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lo Introductiono 

A NOTE ON THE LAGRPJ'JGIAli SADDm-POINTS 

by Leonid Hurwicz and Hiro.t\uni Uzawa :/ 

lol In the present note we obtain a theorem on programming in linear 

spaces, designed to handle a class of -0ases not covered by Theorem Vo3ol 

of Chapter 4 in [4 Jo (This theorem will be referred to below as Theorem 

Vo3olo) The latter theorem guarantees the existence of Lagrangian 

multipliers (functionals) tor a class of extremization problems under 

rather mild restrictions on the nature of spaces and functions considered, 

but it requires the order-defining cones (npositive orthants") to possess 

interiorso This requirement is satisfied by the positive orthants in such 

spaces as {m) and (M)Y, but it is not satisfied in many important cases; 

in particular, it fails to be satisfied in such spaces as (ip),(Lp),(s), 

(S)eV It is n~tural to inquire whether Lagrangian multipliers might exist 

in situations where the positive orthant has no interior,, The present 

note provides only a partial answer to this c,:uestion.. It is shown that 

the assumption of a non-empty interior cannot be completely dispensed with, 

but it can be weakened in such a way as to yield Lagrangian saddle-points 

tor a class of cases including the (,l,p) spaces o On the other hand, it is 

found that such saddle-points need not exist in the (S) or (s) spaceso With 

regard to the (LP) spaces the question is still open. c 

lo2o We are concerned with the problem of extremization (more specificallyi 

maximization) under constraints in certain linear topological spaceso 

Our mmdmization problem is stated in terms of a linear system 

"'/._ and two linear topological spaces } , / , with ordering relations 

defined on'{{ and 'tJ respectively by the convex cones Py and Pz• A po:lnt 

Y() E 2g' is said to be ~ Q!!.!: the set Y ~" }1 if y O 6 Y and, for each 

y~Y, y-.~ y
0 

implies y~y0 W o 
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Given t.wo concave .t'ur,ctions, f: X _,,.rand g: X--"7 J-• 
X a convex subset2/ of 't , we shall say that x

0 
maximizes t(x) sub.1ect ~ 

xe X and g{x) ~ 0 if .f(x) is maximal over the set ff~ (l g-l(Pz~l ; ioeo, 

if x
0 

e X, and g(x
0

) ?O, and f.(x) J. f(x0 ) for all x tE X satisfying g{x) ~ Oo 

We are interested in conditions under which the Lagrangian 

expression 

(1) G (s,z*;Y*) = ;r*[f(x)J + z*[g(x)J 

( where Y* and z* are respectively continuous linear functionals over 7t 
and } ) has a (non-negative) saddle-point., ioeo, the following conditions 

are satisfied: there exists continuous linear functionals ~ and zt such 

that 

(2ol) ~ .> 0 and z* ~o, 
0 - 0 -

(2o2) m (x,zt;yg-) ~ m (xo, zi ; yiJ) ~ m (xo., z~E- y-!E-) 
0 

for all x ~X and all z* ~ o,Y 
In Theorem Vo3al, it m.s shown that the Lagrangian {D has 

such a saddle-point if 

(N') the convex cones PY and P z both have non-empty interiors, and 

(RV) for some x* ~ X.:; g(x*) is an interior point of Pzo'J/ 

Theorem Vo3ol remains val.id if {RV) is replaced by the condition 

(Rt v) for any linear functional zit- ~ 0, there exists a point xz* such 

that z*(xz*> >oo 

(R51 ) is meaningful even when the cone P has no interior, and 
z 

the question erises as to whether the condition (Nt) could be weakened 

or modifiedo 

lo3o At this point we shall give two examples to show that the condition 

(N' ) cannot be completely dispensed with, even in such specialized classes 

of spaces as complete metric or locally convexo 
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First, consider the case in which'"/ is the set of all reals (with 

