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1. Introduction. 

In a recent paper [5] the author has considered the problem of ranking 

the t = 2 best (i.e., the largest two) of n unequal numbers when only 

binary errorless comparisons are made; this paper considers the analogous 

problem of selecting the t = 2 best without ordering them. We are inter

ested in two criteria: one is to minimize the expected number of comparisons 

required (called the E-criterion) and the other is to minimize the maximum 

number of comparisons required (called the M-criterion). Unlike the ranking 

problem which was considered by different authors, the selection problem 

appears not to have been previously considered; hence all the procedures 

discussed are new. The ideas behind some of the procedures and one method 

for obtaining an E-lower bound are similar to those used in [5]. The E- and 

M-efficiences of our procedures are numerically investigated. 

In order to evaluate efficiency or prove optimality we need to develop 

an attainable lower bound over all possible procedures. The best M-lower 

bound is obtained; the E-lower bound obtained is only over a certain class 

of procedures. Our results (see table in Section 2) are optimal for n < 5. 

With the help of the above M-lower bound, one of the procedures ~ is 

shown to be M-optimal for all n. 

This formulation is directly applicable to tournament problems and we 

use the associated terminology, i.e., the best player corresponds to the 

largest number, etc. The better player always wins and, since no two players 

have the same ability, a draw cannot occur. 

2. Procedures for the Selection Problem for t = 2. 

Six procedures for the selection problem with t = 2 are defined. 

Three of them use the concepts of pairing and one-step or higher-step expected 
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entropy (the adjective expected is later deleted) and one is related 

to a procedure suggested by Picard [2) for the corresponding ordering problem. 

After some preliminary definitions, we briefly describe the _procedures _. 

and give a table comparing the numerical results obtained for n = 1(1)10. 

A state of nature (or case) is any one of the n! possible ordered 

arrangements of the n players. There are, of course, possible decisions. 

~t-~any stage of the procedure, we are concerned with the number of cases that 

are consistent with the results of comparisons already made for each of the 

(~) decisions;these J=(;) integers are proportional to the conditional prob

abilities that each of the c;) decisions is the correct one given the results 

of the comparisons already made. Hence these 

of our system, say s . a 
Let the integers be 

J integers describe the state 

n~a) with sum N{a) and let 
1. 

p~a) = n~a)/N(a) (i = 1, 2, ••• , J) be the conditional probabilities given 
1. 1. 

the system state 

given by 

(2.1) 

s . a 
The entropy (or uncertainty) associated with 

P~a) log P~a) ; 
1. 1. 

s a 
is 

all logs in this paper are to the base 2 unless stated otherwise. If we start 

from S a 

states 

and a comparison C = C{a vb) {where v means versus) leads to 

{a) ( (a) (a)) s
1 

(resp., s
2

) with probabilities q1 resp., q2 = 1 - q1 , 

then the expected one-step reduction in entropy due to the comparison C, applied 

to the system state 

(2.2) 

S , is given by 
a 

If we look s steps ahead then the expected reduction is again given by e,(sa) 

minus the appropriate average of {at most) 2s uncertainties. Our basic 

idea is to fix an s and find the comparison that maximizes the expected 
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s-step reduction in entropy at each stage. When- the one-step plan (our 

procedure ¾) does not give optimal results, we investigate the improvement 

of a two-step plan by allowing the use of two~step reduction in a non-systematic 

manner (see the procedure ¾* below). It is conjectureg. that a systematic 

two-step plan would do at least as welL. but this has not been proved. 

The use of the expected reduction in entropy as a tool for search problems 

was used by Sobel and Groll [6] for group-testing, by F. Dubail [1] for other 

search problems and also by the_ present author in [5]. 

Another point of interest is the distinction between cycle pairing and complete 

pairing. For any n, let the binary structure of n be 

(2.3) 

so that s is the number of ones in the binary notation for n. Let p be 

the highest power of 2 that factors into n!. Then it is easy to prove 

(see [5]) that p = n - s. 

