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Abstract

Efficiency and scalability have become the new norms to evaluate optimization al-

gorithms in the modern era of big data analytics. Despite its superior local convergence

property, second or higher-order methods are often disadvantaged when dealing with

large-scale problems arising from machine learning. The reason for this is that the

second or higher-order methods require the amount of information, or to compute rel-

evant quantities (e.g. Newton’s direction), which is exceedingly large. Hence, they are

not scalable, at least not in a naive way. Because of exactly the same reason, with

substantially lower computational overhead per iteration, lower-order (first-order and

zeroth-order) methods have received much attention and become popular in recent years.

In this thesis, we present a systematic study of the lower-order algorithms for solving

a wide range of different optimization models. As a starting point, the alternating di-

rection method of multipliers (ADMM) will be studied and shown to be an efficient

approach for solving large-scale separable optimization with linear constraint. However,

the ADMM is originally designed for solving two-block optimization models and its

subproblems are not always easy to solve. There are two possible ways to increase the

scope of application for the ADMM: (1) to simplify its subroutines so as to fit a broader

scheme of lower-order algorithms; (2) to extend it to solve a more general framework

of multi-block problems. Depending on the informational structure of the underlying

problem, we develop a suite of first-order and zeroth-order variants of the ADMM, where

the trade-offs between the required information and the computational complexity are

explicitly given. The new variants allow the method to be applicable to a much broader

class of problems where only noisy estimations of the gradient or the function values are

accessible. Moreover, we extend the ADMM framework to a general multi-block convex

optimization model with coupled objective function and linear constraints. Based on a

linearization scheme to decouple the objective function, several deterministic first-order

algorithms have been developed for both two-block and multi-block problems. We show

that, under suitable conditions, the sublinear convergence rate can be established for

those methods. It is well known that the original ADMM may fail to converge when

the number of blocks exceeds two. To overcome this difficulty, we propose a randomized

primal-dual proximal block coordinate updating framework which includes several ex-

isting ADMM-type algorithms as special cases. Our result shows that if an appropriate

ii



randomization procedure is used, then a sublinear rate of convergence in expectation

can be guaranteed for multi-block ADMM, without assuming strong convexity or any

additional conditions. The new approach is also extended to solve problems where only

a stochastic approximation of the (sub-)gradient of the objective is available. Further-

more, we study various zeroth-order algorithms for both black-box optimizations and

online learning problems. In particular, for the black-box optimization, we consider

three different settings: (1) the stochastic programming with the restriction that only

one random sample can be drawn at any given decision point; (2) a general nonconvex

optimization framework with what we call the weakly pseudo-convex property; (3) an

estimation of objective value with controllable noise is available. We further extend the

idea to the stochastic bandit online learning problem, where the nonsmoothness of the

loss function and the one random sample scheme are discussed.
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Chapter 1

Introduction

1.1 Background and Literature Review

Algorithm design is commonly considered as a central theme in the theory and practice

of optimization. For continuous optimization, roughly speaking, algorithms can be

classified into three types: (1) the high-order algorithms (which use the information

of the Hessian or higher order derivatives of the objective function); (2) the first-order

algorithms (which use no more than the gradient information of the objective function);

(3) the zeroth-order algorithms (which only use the function value information). In this

dissertation, we aim to present a study on the latter two types of algorithms for some

specific optimization models. To distinguish from the high-order ones, let us loosely use

the term low-order algorithms to represent the last two types of methods. High-order

methods such as the interior point algorithms have proved to be extremely successful

in solving optimization problems in general, as they typically only take a few steps to

converge (cf. [6, 5]). However, there are applications arising from big data analytics

that prevent high-order methods from being practical, as the computational complexity

of performing one iteration of a high-order method may already be overly expensive.

In those situations, the first-order methods become attractive since at each step their

computational costs are substantially lower. Furthermore, in some applications only the

function values are available for estimation. In such cases, the zeroth-order methods are

the only choices to be considered.

As two subclasses of the lower-order algorithms, the first-order methods and the

zeroth-order methods are closely related. In fact, as we will show in this dissertation,

many zeroth-order methods can be derived from their well-designed first-order coun-
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terpart. In the literature, two types of first-order methods are popular. The first type

includes essentially the gradient algorithms and their variations, while the second type

is based on the proximal gradient mappings. Consider

min
x∈Rn

f(x) (1.1)

where f(x) is a smooth convex function. The gradient method is in the form of

xk+1 = xk − αk∇f(xk), (1.2)

where αk is the step size. Moreover, for some problems, the objective function might be

nonsmooth and there might be constraints and so the gradient method is not directly

applicable. For example, consider

min
x∈X

f(x) = f0(x) + f1(x), (1.3)

where X is a convex set, and fi is convex, i = 0, 1, and f0 may be nonsmooth. This is a

typical situation where proximal type method may be relevant. In particular, we define

the proximal operator proxλf as

proxλf (x) = arg min
y∈X

f(y) +
1

2λ
‖y − x‖2.

For problem (1.3), the proximal point method can be described as the following iterative

process

xk+1 = proxλkf0(xk), (1.4)

and the proximal gradient method can be described as

xk+1 = proxλkf0(xk − λk∇f1(xk)). (1.5)

There have been many variations originated from the proximal point and the proximal

gradient methods, adapted for specific applications in various fields including engineer-

ing, statistics, and economics (cf. [11]). Besides, the aforementioned gradient-type

methods can also serve as a starting point for many zeroth-order methods. When the

gradient information is not readily available or impractical to obtain, based on some

approximations of the gradient, the corresponding zeroth-order method can still be
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applied.

Given the nature of the lower-order algorithm, it is particularly useful for problems

that require higher computational efficiency. In general, we study its applications for

the following areas: (1) large-scale block optimization; (2) stochastic and black-box

optimization; (3) online learning and online optimization. In the previous gradient-type

optimization methods, the vector x is treated as a single block of variables. But in

large-scale optimization problems, the dimension n is large and it would be preferable

to work with some smaller-sized subproblems at each step. In fact, there are plenty of

problems including matrix/tensor factorization [65, 69], group LASSO [117, 128], SVM

[22] etc., where x can be decomposed as x = (x1, x2, . . . , xm)>. With such kind of

problems in mind, let us consider the following block-structured optimization model

min
xi∈Xi,i=1,...,m

f(x1, x2, . . . , xm) +

m∑
i=1

ui(xi), (1.6)

where f(·) is smooth, and ui(·) may be nonsmooth. To solve this problem, it is intuitive

to utilize the block structure so that at each step of the algorithm, we only need to

deal with a smaller-sized problem. To this end, the Block Coordinate Descent (BCD)

method is proposed for solving problem (1.6). Basically, the BCD method tries to

minimize a single block variable xi while all other blocks xj , j 6= i are fixed at each

step by following a certain selection rule of the block (e.g. cyclic, randomized, etc.).

By incorporating the proximal point or proximal gradient method and implementing

different block updating rule, many variants of the BCD methods have been proposed.

However, for some applications, for instance the robust PCA [14], (1.6) is still not general

enough. Taking the constraints into account, let us consider the following model

min
xi∈Xi,i=1,...,m

f(x1, x2, . . . , xm) +
m∑
i=1

ui(xi)

s.t. A1x1 +A2x2 + · · ·+Amxm = b,
(1.7)

where Ai, i = 1, . . . ,m are given matrices. For instance, by introducing a new variable,

the well-known LASSO model [117] can be transformed into (1.7):

min
x∈Rn

‖Ax− b‖2 + λ‖x‖1 ⇒
min
x,y∈Rn

‖Ax− b‖2 + λ‖y‖1

s.t. x− y = 0.
(1.8)
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There are in fact many applications which can be formulated in the form of (1.7)

including the consensus and sharing problems, basis pursuit, compressive sensing etc.;

see [7, 81, 20, 29]. For this model, the ADMM-type methods based on augmented

Lagrangian have received much attention recently, which will be discussed at length

later in this thesis. Unlike the deterministic large-scale optimization, for many stochastic

and black-box optimizations, the lower-order algorithm seems to be the only feasible

solution. A stochastic optimization problem often assumes the following structure

min
x∈X

f(x) := E[F (x, ξ)], (1.9)

where the expectation is taken over a random variable ξ. For many stochastic problems,

the function F and the distribution of ξ are either very complex or unknown, which

makes the higher-order information become unavailable. The black-box optimization

further generalizes it into a nonparametric model where no functional form is assumed

for the objective function. A good example is the hyperparameter tuning of machine

learning algorithms, where the generalization error is used as the objective function.

Clearly, for a given set of hyperparameters, the only possible information is the cross-

validation or test error which is a noisy approximation of true generalization error. In

light of this, both stochastic and black-box optimization can be viewed as the oracle-

based optimization problem. For any query point x, depending on the informational

structure of a problem, the corresponding feedback is given by an oracle. Moreover,

the lower-order algorithm is even more powerful for solving a combination of the large-

scale and the oracle-based optimization. As an extension of optimization to a changing

environment, the online learning or online optimization also possesses a lower-order

nature. In online learning, at each decision period t ∈ {1, 2, . . . , T}, an online player

chooses a feasible strategy xt from a decision set X ⊂ Rn, and suffers a loss given by

ft(xt), where ft(·) is a loss function. The key feature of this framework is that the

player must make a decision for period t without knowing the loss function ft(·). In this

challenging setting with limited information, the lower-order algorithms become more

appropriate.

Convergence or computational complexity analysis is an indispensable part of opti-

mization theory. In general, the iteration complexity is a measure of how well the algo-

rithm performs after a certain number of iterations. The way to measure the quality of

the current iterate varies from problem to problem, but it mainly includes the distance

between the iterate and the optimal solution set, the difference between the current

4



function value and the optimal function value, and the violation of the optimality con-

ditions. For example, if an algorithm has the iteration complexity of the order O(1/N)

in terms of the objective function value, then this means that after k iterations, the

current iterate xk would satisfy f(xk)−f∗ < C
k where C is a constant. For the two fun-

damental methods: the gradient method (1.2) and the proximal gradient method (1.5),

the iteration complexities are well studied. In particular, the gradient method has been

shown an iteration complexity of O(1/N) (cf. [6]). Moreover, [86] shows that the com-

plexity can be further improved to O(1/N2) by an acceleration procedure and this is the

optimal rate that any gradient-type method can possibly achieve, and if the function is

strongly convex then the method actually converges linearly. For the proximal gradient

method, similar results hold: the O(1/N) complexity of the original method, which

can be accelerated to an O(1/N2) iteration complexity; see [3, 87, 88, 120]. For prob-

lem (1.6), extensive research of the iteration complexity of the BCD-type method has

been reported in the literature. Under different conditions, the sublinear convergence

rate O(1/N) or the linear rate can be achieved for the block minimization BCD-type

methods (cf. [79, 125, 60]). Furthermore, for the proximal gradient BCD-type method,

[90, 100, 77, 4, 60] show that the similar convergence rate can still be established.

In this Ph.D. thesis, we study the first-order and zeroth-order methods for op-

timization models around the following themes: the iteration complexity analysis of

different ADMM-type algorithms for solving various block optimization problems, and

the analysis of lower-order gradient-type algorithms for solving oracle-based black-box

optimization and online optimization.

Instead of aiming to solve the general multi-block model (1.7), the basic Alternating

Direction Method of Multipliers (abbreviated as ADMM) is originally designed to solve

the following two-block constrained convex optimization model

min f(x) + g(y)

s.t. Ax+By = b,

x ∈ X , y ∈ Y
(1.10)

where x ∈ Rnx , y ∈ Rny , A ∈ Rm×nx , B ∈ Rm×ny , b ∈ Rm, and X ⊆ Rnx , Y ⊆ Rny are

closed convex sets; f and g are convex functions.

An intensive recent research attention for solving problem (1.10) has been devoted

to the ADMM, which is known to be a manifestation of the operator splitting method

(cf. [30, 33, 46] and the references therein). Large-scale optimization problems in the
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form of (1.10) can be found in many application domains including compressed sensing,

imaging processing, and statistical learning. Due to the large-scale nature, it is often

impossible to inquire the second order information (such as the Hessian of the objective

function) or invoke any second order operations (such as inverting a full-scale matrix) in

the solution process. In this context, the ADMM as a first order method is an attractive

approach; see [10]. Specifically, for solving (1.10), a typical iteration of ADMM proposed

in [46] runs as follows: 
xk+1 = arg minx∈X Lγ(x, yk, λk)

yk+1 = arg miny∈Y Lγ(xk+1, y, λk)

λk+1 = λk − γ(Axk+1 +Byk+1 − b),
(1.11)

where Lγ(x, y, λ) is the augmented Lagrangian function for problem (1.10) defined as:

Lγ(x, y, λ) = f(x) + g(y)− λ>(Ax+By − b) +
γ

2
‖Ax+By − b‖2. (1.12)

The convergence of the ADMM for (1.10) is actually a consequence of the convergence

of the so-called Douglas-Rachford operator splitting method (see [45, 33]). However,

the rate of convergence for ADMM is established only very recently: [57] shows that

for problem (1.10) the ADMM converges at the rate of O(1/N) where N is the number

of total iterations. From the perspective of monotone inclusion, a similar iteration

complexity is also obtained in [80] under different assumptions. Moreover, a non-ergodic

O(1/N) iteration complexity in terms of the infeasibility measure and the objective value

are found very recently in [56, 74, 26]. Furthermore, by imposing additional conditions

on the objective function or constraints, the ADMM can be shown to converge linearly;

see [48, 28, 59, 8, 73]. Moreover, as we will show later in this thesis, the ADMM

framework can be naturally extended to solve problems with more than two blocks of

variables.

Besides the multi-block structure, we can take a different stance towards the applica-

bility of the ADMM, depending on the prevailing information structure of the problem.

Observe that to implement (1.11), it is necessary that arg minx∈X Lγ(x, yk, λk) and

arg miny∈Y Lγ(xk+1, y, λk) can be solved efficiently at each iteration; i.e. the proximal

mappings are assumed to be easy. While this is indeed the case for some classes of the

problems (e.g. the lasso problem), it may also fail for many other applications. This

triggers a natural question: Given the structure of the objective functions in the mini-
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mization subroutines, can the multipliers’ method be adapted accordingly? In Chapter

2, we study some variants of the ADMM based on incorporating the two basic first-order

methods (1.2) and (1.5) to account for this informational structure of the objective func-

tions. One possible scenario is that it is not easy to solve the subproblems of x and

y in (1.11), in this case, we can introduce the gradient projection method (a special

form of proximal gradient method) to replace the exact minimization subproblem. In

particular, this leads to two algorithms: one is the GADM (Gradient-ADM, replacing

the subproblem of one block by gradient method) and the other is GALM (Gradient-

ALM, replacing the subproblems of both blocks by gradient method), and those two

algorithms will further allow us to deal with different informational structure of the

problem.

To take into account the informational structure, one natural way is to consider

the stochastic setting of problem (1.10), where we can go beyond the deterministic in-

formational structure of the problem. In stochastic programming (SP), the objective

function is often in the form of expectation. In this case, even requesting its full gra-

dient information is impractical. Historically, Robbins and Monro [102] introduced the

so-called stochastic approximation (SA) approach to tackle this problem. Polyak and

Juditsky [96, 97] proposed an SA method in which larger step-sizes are adopted and

the asymptotical optimal rate of convergence is achieved; cf. [34, 37, 105, 104] for more

details. Recently, there has been a renewed interest in SA, in the context of compu-

tational complexity analysis for convex optimization [85], which has focussed primarily

on bounding the number of iterations required by the SA-type algorithms to ensure the

expectation of the objective to be ε away from optimality. For instance, Nemirovski

et al. [83] proposed a mirror descent SA method for the general nonsmooth convex

stochastic programming problem attaining the optimal convergence rate of O(1/
√
N);

Lan and his coauthors [43, 41, 40, 42, 68, 44] proposed various first-order methods for

SP problems under suitable convex or non-convex settings. In [93], a stochastic version

of problem (1.10) is considered. In this proposal we also consider the GADM and the

GALM in the SP framework. Under the stochastic framework, the informational struc-

ture of the problem appears in a progressive way. To start with, we first assume that

a noisy gradient information of the function is available. Thus, in our GADM method

or GALM method, we can only use a noisy stochastic estimate of the gradient and

we name those methods as SGADM (stochastic-ADM) and SGALM (stochastic-ALM).

Furthermore, it is possible that even the noisy gradient information is not available. In
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this case, we assume that we can only get the noisy estimation of the function value,

and this gives us an avenue where the zeroth-order method can apply. Inspired by

the work of Nesterov [89] for gradient-free minimization, we will propose a zeroth-order

(gradient-free, a.k.a. direct) smoothing method for (1.10). Specifically, we show that the

SGADM and the SGALM can be extended to the zeroth-order version by incorporating

the zeroth-order gradient estimate into the algorithms.

So far we have discussed the different variants of ADMM for solving problem (1.10)

which is a special case of the problem (1.7). Is it possible to extend the ADMM frame-

work to the more general problem (1.7) where we have both multi-block variables and

coupled the objective function f(x1, x2, . . . , xm)? The answer is positive, and we will

discuss this thoroughly in Chapter 3 and Chapter 4. In fact, utilizing the multi-block

structure of the problem, the multi-block ADMM updates the block variables sequen-

tially. Specifically, it performs the following updates iteratively (by assuming the ab-

sence of the coupled functions f):
xk+1

1 = arg minx1∈X1 Lρ(x1, x
k
2, · · · , xkm, λk),

...

xk+1
m = arg minxm∈Xm Lρ(xk+1

1 , · · · , xk+1
m−1, xm, λ

k),

λk+1 = λk − γ(A1x
k+1
1 +A2x

k+1
2 + · · ·+Amx

k+1
m − b),

(1.13)

where the augmented Lagrangian function is similarly defined as:

Lγ(x, λ) =

m∑
i=1

ui(xi)− λ>
(

m∑
i=1

Aixi − b

)
+
γ

2

∥∥∥∥∥
m∑
i=1

Aixi − b

∥∥∥∥∥
2

. (1.14)

Although the multi-block ADMM scheme in (1.13) performs very well for many

instances encountered in practice (e.g. [94, 116]), it may fail to converge for some

instances if there are more than 2 blocks of variables, i.e., m ≥ 3. In particular,

an example was presented in [16] to show that the ADMM may even diverge with 3

blocks of variables, when solving a linear system of equations. Thus, some additional

assumptions or modifications will have to be in place to ensure convergence of the

multi-block ADMM. In fact, by incorporating some extra correction steps or changing

the Gauss-Seidel updating rule, [27, 55, 54, 52, 124] show that the convergence can still

be achieved for the multi-block ADMM. Moreover, if some part of the objective function

is strongly convex or the objective has certain regularity property, then it can be shown
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that the convergence holds under various conditions; see [17, 74, 13, 73, 70, 47, 123].

Using some other conditions including the error bound condition and taking small dual

stepsizes, or by adding some perturbations to the original problem, authors of [59, 75]

establish the rate of convergence results even without strong convexity. Not only for

the problem with linear constraint, in [19, 71, 112] multi-block ADMM are extended to

solve convex linear/quadratic conic programming problems. In a recent work [113], the

authors propose a randomly permuted ADMM (RP-ADMM) that basically chooses a

random permutation of the block indices and performs the ADMM update according to

the order of indices in that permutation, and they show that the RP-ADMM converges

in expectation for solving non-singular square linear system of equations.

In [58], the authors propose a block successive upper bound minimization method

of multipliers (BSUMM) to solve problem (1.7). Essentially, at every iteration, the

BSUMM replaces the nonseparable part f(x) by an upper-bound function and works

on that modified function in an ADMM manner. Under some error bound conditions

and a diminishing dual stepsize assumption, the authors are able to show that the

iterates produced by the BSUMM algorithm converge to the set of primal-dual optimal

solutions. Along a similar direction, Cui et al. [23] introduces a quadratic upper-bound

function for the nonseparable function f to solve 2-block problems; they show that their

algorithm has an O(1/N) convergence rate, where t is the number of total iterations.

Moreover, [18] shows the convergence of the ADMM for 2-block problems by imposing

quadratic structure on the coupled function f(x) and also the convergence of RP-ADMM

for multi-block case where all separable functions vanish (i.e. ui(xi) = 0, ∀i).
In Chapter 3, we study the ADMM and its variants for (1.7). (Some adaptations of

the ADMM are particularly relevant if there is a coupling term in the objective, as the

minimization subroutines required by the ADMM may become difficult to implement;

see more discussions on this later.) Instead of using some upper-bound approximation

(a.k.a. majorization-minimization), we work with the original objective function. In

some applications, it is difficult or impossible to implement the ADMM iteration, be-

cause the augmented Lagrangian function in (1.11) may be difficult to optimize even if

the other block of variables and the Lagrangian multipliers are fixed. This motivates us

to propose the Alternating Proximal Gradient Method of Multipliers (APGMM), which

essentially iterates between proximal gradient methods of each block variables before the

multiplier is updated. If optimizing the augmented Lagrangian function for one block of

variables is easy while optimizing the other block of variables is difficult, then a hybrid
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between ADMM and APGMM is a natural choice. What if the gradient proximal sub-

routines are still too difficult to be implemented? One would then opt to compute the

gradient projections. Hence, we propose the Alternating Gradient Projection Method of

Multipliers (AGPMM), which replaces the proximal gradient steps in APGMM by the

gradient projections. At this stage, all the methods mentioned above are considered

in the context of the 2-block model. In general however, they can be extended to the

multi-block model with a coupling term.

In Chapter 4, we study a more general model that includes (1.7) as a special case.

Specifically, we introduce another set of variables y which has a similar mixed structure

(coupled and separate) as x in (1.7). We propose a randomized primal-dual coordinate

update algorithm by introducing randomization to the multi-block ADMM framework

(1.13). Different from the random permutation scheme in [113, 18], a simpler variable

selection rule based on uniform distribution is used. The randomization is crucial to

the convergence of the algorithm. In fact, the randomization scheme enables us to

establish the O(1/N) convergence rate for this coupled multi-block model with mere

convexity. The way we deal with the coupled objective function is to use proximal

gradient approach, and it has two additional benefits. First, by incorporating a properly

chosen proximal term, the variables can be decoupled and the algorithm can be done

in parallel. Furthermore, the proximal gradient (linearization) scheme can be adapted

to solve stochastic optimization problems. In fact, based on the informational structure

of the coupled function f , an approximation of the gradient can be obtained. The

randomized primal-dual coordinate update can still be readily implemented, given an

unbiased approximation is available under some oracle-based models.

Besides the multi-block optimization problem, low-order algorithms are also suit-

able for solving black-box optimization and bandit online learning problem. For both

of the problems, the key feature is that no higher-order information is available other

than the function value estimation. In optimization, solution procedures using only

objective values are often referred to as direct methods. In [99], Powell (1964) con-

structed a method based on conjugate directions for quadratic minimization; in [82],

Nelder and Mead (1965) introduced the so-called simplex method for nonlinear opti-

mization, while justifications for the simplex method in low dimensions can be found

in [67, 66]. A modern account and historical notes of the direct methods can be found

in a recent book ([21]) by Conn, Scheinberg, and Vicente. Our study however, builds

on a relatively recent approach of randomized zeroth-order approximation of the gra-

10



dient, pioneered by Nesterov and Spokoiny [89]; some of the ideas in the approach can

be traced back to Polyak [98]. As a different type of optimization method, Bayesian

optimization [63] also provides a powerful tool for black-box optimization. In general,

Bayesian optimization constructs a prior probabilistic distribution over the functional

space. When the data are observed, it sequentially refines this model using Bayesian

posterior distribution. The procedure finds the next query point by maximizing an ac-

quisition function induced by the corresponding probabilistic model. For more details

and applications about Bayesian Optimization, see, e.g., [12, 108, 111]. From a different

perspective, there has been a great research interest in using the lower-order method

for online learning problem. Several sub-linear cumulative regret bounds measured by

stationary regret have been established in various papers in the literature. For example,

[131] proposed an online gradient descent algorithm which achieves an regret bound of

order O(
√
T ) for convex loss functions. The order of the regret can be further improved

to O(log T ) if the loss functions are strongly convex (see [49]). Moreover, the bounds

are shown to be tight for convex / strongly convex loss functions respectively in [1].

In the so-called bandit online convex optimization, where the online player is only sup-

posed to know the function value ft(xt) at xt, instead of the entire function ft(·). When

the player can only observe the function value at a single point, [35] established an

O(T 3/4) regret bound for general convex loss functions by constructing a zeroth-order

approximation of the gradient. Assuming that the loss functions are smooth, the regret

bound can be improved to O(T 2/3) by incorporating a self-concordant regularizer (see

[106]). Alternatively, if multiple points can be inquired at the same time, [2] showed

that the regrets can be further improved to O(T 1/2) and O(log T ) for convex / strongly

convex loss functions respectively. In this dissertation, we study various zeroth-order

algorithms for the black-box optimization and online learning. In particular, we study

the optimization models under three different settings. In the first setting, the model

is basically stochastic programming with the following side restriction: similar to the

online bandit learning framework, only one random sample can be drawn at any given

decision point. In the second setting, we present a general nonconvex optimization

framework (weakly pseudo convex), and develop a specialized zeroth-order normalized

gradient method. In the third setting, the objective value can be estimated arbitrarily

close to the true value, at a cost that is increasing with regard to the inverse of the pre-

cision desired. Furthermore, we extend the analysis to a general constrained model with

a composite objective function, consisting of the original objective and a non-smooth
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regularizer. The above-mentioned settings are considered respectively for that general

case as well, extending the sample complexity analysis under a proximal gradient dom-

inance assumption. In Chapter 6, we further extend the similar idea to the stochastic

bandit online learning problem, where the nonsmoothness of the loss function and the

one random sample scheme are discussed.

1.2 Overview and Organization

In Chapter 2, we present a suite of variants of the ADMM, including GADM, GALM,

SGADM, SGALM, and the zeroth-order version of SGADM and SGALM. Clearly, the

new variants allow the method to be applicable on a much broader class of problems

where only noisy estimations of the gradient or the function values are accessible, yet the

flexibility is achieved without sacrificing the computational complexity bounds. In fact,

we will show that the rate of convergence of GADM and SGADM would be O(1/N)

and O(1/
√
N) respectively, and show SGALM admits a similar iteration complexity

bound. Moreover, we will show that the zeroth-order SGADM and SGALM also have

the O(1/
√
N) complexity.

In Chapter 3, we first study the 2-block case of the optimization model (1.7), where

we analyze the proposed first-order algorithms to solve this model. First, the ADMM is

extended, assuming that it is easy to optimize the augmented Lagrangian function with

one block of variables at each time while fixing the other block. We prove that O(1/N)

iteration complexity bound holds under suitable conditions. If the subroutines of the

ADMM cannot be implemented, then our APGMM, AGPMM, and the hybrids of them

may be still applicable. Under suitable conditions, the O(1/N) iteration complexity

bound is shown to hold for all the newly proposed algorithms. Finally, we extend the

analysis for the ADMM to the general multi-block case.

In Chapter 4, we propose a randomized primal-dual proximal block coordinate up-

dating framework for a general multi-block convex optimization model with coupled

objective function and linear constraints. Assuming mere convexity, we establish its

O(1/N) convergence rate in terms of the objective value and feasibility measure. Our

analysis recovers and/or strengthens the convergence properties of several existing algo-

rithms. In particular, Our result shows that a sublinear rate of convergence in expecta-

tion can be guaranteed for multi-block ADMM, without assuming any strong convexity.

The new approach is also extended to solve problems where only a stochastic approxi-
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mation of the (sub-)gradient of the objective is available, and we establish an O(1/
√
N)

convergence rate of the extended approach for solving stochastic programming.

In Chapter 5, we first study an unconstrained stochastic optimization model where

the objective can be allowed a single-sample at a point. The convergence analysis

also extends to the star-convex functions. Moreover, we consider a class of nonconvex

optimization model by introducing the so-called weak pseudo-convexity. For this model,

we develop a zeroth-order normalized gradient descent method. For the aforementioned

two models, we show the sublinear convergence rate of our zeroth-order methods. In

addition, we study unconstrained optimization where only the objective function can

be estimated, and the efforts required to estimate the function value depends on the

precision. Finally, we extend our investigations to the constrained optimization with

a regularization function. Linear convergence rate is derived for the latter two models

under strong convexity and gradient dominance respectively.

In Chapter 6, we present the zeroth-order methods for solving online learning prob-

lem. Specifically, we study the online convex optimization with stochastic loss functions.

The goal is to design some effective algorithms such that the total regret will be bounded

above nontrivially by the time horizon T . In fact, we propose a stochastic gradient de-

scent method under this setting. We prove the O(
√
T ) regret bound for both smooth

and non-smooth loss functions and the O(T
3
4 ) regret bound for non-smooth stochastic

loss with one random sample restriction.
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Chapter 2

Information-Adaptive Variants of

the ADMM

2.1 Introduction

In this chapter, we consider the most basic ADMM model:

min f(x) + g(y)

s.t. Ax+By = b,

x ∈ X , y ∈ Y
(2.1)

where x ∈ Rnx , y ∈ Rny , A ∈ Rm×nx , B ∈ Rm×ny , b ∈ Rm, and X ⊆ Rnx , Y ⊆ Rny

are closed convex sets; f is a smooth convex function, and g is a convex function and

possibly nonsmooth. We further assume that the gradient of f is Lipschitz continuous:

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x, y ∈ X , (2.2)

where L is a Lipschitz constant.

Recall, the augmented Lagrangian function for problem is defined as:

Lγ(x, y, λ) = f(x) + g(y)− λ>(Ax+By − b) +
γ

2
‖Ax+By − b‖2. (2.3)

To bring out the hierarchy regarding the available information of the functions in

question, let us first introduce the following definition.
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Definition 1 We call a convex function f(x) to be easy to minimize with respect to x

(f is hence said to be MinE as an abbreviation) if there exits some H � 0 such that

the proximal mapping arg minx f(x) + 1
2‖x− z‖

2
H can be computed easily for any given

z.

Some remarks are in order here. If Lγ(x, y, λ) is MinE with respect to both x and y

with H = 0, then the original ADMM (1.11) is readily applicable. For the cases where

Lγ(x, y, λ) is MinE with respect to both x and y but H is nonzero, the convergence of

different inexact ADMM-type methods have been studied in [51, 92, 53]. Moreover, [110,

15, 59] show that by incorporating various modifications of ADMM with the proximal

method an O(1/N) convergence rate can still be achieved. In the case that Lγ(x, y, λ)

is MinE in x but not in y, Lin, Ma and Zhang [72] recently proposed an extra-gradient

ADMM (EGADM) and showed an O(1/N) iteration bound. In this chapter, we consider

a simpler procedure of applying gradient only once in each iteration (to be named

GADM): 
yk+1 = arg miny∈Y Lγ(xk, y, λk) + 1

2‖y − y
k‖2H

xk+1 = [xk −∇xLγ(xk, yk+1, λk)]X

λk+1 = λk − γ(Axk+1 +Byk+1 − b),
(2.4)

where [x]X denotes the projection of x onto X . In fact, a variant of above procedure was

considered in [72], where x is updated by taking the gradient of Lagrangian function

rather than augmented Lagrangian function, and it was posed as an unsolved problem to

determine the iteration complexity bound of this modified algorithm. In this chapter we

prove that the GADM also has an iteration bound of O(1/N). Moreover, our analysis

does not require the optimal set to be bounded nor the coercivity of the objective

function, which is key to obtaining iteration bounds in many previous works; see [32,

28, 72, 84]. In addition to the assumptions made at the beginning of this section,

throughout the chapter we only assume:

Assumption 2.1.1 The optimal solution set X ∗ ×Y∗ for problem (2.1) is non-empty.

Under this assumption, naturally we have dist(x,X ∗)M := minu∈X ∗ ‖x−u‖M <∞, and

dist(y,Y∗)M := minv∈Y∗ ‖y − v‖M <∞, for any given x, y and matrix M � 0.

In this chapter we also consider (2.4) in the SP framework. We assume that a noisy

gradient information of ∇Lγ via the so-called stochastic first order oracle (SFO) is

available. Specifically, for a given x, instead of computing ∇f(x) we actually only get
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a stochastic gradient G(x, ξ) from the SFO, where ξ is a random variable following a

certain distribution. Formally we introduce:

Definition 2 We call a function f(x) to be easy for gradient estimation – denoted as

GraE – if there is an SFO for f , which returns a stochastic gradient estimation G(x, ξ)

for ∇f at x, satisfying

E[G(x, ξ)] = ∇f(x), (2.5)

and

E[‖G(x, ξ)−∇f(x)‖2] ≤ σ2. (2.6)

If the exact gradient information is available then the SFO is deterministic. In gen-

eral, the SFO is often stochastic and inaccurate. For instance, the stochastic gradient

that is used in many machine learning algorithms can be viewed as a special case of

SFO where the distribution is uniform on the dataset. As for problem (2.1), quite a few

ADMM variants in stochastic and online optimization setting have been proposed re-

cently; see [93, 121, 114, 115, 129, 130]. The basic idea in those works is to linearize the

stochastic function and use the noisy gradient in the subproblem. In [93, 121, 114, 129],

the O(1/
√
N) and O(lnN/N) iteration complexities have been shown for general convex

function and strongly convex function respectively. Moreover, [130] shows an O(1/N)

iteration complexity can be achieved if an incremental approximation of the full gradient

is used. By assuming both functions are strongly convex and smooth, a linear conver-

gence is shown in [115]. In this chapter, when Lγ(x, y, λ) is MinE with respect to y, and

f(x) in (2.3) is GraE, we will then propose a stochastic gradient ADMM (SGADM),

which alternates through one exact minimization step ADMM (1.11), one stochastic

approximation iteration, and an update on the dual variables (multipliers). It is clear

that the SGADM in the deterministic case is exactly GADM (2.4), and we will show

that the rate of convergence of GADM and SGADM would be O(1/N) and O(1/
√
N)

respectively. n particular, if f(x) is strongly convex, the complexity of SGADM can be

improved to O(lnN/N). Moreover, if f(x) and g(y) in (2.3) are both GraE, then we

propose a stochastic gradient augmented Lagrangian method (SGALM), and show that

it admits a similar iteration complexity bound.

Furthermore, we are also interested in another class of stochastic problems, where

even the noisy gradient information is not available; instead we assume that we can

only get a noisy estimation of f via the so-called stochastic zeroth-order oracle (SZO).

Specifically, for any input x, by calling SZO once it returns a quantity F(x, ξ), which
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is a noisy approximation of the true function value f(x). More specifically,

Definition 3 We call a function f(x) to be easy for function evaluation – denoted as

ValE – if there is an SZO for f , which returns a stochastic estimation for f at x if

SZO is called, satisfying

E[F(x, ξ)] = f(x), (2.7)

E[∇F(x, ξ)] = ∇f(x), (2.8)

and

E[‖∇F(x, ξ)−∇f(x)‖2] ≤ σ2. (2.9)

Inspired by the work of Nesterov [89] for gradient-free minimization, in this chapter we

will propose a zeroth-order (gradient-free, a.k.a. direct) smoothing method for (2.1).

Instead of using the Gaussian smoothing scheme as in [89], which has an unbounded

support set, we apply another smoothing scheme based on the SZO of f . To be specific,

when Lγ(x, y, λ) is MinE with respect to y, and f(x) in (2.3) is ValE, we will propose a

zeroth-order gradient augmented Lagrangian method (zeroth-order GADM) and analyze

its complexity. To summarize, according to the available informational structure of the

objective functions, in this chapter we present suitable variants of the ADMM to account

for the available information. In a nutshell, the details are in the following Table 2.1.

Block x

MinE GraE ValE

Block y
MinE ADMM SGADM zeroth-order GADM
GraE SGADM SGALM zeroth-order SGADM
ValE zeroth-order GADM zeroth-order SGADM zeroth-order GALM

Table 2.1: A summary of informational-hierarchic alternating direction of multiplier
methods.

The rest of the chapter is organized as follows. In Section 2.2, we propose the

stochastic gradient ADMM (SGADM) algorithm, and analyze its complexity. In Sec-

tion 2.3, we present our stochastic gradient augmented Lagrangian method (SGALM)

which uses gradient projection in both block variables, and analyze its convergence rate.

In Section 2.4, we propose a zeroth-order GADM through a new smoothing scheme, and

present a complexity result. Finally, we present some numerical experiment results in

Section 2.5.
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2.2 The Stochastic Gradient Alternating Direction of Mul-

tipliers

In this section, we assume Lγ(x, y, λ) to be MinE with respect to y, and f(x) to be

GraE. That is, for a given x, whenever we need ∇f(x), we can actually get a stochastic

gradient G(x, ξ) from the SFO, where ξ is a random variable following a certain distri-

bution. Moreover, G(x, ξ) satisfies (2.5) and (2.6). By the definition of the augmented

Lagrangian Lγ(x, y, λ), an SFO for Lγ(x, y, λ) can be constructed accordingly:

Definition 4 Denote the SFO of ∇xLγ(x, y, λ) as GL(x, y, λ, ξ), which is defined as:

GL(x, y, λ, ξ) := G(x, ξ)−A>λ+ γA>(Ax+By − b). (2.10)

One example where such application arises is stochastic lasso problem:

min
x

1

2
Eξ(a

>
ξ x− bξ)2 + µ‖x‖1,

where the sensing vector aξ as well as the sensing result bξ are given stochastically. The

problem can be formulated as

min 1
2Eξ(a

>
ξ x− bξ)2 + µ‖y‖1

s.t. x− y = 0.

Assuming each time one sample is observed, we have G(x, ξ) = aξ(a
>
ξ x− bξ).

Our first algorithm to be introduced, SGADM, works as follows:

The Stochastic Gradient ADMM (SGADM)

Initialize x0 ∈ X , y0 ∈ Y and λ0

for k = 0, 1, · · · , do

yk+1 = arg miny∈Y Lγ(xk, y, λk) + 1
2‖y − y

k‖2H ;

xk+1 = [xk − αkGL(xk, yk+1, λk, ξk+1)]X ;

λk+1 = λk − γ(Axk+1 +Byk+1 − b).
end for

In the above notation, [x]X denotes the projection of x onto X , H is a pre-specified

positive semidefinite matrix, αk is the stepsize for the k-th iteration. In fact, matrix

H is often used to cancel out the quadratic cross terms in the augmented Lagrangian,

18



in order for the resulting subproblem to be separable, or even to admit a closed-form

solution. In our proposed algorithms, the H matrix can be set to 0 which recovers the

original ADMM subproblem. It is easy to see that the deterministic version of SGADM

is exactly GADM (2.4). The above SGADM is similar to the stochastic ADMM proposed

in [93], where an O(1/
√
N) iteration complexity is shown. The difference lies in the fact

that the SGADM linearizes the whole augmented Lagrangian and performs a gradient

projection, while [93] linearizes the objective function in the augmented Lagrangian and

minimizes the resulting function. We note that the OPG-ADMM in [114] also linearizes

the whole augmented Lagrangian, but the order of updating blocks is different. In

OPG-ADMM, it first updates the block with a gradient-type step and then updates

the other block by exact minimization, while in our algorithm the order is reversed. In

the following subsection, based on the measure of the constraint violation and the gap

of objective value, we will show that the complexity of SGADM is O(1/
√
N) and the

complexity of GADM is O(1/N). Furthermore, if the function f is strongly convex, it

can be shown that the complexity of SGADM is indeed O(lnN/N).

2.2.1 Convergence Rate Analysis of the SGADM

In this subsection, we shall analyze the convergence rate of SGADM algorithm. First,

some notations and preliminaries are introduced to facilitate the discussion.

Preliminaries and Notations

Denote

u =

(
y

x

)
, w =

 y

x

λ

 , F (w) =

 −B>λ
−A>λ

Ax+By − b

 , (2.11)

h(u) = f(x) + g(y), Ω = Y × X × Rm, and

Qk =

 H 0 0

0 1
αk
Inx 0

0 −A 1
γ
Im

 , P =

 Iny 0 0

0 Inx 0

0 −γA Im

 , Mk =

 H 0 0

0 1
αk
Inx 0

0 0 1
γ
Im

 .

(2.12)
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Clearly, Qk = MkP . In addition to the sequence {wk} generated by the SGADM, we

introduce an auxiliary sequence:

w̃k :=

 ỹk

x̃k

λ̃k

 =

 yk+1

xk+1

λk − γ(Axk +Byk+1 − b)

 . (2.13)

Based on (2.13) and (2.12), the relationship between the new sequence {w̃k} and the

original {wk} is

wk+1 = wk − P (wk − w̃k). (2.14)

The above succinct notations and analysis framework were originally introduced and

used by He and Yuan in [57]. In this chapter, we adopt the same framework for analysis

following that of [57]; in other words, our convergence result is also based on the auxiliary

sequence w̃k. Moreover, we denote δk ≡ G(xk−1, ξk) −∇f(xk−1), which is the error of

the noisy gradient generated by SFO. The following lemma is straightforward.

Lemma 2.2.1 For any w0, w1, · · · , wN−1, let F be defined in (2.11) and w̄ = 1
N

N−1∑
k=0

wk;

then it holds

(w̄ − w)>F (w̄) =
1

N

N−1∑
k=0

(wk − w)>F (wk).

Proof. Since F (w) =

 0 0 −B
0 0 −A
A B 0


 y

x

λ

−
 0

0

b

 , for any w1 and w2 we have

(w1 − w2)>(F (w1)− F (w2)) = 0. (2.15)
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Therefore,

(w̄ − w)>F (w̄) (2.15)
= (w̄ − w)>F (w)

=

(
1

N

N−1∑
k=0

wk − w

)>
F (w)

=
1

N

N−1∑
k=0

(wk − w)>F (w)

(2.15)
=

1

N

N−1∑
k=0

(wk − w)>F (wk). (2.16)

�

The Complexity of SGADM without Strong Convexity

We now present the rate of convergence result for SGADM, which is O(1/
√
N). Denote

Ξk = (ξ1, ξ2, . . . , ξk). In fact, the convergence rate is in the sense of the expectation

taken over Ξk.

Theorem 2.2.2 Suppose that Lγ(x, y, λ) is MinE with respect to y, and f(x) is GraE.

Given a fixed iteration number N , letting wk be the sequence generated by the SGADM,

and choosing ηk =
√
N , and C > 0 be a constant satisfying CInx − γA>A− LInx � 0,

and αk = 1
ηk+C = 1√

N+C
. Let

w̄n :=
1

n

n−1∑
k=0

w̃k, (2.17)

where w̃k is defined in (2.13). Then the following holds

EΞN [h(ūN )− h(u∗) + ρ‖Ax̄N +BȳN − b‖]

≤ 1

2
√
N

(σ2 +D2
x) +

1

2N

(
D2
y,H + CD2

x +
1

γ

(
ρ+ ‖λ0‖

)2)
, (2.18)

where Dx = dist(x0,X ∗), Dy,H = dist(y0,Y∗)H and ρ is any given positive number.

As in [57], we first present a bound regarding the sequence {w̃k} in (2.13).

Proposition 2.2.3 Let {w̃k} be defined by (2.13), and the matrices Qk, Mk, and P be
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given in (2.12). For any w ∈ Ω, we have

h(u)− h(ũk) + (w − w̃k)>F (w̃k)

≥ (w − w̃k)>Qk(wk − w̃k)− (x− xk)>δk+1 −
‖δk+1‖2

2ηk
− ηk + L

2
‖xk − x̃k‖2,

(2.19)

where ηk > 0 is any constant. Moreover, for any w ∈ Ω, the term (w−w̃k)>Qk(wk−w̃k)
on the RHS of (2.19) can be further bounded below as follows

(w − w̃k)>Qk(wk − w̃k)

≥ 1

2

(
‖w − wk+1‖2Mk

− ‖w − wk‖2Mk

)
+

1

2
(xk − x̃k)>

(
1

αk
Inx − γA>A

)
(xk − x̃k).

(2.20)

The proof of Proposition 2.2.3 involves several steps. In order not to distract the flow

of presentation, we delegate its proof to the appendix.

Proof of Theorem 2.2.2

Proof. Recall that CInx − γA>A− LInx � 0 and αk = 1
ηk+C . By (2.19) and (2.20),

h(u)− h(ũk) + (w − w̃k)>F (w̃k)

≥ 1

2

(
‖w − wk+1‖2Mk

− ‖w − wk‖2Mk

)
+

1

2
(xk − x̃k)>

(
1

αk
Inx − γA>A

)
(xk − x̃k)

−(x− xk)>δk+1 −
‖δk+1‖2

2ηk
− ηk + L

2
‖xk − x̃k‖2

=
1

2

(
‖w − wk+1‖2Mk

− ‖w − wk‖2Mk

)
+

1

2
(xk − x̃k)>

(
1

αk
Inx − γA>A− (ηk + L)Inx

)
(xk − x̃k)

−(x− xk)>δk+1 −
‖δk+1‖2

2ηk

≥ 1

2

(
‖w − wk+1‖2Mk

− ‖w − wk‖2Mk

)
− (x− xk)>δk+1 −

‖δk+1‖2

2ηk
. (2.21)
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Using the definition of Mk, from (2.21) we have

h(ũk)− h(u) + (w̃k − w)>F (w̃k)

≤ 1

2

(
‖y − yk‖2H − ‖y − yk+1‖2H

)
+

1

2γ

(
‖λ− λk‖2 − ‖λ− λk+1‖2

)
+
‖x− xk‖2 − ‖x− xk+1‖2

2αk
+ (x− xk)>δk+1 +

‖δk+1‖2

2ηk
. (2.22)

Summing up the inequalities (2.22) for k = 0, 1, . . . , N − 1 we have

h(ūN )− h(u) + (w̄N − w)>F (w̄N )

≤ 1

N

N−1∑
k=0

h(ũk)− h(u) +
1

N

N−1∑
k=0

(w̃k − w)>F (w̃k)

≤ 1

2N

N−1∑
k=0

‖x− xk‖2 − ‖x− xk+1‖2

αk
+

1

N

N−1∑
k=0

[
(x− xk)>δk+1 +

‖δk+1‖2

2ηk

]
+

1

2N

(
‖y − y0‖2H +

1

γ
‖λ− λ0‖2

)
, (2.23)

where the first inequality is due to the convexity of h and Lemma 2.2.1.

