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Abstract

Efficiency and scalability have become the new norms to evaluate optimization al-
gorithms in the modern era of big data analytics. Despite its superior local convergence
property, second or higher-order methods are often disadvantaged when dealing with
large-scale problems arising from machine learning. The reason for this is that the
second or higher-order methods require the amount of information, or to compute rel-
evant quantities (e.g. Newton’s direction), which is exceedingly large. Hence, they are
not scalable, at least not in a naive way. Because of exactly the same reason, with
substantially lower computational overhead per iteration, lower-order (first-order and
zeroth-order) methods have received much attention and become popular in recent years.
In this thesis, we present a systematic study of the lower-order algorithms for solving
a wide range of different optimization models. As a starting point, the alternating di-
rection method of multipliers (ADMM) will be studied and shown to be an efficient
approach for solving large-scale separable optimization with linear constraint. However,
the ADMM is originally designed for solving two-block optimization models and its
subproblems are not always easy to solve. There are two possible ways to increase the
scope of application for the ADMM: (1) to simplify its subroutines so as to fit a broader
scheme of lower-order algorithms; (2) to extend it to solve a more general framework
of multi-block problems. Depending on the informational structure of the underlying
problem, we develop a suite of first-order and zeroth-order variants of the ADMM, where
the trade-offs between the required information and the computational complexity are
explicitly given. The new variants allow the method to be applicable to a much broader
class of problems where only noisy estimations of the gradient or the function values are
accessible. Moreover, we extend the ADMM framework to a general multi-block convex
optimization model with coupled objective function and linear constraints. Based on a
linearization scheme to decouple the objective function, several deterministic first-order
algorithms have been developed for both two-block and multi-block problems. We show
that, under suitable conditions, the sublinear convergence rate can be established for
those methods. It is well known that the original ADMM may fail to converge when
the number of blocks exceeds two. To overcome this difficulty, we propose a randomized
primal-dual proximal block coordinate updating framework which includes several ex-

isting ADMM-type algorithms as special cases. Our result shows that if an appropriate
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randomization procedure is used, then a sublinear rate of convergence in expectation
can be guaranteed for multi-block ADMM, without assuming strong convexity or any
additional conditions. The new approach is also extended to solve problems where only
a stochastic approximation of the (sub-)gradient of the objective is available. Further-
more, we study various zeroth-order algorithms for both black-box optimizations and
online learning problems. In particular, for the black-box optimization, we consider
three different settings: (1) the stochastic programming with the restriction that only
one random sample can be drawn at any given decision point; (2) a general nonconvex
optimization framework with what we call the weakly pseudo-convex property; (3) an
estimation of objective value with controllable noise is available. We further extend the
idea to the stochastic bandit online learning problem, where the nonsmoothness of the

loss function and the one random sample scheme are discussed.
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Chapter 1

Introduction

1.1 Background and Literature Review

Algorithm design is commonly considered as a central theme in the theory and practice
of optimization. For continuous optimization, roughly speaking, algorithms can be
classified into three types: (1) the high-order algorithms (which use the information
of the Hessian or higher order derivatives of the objective function); (2) the first-order
algorithms (which use no more than the gradient information of the objective function);
(3) the zeroth-order algorithms (which only use the function value information). In this
dissertation, we aim to present a study on the latter two types of algorithms for some
specific optimization models. To distinguish from the high-order ones, let us loosely use
the term low-order algorithms to represent the last two types of methods. High-order
methods such as the interior point algorithms have proved to be extremely successful
in solving optimization problems in general, as they typically only take a few steps to
converge (cf. [6, B]). However, there are applications arising from big data analytics
that prevent high-order methods from being practical, as the computational complexity
of performing one iteration of a high-order method may already be overly expensive.
In those situations, the first-order methods become attractive since at each step their
computational costs are substantially lower. Furthermore, in some applications only the
function values are available for estimation. In such cases, the zeroth-order methods are
the only choices to be considered.

As two subclasses of the lower-order algorithms, the first-order methods and the
zeroth-order methods are closely related. In fact, as we will show in this dissertation,

many zeroth-order methods can be derived from their well-designed first-order coun-



terpart. In the literature, two types of first-order methods are popular. The first type
includes essentially the gradient algorithms and their variations, while the second type

is based on the proximal gradient mappings. Consider

min f(z) (1.1)

where f(x) is a smooth convex function. The gradient method is in the form of
M = gk — a VF(), (1.2)

where « is the step size. Moreover, for some problems, the objective function might be
nonsmooth and there might be constraints and so the gradient method is not directly

applicable. For example, consider

min f(z) = fo(z) + fi(z), (1.3)

zeX

where X is a convex set, and f; is convex, ¢ = 0,1, and fy may be nonsmooth. This is a
typical situation where proximal type method may be relevant. In particular, we define

the prozimal operator prox,; as

. 1 )
prox; ;(z) = argmin f(y) + oy —al”.

For problem ([1.3]), the proximal point method can be described as the following iterative
process

k+1

T = prox,, g, (%), (1.4)

and the proximal gradient method can be described as
ottt = proxy, s, (z% — MV 1 (7). (1.5)

There have been many variations originated from the proximal point and the proximal
gradient methods, adapted for specific applications in various fields including engineer-
ing, statistics, and economics (cf. [II]). Besides, the aforementioned gradient-type
methods can also serve as a starting point for many zeroth-order methods. When the
gradient information is not readily available or impractical to obtain, based on some

approximations of the gradient, the corresponding zeroth-order method can still be



applied.

Given the nature of the lower-order algorithm, it is particularly useful for problems
that require higher computational efficiency. In general, we study its applications for
the following areas: (1) large-scale block optimization; (2) stochastic and black-box
optimization; (3) online learning and online optimization. In the previous gradient-type
optimization methods, the vector x is treated as a single block of variables. But in
large-scale optimization problems, the dimension n is large and it would be preferable
to work with some smaller-sized subproblems at each step. In fact, there are plenty of
problems including matrix/tensor factorization [65, [69], group LASSO [117, 128], SVM
[22] etc., where x can be decomposed as x = (z1,x2,...,Zy) . With such kind of

problems in mind, let us consider the following block-structured optimization model

T, €X;,0=1,...m

min f(:cl,azg,...,arm)—i—z:ui(xi), (1.6)
i=1

where f(-) is smooth, and w;(-) may be nonsmooth. To solve this problem, it is intuitive
to utilize the block structure so that at each step of the algorithm, we only need to
deal with a smaller-sized problem. To this end, the Block Coordinate Descent (BCD)
method is proposed for solving problem . Basically, the BCD method tries to
minimize a single block variable z; while all other blocks z;, j # i are fixed at each
step by following a certain selection rule of the block (e.g. cyclic, randomized, etc.).
By incorporating the proximal point or proximal gradient method and implementing
different block updating rule, many variants of the BCD methods have been proposed.
However, for some applications, for instance the robust PCA [14], is still not general

enough. Taking the constraints into account, let us consider the following model

m
ziEXiI,Iin:I%,--.,m f(CUL T2 ,xm) * z; U’L(xZ) (17)
s.t. Aix1+ Aszo+ -+ Ay, = b,
where A;,7 = 1,...,m are given matrices. For instance, by introducing a new variable,
the well-known LASSO model [117] can be transformed into (1.7)):
min  [|[Az — b|? + \|ly|1
min ||Az —b|? + Al|lz|ly = =xyeR" | | vl (1.8)

el st. z—y=0.



There are in fact many applications which can be formulated in the form of
including the consensus and sharing problems, basis pursuit, compressive sensing etc.;
see [7, B 20, 29]. For this model, the ADMM-type methods based on augmented
Lagrangian have received much attention recently, which will be discussed at length
later in this thesis. Unlike the deterministic large-scale optimization, for many stochastic
and black-box optimizations, the lower-order algorithm seems to be the only feasible

solution. A stochastic optimization problem often assumes the following structure

min f(z) := E[F(z,£)], (1.9)
where the expectation is taken over a random variable £. For many stochastic problems,
the function F' and the distribution of £ are either very complex or unknown, which
makes the higher-order information become unavailable. The black-box optimization
further generalizes it into a nonparametric model where no functional form is assumed
for the objective function. A good example is the hyperparameter tuning of machine
learning algorithms, where the generalization error is used as the objective function.
Clearly, for a given set of hyperparameters, the only possible information is the cross-
validation or test error which is a noisy approximation of true generalization error. In
light of this, both stochastic and black-box optimization can be viewed as the oracle-
based optimization problem. For any query point x, depending on the informational
structure of a problem, the corresponding feedback is given by an oracle. Moreover,
the lower-order algorithm is even more powerful for solving a combination of the large-
scale and the oracle-based optimization. As an extension of optimization to a changing
environment, the online learning or online optimization also possesses a lower-order
nature. In online learning, at each decision period ¢ € {1,2,...,T'}, an online player
chooses a feasible strategy x; from a decision set X C R", and suffers a loss given by
fi(xy), where fi(-) is a loss function. The key feature of this framework is that the
player must make a decision for period ¢ without knowing the loss function f;(-). In this
challenging setting with limited information, the lower-order algorithms become more
appropriate.

Convergence or computational complexity analysis is an indispensable part of opti-
mization theory. In general, the iteration complexity is a measure of how well the algo-
rithm performs after a certain number of iterations. The way to measure the quality of
the current iterate varies from problem to problem, but it mainly includes the distance

between the iterate and the optimal solution set, the difference between the current



function value and the optimal function value, and the violation of the optimality con-
ditions. For example, if an algorithm has the iteration complexity of the order O(1/N)
in terms of the objective function value, then this means that after k iterations, the
current iterate ¥ would satisfy f(2*)— f* < % where C'is a constant. For the two fun-
damental methods: the gradient method and the proximal gradient method ,
the iteration complexities are well studied. In particular, the gradient method has been
shown an iteration complexity of O(1/N) (cf. [6]). Moreover, [86] shows that the com-
plexity can be further improved to O(1/N?) by an acceleration procedure and this is the
optimal rate that any gradient-type method can possibly achieve, and if the function is
strongly convex then the method actually converges linearly. For the proximal gradient
method, similar results hold: the O(1/N) complexity of the original method, which
can be accelerated to an O(1/N?) iteration complexity; see [3, 87, 88, 120]. For prob-
lem , extensive research of the iteration complexity of the BCD-type method has
been reported in the literature. Under different conditions, the sublinear convergence
rate O(1/N) or the linear rate can be achieved for the block minimization BCD-type
methods (cf. [79, 125, [60]). Furthermore, for the proximal gradient BCD-type method,
[90, 100, [77, 4, [60] show that the similar convergence rate can still be established.

In this Ph.D. thesis, we study the first-order and zeroth-order methods for op-
timization models around the following themes: the iteration complexity analysis of
different ADMM-type algorithms for solving various block optimization problems, and
the analysis of lower-order gradient-type algorithms for solving oracle-based black-box
optimization and online optimization.

Instead of aiming to solve the general multi-block model , the basic Alternating
Direction Method of Multipliers (abbreviated as ADMM) is originally designed to solve

the following two-block constrained convex optimization model

min  f(z) + g(y)
st. Ax+ By =D, (1.10)
reX,ye)y

where z € R% y € R™, A ¢ R"™*" B e R™"™ becR™ and X CR"™ Y C R™ are
closed convex sets; f and g are convex functions.

An intensive recent research attention for solving problem has been devoted
to the ADMM, which is known to be a manifestation of the operator splitting method

(cf. [30, B3l 146] and the references therein). Large-scale optimization problems in the



form of can be found in many application domains including compressed sensing,
imaging processing, and statistical learning. Due to the large-scale nature, it is often
impossible to inquire the second order information (such as the Hessian of the objective
function) or invoke any second order operations (such as inverting a full-scale matrix) in
the solution process. In this context, the ADMM as a first order method is an attractive
approach; see [10]. Specifically, for solving , a typical iteration of ADMM proposed

in [46] runs as follows:

a* = arg mingex £+ (2, y*, AF)

y* 1 = argmingey L, (251, y, AF) (1.11)
At — \F ,Y(Akarl 4 Byk+1 _ b),

where £ (z,y, ) is the augmented Lagrangian function for problem (1.10]) defined as:
Loy, N) = (@) + o) ~ A (Ax + By —b)+ L de+ By —b%.  (112)

The convergence of the ADMM for (1.10) is actually a consequence of the convergence
of the so-called Douglas-Rachford operator splitting method (see [45), 33]). However,
the rate of convergence for ADMM is established only very recently: [57] shows that
for problem the ADMM converges at the rate of O(1/N) where N is the number
of total iterations. From the perspective of monotone inclusion, a similar iteration
complexity is also obtained in [80] under different assumptions. Moreover, a non-ergodic
O(1/N) iteration complexity in terms of the infeasibility measure and the objective value
are found very recently in [506] [74, [26]. Furthermore, by imposing additional conditions
on the objective function or constraints, the ADMM can be shown to converge linearly;
see [48, 28, 59, 8, [73]. Moreover, as we will show later in this thesis, the ADMM
framework can be naturally extended to solve problems with more than two blocks of
variables.

Besides the multi-block structure, we can take a different stance towards the applica-
bility of the ADMM, depending on the prevailing information structure of the problem.
Observe that to implement , it is necessary that argmingcy Ev(aj,yk,)\k) and
arg minyecy /Jy(xkﬂ, y, \F) can be solved efficiently at each iteration; i.e. the proximal
mappings are assumed to be easy. While this is indeed the case for some classes of the
problems (e.g. the lasso problem), it may also fail for many other applications. This

triggers a natural question: Given the structure of the objective functions in the mini-



mization subroutines, can the multipliers’ method be adapted accordingly? In Chapter
we study some variants of the ADMM based on incorporating the two basic first-order
methods and to account for this informational structure of the objective func-
tions. One possible scenario is that it is not easy to solve the subproblems of x and
y in , in this case, we can introduce the gradient projection method (a special
form of proximal gradient method) to replace the exact minimization subproblem. In
particular, this leads to two algorithms: one is the GADM (Gradient-ADM, replacing
the subproblem of one block by gradient method) and the other is GALM (Gradient-
ALM, replacing the subproblems of both blocks by gradient method), and those two
algorithms will further allow us to deal with different informational structure of the
problem.

To take into account the informational structure, one natural way is to consider
the stochastic setting of problem , where we can go beyond the deterministic in-
formational structure of the problem. In stochastic programming (SP), the objective
function is often in the form of expectation. In this case, even requesting its full gra-
dient information is impractical. Historically, Robbins and Monro [102] introduced the
so-called stochastic approximation (SA) approach to tackle this problem. Polyak and
Juditsky [96, O7] proposed an SA method in which larger step-sizes are adopted and
the asymptotical optimal rate of convergence is achieved; cf. [34] 37, [105], 104] for more
details. Recently, there has been a renewed interest in SA, in the context of compu-
tational complexity analysis for convex optimization [85], which has focussed primarily
on bounding the number of iterations required by the SA-type algorithms to ensure the
expectation of the objective to be € away from optimality. For instance, Nemirovski
et al. [83] proposed a mirror descent SA method for the general nonsmooth convex
stochastic programming problem attaining the optimal convergence rate of O(1/v/N);
Lan and his coauthors [43] [41], [40], 42}, (68, 44] proposed various first-order methods for
SP problems under suitable convex or non-convex settings. In [93], a stochastic version
of problem is considered. In this proposal we also consider the GADM and the
GALM in the SP framework. Under the stochastic framework, the informational struc-
ture of the problem appears in a progressive way. To start with, we first assume that
a noisy gradient information of the function is available. Thus, in our GADM method
or GALM method, we can only use a noisy stochastic estimate of the gradient and
we name those methods as SGADM (stochastic-ADM) and SGALM (stochastic-ALM).

Furthermore, it is possible that even the noisy gradient information is not available. In



this case, we assume that we can only get the noisy estimation of the function value,
and this gives us an avenue where the zeroth-order method can apply. Inspired by
the work of Nesterov [89] for gradient-free minimization, we will propose a zeroth-order
(gradient-free, a.k.a. direct) smoothing method for . Specifically, we show that the
SGADM and the SGALM can be extended to the zeroth-order version by incorporating
the zeroth-order gradient estimate into the algorithms.

So far we have discussed the different variants of ADMM for solving problem
which is a special case of the problem . Is it possible to extend the ADMM frame-
work to the more general problem where we have both multi-block variables and
coupled the objective function f(x1,x2,...,2,)7 The answer is positive, and we will
discuss this thoroughly in Chapter [3| and Chapter [4l In fact, utilizing the multi-block
structure of the problem, the multi-block ADMM updates the block variables sequen-
tially. Specifically, it performs the following updates iteratively (by assuming the ab-

sence of the coupled functions f):

az’f“ = argming ex, ,Cp(ﬂfl,.’l/‘é:,'” ,:E]fn,)\k),
k41 ' : k+1 k+1 k (1.13)
Ty = argming, ex,, Lp(x) ", 21, T, AY),
Netl = \F 'y(AlxlfH + AQ.%';H_I e Akt b,
where the augmented Lagrangian function is similarly defined as:
1= 1= 1=

Although the multi-block ADMM scheme in performs very well for many
instances encountered in practice (e.g. [94] [I16]), it may fail to converge for some
instances if there are more than 2 blocks of variables, i.e., m > 3. In particular,
an example was presented in [16] to show that the ADMM may even diverge with 3
blocks of variables, when solving a linear system of equations. Thus, some additional
assumptions or modifications will have to be in place to ensure convergence of the
multi-block ADMM. In fact, by incorporating some extra correction steps or changing
the Gauss-Seidel updating rule, [27, 55 54, [52] [124] show that the convergence can still
be achieved for the multi-block ADMM. Moreover, if some part of the objective function

is strongly convex or the objective has certain regularity property, then it can be shown



that the convergence holds under various conditions; see [17, [74), 13}, [73, 70, [47, 123].
Using some other conditions including the error bound condition and taking small dual
stepsizes, or by adding some perturbations to the original problem, authors of [59, [75]
establish the rate of convergence results even without strong convexity. Not only for
the problem with linear constraint, in [19] [7T], T12] multi-block ADMM are extended to
solve convex linear/quadratic conic programming problems. In a recent work [113], the
authors propose a randomly permuted ADMM (RP-ADMM) that basically chooses a
random permutation of the block indices and performs the ADMM update according to
the order of indices in that permutation, and they show that the RP-ADMM converges
in expectation for solving non-singular square linear system of equations.

In [58], the authors propose a block successive upper bound minimization method
of multipliers (BSUMM) to solve problem . Essentially, at every iteration, the
BSUMM replaces the nonseparable part f(z) by an upper-bound function and works
on that modified function in an ADMM manner. Under some error bound conditions
and a diminishing dual stepsize assumption, the authors are able to show that the
iterates produced by the BSUMM algorithm converge to the set of primal-dual optimal
solutions. Along a similar direction, Cui et al. [23] introduces a quadratic upper-bound
function for the nonseparable function f to solve 2-block problems; they show that their
algorithm has an O(1/N) convergence rate, where ¢ is the number of total iterations.
Moreover, [18] shows the convergence of the ADMM for 2-block problems by imposing
quadratic structure on the coupled function f(x) and also the convergence of RP-ADMM
for multi-block case where all separable functions vanish (i.e. w;(z;) = 0, Vi).

In Chapter [3] we study the ADMM and its variants for (1.7)). (Some adaptations of
the ADMM are particularly relevant if there is a coupling term in the objective, as the
minimization subroutines required by the ADMM may become difficult to implement;
see more discussions on this later.) Instead of using some upper-bound approximation
(a.k.a. majorization-minimization), we work with the original objective function. In
some applications, it is difficult or impossible to implement the ADMM iteration, be-
cause the augmented Lagrangian function in may be difficult to optimize even if
the other block of variables and the Lagrangian multipliers are fixed. This motivates us
to propose the Alternating Proximal Gradient Method of Multipliers (APGMM), which
essentially iterates between proximal gradient methods of each block variables before the
multiplier is updated. If optimizing the augmented Lagrangian function for one block of

variables is easy while optimizing the other block of variables is difficult, then a hybrid



between ADMM and APGMM is a natural choice. What if the gradient proximal sub-
routines are still too difficult to be implemented? One would then opt to compute the
gradient projections. Hence, we propose the Alternating Gradient Projection Method of
Multipliers (AGPMM), which replaces the proximal gradient steps in APGMM by the
gradient projections. At this stage, all the methods mentioned above are considered
in the context of the 2-block model. In general however, they can be extended to the
multi-block model with a coupling term.

In Chapter 4 we study a more general model that includes as a special case.
Specifically, we introduce another set of variables y which has a similar mixed structure
(coupled and separate) as x in . We propose a randomized primal-dual coordinate
update algorithm by introducing randomization to the multi-block ADMM framework
(1.13). Different from the random permutation scheme in [113] [I8], a simpler variable
selection rule based on uniform distribution is used. The randomization is crucial to
the convergence of the algorithm. In fact, the randomization scheme enables us to
establish the O(1/N) convergence rate for this coupled multi-block model with mere
convexity. The way we deal with the coupled objective function is to use proximal
gradient approach, and it has two additional benefits. First, by incorporating a properly
chosen proximal term, the variables can be decoupled and the algorithm can be done
in parallel. Furthermore, the proximal gradient (linearization) scheme can be adapted
to solve stochastic optimization problems. In fact, based on the informational structure
of the coupled function f, an approximation of the gradient can be obtained. The
randomized primal-dual coordinate update can still be readily implemented, given an
unbiased approximation is available under some oracle-based models.

Besides the multi-block optimization problem, low-order algorithms are also suit-
able for solving black-box optimization and bandit online learning problem. For both
of the problems, the key feature is that no higher-order information is available other
than the function value estimation. In optimization, solution procedures using only
objective values are often referred to as direct methods. In [99], Powell (1964) con-
structed a method based on conjugate directions for quadratic minimization; in [82],
Nelder and Mead (1965) introduced the so-called simplex method for nonlinear opti-
mization, while justifications for the simplex method in low dimensions can be found
in [67, [66]. A modern account and historical notes of the direct methods can be found
in a recent book ([2I]) by Conn, Scheinberg, and Vicente. Our study however, builds

on a relatively recent approach of randomized zeroth-order approximation of the gra-
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dient, pioneered by Nesterov and Spokoiny [89]; some of the ideas in the approach can
be traced back to Polyak [98]. As a different type of optimization method, Bayesian
optimization [63] also provides a powerful tool for black-box optimization. In general,
Bayesian optimization constructs a prior probabilistic distribution over the functional
space. When the data are observed, it sequentially refines this model using Bayesian
posterior distribution. The procedure finds the next query point by maximizing an ac-
quisition function induced by the corresponding probabilistic model. For more details
and applications about Bayesian Optimization, see, e.g., [12, [108] [111]. From a different
perspective, there has been a great research interest in using the lower-order method
for online learning problem. Several sub-linear cumulative regret bounds measured by
stationary regret have been established in various papers in the literature. For example,
[131] proposed an online gradient descent algorithm which achieves an regret bound of
order O(v/T) for convex loss functions. The order of the regret can be further improved
to O(logT') if the loss functions are strongly convex (see [49]). Moreover, the bounds
are shown to be tight for convex / strongly convex loss functions respectively in [I].
In the so-called bandit online convex optimization, where the online player is only sup-
posed to know the function value f;(z;) at x¢, instead of the entire function f;(-). When
the player can only observe the function value at a single point, [35] established an
O(T3/ 4) regret bound for general convex loss functions by constructing a zeroth-order
approximation of the gradient. Assuming that the loss functions are smooth, the regret
bound can be improved to O(Tz/ 3) by incorporating a self-concordant regularizer (see
[106]). Alternatively, if multiple points can be inquired at the same time, [2] showed
that the regrets can be further improved to O(T''/2) and O(log T) for convex / strongly
convex loss functions respectively. In this dissertation, we study various zeroth-order
algorithms for the black-box optimization and online learning. In particular, we study
the optimization models under three different settings. In the first setting, the model
is basically stochastic programming with the following side restriction: similar to the
online bandit learning framework, only one random sample can be drawn at any given
decision point. In the second setting, we present a general nonconvex optimization
framework (weakly pseudo convex), and develop a specialized zeroth-order normalized
gradient method. In the third setting, the objective value can be estimated arbitrarily
close to the true value, at a cost that is increasing with regard to the inverse of the pre-
cision desired. Furthermore, we extend the analysis to a general constrained model with

a composite objective function, consisting of the original objective and a non-smooth

11



regularizer. The above-mentioned settings are considered respectively for that general
case as well, extending the sample complexity analysis under a proximal gradient dom-
inance assumption. In Chapter [6] we further extend the similar idea to the stochastic
bandit online learning problem, where the nonsmoothness of the loss function and the

one random sample scheme are discussed.

1.2 Overview and Organization

In Chapter [2| we present a suite of variants of the ADMM, including GADM, GALM,
SGADM, SGALM, and the zeroth-order version of SGADM and SGALM. Clearly, the
new variants allow the method to be applicable on a much broader class of problems
where only noisy estimations of the gradient or the function values are accessible, yet the
flexibility is achieved without sacrificing the computational complexity bounds. In fact,
we will show that the rate of convergence of GADM and SGADM would be O(1/N)
and O(1/v/N) respectively, and show SGALM admits a similar iteration complexity
bound. Moreover, we will show that the zeroth-order SGADM and SGALM also have
the O(1/v/N) complexity.

In Chapter 3| we first study the 2-block case of the optimization model , where
we analyze the proposed first-order algorithms to solve this model. First, the ADMM is
extended, assuming that it is easy to optimize the augmented Lagrangian function with
one block of variables at each time while fixing the other block. We prove that O(1/N)
iteration complexity bound holds under suitable conditions. If the subroutines of the
ADMM cannot be implemented, then our APGMM, AGPMM, and the hybrids of them
may be still applicable. Under suitable conditions, the O(1/N) iteration complexity
bound is shown to hold for all the newly proposed algorithms. Finally, we extend the
analysis for the ADMM to the general multi-block case.

In Chapter [ we propose a randomized primal-dual proximal block coordinate up-
dating framework for a general multi-block convex optimization model with coupled
objective function and linear constraints. Assuming mere convexity, we establish its
O(1/N) convergence rate in terms of the objective value and feasibility measure. Our
analysis recovers and/or strengthens the convergence properties of several existing algo-
rithms. In particular, Our result shows that a sublinear rate of convergence in expecta-
tion can be guaranteed for multi-block ADMM, without assuming any strong convexity.

The new approach is also extended to solve problems where only a stochastic approxi-
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mation of the (sub-)gradient of the objective is available, and we establish an O(1/v/N)
convergence rate of the extended approach for solving stochastic programming.

In Chapter [5, we first study an unconstrained stochastic optimization model where
the objective can be allowed a single-sample at a point. The convergence analysis
also extends to the star-convex functions. Moreover, we consider a class of nonconvex
optimization model by introducing the so-called weak pseudo-convexity. For this model,
we develop a zeroth-order normalized gradient descent method. For the aforementioned
two models, we show the sublinear convergence rate of our zeroth-order methods. In
addition, we study unconstrained optimization where only the objective function can
be estimated, and the efforts required to estimate the function value depends on the
precision. Finally, we extend our investigations to the constrained optimization with
a regularization function. Linear convergence rate is derived for the latter two models
under strong convexity and gradient dominance respectively.

In Chapter [6] we present the zeroth-order methods for solving online learning prob-
lem. Specifically, we study the online convex optimization with stochastic loss functions.
The goal is to design some effective algorithms such that the total regret will be bounded
above nontrivially by the time horizon T'. In fact, we propose a stochastic gradient de-
scent method under this setting. We prove the O(v/T) regret bound for both smooth
and non-smooth loss functions and the O(T%) regret bound for non-smooth stochastic

loss with one random sample restriction.
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Chapter 2

Information-Adaptive Variants of
the ADMM

2.1 Introduction

In this chapter, we consider the most basic ADMM model:

min  f(z) + g(y)
st. Ax+ By =1, (2.1)
reX,yey

where x € R™, y € R, A € R™*" B € R™"™ b e R™ and X C R"™, )Y C R™
are closed convex sets; f is a smooth convex function, and ¢ is a convex function and

possibly nonsmooth. We further assume that the gradient of f is Lipschitz continuous:
IVf(z) = VIl < Lllz—yll, Yo,y € X, (2.2)

where L is a Lipschitz constant.

Recall, the augmented Lagrangian function for problem is defined as:
i
Ly(@y, ) = f(@) +9(y) = A (Av+ By =) + S | Az + By —0|*.  (23)

To bring out the hierarchy regarding the available information of the functions in

question, let us first introduce the following definition.
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Definition 1 We call a convex function f(x) to be easy to minimize with respect to x
(f is hence said to be MinE as an abbreviation) if there exits some H > 0 such that
the prozimal mapping arg min, f(z) + ||z — z||3; can be computed easily for any given

zZ.

Some remarks are in order here. If £, (z,y,\) is MinE with respect to both z and y
with H = 0, then the original ADMM is readily applicable. For the cases where
L(x,y,A) is MinE with respect to both x and y but H is nonzero, the convergence of
different inexact ADMM-type methods have been studied in [51} 92} 53]. Moreover, [110}
15, 59] show that by incorporating various modifications of ADMM with the proximal
method an O(1/N) convergence rate can still be achieved. In the case that £, (z,y,\)
is MinE in = but not in y, Lin, Ma and Zhang [72] recently proposed an extra-gradient
ADMM (EGADM) and showed an O(1/N) iteration bound. In this chapter, we consider
a simpler procedure of applying gradient only once in each iteration (to be named

GADM):
yF ! = argmingey £, (2, y, AF) + Sy — v¥|1%
2 = 2k — VL (2F, R AR x (2.4)

ML= \F — 5 (AzF ! 4 ByFtt —b),

where [z]x denotes the projection of z onto X. In fact, a variant of above procedure was
considered in [72], where z is updated by taking the gradient of Lagrangian function
rather than augmented Lagrangian function, and it was posed as an unsolved problem to
determine the iteration complexity bound of this modified algorithm. In this chapter we
prove that the GADM also has an iteration bound of O(1/N). Moreover, our analysis
does not require the optimal set to be bounded nor the coercivity of the objective
function, which is key to obtaining iteration bounds in many previous works; see [32]
28, [72, [84]. In addition to the assumptions made at the beginning of this section,

throughout the chapter we only assume:
Assumption 2.1.1 The optimal solution set X* x Y* for problem ([2.1)) is non-empty.

Under this assumption, naturally we have dist(z, X*) s := mingex~ || —u||pr < 0o, and
dist(y, YV*)ar := min,ey- ||y — v||ar < o0, for any given z,y and matrix M > 0.

In this chapter we also consider in the SP framework. We assume that a noisy
gradient information of VL, via the so-called stochastic first order oracle (SFO) is

available. Specifically, for a given z, instead of computing V f(z) we actually only get
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a stochastic gradient G(z,€) from the SFO, where ¢ is a random variable following a

certain distribution. Formally we introduce:

Definition 2 We call a function f(x) to be easy for gradient estimation — denoted as
GraE — if there is an SFO for f, which returns a stochastic gradient estimation G(x,§)
for Vf at x, satisfying

E[G(z,8)] = V[(2), (2.5)

and

E[|G(x,€) = Vf(2)]*] < o®. (2.6)

If the exact gradient information is available then the SFQO is deterministic. In gen-
eral, the SFQO is often stochastic and inaccurate. For instance, the stochastic gradient
that is used in many machine learning algorithms can be viewed as a special case of
SFO where the distribution is uniform on the dataset. As for problem , quite a few
ADMM variants in stochastic and online optimization setting have been proposed re-
cently; see [93, 121], 114], 115] 129] 130]. The basic idea in those works is to linearize the
stochastic function and use the noisy gradient in the subproblem. In [93] 1211 114, [129],
the O(1/v/N) and O(In N/N) iteration complexities have been shown for general convex
function and strongly convex function respectively. Moreover, [130] shows an O(1/N)
iteration complexity can be achieved if an incremental approximation of the full gradient
is used. By assuming both functions are strongly convex and smooth, a linear conver-
gence is shown in [115]. In this chapter, when £, (z,y, A) is MinE with respect to y, and
f(x) in is GraE, we will then propose a stochastic gradient ADMM (SGADM),
which alternates through one exact minimization step ADMM , one stochastic
approximation iteration, and an update on the dual variables (multipliers). It is clear
that the SGADM in the deterministic case is exactly GADM , and we will show
that the rate of convergence of GADM and SGADM would be O(1/N) and O(1/v/'N)
respectively. n particular, if f(x) is strongly convex, the complexity of SGADM can be
improved to O(In N/N). Moreover, if f(x) and g(y) in are both GraE, then we
propose a stochastic gradient augmented Lagrangian method (SGALM), and show that
it admits a similar iteration complexity bound.

Furthermore, we are also interested in another class of stochastic problems, where
even the noisy gradient information is not available; instead we assume that we can
only get a noisy estimation of f via the so-called stochastic zeroth-order oracle (SZ0).

Specifically, for any input z, by calling SZO once it returns a quantity F(x,&), which
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is a noisy approximation of the true function value f(z). More specifically,

Definition 3 We call a function f(z) to be easy for function evaluation — denoted as
ValE - if there is an SZO for f, which returns a stochastic estimation for f at x if
SZQ0O is called, satisfying

E[VF(z, )] = V() (2.8)
and
E[|VF(z,€) = Vf(@)|°] <o (2.9)

Inspired by the work of Nesterov [89] for gradient-free minimization, in this chapter we
will propose a zeroth-order (gradient-free, a.k.a. direct) smoothing method for .
Instead of using the Gaussian smoothing scheme as in [89], which has an unbounded
support set, we apply another smoothing scheme based on the SZO of f. To be specific,
when L (z,y, A) is MinE with respect to y, and f(z) in is ValE, we will propose a
zeroth-order gradient augmented Lagrangian method (zeroth-order GADM) and analyze
its complexity. To summarize, according to the available informational structure of the
objective functions, in this chapter we present suitable variants of the ADMM to account
for the available information. In a nutshell, the details are in the following Table

Block =
MinE GraE ValE
MinE ADMM SGADM zeroth-order GADM
Block y | GraE SGADM SGALM zeroth-order SGADM
ValE | zeroth-order GADM | zeroth-order SGADM zeroth-order GALM

Table 2.1: A summary of informational-hierarchic alternating direction of multiplier
methods.

The rest of the chapter is organized as follows. In Section we propose the
stochastic gradient ADMM (SGADM) algorithm, and analyze its complexity. In Sec-
tion we present our stochastic gradient augmented Lagrangian method (SGALM)
which uses gradient projection in both block variables, and analyze its convergence rate.
In Section [2.4] we propose a zeroth-order GADM through a new smoothing scheme, and

present a complexity result. Finally, we present some numerical experiment results in

Section 2.5
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2.2 The Stochastic Gradient Alternating Direction of Mul-

tipliers

In this section, we assume L (z,y,A) to be MinE with respect to y, and f(x) to be
GraE. That is, for a given x, whenever we need V f(x), we can actually get a stochastic
gradient G(z, &) from the SFO, where £ is a random variable following a certain distri-
bution. Moreover, G(z,§) satisfies and . By the definition of the augmented
Lagrangian L (x,y,A), an SFO for L,(z,y,\) can be constructed accordingly:

Definition 4 Denote the SFO of VoL (x,y,A) as Gr(z,y, N\, &), which is defined as:
Gr(z,y, A\, &) == G(x,6) — ATA+~AT (Ax + By — b). (2.10)
One example where such application arises is stochastic lasso problem:
min %Eg(agw —be)? + pllzly,

where the sensing vector as as well as the sensing result b¢ are given stochastically. The

problem can be formulated as

min  3E¢(af z — be)? + pllyl
st. x—y=0.

Assuming each time one sample is observed, we have G(x,§) = a¢ (agx — be).
Our first algorithm to be introduced, SGADM, works as follows:

The Stochastic Gradient ADMM (SGADM)
Initialize 29 € X, y° € Y and \°
for k=0,1,---, do
y* ! = argmingey Lo (2*, y, M%) + lly — y* (135
LRl — [xk _ akGL(:Ek,yk+1,)\k,§k+1)]X;
At — \F ’Y(Akarl 4 Byk+1 _ b).

end for

In the above notation, [z]x denotes the projection of z onto X', H is a pre-specified
positive semidefinite matrix, oy is the stepsize for the k-th iteration. In fact, matrix

H is often used to cancel out the quadratic cross terms in the augmented Lagrangian,
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in order for the resulting subproblem to be separable, or even to admit a closed-form
solution. In our proposed algorithms, the H matrix can be set to 0 which recovers the
original ADMM subproblem. It is easy to see that the deterministic version of SGADM
is exactly GADM . The above SGADM is similar to the stochastic ADMM proposed
in [93], where an O(1/v/N) iteration complexity is shown. The difference lies in the fact
that the SGADM linearizes the whole augmented Lagrangian and performs a gradient
projection, while [93] linearizes the objective function in the augmented Lagrangian and
minimizes the resulting function. We note that the OPG-ADMM in [114] also linearizes
the whole augmented Lagrangian, but the order of updating blocks is different. In
OPG-ADMM, it first updates the block with a gradient-type step and then updates
the other block by exact minimization, while in our algorithm the order is reversed. In
the following subsection, based on the measure of the constraint violation and the gap
of objective value, we will show that the complexity of SGADM is O(1/v/N) and the
complexity of GADM is O(1/N). Furthermore, if the function f is strongly convex, it
can be shown that the complexity of SGADM is indeed O(In N/N).