For 
r n = 2 a knock-out tournament for finding the best one consists 

of r rounds where the number of contenders is halved at each round. Under 

complete pairing we start a procedure QY randomly breaking up n into subsets 

of size 2ri as in (2.3) and doing a knock-out tournament within each of 

these subsets. After this, we use the comparison that maximizes the one~step 

expected reduction in entropy. 

Under cycle pairing we start with a knock-out tournament only for one 

subset of size 2s (usually s = r 1 defined in (2.3)) and then continue with 

the exp§cted reduction in entropy. The procedure RE* uses cycle pairing 

for n - 1 i.e., it uses cycle pairing with s = r 1 for n f 2r and for 

r 
n = 2 we take s = r-1. 
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Procedure RA: Let 
r r 

n = 2 + c with O < c < 2 • This procedure uses cycle 

pairing with 2s players with some s < r (actually s = r-1 or r, the Rarti

cularvalue to be determined later). After this we have one large connected 

set of size 2s for the graph (or tree) and the remaining s n - 2 players 

(called newcomers below) are unconnected, i.e., have not yet played. The 

connected set has a best player with inferiors and among these a 

contender for second best with the largest number of inferiors,say 

among the contenders for second best. Then i 2 ~ i 1- 1 ~ n - 2 and our goal 

is to make i 2 = n - 2, which implies that i 1 = n - 1. 

Each newcomer except for the last one (and possibly the one before that 

as explained in the ending E1 below),comes up in turn (we assume they are 

in order) and plays x
2

• If he loses he retires; if he wins he plays again, 

this time against x1 • If he loses to x1 he takes over as the new x
2

; if 

he wins against he becomes the new and the old becomes the new 

Three different endings are used with this procedure, say E1 , E
2 

and 

E
3

, according to whether the original x
1 

(after cycle pairing) is beaten by 

a newcomer not among the lasttwo,heis beaten for the first time by the next

to-last newcomer n
1 

,or he is better than all the newcomers except possibly 

the last one no· 
Under E

1 
there is only 1 contender for second best (in the connected 

subset), namely x2 , when n
1 

is ready to play. Again n1 plays x
2 

and 

retires if he loses, but if he wins he 'sits out' a game letting n
O 

pl~y x2 • 

Then if nO loses ,he(~.,-ri0)retires and we are through. If n
O 

wins, then 

x
2 

retires and we need exactly 2 more games to find the best 2 of the 3 

players, x1 , nO and n1 • 
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Under E
2 

there is only 1 contender for second best (in the connected 

subset), namely x
2

, when no is ready to play (here nl plays as usual). 

Then n
0 

plays x
2 

and the procedure terminates. 

Under E3 there are s contenders (including x
2

) for second best 

(in the connected subset) when n0 is ready to play. Again n
0 

plays x
2

. 

If he loses, he retires and we need exactly s - 1 more games to find the 

2 best players. If he wins, he continues to play the other s - 1 contenders, 

eliminating one at each step, until he loses (at which point he retires) 

or he wins over all of them. If he loses and there are still c contenders 

then we need exactly c - 1 more games to complete the procedure. 

To determine the value for s for the initial cycle pairing we use 

the exact formula for the expectation derived in Section 3 for procedure RA 

and use the s that gives the smaller expectation. Thus for 5 ~ n < 10 

it can be verified that s = 2, or cyle pairing with 2s = 4 units, is 

best and for n = 11 we start cycle pairing with 8 units (see equation (3.20) 

for the asymptotic equivalent). 

Procedure R~: Start with cycle pairing for n - 1 and then maximize the 

1 st~p (or 2 step) expected reduction in entropy. Two-step reductions are 

sometimes used but not systematically. 

Procedure RE: This consists of a 'pure' strategy for maximizing the one-step 

expected reduction in entropy. Here two-step reductions are used only when 

different comparisons give the same entropy reduction in 1 step. 