Note the above inequality is true for all x ∈ X , y ∈ Y, and λ ∈ Rm, hence it is also

true for any optimal solution x∗, y∗, and Bρ = {λ : ‖λ‖ ≤ ρ}. As a result, by letting

w∗ = (x∗, y∗, λ)>, it follows that

sup
λ∈Bρ

[
h(ūN )− h(u∗) + (w̄N − w∗)>F (w̄N )

]
= sup

λ∈Bρ

[
h(ūN )− h(u∗) + (x̄N − x∗)>(−A>λ̄N ) + (ȳN − y∗)>(−B>λ̄N )

+(λ̄N − λ)>(Ax̄N +BȳN − b)
]

= sup
λ∈Bρ

[
h(ūN )− h(u∗) + λ̄>N (Ax∗ +By∗ − b)− λ>(Ax̄N +BȳN − b)

]
= sup

λ∈Bρ

[
h(ūN )− h(u∗)− λ>(Ax̄N +BȳN − b)

]
= h(ūN )− h(u∗) + ρ‖Ax̄N +BȳN − b‖, (2.24)
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where w∗ = (x∗, y∗, λ)>. Combining (2.23) and (2.24), we have

h(ūN )− h(u∗) + ρ‖Ax̄N +BȳN − b‖

≤ 1

2N

N−1∑
k=0

‖x∗ − xk‖2 − ‖x∗ − xk+1‖2

αk
+

1

N

N−1∑
k=0

[
(x∗ − xk)>δk+1 +

‖δk+1‖2

2ηk

]

+
1

2N

(
‖y∗ − y0‖2H +

1

γ
sup
λ∈Bρ

‖λ− λ0‖2
)
. (2.25)

Moreover, since αk = 1
ηk+C = 1√

N+C
, it follows that

N−1∑
k=0

‖x∗ − xk‖2 − ‖x∗ − xk+1‖2

αk

=
N−1∑
k=0

(
√
N + C)(‖x∗ − xk‖2 − ‖x∗ − xk+1‖2)

≤ (
√
N + C)‖x∗ − x0‖2. (2.26)

Now, by plugging (2.26) into (2.25) and choosing x∗, y∗ such that Dx = ‖x∗ − x0‖ and

Dy,H = ‖y∗ − y0‖H , it yields

h(ūN )− h(u∗) + ρ‖Ax̄N +BȳN − b‖

≤ 1

N

N−1∑
k=0

[
(x∗ − xk)>δk+1 +

‖δk+1‖2

2ηk

]
+

1

2
√
N
‖x∗ − x0‖2

+
1

2N

(
‖y∗ − y0‖2H + C‖x∗ − x0‖2 +

1

γ
sup
λ∈Bρ

‖λ− λ0‖2
)

≤ 1

N

N−1∑
k=0

[
(x∗ − xk)>δk+1 +

‖δk+1‖2

2ηk

]
+

D2
x

2
√
N

+
1

2N

(
D2
y,H + CD2

x +
1

γ

(
ρ+ ‖λ0‖

)2)
. (2.27)

Recall that f(x) is GraE, so (2.5) and (2.6) hold. Consequently, E[δk+1] = 0. In

addition, xk is independent of ξk+1. Hence,

EΞk+1
[(x∗ − xk)>δk+1] = 0. (2.28)
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Now, taking expectation over (2.27), and applying (2.6), we have

EΞN [h(ūN )− h(u∗) + ρ‖Ax̄N +BȳN − b‖]

≤ EΞN

[
1

N

N−1∑
k=0

((x∗ − xk)>δk+1 +
‖δk+1‖2

2ηk
)

]

+
D2
x

2
√
N

+
1

2N

(
D2
y,H + CD2

x +
1

γ

(
ρ+ ‖λ0‖

)2)
(2.6)
≤

1

N
EΞN

[
N−1∑
k=0

(x∗ − xk)>δk+1

]
+
σ2

2N

N−1∑
k=0

1

ηk

+
D2
x

2
√
N

+
1

2N

(
D2
y,H + CD2

x +
1

γ

(
ρ+ ‖λ0‖

)2)
(2.41)

=

σ2

2N

N−1∑
k=0

1√
N

+
D2
x

2
√
N

+
1

2N

(
D2
y,H + CD2

x +
1

γ

(
ρ+ ‖λ0‖

)2)
=

σ2

2
√
N

+
D2
x

2
√
N

+
1

2N

(
D2
y,H + CD2

x +
1

γ

(
ρ+ ‖λ0‖

)2)
. (2.29)

This completes the proof. �

Before concluding this section, some comments are in order here. Denoting ûN =

EΞN [ūN ], by Jensen’s inequality it follows immediately that

h(ûN )− h(u∗) + ρ‖Ax̂N +BŷN − b‖

≤ 1

2
√
N

(σ2 +D2
x) +

1

2N

(
D2
y,H + CD2

x +
1

γ

(
ρ+ ‖λ0‖

)2)
.

That is to say, in the ergodic sense, in expectation the SGADM has a convergence

rate of O(1/
√
N) when f(x) is GraE. As we mentioned before, it is easy to slightly

modify the proof for (2.18) to improve the complexity of GADM (i.e. the deterministic

SGADM) to O(1/N). In fact, when the exact gradient of f is available, σ in (2.6) and

δk will be 0, and we can let ηk = 1 and constant stepsize αk = 1
C+1 . As a result,

N−1∑
k=0

‖x∗ − xk‖2 − ‖x∗ − xk+1‖2

αk
≤ (C + 1)‖x∗ − x0‖2.
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The iteration bound then improves to:

h(ûN )− h(u∗) + ρ‖Ax̂N +BŷN − b‖ ≤
1

2N

(
D2
y,H + (C + 1)D2

x +
1

γ

(
ρ+ ‖λ0‖

)2)
,

(2.30)

and this establishes the O(1/N) iteration complexity for the SGADM in the determin-

istic case. Moreover, in that case the stepsize αk does not need to involve N at all.

Assuming the existence of the dual optimal solution λ∗, we can further assess the

feasibility violation of the possibly infeasible solution ûN as in (2.30). Similar to Lemma

6 in [68] we introduce the following bound.

Lemma 2.2.4 Assume that ρ > 0, and x̃ ∈ X is an approximate solution for the

problem f∗ := inf{f(x) : Ax − b = 0, x ∈ X} where f is convex, and X is a closed

convex set, satisfying

f(x̃)− f∗ + ρ‖Ax̃− b‖ ≤ δ. (2.31)

Suppose that an optimal Lagrange multiplier associated with the problem inf{f(x) :

Ax− b = 0, x ∈ X} exists. Denote it to be y∗, satisfying ‖y∗‖ < ρ. Then, we have

‖Ax̃− b‖ ≤ δ

ρ− ‖y∗‖
and f(x̃)− f∗ ≤ δ

Proof. Define v(u) := inf{f(x) : Ax− b = u, x ∈ X}, which is convex. Let y∗ be such

that −y∗ ∈ ∂v(0). Thus, we have

v(u)− v(0) ≥ 〈−y∗, u〉 ∀u ∈ Rm. (2.32)

Let u := Ax̃− b. Since v(u) ≤ f(x̃) and v(0) = f∗, we have

−‖y∗‖‖u‖+ ρ‖u‖ ≤ 〈−y∗, u〉+ ρ‖u‖ ≤ v(u)− v(0) + ρ‖u‖ ≤ f(x̃)− f∗ + ρ‖u‖ ≤ δ.

Thus, ‖Ax̃− b‖ = ‖u‖ ≤ δ
ρ−‖y∗‖ , and f(x̃)− f∗ ≤ δ. �

By (2.18) or (2.30), we know that the SGADM and the GADM achieve h(ûN ) −
h(u∗) +ρ‖Ax̂N +BŷN − b‖ ≤ ε in O(1/ε2) and O(1/ε) number of iterations respectively

for any fixed ρ > 0. Lemma 2.2.4 further suggests that by choosing ρ > ‖λ∗‖ we have

26



in fact established the error estimations

h(ûN )− h(u∗) ≤ O(ε) and ‖Ax̂N +BŷN − b‖ ≤ O(ε)

with the same iteration complexity. The same logic applies to all the subsequent con-

vergence rate results.

2.2.2 The Complexity of SGADM under Strong Convexity

Under the assumption that f is strongly convex, the rate of convergence for SGADM

can be improved to O(lnN/N). As before, the convergence rate is in the sense of the

expectation taken over Ξk. Let’s first introduce the notion of strong convexity.

Definition 5 A function f(x) is κ-strongly convex, if it satisfies the following

f(y) ≥ f(x) + 〈s, y − x〉+
κ

2
‖x− y‖2 ∀x, y (2.33)

where s ∈ ∂f(x) and ∂f(x) is the subdifferential of f at x .

The main convengence rate result is presented as follows.

Theorem 2.2.5 Suppose that Lγ(x, y, λ) is MinE with respect to y, f(x) is GraE

and κ-strongly convex. Let wk be the sequence generated by the SGADM, and choose

ηk = (k + 1)κ, and C > 0 be a constant satisfying CInx − γA>A − LInx � 0, and

αk = 1
ηk+C = 1

(k+1)κ+C . Let

w̄n :=
1

n

n−1∑
k=0

w̃k, (2.34)

where w̃k is defined in (2.13). Then the following holds

EΞN [h(ūN )− h(u∗) + ρ‖Ax̄N +BȳN − b‖]

≤ σ2(lnN + 1)

2κN
+

1

2N

(
D2
y,H + CD2

x +
1

γ

(
ρ+ ‖λ0‖

)2)
, (2.35)

where Dx = dist(x0,X ∗), Dy,H = dist(y0,Y∗)H and ρ is any given positive number.

Proof. Similar as in the proof of Proposition 2.2.3, using the κ-strong convexity of f ,
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we conclude that

h(u)− h(ũk) + (w − w̃k)>F (w̃k)

≥ (w − w̃k)>Qk(wk − w̃k)− (x− xk)>δk+1

−‖δk+1‖2

2ηk
− ηk + L

2
‖xk − x̃k‖2 +

κ

2
‖x− xk‖2,

(2.36)

where and ηk > 0 is any constant and matrices Qk, Mk, and P are given in (2.12).

Similar to (2.21), by (2.36) and (2.20) we have,

h(u)− h(ũk) + (w − w̃k)>F (w̃k)

≥ 1

2

(
‖w − wk+1‖2Mk

− ‖w − wk‖2Mk

)
− (x− xk)>δk+1 −

‖δk+1‖2

2ηk
+
κ

2
‖x− xk‖2.

(2.37)

Following a similar line of arguments as in Theorem 2.2.2, we derive that

h(ūN )− h(u∗) + ρ‖Ax̄N +BȳN − b‖

≤ 1

2N

N−1∑
k=0

(
‖x∗ − xk‖2 − ‖x∗ − xk+1‖2

αk
− κ‖x∗ − xk‖2

)

+
1

N

N−1∑
k=0

[
(x∗ − xk)>δk+1 +

‖δk+1‖2

2ηk

]
+

1

2N

(
‖y∗ − y0‖2H +

1

γ
sup
λ∈Bρ

‖λ− λ0‖2
)
.

(2.38)

Since αk = 1
ηk+C = 1

(k+1)κ+C , it follows that

N−1∑
k=0

(
‖x∗ − xk‖2 − ‖x∗ − xk+1‖2

αk
− κ‖x∗ − xk‖2

)

=
N−1∑
k=0

(
(kκ+ C)‖x∗ − xk‖2 − ((k + 1)κ+ C)‖x∗ − xk+1‖2

)
≤ C‖x∗ − x0‖2. (2.39)

Plugging (2.39) into (2.25) and choosing x∗, y∗ such that Dx = ‖x∗ − x0‖ and Dy,H =
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‖y∗ − y0‖H , it yields

h(ūN )− h(u∗) + ρ‖Ax̄N +BȳN − b‖

≤ 1

N

N−1∑
k=0

[
(x∗ − xk)>δk+1 +

‖δk+1‖2

2ηk

]

+
1

2N

(
‖y∗ − y0‖2H + C‖x∗ − x0‖2 +

1

γ
sup
λ∈Bρ

‖λ− λ0‖2
)

≤ 1

N

N−1∑
k=0

[
(x∗ − xk)>δk+1 +

‖δk+1‖2

2ηk

]
+

1

2N

(
D2
y,H + CD2

x +
1

γ

(
ρ+ ‖λ0‖

)2)
.

(2.40)

Recall that f(x) is GraE, so (2.5) and (2.6) hold. Consequently, E[δk+1] = 0. In

addition, xk is independent of ξk+1. Hence,

EΞk+1
[(x∗ − xk)>δk+1] = 0. (2.41)

Now, taking expectation over (2.40), and applying (2.6), we have

EΞN [h(ūN )− h(u∗) + ρ‖Ax̄N +BȳN − b‖]

≤ EΞN

[
1

N

N−1∑
k=0

((x∗ − xk)>δk+1 +
‖δk+1‖2

2ηk
)

]

+
1

2N

(
D2
y,H + CD2

x +
1

γ

(
ρ+ ‖λ0‖

)2)
(2.6)
≤

1

N
EΞN

[
N−1∑
k=0

(x∗ − xk)>δk+1

]
+
σ2

2N

N−1∑
k=0

1

ηk

+
1

2N

(
D2
y,H + CD2

x +
1

γ

(
ρ+ ‖λ0‖

)2)
(2.41)

=

σ2

2N

N−1∑
k=0

1

(k + 1)κ
+

1

2N

(
D2
y,H + CD2

x +
1

γ

(
ρ+ ‖λ0‖

)2)
≤ σ2(lnN + 1)

2κN
+

1

2N

(
D2
y,H + CD2

x +
1

γ

(
ρ+ ‖λ0‖

)2)
. (2.42)

This completes the proof. �
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2.3 The Stochastic Gradient Augmented Lagrangian

Method

SGADM uses gradient projection for one block of variables and performs exact mini-

mization for the other. However, there are cases where no exact minimization is possible

at all for either of the block variables. For instance, the problem of estimating sparse

additive models considered in [122] aims to solve the following stochastic minimization

problem:

min
hj ,j=1,··· ,d

E[Y −
d∑
j=1

hj(Xj)]
2 + λ

d∑
j=1

√
E[h2

j (Xj)]

When hjs are all linear, we can introduce a linear constraint and get the following

equivalent form:

minz,hj ,j=1,··· ,d E[Y − z]2 + λ
∑d

j=1

√
E[h2

j (Xj)]

s.t.
∑d

j=1 hj(Xj) = z.

Since both blocks of variables are involved in the expectation, the exact minimization for

z or hjs is impossible. Therefore, it is natural to relax the exact minimization procedure

of the other block variables to be replaced by gradient projection too. In this section,

we assume both f(x) and g(y) in (2.3) are GraE; that is, we can only get stochastic

gradients Sf (x, ξ) and Sg(y, ζ) from the SFO for ∇f(x) and ∇g(y) respectively, where

ξ and ζ are certain random variables. Recall the assumptions on GraE:

E[Sf (x, ξ)] = ∇f(x), E[Sg(y, ζ)] = ∇g(y), (2.43)

and

E[‖Sf (x, ξ)−∇f(x)‖2] ≤ σ2
1, E[‖Sg(y, ζ)−∇g(y)‖2] ≤ σ2

2. (2.44)

We now propose a stochastic gradient augmented Lagrangian method (SGALM). Given

SFO for f and g, the SFO for ∇xLγ(x, y, λ) and ∇yLγ(x, y, λ) can be constructed as:

SfL(x, y, λ, ξ) := Sf (x, ξ)−A>λ+ γA>(Ax+By − b), (2.45)

SgL(x, y, λ, ζ) := Sg(y, ζ)−B>λ+ γB>(Ax+By − b). (2.46)

Our next algorithm, SGALM, works as follows:

30



The Stochastic Gradient Augmented Lagrangian Method (SGALM)

Initialize x0 ∈ X , y0 ∈ Y and λ0

for k = 0, 1, · · · , do

yk+1 = [yk − βkSgL(xk, yk, λk, ζk+1)]Y ;

xk+1 = [xk − αkSfL(xk, yk+1, λk, ξk+1)]X ;

λk+1 = λk − γ(Axk+1 +Byk+1 − b).
end for

Denote

δfk+1 := Sf (xk, ξk+1)−∇f(xk), δgk+1 := Sg(y
k, ζk+1)−∇g(yk).

Notice that in this section, the differentiability of function g(y) is implicitly assumed.

Moreover, throughout this section, we assume that the gradient ∇g is also Lipschitz

continuous. For notational simplicity, we assume L is its Lipschitz constant too.

2.3.1 The Complexity of SGALM without Strong Convexity

Now, we are able to analyze the convergence rate of SGALM. Denote

Q̂k =

 Hk 0 0

0 1
αk
Inx 0

0 −A 1
γ Im

 , M̂k =

 Hk 0 0

0 1
αk
Inx 0

0 0 1
γ Im

 (2.47)

where Hk = 1
βk
Iny − γB>B. The identity Q̂k = M̂kP still holds where P is given

according to (2.12).

Similar to Proposition 2.2.3, we have the following bounds regarding the sequence

{w̃k} defined in (2.13), the proof of which is also delegated to the appendix.

Proposition 2.3.1 Suppose that {w̃k} is given as in (2.13), and the matrices Q̂k and

M̂k are given as in (2.47). For any w ∈ Ω, we have

h(u)− h(ũk) + (w − w̃k)>F (w̃k)

≥ (w − w̃k)>Q̂k(wk − w̃k)− (x− xk)>δfk+1 − (y − yk)>δgk+1

−
‖δfk+1‖

2 + ‖δgk+1‖
2

2ηk
− ηk + L

2

(
‖xk − x̃k‖2 + ‖yk − ỹk‖2

)
, (2.48)

where ηk > 0 is any prescribed sequence. Moreover, the term (w− w̃k)>Q̂k(wk− w̃k) on
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the RHS can be further bounded as follows

(w − w̃k)>M̂kP (wk − w̃k)

≥ 1

2

(
‖w − wk+1‖2

M̂k
− ‖w − wk‖2

M̂k

)
+

1

2
(xk − x̃k)>

(
1

αk
Inx − γA>A

)
(xk − x̃k)

+
1

2
(yk − ỹk)>

(
1

βk
Iny − γB>B

)
(yk − ỹk), ∀w ∈ Ω, (2.49)

where by abusing the notation a bit we denote ‖x‖2A := x>Ax with A being a symmetric

matrix but not necessarily positive semidefinite.

Now, we are in a position to present our main convergence rate result for the SGALM

algorithm. Let us recycle the notation and denote Ξk = (ξ1, ξ2, . . . , ξk, ζ1, ζ2, . . . , ζk); the

convergence rate will be in the expectation over Ξk.

Theorem 2.3.2 Suppose both f(x) and g(y) in (2.3) are GraE. Given a fixed iteration

number N , letting wk be the sequence generated by the SGALM, ηk =
√
N , and C is a

constant satisfying

CInx − γA>A− LInx � 0 and CIny − γB>B − LIny � 0,

and βk = αk = 1
ηk+C = 1√

N+C
. For any integer n > 0, let

w̄n =
1

n

n−1∑
k=0

w̃k, (2.50)

where w̃k is defined in (2.13). Then

EΞN [h(ūN )− h(u∗) + ρ‖Ax̄N +BȳN − b‖]

≤ σ2
1 + σ2

2

2
√
N

+
D2
x

2
√
N

+
D2
y

2
√
N

+
1

2N

(
CD2

x + CD2
y +

1

γ

(
ρ+ ‖λ0‖

)2)
, (2.51)

where Dx = dist(x0,X ∗), Dy = dist(y0,Y∗) and ρ is any fixed positive parameter.
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Proof. Similar to (2.21), by (2.48) and (2.49) we have

h(u)− h(ũk) + (w − w̃k)>F (w̃k)

≥ 1

2

(
‖w − wk+1‖2

M̂k
− ‖w − wk‖2

M̂k

)
−(x− xk)>δfk+1 − (y − yk)>δgk+1 −

‖δfk+1‖
2 + ‖δgk+1‖

2

2ηk
.

Following a similar line of arguments as in Theorem 2.2.2, we derive that

h(ūN )− h(u∗) + ρ‖Ax̄N +BȳN − b‖

≤ 1

2N

N−1∑
k=0

‖x∗ − xk‖2 − ‖x∗ − xk+1‖2

αk
+

1

2N

N−1∑
k=0

(
‖y∗ − yk‖2Hk − ‖y

∗ − yk+1‖2Hk
)

+
1

N

N−1∑
k=0

[
(x∗ − xk)>δfk+1 + (y∗ − yk)>δgk+1 +

‖δfk+1‖
2 + ‖δgk+1‖

2

2ηk

]

+
1

2N

(
1

γ
sup
λ∈Bρ

‖λ− λ0‖2
)
. (2.52)

Compared to (2.25), the term
N−1∑
k=0

(‖y∗ − yk‖2Hk − ‖y
∗ − yk+1‖2Hk) is new. Since

βk = 1
ηk+C = 1√

N+C
, we have HB := CIny − γB>B � 0. Thus,

N−1∑
k=0

(
‖y∗ − yk‖2Hk − ‖y

∗ − yk+1‖2Hk
)

=
N−1∑
k=0

√
N
(
‖y∗ − yk‖2 − ‖y∗ − yk+1‖2

)
+
N−1∑
k=0

(
‖y∗ − yk‖2HB − ‖y

∗ − yk+1‖2HB
)

≤
√
N‖y∗ − y0‖2 + ‖y∗ − y0‖2HB

≤ (C +
√
N)‖y∗ − y0‖2. (2.53)

Moreover, according to (2.26),
N−1∑
k=0

‖x∗−xk‖2−‖x∗−xk+1‖2
αk

is upper bounded by (C +
√
N)‖x∗ − x0‖2. Consequently, by choosing x∗, y∗ such that Dx = ‖x∗ − x0‖ and
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Dy = ‖y∗ − y0‖, we can further upper bound (2.52) as follows:

h(ūN )− h(u∗) + ρ‖Ax̄N +BȳN − b‖

≤ 1

N

N−1∑
k=0

[
(x∗ − xk)>δfk+1 + (y∗ − yk)>δgk+1 +

‖δfk+1‖
2 + ‖δgk+1‖

2

2ηk

]

+
D2
x

2
√
N

+
D2
y

2
√
N

+
1

2N

(
CD2

y + CD2
x +

1

γ

(
ρ+ ‖λ0‖

)2)
. (2.54)

Recall that δfk+1 = Sf (xk, ξk+1) − ∇f(xk), δgk+1 = Sg(y
k, ζk+1) − ∇g(yk) and (2.43)

holds. Since xk is independent of ξk+1 and yk is independent of ζk+1, we have

EΞk+1

[
(x∗ − xk)>δfk+1

]
= 0, EΞk+1

[
(y∗ − yk)>δgk+1

]
= 0. (2.55)

Now, taking the expectation over (2.54), and applying (2.44), one has

EΞN [h(ūN )− h(u∗) + ρ‖Ax̄N +BȳN − b‖]

≤ EΞN

[
1

N

N−1∑
k=0

(
(x∗ − xk)>δfk+1 + (y∗ − yk)>δgk+1 +

‖δfk+1‖
2 + ‖δgk+1‖

2

2ηk

)]

+
D2
x

2
√
N

+
D2
y

2
√
N

+
1

2N

(
CD2

y + CD2
x +

1

γ

(
ρ+ ‖λ0‖

)2)
≤ σ2

1 + σ2
2

2
√
N

+
D2
x

2
√
N

+
D2
y

2
√
N

+
1

2N

(
CD2

y + CD2
x +

1

γ

(
ρ+ ‖λ0‖

)2)
. (2.56)

�

Therefore, the iteration complexity for the SGALM is the same as that of the

SGADM: both are O(1/
√
N). Similar as before, in view of (2.51) it is easy to see

that the complexity of SGALM for the deterministic setting would be O(1/N), since in

that case σ1 and σ2 in (2.44) are 0, and we can let ηk = 1 in Theorem 2.3.2 (thus the

stepsize αk and βk are independent of N), leading to

h(ûN )− h(u∗) + ρ‖Ax̂N +BŷN − b‖ ≤
1

2N

(
(C + 1)(D2

x +D2
y) +

1

γ

(
ρ+ ‖λ0‖

)2)
,

(2.57)

which further leads to an O(1/N) iteration complexity bound for the SGALM in the

deterministic case.
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2.3.2 The Complexity of SGALM under Strong Convexity

In this subsection, we show that strong convexity also leads to a lower complexity for

SGALM as it does for SGADM. In fact, the iteration complexity becomes O(lnN/N)

when both f and g are strongly convex. The main result is shown in the following

theorem which will be in the expectation over Ξk = (ξ1, ξ2, . . . , ξk, ζ1, ζ2, . . . , ζk).

Theorem 2.3.3 Suppose f(x) is κf -strongly convex and g(y) is κg-strongly convex, and

both f(x) and g(y) in (2.3) are GraE. Let wk be the sequence generated by the SGALM,

ηk = (k + 1) min(κf , κg), and C is a constant satisfying

CInx − γA>A− LInx � 0 and CIny − γB>B − LIny � 0,

and βk = αk = 1
ηk+C . For any integer n > 0, let

w̄n =
1

n

n−1∑
k=0

w̃k, (2.58)

where w̃k is defined in (2.13). Then

EΞN [h(ūN )− h(u∗) + ρ‖Ax̄N +BȳN − b‖]

≤ (σ2
1 + σ2

2)(lnN + 1)

2 min(κf , κg)N
+

1

2N

(
CD2

y + CD2
x +

1

γ

(
ρ+ ‖λ0‖

)2)
, (2.59)

where Dx = dist(x0,X ∗), Dy = dist(y0,Y∗) and ρ is any fixed positive parameter.

Proof. Similar to the proof of Proposition 2.2.3, using the κf -strong convexity and

κg-strong convexity of f and g, we conclude that

h(u)− h(ũk) + (w − w̃k)>F (w̃k)

≥ (w − w̃k)>Q̂k(wk − w̃k)− (x− xk)>δfk+1 − (y − yk)>δgk+1

−
‖δfk+1‖

2 + ‖δgk+1‖
2

2ηk
− ηk + L

2

(
‖xk − x̃k‖2 + ‖yk − ỹk‖2

)
+
κf
2
‖x− xk‖2 +

κg
2
‖y − yk‖2, (2.60)

where ηk > 0 is any prescribed sequence. Let κ = min(κf , κg), then similar to (2.21),
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by (2.49) and (2.60) we have

h(u)− h(ũk) + (w − w̃k)>F (w̃k)

≥ 1

2

(
‖w − wk+1‖2

M̂k
− ‖w − wk‖2

M̂k

)
− (x− xk)>δfk+1 − (y − yk)>δgk+1

−
‖δfk+1‖

2 + ‖δgk+1‖
2

2ηk
+
κf
2
‖x− xk‖2 +

κg
2
‖y − yk‖2

≥ 1

2

(
‖w − wk+1‖2

M̂k
− ‖w − wk‖2

M̂k

)
− (x− xk)>δfk+1 − (y − yk)>δgk+1

−
‖δfk+1‖

2 + ‖δgk+1‖
2

2ηk
+
κ

2
(‖x− xk‖2 + ‖y − yk‖2)

Following the same line of arguments as in Theorem 2.2.2, we derive that

h(ūN )− h(u∗) + ρ‖Ax̄N +BȳN − b‖

≤ 1

2N

N−1∑
k=0

(
‖x∗ − xk‖2 − ‖x∗ − xk+1‖2

αk
− κ‖x− xk‖2

)

+
1

2N

N−1∑
k=0

(
‖y∗ − yk‖2Hk − ‖y

∗ − yk+1‖2Hk − κ‖y − y
k‖2
)

+
1

N

N−1∑
k=0

[
(x∗ − xk)>δfk+1 + (y∗ − yk)>δgk+1 +

‖δfk+1‖
2 + ‖δgk+1‖

2

2ηk

]

+
1

2N

(
1

γ
sup
λ∈Bρ

‖λ− λ0‖2
)
. (2.61)

Compared to (2.38), the term
N−1∑
k=0

(‖y∗ − yk‖2Hk − ‖y
∗ − yk+1‖2Hk) is new. Since
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βk = 1
ηk+C = 1

(k+1)κ+C and HB := CIny − γB>B � 0, it holds that

N−1∑
k=0

(
‖y∗ − yk‖2Hk − ‖y

∗ − yk+1‖2Hk − κ‖y − y
k‖2
)

=

N−1∑
k=0

(
kκ‖y∗ − yk‖2 − (k + 1)κ‖y∗ − yk+1‖2

)
+
N−1∑
k=0

(
‖y∗ − yk‖2HB − ‖y

∗ − yk+1‖2HB
)

≤ ‖y∗ − y0‖2HB ≤ C‖y
∗ − y0‖2. (2.62)

Moreover, according to (2.39),
N−1∑
k=0

‖x∗−xk‖2−‖x∗−xk+1‖2
αk

is upper bounded by C‖x∗−

x0‖2. Consequently, by choosing x∗, y∗ such that Dx = ‖x∗ − x0‖ and Dy = ‖y∗ − y0‖,
we can further upper bound (2.61) as follows:

h(ūN )− h(u∗) + ρ‖Ax̄N +BȳN − b‖

≤ 1

N

N−1∑
k=0

[
(x∗ − xk)>δfk+1 + (y∗ − yk)>δgk+1 +

‖δfk+1‖
2 + ‖δgk+1‖

2

2ηk

]

+
1

2N

(
CD2

y + CD2
x +

1

γ

(
ρ+ ‖λ0‖

)2)
. (2.63)

Recall that δfk+1 = Sf (xk, ξk+1) − ∇f(xk), δgk+1 = Sg(y
k, ζk+1) − ∇g(yk) and (2.43)

holds. Since xk is independent of ξk+1 and yk is independent of ζk+1, we have

EΞk+1

[
(x∗ − xk)>δfk+1

]
= 0, EΞk+1

[
(y∗ − yk)>δgk+1

]
= 0. (2.64)

Now, taking the expectation over (2.63), and applying (2.44), one has

EΞN [h(ūN )− h(u∗) + ρ‖Ax̄N +BȳN − b‖]

≤ EΞN

[
1

N

N−1∑
k=0

(
(x∗ − xk)>δfk+1 + (y∗ − yk)>δgk+1 +

‖δfk+1‖
2 + ‖δgk+1‖

2

2ηk

)]

+
1

2N

(
CD2

y + CD2
x +

1

γ

(
ρ+ ‖λ0‖

)2)
≤ (σ2

1 + σ2
2)(lnN + 1)

2κN
+

1

2N

(
CD2

y + CD2
x +

1

γ

(
ρ+ ‖λ0‖

)2)
. (2.65)
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2.4 The Stochastic Zeroth-Order GADM

In this section, we consider another setting, where even the noisy gradient of f(x) is not

available. For example, the simulated-based inventory optimization problem studied

in [42] definitely falls into this category. To be specific, we assume that Lγ(x, y, λ) is

MinE with respect to y, and f(x) is ValE. In other words, for any given x we can get a

noisy approximation of the true function value f(x) by calling an SZO, which returns

a quantity F(x, ξ) with ξ being a certain random variable. The SZO becomes relevant

when a part of the objective contains the expectation of an unknown function, assuming

only some sample realizations of the expectation are observable. This is the case, for

instance, when we know nothing about the true nature of the randomness and how they

are related to the objective in an explicit fashion; however, we can learn the objective

by observation. Such problems are frequently encountered in management science; e.g.,

a demand function is often not explicitly accessible while its realizations are observable.

Now that we can access the SZO, we shall use the smoothing scheme proposed

in [89] to approximate the first order information of a given function f . The smoothing

technique is to utilize the integration operator to promote the differentiability. More

specifically, suppose that v is a random vector in Rn with density function ρ. A smooth

approximation of f with the smoothing parameter µ is defined as:

fµ(x) =

∫
f(x+ µv)ρ(v)dv. (2.66)

Theoretically, one can choose to use any pre-specified smoothing distribution ρ(v). For

instance, in [89] Nesterov adopted the Gaussian distribution to simplify the compu-

tation. However, the Gaussian distribution has a support set of the whole space Rn,

which cannot be implemented for problems with constraints. To avoid using the entire

space as the sample space, we shall use the smoothing scheme based on the uniform

distribution over a (scalable) ball in Rn as introduced in [109].

Definition 6 Let Ub be the uniform distribution over the unit Euclidean ball and B be

the unit ball. Given µ > 0, the smoothing function fµ is defined as

fµ(x) = E{v∼Ub}[f(x+ µv)] =
1

α(n)

∫
B
f(x+ µv)dv (2.67)
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where α(n) is the volume of the unit ball in Rn.

Some properties of the smoothing function are shown in the lemma below, which

will be used in our forthcoming discussion; the proof of the lemma can be found in the

appendix. In the following discussion, C1
L(Rn) denotes the function class with Lipschitz

continuous first-order derivative.

Lemma 2.4.1 Suppose that f ∈ C1
L(Rn). Let USp be the uniform distribution over the

unit Euclidean sphere, and Sp be the unit sphere in Rn. Then we have:

(a) The smoothing function fµ is continuously differentiable, and its gradient is Lipschitz

continuous with constant Lµ ≤ L and

∇fµ(x) = E{v∼USp}

[
n

µ
f(x+ µv)v

]
=

1

β(n)

∫
v∈Sp

n

µ
[f(x+ µv)− f(x)] vdv (2.68)

where β(n) is the surface area of the unit sphere in Rn.

(b) For any x ∈ Rn, we have

|fµ(x)− f(x)| ≤ Lµ2

2
, (2.69)

‖∇fµ(x)−∇f(x)‖ ≤ µnL

2
, (2.70)

Ev

[∥∥∥∥nµ [f(x+ µv)− f(x)]v

∥∥∥∥2
]
≤ 2n‖∇f(x)‖2 +

µ2

2
L2n2. (2.71)

(c) If f is convex, then fµ is also convex.

We remark that the bounds in Part (b) are slightly sharper (up to some constant

factor) than that of Gaussian smoothing scheme in [89]. Moreover, the new smoothing

scheme will involve the sampling points in the µ-ball of x. This feature is important

for the problems where the domain of f may only be slightly larger than X , as we shall

see from the oracle to be introduced next. Based on (2.68) we define the zeroth-order

stochastic gradient of f at point xk:

Gµ(xk, ξk+1, v) =
nx
µ

[
F(xk + µv, ξk+1)−F(xk, ξk+1)

]
v, (2.72)

where v is the random vector uniformly distributed over the unit sphere in Rnx . The

zeroth-order GADM algorithm is described as follows:
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The Zeroth-Order GADM

Initialize x0 ∈ X , y0 ∈ Y and λ0

for k = 0, 1, · · · , do

yk+1 = arg miny∈Y Lγ(xk, y, λk) + 1
2‖y − y

k‖2H .

Call the SZO mk times to obtain Gµ(xk, ξk+1,i, vk+1,i), i = 1, · · · ,mk.

Then set Gµ,k = 1
mk

mk∑
i=1

Gµ(xk, ξk+1,i, vk+1,i), and compute

xk+1 = [xk − αk(Gµ,k −A>λk + γA>(Axk +Byk+1 − b))]X ;

λk+1 = λk − γ(Axk+1 +Byk+1 − b).
end for

Before conducting the complexity analysis for the algorithm above, we present some

properties of the function G(xk, ξk+1) := ∇xF(xk, ξk+1). Note that function f is ValE,

i.e. (2.7) and (2.8) hold. This fact together with Lemma 2.4.1(a) leads to:

Lemma 2.4.2 Suppose that Gµ(xk, ξk+1, v) is defined as in (2.72), and f is ValE, i.e.

(2.7), (2.8) and (2.9) hold. Then

Ev,ξk+1
[Gµ(xk, ξk+1, v)] = ∇fµ(xk). (2.73)

If we further assume ‖∇f(x)‖ ≤M , ∀x ∈ X , then the following holds

Ev,ξk+1
[‖Gµ(xk, ξk+1, v)−∇fµ(xk)‖2] ≤ σ̃2, (2.74)

where σ̃2 = 2nx[M2 + σ2 + µ2L2nx].

Proof. The first statement is easy to verify. We shall focus on the second statement.

Applying (2.71) and (2.9) to F(xk, ξk+1) and G(xk, ξk+1), we have

Ev,ξk+1

[
‖Gµ(xk, ξk+1, v)‖2

]
= Eξk+1

[
Ev
[
‖Gµ(xk, ξk+1, v)‖2

]]
≤ 2nx

[
Eξk+1

[
‖G(xk, ξk+1)‖2

]]
+
µ2

2
L2n2

x

≤ 2nx

{
Eξk+1

[‖∇f(xk)‖2] + Eξk+1

[
‖G(xk, ξk+1)−∇f(xk)‖2

]}
+ µ2L2n2

x

≤ 2nx

{
‖∇f(xk)‖2 + σ2

}
+ µ2L2n2

x. (2.75)

40



Then from (2.75), (2.73), and ‖∇f(xk)‖ ≤M , we have

Ev,ξk+1

[
‖Gµ(xk, ξk+1, v)−∇fµ(xk)‖2

]
= Ev,ξk+1

[
‖Gµ(xk, ξk+1, v)‖2

]
− ‖∇fµ(x)‖2

≤ 2nx
[
M2 + σ2 + µ2L2nx

]
= σ̃2. (2.76)

�

2.4.1 Convergence Rate of Zeroth-Order GADM

To establish the convergence rate, we refer the sequence w̃k to be the sequence defined

in (2.13) with the corresponding iterates xk, yk, λk obtained from the zeroth-order

GADM. We let δµ,k = Gµ,k − ∇fµ(xk), which plays a similar role as δk in SGADM.

We have the following proposition, whose proof is almost identical to that of (2.48) in

Proposition 2.3.1 except that δk+1 is now replaced by δµ,k.

Proposition 2.4.3 Suppose that Lγ(x, y, λ) is MinE with respect to y, and f(x) is

ValE. Let xk, yk, λk be obtained in the zeroth-order GADM, w̃k be specified as in

(2.13), and hµ(u) = fµ(x) + g(y). Then for any w ∈ Ω, we have

hµ(u)− hµ(ũk) + (w − w̃k)F (w̃k)

≥ (w − w̃k)>Qk(wk − w̃k)− (x− xk)>δµ,k −
‖δµ,k‖2

2ηk
− ηk + L

2
‖xk − x̃k‖2,

(2.77)

where ηk > 0 can be any positive constant to be specified in the analysis later.

Now, we are ready to present the following theorem which leads to the convergence

rate of the zeroth-order GADM. In the rest of this section, we denote Ωn = (ξk,i, vk,i)

for k = 1, 2, . . . , n and i = 1, 2, . . . ,mk, the convergence rate will be considered in the

expectation taken on ΩN .

Theorem 2.4.4 Let wk be the sequence generated by the zeroth-order GADM, and C

be a constant such that CInx − γA>A − LInx � 0, and αk = 1
ηk+C . For any integer

n > 0, let

w̄n =
1

n

n−1∑
k=0

w̃k, (2.78)
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where w̃k is defined in (2.13). Then the following holds

EΩN [h(ūN )− h(u∗) + ρ‖Ax̄N +BȳN − b‖]

≤ 1

2N

N∑
k=1

ηk

(
‖x∗ − xk‖2 − ‖x∗ − xk+1‖2

)
+
σ̃2

2N

N∑
k=1

1

mkηk
+

1

2N

(
D2
y,H + CD2

x +
1

γ
(ρ+ ‖λ0‖)2

)
+ Lµ2, (2.79)

where Dx = dist(x0,X ∗) and Dy,H = dist(y0,Y∗)H , {ηk > 0} and ρ > 0 are any given

constants.

Proof. By (2.77) and (2.20), it follows that

hµ(u)− hµ(ũk) + (w − w̃k)>F (w̃k)

≥ 1

2

(
‖w − wk+1‖2Mk

− ‖w − wk‖2Mk

)
+

1

2
(xk − x̃k)>

(
1

αk
Inx − γA>A

)
(xk − x̃k)

−(x− xk)>δµ,k −
‖δµ,k‖2

2ηk
− ηk + L

2
‖xk − x̃k‖2

=
1

2
(‖w − wk+1‖2Mk

− ‖w − wk‖2Mk
)

+
1

2
(xk − x̃k)>

(
1

αk
Inx − γA>A− (ηk + L)Inx

)
(xk − x̃k)

−(x− xk)>δµ,k −
‖δµ,k‖2

2ηk

≥ 1

2

(
‖w − wk+1‖2Mk

− ‖w − wk‖2Mk

)
− (x− xk)>δµ,k −

‖δµ,k‖2

2ηk
.

In similar vein as the proof of (2.25) in Theorem 2.2.2 (except that δk+1 is replaced by

δµ,k), we obtain:

hµ(ūN )− hµ(u∗) + ρ‖Ax̄N +BȳN − b‖

≤ 1

2N

N−1∑
k=0

‖x∗ − xk‖2 − ‖x∗ − xk+1‖2

αk
+

1

N

N−1∑
k=0

[
(x∗ − xk)>δµ,k +

‖δµ,k‖2

2ηk

]

+
1

2N

(
‖y∗ − y0‖2H +

1

γ
sup
λ∈Bρ

‖λ− λ0‖2
)
. (2.80)
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Recall that δµ,k = Gµ,k −∇fµ(xk), which combined with (2.73) implies

Eξk+1,vk+1
[δµ,k] = Eξk+1,vk+1

[Gµ,k −∇fµ(xk)] = 0.

In addition, since ξk+1 and vk+1 are independent to xk, we have the following identity

EΩk+1
[(x∗ − xk)>δµ,k] = 0. (2.81)

Now, taking expectation over (2.80), choosing x∗, y∗ such that Dx = ‖x∗ − x0‖ and

Dy,H = ‖y∗ − y0‖H and applying (2.74), we have

EΩN [hµ(ūN )− hµ(u∗) + ρ‖Ax̄N +BȳN − b‖]

≤ EΩN

[
1

N

N−1∑
k=0

(
(x∗ − xk)>δµ,k +

‖δµ,k‖2

2ηk

)]

+
1

2N

N−1∑
k=0

ηk

(
‖x∗ − xk‖2 − ‖x∗ − xk+1‖2

)
+

1

2N
(D2

y,H + CD2
x +

1

γ
(ρ+ ‖λ0‖)2)

(2.74)
≤

σ̃2

N

N−1∑
k=0

1

mkηk
+

1

2N

N−1∑
k=0

ηk

(
‖x∗ − xk‖2 − ‖x∗ − xk+1‖2

)
+

1

2N
(D2

y,H + CD2
x +

1

γ
(ρ+ ‖λ0‖)2).

(2.82)

By (2.69), we have |(hµ(ūN )− hµ(u∗))− (h(ūN )− h(u∗))| ≤ Lµ2, and so

E [h(ūN )− h(u∗)] ≤ E [hµ(ūN )− hµ(u∗)] + Lµ2. (2.83)

Finally, combining (2.82) and (2.83) yields the desired result. �

In Theorem 2.4.4, ηk and the batch sizes mk are generic. It is possible to provide one

choice of the parameters so as to yield an overall simpler iteration complexity bound.

Corollary 2.4.5 Under the same assumptions as in Theorem 2.4.4, we let ηk = 1 for
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all k = 1, 2, . . . , N , and the batch sizes mk = m for all k = 1, 2, . . . , N . Then

EΩN [h(ūN )− h(u∗) + ρ‖Ax̄N +BȳN − b‖] ≤
D2
w

2N
+
nx(M2 + σ2)

m
+
µ2L2n2

x

m
+ Lµ2.

Proof. It follows from (2.79), with the specified parameters, that

EΩN [h(ūN )− h(u∗) + ρ‖Ax̄N +BȳN − b‖]

≤ 1

2N
(D2

y,H + (C + 1)D2
x +

1

γ
(ρ+ ‖λ0‖)2) +

σ̃2

2m
+ Lµ2

=
D2
w

2N
+
σ̃2

2m
+ Lµ2

=
D2
w

2N
+

2nx
(
M2 + σ2 + µ2L2nx

)
2m

+ Lµ2

=
D2
w

2N
+
nx
(
M2 + σ2 + µ2L2nx

)
m

+ Lµ2

=
D2
w

2N
+
nx
(
M2 + σ2

)
m

+
µ2L2n2

x

m
+ Lµ2

where we denote D2
w = D2

y,H + (C + 1)D2
x + 1

γ (ρ+ ‖λ0‖)2. �

In the corollary above, the complexity bound is dependent on the sample size m,

and the smoothing parameter µ. We shall further choose m and µ to obtain an explicit

iteration bound.

Corollary 2.4.6 Under the same assumptions as in Theorem 2.4.4 and Corollary 2.4.5,

we have:

(a) Given a fixed iteration number N , if the smoothing parameter is chosen to be µ ≤√
1
N , and the number of calls to SZO at each iteration is m = N , then we have

EΩN [h(ūN )− h(u∗) + ρ‖Ax̄N +BȳN − b‖] ≤
1

N

(
D2
w

2
+ nx(M2 + σ2) + L

)
+
L2n2

x

N2
.

(b) Given a fixed number of calls to SZO to be N̄ , choose the smoothing parameter

µ ≤
√

1
N̄

and the number of calls to the SZO at each iteration to be

m =

⌊
min

{
max

{√
nx(M2 + δ2)N̄

D̃
,
nxL

D̃

}
, N̄

}⌋
,
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for some D̃ > 0. Then, N = b N̄mc and

EΩN [h(ūN )− h(u∗) + ρ‖Ax̄N +BȳN − b‖]

≤ L

N̄
+
nxL

N̄

(
D̃θ2 +

D2
w

D̃

)
+

√
nx(M2 + δ2)√

N̄

(
D̃θ1 +

D2
w

D̃

)
where

θ1 = max

{
1,

√
nx(M2 + δ2)

D̃
√
N̄

}
and θ2 = max

{
1,
nxL

D̃N̄

}
. (2.84)

Proof. Part (a). Since we have m = N , µ ≤
√

1
N

EΩN [h(ūN )− h(u∗) + ρ‖Ax̄N +BȳN − b‖]

≤ D2
w

2N
+
nx(M2 + σ2)

m
+
µ2L2n2

x

m
+ Lµ2

≤ D2
w

2N
+
nx(M2 + σ2)

N
+
L2n2

x

N2
+
L

N

=
1

N

(
D2
w

2
+ nx(M2 + σ2) + L

)
+
L2n2

x

N2
.

Part (b). The total number of SZO calls is now fixed to be N̄ . Under the assumption

that at each iteration m times of SZO are called, we have N̄/2m ≤ N ≤ N̄/m, and so

EΩN [h(ūN )− h(u∗) + ρ‖Ax̄N +BȳN − b‖]

≤ D2
w

2N
+
nx(M2 + σ2)

m
+
µ2L2n2

x

m
+ Lµ2

≤ D2
wm

N̄
+
nx(M2 + σ2)

m
+
L2n2

x

mN̄
+
L

N̄

≤ D2
wm

N̄
+
nx(M2 + σ2)

m
+
L2n2

x

mN̄
+
L

N̄
. (2.85)

Now noting the definitions of θ1, θ2 in (2.84), we equivalently write m as

m =

⌊
max

{√
nx(M2 + δ2)N̄

D̃θ1

,
nxL

D̃θ2

}⌋
.
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Finally,

RHS of (2.85)

≤
D2
w

(√
nx(M2+δ2)N̄

D̃θ1
+ nxL

D̃θ2

)
N̄

+

√
nx(M2 + σ2)D̃θ1√

N̄
+
nxLD̃θ2

N̄
+
L

N̄

≤ D2
w

D̃

√
nx(M2 + δ2)√

N̄
+
D2
w

D̃

nxL

N̄
+

√
nx(M2 + σ2)D̃θ1√

N̄
+
nxLD̃θ2

N̄
+
L

N̄

=
L

N̄
+
nxL

N̄

(
D̃θ2 +

D2
w

D̃

)
+

√
nx (M2 + δ2)√

N̄

(
D̃θ1 +

D2
w

D̃

)
. (2.86)

�

Remark that the complexity bound of O(1/N) in Part (a) of Corollary 2.4.6 is in

terms of the iteration N . However, in the zeroth-order GADM algorithm we need to

call SZO multiple times at each iteration. The complexity in terms of the total number

of calls to SZO in Part (b) of Corollary 2.4.6 is denoted as N̄ , and this gives us a bound

on the accuracy of O(1/
√
N̄).

