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1. Introduction.

In a recent paper [5] the author has considered the problem of ranking
the t =2 best (i.e., the largest two) of n unequal numbers when only
binary errorless comparisons are made; this paper considers the analogous
problem of selecting the t = 2 best without ordering them. We are inter-
ested in two criteria: one is to minimize the expected number of comparisons
required (called the E-criterion) and the other is to minimize the maximum
number of comparisons required (called the M-criterion). Unlike the ranking
problem which was considered by different authors, the selection problem
appears not to have been previously considered; hence all the procedures
discussed are new. The ideas behind some of the procedures and one method
for obtaining an E-lower bound are similar to those used in [5]. The E- and
M-efficiences of our procedures are numerically investigated.

In order to evaluate efficiency or prove optimality we need to develop
an attainable lower bound over all possible procedures. The best M-lower
bound is obtained; the E-lower bound obtained is only over a certain class
of procedures. Our results (see table in Section 2) are optimal for n < 5.
With the help of the above M-lower bound, one of the procedures RM is
shown to be M-optimal for all n.

This formulation is directly applicable to tournament problems and we
use the associated terminology, i.e., the best player corresponds to the
largest number, etc. The better player always wins and, since no two players

have the same ability, a draw cannot occur.

2. Procedures for the Selection Problem for t = 2.

Six procedures for the selection problem with t = 2 are defined.

Three of them use the concepts of pairing and one-step or higher-step expected
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entropy (the adjective expected is later deleted) and one is related

to a procedure suggested by Picard [2] for the corresponding ordering problem,
After some preliminary definitions, we briefly describe the . procedures

and give a table comparing the numerical results obtained for n = 1(1)10.

A state of nature (or case) is any one of the n! possible ordered
arrangements of the n players. There are, of course, (;) possible decisions.
At.-any stage of the procedure, we are concerned with the number of cases that
are consistent with the results of comparisons already made for each of the
(;) decisions;these J=(g) integers are proportional to the conditional prob-
abilities that each of the (g) decisions is the correct one given the results
of the comparisons already made. Hence these J integers describe the state
of our system, say Sa' Let the integers be nga) with sum N(a) and let
pga) = nga)/N(a) (i=1, 2,..., J) be the conditional probabilities given
the system state Sa' The entropy (or uncertainty) associated with Sa is
given by
(2.1) Es,) = - 5 p{*) 10g p{*) ;

' o il i i
all logs in this paper are to the base 2 unless stated otherwise, If we start
from S and a comparison C = C(a v b) (where v means versus) leads to
states S, (resp., 82) with probabilities qga) (resp., qéa) =1 - qga)),
then the expected one-step reduction in entropy due to the comparison C, applied

to the system state Sa’ is given by

(2.2)  5(&c, s) = Es) - @{PE ) + I (s,)1.

1f we look s steps ahead then the expected reduction is again given by EE(%I)
minus the appropriate average of (at most) 2° uncertainties. Our basic

idea is to fix an s and find the comparison that maximizes the expected

-2 -






;

s-step reduction in entropy at each stage. When the one-step plan (our
procedure RE) does not give optimal results, we investigate the improvement
of a two-step plan by allowing the use of twowstep reduction in a non-systematic
manner (see the procedure Rox below). It is conjectured that a systematic
two-step plan would do at least as well, but this has not been proved.
The use of the expected reduction in entropy as a tool for search problems
was used by Sobel and Groll [6] for group-testing, by F. Dubail [1] for other
search problems and also by the present author in [5].
Another point of interest is the distinction between cycle pairing and complete

pairing, For any n, let the binary structure of n be

(2.3) n=2"142"2 4,  +0s (r, > 1, >...> 1, >0),

so that s is the number of ones in the binary notation for n. Let p be
the highest power of 2 that factors into n.. Then it is easy to prove

(see [5]) that p =n - s.

For n =2° a knock-out tournament for finding the best one consists

of r rounds where the number of contenders is halved at each round. Under
complete pairing we start a procedure by randomly breaking up n into subsets
of size 2'1 as in (2.3) and doing a knock-out tournament within each of
these subsets., After this, we use the comparison that maximizes the one:zstep
expected reduction in entropy.

