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Surface ground motions predicted from a seismic site response analysis are 

strongly dependent on the shear wave velocity (Vs) profile used to represent the small-

strain shearing stiffness of subsurface materials as a function of depth. Moreover, 

uncertainties are present in the input Vs profile and this uncertainty leads to uncertainty 

in the predicted site response. When Vs profiles are obtained from surface wave 

inversion, the final derived Vs profiles are non-unique, with many different 

interpretations of the subsurface shearing stiffness that are consistent with the measured 

surface wave field data. This non-uniqueness is exacerbated by the ambiguous 

interpretation of surface wave modes and the subjectivity of defining the inversion 

parameterization (trial number of layers and ranges in their respective Vs, compression 

wave velocities, and mass densities). Thus, it is necessary to develop strategies to 

systematically address these issues in order to develop Vs profiles with realistic estimates 

of uncertainty for use in site response analyses. First, a-priori information should be 

sought to aid in interpreting modes and to develop a realistic parameterization to guide 

the surface wave inversion. In complex geologic settings, it can be extremely challenging 

or even impossible to obtain geologically-realistic Vs profiles without this a-priori 

information. However, there are many situations when a-priori information is scarce or 



 viii 

nonexistent. In such cases, alternative mode interpretations and/or parameterizations must 

be considered. 

 Even with abundant a-prior information, the non-uniqueness issue generally 

cannot be eliminated and the variation in seismic site response associated with non-

unique Vs profiles derived from the same surface wave dataset is of interest. At the two 

sites considered in this study, very different Vs profiles derived from surface wave 

inversion of the same dataset produced very similar site response estimates, provided that 

the experimental surface wave dispersion data was well-fit. Furthermore, the site 

response estimates associated with these Vs profiles were more accurate and less variable 

than those associated with Vs profiles that were developed using common strategies of 

accounting for Vs uncertainty. Thus, despite the non-uniqueness issue, Vs profiles 

derived from a rigorous surface wave inversion can yield robust site response estimates.    
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Chapter 1: Introduction 

1.1 BACKGROUND 

Earthquake ground motions experienced at a given location are influenced by a 

number of factors. These factors include the seismic source (i.e., fault rupture that 

generates the earthquake), the path taken by seismic waves as they propagate towards the 

site, and the physical properties of the local soil and rock. The influence of local soil/rock 

is commonly referred to as “site effects”. Site effects are generally predicted using one-

dimensional seismic site response analyses. These analyses model the response of an 

idealized model of the soil/rock at the site to one or more input ground motions. 

Reference/rock ground motions are applied at the base of the model and the response at 

the ground surface is computed. A number of approaches may be used to compute the site 

response, including linear, equivalent-linear, and nonlinear analyses. In all cases, a 

representative model of the soil/rock at the site is required.  

Site response simulations using linear, equivalent linear, and nonlinear analyses 

are strongly influenced by the shearing stiffness of the various soil/rock layers in the 

model (Bazurro and Cornell 2004, Rathje et al. 2010, Li and Assimaki 2010, Barani et al. 

2013). Specifically, the small-strain shearing stiffness (Gmax) of these materials 

significantly impacts the amplitude and frequency content of surface ground motions. 

Accordingly, reliable site response analyses are dependent upon having robust estimates 

of Gmax. Because the velocity at which shear waves propagate through a material (i.e., the 

shear wave velocity, or Vs) is directly related to Gmax, it is possible to quantify Gmax by 

measuring or inferring Vs. Typically, a profile of Vs as a function of depth is developed 

and this information is used in the site response analysis.  
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Uncertainties are inherent in the final Vs profile(s) and these uncertainties lead to 

uncertainties in the predicted site response. These uncertainties are dependent upon the 

technique used to obtain the Vs profile. Vs profiles are developed using two main classes 

of techniques. The first class of techniques, referred to as “direct”/invasive methods, 

utilize one or more boreholes and involve the direct measurement of Vs. While these 

techniques vary, they all involve the generation of shear waves by a seismic source and 

the measurement of these shear waves with one or more receivers at various depths in a 

borehole. The analysis of data from this type of testing is relatively simplistic and 

involves the identification of shear wave arrivals in each recorded signal. However, 

disturbance from drilling, the subjectivity of picking wave arrivals, and assumptions 

about wave travel paths can lead to significant uncertainty.  

The second class of techniques, referred to as “indirect”/non-invasive surface 

wave methods, do not actually involve the direct measurement of Vs. Rather, surface 

waves are measured at the ground surface and layered earth models (of which Vs is one 

property) that are consistent with these surface wave measurements are sought by solving 

an inverse problem. Surface wave methods vary, but generally consist of the following 

three steps: (1) measurement of surface waves in the field, (2) computation of 

experimental dispersion data from the field measurements, and (3) inversion to obtain 

layered earth models whose theoretical dispersion curves match the field experimental 

dispersion data. One of the most notable aspects of surface wave methods is the non-

uniqueness of the inverse problem. In other words, it is possible to retrieve many, 

significantly different Vs profiles that are all consistent with the measured surface wave 

data. This non-uniqueness is exacerbated when the interpretation of surface wave modes 

is ambiguous and/or the subsurface layering cannot be constrained by a-priori 

information. This non-uniqueness leads to considerable uncertainty, requiring the analyst 
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to rigorously consider numerous mode interpretations and/or possible layered earth 

models.  

Clearly, invasive borehole methods and non-invasive surface wave methods are 

quite different and the uncertainties in the final Vs profile(s) stem from significantly 

different factors. Nonetheless, these factors are not always considered in a systematic 

manner and this has significant implications on the predicted seismic site response. 

Engineering design codes stress the importance of accounting for uncertainty in Vs when 

performing site response analyses (e.g., ASCE 2010, AASHTO 2011), yet, no firm 

guidelines are provided. Consequently, many approaches ranging from simplistic to 

complex are used in practice (Matasovic and Hashash 2012).  

When considering uncertainty in the context of Vs profiling, it’s important to note 

that there are two types of uncertainty. The first type, aleatory variability, refers to 

inherent randomness and is typically deemed to be primarily represented by spatial 

(horizontal and vertical) variability in Vs across the site. The second type, epistemic 

uncertainty, stems from data uncertainty or a lack of scientific knowledge. Epistemic 

uncertainty arises from an inability to perfectly model a process. The distinction between 

aleatory variability and epistemic uncertainty is not always clear and they are not 

necessarily perfectly classified and/or decoupled in practice. For example, the spatial 

variation in Vs at a site is arguably more epistemic in nature because if adequate 

information were available, then a three-dimensional model could be developed. 

Moreover, the Vs structure at a site is more-or-less constant (at least on the time scales 

considered in engineering design) and is not random/aleatory in the same way that rolling 

a dice is. Nonetheless, spatial variation in Vs is typically considered aleatory in practice.  

Despite the ambiguities in the classification of aleatory variability versus 

epistemic uncertainty, these two types of uncertainty are accounted for in distinctly 
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separate ways when attempting to account for Vs uncertainty in site response analyses for 

critical structures such as nuclear facilities (EPRI 2012). However, the approaches 

prescribed in EPRI (2012) to account for Vs uncertainty do not give significant 

consideration to the method used to derive the Vs profile(s). Furthermore, recent work by 

Griffiths et al. (2016a and 2016b) suggests these commonly-used of approaches of 

accounting for aleatory variability and epistemic uncertainty may lead to inaccurate site 

response estimates and/or over-estimate the variability in the site response. Thus, the 

issue of how to consider Vs uncertainty in the seismic site response is an important issue 

that necessitates further study. 

1.2 SCOPE OF RESEARCH 

This research considers the several aspects of Vs uncertainty and the associated 

influence on the seismic site response. First, this research investigates the value of a-

priori information when performing surface wave inversion. It is demonstrated that this 

information can be extremely valuable for both the interpretation of surface wave modes 

and/or for the development of a realistic inversion parameterization (i.e., trial number of 

layers and ranges in their respective thicknesses, Vs, Vp, and mass densities). Next, this 

research discusses a strategy to perform surface wave inversion in the absence of a-priori 

information. This approach, referred to as the “layering ratio” technique, involves 

systematically investigating numerous parameterizations, each with a unique number of 

layers. This approach can greatly aid in developing a realistic ensemble of Vs profiles. 

However, the non-uniqueness issue generally cannot be eliminated and its influence on 

the predicted site response must be considered. Thus, this research will subsequently 

investigate how this uncertainty influences the predicted seismic site response. This 

question is addressed at both a synthetic and a real-world site. The accuracy and 



 5 

variability of seismic site response analyses performed using various, non-unique Vs 

profiles derived from surface wave testing are considered. The accuracy and variability of 

these site response estimates is then compared to the accuracy and variability of site 

response estimates performed on Vs profiles developed using common strategies of 

accounting for Vs uncertainty, both aleatory and epistemic. Finally, improvements are 

proposed to the current practices of accounting for Vs uncertainty. 

1.3 ORGANIZATION OF DISSERTATION 

This dissertation contains four main body chapters (Chapters 2 through 5) along 

with an introduction (Chapter 1) and a conclusion (Chapter 6). Each body chapter is a 

self-contained journal article that includes a literature review, research findings, and 

conclusions. (All references are provided at the end of the dissertation). These chapters 

follow logical progression as detailed below. 

Chapter 2 discusses the development of deep (+500 m) Vs profiles in the complex 

inter-bedded geology of Christchurch, New Zealand. Surface wave testing was performed 

at a total of 14 sites throughout Christchurch and the inversion of this dataset is 

discussed. Due to the complex geologic conditions, a-priori information was sought to aid 

in the interpretation of surface waves modes and in developing the inversion 

parameterization. This chapter illustrates the value of this a-priori information, 

demonstrating that it would be nearly impossible to develop geologically-realistic Vs 

profiles without it.  

Despite the value of a-prior information, it is oftentimes not available and a 

systematic means of investigating the inversion non-uniqueness is needed. Chapter 3 

outlines a procedure for investigating this non-uniqueness. This procedure, referred to as 

the “layering ratio” technique, involves systematically exploring multiple inversion 
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parameterizations. Each parameterization is defined by a unique layering ratio (), which 

defines the number of trial layers and their respective thicknesses. The usefulness of this 

procedure is demonstrated at a synthetic site, for which a true/solution Vs profile is 

available, and at real-world site, where there is no such thing as a true/solution Vs profile.    

Chapter 4 discusses variability and accuracy of site response predictions 

performed using Vs profiles derived from non-unique surface wave inversions and other 

commonly used statistical methods of accounting for epistemic uncertainty and aleatory 

variability in Vs. The example considered in Chapter 4 is the same synthetic case 

considered in Chapter 3. Thus, the site response for the true/solution Vs profile was 

computed and is compared to site response estimates for Vs profiles developed using 

numerous techniques. These Vs profiles include: (1) 350 Vs profiles developed by 

performing multiple surface wave inversions, each with a unique set of layering 

parameters, on a common dispersion dataset, (2) two upper/lower range base-case Vs 

profiles developed by systematically increasing or decreasing the solution Vs profile by 

20%, and (3) 100 Vs profiles developed using the Vs randomization procedure proposed 

by Toro (1995). 

Chapter 5 considers the same topics discussed in Chapter 4. However, the 

example discussed in Chapter 5 comes from the Garner Valley Downhole Array (GVDA) 

Site in Southern California. Therefore, this real-world example accounts for additional 

complexities that are not captured in the synthetic example in Chapter 4. Furthermore, 

improvements to the current practices of accounting for aleatory variability and epistemic 

uncertainty are proposed. Finally, Chapter 6 provides concluding remarks and proposes 

future research topics.  
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Christchurch 

David P. Teague, Brady R. Cox, Brendon A. Bradley, and Liam M. Wotherspoon 

This chapter contains a journal article that has been submitted to Earthquake Spectra for 

peer review. The full citation is listed below: 

Teague, D. P., Cox, B. R., Bradley, B., Wotherspoon, L. (2017 submitted). “Development 

of Deep Shear Wave Velocity Profiles with Estimates of Uncertainty in the Complex 

Inter-Bedded Geology of Christchurch,” Earthquake Spectra, in review. 

As first author, I was responsible for approximately 33% of the project planning, 20% of 

the data acquisition, 100% of the data processing, and 50% of the results interpretation.  

ABSTRACT 

Deep (+500 m) shear wave velocity (Vs) profiles were developed at 14 sites 

throughout Christchurch, New Zealand, using a combination of active- and passive-

source surface wave testing. The geology of Christchurch is quite complex and presents 

several challenges for surface wave testing. Specifically, the complex inter-layering of 

relatively stiff gravels with soft sands, silts, and clays makes: (1) the interpretation of 

experimental dispersion data ambiguous, and (2) complicates the determination of 

appropriate inversion layering parameterizations. In order to address (1), dispersion data 

uncertainty was quantified and several mode interpretations were considered during 

inversion.  In order to address (2), 155 geotechnical boreholes and 199 geologic well logs 

in the vicinity of the test sites were used to guide the choice of layering parameterizations 

such that geologically-realistic Vs profiles were obtained via surface wave inversion. At 

each site, suites of 1000 Vs profiles representing the combined effects of epistemic 

uncertainty and aleatory variability in Vs were obtained. The final Vs profiles from this 

study are well-constrained to a depth of approximately 500 m. At greater depths, the Vs 

profiles are less reliable due to limitations of the largest aperture arrays used in passive 
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surface wave testing. These Vs profiles have been made available and are intended to aid 

in seismic site response analyses, including back-analyses aimed at better understanding 

the spatial variability in ground motions experienced during the Canterbury Earthquake 

Sequence and/or forward-analyses aimed at quantifying the amplitude and frequency 

content of future design ground motions.   

2.1  INTRODUCTION 

The 2010-2011 Canterbury Earthquake Sequence (CES) caused significant 

damage to the city of Christchurch, New Zealand as result of strong ground shaking and 

soil liquefaction. The most notable event of this sequence was the February 2011 MW 6.3 

Christchurch Earthquake, which caused 185 casualties. Ground motions (GMs) from this 

event were recorded by a network of 20 seismic recording stations in the greater 

Christchurch area (Bradley and Cubrinovski 2011). These ground motions were deemed 

to be quite complex at some locations, with evidence of frequency-dependent 

amplification caused by overlapping stratigraphic, basin, and directivity effects. In order 

to fully understand the spatial variability in ground shaking during the CES events, it is 

necessary to understand both the shallow and deep seismic velocity structure of the 

Canterbury basin. However, in the immediate aftermath of the CES there was a lack of 

detailed information on the velocity structure/small-strain shearing stiffness of materials 

throughout Christchurch, particularly at depths great than 20 - 30 m.    

The shearing stiffness of geomaterials is typically quantified using profiles of 

shear wave velocity (Vs) as a function of depth. Since the small-strain shear modulus 

(Gmax) is directly related to Vs, in-situ measurements of Vs are typically used to 

characterize the small-strain stiffness conditions down to some reference condition (e.g., 

engineering bedrock or basement bedrock). Numerous site response simulations have 
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demonstrated the significant influence of the input Vs profile on both the amplitude and 

frequency content of surface ground motions (e.g., Bazzuro and Cornell 2004, Rathje et 

al. 2010, Li and Assimaki 2010, Barani et al. 2013, Griffiths et al. 2016b, Chapter 4). 

Thus, accurate estimates of Vs, including quantification of uncertainty, are of utmost 

importance for back analyses aimed at replicating recorded GMs and forward analyses 

aimed at predicting future GMs for seismic design. Vs profiles are typically obtained via 

invasive borehole measurements (e.g., seismic crosshole, seismic downhole, and PS 

suspension logging) or non-invasive surface wave measurements (e.g., multi-channel 

analysis of surface waves, microtremor array measurements, etc.). Invasive borehole 

methods are relatively costly and time consuming, especially when drilling to significant 

depths in complex, inter-bedded soil deposits, which are present in many locations 

beneath Christchurch (Brown et al. 1988). Conversely, surface wave methods offer a 

non-invasive, cost effective, and efficient means of obtaining Vs profiles to significant 

depths (Garofalo et al. 2016a), with Vs uncertainty on the order of that obtained from 

borehole methods when performed by experts (Garofalo et al. 2016b).   

Surface wave testing is generally executed in the following three steps: (1) field 

data acquisition of seismic waveforms, (2) processing of seismic waveforms to extract 

experimental dispersion data, and (3) inversion of dispersion data to obtain Vs profiles. 

Data acquisition involves measuring wavefields with strong surface wave content. 

Wavefields can be actively-generated at the ground surface (e.g., using a hammer, drop 

weight, or dynamic shaker) or passively-generated from cultural noise/ambient vibrations 

or seismic microtremors. Processing often involves 2D wavefield transformations (e.g., 

frequency-wavenumber, slant-stack, etc.) aimed at extracting a site-specific relationship 

between surface wave phase velocity (typically Rayleigh wave velocity, Vr) and 

frequency (f) [or, alternatively, wavelength ()] from the experimental field 
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measurements. This relationship between Vr and f [or ] is often referred to as a field 

dispersion curve, or, more appropriately, experimental dispersion data. The inversion 

process consists of finding layered earth models whose theoretical dispersion curves best 

match the experimental dispersion data. Layered earth models are comprised of a pre-

defined number of layers, each characterized by its thickness (H), compression wave 

velocity (Vp), shear wave velocity (Vs), and mass density (). For seismic site response, 

the most significant parts of the layered earth model are H and Vs. Fortuitously, the 

forward problem solved during surface wave inversion is also most sensitive to H and Vs. 

However, it is important to note that the inverse problem is highly non-unique, meaning 

that significantly different ground models may yield theoretical dispersion curves that fit 

the experimental dispersion data equally well (e.g., Foti et al. 2009, DiGiulio et al. 2012, 

Chapter 3). This inversion non-uniqueness can pose a challenge for developing realistic 

ground models for site response if proper precautions are not taken to quantify Vs 

uncertainty in a robust manner.   

An analyst must be rigorous in the consideration of inversion non-uniqueness if 

reliable Vs profiles are to be developed from surface wave testing. A number of studies 

have demonstrated that the choice of parameterization (i.e., number of layers and ranges 

in their respective depth/thickness, Vp, Vs, and ) significantly influences the final Vs 

profiles obtained from inversion (DiGiulio et al. 2012, Chapter 3). Thus, it is prudent to 

consider multiple, unique parameterizations in the absence of a-priori subsurface 

information to constrain the inversion. However, if supporting data is available, it should 

be used to constrain the inversion and yield Vs profiles that are more realistic 

representations of the actual subsurface layering. For example, analysts commonly 

incorporate additional constraints during inversion, including horizontal-to-vertical 

spectral ratio (HVSR) curves (e.g., Scherbaum et al. 2003, Arai and Tokimatsu 2005, 
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Parolai et al. 2005, Piccozi et al. 2005) and/or geotechnical, geophysical, or geologic 

data, which can aid in reducing the range of possible Vs solutions (e.g., Lai et al. 2005, 

DiGiulio et al. 2006, DiGiulio et al. 2012, Chapter 2).   

In addition to inversion non-uniqueness, the interpretation of experimental 

dispersion data can introduce significant uncertainty in the derived Vs profiles. For 

example, certain geologic conditions like shallow stiff layers and low velocity layers 

sandwiched between layers of greater stiffness (i.e., velocity reversals or inverse layers) 

are known to cause mode jumps (i.e., higher mode dominance) and/or mode 

superposition (i.e., effective modes) over certain bandwidths in the experimental 

dispersion data (Foti et al. 2011, Boaga et al. 2013, Boaga et al. 2014).  If these mode 

issues are not identified and properly accounted for in the inversion, the resulting Vs 

profiles will not accurately represent the subsurface stiffness conditions. Therefore, it is 

beneficial to have an understanding of the local geology and general subsurface 

stratigraphy in order to identify the possibility of higher mode dominance and/or effective 

modes.  

This paper discusses the acquisition and processing of combined active-source 

and passive-wavefield surface wave data in order to develop deep (+500 m) Vs profiles at 

14 sites in Christchurch. Inversion non-uniqueness issues and challenges with accurate 

mode identification are especially troublesome in the complex, inter-layered geologic 

conditions that exist beneath Christchurch. Thus, the processing and interpretation of 

surface wave data at these 14 sites was extremely challenging. Fortunately, an abundance 

of a-priori information, including geotechnical boreholes and geologic well logs, was 

available to aid in the inversions (Lee et al. 2015 and 2017). This paper demonstrates 

how a-priori information was used to help invert challenging datasets and develop 

geologically-realistic Vs profiles with estimates of uncertainty throughout Christchurch. 
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The Vs profiles developed from this study are intended to aid in future engineering 

analyses, such as 3D physics-based ground motion simulations and 1D site response 

analyses, aimed at better understanding the influence of local soil conditions on the 

spatial variability in ground motions experienced during the Christchurch Earthquake. 

Furthermore, the data processing and inversion methodologies discussed herein will be 

valuable to others in their attempts to develop realistic deep Vs profiles with estimates of 

uncertainty from surface wave testing in other areas.          

2.2  CHRISTCHURCH GEOLOGY AND CHALLENGES FOR SUBSURFACE SITE 

CHARACTERIZATION 

Christchurch is located on the eastern coast of Pegasus Bay on the South Island of 

New Zealand. The majority of the test sites for this study are located on the deep alluvial 

soils of the Canterbury Plains and the Pegasus Coast. The Springston and Christchurch 

Formations make up the near-surface geology (approximately 15 to 40 m), as shown in 

Figure 2.1. The Springston Formation consists primarily of alluvial sands and gravels. 

The Christchurch formation is composed of Holocene estuarine, lagoon, dune and coastal 

swamp deposits of gravel, sand, silt, clay, and peat. Underlying the Christchurch 

Formation are multiple alternating formations of alluvial gravels and estuarine and 

marine sands, silts, clays, and peats (Brown et al. 1988). The only borehole in 

Christchurch that extends to depths in excess of 200 m is Bexley Well 2. This well is 

located approximately 1.5 km inland from the coast, and ranges from 2 km to 13 km from 

the 14 sites where deep surface wave testing was conducted for this study (refer to Figure 

2.2a). Figure 2.1c shows a simplified representation of the layering in Bexley Well 2. It 

can be seen that gravels inter-bed with sands, silts, and clays above a depth of roughly 

250 m. The well log indicates sand, silt, and clay deposits between 250 and 430 m 

(Barnes et al. 2011). Miocene-aged volcanics are present throughout much of the 
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Canterbury Plains and Pegasus Coast. The depth of these materials is relatively shallow 

close to the Banks Peninsula and becomes quite deep with increasing distance to the 

north and east (Forsyth et al. 2008).  Basement rock, which represents the interface of the 

Pre-Quaternary and Quaternary geologic units, is quite deep and generally ranges from 

1000 to 2000 m in the locations where testing was performed (Lee et al. 2015).    

The alternating formations of alluvial gravels and estuarine and marine sands, 

silts, clays, and peats described in the previous paragraph are present at most sites where 

deep surface wave testing was conducted. Because gravel is typically much stiffer than 

clays, silts, and sands at comparable effective stress levels (Kramer 1996, Lin et al. 

2014), strong velocity contrasts can be expected at the interfaces of geologic formations. 

Additionally, velocity reversals occur when sand, silt, or clay layers reside below gravel. 

As discussed previously, these strong velocity contrasts and velocity reversals are 

expected to lead to higher and/or effective mode dominance over certain bandwidths of 

the experimental dispersion data.  It is important to recognize these potential mode issues 

prior to inversion, because if higher modes are incorrectly interpreted as fundamental 

mode, Vs may be significantly overestimated during inversion. 

In addition to the challenges associated with mode interpretations, the complex 

geology in Christchurch also makes it difficult to adequately constrain the range of 

possible solutions during the inversion process. As noted earlier, the choice of 

parameterization significantly influences the Vs profiles derived from inversion. Thus, it 

is necessary to develop a parameterization that is wide-ranging enough to account for the 

complex geologic conditions, yet sufficiently constrained to preclude unrealistic ground 

models. This task is not trivial in complicated geologic settings, such as those in 

Christchurch. Without a-priori information, it would be extremely difficult, or even 
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impossible, to develop a set of inversion parameters that accurately capture the 

subsurface complexity demonstrated in Figure 2.1b and 2.1c. 

 

Figure 2.1: (a) Geographical location of Christchurch. (b) Schematic geologic cross-

section beneath Christchurch and Pegasus Bay showing a sequence of deep 

inter-layered gravel and sand formations, and (c) simplified representation 

of the geologic layering from Bexley Well 2 (modified from Forsyth et al. 

2008 and Barnes et al. 2011). 

2.3  SURFACE WAVE TESTING AND LOCATIONS 

Surface wave testing was conducted at 14 sites throughout Christchurch between 

January and March 2013. Test site locations are shown in Figure 2.2a. These 14 sites 

were chosen by balancing the following considerations: adequate spatial coverage across 

the city of Christchurch, proximity to strong motion seismic recording stations (refer to 

Figure 2.2a), and sufficient space to conduct testing. Both active- and passive-source 

surface wave testing were performed. Active-source testing was executed using the 

Multi-channel Analysis of Surface Waves (MASW) method. Active-sources included 

both a sledgehammer and the large NHERI@UTexas T-Rex vibroseis truck 
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(https://utexas.designsafe-ci.org/equipment-portfolio/). Sledgehammer data was obtained 

using 48, 4.5 Hz vertical geophones with a uniform spacing of 2 m. Vibroseis data was 

collected using 15 to 24, 1 Hz vertical geophones with a uniform spacing of 10 m. 

Surface waves were generated at a number of distinct source-offset locations, which are 

measured relative to the first geophone in the MASW array. Hammer source-offsets were 

5, 10, 20, and 40 m and the vibroseis source offsets were 20, 40, and 80 m. The active-

source arrays used at the Hagley Park (HP) site are shown as a typical example in Figure 

2.2b.   

Passive-source measurements (i.e., Microtremor Array Measurments, MAM) 

were performed using circular arrays with approximate diameters of 60, 200, and 400 m. 

Ambient noise was measured for approximately a half-hour, one hour, and two hours for 

each successively larger array, respectively. Circular arrays were generally comprised of 

ten, three-component Nanometrics Trillium Compact 120s broadband seismometers with 

a flat response between 100 Hz to 120 seconds. As a typical example, Figure 2.2b shows 

the ambient circular arrays used at the Hagley Park site. Note that at some sites perfect 

circular arrays could not be used due to spatial constraints (buildings, roads, etc.). In 

these situations, some of the receivers in a given array were moved to accommodate site-

specific obstacles. While we prefer to use perfectly circular arrays because they provide 

uniform azimuthal coverage and allow for comparison of multiple array processing 

techniques when extracting dispersion data, irregular 2D array geometries can be utilized 

in MAM testing provided the coordinates for each receiver are known.   

Raw data collected at all sites are available on the Network for Earthquake 

Engineering Simulation (NEES) website (https://nees.org/warehouse/project/1173). Data 

is can also be obtained from the Design Safe website (www.designsafe-ci.org) by 

searching for the “NEES-2012-1173” group in the data depot. Each site was assigned a 
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digital object identifier (DOI), as listed in Table 2.1. Detailed metadata describing the 

array geometries, acquisition parameters, etc. are provided for each site.   

  

 

Figure 2.2: (a) Location of all 14 deep surface wave test sites in Christchurch, New 

Zealand relative to the 20 strong motion stations that recorded the 

Christchurch Earthquake, and (b) array layouts for a typical site (Hagley 

Park, HP). Note that some strong motions stations are beyond the extents of 

(a). Additional details regarding the test sites are provided in Table 1. The 

extents of the source-offset locations for active arrays are indicated by 

dashed lines 

Table 2.1: Coordinates, Median VS30 values with associated variability, and DOI numbers 

for all surface wave test sites. 

Site Latitude Longitude 
Median VS30 

(m/s) 
ln(VS30) DOI 

Burnside Park (BSP) -43.50552 172.56591 294 0.04 DOI:10.4231/D3DB7VQ2P 

Cashmere High School (CHS) -43.56667 172.62321 222 0.001 DOI:10.4231/D38K74W89  

Christchurch Park (CCP) -43.50140 172.64795 160 0.05 DOI:10.4231/D34X54G8C 

Fitzgerald (FTG) -43.52482 172.64903 211 0.02 DOI:10.4231/D3154DP4J 

Garrick Park (GP) -43.54658 172.67402 183 0.02 DOI:10.4231/D3WD3Q19Z 

Groynes (GRY) -43.44137 172.62091 223 0.03 DOI:10.4231/D3RN30756 

Hagley Park (HP) -43.53598 172.61637 188 0.04 DOI:10.4231/D3MW28F12  

Ilam Fields (IF) -43.52208 172.57690 297 0.04 DOI:10.4231/D3H41JM7M 

Latimere Square (LS) -43.53039 172.64261 192 0.02 DOI:10.4231/D3CC0TT3G  

Porritt Park (PP) -43.51521 172.68488 186 0.04 DOI:10.4231/D37P8TD2H  

QEII Park (QEII) -43.49214 172.70914 202 0.06 DOI:10.4231/D33X83K84  

Redwood Park (RWP) -43.47638 172.61306 188 0.02 DOI:10.4231/D3057CS49 

Riccarton High School (RHS) -43.53456 172.56578 324 0.03 DOI:10.4231/D3VD6P49Q 

South New Brighton Park (SNBP) -43.53296 172.73389 184 0.04 DOI:10.4231/D3QN5ZB5K 

https://nees.org/warehouse/experiment/4619/project/1173
https://nees.org/warehouse/experiment/4630/project/1173
https://nees.org/warehouse/experiment/4632/project/1173
https://nees.org/warehouse/experiment/4633/project/1173
https://nees.org/warehouse/experiment/4634/project/1173
https://nees.org/warehouse/experiment/4635/project/1173
https://nees.org/warehouse/experiment/4636/project/1173
https://nees.org/warehouse/experiment/4637/project/1173
https://nees.org/warehouse/experiment/4644/project/1173
https://nees.org/warehouse/experiment/4647/project/1173
https://nees.org/warehouse/experiment/4648/project/1173
https://nees.org/warehouse/experiment/4649/project/1173
https://nees.org/warehouse/experiment/4651/project/1173
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2.4  SURFACE WAVE DISPERSION PROCESSING 

Active-source MASW Rayleigh wave data were analyzed using the frequency 

domain beamformer (FBDF) method (Zywicki 1999) coupled with the multiple source-

offset technique for identifying near-field contamination and quantifying dispersion 

uncertainty (Cox and Wood 2011). Dispersion data influenced by near-field effects 

and/or significant offline noise were eliminated. A representative mean dispersion curve 

with corresponding standard deviations was computed using data from all source offsets 

at each site. This dispersion data was generally in the frequency range of 2 to 50 Hz when 

sledgehammer and T-Rex data was combined.    

Passive-source MAM data were processed using the 2D high resolution 

frequency-wavenumber (HFK) method (Capon 1969) and the modified spatial 

autocorrelation (MSPAC) method (Bettig et al. 2001), as implemented in the open-source 

software Geopsy (www.geopsy.org). For both methods, noise records were divided into 

180 s time windows and processed individually, resulting in approximately 10 to 40 time 

windows per array, depending on the recording time. The choice of a 180 s window 

length was meant to provide a large number of cycles per window at the lowest 

frequencies of interest (e.g., 60 cycles at 0.33 Hz), resulting in more robust dispersion 

estimates per window. Further, the choice of window length still yielded a sufficient 

number of windows to calculate a robust phase velocity with estimates of uncertainty at 

each frequency. For HFK processing, a mean phase velocity and standard deviation were 

computed at each frequency. For MSPAC processing, autocorrelation curves associated 

with each frequency and spacing were converted to dispersion estimates and plotted on 

contour plots.  “Best” and upper/lower-bound estimates were then manually picked from 

these contour plots.   
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Figure 2.3a shows the mean and +/- one standard deviation MASW and MAM 

dispersion data from the Hagley Park site. The MASW and MAM dispersion data are in 

satisfactory agreement at overlapping frequencies (roughly 2 to 10 Hz). In the range of 1 

to 2 Hz, the MAM experimental dispersion data exhibits a flat/decreasing trend. This 

flat/decreasing trend could indicate a strong velocity reversal at significant depths.  

However, in this case, it likely indicates that the dispersion data is transitioning from a 

higher Rayleigh-wave mode back down to a lower (presumably fundamental) mode. 

Rather than an abrupt jump from mode-to-mode, the transition is relatively smooth, 

representing a superposed or effective mode. The higher mode data likely results from the 

inter-bedding of relatively stiff gravel formations with underlying soft formations 

comprised of sands, silts, and/or clays (see Figure 2.1). It should be noted that there is no 

active-source MASW dispersion data below 2 Hz. Thus, if passive-source testing were 

not performed, the mode transition between 1 and 2 Hz would not be evident and all 

MASW data may have been erroneously interpreted as fundamental mode. Therefore, the 

passive-source MAM data greatly aided in the interpretation of the active-source MASW 

data. Furthermore, knowledge of the geologic conditions can alert an analyst to the 

possibility of these mode issues and aid in overcoming the ambiguity that is often 

associated with interpreting the experimental dispersion data. 
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Figure 2.3: (a) Active-source (MASW) and passive-source (MAM) experimental 

dispersion data from the Hagley Park site. Note that the MAM data was 

processed using both the HFK and MSPAC methods. (b) Composite 

dispersion curve developed from experimental dispersion data in (a) and 

used for inversion. Dispersion data at wavenumbers below the kmin/2 

resolution limit (i.e., at frequencies to the left of the kmin/2 boundary) are 

potentially less reliable due to limitations imposed by the maximum array 

aperture.  

Both the MAM-HFK and MAM-MSPAC dispersion estimates exhibit 

considerable uncertainty (i.e., large standard deviations) at low frequencies (refer to 

Figure 2.3a). One factor that influences the quality of dispersion data at low 

frequencies/long wavelengths is the array resolution, which is controlled by the 

maximum aperture of the largest array. Below 0.8 Hz, the experimental dispersion data 

exceeds the resolution capabilities of the largest diameter array and is therefore less 

reliable. During processing, passive-source MAM data at wavenumbers (k = 2/) below 

the minimum resolvable wavenumber (i.e., the array resolution limit, kmin/2, determined 

using the array response function; Wathelet et al. 2008) were removed from the 

dispersion data obtained using the 60 and 200 m arrays. However, in an effort to profile 

as deep as possible in the thick soils of the Canterbury Plains, experimental dispersion 
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data at wavenumbers below kmin/2 were retained for the 400 m array at each site. 

Nonetheless, dispersion data at wavenumbers below kmin/2 may be of lower quality and 

are significantly more uncertain (Wathelet et al. 2008). Thus, the kmin/2 limits are clearly 

marked on the plots of dispersion data for each site. 

It is evident that the MAM-HFK dispersion data in Figure 2.3a is biased towards 

higher phase velocities than the MAM-MSPAC data. As noted by Asten and Boore 

(2005), low frequency HFK data can exhibit bias towards high surface wave velocities 

due to azimuthal smearing of wave energy when passive waves are impinging from a 

wide range of azimuths at the site. However, HFK processing is better suited when 

passive waves are propagating from a limited range of azimuths. After processing, the 

HFK and MSPAC dispersion data at each site were compared on a on a frequency-by-

frequency basis and the dispersion data that was deemed to be of higher quality was 

selected based on a number of factors (e.g., smoothness, uncertainty bounds, bias towards 

high or low phase velocity, noise directionality, etc.). Generally, HFK dispersion data 

was chosen at higher frequencies (1 to 10 Hz) and MSPAC dispersion data was chosen at 

lower frequencies (below 1 Hz). At Hagley Park, MSPAC dispersion data was chosen in 

lieu of the HFK data at frequencies below 1 Hz. 

A composite experimental dispersion curve for use in the inversions for each site 

was developed by combining active- and passive-source dispersion data. At frequencies 

where active- and passive-source dispersion data overlapped, dispersion data representing 

the same Rayleigh mode were averaged. Each composite dispersion curve was resampled 

to a coarser frequency sampling in order to speed up the inversion process. The 

experimental data was typically resampled to yield approximately 40 logarithmically-

spaced dispersion data points. The range in frequencies varied from site-to-site, but was 

commonly in the range of 0.4 – 30 Hz.  
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Figure 2.3b shows the resampled, composite dispersion curve that was used for 

inversion analyses at Hagley Park. Note that MASW and MAM-HFK data were averaged 

in the frequency bands of overlap (2 and 10 Hz). Furthermore, experimental dispersion 

data in the range of 1 to 2 Hz was removed after several trial inversions, as it was judged 

to represent an effective mode that could not be properly accounted for during inversion. 

As discussed in a later section, a multi-mode forward solution was used to invert the 

Christchurch dataset. This type of inversion cannot directly account for effectives modes. 

Thus, effective modes must be identified and removed prior to inversion.   

Composite experimental dispersion data for all sites are provided in a later section 

of this paper. The overall trends in the experimental dispersion data were generally 

similar to that observed at the Hagley Park site. Detailed figures showing the MASW and 

MAM dispersion data from each site are available in the Community Data on the Design 

Safe Website (www.designsafe-ci.org) under the title “Final Results - Deep Shear Wave 

Velocity Profiling for Seismic Characterization of Christchurch_ NZ”. 

2.5  HVSR PROCESSING  

Horizontal-to-vertical spectral ratio (HVSR) data can aid in constraining a surface 

wave inversion (e.g., Scherbaum et al. 2003, Arai and Tokimatsu 2005, Parolai et al. 

2005, Piccozi et al. 2005). For example, HVSR curves with strong peaks are often used to 

approximate the fundamental frequency of the shear wave transfer function, f0_TF,  

(Lermo and Chavez-Garcia 1993, Lachet and Bard 1994) and/or the lowest frequency 

peak of the fundamental mode Rayleigh wave ellipticity, f0_Ell, (Malischewsky and 

Scherbaum 2004, Poggi and Fah 2010). If a strong impedance contrast is present, the 

frequency at which the HVSR curve exhibits a well-defined peak, f0_HV, is approximately 

equal to f0_TF and f0_Ell. Accordingly, HVSR curves were computed for each broadband 
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seismometer used in the passive-source circular arrays in an attempt to estimate the 

fundamental period of the site and constrain the depth to bedrock during inversion.  

