Figure 3.k4.1
in §3.4.2. We notice that the bounds almost form straight lines from
.3820 and 2.6180 at § =0 to O and 1 at § =1 (values to four
decimal places). In §3.4.2 we calculate comparative bounds from Table

3.3.1 for a wide range of p.

3.4.2 Tables and Charts for Selected Values when p > L,

We now present numerical values for the bounds obtained in §3.3
as indicated in Tables 3.3.1 and 3.3.2. We study here the cases where
p > U4 reserving p =3 for a more exhaustive study in §3.L.3.

In Table 3.4k.2 we give values for the upper bound of X? from (3.3.11)for
f =.025(.025).25(.05).75(.025).975 and p = 4(1)10(5)50. We notice

that p must exceed 20 for the upper bound to be larger than 2. 1In
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TABLE 3.4.1. Bounds for X? independent of p, as given by Corollary
3.301; 6 = 0(.01)10

Bounds Bounds
p Lower Upper ) Lower Upper
0.00 0 3862C 2.618C «51 01298 1.85062
o 01 e 3764 Z+6036 52 1256 18344
02 370 ¥ 235891 «53 01215 18185
e03 _03653. 25745 54 1174 1 ¢8026
004 e 360y 2¢560C 55 ¢1133 167867
Yels) 03540 2e54%54 056 e1C93 1¢7707
06 03491 24530609 57 e 1054 167546
e 07 «e3437 2e21673 ¢ 58 01015 17385
« 0B «3283 245017 «e 59 e 0976 1e7224
«C9 ¢ 3330 244870 60 ¢ 3938 167062
10 e 3276 264724 eE1 20900 16900
o11 03223 24577 62 «CB863 166737
12 ¢3170 24430 63 « 0826 166574
e13 «3117 244283 64 « 2790 16410
14 o 3064 264136 e 65 0754 1 66246
15 e3llc 2¢ 3988 66 00719 16081
o116 ¢ 2960 2¢3840 067 + 0684 1e¢2916
o117 2900 2e36392 68 o COBL . 1e575C
18 « 2836 203544 ¢ 69 0617 145583
19 02804 203396 e 7C eC584 1e5416
«20 e 2753 23247 71 00552 1 e5248
21 2702 23098 72 0520 145580
022 02651 22949 073 ¢2489 104911
23 02600 22800 74 ¢« 245G le4741
024 02550 2e¢265C 75 e 0429 164571
29 e 2500 22500 76 e 0400 1 e¢4400
026 02450 22350 77 «C372 1ed228
27 241 242199 78 00344 144G56
28 «2351 202049 79 318 1e3802
29 «230c 201898 ¢ B0 0292 143708
¢ 30 02250 2¢1747 81 ¢ 0267 163533
31 e 22CO 2e 1593 82 e0243 1 e¢3357
032 02155 2elbaqg «83 e G219 143131
¢33 « 21058 261292 e84 0197 1630083
¢34 2061 21139 55 «C175 1623253
¢35 2313 209867 ¢85 Q153 142645
036 0135606 20834 57 eCl136 1e2464
e 37 1617 Z2.0681 « 88 «0117 12283
« 38 1873 2¢0527 « 89 «ClCC 121C0
¢ 39 e 1820 200374 ¢ 90 e 008G 1e1916
e40 01780 240220 91 e0lL69 1e1731
o4l «1735 2¢006% 92 oNCLSYH 1e1545
042 e 169¢C 169910 «SG2 e 0443 161357
e42 1642 19755 e 94 032 1.1168
0t4 e 1600 1.96C0 «S5 Nelol-Xc! 1eC977
45 o 1350 19444 56 e Q2018 10785
e46 e 151¢c 1.9288 «S7 «00C8 1e5532
47 1460 19132 ¢ 98 « 03004 1 L2956
48 elézo 1.8975 0 9Q PYSIVEeR] 160199
049 «128¢ 15818 - 1620 Ce0UNC 1CC0C
50 e12343 1e866¢
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TABLE 3.4.2. Upper bounds for xg from (3.3.11); § = .025(.025).250(.050).750(.025).975, p = 4(1)10(5)50.

. p=h 5 6 T 8 9 10 15 20 25 30 35 40 45 50

e0Z25 | 1el7 16C7 112 1014 1016 1018 1620 129 1637 1044 151 1eD7 1462 167 1a71
dUS0 ] 1014 10610 1e2] 1625 1027 132 1035 14T 1460 1669 176 183 1e85 193 197
eU75 ] 1613 129 1e¢30U 134 10639 143 1647 1052 1674 183 1e5C 1096 24CL 2405 2400
«10C 124 1631 10327 1042 147 132 1636 172 1683 192 1678 2¢02 2400 21l 2414
el125 ] 1629 130 1043 1048 1654 158 162 1673 148G 127 2403 24C8 2011 2414 2017
el150 ] 1033 1041 147 1432 1659 1663 168 183 1693 2600 2eT6 261C 2013 Z2eiD 2017

1

1

1

>

el75] 1436 1644 1451 1487 067 1672 1eB5 14S6 202 Z2eU7 2elC 213 2615 217
eB8 1437 203 207 2610 2413 2615 2016
eB9 1eC7 233 2406 2409 26ll 2413 2615
eT0 16G7 2002 ZeU5 205 210 zell 2013

¢20C ] 1639 1e47 1655 1aHK1 e 7C 1e74 .
02235 | lebdl 13U 157 14563
1

250 1e43 1e5<« 059 1463

e 72 14,76
o784 1477

T I R T T B o I Y

1

1

1

1
« 300 1e46 15T 161 1057 e71 172 1478 089 1¢95 1699 Ze02 2404 2¢035 2eCT7 208
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Table 3.4.3 Qe present values for lower bounds of X? from (3.3.11)
and (3.3.38) for p = .01(.01).10(.05).95 and p = 4(1)10, 25, 50.
For p =14 only (3.3.38) is given (cf. Theorem 3.3.3). For p = 5(1)10
we present both bounds and indicate where they cross by a dividing
line, We note that as p increases from 5 to 10 the range for which
(3.3.11) is stronger increases from {§ < .50 to < .85. For p = 25
and 50 only (3.3.11) is given. As p increases the range of values
of (3.3.38) which are negative also increases aﬁd we present this
at the bottom of Table 3.4.3 for p > 6. We sketch the upper and lower
bounds from Tables 3.4.2 and 3.4.3 for p = L4 and 25 in Figure 3.k.1,
together with the bounds independent of p from Table 3.h4.1. ’We notice
that the convergence of (3.3.11) is rather fast, the more so for the
lower bound.

For p < O we tabulate the bounds against p subdivided into
fiftieths of - 1/q, the lower limit of f. For pq held fixed at

-k, say, the lower bound (3.3.62) converges to a limit as p — o. We

have —
/l‘-;g—+u(1 +HA -2 -2
(3.k.1) k! < R..

2(1-k) i

As p - ®, p/q = 1 and we obtain in the limit

(3.4.2) L1 +2%§};§)2 = < k.

Squaring both sides yields

(3.4.3) " 3k% - bk + 2 - kvlkz + 4(1-k)% < 2.
2(1-k)2 1
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TABLE 3.k4.3.

Lower bounds for A7 from (3.3.11/38); § = .01(.01).10(.05).95, p = 4(1)10,25,50.

P 4 5 6 T 8 9 10 25 50
3 (38) { (38) (11) | (38) (11)f (38) (11) (38) (11)[ (38) (11)] (38) (11) (11)] (11)
.01‘| ¢97 | ¥4 206 | +00 «95 | 86 o4| eBC 494 73 +93| 066 92| o82| 72
02 4G 009 93 «e81 +91 072 09 «O1 88 49 o87 ¢35 &85 71 «60
«03 92 eB83 89 ¢ 73 «87 eSO L5 e ld4 o83 26 81 oC6E ¢80 64 54
e 04 e 59 e /8 85 64 o83 e 42 481 e 28 79 e 06 77 —el9 o7 DY 0
«C3 e 66 e /73 53 57 «8C «37 «77 o153 75 —ell3 073 —e42 71 =t} 47
$06 b4 | 09 eBO | 450 o77 | 26 ¢74| =000 oT71] =031 69| —e64 «67| o5z| eao
« 07 82 e VS 77 43 o774 017 71 =el3 e68] —ed46 o606 ]| —eb3 64 «SU 43
.08 .80 0l 75 ¢37 71 eCB «6B| =e25 ¢66| =061 €3 |=1eUl «61| 47| o4l
« 092 77 eS7 72 231 60 | =e D0 o606 ~ 025 e6H3| —=eT74 oDl |=1el17 o5% e 46 o490
e1C 75 I3 7 025 o606 | =e 08B 463 —el5 #4061 —e87 ¢58 =131 56 b4 039
15 67 038 o660 e ()2 56 ~e39 o523 —e8E o551 |=1e34 49 |=1e87 47 38 ¢34
20 «6C e CH 052 | =014 eubB —e6OC 045 | =11l 43 |=1e64 o442 |=2e20 o4C ¢33 ¢ 30
25 55 «18 44 -e25 41 =673 39| =125 e37|=1e8C 0326 ]|=2e¢37 o35 29 27
« 30 e 52 013 38 | —a31 ¢36 | —eBO «24 =132 ¢22|=1e87 21 |~2e44 o320 026 024
¢35 e 49 ¢l ¢33 | =-e24 31 —e82 T |=1e23 ¢28B|~1e86 o227 }=2e41 o206 20 021
40 49 o100 o228 —e33 26 =080 425 |=16e29 24 =1e8T e23]|=2e32 o3 0 2C 19
45 « 49 ell 24 —e30 22 ~eT73 a2l |=1621 e2C |=1eE9 o4cU|=Cels o199 17 o116
«50 ¢ 5C il «2C —e2Y 18 —e07 lE|=1e¢10 017 |=1e95 17 [|=2¢0C olo ol el4
«55 «52 ol 216 =018 15 | —e26 12| —e985 e14}|=1e37 old|=1e78 it elc 2lc
«60 '« 55 eCl 012 | =a(C2 12 | =0l 12 ~eBU o1l |=1e17 oll|=1e54 o111 elQ 010
65 «TQ 031 10 | «C1l olT | =e30 o0 =062 09| =095 oY |=1e28 «02| 08| o008
70 65 009 JCE ei2 ¢07 | =015 407 —eld4Z oCT7 | =e70U 07 ~e99 37 e C6H e 6
75 PyeYs) e47 o 03 e 25 oC5 « 02 oG0S ~e2]1 «0Z| —ed45 ¢05| —e69 0> e 04 e 04
«80 e 73 e 2O (4 « 320 03 e 20 oUS eUl sU3] =18 eU3] =37 +C3 ¢« 03 «03
e85 79 e 06 02 e53 02 ¢« 39 .C2 «25 oC2 17 02 ~eC4 oC2 02 eC2
90 86 e 77 e01 «68 U1 58 L2 49 &35! 35 «C1 ¢3C «01] 01| o0l
95 93 OB o (0 e84 oGO e 739 o CO e 74 oCC e69 oUU e84 +CU PYole] PYels]
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Figure 3.4,1. Plot of bounds for X?; 0<p <1.
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As § 0, k= 0 and the bounds tend to 1. As p—-1/q, k=1

and the bounds tend to 0, as observed below Theorem 3.3.5. in Table
3.4.4 we give values of the limiting bound (3.4.3) as well as the
bounds from (3.3.62) for p =4 and 5, with pq = - 49/50(1/50)- 1/50.
The convergence is very fast; differences between (3.4.3) and the
bounds from (3.3.62) for p = 4 are all below .O2. We notice that

the lower bounds increase to their limiting values. 1In Figure 3.L4.2

we sketch (3.4.3). We present values of the upper bounds from (3.3.62)
and (3.3.65) for p = 4(1)8 in Table 3.&.5.. When p =U4 only (3.3.65)
is tabulated (cf. Theorem 3.3.7). Table 3.4t,6 continues the tabulation
for p =9, 10, 25, 50 and in both tables § = - 29/30q(1/30q) - 1/30q.
We notice that (3.3.65) is the stronger bound nearer - 1/q in a

range decreasing from f < -20/30q when p =L to § < - 27/30q when
p=25. For 3 near - 1l/q the bound from (3.3.62) may exceed p;

in such cases we tabulate the value p instead in Tables 3.4.5 and
3.4.6. The crossing points of (3.3.62) and (3.3.65) are indicated by
dividing lines. The upper bounds for p = 4 and 6 are plotted in
Figure 3.4.2. As with the lower bound, when pq is held fixed at -k,
say, the upper bound (3.3.62) converges to a limit as p - w. We

obtain similarly to (3.k4.3),

(3hh) fe< I beao /K2 4 L(1-k)2
* 2(1-k)2

Values of (3.4t.4t) are tabulated in Table 3.4.6. It is clear that
convergence to (3.4.4) is much slower than to (3.4.3). Figure 3.k.2

includes a plot of (3.L.L4).
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TABLE 3.h.L. Lower bounds for A% from (3.3.62) for p=»4 and 5 and

