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1. Introduction

The problem considered is that of ranking the t best (i.e., largest)
of n unequal numbers (or objects with respect to an associated scalar such
as weight) when only binary errorless comparisons are allowed. In some
applications these n numbers are unknown but in others, e.g., the "sorting
problem", the numbers are actually known. Here a machine (or a person)
starts with a sequence of n numbers in random order and uses only binary
comparisons to put them all in (say) ascending order. In the application to
aligning n tennis players according to ability, we call this a '"tournament
problem'. We assume that the players have unequalability (or skill), that
the better player always wins, and that the relation "better than" is
transitive. If we have n unequal weights and a simple balance that oaly
allows one weight on each pan, then this problem (of ordering the n weights)
is called a "weighing problem". From the point of view of questionnaire
theory (which emphasizes the graph-theoretic and information-theoretic nature
of the problem), this is called the problem of 'tri'. These are clearly all
the same problem, corresponding to t =n (or equivalently t =n - 1) in
our formulation, and we prefer to call it the "Steinhaus expectation problem"”
for t =n - 1 because of the early interest Steinhaus showed in a related
minimax problem (see below).

It is assumed that the n numbers are initially in random order, i.e.,
either their order has been randomized or we are willing to assume this. To
explain our goal consider the number T of binary comparisons (or tests)
required for n = 3. Already T is not constant (T =2 or 3) and, from

the initial random order, we obtain the expectation E{T|n =3} = 8/3 for
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the optimal procedure. Our main goal is to find a procedure R which
minimizes this expectation. Several new procedures are introduced in this
paper, all with expectations below that of the Steinhaus procedure defined
below. Some of these have values smaller than any procedure known to the
author and some are conjectured to be optimal.

Another goal of this paper is to find a procedure R which minimizes
the maximum number of the test required to guarantee that we can order the t
best of n numbers; we refer to this as the "Steinhaus minimax problem".

The expectation and minimax goals are not unrelated and for small values
of n we can find procedures both E-optimal (i.e., with smallest expecta-
tion) and M-optimal (i.e., with smallest maximum).

Steinhaus [23] gives a basic fully-inductive procedure RS for the
minimax goal. 1In the 1950 edition of this book he conjectures that this
procedure is optimal for all n but this is deleted in a later edition and
in another book [24] on problems a counterexample is explicitly worked out
for n = 5. Although the procedure RS is at the '"bottom" of our list of
procedures for t =n -1 (it has the largest expectation and the largest
maximum length among all the procedures in the table section 5), it represents
an important standard for comparison partly because it is both E-optimal and |
M-optimal among the fully inductive procedures [10] and partly because more is
known about its properties. Kislicyn found general bounds for the expectation
under R.s in [14] and derived an asymptotic expression for the same expectation
in [15]. Although this procedure Rs is widely known in Computer Science (it
is called Binary Insertion or TID or Ranking by Insertion or Binary Search
by different authors), it is remarkable how many writers in this field assume
either explicitly as on page 236 of [13] or implicitly that R.s is either

E-optimal or M-optimal (or both) and are not familiar with other work in this

area.
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Another important procedure for both the M-goal and the E-goal is
the semi-inductive procedure RF of Ford and Johnson [8], although the
paper is only concerned with the minimax problem. In fact, the procedure
RF is E-optimal for n < 5 and the expected values for moderate n
(calculated by A, Hadian and the author) were found to be smaller than any
others found in print at the start of this investigation. Cesari [L4] and
Hadian [10] have modified the procedure RF for n 26 to obtain a smaller
expectation without changing the M-value.

Picard [i;] has given a procedure for n =6 (and t = 5) which is
both E-optimal and M-optimal. His approach through questionnaire theory
combines a graph-theoretic and an information-theoretic analysis, which he
applies to many interesting search problems.

For the sake of completeness we should also mention the related papers
of Bose and Nelson [1] and Hibbard [11] (see also the references in the latter)
but, because they apply restrictions on the number of locations in a com-
puter that can be used or because their criterion is slightly different from
our T or because their results are not in contention with ours, we omit
their procedures in our comparisons. Also our problem is related to that of
merging ordered strings of numbers into a single string, if the criterion is
simply the number T of binary comparisons required and not the total number
of key-transfers as in Burge [2]. In the latter paper it was empirically
observed that our procedures were equally good under his (key-transfer)
criterion but that his procedure was inferior under our T-criterion.

The main emphasis in this paper is on the use of 2 ideas for a testing
procedure, namely pairing and expected uncertainty. Our entropy procedure
RE selects at each stage the comparison that maximizes the expected reduction
in entropy due to a single comparison. Equivalently it chooses the comparison

that results in the smallest amount of uncertainty (or yields the maximum

-3..
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amount of information). By introducing certain types of pairing for the

early comparisons the procedure can be greatly simplified and in some instances
actually improved. The idea of expected entropy was used for the group-
testing problem by Sobel and Groll f;é] and has also been used for other

search problems by F. Dubail [7], who has called it "generalized entropy."

Our main interest is in one-step entropy procedures. A fairly obvious
generalization of RE , say RE,g which selects the comparison that maximizes
the expected reduction in entropy in the next g tests (g = 1) can also
be considered, as it is in [éé] for the group-testing problem. All our
procedures are such that they can make use of any a priori knowledge about
the initial ordering as well as a posteriori knowledge gained at each stage.

The procedure RE = RE,l (the pure one-step entropy procedure) gives
optimal expectation results for small values of n(n <6 for t =2 and also
for t =n - 1) wherever optimal procedures are known. In addition each
of the three entropy procedures consistently improves on known results for
moderate values of n.., In fact, it turns out to be interesting to find
instances where RE is not optimal. All our empirical results are con-

sistent with a conjecture that an E-optimal procedure can be obtained from

the procedure RE or from the family RE g with a moderately small value
H

1
of g..

The case t = 2 will actually be treated first in this paper, before
the case of £t = n - 1 , because it is a simpler problem and at the same
time it exhibits the complexities associated with the case of general ¢t
(1<ts<sn-1).

The case of small t has a slight history of its own starting with
Lewis Carroll's essay [3] on the faulty manner (Cup System) of awarding the
second prize in a lawn tennis tournament in his day. He points out that if

players are eliminated after 1 loss then there is a high probability of not

- -
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“

finding the correct second-best player. For example, with n = 8 under
complete pairing (or so-called knock-out tournament that pairs off all the
non-losers) the second best player has probability 3/7 of being in the

same group of four as the best player and hence of not receiving the second
prize.

The case t =2 s dlscussed by Stelnhaus [23] and thepapers of J. éch;;;r
[19] & 1. Slupeck1 [20]awa fundamental to our result that two of our
procedures are M%optlmal f;¥ =2 , The case t =2 has also been
considered by Picard [17] and we use one of his procedures RP in our
table of comparisons. For t = 2 we regard RP as an analogue of the
Steinhaus procedure RS for t=n-1, and we only consider procedures that
are at least as good as RP for the E-goal or the M-goal.

The work of David [5], Glenn [9] and Maurice [lé] deals with knock-out,
round robin and double-elimination tournaments and is related to our subject
but not to the present paper. In their work randomness is a result of
associating more skill with a higher probability of winning. In our case the
better player always wins and the randomness arises only from the initial
random ordering of the n players. It is felt that a knowledge of the best
procedures when there are distinct differences in skill (so that the better
player always wins) should be helpful to design procedures for models which
bring randomness into the observed results. A fine discussion of the work of
David, Glenn, and Maurice on these types of tournaments is given in David [6].

Although no attempt is made in this paper to apply the techniques for
large values of n or to find the procedure best for machine computation, the
author feels that there is a challenge presented here to adapt the entropy
procedure, or some modification of it, to large-scale machine computations

for the large values of n. It is conjectured that the results will be sub-

stantially better than any others in print (see e.g. Bose and Nelson [1])
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even if one uses a slightly different criterion than the number of comparisons

for comparing procedures.

2., Procedures for the Ordering Problem With ¢ = 2

Several procedures are intfgduced, all of which are new, except for the
procedure R, due to Picard [17]. One of these procedures is an adaptation
to t =2 of the Ford-Johnson procedure and is denoted by RF° One of the
entropy procedures REl is uniformly as good or better than any other prOfedure .
for all the values 9# n con§id§;ed (2 = n <10). Based on the work of é;ﬂéi;;ﬁéj&;
Slupecki [ékﬂ, twdloftéggugtgigggf;s are shown to be M-optimal. Each procedure
is briefly described in this section and a table of numerical comparisons is
given; properties and derivation of results are given in Section 3.

We use the term 'fully-inductive' to indicate a scheme in which the
procedure for n players depends directly on that for n - 1 players. The
term 'semi-inductive' indicates that the scheme for n players depends

directly on that for Eg] players, where [x] is the largest integer < x.

All logarithm in this paper are to the base 2 unless stated otherwise.

Procedure RE: This is a one-step entropy procedure for t =2 and is

based on finding the binary comparison that minimizes the expected reduction

in entropy after one comparison.

Procedure RE : Suppose n = 2r + c(O <c < 2r) and we conduct a knock-6ut
1

tournament on the first (or any) of players. Procedure RE starts in
1

this way and then uses the one-step entropy method to complete the problem.

For complete pairing and n = o' + ¢ we also want to allow pairing

r r T
. 1 2
among the ¢ remaining players; we then write n = 2 7 +2 7 + ... 2 s

(r1 > T, 2 ees > r, 2 0) and perform a knock-out tournament for each of

these powers of two.