2.2.1 Convergence Rate Analysis of the SGADM

In this subsection, we shall analyze the convergence rate of SGADM algorithm. First,
some notations and preliminaries are introduced to facilitate the discussion.
Preliminaries and Notations

Denote

Y —BT)
w= ( Y ) L w=| 2 |, Fuw) = —ATA , (2.11)
A Ax+ By —b

H 0 0 I, 0 0 H 0 0
Qr=1| 0 a—lklnm 0 , P= 0 I., 0 |, My,=| 0 a—lklnm 0
0 -A %Im 0 —A I, 0 0 %Im

(2.12)
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Clearly, Q = MyP. In addition to the sequence {w*} generated by the SGADM, we

introduce an auxiliary sequence:

g ykJrl
ot = @ | = ahtl : (2.13)
S\k Ak _ ’y(A.’L‘k + BykJrl o b)

Based on (2.13) and (2.12), the relationship between the new sequence {w*} and the
original {w*} is
whtl = wh — P(wk — a"). (2.14)

The above succinct notations and analysis framework were originally introduced and
used by He and Yuan in [57]. In this chapter, we adopt the same framework for analysis
following that of [57]; in other words, our convergence result is also based on the auxiliary
sequence w*. Moreover, we denote 0 = G(2F~1, &%) — Vf(2*~1), which is the error of
the noisy gradient generated by SFO. The following lemma is straightforward.

N—-1
Lemma 2.2.1 For anyw®, w',--- ,w™¥ =", let F be defined in (2.11]) and w = % S awk
k=0

then it holds
N-1

1
(0 —w) F(w) = NZw—wTF w”).
=0

0 0 -B y 0

Proof. Since F(w)=| 0 0 -A x | =1 0 |, for any w; and wy we have
A B 0 A b

(w1 — ’U)Q)T(F(’LUl) — F(’U)Q)) =0. (2.15)
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Therefore,

N
k=0
1 N—-1
L — N (b —w) T F(wh). (2.16)
N k=0
]

The Complexity of SGADM without Strong Convexity

We now present the rate of convergence result for SGADM, which is O(1/v/N). Denote
Er = (£&1,&2,...,&). In fact, the convergence rate is in the sense of the expectation

taken over Z.

Theorem 2.2.2 Suppose that L (z,y, ) is MinE with respect to y, and f(x) is GraE.
Given a fized iteration number N, letting w* be the sequence generated by the SGADM,
and choosing ny = VN, and C > 0 be a constant satisfying CI,, — vATA — LI, >0,

1 _ 1
wtC = Vnro Let

and oy, =

i
L

Wy, 1= ", (2.17)

0

where W* is defined in [2.13). Then the following holds

S|
i}

Ezy [h(an) — h(u®) + p||[AZN + Byn — b||]

1 1
(62 4+ D?) + — <D§,H+CD§+’Y (p+ HAOH)2>, (2.18)

<
- 2N

1
2V N
where D, = dist(xg, X*), Dy g = dist(yo, Y*)u and p is any given positive number.

As in [57], we first present a bound regarding the sequence {w*} in ([2.13).

Proposition 2.2.3 Let {@"} be defined by ([2.13), and the matrices Qy, My, and P be
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given in (2.12)). For any w € 2, we have

h(u) — h(@®) + (w — %) T F(a")

_ _ Sp+1ll* e+ L .
> (’LU _ wk)TQk(wk _ wk) _ (QS‘ _ wk)—rdk—H _ H 2;]6” _ 5 ka _ kaQ’

(2.19)

where N > 0 is any constant. Moreover, for any w € Q, the term (w—w*)T Qg (w* — ")
on the RHS of (2.19) can be further bounded below as follows
w = ") Qu(w — ")

(
1 - 1 -
5 (I = 0P = o= b 13,) + 5 =97 (20 —9a74) (- 3¥),

>

(2.20)

The proof of Proposition [2:2.3] involves several steps. In order not to distract the flow
of presentation, we delegate its proof to the appendix.
Proof of Theorem [2.2.2]

Proof. Recall that CI,,, —yAT A — LI,, = 0 and oy = %% By (2.19) and ([2.20)),

h(u) — h(@®) + (w — @) T F(a")

1 1 . 1 -
> 5 (e = w** Ry, = o — w3y, ) + 50 =3 (=L, 94T A) (@F — 3)
2 2 Qg
k12 L
—(x — $k)T5k+1 _ I ];;;H . ﬁk;' ||SUk _ jk||2
1
= 5 (o ="y, = llo = w3, )
1 . 1 -
#3 =) (=94 A (4 DL ) (0 - 3
R L1
A — Spq — Al
(z —2") Ok M
1 Opy1]?
> 5 (o= R — o= wRy) - (@ = ) T - 1010 (221)
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Using the definition of My, from ([2.21)) we have

h(@®) — h(u) + (@ — w) " F (")

1 1
< g (= oM =y = 91 ) + 5 (I8 = A7 = = AR 2)

|z — 2| — |z — a2 kT 19112
— ) . 2.22
+ 0, + (@ = &%) Op1 + e (2:22)
Summing up the inequalities ([2.22)) for k =0,1,..., N — 1 we have
h(an) = h(u) + (05 —w) " F(oy)
| Nl N-1
~k =k T k
< 5@ )—h(u)+NZ(w —w) F(a%)
k=0 k=0
N-1 N-1
< 1 [l — 2] = [Ja — 212 + 1 [(x _ xk)T(;IH_I + 16541
2N Pt ay N prd 2n,
1 o2 , 1 02
i _ X=X 2.23
Fa (= o+ 2IA-20P2) (223)

where the first inequality is due to the convexity of A and Lemma [2.2.1

Note the above inequality is true for all x € X', y € ), and A € R™, hence it is also
true for any optimal solution z*, y*, and B, = {\ : ||A]| < p}. As a result, by letting
w* = (z*,y*,\) T, it follows that
sup |h(ay) — h(u*) + (@y — w*)TF(wN)}
AEB,

= sup h(in) — h(u*) + @y —2*) T (=ATAN) + (v —y*) (=BT Ay)

+On =N (AZy + By — b)}

— sup [h(aN) ~ h(u*) + AL (Az* + Byt —b) — AT (AZx + By — b)

AeB,
= sup [h(aN) ~ h(u*) = N (AZy + Bijy — b)
AEB,
— R(ay) — h(u*) + pl|AZy + By — 0], (2.24)
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where w* = (z*,y*,\)". Combining (2.23)) and ( -, we have

h(un) — h(u*) + p||AZN + Byn — b|
N-1

* * N-1
L % — 2|2 — ||l —$k+1||2 1 Z [ k+1 4 105112
- 2N — g N — 2n
1
+— Iy —y +*Sup A= N0? 2.25
— (n I+ 3 sup 1A= A7) (2.25)
Moreover, since oy, = ’Wk% = ﬁ, it follows that
Nz‘l o — ah||? — [l — 2t 12
k=0 Xk
N-1
= (VN +O)(||l* = 2*|]* = [la* — ")
k=0
< (VN +C)|z* —2°)2. (2.26)

Now, by plugging ([2.26) into (2.25) and choosing z*,y* such that D, = ||z* — 2| and
Dy = |ly* = ¢°|lm, it yields

h(an) = h(u") + pl| AZn + Byn — 0|

1 H5k+1IIT 02
< — A + + T —x
- Z[ R e
1
+— | ly* = ° % + C||z* — 2% + = sup [|X — \O|?
o <|| Ly + Clla” =2+ sup A X
N
1 H&mll? D
< = z* — ak + +
< Nz[ e

1 2
+55 <D2H+CD2 S — (p+[IA°]) ) (2.27)

Recall that f(z) is GraE, so (2.5) and (2.6) hold. Consequently, E[0x+1] = 0. In
addition, xj is independent of &xy1. Hence,

Ez,,, [(z* —2") T 0k4a] = 0. (2.28)
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Now, taking expectation over (2.27)), and applying (2.6]), we have

Ezy [h(un) — h(u®) + pl|AZx + Byn — bll]
N

T 164112
< Ez N ((z* —2%) Opq1 + 9 )
=0 Nk
Dg 1 2 2 1 on\2
— (D CD - A
+3 ﬁN+2N< yit +CDz + = (p+ A7)
1 N—1 b2 N-1
28 E- *_ T Z E il
< N =N —~ (ZE x ) k+1 + IN a T
D?g 1 2 9 1 01\ 2
— (D CD - A
+3 ﬁN+2N< yit +CDz+ (o4 IA7)
2 N-1 2
@A) O 1 D3 1 ( 2 9 1 0 2)
D=y =+ + o= (D2 +CD2+ = (p+ |\
= 92 ~ \/N 2\/N IN y,H x ~ (p H H)
2 2
o D 1 1 2
= —— 4+ =2 4+ (D2, ,+CD? +=(p+ |\ > 2.29
This completes the proof. ]

Before concluding this section, some comments are in order here. Denoting 4y =

E=, [an], by Jensen’s inequality it follows immediately that

h(in) = h(u®) + pl|AZx + Bin — b]|

1 1 2
2 2 2 2 0
(o +Dz)+—2 (Dy’H+CDz+7(p+H)\ ) >

1
2V N
That is to say, in the ergodic sense, in expectation the SGADM has a convergence
rate of O(1/v/N) when f(z) is GraE. As we mentioned before, it is easy to slightly
modify the proof for (2.18) to improve the complexity of GADM (i.e. the deterministic
SGADM) to O(1/N). In fact, when the exact gradient of f is available, ¢ in (2.6|) and

0, will be 0, and we can let 1, = 1 and constant stepsize aj = %ﬂ As a result,

Nl =P -

yo Ul < (C+ 1)fla* — 202
k=0 Xk
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The iteration bound then improves to:

>

(i) = ")+ oAby + B 0] < g (D +(C+0D2+ 2 (o 0)?).
(2.30)
and this establishes the O(1/N) iteration complexity for the SGADM in the determin-
istic case. Moreover, in that case the stepsize «; does not need to involve N at all.
Assuming the existence of the dual optimal solution \*, we can further assess the
feasibility violation of the possibly infeasible solution @y as in . Similar to Lemma

6 in [68] we introduce the following bound.

Lemma 2.2.4 Assume that p > 0, and T € X is an approximate solution for the
problem f* := inf{f(z) : Az —b = 0,x € X} where f is convex, and X is a closed
convex set, satisfying

f@) = 1"+ pllAz — b]| < 6. (2.31)

Suppose that an optimal Lagrange multiplier associated with the problem inf{f(x) :
Az —b=0,z € X} exists. Denote it to be y*, satisfying ||y*|| < p. Then, we have

JAE - < —2
p— |y

Proof. Define v(u) := inf{f(x) : Az —b = u,x € X}, which is convex. Let y* be such
that —y* € 0v(0). Thus, we have

and f(&) — f* <6

v(u) —v(0) > (—y*,u) VYueR™ (2.32)
Let u := Az — b. Since v(u) < f(Z) and v(0) = f*, we have
g Ml + pllell < (7 w) + pllull < v(u) —v(0) + pllull < £F) — £+ pllul <.
Thus, ||Az — b|| = ||ul| < m, and f(z) — f* <. O

By (2.18) or , we know that the SGADM and the GADM achieve h(tuy) —
h(u*) + p||Az N + By —b|| < € in O(1/€%) and O(1/€) number of iterations respectively
for any fixed p > 0. Lemma further suggests that by choosing p > || A\*|| we have
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in fact established the error estimations
h(un) — h(u*) < O(e) and ||Azy + Byny — b]| < O(e)

with the same iteration complexity. The same logic applies to all the subsequent con-

vergence rate results.

2.2.2 The Complexity of SGADM under Strong Convexity

Under the assumption that f is strongly convex, the rate of convergence for SGADM
can be improved to O(In N/N). As before, the convergence rate is in the sense of the

expectation taken over =. Let’s first introduce the notion of strong convexity.

Definition 5 A function f(x) is k-strongly convez, if it satisfies the following

F) = f@) + (s.y =) + Sl —yl* Vay (2:33)

where s € f(x) and Of (x) is the subdifferential of f at x .
The main convengence rate result is presented as follows.

Theorem 2.2.5 Suppose that L(x,y,\) is MinE with respect to y, f(x) is GraE
and k-strongly convex. Let w® be the sequence generated by the SGADM, and choose
m = (k+ Dk, and C > 0 be a constant satisfying CI,,, — yATA — LI, > 0, and

S D
Ok = 5o = GEhero- Let

1 L
Up 1= — , 2.34
w - g W (2.34)
where W* is defined in [2.13). Then the following holds

Ezy [h(un) — h(u*) + p||AZn + Byn — 0]

o’ nN+1) 1 1 )
— v Ton \Dom T CDI+ - A0 2.35
= 2kN +2N< y,H T r+7(P+H ™), (2.35)

where D, = dist(xo, X*), Dy g = dist(yo, V*)u and p is any given positive number.

Proof. Similar as in the proof of Proposition using the k-strong convexity of f,
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we conclude that

h(u) — h(@®) + (w — &%) T F(a")
> (w— ") Qpw® — ") — (x —2¥) oy

[0ksall® e+ L, 5 g2 B k2

(2.36)

where and 7, > 0 is any constant and matrices Qk, My, and P are given in (2.12)).
Similar to (2.21)), by (2.36)) and (2.20) we have,

h(u) — h(i¥) + (w — &) T F(@)
1 k+12 k2 E\T k1] k2
> 5 (= w1y = o = Ml ) = o = )0 = 500+ Gl — ot

(2.37)

Following a similar line of arguments as in Theorem we derive that

han) = h(u®) + pl|AZy + Byn — b]|
|

N-1
1 % — a¥ | — [la* — 2| ! 2>
< —K||lz* — =z
) ( - o —a*|
N—-1
1 T H5k+1”2] 1 « o2, 1 012
+—= ' —x) g1+ ——— | == v —vy + —sup [|A—A .
VT @ =g+ 58| (1 =8+ g - )
(2.38)
Since aj = nk}kC = (kH%HJFC, it follows that
N-1 x k|2 ||k o k+12
3 (Ilw 2k |2 — ||la* — 2| ffllx*x’“H2>
k=0 Xk
N-1
-y ((/m Ol — 2|2 = ((k+ 1)k + C)|z* — xk+1||2>
k=0
< Oz — 2% 2 (2.39)

Plugging (2.39) into (2.25]) and choosing z*,y* such that D, = ||z* — 2°|| and D, g =
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ly* — 40| a, it yields

3‘

(an) = h(u®) + pl|AZy + Byn — bl|

< 121 @ — M5y 4 M)
= N —~ k+1 277k

1
ly* = 4° Il + Clla™ — 2| + = sup A= A
2N< = ¥

N-1

Z ¥ — ¥ k+1+M + L D2 +CD2+ 1(p+H)\OH)2 .
= 21, 2N g

(2.40)

IN
Z\H

Recall that f(z) is GraE, so (2.5) and (2.6)) hold. Consequently, E[0;+1] = 0. In
addition, xj, is independent of &;11. Hence,

E:k+1 [( - xk)TékJrl] = 0. (2'41)

Now, taking expectation over ([2.40)), and applying (2.6|), we have
Ezy [h(un) — h(u*) + pl|AZy + Byn — b]

15 84112
- x  _k\T +1
N[N (" =) T + H50 >]

IN
m
[1]

1 2
+5% <D2H+CD2 S —(p+[IA°]) >

(2.6) 1 p * ENT o’ p 1
< yEEw Lzo(m — %) Ok toN g "
+ L (DZH e+ (o4 V) >
2N ’ ¥

5 N-1

e4a) 9 1 1 D2 D2 1 NUNE
= 2 Z(k—f—l) +2N< y +C z"",y(p'i‘” ”)

k=
o?(InN+1) 1
2k N 2N

IN
+
|

1
(D;H%—CDi + (p+ ||>\0||)2>. (2.42)

This completes the proof. ]
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2.3 The Stochastic Gradient Augmented Lagrangian
Method

SGADM uses gradient projection for one block of variables and performs exact mini-
mization for the other. However, there are cases where no exact minimization is possible
at all for either of the block variables. For instance, the problem of estimating sparse
additive models considered in [122] aims to solve the following stochastic minimization
problem:

d d
min dE[Y_Zhj(Xj)]2+)‘Z E[h?(Xj)]
pt j=1

h]v]:]-? )

When hjs are all linear, we can introduce a linear constraint and get the following

equivalent form:

min p,, jo1...a E[Y — 22 + A0, \/E[R2(X;)]

s.t. Z;’lzl hJ(Xj) = Z.

Since both blocks of variables are involved in the expectation, the exact minimization for
z or h;s is impossible. Therefore, it is natural to relax the exact minimization procedure
of the other block variables to be replaced by gradient projection too. In this section,
we assume both f(z) and g(y) in are GraE; that is, we can only get stochastic
gradients S¢(z,€) and Sy(y, () from the SFO for V f(x) and Vg(y) respectively, where

¢ and ( are certain random variables. Recall the assumptions on GrakE:

E[Sf(z, )] = Vf(x), E[Sy(y; O] = Va(y), (2.43)

and
E[llSf(x, &) = VF(@)[*) < of, E[[ISg(y,¢) = Vg(y)lI’] < 3. (2.44)

We now propose a stochastic gradient augmented Lagrangian method (SGALM). Given
SFO for f and g, the SFO for V,L,(z,y,\) and V,L(x,y,\) can be constructed as:

ST(@,y, 1, €)== Sp(x,6) = ATA+yAT (Ax + By — b), (2.45)
S9 (2,9, A, Q) == Sg(y,¢) = BTA+ BT (Az + By —b). (2.46)

Our next algorithm, SGALM, works as follows:
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The Stochastic Gradient Augmented Lagrangian Method (SGALM)
Initialize 29 € X,9% € Y and \°
for k=0,1,---, do

Y = [y* = BRST (2, g N, D)y

hH = [oh — ap ST (aF, g AR )

)\k+1 — )\k o 7(A:L’k+1 4 BykJrl o b).

end for

Denote
0,1 = Sp(ak, e — Vf(aF), 67, == Sy, ) — Va(yF).

Notice that in this section, the differentiability of function g(y) is implicitly assumed.
Moreover, throughout this section, we assume that the gradient Vg is also Lipschitz

continuous. For notational simplicity, we assume L is its Lipschitz constant too.

2.3.1 The Complexity of SGALM without Strong Convexity

Now, we are able to analyze the convergence rate of SGALM. Denote

H;, 0 0 H; 0 0
Qe=| 0 X5, 0o |, My=| 0 LI, o0 (2.47)
1 1
-4 1, 0 0 ir,

where Hy = ilny — vBTB. The identity Qi = MyP still holds where P is given
according to (2.12)).

Similar to Proposition we have the following bounds regarding the sequence
{@*} defined in (2.13)), the proof of which is also delegated to the appendix.

Proposition 2.3.1 Suppose that {W"*} is given as in [2.13), and the matrices Qp and
M;, are given as in ([2.47). For any w € Q, we have

h(u) — h(@®) + (w — @) T F (")

> (w— @) Quwk —a*) — (- a*) Tl — (y— "),

R e ] )
o Sl (CAR A A VAR ) R CED

A~

where my, > 0 is any prescribed sequence. Moreover, the term (w — %) T Qp(w* — %) on
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the RHS can be further bounded as follows

w — %) T M P(wk — ")

—~

1 k+1y2 k12 1 k 1 T k ~k

> 5 (o =y, — o = b, ) + 5t =T L, —yATA) (@F - )
1 . 1 -

+§(y -’ (Bk]ny—’YBTB> W =), Yweq, (2.49)

where by abusing the notation a bit we denote ||z|?% := 2" Az with A being a symmetric

matriz but not necessarily positive semidefinite.

Now, we are in a position to present our main convergence rate result for the SGALM
algorithm. Let us recycle the notation and denote = = (&1, &, ..., &k, C1,C2, - - ., Ck); the

convergence rate will be in the expectation over Z.

Theorem 2.3.2 Suppose both f(z) and g(y) in (2.3) are GraE. Given a fized iteration
number N, letting w* be the sequence generated by the SGALM, ni, = VN, and C is a

constant satisfying

CI,, —vATA—LI,, = 0 and CI,, —vB'B — LI, = 0,

and By, = ap, = mg% = \/N1+C' For any integer n > 0, let
", (2.50)

where @* is defined in ([2.13). Then

Ezy [h(un) — h(u®) + PHA@N + Byn — b||]
0?4032 D2 D

= 2V N +2\F 2\F

where D, = dist(xg, X*), Dy, = dist(yo, V*) and p is any fizved positive parameter.

1
<0D2 CD;—F’Y(p—l—H)\O”)Q), (2.51)
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Proof. Similar to (2.21)), by (2.48) and (2.49) we have

h(u) — h(@®) + (w — &%) T F(a*)

1 k412 k
(Il = w112, — o - w¥)2, )

v

2
H5£+1H2 + 11674112
21 '

Tdf

i1~ W=y )T(Sg

—(x—a: ) k+1

Following a similar line of arguments as in Theorem we derive that

h(an) = h(u®) + pl|AZy + By — ||

N-1 N-1
1 lo* — a¥|? — [la* — 221 £ k2 oy
< > - o o (= ¥l = v = o+,
k=0 k=0
N-1 2 9 |2
1 " T of « T H5k+1H + H(5k+1H
N 2 [(x —x") Oy (Y - y") 01+ o
1
2 ( sup A — )\0||2> (2.52)

Compared to (2.25), the term Z (ly* — kaqu — |ly* — yk“H%{k) is new. Since

’Bk = nk}i-c - \/N—&-C” we have HB = CI - 'YBTB = 0. r_[‘hU_S7

N-1

> (A e T

O

—1 N-1
- Zf (ly = o*1P =lly = 1) + 2 (I = " W, — v — "1,
k=0
< \FHy =y 1P+ lly" =",
< (CH+VN)lly* —y°II% (2.53)

k+1H2

N-1 * k *
Moreover, according to (2.26), > o P —|le —a is upper bounded by (C +
k=0

€93

VN)|lz* — 2°||2. Consequently, by choosing z*,y* such that D, = |z* — 2°|| and
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Dy = |ly* — 4°||, we can further upper bound (2.52) as follows:

>

(un) — h(u®) + pl|AZN + Byn — 0|

N
N-1 o2 g 2
1 . 651 117+ Nl65 4l
< I [(33 —x )T5l{+1 + (" - )T‘SZH - M -
k=0
D2 Dy 1 1 2
+—= Y (CD2+CD2 p+ ||\ > 2.54
v A o+ 1) (2:54)

Recall that 87, = S(a*, €+1) = Vf(ah), 80, = Sy(u*,C*1) — Vg(y*) and (223)
holds. Since xy, is independent of &1 and yy is independent of (i1, we have

E:k+1 [( : )T(S]J;_l} =0, E:k+1 [( i )T5£+1] =0. (2'55)
Now, taking the expectation over (2.54)), and applying ([2.44]), one has

)+ pllAZN + Byn — bll]

1 . 164111 + 167111
[N ( R A i
k=0
2
y

20y

Z‘

1
<0D2 +CD? + . ~ (o + ||)\°||)2>

ToUN T 2UN
2 2 2 2
o1 + 03 Dy Dy ( 2 9 1 0 2)
+ CD2+CD%+ = (p+ A . 2.56
ovw To/m T T 5 o+ IV (2.56)
0

Therefore, the iteration complexity for the SGALM is the same as that of the
SGADM: both are O(1/v/N). Similar as before, in view of it is easy to see
that the complexity of SGALM for the deterministic setting would be O(1/N), since in
that case o1 and o9 in are 0, and we can let ny = 1 in Theorem (thus the
stepsize ay and S are independent of N), leading to

>

- * P ~ 1 1 2
(i) = h(u") + pll Azx + By —bl| < 53 ((C T Dz D)+~ (p+ 1IN0
(2.57)
which further leads to an O(1/N) iteration complexity bound for the SGALM in the

deterministic case.
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2.3.2 The Complexity of SGALM under Strong Convexity

In this subsection, we show that strong convexity also leads to a lower complexity for
SGALM as it does for SGADM. In fact, the iteration complexity becomes O(ln N/N)
when both f and g are strongly convex. The main result is shown in the following

theorem which will be in the expectation over = = (&1,&2, ..., &k, C1,C2y - -+, C)-

Theorem 2.3.3 Suppose f(x) is kf-strongly convex and g(y) is kg-strongly convez, and
both f(x) and g(y) in (2.3) are GraE. Let w® be the sequence generated by the SGALM,
e = (k+1)min(kys, ky), and C is a constant satisfying

CI,, —vATA—LI,, = 0 and CI,, —yB' B — LI, = 0,

and B, = «y. = mg% For any integer n > 0, let
—1
1 n
= L3, (2.58)
™ =0

where @* is defined in ([2.13). Then

Ezy [h(un) — h(u*) + p||AZN + Byn — B[]

N
(02 +03)(In N + 1) 1 ) , 1 i 2
o \ €Dy +CDy + — 2.

where D, = dist(zg, X*), D, = dist(yo, V") and p is any fized positive parameter.

Proof.  Similar to the proof of Proposition using the xy-strong convexity and

kg-strong convexity of f and g, we conclude that

h(u) — h(@®) + (w — &%) T F (")

> (w— 3T Qpwk — @) — (@ — M) Tl — (y— ") T,

_ H k+1H H k+1H i Tk + (ka . ijQ + Hyk o ng2>
20y, 2
K K
ol = 2FIP Sy — P, (2.60)

where 7, > 0 is any prescribed sequence. Let x = min(ky, kg), then similar to (2.21)),
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by (2.49) and (2.60) we have

h(u) — h(@®) + (w — &%) T F(a*)
1

k+1)2 k|2 ENT of k\T
> 5 (o= w2, — o —wb2, ) = =2 o, — =) e,
H5£+1”2+ 167,117 Ky k2, Kg k2
- 2 +?Hm—x | +?Hy—y [
1 k+112 k2 ENT cf E\T 59
> 5 (Il =t — o= b2, ) = @ =) Tl — (=)o,

o2 2
0P 4 1197 N

kK k2 k2
B Sl =2+ Jly = 5*1)

Following the same line of arguments as in Theorem [2.2.2] we derive that

h(un) — h(u”) + pl| ATy + Byn — b||
1 |

N-1 s k)2 ek k4112
2 Py o
1 1
R k4112 k|2
o 0 (" = vF I, = g™ = 1, — sy — 12)
k=0
N-1 fo2 g 2
1 T o f T 10117 4+ 0% 4l
TN [(5’7* —a") G+ W -y o+ 0
k=0
1 1
+— | = sup A= X? ). (2.61)
2N Y XeB,

N-1
Compared to (2.38), the term kgﬂ(Hy* - y"“'||%{k — |ly* — yk+1|ﬁ{k) is new. Since
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P = nk}i-C = (k+1§n+c and Hp := CI,, — vB'B > 0, it holds that

>_A

k k
(uy* v I, — " = v R, - klly - FI2)

ZTT
Ho

- (lmny —9FIP =k + Drlly” — 1)

TT

N—-1
3 (I = W, — g™ = 5™,

k=0
< Ayt =N, < Clly* =40 (2.62)

Gl P

Moreover, according to Z le” ~e is upper bounded by C/||z* —

Qg
20||2. Consequently, by choosing z* ,y such that D, = ||z* — 2°|| and D, = [jy* — ¢°|,
we can further upper bound (2.61)) as follows:

h(un) — h(u®) + pl| ATy + Byn — b||

. . 187, 1112+ 1167, 112
(" — xk)T(SI{H +(y* — yk)T(SIZH +—= -

2n

1 2
(CD2+C’D2 S — (p+[IA°])) ) (2.63)

Recall that 7, = Sy(a%,€+1) = Vf(ah), 8, = Sy(y*,C*1) — V() and @53)
holds. Since zj, is independent of &1 and yy, is independent of (i1, we have

Bz, [(@" =)o, =0, Es [0 —9)To0, ] =0 (2.64)
Now, taking the expectation over (2.63)), and applying (2.44]), one has

Ezy [M(un) — h(u”) + p|AZN + Byn — b]]
-1

N 2 g 2
1 kT of . T ”5k+1H + 0744l
< Es=y [N 2 <(5U — ") b T — ) 5g+1 2k
1 2 2 011\ 2
+on <CD +CD? + 7 (p+||)\ ) >
(07 + 03)(InN +1) 2 2 1 011\ 2
< D D; . 2.65
< el G AR AR ) (2.65)
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2.4 The Stochastic Zeroth-Order GADM

In this section, we consider another setting, where even the noisy gradient of f(z) is not
available. For example, the simulated-based inventory optimization problem studied
in [42] definitely falls into this category. To be specific, we assume that £ (z,y, \) is
MinE with respect to y, and f(z) is ValE. In other words, for any given x we can get a
noisy approximation of the true function value f(z) by calling an SZO, which returns
a quantity F(z, &) with £ being a certain random variable. The SZO becomes relevant
when a part of the objective contains the expectation of an unknown function, assuming
only some sample realizations of the expectation are observable. This is the case, for
instance, when we know nothing about the true nature of the randomness and how they
are related to the objective in an explicit fashion; however, we can learn the objective
by observation. Such problems are frequently encountered in management science; e.g.,
a demand function is often not explicitly accessible while its realizations are observable.

Now that we can access the SZ0O, we shall use the smoothing scheme proposed
in [89] to approximate the first order information of a given function f. The smoothing
technique is to utilize the integration operator to promote the differentiability. More
specifically, suppose that v is a random vector in R™ with density function p. A smooth

approximation of f with the smoothing parameter p is defined as:

fulz) = / F( + p)p(v)d. (2.66)

Theoretically, one can choose to use any pre-specified smoothing distribution p(v). For
instance, in [89] Nesterov adopted the Gaussian distribution to simplify the compu-
tation. However, the Gaussian distribution has a support set of the whole space R"”,
which cannot be implemented for problems with constraints. To avoid using the entire
space as the sample space, we shall use the smoothing scheme based on the uniform

distribution over a (scalable) ball in R™ as introduced in [109).

Definition 6 Let U be the uniform distribution over the unit Euclidean ball and B be
the unit ball. Given p > 0, the smoothing function f, is defined as

ful@) = Egueuig [ @ + )] = a(ln) /B f(@ + ) (2.67)
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where a(n) is the volume of the unit ball in R™.

Some properties of the smoothing function are shown in the lemma below, which
will be used in our forthcoming discussion; the proof of the lemma can be found in the
appendix. In the following discussion, C’i (R™) denotes the function class with Lipschitz

continuous first-order derivative.

Lemma 2.4.1 Suppose that f € C}(R™). Let Ug, be the uniform distribution over the

unit Buclidean sphere, and S, be the unit sphere in R". Then we have:

(a) The smoothing function f,, is continuously differentiable, and its gradient is Lipschitz

continuous with constant L, < L and

n 1 n
Vm@%—&w%ﬂLj@+uw4—ﬁmLL&MU@+MW—ﬂ@MM (2.68)

where B(n) is the surface area of the unit sphere in R™.

(b) For any x € R™, we have

2
ula) — f@) < 75, (2.69)

unL

I9/u(x) - V(@) < 222, (2.70)

EUMZU@+uw—f@Hv

2 2
] <2n||Vf(z)|*+ %LW. (2.71)

(¢c) If f is convez, then f, is also convex.

We remark that the bounds in Part (b) are slightly sharper (up to some constant
factor) than that of Gaussian smoothing scheme in [89]. Moreover, the new smoothing
scheme will involve the sampling points in the p-ball of x. This feature is important
for the problems where the domain of f may only be slightly larger than X', as we shall
see from the oracle to be introduced next. Based on we define the zeroth-order

stochastic gradient of f at point a*:
k Ny k k
Gu(x 7€k+17 U) = 7 ./_"(SU + p, £k+l> - F(x 7€k+1):| v, (272)

where v is the random vector uniformly distributed over the unit sphere in R™=. The
zeroth-order GADM algorithm is described as follows:
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The Zeroth-Order GADM
Initialize 2% € X,9% € ) and \°
for k=0,1,---, do
Yt = argmingey £, (2%, y, M) + 5y — v |13
Call the SZO my, times to obtain G (xk, {kr1,i Vkr1,i),% =1, ,my.

my,

Then set G, = m%c > Gu(xk,fHu, Uk+1,i), and compute
i=1

ghtl = [mk — o (G — ATNF 4 VAT(Aa:k + ByFt! — b))]x;

Mo+l — \F ’7(Al‘k+l 4 Byk-i-l _ b)

end for

Before conducting the complexity analysis for the algorithm above, we present some
properties of the function G(x*, &y1) := Vo F (2, £x41). Note that function f is ValE,

ie. (2.7) and (2.8]) hold. This fact together with Lemma [2.4.1{(a) leads to:

Lemma 2.4.2 Suppose that G, (z*,&,41,v) is defined as in (2.72), and f is ValE, i.e.
12.7), (2.8) and (2.9) hold. Then

Euv,rir [Gu(@®, &rir,v)] = Vfu(ah). (2.73)

If we further assume |V f(z)|| < M, Vax € X, then the following holds

Ev7§k+1 [”Gll«(xkagk‘-ﬁ-l?v) - vfu(xk)H2] < &27 (274)
where 52 = 2n,[M? + 0% + u?L?n,].

Proof. The first statement is easy to verify. We shall focus on the second statement.
Applying B7T) and @9) to F(a*, & 11) and G(aF, &41), we have
v [[Gu(a” e, o))

= Egoy [Ev [HGu(mk’gk"‘l’v)W”

2
2nq [Eskﬂ [HG(J«"’“,&H)HQH + %LGg
2, { Eey [1VF@) 2] + Bey, |G, €10) = VHH)IP] | + 021703

2, {IIVS @) + 0%} + u?L2n2. (2.75)

IN A

IN

40



Then from (2.75)), (2.73)), and ||V f(2*)|| < M, we have

Euters [1Gu(a" Eerr,v) = V") 2]

= Eugn [IGu(a &hin, 0)I12] = IV £u(@) 2
< 2n, [M2 +o% + ,u2L2nw] = 52 (2.76)

2.4.1 Convergence Rate of Zeroth-Order GADM

To establish the convergence rate, we refer the sequence w* to be the sequence defined
in with the corresponding iterates z*, y*, A\F obtained from the zeroth-order
GADM. We let 6, = Gpur — Vfu(xr), which plays a similar role as ¢ in SGADM.
We have the following proposition, whose proof is almost identical to that of in
Proposition except that dx41 is now replaced by d,, .

Proposition 2.4.3 Suppose that L.(x,y,A) is MinE with respect to y, and f(x) is
ValE. Let z*, y*, \F be obtained in the zeroth-order GADM, w* be specified as in

(2.13), and h,(u) = fu(x) + g(y). Then for any w € Q, we have

. N ourll>  me+L -
> <w—w’“>TQk<wk—wk>—<x—x’f>%k—Hz’?}k’ -l =,

(2.77)

where ni, > 0 can be any positive constant to be specified in the analysis later.

Now, we are ready to present the following theorem which leads to the convergence
rate of the zeroth-order GADM. In the rest of this section, we denote Q, = (k.i, V)
for k=1,2,...,nand i = 1,2,...,my, the convergence rate will be considered in the

expectation taken on .

Theorem 2.4.4 Let w® be the sequence generated by the zeroth-order GADM, and C

be a constant such that CI,, —YATA — LI,, = 0, and ay = nki—C' For any integer
n >0, let
1 n—1
Wy ==y aF, (2.78)
n
k=0



where W* is defined in [2.13). Then the following holds

Eay [A(un) — h(u™) + p||AZN + Byn — bl]
N

1 X k2 X k4112
< g 2o (lla” = ab? = fla* = aF )
22X 1 1 1
— — ( D? CD? + = E Lu? 2.79
+2N;mwk+m< L+ OD2 o al)?) + L, (279)

where Dy = dist(xzg, X*) and Dy g = dist(yo, Y*)u, {nx > 0} and p > 0 are any given

constants.