Procedure RCP: Start with complete pairing (for n) and then continue with 

the strategy of maximizing the one-step expected reduction in entropy. 
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Procedure~: For this procedure we use 'complete pairing for n - 1' and 

for n > 3 make use of the binary expansion of n - 1 

(2.4) 

to explain the different steps in the procedure, after putting one unit 

(or player) aside until the very last comparison. 

1. Find the best one separately in each of the subsets for which 

ri > O. 

2. Play the best one of the smallest subset of size 2rs against the 

best of the second smallest, the best of these two against the best of 

the third smallest subset, etc., until the best one of n - 1 is determined. 

Let c denote the number of contenders obtained for second best. 

3. Use any knock-out tournament with exactly c - 1 games to determine 

the second best of n - 1. 

4. Play the second best against the one set aside to complete the 

procedure. 

Procedure !p= Let the players in random order be denoted by 1, 2, ••• , n; we 

describe the scheme in three steps: 

1. Play 1 v 2 and assume 1 loses to 2. 

2. Play 3 v 1. If 3 loses then he is removed from contention; if 3 

wins then 1 is removed and we play 3 v 2 to reestablish an ordering 

between the top two contenders. 

3. Repeat this procedure, except that if the last player n wins then 

the extra game to reestablish the order is not played. 

Although the procedure ~ appears to be inadmissible in the sense that 

one of the other procedures is at least as good or better for every n (for 
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~ both the E-problem and the M-problem), the simplicity of the procedur e enable• 

us to get specific formulas, which throws light on the asymptotic properties 

of the other procedures. 

Numerical Results for Six Procedures for Selecting the t ~ 2 Best Playera 

Using Only Binary Errorless Comparisons 

Bounds and 
Procedures Ex:eected Values E (T IR) 

n=2 0:=3 n=4 n=5 n=6 0;:7 n.8 n=9 n=l0 

LBE# --- 1.918 2 .918 4.522 5.174 5.775 6 .095 8.837 9.292 
CLs*1 --- --- 3 . 386 4.685 5.899 7.o66 8.197 9.307 10.401 

RA --- 2 -Ji ~ J 7309 8144 9121 1138 

¾* --- 2 -Ji ~ J 7315 ~ N.C. N.C. 

¾ --- 2 ¥ ~ ~ 7550 N.C. N.C. N.C. 

RCP --- 2 ~ ~ ~ 7550 <l- 1o2 11336 

¾t --- 2 -Ji rfl. ~ 7420 818o 1o2 ll84o 

¾ --- 2 -Ji ~ ~ 7567 ~ 1~ 11829 

D§§ --- --- 6 6 30 630 210 140 1260 

MaxilllJm Length M(T IR} 

LBM§ --- 2 4 5 7 8 9 10 12 

RA --- 2 4 5 7 9 11 13 15 

¾* --- 2 4 5 7 9 11 IN.c. N.C. 

¾ --- 2 4 5 7 9 N.C. IN .c. N.C. 

RCP --- 2 4 5 7 9 9 10 12 

¾t --- 2 4 5 7 8 9 10 12 

¾ --- 2 4 6 8 10 12 14 16 

# The LBE is the lower bound ( 3.14) for all procedures that use 'cycle pairing 
for n-1' defined in the text. 

## The CLB is the conjectured lower bound ( 3.22) for all procedures. Since the 
LBE-values are smaller, they are also conjectured to hold for all procedures. 

§ The LBM is the best lower bound for the maxiU1.1m branch length given on the 
right sides of (3.23) and (3.25) . 

§§ Each Dis the common denominator for all the underlined numerators above it . 
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3. Properties and Bounds. 

Since procedure ~ gives easy results, we consider it first. Let 

fp(n) = E(TIRP} denote the expected number of comparisons and let fp(n) 

denote the maximum length under ~- It is easy to see 

number of games for the j
th 

player (3 ~ j :Sn - 1) is 

j = n, only one game is played. It follows that for 

(3.1) = n -
n-1 

1 + I: 2/j = n -
j=3 

n-1 
4 + 2 E 

j=l 
1/j 

that the expected 

2 1 + "7, while for 
J 

n~3 

::::: n + 2 ln n. 