TR
b.3); Ba = 223555 -

limiting values

p=h p-S
pa ) Bound p Bound (3.4.3)

-49/50 - 3267 ¢« COC4 - 02450 « G004y PYe R 2071
-48/50 -~e32CC o CO17 -e240C oGO 7T ¢ 2017
-47/%50 -e¢3133 « 2039 -e22350 e 2C4V 2040
-4&/50 ~e3C67 00072 —-e23CGC e 2072 0G74
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-40/50 -0 2667 «CH19 ~-e2000 CH27 e 03287
-3%/50 -02600 e 564C ~e 1950 e 065D Yel-1=10]
-38/50 —e2533 «0775 ~e1900 788 CB37
-37/50 ~02467 « 0928 —e 1850 e Y4 L e1CUD
-~-36,50 —-e240C e 1086 ~e1BCC ¢1107 01177
-35/50 —e2333 01266 ~e1750 01287 01368
-34/50 —2267 01456 -¢170C 21480 e1573
-33/50C -02200 ¢ 165G -e 1630 e1686 01789
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-31/50 -¢2067 «2C99 -e 1550 e2132 02254
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-24/50 -0 16G0 e 39C7 -e123C 03945 04094
-23/50 —-¢1533 4185 ~e1150 04227 04369
-22/720 -01467 2 4466 -¢11CO 043537 e 45643
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-18/%0 —-¢120C 592 -e 0900 «S626 35739
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-15/50 —-¢10GC0O 421 —-—e U750 5445 63T
-14/50 -e (0933 6692 -eiu7CC «e5716 6794
-13/50 -e0067 e EIES - e UHE30 e65581 0 7050
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Figure 3.4.2, Plot of bounds for X?; -1/q <f <O.
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TABLE 3.4.5. Upper bounds for Xi

from (3.3.62/65); §

-29/30q(1/30q)-1/30q, p = 4(1)8.

p=h P=5 p= p=T7 p=8 .

p (65) & (65) (62) g (65) (62) g (65) (é2) g (65) (62)

—e 322 2485 —0242 BeO2 DT —eal53 4e75 GelU ~elB1 DeTU TelU —el38 6463 HeCO
—e311 2.78 -’23.3 2665 TeCuU ~e187 46523 660 —e156 Sedl 7Teul ~e133 6429 Ee0C
—e3CC 2467 =020 D5eDL 4L a5 ~el80 4432 5elC ~e150 Sell T7e(C —el29 Dev6 [<X Xv10)
—e289 2487 —0217 3e34 4e21} —el173 4611 D33 —~el44 483 G644 —eldt 465 Te53
—el2T8 Ze47 ~e200 DeZ20 3eiD —e 107 BeY2d Ge7% ~el139 4405 Deo! —ellY De3S X YT
—e 07 £ 438 =200 306 3653 —0l10D Se¥3 425 —e133 4e40 Geve —elld 2eG7 Ded4d
—e 56 ZeV —o vz 2eY 3e2H ~elul DeZ8 3483 —el28 4el0 &Geub —ellu 4680 4 o83
—elbd4 2421 —s]lud ZeliL ZeCl1 —~e &7 Zel8 2443 —eldl 2ol Vet ~ellh 4en4 Gecd
—el33 26413 —o 17D LZoOBT7 2e7% ~e1d(l Jez2 2el7 —ell7 2e76 5649 ~elCU 4,30 376
! -0&2(_ &oO'D —‘167 o5 2eDHC —e133 SeUS 2630 -—elll 2e50 leld —0095 4.C7 3637
% —ezll 1eS7 -0l L0 Zedbs Ze&l —elc7 el Ze&7 ~elCH Lol Ceb7 —eCIC 384 3el3
. —eZ(D 1490 —e1lDT Ze34 Ze27 —elz0 Ze77 247 ~elC0 320 Ze62 —~ o088 3663 Ze75
~e 106G 14860 ~0l4z2 Lozl Zel3 ~el113 Ze63 22¢ —eUB4 3483 2e4l —elH! 343 Ze31
~eal178 1470 —*]135 213 24C1 —elL7 220 213 —e(8Y 287 Zec3 ~e (76 343 231
—+ 167 1e7C —0122 Z2¢04 1e9U —elVUl 237 200U | —al83 2671 ZoU7 | =071 3405 2613
—e 156 | 464 =117 1e928 1e&0 —eUU3 225 1eBT7 | —eC78 2e26 1693 - e 06T Ze87 1le98
—eldd 1458 —0]108 l.EO6 17U ~e057 2416 1677 -e 72 2042 lecl —eCHZ 2e7C 1o
—e133 | 4D —elUU le7 1ebHc ~eUOT ZLeC3 147 — a7 Zezd 1670 ~elD7 ce23 1670
—elZZ lea7 | =002 1470 1e% —euUT7Z le¥2 128 —e(H1 2e12D 1661 —elDe Zes7 lebo
—e111 1642 —o 00T 1e0L 1647 —e 87 1682 1e2C ~elE6 2602 1eZ2 —e 04D ZecZ 1es4
-e10C 137 —e QT 1leD% 1e41 —eUBU 1 e7Z 143 ~—euSU 19U 1 o444 ~e043 CZeC8B 1 «46
~e {89 | 432 —e 0067 1447 135 —e 022 1463 136 —~el &l 1a7D 1438 ~e 030 1e94 130
—eC78 1 e27 —e050 1 e4) ! 42Y —e047 1454 131 ~ei39 167 101 —e¢U33 1e8C 1 e32
~eCOT7 143 =000 1434 1624 ~e340 144 1625 —eZ33 156 1ecH —e 029 1467 1e26
—eC36 161G —eN4Z 1425 120 ~e033 137 1e2C —e (28 1l 46 1420 —e024 155 121
—elA44 41T =033 1422 113 —el27 1429 115 —el22 136 1416 —eC19 1443 1el6
—eN133 1,11 —eD2LH 1,10 1411 —e 020 142! 1a11 ~e017 1627 1411 —el1e 1432 lell
—el 2 107 =2 D17 110 1407 —euUl3 leld 1407 =711 1617 1607 —eJ10 leZl 1607
-e01l1 —eD08 140% 16G3 —euJ7 1487 103 ~elLCHO 1el8 13 —eUUZ 110 1eC3
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TABLE 3.k.6.

Upper bounds for X? from

(3.3.62/65), (3.4.4); 6 = -29/30q(1/309)-1/30q, p = 9,10,25,50.

P= p=10 p=25 p=50 Limit

o (65) (62). p (65) (62) P (65) (62) P (65)  (62) |(3.k.4)

~e 121 737 Qo000 [ =107 B8e51 10Le0uU|=e04035 2224 2500 | =e0197 45653 S50e00 {84300
—e117 7617 9e00|=el04 BeQd4 1000 |=eC38F 21617 250U =eV1Y0. 43600 50eI0 [197G9
—ell2 678 YGeCO|=al0l 766U 10680 |=e0375 1988 230U | =e0184 40034 46059 | 82699
—el0B 6ol Be58|—e096 Tel8 9Geb]|=e0361 1866 20 eS1|=e0177 37678 2906 | 44423
—2104 6607 7220 —e093 670 Te93|=e0l47 1760l 16094 |=eUl70 3537 1961 26 ¢96
—e 100 5474 62111 -e089 G4l GeH4 [|~eC3323 15642 11 e26|=eC1632 3309 144GCO 1794
— 0098 S o442 9e25]|-elBD 6eCO Deb4|=eCI1lG 15¢38 Be76]=e0150 3Ce93 10645 | 12672
~e002 S5e13 4¢56]—-e081 Se71 4eBS5 | =eC3CH 14¢4C TaCl]|=eT150 25488 8«09 Qe46
-« 087 4484 LeaCOl—eC78 5438 4021 |=eD292 13647 Se73|~eul143 2693 645 731
—e083 46657 3055 |—eC78 S5e¢C7 370 |~e0278 1208 4e79| =106 25¢08 SelZ27 583
—e079 4431 3017 ]| =e070 477 3e¢29|=e0264 11673 4eUT]|=eUlZTF 23632 440 4677
"'0075 4.06 2'&0 —'0067 4 o4y 2e%YD -00250 10093 305C -0014:4' 3106“ J'7b ) 4.:;0
~eC71 BeBZ 2059 ~elbI 8e22 Ze¢656[|=e023¢ 1Lel6 3eCo|=eCl16 2004 3e4 Jeb2
—e067 3+6C 2237|=eC55 3690 Zebl2|=e0222 642 2e73|~el1lY 18e51 Ze85 297
~—e0D63 3¢38 2°10]|-e0356 3671 222 =eC2lE BeT72 Ledo|=ellUZ 17¢05 Zeb3 2062
~e0S8 317 201 [—e032 348 2004 =eC134 505 Ze21]|-elC95 15666 2027 234
~e (94 297 1687 -e048 325 1¢90|=-oCl81 74T 2402 =60CE8 1432 24C7 2el11
—eN50 278 1075]-e044 303 1e77]=e0D167 677G 1e86]|=e0lCB2 1304 1«89 192
—e046 260 1e64]-6041 2e82 1e66]~e 0153 6419 1e72|=eCC7SD 1181 1e75 177
— o042 2442 10355|=e037 262 1656 =eC139 S5e53 1e61]=el068 10663 1e62 1664
—e037 2425 1040 -e033 2443 1e47]|=eC1l25 508 1e51}=000C61 Fed9 laSc 153
—eC33 2.09 1e39]| ~-e030 2425 l1e39|=eClll1 495 1ed42]=eCCEYG Be4C 1¢43 1 e44
-~ 0029 1694 1032 -e026 207 1633]|=e0097 4e05 1e34}=-eC044 7635 135 135
—e025 175 10206 =eC2Z 1eG0 1e26]=e00U83 35356 1e28f=eCC41 Ce34 1428 le208
—e021 1664 121]|-e019 173 1621 |=eCUSY 36l 1622} =e0034 Se37 1lelc 1e22
—e017 15C 1216]-eU15 1458 1e16|=e0056 2465 lelb6|=eCT27 4e43 lelb 1e17
—~e012 1437 lell]|-a011 1642 lell|=6e0042 2,21 l1el2|=eUGC20 353 lel2 1e¢12
~-e0CB 1424 1e07]|-eC07 1.28 1607 ]| =eCC28 179 1407} =4CT14a 266 1407 1407
-e 004 1412 1¢eN3]|-eC04 114 103|~0014 139 16303 =-eCGCL7 1e81 1.04 1¢C4

v,



Comparison of Figures 3.4.1 and 3.4.2 indicates that the bounds
for positive {§ are much tighter than those for negative §, with
a sharp divergence of the upper bound for § negative nearing - 1/q.
We now apply these bounds to Corollary 3.2;1 in an attempt to prove

|g1] > 0. We find that the bounds are tight enough to establish
(3.4.5) p2qMm - (M-1)(1-m) = d,

say, positive and thus Iﬂl' > 0, for most positive {§ but no negative

f, p> 4. 1In Table 3.4.7 we give values of d for § = .10(.01).k0

and p = 4(1)15. Table 3.4.8 continues the tabulation for p = 20(5)50(10)100.