the natural topology) and f is the space ( S), the set 0£ all measurable 

functions defined on O ~ t ~ lo It is knm~ that there is no non-

null continuous linear functional on the space (S) o It then follows 1'rom 

a theorem of Klee'J/ that there is no non-null linear non-negative 

functional on (S);cfo [6],p~267,(4ol)o Hence, in (S), the regularity 

condition (Rn) is (vacuously) satisi'iedJQ/ Now suppose that the 

Langrangian .,;1 has a saddle-point at (x
0

,zfp ~ then z~ = 0 (since there 

are no other non-negative functionals) and, since Y'3!·~ o, we must have 
0 

f(x) ~ f(x
0

) for all x ti Xo But if X is the set of all non-negative 

reals, £(x) = x, and g(x) = a - .xb, with~ and }2 in (S), a(t) = 2 for 

all ~ in [ 0,1] , b(t) = 1 for all i in [ 0,1] , then X
0 

= 2,yet f(J) > f(2)o 

Hence the Lagrangian has no saddle-point hereo 

Second, consider the space (s), the set ot all numerical 

sequences a = c a1, a.:2, ••• > • 1et X and f be each an cs> space. y the 

set of reals, ~nd let 
1'a· 

f(x) = Z 
i=l 

-i -1 ( ) 2 X. (l +X. ) , g X = b - X 1 1 J. 

b = (1/2,1/2,ooo), X = Pz = the set of all numerical sequences with 

non-negative coordinateso Then x0 = b and 1'(x
0

) = Oo Now suppose that 

the Lagrangian m has a saddle-pointo It is known!!/ that every con

tinuous functional z* on the space (s) is of the form 

n 
z*(z) = .~ 

i=l 
z'f Z, 

J. J. 

where n is a. finite integer mid z = (z1,z2,ooe )o If' Cfi has a saddle

point at (Xe,,~), we must have. 

n 
f(x) + Z 

i=l 
z*.o(l/2 - x.) ~ 0 for all X in (s)o 
01 1 -
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But let x = (x:i_,x2 , oo o), with xi = l/2 for all i :j n+l and x.ri+l = lo 

Then 
n 

f(x) + ~ zth o (l/2 - ;c.) = 2-(n+~) 11 (l/2 - J:/3) ) 9, 
i=l l. 

thus contradicting the required :i.nequalityo Hence the Lagrangian saddle-

point does not exist here eithero 

lo4 In attempting to extend the theorem on Lagrangian sa.ddle-points 1 

we may note that it requires the existence 0£ non;..null linear continuous 

non-negative functionals on the product space ''f x 1 · One natural 

approach is through certain theorems guaranteeing the continuity of atll. 

linear non-negative functionalo Some of these theorems, unfortunately, 

require that the positive orlhant possess interior, and are, therefore, 

or no vaJ.ue tor our purposeo But the theorems or Nachbin ([ 8],p-464, 

Theorem 1) and nee (Lemma A, cf .. footnote 9 above) do not call for the 

existence of the interior and can be used herea 

Since both (S) and (s) satisfy all of the conditions ot Lermna A,W 
the preceding examples show that the hypotheses 0£ Lemma A (together with 

the convexity 0£ X, the concavity of! and g, and the regularity condition 

(Rn) ) are not sufficient to guarantee the existence 0£ linear ( even 

non-continuous) functionals satisfying the saddle-point inequalities (2)o 

Hence, even in spaces where the hypotheses of Lemma A are satisfied, we 

must supply some counterpart of the condition (Nt) above which required that 

the positive orthants have interiorso 

Now an examination of the proof 0£ Theorem Vo3ol shows that (Nt) 

was used to establish the existence of a hyperplane (ioeo, a ~ntinuous 

linear functional) separating two convex sets" But under the hypotheses 

of' Lemma A we only need to prove the existence of a linear functional 

(ioeo, a maximal linear var:i.ety) separating the two sets, since the continuity 
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then follows from non-negativenesso The e.xistence of such a separating 

functional is purely algebraic, prope1~y and hence the conditions under 

which such a separation can be performed are also algebraico These are 

stated in an earlier paper of Klee ([5], p~456,(8ol0) )W: 