2.5 Numerical Experiments

In this section, we test the performance of the new SGADM algorithm on two problem

instances: the fused logistic regression and the graph-guided regularized logistic regres-

sion, on which we compare the performance of SGADM with three existing stochastic

ADMM-type algorithms: STOC-ADMM, OPG-ADMM, and RDA-ADMM. Specifically,

STOC-ADMM proposed in [93] is the first stochastic ADMM-type algorithms; OPG-

ADMM proposed in [114] is designed as online ADMM-type algorithms, but is also

applicable for solving stochastic optimization. As shown in [114], the RDA-ADMM

improves the performance of the online ADMM [121]. Hence, we do not include online

ADMM in our test.

For both models, the tests are conducted on four binary classification datasets: a9a,

mushrooms, splice, w8a 1, and the summary of those datasets are shown in Table 2.2.

More details of those two experiments will be presented in the following subsections

separately.

1https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html
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dataset number of samples dimensionality
a9a 32561 123

mushrooms 8124 112
splice 1000 60
w8a 64700 300

Table 2.2: Summary of datasets

2.5.1 Fused Logistic Regression

As suggested in [72], fused logistic regression, which incorporates a certain ordering

information, is derived from the fused lasso problem and sparse logistic regression.

Specifically, the sparse logistic regression problem (see [76]) is given by:

min
x∈Rn

l(x) + β‖x‖1, (2.87)

where l(x) = 1
m

m∑
i=1

log(1 + exp(−bi(a>i x))), and {(ai, bi), i = 1, . . . ,m} is a given train-

ing set with m samples a1, a2, . . . , am and bi ∈ {±1}, i = 1, . . . ,m as the binary class

labels. Combining requirements from the fused lasso [118] and the sparse logistic re-

gression (2.87), the fused logistic regression that incorporates certain existed natural

ordering features can be formulated as:

min
x∈Rn

l(x) + β‖x‖1 + ρ
n∑
j=2
|xj − xj−1|. (2.88)

If we further introduce a matrix F ∈ R(n−1)×n, with all ones on the diagonal and

negative ones on the super-diagonal and zeros elsewhere, then the problem boils down

to

min
x∈Rn

l(x) + β‖x‖1 + ρ‖Fx‖1. (2.89)

By introducing another variable y, and imposing the constraint Fx = y, this problem

can be solved by stochastic ADMM. In fact, the total loss is in the form of expectation

taken over the dataset under a uniform distribution.

In our experiments, the regularization parameters are set to be β = 5 × 10−4 and

ρ = 5× 10−3. For each dataset, we use 10-fold cross-validation for training and testing.

Three different measures of the performance are shown in the comparison of those tested
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algorithms, including objective value, test loss, time cost and prediction error. Objective

value measures the function value of the optimization problem (2.89) evaluated on the

training data samples, whereas test loss is the value of the logistic loss function evaluated

on the test data sample. Besides, prediction error is the classification error rate evaluated

on the test dataset. The number of epochs represents the number of passes that have

been run by the algorithms on the whole training data samples. Figure 2.1 shows the

results of those algorithms for solving the fused logistic regression problem, where the

results are averaged over ten runs on ten folds. We observe that the new SGADM

algorithm is competitive to other stochastic ADMM-type algorithms. In fact, SGADM

consumes less computational time, and often achieves the best performance in terms of

objective value and test loss on various datasets, although the performances of these

methods are not drastically different.
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Figure 2.1: Comparison of SGADM, STOC-ADMM, RDA-ADMM, OPG-ADMM on
Fused Logistic Regression. First Rows: objective values. Second Rows: test losses.
Third Rows: time cost. Fourth Rows: Prediction Error.
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2.5.2 Graph-guided Regularized Logistic Regression

In this subsection, we test those algorithms on the following graph-guided regularized

logistic regression problem

min
x∈Rn

l(x) + β
2 ‖x‖

2
2 + ρ

∑
(i,j)∈E

wij |xi − xj |, (2.90)

where l(x) is sum of logistic loss that is similarly defined as in (2.88), and E is the edge

set in a certain graph. This model penalizes the difference between variables connected

in the graph with different weight. By introducing a matrix G ∈ Rn×n that captures

the structure of the graph, the problem can be written as

min
x∈Rn

l(x) + β
2 ‖x‖

2
2 + ρ‖Gx‖1. (2.91)

With different loss functions, similar problems are considered in the graph-guided SVM

[93] and generalized lasso [119]. Similar to fused logistic regression, by introducing

another variable y and imposing the constraint Gx = y, this problem can also be solved

by stochastic ADMM.

In our experiments, the regularization parameters are set as β = 10−2 and ρ = 10−5.

For each dataset, we use 10-fold cross-validation for training and testing. Moreover, the

matrix G in (2.91) is generated by sparse inverse covariance selection [107]. Figure 2.2

shows the results of those algorithms for solving the graph-guided regularized logistic

regression problem. Similar to the fused logistic regression, the new SGADM algorithm

is comparable and competitive to other stochastic type ADMM algorithms.

2.6 Conclusions

In this chapter, we considered the problem of minimizing the sum of two convex func-

tions, subject to linear coupled constraints. In contrast to the original setting of the

ADMM, we assume that only some noisy estimation of the objective function is possible.

Therefore, the classical ADMM cannot be applied in this context. To account for the

available (informational) structure, in this chapter we proposed a suite of adapted vari-

ants of the ADMM, and establish their iteration complexity bounds accordingly, under

very mild conditions. For instance, we do not assume the boundness of the optimal set,

nor the coecivity of the objective function. Therefore, the analysis in this chapter ac-
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Figure 2.2: Comparison of SGADM, STOC-ADMM, RDA-ADMM, OPG-ADMM on
Graph-guided Regularized Logistic Regression. First Rows: objective values. Second
Rows: test losses. Third Rows: time cost. Fourth Rows: Prediction Error.

50



tually generalizes (and simplifies at the same time) the existing results on the iteration

complexity bounds for the ADMM type algorithms in terms of the feasibility/objective

measurements. Finally, we remark that the new zeroth-order smoothing oracle uses a

bounded support set (specifically, a sphere with scalable radius), which is different from

a more conventional normal distribution-based smoothing (e.g. Nesterov [89]) for which

the support set would be the whole space. Obviously, the bounded-set smoothing is

important for the constrained problems, as the points to be sampled must be in the

domain of the objective function. Interestingly, we managed to prove that not only the

bounded-set smoothing is feasible, but also the approximation bounds can be improved,

up to some constant factors.

2.7 Technical Proofs

2.7.1 Proof of Proposition 2.2.3

Here we will prove Proposition 2.2.3. Before proceeding, let us present some technical

lemmas without proof.

Lemma 2.7.1 Suppose function f is smooth and its gradient is Lipschitz continuous,

i.e. (2.2) holds, then we have

f(x) ≤ f(y) +∇f(y)>(x− y) +
L

2
‖x− y‖2. (2.92)

Lemma 2.7.2 Suppose function f is smooth and convex, and its gradient is Lipschitz

continuous with the constant L, i.e. (2.2) holds. Then we have

(x− y)>∇f(z) ≤ f(x)− f(y) +
L

2
‖z − y‖2. (2.93)

Furthermore, if f is κ-strongly convex, we have

(x− y)>∇f(z) ≤ f(x)− f(y) +
L

2
‖z − y‖2 − κ

2
‖x− z‖2. (2.94)

Lemma 2.7.1 is also known as the descent lemma which is well known; one can find

its proof in e.g. [6]. Lemma 2.7.2 is similar to Fact 1 in [31] which follows from the

(strong) convexity of f and Lemma 2.7.1.

Proof of (2.19) in Proposition 2.2.3
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Proof. First, by the optimality condition of the two subproblems in SGADM, we have

∀y ∈ Y

(y − yk+1)>
(
∂g(yk+1)−B>

(
λk − γ(Axk +Byk+1 − b)

)
−H(yk − yk+1)

)
≥ 0,

and ∀x ∈ X

(x− xk+1)>
(
xk+1 −

(
xk − αk

(
G(xk, ξk+1)−A>(λk − γ(Axk +Byk+1 − b))

)))
≥ 0,

where ∂g(y) is a subgradient of g at y. Using λ̃k = λk − γ(Axk + Byk+1 − b) and the

definition of w̃k in (2.13), the above two inequalities are equivalent to

(y − ỹk)>
(
∂g(ỹk)−B>λ̃k −H(yk − yk+1)

)
≥ 0, ∀y ∈ Y, (2.95)

and

(x− x̃k)>
(
αk

(
G(xk, ξk+1)−A>λ̃k

)
− (xk − x̃k)

)
≥ 0, ∀x ∈ X . (2.96)

Moreover,

(Ax̃k +Bỹk − b)−
(
−A(xk − x̃k) +

1

γ

(
λk − λ̃k

))
= 0.

Thus

(λ− λ̃k)>(Ax̃k +Bỹk − b) =
(
λ− λ̃k

)>(
−A

(
xk − x̃k

)
+

1

γ

(
λk − λ̃k

))
. (2.97)

By the convexity of g(y) and (2.95),

g(y)− g(ỹk) + (y − ỹk)>
(
−B>λ̃k

)
≥ (y − ỹk)>H(yk − ỹk), ∀y ∈ Y. (2.98)

Since δk+1 = G(xk, ξk+1)−∇f(xk), and by (2.96) we have ∀x ∈ X .

(x− x̃k)>
(
αk(∇f(xk)−A>λ̃k) + αkδk+1 − (xk − x̃k)

)
≥ 0, ∀x ∈ X

which leads to

(x− x̃k)>
(
αk(∇f(xk)−A>λ̃k)

)
≥ (x− x̃k)>

(
xk − x̃k

)
− αk

(
x− x̃k

)>
δk+1,
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Using (2.93), the above further leads to

αk(f(x)− f(x̃k)) + (x− x̃k)>(−αkA>λ̃k)

≥ (x− x̃k)>
(
xk − x̃k

)
− αk

(
x− x̃k

)>
δk+1 −

αkL

2
‖xk − x̃k‖2, ∀x ∈ X .

(2.99)

Furthermore,

(x− x̃k)>δk+1 = (x− xk)>δk+1 + (xk − x̃k)>δk+1

≤ (x− xk)>δk+1 +
ηk
2
‖xk − x̃k‖2 +

‖δk+1‖2

2ηk
. (2.100)

Substituting (2.100) in (2.99), and dividing both sides by αk, we get

f(x)− f(x̃k) + (x− x̃k)>(−A>λ̃k)

≥ (x− x̃k)>(xk − x̃k)
αk

− (x− xk)>δk+1 −
‖δk+1‖2

2ηk
− ηk + L

2
‖xk − x̃k‖2.

(2.101)

Finally, (2.19) follows by summing (2.101), (2.98), and (2.97). �

Now we show the second statement in Proposition 2.2.3.

Proof of (2.20) in Proposition 2.2.3

Proof. First, by (2.14), we have P (wk − w̃k) = (wk − wk+1), and so

(w − w̃k)>Qk(wk − w̃k) = (w − w̃k)>MkP (wk − w̃k) = (w − w̃k)>Mk(w
k − wk+1).

Applying the identity

(a− b)>Mk(c− d) =
1

2

(
‖a− d‖2Mk

− ‖a− c‖2Mk

)
+

1

2

(
‖c− b‖2Mk

− ‖d− b‖2Mk

)
to the term (w − w̃k)>Mk(w

k − wk+1), we obtain

(w − w̃k)>Mk(w
k − wk+1)

=
1

2

(
‖w − wk+1‖2Mk

− ‖w − wk‖2Mk

)
+

1

2

(
‖wk − w̃k‖2Mk

− ‖wk+1 − w̃k‖2Mk

)
.

(2.102)
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Using (2.14) again, we have

‖wk − w̃k‖2Mk
− ‖wk+1 − w̃k‖2Mk

= ‖wk − w̃k‖2Mk
− ‖(wk − w̃k)− (wk − wk+1)‖2Mk

= ‖wk − w̃k‖2Mk
− ‖(wk − w̃k)− P (wk − w̃k)‖2Mk

= (wk − w̃k)>(2MkP − P>MkP )(wk − w̃k). (2.103)

Note that Qk = MkP and the definition of those matrices (see (2.12)), we have

2MkP − P>MkP = 2Qk − P>Qk =

 H 0 0

0 1
αk
Inx − γA>A A>

0 −A 1
γ Im

 .

As a result,

(wk − w̃k)>(2MkP − P>MkP )(wk − w̃k)

= ‖yk − ỹk‖2H +
1

γ
‖λk − λ̃k‖2 + (xk − x̃k)>

(
1

αk
Inx − γA>A

)
(xk − x̃k)

≥ (xk − x̃k)>
(

1

αk
Inx − γA>A

)
(xk − x̃k). (2.104)

Combining (2.104), (2.103), and (2.102), the desired inequality (2.20) follows. �

2.7.2 Proof of Proposition 2.3.1

We first show the first part of Proposition 2.3.1.

Proof of (2.48) in Proposition 2.3.1

Proof. by the optimality condition of the two subproblems in SGALM, we have ∀y ∈ Y

(y − yk+1)>
(
yk+1 − yk + βk

(
Sg(y

k, ζk+1)−B>(λk − γ(Axk +Byk − b))
))
≥ 0,

and also ∀x ∈ X

(x− xk+1)>
(
xk+1 − xk + αk

(
Sf (xk, ξk+1)−A>(λk − γ(Axk +Byk+1 − b))

))
≥ 0.

Using λ̃k = λk−γ(Axk+Byk+1−b) and the definition of w̃k, the above two inequalities
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are equivalent to

(y − ỹk)>
(
βk

(
Sg(y

k, ζk+1)−B>λ̃k
)
− (Iny − βkγB>B)(yk − ỹk)

)
≥ 0, ∀y ∈ Y,

(2.105)

and

(x− x̃k)>
(
αk(Sf (xk, ξk+1)−A>λ̃k)− (xk − x̃k)

)
≥ 0, ∀x ∈ X . (2.106)

Also,

(λ− λ̃k)>(Ax̃k +Bỹk − b) = (λ− λ̃k)>
(
−A(xk − x̃k) +

1

γ
(λk − λ̃k)

)
. (2.107)

Since δfk+1 = Sf (xk, ξk+1)−∇f(xk) and using (2.106), similar to (2.99) and (2.100)

we have

f(x)− f(x̃k) + (x− x̃k)>(−A>λ̃k)

≥ (x− x̃k)>(xk − x̃k)
αk

− (x− xk)>δfk+1 −
‖δfk+1‖

2

2ηk
− ηk + L

2
‖xk − x̃k‖2.

(2.108)

Similarly, since δgk+1 = Sg(y
k, ζk+1)−∇g(yk) and using (2.105), we also have

g(y)− g(ỹk) + (y − ỹk)>(−B>λ̃k)

≥ (y − ỹk)>
(

1

βk
Iny − γB>B

)
(yk − ỹk)

−(y − yk)>δgk+1 −
‖δgk+1‖

2

2ηk
− ηk + L

2
‖yk − ỹk‖2. (2.109)

Finally, (2.48) follows by summing (2.109), (2.108), and (2.107). �
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Notice that Q̂k = M̂kP and

2MkP − P>MkP =

 Hk 0 0

0 1
αk
Inx − γA>A A>

0 −A 1
γ Im



=


1
αk
Inx − γB>B 0 0

0 1
αk
Inx − γA>A A>

0 −A 1
γ Im

 .

Inequality (2.49) in Proposition 2.3.1 follows similarly as the derivation of (2.20) in

Proposition 2.2.3.

2.7.3 Properties of the Smoothing Function

In this subsection, we will prove Lemma 2.4.1. Before that, we need some technical

preparations which are summarized in the following lemma.

Lemma 2.7.3 Let α(n) be the volume of the unit ball in Rn, and β(n) be the surface

area of the unit sphere in Rn. We also denote B, and Sp, to be the unit ball and unit

sphere respectively.

(a) If Mp is defined as Mp = 1
α(n)

∫
v∈B ‖v‖

pdv, we have

Mp =
n

n+ p
. (2.110)

(b) Let I be the identity matrix in Rn×n, then∫
Sp

vv>dv =
β(n)

n
I. (2.111)

Proof. For (a), we can directly compute Mp by using the polar coordinates,

Mp =
1

α(n)

∫
B
‖v‖pdv =

1

α(n)

∫ 1

0

∫
Sp

rprn−1drdθ =
1

n+ p

β(n)

α(n)
=

n

n+ p
.

For (b), Let V = vv>, then we know that Vij = vivj . Therefore, if i 6= j, by the

symmetry of the unit sphere Sp (i.e. if v ∈ Sp, v = (v1, v2, . . . , vn), then w ∈ Sp for all
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w = (±v1,±v2, . . . ,±vn)), we have∫
Sp

Vijdv =

∫
Sp

vivjdv =

∫
Sp

−vivjdv =

∫
Sp

−Vijdv.

Thus, we obtain
∫
Sp
Vijdv = 0.

If i = j, we know that Vii = v2
i . Since we already know that∫

Sp

(v2
1 + v2

2 + · · ·+ v2
n)dv =

∫
Sp

‖v‖2dv = β(n).

Then, by symmetry, we have∫
Sp

v2
1dv =

∫
Sp

v2
2dv = · · · =

∫
Sp

v2
ndv =

β(n)

n
.

Thus we also have
∫
Sp
V 2
iidv = β(n)

n , for i = 1, 2, . . . , n. Therefore,
∫
Sp
vv>dv = β(n)

n I.

�

By the next three propositions, the part (b) of Lemma 2.4.1 is shown; for part (a)

and (c) of Lemma 2.4.1, the proof can be found in [109].

Proposition 2.7.4 If f ∈ C1
L(Rn), then

|fµ(x)− f(x)| ≤ Lµ2

2
. (2.112)

Proof. Since f ∈ C1
L(Rn), we have

|fµ(x)− f(x)| =

∣∣∣∣ 1

α(n)

∫
B
f(x+ µv)dv − f(x)

∣∣∣∣
=

∣∣∣∣ 1

α(n)

∫
B

(f(x+ µv)− f(x)−∇f(x)>µv)dv

∣∣∣∣
≤

∫
B

∣∣∣(f(x+ µv)− f(x)−∇f(x)>µv)
∣∣∣ dv

≤
∫
B

Lµ2

2
‖v‖2dv

(2.110)
=

Lµ2

2

n

n+ 2
≤ Lµ2

2
.

57



�

Proposition 2.7.5 If f ∈ C1
L(Rn), then

‖∇fµ(x)−∇f(x)‖ ≤ µnL

2
. (2.113)

Proof.

‖∇fµ(x)−∇f(x)‖

=

∥∥∥∥∥ 1

β(n)

[
n

µ

∫
Sp

f(x+ µv)vdv

]
−∇f(x)

∥∥∥∥∥
(2.111)

=

∥∥∥∥∥ 1

β(n)

[
n

µ

∫
Sp

f(x+ µv)vdv −
∫
Sp

n

µ
f(x)vdv −

∫
Sp

n

µ
〈∇f(x), µv〉vdv

]∥∥∥∥∥
≤ n

β(n)µ

∫
Sp

|f(x+ µv)− f(x)− 〈∇f(x), µv〉|‖v‖dv

≤ n

β(n)µ

Lµ2

2

∫
Sp

‖v‖3dv =
µnL

2
.

�

Proposition 2.7.6 If f ∈ C1
L(Rn), and the SZO defined as gµ(x) = n

µ [f(x + µv) −
f(x)]v, then we have

Ev
[
‖gµ(x)‖2

]
≤ 2n‖∇f(x)‖2 +

µ2

2
L2n2. (2.114)
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Proof.

Ev[‖gµ(x)‖2]

=
1

β(n)

∫
Sp

n2

µ2
|f(x+ µv)− f(x)|2‖v‖2dv

=
n2

β(n)µ2

∫
Sp

[f(x+ µv)− f(x)− 〈∇f(x), µv〉+ 〈∇f(x), µv〉]2 dv

≤ n2

β(n)µ2

∫
Sp

[
2 (f(x+ µv)− f(x)− 〈∇f(x), µv〉)2 + 2 (〈∇f(x), µv〉)2

]
dv

≤ n2

β(n)µ2

[∫
Sp

2

(
Lµ2

2
‖v‖2

)2

dv + 2µ2

∫
Sp

∇f(x)>vv>∇f(x)dv

]
(2.111)

=
n2

β(n)µ2

[
L2µ4

2
β(n) + 2µ2β(n)

n
‖∇f(x)‖2

]
= 2n‖∇f(x)‖2 +

µ2

2
L2n2.

�
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Chapter 3

First-Order Algorithms for

Convex Optimization with

Nonseparable Objective and

Coupled Constraints

3.1 Preliminaries

Before we discuss the general multi-block optimization model (1.7), for the simplicity

of presentation we first consider the following model:

min f(x, y) + h1(x) + h2(y)

s.t. Ax+By = b,

x ∈ X , y ∈ Y
(3.1)

where x ∈ Rp, y ∈ Rq, A ∈ Rm×p, B ∈ Rm×q, b ∈ Rm, X ,Y are closed convex sets, f is a

smooth jointly convex function, and h1, h2 are (possibly nonsmooth) convex functions.

In this chapter, the augmented Lagrangian function for problem (3.1) is defined as

Lγ(x, y, λ) = f(x, y) + h1(x) + h2(y)− λ>(Ax+By − b) +
γ

2
‖Ax+By − b‖2,

where λ is the multiplier.

As we will show that under the assumptions that the gradient of the coupling func-
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tion ∇f is Lipschitz continuous and one of h1 and h2 is strongly convex, then an O(1/N)

convergence rate of ADMM can still be assured. We also show that APGMM, AGPMM,

and their hybrid version have a convergence rate of O(1/N) if ∇f is Lipschitz continu-

ous. Moreover, we show that ADMM can be extended to the multi-block model (1.7).

Similarly, under the Lipschitz continuity of ∇f and the assumptions in [74], an O(1/N)

iteration bound still holds for the multi-block model.

The rest of this chapter is organized as follows. In Section 3.2, we introduce ADMM,

APGMM, AGPMM and their hybrids. The results on the rate of convergence of these

algorithms are presented in the subsections of the same section, while the detailed

proofs of the convergence results are presented in Appendix 3.5. In Section 3.3, we

extend our analysis of the ADMM to a general setting with multiple (more than 2)

blocks of variables. Finally, we conclude the chapter in Section 3.4.

3.2 New Algorithms

Let us first introduce some notations that will be frequently used in the analysis later.

The aggregated primal variables x, y and the primal-dual variables x, y, λ are respec-

tively denoted by u and w, and the primal-dual mapping F ; namely

u :=

(
x

y

)
, w :=

 x

y

λ

 , F (w) :=

 −A>λ
−B>λ

Ax+By − b

 , (3.2)

and h(u) := f(x, y) + h1(x) + h2(y).

Throughout this chapter, we assume f to be smooth and has a Lipschitz continuous

gradient; i.e.

Assumption 3.2.1 The coupling function f satisfies

‖∇f(u2)−∇f(u1)‖ ≤ L‖u2 − u1‖, ∀u1, u2 ∈ X × Y, (3.3)

where L is a Lipschitz constant for ∇f .

For a function f satisfying Assumption 3.2.1, it is useful to note the following in-

equalities.
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Lemma 3.2.1 Suppose that function f satisfies (3.3), then we have

f(u2) ≤ f(u1) +∇f(u1)>(u2 − u1) +
L

2
‖u2 − u1‖2, (3.4)

for any u1, u2. In general, if f is also convex then

f(u2) ≤ f(u1) +∇f(u3)>(u2 − u1) +
L

2
‖u2 − u3‖2, (3.5)

for any u1, u2, u3.

The proof of this lemma is similar to (2.7.2), we omit it here.

For convenience of analysis, we introduce some matrix notations. Let

Q :=

 G 0 0

0 γB>B 0

0 −B 1
γ
Im

 , P :=

 Ip 0 0

0 Iq 0

0 −γB Im

 , M :=

 G 0 0

0 γB>B 0

0 0 1
γ
Im


(3.6)

hence, Q = MP . Suppose the sequence {wk} is generated by an algorithm, we introduce

an auxiliary sequence:

w̃k :=

 x̃k

ỹk

λ̃k

 =

 xk+1

yk+1

λk − γ(Axk+1 +Byk − b)

 . (3.7)

Based on (3.7) and (3.6), the relationship between the new sequence {w̃k} and the

original {wk} is

wk+1 = wk − P (wk − w̃k). (3.8)

3.2.1 The Alternating Direction Method of Multipliers

As we discussed earlier, the ADMM can be applied straightforwardly to solve (3.1),

assuming that the augmented Lagrangian (with a proximal term) can be optimized for

each block of variables, while other variables are fixed. This gives rise to the following

scheme:
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ADMM

Initialize x0 ∈ X , y0 ∈ Y and λ0

for k = 0, 1, · · · , do

xk+1 = arg minx∈X Lγ(x, yk, λk) + 1
2‖x− x

k‖2G;

yk+1 = arg miny∈Y Lγ(xk+1, y, λk) + 1
2‖y − y

k‖2H ;

λk+1 = λk − γ(Axk+1 +Byk+1 − b).
end for

In the above algorithm, G and H are two pre-specified positive semidefinite matrices.

The main result concerning its convergence and iteration complexity are summarized in

the following theorem, whose proof can be found in Appendix 3.5.1.

Theorem 3.2.2 Suppose that ∇f satisfies Lipschitz condition (3.3), and h2(y) is strongly

convex with parameter σ > 0, i.e.

h2(y) ≥ h2(z) + h′2(z)>(y − z) +
σ

2
‖y − z‖2 (3.9)

where h′2(z) ∈ ∂h2(z) is a subgradient of h2(z). Let {wk} be the sequence generated by

the ADMM, and G � 0, H �
(
L+ L2

σ

)
Iq. Then the sequence {wk} generated by the

ADMM converges to an optimal solution. Moreover, for any integer n > 0 letting

ūn :=
1

n

n∑
k=1

uk, (3.10)

we have

h(ūN )− h(u∗) + ρ‖Ax̄N +BȳN − b‖

≤ 1

2N

(
dist(x0,X ∗)2

G + dist(y0,Y∗)2
Ĥ

+
1

γ

(
ρ+ ‖λ0‖

)2)
, (3.11)

where X ∗ × Y∗ is the optimal solution set, dist(x, S)M := infy∈S ‖x − y‖M , and Ĥ :=

γB>B +H.

We quote Lemma 2.4 in [38] as follows:

Assume that ρ > 0, and x̃ ∈ X is an approximate solution of the problem

f∗ := inf{f(x) : Ax− b = 0, x ∈ X} where f is convex, satisfying

f(x̄)− f∗ + ρ‖Ax̄− b‖ ≤ ε. (3.12)
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Then, we have

‖Ax̄− b‖ ≤ ε

ρ− ‖λ∗‖
and f(x̄)− f∗ ≤ ε

where λ∗ is an optimal Lagrange multiplier associated with the constraint

Ax−b = 0 in the problem inf{f(x) : Ax−b = 0, x ∈ X}, assuming ‖λ∗‖ < ρ.

In other words, estimation (3.11) in Theorem 3.2.2 automatically establishes that

h(ūN )− h(u∗) ≤ O(1/N) and ‖Ax̄N +BȳN − b‖ ≤ O(1/N).

The same applies to all subsequent iteration complexity results presented in this section.

3.2.2 The Alternating Proximal Gradient Method of Multipliers

In some applications, the augmented Lagrangian function may be difficult to minimize

for some block of variables, while fixing all others. In this subsection we consider an

approach where we apply proximal gradient for each block of variables. The method

bears some similarity to the Iterative Shrinkage-Thresholding (ISTA) Algorithm (cf. [3]),

although we are dealing with multiple blocks of variables here. We shall call the new

method Alternating Proximal Gradient Method of Multipliers (APGMM), presented as

follows:

APGMM

Initialize x0 ∈ X , y0 ∈ Y and λ0

for k = 0, 1, · · · , do

xk+1 = arg minx∈X ∇xf(xk, yk)>(x− xk) + h1(x) + γ
2‖Ax+Byk − b− 1

γλ
k‖2;

+1
2‖x− x

k‖2G
yk+1 = arg miny∈Y ∇yf(xk, yk)>(y − yk) + h2(y) + γ

2‖Ax
k+1 +By − b− 1

γλ
k‖2;

+1
2‖y − y

k‖2H
λk+1 = λk − γ(Axk+1 +Byk+1 − b).

end for

The convergence property and iteration complexity are summarized in the following

theorem, whose proof is in Appendix 3.5.2.

Theorem 3.2.3 Suppose that ∇f satisfies Lipschitz condition (3.3). Let {wk} be the

sequence generated by the APGMM, and G � LIp and H � LIq. Then, the sequence
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{wk} generated by the APGMM converges to an optimal solution. Moreover, for any

integer n > 0, letting

ūn :=
1

n

n∑
k=1

uk,

it holds that

h(ūN )− h(u∗) + ρ‖Ax̄N +BȳN − b‖

≤ 1

2N

(
dist(x0,X ∗)2

G + dist(y0,Y∗)2
Ĥ

+
1

γ

(
ρ+ ‖λ0‖

)2)
, (3.13)

where X ∗ × Y∗ is the optimal solution set, dist(x, S)M := infy∈S ‖x − y‖M , and Ĥ :=

γB>B +H.

3.2.3 The Alternating Gradient Projection Method of Multipliers

Implementing proximal gradient step may still be difficult for some instances of ap-

plications. It is therefore natural to further simplify the step to Gradient Projection.

Namely, for each block of variables we simply sequentially compute the projection of the

gradient of the augmented Lagrangian function before updating the multipliers. The

method is depicted as follows:

AGPMM

Initialize x0 ∈ X , y0 ∈ Y and λ0

for k = 0, 1, · · · , do

xk+1 = [xk − α(∇xf(xk, yk) +∇xh1(xk)−A>λk +A>(Axk +Byk − b))]X ;

yk+1 = [yk − α(∇yf(xk, yk) +∇yh2(yk)−B>λk +B>(Axk+1 +Byk − b))]Y ;

λk+1 = λk − γ(Axk+1 +Byk+1 − b).
end for

where [x]X denotes the projection of x onto X , and [y]Y denotes the projection of y

onto Y.

Note here that we used ‘PG’ as acronym for Proximal Gradient, and ‘GP’ as acronym

for Gradient Projection. The acronyms are quite similar, and so some attention is needed

not to confuse the two! Below we shall present the main convergence and the iteration

complexity results for the above method; the proof of the theorem can be found in

Appendix 3.5.3.
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Theorem 3.2.4 Suppose that ∇f satisfies Lipschitz condition (3.3). Let wk be the

sequence generated by the AGPMM, and G := γA>A+ 1
αIp, H := 1

αIq − γB
>B. More-

over, suppose that α is chosen to satisfy H − 2LIq � 0, and G − 2LIp � 0. Then, the

sequence {wk} generated by the AGPMM converges to an optimal solution. For any

integer n > 0, letting

ūn :=
1

n

n∑
k=1

uk,

it holds that

h(ūN )− h(u∗) + ρ‖Ax̄N +BȳN − b‖

≤ 1

2N

(
dist(x0,X ∗)2

G + dist(y0,Y∗)2
Ĥ

+
1

γ

(
ρ+ ‖λ0‖

)2)
,

where X ∗ × Y∗ is the optimal solution set, dist(x, S)M := infy∈S ‖x − y‖M , and Ĥ =

γB>B +H.

3.2.4 The Hybrids

There are instances where one part of the block variables is easy to deal with, while

the other part is difficult, e.g. [72]. To take advantage of that situation, we propose

the following two types of hybrid methods. The first one is to combine ADMM with

Proximal Gradient in two blocks of variables:

ADM-PG

Initialize x0 ∈ X , y0 ∈ Y and λ0

for k = 0, 1, · · · , do

xk+1 = arg minx∈X Lγ(x, yk, λk) + 1
2‖x− x

k‖2G ;

yk+1 = arg miny∈Y ∇yf(xk+1, yk)>(y − yk) + h2(y) + γ
2‖Ax

k+1 +By − b− 1
γλ

k‖2 ;

+1
2‖y − y

k‖2H
λk+1 = λk − γ(Axk+1 +Byk+1 − b).

end for

The iteration complexity of the above method is as follows. The proof of the theorem

can be found in Appendix 3.5.4.
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Theorem 3.2.5 Suppose that ∇f satisfies Lipschitz condition (3.3). Let wk be the

sequence generated by the ADM-PG, and G � 0, H � LIq. Then, the sequence {wk}
generated by the APGMM converges to an optimal solution. For any integer n > 0,

letting

ūn :=
1

n

n∑
k=1

uk, (3.14)

it holds that

h(ūN )− h(u∗) + ρ‖Ax̄N +BȳN − b‖

≤ 1

2N

(
dist(x0,X ∗)2

G + dist(y0,Y∗)2
Ĥ

+
1

γ

(
ρ+ ‖λ0‖

)2)
,

where X ∗ × Y∗ is the optimal solution set, dist(x, S)M := infy∈S ‖x − y‖M , and Ĥ :=

γB>B +H.

Another possible approach is to combine ADMM with Gradient Projection, which

works as follows:

ADM-GP

Initialize x0 ∈ X , y0 ∈ Y and λ0

for k = 0, 1, · · · , do

xk+1 = arg minx∈X Lγ(x, yk, λk) + 1
2‖x− x

k‖2G;

yk+1 = [yk − α(∇yf(xk+1, yk) +∇yh2(yk)−B>λk +B>(Axk+1 +Byk − b))]Y ;

λk+1 = λk − γ(Axk+1 +Byk+1 − b).
end for

The main convergence result is as follows, and the proof of the theorem can be found

in Appendix 3.5.4.

Theorem 3.2.6 Let wk be the sequence generated by the ADM-GP, G � 0 and H :=
1
αIq − γB

>B. Moreover, suppose that α is chosen to satisfy H − LIq � 0. Then, the

sequence {wk} generated by the ADM-GP converges to an optimal solution. For any

integer n > 0, letting

ūn :=
1

n

n∑
k=1

uk,
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it holds that

h(ūN )− h(u∗) + ρ‖Ax̄N +BȳN − b‖

≤ 1

2N

(
dist(x0,X ∗)2

G + dist(y0,Y∗)2
Ĥ

+
1

γ

(
ρ+ ‖λ0‖

)2)
,

where X ∗ × Y∗ is the optimal solution set, dist(x, S)M := infy∈S ‖x − y‖M , and Ĥ :=

γB>B +H.

3.3 The General Multi-Block Model

Different variations of the ADMM have been a popular subject of study in the recent

years, and the ADMM has been extended to solve general formulation with multiple

blocks of variables; see [74] and the references therein for more information. In this

section we shall discuss the iteration complexity of the ADMM for multi-block opti-

mization with a nonseparable objective function. In particular, the problem that we

consider is as follows:

min f(x1, x2, . . . , xn) +
n∑
i=1

hi(xi)

s.t. A1x1 +A2x2 + · · ·+Anxn = b,

xi ∈ Xi, i = 1, 2, . . . , n

(3.15)

where Ai ∈ Rm×pi , b ∈ Rm, Xi ⊂ Rpi are closed convex sets, and f, hi i = 1, . . . , n,

are convex closed functions. Note that many important applications are in the form of

(3.15), e.g. multi-stage stochastic programming. Accordingly, the ADMM algorithm for

solving the problem (3.15) is:
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The Multi-block ADMM

Initialize with x0
i ∈ Xi, i = 1, . . . , n, and λ0

for k = 0, 1, · · · , do

xk+1
1 = arg minx1∈X1 Lγ(x1, x

k
2, . . . , x

k
n, λ

k) + 1
2‖x1 − xk1‖2H1

;

xk+1
2 = arg minx2∈X2 Lγ(xk+1

1 , x2, x
k
3 . . . , x

k
n, λ

k) + 1
2‖x2 − xk2‖2H2

;
...

xk+1
i = arg minxi∈Xi Lγ(xk+1

1 , . . . , xk+1
i−1 , xi, x

k
i+1 . . . , x

k
n, λ

k) + 1
2‖xi − x

k
i ‖2Hi ;

...

xk+1
n = arg minxn∈Xn Lγ(xk+1

1 , . . . , xk+1
n−1, xn, λ

k) + 1
2‖xn − x

k
n‖2Hn ;

λk+1 = λk − β(A1x
k+1
1 +A2x

k+1
2 + · · ·+Anx

k+1
n ).

end for

where Hi, i = 1, . . . , n, are pre-specified positive semidefinite matrices, γ is the aug-

mented Lagrangian constant, and β is the dual stepsize. An O(1/N) convergence rate

of the ADMM can still be shown to hold for this general problem. In the following

subsection, we sketch a convergence rate analysis highlighting the key components and

steps. The details, however, will be omitted for succinctness.

Let us start with the assumptions.

Assumption 3.3.1 The functions hi, i = 2, . . . , n, are strongly convex with parameters

σi > 0:

hi(y) ≥ hi(x) + (y − x)>h
′
i(x) +

σi
2
‖y − x‖2,

where h
′
i(x) ∈ ∂hi(x) is in subdifferential of hi(x).

Assumption 3.3.2 The gradient of function f(x1, x2, . . . , xn) is Lipschitz continuous

with parameter L ≥ 0:

‖∇f(x′1, x
′
2, . . . , x

′
n)−∇f(x1, x2, . . . , xn)‖ ≤ L‖(x′1 − x1, x

′
2 − x2, . . . , x

′
n − xn)‖

for all (x′1, x
′
2, . . . , x

′
n), (x1, x2, . . . , xn) ∈ X1 × · · · × Xn.

In all the following propositions and theorems, we denote wk = (xk1, . . . , x
k
n, λ

k) to

be the iterates generated by ADMM, and u = (x1, . . . , xn).

Proposition 3.3.1 Suppose that there are γ, β and δ satisfying

n− 1

2
max

2≤i≤n

{
λmax(A>i Ai)

}
γ + δ ≤ min

2≤i≤n
σi.
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Moreover, suppose that the matrices Hi, i = 2, . . . , n, satisfy

Hs
i := Hi −

(
L+

(n− i+ 1)(n+ i− 2)L2

8δ

)
Ipi � 0 ∀ 2 ≤ i ≤ n.

Let (xk+1
1 , . . . , xk+1

n , λk+1) ∈ Ω be the sequence generated by ADMM. Then, for u∗ =

(x∗1, . . . , x
∗
n) ∈ Ω∗ and λ ∈ Rm, the following inequality holds

h(u∗)− h(uk+1) +


x∗1 − x

k+1
1

...

x∗n − xk+1
n

λ− λk+1


>


−A>1 λk+1

...

−A>n λk+1

n∑
i=1

Aix
k+1
i − b


+
γ

2

n∑
i=2

∥∥∥∥∥∥
i−1∑
j=1

Ajx
∗
j +

n∑
j=i

Ajx
k
j − b

∥∥∥∥∥∥
2

−

∥∥∥∥∥∥
i−1∑
j=1

Ajx
∗
j +

n∑
j=i

Ajx
k+1
j − b

∥∥∥∥∥∥
2

+
1

2β

(∥∥∥λ− λk‖2 − ‖λ− λk+1
∥∥∥2
)

+
1

2

n∑
i=1

(
‖x∗i − xki ‖2Hi − ‖x

∗
i − xk+1

i ‖2Hi
)

≥
(
γ − β
2β2

)
‖λk − λk+1‖2 +

1

2

3∑
i=1

‖xk+1
i − xki ‖2Hs

i
.

The following proposition exhibits an important relationship between two consecu-

tive iterates wk and wk+1 from which the convergence readily follows.

Proposition 3.3.2 Let wk be the sequence generated by the ADMM, then

γ

2

n∑
i=2

(
‖Li(w∗, wk)‖2 − ‖Li(w∗, wk+1)‖2

)
+‖w∗ − wk‖2M̂ − ‖w

∗ − wk+1‖2M̂ − ‖w
k − wk+1‖2H ≥ 0,

where Li(w∗, w) :=
i−1∑
j=1

Ajx
∗
j +

n∑
j=i

Ajxj − b, i = 2, ..., n, and

M̂ = diag

(
1

2
H1, . . . ,

1

2
Hn,

1

β
Im

)
,H = diag

(
1

2
H1,

1

2
Hs

2 , . . . ,
1

2
Hs
n,
γ − β
2β2

Im

)
.

Propositions 3.3.1 and 3.3.2 lead to the following theorem:
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Theorem 3.3.3 Under the assumptions of Propositions 3.3.1 and 3.3.2, and

H = diag

(
1

2
H1,

1

2
Hs

2 , . . . ,
1

2
Hs
n,
γ − β
2β2

Im

)
� 0,

we conclude that the sequence {wk} generated by the ADMM converges to an optimal

solution. Moreover, for any integer t > 0 let

w̄t :=
1

t

t−1∑
k=0

wk+1,

and for any ρ > 0 we have

h(ūN )− h(u∗) + ρ

∥∥∥∥∥
n∑
i=1

Aix̄N − b

∥∥∥∥∥
≤ 1

2N

γ n−1∑
i=1

∥∥∥∥∥∥
n∑

j=i+1

Aj(x
∗
j − x0

j )

∥∥∥∥∥∥
2

+
n∑
i=1

‖x∗i − x0
i ‖2Hi +

1

β

(
ρ+ ‖λ0‖

)2 .

3.4 Concluding Remarks

In [9], the following model is considered

min f(x) + g(y) +H(x, y), (3.16)

which can be regarded as (3.1) without constraints, and the so-called proximal alter-

nating linearized minimization (PALM) algorithm is proposed. The main focus of [9]

is to analyze the convergence of PALM for a class of nonconvex problems based on

the Kurdyka- Lojasiewicz property. In that regard, it has an entirely different aim. We

note however, that PALM is similar to APGMM applied to (3.16) when there is no

coupling linear constraint. On the linearized gradient part, one noticeable difference

is that APGMM operates in a Jacobian fashion while PALM is Gauss-Seidel. If the

computation of gradient is costly, then the Jacobian style is cheaper to implement. As

shown in [9], PALM can be extended to allow multiple blocks. Similarly, APGMM is

also extendable to solve (3.15). The same is true for the other variations of the ADMM

proposed in this chapter. It remains a future research topic to establish the convergence

rate of such types of first-order algorithms. Other future research topics include the
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study of first-order algorithms for (3.1) where the objective is non-convex but satisfies

the Kurdyka- Lojasiewicz property. It is also interesting to consider stochastic program-

ming models studied in [38], but now allowing the objective function to be nonseparable.

3.5 Proofs of the Convergence Theorems

3.5.1 Proof of Theorem 3.2.2

We have F (w) =

 0 0 −B
0 0 −A
A B 0


 y

x

λ

−
 0

0

b

 , for any w1 and w2, and so

(w1 − w2)>(F (w1)− F (w2)) = 0.

Expanding on this identity, we have for any w0, w1, · · · , wt−1 and w̄ = 1
t

t−1∑
k=0

wk, that

(w̄ − w)>F (w̄) =
1

t

t−1∑
k=0

(wk − w)>F (wk). (3.17)

We begin our analysis with the following property of the ADMM algorithm.

Proposition 3.5.1 Suppose h2 is strongly convex with parameter σ > 0. Let {w̃k} be

defined by (3.7), and the matrices Q, M , P be given in (3.6). First of all, for any

w ∈ Ω, we have

h(u)− h(ũk) + (w − w̃k)>F (w̃k)

≥ (w − w̃k)>Q(wk − w̃k)−
((

L

2
+
L2

2σ

)
‖yk − ỹk‖2 + (y − ỹk)>H(ỹk − yk)

)
.

(3.18)

Furthermore,

(w−w̃k)>Q(wk−w̃k) =
1

2

(
‖w − wk+1‖2M − ‖w − wk‖2M

)
+

1

2
‖xk−x̃k‖2G+

1

2γ
‖λk−λ̃k‖2.

(3.19)
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Proof. By the optimality condition of the two subproblems in ADMM, we have

(x− xk+1)>
[
∇xf(xk+1, yk) + h′1(xk+1)

−A>(λk − γ(Axk+1 +Byk − b)) +G(xk+1 − xk)
]

≥ 0 ∀x ∈ X ,

where h′1(xk+1) ∈ ∂h1(xk+1), and

(y − yk+1)>
[
∇yf(xk+1, yk+1) + h′2(yk+1)

−B>(λk − γ(Axk+1 +Byk+1 − b)) +H(yk+1 − yk)
]

≥ 0 ∀y ∈ Y

where h′2(xk+1) ∈ ∂h2(xk+1).

Note that λ̃k = λk−γ(Axk+1+Byk−b). The above two inequalities can be rewritten

as

(x− x̃k)>
[
∇xf(x̃k, yk) + h′1(x̃k)−A>λ̃k +G(x̃k − xk)

]
≥ 0 ∀x ∈ X , (3.20)

and

(y−ỹk)>
[
∇yf(x̃k, ỹk) + h′2(ỹk)−B>λ̃k + γB>B(ỹk − yk) +H(ỹk − yk)

]
≥ 0 ∀y ∈ Y.