-6 -
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4

Procedure RE ¢ For this procedure we do a complete pairing and then use
2
the one-step entropy method to complete the problem.

Procedure ‘Rﬁ: This is an analogue of the Ford-Johnson procedure applied

to the case t =2, Suppose n =2k or 2k + 1. We describe the procedure
by 3 steps.

1. Using ordinary pairing, we pair off 2k of the players for the
first k comparisons, leaving one man out if n is odd.

2. Use induction (with the obvious procedures for n =2 and 3) to
order the t = 2 best among the k winners in step 1.

3. If n is even, step 2 results in an overall best player and 2
contenders for second best; thus requiring only 1 more comparison., If n
is odd, we use a diagram for the third step. Let n or 2k + 1 denote
the player left out in steps 1 and 2, let 2k denote the winner in step 2,
2k-1 (resp., 2k-2) denote the contender that lost to 2k in step 1 (resp.,

step 2). The diagram and the continuation are given by

1 2 2k-2 2k n n vs. 2k-2
/ 2k-1 v [.2/1«2\ vs. 2k
ok-1 A /\
Egt_z Egt-l n vs. 2k-1 E.
J
Be1 B
Figure 1

In figure 1 the left (resp. right) fork under a vs. b indicates that a loses

to b (resp. a wins over b) and the endpoint Ei indicates the final result

that a is best and b 1is second best.

-7-



SRR S
foud Laiadi L
-

e
i
-'-

Waa ot

cas

PP
GO k)
B

IS}
e
-
) .
L)

[XH
Tes pSed

: IS

e .

o

S%edd E 5

e
e rand ooy

2.3 2
55

32

.

.
-

PO S

Sl
Wl

e o
L
=
",
PEeY
-~

~

)
FETN

Hetd)

~
N

,}-«

&)

RIVOTOILE




Procedure Rf*: This is a semi-inductive procedure without pairings.

Let n = 2k or 2k + 1 as above. We first partition the n players into
2 subsets, each of size at least k , without making any comparisons and
then for n 2 4 follow the three steps:

1. Use induction (with the obvious procedure for n =2 and 3) to
find the best player separately in each of the two subsets, keeping track of
all contenders for second best.

2. Let the two winners play to determine the best player and put the
loser (but not his inferiors) in contention for the second best. Suppose
there are now c 2 2 contenders for second best.

3. Use any simple knock-out tournament (with exactly c¢ - 1 games)

to determine the second best.

Procedure RM: For this procedure we again use the binary expansion of n

and complete pairing:
1. Find the best one separately in each of the subsets for which r, > O.

r
2. Play the best one of the smallest subset (of size 2 S) against the
r

winner of the second smallest subset (of size 2 s-1). Play this winner
against the winner of the third smallest subset (of size 2rs-2), etc.,
until the best one of all n is determined. Let c¢ denote the number of
contenders for second best.

3. Use any simple knock-out tournament with exactly c¢ - 1 games to

determind the second best.

T
4

Procedure RP: This fully-inductive procedure for t = 2 due to Picard [17]

is an analogue of the Steinhaus procedure for t =n - 1. Let the players

(in random order) be denoted by 1, 2, ..., n; the iterative scheme of the

procedure is decribed in 3 steps:
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1. Play 1 vs.2 and assume 1 loses to 2.

2. Play 3 vs. the loser 1. If 3 loses then he is removed from contention.
If 3 wins then 1 is removed from contention and 3 plays 2 to re-establish an
ordering between the two top contenders.

3. Thus in either case we again have an ordered pair of contenders and
if there are new players left we simply repeat the above scheme.

Although the procedure RP is remarkable for its simplicity and amen-
ability to anlysis and machine computation, we later show that it is in-
admissible. However this procedure is useful as a standard for comparison
for the E-problem and is conjectured to be optimal in the class of fully-

inductive procedures for t = 2.

Procedure RI: This is a semi~inductive procedure with the same first step

as RI*, which we omit. We use the obvious procedures for n =2 and 3 and
assume that n =2 4 in the following steps:

2. Use induction on each set separately to find both the best and the
second-best players. Suppose adb and c<d are the two pairs obtained,
where 4 denotes 'is inferior to'.

3. Play b vs. d and assume that d wins. Then play b vs. ¢ to
determiné the second best. Thus for n = 4, step 3 consists of exactly 2 games.

Although RI is quite poor in expectation we include it for purposes of

comparison and to illustrate the importance of subtle differences in procedure.
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Comparison of Eight Procedures for the t=2 Ordering Problem

Lower
Bounds and Expected Values
Procedures
n=2 | n=3 n=U4 n=>5 n=6 n=T7 n=8 n= n=10
18’ 1 le.58:| 3.917| k.922| 5.773| 6.483| 8.380 | 9.057| 9.668
cLg’ 1 l|e.500| 4.000| 5.000| 6.500| 7.500| 9.00 {10.000| 11.000
P P - T I I [ ) PR P e
1
R 1 o2 12 5§ 62 7210 | 92 N.C.| N.C.
R, 12 |62 [ |62 AR | L | 10® |l
2
R, 1 2 | |2 |62 | A |2 | 10k0| 111008
R % 122 W |52 |62 [ 80| 0 | o820 1012
R, 1 2 |0 |52 |60 | A8 0 |80 442268
R, 1 2 | ul | ST | 6Bl | 832 | o300 | 1o829) 4,323
R, 1 2 [0 [ | R | g0 108 | 180 451260
D§§ — |3 6 30 90 210 80 1260 | 3780
Minimax Values
La*? L n 6 7 8 9 11 12
Ry 1 |3 N 6 7 8 9 11 12
Rpx 1 3 L 6 7 8 9 11 12
Rp 1 3 b 6 T 9 9 11 12,
Ry 1 |3 L 6 T 9 9 11 12
2
Rp 1 |3 L 6 8 9 9 11 12
1
Rp 1 |3 Iy 6 8 9 11
R; 1 |3 L 6 8 9 10 12 14
R, 1|3 5 7 9 1 (13 |15 |17

Notes § This is a lower bound for all procedures using cycle pairing.
#CLB=n-2 + %[2 log n] is a conjectured lower bound.
§8 Each D is the common denominator of all underlined numerators above it.
## This M-lower bound due to Schrier is LB = n - 1 + [log (n-1)].
N.C. means not computed,

_9a..
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3. Formulas and Properties

Since our best results are for the simplest procedures, we consider
our procedures in reverse order of their appearance in Section 2.
A. Let f6(n) denote the expected number of tests under procedure R, for
t = 2. From the definition, we easily obtain the recursion formulas for m = 2.

f6(2m) = 2 f6(m) + 2

(3.1)
f6(2m+1) = f6(m) + f6(m+1) + 2

2
>

From the first equation of (3.1) we obtain by iteration for

with boundary conditions f6(2) =1 and f6(3) = 2

n=2n-z= 2r and r 21

(3.2) f6(2r) = 3 x2" 1o,

For n=2"+c (with 0<c <2), we set £.(n) = 3x2" ooy

il

g6(c) + k x2° in (3.1). After using one boundary condition to show

that k = O, we obtain the simpler homogeneous formulas

. Cgg(ee) = 2gg(c)
7 ° gg(2etl) = ggle) + ggle+l)

with only one boundary condition g6(1) = '%. By iteration in (3.3) we
obtain g6(c) = -%E. Hence for all n = 2
(3.4) £.(n) = £.(27+c) = 3x ot Loy 2k

6 6 3
Under Procedure RI it is curious to note that all randomness can be
traced back to n = 3. f, 0. cd e e

Y,

Let 'f6(n) denote the maximun number of tests required under Ry for
t = 2. The equations for Té(n) are exactly the same as in (3.1), the
only ;hange being that the second boundary condition is now ?6(3) = 3.
Repeating the above argument gives Eé(c) = 2c¢ and hence for all n = 2
(3.5) T (n) = F(2T+e) = 3x27 -2+ 2.

Since f6(n) 2 (3n/2) - 2 and we later exhibit procedures of asymptotic

(n - m) order n + log n, it follow that R. 1is asymptotically inefficient.

I

Moreover, several of the other procedures are uniformly E-better (i.e.,éﬁﬁal‘to*:

- 10 -
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smaller in expectation) than R, for all n > 2. Similar remarks hold

i

for the maximum lengfh,

B. Let f5(n) = E{T|RP} for t =2, Since the jth player (j = 3)
plays
wins his first game (and hence/an 'extra' game) with probability 2/j, it

follows that for all n > 2

i
=n-b +2 250+ 2 log n.

3.6 f_(n) = n-1
(3.6) £ : =

TR =]
] o

i=3

Clearly, if players j =2, 3,..., n all win, we obtain the maximum length

fs(n); hence for all n > 2

(3.7) ?5(n) = 2n-3.