Two disjoint convmc sets oan be separated by a linear Tunctional 

provided that either the linear system { vector space) is 

finite-dimensional or one of the sets has a non-empty coreo 

The· .29~ of a set S in a linear system L is defined as follows: 

a point~ in L belongs to the core of X, to be denoted byX
0

, if and 

only it 

given any z 6 L., z :/: x, there exists a point Y' = ): x +l (1-X)z, 

0( X<l, such that all points y=Ax. + (1-) )z, O<A<..A '., belong 

to So 

Ioeo, ~ belongs to S if and only if, in every direction of the linear 

system, there is a segment originating at ~o 

In every linear topological space, the core of a set includes its 

interior, but the converse is not always true o In certain spaces, as we 

shall see below., the assumption that the core is non-empty is weaker than 

the assumption that the interior is non-empty, and it becomes natural to 

replace the condition (Nt) (stating that the interiors are non-empty) by 

the condition 

(Nn) the oores of Py and Pz are non-emptyo 

Under these circumstances it tm:ns out W that the regularity condition 

(Rta) is equivalent to 

(Rnt) for some x.,~ G X, g(x7~) . is in the core of P z a 

Hence the conditions (NH) and (Rn t) are the precise counterparts of (N') 

and (Rt), with tcore' replacing 9interior'o 
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lo5 Applying Lemma A to the linear f'unct,ional obtained by the method 

ot Theorem Vo3ol, we f'ind that the conclusions of Theorem Vo3ol remain 

valid with 'core 9 replacing t interior' in its assumptions., provided we 

assume :In addition that the spaces 'f and} are complete metric 1:lnear and 

that the cones P and P are closed and span their respective spaceso y z 

A precise statement of this result is found in 2ol belowo 

Now all of the following spaces are complete metric linear and 

have closed space-spanning positive orthant~: (S), (s), (LP), p) o, 
tp), p) Oo Hence the possibility of applying the ·theorem of' 2olo 

below depends on whether their positive orthants have non - empty coreso 

It turns out that the spaces (S), (s), (LP), have positive orthants with 

empty coreso!V For (S), (s), and (Lp), P< 1, this was to be expected, 

since we know that the theorem of 2.1 fails in these spaces$ With regard to 

the spaces (Lp) the question of the existence of LagrDngian saddle-

points is still unresolvedo But it turns out that the positive orthant 

of bounded functions on any domain ha,s a. non-empty coreW and this in

cludes all the(~) spaces, p) Oo The fact that (1), p( l, are covered 

is rather interesting, since it shows that local convexity is not necessary; 

on the other hand, the fact that {s) does not, in general, have Lagrangian 

saddle-points, shows that local convexity is not suf'f'icient in a complete 

metric space with a closed space-spanning positive orthant whose core is 

empty, even when (R11 ) holdso 

2o A Theorem on Lagrangian Saddle-Pointso 

2.1 Theorem, Let'/, be a 1:lnear system,~ and 1 complete metric l:lnear 

spaces; let Py and P3 be closed convex cones, withmn-empt;y cores, :In 'f 
and}- respectively, and let Py - Py ~nd P3 - P

3 
have :Interiors; 

let X be a (f:l:xed) convex subset of l,, ! a concave function on X to 1(, 
g a concave function on X to }' , and 
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(RU' ) for some ~,E- X, g(~f-) is in the core of P o 
z 

Under these assumptions, if x
0 

maximizes t(x) subject to xc- X, 

g(x)~ O, then there exist continuous linear functionals ~ ~ 0 and 

z* ~ 0 such that the Lagrangian expression m (x,z*;Y*) defined by (1) 
0 . 