(3.21)
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Observe the following chain of inequalities

(x− x̃k)>∇xf(x̃k, yk) + (y − ỹk)>∇yf(x̃k, ỹk)

= (x− x̃k)>∇xf(x̃k, yk) + (y − ỹk)>∇yf(x̃k, yk)

+(y − ỹk)>(∇yf(x̃k, ỹk)−∇yf(x̃k, yk))

≤ (x− x̃k)>∇xf(x̃k, yk) + (y − ỹk)>∇yf(x̃k, yk) + L‖y − ỹk‖‖yk − ỹk‖

= (x− x̃k)>∇xf(x̃k, yk) + (y − yk)>∇yf(x̃k, yk)

+(yk − ỹk)>∇yf(x̃k, yk) + L‖y − ỹk‖‖yk − ỹk‖

≤ f(x, y)− f(x̃k, yk)− (ỹk − yk)>∇yf(x̃k, yk) + L‖y − ỹk‖‖yk − ỹk‖
(3.4)

≤ f(x, y)− f(x̃k, ỹk) +
L

2
‖yk − ỹk‖2 + L‖y − ỹk‖‖yk − ỹk‖

≤ f(x, y)− f(x̃k, ỹk) +
L

2
‖yk − ỹk‖2 +

σ

2
‖y − ỹk‖2 +

L2

2σ
‖yk − ỹk‖2. (3.22)

Since

(Ax̃k +Bỹk − b)−B(ỹk − yk)− 1

γ
(λk − λ̃k) = 0,

we have

(λ− λ̃k)>
(
Ax̃k +Bỹk − b

)
= (λ− λ̃k)>

(
−B(yk − ỹk) +

1

γ
(λk − λ̃k)

)
. (3.23)

By the strong convexity of the function h2(y), we have

(y − ỹk)>h′2(ỹk) ≤ h2(y)− h2(ỹk)− σ

2
‖y − ỹk‖2. (3.24)

Because of the convexity of h1(x) and combining (3.24), (3.23), (3.22), (3.21) and (3.20),

we have

h(u)− h(ũk) +

(
L

2
+
L2

2σ

)
‖yk − ỹk‖2 + (y − ỹk)>H(ỹk − yk)

+

 x− x̃k

y − ỹk

λ− λ̃k


> 
 −A>λ̃k

−B>λ̃k

Ax̃k +Bỹk − b

−
 G(xk − x̃k)

γB>B(yk − ỹk)
−B(yk − ỹk) + 1

γ (λk − λ̃k)


 ≥ 0

for any w ∈ Ω and w̃k. By definition of Q, (3.18) of Proposition 3.5.1 follows. For (3.19),

due to the similarity, we refer to Lemma 3.2 in [57] (noting the matrices Q, P and M).
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�

The following theorem exhibits an important relationship between two consecutive

iterates wk and wk+1 from which the convergence would follow.

Proposition 3.5.2 Let wk be the sequence generated by the ADMM, w̃k be defined as

in (3.7) and H satisfy Hs := H −
(
L+ L2

σ

)
Iq � 0. Then the following holds

1

2

(
‖w∗ − wk‖2

M̂
− ‖w∗ − wk+1‖2

M̂

)
− 1

2
‖wk − w̃k‖2Hd ≥ 0, (3.25)

where

Ĥ = γB>B +H, M̂ =

 G 0 0

0 Ĥ 0

0 0 1
γ Im

 , and Hd =

 G 0 0

0 Hs 0

0 0 1
γ Im

 . (3.26)

Proof. It follows from Proposition 3.5.1 that

h(u)− h(ũk) + (w − w̃k)>F (w̃k)

≥ (w − w̃k)>Q(wk − w̃k)−
((

L

2
+
L2

2σ

)
‖yk − ỹk‖2 + (y − ỹk)>H(ỹk − yk)

)
=

1

2

(
‖w − wk+1‖2M − ‖w − wk‖2M

)
+

1

2
‖xk − x̃k‖2G +

1

2γ
‖λk − λ̃k‖2

−
((

L

2
+
L2

2σ

)
‖yk − ỹk‖2 + (y − ỹk)>H(ỹk − yk)

)
. (3.27)

Note that Hs := H − (L+ L2

σ )Iq � 0, we have the following(
L

2
+
L2

2σ

)
‖yk − ỹk‖2 + (y − ỹk)>H(ỹk − yk)

=

(
L

2
+
L2

2σ

)
‖yk − ỹk‖2 +

1

2

(
‖y − yk‖2H − ‖y − ỹk‖2H − ‖yk − ỹk‖2H

)
=

1

2

(
‖y − yk‖2H − ‖y − ỹk‖2H

)
− 1

2
‖yk − ỹk‖2Hs . (3.28)
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Thus, combining (3.27) and (3.28) we have

h(u)− h(ũk) + (w − w̃k)>F (w̃k)

≥ 1

2

(
‖w − wk+1‖2M − ‖w − wk‖2M

)
− 1

2

(
‖y − yk‖2H − ‖y − ỹk‖2H

)
+

1

2
‖xk − x̃k‖2G +

1

2
‖yk − ỹk‖2Hs +

1

2γ
‖λk − λ̃k‖2. (3.29)

By the definition of M̂ and Hd according to (3.26), it follows from (3.29) that

h(ũk)− h(u) + (w̃k − w)>F (w̃k) ≤ 1

2

(
‖w − wk‖2

M̂
− ‖w − wk+1‖2

M̂

)
− 1

2
‖wk − w̃k‖2Hd .

(3.30)

Letting w = w∗ in (3.30) we have

h(ũk)−h(u∗)+(w̃k−w∗)>F (w̃k) ≤ 1

2

(
‖w∗ − wk‖2

M̂
− ‖w∗ − wk+1‖2

M̂

)
− 1

2
‖wk−w̃k‖2Hd .

(3.31)

By the monotonicity of F and using the optimality of w∗, we have

1

2

(
‖w∗ − wk‖2

M̂
− ‖w∗ − wk+1‖2

M̂

)
− 1

2
‖wk − w̃k‖2Hd

≥ h(ũk)− h(u∗) + (w̃k − w∗)>F (w̃k)

≥ h(ũk)− h(u∗) + (w̃k − w∗)>F (w∗)

≥ 0,

which completes the proof. �

Proof of Theorem 3.2.2.

Proof. First, according to (3.25), it holds that {wk} is bounded and

lim
k→∞

‖wk − w̃k‖Hd = 0. (3.32)

Thus, those two sequences have the same cluster points: For any wkn → w∞, by (3.32)

we also have w̃kn → w∞. Applying inequality (3.18) to {wkn}, {w̃kn} and taking the

limit, it yields that

h(u)− h(u∞) + (w − w∞)>F (w∞) ≥ 0. (3.33)

Consequently, the cluster point w∞ is an optimal solution. Since (3.25) is true for any
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optimal solution w∗, it also holds for w∞, and that implies wk will converge to w∞.

Recall (3.18) and (3.19) in Proposition 3.5.1, those would imply that:

h(u)− h(ũk) + (w − w̃k)>F (w̃k)

≥ (w − w̃k)>Q(wk − w̃k)

−
((

L

2
+
L2

2σ

)
‖yk − ỹk‖2 + (y − ỹk)>H(ỹk − yk)

)
≥ 1

2

(
‖w − wk+1‖2M − ‖w − wk‖2M

)
−
((

L

2
+
L2

2σ

)
‖yk − ỹk‖2 + (y − ỹk)>H(ỹk − yk)

)
.

(3.34)

Furthermore, since H −
(
L+ L2

σ

)
Iq � 0, we have

(
L

2
+
L2

2σ

)
‖yk − ỹk‖2 + (y − ỹk)>H(ỹk − yk)

=

(
L

2
+
L2

2σ

)
‖yk − ỹk‖2 +

1

2

(
‖y − yk‖2H − ‖y − ỹk‖2H − ‖yk − ỹk‖2H

)
≤ 1

2

(
‖y − yk‖2H − ‖y − ỹk‖2H

)
. (3.35)

Thus, combining (3.34) and (3.35) leads to

h(u)− h(ũk) + (w − w̃k)>F (w̃k)

≥ 1

2

(
‖w − wk+1‖2M − ‖w − wk‖2M

)
− 1

2

(
‖y − yk‖2H − ‖y − ỹk‖2H

)
. (3.36)

By the definition of M in (3.6) and denoting Ĥ = γB>B +H, (3.36) leads to

h(ũk)− h(u) + (w̃k − w)>F (w̃k)

≤ 1

2

(
‖x− xk‖2G − ‖x− xk+1‖2G

)
+

1

2

(
‖y − yk‖2

Ĥ
− ‖y − yk+1‖2

Ĥ

)
+

1

2γ

(
‖λ− λk‖2 − ‖λ− λk+1‖2

)
. (3.37)

Before proceeding, let us introduce w̄n := 1
n

n−1∑
k=0

w̃k. Moreover, recall the definition
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of ūn in (3.14), we have

ūn =
1

n

n∑
k=1

uk =
1

n

n−1∑
k=0

ũk.

Now, summing the inequality (3.37) over k = 0, 1, . . . , N − 1 yields

h(ūN )− h(u) + (w̄N − w)>F (w̄N )

≤ 1

N

N−1∑
k=0

h(ũk)− h(u) +
1

N

N−1∑
k=0

(w̃k − w)>F (w̃k)

≤ 1

2N

(
‖x− x0‖2G + ‖y − y0‖2

Ĥ
+

1

γ
‖λ− λ0‖2

)
, (3.38)

where the first inequality is due to the convexity of h and (3.17).

Note the above inequality is true for all x ∈ X , y ∈ Y, and λ ∈ Rm, hence it is also

true for any optimal solution x∗, y∗, and Bρ = {λ : ‖λ‖ ≤ ρ}. As a result,

sup
λ∈Bρ

{
h(ūN )− h(u∗) + (w̄N − w∗)>F (w̄N )

}
= sup

λ∈Bρ

{
h(ūN )− h(u∗) + (x̄N − x∗)>(−A>λ̄N ) + (ȳN − y∗)>(−B>λ̄N )

+(λ̄N − λ)>(Ax̄N +BȳN − b)
}

= sup
λ∈Bρ

{
h(ūN )− h(u∗) + λ̄>N (Ax∗ +By∗ − b)− λ>(Ax̄N +BȳN − b)

}
= sup

λ∈Bρ

{
h(ūN )− h(u∗)− λ>(Ax̄N +BȳN − b)

}
= h(ūN )− h(u∗) + ρ‖Ax̄N +BȳN − b‖, (3.39)

which, combined with (3.38), implies that

h(ūN )− h(u∗) + ρ‖Ax̄N +BȳN − b‖

≤ 1

2N

(
‖x∗ − x0‖2G + ‖y∗ − y0‖2

Ĥ
+

1

γ
sup
λ∈Bρ

‖λ− λ0‖2
)
,

78



and so by optimizing over (x∗, y∗) ∈ X ∗ × Y∗ we have

h(ūN )− h(u∗) + ρ‖Ax̄N +BȳN − b‖

≤ 1

2N

(
dist(x0,X ∗)2

G + dist(y0,Y∗)2
Ĥ

+
1

γ

(
ρ+ ‖λ0‖

)2)
. (3.40)

This completes the proof. �

3.5.2 Proof of Theorem 3.2.3

Similar to the analysis for ADMM, we need the following proposition in the analysis of

APGMM.

Proposition 3.5.3 Let {w̃k} be defined by (3.7), and the matrices Q, M , P be given

as in (3.6). For any w ∈ Ω, we have

h(u)− h(ũk) + (w − w̃k)>F (w̃k)

≥ (w − w̃k)>Q(wk − w̃k)−
(
L

2
(‖xk − x̃k‖2 + ‖yk − ỹk‖2) + (y − ỹk)>H(ỹk − yk)

)
=

1

2

(
‖w − wk+1‖2M − ‖w − wk‖2M

)
+

1

2
‖xk − x̃k‖2G +

1

2γ
‖λk − λ̃k‖2

−
(
L

2

(
‖xk − x̃k‖2 + ‖yk − ỹk‖2

)
+ (y − ỹk)>H(ỹk − yk)

)
. (3.41)

Proof. First, by the optimality condition of the two subproblems in APGMM, we have

(x− xk+1)>
[
∇xf(xk, yk) + h′1(xk+1)

−A>(λk − γ(Axk+1 +Byk − b)) +G(xk+1 − xk)
]

≥ 0, ∀x ∈ X ,

and

(y − yk+1)>
[
∇yf(xk, yk) + h′2(yk+1)

−B>(λk − γ(Axk+1 +Byk+1 − b)) +H(yk+1 − yk)
]

≥ 0, ∀y ∈ Y.

Note that λ̃k = λk−γ(Axk+1 +Byk− b), and by the definition of w̃k, the above two
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inequalities are equivalent to

(x− x̃k)>
[
∇xf(xk, yk) + h′1(x̃k)−A>λ̃k +G(x̃k − xk)

]
≥ 0 ∀x ∈ X , (3.42)

and

(y− ỹk)>
[
∇yf(xk, yk) + h′2(ỹk)−B>λ̃k + γB>B(ỹk − yk) +H(ỹk − yk)

]
≥ 0, ∀y ∈ Y.

(3.43)

Notice that

(x− x̃k)>∇xf(xk, yk) + (y − ỹk)>∇yf(xk, yk)

= (x− xk)>∇xf(xk, yk) + (y − yk)>∇yf(xk, yk)

+(xk − x̃k)>∇xf(xk, yk) + (yk − ỹk)>∇yf(xk, yk)

≤ f(x, y)− f(xk, yk)− (x̃k − xk)>∇xf(xk, yk)− (ỹk − yk)>∇yf(xk, yk)

(3.4)

≤ f(x, y)− f(x̃k, ỹk) +
L

2

(
‖xk − x̃k‖2 + ‖yk − ỹk‖2

)
. (3.44)

Besides, we also have

(Ax̃k +Bỹk − b)−B(ỹk − yk)− 1

γ

(
λk − λ̃k

)
= 0.

Thus

(λ− λ̃k)>(Ax̃k +Bỹk − b) = (λ− λ̃k)>
(
−B(yk − ỹk) +

1

γ
(λk − λ̃k)

)
. (3.45)

By the convexity of h1(x) and h2(y), combining (3.45), (3.44), (3.43) and (3.42), we

have

h(u)− h(ũk) +
L

2

(
‖xk − x̃k‖2 + ‖yk − ỹk‖2

)
+ (y − ỹk)>H(ỹk − yk)

+

 x− x̃k

y − ỹk

λ− λ̃k


> 
 −A>λ̃k

−B>λ̃k

Ax̃k +Bỹk − b

−
 G(xk − x̃k)

γB>B(yk − ỹk)
−B(yk − ỹk) + 1

γ (λk − λ̃k)


 ≥ 0

for any w ∈ Ω and w̃k.

By definition of Q, we have shown (3.41) in Proposition 3.5.3. The equality directly
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follows from (3.19) in Proposition 3.5.1. �

With Proposition 3.5.3 in place, we can show Theorem 3.2.3 by exactly following the

same steps as in the proof of Theorem 3.2.2, noting of course the altered assumptions

on the matrices G and H. In the meanwhile, we also point out the following proposition

which is similar to Proposition 3.5.2. Since most steps of the proofs are almost identical

to that of the previous theorems, we omit the details for succinctness.

Proposition 3.5.4 Let wk be the sequence generated by the APGMM, and w̃k be as

defined in (3.7), and H and G are chosen so as to satisfy Hs := H − LIq � 0 and

Gs := G− LIp � 0. Then the following holds

1

2

(
‖w∗ − wk‖2

M̂
− ‖w∗ − wk+1‖2

M̂

)
− 1

2
‖wk − w̃k‖2Hd ≥ 0,

where

M̂ =

 G 0 0

0 Ĥ 0

0 0 1
γ Im

 , Hd =

 Gs 0 0

0 Hs 0

0 0 1
γ Im


and Ĥ = γB>B +H.

Theorem 3.2.3 follows from the above propositions.

3.5.3 Proof of Theorem 3.2.4

Similar to the analysis for APGMM, we do not need any strong convexity here, but we

do need to assume that the gradients ∇xh1(x) and ∇yh2(y) are Lipschitz continuous.

Without loss of generality, we further assume that the Lipschitz constant is the same

as ∇f(x, y) which is L; that is,

‖∇xh1(x2)−∇xh1(x1)‖ ≤ L‖x2 − x1‖, ∀x1, x2 ∈ X ,

‖∇yh2(y2)−∇yh2(y1)‖ ≤ L‖y2 − y1‖, ∀ y1, y2 ∈ Y. (3.46)

Proposition 3.5.5 Let {w̃k} be defined by (3.7), and the matrices Q, M , P be as given

in (3.6), and G := γA>A + 1
αIp, H := 1

αIq − γB
>B � 0. First of all, for any w ∈ Ω,
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we have

h(u)− h(ũk) + (w − w̃k)>F (w̃k)

≥ (w − w̃k)>Q(wk − w̃k)−
(
L(‖xk − x̃k‖2 + ‖yk − ỹk‖2) + (y − ỹk)>H(ỹk − yk)

)
=

1

2

(
‖w − wk+1‖2M − ‖w − wk‖2M

)
+

1

2
‖xk − x̃k‖2G +

1

2γ
‖λk − λ̃k‖2

−
(
L(‖xk − x̃k‖2 + ‖yk − ỹk‖2) + (y − ỹk)>H(ỹk − yk)

)
. (3.47)

Proof. First, by the optimality condition of the two subproblems in AGPMM, we have

(x− xk+1)>
[
xk+1 − xk + α(∇xf(xk, yk) +∇yh1(xk)

−A>(λk − γ(Axk +Byk − b)))
]

≥ 0 ∀x ∈ X ,

and

(y − yk+1)>
[
yk+1 − yk + α(∇yf(xk, yk) +∇yh2(yk)

−B>(λk − γ(Axk+1 +Byk − b)))
]

≥ 0 ∀y ∈ Y.

Noting λ̃k = λk − γ(Axk+1 + Byk − b) and the definition of w̃k, the above two

inequalities are respectively equivalent to

(x− x̃k)>
[
∇xf(xk, yk) +∇xh2(xk)

−A>λ̃k + γA>A(x̃k − xk) +
1

α
(x̃k − xk)

]
≥ 0 ∀x ∈ X , (3.48)

and

(y − ỹk)>
[
∇yf(xk, yk) +∇yh2(yk)−B>λ̃k +

1

α
(ỹk − yk)

]
≥ 0 ∀y ∈ Y. (3.49)
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Similar to Proposition 3.5.3, we have

(x− x̃k)>∇xf(xk, yk) + (y − ỹk)>∇yf(xk, yk)

(3.4)

≤ f(x, y)− f(x̃k, ỹk) +
L

2

(
‖xk − x̃k‖2 + ‖yk − ỹk‖2

)
. (3.50)

Moreover, by (3.5) we have

(x− x̃k)>∇xh1(xk) ≤ h1(x)− h1(x̃k) +
L

2
‖xk − x̃k‖2

(y − ỹk)>∇yh2(yk) ≤ h2(y)− h2(ỹk) +
L

2
‖yk − ỹk‖2. (3.51)

Besides,

(Ax̃k +Bỹk − b)−B(ỹk − yk)− 1

γ

(
λk − λ̃k

)
= 0.

Thus

(λ− λ̃k)>(Ax̃k +Bỹk − b) = (λ− λ̃k)>
(
−B(yk − ỹk) +

1

γ

(
λk − λ̃k

))
. (3.52)

Combining (3.52), (3.51), (3.50), (3.49), and (3.48), and noticing that G := γA>A+ 1
αIp,

H := 1
αIq − γB

>B, we have, for any w ∈ Ω and w̃k, that

h(u)− h(ũk) + L(‖xk − x̃k‖2 + ‖yk − ỹk‖2) + (y − ỹk)>H(ỹk − yk)

+

 x− x̃k

y − ỹk

λ− λ̃k


>

 −A>λ̃k

−B>λ̃k

Ax̃k +Bỹk − b

−
 G(xk − x̃k)

γB>B(yk − ỹk)
−B(yk − ỹk) + 1

γ (λk − λ̃k)


 ≥ 0.

Using the definition of Q, (3.47) follows. In view of (3.19) in Proposition 3.5.1, the

equality also readily follows. �

With Proposition 3.5.5, similar as before, we can show Theorem 3.2.4 by following

the same approach as in the proof of Theorem 3.2.2. We skip the details here for

succinctness.

Proposition 3.5.6 Let wk be the sequence generated by the AGPMM, w̃k be defined

in (3.7) and G := γA>A + 1
αIp, H := 1

αIq − γB>B. Suppose that α satisfies that
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Hs := H − 2LIq � 0 and Gs := G− 2LIp � 0. Then the following holds

1

2

(
‖w∗ − wk‖2

M̂
− ‖w∗ − wk+1‖2

M̂

)
− 1

2
‖wk − w̃k‖2Hd ≥ 0,

where

M̂ =

 G 0 0

0 Ĥ 0

0 0 1
γ Im

 , Hd =

 Gs 0 0

0 Hs 0

0 0 1
γ Im

 ,

and Ĥ = γB>B +H.

Theorem 3.2.4 now follows from the above propositions.

3.5.4 Proofs of Theorems 3.2.5 and 3.2.6

Proposition 3.5.7 Let {w̃k} be defined by (3.7), and the matrices Q, M , P be given

in (3.6). For any w ∈ Ω, we have

h(u)− h(ũk) + (w − w̃k)>F (w̃k)

≥ (w − w̃k)>Q(wk − w̃k)−
(
L

2
‖yk − ỹk‖2 + (y − ỹk)>H(ỹk − yk)

)
=

1

2

(
‖w − wk+1‖2M − ‖w − wk‖2M

)
+

1

2
‖xk − x̃k‖2G +

1

2γ
‖λk − λ̃k‖2

−
(
L

2
‖yk − ỹk‖2 + (y − ỹk)>H(ỹk − yk)

)
. (3.53)

Proof. First, by the optimality condition of the two subproblems in ADM-PG, we have

(x− xk+1)>
[
∇xf(xk+1, yk) + h′1(xk+1)

−A>(λk − γ(Axk+1 +Byk − b)) +G(xk+1 − xk)
]

≥ 0 ∀x ∈ X ,

and

(y − yk+1)>
[
∇yf(xk+1, yk) + h′2(yk+1)

−B>(λk − γ(Axk+1 +Byk+1 − b)) +H(yk+1 − yk)
]

≥ 0 ∀y ∈ Y.
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Noting λ̃k = λk − γ(Axk+1 + Byk − b) and the definition of w̃k, the above two

inequalities are equivalent to

(x− x̃k)>
[
∇xf(x̃k, yk) +∇xh1(x̃k)−A>λ̃k +G(x̃k − xk)

]
≥ 0 ∀x ∈ X , (3.54)

and

(y− ỹk)>
[
∇yf(x̃k, yk) + g2(ỹk)−B>λ̃k + γB>B(ỹk − yk) +H(ỹk − yk)

]
≥ 0, ∀y ∈ Y.

(3.55)

Moreover,

(x− x̃k)>∇xf(x̃k, yk) + (y − ỹk)>∇yf(x̃k, yk)

= (x− x̃k)>∇xf(x̃k, yk) + (y − yk)>∇yf(x̃k, yk) + (yk − ỹk)>∇yf(x̃k, yk)

≤ f(x, y)− f(x̃k, yk)− (ỹk − yk)>∇yf(x̃k, yk)

(3.4)

≤ f(x, y)− f(x̃k, ỹk) +
L

2
‖yk − ỹk‖2. (3.56)

Besides,

(Ax̃k +Bỹk − b)−B(ỹk − yk)− 1

γ

(
λk − λ̃k

)
= 0,

and so

(λ− λ̃k)>(Ax̃k +Bỹk − b) = (λ− λ̃k)>
(
−B(yk − ỹk) +

1

γ
(λk − λ̃k)

)
. (3.57)

By the convexity of h1(x) and h2(y), combining (3.57), (3.56), (3.55), and (3.54), we

have

h(u)− h(ũk) +
L

2
‖yk − ỹk‖2 + (y − ỹk)>H(ỹk − yk)

+

 x− x̃k

y − ỹk

λ− λ̃k


> 
 −A>λ̃k

−B>λ̃k

Ax̃k +Bỹk − b

−
 G(xk − x̃k)

γB>B(yk − ỹk)
−B(yk − ỹk) + 1

γ (λk − λ̃k)


 ≥ 0

for any w ∈ Ω and w̃k.

By similar derivations as in the proofs for Proposition 3.5.5, (3.53) follows. �

With Proposition 3.5.7 in place, we can prove Theorem 3.2.5 similarly as in the proof
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of Theorem 3.2.2. We skip the details here for succinctness.

For ADM-GP we do not need strong convexity, but we do need to assume that the

gradient ∇yh2(y) of h2(y) is Lipschitz continuous. Without loss of generality, we further

assume that the Lipschitz constant of ∇yh2(y) is the same as ∇f(x, y) which is L:

‖∇yh2(y2)−∇yh2(y1)‖ ≤ L‖y2 − y1‖, ∀ y1, y2 ∈ Y. (3.58)

Proposition 3.5.8 Let {w̃k} be defined by (3.7), and the matrices Q, M , P be given

in (3.6), and H := 1
αIq − γB

>B � 0. For any w ∈ Ω, we have

h(u)− h(ũk) + (w − w̃k)>F (w̃k)

≥ (w − w̃k)>Q(wk − w̃k)−
(
L‖yk − ỹk‖2 + (y − ỹk)>H(ỹk − yk)

)
=

1

2

(
‖w − wk+1‖2M − ‖w − wk‖2M

)
+

1

2
‖xk − x̃k‖2G +

1

2γ
‖λk − λ̃k‖2

−
(
L‖yk − ỹk‖2 + (y − ỹk)>H(ỹk − yk)

)
. (3.59)

Proof. By the optimality condition of the two subproblems in ADMM, we have

(x− xk+1)>
[
∇xf(xk+1, yk) + h′1(xk+1)

−A>(λk − γ(Axk+1 +Byk − b)) +G(xk+1 − xk)
]

≥ 0, ∀x ∈ X

and

(y − yk+1)>
[
yk+1 − yk + α(∇yf(xk+1, yk) +∇yh2(yk)

−B>(λk − γ(Axk+1 +Byk − b)))
]

≥ 0, ∀y ∈ Y.

Noting λ̃k = λk − γ(Axk+1 + Byk − b) and the definition of w̃k, the above two

inequalities are equivalent to

(x− x̃k)>
[
∇xf(x̃k, yk) + h′1(x̃k)−A>λ̃k +G(x̃k − xk)

]
≥ 0 ∀x ∈ X , (3.60)
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and

(y − ỹk)>
[
∇yf(x̃k, yk) +∇yh2(yk)−B>λ̃k +

1

α
(ỹk − yk)

]
≥ 0 ∀y ∈ Y. (3.61)

Therefore,

(x− x̃k)>∇xf(x̃k, yk) + (y − ỹk)>∇yf(x̃k, yk)

= (x− x̃k)>∇xf(x̃k, yk) + (y − yk)>∇yf(x̃k, yk) + (yk − ỹk)>∇yf(x̃k, yk)

≤ f(x, y)− f(x̃k, yk)− (ỹk − yk)>∇yf(x̃k, yk)

≤ f(x, y)− f(x̃k, ỹk) +
L

2
‖yk − ỹk‖2. (3.62)

Moreover, by (3.5), we have

(y − ỹk)>∇yh2(yk) ≤ h2(y)− h2(ỹk) +
L

2
‖yk − ỹk‖2. (3.63)

Since

Ax̃k +Bỹk − b−B(ỹk − yk)− 1

γ

(
λk − λ̃k

)
= 0,

we have

(λ− λ̃k)>(Ax̃k +Bỹk − b) = (λ− λ̃k)>
(
−B(yk − ỹk) +

1

γ
(λk − λ̃k)

)
. (3.64)

By the convexity of h1(x), combining (3.64), (3.63), (3.62), (3.61), (3.60), and noticing

H := 1
αIq − γB

>B for any w ∈ Ω and w̃k we have

h(u)− h(ũk) + L‖yk − ỹk‖2 + (y − ỹk)>H(ỹk − yk)

+

 x− x̃k

y − ỹk

λ− λ̃k


>

 −A>λ̃k

−B>λ̃k

Ax̃k +Bỹk − b

−
 G(xk − x̃k)

γB>B(yk − ỹk)
−B(yk − ỹk) + 1

γ (λk − λ̃k)


 ≥ 0.

As a result, (3.59) follows. �

The proof of Theorem 3.2.6 follows a similar line of derivation as in the proof of

Theorem 3.2.2, and we omit the details here.
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Chapter 4

Randomized Primal-Dual

Proximal Block Coordinate

Updates

4.1 Introduction

In this chapter, we consider the following multi-block structured convex optimization

model

min
x,y

f(x1, · · · , xN ) +
N∑
i=1

ui(xi) + g(y1, · · · , yM ) +
M∑
j=1

vj(yj)

s.t.
N∑
i=1

Aixi +
M∑
j=1

Bjyj = b

xi ∈ Xi, i = 1, . . . , N ; yj ∈ Yj , j = 1, . . . ,M,

(4.1)

where the variables x = (x1; · · · ;xN ) and y = (y1; · · · ; yM ) are naturally partitioned

into N and M blocks respectively, A = (A1, · · · , AN ) and B = (B1, · · · , BM ) are block

matrices, Xi’s and Yj ’s are some closed convex sets, f and g are smooth convex functions,

and ui’s and vj ’s are proper closed convex (possibly nonsmooth) functions.

4.1.1 Motivating examples

Optimization problems in the form of (4.1) have many emerging applications from

various fields. For example, the constrained lasso (classo) problem that was first studied
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by James et al. [61] as a generalization of the lasso problem, can be formulated as

min
x

1
2‖Ax− b‖

2
2 + τ‖x‖1

s.t. Cx ≤ d,
(4.2)

where A ∈ Rm×p, b ∈ Rm are the observed data, and C ∈ Rn×p, d ∈ Rn are the

predefined data matrix and vector. Many widely used statistical models can be viewed as

special cases of (4.2), including the monotone curve estimation, fused lasso, generalized

lasso, and so on [61]. By partitioning the variable x into blocks as x = (x1; · · · ;xK)

where xi ∈ Rpi as well as other matrices and vectors in (4.2) correspondingly, and

introducing another slack variable y, the classo problem can be transformed to

min
x,y

1
2

∥∥∥∥ K∑
i=1

Aixi − b
∥∥∥∥2

2

+ τ
K∑
i=1
‖xi‖1

s.t.
K∑
i=1

Cixi + y = d, y ≥ 0,

(4.3)

which is in the form of (4.1).

Another interesting example is the extended linear-quadratic programming [103]

that can be formulated as

min
x

1
2x
>Px+ a>x+ max

s∈S

{
(d− Cx)>s− 1

2s
>Qs

}
,

s.t. Ax ≤ b,
(4.4)

where P and Q are symmetric positive semidefinite matrices, and S is a polyhedral

set. Apparently, (4.4) includes quadratic programming as a special case. In general, its

objective is a piece-wise linear-quadratic convex function. Let g(s) = 1
2s
>Qs + ιS(s),

where ιS denotes the indicator function of S. Then

max
s∈S

{
(d− Cx)>s− 1

2
s>Qs

}
= g∗(d− Cx),

where g∗ denotes the convex conjugate of g. Replacing d − Cx by y and introducing

slack variable z, we can equivalently write (4.4) into the form of (4.1):

min
x,y,z

1
2x
>Px+ a>x+ g∗(y),

s.t. Ax+ z = b, z ≥ 0, Cx+ y = d,
(4.5)
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for which one can further partition the x-variable into a number of disjoint blocks.

Many other interesting applications in various areas can be formulated as optimiza-

tion problems in the form of (4.1), including those arising from signal processing, image

processing, machine learning and statistical learning; see [58, 23, 18, 39] and the refer-

ences therein.

Finally, we mention that computing a point on the central path for a generic convex

programming in block variables (x1; · · · ;xN ):

min
x

f(x1, · · · , xN )

s.t.
∑N

i=1Aixi ≤ b, xi ≥ 0, i = 1, 2, ..., N

boils down to
min
x,y

f(x1, · · · , xN )− µe> lnx− µe> ln y

s.t.
∑N

i=1Aixi + y = b,

where µ > 0 and e> ln v indicates the sum of the logarithm of all the components of v.

This model is again in the form of (4.1).

4.1.2 Related works in the literature

One well-known approach for solving a linear constrained problem in the form of (4.1) is

the augmented Lagrangian method, which iteratively updates the primal variable (x, y)

by minimizing the augmented Lagrangian function in (4.7) and then the multiplier λ

through dual gradient ascent. However, the linear constraint couples x1, . . . , xN and

y1, . . . , yM all together, it can be very expensive to minimize the augmented Lagrangian

function simultaneously with respect to all block variables.

It is very natural then, to use the multi-block structure of the problem. In fact,

the multi-block ADMM updates the block variables sequentially, one at a time with the

others fixed to their most recent values, followed by the update of multiplier. Specifically,

for (4.1), it performs the following updates iteratively (by assuming the absence of the
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coupled functions f and g):

xk+1
1 = arg minx1∈X1 Lρ(x1, x

k
2, · · · , xkN , yk, λk),

...

xk+1
N = arg minxN∈XN Lρ(x

k+1
1 , · · · , xk+1

N−1, xN , y
k, λk),

yk+1
1 = argminy1∈Y1 Lρ(x

k+1, y1, y
k
2 , · · · , ykM , λk),

...

yk+1
M = argminyM∈YM Lρ(x

k+1, yk+1
1 , · · · , yk+1

M−1, yM , λ
k),

λk+1 = λk − ρ(Axk+1 +Byk+1 − b),

(4.6)

where the augmented Lagrangian function is defined as:

Lρ(x, y, λ) =

N∑
i=1

ui(xi) +

M∑
j=1

vj(yj)− λ> (Ax+By − b) +
ρ

2
‖Ax+By − b‖2 . (4.7)

Besides the multi-block ADMM, our work also relates to another popular topic:

the first-order primal-dual method for bilinear saddle-point problems. Below we briefly

review the method and it convergence results. More complete discussion on the connec-

tions to our method will be provided after presenting our algorithm.

Primal-dual method for bilinear saddle-point problems

Recently, the work [24] generalizes the first-order primal-dual method in [15] to a ran-

domized method for solving a class of saddle-point problems in the following form:

min
z∈Z

{
h(z) + max

x∈X

〈
z,

N∑
i=1

Aixi

〉
−

N∑
i=1

ui(xi)

}
, (4.8)

where x = (x1; . . . ;xN ) and X = X1 × · · · ×XN . Let Z = Rp and h(z) = −b>z. Then

it is easy to see that (4.8) is a saddle-point reformulation of the multi-block structured

optimization problem

min
x∈X

N∑
i=1

ui(xi), s.t.

N∑
i=1

Aixi = b,

which is a special case of (4.1) without y variable or the coupled function f .

At each iteration, the algorithm in [24] chooses one block of x-variable uniformly at

random and performs a proximal update to it, followed by another proximal update to
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the z-variable. More precisely, it iteratively performs the updates:

xk+1
i =

{
argminxi∈Xi〈−z̄

k, Aixi〉+ ui(xi) + τ
2‖xi − x

k
i ‖22, if i = ik,

xki , if i 6= ik,
(4.9a)

zk+1 = argmin
z∈Z

h(z) + 〈z,Axk+1〉+
η

2
‖z − zk‖22, (4.9b)

z̄k+1 = q(zk+1 − zk) + zk+1, (4.9c)

where ik is a randomly selected block, and τ, η and q are certain parameters1. When

there is only one block of x-variable, i.e., N = 1, the scheme in (4.9) becomes exactly

the primal-dual method in [15]. Assuming the boundedness of the constraint sets X and

Z, [24] shows that under weak convexity, O(1/t) convergence rate result of the scheme

can be established by choosing appropriate parameters, and if ui’s are all strongly

convex, the scheme can be accelerated to have O(1/t2) convergence rate by adapting

the parameters.

4.1.3 Contributions and organization

• We propose a randomized primal-dual coordinate update algorithm to solve prob-

lems in the form of (4.1). The key feature is to introduce randomization as done

in (4.9) to the multi-block ADMM framework (4.6). Unlike the random permuta-

tion scheme as previously investigated in [113, 18], we simply choose a subset of

blocks of variables based on the uniform distribution. In addition, we perform a

proximal update to that selected subset of variables. With appropriate proximal

terms (e.g., the setting in (4.15)), the selected block variables can be decoupled,

and thus the updates can be done in parallel.

• More general than (4.6), we can accommodate coupled terms in the objective

function in our algorithm by linearizing such terms. By imposing Lipschitz conti-

nuity condition on the partial gradient of the coupled functions f and g and using

proximal terms, we show that our method has an expected O(1/t) convergence

rate for solving problem (4.1) under mere convexity assumption.

• We show that our algorithm includes several existing methods as special cases

1Actually, [24] presents its algorithm in a more general way with the parameters adaptive to the
iteration. However, its convergence result assumes constant values of these parameters for the weak
convexity case.
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such as the scheme in (4.9) and the proximal Jacobian ADMM in [27]. Our result

indicates that the O(1/t) convergence rate of the scheme in (4.9) can be shown

without assuming boundedness of the constraint sets. In addition, the same order

of convergence rate of the proximal Jacobian ADMM can be established in terms

of a better measure.

• Furthermore, the linearization scheme allows us to deal with stochastic objective

function, for instance, when the function f is given in a form of expectation

f = Eξ[fξ(x)] where ξ is a random vector. As long as an unbiased estimator of

the (sub-)gradient of f is available, we can extend our method to the stochastic

problem and an expected O(1/
√
t) convergence rate is achievable.

The rest of the chapter is organized as follows. In Section 4.2, we introduce our al-

gorithm and present some preliminary results. In Section 4.3, we present the sublinear

convergence rate results of the proposed algorithm. Depending on the multi-block struc-

ture of y, different conditions and parameter settings are presented in Subsections 4.3.1,

4.3.2 and 4.3.3, respectively. In Section 4.4, we present an extension of our algorithm

where the objective function is assumed not to be even exactly computable, instead

only some first-order stochastic approximation is available. The convergence analysis is

extended to such settings accordingly. Numerical results are shown in Section 4.5. In

Section 4.6, we discuss the connections of our algorithm to other well-known methods

in the literature. The proofs for the technical lemmas are presented in Section 4.8, and

the proofs for the main theorems are in Section 4.9.

4.2 Randomized Primal-Dual Block Coordinate Update

Algorithm

In this section, we first present some notations and then introduce our algorithm as well

as some preliminary lemmas.

4.2.1 Notations

We denote X = X1 × · · · × XN and Y = Y1 × · · · × YM . For any symmetric positive

semidefinite matrix W , we define ‖z‖W =
√
z>Wz. Given an integer ` > 0, [`] denotes

the set {1, 2, · · · , `}. We use I and J as index sets, while I is also used to denote
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the identity matrix; we believe that the intention is evident in the context. Given

I = {i1, i2, · · · , in}, we denote:

• Block-indexed variable: xI = (xi1 ;xi2 ; · · · ;xin);

• Block-indexed set: XI = Xi1 × · · · ×Xin ;

• Block-indexed function: uI(xI) = ui1(xi1) + ui2(xi2) + · · ·+ uin(xin);

• Block-indexed gradient: ∇If(x) = (∇i1f(x);∇i2f(x); · · · ;∇inf(x));

• Block-indexed matrix: AI =
[
Ai1 , Ai2 , · · · , Ain

]
.

4.2.2 Algorithm

Our algorithm is rather general. Its major ingredients are randomization in selecting

block variables, linearization of the coupled functions f and g, and adding proximal

terms. Specifically, at each iteration k, it first randomly samples a subset Ik of blocks

of x, and then a subset Jk of blocks of y according to the uniform distribution over the

indices. The randomized sampling rule is as follows:

Randomization Rule (U): For the given integers n ≤ N and m ≤ M , it

randomly chooses index sets Ik ⊂ [N ] with |Ik| = n and Jk ⊂ [M ] with |Jk| =
m uniformly; i.e., for any subsets {i1, i2, . . . , in} ⊂ [N ] and {j1, j2, . . . , jm} ⊂
[M ], the following holds

Prob
[
Ik = {i1, i2, . . . , in}

]
= 1/

(
N

n

)
,

Prob
[
Jk = {j1, j2, . . . , jm}

]
= 1/

(
M

m

)
.

After those subsets have been selected, it performs a prox-linear update to those selected

blocks based on the augmented Lagrangian function, followed by an update of the

Lagrangian multiplier. The details of the method are summarized in Algorithm 1 below.

In Algorithm 1, P k and Qk are predetermined positive semidefinite matrices with

appropriate dimensions. For the selected blocks in Ik and Jk, instead of implementing

the exact minimization of the augmented Lagrangian function, we perform a block

proximal gradient update. In particular, before minimization, we first linearize the
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Algorithm 1: Randomized Primal-Dual Block Coordinate Update Method
(RPDBU)

1 Initialization: choose x0, y0 and λ0 = 0; let r0 = Ax0 +By0 − b; choose ρ, ρx, ρy
2 for k = 0, 1, . . . do
3 Randomly select Ik ⊂ [N ] and Jk ⊂ [M ] with |Ik| = n and |Jk| = m according to

(U).

4 Let xk+1
i = xki , ∀i 6∈ Ik and yk+1

j = ykj , ∀j 6∈ Jk.

5 For I = Ik, perform the update

xk+1
I = argmin

xI∈XI
〈∇If(xk)−A>

I λ
k, xI〉+ uI(xI)

+
ρx
2
‖AI(xI − xkI ) + rk‖2 +

1

2
‖xI − xkI‖2Pk , (4.10)

rk+
1
2 = rk +AI(xk+1

I − xkI ). (4.11)

For J = Jk, perform the update

yk+1
J = argmin

yJ∈YJ
〈∇Jg(yk)−B>

J λ
k, yJ〉+ vJ(yJ)

+
ρy
2
‖BJ(yJ − ykJ) + rk+

1
2 ‖2 +

1

2
‖yJ − ykJ‖2Qk , (4.12)

rk+1 = rk+
1
2 +BJ(yk+1

J − ykJ). (4.13)

Update the multiplier by
λk+1 = λk − ρrk+1. (4.14)
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coupled functions f , g, and add some proximal terms to it. Note that one can always

select all blocks, i.e., Ik = [N ] and Jk = [M ]. Empirically however, the block coordinate

update method usually outperforms the full coordinate update method if the problem

possesses certain structures; see [95] for an example. To decouple the selected x blocks

and also y blocks, we choose the matrices P k and Qk in Algorithm 1 as follows:

P k = P̂Ik − ρxA
>
Ik
AIk , Qk = Q̂Jk − ρyB

>
Jk
BJk , (4.15)

where P̂ and Q̂ are symmetric positive semidefinite and block diagonal matrices, P̂Ik
denotes the diagonal blocks of P̂ indexed by Ik. With such setting of P k and Qk, (4.10)

and (4.12) respectively become

xk+1
I = argmin

xI∈XI

〈
∇If(xk)−A>I (λk − ρxrk), xI

〉
+ uI(xI) +

1

2
‖xI − xkI‖2P̂I , (4.16)

yk+1
J = argmin

yJ∈YJ

〈
∇Jg(yk)−B>J (λk − ρyrk+ 1

2 ), yJ
〉

+ vJ(yJ) +
1

2
‖yJ − ykJ‖2Q̂J . (4.17)

Due to the block diagonal structure of P̂ and Q̂, both x and y-updates can be computed

in parallel.

4.2.3 Preliminaries

Let w be the aggregated primal-dual variables andH(w) the primal-dual linear mapping;

namely

w =

 x

y

λ

 , H(w) =

 −A>λ
−B>λ

Ax+By − b

 , (4.18)

and also let

u(x) =

N∑
i=1

ui(xi), v(y) =

M∑
j=1

vj(yj),

F (x) = f(x) + u(x), G(y) = g(y) + v(y), Φ(x, y) = F (x) +G(y).
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The point (x∗, y∗) is a solution to (4.1) if and only if there exists λ∗ such that

Φ(x, y)− Φ(x∗, y∗) + (w − w∗)>H(w∗) ≥ 0, ∀(x, y) ∈ X × Y, ∀λ, (4.19a)

Ax∗ +By∗ = b (4.19b)

x∗ ∈ X , y∗ ∈ Y. (4.19c)

The following lemmas will be used in our subsequent analysis, whose proofs are

elementary and thus are omitted here.

Lemma 4.2.1 For any two vectors w and w̃, it holds

(w − w̃)>H(w) = (w − w̃)>H(w̃). (4.20)

Lemma 4.2.2 For any two vectors u, v and a positive semidefinite matrix W :

u>Wv =
1

2

(
‖u‖2W + ‖v‖2W − ‖u− v‖2W

)
. (4.21)

Lemma 4.2.3 For any nonzero positive semidefinite matrix W , it holds for any z and

ẑ of appropriate size that

‖z− ẑ‖2 ≥ 1

‖W‖2
‖z− ẑ‖2W , (4.22)

where ‖W‖2 denotes the matrix operator norm of W .

The following lemma presents a useful property of H(w), which essentially follows

from (4.20).

Lemma 4.2.4 For any vectors {wk}t1, and sequence of positive numbers {βk}t1, it holds

that 
t∑

k=0

βkwk

t∑
k=0

βk
− w


>

H


t∑

k=0

βkwk

t∑
k=0

βk

 =
1

t∑
k=0

βk

t∑
k=0

βk(wk − w)>H(wk). (4.23)
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4.3 Convergence Rate Results

In this section, we establish sublinear convergence rate results of Algorithm 1 for three

different cases. We differentiate those cases based on whether or not y in problem (4.1)

also has the multi-block structure. In the first case where y is a multi-block variable, it

requires n
N = m

M where n and m are the cardinalities of the subsets of x and y selected

in our algorithm respectively. Since the analysis only requires weak convexity, we can

ensure the condition to hold by adding zero component functions if necessary, in such

a way that N = M and then choosing n = m. The second case is that y is treated as

a single-block variable, and this can be reflected in our algorithm by simply selecting

all y-blocks every time, i.e. m = M . The third case assumes no y-variable at all. It

falls into the first and second cases, and we discuss this case separately since it requires

weaker conditions to guarantee the same convergence rate. In particular, we make the

following assumptions:

Assumption 4.3.1 (Convexity) For (4.1), Xi’s and Yj’s are some closed convex sets,

f and g are smooth convex functions, and ui’s and vj’s are proper closed convex function.

Assumption 4.3.2 (Existence of an optimal solution) There is at least one point

w∗ = (x∗, y∗, λ∗) satisfying the conditions in (4.19).

Assumption 4.3.3 (Lipschitz continuous partial gradient) There exist constants

Lf and Lg such that for any subset I of [N ] with |I| = n and any subset J of [M ] with

|J | = m, it holds that

‖∇If(x+ UI x̃)−∇If(x)‖ ≤ Lf‖x̃I‖, ∀x, x̃, (4.24a)

‖∇Jg(y + UJ ỹ)−∇Jg(y)‖ ≤ Lg‖ỹJ‖, ∀y, ỹ, (4.24b)

where UI x̃ keeps the blocks of x̃ that are indexed by I and zero elsewhere.

Before presenting the main convergence rate result, we first establish a few key

lemmas.

Lemma 4.3.1 (One-step analysis) Let {(xk, yk, rk, λk)} be the sequence generated

from Algorithm 1 with matrices P k and Qk defined as in (4.15). Then the following

inequalities hold

EIk
[
F (xk+1)− F (x) + (xk+1 − x)>(−A>λk+1)
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+ (ρx − ρ)(xk+1 − x)>A>rk+1 − ρx(xk+1 − x)>A>B(yk+1 − yk)
]

+EIk(xk+1 − x)>(P̂ − ρxA>A)(xk+1 − xk)−
Lf
2
EIk‖x

k − xk+1‖2

≤
(

1− n

N

) [
F (xk)− F (x) + (xk − x)>(−A>λk) + ρx(xk − x)>A>rk

]
, (4.25)

and

EJk
[
G(yk+1)−G(y) + (yk+1 − y)>(−B>λk+1) + (ρy − ρ)(yk+1 − y)>B>rk+1

]
+EJk(yk+1 − y)>(Q̂− ρyB>B)(yk+1 − yk)− Lg

2
EJk‖y

k − yk+1‖2

−
(

1− m

M

)
ρy(y

k − y)>B>A(xk+1 − xk)

≤
(

1− m

M

) [
G(yk)−G(y) + (yk − y)>(−B>λk) + ρy(y

k − y)>B>rk
]
, (4.26)

where EIk denotes expectation over Ik and conditional on all previous history.