Although RP has a better expectation than RI’ it has a minimax
value that is much worse; these results already show up in our table for

n < 10, For all n and asymptotically (n — ») we have

1
(3.8) f5(n) < n-b + 2(logen § A e EH)’

where Y = .577...is Euler's constant; this can be used to show that
f5(n) is smaller than (%E - 2) and hence smaller than f6(n) for all

n > 2

r1 =) rs
C. Let fu(n) = E{T[Ry} for t=12. let n=2 +2 “4,..+2 in

binary notation; this partitions the n players at random into s

r,
. 1. .
'connected' subsets of sizes 2 (i = 1,2,..., s) with r, A Baaas £ 0,

2 5 =
Inside these sets we need a total of n-s comparisons to find the s
best players and between the s subsets we need an additional s-1 com-
parisons to find the overall best player., The winner of the jth subset
has probability er/n of being the overall best. Since we do a knock-out
tournament within each subset and because of the order in step 2, this

winner carries along with him rj contenders for second best from his own

= i A
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subset, j - 1 more froulfhe j-1 larger subsets and 1 - ajs from the
smaller subsets; here 6js= 1 if j=8 and =0 if j <s. Thus if

the jth subset produces the best one then an additional rj + (§-1) +

(1—6js) - 1 comparisons are needed, Hence for all n > 2

(3.9 £(®) = (nes) + (s-1) + 2 =

r,
r+j-1-258. )2 J
J_1( i GJS)

lS r,
n-2+= Z(c.+j-56.)27,
noya J s

This is not easily amenable to an asymptotic analysis; we therefore derive
a lower bound for fh(n) and use theﬁ@ii;ﬁﬁlvalue;'%;.;n upper bound. A
lower bound is obtained by taking only the first term of the summation in

(3.9). We note that r, = [log n] and that r, - 6§ _ = [log(n-1)]. Hence

for all n > 2

ollog n]
(3.10) fu(n) >n -2+ 0 (1 + [log(n-1)1).

This already shows that for any sequence n, of n-values
1
(3.11) fh(ni) >n-2+3 log(ni-l)

and puts a lower bound on the possible asymptotic form of fh(ni) as

n, — o,

The maximum fﬁ(n) required under RM occurs when the winner of the
r

first subset (of size 2 1) is the overall winner and hence

(3.12) £),(n) <y (n) = (n-s) + (s-1) + T~ 8

1 1s
VAU T S
1

Since this same value was shown by Schrier [19]& Slupecki [20] to be a lower bound for

=n-14+ [log(n-l)]j

PRV TUR SR Ly

the minimax value of any procedure, it follows that RM is an M-optimal

procedure,

- 12 -
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The procedure RM is also important because it attempts to solve
the t = 2 problem by separating the two problems of finding the best
and (conditional on the extra information picked up) then finding the
second best., Although this idea was also used by Picard in Section T7.3.1
of [17], it should be noted that our procedure RM is not the same as
his procedure; call the latter procedure RPl. In fact, it is faifly
easy to show (details are omitted) that for any n > 2 the procedure

RP has expectation
1

n-2
(3.12a) E{T|RP1} =n =« 1 % %(n-e) i % z (j-1) = g(n-l) - lx%

j=1 "
which is to be compared with the upper bound n + log n obtained for

Ry in (3.12) above. We can say that R, 1is inadmissible for both
1
the E-goal and the M-goal since RM is at least as good for all n

and, in fact, strictly better for n > Lk, 1In particular, for the example

with n = 5 considered by Picard, R gives 5.8 and 7 for the expectation

£y

and maximum, respectively, compared to 5.6 and 6 for RM.

- 12a -
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D. Let f3(n) denote E{T[RI*} for t=2. For n=2" +c¢ (with

e o"); 1let gr(n) denote the probability that there are r

contenders for second best after step 3 of the procedure R To show

e

that gr(n) + gr+1(n) = 1, assume for any n' < ot (say, n' associated

with r' < r) that the number of contenders for second best is either
r' or r' + 1 with probability one. Then for even n = 2m as a result

of step 3

gr(em) = gi—l(m) + gr-l(m)gr(m) = gr-l(m)’
(3.13)
g, 1(2m) = g2 (m) + g (m)g (m) = g (m).

and the sum of these two equations is again one. Also for odd n = 2m + 1

g (2m1) = g (m)g__ (m+1) + g (m)e (1) (zmy)

+ g (m)g,_ (1) (soeD)
(3.1L)
g, (2m1) = g _(m)g (m1) + g, (m)e (m+1) (sor)

+ g (m)g,_q (m41) (o)

and the sum is {gr_l(m) + gr(m)}{gr_l(m+1) + gr(nﬁl)} = 1. Since
g1(2) =1 and gE(E) = 0, this result must hold for all n > 2,

Since r is determined by m we now write g(m) without the

subscript r and obtain from (3.13) and (3.14) (and the result just

proved)
g(2m) = g(m)
(3.15) (hg(m) +2£${1)g(m+1) if m+l is not a power of 2
g(2m+l) =
g%&%l if m+l 1is a power of 2,

where g(2) =1 and g(3) = It is easily checked that for

] =

s 12 =






o' <n<2™ and r>1 the solution is

2r+1_ n
(3.16)  g(w) =22,
Since it takes exactly n - 1 comparisons to find the best and an
additional r - 1 or r comparisons with probabilities g(n) and
1 - g(n), respectively, for the second best, we have from (3.16) for

of <n<2™ apd r>1

r+l
(3.17)  £5(n) =n - 1+ (z-1)g(n) + r{l - g(a)} =n + 7 - 2
21+[1og n]
=n + [log n] -—
The smallest value we add to n-1 in the above is r - 1 = [logn] - 1

1s = [log(n-1)]; hence

Pt

and the largest is r - §
(3.18) n -2+ [logn]. < f3(n) <n -1+ [log(n-1)].

Thus f3(n) is of asymptotic (n = w) form n + log n. By the same

N N TE R T

argument as in (3.18) the maximum length is
(3.19) f3(n) =n - 1+ [log(n-1)].

Since the minimax value has to be at least this by Schreier's result,

it follows that procedures RI* and RM are both M-optimal.

E. Let fe(n) = E{TlRF} for t = 2; for this procedure we start with
the minimax problem and ?é(n). It follows directly from the details

of step 3 (see Section 2) that according as n = 2m is even or n = 2m+l
is odd, respectively, we have

?é(2m) = ?é(m) +m+ 1

(3.20) . _
f2(2m +1) = fe(m) +m+ 3,

- 1 -
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where Eé(z) =1 and fé(3) = 3, Letting g(n) = fé(n+1) - fé(n)

and setting ?é(l) = -1 gives

g(2m) = 2
(3.21)
g(em + 1) = g(m) - 1,

where g(1) = 2 is the only boundary condition. Clearly

]

(3.22) g(lm + 1) = g(2m) - 1 = 1 = g(3).

If m=2c +1 is an odd integer then by (3.21) and (3.22)
(3.23) g(hm - 1) = g(8c + 3) = g(he + 1) - 1 =0 = g(7).

In general, if m = oP"%3 where d is odd and p > 2, then by

iteration and (3.23)
(3.24) g(lm - 1) = g(2Pd - 1) = g(zp'ld -1)=g(kd -1) - (p-2) =2 - p.

A single expression for ?é(n) for both odd and even n can now be
obtained by summing the values g(j) (i =1, 2,..., n-1) and ?é(l).

In a straightforward manner we obtain

. [log 3] 3
(3.25)  Fy(n) =n - (L, 2 (@ D
n
5n-2(-1)" [}Og 8] a2
i R s |

It is not clear how to show that this is of asymptotic form n + log n
because of the appearance of (log n)2 in the asymptotic analysis.,
However, for n = 2° it is easy to show (we omit the details) that
r

fé(er) = 2% + r - 2. It follows from Schrier's result that for n = 2

we need at least

- 15 -
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(3.26) n -1+ [log(n-1)] = 2% - 1 + [log(2"-1)] =2 + ¢ - 2

comparisons and hence it follows that procedure RF (for £t =2) is
M-optimal for n equal to a power of 2,

We note from the table that procedure RF has a slight inefficiency
for n=17-= 23 1. This gets magnified for n = 15, 31 and 63 and
it is quite surprising to find that fé(n) is not monotonic; in fact
fé(15) =19 > ?é(16) = 18. This means that in a tournament with n = 15
players it would be better (in the minimax sense) to introduce a
fictitious 16th player (say, a beneficent deity) who always loses and
hence never is selected to be best or second best, For n = 62 we could
use 2 such deities since fé(62) = 69, fé(63) =71 and ?é(6h) = 68. This
lack of monotonicity did not occur with our previous procedures and is
conjectured not to occur for any of the entropy procedures., It also
serves to prove that RF is not M-optimal for t = 2 and as our table
shows it is also not E-optimal. However the analogous procedure for the
complete ranking problem (t = n - 1) is quite efficient and was shown
[8] to be M-optimal for n < 1l and for n = 20, 21; S. Johnson (personal
communication) states that it was also shown by M. Wells by machine methods
to be Mooptimal for n = 12,

For both t =2 (and t = n - 1) the procedure R, is also of interest
for its relatively low expectation., To find an exact expression for the
expectation fe(n) we return to step 3 for odd n =2k + 1 and compute
the probabilities associated with the tree for RF in Section 2. The

total number of equally likely cases after step 2 is

by 6 2k-h 2k+1).
.21 (..M (2k-3) (nep)n = (B g(ay).
For the first comparison (after step 2) these are split into

- 16 -
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2k-by (o1-3)(n-3)(n-1) and ¢ - c,

L
C, = (2)...( o
cases for the left and right fork, respectively, thus yielding the

(3.28)
2n-3
n(n-2) °

probabilities
n-3)(n-1
Py = n?g—ES ) and Py =
Similarly the two probabilities for the one remaining fork in our tree

{3.29)
for R (in Section 2) are easily computed to be
n-1 and o _n-2
Poo ¥ 5po3

(3.30) Py =53
Hence the expectation associated with step 3 for n odd is

n-1
2(P1 + p2P22) + 3P2P21 =2 + n(n_ej < 39

(3.31)
instead of the 3 used in the 2nd equation of (3.20). Thus we have to
substract 1 - (ni-l)/ni(ni-e) for each odd integer n, > 3 that appears
such integers

in the sequence n, [n/2], [n/4],...; suppose there are t

Dys Opseee; Mo Then our result is
n,-1

t .