Under cycle pairing we start with a knock-out tournament only for one
subset of size 2° (usually s = r, defined in (2.3)) and then continue with
the exp8cted reduction in entropy. The procedure RE* uses cycle pairing
for n -1 i.e., it uses cycle pairing with s = ry for n + o' and for

n = Qr we take s = r-l.
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Procedure R,: Let n = o'+ ¢ with 0<c¢ < 2r. This procedure uses cycle
pairing with o® players with some s <~ (actually s = r-1 or r, the parti-
cularvalue to be determined later). After this we have one large connected
set of size 2° for the graph (or tree) and the remaining n - oS players

(called newcomers below) are unconnected, i.e., have not yet played. The

connected set has a best player x., with i1 inferiors and among these a

1
contender for second best X, with the largest number of inferiors,say 12
among the contenders for second best. Then 12 < il- 1<n -2 and our goal

is to make 12 =n - 2, which implies that i1 =n - 1,

Each newcomer except for the last one (and possibly the one before that

as explained in the ending E, below),comes up in turn (we assume they are

1

in order) and plays x If he loses he retires; if he wins he plays again,

2.
this time against Xq. If he loses to X he takes over as the new X53 if

he wins against x, he becomes the new Xy and the old x. becomes the new

1 1

Xy
Three different endings are used with this procedure, say El’ E2 and

E,, according to whether the original Xy (after cycle pairing) is beaten by

3

a newcomer not among the lasttwo,heis beaten for the first time by the next-
to-last newcomer n, ,or he is better than all the newcomers except possibly

the last one no.

Under E1 there is only 1 contender for second best (in the connected

subset), namely X5s when n, 1is ready to play. Again ny plays x. and

1 2

retires if he loses, but if he wins he 'sits out' a game letting n, play X, e

Then if n, loses,heCLeJ'ﬁd)retires and we are through. If n. wins,then

0

X5 retires and we need exactly 2 more games to find the best 2 of the 3

players, Xq5 nO and n,.
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Under E2 there is only 1 contender for second best (in the connected

subset), namely x when n. is ready to play (here n, plays as usual).

2’ 0
Then n, plays X, and the procedure terminates.
Under E3 there are s contenders (including x2) for second best

(in the connected subset) when n, is ready to play. Again n, plays X5-
If he loses, he retires and we need exactly s - 1 more games to find the
2 best players. If he wins, he continues to play the other s - 1 contenders,
eliminating one at each step, until he loses (at which point he retires)
or he wins over all of them. If he loses and there are still ¢ contenders
then we need exactly ¢ - 1 more games to complete the procedure.

To determine the value for s for the initial cycle pairing we use
the exact formula for the expectation derived in Section 3 for procedure RA
and use the s that gives the smaller expectation. Thus for 5< n< 10
it can be verified that s = 2, or cyle pairing with 2% = L units, is
best and for n = 11 we start cycle pairing with 8 units (see equation (3.20)

for the asymptotic equivalent).

Procedure REf: Start with cycle pairing for n - 1 and then maximize the
1 step (or 2 step) expected reduction in entropy. Two-step reductions are

sometimes used but not systematically.

Procedure RE: This consists of a 'pure' strategy for maximizing the one-step

expected reduction in entropy. Here two-step reductions are used only when

different comparisons give the same entropy reduction in 1 step.

Procedure RCP: Start with complete pairing (for n) and then continue with

the strategy of maximizing the one-step expected reduction in entropy.



Procedure R, : For this procedure we use 'complete pairing for n - 1' and

for n > 3 make use of the binary expansion of n - 1

>...>r > 0)

_ L | r2 rg
(2.4) n-1=2"%+22+...42% (r;>r, ¢ >

v

to explain the different steps in the procedure, after putting one unit
(or player) aside until the very last comparison.
1. Find the best one separately in each of the subsets for which
r, > 0.
2. Play the best one of the smallest subset of size s against the
best of the second smallest, the best of these two against the best of
the third smallest subset, etc,, until the best one of n - 1 is determined.
Let c¢ denote the number of contenders obtained for second best.
3. Use any knock-out tournament with exactly ¢ - 1 games to determine
the second best of n - 1.

