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A NOTE ON THE LAGRANGTAN SADDLE-POINTS
by Leonid Hurwicz and Hirofumi Uzawa 1/

l. Introduction.
1.1 In the present note we obtain a theorem on programming in linear
spaces, designed to handle a class of cases not covered by Theorem V.3.l
of Chapter 4 in [4]. (This theorem will be referred to below as Theorem
V.3.1l.) The latter theorem guarantees the existence of Lagrangian
multipliers (functionals) for a class of extremization problems under
rather mild restrictions on the nature of spaces and functions considered,
but it requires the order-defining cones (%positive orthants®) to possess
interiors. This requirement is satisfied by the positive orthants in such
spaces as (m) and (M)g/ , but it is not satisfied in many important cases;
in particular, it fails to be satisfied in such spaces as (lp) ,(Lp) ,(8)s
(S)cé/ It is natural to inquire whether Lagrangian multipliers might exist
in situations where the positive orthant has no interior. The present
note provides only a partial answer to this ocuestion. It is shown that
the assumption of a non-empty interior cannot be completely dispensed with,
but it can be weakened in such a way as to yield Lagrangian saddle-points
for a class of cases including the (Lp) spaces. On the other hand, it is
found that such saddle-points need not exist in the (S) or (s) spaces. With
regard to the (Lp) spaces the cuestion is still open..

1.2, We are concerned with the problem of extremization (more specifically,
meximization) under constraints in certain linear topological spaces.

Our maximization problem is stated in terms of a linear system
Z and two linear topological spaces P > s with ordering relations
defined on 7/( and Z respectively by the convex cones Py and P,. A point
Yo & %’ is said to be maximal over the set Yg77/, if y, €Y and, for each

y&Y, y1y, implies y4y, &,



D

Given two concave functions, f: X-*‘ and g: X%,
X a convex subseté/ of )( s we shiall say that X, maximizes f£(x) subject to
x& X and g(x) 2 0 if £{x) is maxinal over the set £X N\ g™ ()] ; d.e.,
if x_¢ X, and g(xo) 20, and f(x)_%f £(x,) for 211 x € X satisfying g(x) 2 0.
We are interested in conditions under which the Lagrangian
expression
(1) @ (s,z#;3%) = y[£(x)] # z%[g(x)]
( where y* and z* are respectively continuous linear functionals over 77
and j' ) has a (non-negative) saddle-point, i.e., the following conditions
are satisfied: there exists continuous linear functionals y¥ and z-g such
that
(2.1) 7% 50 and 2% 30,
(2:2) @ (xz7%) € @ (x,.2% 5 75) 4 Q@ (x,,2*¢ ; %)
for 211 x & X and all z*e_:.o‘é/
In Theorem V.3.l, it wes shown that the Lagrangian @ has
such a saddle-point if |
(N?®) the convex cones Py and P, both have non-empty interiors, and

/4

Theorem V.3.l remains valid if (R') is replaced by the condition

(R?) for some x, € X, g(x,) is an interior point of P,.

(R*?) for any linear functional z# 2 0, there exists a point X,y Such
that z*(xz*) >0,
(R?) is meaningful even when the cone Pz has no interior, and
the cuestion erises as to whether the condition (N?) could be weakened
or modified.
1l.3. At this point we shall give two examples to show that the condition
(N%) cannot be completely dispensed with, even in such specialized classes

of spaces as complete metric or locally convex.
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First, consider the case in which lof is the set of all reals (witﬁ
the natural topology) and j’ is the space (S), the set of all measurable
functions defined on 05 t £1. It is knowng/ that there is no non-
null continuous linear functional on the space (S). It then follows from
a theorem of Klee-?/ that there is no non-null linear non-negative
functional on (S);cf. [6],p.267,(4.1). Hence, in (S), the regularity
condition (R"®) is (vacuously) satisfied.2Y Now suppose that the
Langrangian «&has a saddle-point at (xo,zg); then z¥ =0 (since there
are no other non-negative functionals) and, since y‘igq‘: 0, we must have
£(x) = £(x,) for all x &X. But if X is the set of all non-negative
reals, f(x) = x, and g(x) = 2 - xb, with 2 and b in (S), a(t) = 2 for
all £ in[0,1], b(t) =1 for all t in[0,1], then x, = 2,yet £(3) > £(2).
Hence the Lagrangian has no saddle-point here.