Note that for any feasible point (x, y) (namely, x ∈ X, y ∈ Y and Ax+By = b),

Axk+1 −Ax =
1

ρ
(λk − λk+1)− (Byk+1 − b) + (By − b)

=
1

ρ
(λk − λk+1)−B(yk+1 − y) (4.27)

and

Byk −By =
1

ρ
(λk−1 − λk)− (Axk − b) + (Ax− b)

=
1

ρ
(λk−1 − λk)−A(xk − x). (4.28)

Then, using (4.21) we have the following result.

Lemma 4.3.2 For any feasible point (x, y) and integer t, it holds

t∑
k=0

(xk+1 − x)>A>B(yk+1 − yk)

=
1

ρ

t∑
k=0

(λk − λk+1)>B(yk+1 − yk)

−1

2

(
‖yt+1 − y‖2B>B − ‖y

0 − y‖2B>B +

t∑
k=0

‖yk+1 − yk‖2B>B

)
(4.29)
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and

t∑
k=0

(yk − y)>B>A(xk+1 − xk)

=
1

ρ

t∑
k=0

(λk−1 − λk)>A(xk+1 − xk)

+
1

2

(
‖x0 − x‖2A>A − ‖x

t+1 − x‖2A>A +
t∑

k=0

‖xk+1 − xk‖2A>A

)
. (4.30)

Lemma 4.3.3 Given a continuous function h, for a random vector ŵ = (x̂, ŷ, λ̂), if for

any feasible point w = (x, y, λ) that may depend on ŵ, we have

E
[
Φ(x̂, ŷ)− Φ(x, y) + (ŵ − w)>H(w)

]
≤ E[h(w)], (4.31)

then for any γ > 0 and any optimal solution (x∗, y∗) to (4.1) we also have

E
[
Φ(x̂, ŷ)− Φ(x∗, y∗) + γ‖Ax̂+Bŷ − b‖

]
≤ sup
‖λ‖≤γ

h(x∗, y∗, λ).

Noting

Φ(x, y)− Φ(x∗, y∗) + (w − w∗)>H(w∗) = Φ(x, y)− Φ(x∗, y∗)− (λ∗)>(Ax+By − b),

we can easily show the following lemma by the optimality of (x∗, y∗, λ∗) and the Cauchy-

Schwarz inequality.

Lemma 4.3.4 Assume (x∗, y∗, λ∗) satisfies (4.19). Then for any point (x̂, ŷ) ∈ X ×Y ,

we have

Φ(x̂, ŷ)− Φ(x∗, y∗) ≥ −‖λ∗‖ · ‖Ax̂+Bŷ − b‖. (4.32)

The following lemma shows a connection between different convergence measures,

and it can be simply proved by using (4.32). If both w and ŵ are deterministic, it

implies Lemma 2.4 in [38].

Lemma 4.3.5 Assume that (x∗, y∗, λ∗) satisfies the optimality conditions in (4.19). Let

γ be any number that is larger than ‖λ∗‖. If a random vector (x̂, ŷ) satisfies

E
[
Φ(x̂, ŷ)− Φ(x∗, y∗) + γ‖Ax̂+Bŷ − b‖

]
≤ ε,
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then

E‖Ax̂+Bŷ − b‖ ≤ ε

γ − ‖λ∗‖
and E

[∣∣Φ(x̂, ŷ)− Φ(x∗, y∗)
∣∣] ≤ ( 2‖λ∗‖

γ − ‖λ∗‖
+ 1

)
ε.

The convergence analysis for Algorithm 1 requires slightly different parameter set-

tings under different structures. In fact, the underlying analysis and results also differ.

To account for the differences, we present in the next three subsections the correspond-

ing convergence results. The first one assumes there is no y part at all; the second case

assumes a single block on the y side; the last one deals with the general case where the

ratios n/N is assumed to be equal to m/M .

4.3.1 Multiple x blocks and no y variable

We first consider a special case with no y-variable, namely, g = v = 0 and B = 0 in

(4.1). This case has its own importance. It is a parallel block coordinate update

version of the linearized augmented Lagrangian method (ALM).

Theorem 4.3.6 (Sublinear ergodic convergence I) Assume g(y) = 0, vj(yj) = 0,

∀j and B = 0 in (4.1). Let {(xk, yk, λk)} be the sequence generated from Algorithm 1

with yk ≡ y0. Assume n
N = θ, ρ = θρx, and

P̂Ik � LfI + ρxA
>
Ik
AIk , ∀k. (4.33)

Let

x̂t =
xt+1 + θ

∑t
k=1 x

k

1 + θt
. (4.34)

Then, under Assumptions 4.3.1, 4.3.2 and 4.3.3, we have

max
{
E
∣∣F (x̂t)− F (x∗)

∣∣ , E‖Ax̂t − b‖}
≤ 2

1 + θt

[
(1− θ)

(
F (x0)− F (x∗) +

ρx
2
‖r0‖2

)
+

1

2
‖x0 − x∗‖2

P̂
+

max{(0.5 + ‖λ∗‖)2, 9‖λ∗‖2}
2ρx

]
(4.35)

where (x∗, λ∗) is an arbitrary primal-dual solution.

Our result recovers the convergence of the proximal Jacobian ADMM introduced in

[27]. In fact, the above theorem strengthens the convergence result in [27] by establishing
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an O(1/t) rate of convergence in terms of the feasibility measure and the objective

value. If strong convexity is assumed on the objective function, the algorithm can be

accelerated to have the rate O(1/t2) as shown in [127].

4.3.2 Multiple x blocks and a single y block

When the y-variable is simple to update, it could be beneficial to renew the whole of it

at every iteration, such as the problem (4.3). In this subsection, we consider the case

that there are multiple x-blocks but a single y-block (or equivalently, m = M), and we

establish a sublinear convergence rate result with a different technique of dealing with

the y-variable.

Theorem 4.3.7 (Sublinear ergodic convergence II) Let {(xk, yk, λk)} be the se-

quence generated from Algorithm 1 with m = M and ρ = ρy = θρx, where θ = n
N .

Assume

P̂ � LfI + ρxA
>A, Q̂ � Lg

θ
I +

( ρ
θ4
− ρ

θ2
+ ρy

)
B>B. (4.36)

Let

x̂t =
xt+1 + θ

∑t
k=1 x

k

1 + θt
, ŷt =

ỹt+1 + θ
∑t

k=1 y
k

1 + θt
(4.37)

where

ỹt+1 = argmin
y∈Y

〈∇g(yt)−B>λt, y〉+ v(y) +
ρx
2
‖Axt+1 +By − b‖2 +

θ

2
‖y − yt‖2

Q̂−ρyB>B
.

(4.38)

Then, under Assumptions 4.3.1, 4.3.2 and 4.3.3, we have

max
{
E
∣∣Φ(x̂t, ŷt)− Φ(x∗, y∗)

∣∣, E‖Ax̂t +Bŷt − b‖
}

(4.39)

≤ 2

1 + θt

[
(1− θ)

(
Φ(x0, y0)− Φ(x∗, y∗) +

ρx
2
‖r0‖2

)
+

1

2
‖x0 − x∗‖2

P̂

+
1

2
‖y0 − y∗‖2

θQ̂+(ρx−θρy)B>B
+

max{(0.5 + ‖λ∗‖)2, 9‖λ∗‖2}
2ρx

]
where (x∗, y∗, λ∗) is an arbitrary primal-dual solution.

Remark 4.3.8 It is easy to see that if θ = 1, the result in Theorem 4.3.7 becomes

exactly the same as that in Theorem 4.3.9 below. In general, they are different because

the conditions in (4.36) on P̂ and Q̂ are different from those in (4.41a).
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4.3.3 Multiple x and y blocks

In this subsection, we consider the most general case where both x and y have multi-

block structure. Assuming n
N = m

M , we can still have the O(1/t) convergence rate. The

assumption can be made without losing generality, e.g., by adding zero components if

necessary (which is essentially equivalent to varying the probabilities of the variable

selection).

Theorem 4.3.9 (Sublinear ergodic convergence III) Let {(xk, yk, λk)} be the se-

quence generated from Algorithm 1 with the parameters satisfying

ρ =
nρx
N

=
mρy
M

> 0. (4.40)

Assume n
N = m

M = θ, and P̂, Q̂ satisfy one of the following conditions

P̂ � (2− θ)
(

1− θ
θ2

+ 1

)
ρxA

>A+ LfI, Q̂ � (2− θ)
θ2

ρyB
>B + LgI. (4.41a)

P̂i � (2− θ)
(

1− θ
θ2

+ 1

)
nρxA

>
i Ai + LfI, ∀i, Q̂j �

(2− θ)
θ2

mρyB
>
j Bj + LgI, ∀j.

(4.41b)

Let

x̂t =
xt+1 + θ

∑t
k=1 x

k

1 + θt
, ŷt =

yt+1 + θ
∑t

k=1 y
k

1 + θt
. (4.42)

Then, under Assumptions 4.3.1, 4.3.2 and 4.3.3, we have

max
{
E
∣∣Φ(x̂t, ŷt)− Φ(x∗, y∗)

∣∣ , E‖Ax̂t +Bŷt − b‖
}

(4.43)

≤ 2

1 + θt

[
(1− θ)

(
Φ(x0, y0)− Φ(x∗, y∗) + ρx‖r0‖2

)
+

1

2
‖x0 − x∗‖2

P̂−θρxA>A

+
1

2
‖y0 − y∗‖2

Q̂
+

max{(0.5 + ‖λ∗‖)2, 9‖λ∗‖2}
2ρx

]
where (x∗, y∗, λ∗) is an arbitrary primal-dual solution.

Remark 4.3.10 When N = M = 1, the two conditions in (4.41) become the same.

However, in general, neither of the two conditions in (4.41) implies the other one.

Roughly speaking, for the case of n ≈ N and m ≈M , the one in (4.41a) can be weaker,

and for the case of n � N and m � M , the one in (4.41b) is more likely weaker. In

103



addition, (4.41b) provides an explicit way to choose block diagonal P̂ and Q̂ by simply

setting P̂i and Q̂j’s to the lower bounds there.

4.4 Randomized Primal-Dual Coordinate Approach for

Stochastic Programming

In this section, we extend our method to solve a stochastic optimization problem where

the objective function involves an expectation. Specifically, we assume the coupled

function to be in the form of f(x) = Eξfξ(x) where ξ is a random vector. For simplicity

we assume g = v = 0, namely, we consider the following problem

min
x

Eξfξ(x) +

N∑
i=1

ui(xi),

s.t.

N∑
i=1

Aixi = b, xi ∈ Xi, i = 1, 2, ..., N.

(4.44)

One can easily extend our analysis to the case where g 6= 0, v 6= 0 and g is also stochastic.

An example of (4.44) is the penalized and constrained regression problem [62] that

includes (4.2) as a special case.

Due to the expectation form of f , it is natural that the exact gradient of f is not

available or very expensive to compute. Instead, we assume that its stochastic gradient

is readily accessible. By some slight abuse of the notation, we denote

w =

[
x

λ

]
, H(w) =

[
−A>λ
Ax− b

]
, F (x) := Eξfξ(x) +

N∑
i=1

ui(xi). (4.45)

A point x∗ is a solution to (4.44) if and only if there exists λ∗ such that

F (x)− F (x∗) + (w − w∗)>H(w∗) ≥ 0, ∀w, (4.46a)

Ax∗ = b, x∗ ∈ X . (4.46b)

Modifying Algorithm 1 to (4.44), we present the stochastic primal-dual coordinate

update method of multipliers, summarized in Algorithm 2, where Gk is a stochastic

approximation of ∇f(xk). The strategy of block coordinate update with stochastic

gradient information was first proposed in [25, 126], which considered problems without
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linear constraint.

Algorithm 2: Randomized Primal-Dual Block Coordinate Update Method for
Stochastic Programming (RPDBUS)

1 Initialization: choose x0, λ0 and set parameters ρ, αk’s
2 for k = 0, 1, . . . do
3 Randomly select Ik ⊂ [N ] with |Ik| = n according to (U).

4 Let xk+1
i = xki , ∀i 6∈ Ik, and for I = Ik, do the update

xk+1
I = argmin

xI∈XI
〈Gk

I −A>
I λ

k, xI〉+ uI(xI) +
ρ

2
‖AI(xI − xkI ) + rk‖2 +

1

2
‖xI − xkI‖2Pk+ I

αk

.

(4.47)5

Update the residual rk+1 = rk +AI(xk+1
I − xkI ).

6 Update the multiplier by

λk+1 = λk −
(

1− (N − n)αk+1

Nαk

)
ρrk+1. (4.48)

We make the following assumption on the stochastic gradient Gk.

Assumption 4.4.1 Let δk = Gk −∇f(xk). There exists a constant σ such that for all

k,

E[δk |xk] = 0, (4.49a)

E‖δk‖2 ≤ σ2. (4.49b)

Following the proof of Lemma 4.3.1 and also noting

EIk
[
(xIk − x

k+1
Ik

)>δkIk |x
k
]

= EIk(xk − xk+1)>δk, (4.50)

we immediately have the following result.

Lemma 4.4.1 (One-step analysis) Let {(xk, rk, λk)} be the sequence generated from

Algorithm 2 where P k is given in (4.15) with ρx = ρ. Then

EIk
[
F (xk+1)− F (x) + (xk+1 − x)>(−A>λk) + ρ(xk+1 − x)>A>rk+1

]
+EIk(xk+1 − x)>

(
P̂ − ρA>A+

I

αk

)
(xk+1 − xk)

−
Lf
2
EIk‖x

k − xk+1‖2 + EIk(xk+1 − xk)>δk
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≤
(

1− n

N

) [
F (xk)− F (x) + (xk − x)>(−A>λk) + ρ(xk − x)>A>rk

]
. (4.51)

The following theorem is a key result, from which we can choose appropriate αk to

obtain the O(1/
√
t) convergence rate.

Theorem 4.4.2 Let {(xk, λk)} be the sequence generated from Algorithm 2. Let θ = n
N

and denote

βk =
αk(

1− αk(1−θ)
αk−1

)
ρ
,∀k.

Assume αk > 0 is nonincreasing, and

Ax0 = b, λ0 = 0, (4.52a)

P̂ � LfI + ρA>A, (4.52b)

αk−1βk
2αk

+
(1− θ)βk+1

2
− αkβk+1

2αk+1
− (1− θ)βk

2
≥ 0, ∀k (4.52c)

αt
2ρ
≥
∣∣∣∣αt−1βt

αt
− (1− θ)βt −

αt
ρ

∣∣∣∣ , for some t. (4.52d)

Let

x̂t =
αt+1x

t+1 + θ
∑t

k=1 αkx
k

αt+1 + θ
t∑

k=1

αk

. (4.53)

Then, under Assumptions 4.3.1, 4.3.2, 4.3.3 and 4.4.1, we have

(αt+1 + θ
t∑

k=1

αk)E
[
F (x̂t)− F (x∗) + γ‖Ax̂t − b‖

]
≤ (1− θ)α0

[
F (x0)− F (x∗)

]
+
α0

2
‖x0 − x∗‖2

P̂−ρA>A +
1

2
‖x0 − x∗‖2

+

∣∣∣∣α0β1

2α1
− (1− θ)β1

2

∣∣∣∣ γ2 +

t∑
k=0

α2
k

2
E‖δk‖2. (4.54)

The following proposition gives sublinear convergence rate of Algorithm 2 by speci-

fying the values of its parameters. The choice of αk depends on whether we fix the total

number of iterations.

Proposition 4.4.3 Let {(xk, λk)} be the sequence generated from Algorithm 2 with P k

given in (4.15), P̂ satisfying (4.52b), and the initial point satisfying Ax0 = b and λ0 = 0.
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Let C0 be

C0 = (1− θ)α0

[
F (x0)− F (x∗)

]
+

1

2
‖x0 − x∗‖2Dx +

α0

2ρ
max{(0.5 + ‖λ∗‖)2, 9‖λ∗‖2},

(4.55)

where (x∗, λ∗) is a primal-dual solution, and Dx := α0(P̂ − ρA>A) + I.

1. If αk = α0√
k
,∀k ≥ 1 for a certain α0 > 0, then for t ≥ 2,

max
{
E
∣∣F (x̂t)− F (x∗)

∣∣ , E‖Ax̂t − b‖} ≤ 2C0

θα0

√
t

+
α0(log t+ 2)σ2

θ
√
t

. (4.56)

2. If the number of maximum number of iteration is fixed a priori, then by choosing

αk = α0√
t
, ∀k ≥ 1 with any given α0 > 0, we have

max
{
E
∣∣F (x̂t)− F (x∗)

∣∣ , E‖Ax̂t − b‖} ≤ 2C0

θα0

√
t

+
2α0σ

2

θ
√
t
. (4.57)

Proof. When αk = α0√
k
, we can show that (4.52c) and (4.52d) hold for t ≥ 2; see

Appendix 4.8.4. Hence, the result in (4.56) follows from (4.54), the convexity of F ,

Lemma 4.3.5 with γ = max{1 + ‖λ∗‖, 2‖λ∗‖}, and the inequalities

t∑
k=1

1√
k
≥
√
t,

t∑
k=1

1

k
≤ log t+ 1.

When αk is a constant, the terms on the left hand side of (4.52c) and on the right

hand side of (4.52d) are both zero, so they are satisfied. Hence, the result in (4.57)

immediately follows by noting
∑t

k=1 αk = α0

√
t and

∑t
k=0 α

2
k ≤ 2α2

0. �

The sublinear convergence result of Algorithm 2 can also be shown if f is nondif-

ferentiable convex and Lipschitz continuous. Indeed, if f is Lipschtiz continuous with

constant Lc, i.e.,

‖f(x)− f(y)‖ ≤ Lc‖x− y‖, ∀x, y,
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then ‖∇̃f(x)‖ ≤ Lc, ∀x, where ∇̃f(x) is a subgradient of f at x. Hence,

EIk(xIk − x
k+1
Ik

)>∇̃Ikf(xk)

= EIk(xIk − x
k
Ik

)>∇̃Ikf(xk) + EIk(xkIk − x
k+1
Ik

)>∇̃Ikf(xk)

=
n

N
(x− xk)>∇̃f(xk) + EIk(xk − xk+1)>∇̃f(xk+1)

+EIk(xk − xk+1)>
(
∇̃f(xk)− ∇̃f(xk+1)

)
≤ n

N
(f(x)− f(xk)) + EIk [f(xk)− f(xk+1)]

+EIk(xk − xk+1)>
(
∇̃f(xk)− ∇̃f(xk+1)

)
=

n−N
N

(f(x)− f(xk)) + EIk [f(x)− f(xk+1)]

+EIk(xk − xk+1)>
(
∇̃f(xk)− ∇̃f(xk+1)

)
.

Now following the proof of Lemma 4.3.1, we can have a result similar to (4.51), and then

through the same arguments as those in the proof of Theorem 4.4.2, we can establish

sublinear convergence rate of O(1/
√
t).

4.5 Numerical Experiments

In this section, we test the proposed randomized primal-dual method on solving the

nonnegativity constrained quadratic programming (NCQP):

min
x∈Rn

F (x) ≡ 1

2
x>Qx+ c>x, s.t.Ax = b, xi ≥ 0, i = 1, . . . , n, (4.58)

where A ∈ Rm×n, and Q ∈ Rn×n is a symmetric positive semidefinite (PSD) matrix.

There is no y-variable, and it falls into the case in Theorem 4.3.6. We perform two

experiments on a Macbook Pro with 4 cores. The first experiment demonstrates the

parallelization performance of the proposed method, and the second one compares it to

other methods.

Parallelization. This test is to illustrate the power unleashed in our new method,

which is flexible in terms of parallel and distributive computing. We set m = 200, n =

2000 and generate Q = HH>, where the components of H ∈ Rn×n follow the standard

Gaussian distribution. The matrix A and vectors b, c are also randomly generated. We

treat every component of x as one block, and at every iteration we select and update

p blocks, where p is the number of used cores. Figure 4.1 shows the running time by

using 1, 2, and 4 cores, where the optimal value F (x∗) is obtained by calling Matlab
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Figure 4.1: Nearly linear speed-up performance of the proposed primal-dual method
for solving (4.58) on a 4-core machine. Left: distance of objective to optimal value
|F (xk)− F (x∗)|; Right: violation of feasibility ‖Axk − b‖.

function quadprog with tolerance 10−16. From the figure, we see that our proposed

method achieves nearly linear speed-up.

Comparison to other methods. In this experiment, we compare the proposed

method to the linearized ALM and the cyclic linearized ADMM methods. We set

m = 1000, n = 5000 and generate Q = HH>, where the components of H ∈ Rn×(n−50)

follow standard Gaussian distribution. Note that Q is singular, and thus (4.58) is not

strongly convex. We partition the variable into 100 blocks, each with 50 components.

At each iteration of our method, we randomly select one block variable to update.

Figure 4.2 shows the performance by the three compared methods, where one epoch

is equivalent to updating 100 blocks once. From the figure, we see that our proposed

method is comparable to the cyclic linearized ADMM and significantly better than the

linearized ALM. Although the cyclic ADMM performs well on this example, in general

it can diverge if the problem has more than two blocks; see [16].

4.6 Connections to Existing Methods

In this section, we discuss how Algorithms 1 and 2 are related to several existing methods

in the literature, and we also compare their convergence results. It turns out that

the proposed algorithms specialize to several known methods or their variants in the

literature under various specific conditions. Therefore, our convergence analysis recovers

some existing results as special cases, as well as provides new convergence results for

certain existing algorithms such as the Jacobian proximal parallel ADMM and the
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Figure 4.2: Comparison of the proposed method (RPDBU) to the linearized augmented
Lagrangian method (L-ALM) and the cyclic linearized alternating direction method of
multipliers (L-ADMM) on solving (4.58). Left: distance of objective to optimal value
|F (xk)− F (x∗)|; Right: violation of feasibility ‖Axk − b‖.

primal-dual scheme in (4.9).

4.6.1 Randomized proximal coordinate descent

The randomized proximal coordinate descent (RPCD) was proposed in [90], where

smooth convex optimization problems are considered. It was then extended in [100, 78]

to deal with nonsmooth problems that can be formulated as

min
x
f(x1, · · · , xN ) +

N∑
i=1

ui(xi), (4.59)

where x = (x1; . . . ;xN ). Toward solving (4.59), at each iteration k, the RPCD method

first randomly selects one block ik and then performs the update:

xk+1
i =

{
argminxi〈∇if(xk), xi〉+ Li

2 ‖xi − x
k
i ‖22 + ui(xi), if i = ik,

xki , if i 6= ik,
(4.60)

where Li is the Lipschitz continuity constant of the partial gradient ∇if(x). With

more than one blocks selected every time, (4.60) has been further extended into parallel

coordinate descent in [101].

When there is no linear constraint and no y-variable in (4.1), then Algorithm 1

reduces to the scheme in (4.60) if Ik = {ik}, i.e., only one block is chosen, and P k =
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LikI, λ
k = 0, ∀k, and to the parallel coordinate descent in [101] if Ik = {i1k, · · · , ink} and

P k = blkdiag(Li1k
I, · · · , Link I), λk = 0, ∀k. Although the convergence rate results in

[100, 78, 101] are non-ergodic, we can easily strengthen our result to a non-ergodic one

by noticing that (4.25) implies nonincreasing monotonicity of the objective if Algorithm

1 is applied to (4.59).

4.6.2 Stochastic block proximal gradient

For solving the problem (4.59) with a stochastic f , [25] proposes a stochastic block

proximal gradient (SBPG) method, which iteratively performs the update in (4.60)

with ∇if(xk) replaced by a stochastic approximation. If f is Lipschitz differentiable,

then an ergodic O(1/
√
t) convergence rate was shown. Setting Ik = {ik},∀k, we reduce

Algorithm 2 to the SBPG method, and thus our convergence results in Proposition 4.4.3

recover that in [25].

4.6.3 Multi-block ADMM

Without coupled functions or proximal terms, Algorithm 1 can be regarded as a ran-

domized variant of the multi-block ADMM scheme in (4.6). While multi-block ADMM

can diverge if the problem has three or more blocks, our result in Theorem 4.3.6 shows

that O(1/t) convergence rate is guaranteed if at each iteration, one randomly selected

block is updated, followed by an update to the multiplier. Note that in the case of no

coupled function and n = 1, (4.33) indicates that we can choose P k = 0, i.e. without

proximal term. Hence, randomization is a key to convergence.

When there are only two blocks, ADMM has been shown (e.g., [74]) to have an

ergodic O(1/t) convergence rate. If there are no coupled functions, (4.36) and (4.41a)

both indicate that we can choose P̂ = ρxA
>A, Q̂ = ρyB

>B if θ = 1, i.e., all x and

y blocks are selected. Thus according to (4.15), we can set P k = 0, Qk = 0, ∀k, in

which case Algorithm 1 reduces to the classic 2-block ADMM. Hence, our results in

Theorems 4.3.7 and 4.3.9 both recover the ergodic O(1/t) convergence rate of ADMM

for two-block convex optimization problems.
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4.6.4 Proximal Jacobian parallel ADMM

In [27], the proximal Jacobian parallel ADMM (Prox-JADMM) was proposed to solve

the linearly constrained multi-block separable convex optimization model

min
x

N∑
i=1

ui(xi), s.t.

N∑
i=1

Aixi = b. (4.61)

At each iteration, the Prox-JADMM method performs the updates for i = 1, . . . , n in

parallel:

xk+1
i = argmin

xi
ui(xi)− 〈λk, Aixi〉+

ρ

2

∥∥Aixi +
∑
j 6=i

Ajx
k
j − b

∥∥2

2
+

1

2
‖xi − xki ‖2Pi , (4.62)

and then updates the multiplier by

λk+1 = λk − γρ

(
N∑
i=1

Aix
k+1
i − b

)
, (4.63)

where Pi � 0,∀i and γ > 0 is a damping parameter. By choosing approapriate pa-

rameters, [27] established convergence rate of order 1/t based on norm square of the

difference of two consecutive iterates.

If there is no y-variable or the coupled function f in (4.1), setting Ik = [N ], P k =

blkdiag(ρxA
>
1 A1 + P1, · · · , ρxA>NAN + PN )− ρxA>A � 0, ∀k, where Pi’s are the same

as those in (4.62), then Algorithm 1 reduces to the Prox-JADMM with γ = 1, and

Theorem 4.3.6 provides a new convergence result in terms of the objective value and

the feasibility measure.

4.6.5 Randomized primal-dual scheme in (4.9)

In this subsection, we show that the scheme in (4.9) is a special case of Algorithm 1.

Let g be the convex conjugate of g∗ := h+ ιZ , namely, g(y) = supz〈y, z〉−h(z)− ιZ(z).

Then (4.8) is equivalent to the optimization problem:

min
x∈X

N∑
i=1

ui(xi) + g(−Ax),
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which can be further written as

min
x∈X,y

N∑
i=1

ui(xi) + g(y), s.t.Ax+ y = 0. (4.64)

Proposition 4.6.1 The scheme in (4.9) is equivalent to the following updates:

xk+1
i =


argmin
xi∈Xi

〈−zk, Aixi〉+ ui(xi)

+ q
2η‖Ai(xi − x

k
i ) + rk‖2 + 1

2‖xi − x
k
i ‖τI− q

η
A>i Ai

, i = ik,

xki , i 6= ik,

(4.65a)

yk+1 = argmin
y

g(y)− 〈y, zk〉+
1

2η
‖y +Axk+1‖2, (4.65b)

zk+1 = zk − 1

η
(Axk+1 + yk+1), (4.65c)

where rk = Axk + yk. Therefore, it is a special case of Algorithm 1 applied to (4.64)

with the setting of Ik = {ik}, ρx = q
η , ρy = ρ = 1

η and P k = τI − q
ηA
>
ik
Aik , Q

k = 0,∀k.

While the sublinear convergence rate result in [24] requires the boundedness of X and Z,

the result in Theorem 4.3.7 indicates that the boundedness assumption can be removed

if we add one proximal term to the y-update in (4.65b).

4.7 Concluding Remarks

We have proposed a randomized primal-dual coordinate update algorithm, called RPDBU,

for solving linearly constrained convex optimization with multi-block decision variables

and coupled terms in the objective. By using a randomization scheme and the proximal

gradient mappings, we show a sublinear convergence rate of the RPDBU method. In

particular, without any assumptions other than convexity on the objective function and

without imposing any restrictions on the constraint matrices, an O(1/t) convergence

rate is established. We have also extended RPDBU to solve the problem where the ob-

jective is stochastic. If a stochastic (sub-)gradient estimator is available, then we show

that by adaptively choosing the parameter αk in the added proximal term, an O(1/
√
t)

convergence rate can be established. Furthermore, if there is no coupled function f , then

we can remove the proximal term, and the algorithm reduces to a randomized multi-
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block ADMM. Hence, the convergence of the original randomized multi-block ADMM

follows as a consequence of our analysis. Remark also that by taking the sampling

set Ik as the whole set and P k as some special matrices, our algorithm specializes to

the proximal Jacobian ADMM. Finally, we pose as an open problem to decide whether

or not a deterministic counterpart of the RPDBU exists, retaining similar convergence

properties for solving problem (4.1). For instance, it would be interesting to know if

the algorithm would still be convergent if a deterministic cyclic update rule is applied

while a proper proximal term is incorporated.

4.8 Proofs of Lemmas

We give proofs of several lemmas that are used to show our main results.

4.8.1 Proof of Lemma 4.3.1

We prove (4.25), and (4.26) can be shown by the same arguments. By the optimality

of xk+1
Ik

from (4.10) or equivalently (4.16), we have for any xIk ∈ XIk ,

(xIk − x
k+1
Ik

)>
(
∇Ikf(xk)−A>Ikλ

k + ρxA
>
Ik
rk + ∇̃uIk(xk+1

Ik
) + P̂Ik(xk+1

Ik
− xkIk)

)
≥ 0,

(4.66)

where ∇̃uIk(xk+1
Ik

) is a subgradient of uIk at xk+1
Ik

, and we have used the formula of rk+ 1
2

given in (4.11). We compute the expectation of each term in (4.66) in the following.

First, we have

EIk(xIk − x
k+1
Ik

)>∇Ikf(xk)

= EIk
(
xIk − x

k
Ik

)>
∇Ikf(xk) + EIk(xkIk − x

k+1
Ik

)>∇Ikf(xk)

=
n

N

(
x− xk

)>
∇f(xk) + EIk(xk − xk+1)>∇f(xk) (4.67)

≤ n

N

(
f(x)− f(xk)

)
+ EIk

[
f(xk)− f(xk+1) +

Lf
2
‖xk − xk+1‖2

]
=

n−N
N

(
f(x)− f(xk)

)
+ EIk

[
f(x)− f(xk+1) +

Lf
2
‖xk − xk+1‖2

]
, (4.68)
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where the last inequality is from the convexity of f and the Lipschitz continuity of

∇Ikf(x). Secondly,

EIk(xIk − x
k+1
Ik

)>(−A>Ikλ
k)

= EIk(xIk − x
k
Ik

)>(−A>Ikλ
k) + EIk(xkIk − x

k+1
Ik

)>(−A>Ikλ
k)

=
n

N

(
x− xk

)>
(−A>λk) + EIk(xk − xk+1)>(−A>λk)

=
n−N
N

(
x− xk

)>
(−A>λk) + EIk(x− xk+1)>(−A>λk). (4.69)

Similarly,

ρxEIk(xIk − x
k+1
Ik

)>A>Ikr
k =

n−N
N

ρx(x− xk)>A>rk + ρxEIk(x− xk+1)>A>rk.(4.70)

For the fourth term of (4.66), we have

EIk(xIk − x
k+1
Ik

)>∇̃uIk(xk+1
Ik

)

≤ EIk
[
uIk(xIk)− uIk(xk+1

Ik
)
]

=
n

N
u(x)− EIk [u(xk+1)− u(xk) + uIk(xkIk)]

=
n

N

[
u(x)− u(xk)

]
+ EIk [u(xk)− u(xk+1)]

=
n−N
N

[
u(x)− u(xk)

]
+ EIk [u(x)− u(xk+1)], (4.71)

where the inequality is from the convexity of uIk . Finally, we have

EIk(xIk − x
k+1
Ik

)>P̂Ik(xk+1
Ik
− xkIk) = EIk(x− xk+1)>P̂ (xk+1 − xk). (4.72)

Plugging (4.68) through (4.72) into (4.66) and recalling F (x) = f(x) + u(x), by

rearranging terms we have

EIk
[
F (xk+1)− F (x) + (xk+1 − x)>(−A>λk) + ρx(xk+1 − x)>A>rk

]
+EIk

(
xk+1 − x

)>
P̂ (xk+1 − xk)−

Lf
2
EIk‖x

k − xk+1‖2

≤ N − n
N

[
F (xk)− F (x) + (xk − x)>(−A>λk) + ρx(xk − x)>A>rk

]
. (4.73)

Note

(xk+1 − x)>(−A>λk) + ρx(xk+1 − x)>A>rk

115



= (xk+1 − x)>(−A>λk) + ρx(xk+1 − x)>A>rk+1

−ρx(xk+1 − x)>A>A(xk+1 − xk)− ρx(xk+1 − x)>A>B(yk+1 − yk)
(4.14)

= (xk+1 − x)>(−A>λk+1) + (ρx − ρ)(xk+1 − x)>A>rk+1

−ρx(xk+1 − x)>A>A(xk+1 − xk)− ρx(xk+1 − x)>A>B(yk+1 − yk).

Hence, we can rewrite (4.73) equivalently into (4.25). Through the same arguments,

one can show (4.26), thus completing the proof.

4.8.2 Proof of Lemma 4.3.3

Letting x = x∗, y = y∗ in (4.31), we have for any λ that

E[h(x∗, y∗, λ)]

≥ E
[
Φ(x̂, ŷ)− Φ(x∗, y∗) + (x̂− x∗)>(−A>λ̂)

+(ŷ − y∗)>(−B>λ̂) + (λ̂− λ)>(Ax̂+Bŷ − b)
]

= E
[
Φ(x̂, ŷ)− Φ(x∗, y∗) + 〈λ̂, Ax∗ +By∗ − b〉 − 〈λ,Ax̂+Bŷ − b〉

]
= E [Φ(x̂, ŷ)− Φ(x∗, y∗)− 〈λ,Ax̂+Bŷ − b〉] , (4.74)

where the last equality follows from the feasibility of (x∗, y∗). For any γ > 0, restricting

λ in Bγ , we have

E[h(x∗, y∗, λ)] ≤ sup
λ∈Bγ

h(x∗, y∗, λ).

Hence, letting λ = −γ(Ax̂+Bŷ−b)
‖Ax̂+Bŷ−b‖ ∈ Bγ in (4.74) gives the desired result.

4.8.3 Proof of Lemma 4.3.5

In view of (4.32), we have

E
[
(γ − ‖λ∗‖)‖Ax̂+Bŷ − b‖

]
≤ E

[
Φ(x̂, ŷ)− Φ(x∗, y∗) + γ‖Ax̂+Bŷ − b‖

]
≤ ε,

which implies

E‖Ax̂+Bŷ − b‖ ≤ ε

γ − ‖λ∗‖
, and E

[
Φ(x̂, ŷ)− Φ(x∗, y∗)

]
≤ ε. (4.75)
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Denote a− = max(0,−a) for a real number a. Then from (4.32) and (4.75), it follows

that

E
(
Φ(x̂, ŷ)− Φ(x∗, y∗)

)− ≤ ‖λ∗‖ · E‖Ax̂+Bŷ − b‖ ≤ ‖λ∗‖ε
γ − ‖λ∗‖

.

Noting |a| = a+ 2a− for any real number a, we have

E
∣∣Φ(x̂, ŷ)− Φ(x∗, y∗)

∣∣
= E

[
Φ(x̂, ŷ)− Φ(x∗, y∗)

]
+ 2E

(
Φ(x̂, ŷ)− Φ(x∗, y∗)

)−
≤

(
2‖λ∗‖
γ − ‖λ∗‖

+ 1

)
ε. (4.76)

4.8.4 Proof of Inequalities (4.52c) and (4.52d) with αk =
α0√
k

We have βk = α0

ρ
(√

k−(1−θ)
√
k−1
) , and

αk−1

αk
βk + (1− θ)βk+1 −

αk
αk+1

βk+1 − (1− θ)βk

=
α0

ρ

[( √
k√

k − 1
− (1− θ)

)
1(√

k − (1− θ)
√
k − 1

)
−
(√

k + 1√
k
− (1− θ)

)
1(√

k + 1− (1− θ)
√
k
)]

=:
α0

ρ
[ψ(k)− ψ(k + 1)].
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By elementary calculus, we have

ψ′(k) =

√
k−1√
k
−

√
k√
k−1

2(k − 1)

1(√
k − (1− θ)

√
k − 1

)
+

( √
k√

k − 1
− (1− θ)

)
−1

2
(√
k − (1− θ)

√
k − 1

)2 ( 1√
k
− 1− θ√

k − 1

)

=
1

2(k − 1)(
√
k − (1− θ)

√
k − 1)

[√
k − 1√
k
−
√
k√

k − 1

−
√
k − 1

(
1√
k
− 1− θ√

k − 1

)]
=

1

2(k − 1)(
√
k − (1− θ)

√
k − 1)

(
(1− θ)−

√
k√

k − 1

)
< 0.

Hence, ψ(k) is decreasing with respect to k, and thus (4.52c) holds.

When αk = α0√
k
, (4.52d) becomes

α0

2ρ
√
t
≥
∣∣∣∣( √

t√
t− 1

− (1− θ)
)

α0

ρ(
√
t− (1− θ)

√
t− 1)

− α0

ρ
√
t

∣∣∣∣ ,
which is equivalent to

1

2
≥

√
t√

t− 1
− 1⇐⇒ t ≥ 9

5
.

This completes the proof.

4.9 Proofs of Theorems

In this section, we give the technical details for showing all theorems. For simplicity of

notation, throughout the proofs of this section, we define P̃ and Q̃ as follows:

P̃ = P̂ − ρxA>A, Q̃ = Q̂− ρyB>B. (4.77)
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4.9.1 Proof of Theorem 4.3.6

Taking expectation over both sides of (4.25) and summing it over k = 0 through t, we

have

E
[
F (xt+1)− F (x) + (xt+1 − x)>(−A>λt+1)

]
+ (1− θ)ρxE(xt+1 − x)>A>rt+1

+θ
t−1∑
k=0

E
[
F (xk+1)− F (x) + (xk+1 − x)>(−A>λk+1)

]
−

t∑
k=0

ρxE(xk+1 − x)>A>B(yk+1 − yk)

+

t∑
k=0

E(xk+1 − x)>P̃ (xk+1 − xk)−
Lf
2

t∑
k=0

E‖xk − xk+1‖2

≤ (1− θ)
[
F (x0)− F (x) + (x0 − x)>(−A>λ0) + ρx(x0 − x)>A>r0

]
, (4.78)

where we have used n
N = θ, the condition in (4.40) and the definition of P̃ in (4.77).

Similarly, taking expectation over both sides of (4.26), summing it over k = 0 through

t, we have

E
[
G(yt+1)−G(y) + (yt+1 − y)>(−B>λt+1)

]
+ (1− θ)ρyE(yt+1 − y)>B>rt+1

+θ

t−1∑
k=0

E
[
G(yk+1)−G(y) + (yk+1 − y)>(−B>λk+1)

]
+

t∑
k=0

E(yk+1 − y)>Q̃(yk+1 − yk)− Lg
2

t∑
k=0

E‖yk − yk+1‖2

≤ (1− θ)
[
G(y0)−G(y) + (y0 − y)>(−B>λ0) + ρy(y

0 − y)>B>r0
]

(4.79)

+(1− θ)
t∑

k=0

Eρy(yk − y)>B>A(xk+1 − xk).

Recall λk+1 = λk − ρrk+1, thus

(λk+1 − λ)>rk+1 = −1

ρ
(λk+1 − λ)>(λk+1 − λk), (4.80)

where λ is an arbitrary vector and possibly random. Denote λ̃t+1 = λt − ρxrt+1. Then
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similar to (4.80), we have

(λ̃t+1 − λ)>rt+1 = − 1

ρx
(λ̃t+1 − λ)>(λ̃t+1 − λt). (4.81)

Summing (4.78) and (4.79) together and using (4.80) and (4.81), we have:

E
[
Φ(xt+1, yt+1)− Φ(x, y) + (w̃t+1 − w)>H(w̃t+1) +

1

ρx
(λ̃t+1 − λ)>(λ̃t+1 − λt)

]
+θ

t−1∑
k=0

E
[
Φ(xk+1, yk+1)− Φ(x, y) + (wk+1 − w)>H(wk+1)

+
1

ρ
(λk+1 − λ)>(λk+1 − λk)

]
≤ (1− θ)

[
F (x0)− F (x) + (x0 − x)>(−A>λ0) + ρx(x0 − x)>A>r0

]
+(1− θ)

[
G(y0)−G(y) + (y0 − y)>(−B>λ0) + ρy(y

0 − y)>B>r0
]

+

t∑
k=0

ρxE(xk+1 − x)>A>B(yk+1 − yk)

+(1− θ)
t∑

k=0

ρyE(yk − y)>B>A(xk+1 − xk)

−
t∑

k=0

E(xk+1 − x)>P̃ (xk+1 − xk) +
Lf
2

t∑
k=0

E‖xk − xk+1‖2

−
t∑

k=0

E(yk+1 − y)>Q̃(yk+1 − yk) +
Lg
2

t∑
k=0

E‖yk − yk+1‖2, (4.82)

where we have used Φ(x, y) = F (x) +G(y) and the definition of H given in (4.18).

When B = 0 and yk ≡ y0, (4.82) reduces to

E
[
F (xt+1)− F (x) + (w̃t+1 − w)>H(w̃t+1) +

1

ρx
(λ̃t+1 − λ)>(λ̃t+1 − λt)

]
+θ

t−1∑
k=0

E
[
F (xk+1)− F (x) + (wk+1 − w)>H(wk+1) +

1

ρ
(λk+1 − λ)>(λk+1 − λk)

]
≤ (1− θ)

[
F (x0)− F (x) + (x0 − x)>(−A>λ0) + ρx(x0 − x)>A>r0

]
−

t∑
k=0

E(xk+1 − x)>P̃ (xk+1 − xk) +
Lf
2

t∑
k=0

E‖xk − xk+1‖2.

Using (4.21) and noting θ = ρ
ρx

, from the above inequality after cancelling terms we
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have

E
[
F (xt+1)− F (x) + (w̃t+1 − w)>H(w̃t+1)

]
+θ

t−1∑
k=0

E
[
F (xk+1)− F (x) + (wk+1 − w)>H(wk+1)

]
+

1

2ρx
E

[
‖λ̃t+1 − λ‖2 − ‖λ0 − λ‖2 + ‖λ̃t+1 − λt‖2 +

t−1∑
k=0

‖λk+1 − λk‖2
]

≤ (1− θ)
[
F (x0)− F (x) + (x0 − x)>(−A>λ0) + ρx(x0 − x)>A>r0

]
−1

2
E

[
‖xt+1 − x‖2

P̃
− ‖x0 − x‖2

P̃
+

t∑
k=0

‖xk+1 − xk‖2
P̃

]
+
Lf
2

t∑
k=0

E‖xk − xk+1‖2.

(4.83)

For any feasible x, we note λ̃t+1 − λt = ρxA(xt+1 − x) and thus

1

ρx
‖λ̃t+1 − λt‖2 = ρx‖xt+1 − x‖2A>A. (4.84)

In addition, since xk+1 and xk differ only on the index set Ik, we have by recalling

P̃ = P̂ − ρxA>A that

‖xk+1−xk‖2
P̃
−Lf‖xk+1−xk‖2 = ‖xk+1

Ik
−xkIk‖

2
P̂Ik
−‖xk+1

Ik
−xkIk‖

2
ρxA>Ik

AIk
−Lf‖xk+1

Ik
−xkIk‖

2.

(4.85)

Plugging (4.84) and (4.85) into (4.83), and using (4.33) leads to

E
[
F (xt+1)− F (x) + (w̃t+1 − w)>H(w̃t+1)

]
+θ

t−1∑
k=0

E
[
F (xk+1)− F (x) + (wk+1 − w)>H(wk+1)

]
≤ (1− θ)

[
F (x0)− F (x) + (x0 − x)>(−A>λ0) + ρx(x0 − x)>A>r0

]
+

1

2ρx
E‖λ0 − λ‖2 +

1

2
‖x0 − x‖2

P̃
.

The desired result follows from λ0 = 0, and Lemmas 4.3.3 and 4.3.5 with γ = max{0.5+

‖λ∗‖, 3‖λ∗‖}.
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4.9.2 Proof of Theorem 4.3.7

It follows from (4.26) with ρy = ρ and m = M that (recall the definition of Q̃ in (4.77))

for any y ∈ Y ,

G(yk+1)−G(y)−Lg
2
‖yk−yk+1‖2+(yk+1−y)>(−B>λk+1)+(yk+1−y)>Q̃(yk+1−yk) ≤ 0.