Clearly if players 3, 4, ... , n-1 all win we obtain the maximum length; 

hence for n ~ 3 

(3.2) 

Although ~ has a better expectation than ~ for small powers of 

2 (see n = 4), the maximum length grows very rapidly compared to that of 

Let fM(n) = E(TI~} denote the expected number of comparisons under 

~ and let fM(n) denote the maximum number under ~- Using the result 

for ~ in [5] for the ordering problem with n replaced by n - 1, and 

adding 1, gives 

(3.3) fM(n) = n - 1 + [log (n - 2)] 

and 

(3.4) 

where the r. 
J 

= n -
1 s r. 

2 + - I: (r. + j - 6. )2 J 
n-1 . 1 J J s 

J= 

are now defined by (2.4) and 6. = 1 
JS 

if j = s and = 0 

otherwise. The asymptotic analysis in [5] is also appropriate here. It is 

shown below that (3.3) is the smallest possible maximum branch length and 

hence the procedure ~ is M-optimal. 
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Since we have a special interest in procedures that use cycle pairing 

for n - 1 we let RC denote any such procedure and study its properties. 

For n = 2r+ 1 the cycle-pairing and complete pairing are the same and 

after n - 2 comparisons we have 1 player (say n) that has never played 

and for the remaining 2r we have a best player (say n - 1 = 2r) and 

exactly r contenders for 2nd best. If player n does not play in the 

next comparison then two of the r contenders play and exactly one is eliminated 

in each such game. If all of these contenders but 1 is removed before player 

n plays then the remaining one plays against player n for the last comparison; 

this takes exactly r games after the pairings. If player n comes in 

earlier under ~ (actually for small r he plays first under ¾:) then 

it still takes exactly r comparisons to complete the procedure. If player 

n wins then he continues to play each of the contenders for 2nd best until 

he loses. Since 1 contender is removed as a result of each comparison, it 

again takes exactly r comparisons after the pairings. Thus for n = 2r + 1 

and any procedure RC that uses 'cycle pairing for n - 1' we have 

(3.5) 

This result is analogous to (4.3) in [5]; it is proved to be M-optimal in 

(3.23) below, but the table above shows that it is not E-optimal. 

We could also have gone through a cycle-pairing procedure for r 
n = 2 

and obtained the result 2r+ r - 2 as in (4.3) of [5] but, as our table 

shows, this result can be improved upon. 

Clearly any of the attained values for the t = 2 ordering problem in 

[5] can be used as an upper bound for the optimal procedure in the t = 2 

selection problem. 
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We define a comparison C(a vb) to be of level j(j = 1, 2 ••. , [log n]) 

and denote it by Cj if the two players a and b each have exactly 2j-l_ 1 

inferiors, the two sets of inferiors are disjoint and neither a orb has 

any proven superiors. We want to prove a result about the reduction in 

entropy for any comparison C. 
J 

of level j . 

Lemma: If two players a, b, with noproverr--sup-eriors, are best in disjoint 

subsets Sa,Sb respectively, with common size I for each, then the expected 

reduction in entropy E{A} due to the comparison av b is given by 

(3.6) E(A} = 
2I(2n-l-3I) 

n(n-1) 

regardless of any knowledge previously obtained that affects only the 

relative ordering of the remaining n - 2I players. 

Proof: Suppose that the two players a and b each have exactly I - 1 

inferiors with no overlap (in our application I= 2j-l) and, to begin with, 

there is no other previous information. 