The squared average of the north and east components (i.e., the square root of the 

average of the squared north and east components) of the passive data was used to 

represent a single horizontal component at each seismometer location used in the MAM 

testing at each site. For each individual station/seismometer, passive noise records were 

divided into 180 s time windows and the HVSR from all windows were used to calculate 

a lognormal median and +/- one standard deviation for that location. The total number of 

windows for each station ranged from 10 to 40, depending on the total record length. 

Konno and Ohmachi (1998) smoothing with a smoothing constant of 40 was utilized to 

remove erratic spikes in the Fourier spectra for each time window. 

HVSR curves for all 14 sites are shown in Figure 2.4. Solid black lines represent 

the lognormal median HVSR curve calculated using the individual median curves from 

all of the stations in the 60, 200, and 400 m diameter arrays and the dashed black lines 

represent plus/minus one standard deviation. This data was collected using a 0.10 Hz 

cutoff frequency in the digitizers in order to remove low-frequency drift. However, it can 

be seen that at some sites (e.g., GRY, LS, IF) the lowest-frequency peak in the HVSR 

curve is close to this cutoff frequency. Consequently, the digitizer cutoff frequency 

adversely impacted the data quality in the frequency range of interest at several sites. 

Therefore, an additional single-station recording with a 0.05 Hz digitizer cutoff frequency 

was obtained at a later date.  These results from the single-station recording are shown in 

grey in Figure 2.4 and are of better quality at frequencies below 0.20 Hz. 
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Figure 2.4: Horizontal-to-vertical spectral ratios (HVSR) from all Christchurch test sites. 

Note that solid and dashed black lines represent the mean and +/- one 

standard deviation from all stations in the 60, 200 and 400 m MAM arrays, 

respectively. These recordings were obtained using a digitizer with a 0.10 

Hz cutoff frequency.  The solid gray line represents a single HVSR 

measurement taken at a later date using a digitizer with a 0.05 Hz cutoff 

frequency. Note that an additional HVSR measurement was not obtained at 

IF.   
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Well-defined peaks in the HVSR curve are likely caused by large impedance 

contrasts (SESAME 2004).  At sites exhibiting a well-defined peak near 0.2 Hz (BSP, 

GRY, IF, QEII, RWP, and RHS), this low-frequency peak likely represents the deep 

interface of the Pre-Quaternary and Quaternary geologic units (i.e., basement rock). At 

the GP and SNBP sites, which are quite close to the Banks Peninsula, the lowest-

frequency peaks (0.54 and 0.43 Hz, respectively) are likely a result of Miocene-aged 

volcanics, which are expected to be relatively shallow (although still more than 200 m 

deep). Additionally, a relatively high-frequency peak is also evident at many sites in the 

range of 1 to 4 Hz (e.g., CHS, CCP, FTG, GP, GRY, HP, LS, RWP). The high-frequency 

peaks are likely caused by the large impedance contrast at the top of the Riccarton 

Gravel. Note that the geology at the CHS site is unique and the peak between 1 and 2 Hz 

is likely a result of very shallow Miocene volcanics.  

Some sites exhibit both low- and high-frequency peaks (e.g., GP, GRY and 

RWP). Other sites exhibit a single well-defined peak and possibly one or more broader, 

less distinct peaks. The absence of a low- or high-frequency peak suggests smaller 

impedance contrasts at the top of the Riccarton Gravel, and/or impedance contrasts in the 

Miocene volanics and Pre-Quaternary geologic units that are too deep to resolve. When 

identifying peaks in the HVSR spectrum, it is important that the peaks be sufficiently 

clear (i.e., narrow, stable, and of sufficient amplitude). The SESAME D23.12 Report 

(2004) provides peak clarity criteria, which was used here to identify stable peaks for use 

in the inversion.     

In an effort to identify volcanics and/or basement rock, the lowest frequency 

HVSR peak at the BSP, GP, GRY, IF, QEII, RWP, RHS, and SNBP sites was used to 

constrain the lowest-frequency peak of the fundamental mode Rayleigh wave ellipticity 

(i.e., f0_Ell) of the theoretical models generated during inversion. These peaks satisfy the 
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clarity criteria described in SESAME (2004). As noted earlier, peaks in the range of 1-4 

Hz are likely caused by the large impedance contrast at the top of the Riccarton Gravel 

and do not reflect the deep structure of the Canterbury Basin. Because large impedance 

contrasts are known to exist below the Riccarton Gravel, HVSR peaks in the range of 1-4 

Hz were not used to constrain the inversion. 

2.6  SURFACE WAVE INVERSION 

The inversion of surface wave data involves searching for layered earth models 

whose theoretical dispersion curves, which are computed via the forward problem, best 

match the experimentally measured dispersion data. Numerous local and global search 

algorithms exist. However, global search algorithms are generally preferred because they 

can keep the inversion from getting trapped in a local minimum, which could lead to 

erroneous results. Global search algorithms also more elegantly allow for consideration 

of inversion uncertainty, recognizing that multiple layered earth models commonly result 

in theoretical dispersion curves that fit the experimental data within its uncertainty 

bounds. With local and global inversions, the quality of fit between the experimental and 

theoretical dispersion data is typically quantified using some form of a “misfit” value 

(e.g., Wathelet 2004, Foti et al. 2009).  

All inversions for this study were performed using the open-source software 

Geopsy. The forward problem in Geopsy is computed using the transfer matrix approach 

developed by Thomson (1950) and Haskell (1953) and later modified by Dunkin (1965) 

and Knopoff (1964). Geopsy uses a global search neighborhood algorithm to locate 

layered earth models within a pre-defined parameterization that yield the lowest possible 

misfit values between the theoretical and experimental data. Misfit values in this study 

were computed using Equation 2.1 (modified from Wathelet 2004). 
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𝑚𝑑,𝑒 = 𝑤𝑑𝑚𝑑 + 𝑤𝑒𝑚𝑒 = 𝑤𝑑√∑
(xdi−xci)2

σi
2nf

nf
i=1 + 𝑤𝑒√

(𝑓0_𝐸𝑙𝑙,𝑑−𝑓0_𝐸𝑙𝑙,𝑐)
2

𝜎𝑓0_𝐸𝑙𝑙
2  (2.1) 

In Equation 2.1, md,e is the combined misfit value based on both misfit relative to 

dispersion data (md) and misfit relative to the Rayleigh wave ellipticity peak (me). The 

terms wd and we are user-defined weighting constants for dispersion and ellipticity, 

respectively, which must sum to 1.0. For the dispersion misfit calculations, xdi represents 

the Rayleigh wave phase velocity of the experimental dispersion data at frequency fi; xci 

is the calculated theoretical Rayleigh wave phase velocity for the trial layered earth 

model at frequency fi; i is the standard deviation associated with the experimental 

dispersion data at frequency fi; and nf is the number of frequency samples considered for 

the misfit calculation. Similarly, for the ellipticity peak misfit calculation, f0_Ell,d 

represents the Rayleigh wave ellipticity peak associated with the field data (which is 

assumed to coincide with the HVSR peak, or f0_HV), f0_Ell,c represents the calculated 

theoretical Rayleigh wave ellipticity peak for the trial layered earth model, and f0_Ell is 

the standard deviation associated with the experimental ellipticity peak (which is 

assumed to be equal to the standard deviation of f0_HV, or f0_HV). 

At many sites, only dispersion misfit (md) was considered during inversion 

because the HVSR peaks did not exhibit a well-defined, low-frequency peak. In such 

cases, a misfit value less than 1.0 indicates that, on average (i.e., across the frequency 

band considered), the theoretical dispersion curve falls within the +/- one standard 

deviation bounds of the experimental data. Thus, dispersion misfit values in excess of 1.0 

suggest a poor fit of the experimental dispersion data. However, it is important to note 

that misfit values can vary considerably depending on the smoothness and complexity of 

the experimental dispersion data. Accordingly, dispersion misfit values considered 

satisfactory at one site may be considered mediocre or poor at another (Chapter 3). 
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Furthermore, the additional consideration of the ellipticity misfit (me) and user-defined 

weighting makes it difficult to establish universally “good” and “bad” misfit values. 

Thus, misfit values are most useful for making relative judgements regarding layered 

earth models derived from the same experimental dispersion and HVSR data at a given 

site. Meaning, we cannot provide a target misfit value that will indicate a successful 

inversion across all sites.  Rather, the lowest possible misfit values should be sought at 

each unique site by considering multiple inversion parameterizations and potential mode 

interpretations. Geopsy allows for multi-mode inversions and, due to the complexity of 

our datasets, we systematically considered various mode interpretations of our 

experimental data. Meaning, in our attempts to obtain the lowest misfit values and 

quantify inversion uncertainty, we considered that the experimental dispersion data could 

be fit with the fundamental (R0), first higher (R1), second higher (R2), and in some cases 

the third (R3) and fourth (R4) higher Rayleigh modes. 

At those sites where the ellipticity misfit was considered (BSP, GP, GRY, IF, 

QEII, RWP, RHS, and SNBP), the dispersion misfit was weighted much higher than the 

ellipticity misfit by setting wd equal to 0.8 and we equal to 0.2. This decision was made 

because the ellipticity misfit is computed based on the assumption that the experimental 

HVSR peak (f0_HV) coincides with the lowest-frequency Rayleigh wave ellipticity peak 

(f0_Ell,d). Although this assumption is justified when large velocity contrasts are present 

(Malischewsky and Scherbaum 2004), which is expected to be the case at the interface of 

Quaternary and Pre-Quaternary units in Christchurch, there is still a possibility that this 

assumption may be violated. Furthermore, the experimental dispersion data represents a 

wide range of frequencies, while the ellipticity peak misfit is computed at only one 

frequency. Thus, the dispersion misfit was chosen to represent 80% of the total misfit. 
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2.6.1  Inversion Parameters 

As demonstrated in several studies (e.g., DiGiulio et al. 2012, Chapter 3), the 

choice of parameterization (i.e. the number of layers and ranges in their respective 

thicknesses, Vs, Vp, and mass densities) significantly influences the results of an 

inversion. It is extremely important to develop a parameterization which is capable of 

capturing the local site conditions (i.e., not overly restrictive), yet also prohibits the 

inversion algorithm from pursuing unrealistic solutions. Given the complex interlayered 

geologic conditions discussed earlier, obtaining realistic inversion parameterizations was 

not a trivial task for the Christchurch datasets. Fortunately, a multitude of geotechnical 

boreholes and geologic well logs were available near our test sites. These subsurface logs 

allowed us to identify the boundaries between different material types/geologic 

formations at each site and thus develop realistic parameterizations for the near-surface 

layers. Specifically, for this study, 155 geotechnical boreholes were obtained from the 

Canterbury Geotechnical Database (now the New Zealand Geotechnical Database; 

www.nzgd.org.nz) and 199 geologic well logs were obtained from the University of 

Canterbury (Lee et al. 2017). The majority of boreholes/wells were within or less than 0.5 

km from the extents of the largest arrays. Geotechnical boreholes were generally drilled 

to depths of less than 40 m and allowed for the identification of material types within the 

Christchurch and Springston Formations. Well logs as deep as 200 m allowed for realistic 

constraints to be set on the contacts between alternating layers of alluvial gravels and 

soft, estuarine/marine soils. While still uncertain, due to spatial variations in layer 

thicknesses and limited data across each site, borehole and well logs generally allowed 

layer boundaries between major geologic units to be constrained within +/- 3-5 m down 

to a depth of about 200 m. The boundaries between major geologic units for each site, 
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including the uncertainty/search boundaries for each formation, are discussed in greater 

detail and presented later in the paper (see for example Figure 2.6e).      

While the overall thicknesses of geologic units beneath each site were fairly well 

constrained over the top 200 m, many of the thicker geologic formations needed to be 

subdivide into thinner layers for inversion so that depth-dependent changes in stiffness 

could be reflected in the inversion results. Note that because the formation thicknesses 

varied considerably amongst the sites, the same number of layers were not used in each 

formation at each site.  Table 2.2 shows the approximate range of thickness for each 

geologic formation across all sites in this study. Ranges for the number of layers used in 

each geologic formation are also summarized in Table 2.2. The Shirley Formation is the 

last geologic unit whose bottom depth could be ascertained from the geologic well logs. 

Consequently, the bottom of the Wainoni Gravel and underlying formations could not be 

constrained by a-priori information. Thus, five to seven layers were incorporated between 

the bottom of the Shirley Formation and the bottom of the parameterization. These layers 

became progressively thicker with depth because the resolution of surface wave methods, 

or the ability to detect thin layers, diminishes with increasing depth (Foti et al. 2014). The 

bottommost layer in the parameterization was not permitted to extend below a depth of 

one-half of the maximum wavelength obtained from the dispersion curve, or max/2, 

which is a long-standing, common assumption in surface wave inversion (e.g., Garafalo 

et al. 2016a).   
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Table 2.2: Inversion parameterization summary for geologic formations beneath 

Christchurch test sites 

Geologic Formation Abbreviation 
Approximate 

Thickness (m) 

No. 

Layers 

Velocity Reversals 

(Analysis 2) 

Christchurch & Springston CH/SP 15 to 40 4 to 6 Yes 

Riccarton Gravel RI 10 to 30 1 to 4 No 

Bromley BR 4 to 20 1 to 2 Yes 

Linwood Gravel LI 25 to 55 2 to 4 No 

Heathcote HE 4 to 20 1 Yes 

Burwood Gravel BU 4 to 20 1 No 

Shirley SH 8 to 22 1 Yes 

At many sites, two inversion analyses were performed. While both inversions 

incorporated the same depth constraints for each layer, Analysis 1 was normally 

dispersive (i.e., Vs consistently increasing with depth) below the Springston and 

Christchurch Formations, while Analysis 2 permitted velocity reversals in the Bromley, 

Heathcote, and Shirley Formations. As mentioned previously, large velocity reversals are 

likely in the soft, estuarine/marine soils beneath each gravel formation. Thus, Analysis 2 

is more consistent with the known geologic setting. However, without a-priori 

information, examination of the dispersion data alone may not have led one to believe 

there were multiple velocity reversals present. Thus, the authors sought to investigate 

whether it was possible to obtain comparable misfit values using both approaches. The 

Vs parameterization for Analysis 1 was allowed to range broadly between values 

associated with soft soils (i.e., 100 m/s at shallow depths or low confining pressures) to 

those associated with dense gravel (i.e., 1000 m/s at significant depths or high confining 

pressures). The Vs ranges for Analysis 2 were set based on the known material type and 

effective confining pressure using the relationships provided in Lin et al. (2014) for soft 

soils, dense sand, and dense gravel. These reference velocity profiles provide reasonable 

values of Vs as a function of mean effective stress for each soil type, which helps in 

setting realistic Vs ranges for inversion parameterization. Below the Shirley Formation, 
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the inversion parameters for Analysis 1 and 2 were equal and normally dispersive since 

no a-priori information was available to constrain the inversions at greater depths. 

2.6.2  Number of Trial Layered Earth Models 

The inversion parameterizations described above include many layers and, in the 

case of Analysis 2, potential velocity reversals. Consequently, each parameterization 

contained many degrees of freedom and it was necessary to search many trial layered 

earth models to adequately explore each parameterization and obtain the best solutions. 

Nonetheless, due to computational limitations, one must strike a balance between full 

exploration of the parameterization and practical time/data storage constraints. Analyses 

were originally performed in 2013-2014 that considered approximately 1.5 million trial 

layered earth models per inversion. These inversions typically took about 3 hours using a 

desktop computer with an Intel Xeon E5-1650 processor and 32 GB of RAM. However, 

we recently gained access to the Stampede supercomputer at the Texas Advanced 

Computing Center (TACC), allowing for much faster inversions involving more trial 

layered earth models. After some slight modifications to the weighting factors in the 

misfit calculations (described previously), the inversions were repeated using 

approximately 5 million trial models per inversion. The goal of repeating these analyses 

was to achieve lower misfits and to obtain a larger suite of realistic Vs profiles at each 

site. Results associated with the original analyses have been discussed in several 

publications (Cox et al. 2014, Wood et al. 2014, Teague et al. 2015, Lee et al. 2015 and 

2017, Teague et al. 2017). Although the highest quality results were obtained from the 

new inversions using the TACC resources (i.e., those presented herein), the results shown 

in prior publications are still geologically realistic and the discussions are still valid.   
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It should also be noted that obtaining reasonable/realistic Vs profiles from surface 

wave inversion is not as simple as setting up a broad parametrization and throwing 

massive computing power at it. It is generally necessary to explore several 

parameterizations (possibly many) and investigate alternate mode interpretations. On 

average, it took 1 to 2 weeks to perform the inversions for each site discussed in this 

paper.    

As discussed earlier, misfit values are subjective and difficult to compare from 

site-to-site. However, at many sites it is possible to develop a maximum misfit criteria, 

above which any layered earth models are deemed unacceptable. As stated earlier, a pure 

dispersion misfit (md, see Equation 2.1) less than 1.0 indicates that the theoretical 

dispersion curve(s) for a given ground model lie within the uncertainty bounds of the 

experimental data. Conversely, a pure dispersion misfit significantly greater than 1.0 

indicates that the theoretical curves fall outside of the experimental uncertainty bounds 

over wide frequency ranges. Although the misfit values at many sites represented a 

weighted average of the dispersion and ellipticity misfits (md and me, respectively), the 

dispersion misfit was weighted substantially more than the ellipticity misfit term (80% vs 

20%, respectively). Thus, we still sought to obtain a large number (103 or more) of Vs 

profiles with misfit values less than or approximately equal to 1.0. Although the number 

of trial models necessary to accomplish this goal is controlled by the experimental data 

and model parameterization (i.e., it is site-specific), we found that 5 million trial layered 

earth models worked well for most sites. At some sites tens- or hundreds-of-thousands of 

trial earth models achieved misfits below 1.0, while at other sites only about 1000 Vs 

profiles met this misfit criteria. While it would appear reasonable to extract all Vs 

profiles with misfit values less than 1.0 as a means to quantify Vs uncertainty, the 

number of profiles with misfits below 1.0 varies considerably amongst the sites and in 
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some cases is not computationally manageable. Thus, for consistency, the 1000 lowest 

misfit Vs profiles were extracted for further analysis at each site. While the decision to 

extract 1000 profiles is somewhat arbitrary, we found that it provided a suite of Vs 

profiles that reasonably captured the variability exhibited by those profiles, yet was still 

manageable from a computational standpoint. It should be noted that far fewer trial 

models (roughly 800k) were considered at the CHS site because the parameterization was 

relatively simple due to the unique geology. This is further discussed in the following 

section. 

2.7  SURFACE WAVE INVERSION RESULTS 

This section begins by considering the surface wave inversion results from the 

Hagley Park site as a detailed example. Subsequently, the surface wave inversion results 

from all sites are provided. Note that detailed inversion summaries and final Vs profiles 

for all sites are available in the Community Data on the Design Safe Website 

(www.designsafe-ci.org) under the title “Final Results - Deep Shear Wave Velocity 

Profiling for Seismic Characterization of Christchurch_ NZ”.   

2.7.1 Hagley Park 

The theoretical dispersion curves associated with the 1000 lowest misfit layered 

earth models at Hagley Park from Analysis 1 and Analysis 2 are shown in Figure 2.5a 

and 2.5b, respectively. The fundamental, first-higher, and second-higher theoretical 

Rayleigh-wave dispersion modes (R0, R1, and R2, respectively) are shown for each 

model. It is clear that comparable fits of the experimental dispersion data were achieved 

during both analyses (i.e., using two unique parameterizations). This is underscored by 

the similar misfit ranges for the best 1000 models, which are shown in brackets. (Note 

that the values shown are pure dispersion misfits since a clear low frequency peak below 
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1 Hz was not present in the HVSR data at this site; refer to Figure 2.4g). Both analyses 

indicate a transition from the fundamental (R0) to the first higher (R1) mode between 2 

and 4 Hz. As discussed earlier, after preliminary inversions the experimental dispersion 

data between 1 and 2 Hz was judged to represent an effective mode that could not be 

modeled in Geopsy and was removed prior to final inversion. Between 0.70 Hz and 1.0 

Hz, both analyses fit the experimental dispersion data with the fundamental mode. Below 

0.7 Hz, the mode associated with the experimental data is ambiguous. It can be seen that 

some Vs profiles fit the experimental dispersion data below 0.7 Hz with the fundamental 

mode, while others fit this data with the first higher mode. This represents epistemic 

uncertainty, which could potentially be reduced by using larger arrays and/or obtaining 

more supporting data regarding the deep velocity structure at the site. 

In the absence of a-priori information about the geology of Christchurch, it would 

be difficult to conclude that one analysis is “better” than another. Indeed, Analyses 1 and 

2 yield Vs profiles with very similar minimum dispersion misfit values (md = 0.45 and md 

= 0.44, respectively). Since the misfit values are marginally lower for Analysis 1 than for 

Analysis 2, one may be inclined to state that Analysis 1 is “better”. However, it is worth 

considering the resulting Vs profiles along with the known geotechnical and geologic 

data. 
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Figure 2.5: Theoretical Rayleigh wave dispersion curves for the “best” (i.e. lowest misfit) 

1000 velocity models obtained from the inversion analysis at Hagley Park 

using: (a) a normally dispersive parameterization (Analysis 1), and (b) a 

parameterization that permits velocity reversals within the Bromley, 

Heathcote, and Shirley Formations (Analysis 2). Note that the three distinct 

bands of curves represent the fundamental (R0), first higher (R1), and 

second higher (R2) Rayleigh modes.  Also highlighted is the theoretical 

dispersion curve for the median velocity profile obtained from the “best” 

1000 profiles. Note that experimental dispersion data with wavenumbers 

below the array resolution limit (kmin/2; Wathelet et al. 2008) may be 

adversely influenced by limitations of the largest (400 m diameter) array. 

Vs profiles obtained from Analyses 1 and 2 are shown on depth scales of 150 m 

(Figure 2.6a and 2.6c) and 2000 m (Figure 2.6b and 2.6d) in Figure 2.6. The standard 

deviation of the natural logarithm of Vs (lnVs), which is commonly used to quantify 

variability in Vs (e.g., Toro 1995, EPRI 2012, Griffiths et al. 2016a), is shown in Figures 

2.6e and 2.6f. The geologic stratigraphy is superimposed on Figure 2.6e. Vs profiles from 

Analysis 2 (Figure 2.6c and 2.6d) better capture the complex geology of Christchurch 

than those from Analysis 1 (Figure 2.6a and 2.6b) due to the a-priori geologic layering 

information used to constrain the Analysis 2 inversions. The contacts between the alluvial 
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gravels and the estuarine and marine sands, silts, and clays are shown in Figure 2.6e 

along with uncertainty bounds for the locations of these contacts that were used during 

inversion. Vs profiles from Analysis 2 exhibit strong velocity contrasts and velocity 

reversals at these boundaries. Conversely, Analysis 1 does not include velocity reversals 

in formations where they are highly probable. It is also clear from the Lin et al. (2014) 

material reference curves for soft soil, dense sand, and dense gravel shown in Figures 

2.6a and 2.6c that the velocities within each layer in Analysis 2 are more consistent with 

the known material types. For example, in the Riccarton (RI), Linwood (LI), and 

Burwood (BU) Gravel formations, Vs is consistent with the reference curve for dense 

gravel, while in the Bromley (BR), Heathcote (HE), and Shirley (SH) formations Vs is 

more consistent with the dense sand reference curve. Conversely, the Vs profiles from 

Analysis 1 essentially average the Vs across material types and are less consistent with 

the known geology. 

It is important to note that the Heathcote, Burwood, and Shirley formations are 

relatively thin formations (refer to Table 2.2). At long wavelengths (i.e., lower 

frequencies), the experimental dispersion data is less sensitive to these thin layers. Thus, 

it would be essentially impossible to obtain the results from Analysis 2 without a-priori 

information regarding the subsurface layering, while Vs profiles similar to those shown 

in Analysis 1 could be more readily obtained in a blind inversion. Moreover, given the 

relative insensitivity of the dispersion data to these thin layers at depth, one may argue 

that the inclusion of these thin velocity reversals may be unnecessary/unimportant to 

seismic site response (Teague et al. 2017). However, given the strong geotechnical and 

geologic evidence that these layers are present, the authors believe it is important to 

include them in the analyses.    
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Figure 2.6: The 1000 “best” (i.e., lowest misfit) shear wave velocity (Vs) profiles 

obtained from over 5 million models searched during inversion Analysis 1 

(a, b) and Analysis 2 (c, d) at Hagley Park. Also shown in (a) and (c) are the 

soil-type Vs reference curves from Lin et al. (2014). Note that the res/2 line 

in (b) and (d) identifies the approximate depth where the Vs profiles are best 

constrained by the resolution limits of the largest circular array. All Vs 

profiles were cutoff at a depth of 2000 m, which is roughly one-half of the 

maximum resolved wavelength (max/2). The standard deviation of the 

natural logarithm of Vs (lnVs) for the “best” 1000 models from each 

analysis are shown in (e) and (f). The geologic stratigraphy obtained from 

geologic well logs is superimposed on the lnVs profile in (e), with error bars 

representing uncertainties in the depth to each interface.   
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The median of the 1000 lowest misfit Vs profiles is shown in Figure 2.6 for each 

analysis. Note that these median Vs profiles were not derived directly from inversion. 

Rather, since all Vs profiles from a given parameterization incorporated an equal number 

of layers, a median bottom depth and median Vs could be readily computed for each 

layer. The theoretical dispersion curves associated with the median Vs profile are shown 

for each analysis in Figure 2.5. Note that the computation of theoretical dispersion curves 

requires values of Vp and mass density for each layer in addition to depth/thickness and 

Vs. Thus, the median Vp and mass density of the 1000 lowest misfit ground models were 

also used calculated and used to compute the theoretical dispersion curves shown in 

Figure 2.5. It is clear that the theoretical dispersion curves associated with the median Vs 

profile satisfactorily fit the experimental dispersion data. Thus, the median Vs profiles are 

both statistically representative of the “best” Vs profiles from each analysis and 

consistent with the experimental dispersion data. In addition to the median, it is also 

useful to consider the variability (i.e., lnVs) in the suite of Vs profiles from each analysis.     

It is clear from Figure 2.6e and 2.6f that both Analyses 1 and 2 exhibit significant 

variability in Vs. This underscores the non-uniqueness associated with the surface wave 

inverse problem. It is worth noting that the Vs profiles from Analysis 1 exhibit less 

variability than those associated with Analysis 2. This is partly because the inclusion of 

potential velocity reversals in the parameterization for Analysis 2 exacerbates the non-

uniqueness of the inversion (i.e., allows for more possible Vs profiles when fitting the 

data). However, given the a-priori information, the inclusion of these velocity reversals is 

warranted. Over the top 500 m, Analysis 2 exhibits a lnVs around 0.10 within each layer 

and “spikes” at layer interfaces. These “spikes” do not represent uncertainties in Vs 

within a given layer, rather, they represent uncertainties in the depth to layer interfaces. 
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Below 500 m (i.e., the approximate resolution limit of the largest array, as discussed 

subsequently), lnVs increases to approximately 0.20.  

During the inversion process, we generally used two wavelengths obtained from 

the experimental dispersion data to guide the approximate depth ranges reported in our 

Vs profiles. The first guiding wavelength is referred to as res, which is the wavelength 

corresponding to the array resolution limit (i.e., res = 2kmin/2]=4/kmin). The second 

guiding wavelength is referred to as max, which is the maximum wavelength 

(corresponding to the lowest frequency and highest Vr value) in the experimental 

dispersion data. Fundamental mode Rayleigh waves at a given wavelength are generally 

capable of profiling to a maximum depth of approximately 1/3 to 1/2 of their wavelength 

(Foti et al. 2014). While much of the experimental dispersion data in this study 

represented higher modes and thus could theoretically profile deeper, it is often difficult 

to definitively identify higher modes. Thus, this conservative assumption was still 

utilized and Vs profiles obtained from inversion are considered most reliable at depths 

less than approximately res/2. The res/2 depth limits, which range from 450 m to 550 m 

based on the arrays used at the 14 sites in this study, are clearly indicated in all Vs 

profiles presented below. At greater depths (i.e., at depths exceeding res/2), the Vs 

profiles are constrained by less reliable dispersion data. Hence, the Vs profiles below 

res/2 should also be considered less reliable and used with caution. Vs profiles were not 

extended below a depth of max/2 because there were no dispersion data to constrain them 

at greater depths. Additionally, no Vs profiles were extended below a depth of 2000 m, 

even if max/2 was more than 2,000 m. Accordingly, all Vs profiles at Hagley Park were 

cutoff at a depth of 2000 m. 

For the reasons outlined in the previous paragraphs, inversions informed by a-

priori geotechnical and geologic information at each site (i.e., Analysis 2 inversions) 
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were deemed to be most realistic. All subsequent results shown in this paper were derived 

using inversion parameterizations that incorporated information about site-specific 

layering and permitted velocity reversals beneath each gravel formation. Although the 

resulting Vs profiles are not simple/smooth, they are consistent with the local geology 

and yield satisfactory fits to the experimental dispersion data. It should be noted that a 

common approach to an inverse problem is to seek the most simple/smooth solution that 

explains the observed data (Constable et al. 1987). While this approach is certainly 

warranted in many geologic settings (e.g., gradual increases in Vs with increasing depth), 

it is clear that such an approach could not have produced geologically-realistic Vs 

profiles in Christchurch. Nonetheless, it would be extremely difficult and potentially 

impossible to develop geologically-realistic Vs profiles at these sites without the aid of a-

priori information. 

2.7.2  All Sites 

The 1000 lowest misfit Vs profiles from all sites have been made available as text 

files on the Design Safe website. Also available are PDF files for each site detailing the 

array locations, the experimental dispersion and HVSR data from all arrays, and the 1000 

lowest misfit Vs profiles and their associated dispersion curves.   

The theoretical dispersion curves (fundamental and higher mode) associated with 

the 1000 lowest misfit ground models are shown with the experimental data for all 14 

sites site in Figure 2.7. The dispersion curves at most sites exhibit similar characteristics 

as those from Hagley Park. The experimental dispersion data was generally fit with the 

fundamental mode at high frequencies. However, as frequency decreased, the 

experimental dispersion data generally transitioned to higher Rayleigh-wave modes and 

then eventually back to the fundamental mode between 1 and 2 Hz. Low-frequency 
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experimental dispersion data below 1 Hz were fit solely with the fundamental mode at 

some sites (BSP, GRY, RWP, RHS). At other sites, some theoretical dispersion curves fit 

the experimental data with the fundamental mode, while others fit the same experimental 

dispersion data with the fist higher mode. As noted earlier, these two mode 

interpretations represent epistemic uncertainty in the inversion results and both are 

reasonable within the bounds of existing knowledge.     

Figures 2.8 and 2.9 show the 1000 lowest misfit Vs profiles for all 14 sites to 

depth scales of 150 and 2000 m, respectively. Table 2.3 provides the median Vs profile of 

the 1000 lowest misfit profiles for all 14 sites. Similar to Hagley Park, Vs profiles at all 

sites generally exhibit velocity reversals beneath each gravel formation (RI, LI, and BU). 

These velocity reversals are consistent with the geologic layering that was determined 

from geotechnical boreholes and geologic well logs. It should be noted that the CHS site 

is located on the Banks Peninsula and the geologic conditions at this site are quite 

different from all other test sites. Beneath the Christchurch formation, the CHS site is 

characterized by Pliocene-aged materials underlain by Miocene volcanic rock. Thus, the 

complex inter-layering of gravel formations with sands, silts, and/or clays was not present 

at this site. Given the lack of inter-layering and relatively shallow structure, less than 1 

million trial earth models were necessary for the inversion at this site.  
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Figure 2.7: Experimental dispersion data shown along with the theoretical dispersion 

curves for the 1000 “best” (i.e., lowest misfit) ground models at all 14 test 

sites. (Test site locations are provided in Figure 2.2 and Table 1.1). Also 

shown are the theoretical dispersion curves for the median ground model. 

The R0, R1 and R2 modes are shown for all ground models. Additionally, 

the R3 and R4 modes are shown for all models at Burnside Park (BSP). 

Note that experimental dispersion data with wavenumbers below the array 

resolution limit (kmin/2, Wathelet et al. 2008) may be adversely influenced 

by limitations of the largest (400 m diameter) array. 
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Figure 2.8: The 1000 “best” (i.e., lowest misfit) shear wave velocity (Vs) profiles 

obtained during the inversion analyses performed at all 14 sites, shown to a 

depth scale of 150 m. Also shown is the median Vs profile of the best 1000. 

Shown to the right of each suite of Vs profiles is the standard deviation of 

the natural logarithm of Vs (lnVs) as a function of depth. The geologic 

stratigraphy is superimposed on the lnVs profile, with error bars 

representing uncertainties in the depth to each interface. 
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Figure 2.9: The 1000 “best” (i.e., lowest misfit) shear wave velocity (Vs) profiles 

obtained during the inversion analyses performed at all 14 sites, shown to a 

depth scale of 2000 m. Note that the Vs profiles are most reliable at depths 

less than res/2. All Vs profiles were cutoff at a depth of one-half of the 

maximum resolved wavelength (max/2) or 2000 m, whichever was 

shallower. 
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Table 2.3: Median Vs Profiles for all surface wave test sites.  Note that the all layers 

below the vertical dashed line exceed res/2, or the approximate depth where 

the Vs profiles are best constrained by the resolution limits of the largest 

circular array. All Vs profiles were cutoff at a depth of one-half of the 

maximum resolved wavelength (max/2) or 2000 m, whichever was 

shallower. 

Burnside Park 
Cashmere High 

School 
Christchurch Park Fitzgerald Garrick Park Groynes 

Depth 

[m] 

Vs 

[m/s] 

Depth 

[m] 

Vs 

[m/s] 

Depth 

[m] 

Vs 

[m/s] 

Depth 

[m] 

Vs 

[m/s] 

Depth 

[m] 

Vs 

[m/s] 

Depth 

[m] 

Vs 

[m/s] 

2.0 112 2.5 123 2.0 140 2.0 123 2.0 109 1.3 111 

4.0 243 5.3 124 6.1 53 2.9 130 2.7 115 3.3 150 

7.6 256 9.7 205 7.8 175 7.3 157 9.9 120 3.9 182 

10.3 289 20 207 17 237 12 190 16 298 10 143 

13 310 48 480 24 259 18 238 21 176 12 181 

23 422 57 513 27 289 23 259 29 264 13 190 

33 473 87 1000 32 314 28 337 37 415 19 328 

41 526 172 1030 39 360 33 398 44 486 27 436 

47 288 289 1072 47 445 38 451 53 327 36 506 

58 348 392 1628 56 330 45 491 65 503 41 359 

71 394 750 3048 68 457 51 395 78 574 59 477 

83 486     80 565 59 480 87 624 78 576 

91 411     93 662 69 531 97 324 94 662 

110 592     106 412 77 570 105 493 101 354 

118 418     116 572 85 600 119 451 112 506 

169 613     134 492 100 419 156 566 125 402 

224 766     171 589 107 578 225 729 173 538 

352 839     237 653 124 478 359 1287 230 634 

580 882     362 715 171 577 700 2667 341 723 

915 920     538 814 249 647     502 831 

1417 1006     704 1016 366 752     704 938 

1500 2859     971 1264 538 882     934 1057 

        1536 1527 669 1100     1787 1156 

        2000 2369 966 1342     1900 3224 

            1352 1671         

            1600 2554         
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Table 2.3 (continued): Median Vs Profiles for all surface wave test sites.  Note that the all 

layers below the vertical dashed line exceed res/2, or the approximate depth 

where the Vs profiles are best constrained by the resolution limits of the 

largest circular array. All Vs profiles were cutoff at a depth of one-half of 

the maximum resolved wavelength (max/2) or 2000 m, whichever was 

shallower. 

 

Hagley Park Ilam Fields Latimere Square Porritt Park QEII Park Redwood Park 

Depth 

[m] 

Vs 

[m/s] 

Depth 

[m] 

Vs 

[m/s] 

Depth 

[m] 

Vs 

[m/s] 

Depth 

[m] 

Vs 

[m/s] 

Depth 

[m] 

Vs 

[m/s] 

Depth 

[m] 

Vs 

[m/s] 

2.0 107 2.0 124 2.0 148 2.0 98 2.0 121 2.0 95 

5.3 103 7.5 210 6.5 112 4.0 118 5.7 122 7.7 101 

8.9 130 11 298 10 181 7.3 146 7.6 145 13 135 

16 160 15 312 16 220 12 202 11 199 20 328 

20 275 23 431 22 223 21 236 20 234 28 423 

24 361 30 497 25 249 27 270 28 244 39 463 

29 410 36 553 29 314 32 230 39 261 46 500 

34 447 45 317 33 370 37 279 49 311 51 361 

41 477 59 408 37 431 42 328 68 273 68 579 

51 314 70 511 44 484 52 265 91 357 78 611 

58 376 86 630 54 447 61 305 107 386 97 649 

66 427 93 432 62 500 78 361 121 344 105 389 

73 491 107 604 70 537 94 451 130 570 117 577 

81 563 115 471 78 565 106 360 145 429 126 623 

94 384 181 644 86 606 115 520 168 603 164 707 

102 507 270 707 102 408 134 387 228 654 242 767 

116 413 366 759 108 558 174 595 322 782 322 806 

169 538 560 856 122 427 239 707 560 847 566 847 

244 660 732 976 164 538 385 782 656 996 650 901 

370 782 934 1100 232 628 522 890 966 1078 879 957 

528 945 1809 1239 373 759 669 1078 1425 1303 1460 1006 

676 1133 2000 3257 517 859 906 1342 1800 2951 1500 3292 

906 1369     669 1036 1453 1756         

1390 1687     871 1381 2000 2836         

2000 2233     1270 1711             

        1600 2440             
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Table 2.3 (continued): Median Vs Profiles for all surface wave test sites.  Note that the all 

layers below the vertical dashed line exceed res/2, or the approximate depth 

where the Vs profiles are best constrained by the resolution limits of the 

largest circular array. All Vs profiles were cutoff at a depth of one-half of 

the maximum resolved wavelength (max/2) or 2000 m, whichever was 

shallower. 