Second, consider the space (s), the set of all numerical
sequences a = (aj,85,00¢)0 Let,(,and}'be each an (s) space, 7]/the
set of reals, and let

£(x) =.;.'.“ Z”ixi(]&xi)—l , gx) =b-~x,

i=1

b=(1/2,1/25000)s; X = P

;, = the set of all numerical secuences with

non-negetive coordinates. Then X, = b and f(xo) = 0, Now suppose that
the Lagrangian @ has a saddle-point. It is knownl'y that every con-

tinuous functional z* on the space (s) is of the form

n
z%(z) = .3 z¥ 2.,
= * 7

where n is a finite integer and z = (Zl’zz’“" Yo If @ has a saddle-
point at (x,,2%), we must have

n
f(x) + 2

z%..(1/2 - x.) £ 0 for all x in (s).
j=1 o i



by

But let x = (%,X,,0.0), with x; = 1/2 for al) i # n+l and x; = 1.
Then
3 ~(
) + 2 ogg.(/2- ) = 2 24),(1/2 - 1/3) > o,
i=

thus contradicting the required inequality. Hence the Lagrangian saddle-

point does not exist here either.

1.4 - In attempting to extend the theorem on Lagrangian saddle-points,
we may note that it requires the existence of non-null linear continuous
non-negative functionals on the product space’7 x 3/0 One natural
approach is through certain theorems guaranteeing the dontinuity of any
linear non-negative functional. Some of these theorems, unfortunately,
require that the positive orthant possess interior, and are, therefore,
of no value for our purpose. But the theorems of Nachbin ([8],p 464,
Theorem 1) and Klee (Lemma A, cf.footnote 9 cbove) do not call for the
existence of the interior and can be used here.

Since both (8) and (s) satisfy all of the conditions of Lemma A,%2/
the preceding examples show that the hypotheses of Lemma A (together with
the convexity of X, the concavity of f and g, and the regularity condition
(R?) ) are not sufficient to guarantee the existence of linear (even
non-continuous) functionals sétisfying the saddle-point inequalities (2).
Hence, even in spaces where the hypothesecs of Lemma A are satisfied, we
must supply some counterpart of the condition (N*) above which required that
the positive orthants have interiors.

Now an examination of the proof of Theorem V.3.l shows that (Nt)
was used to establish the existence of a hyperplane (i.e., a continuous
linear functional) separating two convex sets. But under the hypothesés
of Lemma A we émly need to prove the existence of a linear functional
(i.e., a maximal linear variety) separating the two sets, since the continuity
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then follows from non-negativeness. The existence of such a separating
functional is purely algebraic property and hence the conditions under
which such a separation can be performed are also algebraic. These are
stated in an earlier paper of Klee ([5], p.456,(8.10) )}_§/=
Two disjoin'b convex gets can be separated by a linear functional
provided that either the linear system (vector space) is
finite-dimensional or one of the sets has a non-empty core.
The core of a set S in a linear system L is defined as follows:
a point x in L belongs to the core of X, to be denoted by Xo’ if and
only if
given any z & L, z # x, there exists a point y* = Nx +1 (l-X)z,

O(X(l, such that all points y=Ax + (1- )3z, 0<AC\’, belong

to S.

I.e., x belongs to S if and only if, in every direction of the linear
system, there is a segment originating at x.