We used (3.2.&5) and (3.2.46) in computing (3.%4.5), with Xﬁ from
(3.3.11)'and X; the larger of the lower bounds from (3.3.11) and
(3.3.38). We have not tabulated d for § < .10 since we found all
values negative and for {$ > .40 since we found all values positive
and increasing in p. The region of interest is where d = 0 and
this is sketched in the two tables. For p = L, we find ]§1| >0
for $ > .30 while for p=5 we need > .37. Then as p increases
the range of positive d also increases to > .13 for p = 100,
All values correct to two decimal places, The reason for the " jump"
between p = U4 ‘and 5 is the increased strength of the bound (3.3.38)
when p =4 (cf. Theorem 3.3.3).

We can also apply the above bounds on X? to suff%cient conditions

for lEl' > 0 other than d > 0. It suffices for (3.2.13) that

(3.5.6)  deh (B7R + £72) > 1/(148%q).

Substituting m from Corollary 3.2.1 into the left-hand side of (3.4.6)

yields
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TABLE 3.4.7.

Values

of (3.4.5); = .10(.01).40, p = 4(1)15. (Positive entries imply IE&' >0.)

] p=k 5 6 T 8 9 10 11 12 13 14 15
10D -e02 —e(03 =—eCS -e U6 -+08 —e U9 =el1 ~el2 =el3 =—el5 —el6 =~el7
el —e02 —e0d =405 =eU7 =eC9 =610 =el2 =—el3 =—0el5 =616 =0e17.- =el8
12 —e02 =e04 =406 =408 =.1C -e1l =013 =eld =el5 —0el7 =el8 =019
13 —e02 =05 =0e07 =elU8 =10 =012 =e¢l3 =015 =0el6 =el7 =018 =19
14 ~eC3 =aCH =607 =09 -ell —el3d =eld4 =el5 =al7 =eluu =el9 =420
15 —e03 =—eU8 =e08 =10 =—4il1 —el3 —el35 =el6 =el7 =eld =019 =—-ec2C
16 —e03 —eCH =eC8 =010 =el2 =ell8 =015 =0el6 =el7 =elB =19 =20
17 —e(3 =06 =—e08 =-.11 -el12 —ell8 =—el1S =016 =el7 =—el8 =el9 =4lv
18 —e03 =eC7 =09 =el1l —el3 =ell4 =elH =el6 =el7 =el8 =e18 =el&
19 -e03 =07 —eC9Q =al1l -e13 ~eld4 =013 =eld =el7 =017 =el7 =017
20 -e03 -eC7 —e0N9 -ell -el13 -el4 —e15 —e16 -el6 —el6 -el6 -0l6
.21 ~eC3 =e07 =0e0O . =ell =e13 =414 =018 =0ol5 =el3 =el15 =e15 =el4
22 —eC3 ~—¢07 =010 =411 -el2 —el3 =—el14 =—el4 ~eld4 =014 =413 =~el2
«23 —e03 —e07 =—e09 =ell =412 =413 =e13 =013 =—el3 =el2 =ell =010
o4 ~e03 =—eC7 =09 -=.11 -elZ ~el2 =—el2 =el12 =—ell —el0 =e09 =07
25 —e02 —e07 =e09 =410 =411 el -1l —e]lT =el9 =488 =006 =~e04
26 -0 02 -7 —e (G —e10 -eolC -el0 —e U9 -e 08 —-e(7 Ik 102} - (03 -o1
27 —e (1 -~ (7 —e (8 - e UY -9 - U8 -7 -e06 e D0 «0Jd
28 -eC1 -7 -e08 —-eul —-e(C8 -e L7 —e0b5 e 04 e 07
29 ~e00 =06 =eC7 =eU7 =aCH =oU5 =eC2 e CO el2
¢ 30 Iole —-eC6 ~e06 -elbH - 04 —eJ3 -e 0 el10 13 17
«31 o C1 - 05 -5 -o 04 -e03 e 006 elC eld 19 23
«32 «D2 —e()5 =eCa —-—eU3 -e0C « 6 e1C 15 19 «Z4 «30
«33 e03 | =e04 =403 =4C1 02 « 06 e1C 15 e 2U 25 31 «37
°24 eG4 | =eC2 ~o01 vl U5 «09 14 *19 25 e31 «38 044
«35 ¢e05 | ~e02 « 1 oL oG8 «13 «19 25 31 3B 045 53
e 36 o007 | =eCC 02 «LH o111 17 24 31 e 38 046 54 62
«37 « 08 «C1l « 05 e UY 15 22 29 0«37 e4> PR-1 e63 o 72
«38 e 09 « 03 oC7 13 010 27 ¢35 44 D3 063 e 73 ° &8O
e 39 el1 U5 «1C 16 24 e33 42 52 02 72 o853 94
40 13 « U7 13 e 20 29 3% e 49 6L o 71 53 e 95 107
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TABLE 3.4.8.

Values

of (3.4.5); 6 = .10(.01).40; p = 20(5)50(10)100. (Positive entries imply [gal > 0.)

B p=20 25 30 35 40 45 50 60 70 8o 90 100
«10 -e21l —e25 —e27 =28 -e29 —e29 —eZ29 —e28 —ez7 =—eZ4 —e22 =~el19
o11 —e22 -e25 —e27 -e27 —-e28 ~e27 ~-e27 —e25 —e2l -.19 -el5 —-eil
12 —e23 - 25 - 26 —eZ5 —el26 —e25 —e24 - 020 —-el6 -el2 -—e07 —-eC2
«1 2 —eZX —e24 —e 2= —e24 ~-eZ3 —e22 =20 =elD =—el0 o« «8
s 14 —elZ =213 —e23 =e22 —e20 —~el8 =elb o C2 e13 20
15 —ell —e2 —e21 ~el9 —el6 =413 =10 olD o5 34
16 -2 —e20 —e18 =415 —eil - U8 -e(3 27 33 4G
17 -e19 ~e18 ~e15 ~eoll —-—e 06 —e(C1 I e C4 «16 28 04 _ «53 e 66
«18 —-el8 -e15 —eil -e(CH ~eCC l o Ub 12 26 0 4C - e99 e 70 e85
019 ~el6 ~elZ -~e(C6E ~eU0 s U7 «l4 o2 «37 DG 71 38 1«06
20 -l 8 ) o 14 3 32 «2C e OY «3Y 1 e¢0G lecv
21 —eily ; «13 23 - 23 43 54 06 1eC8 1e31 1eD4
22 —e 07 1 o221 o 32 oG4 « 35 «802 l1eC4 1 430 1e55 1e51
«23 —eC3 07 «18 « 30 42 «56 &2 «96 le25 1453 1e82 2011
24 e 2 «12 26 «4 0 D4 e O « 34 lelS 1e46 178 2611 243
25 6 o2 34 «5350 « 56 83 1CC 1e35 le70 206 Cel2 2e78
26 12 227 44 62 «80 99 1e18 1e57 196 236 Ce76 "3elH
27 o186 e 35 o554 o 74 « VS 1e16 137 1e8C 2e24 Z 68 313 3650
26 25 45 «6H6 58 1el 1e34 1658 2e06 Z 835 3eC4 Je53 4 402
«2G «32 ¢ 54 « 75 13 1e22 1eH3 181 Ze34 2e¢83 3e42 396 4 05T
«30 0 &G 62 oY l1e19 148 le76 2¢0C5H eG4 Cecd Se3 4042 Del
«31 &Y 77 1607 1637 168 2ol 2el& ceY0 Se} G o7 4 4G SeDo
e e 58 «5C 123 1e00 1e91 Qe Zeb61 3eul Lol 4e 75D Hed7 GelY
223 59 lelid legu 177 215 253 eIl 389 Ge47 DeH 6eCH 654
e 34 30 119 1e8 1 630 2ol 283 3625 441l 4495 581 G e 68 7 e54
35 7 1635 1e7¢ 2ot Ze 69 Sel5 Se61 GeaD8  Hes7 6ebl T3S 8629
36 {1626 1e82 2601 2eH0 2699 3e4Y 44.nC SeVl 6403 7«05 BeC8 9ell
«37 le2 le71 2e24 Ce 78 36232 387 442 5652 6663 Te75 Be86 228
« 385 136 1le22 Z2e5C 3.16 3e07 UeZ7 4487 6607 Y- Bed4Y Se70 10692
.39 1e5C2 214 2e77 241 4 4 LTS b7 S35 6 eDH6 7697 De2? 1061 1193 .
a4 1e71 230 3¢07 L5476 4446 Cel7 Sedd8 7e3C De72 10612 11659 13402




(b)) sl >_2

14+pq Xﬁ 14p2g

> 0,

0>

(B8 1 +>-E2- ;<o
R

Making R§ the subject yields

_ (1+53q) (1+8q 1 o
(3,h.9) 2 <<£__w_(_£w7__l j ———— <P
XM 1+pq(2-p 1 ﬁ —_

(3.k.10) A2 < (1'62(l+62q); p <
1-25-p%q

+

et
|}
ar]

Since Xﬁ > 1 the bounds are restricted to the indicated regions for
. It follows that ]E1| > 0 whenever all X? y 1=1,..., p.,are
bounded above as in (3.4.9) and (3.4.10). For p > L4 we find by
numerical computation that (3.4.9) exceeds the corresponding bound
from (3.3.11) for a range of § totally included in the range for
which we found d > O, Furthermore 1/(1%JF5) is only just less than
the lower bound on p for which d > 0. Hence we do not present a
tabulation of (3.4.9). As B - - 1/q, the bound in (3.4.10) tends to
1 + 1/q. Thus for fairly large p we can infer that Iﬂll > 0 only
for a very narrow range of values of Xi. We recall from Tables 3.4.5
and 3.4.6 that the corresponding upper bounds for X? are much higher
than (3.4.10). 1In Table 3.4.9 we give values of (3.L4.10) for
p=54,5,6,8 10 and $=1-./p/q (29 + ¥V p/9)/30, (V' p/a(1 - /p/q)/30),

1 -, p/a(l + 29,/ p/q)/30. We notice that even at p = 4 we would

need all Xi to be less than at most Ll.

3
We find (3.2.6) positive provided
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TABLE 3.4.9. Values of upper bounds for ﬁi sufficient for IE.]_I >0 from (3.%.10);

B =1-.pla(29 + ¥/ p/q0)/30, (VS p/a(1 -/ p7q)/36), 1 - Jp/q(1 + 29/ p/q)/30, p=4,5,6,8,10.