 

Riccarton High 

School 

South New 

Brighton Park 

Depth 

[m] 

Vs 

[m/s] 

Depth 

[m] 

Vs 

[m/s] 

2.0 230 2.0 113 

3.4 230 6.0 136 

7.9 272 10.0 186 

13 295 20 228 

18 329 27 266 

23 381 35 220 

27 508 46 330 

33 584 56 456 

42 626 64 308 

49 432 77 372 

61 651 89 432 

70 698 102 548 

78 727 115 364 

87 741 125 507 

93 584 148 387 

105 701 180 522 

116 599 251 647 

155 681 373 847 

262 708 552 1329 

425 730 2000 1641 

555 822     

754 1259     

900 1466     

Shear wave velocities in Christchurch exhibit some general geographic trends. In 

the top 200 m, Vs is generally highest in the west, where the Springston gravel formation 

is at or near the surface, and lowest along the coast, where the Christchurch formation is 

thickest. This observation is clear from the time averaged shear wave velocity over the 

top 30 m (VS30). VS30 was computed for each of the 1000 lowest misfit Vs profiles at each 

site. A lognormal median and standard deviation (lnVs30) were then computed, as 
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summarized in Table 2.1. It can be seen that the QEII, PP and SNBP sites have 

significantly lower VS30 values than the BSP, IF, and RHS sites (refer to Table 2.1 and 

Figure 2.2a). With the exception of RWP, VS30 is significantly higher at sites located in 

the west. It is worth noting that, despite significant variations in the Vs profiles from each 

site, VS30 exhibits minimal variability, with lnVs30 below 0.06 at all sites. Thus, while the 

Vs profiles derived from surface wave inversion visually appear to be quite variable, they 

are well-constrained in the near-surface. As discussed previously, many sites exhibited a 

well-defined, low-frequency (i.e., less than 1 Hz) peak in their respective HVSR curves 

(refer to Figure 2.4). At these sites, this lowest-frequency HVSR peak was used to 

constrain the depth to a strong impedance contrast during inversion. Based on the 

available geologic data, the low-frequency peak in the HVSR curves from the GP and 

SNBP sites are presumed to be a result of the impedance contrast at the top of the 

Miocene volcanics. These sites are located close to the Banks Peninsula, where Miocene 

volcanics are relatively shallow. Thus, the HVSR peaks at these sites were used in the 

inversion to aid in characterizing the depths to these volcanic materials. Because the 

depth of these materials is less than res/2, they are also well-constrained by the 

experimental dispersion data. The Miocene volcanics do not appear to strongly influence 

the HVSR curves at other sites, where the low-frequency HVSR peaks at approximately 

0.2 Hz are presumed to be a result of the velocity contrast at the top of the basement rock. 

This suggests that the velocity contrast at the top of the Miocene volcanics is not present 

or less pronounced at these other sites.  

The depth of  the interface of Pre-Quaternary and Quaternary units (i.e., basement 

rock) is expected to be on the order of 1000 to 2000 m at most sites (Lee et al. 2015), 

which is well below the resolution depth (res/2, discussed previously) of 450 to 550 m 

(denoted by horizontal dashed lines in Table 2.3 and Figure 2.9). Thus, basement rock 
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generally could not be estimated with a great deal of confidence. While the estimates 

presented in our Vs profiles are deemed to be better than what one would assume with no 

data at all, the authors recommend that other sources of information be considered when 

estimating the depth to basement rock (e.g., Lee et al. 2015). Additionally, the depth to 

basement rock was far in excess of max/2 and therefore cannot be estimated at the RHS 

site. Thus, while the HVSR peak was initially considered at this site, the ellipticity peak 

was ultimately not used to constrain the inversion. 

2.8  DISCUSSION 

Vs profiles discussed in the previous section are intended to aid in seismic site 

response analyses. These analyses may include back-analyses aimed at better 

understanding the spatial variability in ground motions experienced during the CES or 

forward-analyses aimed at quantifying the amplitude and frequency content of future 

design ground motions. This section is intended to provide guidance regarding the use of 

results from this study in subsequent site response analyses. First, velocities within the 

Riccarton Gravel are considered in detail, as this layer is expected to play a significant 

role in seismic site response. Next additional considerations are discussed. These topics 

include the influence (or lack thereof) of velocity reversals in site response analyses, the 

selection of an appropriate stratum for the application of input GMs, and consideration of 

Vs uncertainty.      

2.8.1  Riccarton Gravel Velocity Model 

The first major velocity contrast at many sites in Christchurch occurs at the top of 

the Riccarton Gravel (RI), which is often found at a depth of approximately 15 to 40 m. 

This formation can be expected to play a significant role in seismic site response. For 

example, Markham et al. (2016) recently used this layer as the half-space when 
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deconvolving surface ground motions for their one-dimensional, nonlinear, effective 

stress site response analyses aimed at modelling the response of potentially liquefiable 

soils during strong shaking. Therefore, an estimation of the shearing stiffness (i.e., Vs) of 

the RI is necessary for accurate seismic analyses.   

In order to characterize the Riccarton Gravel, the median Vs value for each layer 

within this formation was plotted against the mean effective stress at the middle of the 

layer for all sites, as shown in Figure 2.10. As noted earlier, the RI was often subdivided 

into multiple layers at each site. Thus, more than 13 data points (i.e., the number of test 

sites minus the CHS site, where the RI is absent) are shown in Figure 2.10. Mean 

effective stress calculations were based the following assumptions: hydrostatic pore 

pressures with a ground water level 2 m below the surface, a unit weight of 19 kN/m3 in 

the Springston and Christchurch Formations and 21 kN/m3 within the Riccarton Gravel, 

and an at-rest earth pressure coefficient of 0.5. It is clear that the Vs of the RI is highest at 

sites located in the west and north (BSP, GRY, IF, RWP and RHS), lowest in the east 

(GP, PP, QEII and SNBP), and moderate in central Christchurch (CCP, FTG, HP and 

LS).  

All data were fit with a power-law function relating Vs to mean effective stress in 

the same form as Lin et al. (2014). This equation is shown in Figure 10. Originally, the 

authors attempted to fit the data from the east, central, and west/north locations 

individually. However, these sample sizes were insufficient to develop reasonable 

parameters relating Vs to mean effective stress. Accordingly, a single equation was 

developed for all sites. Therefore, one should not use this equation without careful 

consideration. This equation may overestimate Vs in the east and underestimate Vs in the 

west and north. It is crucial that the possible over- or underestimation due to geographic 

location be considered when using this equation. Note that the authors attempted to 
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develop similar power-law functions for the underlying geologic formations (i.e, the 

Bromley Formation, Linwood Gravel, Heathcote Formation, and the Burwood Gravel). 

However, the results were either too variable and/or the formations were too thin to 

develop power-law relationships with reasonable parameters in the same form as the 

equation shown in Figure 2.10. 

 

 

Figure 2.10: Median Vs (of the 1000 lowest misfit Vs profiles) as a function of the 

estimated mean effective stress (’m) in the Riccarton Gravel (RI) at all 

sites. Note that because the RI was generally subdivided into multiple 

layers, more than one data point is shown per site. Sites are differentiated by 

geography, with sites in eastern (GP, PP, QEII and SNBP), central (CCP, 

FTG, HP and LS) and northern/western (BSP, GRY, IF, RWP and RHS) 

Christchurch denoted by different marker types. All data were fit with a 

power law relationship similar to those detailed in Lin et al. (2014). Note 

that this relationship should be used with caution and potential over- or 

underestimation resulting from geographic location should be considered.   
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2.8.2  Considerations for Seismic Site Response 

As discussed previously, Vs profiles which include sharp velocity reversals and 

account for the complex inter-layered geology (i.e., Analysis 2) yield comparable fits of 

the experimental dispersion data as overly-simplistic Vs profiles that fail to account for 

this inter-layered geology (i.e., Analysis 1; refer to Figures 5 and 6). Ultimately, the 

influence of these velocity reversals (or lack thereof) on the predicted seismic site 

response is of interest. While a detailed discussion is beyond the scope of this paper, site 

response estimates with and without velocity reversals was explored at the Hagley Park 

site in Teague et al. (2017). Interestingly, Vs profiles from Analysis 1 and Analysis 2, as 

developed in our original study (using an inversion that considered 1.5 million trial 

models rather than 5 million), exhibited similar seismic site response at the ground 

surface. These results suggest that Vs profiles that yield similar fits of the experimental 

dispersion data yield similar seismic site response, even though the exact subsurface 

layering between models may vary substantially. This is consistent with previous studies 

considering the influence of surface wave inversion non-uniqueness on the predicted site 

response (e.g., Foti et al. 2009, Griffiths et al. 2016b, Chapters 4 and 5). However, further 

research is needed on this topic. In the meantime, one should attempt to model the Vs 

profile as accurately as possible for use in site response calculations.        

Another important consideration in seismic site response is the selection of an 

appropriate stratum to apply input ground motions. Hard-rock (IBC Site Class A, or Vs > 

1500 m/s) in Christchurch is generally encountered below 500 m, where the Vs profiles 

are not well-constrained by the resolution capabilities of the largest array used in this 

study (refer to Figure 2.9). Thus, extreme caution should be exercised when applying 

input ground motions at a hard-rock stratum below 500 m based on the results of this 

study. The substantial uncertainties in depth and Vs of the basement rock should be 
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considered. Further, additional data regarding reasonable depths to basement rock in 

Christchurch may be sought. For example, contours showing the interface of Quaternary 

and Pre-Quaternary geologic units (i.e., basement rock) are provided in Lee et al. (2015). 

These contours were developed using large reflection surveys, which are better-suited to 

resolve the depth of this interface. It is important to note that most Vs profiles encounter 

engineering rock (IBC Site Class B, or Vs > 760 m/s) above 500 m. Thus, these materials 

can be more accurately resolved by our testing. In some instances it may be sufficient to 

apply input rock ground motions (GMs) at the first layer exceeding 760 m/s, where the 

Vs profiles are still well-constrained by the experimental dispersion data. However, if the 

long-period site response is of interest (e.g., for tall structures), then it would be judicious 

to consider the influence of the deeper hard-rock layers.  

The 1000 lowest misfit Vs profiles for each site are available on the Design Safe 

website. The authors believe that a reasonable approach to consider Vs uncertainty would 

be to randomly sample any desired number of Vs profiles from these 1000 lowest misfit 

profiles and perform site response on the profiles within this sample. It is recommended 

that users ensure the sample be representative of the population of 1000 profiles (i.e., that 

the sample and population have similar median and lnVs profiles).        

As illustrated by the lnVs profiles in Figure 2.8, there are significant uncertainties 

in Vs over certain depth intervals at all sites. However, this site-specific Vs uncertainty is 

still lower than what most analysts would assume for use in site response analyses. The 

Vs uncertainties derived from surface wave inversion include both aleatory variability 

and epistemic uncertainty, which are extremely difficult to decouple in surface wave 

testing (Griffiths et al. 2016a). In practice, epistemic uncertainty is commonly accounted 

for via the development of alternate base-case Vs profiles and aleatory variability is 

accounted for using a randomization model (Toro 1995, EPRI 2012). The authors urge 
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any users of the Vs profiles provided in this study to exercise caution when developing 

base-case profiles and performing Vs randomization (Chapter 4). We suggest that 

theoretical dispersion curves be computed for any base-case or randomized Vs profiles 

and compared to the experimental dispersion data. These dispersion data were developed 

using arrays that sample over a large footprint (hundreds of meters). Thus, epistemic 

uncertainty and aleatory variability are inherent in the experimental dispersion data. We 

do not claim that these Vs profiles developed from inversion of the dispersion data fully 

encompass all Vs uncertainties. However, we encourage users to question the validity of 

Vs profiles whose theoretical dispersion curves are extremely inconsistent with the 

measured experimental dispersion data at a given site. 

2.9 CONCLUSIONS 

Deep (+500 m) shear wave velocity profiles have been developed using surface 

wave testing at 14 sites located throughout Christchurch. The geology of Christchurch 

presented several challenges for surface wave testing. Specifically, the complex inter-

layering of relatively stiff gravels with relatively soft sands, silts, and clays complicated 

both the interpretation of the experimental dispersion data and the setup of the inversion 

parameterizations. For these reasons, a-priori information, including hundreds of 

geotechnical boreholes and geologic well logs, were obtained to assist in developing Vs 

profiles. This information proved to be invaluable for developing geologically-realistic 

Vs profiles from surface wave inversion. The results of this study provide well-

constrained Vs profiles with estimates of uncertainty to a depth of approximately 500 m, 

which far exceeds currently available Vs models. While Vs profiles may be deemed less 

reliable at greater depths due to the limited aperture of the largest arrays used in surface 

wave testing, they still provide Vs data at depths where it is currently nonexistent. The Vs 
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profiles provided in this study will also be useful for estimating Vs uncertainty for 

seismic site response analyses, including back-analyses aimed at better understanding the 

spatial variability of ground motions experienced during the Christchurch Earthquake and 

forward-estimates of the amplitude and frequency content of future ground motions.        
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Chapter 3: Layering Ratios: A Systematic Approach to the Inversion of 

Surface Wave Data in the Absence of A-priori Information 

Brady R. Cox and David P. Teague 

This chapter is a pre-copyedited, author-produced version of an article accepted for 

publication in Geophysical Journal International following peer review. The version of 

record is cited below: 

Cox, B. R. and Teague, D. P. (2016). “Layering Ratios: A Systematic Approach to the 

Inversion of Surface Wave Data in the Absence of A-priori Information.” 

Geophysical Journal International, Vol. 207, pp. 422–438, 

https://doi.org/10.1093/gji/ggw282. 

As second author, I was responsible for approximately 33% of the concept development, 

100% of the data processing, 50% of the data interpretation/synthesis, and 50% of the 

concept modification/refinement.  

ABSTRACT 

Surface wave methods provide a cost effective means of developing shear wave 

velocity (Vs) profiles for applications such as dynamic site characterization and seismic 

site response analyses. However, the inverse problem involved in obtaining a realistic 

layered earth model from surface wave dispersion data is inherently ill-posed, nonlinear, 

and mix-determined, without a unique solution. When available, a-priori information 

such as geotechnical boreholes or geologic well logs should be used to aid in constraining 

site-specific inversion parameters. Unfortunately, a-priori information is often 

unavailable, particularly at significant depths, and a “blind analysis” must be performed. 

In these situations, the analyst must decide on an appropriate number of layers and ranges 

for their corresponding inversion parameters (i.e., trial number of layers and ranges in 

their respective thicknesses, shear wave velocities, compression wave velocities, and 

mass densities). Selection of these parameters has been shown to significantly impact the 

results of an inversion. This paper presents a method for conducting multiple inversions 

utilizing systematically-varied inversion layering parameterizations in order to identify 

https://doi.org/10.1093/gji/ggw282
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and encompass the most reasonable layered earth models for a site. Each 

parameterization is defined by a unique layering ratio, which represents a multiplier that 

systemically increases the potential thickness of each layer in the inversion 

parameterization based on the potential thickness of the layer directly above it. The 

layering ratio method is demonstrated at two sites associated with the InterPacific 

Project, wherein it is shown to significantly aid in selecting reasonable Vs profiles that 

are close representations of the subsurface.  While the goal of the layering ratio inversion 

methodology is not necessarily to find the “optimal” or “best” Vs profile for a site, it may 

be successful at doing so for certain sites/datasets. However, the primary reason for using 

the layering ratio method is to find Vs profiles that realistically represent the uncertainty 

in Vs resulting from surface wave inversion, and to avoid selection of Vs profiles that are 

unrealistic and adversely influenced by the choice of inversion parameterization.   

3.1  INTRODUCTION   

Surface wave methods provide a cost effective means of developing shear wave 

velocity (Vs) profiles for applications such as dynamic site characterization and seismic 

site response analyses. While numerous techniques are available for collecting and 

analyzing surface wave data, all generally consist of the following three steps: (1) field 

data acquisition, (2) dispersion processing, and (3) inversion to obtain a layered earth 

model, from which the Vs profile is extracted (Foti et al. 2014). Data acquisition involves 

measuring wavefields, either actively-generated or passively-monitored, with strong 

surface wave content. Dispersion processing involves deriving a relationship between 

Rayleigh wave phase velocity (Vr) and frequency (f), or wavelength (), from the 

experimentally-measured wavefields. The inversion process involves finding one or more 

layered earth models whose theoretical dispersion curve(s) fit the experimentally-
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determined dispersion data, as shown in Figure 3.1. Layered earth models comprise a 

system of stacked, linear elastic, horizontal layers over a half-space. Each layer is defined 

by its inversion parameters: thickness (t), shear wave velocity, compression wave 

velocity (Vp) or Poisson’s ratio (ν), and mass density (ρ). The total number of layers is 

generally unknown and specified/assumed by the analyst prior to inversion.  The layer 

parameters are then varied during the inversion until an acceptable match is made 

between the theoretical dispersion curve and the experimental dispersion data. However, 

the inverse problem involved in obtaining a realistic layered earth model from surface 

wave dispersion data is inherently ill-posed, nonlinear, and mix-determined, without a 

unique solution. The ill-posed nature of the problem results from trying to recover four 

parameters (t, Vs, Vp, ρ) for each layer in the model indirectly from the two measured 

data parameters of Rayleigh wave phase-velocity and frequency /wavelength. The 

problem is further complicated by the nonlinear relationship between the data parameters, 

which vary as a function of frequency/wavelength, and the desired model space 

parameters, which vary as a function of depth. Additionally, the model solution for 

deeper layers is dependent on the model solution for shallow layers, resulting in a mix-

determined problem. As a result, a number of significantly different layered earth models 

may possess theoretical dispersion curves that fit the experimental data within its 

uncertainty bounds.  
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Figure 3.1: General surface wave inversion procedure used to obtain a layered earth 

model that matches experimental dispersion data within its uncertainty 

bounds. 

Most inversion programs use an optimization algorithm to search the parameter 

space for layered earth models whose forward-calculated theoretical dispersion curves 

match the measured experimental dispersion data. Local search algorithms search in the 

vicinity of a starting model, often using linearized least-squares to optimize the fit 

between theoretical and experimental dispersion data. These search algorithms are 

effective for optimizing the layered earth model to fit the experimental data.  However, 

they are heavily influenced by the starting model and can get stuck in local minima 

without obtaining the “best”/lowest misfit model(s) (Socco et al. 2010).  

Global search methods such as Monte-Carlo, genetic algorithm, simulated 

annealing, and the neighbourhood algorithm (e.g., Foti et al. 2009, Yamanaka and Ishida 

1996, Wathelet et al. 2004) are commonly utilized to search a broad parameter space, 

thus avoiding the problem of getting stuck in a local minima.  These algorithms typically 

use some form of a misfit function to quantify the goodness of fit between each trial 

model and the experimental data.  While the exact forms of these misfit functions vary 



 60 

(e.g., Maraschini and Foti 2010 and Wathelet 2004), they are generally proportional to 

the sum of squared residuals between the theoretical and experimental dispersion curves 

at discrete frequencies. Global search algorithms are designed to search for theoretical 

layered earth models within a predefined inversion parameter space. Therefore, the entire 

space of possible layered earth models must be defined by the analyst prior to performing 

the inversion. This task is not trivial, as the parametrization must be sufficiently broad to 

include all realistic layered earth models, yet sufficiently constrained to prevent the 

inversion from pursuing unrealistic models. When available, a-priori information such as 

geotechnical boreholes or geologic well logs should be used to aid in developing site-

specific inversion parameters. This can greatly reduce the range of possible solutions and 

is particularly useful when complex geologic conditions are encountered (Chapter 2).  

Unfortunately, a-priori information is often unavailable, particularly at significant depths, 

and a “blind analysis” must be performed. In these situations, the analyst must decide on 

an appropriate number of layers and ranges for their corresponding inversion parameters. 

Selection of these parameters has been shown to significantly impact the results of an 

inversion (DiGiulio et al. 2012). If an inappropriate number of layers or property ranges 

are incorporated in the inversion parameterization, then the resulting layered earth models 

may be excessively complicated (i.e., too many layers/under-constrained) or overly 

simplistic (i.e., too few layers/over-constrained). In either case, models with low 

dispersion misfit values (i.e., apparently good solutions) will not well-represent actual 

site conditions.   

It is fairly common for those inverting massive amounts of surface wave data to 

assume a constant distribution of many relatively thin layers in the hopes of being able to 

resolve subtle changes in stratigraphy/stiffness during inversion. However, there is no 

single set of inversion parameters that will work in every situation. Even the most robust 
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of global search methods cannot produce acceptable results when the parameter space is 

poorly or excessively constrained.  Thus, it would be ill-advised to propose a layered 

earth model solution after considering only a single set of inversion parameters. Several 

researchers have addressed the issue of qualitatively and quantitatively evaluating results 

from different inversion parameterizations. For example, DiGiulio et al. (2012) evaluated 

four distinct classes of inversion parameterizations at 14 European strong-motion sites 

using the Akaike information criterion. However, no study we are aware of has proposed 

a technique for rigorously and systematically developing and evaluating various inversion 

layering parameterizations. This paper presents a new method called the “layering ratio 

procedure” for conducting multiple inversions utilizing systematically-varied inversion 

parameters in order to identify and encompass the most reasonable layered earth models. 

The method is first described in detail, and then demonstrated by presenting its 

application for two blind analysis sites associated with the InterPacific (Intercomparison 

of methods for site parameter and velocity profile characterization) project (Garafalo et 

al. 2016a, 2016b). 

3.2  LAYERING RATIO PROCEDURE 

Surface wave methods provide better resolution at shallow depths than significant 

depths, allowing for thinner layers and smaller variations in velocity to be detected near 

the surface when small sensor spacings and high frequency active sources are used. 

Conversely, as depth increases, resolution decreases and only significant changes in 

layering can be distinguished (Foti et al. 2014). Therefore, a rational approach is to 

incorporate more/thinner layers in the inversion parameterization close to the ground 

surface where subtle changes in velocity may be resolved, and few/thicker layers at depth 

where thin layers and minor changes in velocity cannot be detected. The layering ratio 
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() represents a multiplier that systemically increases the potential thickness of each 

layer in the inversion parameterization based on the potential thickness of the layer 

directly above it. By considering multiple layering ratios, it is possible to systematically 

investigate non-unique Vs profiles that could be adversely influenced by either too many 

or too few layers in the inversion parameterization, resulting in unrealistic representations 

of the subsurface. Small layering ratios yield many trial layers, while large layering ratios 

yield only a few trial layers. Note that the layering ratio methodology requires an 

inversion algorithm that allows for a range in the thickness/bottom depth of each layer to 

be explored. Meaning, the exact layer thicknesses are not constrained prior to the 

inversion. Rather, the inversion algorithm is allowed the flexibility of searching for the 

best combinations of layer thicknesses within the boundaries specified by the analyst. 

The program Geopsy (http://www.geopsy.org/) is a multifaceted, open-source software 

package that can be used for this purpose.    

3.2.1  Number of Layers and Corresponding Depth Ranges 

First, constraints are applied to the top layer in the inversion parameterization. 

Specifically, the minimum and maximum potential depth to the bottom of the first layer 

(dmin,1 and dmax,1, respectively) are selected. These values should be chosen based on the 

experimental Rayleigh wave dispersion data, as shown in Figure 3.2. The authors 

typically set dmin,1 and dmax,1 equal to approximately one-third and one-half of the 

minimum resolved wavelength (min), respectively. The surface layer should not be much 

thinner than min /3 because the experimental dispersion data does not allow for better 

resolution (Garafalo et al. 2016a). While the authors have chosen to set dmin,1 equal to 

approximately min/2, this parameter can be set to a larger value, such as min. However, 

excessively thick, uniform, near-surface layers are rare in nature and should not be 
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incorporated in the inversion parameters if a realistic layered earth model is needed for 

engineering purposes like site response analyses. 

 

 

Figure 3.2: Experimental Rayleigh wave dispersion data values used to guide the 

selection of dmin,1, dmax,1, and dres for the layering ratio () procedure. 

After constraining the bottom depth of the surface layer, the approximate 

maximum depth that the soil profile can be characterized to, or the resolution depth (dres), 

should be estimated. This depth can be set equal to approximately one-third to one-half of 

the maximum resolved wavelength (max) from the experimental dispersion data.  This is 

a common assumption for the maximum depth of resolution, as the fundamental mode 

Rayleigh wave dispersion curve is not very sensitive to material properties at depths 

greater than approximately max/3 to max/2 (Richart et al. 1970, Garofalo et al. 2016a). 

Note that if low frequency experimental dispersion data is deemed to represent a higher 

mode, then the resolution depth may actually be greater because higher modes have a 

greater penetration depth than lower modes (Foti et al. 2014). Nonetheless, mode 

interpretations are often uncertain and we prefer not to extend the inversion 

parameterizations below this criteria in most cases.      
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Once dmin,1, dmax,1, and dres have been selected, a layering ratio () is chosen. 

While there are no absolute rules, the following layering ratio values are commonly used 

by the authors to systematically investigate potential subsurface models with significantly 

different numbers and thicknesses of layers: 1.2, 1.5, 2.0, 3.0, 5.0, and 7.0. Depending on 

the inversion results, other intermediate values (e.g., 2.5, 3.5, 4.0) may need to be 

investigated, as discussed later in the paper. Note that these are layering ratios are based 

on the authors’ experience. The choice of appropriate layering ratios is site-specific and 

these may not be sufficient/appropriate for all sites. As discussed above, the layering ratio 

represents a multiplier that systemically increases the potential thickness of each layer in 

the inversion parameterization based on the potential thickness of the layer directly above 

it. This concept is illustrated in Figure 3.3 and detailed in Equation 3.1. The minimum 

potential bottom depth for each non-surface layer (i.e., all layers except Layer 1) is equal 

to the maximum potential bottom depth of the layer directly above it (Equation 3.1a). The 

maximum potential bottom depth for each non-surface layer is determined by adding the 

product of the layering ratio and the difference between the maximum and minimum 

potential bottom depths of the overlying layer to the minimum potential bottom depth of 

the current layer (Equation 3.1b). The only exception to this rule is for Layer 2, where the 

maximum potential bottom depth is determined by adding the product of the layering 

ratio and dmax,1 (i.e., min/2) to dmin,2. 
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Figure 3.3: Schematic illustration of the layering ratio () inversion parameterization. 

The depth to the top of the half-space (i.e., the bottom-most layer) should not 

exceed the resolution depth. Therefore, layers should be added to the inversion 

parameterization until the resolution depth is reached. Since it is rare that the bottom of a 

layer will exactly coincide with the resolution limit for a given set of experimental 

dispersion data, the maximum bottom depth of the layer directly above the half-space 

may need to be increased or decreased slightly to match dres. A maximum 

depth/thickness is not specified for the half-space.  

A simple example of how to establish depth boundaries using the layering ratio 

procedure is shown in Table 3.1. In this example, the minimum and maximum resolved 

wavelengths of the hypothetical experimental dispersion data are 6 m and 100 m, 

respectively, and a layering ratio of 2.0 is utilized. The minimum and maximum potential 

bottom depth of Layer 1 are assigned based on the minimum resolved wavelength. The 

approximate resolution depth is estimated to be one-half of the maximum wavelength, or 
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50 m. Potential bottom depth boundaries for Layers 1, 2, 3, and 4 are computed using 

Equation 1. The maximum potential bottom depth of Layer 4 (45 m) is quite close to the 

approximate resolution limit (50 m). Therefore, Layer 4 should be the final layer above 

the half space and dmax,4 can be increased slightly to 50 m. Conversely, if dmax,4 where 

calculated to be slightly greater than the resolution depth, it could be decreased to 50 m.  

The layering ratio approach produces layered earth models in which layer 

thicknesses generally tend to increase with depth. However, it is important to note that 

each layer is not required to be thicker than the overlying layer. This is because the 

layering ratio technique involves specifying bottom depth ranges for each layer, not layer 

thicknesses. For example, consider Layers 1, 2, 3 and 4 in Table 3.1. The parameters 

allow the bottom depths in these layers to lie between 2–3, 3–9, 9–21 and 21–50 m, 

respectively. If the inversion process found the bottom of Layers 1, 2, 3 and 4 to 

optimally be located at 2, 8, 11 and 23 m, then the corresponding layer thicknesses would 

be 2, 6, 3 and 12 m, respectively. In other words, Layer 3 is permitted to be significantly 

thinner than Layer 2 if required to fit the experimental dispersion data. This is important, 

because although surface wave resolution generally diminishes with depth, there are 

many subsurface profiles that contain thinner layers overlain by thicker layers. Thus, it is 

important that the parameterization does not force the solution space to use a series of 

layers that monotonically increase in thickness with depth if an alternate solution yields a 

better fit to the experimental data.     
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Table 3.1: Layering ratio example wherein the minimum (dmin,i) and maximum (dmax,i) 

potential bottom depths for each layer are based on minimum (min) and 

maximum (max) experimental dispersion wavelengths of 6 and 100 m, 

respectively, a depth of resolution (dres) equal to 50 m (i.e, max /2), and a 

layering ratio () of 2.0. 

Layer dmin,i (m) dmax,i (m) 

1 6/3 = 2 6/2 = 3 

2 3 3+(2)(3) = 9 

3 9 9+(2)(9‐3) = 21 

4 21 21+(2)(21-9) = 45 ≈ dres → set to dres = 50 

Half Space NA NA 

3.2.2 Ranges in Vs, Vp (or Poisson’s Ratio), and Density 

In addition to depth ranges for each layer, ranges in Vs, Vp or Poisson’s ratio, and 

mass density must be selected for each layer. Mass density has little impact on the 

dispersion curve and reasonable values may be assigned to each layer if something is 

known of the material types/geology. If not, mass density may be fixed at a constant 

value in each layer (Wathelet 2004). For the purpose of assigning Vs ranges, the 

experimental dispersion data can once again be utilized. The ratio of shear wave to 

Rayleigh wave velocity (Vs/VR) ranges from 1.04 to 1.16, depending on Poisson’s ratio 

(Richart et al. 1970). Thus, if the experimental dispersion data represents the fundamental 

Rayleigh mode, then the minimum shear wave velocity for any layer should not be less 

than the minimum Rayleigh wave velocity (VR,min) in the experimental dispersion data 

(Figure 3.2). If a low velocity layer (i.e., inverse layer) is present in the subsurface, the 

minimum Rayleigh wave velocity may not coincide with the minimum wavelength.  

Rather, it may occur at a greater wavelength, resulting in a downward kink/bend in the 

dispersion data. In these cases, the minimum Vs should be set slightly lower than VR,min. 

In some instances, the maximum Rayleigh wave velocity (VR,max) may be used to set an 

upper limit on Vs. Consider the two hypothetical dispersion curves in Figure 3.4. 
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Dispersion curve A levels off at long wavelengths (i.e., low frequencies). This part of the 

dispersion curve represents the Rayleigh wave velocity of the half-space, which has a 

higher velocity than overlying layers. Thus, the maximum Vs for all layers may be set to 

approximately 1.16∙VR,max,A. On the other hand, it is not possible to infer a reasonable 

upper limit from experimental dispersion curve B because it does not appear to resolve 

the half space velocity (i.e., it does not level off or flatten at low frequencies). Moreover, 

even in situations when the dispersion data appears to resolve the half space velocity, this 

may be an artefact of near-field effects or poor data quality. Thus, engineering judgement 

should be exercised when setting parameterization limits on Vs. If the inversion results 

tend to cluster around the upper/lower parameterization limit for a particular layer, then 

the limits for this layer may need to be broadened and the inversion repeated. Moreover, 

even a crude understanding of the geology (e.g., soft soil, stiff soil, soft rock, or hard 

rock) can aid in setting reasonable upper and lower Vs boundaries if an analyst possess 

an understanding of realistic Vs ranges for various soil and rock types. If general material 

types can be identified on the basis of a-priori information, then confining pressure-

dependent reference curves, such as those discussed in Lin et al. (2014), may be used to 

develop realistic Vs constraints for each layer in the parameterization (e.g., Chapter 2).  
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Figure 3.4: Hypothetical dispersion curves which (A) flatten at long wavelengths, thereby 

helping to resolve the half space velocity, and (B) remain steep at long 

wavelengths, limiting the ability to estimate the half space velocity. 

For saturated, soft soil layers, Vp can be set equal to the compression wave 

velocity of water (approximately 1,500 m/s), which will result in a Poisson’s ratio near 

0.5. Thus, knowledge of an approximate location of the water table is important and can 

help to constrain the inversion parameters. For all unsaturated soil layers, and very stiff 

soil or rock layers below the water table where Vs exceeds about 700 m/s, the 

compression wave velocity is no longer exclusively governed by the pore fluid. In these 

cases it is common to estimate Poisson’s ratio between 0.25 and 0.35. Since Vs, Vp, and 

Poisson’s ratio () are related by Equation 2, it is possible to develop ranges in Vp using 

limiting values of Vs and Poisson’s ratio. Alternatively, some inversion software 

packages enable the user to specify Poisson’s ratio instead of Vp.   

 

𝑉𝑃

𝑉𝑆
= √

2(1 − 𝜈)

(1 − 2𝜈)
                       (3.2) 

It is recommended that the initial inversion parameterization be normally 

dispersive (i.e., Vs increasing with depth) unless the geologic conditions or shape of the 
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experimental dispersion curve dictate otherwise (e.g., portions of the dispersion data 

decrease with decreasing frequency/increasing wavelength). Permitting velocity reversals 

(i.e., layers in which Vs is lower than the overlying layer) greatly increases the range of 

possible solutions and may allow the inversion to pursue unrealistic layered earth models 

if not carefully constrained. Nonetheless, there are many geologic conditions in which 

velocity reversals are present (e.g., DiGiulio et al. 2012, Dou and Ajo-Franklin 2014, 

Chapter 2). In these situations, the inversion parameters may include one or more 

velocity reversals. However, the analyst should carefully inspect the inversion results to 

ensure that the resulting layered earth models are realistic. For example, thin layers with 

either extremely high or low Vs relative to layers above or below may simply be a result 

of overly-broad inversion parameters and not actual geologic conditions at the site. When 

complex geologic conditions are encountered, it is recommended that a-priori 

information be sought to help constrain the inversion parameterization. Under these 

conditions, there may not be a simple strategy for exploring various sets of inversion 

parameters and there is no substitute for knowledge of the subsurface geology and sound 

engineering judgement. 

A schematic summary of the layering ratio inversion procedure is shown in Figure 

3.5. Various layering ratios (i.e., sets of inversion parameters) should be investigated in 

an attempt to find the layered earth models with the lowest dispersion misfit values. We 

typically search 100K – 2M models during each layering ratio inversion.  After each 

layering ratio inversion, a certain number of acceptable models whose theoretical 

dispersion curves fit the experimental dispersion data are retained for further scrutiny. 

This process is demonstrated in detail for the case study sites discussed below.   
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Figure 3.5: Schematic representation of the general layering ratio () inversion 

procedure.   

3.3  LAYERING RATIO INVERSION PROCEDURES FOR TWO EXAMPLE SITES 

Both of the examples discussed below are associated with the InterPacific 

(Intercomparison of methods for site parameter and velocity profile characterization) 

project. The objective of the InterPacific project was to assess the reliability of invasive 

and non-invasive seismic site characterization methods in various geologic conditions 

using blind-analysis comparative studies. While the InterPacific project included a 

number of researchers and practitioners from around the world, the results discussed 

herein only reflect the work of the present authors. For additional information about the 

InterPacific project, the reader is referred to Garafalo et al. (2016a and 2016b). 

At both sites discussed below, individual inversions were conducted for various 

layering ratios using the Geopsy software. In Geopsy, the theoretical dispersion forward 

computations for each trial earth model are based on the work originally developed by 
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Thomson (1950) and Haskell (1953) and later modified by Dunkin (1965) and Knopoff 

(1964). For each trial model, a dispersion misfit value was computed as shown in 

Equation 3.3 (Wathelet 2004). 

 

misfit = √∑
(xdi−xci)2

σi
2nf

nf
i=1                    (3.3) 

In the above equation, xdi represents the Rayleigh wave phase velocity of the 

experimental dispersion data at frequency fi; xci is the theoretical Rayleigh wave phase 

velocity computed for the trial layered earth model at frequency fi; i is the standard 

deviation associated with the experimental dispersion data at frequency fi; and nf is the 

number of frequency samples considered for the misfit calculation. Geopsy utilizes a 

neighborhood algorithm to find layered earth models within the inversion parameters that 

result in the lowest possible dispersion misfit values. According to the definition of 

dispersion misfit presented in Equation 3.3, a misfit value less than 1.0 essentially means 

that on average (i.e., across the frequency band considered) the theoretical dispersion 

curve falls within the +/- one standard deviation bounds of the experimental data. Thus, 

dispersion misfit values far in excess of 1.0 suggest a poor fit of the experimental 

dispersion data. However, it is important to recognize that there is currently no 

universally-accepted way of calculating the dispersion misfit. Further, dispersion misfits 

deemed to be satisfactory at one site may be considered mediocre or poor at another.  For 

example, consider the dispersion curves and misfit values shown in Figure 3.6a and 3.6b 

for sites in Christchurch, New Zealand and White River, Arkansas, respectively. Both 

dispersion misfit values are essentially equal. At the Christchurch site (Figure 3.6a), the 

experimental dispersion data is influenced by higher and effective modes and is quite 

complex. This experimental data was fit with a multi-mode inversion and the theoretical 
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curves shown represent the best possible fit to this challenging dataset after considering 

many inversion parameterizations. Conversely, the experimental dispersion data at the 

White River site (Figure 3.6b) represents the fundamental mode and is fairly simple. 

However, the theoretical dispersion curve shown for this site does not match the mean 

trend of the experimental dispersion data at many wavelengths, although it still falls 

within the uncertainty bounds. While one might potentially deem this fit to be acceptable, 

substantially better fits of the experimental dispersion data (i.e., lower misfit values) were 

achieved through the use of alternate inversion parameterizations. Thus, misfit values 

from different sites generally cannot be compared directly with one another for a measure 

of the overall inversion quality from site-to-site.  Rather, the misfit values can simply be 

used to guide relative judgements about the quality of certain layered earth models 

relative to others at the same site (Griffiths et al. 2016a). 

 

 

Figure 3.6: Theoretical dispersion curves for a single layered earth model along with the 

experimental dispersion data at sites in (a) Christchurch, New Zealand and 

(b) White River, Arkansas. Note that the dispersion misfit values in (a) and 

(b) are approximately equal. 
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Computational expense imposes a practical limitation on the extent to which 

global search methods like the neighborhood algorithm implemented in Geopsy can 

investigate the parameter space for any given inversion. In the authors’ experience, a total 

of 105 to 106 layered earth models for a single layering ratio inversion usually provides an 

acceptable balance between full exploration of the parameter space and practical time 

constraints. Note that the computation time is very dependent upon the complexity of the 

experimental dispersion data (e.g., number of frequency samples, whether or not higher 

modes must be computed, etc.), the number of layers in the inversion parameterization, 

and the hardware used by the analyst. In our experience (using a desktop computer with 

an Intel Xeon E5-1650 processor and 32 GB of RAM), computations may take 10 

minutes or less for simple datasets and relatively few trial layered earth models 

comprised of relatively few layers. Conversely, complicated datasets requiring a large 

number of trial layered earth models, especially when these earth models are comprised 

of many layers, can take several hours and in extreme cases up to a day.    