4, Play the second best against the one set aside to complete the

procedure,

Procedure RP: Let the players in random order be denoted by 1, 2,..., n; we

describe the scheme in three steps:
1, Play 1 v 2 and assume 1 loses to 2.

2. Play 3 v 1l. If 3 loses then he is removed from contention; if 3
wins then 1 is removed and we play 3 v 2 to reestablish an ordering

between the top two contenders.

3. Repeat this procedure, except that if the last player n wins then
the extra game to reestablish the order is not played.

Although the procedure RP appears to be inadmissible in the sense that

one of the other procedures is at least as good or better for every n (for

-6 -
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¢ “both the E-problem and the M-problem), the simplicity of the procedure enables

L

us to get specific formulas, which throws light on the asymptotic properties

of the other procedures.

Numerical Results for Six Procedures for Selecting the t = 2 Best Players

Using Only Binary Errorless Comparisons

g:zzg:u::: Expected Values E{T|R}
n=_ n=3 | n= n=5 | n=6 | n=7 | n=8 | n=9 | n=10
LBE" --- | 1.918|2.918|hk,522 5.174(5.775|6.095|8.837| 9.292
cLe’? -—- | --- |3.386|4.685(5.899|7.066(8.197(9.307|10.L401
R, e |2 |2 |2 |8 |73 |glkh (121 | 4,38
Ry x s 2 35 sOReS 7315 gli9 N.ci | N.C.
R, 54 2 |2 |2 | 62 1222 |n.c. In.c. | woc.
S O U TN R ) T R
R, oo o |3 |52 | 628 420 [g180 |50 | ;,8k0
R, ¥l 5 3£ sk [ ell TEQI 932 108L | 11829
D§§ - --- | 6 6 30 |630 [210 |14oO 1260
Maximum Length M{T|R}
LBM§ - 2 L 5 7 8 9 10 12
R, SRS ST I R TR A IS ) DS 1 R
Ry o o |1 5 7 g 11 l:.c. N.C.
Ry o 2 L 5 T 9 N.C. [N.C. | N.C.
R S (SR e GRS I A A TR (o 6
Ry - 2 5 T 9 10 12
R, o 2 |tk 6 8 10 12 |14 16

# The LBE is the lower bound (3.14) for all procedures that use 'cycle pairing
for n-1' defined in the text,

## The CLB is the conjectured lower bound (3.22) for all procedures. Since the
LBE-values are smaller, they are also conjectured to hold for all procedures.

§ The LBM is the best lower bound for the maximum branch length given on the
right sides of (3.23) and (3.25).

§8 Each D is the common denominator for all the underlined numerators above it.

-7 -



3. Properties and Bounds.

Since procedure RP gives easy results, we consider it first. Let
fP(n) = E{TIRP} denote the expected number of comparisons and let ?P(n)
denote the maximum length under RP' It is easy to see that the expected
number of games for the jth player (3 j<n- 1) is 1 +-§, while for
j =n, only one game is played. It follows that for n > 3
n-1 n-1
(3.1) fP(n) = n-14+ 3% 2/j=n-L4L+2 3 1/3 = n+ 2 1n n.
j=3 j=1
Clearly if players 3, 4,..., n-1 all win we obtain the maximum length;

hence for n > 3
(3.2) ?P(n) = 2n - L.

Although RP has a better expectation than RE for small powers of
2 (see n = L4), the maximum length grows very rapidly compared to that of
Let fM(n) = E{TIRM} denote the expected number of comparisons under
RM and let ?M(n) denote the maximum number under RM' Using the result
for RM in [5] for the ordering problem with n replaced by n - 1, and

adding 1, gives
(3-3) £4(n) = n-1+[log (n-2)]

and

[

(3.5)  f£,(n) =

1 S .
n-2+— 5 (r, +j-6, )21
j=1 J Js

where the rj are now defined by (2.4) and st =1 if j=s and =0

otherwise. The asymptotic analysis in [5] is also appropriate here. It is

shown below that (3.3) is the smallest possible maximum branch length and

hence the procedure RM is M-optimal.