Those states of nature which can still be correct are partitioned 

into subsets so that each subset corresponds to one of the possible true 

decisions. The decisions D(x, y) corresponding to these subsets will be 

grouped into a convenient table, and the number of cases given for each, 

before we play av b. Let S (a= 1, 2, ••. , m) denote the seconds (or a 
immediate inferiors) of a in the connected set of size I and let M a 

denote the number of ways of linearizing this set of size I with Sa in 

second position (consistent with all known order relations); let 

M = ~ + M2 + . . . + ~. Then 

defined similarly for player 

SS (~ = 1, 2, •.• , m'), ~ and M' are 

b. Let p (or p.) denote any one of the 
l. 

players not in these two connected subsets. 

- 10 -

n - 2I 



tr·.~ 

..... _. 

-:- .... -- 1 .. 
-;-.r 

' ~ .,, 
+ .~~-[ 

-,·,· __ ... ':'. 

j· 

\ ~. . , . i. 

. . - . .. 
~~;:;t:r.~.i:..::; .... r;_,;.. n:~-qiJ, I ~)ip< =~~:i·::~t::: 1::t:;· i:~J '2 J" I ~,.; :, :··:·' --~:. :; ;~.;. _;~.:_; j·~ ~=:·{';!;''..·}:. :c .. 

'-----··. ~-):: ~ ~?.::~: 

.. ; = 

))(.~:, 

.. 
_ ...... 

~! 
.,·-,'! ,_, 

. -r,. .~ 
., .. _; \j 

. ;. ... -
·'- i. 

:£ 

, .. i. 

........... · :.:-. ·-· 

.:'., .. · .. :~ ~.;, 

- _,_ .. ; 
r .. ~ 
\:. 

~} !.:( 

_ .. i.:.; 

= r~ 

. ~:,I 

.... 
• .., .... .> 

.1,'•:. 

- 'i' ... ·r.-
• ... l. U 

. : 7 \ 
.. ,f 



TyEe of Decision Number of Each TyEe Number of Cases Eer Decision 

1. D(a, b) 1 2MM' (n-2) ! 
(I-l)!(I-1)! 

2. D(a, Sa) (a = 1, 2, .•• , m) MM' fn-2r 
Q' I! I-2 ! 

3. D(a, p) n - 2I 2MM' 

(3.7) 4. D(b, Sa) ca 1, 2, ••• , m') ~ I! 
n-2 ! = I-2 ! 

5. D(b, p) 2I 2MM' n-2 ! 
n - I! I-1) ! 

6. D(pl, P2) (n - 2I) 2MM' (n-2)! 
2 I! I! 

The uncertainty before playing av b can now be obtained directly from 

the above table. The total number of cases is easily checked to be n! MM'/(I!) 2 

and with this as denominator and the number of cases above as numerator, we 

have the probability for each decision type. 

We now play av b and suppose a> b. Then types 2 and 3 in the 

table remain in their entirety and we also have half the number of cases in 

type 1 and half for each decision of type 6. Since types 3 and 5 have the 

same 0 number of cases and the sum over a for type 2 equals the sum over 

a for type 4, it follows that the comparison av b partitions the entire 

set of cases exactly in half. Hence we use a simple average for finding 

the expected uncertainty after playing av b. 

The uncertainty u1 after finding that a> b is given by 

(3.8) = 
lli.!:!l m Ma M n(n - 1) ( 4I 1 n(n-1) 
~ E M log 2M I(I-1) + n - 2I) n(n-1) og 4I 

Q'=l Q' 

2I2 
1 n(n-1) + (n-2!) 2 

+ n(n-1) og 2I2 2 n(n-1) 1 n(n-1) 
og 2 

and we omit the corresponding u
2 

after finding that b > a. The orginal 

uncertainty U
0 

from the above table is 
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(3.9) 
m M JI1 1 M' u .1(!:.!l 0/ M nf n-1~ .1(!:.!l it M'n(n-1) 

o = nTn=1J a:1 M log ~I I-1 + nTn=1J 13~1 M' log ~ I(I-1) 

21 1 n(n-1) 212 n(n-1) 
+ 2(n-2I) n(n-1) og 21 + n(n-1) log 212 

+ (n-21) 2 1 n(n-1) 
2 n(n-1) og 2 

To obtain the expected reduction in uncertainty we first remove log\= -1 

from each term in u1 and u
2 

and we then easily obtain from (3.8) and (3.9) 