- i

f2(n) = fe(n) -t + X (a2 °
i=1 iV i

n,

(3.32)
where fé(n) is given by (3.56).
Although it is not proved that fe(n® is strictly increasing in
this does appear to be true by the table in Section 2 and by specific
calculations for n = 15, 16, 62, 63, and 64. In particular, we note
that for n = 2° we obtain from (3.32)
r = /. F r
f2(2 ) = f2(2 y=2" +r -2,
It has not been proved that 2r +r -2 1is a lower bound for E{Tln = 2r}

=

It is not too

(3.33)

for all procedures, but this is conjectured to be true.
- 17 -
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difficult to show that this lower bound holds among all procedures in
certain classes (e.g., the class with the property that the best one is
selected in the first n - 1 comparisons) but the general result is
still outstanding.

It can be shown that the procedure RF is the best one given that the
first two steps of RF are to be used, namely ordinary pairing and
(semi-) induction on the winners; such results are considered by Hadian [10].
F. Let f6(n) = EleRE} for t = 2, For the entropy procedures we have
no exact formulas for all n and hence less complete results, The major
evidence of the efficiency of these procedures lies in the numerical
results and comparisons. We describe in some detail the procedure RE
for n =6, The table in Section 2 shows that for n < 10 our best
results are consistently obtained by one of the three entropy procedures,
In particular REl appears to be the best of all.

Without exact formulas we cannot prove that the expectation under
RE has the same asymptotic form n + log n as under procedure RI* but
this is conjectured to be true, In the next section we derive lower bounds

for the expectation under RE and RE . In the table in Section 2, there
2

are given values of n - 2 + %[2 log n)], which is conjectured to be a
lower bound for all procedures for ¢t = 2.

For n =6 we now illustrate in detail one step in the calculations
for RE' It was previously found that the procedure tests 1 vs. 2 and
(for all n>4) then 3 vs. L and then (assuming even numbers are the
winners) 2 vs. 4, After this a complete pairing (defined below)
procedure tests 5 vs. 6 and as shown in the next section this reduces the

entropy by 2(2n - 3)/n(n - 1), which equals 6/10 for n = 6. We wish

to show that this test:is not used by RE, since the test 5 vs. 2 gives

- 18 -
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a larger reductlon in entropy. The expected uncertainty E{U} after
& N 57

. . ,) ¢t

2 vs. 4 (assuming 4&2are the winners)is easily shown by direct calculation,

or by (4.7) and (4.8) below, to be

(3.34)  E{U} = log 30 - 3 = 2.773....

i

The probability that 5 loses to 2 (resp., wins over 2) at this stage after I
[ 1/»“‘1(» e SRS
beats, 2 is easily seen to be 8/15 (resp., 7/15).

If 5 loses to 2 then we are left with the following sets of

possible (true) states of nature:

1 subset (called Dh with 24 cases,

o)

3 subsets (called Dg, E’ Dzl with 8 cases each,

The total number of cases for the left fork is U48.
If 5 wins over 2 then we are left with the cases:
2 subsets (called DZ, Dg) with 12 cases each,

6

3 subsets (called D_, ), and Dg) with 4} cases each,

Vi O\w

2 subsets (called D_ and DZ) with 3 cases each.
The total number of cases for the right fork is 42. Here Di indicates
the possible decision that j is best and i is second best., Hence the

expected uncertainty after 5 vs, 2 is

8 .1 1
(3.35) E{Uu} ='T§&§ log 2 + 5 log 6} + %3{% log % $ log 21 % log 14}
1.2 1 _
=z + G log 3 + T log 7 = 2.144,

Hence the reduction in entropy is the difference 2,773 - 2.144 = 0,629,
which is greater than the reduction 0.6 obtained by the test 5 vs. 6.
This result only held for n =6 and in fact 5 vs. 6 gives a bigger
reduction in entropy for all n > 7.

The final tree obtained for n = 6 under RE is:

- 19 -
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1 vys,

3605/'\\\\3if)
vSs. same

(1802/ (180)

2 vs. same
(90\/%
(48 5 Vs, same (2)
6V\S{\
30) (18) (2h) (18)
vs. 2 6 vs, 6 vs. 6 vs.

(10 & (15 & (12)/ \ (6)
2 6 vs{ vs/. 3 5) 6 vs. ) Ez \g vs.
E3 E6 u “// \\\\\\, ¢/\\N et

3 VS. )-l'

=

Here the word 'same' indicates a repetition of the corresponding left
fork. The numbers in parentheses show the partition of the original
6! = T20 cases or states of nature and are useful in computing the expectation.

The symbol E]

indicates an endpoint where the decision Di, that j is
best and i 1is second best, is made.

No other procedure was found that had a smaller expectation for n = 6
but three of our procedures have a maximum length of 7.

For n < 4 the entropy procedures are the optimal procedures in
common with 3 of the other procedures. For n = 5 they coincide with
the procedures RF giving an expectation of 5 %g and a maximum length
of 6, For n =7 we use complete pairing, i.e., 1 vs, 2, 3 vs. 4, 2 vs. L

and 5 vs. 6. By our convention the number with the higher power of 2 is

the winner. The rest of RE(as well as R, and R ) is given by:
1 2

- 20 -
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T Y8 2 hh‘~h“h‘h“~$ 7 vs. b
"4
6 vs. 2 \\\\\\ﬁ'T vs. U4 4 vs. 5 7 vs. 6
Y :
2 ys8. 3 6 vs. 3 6 vs. 3 EZ Ei g 5 vg{ ;\\S‘Eg
Eh‘{x’ ELF EL{"[ 4 4 £ 6 6‘( E 6
3 o 3 E6 & vae vs. T E7 E5
AR B Yoy
T 3 7 6

7

— 17 and the maximum length is

Here the expectation is L4 + 3&r 51

L +5=0,

It is interesting to mote that R tests 6 vs. 4 (after 1 vs. 2,
3vs., 4, 2vs. 4 and 5 vs., 6) for all n > 7 whereas REl and Ry
both test 7 vs. 8 (and then 6 vs., 8 and then 4 vs. 8) for all n > 8.
Hence for n > 8 the procedure Ry differs from both R, and R,
is more difficult to obtain.

For n = 8 the continuation for procedure R, (after 1 vs. 2,

3vs., 4, 2vs. 4 and 5 vs. 6) was found to be:

6 vs. 4
(1680)— =—~(8L0)
7 %8, 2 7 vs. 8
(960)~ ~(720) (420 (420)
same
8 vs., 2 7 vs. L 8 vs. b4
(?)/ \/(330) (480) ™ (240) (210} \ (210)
@ 8 vs. 4 8 vs. / \_38 vs., L @/ -8 vs, 6
(210)” \(120) (315)/ (165) (180)/ (60) (105)" \(105)

< B DY s e’ 4
@ K @ (105?/ '%60):” L)B/V\O)@ @

@/ Ey

Here that symbol (::) denotes the exactly j more obvious comparisons
are needed to complete the procedure., In this instance the expectation

is readily computed to be 9 T%B and the maximum length is 11,

& 2l
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For n = 8 the procedure Rp (which is the same as R, for
1 2

n = 2r, any integer r) only requires 9 comparisons on the average and

has a maximum length of 10. It is conjectured that procedure RE will

1
continue to be as good or better than RE for all larger values of n.

4, Cycle-Pairing, Complete Pairing and Ordinary Pairing.

Ordinary pairing means of course that k comparisons are made when
n=2k or 2k + 1. A knock-out tournament for getting the best player
when n = 2° consists of ordinary pairing of all those players that won
in the previous round. Hence the number of rounds is r and the total
number of comparisons is n - 1, To define complete and cycle pairing,
we make use of the
Lemma: If the highest power of 2 that factors into n! 1is p, i.e.,
n! = 2P(2c+1) with ¢ > 0 an integer, and the integer s is defined
by writing n in binary notation as

r r r

(%.1) n=21+22+...+2s,

where r. >r. > ... >r_ > 0, then
1 2 s —

r
s T, 1 n
(4.2) p=n-s= (2 -1)= % ik
i=1 j=11]2
Proof: Using induction on n, the inference from n to n + 1 for
even n is obvious since p is not changed and n (resp., s) increases
(resp., decreases) by one, If n is odd then r_ = 0. Suppose n +1
replaces 1 +2 + ... + o by 2, Then P 1is increased by j, s is
decreased by j - 1 and n 1is of course increased by one. Since the
result also holds for n = 1, the result is proved, The proof of the
last equality in (4.2) is omitted. From the first summation in (L4.2)

we see that p is exactly the number of comparisons needed to find the

- 22 -
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-

r,
best player in each of the s subsets of sizes 2 (i = 1, 2,..., s).