p=h p=5 p=6 p=T7 p=8
8 (3.4.10) B (3.4.10) B (3.4.10) o (3.4.10) i (3.4.10)
—e 1607 1e0C-23 ~elcly l1eUCal - 098G 1GC0o3 ~e U715 leOu24 —eCoel 1e001Y
~e 16606 1eUlil —-elZ0O l1eCCo4 -e 124 leClbO ~eu740 1eluU49 | ~e(D79 1eGUSY
-e1726 l1eCl71 -el3l2 leulll —e 120 leO1liD - U764 1 elU76 |~eCOYH 1¢QC60
—e 1785 160236 - 13560 le1HU - 10%4 1e0143 —e0789 l1evl0D -0 0617 10082
-+ 1845 10304 —e 140G l1eC222 —ell1c® le187 -ei8313 1eCl35 - e 0636 1e¢ClU6
—e1904 16C37 |—-el444 l1el205 —-e1 1564 1eC231 —~e VB 38 1eC167 — e UODHY 1e¢C13C
-~ 1964 160302 -0 1463 160344 -e1198 1leS277 —-e0BB5 1 eC2CC -eub76 1e0iB57
—e2C23 1eC502 ~-e 1532 leC4ia -e 12053 160325 —eUBY7 10235 -e 05993 lel184
—~ 28R 10615 ~ei1S76 1e0457 -e 1 268 12377 ~eu912 lenu27Z2 —el712 l1eC212
~eZ2142 1eC722 -el1620 10533 -e¢1303 1eUG20 - U936 leLI1D —eUT731 leCc4c
—e2202 leOT 74 ~e 1664 leCo02 —-el1238 lel48D —audbl 1eC350 - 0720 140273
~e2262 1 ¢ CEBOY -el7L8 l1e0674 ~e1l73 10543 |=el906 1C391 -0 0769 10036
—-e22321 1. C%0E —el732 1el74% ~e14TB 1eCOCS ~eslulvu 1ela4 ~e0700b leCoiv
—e2301 lelzl - 1796 10826 —el4é&2 l e U062 ~«1025 leCa7% ~eQBC7 1eCI374
—e244C lell¥s —e 1840V 160907 -e1477 1eC730 —~elubs 1elH25 A=~ 10410
—e2BCO 1e130% —-sio84 l1eD%v1 ~el1512 1607€7 —-ellc4 100273 | =eC845 © 10440
- e 2559 lelécy ~el1928 11C78 -e 1247 1608067 -e1109 160622 —-eOHY leC486
—e2619 1el184s —e1972 lel1167 ~-el502 10939 -e1133 1675 -¢0833 160526
- e 25678 1e16LE ~e2016 11260 [=el15617 11C13 -e11:158 160728 | —eiP0C2 1eCE65
—e 2738 lel7v6 — 62060 161358 ~e1651 1e!1T50 -e1183 lel782 —e0v21 10610
—e 7?27 1e1%e5 —ez2i(4 1614506 -el1&26 1e1169 ~e 1207 1eCBI9 | =eCY4C 10654
—-e2837 le20 05 ~e2148 1e1558 -e1721 11251 -e 1232 10897 - e 0959 10700
-eT17 lec2C7 —e2192 1el1604 —-e 1736 lel300 |=eldbdéE 1e095D7 | —e978 10746
—e2976 l1e2l3<3 - 02220 11773 —-e 1771 161422 -elz31 telUl9 | -e(997 160794
- 3036 1625G4 - e b0 lei30 ~el 26 lel9l2 [—~el306 1¢1CB3 |—-elU16 leQo044
- 3095 1 e20600 —-e2324 1e2001 —e18061 lelL4A -e 1330 lellte |=elUsd 1l eC94
—e3155 1e261 ~eZ23568 le2121 —e 1855 1el9Y -0 1355 161216 | ~e13D4 1e0946
—e3214 1ecv07 —-e2412 1622432 |—e1S20 . 11727 —-e 1379 lel285 —~e1073 11500
—-e3274 1e31357 ~e2456 1ec370 |=al19565 141897 —e 1404 lelbs6b | -e1092 110558




(3..11)  paf(148%0) > 2(8 - (PR I)R(R - (ira( ),

which reduces to

L
(3.4.12)  p(1 + #%a)(2-5%) > 2 I A

i=1

Similarly it is sufficient for (3.2.11) that
(3.5.13)  p2(1 + fq)2 > 2A'RARA.
Substituting (3.2.4) into the right-hand side yields

P
(3.5.14)  pl2 + p3(p-2)] >2 = ﬁ.
i=1

The left-hand side of (3.4.12) exceeds that of (3.4.14) for
p < 1/q; otherwise that of (3.4.12) is the smaller. We find an upper

bound for ZX: using (3.2.35). We obtain

Pl
(3.4.15) R < p(Xﬁ + Xi - Xﬁkﬁ).

N 1
i=1

Hence we have as sufficient for |E1| > 0. that

(3.4.16)  (1+8%0)(2-8%0) > 2(R%% + A2 - 22) 5 - 1/a < § < 1/a,

(3.4.17) 2 + 3(p-2) > 2(X§ + x; - x;xi) s 1/q<p <1,

We found, however, by numerical evaluation that (3.4.16) and (3.L4.17)

are weaker than that of Corollary 3.2.1 for all 3.

3.4.3 case of p = 3.

From §3.3 (cf. Tables 3.3.1 and 3.3.2) we have the bounds
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(3.&.18) 1+ §+§:°g <f2<1- B(1:6) ; -2<p<o,

(3.519) 1-2EB <z ;o0ch<t,

2
5(1+8) [/ 98 + u8(1428) + 38 .
(3.4.20) xg < (1 + 43575 d [ 2(1+23) ) 50<p<1l.

The first upper bound in (3.4.20) is stronger for § below the
positive root of the cubic equation (3.3.5&), which we found to be
JAU63 to four decimal places. Above this root the second upper bound
is stronger. This is illustrated in Table 3.4.10 and Figure 3.4.3
which contain values and a plot of (3.4.18) through (3.4.20) respectively.
We apply the above bounds to prove |§1| > 0 for all positive p

and about half the range of values for negative §.

THEOREM 3.4,1, The matrix H, of second derivatives at solutions of

the maximum likelihood equatibns (3.1.12) and (3.1.13) is positive

definite for p = 3 and o > -.2465, to four decimal places.

Proof. It suffices to prove (3.4.5) positive with

oy B(1B) . g2 _ . B(145)
(3.4.21) xm =1 el XM =1+ 3875
for $5 >0 and reversed when § < O, From (3.2.45) we have when
>0

1+ .y o L-3B+8R/N
~ (1+2p) (145 > A AL A
(1+26)(1+20) (1-8)(1-36+57)

(3.4.22) m

and reversed when § < 0. Substituting (3.4.10), we find that (3.%4.5)

is positive provided
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TABLE 3.4,10. Bounds for xg when p = 3 from (3.4.18-20/24); 8 = -.475(.025).975.

B (18/19) (18/20)  (2L4/20) " B (19) (20)
~e475 0132606 1.9189 164283 H o275 «8247 162482 le3415
—e450 e238° 1e8419 163627 « 300 «8174 12690 143547
~e425 «325Y 17690 13030 ¢ 325 «8113 12895 13655
-e400 «4C00 1¢70C0O 12486 « 350 8064 13098 1e374C
—-e375 b 640 166346 lelVyso «e375 8026 l e3300 13803
—-e350 o211 165727 1e1552 «400 28000 163500 le3844
—-e325 5720 1e5142 lell155 0425 e 7985 1030698 163065
—¢ 300 «618< 1 4588 108C3 ¢ 450 e 7980 143596 1e3H67
—e275 e 6600 164065 140494 475 7985 14091 13850
-e250 ¢« 7C0C 13571 10227 «500 « 8000 14286 143815
-e225 « 7360 13106 140002 525 «8025 14479 1¢3763
- 200 7714 162667 « 350 « 8059 14671 1 « 3695
~e175 «804< 12253 «575 «8102 1e4862 13610
-e 150 « 83520 11865 « 600 8154 15053 133510
—e 125 e 8654 115060 625 «8214 1e5242 13395
-e100 «8241 11158 e 650 «8283 165430 163265
-eN7S - 09210 140838 0675 «8360 165618 143120
-« 050 9480 1.0538 « 700 «8444 135805 le2962
-e025 «9747 1 60259 725 «89557 1es991 le2790
Ge0OOCC 10CLO 1C000 100090 e 750 o 8636 lecl76 lec604

« 025 «975Y 160247 140481 e 775 8743 166361 162405

«05C «9837 10488 10025 «80C « 8857 1e654S 12193

e 075 C #9331 1.C725 11333 « 825 «8978 166729 141967

100 9140 13957 11705 « 850 09105 le6912 l1e1728

125 «8971 11184 162042 «875 ¢9239 17095 11475

¢ 150 8614 11408 1423246 «QCO «9377 17277 11209

175 «867< 161629 le26185 3925 09526 1e74586 140929

¢« 200 854> l1e18B46 142860 ¢SS0 09678 1e7639 10635

225 e8433 16206 143072 e 975 09836 | 17820 140325

e 25C «8330 12273 13257




-

=5

Figure 3.4.3,

Bounds for X?

A

2.0
{1.9
+1.8
11.7
41,6

41,5

when p =

3.

1+

e
/

‘A

ey (67> 0
(3.5.61)7
7

2(1+2p)

) |
D \[ﬁ62M&('1+26)+36 2

-h-3

-2 -1 1



(3.4.23) L4 4+ 155 - 652 - 483 > o.

We also obtain (3.4.23) with (3.4.22) reversed since (3.4.5) is
symmetric in M and m. The cubic in (3.4.23) is positive between
its two larger roots which are -,2465 and 1.4830 to four decimal

places. Hence the result, (qed)

It remains to be shown that |g1| >0 for -3 <p<-.2465
before we can conclude uniqueness of solution of the maximum likelihood

equations when p = 3. From (3.4.10) we have

(3.h.2h)  R2< (1-8)(1+282) .
1-2p-242

A

| ad

1
o]

as a sufficient condition for |§1| > 0. The values of the upper
bound in (3.4.24) are well below those from (3.4.18) as tabulated in
Table 3.4,.10 and sketched in Figure 3.4.3. From (3.4.16), after

substituting (3.4.18) we have
” A 52 1“62 a
(3.'4.25) (1+2p2)(1- 2) >1 + zﬁ%‘%—)—(ﬂ% sy p<O0,
as sufficient for Igll > 0. We can simplify (3.4.25) to
a3 a2 a
(3.k.26) 65° + 166~ + p - 8> 0.

In the region - 3 < p < 0, the cubic in (3.4.26) is negative and so
(3.4.18) is of no help.

We may write |H1| in terms of a determinant of order three using

(3.2.22). Before doing this we write (3.1.12) as
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1 T T3 Ry Xl - (1-6)/X1
(3.%.27) B r, 1 r x2 = (142p) x2 - (1-6)/X2

23 ;
r 1 ) x3 - (1-p)/x3

13 ‘23 3

the first equation in (3.%4.27) may be expanded as

n

(3.4.28)  Blry iRy + £ 8 R0) = R2(14B) - (1-8)(1428).

From (3.1.16) we have that 3

12712 T "13M173 T Te3te’3e
in (3.4.28) yields

(3.%.29) 6r23X2X3 = (14p)(1-17) + 52

= (14B)(3H13-2) + 7,

using (3.1.15). Similar expressions follow for ry, and T3

f = O we obtain immediately X = e and from (3.1.16)

We do not require r,, = T)3 = Tpy = 0. When £ 0, (3.4.29) leads
to expressions with rij as subject,
(14) (1-12) + 32
(3.)4-.31) r23 = m—
273
(1+6)(X§+X§-2) + p2
= L3O ’
AR RS
for example.
Since iy can be written wholly in terms of p, X? and X?,

so can |5, |. From (3.2.22) we find with i =2, j = 3,

(3.4.32) |H,| = 192[H,|/( a252x§x;x§ ),

- 64 -
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.




where

1 (1+6)R§ pr A R

2323 1 2
et = > 28 "3k -t
pr A R (1+p)R2
- .]l—2323 _1 1 — 3
(3'1"033) -H.Q = 2&“"" 3 N '6 + —‘—é'&'—-' ’ X§ -1
2-1L X§ -1 652

Substituting (3.4.31) in (3.4.33) leads to

&+3(1+6)X5, (6+2)2-3(1+6)(XS+X§), Xg -1
) 1 FS ~ A ~
(3.4.34) IEQI = (p+2)2-3(1+p)(Xg+X§), a+3(1+p)X§, Xg -1 1.
XS -1, X§ -1 p2/a

We have not been able to analytically prove (3.4.34) pesitive directly for
Xg # Xg. When XS = X§, however, we can do so. Substituting #2 for
the common value, (3.4.34) reduces to
(14+8)(5-3R%)-p%, %% - 1
(3.4.35)  |H,| = 30(1+)(3R%-1)-p%] .
2(R2-1) » P24

We will need the following:

LEMMA 3.%.1. Let the quadratic ax® + bx + ¢ (a > 0) have two real

roots s and t, Then 0<u<t and s <v <O provided

(3.4.36) au® + bu + ¢, av® + bv + ¢ <O,

Proof., The roots are s = (-b-y/b2-hac )/2a <0 and t = (-b+/ b2-hac )/2a> 0.
Then s <v provided -b-/b®-hac < 2av., Since v <O we get

(-2av-b)2 < b2-hac. Cancelling yields avZ+bvic < 0. The rest of

(3.4.36) follows similarly. (qed)
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The first factor in (3.4.35) is positive provided

(3:4.37)  B% - (Pp+1)(3R3-1) <0

or p lies between its roots. The positive root exceeds 1 provided
1 -2(3%2-1) <0 or #2 > %, applying Lemma 3.4.1. From Figure 3.4.3
we see that X? < 2, so when two X? are equal we must have

%2 > (3-2)/2 = % (c£f. Theorem 3.3.8). The negative root from (3.4.37)
is less than - & provided % + %(3X2-1) - (3%2-1) <0 or 2> 3,
using (3.4.36) again, Hence (3.4.37) is established for - 3<§ <1,

The second factor in (3.4.35) is positive provided
(3.4.38)" 28(R2-1)% + 35%(1+8)(R%-1) + p3(p%-28-2) < O,

or #R2-1 1lies between its roots. From Theorem 3.3.8 we have

(3.4.39) f&l;él < R21< :éiliél s =3 <p<o.