(4.86)

Similar to (4.86), and recall the definition of ỹt+1, we have for any y ∈ Y ,

G(ỹt+1)−G(y)−Lg
2
‖ỹt+1−yt‖2 +(ỹt+1−y)>(−B>λ̃t+1)+θ(ỹt+1−y)>Q̃(yt+1−yt) ≤ 0,

(4.87)

where

λ̃t+1 = λt − ρx(Axt+1 +Bỹt+1 − b). (4.88)

Adding (4.86) and (4.87) to (4.78) and using the formula of λk gives

E
[
F (xt+1)− F (x) + (xt+1 − x)>(−A>λ̃t+1)

]
+E

(
λ̃t+1 − λ

)>(
Axt+1 +Bỹt+1 − b+

1

ρx
(λ̃t+1 − λt)

)
+E

[
G(ỹt+1)−G(y) + (ỹt+1 − y)>(−B>λ̃t+1) + θ(ỹt+1 − y)>Q̃(ỹt+1 − yk)

]
+θ

t−1∑
k=0

E
[
F (xk+1)− F (x) + (xk+1 − x)>(−A>λk+1)

]
− Lg

2
E‖ỹt+1 − yt‖2

−
t−1∑
k=0

ρxE(xk+1 − x)>A>B(yk+1 − yk)− ρxE(xt+1 − x)>A>B(ỹt+1 − yt)

+θ
t−1∑
k=0

E
[
G(yk+1)−G(y)− Lg

2
‖yk − yk+1‖2

+(yk+1 − y)>(−B>λk+1) + (yk+1 − y)>Q̃(yk+1 − yk)
]

+θ

t−1∑
k=0

E(λk+1 − λ)>
(
rk+1 +

1

ρ
(λk+1 − λk)

)
≤ (1− θ)

[
F (x0)− F (x) + (x0 − x)>(−A>λ0) + ρx(x0 − x)>A>r0

]
−

t∑
k=0

E(xk+1 − x)>P̃ (xk+1 − xk) +
Lf
2

t∑
k=0

E‖xk − xk+1‖2. (4.89)
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By the notation in (4.18) and using (4.29), (4.89) can be written into

E
[
Φ(xt+1, ỹt+1)− Φ(x, y) + (w̃t+1 − w)>H(w̃t+1)

]
+θ

t−1∑
k=0

E
[
Φ(xk+1, yk+1)− Φ(x, y) + (wk+1 − w)>H(wk+1)

]
+θ

t−1∑
k=0

E(yk+1 − y)>Q̃(yk+1 − yk) + θE(ỹt+1 − y)>Q̃(ỹt+1 − yt)

−
t−1∑
k=0

ρxE
(

1

ρ
(λk − λk+1)>B(yk+1 − yk)− (yk+1 − y)>B>B(yk+1 − yk)

)
−ρxE

(
1

ρx
(λt − λ̃t+1)>B(ỹt+1 − yt)− (ỹt+1 − y)>B>B(ỹt+1 − yt)

)
+
θ

ρ
E(λ̃t+1 − λ)>

(
λ̃t+1 − λt

)
+
θ

ρ

t−1∑
k=0

E(λk+1 − λ)>
(
λk+1 − λk

)
≤ (1− θ)

[
F (x0)− F (x) + (x0 − x)>(−A>λ0) + ρx(x0 − x)>A>r0

]
−

t∑
k=0

E(xk+1 − x)>P̃ (xk+1 − xk) +
Lf
2

t∑
k=0

E‖xk − xk+1‖2

+
θLg

2

t−1∑
k=0

E‖yk − yk+1‖2 +
Lg
2
E‖ỹt+1 − yt‖2.

Now use (4.21) to derive from the above inequality that

E
[
Φ(xt+1, ỹt+1)− Φ(x, y) + (w̃t+1 − w)>H(w̃t+1)

]
+θ

t−1∑
k=0

E
[
Φ(xk+1, yk+1)− Φ(x, y) + (wk+1 − w)>H(wk+1)

]
+
θ

2

(
E‖ỹt+1 − y‖2

Q̃
− ‖y0 − y‖2

Q̃

)
+
θ

2

t−1∑
k=0

E‖yk+1 − yk‖2
Q̃

+
θ

2
E‖ỹt+1 − yt‖2

Q̃

+
ρx
2

(
E‖ỹt+1 − y‖2B>B − ‖y

0 − y‖2B>B
)
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+
ρx
2

t−1∑
k=0

E‖yk+1 − yk‖2B>B +
ρx
2
E‖ỹt+1 − yt‖2B>B

−
t−1∑
k=0

E
ρx
ρ

(
λk − λk+1

)>
B(yk+1 − yk)− E(λt − λ̃t+1)>B(ỹt+1 − yt)

+
θ

2ρ

(
E‖λ̃t+1 − λ‖2 − ‖λ0 − λ‖2

)
+

θ

2ρ

t−1∑
k=0

E‖λk+1 − λk‖2 +
θ

2ρ
E‖λ̃t+1 − λt‖2

≤ (1− θ)
[
F (x0)− F (x) + (x0 − x)>(−A>λ0) + ρx(x0 − x)>A>r0

]
−1

2

[
E‖xt+1 − x‖2

P̃
− ‖x0 − x‖2

P̃
+

t∑
k=0

E‖xk − xk+1‖2
P̃

]
+
Lf
2

t∑
k=0

E‖xk − xk+1‖2

+
θLg

2

t−1∑
k=0

E‖yk − yk+1‖2 +
Lg
2
E‖ỹt+1 − yt‖2. (4.90)

Note that for k ≤ t− 1,

−ρx
ρ

(λk − λk+1)>B(yk+1 − yk) +
θ

2ρ
‖λk+1 − λk‖2 ≥ − ρ

2θ3
‖yk+1 − yk‖2B>B

and

−(λt − λ̃t+1)>B(ỹt+1 − yt) +
θ

2ρ
‖λ̃t+1 − λt‖2 ≥ − ρ

2θ
‖ỹt+1 − yt‖2B>B.

Because P̃, Q̃ and ρ satisfy (4.36), we have from (4.90) that

E
[
Φ(xt+1, ỹt+1)− Φ(x, y) + (w̃t+1 − w)>H(w̃t+1)

]
+θ

t−1∑
k=0

E
[
Φ(xk+1, yk+1)− Φ(x, y) + (wk+1 − w)>H(wk+1)

]
≤ (1− θ)

[
F (x0)− F (x) + (x0 − x)>(−A>λ0) + ρx(x0 − x)>A>r0

]
+

1

2
‖x0 − x‖2

P̃
+
θ

2
‖y0 − y‖2

Q̃
+

ρ

2θ
‖y0 − y‖2B>B +

θ

2ρ
E‖λ0 − λ‖2.

Similar to Theorem 4.3.9, from the convexity of Φ and (4.23), we have

(1 + θt)E
[
Φ(x̂t, ŷt)− Φ(x, y) + (ŵt+1 − w)>H(w)

]
≤ (1− θ)

[
F (x0)− F (x) + (x0 − x)>(−A>λ0) + ρx(x0 − x)>A>r0

]
+

1

2
‖x0 − x‖2

P̃
+
θ

2
‖y0 − y‖2

Q̃
+

ρ

2θ
‖y0 − y‖2B>B +

θ

2ρ
E‖λ0 − λ‖2. (4.91)

124



Noting λ0 = 0 and (x0 − x)>A>r0 ≤ 1
2

[
‖x0 − x‖A>A + ‖r0‖2

]
, and using Lemmas 4.3.3

and 4.3.5 with γ = max{0.5 + ‖λ∗‖, 3‖λ∗‖}, we obtain the result (4.39).

4.9.3 Proof of Theorem 4.3.9

Using (4.29) and (4.30), applying (4.21) to the cross terms, and also noting the definition

of P̃ and Q̃ in (4.77), we have

−θ
ρ
E

[
t−1∑
k=0

(λk+1 − λ)>(λk+1 − λk) + (λ̃t+1 − λ)>(λ̃t+1 − λt)

]

+
t∑

k=0

ρxE(xk+1 − x)>A>B(yk+1 − yk)

+(1− θ)
t∑

k=0

ρyE(yk − y)>B>A(xk+1 − xk)

−
t∑

k=0

E(xk+1 − x)>P̃ (xk+1 − xk) +
Lf
2

t∑
k=0

E‖xk − xk+1‖2

−
t∑

k=0

E(yk+1 − y)>Q̃(yk+1 − yk) +
Lg
2

t∑
k=0

E‖yk − yk+1‖2

= − θ

2ρ
E

[
‖λ̃t+1 − λ‖2 − ‖λ0 − λ‖2 +

t−1∑
k=0

‖λk+1 − λk‖2 + ‖λ̃t+1 − λt‖2
]

+
ρx
ρ

t∑
k=0

E(λk − λk+1)>B(yk+1 − yk)

+
(1− θ)ρy

ρ

t∑
k=0

E(λk−1 − λk)>A(xk+1 − xk)

−θρy
2

E
(
‖x0 − x‖2A>A − ‖x

t+1 − x‖2A>A
)

+
(2− θ)ρy

2

t∑
k=0

E‖xk+1 − xk‖2A>A

−1

2
E

(
‖xt+1 − x‖2

P̂
− ‖x0 − x‖2

P̂
+

t∑
k=0

‖xk+1 − xk‖2
P̂

)
+
Lf
2

t∑
k=0

E‖xk − xk+1‖2

−1

2
E

(
‖yt+1 − y‖2

Q̂
− ‖y0 − y‖2

Q̂
+

t∑
k=0

‖yk+1 − yk‖2
Q̂

)
+
Lg
2

t∑
k=0

E‖yk − yk+1‖2,

(4.92)

where we have used the conditions in (4.40).
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By Young’s inequality, we have that for 0 ≤ k ≤ t,

ρx
ρ

(λk − λk+1)>B(yk+1 − yk)− θ

2ρ

1

2− θ
‖λk+1 − λk‖2

≤ ρ

θ

2− θ
2

ρ2
x

ρ2
‖B(yk+1 − yk)‖2 (4.40)

=
(2− θ)ρy

2θ2
‖yk+1 − yk‖2B>B, (4.93)

and for 1 ≤ k ≤ t,

(1− θ)ρy
ρ

(λk−1 − λk)>A(xk+1 − xk)− θ

2ρ

1− θ
2− θ

‖λk−1 − λk‖2

≤ (1− θ)ρ
θ

(2− θ)ρ2
y

2ρ2
‖A(xk+1 − xk)‖2 (4.40)

=
(1− θ)(2− θ)

2θ2
ρx‖xk+1 − xk‖2A>A.

(4.94)

Plugging (4.93) and (4.94) and also noting ‖λ̃t+1 − λt‖2 ≥ ‖λt+1 − λt‖2, we can upper

bound the right hand side of (4.92) by

− θ

2ρ
E
[
‖λ̃t+1 − λ‖2 − ‖λ0 − λ‖2

]
− θρy

2
E
(
‖x0 − x‖2A>A − ‖x

t+1 − x‖2A>A
)

+

(
(1− θ)(2− θ)

2θ2
ρx +

(2− θ)ρy
2

) t∑
k=0

E‖xk+1 − xk‖2A>A

+
(2− θ)ρy

2θ2

t∑
k=0

E‖yk+1 − yk‖2B>B

−1

2
E

(
‖xt+1 − x‖2

P̂
− ‖x0 − x‖2

P̂
+

t∑
k=0

‖xk+1 − xk‖2
P̂

)

+
Lf
2

t∑
k=0

E‖xk − xk+1‖2

−1

2
E

(
‖yt+1 − y‖2

Q̂
− ‖y0 − y‖2

Q̂
+

t∑
k=0

‖yk+1 − yk‖2
Q̂

)

+
Lg
2

t∑
k=0

E‖yk − yk+1‖2

(4.41a)

≤ 1

2

(
‖x0 − x‖2

P̂−θρxA>A
+ ‖y0 − y‖2

Q̂

)
+

θ

2ρ
E‖λ0 − λ‖2. (4.95)
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In addition, note that

θ‖xt+1 − x‖2A>A =
n

N

∥∥∥∥∥
N∑
i=1

Ai(x
t+1
i − xi)

∥∥∥∥∥
2

≤ n
N∑
i=1

‖xt+1
i − xi‖2A>i Ai

‖xk − xk+1‖2A>A =

∥∥∥∥∥∥
∑
i∈Ik

Ai(x
k
i − xk+1

i )

∥∥∥∥∥∥
2

≤ n
N∑
i=1

‖xki − xk+1
i ‖2

A>i Ai

‖yk − yk+1‖2B>B =

∥∥∥∥∥∥
∑
j∈Jk

Bj(y
k
j − yk+1

j )

∥∥∥∥∥∥
2

≤ m
M∑
j=1

‖ykj − yk+1
j ‖B>j Bj .

Hence, if P̂ and Q̂ satisfy (4.41b), then (4.95) also holds.

Combining (4.82), (4.92) and (4.95) yields

E
[
Φ(xt+1, yt+1)− Φ(x, y) + (w̃t+1 − w)>H(w̃t+1)

]
+θ

t−1∑
k=0

E
[
Φ(xk+1, yk+1)− Φ(x, y) + (wk+1 − w)>H(wk+1)

]
≤ (1− θ)

[
Φ(x0, y0)− Φ(x, y)

]
+(1− θ)

[
(x0 − x)>(−A>λ0) + ρx(x0 − x)>A>r0

+(y0 − y)>(−B>λ0) + ρy(y
0 − y)>B>r0

]
+

1

2

(
‖x0 − x‖2

P̂−θρxA>A
+ ‖y0 − y‖2

Q̂

)
+

θ

2ρ
E‖λ0 − λ‖2. (4.96)

Applying the convexity of Φ and the properties (4.23) of H, we have

(1 + θt)E
[
Φ(x̂t, ŷt)− Φ(x, y) + (ŵt+1 − w)>H(w)

]
(4.20)

= (1 + θt)E
[
Φ(x̂t, ŷt)− Φ(x, y) + (ŵt+1 − w)>H(ŵt+1)

]
(4.23)

≤ E
[
Φ(xt+1, yt+1)− Φ(x, y) + (w̃t+1 − w)>H(w̃t+1)

]
+θ

t−1∑
k=0

E
[
Φ(xk+1, yk+1)− Φ(x, y) + (wk+1 − w)>H(wk+1)

]
. (4.97)

Now combining (4.97) and (4.96), we have

(1 + θt)E
[
Φ(x̂t, ŷt)− Φ(x, y) + (ŵt+1 − w)>H(w)

]
≤ (1− θ)

[
Φ(x0, y0)− Φ(x, y)

]
127



+(1− θ)
[
(x0 − x)>(−A>λ0) + ρx(x0 − x)>A>r0

+(y0 − y)>(−B>λ0) + ρy(y
0 − y)>B>r0

]
+

1

2

(
‖x0 − x‖2

P̂−θρxA>A
+ ‖y0 − y‖2

Q̂

)
+

θ

2ρ
E‖λ0 − λ‖2. (4.98)

By Lemmas 4.3.3 and 4.3.5 with γ = max{0.5 + ‖λ∗‖, 3‖λ∗‖}, we have the desired

result.

4.9.4 Proof of Theorem 4.4.2

From the nonincreasing monotonicity of αk, one can easily show the following result.

Lemma 4.9.1 Assume λ−1 = λ0. It holds that

t∑
k=0

(1− θ)βk
2

[
‖λk − λ‖2 − ‖λk−1 − λ‖2 + ‖λk − λk−1‖2

]
−

t−1∑
k=0

αkβk+1

2αk+1

[
‖λk+1 − λ‖2 − ‖λk − λ‖2 + ‖λk+1 − λk‖2

]
≤ −

t−1∑
k=0

βk+1

2
‖λk+1 − λk‖2 +

t∑
k=1

(1− θ)βk
2

‖λk − λk−1‖2

−
t−1∑
k=0

αkβk+1

2αk+1
‖λk+1 − λ‖2 −

t∑
k=1

(1− θ)βk
2

‖λk−1 − λ‖2

+
α0β1

2α1
‖λ0 − λ‖2 +

t−1∑
k=1

αkβk+1

2αk+1
‖λk − λ‖2 +

t∑
k=1

(1− θ)βk
2

‖λk − λ‖2

= −
t−1∑
k=0

θβk+1

2
‖λk+1 − λk‖2 +

(
α0β1

2α1
− (1− θ)β1

2

)
‖λ0 − λ‖2

−
(
αt−1βt

2αt
− (1− θ)βt

2

)
‖λt − λ‖2

−
t−1∑
k=1

(
αk−1βk

2αk
+

(1− θ)βk+1

2
− αkβk+1

2αk+1
− (1− θ)βk

2

)
‖λk − λ‖2. (4.99)

By the update formula of λ in (4.48), we have from (4.51) that

E
[
F (xk+1)− F (x) + (xk+1 − x)>(−A>λk+1) + (λk+1 − λ)>rk+1

]
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+E

(λk+1 − λ)>(λk+1 − λk)(
1− (1−θ)αk+1

αk

)
ρ

+
(1− θ)αk+1

αk
ρ(xk+1 − x)>A>rk+1


+E(xk+1 − x)>

(
P̃ +

I

αk

)
(xk+1 − xk)−

Lf
2
E‖xk − xk+1‖2 + E(xk+1 − xk)>δk

≤ (1− θ)E
[
F (xk)− F (x) + (xk − x)>(−A>λk)

+(λk − λ)>rk +
(λk − λ)>(λk − λk−1)(

1− (1−θ)αk
αk−1

)
ρ


+(1− θ)ρE(xk − x)>A>rk, (4.100)

where similar to (4.77), we have defined P̃ = P̂ − ρA>A.

Multiplying αk to both sides of (4.100) and using (4.45) and (4.21), we have

αkE
[
F (xk+1)− F (x) + (wk+1 − w)>H(wk+1)

]
+
αkβk+1

2αk+1
E
[
‖λk+1 − λ‖2 − ‖λk − λ‖2 + ‖λk+1 − λk‖2

]
+E

[
(1− θ)αk+1ρ(xk+1 − x)>A>rk+1

]
+
αk
2
E
[
‖xk+1 − x‖2

P̃
− ‖xk − x‖2

P̃
+ ‖xk+1 − xk‖2

P̃

]
+

1

2
E
[
‖xk+1 − x‖2 − ‖xk − x‖2 + ‖xk+1 − xk‖2

]
−
αkLf

2
E‖xk − xk+1‖2 + αkE(xk+1 − xk)>δk

≤ (1− θ)αkE
[
F (xk)− F (x) + (wk − w)>H(wk)

]
+

(1− θ)βk
2

E
[
‖λk − λ‖2 − ‖λk−1 − λ‖2 + ‖λk − λk−1‖2

]
+αk(1− θ)ρE(xk − x)>A>rk. (4.101)

Denote λ̃t+1 = λt − ρrt+1. Then for k = t, it is easy to see that (4.101) becomes

αtE
[
F (xt+1)− F (x) + (w̃t+1 − w)>H(w̃t+1)

]
+
αt
2ρ

E
[
‖λ̃t+1 − λ‖2 − ‖λt − λ‖2 + ‖λ̃t+1 − λt‖2

]
+
αt
2
E
[
‖xt+1 − x‖2

P̃
− ‖xt − x‖2

P̃
+ ‖xt+1 − xt‖2

P̃

]
+

1

2
E
[
‖xt+1 − x‖2 − ‖xt − x‖2 + ‖xt+1 − xt‖2

]
−
αtLf

2
E‖xt − xt+1‖2 + αtE(xt+1 − xt)>δt
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≤ (1− θ)αtE
[
F (xt)− F (x) + (wt − w)>H(wt)

]
+

(1− θ)βt
2

E
[
‖λt − λ‖2 − ‖λt−1 − λ‖2 + ‖λt − λt−1‖2

]
+αt(1− θ)Eρ(xt − x)>A>rt. (4.102)

By the nonincreasing monotonicity of αk, summing (4.101) from k = 0 through t−1

and (4.102) and plugging (4.99) gives

αtE
[
F (xt+1)− F (x) + (w̃t+1 − w)>H(w̃t+1)

]
+θαk+1

t−1∑
k=0

E
[
F (xk+1)− F (x) + (wk+1 − w)>H(wk+1)

]
+
αt
2ρ

E
[
‖λ̃t+1 − λ‖2 − ‖λt − λ‖2 + ‖λ̃t+1 − λt‖2

]
+
αt+1

2
E‖xt+1 − x‖2

P̃
+

t∑
k=0

αk
2
E‖xk+1 − xk‖2

P̃

+
1

2
E
[
‖xt+1 − x‖2 − ‖x0 − x‖2 +

t∑
k=0

‖xk+1 − xk‖2
]

−
t∑

k=0

αkLf
2

E‖xk − xk+1‖2 +

t∑
k=0

αkE(xk+1 − xk)>δk

≤ (1− θ)α0E
[
F (x0)− F (x) + (w0 − w)>H(w0)

]
+α0(1− θ)ρ(x0 − x)>A>r0 +

α0

2
‖x0 − x‖2

P̃

−
t−1∑
k=0

θβk+1

2
E‖λk+1 − λk‖2 +

(
α0β1

2α1
− (1− θ)β1

2

)
E‖λ0 − λ‖2

−
(
αt−1βt

2αt
− (1− θ)βt

2

)
E‖λt − λ‖2

−
t−1∑
k=1

(
αk−1βk

2αk
+

(1− θ)βk+1

2
− αkβk+1

2αk+1
− (1− θ)βk

2

)
E‖λk − λ‖2.

(4.103)

From (4.52d), we have

αt
2ρ

[
‖λ̃t+1 − λ‖2 − ‖λt − λ‖2 + ‖λ̃t+1 − λt‖2

]
≥ −

(
αt−1βt

2αt
− (1− θ)βt

2

)
‖λt − λ‖2.
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In addition, from Young’s inequality, it holds that

1

2
‖xk+1 − xk‖2 + αkE(xk+1 − xk)>δk ≥

α2
k

2
‖δ‖2.

Hence, dropping negative terms on the right hand side of (4.103), from the convexity

of Φ and (4.23), we have(
αt+1 + θ

t∑
k=1

αk

)
E
[
F (x̂t)− F (x) + (ŵt − w)>H(ŵt)

]
αtE

[
F (xt+1)− F (x) + (w̃t+1 − w)>H(w̃t+1)

]
+θαk+1

t−1∑
k=0

E
[
F (xk+1)− F (x) + (wk+1 − w)>H(wk+1)

]
≤ (1− θ)α0

[
F (x0)− F (x) + (w0 − w)>H(w0)

]
+(1− θ)α0ρ(x0 − x)>A>r0 +

α0

2
‖x0 − x‖2

P̃
+

1

2
‖x0 − x‖2

+

(
α0β1

2α1
− (1− θ)β1

2

)
E‖λ0 − λ‖2 +

t∑
k=0

α2
k

2
E‖δk‖2. (4.104)

Using Lemma 4.3.3 and the properties of H, we derive the desired result.

4.9.5 Proof of Proposition 4.6.1

Let (I + ∂φ)−1(x) := argminz φ(z) + 1
2‖z− x‖

2
2 denote the proximal mapping of φ at x.

Then the update in (4.9b) can be written to

zk+1 =

(
I + ∂

(
g∗

η

))−1(
zk − 1

η
Axk+1

)
.
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Define yk+1 as that in (4.65b). Then

1

η
yk+1 =

1

η

{
argmin

y
g(y)− 〈y, zk〉+

1

2η
‖y +Axk+1‖2

}
=

1

η

{
argmin

y
g(y) +

η

2
‖1

η
y − (zk − 1

η
Axk+1)‖2

}
= argmin

y
g(ηy) +

η

2
‖y − (zk − 1

η
Axk+1)‖2

=

(
I + ∂

(
1

η
g(η·)

))−1(
zk − 1

η
Axk+1

)
.

Hence, using the fact that the conjugate of 1
ηg
∗ is 1

ηg(η·) and the Moreau’s identity

(I + ∂φ)−1 + (I + ∂φ∗)−1 = I for any convex function φ, we have

zk − 1

η
Axk+1

=

(
I + ∂

(
g∗

η

))−1(
zk − 1

η
Axk+1

)
+

(
I + ∂

(
1

η
g(η·)

))−1(
zk − 1

η
Axk+1

)
.

Therefore, (4.65c) holds, and thus from (4.9c) it follows

z̄k+1 = zk+1 − q

η
(Axk+1 + yk+1).

Substituting the formula of z̄k into (4.9a), we have for i = ik,

xk+1
i = argmin

xi∈Xi
〈−z̄k, Aixi〉+ ui(xi) +

τ

2
‖xi − xki ‖2

= argmin
xi∈Xi

〈−zk, Aixi〉+
q

η
〈Axk + yk, Aixi〉+ ui(xi) +

τ

2
‖xi − xki ‖2

= argmin
xi∈Xi

〈−zk, Aixi〉+ ui(xi) +
q

2η
‖Aixi +A 6=ix

k
6=i + yk‖2 +

1

2
‖xi − xki ‖τI− q

η
A>i Ai

,

which is exactly (4.65a). Hence, we complete the proof.
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Chapter 5

Zeroth-Order Algorithms for

Black-Box Optimization

5.1 Introduction

In this chapter, we consider a black-box optimization in the form of

(P ) min f(x) + h(x)

s.t. x ∈ X ,
(5.1)

where X is a closed convex set, h(x) is a regularization function, which is typically non-

smooth. The key feature of this model however, is that the exact formulation of f(x) is

unknowable. Instead, only some noisy estimation of f(x) is possible. This rules out any

high-order solution methods, leaving only zeroth-order methods as a solution choice. In

this context, we consider two settings. In the first setting, f(x) is an expectation of

F (x, ξ) with unknown distribution ξ. Unlike the usual stochastic programming model,

where the classical Sample Averaging Approximation (SAA) is applicable (cf. [83]), we

assume here that for each given x only one sample point can be collected for F (x, ξ). This

is the case, for instance, when sampling is information sensitive. This is particularly

relevant for design problems, in which one cannot copy exactly the same design and

test the responses without worrying that the responses are influenced by the previous

sampling events. As an example, designing questions for standard tests such as SAT

or ACT is information sensitive, for there can be no two exams that contain exactly

the same questions. In fact, this setting resembles the bandit online learning model,
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where one can obtain one feedback at a given point. In a second setting, the objective

is not necessarily stochastic. In fact, it may not be stochastic at all. However, the

objective function maybe expensive to evaluate. Examples of such optimization model

include the design problems where the design variables are initial and/or boundary

conditions of a differential equation, and the objective value depends on the solution of

the differentiable equation. Given the initial/boundary conditions, the evaluation of the

objective function reduces to solving a differential equation. Therefore, one can only

evaluate the quality of the design variables approximately. However, the solution can

be made arbitrarily precise if one is willing to invest more time and effort.

In the above described black-box optimization models, no higher order informa-

tion is possible. We are left with some approximative zeroth-order subroutines. This

chapter sets out to explore the convergence rate of zeroth-order algorithms, assuming

the objective to have convexity or convexity-like (e.g. star-convexity and weak pseudo-

convexity) property. The analysis is then extended to the setting where some regu-

larization function is included in the objective. This leads to exploring zeroth-order

proximal-gradient type solution procedures. Our emphasis is placed on analyzing the

overall sample complexity, which essentially means the total amount of ‘efforts’, in order

to reach an ε-optimal solution.

This chapter is organized as follows. In Section 5.2, we study an unconstrained

stochastic optimization model where the objective can be allowed a single-sample at a

point. The convergence study also extends to the star-convex functions. In Section 5.3,

we study a class of nonconvex optimization model by introducing the so-called weak

pseudo-convexity. For this model, we develop a zeroth-order normalized gradient de-

scent method. In Section 5.4, we study unconstrained optimization where the objective

function can only be estimated. Moreover, the efforts required to estimate the function

value depends on the precision. Under the convexity assumption, sample complexity

bounds (to reach an ε-optimal solution) are derived for the zeroth-order methods based

on the coordinate-gradient method and the ellipsoid method respectively. In Section 5.5

we extend our investigations to the constrained optimization with a regularization func-

tion. Sample complexities are derived for all the afore-mentioned methods. Finally, we

present the numerical experiments by comparing with the Bayesian optimization on two

practical problems.
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5.2 Stochastic Programming: One Sample at a Point

In this section, we consider model (5.1) where the regularization term h does not exist,

and the function f is of the following form

f(x) = E[F (x, ξ)], (5.2)

where the expectation is taken over the random vector ξ. For a query of the function

value, a sample F (x, ξ) is revealed. Furthermore, we assume that only one single sample

is possible for every query x. In other words, for queries of the function value at x1

and x2, it returns two samples F (x1, ξ
1) and F (x2, ξ

2) with different realizations of the

random vectors ξ1 and ξ2. For this stochastic optimization framework, we first present

some assumptions of F (x, ξ) as well as some definitions.

Assumption 5.2.1 Suppose the function f(x) is given in the form (5.2), then we as-

sume that F (x, ξ) satisfies

E[F (x, ξ)] = f(x), (5.3)

E[∇F (x, ξ)] = ∇f(x), (5.4)

and

E[‖F (x, ξ)− f(x)‖2] ≤ θ2
0, (5.5)

E[‖∇F (x, ξ)−∇f(x)‖2] ≤ θ2
1. (5.6)

Definition 7 We denote CiLi(D) be the class of functions which are i-th order Lipschitz

continuous in the domain D with the corresponding Lipschitz constant Li, namely

CiLi(D) = {f | ‖∇(i)f(x)−∇(i)f(y)‖ ≤ Li‖x− y‖, ∀x, y ∈ D}.

There are two cases that are of special interest: i = 0 and i = 1. We simply denote L1

by L. In other words, C1
L(D) is the class of functions of Lipschitz continuous gradients,

i.e. for f ∈ C1
L(D),

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x, y ∈ D. (5.7)

Now, we introduce a smoothing scheme and its properties which lead to the stochas-

tic zeroth-order oracle (SZO).
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Definition 8 Let Ub be the uniform distribution over the unit Euclidean ball and B be

the unit ball. Given µ > 0, the smoothing function fµ is defined as

fµ(w) = E{v∼Ub}[f(w + µv)] =
1

α(n)

∫
B
f(w + µv)dv (5.8)

where α(n) is the volume of the unit ball in Rn.

Some properties of the smoothing function are shown in the lemma below, the proof

of the lemma can be found in [38].

Lemma 5.2.1 Suppose that f ∈ C1
L(Rn). Let USp be the uniform distribution over the

unit Euclidean sphere, and Sp be the unit sphere in Rn. Then we have:

(a) The smoothing function fµ is continuously differentiable, and its gradient is Lipschitz

continuous with constant Lµ ≤ L and

∇fµ(w) = E{v∼USp}

[
n

µ
f(w + µv)v

]
=

1

β(n)

∫
v∈Sp

n

µ
[f(w + µv)− f(w)] vdv (5.9)

where β(n) is the measure of the unit sphere in Rn.

(b) For any w ∈ Rn, we have

|fµ(w)− f(w)| ≤ Lµ2

2
, (5.10)

‖∇fµ(w)−∇f(w)‖ ≤ µnL

2
, (5.11)

Ev

[∥∥∥∥nµ [f(w + µv)− f(w)]v

∥∥∥∥2
]
≤ 2n‖∇f(w)‖2 +

µ2

2
L2n2. (5.12)

(c) If f is convex then fµ is convex.

Based on (5.9) we introduce a single-sampling zeroth-order stochastic gradient (SSZO)

of f at x:

Gµ(x, ξ1,2, v) :=
n

µ

[
F (x+ µv, ξ1)− F (x, ξ2)

]
v, (5.13)

where v is the random vector uniformly distributed over the unit sphere in Rn. Note

that ξ1 and ξ2 are i.i.d. samples.

The following lemma shows the unbiasedness and boundedness of the SSZO.
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Lemma 5.2.2 Suppose that Gµ(x, ξ1,2, v) is defined as in (5.13), and f satisfies As-

sumption 5.2.1. Then

Ev,ξ[Gµ(x, ξ1,2, v)] = ∇fµ(x). (5.14)

If we further assume f ∈ C0
L0

(X ) and F (x, ξ) ∈ C1
L(Rn) for all ξ, then the following

holds

Ev,ξ[‖Gµ(x, ξ1,2, v)‖2] ≤ 4nN + µ2L2n2 + 4
n2

µ2
θ2

0, (5.15)

where N = L2
0 + θ2

1.

Proof. The first equation is easy to verify. We prove the second inequality. Apply-

ing (5.12) and (5.63) to F (x, ξ), we have

Ev,ξ1,2
[
‖Gµ(x, ξ1,2, v)‖2

]
= Eξ1,2

[
Ev
[
‖Gµ(x, ξ1,2, v)‖2

]]
= Eξ1,2

[
Ev

[∥∥∥∥nµ [F (x+ µv, ξ1)− F (x, ξ2)
]
v

∥∥∥∥2
]]

≤ Eξ1,2

[
Ev

[
2

∥∥∥∥nµ [F (x+ µv, ξ1)− F (x, ξ1)
]
v

∥∥∥∥2
]

+Ev

[
2

∥∥∥∥nµ [F (x, ξ1)− F (x, ξ2)
]
v

∥∥∥∥2
]]

(5.12)

≤ 4n
[
Eξ1
[
‖∇F (x, ξ)‖2

]]
+ µ2L2n2 + 2

n2

µ2
Eξ1,2

[
|F (x, ξ1)− F (x, ξ2)|2

]
≤ 4n

{
Eξ[‖∇f(x)‖2] + Eξ

[
‖∇F (x, ξ)−∇f(x)‖2

]}
+ µ2L2n2 + 4

n2

µ2
θ2

0

≤ 4n
(
‖∇f(x)‖2 + θ2

1

)
+ µ2L2n2 + 4

n2

µ2
θ2

0

≤ 4nN + µ2L2n2 + 4
n2

µ2
θ2

0. (5.16)

�

5.2.1 Convex Optimization

In this subsection, we apply a single-sampling approach to stochastic optimization prob-

lem. The solution framework is depicted as follows, where ProjX (x) := argmin
y∈X

‖y− x‖.
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Stochastic Single-Sampling Zeroth-Order Gradient Descent

Parameters: η, µ > 0 and a convex set X ⊂ Rn.

Initialization: x1 = 0.

for t = 1, · · · , T ,

Pick vk ∼ USp ;
At xk + δvk and xk, receive F (xk + µvk, ξ1

k), F (xk, ξ2
k) respectively;

Assemble SSZO as Gµ(xk, ξ1,2
k , vk) = n

µ

[
F (xk + δvk, ξ1

k)− F (xk, ξ2
k)
]
vk;

Update xt+1 = ProjX

(
xk − ηGµ(xk, ξ1,2

k , vk)
)

.

end for

The following theorem shows an expected O(T−1/3) rate of convergence for the

stochastic single-sampling zeroth-order gradient descent algorithm. The expectation is

taken over the σ-field generated by the random variables {ξ1,2
k , vk}Tk=1.

Theorem 5.2.3 Suppose f(x) is convex and f ∈ C0
L0

(Rn) satisfies Assumption 5.2.1,

F (x, ξ) ∈ C1
L(Rn) for all ξ. Let {xk} be the sequence produced by the stochastic single-

sampling zeroth-order gradient descent algorithm. Furthermore, we define an averaging

sequence as

x̄T =
1

T

T∑
k=1

xk. (5.17)

Then, the following inequality holds

E [f(x̄T )− f(x∗)] ≤ ‖x
1 − x∗‖2

2ηT
+
η

2

(
4nN + µ2L2n2 + 4

n2

µ2
θ2

0

)
+ Lµ2. (5.18)

In particular, if we set η = T−2/3, and µ = T−1/6, then an O(T−1/3) rate of convergence

follows.

Proof. Let zk := ‖xk − x∗‖. Then

z2
k+1 = ‖xk+1 − x∗‖2

=
∥∥∥ProjX

(
xk − ηGµ(xk, ξ1,2

k , vk)
)
− x∗

∥∥∥2

≤
∥∥∥xk − ηGµ(xk, ξ1,2

k , vk)− x∗
∥∥∥2

= z2
k + η2‖Gµ(xk, ξ1,2

k , vk)‖2 − 2ηGµ(xk, ξ1,2
k , vk)>(xk − x∗).
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Equivalently, we have

Gµ(xk, ξ1,2
k , vk)>(xk − x∗) ≤ 1

2η

(
z2
k − z2

k+1

)
+
η

2
‖Gµ(xk, ξ1,2

k , vk)‖2. (5.19)

Notice that E
ξ1,2k ,vk

[
Gµ(xk, ξ1,2

k , vk) | xk
]

= ∇fµ(xk) which is shown in (5.14), we have

∇fµ(xk)>(xk − x∗) ≤ 1

2η

(
E[z2

k | xk]− E[z2
k+1 | xk]

)
+
η

2
‖Gµ(xk, ξ1,2

k , vk)‖2.

Summing up the above inequalities and using the convexity of fµ, we have

E

[
T∑
k=1

(fµ(xk)− fµ(x∗))

]
≤ 1

2η
‖z1‖22 +

η

2

T∑
k=1

E
[
‖Gµ(xk, ξ1,2

k , vk)‖2
]
. (5.20)

By (5.10), we have

f(xk)− f(x∗) ≤ fµ(xk)− fµ(x∗) + Lµ2. (5.21)

Combining (5.21) and (5.20) leads to

E

[
T∑
k=1

(f(xk)− f(x∗))

]
≤ 1

2η
‖z1‖22 +

η

2

T∑
k=1

E
[
‖Gµ(xk, ξ1,2

k , vk)‖2
]

+ Lµ2T. (5.22)

Based on (5.15), we can further bound
T∑
k=1

E
[
‖Gµ(xk, ξ1,2

k , vk)‖2
]

as

T∑
k=1

E
[
‖Gµ(xk, ξ1,2

k , vk)‖2
]
≤
(

4nN + µ2L2n2 + 4
n2

µ2
θ2

0

)
T.

Due to the convexity of f(x), we have

E [f(x̄T )− f(x∗)]

≤ E

[
1

T

T∑
k=1

(f(xk)− f(x∗))

]

≤ ‖z1‖2

2ηT
+
η

2

(
4nN + µ2L2n2 + 4

n2

µ2
θ2

0

)
+ Lµ2. (5.23)
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If we set η = T−2/3, and µ = T−1/6, then an O(T−1/3) rate of convergence follows.

�

5.2.2 Optimization with Star-Convexity

Definition 9 (Star-convex functions). A function f : Rn → R is star-convex if there

is x∗ ∈ argmin
x∈X

f(x) such that for all α ∈ [0, 1] and x ∈ X ,

f((1− α)x∗ + αx) ≤ (1− α)f(x∗) + αf(x). (5.24)

The following lemma characterizes the differentiable star-convex functions.

Lemma 5.2.4 For a differentiable function f , the star convexity condition (5.24) is

equivalent to the following condition

f(x)− f(x∗) ≤ ∇f(x)>(x− x∗), (5.25)

where x∗ = argmin
x∈X

f(x).

Proof. Suppose (5.24) holds, then we have

f(x)− f(x∗) ≤ f(x)− f((1− α)x∗ + αx)

1− α
, (5.26)

for all α ∈ [0, 1]. Note that

lim
α→1−

f(x)− f((1− α)x∗ + αx)

1− α
= ∇f(x)>(x− x∗),

which implies (5.25). Conversely, suppose that (5.25) holds. Let us denote

d(α) := f((1− α)x∗ + αx)− f(x∗).

Clearly, (5.24) is equivalent to

d(α) ≤ αd(1), for all 0 ≤ α ≤ 1. (5.27)

It remains to show that if f is differentiable then (5.25) implies (5.27). In fact, (5.25)
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leads to

f((1− α)x∗ + αx)− f(x∗) ≤ α∇f((1− α)x∗ + αx)>(x− x∗),

or,

d(α) ≤ αd′(α).

Hence, (
d(α)

α

)′
=
αd′(α)− d(α)

α2
≥ 0,

for all 0 < α ≤ 1, implying that d(α)
α is a nondecreasing function for α ∈ (0, 1]. Therefore,

d(α)

α
≤ d(1)

1
,

which proves (5.27) for α ∈ (0, 1]. Since d(0) = f(x∗) = 0, (5.27) in fact holds for all

α ∈ [0, 1]. �

Theorem 5.2.5 Suppose f(x) is star-convex and f(x) ∈ C1
L(Rn) satisfies Assumption

5.2.1, F (x, ξ) ∈ C1
L(Rn) for all ξ. Let {xk} be the sequence produced by the stochastic

single-sampling zeroth-order gradient descent algorithm. Furthermore, after T iteration,

we define a random output x̂T as follows

Prob
(
x̂T = xk

)
=

1

T
, for k = 1, 2, . . . , T. (5.28)

Then, the following inequality holds

E [f(x̂T )− f(x∗)] ≤ ‖x
1 − x∗‖2

2ηT
+
η

2

(
4nN + µ2L2n2 + 4

n2

µ2
θ2

0

)
+ µnLR, (5.29)

where X is assumed to be bounded with sup
x∈X
‖x‖ ≤ R. In particular, if we set η = T−3/4,

and µ = T−1/4, then we have an O(T−1/4) rate of convergence for E [f(x̂T )− f(x∗)].

Proof. Let zk := ‖xk − x∗‖. Similar to the proof of Theorem 5.3.7, we have

Gµ(xk, ξ1,2
k , vk)>(xk − x∗) ≤ 1

2η

(
z2
k − z2

k+1

)
+
η

2
‖Gµ(xk, ξ1,2

k , vk)‖2. (5.30)
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Notice that E
ξ1,2k ,vk

[Gµ(xk, ξ1,2
k , vk) | xk] = ∇fµ(xk) which is shown in (5.14), we have

∇fµ(xk)>(xk − x∗) ≤ 1

2η

(
E[z2

k | xk]− E[z2
k+1 | xk]

)
+
η

2
‖Gµ(xk, ξ1,2

k , vk)‖2.

Based on (5.11), it follows

∇f(xk)>(xk−x∗) ≤ 1

2η

(
E[z2

k | xk]− E[z2
k+1 | xk]

)
+
η

2
‖Gµ(xk, ξ1,2

k , vk)‖2+
µnL

2
‖xk−x∗‖.

Summing up the above inequalities and recall the weak star convexity of f , we have

E

[
T∑
k=1

(f(xk)− f(x∗))

]

≤ 1

2η
‖z1‖22 +

η

2

T∑
k=1

E
[
‖Gµ(xk, ξ1,2

k , vk)‖2
]

+
µnL

2

T∑
k=1

E
[
‖xk − x∗‖

]
. (5.31)

By the boundedness of X , we have ‖xk − x∗‖ ≤ 2R. Thus,

E

[
T∑
k=1

(f(xk)− f(x∗))

]
≤ 1

2η
‖z1‖22 +

η

2

T∑
k=1

E
[
‖Gµ(xk, ξ1,2

k , vk)‖2
]

+ µnLRT. (5.32)

Based on (5.15), we can bound
T∑
k=1

E
[
‖Gµ(xk, ξ1,2

k , vk)‖2
]

as

T∑
k=1

E
[
‖Gµ(xk, ξ1,2

k , vk)‖2
]
≤
(

4nN + µ2L2n2 + 4
n2

µ2
θ2

0

)
T.

Base on the definition of x̂T , we have

E [f(x̂T )− f(x∗)]

= E

[
1

T

T∑
k=1

(f(xk)− f(x∗))

]

≤ ‖z1‖2

2ηT
+
η

2

(
4nN + µ2L2n2 + 4

n2

µ2
θ2

0

)
+ µnLR. (5.33)

Setting η = T−3/4, and µ = T−1/4, an O(T−1/4) convergence rate in expectation

follows. �
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5.3 Optimization with Weakly Pseudo-Convex Objective

In this section, we introduce a notion of weak pseudo-convexity (WPC) which further

generalizes the star-convexity. Despite the similarity to the so-called strictly locally

quasi-convexity (SLQC) in [50], the WPC is in fact a weaker assumption. Our algorithm

is also based on the normalized gradient descent method. In particular, the key of our

zeroth-order algorithm is to build a novel estimation of the normalized gradient.

5.3.1 Problem Setup

We consider the following form of the problem (5.1)

min
x∈X

f(x) (5.34)

where X ⊂ Rn is a bounded convex set i.e., there exists R > 0 such that ‖x‖ ≤ R for all

x ∈ X , and f ∈ C1
L(X ). In addition, in this section, we present the following definitions

regarding the function f .

Definition 10 (Bounded Gradient) A function f(·) is said to have bounded gradient

if there exists a finite positive value M such that for all x ∈ X , it holds that ‖∇f(x)‖ ≤
M .

Note that if f(·) has bounded gradient, then it is also Lipschitz continuous with Lipschitz

constant M on the set X .

Definition 11 (Weak Pseudo-Convexity) A function f(·) is weakly pseudo convex

(WPC) if there exists K > 0 such that

f(x)− f(x∗) ≤ K∇f(x)>(x− x∗)
‖∇f(x)‖

,

holds for all x ∈ X , with the convention that ∇f(x)
‖∇f(x)‖ = 0 if ∇f(x) = 0, where x∗ is one

optimal solution, i.e., x∗ ∈ arg minx∈X f(x).

Here we discuss some implications of the weak pseudo-convexity. If a differentiable func-

tion f(·) is Lipschitz continuous and pseudo-convex, then we have (see similar derivation

in [87])

f(x)− f(y) ≤M∇f(x)>(x− y)

‖∇f(x)‖
,
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for all y, x with f(x) ≥ f(y), where M is Lipschitz constant. Therefore, we can simply

let K = M , and the function is also weakly pseudo-convex. Moreover, as another

example, the star-convex function proposed by [91] is weakly pseudo-convex.

Proposition 5.3.1 If f(·) is star-convex and smooth with bounded gradient in X , then

f(·) is weakly pseudo-convex.

In light of Lemma 5.2.4, the proposition is obvious. We next introduce a property that

is essentially the same as the SLQC property introduced in [50].

Definition 12 (Acute Angle) Gradient of f(·) is said to satisfy the acute angle

condition if there exists a positive value Z such that

cos(∇f(x), x− x∗) =
∇f(x)>(x− x∗)
‖∇f(x)‖ · ‖x− x∗‖

≥ Z > 0,

holds for all x ∈ X , with the convention that ∇f(x)
‖∇f(x)‖ = 0 if ∇f(x) = 0, where x∗ is one

optimal solution, i.e., x∗ ∈ arg minx∈X f(x).

The following proposition shows that the acute angle condition together with the Lips-

chitz continuity implies the weak pseudo-convexity.

Proposition 5.3.2 If f(·) has bounded gradient and satisfies the acute angle condition,

then f(·) is weakly pseudo-convex.

The proof of Proposition 5.3.2 is straightforward, hence we omit it here. The class

of weakly pseudo-convex functions certainly go beyond the acute angle condition. For

example, below is another class of functions satisfying the WPC.

Proposition 5.3.3 If f(·) has bounded gradient and satisfy the α-homogeneity with

respect to its minimum, i.e., there exists α > 0 satisfying

f(t(x− x∗) + x∗)− f(x∗) = tα(f(x)− f(x∗)),

for all x ∈ X and t ≥ 0 where x∗ = arg minx∈X f(x), then f(·) is weak pseudo-convex.

Proof. By taking the derivative of the equation (5.3.3) with respective to t and letting

t = 1, we have

∇f(x)>(x− x∗) = α(f(x)− f(x∗)).

144



Therefore, we have

f(x)− f(x∗) =
1

α
∇f(x)>(x− x∗)

≤ M

α

∇f(x)>(x− x∗)
‖∇f(x)‖

,

which satisfies the weak pseudo-convexity condition with K = M
α . �

Proposition 5.3.3 suggests that all non-negative homogeneous polynomial satisfies WPC

with respect to 0. Take f(x) = (x2
1+x2

2)2+10(x2
1−x2

2)2 as an example. It is easy to verify

that f(·) satisfies the condition in Proposition 5.3.3, and thus is weakly pseudo-convex.

In Figure 5.1, the curvature of f(x) and a sub-level set of this function are plotted.

The function is not quasi-convex since the sub-level set is non-convex. However, this

function satisfies the acute-angle condition in 12.
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Figure 5.1: Plot of a WPC function that is not quasi-convex.