At the example sites discussed herein, approximately 200,000-500,000 layered 

earth models were explored during each inversion (i.e., for each layering ratio). 

Ensembles of the 1,000 lowest misfit layered earth models were then partitioned from the 

results of each inversion for further processing and comparison. Selecting the 1,000 

lowest misfit models for further inspection is, again, a bit arbitrary, representing another 

necessary compromise between robustness and practicality. We are not suggesting that 

the 1,000 lowest misfit models from an inversion are always “acceptable”, nor are we 

suggesting that models with slightly greater misfits than the top 1,000 are “unacceptable”. 

The goal of this paper is not to establish a robust misfit criteria regarding which Vs 

profiles from a given parameterization may be considered acceptable or unacceptable. As 

stated earlier, this determination is quite subjective and, in our opinion, site specific. The 
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goal here is to demonstrate the influence of the parameterization on the range of derived 

Vs profiles. Also note that for each example site described herein, the same number of 

trial layered earth models were considered for each layering ratio. Thus, by considering 

the same number of Vs profiles per layering ratio, we were able to assess whether or not 

the inversion converged to a narrow region of the parameter space or whether the 

inversion required more iterations to achieve convergence.   

3.4  BLIND-STUDY SITE 4 

The dataset considered here was originally provided to participants in the 

InterPacific project. While Garafalo et al. (2016a and 2016b) document the results 

obtained from three blind-study sites in Europe, the results from blind-study Site 4 have 

not yet been published. Thus, we refer only to our own results and methodologies herein. 

The experimental data for Site 4 was provided by Dr. Cecile Cornou, from ISTerre 

(Institut des Sciences de la Terre), Grenoble, France. According to Dr. Cornou, the 

dispersion data was based partially on experimental data and partially on a theoretical 

dispersion curve. In order to develop the dispersion data Dr. Cornou first performed a 

surface wave inversion on experimentally measured Rayleigh wave dispersion data from 

an actual field site. The minimum misfit ground model from this inversion was then 

chosen by Dr. Cornou as the “true” solution profile for the semi-synthetic Site 4. The 

uncertainty associated with the original experimental dispersion data was then applied on 

a frequency-by-frequency basis to the theoretical Rayleigh wave dispersion curve 

associated with the true solution profile in order to produce an “experimental” dispersion 

curve which reflects realistic uncertainty. Although this curve was not measured directly 

in the field, it was derived directly from field data and will be referred to as the 

“experimental dispersion curve” for the remainder of the paper. All participants in the 
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InterPacific project were provided with this same experimental dispersion curve for Site 4 

and asked to perform a blind inversion (i.e., no a-priori information about the site was 

made available). The mean experimental dispersion data provided to the blind-study 

participants, including +/- one standard deviation bounds, are shown in Figure 3.7a. 

Analysts were informed that the data represented the fundamental Rayleigh mode, 

eliminating the need to consider higher modes during inversion. Each analyst was asked 

to submit a single “best” Vs profile obtained from inverting the data, and were allowed to 

also submit a range of Vs profiles that accounted for uncertainty if they so desired. After 

submissions were completed, the true solution Vs (Figure 3.7b) and Vp (Figure 3.7c) 

profiles for Site 4 were made known to the participants by Dr. Cornou. 

 

Figure 3.7: InterPacific project semi-synthetic blind-study Site 4 (a) experimental 

Rayleigh wave dispersion data, (b) true solution Vs profile, and (c) true 

solution Vp profile. 

During our blind analyses, we considered six different layering ratios (1.2, 1.5, 

2.0, 3.0, 3.5 and 5.0) for inverting the dispersion data at Site 4. Based on the 

characteristics of the experimental dispersion data, the following constraints were made 

on the parameterization:  (a) The minimum Vs for all layers was set to approximately 150 
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m/s based on the minimum phase velocity at short wavelengths; (b) While the half-space 

Vs was clearly greater than 1,100 m/s, a tight upper bound Vs could not be inferred from 

the dispersion data because there was no flattening of the curve at long wavelengths. 

Thus, in the absence of other a-priori information, the maximum Vs was set to 3,500 m/s, 

which corresponds to the approximate maximum value possible for very hard rock; and 

(c) The resolution depth was estimated to be 300 m, or roughly half of the maximum 

experimental wavelength.  

The Vs profiles corresponding to the 1,000 lowest misfit models out of 

approximately 200,000 trial models are shown for each layering ratio in Figure 3.8. Also 

shown are their corresponding theoretical dispersion curves relative to the experimental 

dispersion data. The range of misfit values for the “best” 1,000 theoretical dispersion 

curves associated with each layering ratio inversion are shown in brackets within the 

dispersion curve subfigures (i.e., Figures 3.8a, 3.8c, 8e, 3.8g, 3.8i, and 3.8k). Upon 

inspection, it is clear that the 1,000 best theoretical dispersion curves visually fit the 

experimental data extremely well for all layering ratios, making it difficult to distinguish 

individual curves. Furthermore, even the maximum misfit values for each inversion are 

all less than 0.5, and closer to 0.25 or less on average, indicating good fits to the 

experimental data. Thus, if only a single one of these inversions had been performed for 

the site, then we may have been inclined to believe that the resulting Vs profiles were a 

reasonable representation of the subsurface. However, when comparing the results across 

analyses, it is clear that the Vs profiles resulting from different inversion 

parameterizations are very different. Indeed, upon inspection of the best 1,000 Vs profiles 

obtained from each layering ratio inversion (i.e., Figures 3.8b, 3.8d, 3.8f, 3.8h, 3.8j, and 

3.8l), one can clearly see that many of the Vs profiles do not well-represent the true 

solution for the subsurface stiffness profile (keeping in mind that the true Vs profile was 
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not known to us at the time of performing these inversions). It is clear that the closest Vs 

profile representations were obtained using a layering ratio of 3.5 (Figure 3.8j), and the 

dispersion misfit values associated with this layering ratio (Figure 3.8i) were also the 

lowest. 

The following general observations are made regarding the Vs profiles obtained 

from the layering ratio inversions:  (a) When too many layers were utilized in the 

inversion parameterization (i.e.,  = 1.2) significant velocity contrasts were not resolved 

and there was substantial variability in the 1,000 best Vs profiles; (b) When an inversion 

was performed with a number of layers similar to the true subsurface profile (i.e.,  = 

3.5) the variability in the 1,000 best Vs profiles was reduced, particularly above the half-

space, and velocity contrasts were more correctly identified; and (c) When too few of 

layers were used in the inversion parameterization (i.e.,  = 5) there was also very little 

variability in the 1,000 best Vs profiles, but significant velocity contrasts were placed in 

the wrong locations. Thus, it is valuable to consider both variability in Vs (i.e., precision) 

as well as bias in Vs (i.e., accuracy), and the results from this study allow us to reflect on 

both, since the true solution for the semi-synthetic site was ultimately made known to us. 

The Vs profiles associated with layering ratios of 1.2, 3.5 and 5.0 are examined in more 

detail below because the inversion parameterizations for these layering ratios were 

judged to be under-constrained, near-optimal, and over-constrained, respectively, based 

on consideration of both the dispersion misfit values and the extreme variability (or lack 

thereof) in the Vs profiles. 
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Figure 3.8: The one thousand lowest misfit theoretical dispersion curves and 1,000 

corresponding Vs profiles, respectively, obtained from surface wave 

inversions at blind-study Site 4 based on the following layering ratios: (a, b) 

1.2, (c, d) 1.5, (e, f) 2.0, (g, h) 3.0, (i, j) 3.5, and (k, l) 5.0. Note that the 

numbers in brackets represent the ranges of dispersion misfit values for the 

1,000 best (i.e., lowest misfit) models resulting from each inversion. Also 

shown are the median and minimum misfit profiles for each inversion. 
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As noted earlier, the choice to examine the 1,000 lowest misfit Vs profiles for 

each inversion is somewhat arbitrary and based on the need for a consistent means of 

comparing layering ratios. The authors considered using a maximum misfit criteria, 

where all profiles below a particular misfit are considered for each layering ratio. Another 

possibility would be to consider profiles from each inversion whose misfits are within a 

particular percentage of the minimum misfit for that particular inversion. However, the 

selection of a maximum acceptable misfit or a percentage of the minimum misfit value is 

also a bit arbitrary. Moreover, given the broad range in misfit values across layering 

ratios, this would result in vastly different numbers of profiles being considered for each 

analysis. Thus, the authors chose to quantify the results from each analysis using the 

1,000 lowest misfit profiles, keeping in mind that there is no perfect means of comparing 

results from each inversion. We understand that differences in the 1,000 best Vs profiles 

are quite significant for some layering ratios and less significant for other layering ratios. 

This is largely due to the fact that inversions that incorporate a large number of layers 

(i.e., free parameters) require substantially more iterations to converge than those 

inversions with fewer layers. For example, the differences between the 1,000 best Vs 

profiles for a layering ratio of 5.0 are very minor, as the inversion essentially converged 

to a single solution after only a few iterations.      

A more detailed view of the profiles associated with a layering ratio of 1.2 is 

shown in Figure 3.9. Figure 3.9a shows the layering parameterization and depth 

constraints for each layer utilized in the inversion. The top and bottom of each rectangle 

(shown with alternating white and gray in-fill for clarity) represent the potential top and 

bottom depth for each layer in the parameterization. The parameterization is comprised of 

18 layers down to the depth of resolution. Figure 3.9b shows the 1,000 best (i.e., lowest 

misfit) Vs profiles obtained from the inversion along with their median Vs profile and the 
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Vs profile associated with the minimum misfit model. These are all shown relative to the 

true solution Vs profile. Note that since all Vs profiles within a layering ratio have the 

same number of layers, the median Vs profile was computed simply by sorting the depth 

and Vs values for each layer and taking the 50th percentile value. The median Vs profile 

is considered herein as a means to statistically represent the “average” trend of the 1,000 

lowest misfit profiles. Moreover, if the theoretical dispersion curves for the 1,000 lowest 

misfit profiles match the experimental dispersion data, then the theoretical dispersion 

curve computed for the median profile tends to fit the experimental dispersion data 

equally well, despite the fact that it did not directly result from the inversion process 

(Griffiths et al. 2016a). It is clear from Figure 3.9b that the median profile is comprised 

of thin layers whose velocity and thickness gradually increase with depth, which is in 

stark disagreement with the true solution profile. Thus, on average, the Vs profiles fail to 

detect any of the significant impedance contrasts, and do a particularly poor job at 

capturing the half-space contrast at approximately 56 m. While the minimum misfit 

profile does incorporate a strong velocity contrast near the top of the half-space, it still 

smooths across it and fails to capture its true magnitude. Moreover, many profiles, 

including those with misfits only marginally higher than the minimum, completely failed 

to detect this contrast. 
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Figure 3.9: (a) Depth ranges permitted in each layer by the inversion parameterization, 

(b) true solution Vs profile in comparison to the best 1,000, minimum misfit, 

and median Vs profiles obtained from inversion, and (c) lnVs for a layering 

ratio of 1.2. 

In environments where large velocity contrasts are not expected, the smooth 

nature of the Vs profiles for this layering ratio may be desirable. Hence, one should not 

assume that using small layering ratios (i.e., many thin layers) is never appropriate.  

However, at sites with abrupt changes in Vs at depth, the use of too many layers during 

inversion may result in Vs profiles lacking strong velocity contrasts. Horizontal-to-

vertical (H/V) spectral ratios (i.e., the ratio of the horizontal and vertical Fourier 

amplitude spectra of ambient noise measurements) can be used to indicate the presence or 

lack of strong velocity contrasts. Moreover, these H/V noise measurements can be 

incorporated into many inversion routines, thereby adding additional constraints to the 

inversion.  The ability/inability to detect major velocity contrasts at the proper depth has 

a significant impact on seismic site response estimates. While variability in site response 

due to uncertain/non-unique Vs inversion is beyond the scope of work discussed in this 
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paper, Chapter 4 investigates site response estimates using 50 Vs profiles obtained from 

each layering ratio inversion shown in Figure 3.8.  

The inclusion of many thin layers during inversion parameterization is a quite 

common and tempting strategy to employ because many analysts believe it will allow 

complicated layering and/or velocity contrasts to be detected more accurately. We have 

found this generally not to be the case based on our analyses of several synthetic and real 

sites for which borehole or other a-priori information about the layering was available. 

Rather, the Vs profiles shown in Figure 3.9b demonstrate that incorporating an excessive 

number of layers in the inversion parameterization inhibits the ability of the inversion to 

find the true solution and strong velocity contrasts are, on average, smoothed out. The 

parameters associated with a layering ratio of 1.2 are too permissive for Site 4, based on 

the fact that significantly better fits of the experimental dispersion data were achieved 

using far fewer layers (i.e., higher layering ratios) given the same number of trial models 

searched. Moreover, the high variability in the Vs profiles using a layering ratio of 1.2 

indicates that the inversion algorithm may not have been able to find the most promising 

regions of such a broad parameter space and/or that the parameterization included too 

many degrees of freedom (DOF). When too many DOF are incorporated into the 

parameterization, the experimental data may be insufficient to constrain them. 

Additionally, even if all DOF may be constrained by the experimental data, the analyst 

may not possess the computational ability/time to investigate the number of ground 

models required to find an acceptable solution, as more DOF require more trial layered 

earth models to be searched (DiGiulio et al. 2012).  

Even if it is possible to achieve convergence by exploring more trial layered earth 

models for a given layering ratio with many DOF, it may not necessarily be useful to do 

so. For example, we performed this same layering ratio analysis ( = 1.2) using 20 
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million layered earth models (as opposed to 200,000) using the Stampede supercomputer 

at the Texas Advanced Computing Center. We re-ran the analysis four different times 

(i.e., 80 million total inversion models searched) with a unique seed in the pseudo-

random number generator for each inversion. Figure 3.10 shows the 1,000 lowest misfit 

Vs profiles and corresponding misfit values obtained from each random seed (simply 

labeled as seeds 1, 2, 3, and 4). It is quite clear that the 1,000 lowest misfit Vs profiles 

associated with each inversion/random seed are essentially on top of one another and 

exhibit minimal variability. However, it is also clear that the final Vs profiles are 

influenced by the random seed. In other words, since the parameter space is so broad, the 

starting point strongly influences where the Neighborhood algorithm converges to. 

However, what is most important is the fact that all Vs profiles are in poor agreement 

with the solution. Thus, little was gained from the considerable computational effort 

required to perform these analyses.     

In order to quantify the variability in the 1,000 best Vs profiles obtained with a 

layering ratio of 1.2 (for the original inversion using 200,000 trial earth models), the 

standard deviation of the natural logarithm of Vs (lnVs) was computed as a function of 

depth, as shown in Figure 3.9c. This parameter (i.e., lnVs) is commonly utilized to 

quantify variability in Vs randomization models (e.g., Toro 1995, Griffiths et al. 2016b, 

Chapters 4 and 5). It can be seen that the variability below 50 m is roughly double the 

variability at shallower depths. This trend is generally observed for profiles developed at 

sites consisting of soft-to-stiff soil overlying bedrock when utilizing surface wave 

methods (Garofalo et al. 2016a).     
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Figure 3.10: Inversion results corresponding to a layering ratio of 1.2 and 20 million trial 

layered earth models. Note that the inversion was run four times (for a total 

of 80 million models searched), each with a unique seed in the pseudo-

random number generator. The 1,000 lowest misfit profiles for each seed are 

plotted (essentially on top of one another) with the numbers in brackets 

representing the range in misfit values.       

As shown in Figure 3.11a, the layering parameterization for a layering ratio of 3.5 

incorporates five layers down to the depth of resolution. This is less than one-third the 

number of layers used in the parameterization for a layering ratio of 1.2. However, it is 

still slightly more than the number of layers in the true solution profile (i.e., 3 layers 

above the half-space). Nevertheless, it is clear from Figure 3.11b that the 1,000 lowest 

misfit Vs profiles associated with a layering ratio of 3.5 match the true solution Vs profile 

quite well. Above the half-space, all Vs profiles, including the median and minimum 

misfit, are essentially identical to the true solution. With the exception of the “spikes” at 

each layer interface, the lnVs values over the top 56 m for a layering ratio of 3.5 (Figure 

3.11c) are up to an order of magnitude lower than those for a layering ratio of 1.2 (Figure 

3.9c).  These spikes represent small variations in the depth of a significant velocity 
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contrast in the 1,000 Vs profiles. In the narrow depth range where these spikes occur, 

standard deviations are computed using velocities corresponding to two layers with 

significantly different Vs. Thus, they do not represent the actual variability in Vs within a 

layer. The relatively low variability within each layer is the result of a well constrained 

parameterization, wherein the global search algorithm was able to quickly narrow in on 

the most promising areas. 

     

 

Figure 3.11: (a) Depth ranges permitted in each layer by the inversion parameterization, 

(b) true solution profile in comparison to the best 1,000, minimum misfit, 

and median Vs profiles obtained from inversion, and (c) lnVs for a layering 

ratio of 3.5. 

Below the true solution half-space, the 1,000 lowest misfit Vs profiles exhibit 

more variability, with lnVs ranging from 0.08 to greater than 0.2. This is due to the fact 

that the calculation of theoretical dispersion curves is more sensitive to shallow layers 

than deeper layers. Moreover, the experimental dispersion data does not level-off at long 

wavelengths, making it more difficult to constrain the Vs of the deepest layers. 
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Nonetheless, the median Vs profile for this layering ratio matches the true solution profile 

quite well, and does an even better job than the minimum misfit Vs profile.  These results 

show that Vs profiles derived from inversion can indeed be very realistic representations 

of the subsurface if reasonable inversion parameterizations are used in conjunction with 

high-quality dispersion data.     

It can be seen that most Vs profiles incorporate an additional stiff layer that is 

inconsistent with the true solution profile between 160 and 300 m. Because the top of this 

layer was near the resolution limit in many instances, the authors tested its validity by 

performing an addition inversion using a parameterization that omitted the bottommost 

layer. The results from this analysis are shown in Figure 3.12, and it is hereafter referred 

to as 3.5*, where the * designation refers to a slight manual modification to a layering 

ratio of 3.5 based on engineering judgement. It can be seen that all 1,000 lowest misfit 

profiles from this analysis match the true solution profile remarkably well, even below 56 

m. Moreover, the profiles exhibit minimal variability at all depths, with lnVs values an 

order of magnitude lower than for the original layering ratio of 3.5 (Figure 3.12c, versus 

Figure 3.11c, respectively). This is underscored by the fact that the median Vs profile is 

essentially identical to all other Vs profiles, including the minimum misfit profile. 
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Figure 3.12: (a) Depth ranges permitted in each layer by the inversion parameterization, 

(b) true solution profile in comparison to the best 1,000, minimum misfit, 

and median Vs profiles obtained from inversion, and (c) lnVs for a layering 

ratio of 3.5*. 

The layering parameterization for a layering ratio of 5.0 is shown in Figure 3.13a. 

It incorporates a total of four layers, which is the exact same number of layers contained 

in the parameterization for the  = 3.5* case, and only one less than the number of layers 

for the  = 3.5 case. However, close scrutiny of Figure 3.12a relative to Figure 3.13a 

reveals differences in the potential depth ranges for these four layers, which are set by the 

layering ratio equations. Indeed, the potential depth ranges for the layers in the  = 5.0 

case are incompatible with the locations of the layer boundaries in the true solution 

profile.  As a result, the Vs profiles associated with a layering ratio of 5.0 (Figure 3.13b) 

poorly match the true solution profile, while those associated with a layering ratio of 3.5* 

match the true solution profile remarkably well (Figure 3.12b). Therefore, even if an 

appropriate number of layers are included in the inversion parameterization, the inversion 
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may still fail to find an acceptable solution if the depth ranges are incompatible with the 

actual subsurface layering. 

 

Figure 3.13: (a) Depth ranges permitted in each layer by the inversion parameterization, 

(b) true solution profile in comparison with the best 1,000, minimum misfit, 

and median Vs profiles obtained from inversion, and (c) lnVs for a layering 

ratio of 5.0. 

The 1,000 lowest misfit Vs profiles associated with a layering ratio of 5.0 exhibit 

essentially no variability (Figure 3.13c). Similar to a layering ratio of 3.5* (Figure 3.12c), 

the median and minimum misfit Vs profiles are essentially identical to all other profiles. 

While the minimal variability for these two layering ratios may be quite similar, the 

causes are very different. Both layering ratios result in a relatively small parameter space 

(i.e., few degrees of freedom), which limits the possible layered earth models that can be 

explored. For the layering ratio of 3.5*, the true solution fell within the layering 

parameterization and the inversion was able to efficiently find it, thus, other areas of the 

parameterization could be quickly disregarded because they yielded relatively higher 

misfit values. Conversely, the layer parameters associated with a layering ratio of 5.0 
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failed to encompass the true profile. Consequently, the inversion settled for the best 

possible solution within these overly-restrictive parameters, and the best possible solution 

did not well-match the true Vs profile. If only a single inversion had been considered 

using a layering ratio of 5.0, it would have been impossible to know whether the lack of 

variability in the ensemble of the best 1,000 Vs profiles was low because Vs profiles 

matching the “true” subsurface profile were found or because the parameters were too 

restrictive to find the “true” solution. 

The ranges in dispersion misfit values for the best 1,000 models resulting from all 

layering ratio inversions are shown in Figure 3.14. It can be seen that the misfit values are 

lowest, with essentially no variability, for a layering ratio of 3.5*. Profiles from this 

inversion are also essentially identical to the true solution Vs profile (Figure 3.12b). It is 

clear that that as the layering parameterizations approach the optimum condition, their 

dispersion misfit values decrease. Furthermore, the ranges of misfit values for the best 

1,000 models also narrow. Above the optimal layering ratio, dispersion misfit values 

increase, yet still exhibit minimal variability within the best 1,000 models. Hence, 

multiple parameterizations need to be considered if realistic representations of the 

subsurface are desired. Both the dispersion misfit values and the range/variability in Vs 

among a population of lowest misfit models should be assessed in order to judge which 

parametrization(s) are most appropriate.     
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Figure 3.14: Ranges in dispersion misfit values for the 1,000 best (i.e., lowest misfit) 

subsurface models obtained for each layering ratio inversion performed for 

blind-study Site 4. 

Participants in the InterPacific study were asked to submit a single “best” profile 

from their blind inversion of Site 4. Based on the dispersion misfits shown in Figure 3.14, 

and the previous discussions regarding potential causes of variability in Vs among a 

population of lowest misfit profiles, the median Vs profile from the layering ratio of 3.5* 

was chosen and submitted. We later discovered that this Vs profile matched the true 

solution remarkably well, validating the usefulness of the layering ratio methodology 

when applied in conjunction with experience and sound judgement.  Nevertheless, a true 

solution profile is rarely available for validation at real sites in practice. Thus, it can be 

difficult to conclude if an inversion parameterization has been too restrictive or too 

permissive without significant a-priori information about layering beneath the site, 

especially when the misfit values for profiles derived from different inversion 

parameterizations are similar. In the case of blind-study Site 4, the trend in dispersion 

misfit values and the variability, or lack thereof, in Vs profiles allowed us to determine a 

single solution that was quite obvious after exploring various layering ratio inversions. 
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As this is not always possible, another case history site is discussed below to demonstrate 

what can be done when trends are not as obvious.         

3.5  MIRANDOLA, ITALY SITE 

Active- and passive-source surface wave testing were performed at the Mirandola, 

Italy site as part of the InterPacific Project. All participants were given the raw field data 

and asked to develop Vs profiles for the site. A detailed description of the surface wave 

data acquisition at Mirandola and comparisons of the dispersion and inversion results 

obtained from all InterPacific project participants are provided in Garafalo et al (2016a). 

A brief overview of the surface wave data and dispersion processing methodologies that 

we used to develop a Rayleigh wave dispersion curve for the site is included below. 

3.5.1  Site Information and Dispersion Processing 

Active-source data were acquired by the InterPacific organizing team using two 

48-channel linear arrays with spacings of 1 and 2 m, respectively, between successive 

4.5-Hz vertical geophones. Passive-source (i.e., ambient vibration) data were acquired 

using 3-component, intermediate-period seismometers. Multiple passive-source arrays 

were used, including circular (5 m to 405 m radius), triangular (sides ranging from 12.5 

m to 300 m), and L-shaped arrays (sides 150 m long).   

We processed the active-source data from each linear array and shot location 

using the Frequency Domain Beamformer (FDBF) method (Zywicki 1999) and combined 

the dispersion data from all shot locations using the methods described in Wood and Cox 

(2012) to develop a mean active-source Rayleigh wave dispersion curve with uncertainty 

estimates. Active-source dispersion data ranged from 5 to 25 Hz. Passive-source data was 

processed using both the High Resolution Frequency-Wavenumber Transformation 

(HFK) and the Modified Spatial Autocorrelation (MSPAC) methods (Capon 1969, Bettig 
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et al. 2001). Ambient vibration HFK data was used between frequencies of 4 to 25 Hz 

and 0.7 to 1.3 Hz, while MSPAC data was used at frequencies ranging from 1.5 to 3.5 

Hz. The choice between HFK and/or MSPAC data was made after visually inspecting the 

dispersion data and judging which was of higher quality based on a number of factors 

(e.g., smoothness, uncertainty bounds, bias towards high or low phase velocity, noise 

directionality, etc.). Active- and passive-source Rayleigh wave dispersion data were then 

combined to develop a composite experimental dispersion curve, as shown in Figure 

3.15a. Errors bars represent +/- one standard deviation in phase velocity.  

 

 

Figure 3.15: Mirandola, Italy (a) active- and passive-source experimental dispersion data, 

and (b) and (c) crosshole Vs and Vp profiles, respectively.     

Seismic crosshole testing was performed independently at the Mirandola site by 

several teams in order to directly measure Vs and Vp (Garafalo et al. 2016b). The 

crosshole Vs and Vp profiles that are deemed to be of the highest quality are shown in 

Figure 3.15b and 3.15c, respectively. In contrast to the previous semi-synthetic Site 4 

case study, there is no “true solution profile” available for this site. Thus, the crosshole 

profiles are provided as a reference. However, it is important to note that invasive 
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crosshole testing samples over a relatively small area when compared to surface wave 

methods, particularly when large-aperture passive arrays are used to profile to significant 

depths. Thus, differences can be expected between Vs profiles obtained using borehole 

and surface wave methods. Nonetheless, unless extreme heterogeneity is present at a site, 

Vs profiles obtained from these two methods should agree reasonably well. The crosshole 

Vs profile is quite smooth with no abrupt velocity contrasts until soft rock is reached at a 

depth between 110 -120 m. There is a decrease in Vs below 120 m, possibly as a result of 

variable weathering patterns within the top several meters of the soft rock layer. It should 

be noted that this decrease was observed by multiple teams that performed seismic 

crosshole testing, but the boreholes did not go deep enough into the rock to determine the 

thickness of this presumed zone of weathering.   

During inversion of the dispersion data shown in Figure 3.15a, the authors noted 

that the experimental dispersion data at wavelengths greater than approximately 1,000 m 

could be fit with either a fundamental or first-higher Rayleigh wave mode. The former 

interpretation results in a higher Vs in the rock material encountered at 110 to 120 m. The 

authors had developed and submitted Vs profiles for the site to the InterPacific blind-

study prior to developing the layering ratio technique and prior to knowing the crosshole 

results. At the time, we chose to fit all dispersion data with the fundamental mode. These 

results are detailed in Griffiths et al. (2016) and Garafalo et al. (2016a). However, for the 

present study, the authors re-analyzed the data using the layering ratio approach and 

chose to fit the long-wavelength experimental data with the first-higher Rayleigh wave 

mode. This resulted in Vs values in the rock that more closely matched the crosshole data 

(Figure 3.15b). Nonetheless, as discussed above, the crosshole data may have only 

penetrated the uppermost/weathered portion of the rock, while the surface wave data 

sampled material at much larger depths, which would be expected to have higher seismic 
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velocities. Thus, both interpretations are reasonable within the bounds of knowledge that 

currently exists for the site. While a detailed discussion of mode-interpretations and Vs 

uncertainty is beyond the scope of this paper, it is in the opinion of the authors that both 

possibilities should be considered in subsequent engineering analyses, such as seismic 

site response.   

3.5.2  Layering Ratio Analyses 

Layering ratios of 1.2, 2.0, 3.5, 5.0, and 7.0 were considered during inversion 

analyses for the Mirandola Site. Figure 3.16 shows the 1,000 lowest misfit theoretical 

dispersion curves and corresponding Vs profiles for all layering ratios considered. Note 

that both the fundamental and first-higher theoretical Rayleigh wave modes are shown in 

Figure 3.16a, 3.16c, 3.16e, 3.16g, and 3.16i, as experimental data with wavelengths 

greater than 1,000 m were fit with the first higher mode. Similar to blind-study Site 4, all 

theoretical dispersion curves match the experimental data quite well by visual inspection. 

However, the dispersion misfit values associated with a layering ratio of 7.0 are generally 

more than double the misfit values associated with all other layering ratios. However, 

since the dispersion misfit values for the  = 7.0 case are less than 1.0 (i.e., on average 

fall within the uncertainty bounds of the data) and visually appear to fit the data quite 

well,   an analyst may have concluded that the resulting Vs profiles were acceptable 

representations of the subsurface if only a single parameterization were performed.  

Nonetheless, it is clear that much lower misfit values and more accurate representations 

of the subsurface are possible when other parameterization are considered.  
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Figure 3.16:   The one thousand lowest misfit theoretical dispersion curves and 1,000 

corresponding Vs profiles, respectively, obtained from surface wave 

inversions at Mirandola based on the following layering ratios: (a, b) 1.2, (c, 

d) 2.0, (e, f) 3.5, (g, h) 5.0, (i, j) and 7.0. Note that the numbers in brackets 

represent the ranges of dispersion misfit values for the 1,000 best (i.e., 

lowest misfit) models resulting from each inversion. Also shown are the 

median and minimum misfit profiles for each inversion. 
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Vs profiles associated with each layering ratio are shown relative to the crosshole 

Vs profile in in Figure 3.16b, 3.16d, 3.16f, 3.16h, and 3.16j. It is clear that the 1,000 best 

Vs profiles derived from layering ratios of 1.2 and 2.0 exhibit significantly more 

variability than those derived using higher layering ratios. Vs profiles derived from 

layering ratios of 2.0, 3.5 and 5.0 yield better estimates than the other layering ratios of 

the rock velocity contrast indicated in the crosshole Vs profile between 110-120 m.  

Furthermore, the Vs profiles obtained from these three layering ratios all indicate an 

increase in velocity near 25 m, which is also present in the crosshole Vs profile, albeit 

much more subdued. While a layering ratio of 1.2 yielded smoother Vs profiles that 

visually seem to agree better with the crosshole Vs over the top 100 m, these Vs profiles 

generally did a poor job resolving the rock velocity contrast. However, it should be noted 

that the decrease in Vs in the crosshole profile below 120 m adds ambiguity to the 

velocity of rock at this site and gives credibility to an interpretation where a weathered 

zone is reflected in the Vs profiles derived from a layering ratio of 1.2.  Moreover, the 

lowest dispersion misfit value (0.257) was achieved using a layering ratio of 1.2, albeit 

marginally lower than those associated with layering ratios of 2.0, 3.5, and 5.0. These 

points make it difficult to discount the results from a layering ratio of 1.2. This would 

particularly be true if the crosshole Vs was not available for a reference and no other data 

were available to constrain the depth to rock. Conversely, the best 1,000 Vs profiles 

associated with a layering ratio of 7.0 exhibit essentially no variability and incorporate 

several significant velocity contrasts at the wrong locations. In particular, the rock 

velocity contrast at 92 m is located more than 20 m shallower than indicated by the other 

layering ratio inversions and the crosshole data. Based on the relatively high misfit values 

and the minimal variability, it can be concluded that the inversion parameterization for 

the  = 7.0 case was too restrictive. 
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Figure 3.17a shows the misfit ranges for the best 1,000 models obtained from 

each layering ratio inversion considered at the Mirandola Site, while Figure 3.17b 

compares the median Vs profiles derived from the best 1,000 Vs profiles obtained from 

each layering ratio. In contrast to Site 4 (refer to Figure 3.14), the minimum misfit is 

quite similar for all layering ratios less than 7.0. Thus, careful consideration is required in 

order to decide whether one layering ratio is “better” than another. While the Vs profiles 

derived using a layering ratio of 7.0 can be discounted as unrealistic for reasons discussed 

previously (i.e., minimal Vs uncertainty within the best 1,000 Vs profiles in conjunction 

with dispersion misfit values that are significantly higher than those achieved with 

smaller layering ratios), it is difficult to discount Vs profiles derived from any of the 

other layering ratios. The median Vs profiles associated with layering ratios of 2.0, 3.5, 

and 5.0 all incorporate a significant impedance contrast between 110 and 120 m, which 

are in good agreement with the crosshole Vs profile. While the median profile for a 

layering ratio of 1.2 does not incorporate as stiff of a rock impedance contrast, it still 

represents a reasonable interpretation for reasons discussed previously. Borehole Vs 

profiles are rarely available, especially to depths exceeding 100 m, and thus cannot be 

relied upon to aid in interpretation of the “best” inversion results at most real sites. 

Indeed, a “true solution” profile does not exist in real situations where vertical and spatial 

heterogeneity are present, and the velocity profiles from layering ratios of 1.2, 2.0, 3.5, 

and 5.0 could all be deemed reasonable within the bounds of the 405-m diameter passive 

array used to collect passive surface wave data. Thus, it is critical that multiple inversion 

parameterizations be considered in order to quantify reasonable Vs uncertainty for 

subsequent engineering analyses. If only a single Vs profile is provided, or if estimates of 

Vs uncertainty are restricted to a single parameterization, it becomes more difficult to 

meaningfully quantify the Vs uncertainty (both aleatory variability and epistemic 
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uncertainty) and its influence on subsequent site response analyses (e.g., Griffiths et al. 

2016a, Griffiths et al. 2016b, Chapters 4 and 5).   

 

 

Figure 3.17:   (a) Ranges in dispersion misfit values and (b) median Vs profile for the 

1,000 best (i.e., lowest misfit) subsurface models obtained for each layering 

ratio inversion at Mirandola. 

3.6  CONCLUSIONS 

The inverse problem involved in obtaining a realistic layered earth model from 

surface wave dispersion data is inherently ill-posed, nonlinear, mix-determined, and 

without a unique solution. When performing an inversion with limited a-priori 

information, analysts must decide on an appropriate number of layers to represent the 

subsurface. The choice of layering parameterization has been shown to significantly 

impact Vs profiles resulting from inversion. This paper presents a method for conducting 

multiple inversions utilizing systematically-varied inversion layering parameterizations in 

order to identify and fully encompass the most reasonable layered earth models for a site. 

Each parameterization is defined by a unique layering ratio, which represents a multiplier 



 100 

that systemically increases the potential thickness of each layer in the inversion 

parameterization based on the potential thickness of the layer directly above it.  

The layering ratio method has been demonstrated at two case history sites 

associated with the InterPacific Project.  At blind-study Site 4, the layering ratio 

methodology was used to almost perfectly recover the true Vs profile for a semi-synthetic 

site.  At the Mirandola site, a single “best” model could not be extracted. However, 

results from several layering ratios were found to realistically bound/bracket the 

subsurface conditions indicated by crosshole results in a 120-m deep borehole. While the 

goal of the layering ratio inversion methodology is not necessarily to find the “optimal” 

or “best” Vs profile for a site, it may be successful at doing so for certain sites/datasets. 

However, the primary reason for using the layering ratio method is to avoid selection of 

Vs profiles that are adversely influenced by the choice of inversion parameterization, and 

realistically represent the uncertainty in Vs resulting from surface wave inversion.     

At both study sites, layering parameterizations that incorporated a lot of layers 

were found to yield Vs profiles with relatively high variability for the given number of 

trial models searched. Additionally, Vs in these many-layered profiles gradually 

increased with depth and many profiles failed to detect the location and magnitude of 

significant impedance contrasts. While this variability can be reduced and lower misfit 

values may be achieved by running additional iterations/trial models in the inversion, 

results presented herein have shown that even after many millions of trial models the 

“true” Vs profile may not be recovered. This occurs because when too many layers (i.e., 

degrees of freedom) are included in the inversion parameterization the experimental 

dispersion data may be insufficient to constrain them. Moreover, practical time 

constraints often preclude the full exploration of such a broad parameterization. In spite 

of these observations, the theoretical dispersion curves associated with layered earth 
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models from under-constrained inversions generally fit the experimental dispersion data 

quite well, so caution should be exercised when using many trial inversion layers for sites 

where strong impedance contrasts are expected.   

At both study sites, parameterizations that incorporated too few layers were found 

to yield Vs profiles with minimal variability and strong velocity contrasts at incorrect 

locations. When observed together, these two phenomena indicate that the inversion was 

forced to settle for the best possible solution within an over-constrained parameter space 

after considering a relatively low number of trial models. While the misfit values 

associated with these overly-restrictive inversion parameters were generally higher than 

those that incorporated more layers, the theoretical dispersion curves still fit the 

experimental dispersion data reasonably well.  