has a saddle-point at (x ,z*) for all x c X and z* ~ 0 ; ioeo, m -satisfies 
0 0 

the inequalities (2) o 

2o2 Proof of the Theoremo 

Let ')'v be the topological product space ) X r and consider 

the subset or'),Y defined by 

(3) A= { w = (y,z) : y4 'f, z t '} , y ~ f(x)-., z ~ g(x), for 

some x ., X J . Because of the concavity of the functions I. and g and the 

.convexity of the set X, the set A is also convexc-

Now· suppose it can be shown that there exists a hyperplane sup

porting the set A at the point w0 = ( f(Xo) ,oz), Oz being the origin 

of}• i.e., a non-null linear continuous functional wg- such that, for 

some real number ~ , 

(4) w*(w ) =o( 
0 0 

and wg-(w) ~ ~ for all Wf-A.o 

Let w*' = (Y!,z*)o Then, by the reasoning used in the proof of Theorem 
0 0 0 

Vo.3ol, we may conclude that~~ 0 and zt ~ O, and that the Lagrangian 

expression Cl (x,z;yg-) satisfies the inequalities in (2) aboveo Furthexmore, 

the regularity condition (RH 9 ) implies that roiOo For suppose that ~ = Oo 

Since ~ is non-null, it follows that zt ~. 0, Let z1 be a point in } 

such that z~(z1)( Oo But (2) implies that 

ztt [g(x)J a: 0 for all x~X; 

hence, in particular, we have 

z-8[ g(~)] ~ 0 

for the element x* EX whose existence is postulated by the condition (R111 ). 
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Therefore, letting z ,.._ = I\ g{xi) + (1 - /- )z1 , we have 

ziJ( z ~ ) <. 0 for all O ~ A ( lo 

But g(XJ{.)., by hypothes:ts, is in the core or· P z; hence z e P z for 

sufficiently small ,\·) 0 and hence z,g, [ z A ] ~ 0 if /\ is small enough; 

this contradiction shows that yij ~ Oo 

Therefore, it only remains to be shown that a~ with the 

specified properties does existo To establish the existence of w*, we first 
. 0 

define the sets 

(5) l { w=(y,z) y ~ · f(x), ' for some x e X j , Al= • z = g(x)., . 
(6) { w=(y.,z.) 

~ . 

z ~ of B = y = f(x
0

)., 

The set Bis convex with a non-empty core· and disjoint from the convex 

set A1 o Hence., by Lemma B { cf o footnote 13), there exists a maximal 

linear variety., iveo, an additive homogeneous non-null functional, 

h{w) = ~ , such that 

{7) 'h(wt) ~""- f11(wH) for all wi~A1, wiitBo 

It follows from (7) that the image h(B) is not the whole 

space of reals., and since Bis closed convex., h linear., and the space 

complete metric l:inear., we may apply Lenuna A (cf ofootnote 9), It follows 

that h is continuous; we shall, therefore., denote it by wgo 
Because of the continuity of ~, we have 

(8) w*(w) ~ t;).... 
0 

for all w cA1 , 

where I1 is the closure of A1 o Therefore., if we can show that 

(9) 

it will follow that 

(10) w* i ~ 
0 

£or all w r:;, Ao 

In order to establish (9), let w = ( .y,z) eAo For any 

Yi ~ 0 and E > O, we have 

wt = (y - t_ Y1 , z ) 6 A1 
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and lim wf. = Wo Hence w A10 
e-,. O 

(11) 

Finally, since w
0 
e AnB, {7) implies 

wg-(w
0

) =·o< o 

Hence we have established that w* is a continuous linear functional with 
. 0 

(10) and (11) satisfied, so that the set {w : ~(w) ::fl... J is a hype~lane 

support~ the set A at the point w
0

o This completes the proof ot the 

Theoremo 

2o3 In this section, we investigate the relationships between the 

various regularity conditions o The conditions to be examined are: 

( R9 ) There exists ~ '= X such that g(~E-) is in the interior ot P z o 

(R0) For any non-null non-negative linear continuous functional 

· z*, there exists xzi~ (i X such that 

(12) z*(xzil-) ) Oo 

(Rt8) For any non-null non-negative ljnear functional z* there 

exists xz* GX such that (12) is satisfiedo 

(BJit) There exists ~ G X such that g{x*) is in the core of P zo 

It will first be shown that, in any topological space, the following 

implications hold: 