Proof. By (2.77) and ([2.20)), it follows that

hu(w) = hy (@) + (w — @) " F(@")

1 1 .
> 5 (e = oty = o - iy, ) + 56t =397 o, —9474) @ - 8
2 5 o
kT 10,kl> e +L, & ko
—(x—2%) S — gﬁk - |z* — %
1 & N
= §(Hw—w 3 = lw —wF)3,,)
1 1
#3@ =T (ot = vATA = (e DI ) (- 3
k
BT 10,0117
—(x—2%) Oy — ——
( ) o 20y
> (- Wb, — o - b, ) - (@ - 2976 - Lkl
= 3 My, M, 1,k o )

In similar vein as the proof of (2.25) in Theorem [2.2.2] (except that &1 is replaced by
duk), we obtain:

hu(an) = hu(u”) + pl|AZy + Bin — 0|

Sl =t et P 1R

=~ 2N ay, N

|:($* _xk)—l—(s -+ ||6,Lﬂ,k §
lu’7 277k

1
oo |y =Pl + S Sup IX=2%1% ). (2.80)
€bp
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Recall that 6,1 = G x — V fu(xy), which combined with implies
Eevsronss [0k] = Egipropi [Guk — V()] = 0.
In addition, since £;41 and viy1 are independent to zj, we have the following identity
Eoyp (2" = 2") T 6,4) = 0. (2.81)

Now, taking expectation over (2.80), choosing z*,y* such that D, = ||z* — 2°|| and
Dy g = |ly* — ¥°||m and applying (2.74)), we have

Eay [hu(an) — hu(u™) + pl|AZn + Byny — b|[]
1

N []1, > ((w* — M) T+ ”5"’“”2)]

k=0 210k
1

IN
m
2

1
(D;y +CD2 + ;(p +11olh)?)

52 1 =
e 7 . ( k)2 |k kL 2)
D T2 o w2 (= e =

Lo+ 12

7H+CD§+§

(2.82)
By (2.69), we have |(hy(an) — hu(u*)) — (h(un) — h(u*))| < Lyp?, and so

E [h(an) — h(u)] < E [y (an) — hy(u”)] + Lyt (2.83)

Finally, combining (2.82) and (2.83) yields the desired result. O

In Theorem 1, and the batch sizes my, are generic. It is possible to provide one

choice of the parameters so as to yield an overall simpler iteration complexity bound.

Corollary 2.4.5 Under the same assumptions as in Theorem [2.].]], we let n = 1 for
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all k=1,2,..., N, and the batch sizes mp =m for allk =1,2,...,N. Then

* D2 ng(M*+0%) | pPL?n?
Eqy [h(an) — h(u*) + p||AZx + By — b||] < =2 + ( ) L L

Ly?.
- 2N m m + L

Proof. It follows from (2.79), with the specified parameters, that

Eqy [h(tun) = h(u®) + pl|AZx + Byy — 0]
o

1 1 2
—(D? 1)D? + = ol? Lu?
2N( su T (C+1) x+7(p+H o\l))+2m+ u
D? 52 9
= ¥4 _ 4L

oN gy K

IN

_ D712u N 2N, (M2 + 0%+ /LQLQnJ;) L
2N 2m

D? ng (M? + 02 + p?L?n
2N m
D2 n M2+ 2 2L2 2

2N m m

2

where we denote D2, = Dz,H +(C+1)D2 + %(P + [[ol)?. O

In the corollary above, the complexity bound is dependent on the sample size m,
and the smoothing parameter p. We shall further choose m and p to obtain an explicit

iteration bound.

Corollary 2.4.6 Under the same assumptions as in Theorem[2.4.4] and Corollary[2.4.5,

we have:

(a) Given a fized iteration number N, if the smoothing parameter is chosen to be p <

%, and the number of calls to SZO at each iteration is m = N, then we have

L2n?
N2~

1 (D2
Eo () 1) + oAy + By o) < 7 (58 + a0 4 0%+ 1) 4

(b) Given a fived number of calls to SZO to be N, choose the smoothing parameter

u< ,/% and the number of calls to the SZO at each iteration to be

m = {min{max{ /a(M? + 0N nIL} N}J

D "D
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for some D > 0. Then, N = L%J and

Eay [h(un) — h(u™) + p||AZN + Byn — 0]

L n.L [ = D? Vg (M? + 52) < D2>
< =+ Dby + =% | + F——=— DO + —=-
N N < ’ > VN "D
where
o(M? + 62 oL
01 = max< 1, M and 03 = max {1, Tf_} : (2.84)
DVN DN

Proof. Part (a). Since we have m = N, u < 4/

Eay [A(un) — h(u™) + p||AZN + Byn — bl|]
Dy maeMPto®)  ptling o

2N m m

D2 ny(M?+o%) L*n2 L

2N N T Ty

1 (D2 5 o L2n?
= N<2w+nm(M +o)+ L)+ =

IN

IN

Part (b). The total number of SZO calls is now fixed to be N. Under the assumption
that at each iteration m times of SZO are called, we have N/2m < N < N/m, and so

Eay [h(an) — h(u®) + pl|AZN + Byny — b||]
D2 ny(M?+0?%) pPL*n?
+ +

< v L 4 Ly?

- 2N m m Tk

< Dg_,m N ng(M? + o?) LG_?v £ (2.85)
N m mN N

Now noting the definitions of 61, 65 in (2.84]), we equivalently write m as

o \‘max { Ve (M2 +62)N n,L }J

Do, " D
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Finally,

RHS of (2.85)

D2 nZ(M2+62)N + 77:(95[1 N ~
w Do, Doy Vng(M?+02)Dby  n,LDOy L
< = + = + =— + =
N VN N N
D2 \/ng,(M2+32) D2 n,L ny(M2+02)D0;  n,LDO; L
< "+ ==+ — + — =
VN D N VN N N

2™ 5

nelL [ - D2 /N (M2 + 62) ( D2>
+ = (Dl + =2 + — D6 + =2 |. 2.86
N ( ? D) VN ! (2.86)

O

Remark that the complexity bound of O(1/N) in Part (a) of Corollary is in
terms of the iteration N. However, in the zeroth-order GADM algorithm we need to
call SZO multiple times at each iteration. The complexity in terms of the total number
of calls to SZO in Part (b) of Corollary is denoted as IV, and this gives us a bound
on the accuracy of O(1/V'N).

2.5 Numerical Experiments

In this section, we test the performance of the new SGADM algorithm on two problem
instances: the fused logistic regression and the graph-guided regularized logistic regres-
sion, on which we compare the performance of SGADM with three existing stochastic
ADMM-type algorithms: STOC-ADMM, OPG-ADMM, and RDA-ADMM. Specifically,
STOC-ADMM proposed in [93] is the first stochastic ADMM-type algorithms; OPG-
ADMM proposed in [114] is designed as online ADMM-type algorithms, but is also
applicable for solving stochastic optimization. As shown in [I14], the RDA-ADMM
improves the performance of the online ADMM [121]. Hence, we do not include online
ADMM in our test.

For both models, the tests are conducted on four binary classification datasets: a9a,
mushrooms, splice, w8a EL and the summary of those datasets are shown in Table
More details of those two experiments will be presented in the following subsections

separately.

"https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html
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dataset number of samples | dimensionality
a9a 32561 123
mushrooms 8124 112
splice 1000 60
w8a 64700 300

Table 2.2: Summary of datasets

2.5.1 Fused Logistic Regression

As suggested in [72], fused logistic regression, which incorporates a certain ordering
information, is derived from the fused lasso problem and sparse logistic regression.

Specifically, the sparse logistic regression problem (see [70]) is given by:

in [
min (o) + Bl (2.87)
m
where I(z) = L 3" log(1 + exp(—b;(a; ))), and {(a;,b;), i = 1,...,m} is a given train-
i=1
ing set with m samples aj,as,...,a, and b; € {£1},i = 1,...,m as the binary class

labels. Combining requirements from the fused lasso [I18] and the sparse logistic re-
gression ([2.87]), the fused logistic regression that incorporates certain existed natural

ordering features can be formulated as:

min  (z) + Bllzll + p 3 |z — zj-1]. (2.88)
rER™ j=2

If we further introduce a matrix F € R(®—1xn

, with all ones on the diagonal and
negative ones on the super-diagonal and zeros elsewhere, then the problem boils down

to

min I(z) + Blz([1 + pl| Fx1. (2.89)
TeR™

By introducing another variable y, and imposing the constraint Fx = y, this problem
can be solved by stochastic ADMM. In fact, the total loss is in the form of expectation
taken over the dataset under a uniform distribution.

In our experiments, the regularization parameters are set to be f = 5 x 10~* and
p =5 x 1073, For each dataset, we use 10-fold cross-validation for training and testing.

Three different measures of the performance are shown in the comparison of those tested
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algorithms, including objective value, test loss, time cost and prediction error. Objective
value measures the function value of the optimization problem (2.89) evaluated on the
training data samples, whereas test loss is the value of the logistic loss function evaluated
on the test data sample. Besides, prediction erroris the classification error rate evaluated
on the test dataset. The number of epochs represents the number of passes that have
been run by the algorithms on the whole training data samples. Figure shows the
results of those algorithms for solving the fused logistic regression problem, where the
results are averaged over ten runs on ten folds. We observe that the new SGADM
algorithm is competitive to other stochastic ADMM-type algorithms. In fact, SGADM
consumes less computational time, and often achieves the best performance in terms of
objective value and test loss on various datasets, although the performances of these

methods are not drastically different.

The Comparsion of All Methods on Fused Logistic Regression
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Figure 2.1: Comparison of SGADM, STOC-ADMM, RDA-ADMM, OPG-ADMM on
Fused Logistic Regression. First Rows: objective values. Second Rows: test losses.
Third Rows: time cost. Fourth Rows: Prediction Error.
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2.5.2 Graph-guided Regularized Logistic Regression

In this subsection, we test those algorithms on the following graph-guided regularized

logistic regression problem

5161%%1}1 I(x) + §||:U||% + p(i’jz):eE wijlz; — x4, (2.90)
where [(x) is sum of logistic loss that is similarly defined as in , and F is the edge
set in a certain graph. This model penalizes the difference between variables connected
in the graph with different weight. By introducing a matrix G € R™*" that captures
the structure of the graph, the problem can be written as

win U(z) + 5)2l3 + pllGall, (2.91)
With different loss functions, similar problems are considered in the graph-guided SVM
[93] and generalized lasso [119]. Similar to fused logistic regression, by introducing
another variable y and imposing the constraint Gx = y, this problem can also be solved
by stochastic ADMM.

In our experiments, the regularization parameters are set as f = 1072 and p = 1075.
For each dataset, we use 10-fold cross-validation for training and testing. Moreover, the
matrix G in is generated by sparse inverse covariance selection [107]. Figure
shows the results of those algorithms for solving the graph-guided regularized logistic
regression problem. Similar to the fused logistic regression, the new SGADM algorithm

is comparable and competitive to other stochastic type ADMM algorithms.

2.6 Conclusions

In this chapter, we considered the problem of minimizing the sum of two convex func-
tions, subject to linear coupled constraints. In contrast to the original setting of the
ADMM, we assume that only some noisy estimation of the objective function is possible.
Therefore, the classical ADMM cannot be applied in this context. To account for the
available (informational) structure, in this chapter we proposed a suite of adapted vari-
ants of the ADMM, and establish their iteration complexity bounds accordingly, under
very mild conditions. For instance, we do not assume the boundness of the optimal set,

nor the coecivity of the objective function. Therefore, the analysis in this chapter ac-
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The Comparsion of All Methods on Graph-Guided Regularized Logistic Regression
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Figure 2.2: Comparison of SGADM, STOC-ADMM, RDA-ADMM, OPG-ADMM on
Graph-guided Regularized Logistic Regression. First Rows: objective values. Second
Rows: test losses. Third Rows: time cost. Fourth Rows: Prediction Error.
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tually generalizes (and simplifies at the same time) the existing results on the iteration
complexity bounds for the ADMM type algorithms in terms of the feasibility /objective
measurements. Finally, we remark that the new zeroth-order smoothing oracle uses a
bounded support set (specifically, a sphere with scalable radius), which is different from
a more conventional normal distribution-based smoothing (e.g. Nesterov [89]) for which
the support set would be the whole space. Obviously, the bounded-set smoothing is
important for the constrained problems, as the points to be sampled must be in the
domain of the objective function. Interestingly, we managed to prove that not only the
bounded-set smoothing is feasible, but also the approximation bounds can be improved,

up to some constant factors.

2.7 Technical Proofs

2.7.1 Proof of Proposition [2.2.3

Here we will prove Proposition [2:2.3] Before proceeding, let us present some technical

lemmas without proof.

Lemma 2.7.1 Suppose function f is smooth and its gradient is Lipschitz continuous,
i.e. (2.2)) holds, then we have

F() < F0) + V) @ —9)+ 5 e — (292)

Lemma 2.7.2 Suppose function f is smooth and convex, and its gradient is Lipschitz
continuous with the constant L, i.e. (2.2)) holds. Then we have

L
(=) Vf(2) < fla) = fy) + §HZ—yH2~ (2.93)
Furthermore, if f is k-strongly convex, we have

Bl — 2] (2.94)

(@~ 9) V) < F@) — 1)+ Sz - vl -

Lemma, [2.7.1] is also known as the descent lemma which is well known; one can find
its proof in e.g. [6]. Lemma is similar to Fact 1 in [3I] which follows from the
(strong) convexity of f and Lemma [2.7.1]

Proof of (2.19) in Proposition [2.2.3]
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Proof. First, by the optimality condition of the two subproblems in SGADM, we have
Yye)y

(y _ yk—l—l)T (ag(yk—I—l) _ BT ()\k _ ’)/(Al’k + Byk-i-l _ b)) _ H(yk _ yk—i-l)) > 0,
and Vo € X
(z — 2T (karl _ (gck — oy (G(mk’glﬁrl) —ATOF — (Azk + ByFt - b))))) >0,

where dg(y) is a subgradient of g at y. Using A\¥ = A\ — ~(Az* + ByFt! — b) and the
definition of @* in (2.13)), the above two inequalities are equivalent to

y—3")" (09@'“) - BN — H(y" - y’““)) >0, Wye, (2.95)
and
(x — )7 (ak (G(xk‘, ghtly ATX’“) ~(ak - :z’f)) >0, ViedX. (2.96)
Moreover,
(Az* + By* —b) — <—A( b b))+ = (A’“ - A’“)) =0.
gl
Thus

. . . AT 3 1 .
(A= X)T(Az* + Bj* —b) = ()\ - )\k) (—A (:z:k - :z:k) + <)\k - A’“)) . (2.97)
By the convexity of g(y) and (2.95),
9) = 9@ + (=7 (-BTN) = (v =) HG -7, vyey.  (298)
Since 641 = G(z¥, 1) — Vf(2F), and by we have Vz € X.
(z — 75T (ak(Vf(:zk) AT 4 s — (aF — :ek)) >0, VeeX
which leads to

(x — %7 <ak(Vf(ack) - AT:\’“)> >z —zMT (mk - 57’“) — oy (m — £k>—r Oki1,
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Using (2.93)), the above further leads to

ap(f(z) = f(E) + (2 = )T (—ar ATNY)
> (z— )T (g;k - g;k) —ay (g; - xk) Sps1 — %H F_gh|2, vz e X.

(2.99)
Furthermore,
(x — i‘k)T&CH = (z— xk)T5k+1 + (mk — :Z‘k)TdkH
- J 2
< (@ — ) oy + 2|2k — 752 4 190 (2.100)
2 21y,
Substituting (2.100)) in (2.99), and dividing both sides by ay, we get
fla) = f(@) + (z = #) T (-ATA)
k ~k 2
r— I " -z Ok x+ L -
> ( ) ( ) —(CC—l'k)T5k+1— || +1H _77 ”l’k—Ik”2
Qay, 2n 2
(2.101)
Finally, (2.19)) follows by summing (2.101]), (2.98]), and (2.97)). O

Now we show the second statement in Proposition [2.2.3]

Proof of (2.20) in Proposition
Proof. First, by ([2.14), we have P(w* — @w¥) = (w* — w**1), and so

(w —&*) T Qp(w* — @) = (w — @*) T M P(w* — wF) = (w — %) T My, (w* — ).
Applying the identity

1
(a=b)" My(c—d) =5 (lla = dliy, = lla = clig) + 5 (e = bllis = lld = b3,

N | =

to the term (w — @*) T My (w® — wk*1), we obtain

w— 'UNJk)TMk(U)k . ,warl)

1
k k k_ -~k k ok
(o=, = oo = ) + 5 (ot =¥, = ot = @13, )

(2.102)

—~

N[ =
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Using ([2.14]) again, we have

k

[ — @* (3, — ™ —@* (3,
= Jw® = @[3, — (W —@*) = (" — ",
= Jw® — a3, = I(w* = @*) = P(w” —a")| 3,
= (W* —a®) T (@2M,P — PT M, P)(w* — @"). (2.103)

Note that Q = M P and the definition of those matrices (see (2.12])), we have

H 0 0
OMLP— P MyP=2Q,—P'Qr=1] 0 I, —yATA AT
0 —A %Im

As a result,

(wk — a*) T (2M,P — PT M P)(w® — @)

1 ~ 1
W T U LI, (Inz - vATA) (e — &)
v ay,
> (aF - 5T <Inm — VATA> (zF — ). (2.104)
g

Combining (2.104)), (2.103]), and (2.102), the desired inequality (2.20) follows. O

2.7.2 Proof of Proposition [2.3.1

We first show the first part of Proposition [2.3.1

Proof of ([2.48]) in Proposition m

Proof. by the optimality condition of the two subproblems in SGALM, we have Yy € )
(y — T (yk+1 —yF 4 By (Sg(ykack+1) ~ BT\ — y(Azk + ByF — b)))) >0,
and also Vo € X
(x — o hHT <xk+1 —zF + oy <Sf(a;k,§k+l) — AT(\F — ~y(Az® + ByFt! — b)))) > 0.

Using A\¥ = \¥ —~(Az* + ByF*t1 —b) and the definition of @*, the above two inequalities
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are equivalent to

(= )7 (B (Syw" ) = BTO) = (I, = BryBTB)(y" — §)) 20, Wye,
(2.105)

and
(@ — )T <ak(sf(xk, bty ATRRY (2 — gzk)) >0, Vied. (2.106)
Also,

A= X)T(Az*F + BgF —b) = (A= AT <—A(a;’“ — &)+ i(x’“ — X’f)) . (2.107)

Since 5,{“ = Sy(ak, &¥1) — V £(2*) and using (2:106)), similar to (2.99) and (2:100)

we have

F(x) = @) + (x = &) T (-ATNF)

- ~ o2
({L‘—l’k)—r(iﬂk—l'k) . (:c—xk)Tdf . ||5I<:+1H o nk“—L”xk —ik”2
oy kt1 2Nk 2 '

(2.108)
Similarly, since 67, ; = Sg(y*,**1) — Vg(y*) and using (2.105)), we also have
9(y) —9(@) + (=7 T (=BT

> ()T <ﬁlk1 - vBTB> W — )

g 2
T 59 1061l me+L, v 2
—(y — 1) — — — . 2.109
(= 9") 03 M R (2.109)
Finally, (2.48]) follows by summing (2.109)), (2.108)), and (2.107]). O
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Notice that Qk = MkP and

Hj, 0 0
OM.P — P M,P = 0 I, —yATA AT
1
0 —A 2,
+1I,,—yB'B 0 0
= 0 aln, —7ATA AT
1
0 —A LIy,

Inequality (2.49) in Proposition follows similarly as the derivation of (2.20f) in
Proposition [2.2.3]

2.7.3 Properties of the Smoothing Function

In this subsection, we will prove Lemma [2.4.1] Before that, we need some technical

preparations which are summarized in the following lemma.

Lemma 2.7.3 Let a(n) be the volume of the unit ball in R™, and B(n) be the surface
area of the unit sphere in R". We also denote B, and Sy, to be the unit ball and unit

sphere respectively.

(a) If M, is defined as M, = — Joep Ivl[Pdv, we have

a(n)

n

M, = . (2.110)
n+p
(b) Let I be the identity matriz in R™*™ then
/ voTdv = 2 (2.111)
Sp n

Proof. For (a), we can directly compute M, by using the polar coordinates,

1 1t 1
Mp = / ||1)de1; - / / T'p’l”nild’l”dcg _ ﬁ(n) _ n ]
a(n) Jp a(n) Jo Js, n+pa(n) n+p

For (b), Let V = vv', then we know that Vi; = vv;. Therefore, if i # j, by the

symmetry of the unit sphere S, (i.e. if v € Sp,v = (v1,v2,...,v,), then w € S, for all
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w = (v, tve,...,+v,)), we have

/Vijdv—/ vivjdv—/ —fuivjdv—/ —Vi;dv.
S, S. S, S,

P P P P

Thus, we obtain fs Vijdv = 0.

If i = j, we know that V;; = vZ. Since we already know that

/(v1+v2 dv—/ I0]2dv = B(n).
Sp

Then, by symmetry, we have

/ ’U%d’[j:/ ’U%d’u::/ UidU:M,
Sp S, S. n

D P

Thus we also have fSp ‘/3(11} — @’ for 7 = 172, o, n. Therefore, fSp UUTdU = %I
O

By the next three propositions, the part (b) of Lemma is shown; for part (a)
and (c) of Lemma the proof can be found in [109].

Proposition 2.7.4 If f € CL(R"), then
[ful@) = f(2)] < = (2.112)
Proof. Since f € C}(R"), we have

[ful@) = fl2)] =

/fw+/wdv—f()

1
a(n)

1

a(n)

[ |t ) = ) = V@) )]
< [ L P

Lp® n _ Ly
2 n+2°- 2

/ (& + ) — F(z) — VF (@) pw)do

IN
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Proposition 2.7.5 If f € C}(R"), then

punL

IV fu@) = Vi@)] < =~ (2.113)
Proof.
Hm z) = Vf(x
_ [Z Spfx+uv vdv] Vf(z)
By 5 [Z/ a:+;wvdv—/ e vdv—/SpZ<Vf(x),uv>vdv]
S f@+ ) = f(z) = (V (), o) [[v]dv
<

n / JolPdo = #2L

Proposition 2.7.6 If f € CL(R"), and the SZO defined as g,(x) = %[f(ac + pv) —
f(x)]v, then we have

E, (I, @)1 < 2009 F@)I + 2120 (2.114)
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Proof.

IN

IN

@113)

2
2n||V £(x)||? + 7L2n2.
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Chapter 3

First-Order Algorithms for
Convex Optimization with
Nonseparable Objective and

Coupled Constraints

3.1 Preliminaries

Before we discuss the general multi-block optimization model (1.7]), for the simplicity

of presentation we first consider the following model:

min  f(z,y) + hi(x) + ha(y)
s.t. Ax+ By =0, (3.1)
reX,ye)y

where x € RP, y e RY, A € R™*P, B € R™*4, h € R™, X, are closed convex sets, f is a
smooth jointly convex function, and hi, hy are (possibly nonsmooth) convex functions.
In this chapter, the augmented Lagrangian function for problem (3.1]) is defined as

£4(,9,0) = f(@,) + (@) + ha(y) = AT (Az + By — b) + 2| Az + By — b]]%,

where A is the multiplier.

As we will show that under the assumptions that the gradient of the coupling func-
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tion V f is Lipschitz continuous and one of h; and hg is strongly convex, then an O(1/N)
convergence rate of ADMM can still be assured. We also show that APGMM, AGPMM,
and their hybrid version have a convergence rate of O(1/N) if V f is Lipschitz continu-
ous. Moreover, we show that ADMM can be extended to the multi-block model .
Similarly, under the Lipschitz continuity of V f and the assumptions in [74], an O(1/N)
iteration bound still holds for the multi-block model.

The rest of this chapter is organized as follows. In Section[3.2] we introduce ADMM,
APGMM, AGPMM and their hybrids. The results on the rate of convergence of these
algorithms are presented in the subsections of the same section, while the detailed
proofs of the convergence results are presented in Appendix In Section we
extend our analysis of the ADMM to a general setting with multiple (more than 2)
blocks of variables. Finally, we conclude the chapter in Section

3.2 New Algorithms

Let us first introduce some notations that will be frequently used in the analysis later.
The aggregated primal variables x,y and the primal-dual variables x,y, A are respec-

tively denoted by u and w, and the primal-dual mapping F'; namely

x —ATA
U= < v ) , wi= |y |, Fw):= —BTA , (3.2)

Y A Az + By — b

and h(u) := f(z,y) + hi(z) + ha(y).
Throughout this chapter, we assume f to be smooth and has a Lipschitz continuous

gradient; i.e.

Assumption 3.2.1 The coupling function f satisfies
IV f(uz) = Vf(u)| < Lljuz — wal], Yur,ug € X x Y, (3.3)

where L is a Lipschitz constant for Vf.

For a function f satisfying Assumption [3.2.1] it is useful to note the following in-

equalities.
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Lemma 3.2.1 Suppose that function f satisfies (3.3)), then we have

Fluz) < fe) + V() (uz = ) + 4z — w2 (3.4)

for any uy,us. In general, if f is also convexr then

Flua) < flur) + VF ()T (2 = w2) + 4wz — g (35)
for any uq, ug, us.

The proof of this lemma is similar to (2.7.2), we omit it here.

For convenience of analysis, we introduce some matrix notations. Let

G 0 0 I, O 0 G 0 0
Q:=| 0 4B"B 0 , P=] 0 I 0 |, M:=] 0 ~B'™B 0
0 -B ZIn 0 —yB Inm o 0 ir,

(3.6)
hence, Q = M P. Suppose the sequence {wk} is generated by an algorithm, we introduce

an auxiliary sequence:

7k k1
o= gk | = Waan! . (3.7)
Ak Ak — 7(Al’k+1 + Byk _ b)

Based on (3.7) and (3.6), the relationship between the new sequence {w*} and the
original {w*} is
whtt = wk — P(wk — wk). (3.8)

3.2.1 The Alternating Direction Method of Multipliers

As we discussed earlier, the ADMM can be applied straightforwardly to solve (3.1),
assuming that the augmented Lagrangian (with a proximal term) can be optimized for
each block of variables, while other variables are fixed. This gives rise to the following

scheme:
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ADMM
Initialize 2% € X,9% € Y and \°

for k=0,1,---, do
k+1

X
yF ! = argmingey L. (25, 4, AF) + §lly — o 13
)\k+1 — )\k o '7(A:L'k+1 4 BykJrl _ b)

end for

= argmingex L (7, 9%, M) + 3|z — 2¥||%;
k+1

In the above algorithm, G and H are two pre-specified positive semidefinite matrices.
The main result concerning its convergence and iteration complexity are summarized in

the following theorem, whose proof can be found in Appendix [3.5.1

Theorem 3.2.2 Suppose that V f satisfies Lipschitz condition (3.3), and ha(y) is strongly

convex with parameter o > 0, t.e.
o
ha(y) = ha(z) + hy(2) T (y — 2) + 51y ==l (3.9)

where hly(z) € Oha(2) is a subgradient of ha(z). Let {w*} be the sequence generated by
the ADMM, and G = 0,H = (L + %) I,. Then the sequence {w*} generated by the

ADMM converges to an optimal solution. Moreover, for any integer n > 0 letting
I R
i = ;u , (3.10)

we have

h(an) = h(u®) + pl|AZy + Byny — b||

1 . . : . 1 2
< N (dlst(xo,X )2, + dist(y°, Y )?LI + 5 (p+ IA°1) > ) (3.11)

where X* x Y* is the optimal solution set, dist(z,S)y = infycg ||z — y||m, and H =
vB'B+ H.

We quote Lemma 2.4 in [38] as follows:

Assume that p > 0, and # € X is an approximate solution of the problem
ffr=inf{f(z): Az —b=0,z € X} where f is convex, satisfying

f(@) = f"+ pllAT = b < e. (3.12)
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Then, we have

Az — b < and f(I) — f" <€

€
p— 2]l
where A\* is an optimal Lagrange multiplier associated with the constraint
Az —b = 0 in the problem inf{f(z) : Az—b = 0,2 € X}, assuming | \*|| < p.

In other words, estimation (3.11)) in Theorem automatically establishes that
h(an) — h(u*) < O(1/N) and |AZx 4+ Byn — b|| < O(1/N).
The same applies to all subsequent iteration complexity results presented in this section.

3.2.2 The Alternating Proximal Gradient Method of Multipliers

In some applications, the augmented Lagrangian function may be difficult to minimize
for some block of variables, while fixing all others. In this subsection we consider an
approach where we apply proximal gradient for each block of variables. The method
bears some similarity to the Iterative Shrinkage-Thresholding (ISTA) Algorithm (cf. [3]),
although we are dealing with multiple blocks of variables here. We shall call the new
method Alternating Proximal Gradient Method of Multipliers (APGMM), presented as

follows:

APGMM
Initialize 2% € X, yo €Y and \°
for k=0,1,---, do
P argmingex Vi f (%,5%) (@ — o%) + b () + 311 Az + By* — b — LM
+3lle - 2* I3
Y"1 = argmingey V, f(«%, 4F) T (y — oF) + ha(y) + 3 Az*H + By — b — INF||%;
+3lly — v* 1%
)\k+1 — )\k _ ,Y(Akarl 4 Byk+1 _ b).

end for

The convergence property and iteration complexity are summarized in the following
theorem, whose proof is in Appendix

Theorem 3.2.3 Suppose that V f satisfies Lipschitz condition (3.3)). Let {w*} be the
sequence generated by the APGMM, and G > LI, and H > LI,. Then, the sequence
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{w*} generated by the APGMM converges to an optimal solution. Moreover, for any
integer n > 0, letting

1 n
_ L k
Uy 1= - g u”,
k=1
it holds that

h(un) — h(u®) + p||AZN + Byn — b

1 . 0 1#\2 0 N2 1 01\2
< gy (G s L 4 0)7), ey
where X* x Y* is the optimal solution set, dist(z,S)yr := infyes ||z — y|lar, and H :=
vB'B+ H.

3.2.3 The Alternating Gradient Projection Method of Multipliers

Implementing proximal gradient step may still be difficult for some instances of ap-
plications. It is therefore natural to further simplify the step to Gradient Projection.
Namely, for each block of variables we simply sequentially compute the projection of the
gradient of the augmented Lagrangian function before updating the multipliers. The

method is depicted as follows:

AGPMM

Initialize 2° € X,y € Y and \°

for k=0,1,---, do
aF = [2F — a(V, (¥, y7) + Vehi (2F) — ATAF + AT (Az% + ByF —b))]a;
Y = [y — a(Vy faF, yh) + Vyha(yh) — BTAY + BT (A" + By —b))]y;
ANetl — \k ,Y(Akarl + Byk+1 _ b)

end for

where [z]y denotes the projection of z onto X, and [y]y denotes the projection of y
onto ).

Note here that we used ‘PG’ as acronym for Prozimal Gradient, and ‘GP’ as acronym
for Gradient Projection. The acronyms are quite similar, and so some attention is needed
not to confuse the two! Below we shall present the main convergence and the iteration

complexity results for the above method; the proof of the theorem can be found in

Appendix
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Theorem 3.2.4 Suppose that V[ satisfies Lipschitz condition . Let w® be the
sequence generated by the AGPMM, and G == yAT A+ élp, H .= éIq —~yB"B. More-
over, suppose that « is chosen to satisfy H — 2LI; = 0, and G — 2LI, = 0. Then, the
sequence {wk} generated by the AGPMM converges to an optimal solution. For any
integer n > 0, letting

= L3
Uy 1= — U
n n b
k=1
it holds that

han) = h(u®) + pl|AZy + Byny — b]|

1 . 0 2 st (00 NN\ 2 1 011\2
< IN (dlst(x NG+ dist(y”, V) + 5 (p+1X°1D7 ).
where X* x Y* is the optimal solution set, dist(z,S)y = infyes ||z — y||ar, and H =
vB'B+ H.

3.2.4 The Hybrids

There are instances where one part of the block variables is easy to deal with, while
the other part is difficult, e.g. [72]. To take advantage of that situation, we propose
the following two types of hybrid methods. The first one is to combine ADMM with

Proximal Gradient in two blocks of variables:

ADM-PG

Initialize 2° € X,4° € Y and \°

for k=0,1,---, do

M = argmingey £+ (2, y*, A¥) + Lz — 2F|Z

y" ! = argmingey V, f (", y5) T (y — y*) + ha(y) + 3| Az + By — b — 20F|1%
+3lly = v* %

N+l — \F ’y(Al'k"H 4 Byk-i-l _ b).

end for

X

The iteration complexity of the above method is as follows. The proof of the theorem
can be found in Appendix
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Theorem 3.2.5 Suppose that Vf satisfies Lipschitz condition (3.3). Let w* be the
sequence generated by the ADM-PG, and G = 0,H = LI,. Then, the sequence {wh}
generated by the APGMM converges to an optimal solution. For any integer n > 0,
letting

I (R
iy = — > i, (3.14)
k=1
it holds that

h(un) — h(u®) + pl|AZy + Byn — b||

1 . 0 1#\2 0 N2 1 011\2
< 2N<dlst(:c,X)G+dlst(y,y)H+7(,0+||)\ ||) ,

where X* x Y* is the optimal solution set, dist(z,S)yr := infyes ||z — y|lar, and H :=
vB'B+ H.

Another possible approach is to combine ADMM with Gradient Projection, which

works as follows:

ADM-GP
Initialize 20 € X, 4% € ) and \°

for k=0,1,---, do
k+1

P = argmingc £ (0 ) + Yl 2
yk+1 = [yk - a(vyf(xk+17yk) + vyhg(yk) — BT)r + BT(Axk+l + Byk _ b))]y
ARFL = AP — y(Azk Tt 4 Byt — ).

end for

The main convergence result is as follows, and the proof of the theorem can be found

in Appendix

Theorem 3.2.6 Let w® be the sequence generated by the ADM-GP, G = 0 and H :=
éIq — vBTB. Moreover, suppose that o is chosen to satisfy H — L1, = 0. Then, the
sequence {w*} generated by the ADM-GP converges to an optimal solution. For any
integer n > 0, letting

_ R,
un::—g u,
n

k=1
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it holds that

han) = h(u®) + pl|AZy + Byny — b||

1 . 0 122 c 0 N2 1 011\2
< 2N<dlst(x LX) +dist(y, Y )ﬁ—i-;(p—&-H)\ e
where X* x Y* is the optimal solution set, dist(z,S)y = infycg ||z — y||m, and H =
vB'B+ H.

3.3 The General Multi-Block Model

Different variations of the ADMM have been a popular subject of study in the recent
years, and the ADMM has been extended to solve general formulation with multiple
blocks of variables; see [74] and the references therein for more information. In this
section we shall discuss the iteration complexity of the ADMM for multi-block opti-
mization with a nonseparable objective function. In particular, the problem that we

consider is as follows:

min  f(z1,z2,...,2,) + Y. hi(z;)
i=1

s.t.  Ayxy+ Asxo+ -+ Apz, = b,
2 €Xi=1,2,...,n

(3.15)

where A; € R™*Pi b € R™, X; C RPi are closed convex sets, and f,h; i = 1,...,n,
are convex closed functions. Note that many important applications are in the form of
(3.15)), e.g. multi-stage stochastic programming. Accordingly, the ADMM algorithm for

solving the problem (3.15)) is:
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The Multi-block ADMM

Initialize with 2¥ € X;,i =1,...,n, and \°
for k=0,1,---, do
k41 _ . k k \k 1 kj2 .
" = argming, ex, £, (21, T3, . .., 2, A¥) 4+ 5ljr1 — x1HH17
k+1 _ . k+1 k kE \k 1 k)2 .
Ty = argming,ex, Ly(x7" ", o, 25 ..., 2y, AY) + §H$2 — x2HH2,
k+1 _ . k+1 k+1 k kE kK 1 k2 .
LEZ» = argmily. cx; ,C,y(fl,‘l ,...,$i_17$i,xi+1"-)xna)\ )+§||xl_$lHHl’
k+1 _ : k+1 k+1 k 1 k2 .
et = argming ex, L], .. 20 20, AY) + 5|2, — ol s
E+1 _ kK k+1 k+1 k+1
LA —B(Alxl —|—A2£132 —I-'--—i-An.%'nJr )
end for
where H;, ¢ = 1,...,n, are pre-specified positive semidefinite matrices, v is the aug-

mented Lagrangian constant, and f is the dual stepsize. An O(1/N) convergence rate
of the ADMM can still be shown to hold for this general problem. In the following
subsection, we sketch a convergence rate analysis highlighting the key components and
steps. The details, however, will be omitted for succinctness.