Without considering multiple inversion parameterizations it is generally not 

possible to know whether the results of an inversion are adversely influenced by the 

inversion parameterization, and the full non-uniqueness associated with the surface wave 

inverse problem cannot be investigated. The layering ratio technique described in this 

paper provides a systematic means of investigating the impact of layering 

parameterization. Furthermore, it has been shown to significantly aid in selecting Vs 

profiles that are close representations of the subsurface. This goal cannot be achieved if 

only a single parameterization is considered.  Further studies are needed to determine if 

the layering ratio methodology will work well for more complicated sites that contain, for 

example, low velocity layers beneath stiffer overlying layers. Even if it does not, and 

even if readers choose not to implement the layering ratio methodology, we cannot stress 

enough the importance of investigating multiple parameterizations during surface wave 

inversion if realistic models of the subsurface, and uncertainty associated with those 
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models, are to be developed.  These types of investigations are particularly needed in 

order to quantify the influence of Vs uncertainty on subsequent engineering analyses. 
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ABSTRACT 

This paper discusses variability and accuracy of site response predictions 

performed using shear wave velocity (Vs) profiles derived from non-unique surface wave 

inversions and other commonly used statistical methods of accounting for epistemic 

uncertainty and aleatory variability in Vs. Specifically, linear and equivalent linear site 

response analyses were performed on the following three classes of Vs profiles: (1) 350 

Vs profiles developed by performing multiple surface wave inversions, each with a 

unique set of layering parameters, on a common dispersion dataset, (2) two upper/lower 

range base-case Vs profiles developed by systematically increasing or decreasing the 

solution Vs profile by 20%, and (3) 100 Vs profiles developed using the Vs 

randomization procedure proposed by Toro (1995). Vs profiles derived from surface 

wave inversions generally yielded accurate site response estimates with minimal 

variability, so long as their theoretical dispersion data fit the experimental dispersion data 

https://doi.org/10.1016/j.soildyn.2016.07.028


 104 

well. On the other hand, the upper/lower range and randomized Vs profiles generally 

produced inaccurate and highly variable site response predictions, although the inclusion 

of site-specific parameters in the randomization model improved the results. At real sites 

where substantial aleatory variability is anticipated and/or the epistemic uncertainty is 

quite high, the site response estimates associated with the randomized and/or upper/lower 

range Vs profiles may be deemed acceptable. However, if the experimental dispersion 

data and horizontal-to-vertical spectral ratios are shown to be consistent over the footprint 

of a site, it may be possible to significantly reduce the uncertainty associated with the 

input Vs profile and the resulting uncertainty in the site response. 

4.1  INTRODUCTION 

Site response simulations using equivalent linear and nonlinear analyses have 

shown that the shear wave velocity (Vs) profile selected to anchor small-strain subsurface 

stiffness conditions has a large influence on the amplitude and frequency content of 

predicted surface ground motions (e.g., Bazurro and Cornell 2004, Rathje et al. 2010, Li 

and Assimaki 2010, Barani et al. 2013).  Hence, the development of appropriate Vs 

profiles for use in site response analyses is of paramount importance. Engineering design 

codes stress the importance of accounting for uncertainty in Vs when performing site 

response analyses (e.g., ASCE 2010, AASHTO 2011), yet, no firm guidelines are 

provided regarding how to appropriately/realistically account for these uncertainties.  

Both epistemic uncertainty and aleatory variability in Vs are typically accounted 

for in probabilistic site response analyses for critical projects such as nuclear facilities 

(EPRI 2012). Epistemic uncertainty is accounted for by considering multiple base-case 

Vs profiles. Typically, a “mean” and upper/lower range base-cases are developed. When 

multiple Vs profiles are available for a given site, the “mean” base-case may be 
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computed as the average (or median) of the available Vs profiles. However, oftentimes 

only a single Vs profile is available and assumed to represent the mean. The upper/lower 

range base-cases are developed by applying an estimated level of epistemic uncertainty to 

the “mean” base-case Vs profile. Oftentimes, upper/lower range base-cases are generated 

by arbitrarily increasing and decreasing the reference Vs profile by a constant factor such 

as +/- 20% to 30%.  Aleatory variability in Vs is accounted for in site response analyses 

via a randomization process about the base-case Vs profiles.  This is most commonly 

performed using the Toro (1995) Vs randomization model.  If abundant Vs data is 

available at a site, the statistical parameters needed to constrain epistemic uncertainty and 

aleatory variability can be obtained.  Otherwise, conservative estimates must be made 

(Griffiths et al. 2016a). 

Vs profiles can be measured in-situ using invasive or non-invasive techniques. In 

either case, there is uncertainty associated with the final Vs profiles, which may or may 

not be openly acknowledged to the end-user. While it is commonly assumed that there is 

less uncertainty associated with invasive/borehole methods, a recent, comprehensive, 

blind-analysis study at three geologically-distinct sites in Europe revealed that Vs profiles 

derived from surface wave testing had coefficients of variation that were similar to, and 

at times lower than, those derived from a combination of crosshole, downhole and 

suspension logging (Garafalo et al. 2016a, Garafalo et al. 2016b). Nonetheless, when Vs 

profiles are derived from an inversion of surface wave data, one must acknowledge that 

the solution is non-unique (Lai et al. 2005, Cornou et al. 2009, Cox et al. 2014, Garafalo 

et al. 2016a), and the uncertainties may be significant, particularly if results are reported 

without performing a systematic, rigorous investigation of different trial subsurface 

layering models (DiGiulio et al. 2012, Chapter 3).    
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The surface wave inversion process involves finding one or more layered earth 

models whose theoretical dispersion curve(s) fit the experimentally-measured dispersion 

data. While in the past it was common to simply seek a solution that yielded a 

“reasonable” fit by-eye, it is presently common to quantify the quality of fit using some 

sort of a least-squares misfit value, with lower misfit values indicating a better fit. 

Layered earth models are comprised of a system of stacked, linear elastic, horizontal 

layers over a half-space. Each layer is defined by its inversion parameters: thickness (t), 

shear wave velocity (Vs), compression wave velocity (Vp) or Poisson’s ratio (ν), and 

mass density (ρ). The total number of layers is generally unknown and specified/assumed 

by the analyst. The layer parameters are then varied by a search-algorithm until an 

acceptable match is made between the theoretical dispersion curve and the experimental 

dispersion data. However, the inverse problem involved in obtaining a realistic layered 

earth model from surface wave dispersion data is inherently ill-posed, nonlinear, and 

mix-determined, without a unique solution. The ill-posed nature of the problem results 

from trying to recover four parameters (t, Vs, Vp, and ρ) for each layer in the model 

indirectly from the two measured data parameters of Rayleigh phase velocity (Vr) and 

frequency (f). The problem is further complicated by the nonlinear relationship between 

the data parameters, which vary as a function of frequency/wavelength, and the desired 

model space parameters, which vary as a function of depth. Additionally, the model 

solution for deeper layers is dependent on the model solution for shallow layers, resulting 

in a mix-determined problem. As a result, a number of significantly different layered 

earth models may possess theoretical dispersion curves that fit the experimental data 

equally well (Foti et al. 2009, Chapters 2 and 3).  

Multiple studies have considered the variability in site response estimates derived 

from non-unique Vs profiles obtained from surface wave testing (e.g., Foti et al. 2009, 
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Boaga et al. 2011, Jakka et al. 2014a, Griffiths et al. 2016b). Conclusions drawn from 

these studies have been somewhat conflicting. For example, Foti et al. (2009) used Monte 

Carlo inversions of synthetic and real datasets to conclude that Vs profiles with 

equivalent dispersion misfit values are essentially equivalent with regards to site 

response. On the other hand, Boaga et al. (2011) argued that profiles with comparable 

dispersion misfit values may potentially exhibit significant variability with regards to site 

amplification if a sharp velocity contrast is not present beneath the site. Similarly, Jakka 

et al. (2014a) argue that profiles with comparable misfit values exhibit significant 

variability with regards to site response. However, as pointed out by Comina and Foti 

(2014), the theoretical dispersion curves associated with many of the Vs profiles in the 

Jakka et al. (2014a) study fall outside of the uncertainty bounds of the experimental data 

at high frequencies, and do not follow the general trend/shape of the experimental data at 

low frequencies. Several follow up discussions have ensued between these differing 

schools of thought (e.g., Comina and Foti 2014, Jakka et al. 2014b, Boaga et al. 2012, 

Socco et al. 2012). One particular point of debate is focused on what constitutes 

“equivalence” in terms of dispersion misfit when attempting to select appropriate 

candidate Vs profiles for use in site response. 

A companion study documented by Griffiths et al. (2016a and 2016b) investigated 

site response variability at two sites (one with a strong impedance contrast and one 

without) using many Vs profiles derived directly from a single surface wave inversion 

and from several statistically-based methods commonly used to account for epistemic 

uncertainty and aleatory variability. In the initial study, Griffiths et al. (2016a) argued 

that the experimentally-measured dispersion data represents the “site signature”, which 

reveals important information about wave propagation across the site, and any Vs profiles 

that fail to capture the site signature (i.e., fail to match the experimental dispersion data) 
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may not be appropriate for trying to quantify the variability in site response. Inherent in 

this argument is the assumption that a broadband, high-quality experimental dispersion 

curve has been obtained and demonstrated to be representative of the site. The quality of 

fit in their study was quantified using the dispersion misfit equation of Wathelet et al. 

(2004): 

misfit = √
1

𝑛𝑓
∑

(xdi − xci)2

σi
2

nf

i=1

                   (4.1) 

Where, xdi represents the Rayleigh wave phase velocity of the experimental 

dispersion data at frequency fi; xci is the theoretical Rayleigh wave phase velocity 

computed for the trial layered earth model at frequency fi; i is the standard deviation 

associated with the experimental dispersion data at frequency fi; and nf is the number of 

frequency samples considered for the misfit calculation. The misfit value is essentially a 

root-mean-squared-error (RMSE) between the experimental and theoretical dispersion 

curves with a normalization factor equal to the inverse of the experimental standard 

deviation at a given frequency. According to this definition of misfit, a value less than 1.0 

essentially means that on average (i.e., across the frequency band considered) the 

theoretical dispersion curve falls within the +/- one standard deviation bounds of the 

experimental data. Thus, misfit values far in excess of 1.0 suggest a poor fit of the 

experimental dispersion data. Misfit values approaching zero represent better fits to the 

mean trend of the experimental data, and for a given set of data, dispersion misfit values 

can be used to make relative judgements regarding the quality of trial layered earth 

models. However, the authors acknowledge that misfit values deemed to be acceptable at 

one site may be considered unacceptable at another. For example, a misfit value of 0.9 

might be “good” at one site because the theoretical dispersion curve visually fits a 
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complicated dataset. However, a misfit value of 0.3 might be “bad” at another site 

because the theoretical dispersion curve does not agree well at all frequencies for a 

simple dispersion dataset. Thus, misfit values from different sites generally cannot be 

compared directly with one another for a measure of the overall inversion quality from 

site-to-site. Rather, the misfit values can simply be used to guide relative judgements 

about the quality of certain trial layered earth models relative to other potential models at 

the same site.  

Griffiths et al (2016a) found that theoretical dispersion curves associated with 

upper/lower range Vs profiles (e.g., median +/- 20%) commonly used to account for 

epistemic uncertainty (e.g. Matasovic and Hashash 2012, EPRI 2012) yielded a poor fit to 

the experimental dispersion data (i.e., relatively high misfit values) measured at their 

study sites. They also found that Vs randomization (Toro 1995) commonly utilized to 

account for aleatory variability resulted in only a few acceptable, and many unacceptable, 

Vs profiles based on dispersion misfit. However, Vs profiles derived directly from a 

surface wave inversion resulted in a satisfactory fit of the experimental dispersion data 

because the inversion algorithm seeks to achieve the best possible fit to the data and thus 

seeks profiles that best capture the experimentally-measured “site signature.”  

The follow-up study by Griffiths et al. (2016b) documented linear and equivalent 

linear site response analyses performed using Vs profiles derived in their previous study. 

A total of 50 Vs profiles with comparable misfit values derived from surface wave 

inversion were considered for each site. The response spectra (RS) and amplification 

factors (AF) associated with these profiles resulted in minimal variability, which supports 

the conclusions of Foti et al. (2009). On the other hand, the upper/lower range Vs profiles 

and the randomly-generated Vs profiles exhibited substantial variability in terms of RS 

and AF. The authors argue that since these statistically-generated profiles do not capture 
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the “site signature”, the variability that they exhibit may not be realistic, and may 

potentially result in underestimation of site response due to flattening-out of resonant 

frequencies. Overall, the results presented in Griffiths et al. (2016b) show a strong, albeit 

not perfect, trend of increasing variability in equivalent linear site response estimates 

with increasing surface wave dispersion misfit values at their study sites.    

It is important to briefly raise a few points regarding the experimental dispersion 

data obtained at real sites and the so-called “site signature”. An experimental dispersion 

curve represents a spatial average of material properties over the length/area of the array 

used to measure surface waves (with the degree of averaging changing with frequency). 

Thus, if a single active-source survey (i.e., MASW or SASW) is conducted using an array 

that is relatively small in comparison to the area of interest, the resulting data cannot be 

deemed a “signature” of the site. Indeed, experimentally measured dispersion data 

measured using relatively small arrays at geologically-complex sites may vary 

considerably over short distances. For example, Thompson et al. (2012) present 

dispersion data collected at two Kiknet sites in Japan, at which four independent spectral 

analysis of surface wave (SASW) surveys were conducted within a few hundred meters 

of one another. The experimental dispersion data at the first site was in excellent 

agreement over the frequency ranges that were resolved by the individual surveys. Thus, 

it can be argued that this site had a narrowly-defined site signature. Conversely, the 

experimental dispersion data derived from the four SASW surveys at the second site 

showed extreme variability. At such a geologically-complex site it may not be possible to 

establish a single dispersion curve with relatively narrow uncertainty bounds. Rather, the 

site signature may need to be characterized by a broad range of experimental dispersion 

data compiled from either a number of smaller arrays spread across the site and/or a 
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combination of smaller active-source arrays and larger two-dimensional passive-source 

arrays that span the footprint of the site. 

While many of the aforementioned studies examined the variability in site 

response estimates obtained using non-unique Vs profiles derived from surface wave 

inversion, each example considered only a single set of non-unique Vs profiles developed 

using the same set of inversion parameters (i.e., a single parameterization). In each case, 

the inversion algorithm was restricted to a single, predefined number of layers and ranges 

in their respective properties. As mentioned above, the inversion parameterization has 

been shown to significantly impact the results of a surface wave inversion (DiGiulio et al. 

2012, Chapter 3). This is because the number of unknowns, which is controlled by the 

number of layers in the parameterization, is itself an unknown. While Vs profiles 

developed from within a single set of parameters may exhibit significant differences, the 

differences between profiles derived from different sets of parameters has been shown to 

be even more significant. Indeed, it is possible to obtain comparable dispersion misfit 

values from profiles comprised of many layers with gradual increases in Vs and profiles 

with fewer layers and significant velocity contrasts. Without exploring different 

parameterizations comprised of different numbers of layers, it is not possible to fully 

capture the non-uniqueness associated with the inverse problem and the resulting 

variability in site response estimates.      

Chapter 3 outlined a systematic procedure to investigate potential inversion 

parameterizations, each with a unique number of layers defined by a specific layering 

ratio. This procedure aids in avoiding blatantly under- and over-constrained 

parameterizations. However, even when this procedure is used, it is possible to have 

multiple inversion parameterizations that are adequately constrained, yet produce 

significantly different Vs profiles. In such cases, it may be difficult to decide which Vs 
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profiles best represent the “true” subsurface layering without a-priori information, and the 

overall influence of this non-uniqueness on site response is of interest.     

The present study expands on the results presented in Chapter 3. Specifically, 

linear-elastic and equivalent-linear site response analyses using both low- and high-

intensity input ground motions have been performed on Vs profiles from the semi-

synthetic blind-study site inverted in Chapter 3. Vs profiles considered include those that 

were developed from under-, over-, and adequately-constrained inversion 

parameterizations. Additionally, commonly-used strategies of accounting for Vs profile 

uncertainty and its influence on the predicted site response are considered. These 

commonly-used strategies of accounting for Vs uncertainty include upper/lower range 

base-case Vs profiles meant to account for epistemic uncertainty and statistically-based, 

randomly generated Vs profiles meant to account for aleatory variability.  

With regards to surface wave testing, epistemic uncertainty represents data 

uncertainty and/or lack of scientific knowledge regarding mode interpretations and which 

processing and inversion algorithms are “best”, while aleatory variability reflects the 

vertical and horizontal spatial variability of Vs across the site, which also contributes to 

data uncertainty. While the uncertainty associated with the inversion itself is purely 

epistemic, the data used as input into the inversion (i.e., the experimental dispersion data) 

is influenced by both aleatory variability and epistemic uncertainty. Therefore, the final 

Vs profiles derived directly from surface wave testing are influenced by both sources of 

uncertainty and it would be very difficult to decouple them (Griffiths et al. 2016a). In this 

study, no attempt was made to do so. Consequently, any uncertainty/variability in site 

response performed on these Vs profiles also reflects both sources of 

uncertainty/variability. However, we do not claim that the surface wave dispersion 

approach of accounting for Vs uncertainty will encompass all sources/forms of aleatory 
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variability and epistemic uncertainty associated with non-unique Vs profiles used in site 

response. For example, if a surface wave survey is conducted over an area that is 

relatively small compared to the area of interest, then it cannot capture the full aleatory 

variability. Moreover, if an experimental dispersion curve does not extend to low enough 

frequencies to constrain the depth to bedrock, then the epistemic uncertainty regarding 

the depth to bedrock cannot be reduced and multiple base-case Vs profiles accounting for 

this uncertainty may be required. Nonetheless, if high quality surface wave surveys are 

conducted over the area of interest, it may be possible to substantially reduce site 

response uncertainty by only considering Vs profiles that realistically fit the site 

signature. 

4.2  INTERPACIFIC BLIND-STUDY SITE 4 

The dataset considered in this paper was originally provided to participants in the 

InterPACIFIC (Intercomparison of methods for site parameter and velocity profile 

characterization) project. While Garafalo et al. (2016a) and (2016b) document the results 

obtained from three InterPACIFIC blind-study sites in Europe, the results from blind-

study Site 4 have not yet been published. Thus, we refer only to our own results and 

methodologies herein.  

The experimental data for Site 4 was provided by Cecile Cornou, from ISTerre 

(Institut des Sciences de la Terre), Grenoble, France. The semi-synthetic experimental 

data was developed by first performing a surface wave inversion on experimentally-

measured Rayleigh wave dispersion data from a real site. The minimum misfit ground 

model from this analysis was then chosen as the “true” solution profile for Site 4. The 

theoretical dispersion curve for this true solution profile was discretized at the 

frequencies corresponding to the experimentally-measured dispersion data from the real 



 114 

site. Additionally, the frequency-dependent uncertainty bounds associated with the 

original experimentally-measured dispersion data were applied to this discretized 

theoretical dispersion curve. This produced a pseudo-experimental dispersion curve, with 

the mean value at each frequency corresponding to the theoretical Rayleigh phase 

velocity of the true solution Vs profile and the uncertainty bounds reflecting realistic 

uncertainty from actual surface wave testing. Although this curve was not measured 

directly, it will be referred to as the “experimental dispersion curve” for the remainder of 

the paper.  

All participants in the project were provided with the experimental dispersion 

curve for Site 4 and asked to invert the data in a blind manner (i.e., no a-priori 

information about the site was made available). The mean experimental dispersion data 

provided to the blind-study participants, including +/- one standard deviation bounds, are 

shown in Figure 4.1a. Analysts were informed that the data represented the fundamental 

Rayleigh mode, eliminating the need to consider the possibility of effective or higher 

modes in their inversions. Each analyst was asked to submit a single “best” Vs profile, 

and were allowed to also submit a range of Vs profiles that accounted for Vs uncertainty 

if they so desired. After final submissions, a mean and +/- one standard deviation 

horizontal-to-vertical (H/V) spectral ratio curve (i.e. the ratio between the Fourier 

amplitude spectra of the horizontal and vertical components of ambient vibrations) 

measured at the real site and the true solution Vs profile for Site 4 were made known to 

the participants. The H/V curves and true solution Vs profile are shown in Figure 4.1b 

and Figure 4.1c, respectively. The true solution Vs profile is defined by a large velocity 

contrast at 56 m, which is the cause of the sharp peak in the H/V curve at 1.6 Hz. 

 



 115 

 

Figure 4.1: InterPacific blind-study Site 4: (a) dispersion data, (b) mean (solid line) and 

+/- one standard deviation (dotted lines) H/V spectral ratio curves, and (c) 

true solution Vs profile. 

4.3  VS PROFILES USED IN SITE RESPONSE 

Vs profiles considered in this study include: (1) 350 Vs profiles developed by 

performing multiple inversions, each with a unique set of layering parameters, on the 

blind-study Site 4 dispersion data shown in Figure 4.1a; (2) two upper/lower range Vs 

profiles developed by systematically increasing or decreasing the Site 4 true solution Vs 

profile by 20%; and (3) 100 profiles developed using the Vs randomization procedure 

proposed by Toro (1995). Before discussing the results of the site response analyses, it is 

important to provide background information on how the Vs profiles used in this study 

were developed. This discussion will serve as a basis for considering which Vs profiles 

can be considered useful for quantifying the variability in site response estimates. 

4.3.1  Vs Profiles Derived from the Layering Ratio Surface Wave Inversion 

Technique 

After receiving the experimental dispersion data for blind-study Site 4, we 

performed multiple inversions on the data using the layering ratio approach detailed in 

Chapter 3 and described briefly in the following paragraphs. Inversions were performed 
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using the Geopsy software (www.geopsy.org). Geopsy utilizes a neighbourhood 

algorithm and the misfit function detailed in Equation 1 to search for the “best” layered 

earth models within a predefined inversion parameter space (Wathelet et al. 2004). The 

theoretical dispersion forward computations for each trial earth model are based on the 

work originally developed by Thomson (1950) and Haskell (1953) and later modified by 

Dunkin (1965) and Knopoff (1964).  

Seven distinct inversions were performed on the experimental dispersion data 

from Site 4. Each inversion utilized a unique set of parameters, where the number of trial 

layers was defined by a unique layering ratio (). The layering ratio represents a 

multiplier that systemically increases the range of possible depths to the bottom of each 

layer in the parameterization based on the range of possible depths to the bottom of the 

layer directly above it. By considering multiple layering ratios, it is possible to 

systematically investigate non-unique Vs profiles that could be adversely influenced by 

either too many or too few layers. Small layering ratios yield many thin trial layers in an 

inversion, while large layering ratios yield only a few thick trial layers in an inversion. 

Initially, six inversions were performed using layering ratios of 1.2, 1.5, 2.0, 3.0, 3.5 and 

5.0. Subsequently, the inversion parameters corresponding to a layering ratio of 3.5 were 

deemed to be most representative of subsurface conditions and were slightly modified 

using engineering judgement in order to achieve an even better fit of the experimental 

data. This inversion is referred to as 3.5*. Approximately 200,000 layered earth models 

were explored during each layering ratio inversion. An ensemble of the 1,000 lowest 

misfit profiles was selected to represent each analysis. Of these 1,000 Vs profiles, 50 

were randomly selected for use in subsequent site response analyses. The number 50 was 

chosen because it is manageable, from a computational standpoint, and because 50 Vs 

profiles chosen randomly from the population of the best 1,000 Vs profiles was found to 
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statistically reproduce the same median and standard deviation as the population of 1,000. 

The same conclusions were reached at the two sites discussed in Griffiths et al. (2016a). 

Thus, 350 total Vs profiles resulting from surface wave inversion were selected for site 

response (i.e., 50 Vs profiles from 7 unique inversions of the same dataset).   

The 50 Vs profiles selected from each layering ratio inversion are shown along 

with their corresponding theoretical dispersion curves relative to the experimental 

dispersion data in Figure 4.2. The range of misfit values for the 50 theoretical dispersion 

curves associated with each layering ratio inversion are shown in brackets within the 

dispersion curve subfigures (i.e., Figures 4.2a, 4.2c, 4.2e, 4.2g, 4.2i, and 4.2k). Upon 

inspection, it is clear that the theoretical dispersion curves visually fit the experimental 

data extremely well for all layering ratios, making it difficult to distinguish individual 

curves. Furthermore, the maximum misfit values for each inversion are all less than 0.5, 

and closer to 0.25 or less on average. Thus, if only a single one of these inversions had 

been performed for the site, an analyst may have been inclined to believe that the 

resulting Vs profiles were a reasonable representation of the subsurface. However, upon 

inspection of the 50 Vs profiles obtained from each layering ratio inversion (i.e., Figures 

4.2b, 4.2d, 4.2f, 4.2h, 4.2j, and 4.2l), one can clearly see that many of the Vs profiles do 

not well-represent the true solution for the subsurface stiffness profile. The closest 

representations were obtained using layering ratios of 3.5 and 3.5* (Figure 4.2j), and the 

dispersion misfit values associated with these layering ratios (Figure 4.2i) are in some 

cases an order of magnitude lower than those associated with higher or lower layering 

ratios. In the original InterPACIFIC project blind study, the profiles associated with a 

layering ratio of 3.5* were deemed by the authors to be the “best” representation of the 

subsurface (keeping in mind that we did not have the true solution profile at the time) and 

the median Vs profile of this ensemble was submitted as our single best Vs profile. 
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However, for a real site, where the true answer is unknown, and in the typical case of 

sparse borehole data horizontally and vertically, one may struggle to know what the 

“best” answer is and how to realistically account for Vs uncertainty. Thus, these results 

underscore some of the challenges associated with the non-unique nature of surface wave 

inversion. For example, Vs profiles associated with a layering ratio of 1.2 (i.e., many thin 

layers) show gradual increases in Vs with depth, while Vs profiles associated with a 

layering ratio of 5.0 (i.e., fewer thick layers) exhibit significant velocity contrasts at the 

wrong depths. These strong velocity contrasts (or lack thereof) are of particular interest in 

site response analyses. Moreover, they also play a significant role in probabilistic seismic 

hazard analyses (PSHA) because many ground motion prediction equations incorporate 

velocity horizons (e.g. depth to 1.0 and 2.5 km/s shear-wave velocity horizons, or Z1.0 

and Z2.5, respectively). Thus, these velocity contrasts also influence the selection of input 

ground motions prior to the site response analyses.    
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Figure 4.2: Fifty theoretical dispersion curves and 50 corresponding Vs profiles, 

respectively, obtained from surface wave inversions based on the following 

layering ratios: (a, b) 1.2, (c, d) 1.5, (e, f) 2.0, (g, h) 3.0, (i, j) 3.5 and 3.5*, 

and (k, l) 5.0. Note that the numbers in brackets represent dispersion misfit 

values. Each set of 50 Vs profiles were randomly sampled from a suite of 

the 1,000 lowest misfit profiles obtained from each layering ratio inversion. 

Also shown are the theoretical dispersion curves and the Vs profiles 

corresponding to the solution profile +/- 20%.    
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Interestingly, Chapter 3 argued that they would have discarded the results from 

layering ratios of 1.2 and 5.0 as not likely representative of the true subsurface profile, 

even without a-priori information about the site layering. This argument was based on 

consideration of both the dispersion misfit values and the extreme variability (or lack 

thereof) in the best 1,000 Vs profiles. For example, the relatively high misfit values 

associated with a layering ratio of 5.0 (in comparison to those achieved with a layering 

ratio of 3.5), the narrow range of misfit values, and the minimal variability of the Vs 

profiles suggest that the inversion parameterization is overly-restrictive and incorporates 

too few layers. Essentially, the inversion algorithm found, and settled for, the best 

possible solution within an overly-restrictive parameterization. Additionally, they claim 

that the parameters associated with a layering ratio of 1.2 are too permissive. This claim 

is made based on the fact that significantly better fits of the experimental dispersion data 

were achieved using far fewer layers (i.e., higher layering ratios) given the same number 

of searched trial models. Moreover, the high variability in the Vs profiles using a layering 

ratio of 1.2 suggests that the inversion algorithm may not have been able to find the most 

promising regions of such a broad parameter space and/or that too many degrees of 

freedom result in highly variable solutions. Thus, in some of the discussions presented 

below, Vs profiles derived from layering ratios of 1.2 and 5.0 will not be included when 

trying to realistically quantify Vs uncertainty at the site. These cases will be clearly 

noted. Nonetheless, in practice, it can be difficult to conclude if a parameterization is too 

restrictive or too broad without significant experience and/or a wealth of other subsurface 

data. Thus, Vs profiles from layering ratios of 1.2 and 5.0 will still be included in 

subsequent site response analyses as a means to determine the impact of unintentionally 

using poorly-parametrized models.  
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In order to conduct site response analyses, all profiles shown in Figure 4.2 were 

truncated at the first layer with a Vs exceeding 1,000 m/s. This layer, whatever the 

absolute velocity was, so long as it exceeded 1,000 m/s, was chosen as the half-space 

layer for input of ground motions (GMs). A cut-off value of 1,000 m/s whose chosen, 

somewhat arbitrarily but after thoughtful consideration, because it was within the bounds 

of NHERP Site Class B rock site conditions (i.e., 760–1500 m/s), and it would yield Vs 

profiles with a range of half-space velocities that encompassed the velocity of the half-

space in the solution profile (i.e., about 1,500 m/s). As a result, half-space velocities for 

the 350 Vs profiles determined via surface wave inversion ranged from just over 1,000 

m/s to greater than 3,000 m/s. Furthermore, the depths for the half-space layers ranged 

from less than 50 m to over 150 m.    

4.3.2  Upper/Lower Range and Statistically-Based, Randomly Generated Vs Profiles 

In addition to performing site response analyses on Vs profiles derived directly 

from a surface wave inversion, additional techniques of accounting for Vs uncertainty 

were considered. These techniques included the use of upper/lower range profiles to 

account for epistemic uncertainty and the use of statistically-based, randomly generated 

Vs profiles to account for aleatory variability. The development of these Vs profiles is 

discussed below.  

For this study, the true solution was chosen as the “mean” base-case Vs profile. 

The “mean” base-case Vs profile was then increased and decreased by 20% to develop 

upper/lower range base-case profiles for use in site-response analyses. The upper/lower 

range profiles are shown relative to the solution Vs profile and the inversion Vs profiles 

in Figure 4.2. These profiles look very reasonable when considering the variability 

among the Vs profiles derived from the various surface wave inversion 
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parameterizations. In fact, one could argue that they significantly underestimate the 

uncertainty in Vs resulting from surface wave inversion. However, as discussed in 

Griffiths et al. (2016a), it is useful to compute theoretical dispersion curves for these Vs 

profiles and assess whether or not they match the experimental dispersion data. As shown 

in Figure 4.2, theoretical dispersion curves for the +/-20% profiles fall well above and 

well below the experimental dispersion data, with misfit values for the +/-20% profiles of 

3.76 and 8.41, respectively. Thus, while the upper/lower range Vs profiles visually 

appear to be a much better representation of the true solution Vs profile than many of the 

profiles derived from surface wave inversion, their theoretical dispersion curves do not fit 

the experimental data nearly as well. It should be noted that in order to compute 

theoretical dispersion curves for these upper/lower range profiles, assumptions were 

made regarding Vp and mass density. In order to be consistent, we used the same 

assumptions utilized during inversion of the surface wave data. Namely, Vp was 

constrained using reasonable values for Poisson’s ratio above the water table (i.e., 0.25-

0.33) and by assuming a value of 1,500 m/s below the water table, unless Vs exceeded 

750 m/s, at which point Poisson’s ratio was again utilized to estimate Vp. While, the 

mass density has minimal influence on the theoretical dispersion curve (Wathelet 2004), 

reasonable ranges for geomaterials of various stiffness are well-established.    

The Vs randomization model proposed by Toro (1995) was used in this study to 

investigate common methods of accounting for aleatory variability. Once again, the true 

solution was chosen as the baseline Vs profile about which Vs randomization would 

occur. The Toro (1995) model has been implemented in the software STRATA (Kottke 

and Rathje 2009) and operates on the following three categories of parameters: (1) the Vs 

statistical parameters, (2) the layering parameters, and (3) the depth to bedrock 

parameters. Two distinct sets of randomized Vs profiles were developed using the Toro 
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model in order to investigate the impact of using different sets of model parameters. 

Where possible, site-specific parameters were used to develop the first set of randomized 

Vs profiles, while default/recommended parameters corresponding to sites with a VS30 

ranging from 180 to 360 m/s (USGS C in Table 5 of Toro (1995)) were used to develop 

the second set. These randomized Vs profiles are referred to for the remainder of the 

paper as the “site-specific Toro profiles” and the “default Toro profiles”, respectively. 

The parameters used to generate each set are discussed below and summarized in Table 

4.1.   

Table 4.1: Default and site-specific Toro (1995) randomization parameters used in this 

study  

 

In order to compute site-specific Toro model parameters, a population of 250 Vs 

profiles was created by combining each of the sets of 50 Vs profiles developed from 

surface wave inversion using layering ratios of 1.5, 2.0, 3.0, 3.5 and 3.5*. As noted 

above, the Vs profiles derived from layering ratios of 1.2 and 5.0 were not used to 

develop site-specific Toro parameters because they were obtained from inversions judged 

to be poorly-parameterized by Chapter 3. The population of 250 Vs profiles is shown in 

Figure 4.3a relative to the solution profile. As noted earlier, both aleatory variability and 

epistemic uncertainty are inherent in this population of Vs profiles. However, the Toro 

Default
A

Site-specific Default Site-specific Default
B

Site-specific

lnVs 0.31 0.04 to 0.22 a 1.98 2.4 base-case [m] 56 56

D 3.9 default b 10.86 4.0 lnZrock 0.33 0.33

d0 0 default c -0.89 -1.15

b 0.344 default

0 0.99 default

200 0.98 default

A. Default for sites with a VS30 ranging from 180 to 360 m/s 

B. No default/recommended values provided in Toro (1995). Site-specific values were used.

Depth to bedrock parametersLayering parametersVs statistical parameters
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(1995) model is theoretically used solely to account for aleatory variability (EPRI 2012). 

Thus, one could argue that this approach improperly mixes the two types of uncertainty. 

However, there is certainly epistemic uncertainty associated with the Vs profiles used to 

develop the Toro (1995) model because epistemic uncertainty is inherent in all techniques 

used to measure Vs. For example, wave travel paths are often assumed to be straight lines 

between the source and receiver in crosshole and downhole seismic testing, yet in reality 

the travel paths and arrival time picks are uncertain and may be quite complex. This 

underscores the difficulty in perfectly decoupling aleatory variability and epistemic 

uncertainty. In any case, we acknowledge that in an effort to decouple some of the 

epistemic uncertainty, a representative base-case Vs profile could be developed for each 

unique layering ratio, with randomization parameters developed using only Vs profiles 

from that single layering ratio. This approach may be warranted and requires further 

study. However, given the large number of base-cases, this approach may not be 

palatable to many practitioners. 

 

 



 125 

 

Figure 4.3: (a) Population of 250 Vs profiles derived from layering ratio surface wave 

inversions used to develop site-specific Toro (1995) randomization 

parameters. Site-specific parameters used in Toro randomization include: (a) 

standard deviation of the natural logarithm of the depth to bedrock, (b) 

standard deviation of natural logarithm of Vs as a function of depth, and (c) 

transition rate relationship. 

The depth to bedrock in the solution profile, which corresponds to the base-case 

(zrock), is indicated by a Vs jump from approximately 400 to 1,500 m/s at a depth of 56 m. 

In order to quantify the uncertainty associated with this depth, as required by the Toro 

(1995) model, the variable depths to bedrock associated with the Vs profiles derived from 

surface wave inversion were used. As mentioned above, the depth to bedrock for each Vs 

profile derived from surface wave inversion was determined to coincide with the first 

layer to exceed 1,000 m/s. These depths to bedrock were weighted by the inverse of their 

dispersion misfit values (i.e. the inverse of Eq. 4.1) prior to calculating the lognormal 

standard deviation (lnZrock).  Meaning, Vs profiles with lower dispersion misfit values 

were given higher weights since they were believed to more accurately represent 
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subsurface conditions. Note that the lognormal distribution does not perfectly match the 

depth to bedrock data. However, the Toro (1995) model as implemented in STRATA 

requires that the depth to rock be modelled with either a uniform, normal, or lognormal 

distribution (Kottke and Rathje 2009) and the lognormal distribution was found to be 

most representative with lnZrock = 0.33. The +/- one standard deviation values for the 

depth to bedrock are shown relative to the Vs profiles in Figure 4.3a. Note that there is no 

default/recommended depth to rock or standard deviation for depth to rock in the Toro 

(1995) model. Thus, these site-specific values were also used to generate the default Toro 

Vs profiles discussed below (refer to Table 4.1).  

Vs statistical parameters for the Toro (1995) model include the depth-dependent 

log-normal standard deviation of Vs (lnVs) and the inter-layer correlation parameters (D, 

d0, b, 0, and 200). lnVs versus depth was computed for the population of 250 Vs profiles 

and is shown in Figure 4.3b. Once again, for the calculation of lnVs, each Vs profile was 

weighted by the inverse of its misfit value, resulting in more weight being applied to 

those profiles whose dispersion data best matches the experimental dispersion data. lnVs 

ranges from 0.04 near the ground surface to 0.22 below approximately 60 m. It is clear 

that there is significantly more uncertainty involved in estimating the depth/velocity of 

bedrock from surface wave inversions than in estimating soil velocities. This finding has 

been noted by others (e.g., Cornou et al. 2009, Garafalo et al. 2016a). A robust 

determination of site-specific Vs inter-layer correlation parameters (D, d0, b, 0, and 200) 

is beyond the scope of this study. Thus, recommended values were used in both the 

default and site-specific analyses (see Table 4.1).   

Regarding the “default” lnVs values, it should be noted that Toro (1995) provides 

both “generic” lnVs based on seismic site class and “site-specific” lnVs computed from 

“clusters” of Vs profiles (not to be confused with the site-specific lnVs for Site 4 based 
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on Vs profiles from surface wave inversion, as discussed in the previous paragraph). 

Based on the most reliable “clusters” (i.e., those containing more than 10 Vs profiles), a 

site-specific lnVs of 0.15 between 0 and 50 m and 0.22 at greater depths is recommended 

in Stewart et al. (2014). The “generic” lnVs for sites with a VS30 ranging from 180 to 360 

m/s is 0.31, which is significantly higher than the site-specific values. In practice, the 

site-specific lnVs should be used when a site-specific Vs profile is available and geologic 

variability across the site is modest (Stewart et al. 2014). For this study, randomized Vs 

profiles were developed using both the site-specific values recommended in Stewart et al. 

(2014) and the generic lnVs values, however, only the results for the generic lnVs are 

shown here. Although this is not the optimum approach when a site-specific Vs profile is 

available, we chose to show the results associated with the generic lnVs for two reasons. 