(Rt) -i:r> (RiU) ~cwa)'~ (RcP 0 

(a) (Rt)-=,> (R"') o Proof o By (R'), g(x*) is in the interior of P z 

for some x* 6 Xo But, in any linear topological space, every point of the 

interior is a point of the core (cf IO.ee{[5] 1 po445,(2ol) )o Hence g(¾) 

is in the core of P and (R"') holdso z 
(b) (RH t) ==) (Rn) o Proof o We show that, for any z* ~ 0, z*( z*) > 0 

for z*=g(x*) o For suppose the latter statement to be false o Then, 

for some zt io, z*(~) = Oo Now there exists an element z1 such that 
0 . 

z~(z
1
)( Oo HenQe z~(z )\)<.O for any z =_AZ*+ (l-")z1 , O~~(lo On 
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the other hand, since z* is in the core or P , z 1 ~ P for sufficiently z /\ z 
small ")\) 0, so that z~( z ,..) ~ 0 o This contradiction completes the proof o 

(c) · (Ri7)--), (Ra) o ~o If a z* qualifies under (Ru), it also 

qualifies under (Rn)o 

Thus we see that (Ra) is no more restrictive than any of the other 

ragularity conditionso (RH) would have been sufficient in the proof ot 

our Theorem where (Rut) was usedo However, under the other assumptions 

made, this would not have added generality to our resulto For 

(d) (RH)~) (Ra) if the space is complete metric linear and P z closed 

and space s~ (i.e •• such that pz - pz = r ), 
(e) (Rn) --...:)(fr") i.f the core of P is non-empty .. 

z 

Proo.fa (d) follows directly from Lemma Ao To prove (e), we show that 

if (R71') is false while the core of Pz is non-empty, (Rn) must be false 

tooo Let (Ri") be falseo Consider the set A = { z: z ~ g(x) for some x € X J • 
Since Xis convex and g concave, A must be convexo Now suppose it has 

been shown that A does not intersect the core of Po Then Lennna B pro-
~ 

vides the required non-negative functionalo Hence it remains to be shown 

that the intersection of A with the core of Pz is emptyo 

Suppose that the intersection is not empty, so that there is an 

element .! in the core of Pz such that z = g(x) for some x~ Xo Now, for 

any 0~ ~ '; 1, (1-~) [g(x)-z] is in Pz by definition of A. Also, if>. is 

sufficiently small, (l-A)Z + )\ y is in P z for any Z,o Hence., for ~y z 
and all sufficiently small A , the sum of these two vectors must also be 

in the convex cone P o In view or the identity z ' 

(l-~)g(x) + )\ y = (1-A)z + (1-))[ g(x)-z] , 

the vector (1-•)g{x) +,A y is in Pz for any z and all suf'fio~ently small )\ o 

The latter statement means that g(x) is in the core of P and hence contra
z 

diets the falsity of (R"')o 



We may al.so note that 

(f) (Rnt) ~)(Rt) if P has a non-empty interioro Proof o When a z 
convex set in a linear topological opa.ce has an interior, its core 

eq_uals the interior (cfoIO.ee [ 5],pJ448;i(l-1-05) and (p 445,(2ol) ) o 

Hence, in view of (d1) {ere footnote 17), (e), and(£), the 

conditions (Rt) and n0) are equivalent in any topological linear space 

if Pz has a non-empty interioro 

3o Applicationso 

3ol Let T be an arbitrary set and t3.(T) the set of all bounded real

valued functions defined on T; iaea, 

(13) ,e(T) = { x=(x(t)) : sup I x(t)l (0o l , 
tt-T J 

BcT) is a linear system with usual addition and scalar multiplicationo 

Let f be any linear system in/~. (T), a11d P the positive orthant of J"; ioeo, 

(14) P = { x = (x(t)) : x €: t_, x(t) ·~ O for all t 1i:T 1 , 
We may note that a function positively bounded from below belongs to 

the core of P; ioeo, if x = (x(t)) in P satisfies 

(15) inf x( t) = mx ) 0 , 
t~T 

then ~ is in the core of Po .In fact, for any point z = {z(t)) in J, 
let 

(16) 

where ~ = sup· I z( t) I ( ex:, 
ter 

(17) 0 < )\ 0 < 1 

Hence, for any '/\. such that 

o Then we have 

and M /m = ~ -l - 1 o --z X O 

0 ( 1\ ~ ;\
0 

, we have 
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(lS) (l~)}x(t) + )\z(t) ~ (1-~)m - Al z(t)} 
X 