Note that if fi(x) is αi-homogeneous with respect to the shared minimum x∗ for all

1 ≤ i ≤ I with αi ≥ α > 0, and the gradient of fi is uniformly bounded over a set X ,

then
∑I

i=1 fi(x) is WPC. As a result, we can construct functions that are WPC but

do not satisfy the acute-angle condition. Consider a two-dimensional function f(x) =

x2
1 + |x2|3/2, and suppose that X is the unit disc centered at the origin. Clearly, f(x)

is differentiable and Lipchitz continuous in X . Also, it is the sum of a 2-homogeneous

function and a 3/2-homogeneous function with a shared minimum (0, 0). Thus f(x) is
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WPC. We compute that

cos(∇f(x), x− x∗) =
∇f(x)>(x− x∗)
‖∇f(x)‖ · ‖x− x∗‖

=
2x2

1 + 3
2 |x2|3/2√

(4x2
1 + 9

4 |x2|)(x2
1 + x2

2)
.

Consider a parameterized path (x1, x2) = (t1/2, t2/3) with t > 0. On this path, we have

cos(∇f(x), x− x∗) =
2x2

1 + 3
2 |x2|3/2√

(4x2
1 + 9

4 |x2|)(x2
1 + x2

2)

=
7t

2
√

(4t+ 9
4 t

2/3)(t+ t4/3)

=
7t1/6

2
√

(4t1/3 + 9
4)(1 + t1/3)

.

Therefore, along the path, as t approaches to 0, we have cos(∇f(x), x− x∗)→ 0. This

example shows that a WPC function may fail to satisfy the acute angle condition.

Definition 13 (Error Bound) There exists D > 0 and 0 < γ ≤ 1 such that

‖x− x∗‖ ≤ D‖∇f(x)‖γ ,

for all x ∈ X , where x∗ is the optimal solution to f(x), i.e., x∗ = arg minx∈X f(x).

Since X is a compact set, the error bound condition is essentially the requirement for

a unique optimal solution and no local minimum. We further introduce some notations

that will be used in subsequent analysis.

S(n): the unit sphere in Rn;

m(A): the measure of set A ⊂ Rn;

βn: the area of the unit sphere S(n);

dSn: the differential unit on the unit sphere S(n);

1A(x): the indicator function of set A;

sign(·): the sign function.
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5.3.2 The Zeroth-Order Normalized Gradient Descent

In this part, we assume that only the function value information f(x) is available for

a given query point x. In zeroth-order setting, the main technique we used so far

is to construct a zeroth-order approximation of the gradient of a smoothed function.

That smoothed function is often created by integrating the original loss function with

a chosen probability distribution. By querying some random samples of the function

value according to a probability distribution, the player is able to create an unbiased

zeroth-order approximation of the gradient of the smoothed function. This is, however,

not applicable in our normalized gradient descent algorithm since what we need is the

direction of the gradient. Therefore, we shall first develop a new type of zeroth-order

oracle that can approximate the gradient direction without averaging multiple samples

of gradients when the norm of the gradient is not too small.

Before we present the main results, several lemmas are in order. The first lemma

considers some geometric properties of the unit sphere.

Lemma 5.3.4 For any non-zero vector d ∈ Rn and δ < 1, let Sxδ be defined as

Sxδ :=
{
v ∈ S(n)| s.t. |d>v| < δ2

}
.

If ‖d‖ ≥ δ, then there exists a constant Cn > 0, such that

m(Sxδ ) < Cnδ.

Proof. We have

m(Sxδ ) =

∫
v∈S(n)∩Sxδ

dSn.

By the symmetry of S(n), we may assume w.l.o.g. that d = (0, . . . , 0, ‖d‖)>. Let a = δ2

‖d‖ .
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Since a < 1, we have

m(Sxδ )

=

∫
v∈S(n)

1{− δ2

‖d‖≤vn≤
δ2

‖d‖

}(v)dSn

= 2

∫
1−a2≤v21+···+v2n−1≤1

1√
1− v2

1 − · · · − v2
n−1

dv1 · · · dvn−1

= 2

∫
√

1−a2≤r≤1

rn−2

√
1− r2

dr · dSn−1

= 2βn−1

∫
√

1−a2≤r≤1

rn−2

√
1− r2

dr

≤ 2βn−1

∫
√

1−a2≤r≤1

1√
1− r2

dr

= 2βn−1

(π
2
− arcsin(

√
1− a2)

)
= 2βn−1(arcsin a) < 2βn−1

π

2
a = πβn−1

δ2

‖d‖
≤ πβn−1δ.

By setting Cn = πβn−1, the desired result follows. �

The next lemma leads to an unbiased first-order estimator of the direction of a

vector.

Lemma 5.3.5 Suppose d ∈ Rn, and d 6= 0. Then,∫
v∈S(n)

sign(d>v)vdSn = Pn
d

‖d‖
,

where Pn is a constant.

Proof. By the symmetry of S(n), again we may assume d = (0, . . . , 0, ‖d‖)>, and∫
v∈S(n)

sign(d>v)vdSn = 2

∫
v∈S(n)

1vn≥0(v)vdSn.

Notice that if v ∈ S(n), then u = (−v1,−v2, . . . ,−vn−1, vn)> is also in S(n). As a result,
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the above integral will be on the direction of d
‖d‖ = (0, 0, . . . , 0, 1)>, and its length is

given by

2

∫
v∈S(n)

1vn≥0(v)vndSn

= 2

∫
0≤v21+···+v2n−1≤1

√
1− v2

1 − · · · − v2
n−1dSn

= 2

∫
0≤v21+···+v2n−1≤1

√
1− v2

1 − · · · − v2
n−1√

1− v2
1 − · · · − v2

n−1

dv1 . . . dvn−1

= 2

∫
0≤r≤1

rn−2drdSn−1

=
2βn−1

n− 1
:= Pn.

�

Using the previous lemmas, we have the following result which constructs a zeroth-

order estimator for the normalized gradient.

Theorem 5.3.6 Suppose f(x) ∈ C1
L(Rn) and ‖∇f(x)‖ ≥ δ at x. Let ε = δ2

L . Then we

have ∥∥∥∥ES(n) [sign(f(x+ εv)− f(x))v]−Qn
∇f(x)

‖∇f(x)‖

∥∥∥∥ ≤ 2Dnδ

where v is a random vector uniformly distributed over S(n), and Qn = Pn
βn

and Dn = Cn
βn

.

Proof. Since f has Lipschitz gradient, we have

|f(x+ εv)− f(x)− ε∇f(x)>v| ≤ εL

2
‖v‖2 ⇐⇒

∇f(x)>v − ε

2
L ≤ f(x+ εv)− f(x)

ε
≤ ∇f(x)>v +

ε

2
L.

Since |∇f(x)>v| ≥ δ2 for v ∈ S(n) \ Sxδ , if we let ε = δ2

L , we have

∇f(x)>v − δ2

2
≤ f(x+ εv)− f(x)

ε
≤ ∇f(x)>v +

δ2

2
.
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Thus,

sign
(
∇f(x)>v

)
= sign

(
∇f(x)>v − δ2

2

)
≤ sign

(
f(x+ εv)− f(x)

ε

)
≤ sign

(
∇f(x)>v +

δ2

2

)
= sign

(
∇f(x)>v

)
,

implying sign(∇f(x)>v) = sign
(
f(x+εv)−f(x)

ε

)
. Therefore,

βnES(n) [sign(f(x+ εv)− f(x))v]

=

∫
v∈S(n)\Sxδ

[sign(f(x+ εv)− f(x))v] dS(n) +

∫
v∈Sxδ

[sign(f(x+ εv)− f(x))v] dS(n)

=

∫
v∈S(n)\Sxδ

[
sign(∇f(x)>v)v

]
dS(n) +

∫
v∈Sxδ

[sign(f(x+ εv)− f(x))v] dS(n)

=

∫
v∈S(n)

[
sign(∇f(x)>v)v

]
dS(n)−

∫
v∈Sxδ

[
sign(∇f(x)>v)v

]
dS(n)

+

∫
v∈Sxδ

[sign(f(x+ εv)− f(x))v] dS(n)

= Pn
∇f(x)

‖∇f(x)‖
−
∫

v∈Sxδ

[
sign(∇f(x)>v)v

]
dS(n)

+

∫
v∈Sxδ

[sign(f(x+ εv)− f(x))v] dS(n),

where the last equality is due to Lemma 5.3.5.

Putting the estimations together, we have∥∥∥∥ES(n) [sign(f(x+ εv)− f(x))v]− Pn
βn

∇f(x)

‖∇f(x)‖

∥∥∥∥
≤ 1

βn

∫
v∈Sxδ

∥∥∥sign(∇f(x)>v)v
∥∥∥ dS(n) +

1

βn

∫
v∈Sxδ

‖sign(f(x+ εv)− f(x))v‖ dS(n)

≤
2m(Sxδ )

βn
≤ 2Cnδ

βn
.
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Note that Qn = Pn
βn

and Dn = Cn
βn

, the theorem is proved. �

Based on Theorem 5.3.6, for a given δ > 0 we have a zeroth-order estimator for the

normalized gradient given as:

G(x, v) =
sign(f(x+ εv)− f(x))

Qn
v, (5.35)

where ε = δ2/L and v is an uniformly distributed random vector over S(n). Theorem

5.3.6 implies that the distance between the estimator and the normalized gradient can

be controlled up to a factor of δ. Specifically, the Zeroth-Order Normalized Gradient

Descent (ZNGD) algorithm is as follows.

Algorithm 3: Zeroth-Order Normalized Gradient Descent (ZONGD)

Input: feasible set X , number of iterations T , δ
Initialization: x1 ∈ X , ε = δ2/L
for k = 1 to T do

Sample vk uniformly over S(n) ⊂ Rn;
play xk and xk + εvk;
receive feedbacks f(xk) and f(xk + εvk);

set G(xk, vk) = sign(f(xk+εvk)−f(xk))
Qn

vk;

update xk+1 = ProjX
(
xk − ηG(xk, vk)

)
.

end for

Note that Algorithm 3 actually outputs a random sequence of vectors {xk}T1 , and

the following theorem shows an expected O(T−1/2) rate of convergence for the zeroth-

order normalized gradient descent algorithm. The expectation is taken over the σ-field

generated by the random variables {vk}Tk=1.

Theorem 5.3.7 Suppose f ∈ C1
L(X ), and satisfies the error bound condition (Defini-

tion 13) and is weakly pseudo-convex with bounded gradient. Let {xk}T1 be the sequence

produced by the zeroth-order normalized gradient descent algorithm. Furthermore, we

define an output solution as

x̂T = argmin
x∈{xk}T1

f(x) (5.36)

Then, the following inequality holds

E [f(x̂T )− f(x∗)] ≤ K

2ηT

(
4R2 +

Tη2

Q2
n

)
+ Uδγ . (5.37)
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In particular, if we set η = 2QnR
T and δ = min{T−

1
2γ , T−

1
4 } where Qn = Pn

βn
and Pn is

a constant, then an O(T−1/2) rate of convergence follows.

Proof. Let zk := ‖xk − x∗‖. Then,

z2
k+1 = ‖xk+1 − x∗‖2 =

∥∥∥∥∥∏
X

(
xk − ηG(xk, vk)

)
− x∗

∥∥∥∥∥
2

≤
∥∥∥xk − ηG(xk, vk)− x∗

∥∥∥2
= z2

k + η2‖G(xk, vk)‖2 − 2ηG(xk, vk)>(xk − x∗)

≤ z2
k +

η2

Q2
n

− 2ηG(xk, vk)>(xk − x∗).

By rearranging the terms, we have:

KG(xk, vk)>(xk − x∗) ≤ K

2η

(
z2
k − z2

k+1 +
η2

Q2
n

)
.

Now based on ‖∇f(xk)‖, we have two different cases:

• ‖∇f(xk)‖ ≥ δ. In this case, by Theorem 5.3.6, we have

‖E[G(xk, vk)|xk]− ∇f(xk)

‖∇f(xk)‖
‖ ≤ 2Dn

Qn
δ.

Therefore,

f(xk)− f(x∗) ≤ K
∇f(xk)>(xk − x∗)
‖∇f(xk)‖

≤ KE[G(xk, vk)|xk]>(xk − x∗) +
2DnK

Qn
δ‖xk − x∗‖

=
K

2η

(
E[z2

k|xk]− E[z2
k+1|xk] +

η2

Q2
n

)
+

2DnK

Qn
δ‖xk − x∗‖

≤ K

2η

(
E[z2

k|xk]− E[z2
k+1|xk] +

η2

Q2
n

)
+

4DnK

Qn
Rδ. (5.38)

• ‖∇f(xk)‖ < δ. In this case, by the error bound property (Definition 13) we have

‖xk − x∗‖ ≤ D‖∇f(xk)‖γ < Dδγ .
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Therefore, due to the boundedness of gradient

f(xk)− f(x∗) ≤M‖xk − x∗‖ ≤MDδγ , (5.39)

and

0 ≤ K

2η

(
E[z2

k|xk]− E[z2
k+1|xk] +

η2

Q2
n

)
−KE[G(xk, vk)|xk]>(xk − x∗)

≤ K

2η

(
E[z2

k|xk]− E[z2
k+1|xk] +

η2

Q2
n

)
+K

βn
Qn

Dδγ .

Adding (5.39) with (5.40), it follows that

f(xk)− f(x∗)

≤ K

2η

(
E[z2

k|xk]− E[z2
k+1|xk] +

η2

Q2
n

)
+

(
K
βn
Qn

D +MD

)
δγ . (5.40)

In view of (5.38) and (5.40), if we let U = max
{

4CnK
Pn

R, (K βn
Qn
D +MD)

}
, then in

either case the following inequality holds:

f(xk)− f(x∗) ≤ K

2η

(
E[z2

k|xk]− E[z2
k+1|xk] +

η2

Q2
n

)
+ Uδγ .

Summing these inequalities over k = 1, ..., T , we have

E [f(x̂T )− f(x∗)]

≤ 1

T
E

[
T∑
k=1

(f(xk)− f(x∗))

]

≤ K

2ηT

(
E[z2

1 ]− E[z2
T+1] +

Tη2

Q2
n

)
+ Uδγ

≤ K

2ηT

(
4R2 +

Tη2

Q2
n

)
+ Uδγ .

By choosing η = 2QnR√
T

, and δ = min{T−
1
2γ , T−

1
4 }, we have

E [f(x̂T )− f(x∗)] ≤ 2KR

Qn

1√
T

+
U√
T
≤ O(

1√
T

).

�
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Compared with the result in [50] where a first-order method is considered, we show

the similar convergence rate for a zeroth-order method under a more general condi-

tion (weakly pseudo-convex). Moreover, the zeroth-order estimator for the normalized

gradient could be of interest on its own.

5.4 Optimization with a Controllably Noisy Objective

In this section, we consider model (5.1) without h and X = Rn as following

min f(x)

s.t. x ∈ Rn.
(5.41)

Moreover, the evaluation of the objective function f is assumed can be made to any

degree of precision at the cost of paying an increased effort. To be precise, we have the

following assumption.

Assumption 5.4.1 For all ρ > 0, by an effort of eff(ρ), the feedback f̂ρ(x) (which could

be either stochastic or deterministic) can be made to be no more than ρ away from the

true value f(x), i.e.

|f̂ρ(x)− f(x)| < ρ.

For simplicity we assume that eff is independent of x. For problem (5.41), we study

how to achieve the best overall precision by optimizing total efforts. We choose to work

with a finite difference approach, and consider the following deterministic zeroth-order

oracle.

Definition 14 Let ei, i = 1, . . . , n, be the standard orthonormal basis of Rn. Then for

∀µ > 0, ρ > 0, we define

gi(x, µ, ρ) =
f̂ρ(x+ µei)− f̂ρ(x)

µ
, (5.42)

and g(x, µ, ρ) =
n∑
i=1

gi(x, µ, ρ)ei.

In this section, we assume that the objective function f(x) is strongly convex defined

as follows:
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Definition 15 A smooth function f is said to be σ-strongly convex if

σ

2
‖x− y‖2 ≤ f(y)− f(x)−∇f(x)T(y − x), ∀x, y ∈ Rn.

Note that we do not impose any constraint on f̂ρ(x). The following lemma shows that

if ρ is small enough, the difference between g(x, µ, ρ) and ∇f(x) can be bounded.

Lemma 5.4.1 For f ∈ C1
L(Rn) and x ∈ Rn, we have:

‖g(x, µ, ρ)−∇f(x)‖ ≤
√

2nµL

2
+

2
√

2nρ

µ
,

‖g(x, µ, ρ)‖2 ≤ 2‖∇f(x)‖2 +
nµ2L2

2
+

8nρ2

µ2
.

Proof. Since f ∈ C1
L(Rn), from descent lemma we have

−L
2µ

2 + ∂f
∂xi

(xk)µ ≤ f(xk + µei)− f(xk) ≤ L
2µ

2 + ∂f
∂xi

(xk)µ,

−L
2µ ≤ 1

µ

(
f(xk + µei)− f(xk)

)
− ∂f

∂xi
(xk) ≤ L

2µ.

Therefore,

‖g(x, µ, ρ)−∇f(x)‖2

=

n∑
i=1

(
1

µ

(
f̂ρ(x

k + µei)− f̂ρ(xk)
)
− ∂f

∂xi
(xk)

)2

≤
n∑
i=1

2

{(
1

µ

(
f(xk + µei)− f(xk)

)
− ∂f

∂xi
(xk)

)2

+
1

µ2

(
f̂ρ(x

k + µei)− f(xk + µei) + f(xk)− f̂ρ(xk)
)2
}

≤ n

2
µ2L2 +

8nρ2

µ2
,

155



which prove the first inequality. For the second inequality, we have

‖g(x, µ, ρ)‖2

=
n∑
i=1

(
1

µ

(
f̂ρ(x

k + µei)− f̂ρ(xk)
))2

=
n∑
i=1

1

µ2

((
f(xk + µei)− f(xk)

)
+
(
−f̂ρ(xk + µei) + f(xk + µei)− f(xk) + f̂ρ(x

k)
))2

=
n∑
i=1

1

µ2

(
2
(
f(xk + µei)− f(xk)

)2

+2
(
−f̂ρ(xk + µei) + f(xk + µei)− f(xk) + f̂ρ(x

k)
)2
)

≤
n∑
i=1

(
2
µ2L2

4
+ 2

∂f

∂xi
(xk)2 +

8ρ2

µ2

)
=

nµ2L2

2
+ 2‖∇f(x)‖2 +

8nρ2

µ2
.

�

5.4.1 The Zeroth-Order Gradient Descent Method

In this section, we present a zeroth order algorithm that achieves the linear convergence

rate. The algorithm is as follows.
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Zeroth-order Gradient Descent with Dynamically Increasing Precision (ZGDDIP)

Parameters: γ > 0, β ∈ (0, 1), ε > 0, α > 0, L > 0.

Initialization: y0 = 0, ρ = 1/2.

for t = 0, 1, · · · , T ,

x0 = yt;

µ =
2
√
ρ√
L

;

for k = 0, 1, · · · ,Kt,

g(xk, µ, ρ) =

n∑
i=1

(f̂ρ(xk+µei)−f̂ρ(xk))ei

µ ;

xk+1 = xk − αg(xk, µ, ρ).

end for

Set k̄t = arg mink f̂ρ(x
k);

yt+1 = xk̄t ;

ρ = βρ.

end while

Note that in the ZGDDIP algorithm, there are two layers of iterations; the outer

loop which generates the {yt} sequence, and the inner loop which uses gradient descent

with the increasing approximation precision ρ for g(xk, µ, ρ). Moreover, in practice, as

the original function f is not known, the selection of yt+1 only depends on the noisy

estimation f̂ρ.

For the ease of later reference, we introduce two parameters :

C1 =
1

32nL
and C2 =

2√
L
,

where L is the Lipschitz constant for gradient ∇f .

The following proposition establishes the sufficient decrease for the inner iterations.

Proposition 5.4.2 Suppose f is σ-strongly convex (Definition 15) and f ∈ C1
L(Rn).

Set α = 32
133 in ZGDDIP. For all ρ, if ‖∇f(xk)‖ ≥

√
ρ
C1

for all steps k = 1, ...,Kt, then

f(xk+1)− f(x∗) ≤
(

1− 32σ

133L

)(
f(xk)− f(x∗)

)
.

Proof. If ‖∇f(xk)‖ ≥
√

ρ
C1

, we have ρ ≤ C1‖∇f(xk)‖2
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and µ = C2
√
ρ ≤ C2

√
C1‖∇f(xk)‖.

By Definition 15, we have:

f(xk+1)− f(xk)

≤ Lα2

2
‖g(xk, µ, ρ)‖2 − α∇f(xk)Tg(xk, µ, ρ)

=
Lα2

2
‖g(xk, µ, ρ)‖2 − α∇f(xk)T

(
g(xk, µ, ρ)−∇f(xk)

)
− α‖∇f(xk)‖2

≤ Lα2

2

(
nµ2L2

2
+ 2‖∇f(xk)‖2 +

8nρ2

µ2

)
+α‖∇f(xk)‖

(√
2nµL

2
+

2
√

2nρ

µ

)
− α‖∇f(xk)‖2

≤ Lα2

2
‖∇f(xk)‖2

(
nC2

2C1L
2

2
+ 2 +

8nC1

C2
2

)
+α‖∇f(xk)‖2

(√
2nC1C2L

2
+

2
√

2nC1

C2

)
− α‖∇f(xk)‖2

≤ Lα2

2
‖∇f(xk)‖2

(
nC2

2C1L
2

2
+ 2 +

8nC1

C2
2

)
−α‖∇f(xk)‖2

(
1−
√

2nC1C2L

2
− 2
√

2nC1

C2

)
≤ 133Lα2

128
‖∇f(xk)‖2 − 1

2
α‖∇f(xk)‖2.

Since we have chosen α = 32
133L , it follows that

f(xk+1)− f(xk) ≤ − 16

133L
‖∇f(xk)‖2.

By the strong convexity, we have:

f(x∗)− f(xk) ≥ − 1

2σ
‖∇f(xk)‖2.

Therefore, we have

f(xk+1)− f(x∗) ≤ f(xk)− f(x∗)− 16

133L
‖∇f(xk)‖2

≤
(

1− 32σ

133L

)(
f(xk)− f(x∗)

)
.
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The next proposition shows that, with a constant Kt, the precision can be improved

by a constant factor β.

Proposition 5.4.3 Suppose f is σ-strongly convex (Definition 15) and f ∈ C1
L(Rn).

In ZGDDIP, set α = 32
133L , and

K0 =

⌊
− ln (4C1σ (f(0)− f(x∗)))

ln
(
1− 32σ

133L

) ⌋
+ 1

and

Kt =

 lnβ − ln
(

1
2C1σ

+ 2
)

ln
(
1− 32σ

133L

)
+ 1,∀ρ < 1/2.

Then we have

f(yt)− f(x∗) ≤
(

1

2C1σ
+ 2

)
ρ, ∀t = 0, ..., T. (5.43)

Proof. In the first outer iteration, t = 0, and

K0 >
− ln (4C1σ (f(0)− f(x∗)))

ln
(
1− 32σ

133L

) .

Based on Proposition 5.4.2, we either have:

f(xK0)− f(x∗) ≤
(

1− 32σ

133L

)K0

(f(0)− f(x∗)) ≤ ρ

2C1σ
,

or ‖∇f(xk)‖ ≥
√

ρ
C1

for some k. In the latter case, we have

f(xk)− f(x∗) ≤ 1

2σ
‖∇f(xk)‖2 ≤ ρ

2C1σ
.
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Therefore, we have

min
k=0,...,Kt

f(xk)− f(x∗) ≤ ρ

2C1σ
,

min
k=0,...,Kt

f̂ρ(x
k)− f(x∗) ≤ ρ

2C1σ
+ ρ,

f̂ρ(x
k̄)− f(x∗) ≤ ρ

2C1σ
+ ρ,

f(xk̄)− f(x∗) ≤
(

1

2C1σ
+ 2

)
ρ.

Suppose (5.43) holds for 0, ..., t− 1, i.e.

f(ys)− f(x∗) ≤
(

1

2C1σ
+ 2

)
1

2
βs−1,

for all s = 0, ..., t− 1. By Proposition 5.4.2, we will either have:

f(xKt)− f(x∗) ≤
(

1− 32σ

133L

)Kt (
f(yt−1)− f(x∗)

)
≤ β

1 + 4C1σ

(
1

2C1σ
+ 2

)
1

2
βt−1

≤ ρ

2C1σ

or ‖∇f(xk)‖ ≥
√

ρ
C1

for some k; hence

f(yt)− f(x∗) ≤
(

1

2C1σ
+ 2

)
ρ.

�

Therefore, with a constant step Kt, we are able to reduce the optimality gap from(
1

2C1σ
+ 2
)
ρ to

(
1

2C1σ
+ 2
)
βρ. We summarize the sample complexity and the total

effort needed, assuming that the effort function is eff(ρ) = O (ρ−κ) for some κ > 0.

Theorem 5.4.4 Suppose f is σ-strongly convex (Definition 15) and f ∈ C1
L(Rn). Let

α,K0,Kt be as defined in Proposition 5.4.3. In at most

M =

⌊
ln(4C1σε)− ln(1 + 4C1σ)

lnβ

⌋
+ 2
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outer iterations, we would have f(xk̄) − f(x∗) ≤ ε. Moreover, the total number of

function evaluations is of the order O(n(lnn)2 ln(1/ε)) (taking σ, L, β as constants).

In addition, if eff(ρ) = O (ρ−κ) for some κ > 0, the total efforts we need to spend is

TEF = O(n(lnn)2eff(ε)).

Proof. Let
(

1
2C1σ

+ 2
)
ρ = ε, we have ρ = 2C1σε

1+4C1σ
. Since in each outer iteration, ρ is

reduced to βρ. The total number of outer iterations required to reduce ρ from 1/2 to
2C1σε

1+4C1σ
is ln(4C1σε)−ln(1+4C1σ)

lnβ , thus proving the first claim. From Proposition 5.4.3, we

know that the total effort required is upper bounded by

n

⌊
− ln (4C1σ (f(0)− f(x∗)))

ln
(
1− 32σ

133L

) ⌋

+n
ln(4C1σε)− ln(1 + 4C1σ)

lnβ

 lnβ − ln
(

1
2C1σ

+ 2
)

ln
(
1− 32σ

133L

)
+ 2n,

which is of the order O(n lnn ln(1/ε)).

We may specify the total efforts to spend to be

TEF ≤ n

⌊
− ln(4C1σ(f(0)−f(x∗)))

ln(1− 32σ
133L)

⌋
eff(1/2) + n

∑M−1
i=1 eff(0.5βi)

⌊
lnβ−ln

(
1

2C1σ
+2
)

ln(1− 32σ
133L)

⌋

= n

⌊
− ln(4C1σ(f(0)−f(x∗)))

ln(1− 32σ
133L)

⌋
eff(1/2) +O

(
n2κ

⌊
lnβ−ln

(
1

2C1σ
+2
)

ln(1− 32σ
133L)

⌋
β−Mκ−β−κ
β−κ−1

)
.

Since M ≤ ln ε
lnβ + ln(4C1σ)−ln(1+4C1σ)

lnβ + 3, we have TEF = O(n lnn eff(ε)). �

Remark : If we use the highest precision from the beginning, i.e., we let ρ = 2C1σε
1+4C1σ

in the first outer iteration, it is not hard to verify that the number of iterations re-

quired is ln ε−ln(f(0)−f(x∗))
ln(133L−32σ)−ln(133L) . Therefore, the total sample complexity is of the order

O(n lnn ln(1/ε)) but the total effort required is O(n lnn ε−κ ln(1/ε)). By dynamically

increasing the precision, we can reduce the total effort by a factor of ln(1/ε).

5.4.2 The Zeroth-Order Ellipsoid Method

In this section, we present another algorithm that incorporate the ellipsoid method. We

show that this algorithm also achieves the linear convergence rate. We further show that

one can relax the assumption of strongly convexity. We assume in this subsection that

161



function f(x) is Lipschitz continuous. We start by showing that if µ is small enough,

g(x, µ, ρ) provides a supporting hyperplane.

Lemma 5.4.5 Suppose f is σ-strongly convex (Definition 15) and f ∈ C1
L(Rn). If

µ ≤ εσ
2L
√

2n
, and ρ = µ2L

4 , then it holds that

f(x)− f(x∗) ≤ 2L

σ
g(x, µ, ρ)>(x− x∗), (5.44)

as long as ‖x− x∗‖ ≥ ε, where x∗ is the minimum point of f .

Proof. By Lemma 5.4.1, we have

g(x, µ, ρ)>(x− x∗) ≥ ∇f(x)>(x− x∗)−

(√
2nµL

2
+

2
√

2nρ

µ

)
‖x− x∗‖

≥ σ‖x− x∗‖2 −
√

2nµL‖x− x∗‖

=
σ

2
‖x− x∗‖2 + ‖x− x∗‖

(σ
2
‖x− x∗‖ −

√
2nµL

)
.

Clearly, as long as ‖x − x∗‖ ≥ ε, we have g(x, µ, ρ)>(x − x∗) ≥ σ
2 ‖x − x

∗‖2, and

therefore,

f(x)− f(x∗) ≤ ∇f(x)>(x− x∗)

≤ L‖x− x∗‖2

≤ 2L

σ
g(x, µ, ρ)>(x− x∗). (5.45)

�

Suppose that an initial ball with radius R is found to contain x∗. At step k, we have

an iterative point xk. We then spend effort to compute a ρ-accurate search direction

at xk + µei. With that direction, we proceed with the ellipsoid method. Formally, we

present our zeroth-order ellipsoid algorithm as follows.
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The zeroth-order ellipsoid algorithm

Parameters: ρ, µ > 0.

Initialization: x0 = a0 = 0, A0 = R2I.

for k = 0, 1, · · · , do

dk = g(xk, µ, ρ) =

n∑
i=1

(f̂ρ(xk+µei)−f̂ρ(xk))ei

µ ;

bk = Akdk/
√

(dk)TAkdk;

Ak+1 = n2

n2−1

(
Ak − 2

n+1b
k(bk)T

)
;

xk+1 = xk − 1
n+1b

k.

end for

Denote the ellipsoid at the k-th iteration be E(Ak;xk) := {x | (x − xk)>A−1
k (x −

xk) ≤ 1}. Inequality (5.45) stipulates that as long as ‖xk − x∗‖ ≥ ε, the half-ellipsoid

E(Ak;xk) ∩ {x | (dk)>(x − xk) ≤ 0} contains the optimal solution x∗. Below, we shall

present a convergence analysis without resorting to the geometric insights of the ellipsoid

algorithm; see also [36].

Theorem 5.4.6 Set 0 < ε ≤ 1, µ = εσ
2L
√

2n
, and ρ = µ2L

4 . Suppose f is σ-strongly

convex (Definition 15) and f ∈ C0
L0

(Rn)∩C1
L(Rn). Let us run the zeroth-order ellipsoid

algorithm for k iterations. Then, either min0≤`≤k ‖x` − x∗‖ < ε, or

min
0≤`≤k

f(x`)− f(x∗) ≤ 4
√

2LRmax(L0, σ)

σ
exp

(
− k

2n2

)
.

Proof. Denote

δk :=

√
g(xk, µ, ρ)>Akg(xk, µ, ρ)

‖g(x, µ, ρ)‖
,

and δ′k := min1≤`≤k δ`.

If ‖xk − x∗‖ ≥ ε, then by Lemma 5.4.5 we have

f(xk)− f(x∗) ≤ 2L

σ
(dk)T(xk − x∗)

≤ 2L

σ

[
(dk)Txk −min{(dk)Tx | x ∈ E(Ak;xk)}

]
=

2L

σ

√
(dk)TAkdk

=
2L‖dk‖
σ

δk. (5.46)
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Denote τ := n2

n2−1
and ζ := 2

n+1 . By the Sherman-Morrison formula,

(Ak+1)−1 =
1

τ

[
(Ak)−1 +

ζ

1− ζ
· dk(dk)T

(dk)TAkdk

]
,

det(Ak+1) = τn(1− ζ) det(Ak).

This leads to

det((Ak+1)−1) =
(

[τn(1− ζ)]k+1 det(A0)
)−1

=
(

[τn(1− ζ)]k+1R2n
)−1

,

tr ((Ak+1)−1) =
1

τ
tr ((Ak)−1) +

ζ

τ(1− ζ)
δ−2
k

=
1

τk+1
tr ((A0)−1) +

ζ

1− ζ

k∑
`=0

1

τk−`+1
· 1

δ2
`

.

Using the inequality

n
(

det(Ak+1)−1
) 1
n ≤ tr

(
(Ak+1)−1

)
we have

n

R2τk+1
(

(1− ζ)
1
n

)k+1
≤ n

R2τk+1
+

ζ

1− ζ

k∑
`=0

1

τk−`+1
· 1

δ2
`

,

leading to

ζ

1− ζ

k∑
`=0

τ `

δ2
`

≥ n

R2

[
1

(1− ζ)
k+1
n

− 1

]
.

Hence,

(δ′k)
2 ≤ ζR2

n(1− ζ)(τ − 1)
× τk+1 − 1(

1

(1−ζ)
1
n

)k+1

− 1

. (5.47)

Because

τ(1− ζ)
1
n =

[(
n

n− 1

)n−1( n

n+ 1

)n+1
] 1
n

,

and (
n

n− 1

)n−1( n

n+ 1

)n+1

< exp

(
− 1

n

)
,
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it follows from (5.47) that

(δ′k)
2 ≤ ζR2

n(1− ζ)(τ − 1)
exp

(
− k

n2

)
=

2(n+ 1)R2

n
exp

(
− k

n2

)
≤ 4R2 exp

(
− k

n2

)
.

(5.48)

Since 0 < ε ≤ 1, by Lemma 5.4.1, we have

‖dk‖ ≤

√
2‖∇f(x)‖2 +

nµ2L2

2
+

8nρ2

µ2

≤
√

2‖∇f(x)‖+

√
nµL√

2
+

√
8nρ

µ

≤
√

2L0 +
εσ

2

≤
√

2 max(L0, σ).

Therefore, combining (5.46) and (5.48) we have

min
0≤`≤k

f(x`)− f(x∗) ≤ 2L‖dk‖
σ

δ′k ≤
4
√

2LRmax(L0, σ)

σ
exp

(
− k

2n2

)
.

�

Theorem 5.4.6 implies that in at most k = 2n2 ln
(

4
√

2Rmax(L0,σ)
σε2

)
iterations, the

zeroth order ellipsoid algorithm will ensure that

min
0≤`≤k

f(x`)− f(x∗) ≤ Lε2.

The total efforts required is 2n3 ln
(

4
√

2Rmax(L0,σ)
σε2

)
eff
(
σ2ε2

32nL

)
.

Remark : If f(x) is convex but not strongly convex, by assuming that f ∈ C0
L0

(Rn)∩
C1
L(Rn), then one may perturb the objective function to be

f(x) +
ε

R2
‖x‖2.

The function is now 2ε
R2 -strongly convex, and its minimum is ε away from that of the

original function. Replacing σ by ε, the total effort is 2n3 ln
(

4
√

2RL0
ε3

)
eff
(

ε4

32nL

)
.
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5.5 Regularized Optimization with Controllable Accura-

cies

In this section, we consider the general model (5.1), or

min
x∈X

Φ(x) := f(x) + h(x) (5.49)

where X ∈ Rn is bounded convex set contained in the Euclidean ball with radius R, f

is a smooth function but possibly non-convex, and h is a convex function but possibly

non-smooth. Furthermore, we introduce some definitions and assumptions regarding

the objective function.

For the function Φ(x), we define the proximal gradient mapping and proximal gra-

dient.

Definition 16 For a given x, the proximal gradient mapping x+ of Φ is defined as

x+ = argmin
y∈X

{
〈∇f(x), y〉+ h(y) +

1

2γ
‖y − x‖2

}
. (5.50)

Moreover, denote

∇̃Φ(x; γ) :=
1

γ
(x− x+).

Based on the proximal gradient, we can similarly define the proximal gradient dom-

inant condition of the composite function Φ(x).

Assumption 5.5.1 (Proximal Gradient Dominance) The function Φ(x) in (5.49)

is said to be proximal gradient dominant if there exist an α such that the following holds

Φ(x)− Φ∗ ≤ χ‖∇̃Φ(x;α)‖2, ∀x ∈ X (5.51)

where χ is a positive constant.

5.5.1 Basics of the Proximal Gradient Mapping

In this subsection, we discuss some properties of the proximal gradient mapping. The

use of the gradient ∇f(x) in (5.50) is not necessary, and it can be replaced by any vector
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d ∈ Rn. The proximal mapping can be similarly defined as

x+ = argmin
y∈X

{
〈d, y〉+ h(y) +

1

2γ
‖y − x‖2

}
. (5.52)

Moreover, the generalized proximal gradient can still be defined as

G(x, d, γ) :=
1

γ
(x− x+), (5.53)

where x+ is given by (5.52).

The first lemma shows the monotonicity of the norm of the generalized proximal

gradient.

Lemma 5.5.1 Let G(x, d, γ) be given in (5.53) for fixed x and d. Then, the norm

‖G(x, d, γ)‖ is a non-increasing function of γ.

Proof. We denote

m(γ) := min
y∈X

{
M(y, γ) := 〈d, y〉+ h(y) +

1

2γ
‖y − x‖2

}
. (5.54)

Since M(y, γ) is jointly convex with respect to y and γ, m(γ) is also convex. Moreover,

based on the definition of x+, we have

dm(γ)

dγ
= −‖x− x

+‖2

2γ2
. (5.55)

Due to the convexity of m(γ), the dm(γ)
dγ is a non-decreasing function. That results in

‖G(x, d, γ)‖ is a non-increasing function of γ. �

Besides its simplicity, the Lemma 5.5.1 has an important implication. It shows that

if Assumption 5.5.1 is satisfied with a specific α, then it would also hold for any γ such

that 0 < γ ≤ α.

The following lemmas present some geometric properties of the proximal gradient,

and their proofs can be found in [44]. The first lemma shows the magnitude of G(x, d, γ)

and its angle between d can be bounded, and the second lemma establishes the non-

expansiveness of the proximal gradient.

167



Lemma 5.5.2 Let x+ be given in (5.52). Then, the following inequality holds

〈d,G(x, d, γ)〉 ≥ ‖G(x, d, γ)‖2 +
1

γ

(
h(x+)− h(x)

)
.

Lemma 5.5.3 Suppose G(x, d1, γ) and G(x, d2, γ) are the generalized proximal gradient

with d1 and d2 in (5.52) respectively. Then, we have the inequality below

‖G(x, d1, γ)−G(x, d2, γ)‖ ≤ ‖d1 − d2‖. (5.56)

5.5.2 Deterministic Zeroth-Order Algorithm

In this section, we propose a zeroth-order ISTA algorithm for problem (5.49). Similarly,

we assume the controllable noisy function evaluation is available. For all ρ > 0, with

the effort eff(ρ), the noisy estimation is at most ρ away, i.e. |f̂ρ(x)− f(x)| < ρ for all x.

It is clear that for function f ∈ C1
L(X ), the bounds in Lemma 5.4.1 still hold. Let

g(x, µ, ρ) be defined as in Definition 14.

Lemma 5.5.4 Suppose f ∈ C1
L(X ), i.e. it satisfies (5.7), then the following inequalities

hold

‖g(x, µ, ρ)−∇f(x)‖ ≤
√

2nµL

2
+

2
√

2nρ

µ
,

‖g(x, µ, ρ)‖2 ≤ 2‖∇f(x)‖2 +
nµ2L2

2
+

8nρ2

µ2
.

Based on the oracle defined above, we propose the deterministic zeroth-order ISTA

algorithm.

Deterministic zeroth-order ISTA

Parameters: γ, µk, ρk > 0.

Initialization: x0 = 0.

for k = 0, 1, · · · ,
Set µk =

√
ρk;

g(xk, µk, ρk) =

n∑
i=1

(f̂ρk (xk+µkei)−f̂ρk (xk))ei

µk
;

xk+1 = argmin
y∈X

{
〈g(xk, µk, ρk), y〉+ h(y) + 1

2γ ‖y − x
k‖2
}
.

end for

168



Notice that the accuracy parameter ρk and the finite difference parameter µk are allowed

to change over time. Under the proximal gradient dominant condition, the following

theorem shows the relationship between consecutive iterates of the deterministic zeroth-

order ISTA. Moreover, the generalized proximal gradient is denoted as gk = 1
γ (xk −

xk+1).

Theorem 5.5.5 Suppose f ∈ C1
L(X ) and Φ(x) satisfies Assumption 5.5.1, and γ ≤

min{1/L, α}. Let {xk} be the sequence produced by the deterministic zeroth-order ISTA

algorithm. The following holds

Φ(xk+1)− Φ∗ ≤

(
1−

γ − Lγ2

2

2χ

)
(Φ(xk)− Φ∗)

+

(
γ − Lγ2

2

)(
nµ2

kL
2

2
+

8nρ2
k

µ2
k

)
+ 2R

(√
2nµkL

2
+

2
√

2nρk
µk

)
,

where R is the radius of X , i.e. ‖x‖ ≤ R ∀x ∈ X .

Proof. It follows from Assumption 10 that

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2

= f(xk)− 〈∇f(xk), γgk〉+
Lγ2

2
‖gk‖2

= f(xk)− γ〈g(xk, µk, ρk), g
k〉+

Lγ2

2
‖gk‖2 + γ〈g(xk, µk, ρk)−∇f(xk), gk〉

≤ f(xk)− γ‖gk‖2 + h(xk)− h(xk+1) +
Lγ2

2
‖gk‖2

+γ〈g(xk, µk, ρk)−∇f(xk), gk〉.

The first inequality follows from descent lemma, whereas the second inequality is due
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to Lemma 5.5.2. Based on the definition of Φ, we have

Φ(xk+1) ≤ Φ(xk)−
(
γ − Lγ2

2

)
‖gk‖2 + γ〈g(xk, µk, ρk)−∇f(xk), gk〉

≤ Φ(xk)−
(
γ − Lγ2

2

)
‖∇̃Φ(xk; γ)‖2

2
+

(
γ − Lγ2

2

)
‖∇̃Φ(xk; γ)− gk‖2

+γ〈g(xk, µk, ρk)−∇f(xk), gk〉

≤ Φ(xk)−
(
γ − Lγ2

2

)
‖∇̃Φ(xk; γ)‖2

2

+

(
γ − Lγ2

2

)
‖g(xk, µk, ρk)−∇f(xk)‖2 + γ〈g(xk, µk, ρk)−∇f(xk), gk〉.

Since ‖gk‖ = 1
γ ‖x

k − xk+1‖ ≤ 2R
γ , invoking the proximal gradient dominant condition

(5.51) and γ ≤ min{1/L, α}, we have

Φ(xk+1)− Φ∗

≤ Φ(xk)− Φ∗ −
γ − Lγ2

2

2χ
(Φ(xk)− Φ∗)

+

(
γ − Lγ2

2

)
‖g(xk, µk, ρk)−∇f(xk)‖2 + γ〈g(xk, µk, ρk)−∇f(xk), gk〉

≤

(
1−

γ − Lγ2

2

2χ

)
(Φ(xk)− Φ∗)

+

(
γ − Lγ2

2

)(
nµ2

kL
2

2
+

8nρ2
k

µ2
k

)
+ 2R

(√
2nµkL

2
+

2
√

2nρk
µk

)
.

�

The following corollary shows the linear convergence rate with constant µ and ρ.

Corollary 5.5.6 Suppose f ∈ C1
L(X ) and Φ(x) satisfies Assumption 5.5.1, and γ ≤

min{1/L, α}, µk = µ, ρk = ρ = µ2. Let {xk} be the sequence produced by the determin-

istic zeroth-order ISTA algorithm, then the following holds

Φ(xk)− Φ∗ ≤ pk(Φ(x0)− Φ∗) +
q

1− p
, (5.57)

where p = 1− γ−Lγ
2

2
2χ and q =

(
γ − Lγ2

2

)(
nµ2L2

2 + 8nρ2

µ2

)
+ 2R

(√
2nµL
2 + 2

√
2nρ
µ

)
, where
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R satisfies ‖x‖ ≤ R ∀x ∈ X .

Proof. Let ek := Φ(xk) − Φ∗, p = 1 − γ−Lγ
2

2
2χ and q =

(
γ − Lγ2

2

)(
nµ2L2

2 + 8nρ2

µ2

)
+

2R
(√

2nµL
2 + 2

√
2nρ
µ

)
. It follows from Theorem 5.5.5 that

ek+1 ≤ pek + q.

Hence,

ek ≤ pke0 + q
k−1∑
i=0

pi ≤ pke0 +
q

1− p
,

and that proves (5.57). �

Remark: With the choice of γ, we have p := 1− γ−Lγ
2

2
2χ < 1. In view of (5.57), if µ

is chosen of the order O(ε), the deterministic zeroth-order ISTA can reach ε accuracy of

the objective function Φ∗ in O(ln(1/ε)) iterations. However, since ρ = µ2 = O(ε2) and

there are n function value queries at each iteration, the total effort is O(n ln(1/ε))eff(ε2).

For a particular effort function eff(ρ) = Dρ−κ where κ > 0 and D > 0, the following

corollary shows that the dynamically increased precision ρk could be beneficial.

Corollary 5.5.7 Suppose f ∈ C1
L(X ) and Φ(x) satisfies Assumption 5.5.1, and γ ≤

min{1/L, α}, µk = qk, ρk = q2k where 1 − γ−Lγ
2

2
2χ < q < 1. Let {xk} be the sequence

produced by the deterministic zeroth-order ISTA algorithm, then the following holds

Φ(xk)− Φ∗ ≤ pk(Φ(x0)− Φ∗) +
Uqk

q − p
, (5.58)

where p = 1 − γ−Lγ
2

2
2χ , and R satisfies ‖x‖ ≤ R ∀x ∈ X , and U is constant depends on

γ, L and n.

Moreover, to achieve the ε accuracy of Φ∗, the total effort is of the order O(nε−2κ).

Proof. Let ek := Φ(xk)− Φ∗, p = 1− γ−Lγ
2

2
2χ and

rk =

(
γ − Lγ2

2

)(
nµ2

kL
2

2
+

8nρ2
k

µ2
k

)
+ 2R

(√
2nµkL

2
+

2
√

2nρk
µk

)
.

171



It follows from Theorem 5.5.5 that

ek+1 ≤ pek + rk.

Since ρk = q2k and µk = qk where p < q < 1, there exists a constant U such that

rk ≤ Uqk, ∀k.

From the above bound, it is clear that the following holds

ek ≤ pke0 + Uqk−1
k−1∑
i=0

(
p

q

)i
≤ pke0 +

Uqk

q − p
, (5.59)

and that proves (5.58).

Since the dominating term in (5.59) is Uqk

q−p , to achieve ε-accuracy of ek := Φ(xk)−Φ∗,

it requires N = O(ln ε/ ln q) iterations. With the effort function eff(ρ) = Dρ−κ and

ρk = q2k, the total effort is

n
N∑
k=0

eff(ρk) = n
N∑
k=0

Dq−2kκ

= nD
q−2κ(N+1) − 1

q−2κ − 1
.