First, the Vs profiles developed using the site-specific lnVs from Stewart et al. (2014) 

yielded results that were fairly similar to those obtained using the site-specific parameters 

that we developed using the inversion Vs profiles from Site 4. Indeed, the lnVs in Stewart 

et al. (2014) and the lnVs computed from the inversion Vs profiles at Site 4 are equal to 

one another below a depth of 60 m. Moreover, the generic lnVs values are programed in 

STRATA, represent a more extreme case, and are commonly used. 

The Toro (1995) model develops the layering for a Vs profile using a non-

homogeneous Poisson process where the occurrence rate (t) is a function of depth. The 

occurrence rate defines the distance between layer boundaries (i.e., thickness) and has 

units of the inverse of distance. The number of expected layer interfaces over a given 

depth interval decreases with occurrence rate (i.e., layer thickness generally increases 

with decreasing occurrence rate). Thus, occurrence rate is generally higher near the 

ground surface where thinner layers may be resolved, and lower at depth where layers are 

assumed to be thicker and the ability to resolve thin layers diminishes with most invasive 
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and non-invasive methods. The Toro model uses three parameters, referred to as a, b and 

c in STRATA (or c3, c1, and -c2 in Toro (1995), respectively), to define the occurrence 

rate. A site-specific occurrence rate was developed by plotting the inverse of layer 

thickness versus mid-depth for all layers associated with the 250 Vs profiles in the 

population. The parameters a, b, and c were varied until a visually-satisfactory fit to the 

data was achieved. The site specific and default parameters are provided in Table 4.1, and 

the occurrence rates as a function of depth are plotted in Figure 4.3c. Note that the default 

occurrence rate is lower than the site-specific relationship near the ground surface, 

resulting in thicker near-surface layers for the default case. However, the default 

occurrence rate is higher than the site-specific relationship over most depths, resulting in 

thinner layers for the default case at depth. 

The site-specific and default Toro model parameters were used to develop 50 

random site-specific Vs profiles and 50 random default Toro Vs profiles, respectively, as 

shown in Figure 4.4a and 4.4c. The surficial layers are generally thinner and less variable 

for the site-specific Toro profiles, which is due to the higher occurrence rate and 

significantly lower lnVs values used to constrain the near-surface velocities (refer to 

Table 4.1). The default Toro profiles exhibit significantly more variability at all depths, 

which stems primarily from the relatively high default lnVs. The depth to rock in the 

randomized Vs profiles is quite variable in both cases, stemming from the relatively large 

standard deviation on the depth to bedrock that was used in the model (lnZrock = 0.33). 

However, generally speaking, the median Vs profile derived from each set of 50 Toro Vs 

profiles matches the solution/mean base-case profile relatively well down to a depth of 

about 56 m, which corresponds to the depth to bedrock.  Thus, while the individual Vs 

profiles developed from randomization can be highly erratic, on average they tend to 
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recover the base-case profile relatively well, particularly for the site-specific Toro 

profiles.    

 

Figure 4.4: Fifty Vs profiles developed using the Toro (1995) randomization model and 

their corresponding theoretical dispersion curves with: (a, b) site-specific 

Toro model parameters and (c, d) default/recommended Toro model 

parameters. Note that the numbers in brackets represent dispersion misfit 

values. Also shown are the theoretical dispersion curves and the Vs profiles 

corresponding to the solution profile +/- 20%.   

Theoretical dispersion curves were computed for each randomized Vs profile 

developed using the Toro (1995) model. Again, consistent and reasonable assumptions 

were made regarding Vp and mass density for these calculations. Theoretical dispersion 

curves for the site-specific and default Toro profiles are shown in Figures 4.4b and 4.4d, 
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respectively. Dispersion misfit values are shown in brackets within the figures. These 

misfits are generally one to two orders of magnitude greater than those associated with 

the profiles developed using the layering ratio surface wave inversion approach (Figure 

4.2), which will be collectively referred to as the “inversion profiles” for the remainder of 

the paper. Most theoretical dispersion curves associated with both sets of Toro profiles 

would not be deemed acceptable by even the most permissive of standards, as they lie 

well above/below the uncertainty bounds of the experimental data. This is especially true 

for the dispersion curves associated with the default Toro Vs profiles, many of which are 

well outside the dispersion curves associated with the +/-20% profiles. Since the Toro 

profiles generally fall well above or below the experimental dispersion data at all 

frequencies, the poor misfit values cannot be attributed to a single factor such as the 

depth to bedrock. This poor representation of the experimental dispersion data by both 

the upper/lower range base-case and randomized Vs profiles is worth careful 

consideration when attempting to realistically quantify Vs uncertainty for site response. If 

the experimental dispersion data is demonstrated to be relatively constant across a site, it 

could be argued that Vs profiles that do not fit the data are over-estimating the aleatory 

variability. However, if surface wave testing has only been performed over a relatively 

small footprint, then this poor representation of the experimental dispersion data may be 

deemed acceptable, but only after careful consideration.   

4.4  LINEAR-ELASTIC TRANSFER FUNCTIONS AND THE H/V PEAK             

Similar to the experimental dispersion curve, the experimental horizontal-to-

vertical (H/V) spectral ratio curve contains valuable information regarding small-strain 

wave propagation and site resonance. Numerous studies have demonstrated that if an H/V 

curve exhibits a well-defined peak, then this peak approximately coincides with the 
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fundamental shear wave resonant frequency of the site, although the magnitudes are 

poorly correlated  (e.g., Lachez and Bard 1994, Lermo and Chavez-Garcia 1994). Thus, 

by comparing the theoretical linear-elastic shear wave transfer function for a candidate 

Vs profile to the experimental H/V curve, it is possible to make judgements regarding 

which candidate Vs profiles are appropriate for use in seismic site response analyses. 

While it is possible to perform a joint inversion of surface wave dispersion data and the 

peak frequency of the H/V curve in Geopsy (Wood et al. 2014, Bonnefoy-Claudet et al. 

2006), we were not able to do this at blind-study Site 4 because the H/V data was not 

initially provided to participants. However, it is valuable to consider how the 

experimental H/V curve coincidentally compares with the linear elastic transfer functions 

for the Vs profiles under consideration.   

Figures 4.5a though 4.5f show the linear-elastic transfer functions for the Vs 

profiles obtained using each layering ratio in comparison to the experimental H/V curve 

for Site 4. In order to calculate the transfer functions, small-strain damping values for 

each layer were assigned using the Darendeli (2001) modulus reduction and damping 

curve relationships. It can be seen that the fundamental resonant frequency obtained from 

the transfer functions coincides with the H/V peak at 1.6 Hz for almost all Vs profiles 

determined from surface wave inversions, including those from the presumably poorly-

parameterized layering ratios of 1.2 and 5.0. While there are a few outliers for a layering 

ratio of 1.5, the majority of profiles have a resonant frequency between approximately 1.5 

and 1.7 Hz. Despite the fact that the resonant frequencies are similar for all inversion 

profiles, the transfer function amplitudes at this frequency vary considerably, with 

Fourier amplitude ratios ranging from less than 4 to greater than 10. This variability in 

amplitude is primarily due to the impedance contrast between bedrock and the overlying 

soil layers. Profiles with higher impedance contrasts, such as those corresponding to 
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layering ratios of 3.0 and 5.0 (refer to Figure 4.2), have higher transfer function 

amplitudes. This underscores the epistemic uncertainty regarding the Vs of bedrock, 

which can be difficult to determine using surface wave methods (Garofalo et al. 2016).  

 

 

Figure 4.5: Linear-elastic transfer functions corresponding to Vs profiles obtained using 

surface wave inversion layering ratios of (a) 1.2, (b) 1.5, (c) 2.0, (d) 3.0, (e) 

3.5 and 3.5*, and (f) 5.0. Also shown are transfer functions for Vs profiles 

obtained using (g) the site-specific Toro (1995) randomization model; (h) 

the default Toro (1995) randomization model; and (i) the solution +/-20%.   
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The transfer functions for Vs profiles derived from the Toro randomization model 

exhibit significantly more variability with regards to the resonant frequency (refer to 

Figures 4.5g and 4.5h). While the resonant frequencies match the H/V peak for a number 

of the randomized Vs profiles, many do not. Half of the site-specific Toro profiles have a 

resonant frequency lower than 1.3 or greater than 2.0. Resonant frequencies are generally 

lower for the default Toro profiles, with half falling below 1.1 or above 1.8. If the 

fundamental shear wave resonant frequency of the site is expected to exhibit significant 

variability, then the variability exhibited by the Toro profiles in Figures 4.5g and 4.5h 

may be deemed to reasonably represent aleatory variability. However, if H/V 

measurements across the site indicate that the fundamental frequency is relatively 

constant, then it is worth considering whether the variability seen in Figures 4.5g and 

4.5h is excessive. If this is deemed to be the case, then the Toro (1995) randomization 

can be repeated with a rejection criteria that automatically eliminates Vs profiles whose 

fundamental frequency is deemed to be too high or too low. It is worth noting that one or 

more three-component seismometers can quickly be deployed in a grid pattern to obtain 

H/V measurements over a large footprint. Thus, the H/V technique provides an efficient 

means of inferring the variability of the fundamental shear wave resonant frequency 

(assuming that the H/V curve exhibits a well-defined peak). The resonant frequencies for 

the +/- 20% Vs profiles (refer to Figure 4.5i) are 1.34 and 2.00 Hz, respectively, for the 

softer and stiffer Vs profiles.  

4.5  EQUIVALENT LINEAR SITE RESPONSE ANALYSES 

Both low- and high-intensity equivalent-linear site response analyses were 

performed on the candidate Vs profiles, including: (1) the solution Vs profile, 350 Vs 

profiles derived from surface wave inversion, (2) the two upper/lower range Vs profiles, 
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and (3) the 100 Vs profiles statistically derived using the Toro (1995) randomization 

procedure. The Boore and Atkinson (2008) ground motion prediction equation (GMPE) 

was used to develop a target spectrum for the selection of reasonably consistent input 

rock ground motions. The target was computed using the following assumptions: a 

moment magnitude (MW) of 7.5, a Joyner-Boore distance (RJB) of 15 km, and an average 

Vs in the top 30 m (VS30) of 1300 m/s, which is the upper limit for this GMPE. A VS30 

value of 1300 m/s was chosen for the target spectrum because the majority of the bedrock 

velocities for the candidate Vs profiles ranged from approximately 1,000 to 2,000 m/s 

(refer to Figures 4.2 and 4.4). While some profiles approached or exceeded 3,000 m/s, 

these bedrock velocities were less frequent. After developing a target spectrum, the PEER 

NGA-West2 database (Ancheta et al. 2015) was used to develop a library of 40 ground 

motions with MW between 6.2 and 7.6, RJB between 1.8 and 65 km, and VS30 between 

770 and 2,000 m/s. The SigmaSpectra software (Kottke and Rathje 2008, Kottke and 

Rathje 2012) was used to select and scale eight ground motions that, on average, matched 

the shape and amplitude of the target response spectrum. No conditions were imposed 

upon the variability of the selected ground motions (i.e., the motions were not scaled to 

match a target standard deviation).  

 In order to study the influence of earthquake intensity, the input ground 

motions were subsequently re-scaled to achieve average peak ground accelerations 

(PGA) of 0.05 and 0.30 g. Analyses performed using these re-scaled GMs are referred to, 

respectively, as the “low-intensity” and “high-intensity” site response analyses for the 

remainder of the paper. Note that in practice, different target spectra and input ground 

motions would be used for the low- and high-intensity site response analyses because 

spectral amplitudes do not necessarily scale linearly. However, the objective of this study 

is to assess differences in site response resulting from differences in the input Vs profile. 
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Thus, the same GMs were used for consistency and simplicity. Also note that no attempts 

were made to variably-scale the input ground motions in order to account for significant 

differences in the bedrock impedance ratio for some of the Vs profiles (e.g., Figure 4.2l). 

Rather, all Vs profiles, regardless of bedrock Vs, were subject to the same suites of low- 

and high-intensity GMs. While not ideal, all Vs profiles had bedrock Vs consistent with 

fairly competent rock conditions and it would have been challenging to rescale GMs to 

account for specific bedrock velocity contrast in so many candidate profiles.   

 Equivalent-linear site-response analyses were performed using Matlab 

codes developed at the University of Texas (George Zalachoris, personal communication, 

2014). These codes allowed the analyses to run in batch mode, looping through sets of 

candidate Vs profiles using eight GMs per profile. The Matlab code included auto-

discretization of the layered earth model, which subdivided the major layers in the Vs 

profiles into sub layers so that numerical filtering below 50 Hz would not be problematic. 

The code has been verified in the past (Griffiths et al. 2016b) by comparing amplification 

factors and pseudo-acceleration response spectra with those computed using DEEPSOIL 

v5.1 (Hashash et al. 2012 [43]). The non-linear properties of each soil layer were set 

using the depth/confining pressure-dependent normalized modulus reduction (G/Gmax) 

and damping (D) relationships proposed by Darendeli (2001). For ease and consistency, 

all layers were assumed to be non-plastic (PI = 0) and normally-consolidated (OCR = 1). 

4.5.1  Low-Intensity Input Ground Motions 

A median pseudo-acceleration response spectrum (simply referred to as a 

response spectrum hereafter) was computed for each candidate Vs profile using the eight 

individual response spectra resulting from the eight input ground motions. The median 

response spectra for all Vs profiles subjected to the low intensity input ground motions 
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(0.05 g average PGA) are shown in Figure 4.6. For the inversion Vs profiles (Figures 

4.6a through 4.6f), most response spectra are in good agreement with the response 

spectrum of the true solution profile. Vs profiles associated with a layering ratio of 3.5 

and 3.5* not only have the lowest dispersion misfit values (0.026 to 0.135; refer to Figure 

4.2), but their response spectra also best match the response spectrum of the solution Vs 

profile, suggesting that relatively low dispersion misfit values are correlated with 

accurate site response predictions. However, it is also clear that the relationship between 

dispersion misfit and accuracy of site response is not perfect. While the Vs profiles 

associated with a layering ratio of 3.0 have relatively low dispersion misfit values (0.10 

to 0.17), the associated response spectra overestimate the spectral acceleration (SA) by as 

much as 85 percent at a period of 0.35 s. This is due to the large impedance contrast 

between the bedrock and the overlying soil layers (see Figure 4.2h). On the other hand, 

the Vs profiles for a layering ratio of 1.2 were found to be under-constrained with 

relatively high dispersion misfit values (0.28 to 0.46), yet their response spectra better 

match the solution. Similarly, Vs profiles for a layering ratio of 5.0 were found to be 

over-constrained with relatively high misfit values (0.25), yet their SAs better match the 

solution than those for a layering ratio of 3.0. This indicates that while dispersion misfit 

may be useful for making relative judgements of the quality of Vs profiles resulting from 

inversion, it should not be used as the only basis for selecting candidate Vs profiles for 

site response. The shear wave velocity of the bedrock layer should also be carefully 

considered and constrained, if possible, by geology and/or other information (e.g., 

borehole Vs measurements).  
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Figure 4.6: Median response spectra obtained from low-intensity equivalent-linear site 

response analyses using a suite of eight low-intensity input ground motions 

scaled to an average PGA of 0.05 g and Vs profiles from layering ratios of: 

(a) 1.2, (b) 1.5, (c) 2.0, (d) 3.0, (e) 3.5 and 3.5*, and (f) 5.0; and those from 

the Toro (1995) randomization model with: (g) the site-specific parameters, 

and (h) default parameters. The response spectra for the solution Vs profile 

and the solution Vs profile +/-20% are shown in all sub-plots for 

comparison. 
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The median response spectra for the +20% Vs profile is generally in good 

agreement with the solution (refer to Figure 4.6), however, it does over-predict SA by 

about 40% at 0.21 s. The -20% profile under-predicts the SA by about 20 to 40% at 

periods ranging from 0.01 to 0.17 s, but is in good agreement at longer periods. The fact 

that the +20% Vs profile is in better agreement with the solution than the -20% profile 

underscores the influence of soil nonlinearity, even for relatively low-intensity input 

GMs.   

Similar to the linear elastic transfer functions, the response spectra associated with 

the Toro profiles (Figures 4.6g and 4.6h) exhibit significantly more variability than those 

associated with the inversion or +/-20% profiles. The response spectra associated with the 

Toro profiles generally under-estimate SA. While this under-prediction is more 

pronounced for the default Toro profiles than for the site-specific Toro profiles, it is quite 

significant in both cases. As stated previously, the theoretical dispersion data for the Toro 

profiles poorly matches the experimental dispersion data (with misfits ranging from 0.92 

to 15) and the fundamental resonant frequencies generally do not match the experimental 

H/V peak. Thus, while the relationship between dispersion misfit and accuracy in site 

response prediction is not perfect, these results suggest that high dispersion misfit values 

are correlated with poor prediction of site response. Accordingly, if a site signature is 

robustly determined via surface wave surveys and H/V measurements over the area of 

interest, and if the candidate Vs profiles fail to capture this site signature, it is worth 

questioning their use for quantifying uncertainty associated with the site response 

predictions.                  
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 4.5.2  High-Intensity Input Ground Motions 

The median response spectra for all Vs profiles based on the high-intensity input 

ground motions (0.30 g average PGA) are shown in Figure 4.7. The response spectra for 

the inversion Vs profiles are shown in Figures 4.7a through 4.7f. It can be seen that the 

response spectra for layering ratios of 2.0, 3.0, 3.5, 3.5*, and 5.0 all match the response 

spectrum from the solution profile relatively well. Again, the response spectra for 

layering ratios of 3.5 and 3.5*, which have the lowest dispersion misfit values, best match 

the solution. Interestingly, a good match of the solution response spectrum based on the 

low-intensity ground motions does not necessarily result in an equally good agreement 

with the solution response spectrum for the high-intensity GMs. For example, the 

response spectra for layering ratios of 1.2 and 1.5 over-predict the solution SA for the 

high-intensity GMs, but reasonably predict the solution SA for the low-intensity GMs. 

Conversely, the response spectra for a layering ratio of 3.0 is in much better agreement 

with the solution for the high-intensity GMs. These differences are caused by the non-

linear soil behavior induced by the high-intensity GMs. Specifically, the inversion Vs 

profiles with less significant velocity contrasts layer-to-layer (i.e., layering ratios 1.2 and 

1.5) do not generate as high of shear strains at layer interfaces. Thus, more energy gets 

through to the ground surface and their SAs are, on average, significantly higher than for 

the solution Vs profile, which contains a significant impedance contrast. The exact 

opposite is true for all inversion Vs profiles with more significant velocity contrasts (i.e., 

layering ratios of 2.0, 3.0, 3.5 and 5.0). Meaning, high shear strains and significant soil 

nonlinearity occur at the layer boundaries where large impedance contrasts exist, limiting 

the amount of energy that arrives at the ground surface. Regardless, all of the inversion 

Vs profiles yield significantly less variability in SA than the upper/lower range profiles 

and the randomized profiles. When comparing the results from Figure 4.6 and Figure 4.7, 
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it is evident that the under- and over-prediction associated with the +/-20% Vs profiles is 

much more significant for the high-intensity GMs. The same is also true for the Toro Vs 

profiles, particularly those developed using the default parameters.   

 

Figure 4.7: Median response spectra obtained from high-intensity equivalent-linear site 

response analyses using a suite of eight high-intensity input ground motions 

scaled to an average PGA of 0.3 g and Vs profiles from layering ratios of: 

(a) 1.2, (b) 1.5, (c) 2.0, (d) 3.0, (e) 3.5 and 3.5*, and (f) 5; and those from 

the Toro (1995) randomization model with: (g) the site-specific parameters, 

and (h) default parameters. The response spectra for the solution Vs profile 

and the solution Vs profile +/-20% are shown in all sub-plots for 

comparison. 
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Figure 4.8 shows the median response spectra for each set of 50 inversion Vs 

profiles and each set of 50 Toro Vs profiles (i.e., the median of medians for each set) 

along with those for the +/-20% Vs profiles and solution Vs profile subject to high-

intensity GMs. It can be seen that response spectra for the +/-20% Vs profiles 

significantly over/under-predict SA across most periods, with maximum errors up to 60% 

between periods of 0.2 and 0.3 s. The Toro Vs profiles also result in poor site response 

estimates for high-intensity GMs, generally under predicting SA at most periods. The 

default Toro profiles exhibit greater error (20%-50% at periods < 1.0 s) than the site-

specific profiles (maximum errors < 30%). As noted earlier, the default Toro profiles 

were developed using the generic lnVs values provided in Toro (1995). Although not 

shown here, it should be noted that when the site-specific lnVs recommended in Stewart 

et al. (2014) is used, the results are quite similar to those obtained using the 

randomization parameters that we developed for this particular site using the Vs profiles 

derived from surface wave inversions (referred to throughout the paper as the “site-

specific Toro profiles”). Thus, we further the recommendation of Stewart et al. (2014) 

that the site-specific lnVs values be used in lieu of the generic values when lateral 

variability is not expected to be significant.  
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Figure 4.8: (a) Median response spectra for each set of 50 inversion Vs profiles and each 

set of 50 Toro Vs profiles (i.e., the median of medians for each set) along 

with those for the +/-20% Vs profiles and solution Vs profile subject to a 

suite of eight high-intensity input ground motions scaled to a PGA of 0.3g, 

and (b) Percent spectral acceleration error with respect to the response 

spectrum for the solution profile. Shaded region indicates the softened 

predominant period range of the solution Vs profile.   

For both suites of Toro profiles the under predictions of SA are greatest at the 

softened natural period of the site, where site response estimates are critical. It is worth 

noting that, because the softened natural site period varies considerably for the site-

specific and default Toro profiles, the site periods for individual response spectra are 

essentially smoothed-out and not well represented by the median response spectrum. This 

suggests that it may be best to consider individual response spectra from each suite rather 

than a statistical representation (e.g., the median or mean) of the suite. Nonetheless, it is 

clear from Figures 4.7g and 4.7h that the majority of individual response spectra 

underestimate the SA associated with the site period. Thus, the under-prediction shown in 

Figure 4.8 cannot be attributed solely to smoothing/averaging.  
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Remarkably, the visually-variable Vs profiles determined directly from inversion 

have SA values, on average, that are very similar to the solution Vs profile. Indeed, if the 

results from layering ratios of 1.2 and 5.0 are neglected due to poor parameterization 

(refer to discussion above), the remaining surface wave inversion results rarely deviate by 

more than 10% from the solution.   

4.6  DISCUSSION 

Although not perfect, there appears to be a relationship between how well the 

theoretical dispersion data for a Vs profile matches the experimental data and how well 

the associated response spectrum matches the response spectrum of the solution profile. 

In order to further investigate this topic, it is desirable to utilize a single parameter that 

quantifies how well or how poorly a response spectrum matches the solution response 

spectrum. A root-mean-square-error (RMSE) was computed for this purpose. The RMSE 

was computed as shown in Equation 2, where SAi is the spectral acceleration associated 

with a given profile at period i, SAsolution,i is the spectral acceleration associated with the 

solution profile at period i, and Np is the number of discrete periods in the response 

spectra. In this study, all response spectra had 512 periods equally spaced on a 

logarithmic scale between 0.01 and 10 s. Note that narrower period ranges (e.g. 0.1–10 s 

and 0.1–1 s) were also considered and found to produce similar results.   

𝑅𝑀𝑆𝐸 = √
1

𝑁𝑝
∑[ln(𝑆𝐴𝑖) − ln(𝑆𝐴𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛,𝑖)]

2

𝑁𝑝

𝑖=1

                            (4.2) 

The RMSE is plotted against the dispersion misfit for the low-intensity and high-

intensity input GMs in Figure 4.9. While the trends are not perfect and scatter in the data 

is significant, it is clear that increases in dispersion misfit are generally accompanied by 

increases in RMSE for both the low- and high-intensity GMs. However, there are notable 
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exceptions to this trend. As discussed earlier, the Vs profiles associated with a layering 

ratio of 3.0 result in relatively low misfit values and relatively high RMSE values for the 

low-intensity GMs. Conversely, there are a few site-specific Toro profiles whose RMSE 

values are comparable to the inversion profiles despite the fact that the misfit values are 

one to two orders of magnitude higher than the inversion profiles. Nonetheless, the 

dispersion misfit is generally a good indicator of the accuracy of the predicted site 

response at this particular site. 

 

 

Figure 4.9: Spectral acceleration RMSE versus dispersion misfit for all Vs profiles 

considered. Response spectra were calculated using input ground motions 

scaled to an average PGA of (a) 0.05 g (i.e., low-intensity) and (b) 0.30 g 

(i.e., high-intensity). Note that the response spectrum corresponding to the 

solution Vs profile was used as a reference in the RMSE calculations. 
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As discussed previously, the differences between Vs profiles derived from a 

single inversion parameterization are often much smaller than the differences between Vs 

profiles derived from different parameterizations (refer to Figure 4.2). Hence, when 

limited information is known at the site (particularly at significant depths), the non-

uniqueness in Vs associated with various inversion parameterizations is a concern. 

However, the significantly different Vs profiles utilized in this study have been shown to 

yield similar site response estimates in virtually all cases. In order to further investigate 

this matter, 250 response spectra associated with layering ratios of 1.5 through 3.5* were 

used to compute a single, lognormal median response spectrum with associated standard 

deviation (lnSA). Results from layering ratios of 1.2 and 5.0 were excluded from this 

calculation due to their assumed poor-parameterizations, as discussed above. Similar to 

what was done for the computation of site-specific Toro parameters, each response 

spectrum was weighted by the inverse of the dispersion misfit, giving those profiles with 

a lower misfit more weight in the calculations. The same weighting system was utilized 

to compute a lognormal median response spectrum and associated standard deviation for 

the 50 Vs profiles associated with the site-specific Toro parameters and the 50 Vs profiles 

associated with the default Toro parameters.    

The dispersion misfit-weighted lognormal median response spectra with +/- one 

standard deviation values are provided in Figure 4.10. The weighted response spectra 

obtained from the inversion Vs profiles are shown in Figure 4.10a and 4.10b for the low- 

and high-intensity input GMs, respectively. In both cases, the lognormal median response 

spectrum is almost identical to the response spectrum of the solution Vs profile. This 

finding is quite remarkable, given the apparent non-uniqueness in the inversion Vs 

profiles. Moreover, the associated standard deviations are also quite low, particularly for 

the high-intensity GMs. Thus, while the input profiles may vary considerably, their 
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associated misfit-weighted response spectra exhibit minimal variability and match that of 

the solution remarkably well.   

 

Figure 4.10: Dispersion misfit-weighted lognormal median response spectrum (solid line) 

with +/- one standard deviation (dashed lines) for: (a,b) the combination of 

250 inversion Vs profiles from layering ratios of 1.5, 2.0, 3.0, 3.5, and 3.5*; 

(c,d) 50 site-specific Toro profiles; and (e,f) 50 default Toro profiles. 

Response spectra were obtained using both low-intensity (a,c,e) and high-

intensity (b,d,f) input ground motions. The response spectra for the solution 

Vs profile and the +/-20% Vs profiles are shown for reference in all sub-

plots. 

The results corresponding to the site-specific Toro profiles are shown for the low- 

and high-intensity GMs in Figure 4.10c and 4.10d, respectively. For the low-intensity 

GMs (Figure 4.10c), the solution response spectrum generally better matches the plus-

one standard deviation curve than the lognormal median. This indicates consistent under-
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prediction of the true site-response. For the high-intensity GMs (Figure 4.10d), the 

lognormal median response spectrum for the site-specific Toro profiles matches the 

solution until approximately 0.30 s (i.e., the softened site period), above which the plus-

one standard deviation curve better matches the solution.  

As shown in Figures 4.10e and 4.10f, the lognormal median response spectrum 

for the default Toro profiles poorly matches the solution and significantly under-predicts 

SA at all periods for both the low- and high-intensity GMs. Moreover, the high-intensity 

plus-one standard deviation curve falls below the solution response spectrum at periods 

longer than 0.4 s (i.e., near the softened site period). This happens in spite of the fact that 

the standard deviation is quite large. Thus, the default Toro profiles yield significant 

variability in site response and severely under-estimate the SA in the vicinity of the 

predominant period. These results show similar trends to those shown in Rathje et al. 

(2010), who found that the median surface response spectrum decreases as more 

variability (i.e., increased lnVs) is incorporated into the randomization model. Thus, 

while it may appear conservative to assume higher variability in the Vs randomization, 

the resulting site response may in fact underestimate the “true” spectral accelerations. 

Again, the substantial variability and resulting smoothing-out of individual site periods 

contributes in part to the under-prediction associated with the median response spectrum 

for the site-specific and default Toro profiles. 

Figure 4.11 shows the dispersion misfit-weighted standard deviation of the natural 

logarithm of SA (lnSA) as a function of period for both the low- and high-intensity input 

GMs. Note that these standard deviations correspond to the response spectra shown in 

Figure 4.10. The lnSA curves associated with the low-intensity input GMs are shown in 

Figure 4.11a. These curves are similar for the inversion profiles and for the site-specific 

Toro profiles, although the lnSA curve associated with the inversion profiles shows local 
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minima at periods of 0.13 and 0.53 s. The lnSA associated with the default Toro profiles 

is about 0.05 to 0.1 greater than that associated with the site-specific Toro profiles. In all 

cases lnSA shows similar trends in terms of shape. Specifically, lnSA is relatively constant 

at periods below 0.1 s, reaches a maximum at or near the softened site period (shaded 

region), and decreases at periods longer than 1 s. The amplitude and shape of the lnSA 

curve for the default Toro Vs profiles are in good agreement with lnSA curves developed 

from weak ground motions at the La Cienga site described in Li and Assimaki (2010). 

Similar to the default Toro Vs profiles described in this paper, they also used generic 

parameters to randomize about their base case Vs profile.   

 

 

Figure 4.11: Dispersion-misfit weighted standard deviation of the natural logarithm of 

surface spectral acceleration associated with (a) the low-intensity input 

ground motions and (b) the high-intensity input ground motions. Note that 

the standard deviations correspond to the response spectra shown in Figure 

4.10. Shaded regions indicate the softened predominant period range of the 

solution Vs profile.   

The lnSA curves associated with the high-intensity input GMs are shown in Figure 

4.11b. For the inversion and site-specific Toro profiles, the lnSA curves associated with 

the high-intensity GMs are slightly lower than for the low-intensity GMs (Figure 4.11a) 
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and begin to drop off at longer periods (roughly 1.5-2 s versus 0.8-1s, respectively). This 

shift may be due in part to the fact that the softened site period is longer for the high 

intensity GMs. On the other hand, the lnSA associated with the default Toro Vs profiles is 

substantially higher for the high-intensity GMs than for the low-intensity GMs. This 

demonstrates that the influence of Vs profile uncertainty on the overall site response 

uncertainty is site and ground motion dependent and may not always follow the same 

trends.    

It is important to note that the reference/baseline profile used to develop all Toro 

profiles was equal to the solution profile and represents a best case scenario. Thus, if a 

different, less accurate reference profile had been used then the resulting site response 

predictions would deviate even more from the “true” site response. Of course, this 

assumes that a “true” site response exists, whereas at real sites the ground response may 

vary over the area of interest. The use of site-specific Vs randomization parameters 

developed directly from a large number of surface wave Vs profiles led to significantly 

more accurate and less variable site response estimates. Thus, the authors strongly 

recommend that site-specific Vs randomization parameters be developed whenever 

possible. High quality surface wave testing with rigorous inversions considering multiple 

parameterizations can be used for this purpose. When this is not possible, the authors 

recommend that the site-specific variability recommended in Stewart et al. (2014) be 

used, unless extreme aleatory variability is expected at the site. The site response results 

obtained from the +/- 20 Vs profiles are even more variable than those associated with 

those from Vs randomization for the high-intensity input ground motions.  The fact that 

the upper/lower range and randomized Vs profiles yield significantly different site 

response than the solution profile and the Vs profiles determined directly from inversion 
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should not be surprising given how poorly these profiles matched the experimental 

dispersion and H/V data.  

As noted earlier, if the peak of the experimental H/V curve and dispersion data 

can be demonstrated to represent a consistent signature of the site, then it is worth 

considering if Vs profiles that fail to capture this site signature are appropriate for use in 

site response. The results of this paper are not meant to suggest that the Toro (1995) 

model is not useful for accounting for Vs uncertainty. Rather, the results suggest that 

analysts should be mindful about the appropriate use of this randomization model. At real 

sites, experimental dispersion data and H/V curves measured over a large area may vary 

considerably or they may be extremely consistent. For the former situation, Vs profiles 

developed using the Toro (1995) model may perform more favorably because the site 

signature itself exhibits significant variability. In either case, if sufficient measurements 

are conducted and a site signature can be established, then an analyst may choose to 

implement certain rejection criteria in the randomization process, whereby Vs profiles 

whose theoretical dispersion curves or fundamental frequencies deviate substantially 

from the site signature are rejected. 

4.7  CONCLUSIONS 

Variability and accuracy of site response predictions performed using shear wave 

velocity profiles (Vs) derived from non-unique surface wave inversions and other 

commonly used statistical methods of accounting for epistemic uncertainty and aleatory 

variability in Vs have been considered. Despite visually-significant differences in the Vs 

profiles derived from surface wave inversions using different layering parameterizations, 

so long as their theoretical dispersion data fit the experimental dispersion data well, their 

dispersion misfit-weighted site response results were quite accurate with minimal 
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variability. If a site signature can be established, then non-unique Vs profiles derived 

from surface wave inversion provide a means for accounting for Vs uncertainty in a 

rational manner, so long as they are obtained properly by systematically exploring 

various layering parameterizations.  

Upper/lower range Vs profiles (e.g., mean +/- 20%) commonly utilized to account 

for epistemic uncertainty did not fit the experimental dispersion data well and were found 

to significantly over/under-predict spectral accelerations (SA) for high-intensity input 

GMs. Many statistically-based, randomly-generated Vs profiles commonly utilized to 

account for aleatory variability also failed to fit the experimental dispersion data or H/V 

curve and were found to yield inaccurate and highly-variable SA predictions, although 

the inclusion of site-specific Vs randomization model parameters derived from the 

surface wave inversion Vs profiles improved the results. While not perfect, a clear trend 

between dispersion misfit and error/variability in site response has been demonstrated. 

When attempting to realistically account for Vs uncertainty in site response, the use of Vs 

profiles that do not well-fit the experimentally-measured site signature (i.e., experimental 

dispersion data and H/V curves measured over the area of the site) should be questioned. 

It should be noted that at many real sites the site signature may exhibit considerable 

variability and the randomized and upper/lower range Vs profiles may better capture the 

site signature and yield more reasonable site response estimates than they did for this 

semi-synthetic example with lesser uncertainty/variability. The results of this paper do 

not suggest that analysts should not consider upper/lower range or randomized Vs 

profiles in site response, rather, they suggest using a more thoughtful approach when 

developing these profiles. If the site signature has been robustly determined, it may be 

possible to develop rejection criteria, whereby Vs profiles that poorly capture the site 

signature are not considered in subsequent site response analyses. 
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Chapter 5: Measured vs. Predicted Site Response at the Garner Valley 

Downhole Array Considering Shear Wave Velocity Uncertainty from 

Borehole and Surface Wave Methods 

David P. Teague, Brady R. Cox, and Ellen M. Rathje 
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As first author, I was responsible for approximately 75% of the project planning, 50% of 

the data acquisition, 100% of the data processing, and 50% of the results interpretation.  

ABSTRACT 

This paper compares measured and predicted site response at the Garner Valley 

Downhole Array (GVDA) using a wide range of shear wave velocity (Vs) profiles 

developed from both borehole methods and inversion of surface wave data. Only low 

amplitude ground motions (GMs), resulting in approximately linear-viscoelastic site 

response between the downhole accelerometer (reference rock condition) and the surface 

accelerometers, were considered in this study. Thus, uncertainties associated with the 

small-strain Vs profiles used for site response predictions play a considerable role in 

attempting to match the recorded site response and its associated variability. Prior to our 

study, two borehole Vs profiles extending into rock were available for the site: one 

derived from seismic downhole testing and one derived from PS logging. These Vs 

profiles were fairly similar over the top 60 m, but varied considerably in the ultimate 

depth and stiffness of the underlying rock. As such, their predicted/theoretical transfer 

functions (TTFs) were quite different and in poor agreement with the measured/empirical 

transfer functions (ETFs). These differences provided motivation to collect and interpret 
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an extensive set of active-source and passive-wavefield surface wave measurements in an 

attempt to develop deep Vs profiles for the site that might be used to more accurately 

match the measured site response and its associated variability. Vs profiles developed 

from joint inversion of surface wave dispersion data and horizontal-to-vertical spectral 

ratio (HVSR) curves visually exhibited considerable differences, yet their predicted TTFs 

matched the measured ETFs quite-well, particularly at the fundamental and first-higher 

modes. Furthermore the experimental surface wave dispersion and HVSR data used to 

develop these Vs profiles is hypothesized to represent a “site signature” that provides a 

valuable means of assessing whether candidate Vs profiles are appropriate for use in site 

response analyses.    

5.1 INTRODUCTION 

Downhole arrays are invaluable tools in our attempts to understand and accurately 

model seismic site response. Ground motions (GMs) recorded at various depths within 

these vertical arrays are used to compute how seismic waves are amplified or attenuated 

as they travel from bedrock to the ground surface. Downhole array sites, such as the 

Kiban Kyoshin network (KiK-net) in Japan and various geotechnical arrays in the United 

States (e.g., https://www.strongmotioncenter.org/), are commonly utilized to study 

several aspects of seismic site response, such as: similarities and differences between 

equivalent linear and fully nonlinear analyses (e.g., Kaklamanos et al. 2013 and 2015; 

Zalachoris and Rathje 2015); modeling of soil non-linearity (e.g., Stewart and Kwok 

2008; Kim and Hashash 2013; Regnier et al. 2013); attenuation properties of soils (e.g., 

Afshari and Stewart 2015; Cabas and Rodriguez-Marek 2017; Tau and Rathje 2017); and 

limitations of one-dimensional (1D) ground response analyses (Thompson et al. 2012; 

Afshari and Stewart 2015). These studies generally involve performing seismic site 
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response analyses using the bedrock GMs recorded at the bottom of the array as an input 

and comparing the predicted surface response results to those recorded at the surface.  