(3.10) = 1 _ 212 (n-2I)(n-l-2I) 
n(n-1) - n(n-1) 

= 
2I(2n-1-3I) 

n(n-1) 

If there is present previous knowledge about some of the remaining 

n - 2j players (say, among r of them) then we first consider each possible 

fixed relative ordering among these r players separately. Each of the 

numbers in the third column above is affected (we actually divide by r!) but 

this constant r! also divedes the total. Hence the probabilities and the 

uncertainty is unchanged. Since the previous knowledge about these r 

players can be written as a union of such fixed relative orders among them, 

we now average our result over all the relative orders of these r players 

consistent with our previous knowledge and obtain the same result; this proves 

the lennna. 

For the application of this lemma that is needed, we have the 

Corollary: 

comparison 

(3 .11) 

The expected reduction in entropy 

c.(a vb) 
J 

E(~.} = 
J 

for 1 < · < [log n] _J_ 

E {L\.} 
J 

d 
.th ue to any J 

is given by 

level 

regardless of any knowledge previously obtained that affects only the relative 

ordering of the remaining n - 2j players. 

- 12 -
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We now use the lemma above to obtain lower bounds for all procedures 

that start with any given pairing scheme. We consider only the 'cycle

pairing for n-1' schemes since they give the better results, but the 

method can also be applied to complete-pairing schemes, cycle-pairing 

schemes (for n), ordinary-pairing schemes, etc. For n = 2r+ c (0 < c < 2r) 

any cycle-pairing procedure R has at least 
C 

r-i 
2 comparisons of level 

i(i = 1, 2, ••• , r-1) and we assume it has exactly that many among the 

f . 2r- 1 · irst comparisons. Then th~ (expected) reduction in entropy due 

to these comparisons is, by (3.6), 

(3.12) Q = 
r 
L 

j=l 
= 

Let the total number of comparisons T be partitioned into _T1 and T
2 

where r 
T1 = 2 - 1 are the pairings and are the remaining 

comparisons under procedure RC. Since the total uncertainty at the outset 

is log(~) and 1 is an upper bound for the reduction in entropy in any 

one step, it follows that 

(3.13) 

Hence, using (3.13), we obtain the desired lower bound for the expectation 

under any cycle-pairing procedure RC with n > 2r 

(3.14) 
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For r 
n = 2 + 1 we obtain an improvement over (3.14) by using (3.3). For 

r 
n = 2 we can use the same result (3.14) provided we replace r by r - 1. 

The values of (3.14) are given as the LBE in the table in Section 2. It 

follows from the above construction that the LBE is strictly increasing 

in n. Asymptotically (n - oo), the value of (3.14) is between (n/2) + log n 

(the limit for r 
n = 2 as r - oo) and n + (log n)/n (the limit for 

n = 2r+ 1 as 

We now derive an exact formula for the expectation under procedure RA. 

Let 2s denote the number of players involved in the initial cycle-pairing. 

If r 
n = 2 + C then s will usually be r - 1 or r; 

the value of n where it changes from r - 1 to r is close to 3 .2r-l. 

The probability that the th q newcomer is the first one to beat the 

original x1 is easily shown to be 

(3.15) 
q-2 s s 

1 '"' ( 2 +a ) ____ 2 ___ ( 1 s) 
11 q = , 2, • • • , n-2 

2s +q Q'= 0 2s +a+l (2s +q-1)(2s +q) 