~ Am [ (1-,\)/ )\ - M /m J 
X Z X 

? ~r~ [ (1-,\)/ ~ - (1-1),)/ A J 
~ 0 0 

This ~equality shows that, for any !. in J :. there exists a positive 

number ~ 0 such that (1-~)x +Az is:in P for all O(,,\ (~
0

o This is equivalent 

to saying that~ is in the core of the positive·orthant Po 

We also note that any function J<?:(x( t)) in [ is represented as the 

difference of two functions belonging to P: 

(19) + -· x=x -x, 

where x+(t) = max [x(t), 0] , x-(t) = max [ -x(t)., 0 ] for all t ~ To 

The conditions that the positive orthunt P have a non-empty core and 

that the set P - P have a non-empty intel'ior are therefore satisfied for 

each of the following spaces: 

(m), (M), ( LP) with p) Oo 

Also., in each of these spaces the positive orthant is closedo Hence our 

theorem (2al above) may be applied to these types of linear spaces, while 

Theorem Vo3ol would not have been applicable in the (lp) spaces., since 

their positive orthants have empty interiors c It should be pointed out 

that, for these spaces, our theorem could also have been proved by using 

Naohbinis Theorem 1 in [ 8] instead of Lennna Ao 

3 o2 In this section we show that, in certain spaces, the positive orthant 

has no core.. This makes it impossible to apply the theorem of 2ol, but does 

not necessarily imply the non-existence of a Lagrangian saddle-pointo 

(a) The space (s)o This is the space of all numerical. sequences 

x = (xi,½, o o o) o Denote by P its positive orthant, Leo, the set of all 

sequences x = (~1x
2

, oo .) such that Xj_ ~ 0 .for i=l,2, o o o o Suppose that 

a certain element l :;· (y1~y2;~ .• ;) of P is 1.n ·the core ,p0 · of P. 

1:hen Yi .) 0 for all ! and gi vcm a~,. elcr:icnt 
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! of the space, there must exist a number O ( ~ ' \ 1, such that all 

vectors or the form ~y + (l-,A)z belong to P, provided O ( A( A•. In 

particular, this would have to be true for z such that z. = -iy. tor all 
- i J. . 

!• But then 

AY- - (1-,;\)(iy.) ~ 0 for all i = 1,2,ooo, 
l. J. 

provided(\ is small enough, so that 

i ~ '/\/(1-"A) for i=l,2, o •• , 

which is :impossible. Hence z is not in the core PO ; since it was picked 

arbitrarily, P
O 

must be empty o 

(b) The space (S). This is the space of all measurable functions defined 

on the interval [ O,l]. We proceed in a manner analogous to that for the 

space (s)o Given an element z in the positive orthant P, .i.e., a 

measurable function y(t), y(t) ~ O, 0 ~ t ~ 1, we take for!. the function 

specified by the condition z(t) =- -·t .. 1.r(t); ! is measur.~le- a:i.nce .. it is 

the product of {y(t)) and ( (-t~1)) which are measurable. 

This choice of!. shows that z is not m P
0 

and hence the core of Pis 

empty. 