Note that N is of the order O(ln ε/ ln q), as a result, the total effort is of the order

O(n eff2(ε)). �

Remark: With the choice of γ, we have p := 1− γ−Lγ
2

2
2χ < q < 1. In view of (5.58),

the deterministic zeroth-order ISTA can reach ε accuracy of the objective function Φ∗

in O(ln(1/ε)) iterations. However, the total effort is of the order O(n eff2(ε)). It reduces

the effort compared with that O(n ln(1/ε) eff2(ε)) when ρk’s are set to be constantly ρ.

5.5.3 Stochastic Zeroth-Order Algorithm

In this section, we consider the stochastic objective function. Specifically, in problem

(5.49), the function f is assumed of the following form

f(x) = E[F (x, ξ)] (5.60)
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where expectation is taken over the random vector ξ. Compared with Assumption 5.2.1,

we make slightly different assumptions of F (x, ξ).

Assumption 5.5.2 Suppose the loss function f(x) is given in the form (5.60), then we

assume that F (x, ξ) satisfies

E[F (x, ξ)] = f(x), (5.61)

E[∇F (x, ξ)] = ∇f(x), (5.62)

and

E[‖∇F (x, ξ)−∇f(x)‖2] ≤ θ2
1. (5.63)

Note that in Assumption 5.5.2, the variance of F (x, ξ) is no longer assumed to be

bounded. The smoothing scheme which is the same as (5.8) leads to the stochastic

zeroth-order oracle (SZO).

The proximal gradient dominant condition (5.51) can be extended to the smoothing

function.

Lemma 5.5.8 Suppose function Φ(x) in (5.49) satisfies proximal gradient dominant

condition, and fµ(x) is given by (5.8). Let Φµ(x) := fµ(x) + h(x), where fµ(x) is

defined as in Definition 8. and x∗ be the optimal solution to problem (5.49). Then the

following inequality holds

|Φµ(x)− Φµ(x∗)| ≤ 2χ‖∇̃Φµ(x;α)‖2 +

(
L+

n2L2

2

)
µ2. (5.64)

where ∇̃Φµ(x;α) is defined as in (5.53) with d being ∇fµ(x).

Proof. Based on inequality (5.10), we have

|Φµ(x)− Φµ(x∗)|

= |Φµ(x)− Φ(x)− (Φµ(x∗)− Φ(x∗)) + Φ(x)− Φ(x∗)|

≤ |Φ(x)− Φ(x∗)|+ |Φµ(x)− Φ(x)|+ |Φµ(x∗)− Φ(x∗)|

≤ |Φ(x)− Φ(x∗)|+ Lµ2

≤ χ‖∇̃Φ(x;α)‖2 + Lµ2. (5.65)

Moreover, from the non-expansiveness of the proximal gradient, we have

‖∇̃Φ(x;α)− ∇̃Φµ(x;α)‖ ≤ ‖∇fµ(w)−∇f(w)‖ ≤ µnL

2
.
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The above inequality together with (5.65) leads to

|Φµ(x)− Φµ(x∗)|

≤ χ‖∇̃Φ(x;α)‖2 + Lµ2

≤ χ(2‖∇̃Φµ(x;α)‖2 + 2‖∇̃Φ(x;α)− ∇̃Φµ(x;α)‖2) + Lµ2

≤ 2χ‖∇̃Φµ(x;α)‖2 +
µ2n2L2

2
+ Lµ2,

which proves (5.64). �

Based on (5.9) we similarly define the stochastic zeroth-order gradient(SZO) of f

at point x:

Gµ(x, ξ, v) =
n

µ
[F (x+ µv, ξ)− F (x, ξ)] v, (5.66)

where v is the random vector uniformly distributed over the unit sphere in Rn.

The following lemma shows some properties of the SZO. Note that function f satis-

fies Assumption 5.5.2, i.e. (5.61) and (5.62) hold. This fact together with Lemma 5.2.1(a)

leads to:

Lemma 5.5.9 Suppose that Gµ(x, ξ, v) is defined as in (5.66), and f satisfies Assump-

tion 5.5.2, i.e. (5.61), (5.62) and (5.63) hold. Then

Ev,ξ[Gµ(x, ξ, v)] = ∇fµ(x). (5.67)

Suppose f(x) ∈ C0
L0

(X ) and F (x, ξ) ∈ C1
L(Rn) for all ξ. Then the following holds

Ev,ξ[‖Gµ(x, ξ, v)‖2] ≤ 2nN + µ2L2n2, (5.68)

where N = L2
0 + θ2

1.

Proof. The first equation is easy to verify. We prove the second inequality. Apply-
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ing (5.12) and (5.63) to F (x, ξ), we have

Ev,ξ
[
‖Gµ(x, ξ, v)‖2

]
= Eξ

[
Ev
[
‖Gµ(x, ξ, v)‖2

]]
(5.12)

≤ 2n
[
Eξ
[
‖∇F (x, ξ)‖2

]]
+
µ2

2
L2n2

≤ 2n
{
Eξ[‖∇f(x)‖2] + Eξ

[
‖∇F (x, ξ)−∇f(x)‖2

]}
+ µ2L2n2

≤ 2n
(
‖∇f(x)‖2 + θ2

1

)
+ µ2L2n2

≤ 2nN + µ2L2n2. (5.69)

�

From Lemma 5.5.9, it also implies the boundedness of the variance of Gµ(x, ξ, v).

In fact, the following inequality is straightforward

Ev,ξ[‖Gµ(x, ξ, v)−∇fµ(x)‖2] ≤ Ev,ξ[‖Gµ(x, ξ, v)‖2] ≤ 2nN + µ2L2n2. (5.70)

For the simplicity, we denote θ̂ := 2nN + µ2L2n2. In order to control the variance, in

the algorithm, we take m samples of the SZO at each iteration. Formally, we define

Gµ(xk,m) =
1

m

m∑
t=1

Gµ(xk, ξtk, v
t
k). (5.71)

Moreover, define δk := Gµ(x, ξ, v)−∇fµ(x), it is clear that

Ev,ξ[‖δ‖2] ≤ θ̂2

m
. (5.72)

Now we are ready to show the stochastic zeroth-order ISTA algorithm for the prob-

lem (5.60).
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Stochastic zeroth-order ISTA

Parameters: γ, µ > 0.

Initialization: x0 = 0.

for k = 0, 1, · · · ,

Gµ(xk,m) = 1
m

m∑
t=1

Gµ(xk, ξtk, v
t
k);

xk+1 = argmin
y∈X

{
〈Gµ(xk,m), y〉+ h(y) + 1

2γ ‖y − x
k‖2
}
.

end for

The following theorem shows the linear convergence for the algorithm. The expecta-

tion is taken over the σ-field generated by the random variables {ξtk, vtk}mt=1, k = 1, 2, . . .,

and the generalized proximal gradient is defines as

gkµ =
1

γ
(xk − xk+1).

Theorem 5.5.10 Suppose Φ(x) satisfies Assumption 5.5.1 and Assumption 5.5.2 and

F (x, ξ) ∈ C1
L(Rn) for all ξ. Let {xk} be the sequence produced by the stochastic zeroth-

order ISTA algorithm and γ ≤ min{1/L, α}. Then,

E[Φ(xk)]− Φ∗ ≤ pk(Φ(x0)− Φ∗) +
q

1− p
+ 2Lµ2, (5.73)

where p = 1− γ−Lγ
2

2
4χ and q =

γ−Lγ
2

2
4χ

(
L+ n2L2

2

)
µ2 +

(
2γ − Lγ2

2

)
θ̂2

m .

Proof. It follows from Assumption 10 and the property of the smoothing function that

fµ(xk+1) ≤ fµ(xk) + 〈∇fµ(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2 (5.74)

= fµ(xk)− 〈∇fµ(xk), γgkµ〉+
Lγ2

2
‖gkµ‖2

= fµ(xk)− γ〈Gµ(xk,m), gkµ〉+
Lγ2

2
‖gkµ‖2 + γ〈Gµ(xk,m)−∇fµ(xk), gkµ〉

≤ fµ(xk)− γ‖gkµ‖2 + h(xk)− h(xk+1) +
Lγ2

2
‖gkµ‖2 + γ〈δk, gkµ〉.

The first inequality follows from the so-called descent lemma, whereas the second in-
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equality is due to Lemma 5.5.2. Based on the definition of Φµ, we have

Φµ(xk+1) ≤ Φµ(xk)− (γ − Lγ2

2
)‖gkµ‖2 + γ〈δk, gkµ〉

≤ Φµ(xk)−
(
γ − Lγ2

2

)
‖∇̃Φµ(xk; γ)‖2

2

+

(
γ − Lγ2

2

)
‖∇̃Φµ(xk; γ)− gkµ‖2 + γ〈δk, gkµ〉

≤ Φµ(xk)−
(
γ − Lγ2

2

)
‖∇̃Φµ(xk; γ)‖2

2
+

(
γ − Lγ2

2

)
‖δk‖2

+γ〈δk, ∇̃Φµ(xk; γ)〉+ γ〈δk, gkµ − ∇̃Φµ(xk; γ)〉. (5.75)

Notice E[〈δk, ∇̃Φµ(xk; γ)〉|xk] = 0 and 〈δk, gkµ−∇̃Φµ(xk; γ)〉 ≤ ‖δk‖‖gkµ−∇̃Φµ(xk; γ)‖ ≤
‖δk‖2. Taking expectation on both sides of (5.75), we have

E[Φµ(xk+1)] ≤ E[Φµ(xk)]−
(
γ − Lγ2

2

)
E[‖∇̃Φµ(xk; γ)‖2]

2
+

(
2γ − Lγ2

2

)
E[‖δk‖2].

Invoking the proximal gradient dominant condition (5.64) and γ ≤ min{1/L, α}, we

have

E[Φµ(xk+1)]− Φµ(x∗)

≤ E[Φµ(xk)]− Φµ(x∗) +

(
2γ − Lγ2

2

)
E[‖δk‖2]

−
γ − Lγ2

2

4χ

(
E[Φµ(xk)]− Φµ(x∗)−

(
L+

n2L2

2

)
µ2

)
≤

(
1−

γ − Lγ2

2

4χ

)(
E[Φµ(xk)]− Φµ(x∗)

)
+
γ − Lγ2

2

4χ

(
L+

n2L2

2

)
µ2 +

(
2γ − Lγ2

2

)
θ̂2

m
.

Denote ek := E[Φµ(xk)]−Φµ(x∗), p = 1− (γ−Lγ
2

2
)

4χ and q =
γ−Lγ

2

2
4χ (L+ n2L2

2 )µ2 + (2γ −
Lγ2

2 ) θ̂
2

m . The above expression can be simplified to

ek+1 ≤ pek + q.
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Expanding recursively, we obtain

ek ≤ pke0 + q

k−1∑
i=0

pi ≤ pke0 +
q

1− p
.

Since Φ(xk) − Φ(x∗) − Lµ2 ≤ Φµ(xk) − Φµ(x∗) ≤ Φ(xk) − Φ(x∗) + Lµ2, this leads to

(5.73). �

Remark: With the choice of γ, we have p := 1 − γ−Lγ
2

2
4χ < 1. In view of (5.73),

if µ is chosen of the order O(
√
ε) and m is of the order O(1/ε), the stochastic zeroth-

order ISTA can reach ε accuracy of the objective function Φ∗ in O(ln(1/ε)) iterations.

However, if we consider the total number of samples, the sample complexity is of the

order O(1/ε ln(1/ε)).

5.6 Numerical Experiments

In this section, we test the performance of the zeroth-order gradient descent algorithm on

two problem instances: Branin-Hoo function and logistic regression classification on the

popular MNIST data, on which we compare with the Bayesian optimization algorithms

[108]. For Bayesian optimization, the Branin-Hoo function is a common benchmark

test case [64]. It is defined over x ∈ R2 where 0 ≤ x1 ≤ 15 and −5 ≤ x1 ≤ 15. We

also test logistic regression classification task on the popular MNIST data. This is a

typical application of the black-box optimization, where our goal is to find the best

configuration of the hyperparameters in terms of the general misclassification error.

Since the MNIST is a multi-class dataset, we use the multinomial logistic regression

with L1 regularization. The algorithm requires choosing three hyperparameters, the

L1 regularization parameter, between 0 and 2, the tolerance, from 1e-6 to 0.1 and

the number of iterations, from 20 to 300. Specifically, we compare with the Bayesian

optimization of two different acquisition functions, the expected improvement (EI) and

the upper confidence bound (UCB), where both of them are based on the Gaussian

process model. For each algorithm, the mean and standard error of every iteration are

reported, and they are tested on the Branin-Hoo and logistic regression problems for 100

and 10 times respectively. The results of these analyses are presented in Figures 5.2 in

terms of the number of iterations of each algorithm. On Branin-Hoo, all the algorithms

are able to find the optimal solution, and our zeroth-order gradient descent converges
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Figure 5.2: Upper: Comparisons on the Branin-Hoo function; Lower: Comparison on
training logistic regression on MNIST.

slightly faster than the Bayesian optimization methods. For logistic regression, in terms

of the quality of the solution, the Bayesian approaches slightly outperform our method.

However, as the training process is very time consuming, the zeroth-order gradient

descent has the advantage that it can find a relative good solution with fewer iterations.

5.7 Conclusion

In this chapter, we presented a suite of zeroth-order methods for solving various black-

box optimization models. For problems with single objective function and composite

objective function, under strong convexity and gradient dominance, we have established

linear convergence rate for different zeroth-order methods. For stochastic block-box

optimization problem, we considered a single-sample setting and we showed that zeroth-
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order gradient descent method can still achieve a sublinear convergence rate. Moreover,

for certain classes of nonconvex optimization problems including the star-convexity and

weak pseudo-convexity, we proposed simple zeroth-order algorithms which converge to

the optimal solution at the sublinear rate. In particular, for the weakly pseudo-convex

optimization, we also developed a novel approximation scheme of the direction of the

gradient which enables us to extend the applicability of the normalized gradient descent

method to the zeroth-order setting. In addition, by comparing with the state-of-the-art

Bayesian optimization method for solving some benchmark problems, our numerical

results show the comparable practical performance of our algorithms as well.
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Chapter 6

Zeroth-Order Algorithms for

Online Learning

6.1 Preparation

In general, an online learning (online optimization) problem can be described as follows

General Online Learning Problem

Input: A convex set S

for t = 1, 2, . . .

• predict a vector xt ∈ S,

• receive a loss function ft : S → R,

• suffer a loss ft(xt).

As an illustrating example, the online linear regression works as follows: on each decision

period, the learner first receives feature vector wt ∈ Rd, and then the learner needs to

make a prediction pt. After the true target yt ∈ R is revealed, the learner suffers the loss

|pt−yt|. Assuming the learner is using the linear predictors of the form wt 7→ 〈x,wt〉, we

can easily cast this online prediction problem into the online optimization framework.

In particular, the learner should provide a vector xt, which yields the prediction pt =

〈xt, wt〉, and the loss function becomes to ft(xt) = |pt − yt| = |〈xt, wt〉 − yt|.
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In the online learning framework, at each period t ∈ {1, 2, . . . , T}, an online player

chooses a feasible strategy xt from a decision set S, and suffers a loss given by ft(xt),

where ft(·) is the loss function. One key feature of the online learning is that the player

must make a decision for period t without knowing the loss function ft(·). As a result,

for an online learning algorithm, the performance is usually measured by the so-called

regret. For a stationary strategy of playing a fixed u, the regret of an online algorithm

up to time T with respect to u is defined as:

RegretT (u) =

T∑
t=1

ft(xt)−
T∑
t=1

ft(u). (6.1)

where xt are the predictions produced by the algorithm. For instance, the regret of the

online linear regression problem with respect to a fixed linear predictor u is

RegretT (u) =

T∑
t=1

|〈xt, xt〉 − yt| −
T∑
t=1

|〈u, xt〉 − yt|. (6.2)

The goal of the online learning is to design some efficient algorithms which can

achieve a nontrivial regret bound, i.e. the regret should be bounded as RegretT (u) ≤
O(Tα), with α < 1. When the loss functions ft are convex and deterministic, there

are several algorithms that have been shown that an O(T
1
2 ) regret bound is achievable,

including the Follow the Regularized Leader (FoRel), Online Gradient Descent, and

Online Mirror Descent and so on; see [109]. However, when the loss functions are

stochastic, the research on the regret bound is still very limited and we will study that

in this chapter.

6.2 Stochastic Loss Functions

We consider an online convex optimization problem where the loss function ft(xt) is

given in the following form

ft(xt) = Eξ [Ft(xt, ξ)] ∀t ≥ 1, (6.3)

where the expectation is taken over the random variable ξ. However, at each time

t, after the learner chooses a decision vector xt, the full information of ft(xt) is not

disclosed. Instead, we can observe an unbiased random sample Ft(xt, ξt). Based on
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the sample information, an algorithm which outputs a random vector sequence {xt}Tt=1

would entail an expected regret as

RegretT (u) = E

[
T∑
t=1

(ft(xt)− ft(u))

]
. (6.4)

As we will show in this section, the stochastic zeroth-order online gradient descent

method achieves a regret bound in the order of O(
√
T ).

6.2.1 The Stochastic Zeroth-Order Online Gradient Descent

Before we present the algorithm, we first introduce some assumptions of Ft(xt, ξ).

Assumption 6.2.1 Suppose the loss function ft(xt) is given in the form (6.3), then we

assume that Ft(xt, ξ) satisfies

E[Ft(xt, ξ)] = ft(xt), (6.5)

E[∇Ft(xt, ξ)] = ∇ft(xt), (6.6)

and

E[‖∇Ft(xt, ξ)−∇ft(xt)‖2] ≤ σ2. (6.7)

for all t = 1, . . . , T.

Now, we introduce our smoothing scheme and point out the definition of SZO as

well as its properties.

Definition 17 Let Ub be the uniform distribution over the unit Euclidean ball and B

be the unit ball. Given δ > 0, the smoothing function f δt is defined as

f δt (x) = E{v∼Ub}[ft(x+ δv)] =
1

α(d)

∫
B
ft(x+ δv)dv (6.8)

where α(d) is the volume of the unit ball in Rd.

Some basic properties of the smoothing function are shown in the lemma below,

which has been used in previous chapters. For the sake of clarity, we present it here

again.
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Lemma 6.2.1 Suppose that ft ∈ C1
L(Rd). Let USp be the uniform distribution over the

unit Euclidean sphere, and Sp be the unit sphere in Rd. Then we have:

(a) The smoothing function f δt is continuously differentiable, and its gradient is Lipschitz

continuous with constant Lδ ≤ L and

∇f δt (w) = E{v∼USp}

[
d

δ
ft(w + δv)v

]
=

1

β(d)

∫
v∈Sp

d

δ
[ft(w + δv)− ft(w)] vdv (6.9)

where β(d) is the measure of the unit sphere in Rd.

(b) For any w ∈ Rd, we have

|f δt (w)− ft(w)| ≤ Lδ2

2
, (6.10)

‖∇f δt (w)−∇ft(w)‖ ≤ δdL

2
, (6.11)

Ev

[∥∥∥∥dδ [ft(w + δv)− ft(w)]v

∥∥∥∥2
]
≤ 2d‖∇ft(w)‖2 +

δ2

2
L2d2. (6.12)

(c) If ft is convex, then f δt is also convex.

Now based on (6.9) we define the zeroth-order stochastic gradient of ft at point xt:

Gδ(xt, ξt, v) =
d

δ
[Ft(xt + δv, ξt)− Ft(xt, ξt)] v, (6.13)

where v is the random vector uniformly distributed over the unit sphere in Rd.
Before presenting the regret bound analysis for the algorithm , we first show some

properties of the function G(xt, ξt) := ∇xF (xt, ξt).

Lemma 6.2.2 Suppose that Gδ(xt, ξt, v) is defined as in (6.13), and ft satisfies As-

sumption 6.2.1, i.e. (6.5), (6.6) and (6.7) hold. Then

Ev,ξt [Gδ(xt, ξt, v)] = ∇f δt (xt). (6.14)

If we further assume ‖∇ft(w)‖ ≤M , ∀w ∈ S, t = 1, . . . , T , then the following holds

Ev,ξt [‖Gδ(xt, ξt, v)‖2] ≤ 2dN + δ2L2d2, (6.15)

where N = M2 + σ2.
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Proof. The first statement is easy to verify. We shall focus on the second statement.

Applying (6.12) and (6.7) to Ft(xt, ξt) and G(xt, ξt), we have

Ev,ξt
[
‖Gδ(xt, ξt, v)‖2

]
= Eξt

[
Ev
[
‖Gδ(xt, ξt, v)‖2

]]
≤ 2d

[
Eξt
[
‖G(xt, ξt)‖2

]]
+
δ2

2
L2d2

≤ 2d
{
Eξt [‖∇ft(xt)‖2] + Eξt

[
‖G(xt, ξt)−∇ft(xt)‖2

]}
+ δ2L2d2

≤ 2d
{
‖∇ft(xt)‖2 + σ2

}
+ δ2L2d2

≤ 2dN + δ2L2d2. (6.16)

�

For the online convex optimization problem (6.3), the stochastic zeroth-order online

gradient descent method is as follows.

Stochastic Zeroth-order Online Gradient Descent

parameters: η, δ > 0 and a convex set S ⊂ Rd

initialize: θ1 = 0

for t = 0, 1, · · ·T ,

let xt = arg minw∈S ‖w − ηθt‖2
pick vt ∼ USp
predict xt + δvt and xt, receive Ft(xt + δvt), Ft(xt)

compute SZO as zt = d
δ [Ft(xt + δvt, ξt)− Ft(xt, ξt)] vt := Gδ(xt, ξt, vt)

update θt+1 = θt − zt
end for

One observation is in order here. Since we need to evaluate both Ft(xt+ δvt, ξt) and

Ft(xt, ξt) at time t, we will incur two losses at time t, namely ft(xt + δvt) and ft(xt).

Thus the regret of this algorithm should be define as

E

[
T∑
t=1

(ft(xt)− ft(u))

]
+ E

[
T∑
t=1

(ft(xt + δvt)− ft(u))

]
.

The following theorem shows the O(
√
T ) regret bound for the algorithm. Moreover,

we use Ξn to denote the σ-field generated by the random variables ξt, vt, t = 1, . . . , n.
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Theorem 6.2.3 Consider running the stochastic zeroth-order online gradient descent

method on the loss functions ft ∈ C1
L(Rd) which satisfy Assumption 6.2.1. Let S be a

convex set and define B = maxu∈S ‖u‖. Then, for all u ∈ S we have

E

[
T∑
t=1

(ft(xt)− ft(u))

]
+ E

[
T∑
t=1

(ft(xt + δvt)− ft(u))

]

≤1

η
B2 + 2η(2dN + δ2L2d2)T + (2Lδ2 +Mδ)T. (6.17)

In particular, if we set η = B/
√

(2dN + δ2L2d2)2T , and δ = T−
1
2 /(Ld), then we have

the regret is bounded by O(
√
T ).

Proof. In view of the Follow the Regularized Leader algorithm (cf. [109]), we have the

following,
T∑
t=1

〈zt, xt − u〉 ≤
1

2η
‖u‖22 + η

T∑
t=1

‖zt‖2. (6.18)

Take expectation, and notice that Eξt,vt [zt|Ξt−1] = ∇f δt (xt) which is shown in (6.14),

we have

E

[
T∑
t=1

〈∇f δt (xt), xt − u〉

]
≤ 1

2η
‖u‖22 + η

T∑
t=1

E
[
‖zt‖2

]
. (6.19)

Recall the convexity of f δt , we have

E

[
T∑
t=1

(f δt (xt)− f δt (u))

]
≤ 1

2η
‖u‖22 + η

T∑
t=1

E
[
‖zt‖2

]
. (6.20)

From the properties of the smoothing function, we have the following chain of inequality

ft(xt)− ft(u) ≤ f δt (xt)− f δt (u) + Lδ2,

ft(xt + δvt)− ft(u) ≤ ft(xt)− ft(u) +Mδ ≤ f δt (xt)− f δt (u) + Lδ2 +Mδ. (6.21)
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By combining (6.21) and (6.20), we have

E

[
T∑
t=1

(ft(xt)− ft(u))

]
+ E

[
T∑
t=1

(ft(xt + δvt)− ft(u))

]

≤1

η
‖u‖22 + 2η

T∑
t=1

E
[
‖zt‖2

]
+ (2Lδ2 +Mδ)T. (6.22)

Now, from (6.15), we can bound
T∑
t=1

E
[
‖zt‖2

]
as

T∑
t=1

E
[
‖zt‖2

]
≤ (2dN + δ2L2d2)T.

Let B = maxu∈S ‖u‖, we have

E

[
T∑
t=1

(ft(xt)− ft(u))

]
+ E

[
T∑
t=1

(ft(xt + δvt)− ft(u))

]

≤1

η
B2 + 2η(2dN + δ2L2d2)T + (2Lδ2 +Mδ)T. (6.23)

In particular, if we set η = B/
√

(2dN + δ2L2d2)2T , and δ = T−
1
2 /(Ld), then we have

the regret is bounded by O(
√
T ). �

6.3 Extensions Under Stochastic Loss Function Setting

6.3.1 Non-differentiability

Previously, we assume the function ft is differentiable with Lipschitz gradient. In this

section, we only assume the continuity of the function ft and we further assume

Assumption 6.3.1 Suppose the loss function ft(xt) is given in the form (6.3). More-

over, ft is a continuous function which satisfies

|ft(x)− ft(y)| ≤ L‖x− y‖β, ∀x, y ∈ S (6.24)

where β ≤ 1.

Under these assumptions, we have a similar lemma for the smoothed function f δt , .
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Lemma 6.3.1 Suppose that ft satisfies Assumption 6.3.1. Let USp be the uniform

distribution over the unit Euclidean sphere, and Sp be the unit sphere in Rd. Then we

have:

(a) The smoothing function f δt is continuously differentiable, and it also satisfies As-

sumption 6.3.1 with constant Lδ ≤ L and

∇f δt (x) = E{v∼USp}

[
d

δ
ft(x+ δv)v

]
=

1

β(d)

∫
v∈Sp

d

δ
[ft(x+ δv)− ft(x)] vdv (6.25)

where β(d) is the measure of the unit sphere in Rd.

(b) For any x ∈ Rd, we have

|f δt (x)− ft(x)| ≤ Lδβ d

d+ β
< Lδβ, (6.26)

E{v∼USp}

[∥∥∥∥dδ [ft(x+ δv)− ft(x)]v

∥∥∥∥2
]
≤ L2d2δ2β−2. (6.27)

(c) If ft is convex, then f δt is also convex.

Now if we define the zeroth-order stochastic oracle Gδ(xt, ξt, v) similar to (6.13),

then we have following lemma.

Lemma 6.3.2 Suppose that Gδ(xt, ξt, v) is defined as in (6.13), and ft satisfies As-

sumption 6.3.1. Then

Ev,ξt [Gδ(xt, ξt, v)] = ∇f δt (xt). (6.28)

Moreover, the following estimate holds

Ev,ξt [‖Gδ(xt, ξt, v)‖2] ≤ L2d2δ2β−2, (6.29)

Proof. The first statement is easy to verify. We shall focus on the second statement.
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Applying (6.27), we have

Ev,ξt
[
‖Gδ(xt, ξt, v)‖2

]
= Eξt

[
Ev
[
‖Gδ(xt, ξt, v)‖2

]]
= Eξt

[
Ev

[∥∥∥∥dδ [Ft(x+ δv, ξt)− Ft(x, ξt)]v
∥∥∥∥2
]]

≤ Eξt

[
L2d2δ2β−2

]
= L2d2δ2β−2. (6.30)

�

Under the non-differentiability, the regret bound for the stochastic zeroth-order on-

line gradient descent algorithm is shown in the following theorem.

Theorem 6.3.3 Consider running the stochastic zeroth-order online gradient descent

method on the loss functions ft ∈ C0
L(Rd) which satisfy Assumption 6.3.1. Let S be a

convex set and define B = maxu∈S ‖u‖. Then, for all u ∈ S we have

E

[
T∑
t=1

(ft(xt)− ft(u))

]
+ E

[
T∑
t=1

(ft(xt + δvt)− ft(u))

]

≤1

η
B2 + 2ηL2d2δ2β−2T + 5LδβT. (6.31)

In particular, if we set η ∼ T−(1−β
2

), and δ ∼ T−
1
2 , then we have the regret is bounded

by O(T (1−β
2

)). When β = 1 we have the bound to be O(T
1
2 ).

Proof. In view of the Follow the Regularized Leader algorithm (cf. [109]), we have the

following,
T∑
t=1

〈zt, xt − u〉 ≤
1

2η
‖u‖22 + η

T∑
t=1

‖zt‖2. (6.32)

Take expectation, and notice that Eξt,vt [zt|Ξt−1] = ∇f δt (xt) which is shown in (6.28),

we have

E

[
T∑
t=1

〈∇f δt (xt), xt − u〉

]
≤ 1

2η
‖u‖22 + η

T∑
t=1

E
[
‖zt‖2

]
. (6.33)
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Recall the convexity of f δt , we have

E

[
T∑
t=1

(f δt (xt)− f δt (u))

]
≤ 1

2η
‖u‖22 + η

T∑
t=1

E
[
‖zt‖2

]
. (6.34)

From the property (6.26) of the smoothing function, we have the following chain of

inequality

ft(xt)− ft(u) ≤ f δt (xt)− f δt (u) + 2Lδβ,

ft(xt + δvt)− ft(u) ≤ ft(xt)− ft(u) + Lδβ ≤ f δt (xt)− f δt (u) + 3Lδβ. (6.35)

By combining (6.35) and (6.34), we have

E

[
T∑
t=1

(ft(xt)− ft(u))

]
+ E

[
T∑
t=1

(ft(xt + δvt)− ft(u))

]

≤1

η
‖u‖22 + 2η

T∑
t=1

E
[
‖zt‖2

]
+ 5LδβT. (6.36)

Now, from (6.29), we can bound
T∑
t=1

E
[
‖zt‖2

]
as

T∑
t=1

E
[
‖zt‖2

]
≤ L2d2δ2β−2T.

Let B = maxu∈S ‖u‖, we have

E

[
T∑
t=1

(ft(xt)− ft(u))

]
+ E

[
T∑
t=1

(ft(xt + δvt)− ft(u))

]

≤1

η
B2 + 2ηL2d2δ2β−2T + 5LδβT. (6.37)

In particular, if we set η ∼ T−(1−β
2

), and δ ∼ T−
1
2 , then we have the regret is bounded

by O(T (1−β
2

)). When β = 1 we have the bound to be O(T
1
2 ). �
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6.3.2 One Random Sample at One Sample Point

In this section, we discuss another extension of the stochastic online learning. In previous

discussions, the SZO (zeroth-order oracle) is in the form of

Gδ(xt, ξt, v) =
d

δ
[Ft(xt + δv, ξt)− Ft(xt, ξt)] v, (6.38)

where we implicitly assume that we can obtain two responses Ft(xt + δv, ξt), Ft(xt, ξt)

at the same sample point ξt for two different query points. However, following the

discussion in Chapter 5, in some cases, it is only possible to have one random sample

at a point, i.e. we can only receive two responses Ft(xt + δv, ξ1
t ) and Ft(xt, ξ

2
t ) based on

different sample points ξ1
t and ξ2

t . As a result, we can define our new SZO as follows

Gδ(xt, ξ
1,2
t , v) =

d

δ

[
Ft(xt + δv, ξ1

t )− Ft(xt, ξ2
t )
]
v, (6.39)

where we assume that ξ1
t and ξ2

t are independent.

To facilitate our analysis, we make another assumption regarding the function ft(x).

Assumption 6.3.2 Suppose the loss function ft(x) is given in the form (6.3), we as-

sume

Var [Ft(x, ξ)] := Eξ
[
(Ft(x, ξ)− ft(x))2

]
≤ θ2, ∀w ∈ S (6.40)

where θ > 0 is a constant.

Under Assumption 6.3.1, we have the following result.

Lemma 6.3.4 Suppose that Gδ(xt, ξ
1,2
t , v) is defined as in (6.39), and ft satisfies As-

sumption 6.3.1 and Assumption 6.3.2. Then

E
v,ξ1,2t

[Gδ(xt, ξ
1,2
t , v)] = ∇f δt (xt). (6.41)

Moreover, the following estimate holds

Ev,ξt [‖Gδ(xt, ξt, v)‖2] ≤ 2L2d2δ2β−2 + 4
d2

δ2
θ2, (6.42)

Proof. The first statement is easy to verify. We shall focus on the second statement.
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Applying (6.27), we have

E
v,ξ1,2t

[
‖Gδ(xt, ξ1,2

t , v)‖2
]

= E
ξ1,2t

[
Ev
[
‖Gδ(xt, ξ1,2

t , v)‖2
]]

= E
ξ1,2t

[
Ev

[∥∥∥∥dδ [Ft(x+ δv, ξ1
t )− Ft(x, ξ2

t )]v

∥∥∥∥2
]]

≤ E
ξ1,2t

[
Ev

[
2

∥∥∥∥dδ [Ft(x+ δv, ξ1
t )− Ft(x, ξ1

t )]v

∥∥∥∥2

+ 2

∥∥∥∥dδ [Ft(x, ξ
1
t )− Ft(x, ξ2

t )]v

∥∥∥∥2
]]

≤ E
ξ1,2t

[
2L2d2δ2β−2 + 2

d2

δ2
|Ft(x, ξ1

t )− Ft(x, ξ2
t )|2
]

(6.40)

≤ 2L2d2δ2β−2 + 4
d2

δ2
θ2 (6.43)

�

Now based on the same idea, we analyze the regret bound for the stochastic zeroth-

order online gradient descent algorithm with Gδ(xt, ξ
1,2
t , v) as the oracle.

Theorem 6.3.5 Consider running the stochastic zeroth-order online gradient descent

method on the loss functions ft ∈ C0
L(Rd) which satisfy Assumption 6.3.1. Let S be a

convex set and define B = maxu∈S ‖u‖. Then, for all u ∈ S we have

E

[
T∑
t=1

(ft(xt)− ft(u))

]
+ E

[
T∑
t=1

(ft(xt + δvt)− ft(u))

]

≤1

η
B2 + η(4L2d2δ2β−2 + 8

d2

δ2
θ2)T + 5LδβT. (6.44)

In particular, if we set η ∼ T
− 2+β

2(1+β) , and δ ∼ T
− 1

2(1+β) , then the regret is bounded by

O(T
2+β

2(1+β) ). When β = 1 we have the bound to be O(T
3
4 ).

Proof. In view of the Follow the Regularized Leader algorithm (cf. [109]), we have the

following,
T∑
t=1

〈zt, xt − u〉 ≤
1

2η
‖u‖22 + η

T∑
t=1

‖zt‖2. (6.45)

Taking expectation, and noticing that E
ξ1,2t ,vt

[zt|Ξt−1] = ∇f δt (xt) which is shown in (6.41),
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we have

E

[
T∑
t=1

〈∇f δt (xt), xt − u〉

]
≤ 1

2η
‖u‖22 + η

T∑
t=1

E
[
‖zt‖2

]
. (6.46)

Recall the convexity of f δt , we have

E

[
T∑
t=1

(f δt (xt)− f δt (u))

]
≤ 1

2η
‖u‖22 + η

T∑
t=1

E
[
‖zt‖2

]
. (6.47)

From the property (6.26) of the smoothing function, we have the following chain of

inequality

ft(xt)− ft(u) ≤ f δt (xt)− f δt (u) + 2Lδβ,

ft(xt + δvt)− ft(u) ≤ ft(xt)− ft(u) + Lδβ ≤ f δt (xt)− f δt (u) + 3Lδβ. (6.48)

By combining (6.48) and (6.47), we have

E

[
T∑
t=1

(ft(xt)− ft(u))

]
+ E

[
T∑
t=1

(ft(xt + δvt)− ft(u))

]

≤1

η
‖u‖22 + 2η

T∑
t=1

E
[
‖zt‖2

]
+ 5LδβT. (6.49)

Now, from (6.42), we can bound
T∑
t=1

E
[
‖zt‖2

]
as

T∑
t=1

E
[
‖zt‖2

]
≤ (2L2d2δ2β−2 + 4

d2

δ2
θ2)T.

Let B = maxu∈S ‖u‖, we have

E

[
T∑
t=1

(ft(xt)− ft(u))

]
+ E

[
T∑
t=1

(ft(xt + δvt)− ft(u))

]

≤1

η
B2 + η(4L2d2δ2β−2 + 8

d2

δ2
θ2)T + 5LδβT. (6.50)

In order to achieve the best possible bound in terms of T , we need to choose η and δ

carefully. Suppose we have η ∼ T−a, and δ ∼ T−b, where a, b ≥ 0. Then the order in
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(6.50) becomes to

Tmax{a,1−a−(2β−2)b,1+2b−a,1−βb}.

Thus, we need to find the value of

min
a,b≥0

max {a, 1− a− (2β − 2)b, 1 + 2b− a, 1− βb} . (6.51)

Since 0 < β ≤ 1, we have 1 + 2b− a ≥ 1− a− (2β − 2)b, so the above problem becomes

to

min
a,b≥0

max {a, 1 + 2b− a, 1− βb} . (6.52)

By inspection, we can find the optimal a, b as a = 2+β
2(1+β) , b = 1

2(1+β) . In particular, if

we set η ∼ T−
2+β

2(1+β) , and δ ∼ T−
1

2(1+β) , then the regret is bounded by O(T
2+β

2(1+β) ) which

is the best possible in terms of T . When β = 1, the regret bound becomes to O(T
3
4 ). �
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Chapter 7

Conclusions and Discussions

In this dissertation, we studied the convergence properties and the applications of the

first-order and the zeroth-order optimization algorithms. Our discussions include: the

iteration complexity analysis of different ADMM-type algorithms for solving various

multi-block optimization with linear constraint, and the analysis of lower-order gradient-

type algorithms for solving oracle-based black-box optimization and online learning

problem. From the theoretical point of view, without sacrificing the computational

complexity bounds, the zeroth-order smoothing scheme enables different algorithms to

be applicable on a much broader class of problems where only noisy estimations of the

function values are available. Moreover, as we showed in Chapter 4, the randomization

is really the key to establish the convergence rate result for the multi-block ADMM

method. Together with a carefully selected proximal term, the parallelization makes

our randomized algorithm even more efficient and powerful. From the practical point of

view, our numerical studies also indicate that our proposed algorithms are indeed com-

parable to those state-of-the-art methods by means of evaluation using well-established

standard benchmark problems, while the theoretical convergence rate is also achieved.

There are several directions for future research. In terms of the convergence rate, it

is interesting to explore if it is possible to accelerate those lower-order ADMM-type al-

gorithms, especially for the zeroth-order method. Moreover, the zeroth-order smoothing

scheme is a powerful tool for constructing approximations of the gradient. Designing

algorithms for an optimization model often amounts to maintaining a balance between

the degree of information to request from the model on the one hand, and the computa-

tional speed to expect on the other hand. Naturally, the more information is available,

the faster one can expect the algorithm to converge. Thus, how to generalize the zeroth-
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order smoothing scheme to approximate higher-order derivatives so as to achieve faster

convergence rate is another possible direction to explore.

196



References

[1] J. Abernethy, A. Agarwal, P. L. Bartlett, and A. Rakhlin. A Stochastic View of

Optimal Regret through Minimax Duality. arXiv preprint arXiv:0903.5328, 2009.

[2] A. Agarwal, O. Dekel, and L. Xiao. Optimal Algorithms for Online Convex Op-

timization with Multi-Point Bandit Feedback. In COLT, pages 28–40. Citeseer,

2010.

[3] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for

linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

[4] A. Beck and L. Tetruashvili. On the convergence of block coordinate descent type

methods. SIAM Journal on Optimization, 23(4):2037–2060, 2013.

[5] A. Ben-Tal and A. Nemirovski. Lectures on modern convex optimization: analysis,

algorithms, and engineering applications, volume 2. Siam, 2001.

[6] D. P. Bertsekas. Nonlinear programming. 1999.

[7] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and distributed computation: numer-

ical methods, volume 23. Prentice-Hall, Inc., 1989.

[8] D. Boley. Local linear convergence of the alternating direction method of multipli-

ers on quadratic or linear programs. SIAM Journal on Optimization, 23(4):2183–

2207, 2013.

[9] J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating linearized minimization

for nonconvex and nonsmooth problems. Mathematical Programming, 146:459–

494, 2014.

197



[10] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimiza-

tion and statistical learning via the alternating direction method of multipliers.

Foundations and Trends R©in Machine Learning, 3(1):1–122, 2011.

[11] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press,

2004.

[12] E. Brochu, V. M. Cora, and N. De Freitas. A tutorial on bayesian optimization of

expensive cost functions, with application to active user modeling and hierarchical

reinforcement learning. arXiv preprint arXiv:1012.2599, 2010.

[13] X. Cai, D. Han, and X. Yuan. On the convergence of the direct extension of

ADMM for three-block separable convex minimization models with one strongly

convex function. Computational Optimization and Applications, 66(1):39–73,

2017.

[14] E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis?

Journal of the ACM (JACM), 58(3):11, 2011.

[15] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex prob-

lems with applications to imaging. Journal of Mathematical Imaging and Vision,

40(1):120–145, 2011.

[16] C. Chen, B. He, Y. Ye, and X. Yuan. The direct extension of ADMM for multi-

block convex minimization problems is not necessarily convergent. Mathematical

Programming, 155(1-2):57–79, 2016.

[17] C. Chen, Y. Shen, and Y. You. On the convergence analysis of the alternating di-

rection method of multipliers with three blocks. In Abstract and Applied Analysis,

volume 2013. Hindawi, 2013.

[18] C. H. Chen, M. Li, X. Liu, and Y. Y. Ye. On the convergence of multi-block

alternating direction method of multipliers and block coordinate descent method.

arXiv preprint arXiv:1508.00193, 2015.

[19] L. Chen, D. Sun, and K.-C. Toh. An efficient inexact symmetric Gauss–Seidel

based majorized ADMM for high-dimensional convex composite conic program-

ming. Mathematical Programming, 161(1-2):237–270, 2017.

198



[20] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis

pursuit. SIAM journal on scientific computing, 20(1):33–61, 1998.

[21] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to derivative-free

optimization, volume 8. Siam, 2009.

[22] C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273–

297, 1995.

[23] Y. Cui, X. Li, D. Sun, and K.-C. Toh. On the convergence properties of a majorized

ADMM for linearly constrained convex optimization problems with coupled ob-

jective functions. arXiv preprint arXiv:1502.00098, 2015.

[24] C. Dang and G. Lan. Randomized first-order methods for saddle point optimiza-

tion. arXiv preprint arXiv:1409.8625, 2014.

[25] C. D. Dang and G. Lan. Stochastic block mirror descent methods for nonsmooth

and stochastic optimization. SIAM Journal on Optimization, 25(2):856–881, 2015.

[26] D. Davis and W. Yin. Convergence rate analysis of several splitting schemes.

arXiv preprint arXiv:1406.4834, 2014.

[27] W. Deng, M. J. Lai, Z. Peng, and W. Yin. Parallel Multi-Block ADMM with

o(1/k) Convergence. Journal of Scientific Computing, 71(2):712–736, 2017.

[28] W. Deng and W. Yin. On the global and linear convergence of the generalized

alternating direction method of multipliers. 2012.

[29] D. L. Donoho. Compressed sensing. Information Theory, IEEE Transactions on,

52(4):1289–1306, 2006.

[30] J. Douglas and H. H. Rachford. On the numerical solution of heat conduction

problems in two and three space variables. Transactions of the American mathe-

matical Society, 82(2):421–439, 1956.

[31] Y. Drori, S. Sabach, and M. Teboulle. A simple algorithm for a class of nonsmooth

convex–concave saddle-point problems. Operations Research Letters, 43(2):209–

214, 2015.

199



[32] A. DAspremont, O. Banerjee, and L. E. Ghaoui. First-order methods for sparse

covariance selection. SIAM Journal on Matrix Analysis and its Applications,

30(1):56–66, 2008.

[33] J. Eckstein and D. P. Bertsekas. On the Douglas-Rachford splitting method and

the proximal point algorithm for maximal monotone operators. Mathematical

Programming, 55(1-3):293–318, 1992.

[34] Y. Ermoliev. Stochastic quasigradient methods and their application to system

optimization. An International Journal of Probability and Stochastic Processes,

9(1-2):1–36, 1983.

[35] A. D. Flaxman, A. T. Kalai, and H. B. McMahan. Online convex optimization

in the bandit setting: gradient descent without a gradient. In Proceedings of the

sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages 385–394.

Society for Industrial and Applied Mathematics, 2005.

[36] J. B. G. Frenk, J. Gromicho, and S. Zhang. A deep cut ellipsoid algorithm for

convex programming: Theory and applications. Mathematical Programming, 63(1-

3):83–108, 1994.

[37] A. A. Gaivoronskii. Nonstationary stochastic programming problems. Cybernetics

and Systems Analysis, 14(4):575–579, 1978.

[38] X. Gao, B. Jiang, and S. Zhang. On the Information-Adaptive Variants of the

ADMM: An Iteration Complexity Perspective. Journal of Scientific Computing,

pages 1–37, 2017.

[39] X. Gao and S. Zhang. First-order algorithms for convex optimization with non-

separable objective and coupled constraints. Journal of the Operations Research

Society of China, 5(2):131–159, 2017.

[40] S. Ghadimi and G. Lan. Optimal stochastic approximation algorithms for strongly

convex stochastic composite optimization I: A generic algorithmic framework.

SIAM Journal on Optimization, 22(4):1469–1492, 2012.

[41] S. Ghadimi and G. Lan. Optimal stochastic approximation algorithms for strongly

convex stochastic composite optimization, II: shrinking procedures and optimal

algorithms. SIAM Journal on Optimization, 23(4):2061–2089, 2013.

200



[42] S. Ghadimi and G. Lan. Stochastic first-and zeroth-order methods for nonconvex

stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

[43] S. Ghadimi and G. Lan. Accelerated gradient methods for nonconvex nonlinear

and stochastic programming. Mathematical Programming, 156(1):59–99, 2015.

[44] S. Ghadimi, G. Lan, and H. Zhang. Mini-batch stochastic approximation methods

for nonconvex stochastic composite optimization. arXiv preprint arXiv:1308.6594,

155(1):267–305, 2014.

[45] R. Glowinski and P. Le Tallec. Augmented Lagrangian and operator-splitting meth-

ods in nonlinear mechanics, volume 9. SIAM, 1989.

[46] R. Glowinski and A. Marroco. Sur l’approximation, par éléments finis d’ordre un,
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[100] P. Richtárik and M. Takáč. Iteration complexity of randomized block-coordinate

descent methods for minimizing a composite function. Mathematical Program-

ming, 144(1-2):1–38, 2014.
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