In every linear topological space, the core of a set includes its
interior, but the converse is not always true. In certain spaces, as we
shall see below, the assumption that the core is non-empty is weaker than
the assumption that the interior is non-empty, and it becomes natural to
replace the condition (N') (stating that the interiors are non-empty) by
the condition

(N®) the cores of Py and P are non-empty.
Under these circumstances it tuwims oub 1L/ that the regularity condition
(R"?) is equivalent to

(R%) for some x, & X, g(x,) .is in the core of P .
Hence the conditions (N%) and (R"*) are the precise counterparts of (N¢)

and (R'), with *core® replacing 'interiorft.
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1.5 Applying Lemma A to the linear functional obtained by the method
of Theorem V.3.l, we find that the conclusions of Theorem V.3.1 remain
valid with core? replacing tinterior! in its assumptions, provided we
assume in addition that the spaces ';,’andd‘}/ are complete metric linear and
that the cones Py and Pz are closed and span their respective spaces.
A precise statement of this result is found in 2.1 below.

Now all of the following spaces are complete metric linear and
have closed space-spanning positive orthantg: (S), (s), (Lp), P O,
(f,p), P ) 0. Hence the possibility of applying the theorem of 2.1.
below depends on whether their positive orthants have non - empty cores.
It turns out that the spaces (S), (s), (L p) , have positive orthants with
empty cores.2?/ For (8), (s), and (Lp), p { 1, this was to be expected,
since we know that the theorem of 2,1 fails in these spaces. With regard to
the spaces (Lp) the question of the existence of lLagrangian saddle-
points is still unresolved. But it turns out that the positive orthant
of bounded functions on any domain hes & non-empty corel—6/ and this in-
cludes all the (Ap) spaces, p > O. The fact that (»%) s p{ 1, are covered
is rather interesting, since it shows that local convexity is not necessary;
on the other hand, the fact that (s) does not, in general, have Lagrangian
saddle-points, shows that local convexity is not sufficient in a complete
metric space with a closed space-spanning positive orthant whose core is

empty, even when (R?) holds.

2. A Theorem on Lagrangian Saddl.e-Points.

2.1 Theorem. Let Zﬁ be a linear system, ﬂj and 5’ complete metric linear

spaces; let Py and P, be closed convex cones, withron-empty cores, in ij

y

and % respectively, and let P - Py and P, - PZ have interiors;
let X be a (fixed) convex subset of % , £ a concave function on X to '%/ R

£ a concave function on X to ? , and
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(R#?) for some x, X, g(xy) is in the core of P
Under these assumptions, if x  maximizes £(x) subject to x& X,
g(x)> O, then there exist continuous linear functionals y%2 0 and
z% 2 0 such that the Lagrangian expression 0 (x,z#;y*) defined by (1)
has a saddle-point at (xb,zg) for all x & X and z*‘ 20 ; i.e., D satisfies
the inequalities (2).
2.2 Proof of the Theorem.

Let V be the topological product space”? x 3/ and consider
the subset of )Y defined by
(3) A={w=(y,Z) : yé?j, ze"’g , ¥ = £(x), z £ g(x), for
some x & X} o Because of the concavity of the functions f and g and the
convexity of the set X; the set A is also convex.

Now suppose it can be shoun that there exists a hyperplane sup-
porting the set A at the point w, = ( £(x,) 50,), 0, being the origin
of } » i.e., a non-null linear continuous functional w¥ such that, for
some real number <A ,
(4) () =X and wi(w) £ K for all weh.
Let vﬁg = (yg,z-g)e Then, by the reasoning used in the proof of Theorem
V.3.1, we may conclude that y¥ 20 and z¥% 2 0, and that the Lagrangian
expression @ (x,z;y%) satisfies the inequalities in (2) above. Furthermore,
the regularity condition (R??) implies that y¥30. For suppose that 7% = 0
Since wt is non-null, it follows that z§30. Let z, be a point in }
such that z#(z)¢ O. But (2) implies that

z§ [g(x)] £0 for all x€X;