Let us start with the assumptions.

Assumption 3.3.1 The functions h;, i = 2,...,n, are strongly convex with parameters
o; > 0:
’ ag;
hily) > hi(@) + (y = 2) " hi(w) + < lly — =],
where h;(x) € Oh;(x) is in subdifferential of hi(z).

Assumption 3.3.2 The gradient of function f(x1,xa,...,xy,) is Lipschitz continuous

with parameter L > 0:

IV £ (@hs . al) = V(wr,aa, .y < Ll () — o1, — a2, ..,y — )|
for all (2,2, ... 2)), (x1,22,...,2,) € X1 X -+ X Xy
In all the following propositions and theorems, we denote w¥ = (x’f, el xﬁ, A9 to

be the iterates generated by ADMM, and u = (x1,...,2y,).

Proposition 3.3.1 Suppose that there are v, 5 and & satisfying

n—1

max {)\max(Az—Ai)}’y+ 0 < min o;.

2 2<i<n 2<i<n

69



Moreover, suppose that the matrices H;, 1 = 2,...,n, satisfy

(n—i+1)(n+i—2)L?

H?g::Hi—<L+ >Ipii0 V2<i<n.

! 86
Let (a1 aE+tT XKLY€ Q be the sequence generated by ADMM. Then, for u* =
(z7,...,x}) € Q* and A € R™, the following inequality holds
T AT \Kk+1
*\ k+1 :
h(u*) — h(u""") + . kgl _Ael—/\k+1
Lp — Tnp n
A — ARt S At b
i=1
) 2 . 2
~ n i—1 n . i—1 n .
23 ([ s+ S et =] S g+ 3 et -
i=2 j=1 j=i Jj=1 J=i

1 Sy
g ([ =22 =18 = 1) 5 5 (et = b, — ot = o))
i=1

3
=B 1
> (20 ) I = R 5 Y ek - i
i=1

The following proposition exhibits an important relationship between two consecu-

tive iterates w* and w**! from which the convergence readily follows.

Proposition 3.3.2 Let w* be the sequence generated by the ADMM, then

TN ; ;
23 (I wh)? = e, whh)?)
=2

k k k
12, — llw — Jlw* — w3, > 0,

Hlw* - w e

i—1 n
where L;(w*,w) := Y Ajzi + Y Ajz;—b,i=2,...,n, and
j=1 j=i

2°" 8 %

Propositions [3:3.1] and [3:3:2] lead to the following theorem:

- 1 1 1 1 1
M = diag (2H1,...,Hn, Im> ,H = diag (2[-[1, §H§, . HS T 51—m> .
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Theorem 3.3.3 Under the assumptions of Propositions|3.5.1] and|53.5.9, and

_ 1.1 1 . v—8
H = diag <2H172H5a"'32HZ’ 232

Im> >0,

we conclude that the sequence {w*} generated by the ADMM converges to an optimal

solution. Moreover, for any integer t > 0 let

and for any p > 0 we have

iAiﬂ_fN —b

i=1

h(un) = h(u™) +p

2

1 n—1 n . n ) 1 ,
< ox (2] 2 Aite) -2 +Z||in—x?||§{i+g(p+||)\0||)
=1 ||j=i+1 i=1

3.4 Concluding Remarks

In [9], the following model is considered
min f(z) +g(y) + H(z,y), (3.16)

which can be regarded as without constraints, and the so-called proximal alter-
nating linearized minimization (PALM) algorithm is proposed. The main focus of [9]
is to analyze the convergence of PALM for a class of nonconvex problems based on
the Kurdyka-Lojasiewicz property. In that regard, it has an entirely different aim. We
note however, that PALM is similar to APGMM applied to (3.16) when there is no
coupling linear constraint. On the linearized gradient part, one noticeable difference
is that APGMM operates in a Jacobian fashion while PALM is Gauss-Seidel. If the
computation of gradient is costly, then the Jacobian style is cheaper to implement. As
shown in [9], PALM can be extended to allow multiple blocks. Similarly, APGMM is
also extendable to solve . The same is true for the other variations of the ADMM
proposed in this chapter. It remains a future research topic to establish the convergence

rate of such types of first-order algorithms. Other future research topics include the
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study of first-order algorithms for (3.1)) where the objective is non-convex but satisfies
the Kurdyka-Lojasiewicz property. It is also interesting to consider stochastic program-

ming models studied in [38], but now allowing the objective function to be nonseparable.

3.5 Proofs of the Convergence Theorems

3.5.1 Proof of Theorem |3.2.2

-B Y 0
We have F(w)=| 0 0 -A x | —| 0 |, for any wy and we, and so
A B 0 A b

(w1 — wa) T (F(wi) — F(wy)) = 0.

t—1
Expanding on this identity, we have for any w®, w',--- ,w'™! and w = %kzo wk, that
=
(w0 —w) " F(w) = - > (wF —w) Fw*). (3.17)
k=0

We begin our analysis with the following property of the ADMM algorithm.

Proposition 3.5.1 Suppose ho is strongly convex with parameter o > 0. Let {wk} be
defined by , and the matrices Q, M, P be given in (3.6). First of all, for any

w € Q, we have

L I2

> (- ahTQut - i) - (545, ) = 01+ = 7 THGE ).

(3.18)

Furthermore,

1 1 ~
k k k_ -~k k k
(= w** s =l = wblR )+ 5l = N3

(3.19)
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Proof. By the optimality condition of the two subproblems in ADMM, we have

(z — xk+1)T [fo(karl’yk) i h/l(l,kJrl)

where R} (z¥T1) € Ohy(z¥*1), and

(y = )T [Ty f ) + Ryt
_BT()\k _ ’7(Al‘k+1 + Byk-I—l - b)) + H(yk—‘rl _ yk)]
> 0 Vye)y

where hh(zF 1) € Ohg(zk+1).
Note that \¥ = \¥ —~(Az**1 4 By* —b). The above two inequalities can be rewritten

as
(- 397 [vxf(azk, UF) + RL(F) — ATAF 4 G(EF — xk)} >0 VredX,  (3.20)
and

(y=3")" [V @55 + my(") — BT + /BT B(F — ) + H@G* )] 20 wyey.
(3.21)
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Observe the following chain of inequalities

(@ — &) Vo f(@3, 4" + (y = 7°) TV, (3
= (=)L f@E ) + (v =) VA
+y— ") (Vyf (@, 5%) — Vy (3", 4"))

(@ — &) Vo f (@, 6%) + (y = 7°) TV F (3, 9%) + Llly — 7" 1v* — "
(@ — &) TV f (3,07 + (y — ") TV (3, 0Y)

+(F =) TV (@) + Ly — 7" - kH
( ~k

+ o+
@z

5"
Nky

)

)

+
+

< floy) - f@ER ) - y) IV F (@ 0F) + Ly — 7" lly* — ¥l
Flaay) = £ 7 + Sy 3412+ Ll — 3l - 7]
< fle) - FE ) + S = 1 Dl - 7l - P (322)
Since
(43" + B =) = B~ )~ ~ (=) =,
we have

- - 1 -
(A= ARYT (A:z’f + BjF — b) = (A —2)T (—B(yk — )+ (W - A’f)) . (3.23)
Y
By the strong convexity of the function hg(y), we have

(v = 7 TR (") < haly) = ha(@*) = Zlly = 71 (3.24)

Because of the convexity of hi(x) and combining (3.24)), (3.23)), (3.22)), (3.21)) and (3.20]),

we have

_ L L _ ~ _
)~ h(@) + (5 + 5 ) I = 7P+ = 3T HGE o)
T ~
r— 3F —AT )Nk G(zF — :Ek)
+| vy —BTM —~ vBTB(y* — >0
A — Ak AzF 4+ ByF —b —B(y* — %) + ( A’f)

for any w € Q and @*. By definition of Q, (3.18) of Proposition [3.5.1|follows. For (3.19)),
due to the similarity, we refer to Lemma 3.2 in [57] (noting the matrices @, P and M).
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The following theorem exhibits an important relationship between two consecutive

iterates w* and w**! from which the convergence would follow.

Proposition 3.5.2 Let w* be the sequence generated by the ADMM, w* be defined as
in (3.7) and H satisfy Hs := H — (L + L;) I, = 0. Then the following holds

1 * * 1 ~
5 (Il = w2, — o = 2) = St — @b, > o, (3.25)
where
G 0 0 G 0 0
H=~B"B+H, M=| 0 H 0 , and Hy=| 0 H, 0 (3.26)
0 0 i, 0 0 2y

Proof. It follows from Proposition that

hu) — B + (w — )T P(a)
2
(w— )T QuF — i) ((L L ) I — 2+ (- ) THGE - yk>)

2 "2
1 k412 k12 1 k ~k |2 1 k k12
= g (oo = w0y = o = I, ) + Gt = 21+ o3 = 3%

(B 2) W -1+ - THGE ). (327

v

Note that Hy := H — (L + %2)[(1 = 0, we have the following
L, L®\ T gk k
2 Iy —_iMTH(G* —
<2+2a>lly glIF+ =) HG" —y")
L, L*\ g 2, L ) k)2 k k2
— (45 ) k=1 g (I = 0¥ = = P18 — 1~ 1)
S
2

. 1 -
ly = v* 17 = lly = 3117 ) — 5 llv* = "1, (3.28)
2
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Thus, combining (3.27)) and (3.28)) we have

h(u) — h(@®) + (w — &%) T F(a*)

1 1 -
> 5 (o =Ry = =) = 5 (lly =" 1 = ly = 51
1 . 1 . 1 ~
gl = MG+ Sl — 7, + g IXE - AP (3:29)

By the definition of M and H, according to (3.26)), it follows from ([3.29) that

1 1
~k =k T (K k2 k412 k_ =k 2
A(i*) = h(u) + (@ —w)TF(@*) < 5 (Jhw = wh3, = o — w2 ) = Sk — a3,
(3.30)
Letting w = w* in (3.30)) we have
~ * ~ * ~ 1 * * 1 ~
(i) = h(u)+(@F —w*) TF(@F) < 5 (" = wb%, = w* = ot 2, ) =5 wb—at |,
(3.31)
By the monotonicity of F' and using the optimality of w*, we have
Lo k2 k2 ) Ly kk2
(It — w2y — = b Lt -
> h(@¥) — h(u*) + (@F — w*) T F(@F)
> h(i") — h(u*) + (@* — w*) T F(w")
> 0,
which completes the proof. ]
Proof of Theorem [3.2.2]
Proof. First, according to (3.25)), it holds that {w*} is bounded and
lim |Jw® — @ g, = 0. (3.32)
k—o0

Thus, those two sequences have the same cluster points: For any w*» — w™, by
we also have w*» — w™. Applying inequality to {w*n}, {w*"} and taking the
limit, it yields that

h(u) — h(u™) + (w — w™) " F(w™) > 0. (3.33)

Consequently, the cluster point w* is an optimal solution. Since (3.25]) is true for any
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optimal solution w*, it also holds for w™, and that implies w* will converge to w™>
Recall (3.18) and (3.19) in Proposition those would imply that:

h(u) — (i) + (w — @*) T F(a¥)

> (w- w’f>T@<w'f—w’f>
((B+2) W -1+ - THG )
1
> 5 (=R = o —w})

(Gem)w e o)

(3.34)
Furthermore, since H — (L + %2) I, = 0, we have
(5+ L2) I8 = I + - G o)
= (F+2) W= a1 g (o=l — o= 70 - 1o~ 21)
< 5 (Hy V%~ ly—71%) (3.35)

Thus, combining (3.34]) and (| - ) leads to
h(u) = h(@") + (w — &) " F(a")
1 1 N
> 5 (Il =Ry = o =) = 5 (ly =" 1% = ly = 51% ) - (3:36)
By the definition of M in (3.6) and denoting H = vBT B + H, (3.36) leads to

h(a*) — h(uw) + (0F — w) " F(a*)
1 1
5 (lr =1 = lle = 2*2) + 5 (ly =" 1% = lly = 1%

1 CONk)2 1y v k12
o (I = A2 = ] = A2 (3.37)

IN

n—1
Before proceeding, let us introduce w, := = > wF. Moreover, recall the definition
k=0
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of @, in (3.14)), we have

Now, summing the inequality (3.37)) over £k =0,1,..., N — 1 yields

h(an) = h(u) + (@n —w)' F(y)
N-1

1 1=
< 1 gy 1 ko NT ok
< W h(a”) — h(u) + N (" —w)' F(w")
k=0 k=0
1 012 012 1 012
< o (b= o+ Iy = o1 + S - 0P2). (3.38)

where the first inequality is due to the convexity of h and (3.17]).
Note the above inequality is true for all x € X', y € ), and A € R™, hence it is also
true for any optimal solution z*, y*, and B, = {X : ||A|| < p}. As a result,

sup {h(aN) ~ h(u*) + (@ — w*ﬂF(wN)}

= sup {hfin) — hu) + (B — ") T (=ATA) + (v — ) (=BT A)

4{XN‘_AﬂXAjN‘FBgN“M}

— sup {h(aN) — h(u*) + Ay (Az* + By* —b) — AT (AZy + By — b)}

AEB,
= sup {h(aN) — h(w*) = AT (AZy + Bijy — b)}
AEB,
= h(ay) — h(u*) + pl|AZx + Bijn — b, (3.39)

which, combined with (3.38)), implies that
h(un) — h(u®) + p||AZy + Byn — b|
1

1
< =l =2E + v =03 + = sup ||A = A0,
. (u I+ =l + 3 s
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and so by optimizing over (z*,y*) € X* x Y* we have

han) = h(u®) + pl|AZy + Byny — b||

1
(dist(xo, XV +dist(y°, V)% + 5 (p+ H)\OH)2> . (3.40)

<
- 2N

This completes the proof. O

3.5.2 Proof of Theorem [3.2.3

Similar to the analysis for ADMM, we need the following proposition in the analysis of
APGMM.

Proposition 3.5.3 Let {w*} be defined by (3.7), and the matrices Q, M, P be given
as in (3.6). For any w € ), we have

h(u) — h(@*) + (w — @) T F (")

. - L s _ _ _
> (=M QU = 1)~ (It~ 3P I = ) + (= T HGE o)
1 k12 k|2 Lok skp2 o Lok k2
= 5 (o = Ry = o =l ) + Gt = ¥+ oA - 3%

L ~ N - .
= (5 (=2 = 1) + - T HGE -0 (3.41)
Proof. First, by the optimality condition of the two subproblems in APGMM, we have

(2 — )T [Vaf (¥, 0h) + B (ah+)

AT (A — A (AT 4+ Byf — b)) + G(aF T — x’f)}
> 0, Vrxed,

and

(y—y"H7 [Vyf(xk, ") + ho ()
—BT()\k . ’y(A:L‘k+1 + BykJrl . b)) + H(yk+1 . yk)]
> 0, WYye).

Note that \F = \F — y(AzF1 + By* —b), and by the definition of @", the above two
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inequalities are equivalent to
z— )T |V f(@® o)+ B G — AT+ GEF —2F)| >0 vz e x, 3.42
1
and

(y=3")" |Vl @ o) + W) = BTN +9BTB@* — o*) + HGF — )| 20, vy e .
(3.43)
Notice that

x— )TV (") + (y = 7°) TV F (5, 0")
: (y—y") "V, f (", yF)
+(@F = M) TV (2%, 7)) + (0 = 7)) TV, (R, yh)

< flayy) — f@® ") — @ =) TV R R — (3 — ") TV, f (@R, )

+ o+

< fy)— F@ )+ (I -+ ) (3.44)

Besides, we also have

1
(A% + Bg* —b) — B(gF — %) — = (Ak - )\k> ~0.
Y
Thus

A= X)T(AZF + BgF —b) = (A= AT <—B(yk — ")+ i()\k - X’“)) . (3.45)

By the convexity of hi(x) and ha(y), combining (3.45)), (3.44), (3.43) and (3.42)), we

have

hw) — h(@) + 2 (2~ 27 4 [t~ 5F12) + - T HGE o)

2
T ~
r— ik —AT)F G(zF — %)
+| y—9" —BT)\F - yBTB(y* — %) >0
A — AP AzF 4+ BjF —b —B(y* — ") + 2 (\F =)

for any w € Q and w*.
By definition of @), we have shown (3.41)) in Proposition m The equality directly
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follows from (3.19)) in Proposition [3.5.1] O

With Proposition [3.5.3]in place, we can show Theorem [3.2.3 by exactly following the
same steps as in the proof of Theorem [3.2.2] noting of course the altered assumptions
on the matrices G and H. In the meanwhile, we also point out the following proposition
which is similar to Proposition [3.5.2] Since most steps of the proofs are almost identical

to that of the previous theorems, we omit the details for succinctness.

Proposition 3.5.4 Let w® be the sequence generated by the APGMM, and wF be as
defined in (3.7), and H and G are chosen so as to satisfy Hy := H — LI, = 0 and
Gs =G — LI, = 0. Then the following holds

1 * * 1 ~
5 (" = b1, = w* = b2 ) = St — 3%, 2 o,
where
G 0 0 Gs O 0
M=|o0 H 0 |,Hs=| 0 H, 0
0 0 I, 0 0 1ir,

andI:I:'yBTB—i-H.

Theorem follows from the above propositions.

3.5.3 Proof of Theorem [3.2.4

Similar to the analysis for APGMM, we do not need any strong convexity here, but we
do need to assume that the gradients V,hi(x) and Vyha(y) are Lipschitz continuous.
Without loss of generality, we further assume that the Lipschitz constant is the same
as Vf(x,y) which is L; that is,

||Vxh1(x2) — vxhl(.’ﬁl)” < LHl‘Q — x1|], Vax1,T9 € X,
IVyha(y2) — Vyha(y)|| < Llly2 — w1, Yy1,92 € V. (3.46)

Proposition 3.5.5 Let {@"} be defined by (3.7), and the matrices Q, M, P be as given
in (3.6), and G := yAT A + élp, H = éIq —~BTB > 0. First of all, for any w € €,
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we have

h(u) — h(@®) + (w — &%) T F(a")

(w— ") TQu* —@*) — (L(lla* — TP + ly* — 5"I%) + (v - §)THG* — "))
1 1 . 1 <
g (= @Ry = o = ) + gl = M + 5k = 32

= (Bt = P+l = 512 + (v - 7 THGEE - ). (3.47)
Proof. First, by the optimality condition of the two subproblems in AGPMM, we have

(2= &™) [ = aF 4 a(Tof (2, ) + Vyha (a5)

~AT( = (Aak + Byt~ b))
> 0 VeelX,

and

Noting A = A — ~(Az*t1 + By¥ — b) and the definition of @w*, the above two
inequalities are respectively equivalent to

(2= )" [Vaf (@, 9F) + Vaha(a®)
—ATXNE p v AT AR - 2F) + é(fck - mk)] >0 Voedi, (3.48)

and

-7 [Vyf(ka,yk) LV ha(F) — BTR 4 L —yk>] >0 ey, (349)

«
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Similar to Proposition we have

(x = &%) TV f (2", 9") + (y = 7)) TV f (2", ")

(3.4) L
< fay) - f@ 7 + 5 (b -3+ It - 1) (3.50)

Moreover, by (3.5 we have

- - L -
(¢ = 2" Vahi(a¥) < ha(e) — h (%) + 5\\96’“ - z¥||?

L -
S AR (3.51)

(v — ) " Vyha(y¥) < haly) — ha(3") + 5

Besides,
1 -
(A% + Bg* — b) — B(* — %) — S ()\k - )\k> —0.

Thus

~ B 5 ~ 5 1 ~
A=M)T (A" + B —b) = (A=) T <—B(yk — ")+ 5 ()\’“ - )\k>> . (352)

Combining (3:52), (3-51), (3:50), (3-49)), and (3-48), and noticing that G := yAT A+11,,
H .= 1Iq — vBT B, we have, for any w € Q and @, that

T«

h(u) = h(a®) + L(l|lz* — 2" + |y = 3*I1°) + (y = §*) T H(G" — ")
T

x— ik — ATk G(zF — zF)
+| y—3* —BT)k - vBTB(y* — %) > 0.
A— N Azk 4+ ByF —b —B(y* —*) + (W = \F)

5

Using the definition of @, (3.47)) follows. In view of (3.19) in Proposition the
equality also readily follows. O

With Proposition [3.5.5] similar as before, we can show Theorem by following
the same approach as in the proof of Theorem We skip the details here for

succinctness.

Proposition 3.5.6 Let w® be the sequence generated by the AGPMM, @* be defined
in B.7) and G := yATA + élp, H = élq — vBTB. Suppose that a satisfies that
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H,:=H —2LI; -0 and Gs := G —2LI, = 0. Then the following holds

1 1 .
5 (" = b1, = llw” —wh 2, ) = Sk — 3%, = o,
where
G 0 0 Gs 0 0
M=|0 H o0 . H;,=| o H, 0 ,
0 0 %Im 0 0 %Im

and H=~B"B+ H.

Theorem [3.2.4 now follows from the above propositions.

3.5.4 Proofs of Theorems [3.2.5( and [3.2.6

Proposition 3.5.7 Let {w"*} be defined by , and the matrices Q, M, P be given
in (3.6). For any w € Q, we have

h(u) — h(@®) + (w — &%) T F (")

w— " TQu! — ) - (Lny’f P+ - ) HGE - y'f))

( 2
1
2

Y

1 1 ~
(I — w3 — o = b3 + Sl — 4 + oA — 3PP
2 2
L N ~ .
~ (It =+ = T HGE - 0). (3.53)
Proof. First, by the optimality condition of the two subproblems in ADM-PG, we have

(z — xk—l—l)T [vxf($k+1,yk) + hll(xk—i—l)

and
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Noting A = M — y(AzFt1 + ByF — b) and the definition of @wF, the above two

inequalities are equivalent to
(z — 75T [vx F@ %) + Vehi (7%) — ATAF + G5 — m'f)} >0 VeedX, (3.54)
and

(=77 [Vl G5, 08) + 0a) = BTA +9BT B — o*) + HGF ~ )] 20, vy € .
(3.55)

Moreover,

B2 o L _
< Sy = 1@ + Sl - gt (3.56)
Besides,
1 -
(43" + B —b) - B(G" — ") - — (X = 2F) =0,
Y
and so
A= X)T(AZF + BgF —b) = (A= A))T <—B(yk — ") + i(xk - X’“)) . (357)

By the convexity of hi(z) and ha(y), combining (3.57)), (3.56)), (3.55), and (3.54)), we

have

h(w) — h(@*) + 2k - 712 + @ — ") THGE - o)

=

T ~
r— zF —AT)F G(zF — )
+| vy —BT )k - vBTB(y*F — i*) >0
A —\F A% + BiF —b —B(y* - 7*) + L (A\F = 3F)
for any w € Q and @*.
By similar derivations as in the proofs for Proposition (3.53) follows. O

With Proposition [3.5.7] in place, we can prove Theorem [3.2.5] similarly as in the proof
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of Theorem [3.:2.2] We skip the details here for succinctness.

For ADM-GP we do not need strong convexity, but we do need to assume that the
gradient V,ha(y) of ha(y) is Lipschitz continuous. Without loss of generality, we further
assume that the Lipschitz constant of Vha(y) is the same as V f(x,y) which is L:

Vyha(y2) — Vyho(y1)| < Llly2 — will, Yy1,92 € V. (3.58)

Proposition 3.5.8 Let {w*} be defined by (3.7), and the matrices Q, M, P be given
in (3.6), and H := éIq —yBTB > 0. For any w € Q, we have

h(u) = h(@*) + (w — @) " F(i")
(w— @) T Q" — %) — (Llly* = 31 + (v - ") T H(* — "))
1
2

v

1 - 1 ~
(o = w13y =l = b3 + 5 lla® = 41 + 5o = 3
— (Ll =512+ v - ) THG - 4h). (3.59)
Proof. By the optimality condition of the two subproblems in ADMM, we have

(z — xk—i—l)T [wa(ka’yk) i h,l(xk+l>

—AT(Ak - ’y(A.’Ek_H + Byk o b)) + G(.T’H_l o xk):|
> 0, VrelX

and

(y—y"H)7T [y’““ — "+ a(Vy f(@ T yF) + Vyha(yF)
~BT (N — (A2t 4 By — b))
> 0, VYye).

Noting A = M — y(AzFt1 + ByF — b) and the definition of @wF, the above two

inequalities are equivalent to

(. — )T [V f(@F, ) + 0 (@) - AT+ G@EF — 2| >0 vzeax, (3.60)
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and

- - ~ 1 .
(=" |V @95 + Vyha(®) = BT+ —(F =) | 20 wyey.  (3.61)

Therefore,
(x — 3" Vo f (@, 9" + (y = §°) TV, (3", 4Y)
= (z— V(@) + (=) TV FE ) + (- 55TV YY)
< flayy) — F@E ) = @3 = o) TV FER )
< o) — 1@ ) + Dt - (3.62)

Moreover, by (3.5]), we have

. . L .

(v — ) " Vyha(y¥) < haly) — ha(3%) + glly’“ —g*|1% (3.63)

Since
K . N YN
AF 4+ Bi* —b— B@§* —y )——()\ ~3 ) =0
y
we have
- - 1 -
A=) (AZ* + BgF —b) = (A=) T (—B(yk — ")+ ;()\k - /\’“)) : (3.64)

By the convexity of hy(z), combining (3.64), (3.63), (3.62), (3.61)), (3.60), and noticing
H .= éIq —yBT B for any w € Q and @* we have

h(u) — h(@¥) + L|ly* — §*11> + (y — §") "H (G — o)

T ~
r — 3k — ATk G(zF — zF)
+| y—9* —BT)F —~ WBTB(y’f 7*) > 0.
A — Nk Az* + Bg* —b —B(y* k)+§( — k)
As a result, (3.59) follows. O

The proof of Theorem follows a similar line of derivation as in the proof of
Theorem and we omit the details here.
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Chapter 4

Randomized Primal-Dual
Proximal Block Coordinate
Updates

4.1 Introduction

In this chapter, we consider the following multi-block structured convex optimization

model
N M
Igin f(ajla te )$N) + Zul(xl) +g(y17 to 7yM) + Zvj(yj)
i i=1 j=1
N M (4.1)
s.t. ZAZ.’I}Z + ZBjyj =b
i=1 j=1
x, € X, i=1,...,N; Yj Eyj,j:L...,M,
where the variables z = (z1;--- ;zn) and y = (y1;--- ;ynm) are naturally partitioned

into N and M blocks respectively, A = (A1, -+, An) and B = (By,---, By) are block
matrices, X;’s and );’s are some closed convex sets, f and g are smooth convex functions,
and u;’s and v;’s are proper closed convex (possibly nonsmooth) functions.

4.1.1 Motivating examples

Optimization problems in the form of (4.1) have many emerging applications from

various fields. For example, the constrained lasso (classo) problem that was first studied
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by James et al. [61] as a generalization of the lasso problem, can be formulated as

min 3| Az — b|3 + 7],

(4.2)
s.t. Czx <d,

where A € R™*P, h € R™ are the observed data, and C € R"*P, d € R" are the
predefined data matrix and vector. Many widely used statistical models can be viewed as
special cases of , including the monotone curve estimation, fused lasso, generalized
lasso, and so on [61]. By partitioning the variable x into blocks as x = (z1;--- ;2K)
where z; € RPi as well as other matrices and vectors in correspondingly, and

introducing another slack variable y, the classo problem can be transformed to

min
x7y

K
Z Aixi —-b
i=1

N[

2 K
+ 7 [lwillh
2 =1

(4.3)

=

(2

s.t. Cizi+y=d, y >0,
1

which is in the form of (4.1]).
Another interesting example is the extended linear-quadratic programming [103]
that can be formulated as
min 32" Pr+a'z+max{(d—Cz)'s— 3s'Qs},

T seS (4.4)
s.t. Ax <b,

where P and () are symmetric positive semidefinite matrices, and S is a polyhedral
set. Apparently, (4.4) includes quadratic programming as a special case. In general, its
objective is a piece-wise linear-quadratic convex function. Let g(s) = %STQS + 15(s),

where 1s denotes the indicator function of S. Then

seS

max {(d —Cz)'s— ;STQS} =g*(d — Cuz),

where g* denotes the convex conjugate of g. Replacing d — Cz by y and introducing
slack variable z, we can equivalently write (4.4) into the form of (4.1)):

1T T *

min sz' Pr+a' x4+ g*(y),
EXTRAN (4.5)
st. Ar+4+z=0b, 220, Cx+y=d,
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for which one can further partition the x-variable into a number of disjoint blocks.
Many other interesting applications in various areas can be formulated as optimiza-
tion problems in the form of , including those arising from signal processing, image
processing, machine learning and statistical learning; see [58| 23], [18] B9] and the refer-
ences therein.
Finally, we mention that computing a point on the central path for a generic convex

programming in block variables (z1;--- ;znN):

H%Cin f(xla"'axN)

st SN A <ba;>0,i=1,2,..,N

boils down to

min  f(z1,---,2n) — pe' Inz — pe’ Iny
z7y

s.t. Zf\;l Aixi +y =0,

where > 0 and e' Inv indicates the sum of the logarithm of all the components of v.
This model is again in the form of (4.1]).

4.1.2 Related works in the literature

One well-known approach for solving a linear constrained problem in the form of (4.1]) is
the augmented Lagrangian method, which iteratively updates the primal variable (z,y)
by minimizing the augmented Lagrangian function in and then the multiplier A
through dual gradient ascent. However, the linear constraint couples z1,...,zxy and
y1,---,ynm all together, it can be very expensive to minimize the augmented Lagrangian
function simultaneously with respect to all block variables.

It is very natural then, to use the multi-block structure of the problem. In fact,
the multi-block ADMM updates the block variables sequentially, one at a time with the
others fixed to their most recent values, followed by the update of multiplier. Specifically,

for (4.1)), it performs the following updates iteratively (by assuming the absence of the
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coupled functions f and g):

( k+1 : k k k vk

x] = argming cx, L,(z1,25, -, 2%, y", A"),
k+1 : k+1 k+1 k k

TN - argmlanEXNﬁp(xl T N_1HINY 7)\ )7
k+1 . k+1 k k k

5 - argmlnyleyl [‘p(x + YY1, Yo, -t 7yM7)‘ )7 (46)
k1 . k+1  k+1 k+1 k

Ynmr - argmlnyMeyM [’p(x + Y1 s 7yM_1’yM))‘ )a

Ak+1 — )\k o p(Akarl 4 Byk+1 o b),

where the augmented Lagrangian function is defined as:
N M p
Ly(z,y,\) = Zuz(xz) + Zvj(yj) — A (Az+ By —b) + 5 |Az + By —b||*. (4.7
i=1 j=1

Besides the multi-block ADMM, our work also relates to another popular topic:
the first-order primal-dual method for bilinear saddle-point problems. Below we briefly
review the method and it convergence results. More complete discussion on the connec-

tions to our method will be provided after presenting our algorithm.

Primal-dual method for bilinear saddle-point problems

Recently, the work [24] generalizes the first-order primal-dual method in [I5] to a ran-

domized method for solving a class of saddle-point problems in the following form:

N N
i Az ) — i(xi) ¢ 4.
grélg{h(z)+rg?e%){(<z,; x> ;u(x)} (4.8)
where x = (z1;...;2y) and X = X; x --- x Xy. Let Z =RP and h(z) = —b' 2. Then
it is easy to see that (4.8) is a saddle-point reformulation of the multi-block structured

optimization problem
N N

;Iéi)l(l Zl uz(xz), s.t. ; Ajx; = b,

=
which is a special case of (4.1)) without y variable or the coupled function f.
At each iteration, the algorithm in [24] chooses one block of x-variable uniformly at

random and performs a proximal update to it, followed by another proximal update to
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the z-variable. More precisely, it iteratively performs the updates:

k1 argming ¢y (—2%, Aiz;) + wi(z;) + Iz — 2Fl|3,  if i =i,
Ty = k ip . . (4-93)
Z3s if © # iy,
2K = argmin h(z) + (z, A" + QHZ — 2M3, (4.9b)
2€Z 2
R = q(F L — k) 4 AL (4.9¢)

where ¢ is a randomly selected block, and 7,7 and ¢ are certain parametersﬂ When
there is only one block of z-variable, i.e., N = 1, the scheme in becomes exactly
the primal-dual method in [I5]. Assuming the boundedness of the constraint sets X and
Z, [24] shows that under weak convexity, O(1/t) convergence rate result of the scheme
can be established by choosing appropriate parameters, and if u;’s are all strongly
convex, the scheme can be accelerated to have O(1/t?) convergence rate by adapting

the parameters.

4.1.3 Contributions and organization

e We propose a randomized primal-dual coordinate update algorithm to solve prob-
lems in the form of . The key feature is to introduce randomization as done
in to the multi-block ADMM framework . Unlike the random permuta-
tion scheme as previously investigated in [113] [I§], we simply choose a subset of
blocks of variables based on the uniform distribution. In addition, we perform a
proximal update to that selected subset of variables. With appropriate proximal
terms (e.g., the setting in ), the selected block variables can be decoupled,

and thus the updates can be done in parallel.

e More general than , we can accommodate coupled terms in the objective
function in our algorithm by linearizing such terms. By imposing Lipschitz conti-
nuity condition on the partial gradient of the coupled functions f and g and using
proximal terms, we show that our method has an expected O(1/t) convergence

rate for solving problem (4.1)) under mere convexity assumption.

e We show that our algorithm includes several existing methods as special cases

! Actually, [24] presents its algorithm in a more general way with the parameters adaptive to the
iteration. However, its convergence result assumes constant values of these parameters for the weak
convexity case.
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such as the scheme in and the proximal Jacobian ADMM in [27]. Our result
indicates that the O(1/t) convergence rate of the scheme in can be shown
without assuming boundedness of the constraint sets. In addition, the same order
of convergence rate of the proximal Jacobian ADMM can be established in terms

of a better measure.

e Furthermore, the linearization scheme allows us to deal with stochastic objective
function, for instance, when the function f is given in a form of expectation
f = E¢[fe(x)] where & is a random vector. As long as an unbiased estimator of
the (sub-)gradient of f is available, we can extend our method to the stochastic

problem and an expected O(1/+/t) convergence rate is achievable.

The rest of the chapter is organized as follows. In Section [4.2] we introduce our al-
gorithm and present some preliminary results. In Section we present the sublinear
convergence rate results of the proposed algorithm. Depending on the multi-block struc-

ture of y, different conditions and parameter settings are presented in Subsections

[4.3.2] and [4.3.3] respectively. In Section [4.4] we present an extension of our algorithm

where the objective function is assumed not to be even exactly computable, instead
only some first-order stochastic approximation is available. The convergence analysis is
extended to such settings accordingly. Numerical results are shown in Section In
Section [4.6] we discuss the connections of our algorithm to other well-known methods
in the literature. The proofs for the technical lemmas are presented in Section and

the proofs for the main theorems are in Section [4.9

4.2 Randomized Primal-Dual Block Coordinate Update
Algorithm

In this section, we first present some notations and then introduce our algorithm as well

as some preliminary lemmas.

4.2.1 Notations

We denote X = X1 x--- x Xy and Y =Y X --- x Yy. For any symmetric positive
semidefinite matrix W, we define ||z|jyr = V2TW2z. Given an integer ¢ > 0, [{] denotes
the set {1,2,---,¢}. We use I and J as index sets, while I is also used to denote
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the identity matrix; we believe that the intention is evident in the context. Given

I = {iy,ia, - ,in}, we denote:
e Block-indexed variable: x; = (2,5 ®iy; -+ 5 i, );

e Block-indexed set: X7 = X;, x --- x Xj ;

n?

Block-indexed function: ur(zr) = wiy (i) + Wiy (Tiy) + -+ - + w4, (24,);

Block-indexed gradient: Vf(z) = (V;, f(2); Vi, f(x);--- ; Vi, f(x));

Block-indexed matrix: A; = [Ail, ORE ,Ain].

4.2.2 Algorithm

Our algorithm is rather general. Its major ingredients are randomization in selecting
block variables, linearization of the coupled functions f and g, and adding proximal
terms. Specifically, at each iteration k, it first randomly samples a subset [; of blocks
of z, and then a subset Ji of blocks of y according to the uniform distribution over the

indices. The randomized sampling rule is as follows:

Randomization Rule (U): For the given integers n < N and m < M, it
randomly chooses index sets I, C [N] with |I| = n and Jy, C [M] with |J| =
m uniformly; i.e., for any subsets {i1,i2,...,i,} C [N] and {j1,j2,...,Jm} C
[M], the following holds

PI‘Ob[Ik :{il,ig,...,in}] = 1/ < JZ ) y
Prob[Jp = {j1,J2,-- -, Jm}] =1/ ( JZ ) .