2+p 2+30 °’

The positive root from (3.4.38) exceeds the upper bound in (3.4.39)

provided

(3.hboy 28B°(1B)2 387(148)°

A2 L A2 n
= + p2(p -2p-2) < 0.
Py 2
(2+36) *30

This reduces to
(3.h.41)  B%(1428)2(82+8546)/(2+38)% > 0,

or § outside the roots of 7% + 83 + 6 = 0 which are -4 +,/10 =
-7.2, -.8, approximately. The negative root from (3.4,38) is less
than the lower bound in (3.4.39) provided

(3.hh0) 282(1-)2 , 38301-8°)
S (e 240

+ p2(p=2-2p8-2) < 0,

- 66 -



which reduces to
(3.5.43) 82[283(5-1) + (382 + 4B + 2)1/(248)2 > o.

The first term within the square brackets is positive for - % <p<oO
while the second is always positive, being a quadratic with complex roots,
Thus |§1| > 0 when XS = ﬂ?. When XS #+ ﬁ;, (3.4.34) does not
appear to be tractable analytically, We evaluated it numerically for
p = -.1995(.0005)-.495(.005)-.245, with xg ranging from xﬁ to 1
and ﬂ§ from min(ﬂg, 3—£§-X$) to max(ﬂi, (3—£S)/2), dividing each
interval into sixths, All values made (3.4.34) positive provided
[R| > 0. We generated sample correlation matrices R by decreasing
the off-diagonal elements from (.95, .95, .95), (.95, .95, .90),...
in ordered increments of ,05 through (-.95, -.95, -.95), and requiring
positive definiteness, For the 7035 matrices that resulted we found
|§2| > 0 in each case. Therefore, unless there is some extreme
behavior of [H,| for X3 4 £§ and -1 < f < -,2465, the second deri-
vative matrix Hl is positive definite when its components satisfy
the maximum likelihood equations (3.1.12) and (3.1.13), and so

RESULT 3.4.1. When p = 3 the maximum likelihood equations in Theorem

3.1.1 admit a unique real solution, which is consistent,

The 7035 sets of maximum likelihood equations due to the above
correlation matrices, were solved iteratively using a new Fortran
program written by Dennis R. Lienke, on the CDC 6600 at the University
of Minnesota, The method is based on the doctoral dissertation by
Brown (1966), and requires only (m?/2) + (3m/2) function evaluations
per iterative step compared with m® + m evaluations for the Newton-

Raphson method, where m 1is the number of equations., When m =k

this represents a saving of 6 evaluations in 20. The algorithm in

Algol is described by Brown (1967). All 7035 sets were generated and
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solved in 185.108 seconds of central processor time, with about L

to 6 iterations per set given initial guesses of 1 for Xi and

the average sample correlation coefficient r for . The convergence
criterion used was that I(xf"xr-l)/xrl < ‘_|_()"ll for iterations r = t,t+l,

t+2; t > 1, for each variable x = 5, R;, R,, R,. Selected values are

1 "2* 73

given in Table 3.4k.11. Figure 3.h.k gives values of § and X? selected
to indicate iﬁ and Xﬁ. Our theqretical bounds closely approach these
values though a stronger upper bound is needed when § > O,

Our numerical investigations led us to suppose that either

o

<p<r<0 or 0<r<p<1l., We prove this below using:

LEMMA 3.4.2. Let x,, i =1, 2, 3, be three nonnegative quantities

3
with z xig =1, Then
i=1
3 3 3
(3.4k.44) 2 % x> T x, - 31 x,,
i=1 F T4 1 1]-_-[1 i

with equality if and only if all the x. are equal,

i

Proof. Let us write

3 3
(3.4.45) s = % X; 3 P= IIxi R
i=1 i=l
(3.4.46) O0<x) =n<x,=d<x;=x21

Then s3 = T xg + 3[n(nd + nx) + d(dn + dx) + x(xn + xd)] + 6p, and

s2 =1 +2(nd + nx + dx). Thus nd + nx = 5(s3-1) - dx, etc. Sub-

stituting yields s3

T x; + 3[n(3(s3-1) - dx) + d(3(s2-1) - nx) +

w = W

x(3(s2-1)- nd)] + 6p

and (3.4.44) is

]

.

i~

(3.1.47)  s(s2-2) < 9p.
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+ TABLE 3.h.11. Selected values of 5 and A7, i =1, 2, 3 based on
7035 sample correlation matrices.
a 2 2 No. of
Tio Ti13 T23 r P 1 A5 A2 | iterations
eF5 =015 ~e30 «155 ¢ 1756 1077 1048 «875 5
«OC e 50 04> «E17 624 14074 1054 8572 4
eG0 =625 —e5H2 «033 e 041 1023 1011 e I65 6
¢85 « 5 o4 e617 622 16373 14032 « 8396 4
eBS ~e (S —e5D 083 2 0G99 1eGLS7 1¢C13 e 930 5
¢80 =g ¢ 30 « 650 657 1131 «9232Z « 933 a
«80 20 020 e 4G 412 l1eCH54 1e264 072 5
¢80 =9385 —eb0T ~e b7 -e 084 2 4 e 97D le 70 ©
75 eI —el¥ ¢333 ¢ 347 lelp2 leGl3 B85 =
e75 =20 —e5Y ~eC17 - 029 ¢ 858 2996 1¢016 =)
« 70 e65 «10 ¢ 483 0494 1,132 e 945 224 S
«70 e 20 =020 «233 247 1087 1eQlC e 904 s
e7Q =30 —e4D -e017 =019 S92 « 994 1e¢014 5
e 65 e 55 o100 «e433 b4l 1,106 ¢ G648 e 930 4
65 o 15 —.50 .]00 o111 1¢250 996 .944 s
068 ~¢38 =e8D ~e(083 -e0908 «G5C 972 1078 o)
60 el —e62 217 19 1eCl2 ¢« 598 989 =)
e6C =40 =50 ~elpC -+115 - 0362 1e¢23%90 s
35 edc —ely ¢ 283 0292 1.087 0 97E 0938 5
eDD —e ' —eiuD 1567 172 1¢3533 lepeo 74 o]
0335 —ed4Z —=eB8By - 233 —e2Y9(C 07357 e F36 16307 6
«&C e 3¢ el ¢« 30C ¢ 303 1 o040 1.CG1 e F01 4
eSC =05 —e6D -~ o OB ~e 56 0 T67 le300D 1,032 5
050 —eH —e6D -e25GC —e 297 824 «e861 1,305 5
45 20 =~el% 167 171 16045 + 9356 « 938 5
048 —e15 ~e9D —-e217 -e 286 673 1259 1268 6
040 el —~el( «233 2358 16065 + 968 9508 3
40 o LB —=eD « 133 ¢ 136 1e22 el e 968 &O
e l0 = o35 —eb2 —~4200 —-e226 854 e 963 16173 )
¢35 25 =70 -0033 -¢538 974 lepll 1,015 3]
¢35 —elp —e92 - 233 ~e3c4 6405 lag33 16261 5
¢35 —e75 —e0> ~0417 —~e 487 ¢e3535 ¢ 788 1677 6
e30 =el( —e4? -0 B0 -+053 73 lepo3 legl¥ s
030 —e4S —eHOD —e267 -e297 331 G133 1e237 =)
25 e (D —e20 033 e 0324 1.¢08 099G «e 993 a
025 =410 =8 - ¢233 -e277 738 1372 1.191 5
e20  o2C 10 167 167 1.01C 995 995 4
e20 —e¢10 =—482 - e250 -6 2G5 718 1.CBS 1197 5
015 —~edf5 —e8D -e3217 ~-¢342 8312 942 1246 3
eln —=el5 =023 -¢283 -+084 ¢ 98S 9S4 1eC17 a4
05 05 =72 | -e217 ~e242 «£16 1.CRE 1,092 3
e DS =440 =¢5% —-—e252 -e294 e 7058 o P53 1,142 s
—eCO =—e6] —o62 ~e&17 —ell 727 «857 1345 5
~e05 =e20 =e6Q - 283 —el95 TG le04c 1,104 5
~ o5 =450 —eb5D - 400 -e418 e« /G0 241 1,269 S
—elp —e25 =eb4{ —e232 —e 252 e 947 lecol 1eCS 4
—elS —al5 —02U - 1567 -e 167 ¢ 993 1e503 1,003 4
—el5H —~ed40 =50 - ¢ 35C - e 359 e F0U W IF74 lellce a
~ 025 —e40Q =040 —e35C -0 351 e 971 «G71 14029 4
—e38 —e35 =5 - o8B0 —s4385 o 77H lell2 1e112 =)
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Figure 3.h.hk. Selected values of § and X? from 7035 sample

correlation matrices, with best theoretical bounds

from Figure 3.k4.3.
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Now s% - 2 = -1 + 2x(n+d) + 2nd < 2x(n+d) - x2, since 2nd <
n? +d® = 1 - x2, Thus (3.4.47) holds provided s[2(n+d) - x] < 9nd,
X # 0, That is 2(n+d)® + x(nt+d) - x2 < 9nd or 2(d-n)? + x(n+d) -

x2 < nd. 1If
(3.4.48) €e=x-4d ; 6=4d -n,

we need €2 + €§ - 262 > 0, which is so whenever ¢ > 6. To prove

(3.4.47) when €< 6 wewrite s® - 2 = -1 + 2n(d+x) + 2dx <

2n(d+x) - n®, since 2dx < x® + d® = 1 - n®, Thus we need

s[2(d+x) - n] < 9dx, n # 0. [When n =0 we need s® - 2 <0 which

follows from (d+x)2 - 2 = x® + d® + 2xd - 2 < 2(x%+d®-1) = 0.]

Substituting (3.4.48) we obtain 2¢% + n(d4x) - n® < dx or &% + e - 2¢% > 0,

which is so provided & > ¢ , thus completing the proof, (qed)

COROLLARY 3.4.1. Let us i =1, 2, 3, be three nonnegative quantities

3
with I ui = 3., Then
i=1
(hk9) 2(2ud- Fu)> I3[
3.4.49 2(Zuj - ZTu,)> Zu, -3]|u,,
=1t Tyt T

with equality if and only if all the u, are equal.

The inequality (3.4.49) follows from (3.4t.hl) by substituting

u, =/ 3 %;. An interpretation of the differences compared in (3.4.49)

may be made as follows. From the Cauchy-Schwarz inequality

z uz " Ty > (z u§)2= 9 and Tu, <3 [ef. (3.3.3)). Thus

3 3 3
(3.4.50) Zu>3> Euy,

1 ™

while by the arithmetic mean/geometric mean inequality,
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3
(3.4.51) zu >3Hu”3>3 Hm.
i=1
Thus (3.4.49) asserts that twice a Cauchy-Schwarz inequality-type-
difference is at least as large as an arithmetic mean/geometric mean
inequality~-type~-difference,

We use Corollary 3.4.1 to establish part of:

RESULT 3.4.2. When p = 3, either

-
AN
O

(3.k.52) - p<r<o,

or

(3.k.53) 0<r<p<l,

where r = (r12 *T)g* r23)/3 is the average sample correlation

coefficient and { is the maximum likelihood estimate of p as given

3
by the unique solution of (3.4.27) and I X? =3
i=1

Using (3.4.31) we have when § £ 0,

3 3
(1+p+52) L R, - (148) T 83
i=1

(3.4.54) r = ,
%ﬁx
i=1

so that r <p (§>0) or r>p (f <0) provided

4 52 3x 3.3
(3.4.55) B2( TR -3 I[xi) _ (e 3 - ER) <o

i=1 1=l

Applying Lemma 3.4.1 we' find that the negative root from (3.4.55) is

at most -5 and the positive root at least one provided

(3.4.56) azx3 2X)> zx-3Hx
i=1 i=1 i=1

-T2 -
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which holds by (3.4.49). Equality holds if and only if = r ;

X? =13i =1, 2, 3, as observed in §3.1. When { # 0, all rig=F

in addition. It follows from Result 3.4.1 that § = O if and only if

r=0,and so f =r if and only if L =¢ for all § in (- %, 1).
It remains to be shown that § and r have the same sign. This

is so provided

3

z

3
(3.5.57)  (1+p+6%) T R, > (1+8)
i=1 i=

13,
1

making the numerator in (3.4.54) positive (§ positive or negative).