hence, in particular, we have

zgle(xe)] 0

for the element X, € X whose existence is postulated by the condition (Rre),



-8-

Therefore, letting z, = )\ g(x%) + (1 -,\)zl, we have
2#(z ,) < 0 forall 04 A< 1,
But g(xx), by hypothesis, is in the core of P,; hence z & P, for
sufficiently small A) O and hence z¥ [z ) ] 2 0 if Ais small enough;
this contradiction shows that ¥ 2 0. |
Therefore, it only remains to be shown that a w)g with the
specified properties does exist. To establish the existence of wg', we first
define the sets |
(5) { A = {w=(y,z) g(x), for some x & Xj 5
(6) B = {w=(y,z.) Ty 2 f(xé), b3 0}.,

The set B is convex with a non-empty core and disjoint from the convex

LA

y< ‘f(x): 2

v

set Al. Hence, by Lemma B (cf.footnote 13), there exists a maximal
linear variety, i.e., an additive homogeneous non-null functional,

h(w) =2{ , such that

(7 “h(w?) S =<-'h(w") for 21l wW & hy , wWEB.

It follows from (7) that the image h(B) is not the whole
space of reals, and since B is closed convex, h linear, and the space
complete metric linear, we may apply Lemms A (cf.footnote 9). It follows
that h is continuous; we shall, therefore, denote it by w¥.

Because of the continuity of w¥, we have
(8) wi(w) £ A for all wék; ,
where Kl is the closure of Aj. Thereforé, if we can show that
9 AR,
it will follow that
(10) we & A for all w ¢ A.

In order to establish (9), let w = ( y,2) €A. For any
¥, 2 0andt > O, we have

WE= (y"éylﬂz)é Al



and lim WZ = w, Hence w Klo
£€-0

Finally, since w & AnB, (7) implies
(11) i) =o4
Hence we have established that w¥ is a continuous linear functional with
(10) and (11) satisfied, so that the set {‘w : wg(w) =0§} is a hyperplane
supporting the set A at the point Wge This completes the proof of the
Theorem.
2.3 In this section, we investigate the relationships between the
various regularity conditions. The conditions to be examined are:
(R?*) There exists x, € X such that g(xy) is in the interior of P,.
(Rg) For any non-null non-negative linear continuous functional
- 2%, there exists x, @ X such that
(12) z*(xz*) > 0.
(R*) For any non-null non-negative linear functional z# there
exists x,, &X such that (12) is satisfied.
(R®?) There exists x, < X such that g(x*) is in the core of on'
It will first be shown that, in any topological space, the following
implications hold:
(Re) => (R%) =>(R7) = (RY) .
(a) (B*)=w (R"?). Proof. By (R?), g(x,) is in the interior of Pz
for some X, & X. But, in any linear topological space, every point of the
interior is a point of the core (cf Klee,[5] ,p-445,(2.1) ). Hence g(x,)
is in the core of PZ and (Ri#*%) holds.
(b) (R*)== (R"). Proof. We show that, for any z* 2 0, z¥(z,) > 0
for zy=g(x,). For suppose the latter statement to be false. Then,
for some z¥ 20, z*(z4) = 0. Now there exists an element z; such that

z-g(zl)( 0. Hence z-g(z)\)(o for any z = Az, + (l-)\)zl s 0¢A@. On
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the other hand, since z, is in the core of Pz’ z ,\é-PZ for sufficiently
small A >0, so that z'lé'(z )\) 2 0. This contradiction completes the proof.
(c) (R")-a)(Rg) o Proof. If a z¥* qualifies under (Rg), it also
qualifies under (R%). '

Thus we see that (Rg) is no more restrictive than any of the other
ragularity conditions. (R&') would have been sufficient in the proof of
our Theorem where (R*%*) was used. However, under the other assumptions
made, this would not have added generality to our result. For
(d) (Rg)ab (R?) if the space is complete metric linear and Pz closed
and space spa.nnjngﬁ/ (i.e., such that P,-P, = 3( )s
(e) (R?) =m>(R%7) 4if the core of P, is non-empty.