and the sum of these is s 1 - 2 /n. It follows that the probability that 

x
1 

is beaten by the last newcomer or by no one is 2s/(n-1). Conditional 

on the event that the th q newcomer is the first to beat x1 , we utilize 

one extra comparison (beyond the basic one needed for each newcomer) under 

endings E1 and E2 for earlier newcomers nQ' (1 _:::a_::: q-1) with prob-

( s-1 )-1 ability 2 + Q' and for later newcomers n~, not including the last 

two, (i.e., for q + 1 _:::~_:::rt - 2 - 2s) with probability 2(2s+ ~)-1• In 

addition the th q newcomer also uses 1 extra comparison to beat x1 • For 

~ = n - 1 - 2s (and n > 2s + 3) we add 2 extra comparisons only if n0 

beats x
2

, which then has probability 3/n. Given ending E
3

, which, as 

stated above, has probability 2s/(n-1), we have to play s - 1 extra games 

after n
0 

plays x
2 

and each of the previous newcomers 

- 14 -
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i 

plays an extra game with probability (25
-
1+ a)-1• If we add these extra 

games to the set of n - 2s basic games, one for each newcomer, and the 2s-1 

comparisons used in the initial pairing, then we obtain 

(3.16) 

(3.17) 

where 

s n-l-2s 
E(TIRA) = (2s-1) + {n-2s) + n:l ~s-1 + E s-i ) 

a=l 2 + a 

s 
n-1-2 q-1 1 

+ E (1 + E s-l 
q=l a=l 2 + a 

n-2-2s s 
+ E _2_) ___ 2 __ _ 

~=q+l 2
8

+~ (2
8

+q){2
8
+q-1) 

3 2 2s 
+ 2(-)(-) n n-1 

n-2-2s 
E 

q=l (2s+q)(2s+q-1) 

In (3.16) we make extended use of the elementary identity 

n-b 
E 

i=a+l 

h (x) = 1 n 

1 1 1 
(c+i+l)(c+i) = (c+a - c+n-b)hn(a+b+l) 

for n > x and = 0 otherwise; in particular each of 

the double sums can be sunnned or simplified by {3.17). After some straight-

forward algebra and simplification we obtain 

(3.18) 
n-2-2 

E (T I RA} = n - 1 + 2s <:: i) + 2 E 
0'=1 

s 
1 

a+2s-1 

s s 
n2

8 12(n-2-2) 2 
+ hn(2+2s){(n-l)(n-2) ~ n(n-l)(n-2) + (n-l)(n-l-2s-l) 

Under 'cycle-pairing for n-1' with n = 2r+ 1 we set s = r and we 

easily obtain n + r - 2 in agreement with (3.5). 

- 1 }. 

Asymptotically (n ~ oo) we obtain the maximum and minimum of (3.18) by 

searching for the value of n for which g(r-1, n) = g{r, n) where g(s, n) 

is the right side of (3.18). In fact we obtain from (3.18) the quadratic 

equation 

(3.19) n2 ln 2 - n 28
-
2 (s + 2 ln 2) + (s + 1)228 - 3 ~ 0 

- 15 -
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.. .. 

where ln x is the natural l ogari t hm of x. Since we are l ooking for a 

final change for s as n increases, we take the largest root for n 

in ( 3 .19) and obtain 

(3. 20 ) n ~ 2s-2 (- s- + ln 2 ) 
ln 2 s • 

The limi ting va lue of (3 .18) for this value of n (which is t he same for bo t h 

s = r and s = r - 1 and hence is the desired limiting val ue ) i s by ( 3 .20) 

( 3 . 2 1 ) E (TI RA} = n + 2 ln s + d ( 1 ) = n + 2 ln ln n + t:,' ( 1 ). 

Based on the form of ( 3 . 21 ) we conjec t ure t hat a l ower bound for all 

procedures for n > 3 i s given by 

( 3 . 22) CLB = n - 2 + (2 ln 2 ) l og log n. 

A lower bound for the minimax problem can be obtai ned using a modification 

of a method due to Sl upecki [4] . Our r esult is stated in two par t s; the 

f irst g ives some easily derived inequalities that any lower bound has to 

satisfy and the second shows that what we go t in the first part is an 

atta inable l ower bound for the maximum l ength of any branch of the procedure. 