We verified by computer that subject to ZX§ = 3 and Xm < Xi < XM’

3 3 3 3
z Xi _ XM + Xd + Xm

(3.4.58) max

TR, Ry +R 4R

where Xg =3 - x; - Xi. We evaluated (3.4.58) numerically using
(3.4.18) through (3.4.20) for xm and xM and f = -.4995(.0005)-.495
(.005)-.245, -.2(.1).9,and found(3,4,58) exceeding 1 + $2/(1+5)

with § > -.4965. For -.4995 < § < -.4970, (3.4.58) made |R| < 0;

the largest value of the left-hand side of (3.4.58) with |R| >0

was found always to be larger than 1 + p2/(1+f) in this range. Thus

(3.4.57) and our result are established.

3.4,k Case of all Sample Correlation Coefficients with Same Sign.

Further bounds on ﬂ? apply when all sample correlation coefficients

have the same sign., Suppose first that all rij >0, If § <O then

from. (3.3.1)

(3.4.59) (1 +§(q-1)IR5 < 4.
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Summing from { = 1,..., p we obtain O < -§2q which is not possible.

Hence f > O, This proves:

THEOREM 3.4.2., When §>0 at least one sample correlation coefficient

is positive, and when § < O at least one is negative. When all

sample correlation coefficients have the same sign, § also has that

sign,

We thus have the reverse inequality to (3.4.59) regardless of

sign, Similarly from (3.3.31),
(3.4.60) [1 + (a-1)B1R2 - & < 3paf®.
Combining these results we have the following:

THEOREM 3.4.3. When the sample correlation coefficients are either

all positive or all negative and t = 3(q-1) =3p - 1,

aD A2
(3.4.61) 1 - ap <X§<1+ ate i=1,..., P.

1+{(q-1)p 1+lq-155

As § tends to O both bounds converge to 1, while as § tends

to -1/q or to 1, they converge to O and 3p. Both bounds are

weaker than previous bounds for most positive f and even quite small
p, but are uniformly tighter for all negative § and all p. We
remark that the bounds (3.4.61) are symmetric about p = O with the
positive side inflated to q times the negative side.

Using the strongest of the bounds (3.4.61), (3.3.11), and
(3.3.38) in Corollary 3.2.1, we found by numerical evaluation that
(3.4.5) was always positive, § > 0, p > k. Thus lgll is positive,

p > 0, when all sample correlation coefficients are positive.
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When p = 3, (3.4.61) becomes

- 2p? 2 82 .
(3.11-.62) 1--1-:5.< Xi<1+T-l—-E’ i=1, 2, 3,

which we sketch in Figure 3.4.3. Applying (3.4.62) to Corollary 3.2.1

yields for <O,

(3.4.63) m=2L1F

which substituted in (3.4.5) gives

A -
(3.4.64) 4= --9-—3- [263 - 62 + 28 + —g-].
&(1-p7)

The cubic in (3.4.64) has one real root of P = -3 and is monotonically
increasing. Hence (3.4.64) is positive for § > -3 and so Igll >0

for -3 < p <0 and all sample correlation coefficients negative,

3.5 Iterative Solution of the Maximum Likelihood Equationms.

The maximum likelihood equations in Theorem 3.1.1 may be solved
iteratively by the procedures given in §2.h. We use the Newton-Raphson
process based on the initial trial solution of X =e and § = r, the
average sample correlation coefficient. By substitution in (3.1.31)
through (3.1.33), (3.1.4), and (3.1.11), we find the first iterate to

be, using (2.4.5),

M| [e) [2@®bBRD,  2l(1ra)?1-(1w2qR] ofa?] ™ (2@ Mm-De

(3.5.1) = -
pyf \rJ [2e'[(1+rq)®I-(14x3q)R])/a®, pq(1l+rZq)/a® 0

where :ﬁ_ and a are R and o, respectively, with r replacing p.
As in §2.9 we substitute :I:i_ for R in the matrix of second derivatives

and obtain
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* N y~-1 = - ——
(a) (2| (B oBE MR, reefa | (LR w)e )
(3.5.2) %= + .
\Pl \ ¥ 9's 1/|-rqe'/a, pq(1+r3q)/a® 0

The matrix to be inverted is (3.1.35) with r replacing p. Using

(3.1.39) we have

o [ e e e e 9, wepp [l e
A e | 2a4pr® 2at+pr® P -
(3.5.3) | & |= )+ .
- \Py r are'/p, a®/pq 0

1

== 1 T ===1
Since R "*R = 3— I - =R, we obtain (R "*R)e = [l+r(q-1)le/a - rr/a,

where r = (R-L)e, the vector of row sums of sample correlations. Thus

—1 —

(I-R"R)e = rr/a - qrPe/a and ¢'(L-K "*R)e = 0. Hence p’{ =1 and
X% 2

(3.5.8). A =——r+ (1-—E ),

, 2a+pr2 2a+pr2

which is (2.9.11) with r replacing p. Han (1967) obtained (3.5.k)

L L =1.%.(-
and Proved that ﬁ (-ga)(G ) - g( )), where Eﬁ(t-a) - (2 12:-1)( 2’)’ has
a limiting multivariate normal distribution with mean O and covariance
matrix proportional to the upper left-hand corner of (3.1.24). It
» * : . : . N
follows that Vrﬁ (Xl - x) has the same limiting distribution as

1

given in Theorem 3,1.4, where ¥y = (2‘2) » p)'. Han (1967, 1968)
obtained large sample tests of homogeneity of variances based on
(3.5.4) similar to those given in §2.9.4t and compared them with other tests.

Anderson (1963), Lawley (1963), and Gleser (1968) have given related large

sample tests for testing homogeneity of correlation coefficients.

3.6 Efficiencies of the Sample Quantities.

In this section we evaluate the limiting relative efficiencies of
D2e and r and compare our results with those of §2.9.3. From

(3.1.24) the limiting covariance matrix of the maximum likelihood estimate is
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222 1 4 pPee'[—E— 4 1)p2, (ap/p)o®)
204+pp2 2a4+pp?

(3.6.1) 2 '
(ap/p),g_(e) ; @®/pq

while that of the sample quantities is

. A2[(1-p3)T + p2ee' A2, (ap/p)c(g)
(3.6.2) 2 (2')'. - -

(ap/p)o o®/pq

from (2.9.42), (2.9.40), and (2.9.36). We thus see immediately that
the average sample correlation coefficient is an asymptotically

efficient estimate of p. Using (2.6.3) we obtain:

THEOREM 3.6.1. The asymptotic relative efficiency of the sample

variances in a multivariate normal distribution with equal but unknown

correlations is given by

(3-6-3) * 1 > i
[(1-02)(1 + B 7"

Proof, The efficiency is the ratio of the determinants of the upper
left-hand corners of (3.6.1) and (3.6.2). In (3.6.1), the p X p
matrix has a multiple root of 2u/(204+pp®) and a simple root of

1 + qp2, while that in (3.6.2) has a multiple root of 1 - p? and

the same simple root, establishing (3.6.3). (qed)

We note that (3.6.3) is the same as (2.9.55), the asymptotic
efficiency of the modified estimator E#e) = (1 + [p(p-r)q)/2x)?D?,
when p is known. Thus Table 2.9.2 and Figures 2.9.1 and 2.9.2 also
apply to (3».6.3). The joint asymptotic efficiency of D¢ and r is

also given by (3.6.3). To see this we must prove(3.6.3) the ratio of
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the determinants of (3.6.1) and (3.6.2). Using the Frobenius-Schur

method the desired efficiency reduces to

2
2 (L + £ ee')
Sa+pp=

(3.6.4)

|(1-02)L + oZee' (1-a/p)| ;

the matrix in the numerator has multiple root 2o/(20+pp®) and simple
root 1, while that in the denominator has multiple root 1 - p® and
simple root also 1., Thus (3.6.4) equals (3.6.3) as claimed.
Corollary 2.9.4 also applies to the asymptotic efficiency in
Theorem 3.6.1. That is (3.6.3) tends to 1 as p tends to 1,

and has a minimum value over positive p at

- 4 4+ ,/p(p+8)
(3-605) p = P )-I-(;-l)P P ’

as in (2.9.58). vValues of (3.6.3) at (3.6.5) are tabulated in Table

2.9.3 and illustrated in Figure 2.9.3.

3.7 Case of Variances Equal but Unknown.

When all the variances are equal but still unknown, the maximum
likelihood equations can be solved explicitly. We write the covariance

matrix

(3.7.1) % = 0®R = o®[(1-p)L + pee']

and study the problem in terms of p and A where following (3.1.2),
(3.7.2)  Me=Defs = = ).

A e ~

Maximizing the likelihood is equivalent to minimizing
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(3.7.3) ¢ = 22" (E"#R)d - 2p log A + log B,
using (3.1.3). Differentiating with respect to \ yields
(3.7.14) %‘: = oad' (B M#R)d - 2p/h,

and with respect to p gives, as in (3.1.11),

(3.7.5) 2L (wald? gy ppd
(1-p)? 2 T @

Setting (3.7.4t) and (3.7.5) equal to zero, and substituting (3.1.8)
in (3.7.h) yields

& Pgpd
(30706) Xe = R ? Adl = ’
(1+pa)d d-PARA (1, 50)24 14~ (14p%q)d"Rd

from which follows immediately that
(3.7.7) 1+ 8q=4d'Rd
in parallel to (3.1.1k4), and

(3.7.8) B =d'(R-I1)d/qd'd,

o~ o

which equals r, the average sample correlation coefficient when all

the sample variances are equal, Substituting in (3.7.6) yields
(3.7.9) *% =p/d'd = 1/8%,
As in Theorem 3.1.3 we deduce from (3.7.7) that

1 1 a_ 1
T - =< =ch (R-I) < < & ch, (R-I) < 1.

We obtain the covariance matrix of the limiting distribution of
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vrﬁ.(ﬁa -0%, p

we have
2 ' _

(3.7.11) 9—2 =2d'(R 1*5)1 + 2p/A3,
oA

while from (3.7.5) we obtain

2 |} 2
(3.7.12) St _2Md 2\(14p%q) 4rpg,
dAadp (1_p)2 o2 -~

Using (3.1.33) the second derivative with respect to p 1is

(3.7.13) L _ 2a3dld | 2(q-1-309-p3q°) \2a'rd - Ra(l%q)
% (l”P)3 o ~ o

Following the proof of Theorem 3.1.4 the desired covariance matrix

is the limit of

FL P
2 O\ édp
(3 7 ll}) 1{- 1/20'3: 0 E o - 1/203, 0
b 2 0s 1 h 3 0, 1]
o’ -a?
2 03 . .
since d(1/0)/dc” = - 1/20°. Substituting,(3.7.14) becomes
; 1/6%, © 1, -pq/a 1/0%, O
(3.7.15) 2p ;
0, 1] |-pa/as q(l+p3q)/c? 0, 1

in parallel to (3.1.34); inverting yields

(1+p2q)oh, apo?
(3.7.16) ,
apa®, o?/q

o

which also follows direétly from (3.1.39) by pre- and postmultiplication

by
s'/P: o
(3.7.17) . .