After those subsets have been selected, it performs a prox-linear update to those selected
blocks based on the augmented Lagrangian function, followed by an update of the
Lagrangian multiplier. The details of the method are summarized in Algorithm [1| below.

In Algorithm [1, P* and Q* are predetermined positive semidefinite matrices with
appropriate dimensions. For the selected blocks in I and Ji, instead of implementing
the exact minimization of the augmented Lagrangian function, we perform a block

proximal gradient update. In particular, before minimization, we first linearize the
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Algorithm 1: Randomized Primal-Dual Block Coordinate Update Method
(RPDBU)

1
2

Initialization: choose 2°,y° and A\ = 0; let ¥ = A2° + By® — b; choose p, p., Py
for k=0,1,... do

Randomly select I, C [N] and J, C [M] with |I;| = n and |Ji| = m according to

(U).

Let xf“ =z¥ Vi I} and yf“ = y;", Vi & J.

For I = I}, perform the update

2yt = argmin(V; f(2¥) — AJ N, 2p) + g (2r)
TrEXT

1
+ Bl Ar(ar — o) + M2+ S ller = b,
PhtE =k g Ap(htt — 2k,

For J = Jj, perform the update

y§+1 = argmin(V yg(y*) — B; A, ys) +vs(ys)

Y€V
Pyip ok ktinz Ly ke
+ 5 1B Gy =) + 7= 7+ Sy — vl
1
PR B (),

Update the multiplier by
)\k+1 — /\k o ka+1.

(4.10)
(4.11)

(4.12)

(4.13)

(4.14)
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coupled functions f, g, and add some proximal terms to it. Note that one can always
select all blocks, i.e., I = [N] and Jj, = [M]. Empirically however, the block coordinate
update method usually outperforms the full coordinate update method if the problem
possesses certain structures; see [95] for an example. To decouple the selected x blocks

and also y blocks, we choose the matrices P¥ and QF in Algorithm [1] as follows:

Pk = Pfk - pJJA}l;,AI}w Qk = QJk - pyBL—]I;BJka (415)

where P and Q are symmetric positive semidefinite and block diagonal matrices, ij
denotes the diagonal blocks of P indexed by I;;. With such setting of P* and Q¥, (4.10))

and (4.12)) respectively become

' 1
x’;+1 = argmin <VIf($k) — A}l—()\k - pmrk)a .’L'[> + U[(.'L'[) + §Hxl - xl}r”%[’ (416)
TIEXT

. 1 1
y§+1 = argrr)l}ln <VJg(yk) - B}—()\k - pyrk+2)7yJ> +os(ys) + §HZ/J - y?HéJ (4.17)
Y€V

Due to the block diagonal structure of P and Q, both x and y-updates can be computed

in parallel.

4.2.3 Preliminaries

Let w be the aggregated primal-dual variables and H (w) the primal-dual linear mapping;;

namely
T —AT)
w=| vy |, Hw)= —BT) , (4.18)
A Ax+ By —b

and also let

N M
u(w) = wilz:), v(y) =D v(y),
i=1 j=1

F(z) = f(z) +u(@), Gly) =9y)+vly), @(x,y)=Fz)+Gy).
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The point (z*,y*) is a solution to (4.1) if and only if there exists A\* such that

®(z,y) — ®(z*,y") + (w — w*)  H(w*) >0, ¥(z,y) € X x Y, VA, (4.19a)
Az*+ By* =1b (4.19Db)
e X, y-el. (4.19¢)

The following lemmas will be used in our subsequent analysis, whose proofs are

elementary and thus are omitted here.

Lemma 4.2.1 For any two vectors w and w, it holds
(w—w) " H(w) = (w—w)" H(w). (4.20)
Lemma 4.2.2 For any two vectors u,v and a positive semidefinite matric W :
uTWo = L (lfy + ol — lu—olf3). (4.21)

Lemma 4.2.3 For any nonzero positive semidefinite matric W, it holds for any z and

z of appropriate size that

|~ 2 (4.22)
where ||W||2 denotes the matriz operator norm of W.

The following lemma presents a useful property of H(w), which essentially follows

from ({4.20)).

Lemma 4.2.4 For any vectors {wk L, and sequence of positive numbers {Bk}’i, 1t holds
that

.

> shut o T I

Ll —w| H|®= = Bk —w) " H(w"). (4.23)
k k k k=0

& &) &
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4.3 Convergence Rate Results

In this section, we establish sublinear convergence rate results of Algorithm [I] for three
different cases. We differentiate those cases based on whether or not y in problem
also has the multi-block structure. In the first case where y is a multi-block variable, it
requires § = 37 where n and m are the cardinalities of the subsets of x and y selected
in our algorithm respectively. Since the analysis only requires weak convexity, we can
ensure the condition to hold by adding zero component functions if necessary, in such
a way that N = M and then choosing n = m. The second case is that y is treated as
a single-block variable, and this can be reflected in our algorithm by simply selecting
all y-blocks every time, i.e. m = M. The third case assumes no y-variable at all. It
falls into the first and second cases, and we discuss this case separately since it requires
weaker conditions to guarantee the same convergence rate. In particular, we make the

following assumptions:

Assumption 4.3.1 (Convexity) For (4.1)), X;’s and Y;’s are some closed convex sets,

f and g are smooth convex functions, and u;’s and v;’s are proper closed convex function.

Assumption 4.3.2 (Existence of an optimal solution) There is at least one point
w* = (x*,y*, \*) satisfying the conditions in (4.19)).

Assumption 4.3.3 (Lipschitz continuous partial gradient) There exist constants
Ly and Ly such that for any subset I of [N] with |I| = n and any subset J of [M] with
|J| = m, it holds that

IVif(z+Urz) = Vif(z)|| < Lg|lz||, Vz, 2, (4.24a)
IVrgly +Us5) = Vgl < Lgllgsll, Yy, 9, (4.24b)

where Uk keeps the blocks of T that are indexed by I and zero elsewhere.

Before presenting the main convergence rate result, we first establish a few key

lemmas.

Lemma 4.3.1 (One-step analysis) Let {(2F,y* r* A\F)} be the sequence generated
from Algorithm (1| with matrices P* and QF defined as in ([£.15). Then the following
inequalities hold

E;

k

[F(xk:-i-l) _ F({L‘) + ({L‘k+1 - x)T(_AT)\k:-i-l)
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(oo = )@ — ) TATI — p (F = ) TAT By — )|
s L
g (2P — ) T(P = pp AT A)(@MH = ob) — Ly o — 2+ 2
< (1= ) [FGh) = F@) + @ —2)T(ATX) + po (b =) ATrH], - (4.25)

N
and
E;, [G(yk+1) —Gy) + (" — )T (=BT A1) + (oy — Pyt — y)TBTTk_H}
HE; (5T — )T (O — p, BT B)(y*H — oF) — %Ehﬂyk 2
Y A
< (1-) [G0H =6 + 6 =) (=B N 40,8 =) BT (4.26)

where Ej, denotes expectation over Ij, and conditional on all previous history.

Note that for any feasible point (z,y) (namely, z € X,y € Y and Az + By = b),

A A = ;(Ak — N — (B b) + (By — b)
_ ;()\k CARFL) L B(yE ) (4.27)
and
Byf — By — ;()\k_l “ ) = (A — b) + (A — b)
= ;(A’f LRy — A@2h - 2). (4.28)

Then, using (4.21)) we have the following result.

Lemma 4.3.2 For any feasible point (x,y) and integer t, it holds
t

Z( k+1 )TATB(yk-H _ yk)
k=0

t
- = Z )\k+1 TB( k+1 yk)
=0

bl—l

l\D\*—‘

t
k k
( = 18— ulh s+ 3 I ||ZBTB> (4.29)
k=0
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and

(yk _ y)TBTA(:Ek-i-l _ J:k)

-

t
— 72)\]{1 )\kTA( k+1_xk)

| =

N[ —

t
+5 (lx =l = =2l ) [t - xk\liq) - (4.30)
k=0

Lemma 4.3.3 Given a continuous function h, for a random vector w = (&, 7, 5\), if for

any feasible point w = (x,y, \) that may depend on W, we have
E[®(#, ) — (z,y) + (& — )T H(w)] < Elh(w)], (4.31)
then for any v > 0 and any optimal solution (z*,y*) to we also have

E[®(3,9) — ®(2*,y*) + ]| Az + By — b||] < Sup h(z*, y*, \).
<y

Noting
O(z,y) — (2", y") + (w —w)  H(w*) = (a,y) — ®(a*,y*) — (\") " (Az + By — b),

we can easily show the following lemma by the optimality of (z*, y*, \*) and the Cauchy-
Schwarz inequality.

Lemma 4.3.4 Assume (x*,y*, \*) satisfies (4.19). Then for any point (£,9) € X XY,
we have

(2,9) — (", y") = =[N - [[AZ + By — b]. (4.32)

The following lemma shows a connection between different convergence measures,

and it can be simply proved by using (4.32). If both w and @ are deterministic, it
implies Lemma 2.4 in [3§].

Lemma 4.3.5 Assume that (x*,y*, \*) satisfies the optimality conditions in (4.19)). Let

v be any number that is larger than ||N*||. If a random vector (&,7) satisfies
E[®(2,9) — ®(z",y") + v[|AZ + By — b][] <,
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then

2/|A*
E||Ad + Bjj — b|| < and B[|®(2,9) — d(z*,y")|] < (”‘ +1> c.
P

v = 1A

The convergence analysis for Algorithm [I| requires slightly different parameter set-
tings under different structures. In fact, the underlying analysis and results also differ.
To account for the differences, we present in the next three subsections the correspond-
ing convergence results. The first one assumes there is no y part at all; the second case
assumes a single block on the y side; the last one deals with the general case where the

ratios n/N is assumed to be equal to m/M.

4.3.1 Multiple = blocks and no y variable

We first consider a special case with no y-variable, namely, g = v = 0 and B = 0 in
(4.1).  This case has its own importance. It is a parallel block coordinate update

version of the linearized augmented Lagrangian method (ALM).

Theorem 4.3.6 (Sublinear ergodic convergence I) Assume g(y) = 0,v;(y;) = 0,
Vj and B = 0 in (&1). Let {(x*,y* A\F)} be the sequence generated from Algorithm
with y* = y°. Assume ~ =10, p="0p;, and

Py, = Lyl + po A} Aq,, Vk. (4.33)
Let - . N
I A D
- , 4.34
v 1+ 6t (434)

Then, under Assumptions|4.53.1),14.5.9 and|4.3.5, we have

max {IE ‘F(:ﬁt) — F(QU*)‘ , E|| Az — b”}

2 P
< _ 0y * Pz 02
< g [0 (PG — Pty + 50 )
Lo e, max{(05 4+ |A%])2, 91X°)1%}
—|-2||:E T % + T (4.35)

where (z*,\*) is an arbitrary primal-dual solution.

Our result recovers the convergence of the proximal Jacobian ADMM introduced in

[27]. In fact, the above theorem strengthens the convergence result in [27] by establishing
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an O(1/t) rate of convergence in terms of the feasibility measure and the objective
value. If strong convexity is assumed on the objective function, the algorithm can be
accelerated to have the rate O(1/t?) as shown in [127].

4.3.2 Multiple = blocks and a single y block

When the y-variable is simple to update, it could be beneficial to renew the whole of it
at every iteration, such as the problem . In this subsection, we consider the case
that there are multiple z-blocks but a single y-block (or equivalently, m = M), and we
establish a sublinear convergence rate result with a different technique of dealing with

the y-variable.

Theorem 4.3.7 (Sublinear ergodic convergence IT) Let {(z*,y* A\*)} be the se-
quence generated from Algorithm (1| with m = M and p = py, = 0p,, where § = .

Assume
5 T A Ly P P T
P=Lil+p,A A, Qi;[—l— @—ﬁ—kpy B B. (4.36)
Let t+1 t k ~t+1 t k
i’t:x+ +92k:1x , Z)t:y+ +92k=1y (437)
1+ 0t 140t
where
~t41 : t _ pTyt Pz t+1 _2Q_tg
¥ —argg}ln(Vg(y) B Ay +oly) + 42" + By = bl" + Slly =4l 5
(4.38)
Then, under Assumptions|4.53.1),[4.5.9 and|4.3.5, we have
max {E|®(&",9") — ®(a*, y*)|, E[|Az" + Bj" — b||} (4.39)
2 0,0 * Pz 02 L. o )
< g |0 (20 - 0 )+ IR + 5l o
Lo w2 max{(0.5 + [[A*[)%, 9] A"}
+§Hy Y ”«9Q+(pz—0py)BTB+ 20

where (z*,y*, \*) is an arbitrary primal-dual solution.

Remark 4.3.8 It is easy to see that if 6 = 1, the result in Theorem becomes
exactly the same as that in Theorem[4.5.9 below. In general, they are different because

the conditions in (4.36)) on P and Q are different from those in (4.414)).
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4.3.3 Multiple » and y blocks

In this subsection, we consider the most general case where both x and y have multi-
block structure. Assuming & = 7, we can still have the O(1/t) convergence rate. The
assumption can be made without losing generality, e.g., by adding zero components if
necessary (which is essentially equivalent to varying the probabilities of the variable

selection).

Theorem 4.3.9 (Sublinear ergodic convergence III) Let {(z*,y* \¥)} be the se-

quence generated from Algorithm [1] with the parameters satisfying

NPz MPy

= = —=>0. 4.40
P=EN = (4.40)
Assume = 35 = nd P,Q satisfy one of the following conditions
. 1— 6 A 2—0
P=(2-0) ( 72 ) SATA+ LI, Q = ( 02 )pyBTB + Lgl. (4.41a)
1-— «9 2 0
Bg@e)( o )nprA+LfI Vi, Qj > ( )m B, Bj + LgI, Vj.
(4.41b)
Let t+1 t k t+1 t k
_ AT 03 2 : gt:y+ Y S (4.42)
146t 1+ 06t
Then, under Assumptions|4.5.1],[4.5.9 and|.3.5, we have
max {E |®(2',§") — ®(a*,y")|, E|AZ" + Bj' — b||} (4.43)

2 * ok
m (1_0) ((I)(xovyo)_(p(x Y )+pIHTOH ) HSC -z ||p 0p AT A

max{(0.5 + HA*H)2,9HA*H }
20z

IN

1 0 *112
+5lly” =yl +
where (z*,y*, \*) is an arbitrary primal-dual solution.

Remark 4.3.10 When N = M = 1, the two conditions in become the same.
However, in general, neither of the two conditions in implies the other one.
Roughly speaking, for the case of n =~ N and m =~ M, the one in can be weaker,
and for the case of n < N and m < M, the one in is more likely weaker. In
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addition, (4.41b)) provides an explicit way to choose block diagonal P and Q by simply

setting P and Qj ’s to the lower bounds there.

4.4 Randomized Primal-Dual Coordinate Approach for

Stochastic Programming

In this section, we extend our method to solve a stochastic optimization problem where
the objective function involves an expectation. Specifically, we assume the coupled
function to be in the form of f(x) = E¢ f¢(x) where  is a random vector. For simplicity

we assume g = v = 0, namely, we consider the following problem

N
min B¢ fe () + > wili),
=1

N
S.t.ZAil’i =b, z; € X, i=1,2,...,N.
i=1

(4.44)

One can easily extend our analysis to the case where g # 0,v # 0 and g is also stochastic.
An example of is the penalized and constrained regression problem [62] that
includes as a special case.

Due to the expectation form of f, it is natural that the exact gradient of f is not
available or very expensive to compute. Instead, we assume that its stochastic gradient

is readily accessible. By some slight abuse of the notation, we denote

wz[)\], H(w) =

A point z* is a solution to (4.44)) if and only if there exists A* such that

—AT)

N
Ar—b |’ F(x) = B¢ fe(z) + ;Uz(%) (4.45)

F(z) — F(z*) 4+ (w — w*) " H(w*) > 0, Yw, (4.46a)
Az* =b, 2" € X. (4.46D)

Modifying Algorithm [I| to (4.44)), we present the stochastic primal-dual coordinate
update method of multipliers, summarized in Algorithm [2| where G* is a stochastic
approximation of Vf(z*). The strategy of block coordinate update with stochastic

gradient information was first proposed in [25, [126], which considered problems without
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linear constraint.

Algorithm 2: Randomized Primal-Dual Block Coordinate Update Method for
Stochastic Programming (RPDBUS)

1 Initialization: choose 2°, A’ and set parameters p, oy ’s

2 for k=0,1,... do

3 Randomly select I, C [IN] with |Ix| = n according to (U).

4 Let xf“ =z Vi & I}, and for I = I}, do the update

. 1
aftt = argmin(G7 — A7 A xp) +ur(er) + gHAI(xI — o)+t + llzr = oy s -

ok

TrEX]
5 (4.47)
Update the residual 7%+ =% + A, (x’}“ — k).
6 Update the multiplier by
N —n)ag41
et b (o Nk} e 4.48
Ney, pr (4.48)

We make the following assumption on the stochastic gradient G*.

Assumption 4.4.1 Let 6* = G¥ — V f(2¥). There exists a constant o such that for all
k,

E[6% | z*] = 0, (4.49a)
E||6%]? < o2. (4.49b)
Following the proof of Lemma and also noting

Er, [(zr, — :z:lfljl)Télfk | 2] = By, (2 — %) Tk, (4.50)

we immediately have the following result.

Lemma 4.4.1 (One-step analysis) Let {(z¥,r* \*)} be the sequence generated from
Algorithm @ where P* is given in (&.15) with p, = p. Then

Elk [F($k+1) _ F(x) + (karl _ x)T(—AT)\k) + p(karl _ x)TATrk+1]
+Ey, (zFT —2)T (]5 —pATA+ I> (Pt — 2P)
&7

L
_?fEIkak . IkHHz + Elk($k+1 . xk)T(;k
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(1= 2) [P = F@) + (0 = ) (ATA) + pla* — ) AT, (451)

The following theorem is a key result, from which we can choose appropriate ay to
obtain the O(1/+/t) convergence rate.

Theorem 4.4.2 Let {(x*, \¥)} be the sequence generated from Algorithm @ Let 0 = &

and denote
Qg

Br = ,Vk.
ag(1-0)
(1)
Assume oy, > 0 is nonincreasing, and

Az’ =b, X =0, (4.52a)
P LI+ pAT A, (4.52b)

_ 1-— 1-—
or-1Bk (L= OBk awBprr (106 > 0, Vk (4.520)

20 2 20041 2
X > 1P _ (1—0)6; — & , for some t. (4.52d)
2p ay P

Let

t k
P Ozt_th—I—l +0 Zk:l QLT . (4‘53)

t
Oty 1 + 0 Z Qe
k=1

Then, under Assumptions|4.5.1,14.3.9,14.3.5 and|4.4.1], we have

(e +0) ap)B [F(E') — F(a*) + ] A2" — b]
k=1

(7)) * 1
< (1=0)ag [F(2°) — F(a*)] + 7”370 -z ”?5_pATA + 5’\950 — z*|?
¢
aBi  (1—-0)B1| O o2
— —LER[6%]=. 4.54
+ S, 5 Y +1§0 5 6% ] (4.54)

The following proposition gives sublinear convergence rate of Algorithm [2| by speci-
fying the values of its parameters. The choice of «aj depends on whether we fix the total
number of iterations.

Proposition 4.4.3 Let {(z¥, \¥)} be the sequence generated from Algom'thm@ with Pk
given in (4.15)), P satisfying (4.520), and the initial point satisfying Az® = b and \° = 0.

106



Let Cy be

* 1 * * *
Co = (1= B)ao[F(a®) = F(a")] + 5[z 2|, + 52 max{(0.5 + A% 93"},

2p
(4.55)
where (x*,\*) is a primal-dual solution, and Dy := ag(P — pAT A) + I
1. If a = W’Vk > 1 for a certain ag > 0, then fort > 2,
2 logt + 2)o°
max {E|F(&') — F(a*)|, E|A# — b} < 2204 aollogt £2)0" ) 56
O/t 0/t

2. If the number of maximum number of iteration is fized a priori, then by choosing

ap = \/, Vk > 1 with any given ag > 0, we have

2a002

max {E|F(2') — F(z%)|, E[| Az* —b||}_9 \[ N

(4.57)

Proof. When o = %, we can show that (4.52c) and (4.52d)) hold for ¢ > 2; see
Appendix Hence, the result in (4.56) follows from (4.54]), the convexity of F,
Lemma with v = max{1 + ||[\*||, 2||A*||}, and the inequalities

t

k=1

‘1
ZE <logt+1.
k=1

5~

When «y, is a constant, the terms on the left hand side of (4.52c) and on the right
hand side of (4.52d|) are both zero, so they are satisfied. Hence, the result in (4.57)
immediately follows by noting "/ _, i = v/t and 22:0 a2 < 2ad. O

The sublinear convergence result of Algorithm [2] can also be shown if f is nondif-
ferentiable convex and Lipschitz continuous. Indeed, if f is Lipschtiz continuous with

constant L., i.e.,
1 () = FW)Il < Lellz = yll, Va, y,
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then |V f(z)|| < Le, Yz, where Vf(z) is a subgradient of f at z. Hence,

]Efk (.CU[k - xl[f-l—l)T@ka(xk)
= ]EIk (J:Ik zlk)—rﬁfkf(l'k) + Elk (:U]k - $’;+1) kf( )
— ﬁ(x_ k)T@f( k)+EIk( k k+1)va(xk+1)

N
+E1k ak — kT Viz k+1))

(V/
(f(ﬂf) f(@*) +Er, [( ) iG]
+Elk($k k—‘rl)T(v ( k—l—l))
k

IN

- NN(f(ﬂf) fx ))+Ezk[f()—f(xk+l)]

+Eq, (2% — M T(V f(2F) — V(@@*T).

Now following the proof of Lemma we can have a result similar to (4.51)), and then
through the same arguments as those in the proof of Theorem [4.4.2] we can establish

sublinear convergence rate of O(1/v/1).

4.5 Numerical Experiments

In this section, we test the proposed randomized primal-dual method on solving the

nonnegativity constrained quadratic programming (NCQP):

min F(z) =

i 2 Qr+czstAr=bx;>0,i=1,....n, (4.58)
TER™

| =

where A € R™*" and Q € R™*" is a symmetric positive semidefinite (PSD) matrix.
There is no y-variable, and it falls into the case in Theorem We perform two
experiments on a Macbook Pro with 4 cores. The first experiment demonstrates the
parallelization performance of the proposed method, and the second one compares it to
other methods.

Parallelization. This test is to illustrate the power unleashed in our new method,
which is flexible in terms of parallel and distributive computing. We set m = 200,n =
2000 and generate Q = HH ", where the components of H € R™*" follow the standard
Gaussian distribution. The matrix A and vectors b, ¢ are also randomly generated. We
treat every component of x as one block, and at every iteration we select and update
p blocks, where p is the number of used cores. Figure shows the running time by
using 1, 2, and 4 cores, where the optimal value F(z*) is obtained by calling Matlab
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Figure 4.1: Nearly linear speed-up performance of the proposed primal-dual method
for solving (4.58)) on a 4-core machine. Left: distance of objective to optimal value
|F(2%) — F(x*)|; Right: violation of feasibility ||Az* — b||.

function quadprog with tolerance 1076, From the figure, we see that our proposed
method achieves nearly linear speed-up.

Comparison to other methods. In this experiment, we compare the proposed
method to the linearized ALM and the cyclic linearized ADMM methods. We set
m = 1000, n = 5000 and generate Q = HH ", where the components of H € R™*(?=50)
follow standard Gaussian distribution. Note that () is singular, and thus is not
strongly convex. We partition the variable into 100 blocks, each with 50 components.
At each iteration of our method, we randomly select one block variable to update.
Figure shows the performance by the three compared methods, where one epoch
is equivalent to updating 100 blocks once. From the figure, we see that our proposed
method is comparable to the cyclic linearized ADMM and significantly better than the
linearized ALM. Although the cyclic ADMM performs well on this example, in general

it can diverge if the problem has more than two blocks; see [16].

4.6 Connections to Existing Methods

In this section, we discuss how Algorithms|[I]and [2]are related to several existing methods
in the literature, and we also compare their convergence results. It turns out that
the proposed algorithms specialize to several known methods or their variants in the
literature under various specific conditions. Therefore, our convergence analysis recovers
some existing results as special cases, as well as provides new convergence results for

certain existing algorithms such as the Jacobian proximal parallel ADMM and the
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Figure 4.2: Comparison of the proposed method (RPDBU) to the linearized augmented
Lagrangian method (L-ALM) and the cyclic linearized alternating direction method of
multipliers (L-ADMM) on solving (4.58). Left: distance of objective to optimal value
|F(2*) — F(2*)|; Right: violation of feasibility ||Az* — b]|.

primal-dual scheme in (4.9)).

4.6.1 Randomized proximal coordinate descent

The randomized proximal coordinate descent (RPCD) was proposed in [90], where
smooth convex optimization problems are considered. It was then extended in [100], [78]

to deal with nonsmooth problems that can be formulated as

N
mzinf(xl,--- ,.’EN)+ZUZ‘($¢), (459)
=1

where x = (z1;...;zy). Toward solving (4.59), at each iteration k, the RPCD method

first randomly selects one block i, and then performs the update:

X

b { argming, (Vi f(2F), z;) + 5t |la; — 2F)3 + wizs), if i =iy, (460)

E z¥, if i # iy,
where L; is the Lipschitz continuity constant of the partial gradient V;f(x). With
more than one blocks selected every time, has been further extended into parallel
coordinate descent in [101].

When there is no linear constraint and no y-variable in , then Algorithm
reduces to the scheme in if I), = {iy}, i.e., only one block is chosen, and P* =
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L; I, A¢ =0, Vk, and to the parallel coordinate descent in [T01] if I, = {z,lﬁ, -+, i} and
Pk = blkdiag(Li}Q[, e ,L,-EI),)\’f = 0, Vk. Although the convergence rate results in
[100, [78] T0T] are non-ergodic, we can easily strengthen our result to a non-ergodic one

by noticing that (4.25)) implies nonincreasing monotonicity of the objective if Algorithm
is applied to (4.59).

4.6.2 Stochastic block proximal gradient

For solving the problem with a stochastic f, [25] proposes a stochastic block
proximal gradient (SBPG) method, which iteratively performs the update in
with V;f(2") replaced by a stochastic approximation. If f is Lipschitz differentiable,
then an ergodic O(1/v/t) convergence rate was shown. Setting I, = {ix}, Vk, we reduce
Algorithm [2to the SBPG method, and thus our convergence results in Proposition

recover that in [25].

4.6.3 Multi-block ADMM

Without coupled functions or proximal terms, Algorithm [I] can be regarded as a ran-
domized variant of the multi-block ADMM scheme in . While multi-block ADMM
can diverge if the problem has three or more blocks, our result in Theorem shows
that O(1/t) convergence rate is guaranteed if at each iteration, one randomly selected
block is updated, followed by an update to the multiplier. Note that in the case of no
coupled function and n = 1, indicates that we can choose P* = 0, i.e. without
proximal term. Hence, randomization is a key to convergence.

When there are only two blocks, ADMM has been shown (e.g., [74]) to have an
ergodic O(1/t) convergence rate. If there are no coupled functions, and
both indicate that we can choose P = 2 ATA,Q = pyBTB if # =1, i.e., all x and
y blocks are selected. Thus according to , we can set PF = 0,QF = 0, Vk, in
which case Algorithm [I] reduces to the classic 2-block ADMM. Hence, our results in
Theorems and both recover the ergodic O(1/t) convergence rate of ADMM

for two-block convex optimization problems.
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4.6.4 Proximal Jacobian parallel ADMM

In [27], the proximal Jacobian parallel ADMM (Prox-JADMM) was proposed to solve

the linearly constrained multi-block separable convex optimization model

N N
minZui(xi),s.t. ZAi.fl' =b. (4.61)
i=1 i=1

At each iteration, the Prox-JADMM method performs the updates for ¢ = 1,...,n in
parallel:

. 2 1
e = argminu;(z;) — (\F, Az + gHAZxZ + g ijf — bH2 + 5“1‘2 - fo%, (4.62)
‘ J#i

and then updates the multiplier by

N
ML= 2k ) (Z Aixfﬂ — b> , (4.63)

=1

where P; > 0,Vi and v > 0 is a damping parameter. By choosing approapriate pa-
rameters, [27] established convergence rate of order 1/t based on norm square of the
difference of two consecutive iterates.

If there is no y-variable or the coupled function f in , setting I, = [N], P* =
blkdiag(pmAlTAl + P, ,prJTVAN + Py) — pzATA = 0, Vk, where P;’s are the same
as those in , then Algorithm (1| reduces to the Prox-JADMM with v = 1, and
Theorem provides a new convergence result in terms of the objective value and

the feasibility measure.

4.6.5 Randomized primal-dual scheme in (4.9)

In this subsection, we show that the scheme in (4.9) is a special case of Algorithm
Let g be the convex conjugate of ¢* := h+ 1z, namely, g(y) = sup,(y, z) — h(z) — tz(2).
Then (4.8) is equivalent to the optimization problem:

N
}g}l{l; ui(zi) + g(—Az),

112



which can be further written as

N

min wi(zi) + g(y),s.t.Ax +y = 0. (4.64)
zeX,y =1

Proposition 4.6.1 The scheme in (4.9) is equivalent to the following updates:

argmin({—2z", A;x;) + u;(z;)

r, €X;
k+1 _ . .
i = +%||Ai($i —af) +rF|? + %sz - xi'ngrI—%A;.'—Aiv U= Tk, (4.65a)
ZE?, { 7& ik‘a
. 1
y" ! = argmin g(y) — (y, 2") + oV T Az, (4.65D)
)
1
Zk:Jrl — Zk: _ 7(A13k+1 + ykJrl)’ (465(3)
n

where ™F = Az* + yF. Therefore, it is a special case of Algorithm |1| applied to (4.64)
with the setting of I, = {ir}, px = %,py =p= % and P* =71 — %AiTkAik,Qk = 0,Vk.

While the sublinear convergence rate result in [24] requires the boundedness of X and Z,
the result in Theorem [£.3.7] indicates that the boundedness assumption can be removed
if we add one proximal term to the y-update in (4.65Db)).

4.7 Concluding Remarks

We have proposed a randomized primal-dual coordinate update algorithm, called RPDBU,
for solving linearly constrained convex optimization with multi-block decision variables
and coupled terms in the objective. By using a randomization scheme and the proximal
gradient mappings, we show a sublinear convergence rate of the RPDBU method. In
particular, without any assumptions other than convexity on the objective function and
without imposing any restrictions on the constraint matrices, an O(1/t) convergence
rate is established. We have also extended RPDBU to solve the problem where the ob-
jective is stochastic. If a stochastic (sub-)gradient estimator is available, then we show
that by adaptively choosing the parameter oy, in the added proximal term, an O(1/+/%)
convergence rate can be established. Furthermore, if there is no coupled function f, then

we can remove the proximal term, and the algorithm reduces to a randomized multi-
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block ADMM. Hence, the convergence of the original randomized multi-block ADMM
follows as a consequence of our analysis. Remark also that by taking the sampling
set I}, as the whole set and P* as some special matrices, our algorithm specializes to
the proximal Jacobian ADMM. Finally, we pose as an open problem to decide whether
or not a deterministic counterpart of the RPDBU exists, retaining similar convergence
properties for solving problem (4.1). For instance, it would be interesting to know if
the algorithm would still be convergent if a deterministic cyclic update rule is applied

while a proper proximal term is incorporated.

4.8 Proofs of Lemmas

We give proofs of several lemmas that are used to show our main results.

4.8.1 Proof of Lemma 4.3.1

We prove (4.25]), and (4.26)) can be shown by the same arguments. By the optimality
of :L";:l from (4.10)) or equivalently (4.16)), we have for any x;, € X,

(xr, — :E'I:H)T (V[kf(ajk) — A};Ak + pr};rk + @ulk (a:lfljl) + p[k (331;:1 - xlfk)) >0,

(4.66)
where Vu I, (:L”;:l) is a subgradient of uy, at :L";:l, and we have used the formula of rF+3

given in (4.11). We compute the expectation of each term in (4.66|) in the following.

First, we have

Er, (l‘[k - 'T’I:H)Tvlkf(xk)

T
= Ey, (Ifk - $’I€k> ijf(xk) + Er, (x];k - xl;,j_l)—rvlkf(xk)

= % (o-at) VN 4By - TS (4.67)
< % (f($) - f(xk)) + Elk |:f(1;k) _ f(l'k+1) + %”xk _ $k+1”2:|
= P () - 16) + B [0 - 165 4 D -] as)
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where the last inequality is from the convexity of f and the Lipschitz continuity of
Vi, f(x). Secondly,

(wr, —2fH T (ALY
(e, —2f ) (ALY + Ep (o], — ) T (= A[ )
T
_ (:L’ _ J:k) (—AT)\k) +Elk (:Ek _ l,k‘—l—l)T(_AT)\k)

= N (e a) AT B - TEATN). (169)

Similarly,

- N
pEr, (21, — xljljl)TAITkrk = 7 pe(z —2®)TAT? 4 p Br, (2 — 2T AR (4.70)
For the fourth term of (4.66[), we have

Elk(xlk - x];;j_l)—r@ulk (wlfglj-l)

Elk [Ulk (':Elk) —ur, (xllﬂljl)}

= ()~ B fu(a*) — ue) + u, (o)

— % [u(m) — u(xk)} +Ep, [u(z®) — u(@*)]
n—N

- 2= [u(:c) - u(xk)} +Ep u(z) — u(@ )], (4.71)

IN

where the inequality is from the convexity of uz, . Finally, we have

Er(an, — o5 P (2f = ob) = By (o — M) TP —ab). (472)

Plugging (4.68)) through (4.72) into (4.66) and recalling F'(z) = f(z) + u(z), by

rearranging terms we have

E;, [F(l,k+1) ~F(z) 4+ (@ — o) T(—ATARY 4 py(aFtt — x)TAT,rk}

T . L
+Erg, (mk‘H - x) Pzt — 2F) — ?fIEIkak — zF L2
N —n
<
- N

[F(xk) — F(z) + (aF — 2)T(=ATA*) + py(a* — :L‘)TATrk] . (473)
Note
(l,k—l-l _ SU)T(fAT)\k) + px($k+1 _ SU)TAT’I‘k
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— (karl o J;)T(—AT)\k) + px(l,kJrl _ x)TATTk+1
—pu ) TAT A - k) (P - ) TAT B )
($k+1 _ x)T(_AT)\k+1) + (px o p)(l‘k+1 _ J})TATTIH_I

_px(karl _ x)TATA(:L,k+1 _ :L‘k) _ px(karl _ x)TATB(ykJrl _ yk)

Hence, we can rewrite (4.73) equivalently into (4.25). Through the same arguments,
one can show (4.26)), thus completing the proof.

4.8.2 Proof of Lemma 4.3.3

Letting x = z*,y = y* in (4.31]), we have for any A that

v
&=
=
\-H>
N
|
=
8
o *
<
J
_|_
£
|
8
N
_‘
|
.
4
=

[®(z,9) — ®(z",y") — (N, Az + By — b)], (4.74)

where the last equality follows from the feasibility of (z*,y*). For any v > 0, restricting
A in B,, we have
E[h(z*,y", )] < sup h(z*,y",\).
AEB,

Hence, letting A = —% € B, in (4.74)) gives the desired result.

4.8.3 Proof of Lemma 4.3.5
In view of (4.32)), we have

E[(y — [NDIAZ + By - bl]] < E[®(2,9) — ®(a",y") +7[|Az + By - b||] <,
which implies

E||Az + By — b|| < and E[®(2, ) — ®(z*,y")] <e (4.75)

_c
v =X
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Denote a~ = max(0, —a) for a real number a. Then from (4.32) and (4.75)), it follows

that A
Aoa * 0 ok\\ * P ~ €
E(®(z,9) — ®(z*,y%)) SHAHWWAw+By—bWS§jW}W

Noting |a| = a + 2a~ for any real number a, we have

2[|A"]] >
e
(7—HAW

4.8.4 Proof of Inequalities (4.52¢) and (4.52d) with o, = f}—%

— (%)
We have [, = p(\/Ef(lfa) k71)7 and
Qg a
L+ (1= 0)Br1 — ——Br1 — (1— 0)By
Ak Ot 1

- 3{(arn-n) e
p k-1 (VE—(1—-0)VEk—1)
_( k+1_(1_0)> 1

Vi (VE+1-(1—0)VF)
=: %[ww)—w(ml)y
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By elementary calculus, we have

k-1 Vk
Wk = D0 1
2k=1)  (VE-(1-0)vEk—1)
Vk ~1 1 1-9
+< S )>2(¢%_<1 OVEk—1)° <\/E_ k—l)
B 1 vVE-1  Vk
2k —)(Vk—-(1-0VEk-1)| vE k-1

)]

B 1 vk
T k- D(Vh—(1—0)VE=1) <(1_9)_ k—1><0‘

Hence, ¥ (k) is decreasing with respect to k, and thus (4.52c) holds.
When o4, = %, (4.52d)) becomes

g >'< Vi _(1_9)> ap @
2oVt~ [\VE—1 p(VE—=(1=0)t=1) pVi|’
which is equivalent to
1 > vt —l<=t> 9
2 t—1 5

This completes the proof.