-8 -
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Since we have a special interest in procedures that use cycle pairing
for n -1 we let RC denote any such procedure and study its properties.
For n=2"+1 the cycle-pairing and complete pairing are the same and
after n - 2 comparisons we have 1 player (say n) that has never played
and for the remaining 2° we have a best player (say n - 1=2") and
exactly r contenders for ©2nd best, If player n does not play in the
next comparison then two of the r contenders play and exactly one is eliminated
in each such game. If all of these contenders but 1 is removed before player
n plays then the remaining one plays against player n for the last comparison;
this takes exactly r games after the pairings. If player n comes in
earlier under R (actually for small r he plays first under RE) then
it still takes exactly r comparisons to complete the procedure, If player
n wins then he continues to play each of the contenders for 2nd best until
he loses. Since 1 contender is removed as a result of each comparison, it

again takes exactly r comparisons after the pairings. Thus for n = of +1

and any procedure R, that uses 'cycle pairing for n - 1' we have
(3.5) E{T[R,} = 2% -1 = M{T|R}. .

This result is analogous to (4.3) in [5]; it is proved to be M-optimal in
(3.23) below, but the table above shows that it is not E-optimal.

We could also have gone through a cycle-pairing procedure for n = ot
and obtained the result 2°+ r - 2 as in (4.3) of [5] but, as our table
shows, this result can be improved upon,

Clearly any of the attained values for the t = 2 ordering problem in

[5] can be used as an upper bound for the optimal procedure in the t = 2

selection problem,
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We define a comparison C(a v b) to be of level j(j =1, 2..., [log n])
and denote it by Cj if the two players a and b each have exactly 2j-1- 1
inferiors, the two sets of inferiors are disjoint and neither a or b has
any proven superiors. We want to prove a result about the reduction in
entropy for any comparison Cj of level j.
Lemma: If two players a, b, with noproven-superiors, are best in disjoint
subsets Sa,Sb respectively, with common size I for each, then the expected

reduction in entropy E{A} due to the comparison a v b is given by

2I(2n-1-31
(3.6) Efa} = =0T ,

regardless of any knowledge previously obtained that affects only the
relative ordering of the remaining n - 2I players.
Proof: Suppose that the two players a and b each have exactly I -1
inferiors with no overlap (in our application I = 23-1) and, to begin with,
there is no other previous information.

Those states of nature -which can  still be correct are partitioned
into subsets so that each subset corresponds to one of the possible true
decisions. The decisions D(x, y) corresponding to these subsets will be
grouped into a convenient table, and the number of cases given for each,
before we play a v b. Let Sa(a =1, 2,..., m) denote the seconds (or
immediate inferiors) of a in the connected set of size I and let M&
denote the number of ways of linearizing this set of size I with Sa in
second position (consistent with all known order relations); let
M=M + M, + ... +M. Then Sé(B=l, 2,...,m'), Mé and M' are
defined similarly for player b. Let p (or pi) denote any one of the n - 2I

players not in these two connected subsets.

- 10 -



e

(%

LA
SALD




Type of Decision Number of Each Type Number of Cases per Decision

o 1 o b
S A S et
3.  b(a, p) n - 2I oMM! _(_(_l”ni?lff
(3.7) 4. p(b, S_) B=1,2,..., m") v __(n-2)!
B T M TT(T-2)!
5. D(b, p) n - 2I oMM .(7_)_1?':2[_'1):
6. D(pys pp) G oy {0201

2
The uncertainty before playing a v b can now be obtained directly from
the above table. The total number of cases is easily checked to be n! MM'/(I!)Z
and with this as denominator and the number of cases above as numerator, we
have the probability for each decision type.