Lemma: For n > 3 players a lower bound (LBM) for the maximum branch l ength 

of any procedure for the sel ection (t = 2) problem must satisf y the 

inequa lities 

(3.23 ) LBM < 
( n - 2 + [ log ( n-1 )] 

l_n - 1 + [ log (n-1 )] 

i f n i s of the form 

otherwise . 

Proof : The s econd part of ( 3 .2 3) i s the same as the Schreier [3 ] and Slupecki 

[4] resul t for the t = 2 ordering probl em. Since the sel ec tion problem 

cannot require more t han the ordering probl em, this part is clear. For the 

firs t part we need onl y put one unit aside un t i l the very l ast comparison 

(see procedure¾ above) and us e the second part again for n - 1 units, 

- 16 -
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Since this actually gives us an ordering of the t = 2 best in n - 1, it 

follows that we need only one more comparison (the unit set aside versus 

the second best of n - 1). This gives a total of 

(3.24) n - 2 + [log (n - 2)] + 1 = n - 2 + [log (n - 1)], 

which proves the lemma. 

For the second part we follow the method of Slupecki and consider a 

class of procedures (or a system) S that is characterized by the fact 

that defeated players do not enter into the first n - 1 comparisons. We 

~ show below :(3.25) that ~maximum branch length of any procedure in S is 

equal to or greater than the right side of (3.23). Since the early inclusion 

of defeated players can only lengthen our procedure, it follows that our 

results holds a ~ortfori for all procedures. The two results taken together 

then prove the 

Theorem: For n ~ 3 players the best lower bound (LB
0

) for the maximum 

branch length in any procedure is given by the right side of (3.23) or for 

all n > 3 by 

(3.25) LB0 = n - 1 + [log (n - 2)]. 

Proof: It is easily checked that the theorem holds for n = 3 and 4; we 

use these as starting values for an induction proof. Let k be any integer 

> 4 and suppose the theorem holds for every integer i such that 3 ~ i < k. 

Let s (approximately equal to k/2) denote the number of games in the first 

round in which the k players take part. In the games that follow the first 

round we use the induction hypothesis on k - s players (the winners of the 

first round plus any players that did not play in the first round). The· 

first round gives us no information for the M-problem for selecting (or 

ordering) these k - s players. After getting the two best of these k - s 

- 17 -
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players, we then take into account the two people (at most) that they 

defeated in the first round. 

We first note that the two expressions on the right side of (3.23) 

are equivalent to the single expression on the right side of (3.25). To 

see this we need only consider the cases n = 2r+ 1 and n f 2r+ 1 

separately. Hence we can use either of these expressions; we prefer to use 

(3.23) for the induction hypothesis on k - s players. 

For k = 4m we take s = k/2 and by the induction hypothesis the 

k - s players require (k - s - 1) + [log (k - s - 1)) = k - s - 2 + [log (k-2)] 

games. By the Schreier~slupecki result we can assume that not only have we 

selected the two best of k - s - 1 but also that they are ordered. Hence 

we need only 1 extra game for completion (the contender for second best 

against the one defeated in the first round by the best player). This gives 

the total number of binary comparisons 

(3.26) s + (k - s - 2) + [log (k - 2)] + 1 = k - 1 + [log (k - 2)], 

which is the desired result for k = 4m. 

For k = 2(4m - 1) we take s = k/2 and the steps are similar to 

those above giving (3.26). 

For k = 2(4m + 1) we take s = (k/2) - 1 and again we obtain the 

right side of (3.26). 

For k = 4m - 1 we take s = (k - 1)/2, so that k - s = 2m is even 

and the steps are again the same. 

For k = 4m + 1 we take s = (k + 1)/2, so that k - s = 2m is even, 

and we obtain for the total 

(3.27) s + (~ - s - 1) + [log (k;3 )] + 1 = k - 1 + [log (k - 2)), 

which completes the induction. 
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Since the procedure ¾1 has maximum length equal to the right side of 

(3.25) it follows that ¾f is M-optimal for the t = 2 selection problem. 
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