(c) The space L. This is the space or the equivalence classes of all 

(absolutely) Lebesque integrable functions defined on the interval [o,lJ, 

i.e.~½_· To begin with, let us show that a bounded function y(t) 

cannot be in the core of the positive or~hantc Thus suppose that y(t) 

is a bounded non-negative function and take as,! the function 

z(t) = - t-(l/2) 

(This is legitimate since ! is integrable.) Now for any )\, however small., 

there is a positive nwnber t A such thatW 

A y(t A) + (1--A)z(t,\) ( 0 for all ~ in (O, t )\ ) o 

Hence a bounded function cannot be an element of the coreo By a 

sj.milar procedure, one can show that a function bo'll:rlded on some open 
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interval (a,b) within [ 011] cannot be in tpe core: here we define z(t) 

as -(t-a)_(l/2) for i in (a,l) and zero in. [O,a] o 

Now a non-negative integrable function need not be bounded on an 

open interval, but it must be bounded on a set of positive measure 

(cfoTitchmarsh [ll],ppo34l-2)o Let Ebe such a set,. Then there will 

exist a point ! in [ 0,1) such that the intersection of E with the 

interval [a,b) is of positive measure for all b a (cfo Saks [9],PP 128-131)0 

Here again z(t), defined as in the preceding case, shows that an arbitrarily 

chosen non-negative integrable y(t) is not in the core of the positive 

orthant, since, for any A) O., there exists a set E )\ of positive measure 

with } y(t) + (1- ~)z(t) ( 0 for t 6 E)... · o Hence the core is emptyo 

(d) Other L spaceso The proof that the core is enipty proceeds along p 

lines analogous to those of the proof for Lo 

3o3 Among applications of particular interest to the economist, it may 

be mentioned that Debreuts Theorem 2 in (3 ], assert:ing that a Pareto 

Optimum is a Valuation Equilibrium, can be modified in the following way: 

Debreuis assumption that, for infinite-dimensional spaces, the production 
I 

set has an interior would be weakened to reQuiring that Y have a core, 

'While the space would be assumed complete linear metric and orderings 

in terms of suitable convex cones would be introducedo 

The University of Minnesota and Stanford Universityo 
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for a suggestion concerning the regularity condition in Theorem 
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and also to Professor Go Ko Kalisch, of the University of 

Minnesota., for clarification of the problem discussed in section 
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Ct o Banach [11 pp o 10-11 o 

Cf o Banach [l ], ppo 9-120 ' 

We write yv i yn if and only if y" - -y(i ~ P ; y'l , y'-1 means 
y 1!. 

that yv ~ y11 but -r' * Y" o (Ioeo, y
0
is maximal over Y if y

0 

ii' y O ~ Y and y f y O f'or all y ~ Yo) The same notational. 

principles are followed in other spaces~ 

X is usually a convex cone., typically the positive orthanto 

Y* ~ 0 means that :y*(y) ~ 0 for all y ~ 0 ; Y* ~ O means that 
. -

Y* ~ 0 but -Y* ~ 0, so that yi~ ~ 0 implies Y* I O ; the 

· notation for ether spaces is sintllaro 

In Chapter 4 of [ 4 ] this has been called the Slat,er regularity 
conditiono 

Cf o Banach [1 ] ., pa231+, and LaSalle [ 1J , pol34c 

, IO.ee [61 po266: 51 (304) If' E is a complete metric linear space, 

C is a closed convex subset of E such that C-C has non-empty 

interior, and f. is a linear functional on E from which fC :/: E, 

then ! is continuous an For the sake of brevity, this result will 

be referred to as Lemma Ao 

It may be noted that if C - C = E ( which we express by nc spans E11 ) 

then C-C necessarily has a non-empty·interioro 
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The situation is the seme iri" the· L. spaces -for O ( p { lo . p 

Cf o IO.ee [ 6], p 267 o 

Cf. Banach [l J.~ po50o 

(S) and (s) are what Banach, calls F-spaceso Cf Banach [11 po 350 

This result will be referred to as~ f!o Cf'o also Stone, [10], 
Part .3o 

See section 2o3 belowo 

See section 3o2 belowo 

See section 3ol belowo 

(d1 ) : (RH)"=) (Rn) in any linear topological space if Pz has 

a non-empty interioro Cf .. Bourbaki [2], po 52, Propo 160 

Let y(t·) = M for aJJ. t e (0,1] o Then ';.y + (1-N ( -t-<1/ 2)) ~ O 

implies t ~ ( 1/k.2), k = (1-~ )/ ( A M) o Hence we may take any 

0 ( t ~ ( (l/k
2

) • 
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