We now play a v b and suppose a > b. Then types 2 and 3 in the
table remain in their entirety and we also have half the number of cases in
type 1 and half for each decision of type 6. Since types 3 and 5 have the
same -number of cases and the sum over « for type 2 equals the sum over
B for type L4, it follows that the comparison a v b partitions the entire
set of cases exactly in half. Hence we use a simple average for finding
the expected uncertainty after playing a v b.

The uncertainty U, after finding that a > b is given by

M
_oor(z-1) T Tu Mn(n-1 LT n(n-1)
(3.8) 7 T Ew wmi(rn) * (n - 21) Ty log =7

212 n(n-1) n-21 2 n(n-1)
+ n(n-1) log =57 +( 2 ) n(n-1) Log 2

and we omit the corresponding U2 after finding that b > a. The orginal

uncertainty Uo from the above table is

- 11 -
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1 1
1(1-1) * "o M n(n-1)  I(I-1) - %& M'n(n-1
. U = — 1 + — ]_
(3.9) ail M 8 M I(1-1) n(n-lj'Bil M OB Ml I(I-1)

_ 21 h(n-l) 212 n(n-1)
+ 2(n-ar) Sery tos 2EH 4 By 10g 205

n-2T 2 n(n-1)
+ 2 ) n(n-1) log =3 ’
To obtain the expected reduction in uncertainty we first remove log % = -1
from each term in U, and U, and we then easily obtain from (3.8) and (3.9)
(3.10) U - (U1+U2 y o 1.2 (n-2@)(n-l-21)
) ) 2 - n(n-1) n(n-1)

_ 21(2n-1-31)
- n(n-1 :

If there is present previous knowledge ag;ut some of the remaining
n - 2j players (say, among r of them) then we first consider each possible
fixed relative ordering among these r players separately. Each of the
numbers in the third column above is affected (we actually divide by r!) but
this constant r! also divedes the total. Hence the probabilities and the
uncertainty is unchanged. Since the previous knowledge about these =
players can be written as a union of such fixed relative orders among them,
we now average our result over all the relative orders of these r players

consistent with our previous knowledge and obtain the same result; this proves

the lemma.

For the application of this lemma that is needed, we have the
Corollary: The expected reduction in entropy E{Aj} due to any jth level

comparison Cj (avb) for 1< j< [logn] is given by

$ippq9.0371
(3.11)  mla) - BBl )

regardless of any knowledge previously obtained that affects only the relative

ordering of the remaining n - 2j players.

- 12 -
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We now use the lemma above to obtain lower bounds for all procedures
that start with any given pairing scheme. We consider only the 'cycle-
pairing for n-1' schemes since they give the better results, but the
method can also be applied to complete-pairing schemes, cycle-pairing
schemes (for n), ordinary-pairing schemes, etc. For n =2+ c (0< c'5.2r)
any cycle-pairing procedure R.c has at least 21:-i comparisons of level
i(i =1, 2,..., r-1) and we assume it has exactly that many among the
first 2'- 1 comparisons. Then the (expected) reduction in entropy due

to these comparisons is, by (3.6),

(312) Q= z "ol (on-1-3-29Y) 2T {(en-1)e-3(2T1))

1 n(n-1) n(n-1)

Y

]

Let the total number of comparisons T be partitioned into ~T1 and T2

where T1 = 2"- 1 are the pairings and T2 =T- T1 are the remaining

comparisons under procedure RC. Since the total uncertainty at the outset
is log (g) and 1 is an upper bound for the reduction in entropy in any

one step, it follows that
(3.13)  q+ L-E{T,} > log (3).

Hence, using (3.13), we obtain tﬁe desired lower bound for the expectation

under any cyc¢le-pairing procedure RC with n > 2r

(3.14)  E{T|R;} = 2% 1+ E{T,}>2%- 1+ 1og (3) - er{(%%l}fig(?r'l)} .

- 13 -






For n=2+ 1 we obtain an improvement over (3.14) by using (3.3). For

n = 2° we can use the same result (3.14) provided we replace r by r - 1,
The values of (3.14) are given as the LBE in the table in Section 2. It
follows from the above construction that the LBE is strictly increasing

in n, Asymptotically (n = »), the value of (3.14) is between (n/2) + log n
(the Timit for n=2" as r »®) and n + (log n)/n (the limit for
n=2"+1 as r-w),

We now derive an exact formula for the expectation under procedure RA.