4.9 Proofs of Theorems

In this section, we give the technical details for showing all theorems. For simplicity of

notation, throughout the proofs of this section, we define P and Q as follows:

P=P-p,ATA, Q=Q-p,B'B. (4.77)
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4.9.1 Proof of Theorem |4.3.6

Taking expectation over both sides of (4.25)) and summing it over k£ = 0 through ¢, we
have

IE[F( t+1) F(z) + (@ — ) T(—ATAY)] 4 (1= 0)p E(at*! — ) T ATt

+HZE ) = F(a) 4 (@M =) T(-ATAM )
—ZP (1 2)TATBM — o)
- ZE(MH —z) T P(aF ! — ak) - % Zt:Eka — k)2
< (1-6) [F(xo) — F(z) + (a° — a:)T(—A%g) + po(a® — @TATTO} : (4.78)

where we have used & = 6, the condition in (4.40) and the definition of P in [@.77).
Similarly, taking expectation over both sides of (4.26]), summing it over & = 0 through
t, we have

E[G(yt“) Gly) + (™ — o) (BTN + (1 - 0)p, E(y'+! — )T BT

+€ZE k+1 (y) + (yk—i-l _ y)T(_BT)\k—l-l)]

t
L
+Z]E k+1 T (yk—i—l k:) _ 79 ZEHyk _ yk+1||2

10 [0 6w + 60— 9 B 4 p B @)

IN

t
~0)Y Epy(yF — ) BT AR - 2b).
k=0
Recall AT = Ak — prA+1 ] thus
1
(AL )Tkl = 2 (kL )T (k1 pky), (4.80)
1)

where X is an arbitrary vector and possibly random. Denote AL = £\t — pzrtt1. Then
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similar to (4.80]), we have

- 1 - N
(R = )T —;WH - TG, (4.81)

Summing (4.78)) and (4.79) together and using and (4.81]), we have:

E{%t“,m—@(x,ymwt*l w) H@') + 1<Xt+1—A>T<Xt“—”>]

Pz
t—1

+0 Y E[@@H ) — e, y) + (@ —w) T Hwh )
k=0

1
+;()\k+1 _ A)T()\k+1 o Ak)

IA

(1) [F(mo) ~F(x) 4 (2° — 2)T(—ATAY) + pu(a® — x)TATTO}

+(1—0) [G(yo) —G)+ @ =) (=BT +p,(0° - y)TBTTO]
+prE(fEk+l o w)TATB(ykJrl - yk)

k=0
t
+(1-0)> " pyE(y" —y) " BT A — 2F)
k=0
t _ L t

- ZE($I€+1 _ I)TP($k+1 _ $k) + 7]0 ZEka _ xk+1||2

kTO
=Y EWT -y QW -yt + *g ZEHy v, (4.82)

k=0

where we have used ®(z,y) = F(z) + G(y) and the definition of H given in (4.18).
When B = 0 and y* = 4°, (4.82)) reduces to

E |:F(£L’t+1) _ F(SE) + (’LZ)H_I )TH( t+1) i(}\t—&—l _ )\)T(S\t—i—l _ )\t):|

Pz

+HZE [ ) = F(z) + (b — ) TH(wh ) 4 SR - )T (AR - )\k)}

P
< (1- 9) [ (@) — F(z) + (2% — 2) T (=ATAO) + pp(a° — x)TATTO]

t t
L
=3B - o)A@ - aF) + ZLS Bt - oF
k=0 k=0
Using (4.21) and noting 0 = p%, from the above inequality after cancelling terms we
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have

B

( t+1) ( ) ( ~t+1 )TH( t+1):|
z_: [ 2 — F(z) 4+ (bt — w)TH(wk'H)}

1
—E
3,

T

t—1

||5\t+1 _ )\H2 _ H)\O _ )\HZ + H:\tJrl _ )\tHZ + Z H)\kJrl _ )\kHQI
k=0

(1-0) [F(") = F(@) + (2° = &) T (~ATX") + py(a® — 2) T AT+"|

IN

t t
1 L
1 [t = ald — [0 = alfd + 3 ot —ab3 | + EL S B a2,
k=0
(4.83)
For any feasible z, we note AX't1 — A\t = p, A(z!*! — z) and thus
1 -
p:H)\tH = N7 = palle™t = a4 (4.84)

In addition, since z¥t! and z* differ only on the index set I, we have by recalling
P=P—p,AT A that

k k k+l_ ok k K ;
a4t ek Lyt b P = e a3, Il a2 g o, Ll a2
(4.85)

Plugging (4.84) and (4.85) into (4.83)), and using (4.33)) leads to

+HZE [ k+1 F(I) + (wk—H _ w)TH(wk-l-l)]

< (1- 9) [F(a:o) —F(z)+ (2% —2) T (=ATXY) + pp(a® — a:)TATTO]
1 1
EINY — 12 - 2120 — 2|2
4B - AP + Gl — o1

The desired result follows from A\’ = 0, and Lemmas and with 7 = max{0.5+
AL 3IA*}-
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4.9.2 Proof of Theorem 4.3.7

It follows from (4.26)) with p, = p and m = M that (recall the definition of Q in {A.77))
forany y €Y,

L ~
G =G =y =" P+ =) BTN+ =) TR =) <0,
(4.86)
Similar to , and recall the definition of ¢!, we have for any y € Y,

- Ly, . ~ ~ -
G =G =7 =y P+ @ =) (=BTAT)+0 T —y) QW T —y") <0,
(4.87)
where
AFL = X\ — p (AT + Byt —b). (4.88)
Adding (4.86]) and ( - ) to and using the formula of \* gives
E [F(xt+1) F ,1;) ( t+1 x)T(_ATS\t+1)]
yi+1 T t+1 ~t4+1 L S t
+IE()\ —A) Azt 4 Bttt — b4 — (A )\
Pz
FE[GE) - Gly) + (5 - )T (-BTA) + 0 — )T QG — o)
t—1
+QZE [F(.%‘k—H) o F(l‘) + (xk;—&-l _ aj‘)T(—AT)\k+1):| 9E||~t+1 ytHQ

k=0

_ prE(karl — ) TATBF — %) — poE(a — 2)TAT B! — o)
k+1 Ly, k+12

+92E )= Gly) — L~y

+(yk+1 — ) (7BT)\k+1) + (yk—H o y)TQ(yk—i-l . yk)}

;(Ak—l—l _ )\k))

t—1

+GZE(>\k+1 o )\)T (Tk-l-l +

k=0

< (1-0) [F(:cO) ~F(a) 4 (20— 2)T(—ATA%) 4 pyp(2® — x)TATro}
_ ZE(xk—H . .’E)TP( k+1 k) + % ZEnmk . ﬂ?k—HHQ. (489)
k=0 k=0
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By the notation in (4.18) and using (4.29), (4.89) can be written into

E [@(a:ul,gtﬂ) — ®(z,y) + (@' - w)TH(th)}
t—1

+HZE [(P(xlwl, y" Y — ®(z,y) + (W — w)TH(warl)}
k=0

1 ~ 5 N -
_pr <(}\t _ )\H-l)TB(yt-‘rl _ yt) _ (yt—‘rl o y)TBTB(yt-‘rl . yt)>

P
0 - B 0 t—1
+;E(At+1 N7 (At+1 _ )\t) i ; kZOE()\kH N7 ()\k—i-l _ )\k)

IN

(1-9) [F(xo) —F(z)+ (2 —2) T (=AY + p(2° — x)TATro]

t t
~ L
_ § E(xk+l _ m)'I'p(xk-i-l _ xk) + f § :Eka _ xk+1H2
2
k=0 k=0
t—1
eLg k k+1)12 L ~
EllgF — o*+ IR — o2
t5 g_o ly* =™ 17 + S Ellg™ =]

Now use (4.21]) to derive from the above inequality that

E [®($t+1, g = ®(z,y) + (@ — ,w)TH(th)]
t—1

—i-GZIE [q)(a;kJrl,ka) — P(z,y) + (wk+1 _ w)TH(wkH)]
k=0

t—1
0 ~t+1 2 0 2 4 k+1 k12 0 ~t+1 t12
+5 (EI7" =yl — Is° - l3) +2;Eny —oF1I5 + EIT - o115

p 3
+5 EI7 = yllEr s = 1v” = vll5p)
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t—1
p P
+5 DB =y G + SEITT - o 5

k=0
t—1
Pz T 3 -
_ ZE; <)\k _ /\k-i-l) B(yk:-i-l _ yk‘> _ E(/\t _ At+1)TB(yt+1 . yt)
0 B t—1
1 (BIATT =X =0 =) + o ZEWH NP+ BIAH - X

IN

(1-0) [F(:L"O) — F(z) + (2° — 2) (—AT)\O) + po(a® — x)TATTO}
+ % Z]EHl‘k - CC]H_IHQ
k=0

0L i
QZEHy e+ gEH Ty (4.90)

t
1
=5 Bl — 2|} - [12° — 2} + > _Ella* — 2113

Note that for £k <t —1,

Pz \k E+1\T k+1 k 0 k+1 k|2 k+1
——= (A" =X B — — |\ Y >
p( ) By y)+2pH I = =55 lly

-y HBTB
and

20
Because P,Q and p satisfy ([£.36)), we have from (£.90) that

~ . 0 - P~
_()\t _ )\t—‘rl)TB(yt—I—l _ yt) + 27p||>\t+1 _ >‘t||2 Z _7Hyt+1 _ ytHQBTB'

E [(I)(:L,tJrl,gtJrl) ~ B(z,y) + (thrl )TH( t+1)}

+QZE [(p RHL k1) §(zy) + (whtT — w)TH(wk+1)}
< (1- 9) [F(xo) ~ () + (2% — 2)T(—ATA%) 4 pp(2° — x)TATro]
gl =l + S1° ol + Z10° — e + BN NP
Similar to Theorem from the convexity of ® and , we have

(1 +60E[@(2",5") — ®(z,y) + (0" —w) " H(w)]
< (1-0)[F(2°) - F(z) + (2" - )T (=ATA) + pp(a¥ — x)TATTO]

L 2 0 0 2 P .0 2 0 0 2
+§H$ —x|!13+§||y —yIIQ—i-%Hy —?JHBTB+%EH)\ — A% (4.91)
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Noting A® = 0 and (20 — 2) TATr0 < 4|2 — z[| 47 4 + [|7°]|?], and using Lemmas [4.3.3
and with v = max{0.5 4 [|\*]|, 3]|]\*||}, we obtain the result (4.39).

4.9.3 Proof of Theorem |4.3.9

Using (4.29)) and (4.30)), applying (4.21]) to the cross terms, and also noting the definition
of P and Q in (.77), we have

t—1

0 - -
_‘E Z()\k—i-l o )\)T(Ak—i—l o )\k’) + ()\t-‘rl _ )\)T(}\t-l—l o )\t)
P k=0
t
+ZP$E(xk+l o x)TATB(yk-H o yk)
k=0
t
+(1-9) Z pyE(y* —y) T BT A(2" T — o)
k=0
t ~ t
Z kL P(karl 7f Z ka _ xk+1H2
k=0 k:
! L,
Z k+1 Q(yk+1 k: 72 ||y k+1”2
k= k=
0 t—1
_ t+1 2 0 2 k+1 k2 Yt+1 t12
= 3, E A= A2 = (1A% = A +kz:0||)\ = N F AT =N

+ ZE )\k-{-l TB( k+1 _ yk)

<1 T«
+pr ZE()\/C—I _ )\k)TA(l‘k+1 _ CL‘k)
k=0

t
(2-0)p
— [l =[5 ,) + — d Bl — 2k )%,
0

k=
t t
L
(rxt“ ol = s =l Sl - ’“HQ) + 2L SRt - 2t
k=0

1
2

1 L, <

-3 (!ym—y!Q ly® = wllZ JrZHy’“+1 yMlIG ) + 5 D ElyE =y R,

k=0
(4.92)

_bp
yE (Hx —5UHA TA ™

where we have used the conditions in (4.40]).
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By Young’s inequality, we have that for 0 < k <'t,

Pa 0 1
7(}\1@ o /\k-i-l)TB( kE+1 ) H k+1 )\kHQ

p 2
p2—10p; Kl 2 [@.40) ( )Py kel k2
< .
< BSEEIBE - B B - e, (493)
and for 1 < k <t,
(1-0)p _ 01—
y()\k 1 )\k)TA(xk—l-l _ :Ek) 2 o ” k 1 )\k‘”2
S -0 p< ><2 0)
pl&—0)py k1 2 [@.40) k1 k
< 1-05 S AG — ) D=0 gl =
(4.94)

Plugging (4.93) and ([#.94) and also noting || \+! — A¥||2 > ||AFH!

— A2, we can upper
bound the right hand side of (4.92)) by

0 < 0p
— 5B [IAF = X2 = X0 = AP] - ZEE (ll2° - aldr , — 2! — w3 )
1-6)(2-6 2-0)p,\ <
+<< 000, , ( 2>y>ZEH$M_mkHiM
k=0
t
(2—-6)p
g B = s
k=0

t
1 k k
—5E (th“ — x| = — 2%+ ) e - ||§3>
k=0
Lf : k k+1)2
+7ZE||:£ — "
k=0

t
1 102 0_ 2 k1 k)2
—5E (Hy —yll% = ly® =l + Dy =yt

k=0

t
Lg k k+1)2
+2;Euy )
Bia) 1 0 2 0 i\0 2

126



In addition, note that

2

N N
n
0"t — 2%, = N S A —a)| <n )] el - xi”ixin
=1 i=1
N
k k k k+1 k k‘ 1
2% — PP = |1 Auaf — 2T <n > flaf - aft HATA
i€l ]
2 M
k k k k k
ly* =" M s = | D2 Bilyy — ™| <m Dol — v T s,
J€Jk j

Hence, if P and Q satisfy (4.41D), then (4.95) also holds.
Combining (4.82)), (4.92) and (4.95) yields

E [q)( t+1 yt+1) ~ B(z,y) + (wt+1 )TH( t+1)}
10 ZIE [@(mk+1 YY) B(a,y) + (Wt — w)TH(w’fH)}

< (1) [20.9") — 9a.)]
+(1-6) |(@" =) (~ATN) + pu(a® —2)TATH"
+(4" =) (=BTX) + 0, (s — ) BT+

1 0 2 g 0 2
+5 (Ie° = @l2_,, 4op+] Q)+%EHA =A% (4.96)

Applying the convexity of ® and the properties (4.23) of H, we have
(14 60E [0(3', 5') — (a,y) + (6! — w) T H(w)]
(1+60E [@(3",5') — D(w,y) + (@ — w)TH(@"*)]

E [(I)(xt+17yt+1) ~ B(z,y) + (u?”l )TH( t+1)]

I
[ b
I=)

kS
AVS
&3

t—1
+03 E [@(x’f“, YY) — B(x,y) + (W — w)TH(wkH)} . (4.97)
k=0

Now combining (4.97)) and ( -, we have

(1+6DE [(t@) <w,y>+<wf“—w>TH<w>}
< (1-0)[2("y") -



(1 0) [(xo — ) T(—ATAY) + py(a® — ) TATHO
+(y0 _ y)T(_BT)\O) + py(yO _ y)TBTTO}

0
b (10 =g, a1 = 9l) + S BIN — A2 (498)

By Lemmas [4.3.3| and [4.3.5[ with v = max{0.5 4 [|\*[|, 3||\*||}, we have the desired

result.

4.9.4 Proof of Theorem |4.4.2

From the nonincreasing monotonicity of ay, one can easily show the following result.

Lemma 4.9.1 Assume A\~* = \°. It holds that

IA

t

Z 5k % = N2 — XL A 4 Ak — A1

-1

— akﬁk'H [|)\k+1 _ >‘”2 _ H)\k _ )\HZ + H/\kJrl _ )\kHZ}

2ak
t
_Z 5k+1 H)\k—f—l _)\kHQ Z |)\k )\k—1||2
2
k=0 =1
t—1 t
1-6
_ Z O;kﬁk-‘rl ||)\k+1 . >‘H2 _ Z ( 5 )Bk ||)\k71 _ )\HQ
Ok+1
k=0 k=1
t
Oéoﬁl 0 2 UBr+1 ke 2, (1—=0)Bk, \x 2
A= A"+ A=A — A" = A
|| | Z P | | kzl 5 | |

—Z 957264—1 ||>\l<:+1 o )\k||2 + <a061 o ( 9)51) ||)\0 - )\||2

=0 20[1 2

- (at‘”@t _4 _29)5t> IXE = AP

2at

_Z <Oék B A= 0Bn  awBon (A _20)6k> IAF = A2 (4.99)

20y, 2 2041

By the update formula of A in (4.48)), we have from (4.51]) that

E [F(mkﬂ) ~ F(z) + (karl _ x)T(_AT)\k+1) 4 ()\kJrl _ )\)TrkJrl}
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A= N)TOFT —AF) (1= )agp p(ab Tt — )T AT bt
(1 _ %) ) e

(€75

+E

€93

+E(zF T —2)T (16 + I) (aF+t — k) — %Eﬂxk — 2R T2 E(aF L — 2F) T ok
(1-0)E [F(g;k) — Fz) + (2F — 2)T(—ATAF)

IN

(Ak _ )\)T(}\k _ )\kfl)

(1 _ (1*9)ak> p
Qg1
+(1 = 0)pE(zF — )T AT,

SO =0Tk 4

(4.100)

where similar to (4.77]), we have defined P=pP-— pATA.
Multiplying oy to both sides of (4.100|) and using (4.45)) and (4.21)), we have

arE |:F(:Ek+1) _ F(l’) + (wk—‘rl _ w)TH(wk—‘rl)]
agBri1
+ SRR [ = A2 — A = AP+ A - 22
Ok+1
+E [(1 — D) apy1p(zh Tt — x)TATrkH]
ag
+7E[Hl’k“ — | = [la* — 2| F + [ — 2P|
1
+5E [l = ]2 — fla* — 2|]? + b+ — 2*|2]
L
,O‘k2 fEka — P2 b g (e — o) Tk
< (1-0)aE [F(x’f) — F(z) + (w* — w)TH(wk)]
(1—0)B

R [N = A = X = 2 X - ]

+ap(1— 0)pE(zF — 2) TAT P, (4.101)

Denote A+l =\t — pritt. Then for k = t, it is easy to see that (4.101]) becomes
E [F(xtﬂ) ~ F(z) + (@ — w)TH(zth)}
a ~ ~
o [N A = N = A+ R - P
(6%
+5E |27 — 2% — lla* — 2l + o — ]3]
1
+5E [zt — 2| — [la* — 2| + [l — 2||?]

L
—%Eﬂxt — o2 4 B (T — 2t) Tt
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< (1-0)uE [F(xt) ~ F(z) + (w' — w)TH(wt)}

(1-0)8 . -
+ SRR A - A2 = A = X2 4 X - XY 2]

oy (1 —O)Ep(z! —x)TATr. (4.102)

By the nonincreasing monotonicity of oy, summing (4.101)) from k£ = 0 through ¢t —1

and (4.102)) and plugging (4.99) gives

E [F(a™) = F(z) + (@ —w) " H @)
t—1

+0ak+1 ZE |:F(xk+1) _ F(l‘) + (warl _ w)TH(warl)}
k=0

(677 N ~
B (I = AP X A A ]

t
« (0%
= Ellat —a|f + Y SRl -t
k=0

1
+o B[l —2]” - xl!2+Zka+1 z*||?]

t
L
- Z: %Eﬂxk — P2 4 kzzoakE(a:kH — k)T ok

IN

(1 - 6)aoE [F(xo) ~ F(z) + (w® — w)TH(wO)}

+ao(l = O)p(a® —2)TATr + D’ — 2|}
t—1
0841 apBi (1-0)p
=Y RN - AR - E[IX? — A2
Pt 2 201 2
. atflﬁt _ (1 B e)ﬁt ]EH)\t . )\||2
20lt 2
_Z g 1ﬂk —)Br+1  awBryr (1 —0)B E[AF — A2
20, 2 20011 2 '

(4.103)

From (4.52d)), we have

o [x 5 1B (1-6)8
21‘, |:||)\t+1 . )\HQ . ||)\t . )\||2 + ||>\t+1 o )\t||2} > ( t2 t 5 t ||)\t . )\HQ
p o
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In addition, from Young’s inequality, it holds that

1 a?
5Hxchrl o ka2 + OzkE(l'kJrl . l,k)T(;k > 7ch5||2
Hence, dropping negative terms on the right hand side of (4.103|), from the convexity

of ® and (4.23), we have

(at+1 + 920%) E {F(j;t) — F(x) + (0 - w)TH(wt)}

k=1

G [F(a™*h) = F(a) + (@ = w)" H (@)
t—1

i1 3B [P = F(a) + (! - w)TH @)
k=0

< (1= 0)ag [F®) ~ F(@) + (w* — w) " Hu")]

« 1
+(1 = )aop(a® —2) TATY + 2| — allf + | — 2|

aofi  (1—0)B 0 12 ; Ot k2
+< E[[A° — | +; S Gl (4.104)

2&1 2

Using Lemma and the properties of H, we derive the desired result.

4.9.5 Proof of Proposition 4.6.1

Let (I +0¢)~(z) := argmin, ¢(z) + 3|z — z[|3 denote the proximal mapping of ¢ at z.
Then the update in (4.9b)) can be written to

P <I +0 (g*>>_1 (zk — 1A:ck+1> .
n n
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Define y**1 as that in (4.65b)). Then

1 1 1
Y = {argming(y)—<y,z’“>+Hy+Ax’““|!2}
n U] Y 2n
1 ) 7,1 kL ktiy2
= —Jargming(y) + 5 |—y — (2" — —Az"")||
77{ y 27 7

. n 1
= argming(ny) + 5 [ly — (=" - ﬁAka)H?
Yy

- (olipm) (3

Hence, using the fact that the conjugate of %g* is %g(n-) and the Moreau’s identity
(I +0¢)~t+ (I +0¢*)~! =1 for any convex function ¢, we have

1
2P = AghtT

—1 -1
* 1 1 1
= (ro(5) () s (o Gom)) ().
n n n n
Therefore, (4.65¢)) holds, and thus from (4.9¢) it follows

shtl _ k+l _ Q(Axkﬂ + yk+1)'

Substituting the formula of ¥ into (#.9al), we have for i = iy,

xf“ = argmin(—ék, Ajzi) + ui(z;) + %Hxl —

T, €X;

k
I

i

. T
:argmm(—zk, Ajzi) + %(Axk + yk,Aixi> + wi(z;) + < ||z — kaQ
Z‘iEXi

. q 1
= argmin(—z", Aiz;) + wi(w:) + 5 - | Asi + Agirl; + 01 + Sz — 2fll a7 4,
T, €X; 277 2 not

which is exactly (4.65a). Hence, we complete the proof.
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Chapter 5

Zeroth-Order Algorithms for
Black-Box Optimization

5.1 Introduction
In this chapter, we consider a black-box optimization in the form of

(P) min  f(x) 4 h(z)

5.1
s.t. reX, (5.1)

where X is a closed convex set, h(z) is a regularization function, which is typically non-
smooth. The key feature of this model however, is that the exact formulation of f(z) is
unknowable. Instead, only some noisy estimation of f(z) is possible. This rules out any
high-order solution methods, leaving only zeroth-order methods as a solution choice. In
this context, we consider two settings. In the first setting, f(x) is an expectation of
F(z,¢) with unknown distribution . Unlike the usual stochastic programming model,
where the classical Sample Averaging Approximation (SAA) is applicable (cf. [83]), we
assume here that for each given x only one sample point can be collected for F'(z,&). This
is the case, for instance, when sampling is information sensitive. This is particularly
relevant for design problems, in which one cannot copy exactly the same design and
test the responses without worrying that the responses are influenced by the previous
sampling events. As an example, designing questions for standard tests such as SAT
or ACT is information sensitive, for there can be no two exams that contain exactly

the same questions. In fact, this setting resembles the bandit online learning model,
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where one can obtain one feedback at a given point. In a second setting, the objective
is not necessarily stochastic. In fact, it may not be stochastic at all. However, the
objective function maybe expensive to evaluate. Examples of such optimization model
include the design problems where the design variables are initial and/or boundary
conditions of a differential equation, and the objective value depends on the solution of
the differentiable equation. Given the initial/boundary conditions, the evaluation of the
objective function reduces to solving a differential equation. Therefore, one can only
evaluate the quality of the design variables approximately. However, the solution can
be made arbitrarily precise if one is willing to invest more time and effort.

In the above described black-box optimization models, no higher order informa-
tion is possible. We are left with some approximative zeroth-order subroutines. This
chapter sets out to explore the convergence rate of zeroth-order algorithms, assuming
the objective to have convexity or convexity-like (e.g. star-convexity and weak pseudo-
convexity) property. The analysis is then extended to the setting where some regu-
larization function is included in the objective. This leads to exploring zeroth-order
proximal-gradient type solution procedures. Our emphasis is placed on analyzing the
overall sample complexity, which essentially means the total amount of ‘efforts’, in order
to reach an e-optimal solution.

This chapter is organized as follows. In Section [5.2] we study an unconstrained
stochastic optimization model where the objective can be allowed a single-sample at a
point. The convergence study also extends to the star-convex functions. In Section [5.3
we study a class of nonconvex optimization model by introducing the so-called weak
pseudo-convexity. For this model, we develop a zeroth-order normalized gradient de-
scent method. In Section [5.4] we study unconstrained optimization where the objective
function can only be estimated. Moreover, the efforts required to estimate the function
value depends on the precision. Under the convexity assumption, sample complexity
bounds (to reach an e-optimal solution) are derived for the zeroth-order methods based
on the coordinate-gradient method and the ellipsoid method respectively. In Section [5.5
we extend our investigations to the constrained optimization with a regularization func-
tion. Sample complexities are derived for all the afore-mentioned methods. Finally, we
present the numerical experiments by comparing with the Bayesian optimization on two

practical problems.
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5.2 Stochastic Programming: One Sample at a Point

In this section, we consider model (5.1)) where the regularization term h does not exist,

and the function f is of the following form

f(z) = E[F(z,8)], (5.2)

where the expectation is taken over the random vector £. For a query of the function
value, a sample F'(z, ) is revealed. Furthermore, we assume that only one single sample
is possible for every query z. In other words, for queries of the function value at x
and 9, it returns two samples F(x1,£!) and F(x9,£2) with different realizations of the
random vectors ¢! and ¢2. For this stochastic optimization framework, we first present

some assumptions of F'(x,§) as well as some definitions.

Assumption 5.2.1 Suppose the function f(x) is given in the form (5.2)), then we as-
sume that F(x,§) satisfies

E[F(z,6)] = f(x), (5-3)
E[VE(z, )] = Vf(x), (5:4)
and
E[l F(z,€) — f(2)]%] < 65, (5:5)
E[IVF(x,€) = Vf(2)]*] < 67 (5.6)

Definition 7 We denote CL- (D) be the class of functions which are i-th order Lipschitz

continuous tn the domain D with the corresponding Lipschitz constant L;, namely
CL. (D) ={f [ IVVf(2) = VO f ()|l < Lillz - yl, Vo, y € D}.

There are two cases that are of special interest: i =0 and i = 1. We simply denote Ly

by L. In other words, C: (D) is the class of functions of Lipschitz continuous gradients,
i.e. for f € Ci(D),

IVi(z) =Vl < Lz —yll, vz,y €D. (5.7)

Now, we introduce a smoothing scheme and its properties which lead to the stochas-
tic zeroth-order oracle (SZ0).
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Definition 8 Let Uy be the uniform distribution over the unit Euclidean ball and B be
the unit ball. Given p > 0, the smoothing function f* is defined as

1 w) = Eqpey [ (w + )] = a(ln) /B f(w + p)dv (5.8)

where a(n) is the volume of the unit ball in R™.

Some properties of the smoothing function are shown in the lemma below, the proof

of the lemma can be found in [3§].
Lemma 5.2.1 Suppose that f € C}(R™). Let Us, be the uniform distribution over the
unit Buclidean sphere, and S, be the unit sphere in R"™. Then we have:

(a) The smoothing function f* is continuously differentiable, and its gradient is Lipschitz

continuous with constant L, < L and

V) = Eqret ) |+ podo| = 2o ) S (59
where B(n) is the measure of the unit sphere in R™.
(b) For any w € R, we have
7)) < 22 (5.10)
19 £ (w) ~ 5w)]| < “2F, (5.11)
E, [ 215w+ ) - Sl ] S|+t

(c) If f is convex then fH is conver.

Based on (j5.9) we introduce a single-sampling zeroth-order stochastic gradient (SSZ0)
of f at x:
1,2 n 1 2
Gu(z, 6% v) = m [F(z+ v, &) — F(z,8)] v, (5.13)

where v is the random vector uniformly distributed over the unit sphere in R™. Note
that ¢! and &2 are i.i.d. samples.
The following lemma shows the unbiasedness and boundedness of the SSZ0O.
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Lemma 5.2.2 Suppose that G, (z,&%2,v) is defined as in (5.13), and f satisfies As-
sumption [5.2.1. Then
Eve[Gul(z, €%, 0)] = VfH(2). (5.14)

If we further assume f € CEO(X) and F(z,&) € CL(R™) for all &, then the following
holds )
EuelllGules €2, 0) ) < AnN + 17120 + 4505, (5.15)

where N = L + 63.

Proof. The first equation is easy to verify. We prove the second inequality. Apply-
ing (5.12)) and (5.63|) to F(z,&), we have

E'U,§1’2 [HGu(JZ,fl’Q,’U)HQ]
= Eae [_Ev [||Gu(xa§1’2av)||2“

= Ea2 |E

HZ [F(e+pv,€!) = Fla, €] v

|

B 2
< Eae|E, [2 HZ [F(x + pv, £ — F(mjfl)] v ]
r 2
+E, |2 %[F(x,é) — F(z,&%)]v ”
(5-12) _ 2 272 2 n? 1 2412
< dn[Ea [|[VF(z,9))°]] + #°Ln +2?E51’2 [|[F(x,&") — F(x, %)%
2
< A {EIVI@)?] + E¢ [IVF(x,€) — Vi (@)|?]} + p2L*n? + 4%98
2
< dn (V@) +63) + pPLn® + 4%93
< 4nN + pL*n? +4Z§93. (5.16)
O

5.2.1 Convex Optimization

In this subsection, we apply a single-sampling approach to stochastic optimization prob-

lem. The solution framework is depicted as follows, where Projy(z) := argmin ||y — z||.
yeX
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Stochastic Single-Sampling Zeroth-Order Gradient Descent

Parameters: n, 4 > 0 and a convex set X C R™.

Initialization: x1 = 0.

fort=1,---,T,
Pick v* ~ Us,;
At ¥ 4 vk and 2*, receive F(zF + po*, &}), F(2", €2) respectively;
Assemble SSZO as Gy, (¥, &, o%) = & [F(a" + Juk, &) — F(a%,€2)] oF;

Update Tyl = PI’OjX (-’L’k — 77G,u( 75]1 27 ))

end for

The following theorem shows an expected O(T~/3) rate of convergence for the

stochastic single-sampling zeroth-order gradient descent algorithm. The expectation is

taken over the o-field generated by the random variables {{,1 vk Z 1-

Theorem 5.2.3 Suppose f(x) is convex and f € C’go (R™) satisfies Assumption
F(x,&) € CL(R™) for all £. Let {x*} be the sequence produced by the stochastic single-
sampling zeroth-order gradient descent algorithm. Furthermore, we define an averaging

sequence as
1 X
—— 2
xT_sz . (5.17)
k=1
Then, the following inequality holds

=’ =)

E[f(zr) — f(z¥)] < 20T g <4nN + p2LPn? + 4— 90> + L. (5.18)

In particular, if we setn = T~2/3, and p = T~/ then an O(T*1/3) rate of convergence

follows.
Proof. Let zj, := ||z* — 2*||. Then

Zoy = |l —ar?
. 1,2
HPI"OJX (xk — nG“(:Uk,ﬁk ,vk)) —z*
2
oy (at 1% ) —

1,2 1,2
= 2+ 1°)|Gu(a, &7 00| = mGu(a®, g7 0h) T (2 — 2.

2

IN
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Equivalently, we have

b * /'7 ;
Gu(xk7£]i 27vk)T($k -z ) < (Z]% - Zl%+1) + §||G,u($ka§]1 2>Uk)||2' (519)

Notice that E.12 |:G#(q;k,§]1’2’vk) | :];k} = V f#(2*) which is shown in (5.14]), we have
k I’

1
VTR~ ) < o (Bl | ] - Bl | 24]) + G lGaGR 6% M) P,

Summing up the above inequalities and using the convexity of f#, we have

T T
E[Z(f“(x’“)—f”(w*))] el + 5 LE[loueh et Il o0
k=1

k=1
By (5.10]), we have
f(a®) = fz*) < fr(a) - @) + L. (5.21)
Combining (5.21]) and ( - ) leads to

T T
E [Z(f(w’“) - f(x*))] < grllal+ g SOE[IGuat 6% ] + LT (522)

k=1

T
Based on (j5.15)), we can further bound )  E [HGu(ack,&éQ, Uk)”Q] as
k=1

T 2
SE (1G4 6% M) < (40 r2e + 4 0E) 7
k=1

Due to the convexity of f(x), we have

1 ) k *
< E|Z ) (f@h) - f@7)
k=1
< L’“”Q n 4nN+,u2L2n2+4 02 + Ly (5.23)
= or T3 0
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If we set n = T—2/3, and p = T/, then an O(T~'/3) rate of convergence follows.
U
5.2.2 Optimization with Star-Convexity

Definition 9 (Star-conver functions). A function f : R™ — R is star-convez if there

is x* € argmin f(x) such that for all a € [0,1] and x € X,
zeX

f(A—a)z” +ax) < (1 —a)f(z") + af(z). (5.24)
The following lemma characterizes the differentiable star-convex functions.

Lemma 5.2.4 For a differentiable function f, the star convexity condition (5.24]) is

equivalent to the following condition
f@) = fa*) < V@) (@ -a"), (5.25)

where x* = argmin f(z).
zeX

Proof. Suppose (5.24)) holds, then we have

f(x) = (1 = a)z” + ax)

_ ) < 5.26
f@) - £ < 1= , (5.26)
for all a € [0, 1]. Note that

—f((1 - *
a—1- l—«o
which implies (5.25)). Conversely, suppose that (5.25)) holds. Let us denote
d(a) == f((1 - a)e* + az) — f(a).