0, 1

—~

- p) from the second derivatives of ¢, From (3.7.k4)

-
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The first term in (2.7.16) can also be obtained immediately from
Corollary 2.4.2,

We verify that (3.7.8) and (3.7.9) maximize the likelihood by
showing that the matrix formed from (3.7.11) through (3.7.13) is
positive definite when (3.7.8) and (3.7.9) are satisfied. Substituting
(3.7.8) in (3.7.11) yields Lp/R2, and in (3.7.12) gives 2fpa/2f
using (3.7.5). Substitution in (3.7.13) completes the matrix to be

Lp/R%, 2ppqa/&t

2ppq/@Rs pq(l+$2q)/62

(3.7.18)

It suffices for positive definiteness to prove the determinant positive
since the diagonal elements are clearly so. Expansion gives
Lp2q/8282 for the determinant and so (3.7.18) is positive definite.

We assemble these results in the following:

THEOREM 3.7.1. In a p-variate normal population with covariance

matrix

(3.7.19) £ = 0?[(1-p)L + pee'l,

the maximum likelihood estimates are

(3.7.20) 8% =4d'd/p ; f = d'(R-I)d/ad'd,

~ L o~

where d is the vector of sample standard deviations, R is the sample

correlation matrix, and q =p - 1. The limiting distribution of

JN (62 - 62, p - p), vhere N is the sample size, is bivariate normal

with mean vector Qf and covariance matrix

) .
(1+p2q)c’, oapo=

(3.7.21)
Q’pO’za cv2/q

=R 1\b)

where o = (1-p)(1+pq).
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The maximum likelihood estimate &2 1is the average sample variance,
while § 1is the ratio of the average sample covariance to the average
sample variance, Using (3.6.2), we find that ,/N(6%- o2, r - p), where

2

r is the average sample correlation coefficient, and ,/ N(83- o2, § - p)

have the same limiting distribution,
The exact marginal distributions of §° and § may be
found as follows. 1If EB’ B =1,..., N, is a random sample from
N(u, £ = 02[(1-p)L + pee']), then gj§B, B=1,..., N, is a
random sample from N(P'p, P'YP), where P 1is an orthogonal matrix
with first colum e//p and
(1+pq) 0'
(3.7.22) ?P'9P = 02 R
T 3] (1-p)L
Thus &62(1+9q) follows the same distribution as 02(1+pq)x§_1/N
independently of q32(1-§) which is distributed as 02(1—p)x§(N“1)/N.

Hence 02 is distributed as

(3.7.23)  o®[(Lpa)xy_ g + (1-p)xgy_1)]/Ne,

where the chi-squares are independent, and § follows the same

distribution as

P
(3.7~2h) 1 - q+ 1+pq . ’
1'p N‘laq(N"l)

which we notc is independent of o2,
This model with equal variances and covariances is often referred
to as that of intraclass correlation (cf. Olkin & Pratt (1958),

Selliah (1964), for example). The maximum likelihood estimates &
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and § and their distribution are given by Selliah (1964), who
observes that §2 is the unique minimum variance unbiased estimator
of 02, since it is unbiased and [d'd, d'(R-1)d] is a complete

sufficient statistic, The estimator § is not unbiased; Olkin &

Pratt (1958), however, have shown that § F(%, 1; %N; 1 -42) is

the unique minimum variance unbiased estimate of p, where

k
k)T vk )T (y X
(3.7.25) F(M, v v; x) = oo —STTU%(\’F VK &

is the hypergeometric function,

3.8 Case of Variances Known.

When the variances are known the maximum likelihood equation
for the common correlation coefficient p 1is a cubic., We write the

covariance matrix
(3.8.1)  L=R=(1-p)L + pee',

setting the variances equal to unity, which loses no generality,
Then fcom (3.7.5), with X\ =

d'd
(3.8.2) %: —

_ (140%4) qigq - eRY
(102 @ T °

- —r———

which put equal to 0O gives the cubic equation

(3.8.3)  pa®p° + qf°[a(d'd-p) - (d'Rd-p)] + pa(ed'd-p) + (d'd-d'Rd) = O,

—~r—

When §.= 1 the left-hand side of (3.8.3) equals p(pd'd-d'Rd), which
by Lemma 3.1.1 is always positive; when {§ = - 1/q, we obtain

-(p/q)d'Rd which is always negative. Hence (3.8.3) always admits
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one real root between - 1/q and 1; in general, (3.8.3) must have
one or three real roots, and in the latter case two roots may fall
between - 1/q and 1 and both give relative maxima of the likelihood.
We would in such a case choose the root which gives the larger value
of the likelihood, or the smaller value of

(3.8.4) ¢ = g'(g’l*g_)g_+ log |B|.

A root of (3.8.3) will give a relative maximum of the likelihood when
the corresponding value of the second derivative of £ 1is positive,
Using (3.7.13) we have

T I G Y. SPPOPEN

32 (1-p)3 o3 e

(3.8.5)

Suﬁstituting d'd satisfying (3.8.3) gives
(3.8.6)  a(1-p)[p(1+Ba)(B?a+2p-1) + 2(1-)d'Rd1/&’.

A necessary and sufficient condition for {3.8.6) to be positive is

that

(3.8.7)  2(1-3)d'Rd > p(L+fa)(1-2-3%),

or equivalently

A2

(3.8.8)  20d'd > p(1425(a-1) - ¥%q - §'aD),

found by substituting (3.8.3) in (3.8.7).
We can solve (3.8.3) explicitly (cf. Birkhoff & Maclame (1953),

pp. 96, 112-113) as follows. Let

(3.8.9)  a =pq®; 3b=q?d'd-p) - q(d'Rd-p)

f

C

€

A

€



(3.8.10) 3¢ = q(2d'd-p); d = d'd-d'Rd.

Then we transform (3.8.3) by the substitution y = af + b into
(3.8.11) y3 + 3y +g =0,
where

(3.8.12) g = a%d - 3abc + 2b3 ; h = ac - b2,

Making the so-called Vieta substitution

(3.8.13) y=x - h/x

we obtain the quadratic x3 - h3/x3 + g =0 so that

(3.8.1’-!-) x3 = -2]—'(-g i / 32 + )+h3)

which gives six solutions for x in the form of cube roots. Substituting
these in (3.8.13), we get three pairs of solutions for y, and hence

P, paired solutions being equal. One root will always be real, while

the other two are éomplex conjugates of each other provided the

discriminant in (3.8.1k),
(3.8.15) g° +4n3 >0 ;

otherwise there are three real roots,
Following the discussion by Kendall & Stuart (1967), pp. 38-39,

for the special case p = 2 (which we study in §3.8.1), we find

THEOREM 3.8.1., The maximum likelihood equation for the common

correlation coefficient in a multivariate normal population with

known variances admits a unique solution between - 1/(p-1) and
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1 with probability tending to 1 as the sample size N — o,

ggégg. It suffices to prove that the limit in probability of the

left-hand side of (3.8.15) is positive. Let the limits in probability
of b, ¢, d, g, and h be the corresponding quantity with an asterisk.
Then from (3.8.9) and (3.8.10), since d'd tends in probability to p

and d'Rd to p(l+pq), we have
* 2 * *
(3.8.16) 3b = -pa®p; 3¢ =pq; d = -pqp.
Hence, using (3.8.12), we obtain
3,2 2 23 2
* _-2p7q7p qp * P4 qp
8.1 ==<b 1P By, pm =29 - 80
(3.807) & =R (14 8 1T (- %,
so that the left-hand side of (3.8.15) tends in probability to
6 2.2
(3.8.18)  4p°¢?(1 + qo°)P/27,
which is always positive. (qed)

Writing o = (1-p)(1+pq) as before, we find that the expectation

of (3.8.5) tends to

(3.8.19)  pa(l+p3q)/a=.

Thus ,/N(§ - p) has a limiting normal distribution with mean O

and variance 20?/pq(1+pq), where N is the sample size and { the
real solution of (3.8.3) between - 1/q and 1 which makes (3.8.4)
the smallest, From Theorem 3.7.1 we recall that ,/N(r - p), where

r 1is the average sample correlation coefficient, has a limiting normal
distribution with mean O and variance 202/pq. Thus the asymptotic

efficiency of r is
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(3.8.20) 1/(1 + p3q); -1l/q<p <1,

As p tends to - 1/q, (3.8.20) tends to q/p, which for p not
too small is near 1, For p # 0, (3.8.20) decreases as the dimension
p becomes large.

Another estimator of p is the average sample covariance (we
are taking all variances equal to unity):

*
(3.8.21) r = % ci,/pq.
idj
*

From Lemma 2,9.3 we find that ,/N(r -~ p) has a limiting normal
distribution with mean O and variance L/p®q® times the sum of

the elements in the lower right-hand corner of (2.9.3&),

(3.8.22) 2{{1 + p(q-1)}% + o%q1/pq.

*
Thus the asymptotic efficiency of r is

(3.8.23)  o/(1+p2q)[{1 + p(q-1)}2 + p3q]

which is always less than or equal to the efficiency of r since
o2 < {1 + p(q-1)} + p3q. We see this by expanding 02 and cancelling
common terms, obtaining p®q - 2p(q-1) - 3 < 0 as an equivalent

condition, The result then follows by Lemma 3.4.1 with u =1 and

v=-1/q.

3-801 Case &f_ P = 2,

When p = 2 the maximum likelihood equation (3.8.3) simplifies

but remains a cubic. Substituting d'd =c.. +c and

11 22

! _ . s
d'Rd = ¢, + ¢, + 2¢,, in (3.8.3), we obtain (cf., Kendall & Stuart
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(1967), pp. 38-39)

A3 a2 A o
(3.8.24) {5~ - cipb + (c11 +epy - ;)p - ¢35 = 0.

The condition (3.8.8) that a solution J maximizes the likelihood

reduces to

(3.8.25)  (1-F%)(eyy + o) > 1 - b2 - B,

In an unpublished paper, Madansky (1958) obtained the complete

solution of (3.8.24) for the maximum likelihood estimate pJ. Let

(3.8.26) v

2 -
clp - 3(eqy +cgp - 1),

(3.8.27) w c12[9(h - ¢y - c22) + 2c§21/2|v|3/2.

)]

Then the solution of (3.8.24) which maximizes the likelihood is:

1 _ c
(3.8.28) p = %IVI2 sinh (% sinh 1w) +-—%g ; v<O,
2 1 1 -1 ‘12
== v2 cosh (5 cosh 'w) +—==; v>0, |w| >1,
3 3 3 -
1 - c
- % ve cos(% cos N + %ﬂ) +,_%2 ;5 v>0, |w <1,
c 31
v 12,3,

The last solution occurs with probability zero, Asymptotically
the first solution applies since v tends in probability to p? - 3 <O.
Madansky's method appargntly does not generalize directly to the
case of arbitrary p > 2. Differentiating the left-hand side of

(3.8.3) gives the quadratic

(3.8.29) 3pq3p® + 2qp[q(d'd-p) - (d'Rd-p)] + q(2d'd-p)
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with discriminant

(3.8.30) q®[q(d'd-p) - (d'Rd-p)]* - 3pq3(22fE:P)'

This tends in probability to p2q3(qp2-3) which is negative for all
p'~between‘ -1/q and 1 only for ¢ <3 or p <k, When p =2,
q=1 and (3.8.30) reduces to Lv,

The asymptotic efficiency of r, now the only sample correlation

coefficient is

(3.8.31)  1/(1+p%),

from (3.8.20), while that of r*, now the only sample covariance is
(3.8.32)  (1-0%)3/(14p%)%,

from (3.8.23), as given by Madansky (1958). We sketch (3.8.31)

and (3.8.32) in Figure 3.8.1 below for - 1 <p <1,

efficiency
#,,,_Ll\g;\
///////// - .6
| - Wb -
,,/////// B '
L o S FE

T [} [
1.0t -.8-6 -4 -2 0 .2 M .6 .8 1.0

Figure 3.8.1, Efficiency of sample correlation coefficient r and

*
sample covariance r when variances are known and p = 2,
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1v, OTHER CORRELATION STRUCTURES

We can extend the procedures used in Sections II and III to
more general assumptions about the correlation matrix, Motivated
by Anderson (1966) and (1968) we study the situation where the covariance

matrix

‘ m
(k.1) Z=a(L+ gglogzg).fs, = ARA,

or the correlation matrix has linear structure, We assume that the
diagonal matrix A of standard deviations is unknown, and that
El’ 52,..., Em are m given symmetric linearly independent zero-
axial matrices with unknown coefficients Pys Ppseces P, SO chosen
that R is positive definite. The component matrices may be zero-axial,
i.e., have diagonal elements all zero, since R has diagonal elements
all unity,

In Section III we studied the special case of (4.1) with m=1
and K, = ee'- I, Other special cases of (L,1) are considered by
Joreskog (1963) and Aitkin, Nelson, & Reinfurt (1968).