Proof. (d) follows directly from Lemma A. To prove (e), we show that

if (R"?) is false while the core of P, is non-empty, (R') must be false

too. Let (R#') be false. Consider the set A = {z: z = g(x) for some x & X } .
Since X is convex and g concave, A must be convex. Now suppose it has

been shown that A does not intersect the core of on Then Lemma B pro-

vides the required non-negative functional. Hence it remains to be shown

that the interseétion of A with the core of P, is empty.

Suppose that the intersection is not empty, so that there is an
element z in the core of Pz such that z = g(x) for some x& X. Now, for
any 04 N 1, (1-) [g(x)-z]is in P, by definition of A. Also, if A is
sufficiently small, (1-M)z + Ay is in Pz for any y. Hence, for any y
and all sufficiently small A , the sun of these two vectors must also be
in the convex cone PZ o In view of~ the identity

(1-Me(x) + Ay = (1-Nz + (1-Mle(x)-z] ,
the vector (1-3)g(x) +Ay is in P, for any y and all sufficiently small A o
The latter statement means that g(x) is in the core of Pz and hence contra-

diets the falsity of (Rit).
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We may also note that
(£) (R")==>(R?) if P, has a non-empty interior. Proof. When a
convex set in a linear topological space has an interior;, its core
equals the interior (ef.Klee [ 5],p.448,(4.5) and (p 445,(2.1) ) .
Hence, in view of (dl) (cf. footnote 17), (e), and (£), the
conditions (R?) and Rg) are equivalent in any topological linear space

if P, has a non-empty interior.

3. Applications.

3.1 Let T be an arbitrary set and /5 (T) the set of all bounded real-
valued functions defined on T; i.e.,

(13) B = {x(xe)) s sup 1xte)( 20 |
teT

8(T) is a linear system with usual addition and scalar multiplication.
Let f be any linear system in /a). (T), and P the positive orthant of ‘f; i.eo,
(14) P= {x=(x(t)): er,x(t)'iOforalltéT} o

We may note that a function positively bounded from below belongs to
the core of P ; i.e., if x = (x(t)) in P satisfies

1 inf t = 0.
(15) Jgnx(6) =m )

then x is in the core of P. In fact, for any point z = (z(t)) in f,

let

(26) A = (1+My/m)™

where M, = sup | z(t) (% - Then we have
teT

(17) 0d Ny (1 adM/m =) Tt-1.

Hence, for any A such that 0 { /\ & /\o , we have
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(18) (1-Mx(t) +Aa(t) 2 (-Am - Ma(t)]
Zhm, [-D/x - M/n]
Eamy, [N/ N = (1) A )
2 0.
This inequality shows that, for any z in I . there exists a positive
number o such that (1-Nx +Az isin P for all o<)\<>\°, This is equivalent
to saying that x is in the core of the positive ‘orthant P.

We also note that any function x=(x(t)) in f is represented as the

difference of two funct_:i.ons belonging to P:
(19) x=x -x,
where x'(t) = max [x(t), 0], x(t) =max [ -x(t), 0] for all te T.

The conditions that the pbsitive orthant P have a non-empty core and
that the set P -~ P have a non-empty interior are therefore satisfied for
each of the following spaces:

(), (M), (L) with pyo.
Also, in each of these spaces the positive orthant is closed. Hence our
theorem (2.1 above) may be applied to these types of linear spaces, while
Theorem V.3.1 would not have been applicable in the (£ p) spaces, since
"their positive orthants have empty interiors. It should be pointed out
that, for these spaces, our theorem could also have been proved by using
Nachbin®s Theorem 1 in [ 8] instead of Lemma A. |
3.2 In this section we show that, in certain spaces, the positive orthant
has no core. This makes it impossible to apply the theorem of 2.1, but does
not necessarily imply the Qon—existence of a Lagrangian saddle-point.
(a) The space (s). This is the space of all numerical sequences
x = (xl,xz,uo)o Denote by P its positive orthant, i.e., the set of all
sequences x = (xl’xz"’“) such that x; 2 0 for i=1,2,... o Suppose that
a certain element y =-(yy;¥253+¢) of P is in ‘the core P, of P.
Then yi > O for all _1‘ and given awy element
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2 of the space, there must exist a number 0 ¢ )\ i (& 1, such that all
vectors of the form Ny + (l-)\)z belong to P, provided 0 ¢ /\( At in
particular, this would have to be true for 2z such that z; = -i'yi forl all
i. But then
| A3, - (1-M)(iy) 2 0 forall i=1,2,...,
provided /\ is small enough, so that
| i & MN(@-\) for i=1,2,...,
which is impossible. Hence y is not in the core P,; since it was picked
arbitrarily, Po must be empty.
(b) The space (S). This is the space of all measurable functions defined
on the interval[ 0,1]. We proceed in a manner aralogous to that for the
space (s). Given an element y in the positive orthant P, i.e., a
measurable function y(t), y(t) 20, 0 & t £ 1, we take for 2 the function
specified by the condition z(t) =. -'l;“]“,)r(t); z is measurahle. since, it is
the product of (y(t)) and ((-1':1)) which are measurables
This choice of z shows that y is not in P, and hence the core of P is
empty.
(c) The space L. This is the space of the equivalence classes of all
(absolutely) Lebescue integrable functions defined on the interval [0,1],
i.es, Ljo To begin with, let us show that a bounded function y(t)
cannot be in the core of the positive orthant. Thus suppose that y(t)
is a bounded non-negative function and take as z the function
a(t) = - £~ (1/2)
(This is legitimate since z is integrable.) Now for any N\, however small,
there is a positive number t, such the.t;§/
A‘y(tA) + (l-)\)z(t)‘) {0 for all % in (0,t, ).
Hence a bounded function cannot be an element of the core. By a

similar procedure, one can show that a function bounded on some open
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interval (a,b) within [0;1 ] cannot be in the core: here we define z(t)
as -(t-a)‘(l/ 2) for t in (a,1) and zero in. ».[Oﬂ,a] .

Now a non-negative intégrable function need not be bounded on an
open interval, but it must be bounded on a set of positive measure
(cf.Titchmarsﬁ [11] ,pp.341-2). Let E be such a set. Then there will
exist a point a in [0,1) such that the intersection of E with the
interval [a,b) is of positive measure for all b a (cf. Saks [9],pp 128-131).
Here again z(t‘), defined as in the preceding case, shows that an arbitrarily
chosen non-negative integrable y(t) is not in the core of the positive
orthant, since, for any )\> 0, there exists a set E, of positive measure
with Ay(t) + (1=-Nz(t)¢ 0 for t éE)‘ '« Hence the core is empty.
(d) Other Lp spaces. The proof that the core is empbty proceeds along

A lines analogous to those of the proof for L.

3.3 Among applications of particular interest to the economisf; , it may
be mentioned that Debreu?s Theorem 2 in [3], asSert:ing that a Pareto
Optimua is a Valuation Equilibrium, can be modified in the following way:
Debreuts assumption that, for infinite~di3nensional spaces, the production
set has an interior would be weakened tlzo recuiring that Y have a core,

while the space would be assumed complete linear metric and orderings

in terms of suitable convex cones would be introduced.