Clearly, (5.24)) is equivalent to

d(a) < ad(1), forall 0 < o < 1. (5.27)

It remains to show that if f is differentiable then (5.25]) implies ([5.27)). In fact, (5.25))
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leads to
(1= a)a* + az) — f(z*) < aVf((1 - a)z* + ax) " (z — 2¥),

or,
d(a) < ad'(a).
Hence,
d(@)\" ad(a)—d
(e _ odte) e,
« Q
forall 0 < a < 1, implying that @ is a nondecreasing function for a € (0, 1]. Therefore,
(o) _ d(1).
a — 1

which proves (5.27) for « € (0,1]. Since d(0) = f(z*) = 0, (5.27)) in fact holds for all
ae[o,1]. 0

Theorem 5.2.5 Suppose f(z) is star-conver and f(x) € CL(R") satisfies Assumption
5.2.1, F(z,&) € CLR") for all £. Let {x*} be the sequence produced by the stochastic
single-sampling zeroth-order gradient descent algorithm. Furthermore, after T iteration,

we define a random output Tp as follows
. k 1
Prob <xT:a: ) = o for k=1,2,...T. (5.28)

Then, the following inequality holds

1 —J:*”2

2
E(f(ir) — f(z*)] < = +1 <4nN + p2LPn? + 4/@93) +unLR,  (5.29)

onT 2

where X is assumed to be bounded with sup ||z|| < R. In particular, if we set n = T—3/4,
reX

and p =T, then we have an O(T~Y*) rate of convergence for E [f(ir) — f(z*)].
Proof. Let zj := ||2¥ — 2*||. Similar to the proof of Theorem we have

Gula, €% o) (o = %) < o= (5 = ) + DGR, 6% M2 (5.30)

1
2n
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Notice that E,12 . |G xk,fm,vk z*] = V f#(2*) which is shown in (5.14)), we have
{k K I k

* 1 n
V)T o) < o (Bl |2~ Bl 191]) + GlGuGR 62 o)l

Based on (5.11)), it follows

oo L U , pnL *
V@) (" —a*) < % (E[zi | ¥ — El241 | wk])+§llGu(wk,é",ﬁ2,v’“)||2+7||x’“—fﬂ I

Summing up the above inequalities and recall the weak star convexity of f, we have

T
E [Z(f(wk) - f(x*))]

k=1

T T
< gllalr S E[IGuat 6 o] + K S et —atl] 63
k=1 k=1

By the boundedness of X, we have ||z¥ — 2*|| < 2R. Thus,

T T
E[Z(f@k)—fw))]s21n||m%+;72 1G, (2", 642, 0%) 2] + pnLRT.  (5.32)
k=1

k=1

T
Based on (j5.15)), we can bound > E [HGu(azk,gia,vk)HQ] as
k=1

T 2
SUE[IGuh g ] < (40 + 2L 4 a5 ) 7

k=1

Base on the definition of Zp, we have
Elf(@r) — f(z")]

1 T
= () - f(fc*))]

k=1

E /s

277T (4 N+ u2L%n? + 472 00> unLR. (5.33)

Setting n = T—3/4, and u = T—Y*, an O(T~'/*) convergence rate in expectation
follows. O
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5.3 Optimization with Weakly Pseudo-Convex Objective

In this section, we introduce a notion of weak pseudo-convexity (WPC) which further
generalizes the star-convexity. Despite the similarity to the so-called strictly locally
quasi-convexity (SLQC) in [50], the WPC is in fact a weaker assumption. Our algorithm
is also based on the normalized gradient descent method. In particular, the key of our

zeroth-order algorithm is to build a novel estimation of the normalized gradient.

5.3.1 Problem Setup

We consider the following form of the problem (5.1

i 5.34

min f(z) (5.34)
where X C R" is a bounded convex set i.e., there exists R > 0 such that ||z| < R for all
reX,and f € C’i(x’\f ). In addition, in this section, we present the following definitions

regarding the function f.

Definition 10 (Bounded Gradient) A function f(-) is said to have bounded gradient
if there exists a finite positive value M such that for all x € X, it holds that |V f(x)|| <
M.

Note that if f(-) has bounded gradient, then it is also Lipschitz continuous with Lipschitz
constant M on the set X.

Definition 11 (Weak Pseudo-Convexity) A function f(-) is weakly pseudo convex
(WPC) if there exists K > 0 such that

V@) (z—a%)
V@I

flx) = f@") < K

holds for all x € X, with the convention that % =0if Vf(xz) =0, where x* is one

optimal solution, i.e., ©* € argmingcx f(z).

Here we discuss some implications of the weak pseudo-convexity. If a differentiable func-
tion f(-) is Lipschitz continuous and pseudo-convex, then we have (see similar derivation
in [87])

Vi) (x—y)

@)~ ) < MEE S,
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for all y,x with f(x) > f(y), where M is Lipschitz constant. Therefore, we can simply
let K = M, and the function is also weakly pseudo-convex. Moreover, as another

example, the star-convex function proposed by [91] is weakly pseudo-convex.

Proposition 5.3.1 If f(-) is star-convex and smooth with bounded gradient in X, then

f () is weakly pseudo-conver.

In light of Lemma the proposition is obvious. We next introduce a property that
is essentially the same as the SLQC property introduced in [50].

Definition 12 (Acute Angle) Gradient of f(-) is said to satisfy the acute angle

condition if there exists a positive value Z such that

o~ V@) (@ —a)
cos(Vf(x),x ) = IVf()] - ||z — z*]]

> Z>0,

holds for all x € X, with the convention that % =0if Vf(xz) =0, where x* is one

optimal solution, i.e., r* € argmingcx f(z).

The following proposition shows that the acute angle condition together with the Lips-

chitz continuity implies the weak pseudo-convexity.

Proposition 5.3.2 If f(-) has bounded gradient and satisfies the acute angle condition,

then f(-) is weakly pseudo-convex.

The proof of Proposition [5.3.2] is straightforward, hence we omit it here. The class
of weakly pseudo-convex functions certainly go beyond the acute angle condition. For

example, below is another class of functions satisfying the WPC.

Proposition 5.3.3 If f(-) has bounded gradient and satisfy the a-homogeneity with

respect to its minimum, i.e., there exists o > 0 satisfying
[tz — %) +27) = f(z") = t%(f (=) — f(27)),
forall x € X and t > 0 where x* = arg mingex f(x), then f(-) is weak pseudo-convez.

Proof. By taking the derivative of the equation (5.3.3)) with respective to t and letting

t =1, we have

Vi) (z—2%) = a(f(z) - f(a*)).
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Therefore, we have

f@) - f@) = V@) )
L MYS@) @)
S VI@T

which satisfies the weak pseudo-convexity condition with K = % O

Proposition [5.3.3| suggests that all non-negative homogeneous polynomial satisfies WPC
with respect to 0. Take f(z) = (224+23)2+10(22—22)? as an example. It is easy to verify
that f(-) satisfies the condition in Proposition and thus is weakly pseudo-convex.
In Figure the curvature of f(z) and a sub-level set of this function are plotted.
The function is not quasi-convex since the sub-level set is non-convex. However, this

function satisfies the acute-angle condition in [I2]

2, 22 2, 22
(2 4 X2+ 10 (62 - X2 (x, %%, 2)+10 (x, 2, 2= 4

\\\\\\\\
‘\““\\“s\}}“\“\‘
\\l\\\\\\\\ ! \\\\\

\

I)/I I
I Il
2’,/ 9’,’,’,”,%”["# &0

'l
U
// l IIIIIIII, Il 'l

/
‘w 05

Figure 5.1: Plot of a WPC function that is not quasi-convex.

Note that if f;(z) is a;-homogeneous with respect to the shared minimum z* for all
1 <i¢ < 1T with oy > a > 0, and the gradient of f; is uniformly bounded over a set X,
then Zi[:l fi(z) is WPC. As a result, we can construct functions that are WPC but
do not satisfy the acute-angle condition. Consider a two-dimensional function f(x) =
2+ |x2|3/2, and suppose that X’ is the unit disc centered at the origin. Clearly, f(x)
is differentiable and Lipchitz continuous in X'. Also, it is the sum of a 2-homogeneous

function and a 3/2-homogeneous function with a shared minimum (0,0). Thus f(z) is
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WPC. We compute that

V@)@ - )
IVf@)|| - [lz — ||
272 + %\x2|3/2

V(423 + §aa]) (a7 + 23)

cos(Vf(x),x —z*) =

Consider a parameterized path (z1,z3) = (t/2,t*/3) with ¢ > 0. On this path, we have

227 + %|;102|3/2
V(433 + §laa]) (a3 + 23)
Tt
2/ (4t + 12/3) (¢ + 14/3)
Tt1/6
2\/(4t1/3 + 91+ $1/3)

cos(Vf(x),x —z*) =

Therefore, along the path, as ¢ approaches to 0, we have cos(V f(z),z — 2*) — 0. This

example shows that a WPC function may fail to satisfy the acute angle condition.

Definition 13 (Error Bound) There exists D >0 and 0 < v <1 such that
|z —z*[| < D||Vf ()],
for all x € X, where x* is the optimal solution to f(x), i.e., ™ = argmingey f(z).

Since X is a compact set, the error bound condition is essentially the requirement for
a unique optimal solution and no local minimum. We further introduce some notations
that will be used in subsequent analysis.

S(n):  the unit sphere in R";

m(A):  the measure of set A C R"™;

B the area of the unit sphere S(n);

dsSy: the differential unit on the unit sphere S(n);

14(x): the indicator function of set A;

sign(-):  the sign function.
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5.3.2 The Zeroth-Order Normalized Gradient Descent

In this part, we assume that only the function value information f(z) is available for
a given query point x. In zeroth-order setting, the main technique we used so far
is to construct a zeroth-order approximation of the gradient of a smoothed function.
That smoothed function is often created by integrating the original loss function with
a chosen probability distribution. By querying some random samples of the function
value according to a probability distribution, the player is able to create an unbiased
zeroth-order approximation of the gradient of the smoothed function. This is, however,
not applicable in our normalized gradient descent algorithm since what we need is the
direction of the gradient. Therefore, we shall first develop a new type of zeroth-order
oracle that can approximate the gradient direction without averaging multiple samples
of gradients when the norm of the gradient is not too small.

Before we present the main results, several lemmas are in order. The first lemma,

considers some geometric properties of the unit sphere.

Lemma 5.3.4 For any non-zero vector d € R" and § < 1, let S5 be defined as
ST = {v e S(n)| st. |dTv| < 52} .
If |d|| > 6, then there exists a constant Cy, > 0, such that
m(Sy) < Cpo.

Proof. We have
m(ST) = / ds,,.

veS(n)NSY

>
N

By the symmetry of S(n), we may assume w.l.o.g. that d = (0,...,0,[|d||)". Let a =
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Since a < 1, we have

B / { i <vn<ihar } (v)dSn

veS(n)
1
= 9 dvy -+ dvp—1
w2 2
17a2§v%+---+v2 <1 \/1 Kl Yn-1
P 2

— 9 ﬁdr.dsn_l

V1—a?<r<1

2
r
= 2/871— 1 / mdr

V1—a2<r<1
1

R =

V1—-a?2<r<1
= 28,1 (5 —arcsin(y/1 — (12))

2
= 2B,_1(arcsina) < 283, 1 = 7 fn— ] S < mBp_10.
By setting C,, = 783,—1, the desired result follows. 0

The next lemma leads to an unbiased first-order estimator of the direction of a

vector.

Lemma 5.3.5 Suppose d € R™, and d # 0. Then,

d

sign(d ' v)vdS,
/ i = Py

veS(n)
where P,, is a constant.

Proof. By the symmetry of S(n), again we may assume d = (0,...,0,[|d|)", and

/ sign(dv)vdS, =2 / 1,,>0(v)vdSy,.

veS(n) veS(n)
Notice that if v € S(n), then u = (—vy, —va,..., —Vn_1,0,) is also in S(n). As a result,
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the above integral will be on the direction of Hd = (0,0,...,0,1)7, and its length is

given by

2 / 1vn20(v)vnd5n

veS(n)

= 2 / \/I—U%—---—v%_ldSn

OSU%+~~~+U%_1§1
2 2
\/1_“1 T T U
= 2 d’Ul e dvn,l
1—02 — ... 2
0<v3 402, <1 \/ i Un—1

= 2 / " 2drdS,_;

0

Using the previous lemmas, we have the following result which constructs a zeroth-

order estimator for the normalized gradient.

Theorem 5.3.6 Suppose f(x) € CL(R™) and |V f(z)|| > & at x. Let e = %. Then we

where v is a random vector uniformly distributed over S(n), and Q, = i and Dy,

have
Es() [sign(f(z + ev) — f(z))v] —

,Bn

Proof. Since f has Lipschitz gradient, we have

@ +ev) = flo) — eV () o] < IIUH2 =

Vi) v - %Lg f(x—i—eve) —J ) < Vf(x)Tv—l—%L.

Since |V f(z) v > 62 for v € S(n)\ S%, if we let € = %, we have

Vf(.%')T _522_ f(x—i_ﬂ}e)_f(x) SVf(.’L')T’U—F(s;
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Thus,

sign (v f(x)%) — sign (v fla)To - f)

< sign (LX) < (05070 + )

€

= sign (Vf(.%’)T’U> ,

implying sign(V f(z)"v) = sign (M) . Therefore,

BaEsir [sign(f(z + ev) — £(2)0]
- / sign(f(z + ev) — f(z))0] dS(n) + / sign(f(z + ev) — f(z))v] dS(n)

veS(n)\S¥ veSY
= / {sign(Vf(:n)Tv)v} dS(n) + / [sign(f(x + ev) — f(x))v] dS(n)
vES(n)\SF vESE
= / [Sign(Vf(x)Tv)v} ds(n) — / [sign(Vf(x)Tv)v} dS(n)
veS(n) veSY
+ / [sign(f(x + ev) — f(x))v] dS(n)
veSe
= P, II§§8H - / [sign(v f(x)%)v} dS(n)
veSY
+ [ ben(rta+ o) — f(@)el as(n)
vesE

where the last equality is due to Lemma |5.3.5

Putting the estimations together, we have

R V
< 5 / Hs1gn Vf(z ‘dS / Hs1gn (x 4+ ev) — f(x))v] dS(n)
nvesx v€S°L
< 2m(SY) < 2C’n6'
B T b
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Note that Q.,, = % and D,, = %, the theorem is proved. O

Based on Theorem for a given § > 0 we have a zeroth-order estimator for the
normalized gradient given as:
sign(f(z + ev) — f())

G(z,v) = 0. v, (5.35)

where € = §2/L and v is an uniformly distributed random vector over S(n). Theorem
implies that the distance between the estimator and the normalized gradient can
be controlled up to a factor of §. Specifically, the Zeroth-Order Normalized Gradient
Descent (ZNGD) algorithm is as follows.

Algorithm 3: Zeroth-Order Normalized Gradient Descent (ZONGD)
Input: feasible set X', number of iterations 7', §
Initialization: 7, € X, e = 62/L
for k=1to T do
Sample v* uniformly over S(n) C R";
play z*F and z* 4 ev*;
receive feedbacks f(z¥) and f(z* + ev®);
set G(z*, vk) = Sign(f(ﬂfhrﬁvk)*f(mk))vk.

9

update zF+1 = Projy (2% — nG(z*,v")).
end for

Note that Algorithm (3| actually outputs a random sequence of vectors {:zk 1T, and
the following theorem shows an expected O(T~'/2) rate of convergence for the zeroth-
order normalized gradient descent algorithm. The expectation is taken over the o-field

generated by the random variables {v* %“:1.

Theorem 5.3.7 Suppose f € C}(X), and satisfies the error bound condition (Defini-
tion and is weakly pseudo-convex with bounded gradient. Let {zk}r{ be the sequence
produced by the zeroth-order normalized gradient descent algorithm. Furthermore, we
define an output solution as
Zp = argmin f(z) (5.36)
ve{zh}]

Then, the following inequality holds

T 2
(4R2 + ”> LU (5.37)

E(f(ir) — (o) < o

K
2nT
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In particular, if we set n = ZQI?R and 0 = min{T"~ 27 27 4} where @, = P” and Py, is

a constant, then an O(T_l/Q) rate of convergence follows.

Proof. Let zj, := ||2* — 2*||. Then,
2
2= b =22 = ([T (+F - 06t o)) - ot
X

2
< |2t = nek ) - || = 22+ G, V)P - 2G0T (@ - 0

2

< 2+ Q2 — G (zF, o) T (2F — 2¥).

By rearranging the terms, we have:

KGEh )T (ot < o ( 221 Qz)

Now based on ||V f(z*)||, we have two different cases:
o |[Vf(z*)|| > 4. In this case, by Theorem we have

Vf(zh) 2D,
)
wra = Q.

[E[G (2", v*)|*] —
Therefore,

Vf(@*)" (@" — %)

ky *
fe) =) < NAES]
< KE[G(xk,vk>|x’f]T<wk—x*>+2% 2DnkE 512k o
K 2 2D, K .
— 5 (BRI - B let] + 0 ) + 20t - 07
K 2 4D, K
< 217(E[zi|xk]—E[zi+1|xk]+g%>+ 0. Ré. (5.38)

o |[Vf(z*)|| < 4. In this case, by the error bound property (Definition [13]) we have

lz* —2*|| < D|IV f(")|” < Dd”.
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Therefore, due to the boundedness of gradient

f(a") = f(z*) < M|ja* — 2*|| < MD§, (5.39)
and
0 < K E[22|2*] — E[22, ,]2"] +n—2 — KE[G(z",v*) 2% T (2% — 2¥)
- o\ h kL Q2
K N\, B
< — [ E[222"] — E[22., |2"] + ) L2 Dén.
< 5 (EEtN - BBl 0 ) 4+ K
Adding with , it follows that
f@®) = f(=*)
K n? B
< — [ E[22|2"] — E[2? xk—i—) <K "D—i—MD)(SV. 5.40
< 5 (Bt - Bl + ) + (K2 (540

In view of (5.38) and (5.40), if we let U = max{%zz, (K%DJFMD)}, then in

either case the following inequality holds:

2
Fab) = 7)< 5 (EBlet] = ElEalet] + 5y ) + 007

Summing these inequalities over k = 1, ..., T, we have

< JE é(fw - f(sc*»]
< o (B - ERR+ g;) Lus
< 2nKT <4R2 + IC;) + U,
By choosing n = 2928, and § = min{T~ 77, T~%), we have
ELf(r) ~ f(2)] € 5 =+ = <O,
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Compared with the result in [50] where a first-order method is considered, we show
the similar convergence rate for a zeroth-order method under a more general condi-
tion (weakly pseudo-convex). Moreover, the zeroth-order estimator for the normalized

gradient could be of interest on its own.

5.4 Optimization with a Controllably Noisy Objective

In this section, we consider model (5.1)) without h and X = R" as following

min f(z)

5.41
s.t. xeR™ ( )

Moreover, the evaluation of the objective function f is assumed can be made to any
degree of precision at the cost of paying an increased effort. To be precise, we have the

following assumption.

Assumption 5.4.1 For all p > 0, by an effort of eff (p), the feedback fp(x) (which could
be either stochastic or deterministic) can be made to be no more than p away from the

true value f(x), i.e.

[fo() = f(2)] < p.

For simplicity we assume that eff is independent of z. For problem (j5.41f), we study
how to achieve the best overall precision by optimizing total efforts. We choose to work
with a finite difference approach, and consider the following deterministic zeroth-order

oracle.

Definition 14 Lete;, i =1,...,n, be the standard orthonormal basis of R"™. Then for
Yu > 0,p >0, we define

A~ A~

iz, o p) = 2 +M(Z) —Jol2), (5.42)

n
and g(:L“, K, p) = Z gl(ma s p)el
i=1
In this section, we assume that the objective function f(z) is strongly convex defined

as follows:
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Definition 15 A smooth function f is said to be o-strongly convex if
g 2 T n
Slle =yl < fy) = f&) = Vf(z) " (y —2), Yo,y €R"

Note that we do not impose any constraint on fp(x). The following lemma shows that

if p is small enough, the difference between g(z, u, p) and V f(x) can be bounded.

Lemma 5.4.1 For f € C}(R") and x € R", we have:

lo(o. o)~ VI < YRk 2
loem o)l < 2AVF@IE+ 2 8252-
Proof. Since f € C}(R"), from descent lemma we have
—Lp? 4+ P < fla® + pe;) — f(z) < L4 SL(ah,
—Lp < L(f@F 4 pe) - f@N) — LR < Lu

Therefore,

lo(a,sp) — VI
n 2
= 3 (2 (e e - o) - )

i=1

S .
+u12 (Fola® + pes) = fla® + per) + f(a*) - fp<w’“>>2}
< gﬁLQ + 8252,
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which prove the first inequality. For the second inequality, we have

lg(x, 1, p)|I?

- 2
= ( (fp(:v + pei) fp(xk))>

=1
> :2 ((f(ark + pe;) — f(fﬂk)>

=1

(= fola® + pei) + F(* + peg) = flab) + fp(xk)»z
= n :2 2 (f(:ck + pe;) — f(xk)>2

=1

IN
3

~N /N
o
=

(V)

h

&)

_|_
N
(&)

~

e
e
‘oo
hS)

%)
~——

2 87’Lp2
= +2| V£ ()P + iz

2

5.4.1 The Zeroth-Order Gradient Descent Method

In this section, we present a zeroth order algorithm that achieves the linear convergence

rate. The algorithm is as follows.
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Zeroth-order Gradient Descent with Dynamically Increasing Precision (ZGDDIP)
Parameters: v > 0,5 € (0,1),e > 0,a > 0,L > 0.

Initialization: y° =0, p = 1/2.
fort=0,1,---,T,

2’ =y
— 2Vp.
n= \/Z7

for k=0,1,--- , Ky,
32 (Fp (@ +pes) — o (%) e

g(a*, p, p) = = m ;
xk+1 = xk - Oég(l‘k, :vap)

end for
Set k; = arg miny, fp(xk);
yttl = ke,
p = Bp.
end while

Note that in the ZGDDIP algorithm, there are two layers of iterations; the outer
loop which generates the {4} sequence, and the inner loop which uses gradient descent
with the increasing approximation precision p for g(z*, u, p). Moreover, in practice, as

t+1 only depends on the noisy

the original function f is not known, the selection of y
estimation fp.

For the ease of later reference, we introduce two parameters :

1 2
Cl—maﬂdCQ—ﬁ,

where L is the Lipschitz constant for gradient V f.

The following proposition establishes the sufficient decrease for the inner iterations.

Proposition 5.4.2 Suppose f is o-strongly convezx (Definition and f € CL(R").

Set oo = % in ZGDDIP. For all p, if |V f(2z*)|| > 1/0% for all steps k =1, ..., Ky, then

Fatth) = g < (1 ) (169 - 16).

Proof. T [V f(z)] > /&, we have p < C1[[V f(a*)]2
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and p = Cay/p < Co/C1||V f(2¥)].
By Definition we have:

F@h) — fh)
La? k 2 KNT [k
“llg@*, . p)lI? = aVF@H) T g(a¥, s p)

IN

La? k|12
= 5 llg@* . p)I? = oV i) (g(wk,u,p) -~ Vf(wk)) —a|Vf(=h)

Lo? (np’L? 8np?
(M55 + 219l + 24

2 2
V2nuL 2\/%p
5 ) el VP

nC’%ClLQ 87101)

IN

+a Vf(z")] (

IN

IJO(2 kN2
IV (P 2+ B

\V 2710102L + 2\/ 2n01
2 Co

ol VAR ( ) | V)P

La? o2 [(nC3C L2 8nC1

E s (M 2 B

vV 2nC’102L . 2\/ 27101)
2 s

IN

ol VIR (1 -

133La?
<
= 128

IV £~ Sl V)

Since we have chosen o = %, it follows that

16

ky(12
o IV AP,

f@*th) = fa*) <

By the strong convexity, we have:

£ = ) 2~ IV F )P

Therefore, we have

IN

.. 16
Fa) = £@) = Jar VS

< (1-5r) (1aH - s0).

F*h) = f(a*)
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O

The next proposition shows that, with a constant K, the precision can be improved

by a constant factor 3.

Proposition 5.4.3 Suppose f is o-strongly convezx (Definition and f € CL(R").
In ZGDDIP, set a = 132, and

Ky — {—m (4C10 (J(0) - f<a:*>>>J O

In (1 - 1357)

and
Inf —1In (2(;1[,4-2)
Ky = - +1,Yp < 1/2.
In (1 - 35%)
Then we have )
£y ) < 2 Vt=0,..T. 5.43
10 - 1) < (505 +2) 97 = 0. (5.43)

Proof. In the first outer iteration, ¢t = 0, and

~In (4C10 ((0) — [(a*)))

In (1 - 133230[,)

Ky >

Based on Proposition [5.4.2] we either have:

_ 320
133L

Ko p
) (J(0) - f(a*) <

)~ ) < 1 o,

or |Vf(x¥)|| > /& for some k. In the latter case, we have
C1

1
Pt = ) < o IVIEIP < 55
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Therefore, we have

: ky * < p
k:%}.l_?mf(“’ ) — f(z*) < 0o
. £ ky * <
pmin fo(z") = f(z¥) < 5Cio + p,
R k - * < P
fo(z") = f(z¥) < 5Cio +p,

Suppose (5.43)) holds for 0,...,t — 1, i.e.

1
2010‘

ﬂf»—ﬂf)g( +2>;ﬁ47

for all s =0,...,t — 1. By Proposition [5.4.2] we will either have:

K
f5) — fat) < Q. ”“) (F) — f(a*))

"~ 133L

B 1 |
< 9 =
- 1+4Cio 2010+ 2/6
< P
- 2C4o

or |[Vf(x®)| > \/ &; for some k; hence

O

Therefore, with a constant step K;, we are able to reduce the optimality gap from

(ﬁ + 2) p to (ﬁ + 2) Bp. We summarize the sample complexity and the total

effort needed, assuming that the effort function is eff(p) = O (p~") for some x > 0.

Theorem 5.4.4 Suppose [ is o-strongly convew (Deﬁnition and f € CL(R™). Let

a, Ko, K; be as defined in Proposition[5.4.3. In at most

Mo {111(4010’6) —In(1+ 4010)J 49
Ing
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outer iterations, we would have f(z*) — f(z*) < e. Moreover, the total number of
function evaluations is of the order O(n(lnn)?In(1/€)) (taking o,L,B3 as constants).
In addition, if eff(p) = O (p™") for some k > 0, the total efforts we need to spend is
TEF = O(n(Inn)?%eff(¢)).

1 _ _ 2Ci0e . . . . .
Proof. Let (m +2)p=c¢, we have p = TTiCi5 Since in each outer iteration, p is

reduced to Sp. The total number of outer iterations required to reduce p from 1/2 to

2C0e .. In(4Croe)—In(1+4C0)
I+dCo 8 Inp

know that the total effort required is upper bounded by

, thus proving the first claim. From Proposition [5.4.3] we

. {—ln (4C10 (£(0) — f(fc*)))J
In (1 — 1332—&)
(AC10¢) — In(1 + 4C10) |08 =10 (55 +2)

+ 2n,
In g ln( —1332—&)

+n

which is of the order O(nlnnln(1/e)).
We may specify the total efforts to spend to be

* . InB—In( s=A—+2
TEF < n{ln(ww(ﬂgaf(x )))Jeﬁ(l/g) M e (0.55) nf-In( 5 +2)

ln(l_ 133L) ln(l_ 1%23‘2)

—1n . —f(x* " In 8—In %JrZ _Mk__p—r
— \‘ 1 (4511(19[(02?0 {( )))J eff(l/2) +0 <n2 \‘ ln(l(Qc%ld) )J B 5*"—51 ) .

3 3
133L 133L

Since M < 11;1—; + ln(4cla)iinﬁ(l+4cm) + 3, we have TEF = O(nlnneff(e)). O

Remark: If we use the highest precision from the beginning, i.e., we let p = 1%&0?0

in the first outer iteration, it is not hard to verify that the number of iterations re-
quired is lngl?f?)_ Llri(?ﬁgg:l{l ((JQ?))L). Therefore, the total sample complexity is of the order
O(nlnnln(1/e€)) but the total effort required is O(nlnne ®In(1/¢)). By dynamically

increasing the precision, we can reduce the total effort by a factor of In(1/¢).

5.4.2 The Zeroth-Order Ellipsoid Method

In this section, we present another algorithm that incorporate the ellipsoid method. We
show that this algorithm also achieves the linear convergence rate. We further show that

one can relax the assumption of strongly convexity. We assume in this subsection that
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function f(x) is Lipschitz continuous. We start by showing that if x is small enough,

g(x, p, p) provides a supporting hyperplane.

Lemma 5.4.5 Suppose f is o-strongly convex (Definition and f € CLR™). If

uw< 2;\‘;%, and p = “?TL, then it holds that
* 2L T *
fl@) = f(2") < —g(z,p,p) (@ —a7), (5.44)

as long as |z — x*|| > €, where x* is the minimum point of f.

Proof. By Lemma [5.4.1] we have

* . V2nuL  2v/2np .
gl@,mp) (x—a*) > Vf(2) (z—a") - ( >t ==
> olle — |2 - VanuLliz — 2*|

g o *
= Sle =o'+ 2 — a7 (Fllz — 27l = V20uL).

Clearly, as long as |z — 2*|| > €, we have g(z,p,p) (z — 2*) > 3|z — 2*||?, and

therefore,
fl@) = fl@*) < V@) (z—a)
< Lz -z
< %g(l‘,ﬂ,p)—r(l‘—:ﬂ*). (545)
O

Suppose that an initial ball with radius R is found to contain z*. At step k, we have

an iterative point z¥

. We then spend effort to compute a p-accurate search direction
at ¥ + pe;. With that direction, we proceed with the ellipsoid method. Formally, we

present our zeroth-order ellipsoid algorithm as follows.
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The zeroth-order ellipsoid algorithm

Parameters: p, u > 0.
Initialization: 20 = a® = 0, A = R?J.
for k=0,1,---, do

1=

d* = g(a*, p,p) = # ;
bk = Akdk/ (dk)TAkdk;

Ak+1:n72(Ak_Lbk(bk)T);

il (Fola+pe)—Fola®))es

n2—1 n+1

k1 — gk _ 1 pk

z =z n+1

end for

Denote the ellipsoid at the k-th iteration be E(A¥;2%) == {z | (z — 2*)T A (z -
zF) < 1}. Inequality stipulates that as long as ||z¥ — z*|| > ¢, the half-ellipsoid
E(A*; 2y N {z | (d*)T (x — 2F) < 0} contains the optimal solution z*. Below, we shall
present a convergence analysis without resorting to the geometric insights of the ellipsoid

algorithm; see also [30].

Theorem 5.4.6 Set 0 < e <1, p = 2;\;%, and p = “?TL. Suppose [ is o-strongly

convex (Deﬁm’tion and f € Cgo (R")NCL(R™). Let us run the zeroth-order ellipsoid

algorithm for k iterations. Then, either ming<,<j |zt —2*|| < ¢, or

min f(z°) — f(z*)

0<t<k o 2n2

< 4v/2LRmax(Lg, o) exp ( k > ‘

Proof. Denote

Sy = Vg(@k, p, p) T Arg(@®, 1, p)
lg(z, p, p)l

)

and 6;43 = minlgggk 5@.
If ||[2% — 2*|| > ¢, then by Lemma we have

fa) - 1@ < 2Rk )
< % (@72 — min{(d)Te | = € B(AY2h))
N
_ ;L!flk”gk, (5.46)
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Denote 7 := n;‘—il and ¢ := %H By the Sherman-Morrison formula,
(Ak+1)_1 1 ( k)—l + C ) dk(dk)T
T 1—¢ (dF)TAkgk |~

det(AFY) = 771 — () det(A").

This leads to

det((AM1)71) =

tr ((AFH~h =

Using the inequality

we have k
" n ¢ 1 1
=~ + =,
leading to
¢ =t n 1
A T ]
Hence,
R? k+1 _
(51;)2 =0 —CC)( —) X T !
T < 1 1> B
1=
Because
n—1 n+l|n
1 n n
1—-0)n =
(1) [(n_l) G ] ,
and
n n—1 n n+1 - _l
n—1 n-+1 P n)’
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it follows from (/5.47)) that
R? k 2(n + 1)R? k
T [ eXp( n> n eXp< n) = e

Since 0 < € < 1, by Lemma we have

272 2
nu*L 8np
\/Q\Vf(x)HZ‘*‘ +7

k
)
5

"2
(5.48)

b < .
VvnpL  V/8np
< V2|Vf(2)| + +
IVf ()] 7 .
< ﬂLo%—%
< V2max(Lg,0).

Therefore, combining (5.46]) and (5.48]) we have

, 2L ||d"|| 4v/2LRmax(Lo, o) k
y4 _ * < ! < 9 v )
Orgnglgkf(x )= f@") £ ———0 = - exp

4v/2R max(Ly,0)
oe?

Theorem |5.4.6| implies that in at most k = 2n? 1n<

zeroth order ellipsoid algorithm will ensure that

) iterations, the

Jin f(z) = f(a) < Le®.

The total efforts required is 2n>In (4\/§R Jax (LO’U)) eff <§22€2L).
ge n

Remark: Tf f(x) is convex but not strongly convex, by assuming that f € C7_ (R™)N
C}(R™), then one may perturb the objective function to be

f(@) + 25 lall”

The function is now %—strongly convex, and its minimum is € away from that of the

original function. Replacing & by ¢, the total effort is 2n3 In (4\/23}%0) eff (3262 L).
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5.5 Regularized Optimization with Controllable Accura-

cies
In this section, we consider the general model (5.1)), or

géi/ryl O(z) := f(x) + h(z) (5.49)

where X' € R™ is bounded convex set contained in the Euclidean ball with radius R, f
is a smooth function but possibly non-convex, and h is a convex function but possibly
non-smooth. Furthermore, we introduce some definitions and assumptions regarding
the objective function.

For the function ®(z), we define the proximal gradient mapping and proximal gra-
dient.

Definition 16 For a given x, the proximal gradient mapping x= of ® is defined as

= argmin x i — z|?
ot = argmin { (9(a).5) + hlo) + -l ==l . (5.50)

Moreover, denote
~ 1
Vo(x;7v) = 5(3: — ).

Based on the proximal gradient, we can similarly define the proximal gradient dom-

inant condition of the composite function ®(x).

Assumption 5.5.1 (Proximal Gradient Dominance) The function ®(z) in (5.49)

is said to be proximal gradient dominant if there exist an o such that the following holds
d(z) — d* < x|VE(z; )|, Vzex (5.51)
where x is a positive constant.

5.5.1 Basics of the Proximal Gradient Mapping

In this subsection, we discuss some properties of the proximal gradient mapping. The
use of the gradient V f(z) in (5.50) is not necessary, and it can be replaced by any vector
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d € R™. The proximal mapping can be similarly defined as

1
ot = anguin { (d.9) + hio) + 5y~ alP}. (5.52)
yeX 2’7

Moreover, the generalized proximal gradient can still be defined as
1 +
G(z,d,y) = —(w — "), (5.53)
Y

where x is given by (5.52).
The first lemma shows the monotonicity of the norm of the generalized proximal

gradient.

Lemma 5.5.1 Let G(z,d,v) be given in (5.53)) for fired x and d. Then, the norm

|G (x,d, )| is a non-increasing function of ~y.
Proof. We denote

. 1

m(r) = i {21(2) = (0.} + 00) + -y =P} (5.51)
yeEX 2y

Since M (y,~y) is jointly convex with respect to y and v, m(7) is also convex. Moreover,

based on the definition of ™, we have

dm(y) _Jlz = P
dry 2v2

(5.55)

Due to the convexity of m(v), the d’zﬂ(ﬂ) is a non-decreasing function. That results in

|G (z,d,v)| is a non-increasing function of ~. O

Besides its simplicity, the Lemma has an important implication. It shows that
if Assumption [5.5.7]is satisfied with a specific a, then it would also hold for any v such
that 0 < v < a.

The following lemmas present some geometric properties of the proximal gradient,
and their proofs can be found in [44]. The first lemma shows the magnitude of G(z, d,~)
and its angle between d can be bounded, and the second lemma establishes the non-

expansiveness of the proximal gradient.
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Lemma 5.5.2 Let 7 be given in (5.52)). Then, the following inequality holds
1
(d,G(x,d,7) 2 ||G(z, d: VI + = (h(z™) — h(=))

Lemma 5.5.3 Suppose G(z,d1,7) and G(x,ds, ) are the generalized proximal gradient
with dy and dg in (5.52)) respectively. Then, we have the inequality below

|G, di, ) — Glw,da, 7)< |lds — dall. (5.56)

5.5.2 Deterministic Zeroth-Order Algorithm

In this section, we propose a zeroth-order ISTA algorithm for problem . Similarly,
we assume the controllable noisy function evaluation is available. For all p > 0, with
the effort eff(p), the noisy estimation is at most p away, i.e. |f,(x) — f(z)| < p for all z.

It is clear that for function f € C}(X), the bounds in Lemma still hold. Let
g(x, 1, p) be defined as in Definition

Lemma 5.5.4 Suppose f € CL(X), i.e. it satisfies (5.7)), then the following inequalities
hold

loGo.) - VI < YRk 20

np?L? n 8np?
2 w2

IN

gz, 1 0)1? 2|V f()l” +
Based on the oracle defined above, we propose the deterministic zeroth-order ISTA

algorithm.

Deterministic zeroth-order ISTA
Parameters: -y, ug, px > 0.

Initialization: z% = 0.
for k=0,1,---,
Set ik = \/Pk;

NgE

i . 1(fpk(mk+ﬂkei)_fpk(mk))ei
g(x 7/“67/)19) = Lk ;

o4 = argmin { (g(e*, . pi). ) + h(y) + 55 lly — 2|}
ye

end for
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Notice that the accuracy parameter p; and the finite difference parameter py, are allowed
to change over time. Under the proximal gradient dominant condition, the following
theorem shows the relationship between consecutive iterates of the deterministic zeroth-

order ISTA. Moreover, the generalized proximal gradient is denoted as g¥ = %(azk —

xk;—i—l).