Surface ground motions predicted from seismic site response analyses are 

strongly dependent on the shear wave velocity (Vs) profile used to model the small-strain 

shearing stiffness of subsurface materials (Bazzuro and Cornell 2004; Rathje et al. 2010; 

Barani et al. 2013; Griffiths et al. 2016b). Furthermore, uncertainties inherent in the 

modeled Vs profile lead to uncertainty in the predicted site response. However, downhole 

array sites are typically characterized by only a single, invasively-measured Vs profile 

with no estimates of uncertainty. Thus, analysts that use downhole array data are required 

to accept these Vs profiles as “ground truth” and/or make assumptions regarding Vs 

uncertainty.  Current design codes highlight the importance of considering Vs uncertainty 

in site response analyses (e.g., ASCE 2010, AASHTO 2011). However, little guidance is 

provided on exactly how to do this and several approaches ranging from simplistic to 

complex are used in practice (Matasovic and Hashash 2012). Furthermore, many of these 

strategies to account for Vs uncertainty have not been robustly validated.   

When considering uncertainties associated with the Vs profile and their influence 

on predicted site response, it is important to note that two types of uncertainty are 

traditionally accounted for in probabilistic seismic hazard studies. The first type, known 

as aleatory variability, refers to inherent randomness and is typically deemed to be 

primarily a function of spatial (horizontal and vertical) variability in Vs across the site. 

The second type, known as epistemic uncertainty, stems primarily from data uncertainty, 

or a lack of scientific knowledge that limits our ability to perfectly measure and model 

the Vs profile. Despite the difficulties that can arise in separating these two types of 

uncertainty (Griffiths et al. 2016a; Chapter 4), attempts are made to account for them in 

distinctly different ways when performing site response analyses for critical structures 
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such as nuclear facilities (EPRI 2012). Epistemic uncertainty is generally accounted for 

by considering alternative “base-case” Vs profiles. Aleatory variability is typically 

accounted for via Vs randomization, wherein a statistical model is used to randomly vary 

the properties of each base-case profile. The Toro (1995) Vs randomization model is 

generally used for this purpose.  It is important to note that these procedures for 

considering aleatory variability and epistemic uncertainty are independent of the 

method(s) used to derive the Vs profiles. However, the technique used to obtain the Vs 

profile influences the uncertainties that are present and thus should be considered. 

Vs profiles are generally developed using “direct”/invasive borehole methods 

and/or “indirect”/non-invasive surface wave methods. Griffiths et al. (2016a) provide a 

detailed discussion regarding how aleatory variability and epistemic uncertainty influence 

Vs profiles developed using these two general techniques. To summarize, borehole 

methods involve the direct measurement of Vs within one or more boreholes. All 

invasive borehole tests are influenced by epistemic uncertainties stemming from 

disturbances caused by drilling, challenges associated with picking wave arrival times, 

and assumptions regarding wave travel path. However, these uncertainties are rarely 

considered in a rigorous manner or communicated to the end user, despite recent studies 

showing that these epistemic uncertainties can be quite significant (Garofalo et al. 

2016b). Furthermore, borehole methods sample over a relatively small area. Thus, it is 

not possible to make inferences regarding how Vs varies across a site (i.e., aleatory 

variability within the EPRI 2012 framework) unless multiple tests are performed across 

the site footprint. If multiple invasive Vs profiles are developed across a site, then 

statistics may be computed and used to quantify spatial variability. These statistics can 

then be used in randomization models. However, at many sites it is rare to have multiple 
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invasively-measured Vs profiles and default/assumed/recommended parameters are often 

used in randomization.  

In contrast to borehole methods, surface wave methods do not involve the direct 

measurement of Vs. Rather, surface wave testing is used to indirectly derive Vs profiles 

using a three-step process. First, actively-generated or passively-monitored seismic 

signals with strong surface waves (Rayleigh or Love waves) content are measured over a 

relatively large area (array apertures of 10’s to 100’s of meters) at the ground surface. 

Next, these field measurements are used to compute experimental dispersion data, which 

relates the frequency (or wavelength) of surface waves to phase velocity. Finally, layered 

earth models whose forward-computed theoretical dispersion curves are consistent with 

this field experimental dispersion data and its associated uncertainty bounds are sought 

through an inversion process. The inversion process is non-unique; meaning, that many 

different layered earth models may result in theoretical dispersion curves that are 

consistent with the measured field experimental dispersion data within its uncertainty 

bounds. Layered earth models comprise a system of stacked, linear-elastic layers, each 

defined by its thickness, Vs, compression wave velocity (Vp) or Poisson’s ratio, and mass 

density. Vs and thickness are extracted from the final layered earth model(s) and used in 

site response analyses. Given the relatively large area sampled by surface wave testing, 

the measured field data is influenced by both aleatory variability as well as data and 

modeling uncertainty (i.e., epistemic uncertainty), which cannot feasibly be separated and 

tracked through a series of complicated dispersion processing and inversion procedures 

(Lai et al. 2005; Foti et al. 2014; Griffiths et al. 2016a; and Chapter 4). Nonetheless, even 

if these two types of uncertainty cannot be perfectly decoupled, this does not mean that 

Vs uncertainties derived from surface wave testing cannot be considered in a meaningful 

manner in site response studies. 
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Uncertainties in Vs profiles derived from surface wave testing arise from the 

calculation/interpretation of experimental dispersion data and from the inversion of this 

data. However, two recent blind studies (Cox et al. 2014 and Garofalo et al. 2016a) 

indicate that the experimental dispersion data can be robustly retrieved by experienced 

analysts with an inter-analyst coefficient of variation (COV) of only 5% to 10% over 

broad frequency ranges. In fact, recent studies by Griffiths et al. (2016a and 2016b) and 

Chapter 4 suggest that the experimental dispersion data and horizontal-to-vertical spectral 

ratio (HVSR) data from a site can be used to develop a robust “site signature”, which 

may be used not only in surface wave inversion, but also to assess the validity of any 

candidate Vs profiles used for site response. Thus, although ambiguities in the 

interpretation of experimental dispersion data can introduce uncertainty in derived Vs 

profiles (Foti 2000; Boaga et al. 2013; Chapter 2), the majority of Vs uncertainty stems 

from the inversion process and its associated non-uniqueness (DiGiulio et al. 2012, Cox 

et al. 2014, Garofalo et al. 2016a and 2016b, Chapters 2 and 3).  

Several authors have considered the influence of inversion non-uniqueness on site 

response predictions (Foti et al. 2009, Boaga et al. 2011, Boaga et al. 2012, Jakka et al. 

2014a, Comina and Foti 2014, Jakka et al. 2014b, Socco et al. 2012, Griffiths et al. 

2016b). However, as noted in Chapter 4, these studies did not account for Vs uncertainty 

associated with choice of inversion parameterization (i.e., number of layers and ranges in 

their respective Vs, Vp, and mass densities), which can be quite significant. The 

inversion parameterization, particularly the number of layers used, strongly influences the 

smoothness and/or sharpness of the velocity contrasts and the position of layer 

boundaries in the resulting Vs profiles (DiGiulio et al. 2012, Chapter 3). Therefore, 

Chapter 4 studied the influence of variable inversion parameterizations on predicted site 

response at a synthetic site associated with the InterPacific Project (Garofalo et al. 2016a 
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and 2016b). They found that while the Vs profiles developed from various inversion 

parameterizations were extremely different in some cases, the site response predictions 

for these Vs profiles were quite similar to one another and matched the linear and 

equivalent-linear site response associated with the true/solution Vs profile quite well, 

provided that the inverted Vs profiles were consistent with the site signature. Similar to 

Griffiths et al. (2016a and 2016b), they also considered site response predictions 

associated with Vs profiles developed via randomization and upper/lower base-case Vs 

profiles. These Vs profiles did not match the site signature and were found to produce 

highly variable site response estimates that poorly matched the site response associated 

with the solution Vs profile.  

Chapter 4 suggests that, although the non-uniqueness associated with Vs profiles 

developed from surface wave inversion may be quite significant, accurate estimates of 

site response with minimal variability can be obtained if Vs non-uniqueness is considered 

in a systematic manner. Furthermore, the Chapter 4 and Griffiths et al. (2016a and 2016b) 

suggest that existing practices of accounting for aleatory variability and epistemic 

uncertainty in Vs may produce inaccurate site response estimates that exhibit excessive 

variability. However, accuracy of site response predictions is difficult to assess at most 

real world sites. Hence, the desire to evaluate measured versus predicted site response at 

a downhole array site considering Vs uncertainty from both borehole and surface wave 

methods.    

This study considers Vs uncertainty and its impact on seismic site response 

predictions at the Garner Valley Downhole Array (GVDA) Site in Southern California. 

First, an overview of the GVDA Site is provided and the calculation of linear-viscoelastic 

empirical transfer functions (ETFs) from low-amplitude GMs recorded at the site is 

described. Next, the linear-viscoelastic theoretical transfer functions (TTFs) for two 
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previously-measured invasive borehole Vs profiles at the site are provided. 

Randomization is performed on these borehole profiles using the Toro (1995) model and 

common assumptions regarding spatial variability in Vs. TTFs for each randomized Vs 

profile are presented. We then consider the TTFs associated with Vs profiles that were 

developed from inversion of an extensive surface wave dataset collected at the site. The 

TTFs associated with the borehole, randomized, and inversion Vs profiles are 

qualitatively and quantitatively compared to the measured ETFs. Finally, 

recommendations are proposed for utilizing the experimental site signature to help select 

realistic Vs profiles resulting from randomization. 

5.2  GARNER VALLEY SITE DETAILS 

The Garner Valley Downhole Array Site is located in a seismically-active region 

approximately 7 km from the San Jacinto fault and 35 km from the San Andreas fault 

(Archuleta et al. 1992). The site is in a shallow valley within the Peninsular Ranges 

Batholith (Bonilla et al. 2002). It is adjacent to Lake Hemet and is the site of extensive 

deposition of fine materials derived from both crystalline rocks and from dissection of 

older alluvial deposits (Hill 1981). Existing data indicates that soft soils are present to a 

depth of 19 to 25 m (Steidl et al. 1996). Beneath these soft soils, weathered granite 

transitions to more competent bedrock. Prior geophysical studies suggest that the depth of 

the contact between weathered and competent rock occurs between 65 and 90 m (Gibbs 

1989 and Steller 1996). Boreholes drilled in nearby igneous rocks without sediment cover 

indicate a Vs of 2650 m/s below 50 m (Fletcher et al. 1990), indicating that the deeper 

granite is quite stiff.     

The site is instrumented with downhole accelerometers at depths of 15, 22, 50, 

and 150 m, the deepest of which is embedded in granite bedrock. The site also has three 
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surface accelerometers placed in a straight line and equally spaced at approximately 61 

m. Figure 5.1 shows the locations and station numbers of the surface accelerometers 

along with the vertical projection and station number of the 150-m deep accelerometer. 

For simplicity, surface accelerometers number 00, 08, and 09 will be referred to as the 

“North”, “Central”, and “South” accelerometers, respectively. Downhole accelerometer 

number 05, which is embedded in the competent granite at a depth of 150 m, will simply 

be referred to as the “rock” accelerometer.   

 

 

Figure 5.1: Plan view of the North (00), Central (08), and South (09) surface 

accelerometer locations at the GVDA site. The location of the 150-m deep 

borehole accelerometer (05), which penetrates granite bedrock is indicated. 

Also shown are the approximate extents of SASW Lines 1 and 2 from 

Stokoe et al. (2004). 

5.3 EMPIRICAL TRANSFER FUNCTIONS 

At present, the accelerometers installed at the GVDA Site have recorded 

approximately 7000 events with Richter Local Magnitudes (ML) ranging from 1.0 to 7.2 

and distances ranging from 0.1 to 720 km (nees.ucsb.edu/data-portal). For each of these 

events, the “true” site response for a given component (i.e., north-south [NS], east-west 
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[EW], and vertical [V]) can be determined by computing the transfer function between 

the GM recorded at the surface and the GM recorded within rock.  

At very low-strain levels, the site response is approximately linear-viscoelastic 

and controlled by the thickness, Vs, and small-strain damping ratio (Dmin) of the soil 

layers and bedrock. As strains increase, modeling of nonlinear shear modulus and 

damping for each soil layer introduces additional uncertainties into site response 

predictions (Rathje et al. 2010, Li and Assimaki 2010). Because this study is focused on 

the influence of the input Vs profile, it is ideal to avoid non-linear soil behavior and the 

challenges associated with modeling it. Thus, low-amplitude GMs resulting in an 

approximately linear-viscoelastic response were sought. 

Tau and Rathje (2017) studied the influence of Dmin on the predicted site 

response at the GVDA Site. For their study, they chose a suite of 50 GMs that produce an 

approximately linear soil response and calculated empirical transfer functions (ETFs) at 

the North accelerometer location using the 150-m deep accelerometer as a reference rock 

condition. For this study, we used the same GMs to compute the ETFs at the Central and 

South accelerometers. Note that the surface accelerometer at the South location appears 

to have been temporarily inactive, therefore, only 42 GMs were used at this location. The 

Peak Ground Accelerations (PGAs) of these GMs were on the order of 0.001 to 0.01 g, 

with local magnitude (ML) ranging from 3.0 to 5.1 and distance ranging from 6.6 to 133 

km. 

Transfer functions between the rock and surface accelerometers were computed 

using the same procedures documented in Tau and Rathje (2017). First, a 5th order 

Butterworth filter with a pass band of 1 to 40 Hz was applied to all acceleration time 

histories. This pass band was chosen to include frequencies where the signal-to-noise 

ratio (SNR) was acceptably high (i.e., greater than 3 dB). Although frequencies below 1 
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Hz are of interest for strong GMs, the GMs used in this study are significantly influenced 

by noise at lower frequencies.  After filtering, acceleration time histories were integrated 

twice to compute displacement time histories. Each displacement time history was 

baseline-corrected using a 2nd order polynomial correction. The second derivative was 

then computed on each baseline-corrected displacement time history to retrieve a 

baseline-corrected acceleration time history. For a given GM and component, the “raw” 

ETF was computed as the ratio of the Fourier Amplitude Spectra (FAS) of the surface 

(North, Central, or South) and reference/rock baseline-corrected acceleration time 

histories. The raw ETF was then smoothed by applying a log-scale rectangular window in 

the frequency domain.  

The median, smoothed ETFs from each surface accelerometer for both the NS and 

EW components are shown in Figure 5.2a. The median ETFs for all three accelerometers 

and both components are quite similar, particularly at the first three resonant frequencies. 

The fundamental (f0,ETF), first-higher (f1,ETF), and second-higher (f2,ETF) modes associated 

with the median ETFs are approximately 2.0, 3.5, and 6.0 Hz, respectively. The median 

ETFs at all locations generally decrease rapidly in amplitude above 12-15 Hz. Figure 

5.2b shows the individual ETFs from all three accelerometer locations for the both the 

NS and EW components. Also shown is the lognormal median +/- one standard deviation 

(lnETF) of all individual ETFs. The lnETF is approximately 0.30 to 0.40 in the range of 1 

to 40 Hz. The median ETF and +/- lnETF curves are subsequently used to represent the 

measured, small-strain site response at the GVDA site. Additionally, the mean 

fundamental resonant frequency (f0,ETF) and its associated standard deviation (f0,ETF) 

were computed (refer to Figure 5.2b) and are later compared to the observed peaks in the 

horizontal-to-vertical spectral ratio (HVSR) curves measured at the site during surface 

wave testing. 
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Figure 5.2: (a) Median empirical transfer functions (ETFs) associated with the north-

south and east-west components of the North, Central, and South surface 

accelerometers at the GVDA site. (b) Individual ETFs for all locations and 

components along with the lognormal median and +/- one standard 

deviation (lnETF) for all locations/components. Also shown in (b) is the 

mean fundamental resonant frequency (f0,ETF) and its associated standard 

deviation (f0,ETF).    

5.4 PREVIOUSLY DEVELOPED VS PROFILES 

Vs profiles have been previously developed at the GVDA Site using invasive 

borehole methods and surface wave testing. Prior invasive borehole testing includes 

seismic downhole (Gibbs 1989) as well as shallow and deep PS suspension logging 

(Steller 1996). Unfortunately, the exact locations of the downhole and PS logging at the 

site are not well documented.  Surface wave testing was conducted using the Spectral 

Analysis of Surface Waves (SASW) Method (Stokoe 2004) at two locations, as shown in 

Figure 5.1. Additionally, passive surface wave testing was performed by Liu et al. (2000). 

However, they chose not to invert their experimental dispersion data and thus no Vs 

profile is available. Interestingly, they calculated theoretical dispersion curves for the PS 

log Vs profile and found that it was in good agreement with their experimental dispersion 

data, which ranged from approximately 2.5 to 6 Hz.    
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Previously developed Vs profiles at the GVDA Site are compared in Figure 5.3a. 

The Vs profiles are in good agreement with one another until a depth of approximately 65 

m. The Vs profiles show a transition from soft soil, with a Vs of 180 to 270 m/s, to a 

stiffer material at depth of 18 to 25 m. This stiffer material corresponds to weathered 

granite and has a Vs of 500 to 660 m/s. Both the downhole and the deep PS log reach 

materials with Vs in excess of 1000 m/s. However, the downhole Vs profile reaches this 

more competent material at a depth of 65 m, while the deep PS log does not show these 

stiffer materials until a depth of approximately 85 m. Also, it is important to note that 

neither the downhole nor the PS log resolved velocities that are consistent with the 

nearby measurements described in Fletcher et al. (1990), which indicate that competent 

granite in this area may have Vs greater than 2500 m/s.  

 

Figure 5.3: (a) Vs profiles previously developed at the GVDA site using seismic 

downhole testing (Gibbs 1989), shallow and deep PS suspension logging 

(Stellar 1996), and SASW testing (Stokoe 2004). (b) Theoretical linear 

viscoelastic shear wave transfer functions (TTFs) between a depth of 150 m 

and the ground surface were computed for the previously developed Vs 

profiles that extended into rock (i.e., seismic downhole and simplified PS 

log) using small-strain damping ratios [Dmin] that were assigned based on 

the relationship proposed by Darendeli (2001). Also shown in (b) is the 

median ETF +/- lnETF. 
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Linear-viscoelastic theoretical transfer functions (TTFs) were computed for the 

previously-developed borehole Vs profiles that reached bedrock. The borehole TTFs are 

compared to the median ETF +/- lnETF in Figure 5.3b. In order to calculate TTFs, the 

bottommost layer in the borehole Vs profile was extrapolated to a depth of 150 m (i.e., 

the depth of the downhole accelerometer at the site). TTFs are not shown for the SASW 

Vs profiles because they do not reach more competent rock materials and thus do not 

have a reference rock condition. TTFs were calculated based on the “within” condition 

because they are compared to ETFs that were computed using borehole measurements. 

Calculations were performed using personal Matlab codes, which have been verified by 

comparing the results to the Strata software (Kottke and Rathje 2009). Additionally, for 

the purpose of computing TTFs, the shallow and deep PS logs were averaged and 

simplified/smoothed (refer to Figure 5.3a).  

TTFs were calculated using the small strain damping values proposed in 

Darendeli (2001) [Dmin] This paper is primarily focused on the influence of the input Vs 

profile. However, the selection of an appropriate small-strain damping ratio is not trivial. 

Tau and Rathje (2017) recently investigated the choice of small-strain damping ratio at 

this site. They found that if a single Vs profile is used in a deterministic manner to 

compute the TTF, then an effective in-situ small-strain damping ratio of 4∙Dmin is 

appropriate for the GVDA site. This higher small-strain damping ratio is meant to 

account for site-specific scattering/loss of seismic energy resulting from 3D subsurface 

variability that cannot be accounted for using Dmin values measured in the laboratory in 

conjunction with 1D site response analyses. Alternatively, they found that this scattering 

could be accounted for by computing the median TTF from a suite of TTFs associated 

with Vs profiles developed via randomization and the lower, commonly-assumed Dmin 
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values. For this paper, we consider suites of Vs profiles from randomization and/or 

surface wave inversion and thus chose to use the typically-assumed Dmin values.    

It is clear from Figure 5.3b that the amplitudes of the TTFs for both invasive Vs 

profiles are significantly higher than the median ETF, although they are only slightly 

higher than the amplitudes of many of the individual ETFs (Figure 5.2b). It is also clear 

that the locations of the resonant frequencies generally do not well represent the ETF. 

The fundamental mode of the TTF associated with the downhole Vs profile better 

matches the fundamental mode of the median ETF than the fundamental mode of the TTF 

associated with the PS log. Conversely, the first-higher modes are quite similar and 

within 0.5 Hz of the first higher mode of the median ETF. All other higher modes for 

both Vs profiles poorly match the higher modes of the median ETF. In a qualitative 

sense, neither of the TTFs match the ETFs well.  Thus, one must consider that the 

available borehole Vs profiles do not well-represent the small-strain stiffness profile and 

its variability across the site.      

5.5 EXISTING PRACTICES OF ACCOUNTING FOR VS UNCERTAINTY  

Although the invasively-measured Vs profiles do not well represent the measured 

ETF, an ETF is generally not available at most sites and there is no way of knowing how 

well/poorly the TTF for a given Vs profile will capture the true site response. 

Furthermore, each invasively-measured Vs profile represents a single sample from a 

larger 3D structure and is influenced by epistemic uncertainties. Thus, it is worth 

investigating if existing practices of accounting for spatial variations in Vs and epistemic 

uncertainty can be used to develop Vs profiles that yield better site response estimates. In 

order to investigate existing practices of accounting for aleatory/spatial variability, Vs 

randomization was performed about two base case Vs profiles: (1) the downhole Vs 



 167 

profile, and (2) the simplified PS log Vs profile. As noted earlier, if multiple Vs profiles 

from various locations at a single site are available, then statistics can be computed and 

used to set the parameters in the randomization model. However, only two borehole Vs 

profiles that extend into rock are available at the GVDA Site and their locations are not 

well-documented. Consequently, calculation of robust statistics regarding spatial 

variation in Vs was not possible. However, default/recommended parameters are often 

used in the randomization model when robust Vs statistics cannot be computed. These 

default parameters incorporate higher variability and are often thought to be more 

conservative.  

The use of default/assumed parameters in Vs randomization reflects a lack of 

knowledge and is arguably more representative of epistemic uncertainty than aleatory 

variability. Of course, the spatial variation in Vs at a site is also arguably more epistemic 

in nature because it could be reasonably quantified with an abundance of data.  

Nonetheless, epistemic uncertainty is typically accounted for separately through the 

development of alternative upper/lower base-cases, which are generated by 

increasing/decreasing the Vs of the mean base-case Vs profiles by a depth-independent 

epistemic uncertainty factor (ln or COV). We originally developed upper/lower base-

cases for each of the borehole Vs profiles based on the recommended ln value of 0.35 

(EPRI 2012). However, similar to Teague and Cox (2016), Griffiths et al. (2016a and 

2016b), and Teague et al. (2017a), we found that these upper/lower base-cases based on a 

constant COV/ln yielded unrealistic Vs profiles that did not fit the site signature and 

produced inaccurate site response estimates. Thus, we chose not to show them here for 

brevity and only applied the Toro (1995) randomization model to each borehole Vs 

profile.   
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The Toro (1995) model operates on the following three sets of parameters: (1) 

“Velocity Model” parameters, which define the Vs of each layer; (2) “Layering Model” 

parameters, which control the occurrence of layer boundaries; and (3) “Depth to Bedrock 

Model” parameters, which control the depth to bedrock (Toro 1995, Kottke and Rathje 

2009). Recommended Velocity Model parameters for sites with a time averaged shear 

wave velocity over the top 30 m (VS30) ranging from 180 to 360 m/s were used in this 

study because the VS30 of the GVDA Site falls within this range. The Velocity Model 

parameters are provided in Table 5.1. The standard deviation of the natural logarithm of 

Vs (lnVs) parameter controls the variation of Vs within each layer. The “site-specific” 

lnVs values recommended in Stewart et al. (2014) were used in this study. These lnVs 

values were developed based on clusters of profiles at various sites and are preferable to 

the higher, “generic” lnVs values provided in Toro (1995) when spatial variations are not 

expected to be extreme.   

Table 5.1: Velocity Model parameters used in the Toro (1995) randomization model to 

randomize about the downhole and simplified PS log Vs profiles. 

Parameter Downhole PS Log 

lnVs (z ≤ 50 m) 0.15 0.15 

lnVs (z > 50 m) 0.22 0.22 

0 0.99 0.99 

200 0.98 0.98 

D 3.9 3.9 

d0 0 0 

b 0.344 0.344 

The Layering Model defines the layer boundaries for a given Vs profile using a 

non-homogeneous Poisson process with a depth-dependent transition rate (t). The 

transition rate is set by three parameters (c1, c2, and c3) and has units equal to the inverse 

of distance (m-1). At any given depth, the expected layer thickness is equal to 1/t.  The 
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recommended/default parameters from Toro (1995) were used in this study and are 

provided in Table 5.2. These parameters result in expected layer thicknesses ranging from 

4.2 m at the ground surface to 39 m at a depth of 120 m. 

Table 5.2: Layering model parameters used in the Toro (1995) model to randomize about 

the downhole and simplified PS log Vs profiles. 

Parameter Downhole PS Log 

c1 10.86 10.86 

c2 0.89 0.89 

c3 1.98 1.98 

The depth to bedrock (zrock) is modeled separately from the soil layers. Unlike the 

Velocity and Layering Model parameters, little guidance is provided in Toro (1995) 

regarding the depth to bedrock model parameters. Toro (1995) utilized a uniform 

distribution, but did not specify how the minimum and maximum values of this uniform 

distribution were set. The Strata software (Kottke and Rathje 2009) gives the user the 

option to model zrock using a uniform, normal, or lognormal distribution. However, the 

parameters used to model the variation in the depth to rock (minimum/maximum zrock, 

Zrock, or lnZrock for uniform, normal, and lognormal distributions, respectively) are left 

to the discretion of the analyst. In this study, we decided to use a uniform distribution 

because little information was available to develop parameters for a more complicated 

model. The parameters needed for a uniform distribution are the minimum and maximum 

zrock for each base-case. With little information to go on, we simply calculated the 

difference between the zrock values associated with the downhole and PS log Vs profiles. 

We then subtracted and added half of this distance to the zrock associated with each base-

case profile, as reported in Table 5.3. 
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Table 5.3: Depth to bedrock model parameters used in the Toro (1995) mode to 

randomize about the downhole and simplified PS log Vs profiles. 

Parameter Downhole PS Log 

Distribution Uniform Uniform 

mean zrock [m] 65 86 

Min. zrock [m] 54.5 75.5 

Min. zrock [m] 75.5 96.5 

Randomization was performed about the downhole (Figure 5.4a) and PS log 

(Figure 5.4b) Vs profiles. A total of 100 realizations were generated for each base-case. 

The median randomized Vs profile is similar to the base-case in both instances, indicating 

that, on average, the randomized Vs profiles capture the base-cases. However, many of 

the individual Vs profiles are largely inconsistent with the invasively-measured Vs 

profiles. For example, both sets of randomized Vs profiles contain some Vs profiles with 

very thick and stiff near-surface layers. This is due to the combination of two factors. 

First, the non-homogeneous Poisson process may result in very thick layers, even if the 

expected layer thicknesses (1/t) appear reasonable. Furthermore, the Vs value of each 

layer is set based on the mid-depth of that layer. Thus, very thick near-surface layers may 

exhibit velocities that are consistent with much deeper/stiffer layers. For example, many 

of the thick near-surface layers in Figure 5.4a and 5.4b have Vs values ranging from 500 

to 700 m/s. The top depths of these layers occur where soft soil is known to exist; 

however, the mid-depths of these layers overlap with the stiffer weathered granite. Thus, 

the Vs of the layer is set to an unrealistically high value. A potential remedy for this issue 

would be to either impose a depth-dependent maximum layer thickness to avoid 

excessively thick near-surface layers and/or to impose criteria whereby both the top and 

bottom depths of a layer are considered when assigning Vs values. (Note that the Strata 

implementation of the Toro model allows the analyst to set a layer-dependent maximum 
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Vs, but this does not resolve the issue because the maximum Vs is imposed based on the 

mid-depth).  

 

Figure 5.4: Vs profiles developed to account for aleatory variability at the GVDA site. 

Aleatory variability was considered by randomizing about the (a) downhole 

Vs profile and the (b) PS suspension log Vs profile. Randomization was 

performed using the Toro (1995) procedure. A total of 100 realizations were 

generated during each randomization.           

TTFs associated with the downhole- and PS log-randomized Vs profiles are 

shown along with the median ETF +/- lnETF in Figure 5.5. For both base-cases, the 

variability is extreme, making it difficult to distinguish any overall trends by eye. In 

general, the randomized Vs profiles associated with both base-cases are inconsistent with 

the measured site response. Similar to the base-cases, the individual TTFs for each 

realization have relatively high amplitudes when compared to the median ETF. However, 

the median TTF for each set of randomized Vs profiles is generally more than one 

standard deviation away from the median ETF. This is because the locations of the peaks 

in the individual TTFs are so variable. Consequently, the computation of a median TTF 
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essentially smooths the individual TTFs and attenuates the response. Thus, the use of 

either median TTF in design could be quite unconservative. 

 

Figure 5.5: Theoretical linear viscoelastic shear wave transfer functions (TTFs) between a 

depth of 150 m and the ground surface for Vs profiles developed via 

randomization about the (a) downhole Vs profile and (b) PS suspension log 

Vs profile. TTFs were computed using small-strain damping ratios proposed 

in Darendeli (2001) [Dmin].  Also shown in each panel is the TTF associated 

with the base-case (i.e., the downhole or PS suspension log Vs profile) and 

the median ETF +/- lnETF. 

5.6 SURFACE WAVE TESTING AT THE GVDA SITE 

In October 2016, a comprehensive surface wave testing program was 

implemented at the GVDA Site. Surface wave testing was conducted to develop Vs 

profiles at each of the accelerometer locations and to investigate the validity of the “site 

signature” concept proposed by Griffiths et al. (2016a and 2016b) and Chapter 4. 

Specifically, this study was developed to investigate whether experimental dispersion 

data and HVSR curves may be used to develop Vs profiles that yield accurate predictions 

of site response and its associated uncertainty at a real field site with recorded ground 
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motions. This section describes both the development of HVSR curves and experimental 

dispersion data (i.e., the site signature) and Vs profiles at each accelerometer location. 

5.6.1 Field Data Acquisition 

Surface wave testing at the GVDA Site involved both active-source Multi-

Channel Analysis of Surface Waves (MASW) testing and passive-source Microtremor 

Array Measurement (MAM) testing. MASW testing involved three linear arrays, which 

were placed adjacent to the North, Central, and South surface accelerometer locations, as 

shown in Figure 5.6a. These arrays are designated as NL-47m, CL-34.5m, and SL-47m, 

respectively. The NL-47m and SL-47m arrays each consisted of 48, 4.5-Hz vertical 

geophones spaced at 1 m (47-m length), while the CL array consisted of 24, 4.5-Hz 

geophones spaced at 1.5 m (34.5-m length). The multiple-source offset technique (Cox 

and Wood 2012, Teague et al. 2017b) was used as a means to estimate data uncertainty 

and avoid near-field effects for each array, with source-offsets of 5, 10, and 20 m used off 

both ends. Ten repetitions/shots were performed at each source-offset.  

MAM testing was performed using circular arrays generally consisting of 7 

recording stations along the perimeter and an additional recording station at the center, as 

shown in Figure 5.6. Note that the individual markers in Figure 5.6 denote station 

locations. Each recording station comprised either a three-component Nanometrics 120s 

broadband seismometer with Taurus digitizer or a three-component Nanometrics 20s 

broadband seismometer with a Centaur digitizer. Three 50-m diameter circular arrays 

encircled the North, Central, and South accelerometer locations. These arrays are 

designated NC-50m, CC-50m, and CS-50m, respectively. Note that the CC-50m and SC-

50m arrays were recorded simultaneously. While these arrays recorded data, two 

additional stations were laid out such that they could be combined with the outer stations 
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of the CC-50m and SC-50m arrays in order to produce an irregular, 10-station array with 

an aperture of 110 m (referred to as C-110m). A 150-m diameter circular array 

(designated C-150m) was laid out in the northern part of the site. Additionally, a smaller 

20-m diameter array (designated C-20m) was utilized in the northern part of the site 

around the borehole containing the rock reference accelerometer.  

This dense layout of arrays, shown in Figure 5.6a, allows for a robust 

determination of the spatial variation in the experimental dispersion data across the site at 

moderate to high frequencies (or, equivalently, short to moderate wavelengths). However, 

experimental dispersion data is needed at low frequencies (long wavelengths) to 

characterize the deep structure at the site. Accordingly, 450-m and 1000-m diameter 

circular arrays (referred to as C-450m and C-1000m, respectively) were deployed, as 

shown in Figure 5.6b. Recording times for the MAM arrays ranged from 45 minutes to 6 

hours, with the longer recording times generally corresponding to the larger arrays. 
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Figure 5.6: (a) Surface wave array locations in the vicinity of the surface and borehole 

accelerometers (indicated by stars) at the GVDA site. Both active-source 

(i.e., Multi-Channel Analysis of Surface Waves, MASW) and passive-

source (i.e., Microtremor Array Measurements, MAM) testing were 

performed. Linear MASW arrays ranged from 34.5- to 47-m long. 

Diameters of the circular MAM arrays ranged from 20 to 1000 m. Individual 

makers represent seismometer locations in each MAM array. Note that the 

110 m aperture array largely consisted of stations that were also used in the 

Central and South 50-m diameter arrays. (b) Zoomed-out view of the largest 

450- and 1000-m diameter circular MAM arrays. 
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5.6.2 Horizontal to Vertical Spectral Ratios 

Each station used in MAM testing (i.e., each marker in Figure 5.6) recorded 

ambient vibrations in the vertical and two orthogonal horizontal directions (NS and EW). 

Thus, Horizontal-to-Vertical Spectral Ratios (HVSR) were computed at each location. If 

the HVSR curve exhibits a sharp, well-defined peak, then the frequency at which this 

peak occurs (f0,HV) may be used to approximate the fundamental shear wave resonant 

frequency (f0,ETF) at that location. If HVSR curves are obtained at various locations 

across a site, then it is possible to estimate how the fundamental frequency varies across 

the site. If the fundamental frequency varies significantly, this is a sign of lateral 

variations in the subsurface Vs structure. Thus, before computing experimental dispersion 

data, it is useful to consider the HVSR curves.  

HVSR curves were computed for all individual stations in accordance with the 

recommendations in the SESAME D23.12 (2004) report. The SESAME (2004) report 

provides clarity criteria for inferring f0,HV from HVSR curves. The authors of the 

SESAME (2004) report do not recommend inferring f0,HV from HVSR curves that fail to 

meet these criteria. We chose to follow those recommendations here. The HVSR curves 

for each individual station passing the SESAME (2004) peak clarity criteria are shown 

for the NC-50m, CC-50m, SC-50m, C-150m, C-450m, and C-1000m arrays in Figure 

5.7. Also shown for each array is the lognormal median of the individual station HVSR 

curves along with the associated standard deviation. The mean f0,HV and associated 

standard deviation is also listed for each array.  

Some individual HVSR curves associated with the CC-50 m (Figure 5.7b) and C-

1000 m (Figure 5.7f) arrays increase in amplitude below approximately 1.5 Hz. However, 

well-defined peaks do not exist at any of the stations below 1.5 Hz. These high 

amplitudes on a few stations at low frequencies are unstable and do not appear to reflect 
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resonance features of the site, but are likely attributed to poor receiver coupling. It is 

useful to first consider the HVSR curves from the 50-m diameter arrays (Figure 5.7a 

through 5.7c), which were obtained over relatively small areas in the immediate vicinity 

of the surface accelerometers. All individual HVSR curves have similar shapes and 

exhibit a well-defined peak (f0,HV) near 2 Hz. The f0,HV for the 50-m diameter arrays 

decreases slightly from a mean of 1.90 Hz in the northwest to 2.05 Hz in the southeast, 

indicating a slight decrease in the depth to rock from northwest to southeast. Thus, while 

the GVDA site is located in a valley, the area of interest is reasonably 1D in terms of 

depth to bedrock. It is also important to note that the f0,HV associated with the 50-m 

diameter arrays is quite consistent with the mean f0,ETF (1.94 Hz) of the site (refer to 

Figure 5.2), underscoring the value of HVSR measurements for inferring site resonance 

and developing a “site signature” at sites without downhole arrays.   

The f0,HV values generally increase with increasing array diameter (refer to Figure 

5.7d through 5.7f). The f0,HV values for the C-150m array are quite consistent with the 50-

m diameter arrays. However, the f0,HV values associated with the C-450m and C-1000m 

arrays are higher and more variable. This is not surprising because the soil cover is 

thinner (i.e., f0,HV is higher) closer to the edges of the valley. The variation in f0,HV across 

these large arrays is an important consideration when computing experimental dispersion 

data. The surface wave inverse problem assumes a 1D layered earth model, which may be 

a reasonable assumption over smaller areas. However, as the aperture of an array 

increases, it incorporates more spatial variability. Unfortunately, larger arrays are 

necessary to develop low frequency (long wavelength) dispersion data needed for deep 

profiling, even though many of the stations used in these arrays are outside of the primary 

area of interest. 
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Figure 5.7: Horizontal-to-vertical spectral ratio (HVSR) curves obtained from 

ambient/noise measurements associated with the North, Central, and South 

50-m diameter arrays (a, b, and c, respectively), along with the larger 150-, 

450-, and 1000-m diameter arrays (d, e, f), respectively. Colored thin lines 

represent the median HVSR curves for individual stations, while colored 

thick solid and dashed lines represent the lognormal median of the 

individual station medians and +/- one standard deviation, respectively. 

Note that only those HVSR curves that satisfy the SESAME (2004) peak 

clarity criteria are shown. The frequency associated with the HVSR peak 

(f0,HV) and the associated standard deviation are provided for each array. The 

frequency associated with the fundamental mode of the ETF (f0,ETF) +/- one 

standard deviation (f0,ETF) are represented by vertical solid and dashed 

black lines, respectively. 

5.6.3 Experimental Dispersion Data 

Experimental dispersion data was computed for all individual arrays. For the 

MASW arrays, individual records/shots from each source-offset were summed to produce 

a single, stacked record, which was then processed using the phase-shift transformation 
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(Park 1998). Dispersion data from each source-offset were then combined and used to 

compute a mean and standard deviation for each array, as described in Teague et al. 

(2017b). MAM arrays were processed using both the High Resolution Frequency-

Wavenumber Transformation (HRFK) method (Capon 1969) and the Modified Spatial 

Autocorrelation (MSPAC) method (Bettig et al. 2001) using similar procedures as those 

described in Chapter 2. Ultimately, the HRFK dispersion data were deemed to be of 

higher quality based on several considerations, including noise directionality and bias 

towards lower/higher velocities.  