For complete pairing we form the s subsets defined by (k.1) and
do the p comparisons mneeded to find the best player in each subset;
this type of pairing is used in RM and REQ' For cycle pairing we only
1 1 pairings needed to find the best player in the largest

subset of size 2 1, as defined in (4.1). Of course for n = o these

do the r

two concepts coincide,

Since we are conjecturing that among the E-optimal procedures there
is a cycle-pairing procedure, it is of interest to let Rc denote any
cycle-pairing procedure and see what properties it has; this is the aim
of the present section,

For n=2" the cycle-pairing (as well as the complete-pairing)
procedure gives us after n - 1 comparisons the best player and exactly
r contenders for second best. Since we need exactly r - 1 further
comparisons for finding the second best, it follows that for any procedure

R with n= 2r
c

(o) B2 s e (oA

We now obtain a lower bound for each of the three types of pairing.
If there is a cycle pairing procedure among the E-optimal procedures, then
the lower bound for any Rc should also be a lower bound for all procedures.

We define a comparison cj. [ or Cj (a vs. b)] to be of level j

._1/ -
if the 2 players a and b each have 2; -1 inferiors, the two sets

: proven '

are disjoint, and each of the 2 players has nofsuperiors (j =1, 2,...,[log n]).
We want to prove a result about the reduction in entropy for any comparison

of level j, regardless of where it occurs in our procedure., First take

j = 1; consider €, (a vs. b) and assume that we may or may not have some

incomplete knowledge from comparisons among the remaining n-2 players.

- 23 -
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Lemma: The reduction in entropy r; (a vs. b) due to the lst. level

comparison C, (a vs. b) is given by

(b.4) r, (a vs. b) = %%':% ,

regardless of the knowledge previously obtained about ordering thaﬁ affects only

Lot ‘s ' / LE ,
7 I R N O
R &y

<

ot

\the'fémaining n - 2 players.

Proof: For convenience, take a =2k + 1 and 'p/= 2k +y2\§ n and assume
the previous knowledge concerns;éﬁiy;playérs 1,jé;;.;,J2£?. é;ﬁsidér aﬁy o
definite order, say 1 <2 <,... <2k, for these 2k players (where

< means is inferior to); the same argument holds for any such fixed

order. The remaining subsets of possible states of nature corresponding

k i ., 2k
> Do (i > 2k) and Dok-1

to the possible decisions Di (i, j > 2k), Di
and the number of cases (or the relative probability) for each, before

the comparison C1 is made, are as follows:

(n-2k)(n-2k-1) subsets with (n-2)!/(2k). cases in each
(4.5) 2(n-2k) subsets with (n-2):/(2k-1)! cases in each,

1 subset with (n-2)!/(2k-2)! cases in it.

The probability of each subset is simply the number of cases in it divided
by the total number of possible cases; by (4.5) this total is n!/(2k)!

Hence the uncertainty E1{U} before making the comparison C1 is

_ (n-2k)(n-2k-1) (2n-kk)2k n(n-1)
(4.6) El{U} = *—a(a-1) log n(n-1) + D) log —
2k(2k-1 n(n-1) 2k(2n-2k-1)
+ aél—_Trl log m = log n(n-l) - W——— log 2k
- 2kiok-1 log (2k-1).

n(n-1

After making the comparison C1 and assuming by our convention that 2k+1

loses to 2k+2, the subsets in the first two rows of (4.5) which put 2k+1

ol -






in the first or second place have to be treated separately and we then
have the five types:
2n-lk-3 subsets with (n-2)!/(2k)! cases in each,
(n-2k-2)(n-2k-3) subsets with (n=2):/2(2k)! cases in each,
(&.7) 2 subsets with (n-2)!/(2k-1)! cases in each,
2n-4k-l4 subsets with (n-2).:/2(2k-1)! cases in each,

1 subset with (n-2).:/2(2k-2)! cases in it.

From (4.7) we find that the total number of cases is n!/2(2k)! Since
the complementary result, 2k+1 wins over 2k+2, gives rise to a
symmetrical set of results, it follows that the expected uncertainty
E2{U} after the comparison C1 can now be obtained from (4.7). By
straightforward algebra as in (3.35) and subtraction fmm (4.6), we obtain

the desired result

(4.8) B (U} - £ {U} = 3&%%5%} )

If we average this result over various possible fixed values of 1, 2,..., 2k
then we obtain the same result (4.7) for any partial knowledge about the
players 1, 2,..., 2k (or any subset thereof) and this proves our result,
A similar calculation for any comparison C, of level j(j = 1,2,...,[log n])

j

gives the more general result

o] 2n-1-2j)
(%.9) r,(a vs. b) = %(ﬁ)—' .

Since the proof is quite similar to the lemma above, we omit the proof
of (4.9) for j > 1.

For n=2 +c (0 <e< 2") any cycle-pairing procedure R,

at least 2r-1 pairings of level 1, at least 2“'2 pairings of level 2,...,

has

at least 1 pairing of level r. We can assume that it has exactly these
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T ; r 4
numbers of pairings among the first 2 - 1 comparisons. Then the

reduction in entropy due to these comparisons is, using (4.9),

(1.10) o s 2)(en-1-07)e" Qr{(En-l)r-2r+1+E}

‘ . =1 n(n-1) - n(n-1) ’
Let T1 = Er-l denote the number of these comparisons and T2 denote
the remaining, so that T = T, + T,.. Since the total uncertainty at

d ) 2

the outset is log n(n-1) and 1 is an upper bound for the reduction
in entropy for all steps (in particular, for those after the first Tl),

it follows that

{113 Q +(1 X E[TE})Z log n(n-1).

Hence, with the help of (4.11), we obtain the desired lower bound for

any cycle-pairing procedure Rc

Il

rr(En-l)r-2r+l+2}

(4.12) E{T|R ] - EfT,} > oF_1 + log n(n-1) - 25§ a(as1)

Of course, for n o' we obtain an improvement by using (h.3).

The corresponding result for complete pairing is obtained by using
(4.1) and noting that the first p = n - s comparisons consist of
[n/2j] comparisons Cj of lawel 3 (1 = ki Bowwss rl). Hence we replace
Q in (4.11) by

=

r1+l
EJ(En—l-EJ) - ] ’ (2n-l)rl-2 +2

n(n-1

(h'13) Ql =

n-1

j=1 ad

By a similar argument to that above we have for any procedure that uses

complete pairing (such as RM)

(&.1k) E{T} >n - s + log n(n-1) - =
j=1

where the sum can be bounded as in (L4.13) for asymptotics; here again we

get an improvement for n = 2° by using of + r -2 from (4.3)
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For ordinary pairing we use [g] pairings of level 1 only and

find in a similar manner that for any procedure that uses ordinary pairing

(such as RF)

(k.15) E{T} > log n(n-1) + Lﬁ%%%%§:§l [g].

Since ordinary pairing and cycle pairing are both part of complete
pairing, it follows that the lower bound in (4.1%) is not less than those
in (4.12) and (4.15). However since we conjecture that there is a cycle-
pairing procedure among those that are E-optimal, the lower bound in
(4.12) is of more interest; it is given in the table in Section 2 without
the improvement for n = 2t

Although the lower bound in (4.12) is asymptotically (r — =) equal

r-1

to n for n = 2r, it should be pointed out that for n=3 X 2 the

asymptotic (r - ») wvalue is only %(n + log n) + {J(1).
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5. Procedures for the Ordering Problem with t =n - 1,

Several procedures are introduced all of which are new, except for
procedure RS due to Steinhaus [551 and Ry due to Ford and Johnson [8].
Our main interest is in the concept of the maximum expected reduction in
entropy in g steps for small positive integers g. It is shown in Section 6
that for g =1 this maximum is achieved:by finding'the.compgrison that
partitions all the remaining posSible*staﬁésfof’nature (or cases) into two
sets which are (as close as possible»to.beiﬁg)iequal in size. For the
g-step (expected) entropy procedure we wish to make the 2g subsets (as far
as possible) equal in size in the sense of maximizing -(pllog P; + P, log p, +
Sgeeey Py log'pg) where p, = Ci/T; where Ci(i =1, 2,.., g) is the
number of cases in the ith subset and T = C1 + 02 + ee. F Cg is the
total number of cases. The concept of complete pairing (explained in Sections
2 and 4) also enters in all of the new procedures. The word 'expected' in
referring to entropy procedures is dropped after section 5.

The procedure RN uses the idea of inserting units into a 'main chain'
and it changes the unit to be inserted when there is evidence that ‘'noise'

is entering the procedure. The concept of noise, the criterion for noticing

its presence, and its relation to the expectation are discussed in Section 6.

Procedure RE*: This is essentially a l-step entropy procedure for t = n - 1,

i.e., it is based on finding the binary comparison that minimizes the expected
reduction in entropy after one comparison. At some isolated points we allow
the use of 2-step or 3-step entropy without a formalized rule explaining when
the higher~step entropies will be used. Complete pairingsis used for the

first p comparisons.
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Procedure RE: This is a pure l-step entropy procedure which also uses complete

pairing for the first p comparisons. Higher-step entropies are used to
decide between two comparisons only when the l-step entropy reductions are

equal.