Theorem 5.5.5 Suppose f € C1(X) and ®(z) satisfies Assumption and v <
min{1/L,a}. Let {x*} be the sequence produced by the deterministic zeroth-order ISTA
algorithm. The following holds

(I)(xk+1)—(1)* < <1_ T L;) (@(xk)_qyk)

2x

L2 nu2l?  8np? VonuprL  2v/2n
+<7— 7)(“’“ - 5’“)+2R e YR

2 2 M, 2 Mk

where R is the radius of X, i.e. ||z|| < R Vr € X.
Proof. It follows from Assumption [10] that

P < Fak) (TR, a5 k) o

2
= Fa*) — (VFR), 705 + g
L 2
2
Fla*) = At + hia) — () + 2 gt P

+7<g('rka K, /)k) - Vf(xk), gk>

IN

The first inequality follows from descent lemma, whereas the second inequality is due
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to Lemma [5.5.2] Based on the definition of ®, we have

L 2
O < a@) = (3= 5 )1+ alatat ) - V1.
L~? Vo zF )| L~? ~
< ot - (v— 5 > ” (2 I 7= S ) IVe@Ety) — gt
+y(g(a®, s pr) — V£ (2*), g*)
Ly? [[VO(z*; )|
< B2k — [~ - ’
< o) - (7= 1) F
- LVQ k - k(2 k _ ky k
v = =5 ) 9@ ks pw) = VF@P)I7 + (g™, s i) = VF(27), 7).
Since ||¢*| = %H:L’k —zF | < %, invoking the proximal gradient dominant condition

(5.51) and v < min{1/L, a}, we have

O (zF 1) — @*
y— Ly?
< Oh) -t - S (@) - 9)
L 2
+ <’Y - ;) g(2", e, i) — V(@) |12+ (g (2%, e, i) — V f(2F), g7)
/')/ J— L’YQ
< (1m0 ) eEh -
L2 212 8np? V2nup L  24/2
2 2 My 2 Mk

The following corollary shows the linear convergence rate with constant u and p.

Corollary 5.5.6 Suppose f € C}(X) and ®(z) satisfies Assumption and v <
min{1/L,a}, up = p, px = p = p?. Let {x*} be the sequence produced by the determin-
istic zeroth-order ISTA algorithm, then the following holds

B(zF) — % < pF(B(2°) — *) + ﬁ, (5.57)
L 2
where p =1 — 7_2? and g = (’y — LT'YQ) <ﬁ + 8252) +2R (@ + 27\/27")), where



R satisfies ||z|| < R Vx € X.

_Ly?
Proof. Let ej := ®(zF) — @, p =1 — 727; and ¢ = (’y— LTWQ) (n“;]ﬂ + SZQQ) +
2R (@ + @) It follows from Theorem [5.5.5| that
er+1 < peg +gq.

Hence,

k—1 ‘ q

ex < peg+ qE:pZ < pleo + 1

° —-p

=0
and that proves ([5.57)). O

L

2
_ L
Remark: With the choice of v, we have p :=1 — 2 e < 1. In view of (5.57), if

is chosen of the order O(e), the deterministic zeroth-order ISTA can reach e accuracy of

the objective function ®* in O(In(1/e)) iterations. However, since p = u? = O(e?) and
there are n function value queries at each iteration, the total effort is O(nIn(1/¢))eff (€2).
For a particular effort function eff (p) = Dp™" where £ > 0 and D > 0, the following

corollary shows that the dynamically increased precision p; could be beneficial.

Corollary 5.5.7 Suppose f € Ci(X) and ®(x) satisfies Assumption and v <

_Ly?
min{1/L,a}, u = ¢*, pp = ¢** where 1 — 1 e <4 <1 Let {z*} be the sequence

produced by the deterministic zeroth-order ISTA algorithm, then the following holds

B(aF) — & < pH(®(20) — @) + qU_ql;, (5.58)

_Ly?
where p =1 — 2 e and R satisfies ||z|| < R Vz € X, and U is constant depends on

v, L and n.

Moreover, to achieve the € accuracy of ®*, the total effort is of the order O(ne 2).

~2
Proof. Let ey := ®(aF) —d*, p=1— _Tx% and
Ly*\ (nppl®  8npj Il 2v/2n
mz(v— 7)(“’“ + §k>+2R V2L | 2V20p )
2 2 i 2 Lk
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It follows from Theorem that
€+l < peg + Tk

Since p = ¢%* and i, = ¢* where p < ¢ < 1, there exists a constant U such that
re < UqF, Vk.

From the above bound, it is clear that the following holds

k—1 P 7 qu
ekSZﬁQVFU¢F1§2(> <pleg+——, (5.59)
—~\q q—p
and that proves (5.58)).

Since the dominating term in ([5.59) is %, to achieve e-accuracy of ey := ®(z*) —d*,
it requires N = O(Ilne/Ingq) iterations. With the effort function eff(p) = Dp™" and
pi = ¢*F, the total effort is

N N
nZeff(pk) = nZDq*%”
k=0 k=0
—2k(N+1) _
_ an2—1
g =1

Note that N is of the order O(Ine/Ingq), as a result, the total effort is of the order
O(neff?(e)). O

L’y2

Remark: With the choice of v, we have p := 1 — 7_277 < q < 1. In view of (5.53),

the deterministic zeroth-order ISTA can reach e accuracy of the objective function ®*
in O(In(1/¢)) iterations. However, the total effort is of the order O(n eff?(e)). It reduces
the effort compared with that O(n1n(1/€)eff?(¢)) when py’s are set to be constantly p.

5.5.3 Stochastic Zeroth-Order Algorithm

In this section, we consider the stochastic objective function. Specifically, in problem
(5.49), the function f is assumed of the following form

f(z) = E[F(x,8)] (5.60)
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where expectation is taken over the random vector £. Compared with Assumption

we make slightly different assumptions of F'(x,§).

Assumption 5.5.2 Suppose the loss function f(x) is given in the form (5.60)), then we
assume that F(x,§) satisfies

E[VF(z,§)] = V[(z), (5.62)
and
E[IVF(z,) — VF(@)]?] < 67. (5.63)

Note that in Assumption the variance of F'(z,€) is no longer assumed to be
bounded. The smoothing scheme which is the same as leads to the stochastic
zeroth-order oracle (§Z0).

The proximal gradient dominant condition can be extended to the smoothing
function.

Lemma 5.5.8 Suppose function ®(z) in satisfies proximal gradient dominant
condition, and fF(z) is given by (5.8). Let ®*(x) := fF(x) + h(z), where fV(x) is
defined as in Definition @ and x* be the optimal solution to problem . Then the
following inequality holds

N 2L2
84(0) — 04(0)] < 20T )l + (2 7 ) (5.64)

where VO (z; ) is defined as in (5.53) with d being V f*(x).

Proof. Based on inequality (5.10)), we have

|BH () — BH(a"))|
= [H(z) — B(z) — (P*(2*) — B(z")) + D(x) — D(a¥)|
< |@(x) — D(a¥)| + |94 (z) — D(x)| + [DH(2¥) — B(z")]
< |@(x) — D(a")| + Ly
< XIVO(;0)|* + Ly, (5.65)

Moreover, from the non-expansiveness of the proximal gradient, we have

- - nL
V(3 0) — VO (:) | < |V £(w) - Viw)]| < 5=
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The above inequality together with (5.65) leads to

|@H (z) — O (z")]

X[ V® (x5 @)||? + Ly
X2V (25 ) ||* + 2| V(25 @) — VO (25 @) [|?) + Lyi?
/_,(,277,2[/2

IN

IN

IN

2x|| VO (23 ) ||? + + L2,

which proves (5.64]). O

Based on (5.9) we similarly define the stochastic zeroth-order gradient(SZ0) of f
at point x:
n
GM(.%'7§,’[)) = ; [F(x_‘_uvag) _F<$7£)]’U7 (566)

where v is the random vector uniformly distributed over the unit sphere in R".
The following lemma shows some properties of the SZO. Note that function f satis-
fies Assumption[5.5.2] i.e. (5.61)) and ([5.62)) hold. This fact together with Lemma/|5.2.1{(a)

leads to:

Lemma 5.5.9 Suppose that G, (z,§,v) is defined as in (5.66), and f satisfies Assump-
tion5.5.2, i.e. (5.61)), (5.62) and (5.63) hold. Then

Ey,g[Gu(Q?,g,’U)] = Vf#(ﬂf) (567)
Suppose f(x) € C} (X) and F(x,€) € CL(R™) for all £&. Then the following holds
EoelllG(e, € 0) ) < 20N + w1202, (5.69)
where N = L3 + 62.

Proof. The first equation is easy to verify. We prove the second inequality. Apply-
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ing (5.12)) and (5.63)) to F'(x,&), we have

Evg [1Gu(@, & 0)|]
Ee [Eu [IGp(z, &,0))17]]

R 2
" 2n [Eg [HVF(x,ﬁ)Hﬂ] + %LQnQ
< 2 {E[|IVf(@)|*] + E¢ [|VF(2,8) = Vf(2)|IP]} + p*L?n?
< 22 (|VF(@)|?+67) + p*LPn?
< 2nN 4 p*L*n?. (5.69)
O

From Lemma m it also implies the boundedness of the variance of G,(z,&,v).

In fact, the following inequality is straightforward

EuellGu(,6,0) = V#(@)|°] < BuglllGulw, €, 0)[] < 20N + p®L?n?. (5.70)

For the simplicity, we denote 6 := 2nN + p2L?n?. In order to control the variance, in

the algorithm, we take m samples of the SZO at each iteration. Formally, we define
1 m
G EZGH ,fk,’l)k (571)
t=1

Moreover, define 6% := G, (z,&,v) — V f#(z), it is clear that

E,cllol < 2. (572

Now we are ready to show the stochastic zeroth-order ISTA algorithm for the prob-

lem (-60).
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Stochastic zeroth-order ISTA
Parameters: v, u > 0.

Initialization: % = 0.
for k=0,1,---,

Gu(l‘k’m) = % > Gu(:v’“,fiwi);
t
= argmin {(Gy(a*, m), y) + hy) + 2 lly — ¥1°}.

end for

The following theorem shows the linear convergence for the algorithm. The expecta-
tion is taken over the o-field generated by the random variables {f};, U};}?Ll, k=1,2,...,

and the generalized proximal gradient is defines as

1
k _ k k+1
gy = —(z" —2"").
ooy
Theorem 5.5.10 Suppose ®(zx) satisfies Assumption and Assumption[5.5.9 and
F(x,&) € C:(R™) for all &. Let {2*} be the sequence produced by the stochastic zeroth-
order ISTA algorithm and v < min{1/L,a}. Then,

E[(c*)] - @ < pH(@(a”) - &%) + T yoru? (5.73)
-Pp
12 12 i
where p = 1= 5= and g = i (L+ 282 ) 2 + (20— 1) 22

Proof. It follows from Assumption [10]and the property of the smoothing function that

f“(xkﬂ) < f”(:rk) + (Vf“(xk),xkﬂ _ xkz> + %ka—s—l _ kaz (5.74)

2
= P~ () 00k + Tl

2
= fu($k) - ’y(G“(%k, m)vgﬁ> + L%Hgﬁ”Q + '7<G#(xk,m) - vfﬂ($k)’gﬁ>

IN

L’y2
7Y = AghI + h(a®) = R(aH) + = g2 + (5", o).

The first inequality follows from the so-called descent lemma, whereas the second in-
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equality is due to Lemma [5.5.2] Based on the definition of ®#, we have

L 2
) < @) = (y = ) ghlP + 26k, gf)

2 DM (k- ~) ]2
< o - (7_ Ly ) IV @# (z"; 7l
2 2
L2\ =
# (7= 5 ) I @abin) — gfI + 0 g
L2\ ||[VOH(z;~)|? Ly?

2 2
(0%, Vo (¥ 7)) + (0%, gl — VO (2;7)). (5.75)

Notice E[(*, V¥ (2*;7))|2*] = 0 and (6%, gf —V@#(z*; 7)) < [|8¥(||gf; — V#(a*;7)|| <
|6%||2. Taking expectation on both sides of (5.75)), we have

2 v (Ek’ 2 2
E[(I)M(xk-&-l)] < E[@“(xk)] _ (7— L;/ ) E[”VCI)I‘; a7)H ] + <2’Y— L;) E[H(skHQ]

Invoking the proximal gradient dominant condition (5.64) and v < min{1/L, a}, we

have

(VAN
m
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~—~
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|
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ES
~—~
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_ Ly 272 A2\ 62
+1— 2 <L+” >u2+<2’y—7>.
X 2 m

Ly Ly
Denote ey, := E[®*(zF)] — ®H(z*), p=1 — o 4X3 ) and g="1 1

LT“/Z)% The above expression can be simplified to

er+1 < peg +gq.
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Expanding recursively, we obtain

k—1
e <pheo+ad p < pleg+
=0 1=p
Since ®(z¥) — ®(2*) — Lp? < O (aF) — dH(2*) < ®(2¥) — ®(a*) + Ly?, this leads to
573). 0
L
Remark: With the choice of 7, we have p := 1 — 2 4x2 < 1. In view of (5.73)),
if p is chosen of the order O(y/€) and m is of the order O(1/¢), the stochastic zeroth-

order ISTA can reach e accuracy of the objective function ®* in O(In(1/e€)) iterations.

However, if we consider the total number of samples, the sample complexity is of the
order O(1/eln(1/¢)).

5.6 Numerical Experiments

In this section, we test the performance of the zeroth-order gradient descent algorithm on
two problem instances: Branin-Hoo function and logistic regression classification on the
popular MNIST data, on which we compare with the Bayesian optimization algorithms
[108]. For Bayesian optimization, the Branin-Hoo function is a common benchmark
test case [64]. It is defined over z € R? where 0 < 27 < 15 and —5 < 27 < 15. We
also test logistic regression classification task on the popular MNIST data. This is a
typical application of the black-box optimization, where our goal is to find the best
configuration of the hyperparameters in terms of the general misclassification error.
Since the MNIST is a multi-class dataset, we use the multinomial logistic regression
with L; regularization. The algorithm requires choosing three hyperparameters, the
L1 regularization parameter, between 0 and 2, the tolerance, from le-6 to 0.1 and
the number of iterations, from 20 to 300. Specifically, we compare with the Bayesian
optimization of two different acquisition functions, the expected improvement (EI) and
the upper confidence bound (UCB), where both of them are based on the Gaussian
process model. For each algorithm, the mean and standard error of every iteration are
reported, and they are tested on the Branin-Hoo and logistic regression problems for 100
and 10 times respectively. The results of these analyses are presented in Figures in
terms of the number of iterations of each algorithm. On Branin-Hoo, all the algorithms

are able to find the optimal solution, and our zeroth-order gradient descent converges
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The comparison for Branin function
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Figure 5.2: Upper: Comparisons on the Branin-Hoo function; Lower: Comparison on
training logistic regression on MNIST.

slightly faster than the Bayesian optimization methods. For logistic regression, in terms
of the quality of the solution, the Bayesian approaches slightly outperform our method.
However, as the training process is very time consuming, the zeroth-order gradient

descent has the advantage that it can find a relative good solution with fewer iterations.

5.7 Conclusion

In this chapter, we presented a suite of zeroth-order methods for solving various black-
box optimization models. For problems with single objective function and composite
objective function, under strong convexity and gradient dominance, we have established
linear convergence rate for different zeroth-order methods. For stochastic block-box

optimization problem, we considered a single-sample setting and we showed that zeroth-
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order gradient descent method can still achieve a sublinear convergence rate. Moreover,
for certain classes of nonconvex optimization problems including the star-convexity and
weak pseudo-convexity, we proposed simple zeroth-order algorithms which converge to
the optimal solution at the sublinear rate. In particular, for the weakly pseudo-convex
optimization, we also developed a novel approximation scheme of the direction of the
gradient which enables us to extend the applicability of the normalized gradient descent
method to the zeroth-order setting. In addition, by comparing with the state-of-the-art
Bayesian optimization method for solving some benchmark problems, our numerical

results show the comparable practical performance of our algorithms as well.
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Chapter 6

Zeroth-Order Algorithms for

Online Learning

6.1 Preparation

In general, an online learning (online optimization) problem can be described as follows

General Online Learning Problem

Input: A convex set S
fort=1,2,...
e predict a vector z; € 5,

e receive a loss function f; : § — R,

e suffer a loss fi(xy).

As an illustrating example, the online linear regression works as follows: on each decision
period, the learner first receives feature vector w; € R?, and then the learner needs to
make a prediction p;. After the true target y; € R is revealed, the learner suffers the loss
|pt — y¢|. Assuming the learner is using the linear predictors of the form w; — (x,wy), we
can easily cast this online prediction problem into the online optimization framework.
In particular, the learner should provide a vector xy, which yields the prediction p; =

(x4, w), and the loss function becomes to fi(z:) = |pr — ye| = [{xs, we) — yel-
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In the online learning framework, at each period t € {1,2,...,T}, an online player
chooses a feasible strategy x; from a decision set S, and suffers a loss given by fi(z¢),
where fi(+) is the loss function. One key feature of the online learning is that the player
must make a decision for period ¢ without knowing the loss function f;(-). As a result,
for an online learning algorithm, the performance is usually measured by the so-called
regret. For a stationary strategy of playing a fixed u, the regret of an online algorithm

up to time T" with respect to u is defined as:

T T
Regretp(u) = Z fi(xy) — Z fr(u). (6.1)
t=1 t=1
where z; are the predictions produced by the algorithm. For instance, the regret of the

online linear regression problem with respect to a fixed linear predictor u is

T
Regrety(u) = Y [(w, @) — yil = > [(u, 21) — el. (6.2)
t=1 t=1

The goal of the online learning is to design some efficient algorithms which can
achieve a nontrivial regret bound, i.e. the regret should be bounded as Regrety(u) <
O(T®), with & < 1. When the loss functions f; are convex and deterministic, there
are several algorithms that have been shown that an O(T %) regret bound is achievable,
including the Follow the Regularized Leader (FoRel), Online Gradient Descent, and
Online Mirror Descent and so on; see [109]. However, when the loss functions are
stochastic, the research on the regret bound is still very limited and we will study that

in this chapter.

6.2 Stochastic Loss Functions

We consider an online convex optimization problem where the loss function fi(x;) is

given in the following form

fi(zy) = B [Fi(z,§)] VE=1, (6.3)

where the expectation is taken over the random variable (. However, at each time
t, after the learner chooses a decision vector xy, the full information of f;(z;) is not

disclosed. Instead, we can observe an unbiased random sample Fi(x:,&;). Based on
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the sample information, an algorithm which outputs a random vector sequence {z¢}1_;

would entail an expected regret as
T
Regrety(u) = E [Z(ft(mt) - ft(U))] : (6.4)
t=1
As we will show in this section, the stochastic zeroth-order online gradient descent
method achieves a regret bound in the order of O(v/T).
6.2.1 The Stochastic Zeroth-Order Online Gradient Descent

Before we present the algorithm, we first introduce some assumptions of Fy(zy,&).

Assumption 6.2.1 Suppose the loss function fi(xt) is given in the form (6.3), then we

assume that Fy(xy, &) satisfies

E[Fi(zi,§)] = fi(we), (6.5)
E[VE(z1,8)] = V fi(x1), (6.6)

and
E[IVF (2, €) = V fula)[?] < 0”. (6.7)

forallt=1,...,T.

Now, we introduce our smoothing scheme and point out the definition of SZ0O as

well as its properties.

Definition 17 Let Uy be the uniform distribution over the unit Fuclidean ball and B
be the unit ball. Given & > 0, the smoothing function f is defined as

9 = X (% :L X v)av
F@) = B fle+ 0] = o= [ fla+bo)a (63)

where a(d) is the volume of the unit ball in R?.

Some basic properties of the smoothing function are shown in the lemma below,
which has been used in previous chapters. For the sake of clarity, we present it here

again.
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Lemma 6.2.1 Suppose that f; € C%(Rd). Let Ug, be the uniform distribution over the

unit Buclidean sphere, and Sy, be the unit sphere in R?. Then we have:

(a) The smoothing function f is continuously differentiable, and its gradient is Lipschitz

continuous with constant Ls < L and

VA0 = Bty [l 00 | = o [ St 50— s (69)

where B(d) is the measure of the unit sphere in RY.

(b) For any w € R?, we have

2
£ (w) — flw) < 22, (6.10)

2
IV )~ Viw)] < 22, (6.11)

E, [H;Z[ft(w + 6v) = fr(w)lv

2 2
5
] < 2d||V fo(w)||? + ELde. (6.12)

(c) If f; is convex, then f{ is also conver.

Now based on we define the zeroth-order stochastic gradient of f; at point x;:

Gs(,&,v) = g [Fi(2e + 0v, &) — Fy(ze, )] v, (6.13)

where v is the random vector uniformly distributed over the unit sphere in R%.
Before presenting the regret bound analysis for the algorithm , we first show some
properties of the function G(x, &) = Vo F (24, &).

Lemma 6.2.2 Suppose that Gs(xy,&,v) is defined as in (6.13), and f; satisfies As-
sumption [6.2.1), i.e. (6.5, and (6.7)) hold. Then

Evei[Gs(@1,&,0)] = V7 (a0). (6.14)
If we further assume ||V fy(w)|| < M, Yw € S,t =1,...,T, then the following holds
Eve [ Gs(ze, &, v)|)*] < 2dN + 6*L*d?, (6.15)
where N = M? + o2,
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Proof. The first statement is easy to verify. We shall focus on the second statement.

Applying (6.12) and (6.7) to Fy(w¢, &) and G(w¢, &), we have

Evg [1Gs(ze, &, )%
Ee, [Ev [HG(S(JJt’ &t U)HQH

2
2d [Ee, [|IG (20, &)|%]] + % 1242

< 20 {Eg[IVFel)?] + Ee, [IIG (@, &) — V fiulwo)|*] } + 62 L2

< 2d{||Vfi(zy)|* + 0} + 6*L*d?

< 2dN + §%L%d°. (6.16)
O

For the online convex optimization problem (6.3)), the stochastic zeroth-order online

gradient descent method is as follows.

Stochastic Zeroth-order Online Gradient Descent

parameters: 7,6 > 0 and a convex set S C R?
initialize: 8; =0
fort=0,1,---T,
let 2y = argmingeg ||w — N2
pick vy ~ Ug,
predict ¢ + dv; and x4, receive Fy(xy + ovy), Fy(xy)
compute SZO as z; = % [Fy(xy + dv, &) — Fi(ag, &)] v := Gs(g, &y ve)
update Os11 = 0 — 2z

end for

One observation is in order here. Since we need to evaluate both Fy(z; + dvy, &) and
Fy(xz,&) at time ¢, we will incur two losses at time ¢, namely fi(x; + dvy) and fi(xy).
Thus the regret of this algorithm should be define as

T

S elwe + 8vr) — folu)

t=1

+E

T
E [Z(ft(l‘t) — fi(u))

t=1

The following theorem shows the O(v/T) regret bound for the algorithm. Moreover,

we use =, to denote the o-field generated by the random variables &, v, t =1,...,n.
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Theorem 6.2.3 Consider running the stochastic zeroth-order online gradient descent
method on the loss functions f; € Ci(Rd) which satisfy Assumption . Let S be a

convex set and define B = maxyes ||u||. Then, for all u € S we have

T
Z (fe(zs + 6vg) — fi(w))

T
th (zt)

Apry 2n(2dN + 62L2d*)T + (2L6% + MO)T. (6.17)
n

In particular, if we set n = B/\/(2dN + 62L2d%)2T, and § = Tfé/(Ld), then we have
the regret is bounded by O(N/T).

Proof. In view of the Follow the Regularized Leader algorithm (cf. [109]), we have the

following,
T

T
1
> (e —u) < 5l 03 (6.18)
t=1

=1
Take expectation, and notice that Eg, ., [2|Z:—1] = Vf?(2;) which is shown in (6.14)),

we have

T 1 T
Z V£ (), U>] < %HUH% +n) Efllzl?]. (6.19)
=1 t=1

Recall the convexity of f{, we have

T T
1
E [Z(ff(fﬁt) - ff(U))] < %Hullg +n ) Ell=lP]. (6.20)
t=1 t=1
From the properties of the smoothing function, we have the following chain of inequality

fe(me) = folu) < ff () — £ (u) + L2,
flwe + 0vy) — fi(w) < folay) — fi(u) + M6 < £ () — f7 (u) + L6* + M5, (6.21)
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By combining (6.21)) and (6.20), we have

T T
E [Z(ft(l’t) — fi(u)) E Z(ft(l“t—kévt) = fi(u))
t=1 t=1
f||u||2+2nZE |2]|?] + (2L&* + MO)T. (6.22)

t=1

T
Now, from (6.15), we can bound Y E [[|z?] as
=1

T
> E[llzl’] < (2dN + 8*L*d*)T.
t=1

Let B = maxyeg ||ul|, we have

T T
Z fie(xe) Z fe(xe 4 0vg) — fe(uw))

g532 + 2n(2dN + 62L2d*)T + (2L6% + M4)T. (6.23)

In particular, if we set n = B/+/(2dN + §2L2d?)2T, and § = T_%/(Ld), then we have
the regret is bounded by O(v/T). O

6.3 Extensions Under Stochastic Loss Function Setting

6.3.1 Non-differentiability

Previously, we assume the function f; is differentiable with Lipschitz gradient. In this

section, we only assume the continuity of the function f; and we further assume

Assumption 6.3.1 Suppose the loss function fi(xy) is given in the form (6.3). More-

over, fi is a continuous function which satisfies
[ful@) = i) < Lz —y|”, Vayes (6.24)

where B < 1.

Under these assumptions, we have a similar lemma for the smoothed function f7, .
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Lemma 6.3.1 Suppose that f; satisfies Assumption [6.3.1 Let Us, be the uniform
distribution over the unit Fuclidean sphere, and S, be the unit sphere in R?. Then we

have:

(a) The smoothing function f{ is continuously differentiable, and it also satisfies As-
sumption with constant Ls < L and

vﬁu»=E@%@}ﬁﬁm+ww4=V£ﬁ[;%§mm+ﬁw—ﬁuMww (6.25)

where B(d) is the measure of the unit sphere in R

(b) For any x € R?, we have

|ﬁ@»—ﬁmMSLwdj5<Lw, (6.26)

2

E{UNUSP} ["Z[ft(x + 51}) - ft(x)]v < L2d2(52’872. (627)

(c) If f; is convex, then f{ is also conver.

Now if we define the zeroth-order stochastic oracle Gs(zy,&,v) similar to (6.13]),

then we have following lemma.

Lemma 6.3.2 Suppose that Gs(xy,&,v) is defined as in (6.13), and f; satisfies As-
sumption [6.5.1, Then

Ev g [Gs(2,&,v)] = V[ (). (6.28)

Moreover, the following estimate holds

Eve [llGs(ae, &, 0)|P] < L2d*6°772, (6.29)

Proof. The first statement is easy to verify. We shall focus on the second statement.
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Applying (6.27)), we have

Eog, [1Gs(ze, &)%)
= Eg [Eo [IGs(ar, &, 0)[17]]

— E, |Es

t

H;l[Ft(x +6v,&) — Fy(x,&)]v

|

Ee, [L%F&Qﬁ_z} = [2d25%-2. (6.30)

IN

0

Under the non-differentiability, the regret bound for the stochastic zeroth-order on-

line gradient descent algorithm is shown in the following theorem.

Theorem 6.3.3 Consider running the stochastic zeroth-order online gradient descent
method on the loss functions f; € Cg(Rd) which satisfy Assumption |6.3.1. Let S be a

convex set and define B = maxycg ||u||. Then, for all u € S we have

T T
Z fe(xe) Z Je(xe 4 0vg) — fe(uw))

Apry 2nL2d*6*P 2T + 5L6°T. (6.31)
n

In particular, if we set n ~ T_(l_g), and § ~ T_%, then we have the regret is bounded
by O(T(k%)). When B =1 we have the bound to be O(T%).

Proof. In view of the Follow the Regularized Leader algorithm (cf. [I09]), we have the

following,
T

D (zar —u) < *HUHQJrnZHZtHZ (6.32)

t=1 t=1

Take expectation, and notice that Eg, ,,[2¢|Z:—1] = V f(z;) which is shown in (6.28),

we have

T 1 T
Z VI (xy), u)] < %HUH% +0 ) E[ll)?] . (6.33)
—1 t=1
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Recall the convexity of ft‘s , we have

t=1

T T
E [Z(ff(:vt) - ff(U))] < ;nHUI@ +n ) E [l (6.34)
t=1

From the property (6.26) of the smoothing function, we have the following chain of

inequality

fulae) = fu(u) < £ () — f7 (u) + 2L6°,
felwe +6v) = fiw) < filwe) = fiw) + L8P < f) (x1) — f(u) + 3L (6.35)

By combining (/6.35)) and (6.34)), we have

T T
E [Z(ft(ﬂft) Z fe(zt + dvt) — fi(u))

t=1

f||u||2+2nZE |[2¢]|?] + 5LS°T. (6.36)
t=1

T
Now, from ([6.29), we can bound Y E [[|z%] as
=1

T
D E[llal’] < L2d?6% 7T
t=1

Let B = maxyeg ||ul|, we have

T
Z fe(xe 4+ 0vg) — fe(uw))

T
thfb“t

ngQ + 2nL2d26%P 2T + 5L6°T. (6.37)
7

In particular, if we set n ~ T_(l_g), and § ~ T_%, then we have the regret is bounded
by O(T(1=3)). When 8 = 1 we have the bound to be O(T'?). O
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6.3.2 One Random Sample at One Sample Point

In this section, we discuss another extension of the stochastic online learning. In previous

discussions, the SZO (zeroth-order oracle) is in the form of

Gs(xe, &,v) = g [Fi(7e + 0v, &) — Fy(ze, )] v, (6.38)

where we implicitly assume that we can obtain two responses Fy(z; + dv, &), Fi(xe, &)
at the same sample point & for two different query points. However, following the
discussion in Chapter [5] in some cases, it is only possible to have one random sample
at a point, i.e. we can only receive two responses Fy(z; + v, &}) and Fy(xy, £2) based on

different sample points &} and £2. As a result, we can define our new SZ0O as follows

Gslee €)= & (Bl + 00, €) — (e )] v, (6:39)

where we assume that ¢ and ¢2 are independent.

To facilitate our analysis, we make another assumption regarding the function fi(x).

Assumption 6.3.2 Suppose the loss function fi(x) is given in the form (6.3)), we as-

sume

Var[Fy(z,€)] = E¢ [(Fi(2,€) — fi(2))?] <602, YweS (6.40)

where 6 > 0 is a constant.

Under Assumption [6.3.1], we have the following result.

Lemma 6.3.4 Suppose that G(;(art,ftl’Q,v) is defined as in (6.39), and f; satisfies As-
sumption [6.5.1) and Assumption[6.3.3 Then

E, e12[Ga(we, &% 0)] = V7 (22). (6.41)

Moreover, the following estimate holds

2

_ d
Evygt[HG5(xt) §t7 U)H2] S 2L2d2626 2 + 46702’ (642)

Proof. The first statement is easy to verify. We shall focus on the second statement.
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Applying (6.27)), we have

EU,E%’Q [‘|G6($t7§51727v)||2}

= Eae [ [IGs 6%, 0P|
- ] )
= Ege |E || S[F(e +60.8) — B &) ”
- d X ) 2 d ) ) 2
< Egz|E 2H6[Ft(m+5v,§t) — Fy(z,&)]v +2H5[Ft($7§t) — Fy(z,&)]v
< Eao 2L2d2625 24 2—]Ft(a: &) — Ft(%&?)\Q]
t
(6-20) B d?
< 2L2d%6% 2 4 4592 (6.43)

0

Now based on the same idea, we analyze the regret bound for the stochastic zeroth-

order online gradient descent algorithm with Gg(z¢, §t1 ’2, v) as the oracle.

Theorem 6.3.5 Consider running the stochastic zeroth-order online gradient descent
method on the loss functions f; € Cg(Rd) which satisfy Assumption |6.3.1. Let S be a

convex set and define B = maxycg ||u||. Then, for all u € S we have

T T
Z fie(xe) Z fe(xe 4 0vp) — fe(uw))

d?
gy n(AL?d?6%572 4 8§02)T + 5LSPT. (6.44)
n

_ 248 1
In particular, if we set n ~ T 2048 and § ~ T 20+8) | then the regret is bounded by
248
O(T>0+#)). When B =1 we have the bound to be O(T%).

Proof. In view of the Follow the Regularized Leader algorithm (cf. [I09]), we have the

following,
T

D (zar—u) < *HUHer??ZHZtHQ (6.45)

t=1 t=1

Taking expectation, and noticing that E£t1’2,vt [2:|Z¢-1] = V£ (2¢) which is shown in (6.41]),
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we have

T T

1
Z V7 (1) xtU>] < %HU”%JF’IZE IE1RE (6.46)
—1 t=1

Recall the convexity of f{, we have
T 1 T
E [Z(ff(ﬂﬁt) - ff(U))] < %HUH% +n ) E =] (6.47)
t=1 t=1
From the property (6.26) of the smoothing function, we have the following chain of

inequality

felae) = fr(u) < £ (20) — f7 (u) + 216",
filwe +6v) — fi(u) < filwe) — fo(w) + L6° < f(ae) — f7 (u) +3L5°. (6.48)

By combining (/6.48) and (6.47)), we have

T T
E[Z(ft(xt)_ft(u)) E | (filwe+ dve) — filu))
t=1 t=1
f||u||2+2nZE || 2¢]|?] + 5LS°T. (6.49)

t=1

T
Now, from (6.42), we can bound Y E [||z]|] as
=1

d 2
> E[llz)?] < (202?677 2+45 0%)T.
t=1

Let B = maxyeg ||ul|, we have

T T
EN> (fulm) = few)| + E | D (filwe + 6ve) — fi(w))
t=1 t=1
§71732 + n(4L2d%6%% 2 + 8?292)T + 5LS°T. (6.50)

In order to achieve the best possible bound in terms of 7', we need to choose 7 and §

carefully. Suppose we have n ~ T~%, and 6 ~ T~°, where a,b > 0. Then the order in
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(6.50) becomes to

Tmax{a,l—a—(2,3—2)b71+26—a,1—,3b}'
Thus, we need to find the value of

H;ighmax{a,l —a—(28—-2)b,1+2b—a,l— pb}. (6.51)

Since 0 < <1, we have 1 +2b—a > 1—a — (20 — 2)b, so the above problem becomes
to

min max{a,1+2b—a,1 — b} . (6.52)
a,b>0
By inspection, we can find the optimal a, b as a = 2(2%%, b= m In particular, if

_248 __ 1 _248
we set n ~ T 2048 and 0 ~ T 20+ | then the regret is bounded by O(7'2(+5)) which
is the best possible in terms of 7. When 3 = 1, the regret bound becomes to O(T%). O
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Chapter 7

Conclusions and Discussions

In this dissertation, we studied the convergence properties and the applications of the
first-order and the zeroth-order optimization algorithms. Our discussions include: the
iteration complexity analysis of different ADMM-type algorithms for solving various
multi-block optimization with linear constraint, and the analysis of lower-order gradient-
type algorithms for solving oracle-based black-box optimization and online learning
problem. From the theoretical point of view, without sacrificing the computational
complexity bounds, the zeroth-order smoothing scheme enables different algorithms to
be applicable on a much broader class of problems where only noisy estimations of the
function values are available. Moreover, as we showed in Chapter 4] the randomization
is really the key to establish the convergence rate result for the multi-block ADMM
method. Together with a carefully selected proximal term, the parallelization makes
our randomized algorithm even more efficient and powerful. From the practical point of
view, our numerical studies also indicate that our proposed algorithms are indeed com-
parable to those state-of-the-art methods by means of evaluation using well-established
standard benchmark problems, while the theoretical convergence rate is also achieved.

There are several directions for future research. In terms of the convergence rate, it
is interesting to explore if it is possible to accelerate those lower-order ADMM-type al-
gorithms, especially for the zeroth-order method. Moreover, the zeroth-order smoothing
scheme is a powerful tool for constructing approximations of the gradient. Designing
algorithms for an optimization model often amounts to maintaining a balance between
the degree of information to request from the model on the one hand, and the computa-
tional speed to expect on the other hand. Naturally, the more information is available,

the faster one can expect the algorithm to converge. Thus, how to generalize the zeroth-
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order smoothing scheme to approximate higher-order derivatives so as to achieve faster

convergence rate is another possible direction to explore.
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