We will estimate the unknown variances and coefficients Pyaeess Py
by the method of maximum likelihood. As in Section ITIT we study the

problem in terms of
.2)  a=pth,

whera, as in (3.1.2), the elements of )\ are ratios of sample to
population standard deviations, Maximizing the likelihood is equivalent

to minimizing
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4.3) = AR - 2eA) 4 10g|R| + 2 108D,

as in (3.1.3). We differentiate (4.3) with respect to A and

Pyseees pm.' From (3.1.%4) we recall that
(k1) &L 2[(R Ly - 2017,

Let us write

(4.5) g =(pyseees pp)'e

Then writing [QB;I/QQ} for agfllapg; g=1,..., m etc., we find

-1
6 Eom-E'EE s - E R s - 1, u]

and (cf. Anderson (1958), p. 347)
R
3 log E : =l =~
b, = >
k.7) _EJ_J. tr § (=)

{er B'Rys 8 = Leee, m)

so that

:.8) ‘a'é' er KK, - M (R KE Lrs g = 1,000, m)

[trR (I’R ARA)3 g=1.00, m}
We equate (4.4) and (h.8) to zero to obtain

" THEOREM 4.1. The maximum likelihood equations for the unknown quantities

in the covariance matrix ¥ = A(I + Zpggg)é' in a p-dimensional normal

population are
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(o)  (F et = 20Y
and
(l;.“lo) tr g'lgg = tr 3"1%:'1@52\; g=1,..., m,

where 3 and R are the maximum likelihood estimate and sample

correlation matrices, and X(—l) = ﬁflg' is the Hadamard inverse of

L= EE. which contains ratios of sample to maximum likelihood estimate

-~

standard deviations,

Premultiplying (4.9) by X' yields

(ha1) AR = p = tr RTURRA,

~

while multiplying (4.10) by 6g and summing over g = 1,..., m gives

1

(r12)  er B - ee BURARTY = &' (B2ROA,

using (4.11).

As shown by Anderson (1958), p. 47 and Anderson (1966) the equations
in Theorem 4.1 admit at least one real solution. When there is more
than one we choose that which minimizes (4.3). From Chanda (1954) and
Anderson (1966) we find that (4,11) and (4.12) admit a consistent

solution and the usual asymptotic theory applies.,

We proceed by finding the second derivatives of 4. From (4.h4)

we find

2 - -
(4.13)  goer = 2(R7%R + 470)

as in (3.1.31), and

3¢ -1, -1 . o =
(h.l’-l-) W = {- 2(13; 1—(-88- *E)')L’ g = 1,..0, m}.

—

-
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From (4.8) we obtain

2& . -1 - -
(11'015) B‘i"g‘ér = {tr ’B‘- Kg(?ﬁ 1ARA - L)E 151; g’ h = 1,000, m}o
Following the proof of Theorem 3.1.4 we have:

’ ' '
THEOREM 4,2, The limiting distribution of /N (§_(2) - 9_(2) , ' - p")

_i_s_ multivariate normal with mean Q_' and covariance matrix

(4.16) 2

o>
=10

] ’

D, ST e
e (8,0} fex g‘lggg'l:gh}J ¢

=Hlo

where g, h=1,..., m.

We verify that substitution of m= 1, K, = ee'-1 = K, say,
confirms (3.1.35). We have 5'1 = .i%—ﬁ I- § ee', where o = (1-p)(l4pq),

q=p -1, Hence E"l*gg p(I-ee')/a and so (3_-1*5_)9_ = - pq e/o.

Furthermore tr 3-1@-1_@_ =e' (E-lg)(e)g and (_3_'1_15)(2) =
[(p®q3-1)I + ee')/o® so that tr ’13,_-1‘15‘%"115_= pa(1+p3q) /2.
The solution £, § maximizes the likelihood provided the matrix
of second derivatives formed by (4.13) through (4.15) is positive definite
there., We obtain

2 + 179, - 2§ 'k N

(4.17) ,

1 A-l -1 A-l A-lA A
(- 28" (B Rk R R) ), {er BK (2BRRA - DETR, )

where g, h =1,..., m, Whenever 3 is positive definite the top

P X p submatrix in (4.17) is also positive definite. Thus for any set
of solutions 61,..., 6m the corresponding vector lt_, and henc.:e ﬁ.(e),
is determined uniquely. The lower m X m submatrix is positive definite

provided 2}3‘:1?\1{7\ - I 1is positive definite, though this is not necessary.
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Frém (h.9j we note that 23;1355’- I has all diagonal elements equal
to unity.
In general the maximum likelihood equations in Theorem 4.1 cannot
be solved analytiéally. We can solve them iteratively, however, by
the Newton-Raphson process, for example (cf. §2.4). An initial consistent

solution is A = e and
-s°~

(.18) g = o' (R4, )el " (e’ [(R-T)¥E, Je)

fer KX} {ex(R-DK, ),

where g, h=1,..., m. We note that R - I 1is a consistent estimate

m .
of ZpkK and tr K is positive definite since the K are
gel B8 fer Kiyd dew ~g

assumed linearly independent [cf. Anderson (1966)]. The first Newton-Raphson

iterate, which leads to the same limiting distribution as that in
]

Theorem 4.1 (cf. §2.4), is (2§2) R Qi) with 252) = (2?{&1)(’2),

where D 1is the diagonal matrix of sample standard deviations and

-1
11\\ le\ |aB ™+ D), -2 B e )] f2(r oreD)e
(4.19) |

1

—

~t

g, h=1,..., m and Bb based on £o°

Simplifications to the above expressions result if we assume all
Eg to commute or have unit rank. These will be the subject of further
study. |

Another structure ﬁotivated by Andegson's research is

k

-1 -1 -1 -1.-1-1
(h20)  £7=47(Z mh)AT = AR A

o] o] | bor @i sl e 0 )| e

-

r. .

.
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where the inverse of the correlation matrix has linear structure.

Let us write
()"'021) :L = (TO’ Tl’oo.’v 'l‘k)'.

Then in parallel to (4.6),

-1
(4.22) By {L,; h=0,..., k}

Al

and
-1
' d logl|R _ L
(k.23) —g—l;—-'- = {tr BL; h=0,..., k},
so that using (4.3),

(2h) Qe (L ARIA - tr By b= 0,..., K

1A

Q' (L R\ - e' (L, ¥Re; h = 0,..., k]

{tr L (RRA - B); h = 0,..., k}.
Equating (4.24) to zero and using (4,9) we obtain:

THEOREM 4.3. The maximum likelihood equations for the unknown quantities

in the covariance matrix ¥ = A(Z Tth)-IQ_ in a p-dimensional normal

population are

oo - k ~
es)  @wr-1 - 3wt
and
(4.26) e' (1, *R)e = 1'(L %)%, h=0, 1,..., k,

where B and R are the maximum likelihood estimate and sample corre-

lation matrices, and X(-l) is the Hadamard inverse of 1} which

_—
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contains ratios of sample to maximum likelihood estimate standard

deviations,

Multiplying (4.26) by ?h and summing over h = 0,..., k yields
(4.11) which follows from (4.25) by pre-multiplication by R'.

The second derivatives of £ are

2
(4.27) ’a')?'é% = {2(L, *); h = O,..., k}
and

%L o, ) _
(4.28) I " {e’ (Eg*;@_hﬁ)i, g, h=0,..., k}.
In parallel to Theorem 4.2 we have

. 1 1
THEOREM 4.4, The limiting distribution of J‘ﬁ(g_@) - _g_(z) , B 1)

ig multivariate normal with mean gf and covariance matrix
-1

-1
Az’ 0 %(E *,B,'l' ;[_)’ -{(.I;'&l*.B‘_),e__} A2, 0o
0L XLf|_fe ¥ 9,1
e'(L*R) ), {tr L RL R}

WhEre g’ h = 0, 1,..., ko

The solution §3 i' maximizes the likelihood provided the matrix

of second derivatives formed from (4.13), (4.27), and (4.28) is positive

definite, We obtain

2B + 173), (2,1
(4.30) ,
er (L*R)} , {tr LR R}

where g, h = 0,1, ...,k.Whenever 'E is positive definite the upper
p xp and lower (k+l1) x (k+l) submatrices of (4.30) are positive

definite, Thus given a solution X the corresponding vector i’ is

L

r

| .

|
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uniquely defined and vice versa. To show complete uniqueness we would

need in addition that
(h.31)  e'( Bl )e > 2l (LR (ER + AD) eI g = 0,.ll K,

which appears hard to establish in general,

Iterative solution of the equations in Theorem 4.3 can be effected
similarly to that outlined for the equations in Theorem 4,1, Simpli-
fications of the expressions result if all L are assumed to commute

=~h
or to have unit rank, We will study these later,
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INDEX TO NOTATION

A s i
a8 {aij} matrix generated by aij
C = &'g_eQ/N = {cij} = DRD sample covariance matrix
Q_e =1- gg_'/p centering matrix of order p
N

- - - ]
Qu § (x_.d p)(x - p)'/N covariance matrix about p
chjé, ch A (j-th largest) characteristic root of A
d = De column vector of sample standard deviations

=]
I
ﬁ
[ and
[ %
Lo
(=9
(1]

diagonal matrix of sample standard deviations

( ) dg diagonal matrix
e colum vector with each element 1
e column vector with all elements O except
3 j-th which is 1
2

3%5%"’ %i—é—; matrix of second derivatives of ¢,

H = ~= < where R = (1-p)L + pee', at solutions
L e of the likelihood equations
—_—, —
3p 3 32 .
A=A, P=p

Hy» By Hwhen § =0, 8 #0
1= {Gij} identity matrix, generated by Kronecker delta
L = - -I% log L - p log 21 reduced function of likelihood (after

maximization with respect to u), the
minimization of which is equivalent to

-1
tr £7°¢C + log [Z] maximizing the likelihood
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L

L

2
= log L -~ log 2m
Tl g " p log

tr _Z_-lgu + log |Z]

exp|[- g tr zf%g]
N/2,. \Np/2
121V2(em™®

exp|[- g tr zflgu]

m, M
P
q=p -1
r= ¥ r,./p(p-1)
idj
r=(R-De
-1, -1
R={ ij} =D "CD
“1g,-1
R={p; =220
t=%‘(q—l)=é‘p-l
P
tr A = z a s
i=1
u=q-2=p -3
X= {xgoeee 5y
a = (1-p)(l+pq)
=1+ p(q-1) - p%q
A= WTlig = {o5)4g

reduced function of likelihood, the
minimizing of which is equivalent to
maximizing the likelihood

joint likelihood of N observations on
N(w, £) after maximization with respect

tOE:

joint likelihood of N observations on

N(w, Z)

ch , chl[%(ﬁ;1*§,+ ﬂ:g)]

dimension of distribution studied
dimension less one

average sample correlation coefficient

colum vector of row sums of sample
correlations

sample correlation matrix

population correlation matrix

half the dimension, less one

trace of square matrix A of order »p
dimension less three

matrix of sample observations, order N X p

product of the simple and multiple
characteristic roots of (1-p)IL + pee'

diagonal matrix of population standard
deviations
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_Z:_= {Gij} = ARA

Special Symbols

A¥B = {aijbij}

column vector of ratios of sample to
population standard deviations

column vector of ratios of sample to
maximum likelihood estimate standard
deviations

first iterated estimate of 3_'

min, max X?
i=1, L ) ’P

diagonal matrix of ratios of sample to
population standard deviations

column vector of population standard
deviations

column vector of maximum likelihood estimate
standard deviations

population covariance matrix

Hadamard product of A and B, generated by
elementwise products

Hadamard square of A
Hadamard inverse of A

matrix of natural logarithms of elements in A
system of partial derivative matrices of the

matrix A with respect to the elements in the
vector u

determinant of square matrix A

maximum likelihood estimate of column
vector §
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