Procedure RN: This procedure also uses complete pairing for the first p

comparisons; this establishes a 'main chain' (denoted by the powers of 2
under our convention). After that, units are inserted in the main chain, i.e.,
we only compare a unit off the main chain with a unit on the main chain. We
continue to try to insert the unit chosen until either it is inserted or
there is evidence that noise (denoted by N) is entering the -procedure (A
criterion for this is given). The decision, as to which unit should be in-
serted and what comparison to make, is sequential and based on l-step entropy
considerations, i.e., given the present state of knowledge, we select the
comparison that maximizes the expected reduction in entropy due to the next
comparison only.

It should be clear from the above procedures that further improvement
through the use of higher-step entropies is thought to be possible, but this

requires extra computation and has not been investigated.

Procedure RG: This procedure is based on first ordering separately the s

subsets formed by complete pairing and then using the l-step entropy criterion

for merging these ordered subsets, each of size equal to a power of 2. To
get something different than RE for n = 2r, we assume that each of the two
halves of size 2r-1 must be separately ordered and then merged.

The table below shows the numerical results for these procedures and
compares them with those for RS and RF’ Important omissions from this table

are the optimal procedures of (¢, Picard [17] for n < 6 and a procedure
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Comparison of Six Procedures for the Complete Ordering Problem

Lower
Bound and Expected Values
Procedures
n=2 n=3 n= n=5 n=6 n="7 n=8 n= n=10
LB 1 |28 | 12 | et | 28 | 1p118] 15118 [ 1915k | ;11966
Rpx 1 |25 1= & 9Eé 1alZL] 15181 | 11002 N.C.
Ry 1 b2 1 18 | £ | 580 | 1R 18 [yalii0 | e
Ry 1 B | B | 2] | 2B it | am,
R, 1 42 1 g1k 21 1ol | 14k | 01656 | 12060
R, 1 |22 | 18 | A | o630 | 12220] 15107 | 12T3T | 5313725
Rq 1§ 8 1E 72 | 33 1l 15186 1823% | 5p3015
Column .3 3 15 (b5 (315 (315 2835 | 14175
Denominator |
(D)
Noise Units (NU) (Noise N = NU/D)
Ry 0 0 0 o] o 3 3 18 N.C.
Ry 0 0 0 0 0 h L 34 N.C.
Ry 0 0 0 0 0 5 g 50 N.C.
Rp 0 0 0 0 1 26 26 82 ol
R, 0 0 0 2 L 32 59 163 1759
Ry 0 0 0 2 7 | 68 68 730 522k
(Min., Max.) of the Number T of Comparisons under R
MLB 1 3 5 i 10 | 13 16 19 | 22
Rpx | (1,1) {(2,3) | (&,5) | (6,7) [(9,10) {(11,13)(14,16)(18,19) | N.C.
Ry | (1,1)((2,3) | (,5) | (6,7)|(9,10)|(11,13)(1h,16)(17,20) | N.C.
Ry (1,1) |(2,3) | (4,5) [ (6,7)|(9,11) [(11,13)((1k,16)|(18,20) | N.C.
Ry (1,1) |(2,3) | (&,5) | (6,7)|(8,10)|(10,13)(13,16)|(16,19) | (19,22)
R, (1,1) |(2,3) | (4,5) | (6,8)|(8,11) |(11,14)[(14,17)(17,20) | (20,23)
Rg (1,1) {(2,3) | (4,5) | (6,8)](8,11)|(10,14)(13,17)(16,21) | (19,25)
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of Cesari [4] for n = 7 which has only 3 units of noise; no rule for

general n 1is given in their work, The lower bound LB in the table is

defined by

where r and c are defined by writing n! =2" + ¢ (0 < c¢ < n!); this

result comes from the work of Huffman [12] and was applied to this problem
Pl

independently by Kislicyn [1L4] and through questionnaire theory by Picard [17].

The corresponding minimax lower bound MLB = 1 + [log n:] for the n > 3

in the minimax problem was used by Ford and Johnson [8] and is also

discussed by Steinhaus [éS].

6. Properties and Proofs.

We define the 'Halving Procedure' as one which always selects a
comparison that makes the resulting two sets of cases (as far as possible)
equal in size, Let T denote the total number of possible states of
nature at any stage and let x and y =T - x denote the partition
resulting from some comparison.

Lemma 1: The halving procedure and the l-step entropy procedure are equi-
valent.

Proof: The reduction in entropy at any stage is given by

X A = -
(6.1) log T - 7 log x - % log y (px log p, + Py log py)
where p = % and Py = %. It is well known that that right side of (6.1)
is maximized by setting P, = py or x =y and this proves the result.

Of course, if we could always partition the states of nature exactly
in half then we would have an optimal solution. All our difficulties arise

from the fact that this halving is not always possible, On the other hand
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it is not necessary to partition the set exactly in half to get an optimal
breakdown, We now give some results about this point.

Let H(T) denote the expected number of comparisons required when
there are T possible states of nature. Let x denote the smaller of
the two subset sizes that result from some comparison; suppose we could
choose any subset size x we wish. Then H(1) =0 and for T > 2

(6.2) B(r) =1+ min (5 HGx) + 2% n(ra)).
1<x<T/2
Let h(y) = yH(y). Then (6.2) takes the simpler form
(6.3) h(T) =T + min {h(x) + h(T-x)}.
1<x<T/2
Define r and c¢ by writing T = o'+ ¢ where O <ec< 2", It can
o
be readily proved as in lemma 2 of [Ei] that the minimum in (6.3) is

attained at x

T/2 and that an exact expression for H(T) for all

T >0 1is

(6.4) H(T) = r + 2% = ¢ + (1 - 27),

The following result was found to be quite useful in searching for procedures
with less noise and in particular it!is used in the definition of procedure
RN‘ It corresponds to lemma 3 of [;i] but it should be noted that because
of different boundary conditions the result is completely different from
that in the above-mentioned lemma.

Lemma 2: For any T > 2 an integer y will yield the minimum in (6.3)

if and only if there is no power of 2 strictly between y and T -y,

Proof: Let h(x; T) denote the sum in braces in (6.3); because of the
symmetry about x = T/2, we assume x < T - x., Consider different possible
inequalities between x, T - x and the power of 2 that is closest to their

average T/2.
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Case 1: 2r-1 <x <T-x< of,

Then, letting r(x) denote the r-value for x, r(x) = r(T-x) = r-1 and

to check the equality in (6.3) we use (6.4) and compute

(6.5) T+h(x; T) =T + (£-1)x + 2(x-2""1) + (£-1)(T-x) + 2(T-x-2""1)

1}

rT + 2(T-2°) = h(T).

Hence the minimum in (6.3) is attained for such values of x,

2s-1

Case 2A: <x<2®, 2" <Tx for 1<s<r, and

s-1

Case 2B: 2° " <x <2°, 2f

=T-x for 1 5 s <r,

Then r(x) = s-1 and r(T-x) = r and a similar computation gives

for both Cases 2A and 2B

(6.6) T+ h(x; T) =T + x(s-1) + 2(x2°"1) + (T-x)r + 2(T-x-2F)

h(T) + (T-x-2%) + (2%-x)t + 2°(2%-t-1) > n(t),

]

since t = r-s > O and (hence) ot ¢-1 > 0. In Case 2A (resp., Case 2B)
strict inequality follows from the fact that T - x - ot >0 (resp.,
(2°-x)t > 0). Hence the minimum in (6.3) cannot be achieved for such
values of x,.

s-1

case 3: 257l <x <2®, ottt

<T-x <2° for s < r-l1.
Here x(x) = s-1, r(T-x) = r-1 and r-s > 0. As above, we obtain

T + x(s-1) + 2(x-2°"1) + (T-x)(z-1) + 2(T-x-2""1)

(6.7) T + H(x; T)

n(t) + 2°(2%-t-1) + (2°-x)t > n(T)

since t =r-s > 0 and 2t-t-1 > 0., Thus the minimum in (6.3) cannot
be achieved for such =x values.
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Case 4: x = 2°, ot cpx <o for s > r-2.

Here r(x) =s, r(T-x) =r-1 and t =r-s >2. As above we obtain

r—l)

(6.8) T+ H(x; T) =T + s2° + (T-2%)(x-1) + 2(T-2°%-2

]

n(T) + 2°(2%-t-1) > n(T)

since 2%-t-1>0 for t > 2; the minimum in (6.3) is again not achieved.
Since these four cases.exhaust the possible relations between x, T-x
and the power of 2 closest to their average T/2, the lemma is proved.