The University of Minnesota and Stanford Universityo



(1]
[2]

[3]
[4]
5]
[6]

(7]

[8]

[9]

-15-~
HEFERENCES

Banach, S., Théorie des Opérations Lindaires, Hafner Publishing
COO, No Yo’ 19320

Bourbaki, N., Espaces Vectoriels Topologicues, Chapters I and II,
Livre V, Premiere Partie, Elements de Ma'bhematlcme,
Hermann & Ci°, 1953,

Debreu, G., #Valuation Equilibrium and Pareto Optimum," Proc. Nat. Acad.
SCivs UoSer, VOlo ll-O’ 1951[—, pp: 588"592:

Hurwicz, L., ""Programming in Linear Spaces;' Chapter 4 in Studies
in Linear and Non-Linear Programming, by K. J. Arrow,
L. Hurwicz and H. Uzawa, Stanford University Press, 1958.pp

Klee, V. L., Jr., ‘Convex Sets in Linear Spaces,i Duke Mathematical
Journ.a.l, vo:’-e 189 1951, ppo l]-l}B"‘l(-66

Klee; V. L., Jr., #Boundedness and Continuity of Linear Functionals,?
Dukke Math. J., Vol. 22, 1955, pp-263-269.,

LaSalle, J. P., ‘'Pseudo-Normed Linear Spaces,' Duke Math.J., Vol 18,
1941, pp. 131-136.

Nachbin, L. "On the Continuity of Positive Linear Transformations,®
Proc.Int. Congr.of Math., No. 6, vol. 1 (1950),
Pp  464-L05.

Saks; S., Theory.of the Integral,- Second Revised Edition,
Warszawa-Lwow 1937 .

{10] Stone, M. H., Convexity, Tne University of Chicago, 1946 (Lecture

notes prepared by H. Flanders).

[11] Titchmarsh, The Theory of Functions, Second Edition, Oxford Un:wersity

Press R 1939°



TRR

Q \

R R

-16-
FOOTNOTES

We wish to acknowledge the support received from the Office
of Naval Research.
We are grateful to Professor S. Karlin, of Stanford University,

for a suggestion concerning the regula.fity condition in Theorem

"~ Ve3.1, Ch. 4 of [4] which provided a stimulus for this note,

and also to Professor G. K. Kalisch, of the University of
Minnesota, for clarification of the problem discussed in section
3.2 (¢) of the present note.

C£. Banach [1], pp. 10-11.

Cf. Banach [1], pp. 9-12.°

We write y* 2 yit if and only if y® - y¥ Py; VAl é ¥y means
that y¢ 2 y"* but y¥ # ¥, (I.e., yois maximal over Y if y,
if y, €Y and y &y, for all y € Y.) The same notational
principles are followed in other spaces.

X is usually a convex cone, typically the positive orthant.
y* 2 0 means that y#(y) $0 for all y 2 0 ; y* § O means that
y* 20 but -y* % 0, so that y% D0 implies y* # 0 ; the

‘notation for dher spaces is similar.

In Chapter 4 of [4] this has been called the Slater regularity
condition. .

Cf. Banach [1], p.234, and LaSalle[ 7}, p.134.

. Klee [6] p.266: #(3.4) If E is a complete metric linear space,

C is a closed convex subset of E such that C-C has non-empty
interior, and £ is a linear functional on E from which fC # E,

then £ is continuous.”? For the sake of brevity, this result will
be referred to as Lemma A.

It may be noted that if C - C = E ( which we express by “C spans E%)

then C-C necessarily has a non-empty interior.
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The situation ;‘Ls.the seme mtheLp spaces for 0 {p{1.

Cf. Klee [6], p 267.

Cf. Banach [1] p.50.

(S) and (s) are what Banach. éalls F-spaces. Cf Banach [1 ] p. 35.

This result will be referred to as Lemma B. Cf. also Stone, [10],
Part 3.

See section 2.3 below.

See section 3.2 below.

See section 3.1 below.

(a;) : (RY) = (B*) in any linear topological space if P has

a non-empty interior. Cf. Bourbaki [2], p.52, Prop. 16.

Let y(t) = M for all t & [Q,l] o Then My + (2-N { -’0'(1/2)) >0

implies t = (1/k2), k = (1-2)/(AM). Hence we may take any
0¢ t)'\((l/kz). |
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