Let 2° denote the number of players involved in the initial cycle-pairing.

r

If n=2 +c¢ (with O <ec< 2r) then s will usually be r -1 or r;

the value of n where it changes from r - 1 to r is close to 3-2r-1. .

The probability that the qth newcomer is the first one to beat the

original x. 1is easily shown to be

1

q-2 s s
(3.15)  —=— W (=) 8

S = s S q=1’ 2’000’ n-es)
2°+q a=0 2 +a+l (2"+q-1)(2"+q)

and the sum of these is 1 - 2°/n., It follows that the probability that

X is beaten by the last newcomer or by no one is 28/(n-1). Conditional

1

t . . ‘1
on the event that the q b newcomer is the first to beat Xy, We utilize
one extra comparison (beyond the basic one needed for each newcomer) under

endings E, and E, for earlier newcomers n, (1 < @ < q-1) with prob-

-1

ability (23'1+ @) and for later newcomers ng, mot including the last

two, (i.e., for q+ 1<B<n -2 - 2%) with probability 2(2%+ a)'l. In
addition the qth newcomer also uses 1 extra comparison to beat X . For

B=n-1- 2® (and n>2° + 3) we add 2 extra comparisons only if n
- 0

beats x,., which then has probability 3/n. Given ending E3, which, as

2

stated above, has probability 2%/(n-1), we have to play s - 1 extra games

after n, plays x, and each of the previous newcomers n, (1 <a< n-1-23)

2

-1k -
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s-1 -1

plays an extra game with probability (2° "+ @) . If we add these extra
games to the set of n - 2° basic games, one for each newcomer, and the 2%.1
comparisons used in the initial pairing, then we obtain

n-1-2°

S
(3.16) E(T|R,) = (2%-1) + (n-2°%) + 2 {s-1+ = L )
A n-1 s-1
o=l 27 "+«
s S
n-1-2 q-1 1 n-2-2 o oS
LT = N St B ppewr-
q=1 a=1l 27 "+ « B=q+l 2°+B (2°+q)(2°+q-1)
S
n-2-2 s
3y (-2 : 2
+2(2)(z7) =

a=1  (2%+q)(2%+q-1)

In (3.16) we make extended use of the elementary identity

n-b 1 1 1
(3.17) i:§+1 (c+itl)(c+i) = (c+a - c+n-b)hn(a+b+1)
where hn(x) =1 for n>x and = O otherwise; in particular each of

the double sums can be summed or simplified by (3.17). After some straight-

forward algebra and simplification we obtain

S
n-2-2
(3.18) E{T|R,}=n-1+ 28(%}%) +2 = :_1
=1 o2

S -]

s mp 12(n-2-2°) 2
+ hn(2+2 ){(n-l)(h-2) + n(n-1)(n-2) * (n_l)(n-l-Es-

1) -1}
Under 'cycle-pairing for n-1' with n = 2"+ 1 we set s=r andwe
easily obtain n + r - 2 in agreement with (3.5).
Asymptotically (n - ») we obtain the maximum and minimum of (3.18) by
searching for the value of n for which g(r-1, n) = g(r, n) where g(s, n)
is the right side of (3.18). 1In fact we obtain from (3.18) the quadratic

equation

(3.19) o2 1n2-n2°2(s+21n2)+ (s + 1)2°°3

>0
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where 1n x 1is the natural logarithm of x. Since we are looking for a
final change for s as n 1increases, we take the largest root for n

in (3.19) and obtain

s-2 s In 2
( )

(3.20) nAs 2 e

The limiting value of (3.18) for this value of n (which is the same for both

s =r and s =r - 1 and hence is the desired limiting value) is by (3.20)
(3.21) E[T|RA} =n+21lns +@(l) =n+2 1In in n +8(1).

Based on the form of (3.21) we conjecture that a lower bound for all

procedures for n > 3 is given by
(3.22) CLB=n -2 + (2 1n 2) log log n.