It follows from this lemma that in selecting a comparison at any
stage of a procedure we ¢an determine, by looking at the 2 resulting subset
sizes (and their relation to the power of 2 closest to their average),
whether or not this particular comparison is introducing an inefficiency
(which we call noise) into the procedure. This is exactly the criteria
that was used in the procedure RN. It should be mentioned that lemma 2
is related to the theorem of Sandelius [18] which uses a different approach
and does not get our later results,

We are also interested in the amount of noise brought into the procedure,
especially when there is exactly one power of 2 strictly between the two
subset sizes, For Cases 2A, 2B, 3 .and 4 this corresponds to t =0, 1, 1
and 2, respectively, For Case 2A the amount added to h(T) is T-x-2°

and

(6.9) T-x-2" < 2°x since s =t and T <271,

For Cases 2B and 3 the amount added to h(T) is 2°-x and

(6.10) 2%x < T-x-2° since s = r-1 and T > 2k,

s 2r-2

For Case 4 the amount added to h(T) is 2° = and
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(6.11) o' 2 < 7-x-2""! since x =22 and T > 2L,

Hence we have proved the following
Lemma 3: The noise N due to a comparison with exactly one power of
2 strictly between the subset sizes, T1 <2? < T2 = T-Tl, is simply

the minimum distance to this power of 2, i.e.,

(6.12) N = Min(2%- Tys Tpm 2%y,

The contribution of this noise N to the expectation if we start
with T cases is then N/T; if we start with any larger number D of
cases (D > T) then this contribution is to be multiplied by the prob-
ability T/D of entering this part of the tree. Hence the overall
contribution to the expectation for this arbitrary comparison is N/D.
This latter result which we just proved can be regarded as a corollary to
lemma 3, but its usefulness is such that we prefer to write it as a theorem
below. Let the noisy nodes of a tree have noises Nl’ | J NW; we call
a noisy node simple if the two subset sizes obtained by that comparison
have exactly one power of 2 between them, The common expected value
of any noiseless tree (i.e., one with no noisy nodes) that starts with n
possible states of nature is H(n). Then we have the

Theorem: For any procedure R which has only noiseless nodes and simple

noisy nodes the expectation is given by

W
(6.13) E{T|R} = H(n) + 1 N.,
Rl T

where H(n) is given in (6.4) and the N, are given by (6.12). This
result enables one to keep track of the expectation of a procedure (or the
expected length of the tree) while the procedure is still being constructed.
Clearly it is quite useful in searching for the existence or non-existence

of noiseless trees, It was used for most of our computations in the table
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above and also in the footnotes below the procedures listed below.

The above analysis is of general interest for our search problem
and is not to be associated only with the entropy procedures. For
example, the formula in (6.4) also applies to the Steinhaus procedure Rg-
Since the Steinhaus procedure makes the individual insertions without noise,
it follows that H(i) 4is the expected number of comparisons necessary to
insert an item into a chain of length i. It easily follows, using (6.4),
that the expectation under RS for n units with 2° < n < 2r+1 is given by

n n 21+[log il
(6.14) E{T|RS} = = H{) = r(n+1)+2(n-2") -5 S=—u—r
i=p j=2 ]

A similar expression was obtained by Trybula (personal communication); the

asymptotic properties have been investigated by Kislicyn [1L4] and Hadian [10].
The procedure RF was defined in [8)] and developed by means of

separate recursion formulas for odd and even values of n which involve

complicated sums; no explicit expression for the minimax integer U(n)

under R was given. A single explicit expression for U(n) for all n > 1 is

: ol
(6.15) () = i(a+d) - Helo) - A

B 2
. 3nt-2 3 g "
where j = [logﬁ——ﬁ—)]. This form also has the advantage that it quickly

gives an asymptotic (n - ) evaluation for U(n), namely

ot
(6.16) U(n) = jn - S— +3legn +0711)
where j = j(n) is defined above. The results (6.14) and (6.15) are

derived by Hadian in [10].






T. Remarks about the Table and the Trees.

The trees below represent only a small sample of the trees constructed
for the table in Section 5. Only the more involved trees with the most
novel results are given. No tree was found that gives better (i.e.,
quieter) results than the modified entropy procedure RE*’ However there
is reason to believe that higher-step entropy procedures may improve some
of our results, This is based on the fact that in several situations that
arise the 2-step entropy is a clear improvement on the l-step entropy; we
give one illustration that arises under RE for n = 9. After 7 com-
parisons one of the nodes of the tree has associated with it 21 possible

states of nature which we represent by the diagram:

T 5
() () W\ (3 (3 <3>\| ,
6

3 9 1 2 L 8

The slanting lines indicate that 5 belongs somewhere below 6 and 7 belongs
somewhere below 1. If we insert 5 first it has 6 spaces in which to go

and the number of cases (or relativé probability) for each is shown by

the number in parentheses. The l-step entropy procedure requires that

we compare 5 with 1 to obtain the (12, 9) split rather than 5 vs. 9 which
gives a (13, 8) split. However the 2-step entropy procedure compares the
four-way split (6, 6, 3, 6) (which has a unit of noise) for the former
start with the four-way split (4%, 4, 7, 6) for the latter start, The

(4, 4, 7, 6) split is preferred under 2-step entropy since its 2-step
reduction in entropy is

8 21 21 6 21
(7.1) §i1ogh—+% log £ + 37 log 5= = 1.957...,

compared to 1,952... for the (6, 6, 3, 6) split,
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The procedure RN represents an attempt to use our above results about
noise in the construction of a procedure and the results are quite good.
In fact the procedure RN appears to be better than the l-step entropy
procedure RE but not as good as the modified entropy procedure RE*'

The symbol S in our tree denotes a branch that is symmetrical to
or equivalent to another branch to its left, which is further developed.
The symbol H, with the integer j on the last arrow leading to it, means
that the concluding steps starting from this point are obvious noiseless
insertions that requires an additional expected number H(j) of com-
parisons (starting at that node and including it in the count). The symbol

H, indicates that the remaining steps are not insertions but theycare

1
still obvious and noiseless so that the same result (6.4) applies; we can
regard the H's and Hl's as equivalent., The circled integers between the
two forks of a noisy node is the number of noise units at that node.
It appears to be true that no noise can arise at a node that corresponds
to a total of eight or fewer cases (i.e., states of nature) but this has
not been proved.
None of the procedures used contained any noisy nodes that were not
simple.
Each of the trees below starts after the p pairings associated
with complete pairing; here p is the highest power of 2 that factors into
n. Hence the total number of cases (or states of nature) at the top of the
tree is D = nl/2p, which is the common denominator in the table in Section 5.
Since there are 3 noise units the expectation for n = 7 wunder RE* is
4 + H(D) + (3/D) = 12 %%% = 12,384,... For n =8 the procedure Rpx is

exactly the same except for 3 extra pairings (7 vs. 8, 6 vs. 8, and 4 vs. 8)

at the outset., Hence the expectation under RE* for n=8 is
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EE* for @ = T

3NU T vs. 2 (D = 315 cases)
168 147
vs*‘l T T ys. b
3vs. 1 = 95 €----- Sb 6.v5. 1%
/ \ 2/ O\
6 ysk." 2 ;"vs i 2
/
/ \ 1 // 15 16/ \17
' 3 vs 5 s- 1 §va. L
’ ' Y4
oy i

/\ \ ]

15 %ié = 15.384,... It is conjectured that these are the best possible
results for n =7 and 8 but this has yet to be proved. Cesari [4]
has shown that no noiseless procedure exists for n = 7. With the aid

of our results above one could try to show that no procedure with NU < 3

exists, but this has not been attempted.
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9 vs., 2 (2835 cases)

(13h4) (1491)

R, forn =19
1 9 vs. b

_Oﬁ_

9 vs.
(672/ \(~672) (672/ &819)
g siskSng

9 vs, 8

(33?/ \336) (sov/ \5315)
vS. 6 vs. b (D: same as procedure
for n = 8)
(168/ \/168) (EMC%\(EQO
(c)

7 vs. 6 vs., 2

(Bu/ \8&) (120/ \1( 120)

6vs. 2 S
MN)
6 vs, b
(?/ \(26) (V \ez)
8 s (5 vs. 9)"
(103/ \19) (11/ \12) / \(10) (8/ \f13)

(5)/ \(5) (5/ \(M) (6/ \(8) (6/ \56) (hy \(h) (h/ yfi) (hz/ yh) (7/\(6)

vs.37vs97vs 5 VS. H 5wvs. 1l 5vs.
(3 (3) (l» (3) (3&(3) (3A(3) (3A§3) (hﬁ(s) (3i/\'(3)

H H HH HH

Two-step entropy was

1574 + 3h 1608 536
18_—1)_“ 18—8-—_ 18@3 = 18.567..

Total Noise is 34 N U and hence E{T|RN}

used only at (¥).
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Continuation of RN for n =9

(A: 1h ) T %8, 2 (120 cases)

A_GE‘/’/\
7 vs. 1 T vs. L

(3%\%) (18 (30)

5 vs. T S

(W)

3vs. T vsl

3 vs. 5 3vs 1i 1
M)(:/\Zm/\;s) 5

(B: No Noise)

(32,)/N32) M)
5 &, 7 S < memmmem———— j s B

(8/\58) (uz/\f) /\
H T vs. 2 T v8s 3
(a/\m <3)_/\(3)

H H

T






(c: 8wu) 5 vs. 2 (264 cases)

5 98, 1 5vs. b4
6/\ 6@6&/ i
6vs. 9 S (rmmmmm S T vs. k4
32/ 32 / \
3 vs, 1 S 5vs(’. 9 Y'VS 9
y\}é ol h\le :‘Ly\lf
3vé 5 S 6 vs. 9 Tvs. 1 5 vs. T S
8 \8 12 12 L \8 9 9
H H 7 vs. 1 S H 7 w8, D 6 W8, T 5vs., 9
4/\8 4 \43 @\66/@ 3
H Hy H B H Hy ﬁl H
(p:  Lyu) T wa, 2 (315 cases)
/ 147
T wae 1 T V.
8/\ 8l 0\63
e e e S S R

. . D
. (Follows)
i/ \, . 15/ N 2

AL AY
o/ \ > \ /\35/\“/\“/

- b2 -






Continuation of R for n = 9 (D)

D':
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R for n =9 9 vs. 2 (2835 cases)

..-[-{1?-

(lsuy 1491)

9 vs.” 1 vs. 4

(672) (672) (672 (819)
i T >8 2vs. T

(336) /\336) U*M
3 vs. 9 3 vs. 5 Tvs. 1
(166/\(Lf8) (20M18) (196) (196)
T vs, 1 S

3 vs. 1
Nh) /%G)follows : M)

6 vs, 2 3 v4. 7
(hy\\\’ (follows (follows Yo (49)
5 vs.”3 6 vs. L 5 N 7 S

/ N) <1V\f1> ("’M \ﬁs)

vs. 9 5 vs. 9 (5 vs. 9 9 vs. 8 6 vs. U

(12/\59) (1M2) i&/\zo) /\}3) /\(/11) (12/\13)
Tvs.9 5 1 5ve.3 5vs.2 5vs.3 5v§.3 9vs.8 5vs.2

1/ \(6) m\u 6y \ (6) (6/\(7)

1 5vsl+ H HH H s.1 5vs,u

wm Ak AN
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=
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w
=
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Two-step entropy was used only at (*) above to avoid one unit of noise,
which becomes 32 because of the multiplicities (S). The total remaining
number of noise units (NU) is 18 and hence EfTIRE*} = 18 léZ&Bi;l§_

= 18-%%%% = 18.562...; to get the result for R, we add 18 + 32 = 50 NU

and the result is 18 ‘;-g_g% = 18.573. e
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Continuation of R * for n = 9

= £
° w=s w0
w ~ &
w o o
o= Z e
2 °
L o 5 e
= d S
5 o i
0 a0 0
> = vxnnmuw
s nm O~ =
- P L~
— ~— al i
b= — N w
QJ o\ : :
~— ~— > —
6\}/H

(51)

2
(
3

Contains 10 Noise Units
)
S.T .
@\(
H

Vs
g
v

~
~ R TS0 (g o
ﬂs af\1|_
= JAH
[9]
— i
=3
I — ~ i
= & 3 9o 5 © T
o £ o &,
o Q A » -
~—~ = (V
[43] ® "
: KO - i
i ; o . =R
¢} O oy o w» 0o >
(6] = ~ ‘o
~— Al N —~  on ~
o 5 -
SR i
= = &
C ongoF
oM P

7 vs. 4
(27)
75\8
JSDZ 6vs.3
b <9>(6)N
S5vs. T Hl H
5
H H

(110)
3 vs. T

Ly

H

5

=
(58)
(31
7
1 9vs.8
b 6vs.h 6v
éé)\/ (3
ﬁl H

(52)
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B Continuation of R _x for n = 9

5 vs. 2 (93 cases) Contains 2 noise units,
/ L2
5 vs. 1 4 vs. 5
% \ 1/ \23
6 vs. kb 6 vs. 4 7 vs. 5 N vs. 6
17 \11 1?/ \11 9 \10 1%\9
7 vs., b Tvs., 6 7 vs. b Tvs. 6 Twvs. 4 Tuws.6 7 vs. L 7 vs., 6
%\9 T/\h ?/\6 T/\hh/\ss \5 /\? u/\5
6 vs. 2 6 vs vs. b4 9 vs. 8 6 vs., 2 Tvs. 4 H H H 7 vs 7 vs H H
h/\h 3‘/@\16 3/\h 3 \3 3/\3 3/\h 3/\/34\/\&
H H H H, H H H H H H H H H H H H
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Continuation of R _x for n = 9

5
14
5
2 ﬁs
o/
L vs., 6

(116 cases) Contains 6 noise units.

o\ — 5
[EpN Al jast 0
b= b~ [o)Y
O . =+
T (o)) — wn .
"N = o
(Ta (0)N O
0 \O
V/ &
= = >
c0) fa=
oo} omrlllrw"u
— . o
0
/ [e0) =3
\Ne} - -
. =t
1}
>,
o™ TN

Vs
@
9
10
H

51
28
T vs.
14\[
9 vs
o/
i
\ s s
H

4 8
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3
H



(1]

(2]

(3]

(4]

[5]

(6]

(7]

(8]

(9]

(10]

[11]

[12]

[13]

REFERENCES

Bose, R. C. and Nelson, R. J. (1962). A sorting problem. J.ACM 9
282-296.

Burge, W. H. (1958). Sorting, trees and measures of order.

Informat. Contr. 1 181-197.

Carroll, L. (1883). Lawn tennis tournaments. (From The Complete

Works of Lewis Carroll) N,Y. Modern Library, 1947 edition.

Cesari, Y. (1967). Questionnaire, codage et tris, Thesis, La
Faculte Des Sciences De Paris.

David, H. A. (1959). Tournaments and paired comparisons. Biometrika
46 139-1L49.

/’, ;
(1963). The Method of Paired Comparisons. Hafmer Pub. Co.,

New York,
Dubail, F. (1967)."A1gorithmes de questionnaires réalisables,
optimaux au sens de différents critdres! Thesis, Univ. de Lyons.
Ford, L. R., Jr. and Johnson, S. M. (1959). A tournament problem,

Amer. Math. Monthly ég 387-389.

Glenn, W. A. (1960). A comparison of the effectiveness of tournaments.
Biometrika gz 253-262.
Hadian, A. ( ). Optimality properties of various procedures for
ranking n different numbers using only binary comparisons.
Technical Report No. , Department of Statistics, Univ. of Minnesota,
Hibbard, T. N. (1962). Some combinatorial properties of certain trees
with application to searching and sorting. J. ACM 9 13-28.
redundancy codes. Proc. IRE 2 1098-1101.

Iverson, K. E. (1962). A Programming Language. John Wiley and Soms, Inc.,

New York.

-).|.9a-



N .
L r o
At £ s ‘ (21 et )--
teet . J Lo & &) (@] - N
e ) e [ — | - [ S— — ==
et
L

o e __ wt & o R
rat nsm,_ e b . CW &
. e Iy n
| = o v
(@] n i = Tt
. Y o] ) )
] i ~~ it —_ O
2 . tet . 2
i 3 o .
fess] ey FRe) o
. R o
N ~ )
] . e
[ o
. :v. ot
o i
L .
M g B
) Dow
L3 Y .
. [
1
o
o .
\, ~ o ' It
. i e » a4
R et B ﬂx.N.
.n\.m L n A e
p - N ;
. .
bal
. )
o}
!
Q) g} o
= i R
s it : ,
1] ) e
i, o] “1
- ke 3
B _ e ]
o - ‘o
B _ = in) )
. ) . P i
1 R N %) . ' -
G w @ ST} B Wi
o o e 1
. : o . g O
it .q,.. 9} “A._ n 2
- )] L g
- . (&
: > ! I
. o RS
O e %
. . 2 o
. -r
ko N
[} [ o a o
QO 13
« - It [ ui
. W o ¥)
] O »
" . P

—

+



[14]

[15]

[16]

[17]

[18]

(19]

[20]

[21]

[22]

[23]

Kislicyn, S. S. (1962). On a bound for the smallest average number

of pairwise comparisons necessary for a complete ordering of

N objects with different weights (Russian). Vestnik Leningrad

Uﬁiv. (Series on Math., Mech. and Astron.) 18 No. 1

162-163.

(1963). A sharpening of the bound on the smallest average

number of comparisons necessary for the complete ordering of a

finite set (Russian). Vestnik Leningrad Univ. (Series on Math.,

Mech. and Astron.) 19 No. 4 143-145. (MR 28 No, 41).

Maurice, R. J. (1958). Selection of the population with

the largest

mean when comparisons can be made only in pairs. Biometrika &2

581"’586 °

Picard, C. (1965). Theorie des Questionaires. Gauthiers-Villars, Paris.

(MR 33 No. T186).

Sandelius, M. (1961). On an Optimal Search Procedure. Amer. Math.

Monthly. gg 133-134.

eif fl _
Schreier, J, (1932). On tournament elimination systems (Polish).

Mathesis Polska 7 154-160.

Slupecki, J. (1949-51). On the system S of tournaments. Colloq. Math.

II 286-290,

Sobel, M. (1966). Optimal Group-testing. Submitted to the 1967

Conference in Debrecen, Hungary and to appear in a volume of

these papers.

Sobel, M. and Groll, P. A. (1959). Group-testing to eliminate efficiently

all defectives in a binomial sample. Bell Syst. Tech. J. 38

1179-1252.

Steinhaus, H. (1950 and 1960). Mathematical Snapshots.

Press, New York (see pp. 37-40 in the 1950 edition).

- 50 =

Oxford Univ.



! .
: : AN : A
' - S Y N - -
| R 8 , -~
{codns St U .
; R -~ e i -
o A AU PRI SRR .
prng BRSPS SOSORSURIIE IRV R .'.:)17."’3 o33
-~ [:\ ]
5
Nt e
) I's ' cwn i - L
vor &7t 1. oy S P
. et ~Te e e IS - ~ e
A oemi g et : ,
TS
[\"'J
= - ISR o PR ] . .
LR el e TN [;.‘.J .
b
Ly B
IS
[0 .
Sooguln  [O0 -
[OSORYE ORI . [ .

-

: - B b= EEN N




[24] sSteinhaus, H. (1958). One Hundred Problems'ig Elementary Mathematics.

(See Problems 52 and 85 in the 1963 edition, Pergamon Press, London.)

[25] ' ~(1959). Some remarks about tournaments. Calcutta Math. Soc.

Golden Jubilee Comm. Vol. Part IT 323-327 (MR 27 No. 4770).