A lower bound for the minimax problem can be obtained using a modification
of a method due to Slupecki [L4]. Our result is stated in two parts; the
first gives some easily derived inequalities that any lower bound has to
satisfy and the second shows that what we got in the first part is an
attainable lower bound for the maximum length of any branch of the procedure,
Lemma: For n > 3 players a lower bound (LBM) for the maximum branch length
of any procedure for the selection (t = 2) problem must satisfy the
inequalities

/m - 2 + [log (n-1)] if n 1is of the form 2% 1

(3.23) LBM <
—-.LP -1+ [log (n-1)] otherwise,

Proof: The second part of (3.23) is the same as the Schreier[3] and Slupecki

[4] result for the t =2 ordering problem., Since the selection problem
cannot require more than the ordering problem, this part is clear. For the
first part we need only put one unit aside until the very last comparison

(see procedure RM above) and use the second part again for n - 1 wunits,

- 16 -
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Since this actually gives us an ordering of the t =2 best in n - 1, it
follows that we need only one more comparison (the unit set aside versus

the second best of n - 1). This gives a total of
(3.24) n-2+4+[log(n-2)]+1l=n-2+[log (n-1)],

which proves the lemma.

For the second part we follow the method of Slupecki and consider a
class of procedures (or a system) S that is characterized by the fact
that defeated players do not enter into the first n - 1 comparisons. We
-show below (3.25) that themaximum branch length of any procedure in S is
equal to or greater than the right side of (3.23). Since the early inclusion
of defeated players can only lengthen our procedure, it follows that our
results holds a fortiori for all procedures., The two results taken together
then prove the
Theorem: For n > 3 players the best lower bound (LBO) for the maximum
branch length in any procedure is given by the right side of (3.23) or for

all n>3 by

(3.25) LBy =n - 1 + [log (n - 2)].

Proof: It is easily checked that the theorem holds for n = 3 and h; we
use these as starting values for an induction proof. Let k be any integer
> L4 and suppose the theorem holds for every integer i such that 3 < i<k,
Let s (approximately equal to k/2) denote the number of games in the first
round in which the k players take part. In the games that follow the first
round we use the induction hypothesis on k - s players (the winners of the
first round plus any players that did not play in the first round). The"
first round gives us no information for the M-problem for selecting (or

ordering) these k - s players. After getting the two best of these k - s

-17-
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players, we then take into account the two people (at most) that they

defeated in the first round.

We first note that the two expressions on the right side of (3.23)

are equivalent to the single expression on the right side of (3.25). To

see this we need only consider the cases n = 2"+ 1 and n + of¢ 1

separately,

(3.23) for the induction hypothesis on k - s

For k = km we take

k - s players require (k - s - 1) +

Hence we can use either of these expressions; we prefer to use

players.

s = k/2 and by the induction hypothesis the

[log (k -85 -1)] =k - s -2 + [log (k-2)]

games, By the Séhreier;slupecki result we can assume that not only have we

selected the two best of k - s - 1 but also that they are ordered.

Hence

we need only 1 extra game for completion (the contender for second best

against the one defeated in the first

round by the best player). This gives

the total number of binary comparisons

(3.26) s +(k-s-2)+ [log (k -

2)]+ 1=k -1+ [log (k - 2)],

which is the desired result for k = bm,

For k = 2(lm - 1) we take s

]

those above giving (3.26).

For k = 2(4m + 1) we take s
right side of (3.26).

For k =k4m -1 we take s = (k
and the steps are again the same,
s = (k

For k = 4m + 1 we take

and we obtain for the total
(3.27) s+ (k-5 - 1)+ [log (52

which completes the induction.

k/2 and the steps are similar to
(k/2) - 1 and again we obtain the
k - s =2m is even

- 1)/2, so that

+ 1)/2, so that k - s = 2m 1is even,

Y1+ 1=k -1+ [log (k - 2)],

- 18 -
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Since the procedure RM has maximum length equal to the right side of

(3.25) it follows that Ry 1is M-optimal for the t =2 selection problem,
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