In order to assess spatial variability in Vs using surface wave methods, it is 

necessary to develop representative experimental dispersion curves for various locations 

at the site and then invert each of these curves. Thus, experimental dispersion curves that 

are representative of the North, Central, and South accelerometer locations were 

developed by averaging the dispersion estimates from individual arrays at these locations, 

as shown in Figure 5.8. For the North location, dispersion data from the NL-46m, C-20m, 

NC-50m, and C-150m arrays were used to compute a mean and standard deviation 

dispersion curve. For the Central location, dispersion data from the CL-34.5m, CC-50m, 

C-150m, and C-110m arrays were utilized. For the South location, dispersion data from 

the SL-46m, SC-50m, and C-110m arrays were used. It is clear from Figure 5.8c that 

phase velocities above 10 Hz are highest (i.e., near-surface materials are stiffest) in the 

North and lowest in the South. Below 10 Hz, the experimental dispersion data is quite 

consistent.  

The C-450m and C-1000m arrays encircled the North, Central, and South 

locations. Thus, dispersion data computed from these arrays was used in the inversion for 

all three locations. However, it was only possible to extract reliable experimental 

dispersion data from these arrays at frequencies below 1 Hz because the dispersion data 
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at higher frequencies was quite scattered due spatial averaging of the variable depth to 

bedrock across the extent of the arrays. Nonetheless, at very low frequencies the 

dispersion data primarily represents the velocity of the deep bedrock beneath the entire 

site and can be used to constrain the velocity of the granite, which is apparently quite stiff 

(greater than 3000 m/s). 

 

 

Figure 5.8: (a, b, c) Mean experimental dispersion estimates and associated standard 

deviations for the North, Central, and South accelerometer locations at the 

GVDA site, shown at various scales. Note that the low-frequency 

experimental dispersion data used in the inversion was the same for the 

North, Central, and South accelerometers and was obtained from the C-450 

m and C-1000 m arrays. 

At frequencies where the coefficient of variation (COV) in the dispersion 

estimates was lower than 5%, the standard deviations were increased to achieve a COV 

of 5%. This was done for two reasons. First, it facilitates the inversion. The inversion 

optimization algorithm (discussed later) can be quite sensitive to very low standard 

deviations associated with a few dispersion data points. Essentially, the inversion can get 

“stuck” trying to perfectly fit these few data points, with less emphasis placed on fitting 
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other points with higher/more realistic COVs. Secondly, recent studies by Cox et al. 

(2014) and Garofalo et al. (2016a) suggest that the experimental dispersion data can be 

retrieved with an inter-analyst variability of 5-10%. Thus, COV values below 5% do not 

necessarily reflect the dispersion uncertainty that would be computed if multiple analysts 

had analyzed this same dataset. 

5.6.4 Inversion Vs Profiles 

Inversions were performed using the dispersion curves from the North, Central, 

and South accelerometer locations (refer to Figure 5.8). As discussed earlier, the 

inversion is signficantly influenced by the parameterization (i.e., trial number of layers 

and ranges in their respective thicknesses, Vs, Vp, and mass densities). Specifically, the 

number and thickness of trial layers is critical (DiGiulio et al. 2012, Cox and Teague 

2016). Thus, various possibilities must be considered if the number of layers is not 

known a-priori. At the GVDA site, the deep structure is uncertain and thus the total 

number and thickness of layers cannot be determined with certainty. Cox and Teague 

(2016) outlined a procedure to systematically perform multiple inversions, each with a 

different number of layers defined by a unique layering ratio (). In this approach, the 

number of layers decreases and each individual layer generally becomes thicker with 

increasing . The layering ratio approach was used here, with  of 1.5, 2.0, 3.0, 3.5, 5.0, 

and 7.0 considered at each location. This results in six different paramterizations with the 

number of trial layers ranging from 5 to 12. The bottommost layer in each 

parameterization was not perimitted to be deeper than 300 m because bedrock was 

anticipated to be much shallower at this site.     

The inversions were performed using the Geopsy software (www.geopsy.org). 

Theoretical dispersion forward computations for each trial earth model are based on the 
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transfer matrix approach originally developed by Thomson (1950) and Haskell (1953) 

and later modified by Dunkin (1965) and Knopoff (1964). Multi-mode inversions were 

initially performed. However, the experimental dispersion data from the site was 

ultimately deemed to represent the fundamental Raleigh wave mode. For each trial 

model, a dispersion misfit value (md) was computed between the experimental data and 

the theoretical curve, as described in Wathelet (2004). The software uses the 

Neighborhood Algorithm (Sambridge 1999, Wathelet et al. 2004) to search for layered 

earth models within the user-defined parameterization with the lowest possible misfit 

values. A misfit value below 1.0 indicates that, on average, the theoretical dispersion 

curve for a given ground model falls within one standard deviation of the experimental 

dispersion data. In addition to consideration of dispersion misfit, the HVSR curves were 

also used to constrain the inversion results by comparing the fundamental resonant 

frequency values associated with the TTFs for all inversion Vs profiles (f0,TTF) with the 

experimentally-measured mean f0,HV at that location (refer to Figure 5.7). Vs profiles 

whose theoretical f0,TTF deviated by more than approximately three standard deviations 

from the mean f0,HV for that location were rejected. (Note that the f0,ETF was not used to 

constrain the inversion because it is generally not known at most sites).  

A total of 200 thousand to 1 million trial models were searched during each 

inversion, with more trial models being used for lower layering ratios, which include 

more layers and thus have more unknowns to solve for. For each combination of location 

and layering ratio, two separate inversions were performed. The first inversion was 

intended to search for the ground models with the lowest possible misfit values. This 

approach is useful for finding the “best” ground models, but oftentimes the final 

ensemble of ground models from inversion fails to capture other acceptable models with 

slightly higher misfit values. Thus, the second inversion was used to search for any 
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ground models with a misfit below 1.0 (i.e., whose theoretical dispersion curves fall 

within one standard deviation of the experimental dispersion data). This type of inversion 

yields a more diverse ensemble of realistic ground models, but oftentimes cannot find the 

best possible answer (i.e., the lowest possible misfit). Thus, by combining the results 

from these two inversions, it is possible to create an ensemble of ground models that 

contains the best possible answer for a given parameterization, but also includes other 

models that are still considered possible. The results from these two types of inversions 

were combined to develop an ensemble of 33 Vs profiles for each combination of 

layering ratio parameterization and location. The Vs profiles from all locations were then 

combined for a given layering ratio, yielding 99 Vs profiles per layering ratio. This 

number was chosen to be consistent with the number of Vs profiles obtained from 

randomization about each borehole profile, which considered 100 realizations per base-

case. By developing Vs profiles from three separate locations (North, Central, and 

South), aleatory variability is implicitly considered. Furthermore, epistemic uncertainty is 

also accounted for by considering six different layering ratios.  

The 99 theoretical dispersion curves for each location and layering ratio are 

shown relative to the experimental data in Figure 5.9. The Vs profiles associated with 

these theoretical dispersion curves are shown in Figure 5.10. Values of md for the 99 Vs 

profiles associated with each layering ratio and location are shown in Table 5.4. It is clear 

from Figure 5.9 that, for a given location, all layering ratios yield similar fits of the 

experimental dispersion data despite the fact that different numbers of layers were used. 

This is underscored by the similar ranges in md shown in Table 5.4. However, Figure 

5.10 demonstrates that the Vs profiles associated with these similar theoretical dispersion 

curves are quite different. This highlights the non-unique nature of the inverse problem. 

Furthermore, as discussed above, the experimental dispersion data contains a gap 
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between 1-2 Hz, which further exacerbates the non-unique nature of the inversion for this 

dataset. Note that Vs profiles are only shown to a depth of 150 m because their associated 

TTFs (discussed later) were computed between the ground surface and this depth.  

 

 

Figure 5.9: Fundamental mode theoretical dispersion curves associated with the 99 

ground models obtained from surface wave inversion at the North, Central, 

and South accelerometer locations at the GVDA site developed using 

layering ratios () of (a) 1.5, (b) 2.0, (c) 3.0, (d) 3.5, (e) 5.0, and (f) 7.0. 

Also shown are the experimental dispersion data for the North, Central, and 

South accelerometer locations (refer to Figure 5.8). Note that the low 

frequency data below 1 Hz (shown in black) is the same for all locations.  
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Table 5.4: Range of dispersion misfit values associated with the 1000 lowest misfit Vs 

profiles obtained from surface wave inversion at the North, Central, and 

South accelerometer locations at the GVDA site for each layering ratio (). 

 

 

Figure 5.10: Inversion Vs profiles associated with the 99 ground models from the North, 

Central, and South accelerometer locations at the GVDA site developed 

using layering ratios () of (a) 1.5, (b) 2.0, (c) 3.0, (d) 3.5, (e) 5.0, and (f) 

7.0. The median inversion Vs profile is indicated for each layering ratio. 

Also shown are the Vs profiles previously developed from PS suspension 

logging (Steller 1996) and seismic downhole testing (Gibbs 1989). 

1.5 0.25 - 0.54 0.22 - 0.56 0.21 - 0.60

2.0 0.25 - 0.57 0.21 - 0.54 0.21 - 0.62

3.0 0.20 - 0.57 0.23 - 0.55 0.18 - 0.58

3.5 0.23 - 0.59 0.23 - 0.65 0.18 - 0.59

5.0 0.20 - 0.59 0.20 - 0.63 0.15 - 0.59

7.0 0.34 - 0.57 0.14 - 0.61 0.30 - 0.58

Layering 

Ratio ( )

md

North Central South
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The variability among the Vs profiles obtained from a single location and  

generally increases below approximately 40 m. Furthermore, the variability between the 

different locations and  increases with depth. This variability is due to both the gap in 

the experimental dispersion data between 1-2 Hz and the fact that Vs profiles obtained 

from inversion (referred to herein as the “inversion Vs profiles”) are generally better-

constrained at shallower depths. The median Vs profile, computed using the 99 Vs 

profiles from all locations, is shown for each  along with the downhole and PS log Vs 

profiles in Figure 5.10. The inversion Vs profiles tend to be in better agreement with the 

downhole Vs profile, with many inversion Vs profiles showing a strong impedance 

contrast between 50-70 m. However, many Vs profiles associated with a  of 3.0 show a 

strong velocity contrast at 85 m, which is the same depth that the PS log shows bedrock 

(albeit at a much lower velocity). Overall, the bottommost layer of most inversion Vs 

profiles above a depth of 150-m generally has a much higher Vs than indicated by either 

of the invasive borehole Vs profiles.  

The theoretical transfer functions associated with the inversion Vs profiles are 

shown for in Figure 5.11. Despite major visual differences in the Vs profiles from various 

locations and , the fundamental and first-higher resonant frequencies of the TTFs are 

quite consistent with the median ETF. Moreover, many TTFs have second- and third-

higher modes whose locations are consistent with the median ETF. The good agreement 

between the resonant frequencies of the TTFs determined from inversion Vs profiles and 

the ETF is in stark contrast to the TTFs associated with the measured borehole and 

randomized Vs profiles (refer to Figure 5.5). The median TTF calculated from the 99 

TTFs for each  is shown in Figure 5.11 These median TTFs are generally in excellent 

agreement with the median ETF. Thus, even though inversion non-uniqueness is 

significant (Figure 5.10) and a single “true” Vs profile cannot be determined with 
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certainty, the results from surface wave testing can produce very accurate site response 

estimates when Vs uncertainty is considered in a meaningful way. It is also worth noting 

that the invasively-measured Vs profiles, which are often deemed to represent “ground 

truth”, do not yield accurate site response estimates at this site. This is an important point 

to consider, as many downhole array sites are characterized by a single, invasively-

measured Vs profile. 

 

Figure 5.11: Theoretical linear viscoelastic shear wave transfer functions (TTFs) between 

the ground surface and a depth of 150 m computed using the inversion Vs 

profiles and small-strain damping ratios proposed in Darendeli (2001) [Dmin] 

for the 99 ground models from the North, Central, and South accelerometer 

locations at the GVDA site developed using layering ratios () of (a) 1.5, 

(b) 2.0, (c) 3.0, (d) 3.5, (e) 5.0, and (f) 7.0. The median transfer function, 

computed using 99 TTFs (33 from each accelerometer location), is indicated 

for each layering ratio. Also shown is the median ETF +/- lnETF. 



 188 

5.7 QUALITATIVE AND QUANTITATIVE COMPARISON OF TTFS 

It is clear, by comparison of Figure 5.11 to Figure 5.5, that the TTFs associated 

with the inversion Vs profiles better match the measured ETF than those associated with 

the borehole profiles and Vs randomization. Although the non-unique nature of the 

inversion Vs profiles is visually considerable (refer to Figure 5.10), these very different 

interpretations of the subsurface all fit the experimentally-measured site signature (i.e., 

dispersion data and HVSR fundamental frequency) and result in very similar site 

response estimates that are relatively consistent with the observed site response. 

Furthermore, the inversion Vs profiles implicitly account for the spatial variations in Vs 

in a more meaningful way than assumed Vs randomization parameters. Meaning, the 

variability in the inversion Vs profiles is due in part to the variations in the measured 

dispersion of surface waves across the site, rather than on assumptions about the variation 

in Vs that are not validated by in-situ measurements.  

In order to further assess the suites of Vs profiles derived from both 

randomization and from inversion, it is useful to compare the median TTFs to the median 

ETF +/- lnETF, as shown in Figure 5.12. (Note that the median TTFs shown in Figure 

5.12a are the same as those shown in Figure 5.11). As discussed earlier, the median TTFs 

from all  are remarkably similar and match the median ETF quite well, particularly at 

the fundamental and first-higher modes. Nonetheless, the median TTF associated with  

of 5.0 does not well-capture the second- and third-higher modes of the ETF and the 

median TTF for a  of 7.0 does not well-capture the median ETF at the second -higher 

mode. A median TTF was computed using the individual TTFs from all  as shown in 

Figure 5.12b. This TTF is compared to the median TTFs associated with the downhole-

randomized and PS log-randomized Vs profiles. (Note that the median TTFs associated 

with the randomized Vs profiles are the same as those shown in Figure 5.5).  
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Qualitatively, it is clear that the median TTF associated with all inversion  better 

matches the median ETF, particularly at the resonant frequencies.  

 

Figure 5.12: Median theoretical linear viscoelastic shear wave transfer functions (TTFs) 

between a depth of 150 m and the ground surface for (a) inversion layering 

ratios () of 1.5, 2.0, and 3.0, 3.5, 5.0, and 7.0 and (b) median TTFs 

calculated from all inversion  and the randomized Vs profiles associated 

with the downhole and simplified PS log. TTFs were computed using the 

small-strain damping ratio values proposed in Darendeli (2001) [Dmin]. Also 

shown are the median ETF +/- lnETF. 

 In addition to a qualitative assessment of the various TTFs, it is also helpful to 

have a quantitative measure of how well/poorly the median TTFs match the the median 

ETF. This study utilizes two parameters for quantitative assessment. These parameters 

assess both how well the spectral shapes match as well as the residuals between the two 

curves. For the former, we use a similar approach to Afshari and Stewart (2015). Namely, 

we calculated the Pearson correlation coefficient, r, between the median ETF and the 

median TTF (simply labeled the “ETF” and “TTF” in Eq. (1) and (2), respectively) for 

each  and randomization. A higher r (i.e., closer to 1.0) indicates that the resonant 
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frequencies in the median TTF are better aligned with the resonant frequencies in the 

median ETF. Values of r were computed as follows: 

𝑟 =  
∑ (𝐸𝑇𝐹𝑖(𝑓)−𝜇𝐸𝑇𝐹)

𝑛𝑓
𝑖=1

(𝑇𝑇𝐹𝑖(𝑓)−𝜇𝑇𝑇𝐹)

√∑ (𝐸𝑇𝐹𝑖(𝑓)−𝜇𝐸𝑇𝐹)2
𝑛𝑓
𝑖=1

√∑ (𝑇𝑇𝐹𝑖(𝑓)−𝜇𝑇𝑇𝐹)2
𝑛𝑓
𝑖=1

        (5.1) 

where ETF and TTF represent the mean values of the ETF and TTF across the frequency 

range considered. The summations were performed over nf = 256 frequencies between 1 

and 10 Hz. As noted earlier, the ETF could not be reliably computed below 1 Hz due to 

low signal-to-noise ratios. Above 12-15 Hz, the ETF rapidly attenuates. Thus, r was 

simply computed over a single log cycle from 1 to 10 Hz using 256 logarithmically-

spaced points.   

In order to quantify the residuals between the ETF and the TTF, a transfer 

function misfit, mTF, was calculated, as shown in Eq. (2). Similar to r, mTF was computed 

over a limited frequency range from 1 to 10 Hz with 256 logarithmically-spaced points. 

As with md, an mTF value greater than  indicates that, on average, the median TTF for a 

given  or randomization deviates by more than  standard deviations from the median 

ETF.  

𝑚𝑇𝐹 = √
1

𝑛𝑓
∑

[ln (𝑇𝑇𝐹𝑖)−ln (𝐸𝑇𝐹𝑖)]2

𝜎𝑙𝑛𝐸𝑇𝐹𝑖
2

𝑛𝑓

𝑖=1
           (5.2) 

 The r and mTF values for the median TTFs associated with randomization 

and inversion are shown in Figure 5.13. The r value associated with the median TTF of 

the PS log-randomized Vs profiles is quite poor (i.e., less than 0). One the other hand, the 

r values associated with the inversion and downhole-randomized Vs profiles are 

generally greater than 0.5. The r values associated with the inversion Vs profiles are 

marginally higher than the r values associated with the downhole-randomized Vs 

profiles. The only exception to this is the r value for a  of 5.0. Since it is difficult to tell 

which inversion layering ratio Vs profiles are the best without additional subsurface 



 191 

information (recalling that all layering ratio parameterizations yielded similar dispersion 

misfit values; refer to Table 5.4), it is wise to use a median TTF computed from all . 

Indeed, the r value associated with the median TTF computed from all  is quite high and 

just slightly less than some of the r values calculated from individual layering ratio 

parameterizations.  

 

 

Figure 5.13: (a) Pearson correlation coefficient, r, and (b) transfer function misfit, mTF, 

values associated with the median TTFs calculated from all inversion 

layering ratios () and the randomized Vs profiles associated with the 

downhole data and simplified PS log.   

Values of mTF are shown in Figure 5.13b. The mTF values are generally lowest for 

the median TTFs associated with the inversion Vs profiles, indicating that they best-

capture the median ETF. The only exception to this is the median TTF associated with a 

 of 5.0. Interestingly, the dispersion misfit values associated with this  were some of 

the lowest achieved during inversion (see Table 5.4). This underscores the importance of 

considering multiple parameterizations during surface wave inversion in order to develop 

Vs profiles for site response. Indeed, the mTF value calculated from the median TTF 

associated with all  inversions is among the very best/lowest values. It is also interesting 

to note that the mTF values for the median TTFs associated with the downhole-
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randomized and PS log-randomized Vs profiles are only marginally higher than those 

associated with the inversion Vs profiles, yet, their TTFs qualitatively fit the median ETF 

much more poorly than the median TTFs associated with inversion. This is due to the 

relatively flat nature of the median TTFs for the randomized borehole Vs profiles and the 

fact that the inversion TTFs tend to underestimate the median ETF at the local minima 

(refer to Figure 5.12b). It is worth noting that other qualitative parameters, such as the 

variance reduction parameter described in Thompson (2009), were used to assess the 

quality of fit between the median TTFs and median ETF. Each qualitative parameter has 

its strengths and weaknesses, but the trends indicated by the r and mTF values shown in 

Figure 5.13 remained the same.  In our opinion, the median TTF computed from all  

inversions (refer to Figure 5.12b) provides a far superior fit to the median ETF at this site 

than the median TTFs calculated from randomized suites of Vs profiles based on the 

downhole and PS log profiles. While the quantitative parameters support this assessment, 

the values are not drastically different. This highlights the difficulty of assessing the 

overall agreement of ETFs and TTFs using a single quantitative value and underscores 

the need for more robust methods of comparing TTFs to a measured ETF. 

5.8 IMPROVED REALIZATIONS FROM THE TORO (1995) MODEL 

It is clear from this study, as well as prior studies (e.g., Griffiths et al. 2016b, 

Chapter 4), that the Toro (1995) model may produce many Vs realizations that do not fit 

the experimental site signature and whose calculated site response is inconsistent with the 

true/measured site response. Nonetheless, it is important to note that the site response 

estimates associated with some realizations are consistent with both the site signature and 

the true site response. Thus, it is worth investigating strategies that may be used to reduce 

the number of realizations that produce unrealistic site response estimates in order to 
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develop a more appropriate set of Vs profiles for use in site response analyses. This 

section investigates two strategies that are aimed at this goal. Specifically, (1) the use of a 

more accurate base-case in combination with site-specific parameters is considered, and 

(2) the implementation of a rejection criteria based on the site signature (i.e., 

experimental dispersion and HVSR data) is investigated. 

5.8.1 Site-Specific Randomization Parameters 

The randomization discussed earlier was performed using default/assumed 

parameters applied to each base-case Vs profile (i.e., the downhole and PS log Vs 

profiles). However, the base-case profiles themselves did not yield TTFs that 

satisfactorily matched the empirically measured transfer functions. Thus, it is useful to 

consider whether more satisfactory results can be obtained by performing randomization 

using site-specific parameters in conjunction with a base-case Vs profile whose TTF 

well-captures the ETF. Accordingly, we chose to develop randomized profiles about the 

median Vs profile obtained from a  of 3.0 (Figure 5.10c). We chose this Vs profile 

because, as shown in Figure 5.14c, the resonant frequencies of its TTF are in excellent 

agreement with the median ETF. In order to develop site-specific randomization 

parameters for this base-case, statistics were computed using the 99 inversion Vs profiles 

that were used to compute the median Vs profile. The lnVs parameter used in this 

randomization was layer-specific and ranged from 0.05 to 0.27 as a function of depth. 

Inter-layer correlation was investigated using procedures similar to those described in 

Rathje et al. (2015). Specifically, the normalized residual of the natural logarithm of Vs 

() was calculated for each layer and layer-to-layer correlation was assessed at various 

depths and thicknesses. Overall, there was no strong positive layer-to-layer correlation. In 

fact, many layers showed weak negative correlation. Thus, the inter-layer correlation was 
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set to zero (200 = 0 = 0). It is worth noting that a randomization was performed using 

the default correlation parameters and was found to produce worse results. The layering 

model parameters were determined as described in Griffiths et al. (2016a) and Teague 

and Cox (2016) and found to be: c1 = 1.5, c2 = 0.82, and c3 = 8.0. These parameters result 

in expected layer thicknesses of 1.7 m at the ground surface and 55 m at a depth of 100 

m. The depth to bedrock was found to be most accurately modelled with a lognormal 

distribution with a median depth to rock of 82 m and a lnZrock of 0.15.  

 The Vs profiles from randomization about the median Vs profile from a  

of 3.0 are shown in Figure 5.14a. The variability exhibited by these Vs profiles below 40 

to 50 m appears reasonable when compared to the inversion Vs profiles that were used to 

develop the base-case profile and randomization parameters (refer to Figure 5.10c). 

Nonetheless, similar to Figure 5.4, many near-surface layers are excessively thick and 

stiff, although the site-specific layering parameters (c1, c2, and c3) slightly alleviate this 

issue. Fundamental mode, theoretical Rayleigh wave dispersion curves were computed 

for these randomized Vs profiles, as shown in Figure 5.14b. (In order to perform these 

calculations, assumptions regarding Vp and mass density were made, as described in 

Griffiths et al. 2016a). Interestingly, in contrast to the dispersion curves for the inversion 

Vs profiles (refer to Figure 5.9c), the theoretical dispersion curves computed for these 

randomized Vs profiles do not well-fit the experimental dispersion data above 1 Hz, 

which  indicates that they are not well-capturing the site signature. The individual TTFs 

for these randomized Vs profiles are shown in Figure 5.14c. The median randomized 

TTF now has peaks that correspond very well to the peak frequencies in the ETF at all 

modes.  However, similar to Figure 5.4, the median TTF from randomized Vs profiles 

significantly under-predicts the median ETF at the fundamental and first-higher modes. 

Nonetheless, the median TTF matches the median ETF quite well at the second- and 
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third-higher modes, indicating that there is benefit to using site-specific parameters in the 

randomization. 

 

Figure 5.14: (a) Vs profiles developed via randomization about the median Vs profile 

derived from a layering ratio () inversion of 3.0. Site-specific parameters, 

based on statistics for the suite of Vs profiles from a  of 3.0, were used in 

the randomization. Also shown are (b) the corresponding theoretical 

dispersion curves along with the mean experimental dispersion data for the 

GVDA site and (c) the corresponding TTFs along with their associated 

median and the median ETF +/- lnETF. 

5.8.2 Screening Randomized Vs Profiles Using the Site Signature 

Given that the site response estimates associated with the inversion Vs profiles 

generally well-capture the observed site response, it is useful to consider whether the site 

signature that was used to develop these inversion Vs profiles can be used for screening 

the randomized Vs profiles. Here, we consider the original randomized Vs profiles, 

which were developed by randomizing about the downhole and PS log Vs profiles. In 

order to screen the randomized Vs profiles, we averaged all of the experimental 

dispersion and HVSR data from the area of interest (i.e., the area enclosed by the C-150 

m and C-110 m arrays shown in Figure 5.6). We then calculated theoretical fundamental 

mode Rayleigh wave dispersion curves for each randomized Vs profile and computed an 
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md value between the theoretical curve and the experimental dispersion data from the 

entire site. We did not include the experimental dispersion data from the C-450 m and C-

1000 m arrays when calculating dispersion misfit values because the Vs associated with 

the deepest layer in all randomized Vs profiles is less than 2500 m/s. Consequently, no 

theoretical dispersion curves would fit the low-frequency data obtained from these larger 

arrays. The f0,TTF for each randomized Vs profile was also identified and compared to the 

mean f0,HV (1.98 Hz) for the entire site and its associated standard deviation (0.10 Hz). 

Those randomized Vs profiles with md values greater 3.0 (i.e., whose theoretical 

dispersion curves, on average, are more than 3.0 standard deviations outside of the 

experimental dispersion data) and/or whose f0,TTF was more than 3.0 standard deviations 

above or below the mean f0,HV for the entire site were rejected.   

   The original set of randomized Vs profiles are shown along with the smaller 

subset of screened-randomized Vs profiles in Figure 5.15a and 5.15b for the downhole 

and PS log Vs base cases, respectively. As noted previously, many of the near-surface 

layers associated with the full set of randomized Vs profiles are excessively thick and/or 

stiff. However, the near-surface layers associated with the subset of screened Vs profiles 

are not excessively thick and/or stiff. This is due to the fact that excessively stiff and 

thick near-surface layers result in a poor fit of the experimental dispersion data, as 

illustrated in Figure 5.15c and 5.15d.  
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Figure 5.15: (a, b) Vs profiles, (c, d) theoretical fundamental mode Rayleigh wave 

dispersion curves, and (e, f) TTFs associated with the randomized and 

screened-randomized Vs profiles developed at the GVDA site. Randomized 

and screened-randomized profiles were developed using the downhole (a, c, 

e) and PS log (b, d, f) Vs profiles as base cases. Note that the screened-

randomized Vs profiles were developed by applying a rejection criteria to 

the randomized Vs profiles based on the experimental site signature. Shown 

in (c) and (d) is the mean experimental dispersion data from the GVDA site. 

Shown in (e) and (f) are the median ETF and its associated standard 

deviation.    

 It is clear from Figure 5.15e and 5.15f that the TTFs associated with the subset of 

screened Vs profiles better match the observed ETF. This is underscored by observing the 

median TTF for each set of screened Vs profiles, which well-captures the median ETF at 

the fundamental and first-higher modes. The median screened TTFs associated with the 

downhole and PS log have r values of 0.78 and 0.66 and mTF values are 1.60 and 1.22, 
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respectively. These values are considerably better than those associated with the original 

sets of randomized Vs profiles (refer to Figure 5.13).  

It is important to note that the f0,TTF values associated with the base-case Vs 

profiles (1.73 and 1.49 Hz for the downhole and PS log Vs profiles, respectively) do not 

well-match the measured f0,HV (1.98) or f0,ETF (1.94), although their associated theoretical 

dispersion curves are in good agreement with the experimental dispersion data above 1 

Hz. Thus, even though the base-cases used in randomization did not well-represent the 

site signature or the ETF, a suite of Vs profiles whose theoretical TTFs acceptably match 

the ETF were obtained through randomization about these Vs profiles with a screening 

criteria. Thus, the Toro (1995) randomization model can be quite useful for developing 

realistic Vs profiles for site response provided it is carefully applied with a logical criteria 

for rejecting unrealistic Vs profiles using the experimental site signature. Conversely, the 

blind application of the Toro (1995) model yielded very poor site response estimates. The 

improved match of the median ETF is largely due to the HVSR fundamental frequency 

rejection criteria. The HVSR gives a good approximation of the fundamental mode 

resonant frequency at the site, allowing for a rejection of Vs profiles whose TTFs are 

inconsistent with this frequency. Thus, even if robust dispersion data cannot be developed 

for a site, simple single-station HVSR curves can provide valuable information that could 

aid in selecting reasonable randomized Vs profiles for realistically quantifying Vs 

uncertainty in site response. This underscores the value of performing HVSR 

measurements across the footprint of the site of interest. It is important to note that HVSR 

measurements are very quick to obtain and can be done rapidly by re-positioning a single 

seismometer at numerous points across the footprint of the site.      

Even without dispersion or HVSR data, randomized Vs profiles could be 

potentially eliminated by calculating the time averaged shear wave velocity over the top 
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30 m (VS30) and ensuring that it is reasonably consistent with the original base-case Vs 

profile. Figure 5.16 shows the VS30 values associated with the inversion, base-case, 

randomized, and screened-randomized Vs profiles. Many of the VS30 values associated 

with the original set of randomized Vs profiles are extremely inconsistent with the 

inversion and base-case Vs profiles. In fact, many of the randomized Vs profiles would 

receive a higher/lower NEHRP site classification. On the other hand, the VS30 values for 

the screened-randomized Vs profiles are much more reasonable. As noted in previous 

studies (e.g., Cox et al. 2014; Garofalo et al. 2016b), VS30 can be robustly determined 

with minimal variability. Thus, those realizations yielding excessively high/low VS30 

values should be questioned even if a more robust screening process based on the site 

signature cannot be implemented. 

 

Figure 5.16: VS30 values associated with the layering ration () inversion, base-case (i.e., 

downhole and PS log), randomized, and screened-randomized Vs profiles. 

Dashed lines represent the boundaries of the Natural Earthquake Hazard 

Reduction Program (NEHRP) Site Classes C, D, and E. 

5.9 CONCLUSIONS 

This study compared the observed/empirical linear-viscoelastic transfer functions 

(ETFs) from the GVDA site to the theoretical linear-viscoelastic transfer functions 

(TTFs) calculated from various Vs profiles. These Vs profiles were developed from: 
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invasive borehole measurements, randomization about the invasive Vs profiles, and 

surface wave testing. Although Vs profiles derived from borehole measurements are 

often deemed to represent “ground truth,” the TTFs associated with the invasively-

measured Vs profiles were inconsistent with the observed ETF. This is an important 

consideration because many downhole array sites used to study site effects are 

characterized by a single invasively-measured borehole. In an effort to account for Vs 

uncertainty and achieve a better match of the ETF, Vs randomization was performed 

about the borehole Vs profiles using the Toro (1995) model along with common 

assumptions regarding spatial variations in Vs. However, randomization in this “blind” 

manner (i.e., with no criteria for rejecting unrealistic realizations) yielded poor site 

response estimates.  

Surface wave testing was performed in an effort to obtain Vs profiles whose 

theoretical TTFs better match the ETF than those associated with the invasive and 

randomized Vs profiles. Although the Vs profiles derived from surface wave inversion 

exhibited considerable differences, their TTFs were generally quite similar and matched 

the ETF quite well, particularly at the fundamental and first-higher mode. Thus, although 

surface wave inversion non-uniqueness is an important consideration and a source of 

considerable uncertainty, accurate site response estimates can be obtained if this non-

uniqueness is accounted for in a rigorous manner. Furthermore, the experimental 

dispersion and HVSR data (i.e., the site signature) that were used to perform the 

inversion can be quite useful for assessing candidate Vs profiles.  

The site signature was used to screen the original set of Vs profiles developed 

from blind randomizations. In contrast to the original set of randomized Vs profiles, the 

TTFs associated with the screened Vs profiles were in excellent agreement with the ETF. 

This suggests that randomization can be quite useful if a rational criteria for rejecting 
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unrealistic Vs profiles is implemented. If dispersion data and/or HVSR data are not 

available, this rejection criteria could simply amount to rejecting Vs profiles with 

excessively high/low VS30 values. In any case, this study and previous studies indicate 

that poor site response estimates may be obtained if Vs randomization is performed in a 

blind manner.       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 202 

Chapter 6: Conclusions and Recommendations for Future Work 

6.1 CONCLUSIONS 

Surface wave inversion non-uniqueness is well-established. This non-uniqueness 

is exacerbated by potential ambiguities in the interpretation of surface wave modes and/or 

the subjectivity of defining the inversion parameterization. In many cases, multiple mode 

interpretations must be considered, which increases the computational cost. However, 

even when the surface wave modes can be readily determined, the choice of 

parameterization is significant.   

The Vs profiles obtained from surface wave inversion are highly dependent on the 

inversion parameterization (i.e., trial number of layers and ranges in their respective Vs, 

Vp, and mass densities). In particular, the number of layers and presence or absence of 

potential velocity reversals strongly influences the Vs profiles attained from an inversion. 

In complex geologic conditions such as those at the 14 sites in Christchurch discussed in 

Chapter 2, it may be possible to develop unrealistic, overly-simplistic Vs profiles that 

result in a satisfactory fit of the experimental dispersion data. In such cases, a-priori 

information should be sought and used to aid in the inversion. This information not only 

helps to develop a realistic inversion parameterization, but it also can aid in the 

interpretation of surface wave modes. 

In many cases, a-priori information is not available and a “blind” inversion must 

be performed. In such cases, the full non-uniqueness cannot be captured unless multiple 

parameterizations are considered. In particular, it is important to consider the influence of 

the number of trial layers. If too many layers are included in the parameterization, then 

the experimental dispersion data may be insufficient to constrain all of the unknowns. 

Consequently, the resulting Vs profiles may be overly smooth and may fail to capture 

major velocity contrasts. Conversely, if too few layers are included in the 
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parameterization, then it may excessively restrict the inversion and prevent it from 

finding the “best” possible solution. In such cases, the resulting Vs profiles may place 

large velocity contrasts at incorrect depths. In general, it can be difficult to know if there 

are too many or too few layers in the parameterization. The best way to make this 

determination is to compare Vs profiles developed from inversion of the same surface 

wave data, but with different parameterizations. The “layering ratio” procedure outlined 

in Chapter 3 may be used for this purpose. Nonetheless, in many situations it may still be 

difficult to conclude that one parameterization is best and to definitively rule out the Vs 

profiles obtained from other parameterizations. This introduces Vs uncertainty and the 

implications of this uncertainty on the seismic site response are of interest.  

The layering ratio approach was applied to a synthetic site (Chapter 4) and the 

Garner Valley Downhole Array Site (Chapter 5). Site response analyses were then 

performed on all non-unique Vs profiles obtained from inversion. Interestingly, despite 

major differences in the Vs profiles obtained from different parameterizations, the site 

response estimates were extremely similar and matched the true site response quite well 

at both sites. Moreover, Vs profiles obtained from inversion yielded much more accurate 

site response estimates than those obtained from invasive borehole testing at the GVDA 

Site. This suggests that if surface wave inversion is performed in a rigorous manner, then 

accurate site response estimates may be obtained.  

These site response estimates associated with Vs profiles from non-unique surface 

wave inversions were found to be much more accurate and much less variable than the 

site response associated with Vs profiles obtained from randomization and/or by applying 

an epistemic uncertainty factor to develop upper/lower base-cases. Moreover, this 

research suggests that a robust “site signature”, consisting of the experimental dispersion 

data and the horizontal-to-vertical spectral ratio data, may be used to screen Vs profiles 



 204 

obtained from randomization. In contrast to the original sets of randomized Vs profiles, 

the site response associated with the screened Vs profiles were in excellent agreement 

with the measured site response at the Garner Valley Downhole Array Site. This suggests 

that randomization can be quite useful if a rational criteria for rejecting unrealistic Vs 

profiles is implemented. If dispersion data and/or HVSR data are not available, this 

rejection criteria could simply amount to rejecting Vs profiles with excessively high/low 

VS30 values. In any case, this study and previous studies indicate that poor site response 

estimates may be obtained if Vs randomization is performed in a blind manner.   

6.2 RECOMMENDATIONS FOR FUTURE RESEARCH 

While this dissertation considers many important topics, more research is needed 

in regards to the influence of Vs uncertainty on the seismic site response. Proposed topics 

for future study are as follows: 

1) A systematic investigation of the influence of mode interpretations on the 

predicted site response is needed. When the experimental dispersion data is ambiguous 

and multiple mode interpretations are feasible, each interpretation should be used to 

develop Vs profiles. These Vs profiles can vary considerably and thus their associated 

site response may also vary significantly.     

2) While the layering ratio approach outlined here has been demonstrated to be 

very effective in developing an ensemble of realistic Vs profiles, it is time consuming to 

perform. In the future, it is desirable to have more efficient procedures. This can include 

software that streamlines this process and/or alternative, trans-dimensional inversion 

strategies. 

3) The results in Chapters 4 and 5 demonstrate that existing practices of 

accounting for Vs uncertainty, both aleatory and epistemic, may result in inaccurate site 
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response estimates that exhibit excessive variability. In the near future, improvements 

must be proposed to these procedures. In particular, the Toro (1995) model should be 

modified to avoid excessively-thick near-surface layers with unrealistically high Vs 

values. Furthermore, the simple application of a depth-independent epistemic uncertainty 

factor is not a thoughtful means of considering Vs uncertainty and more sophisticated 

procedures are needed. As discussed previously, the uncertainties inherent in the final Vs 

profile(s) are controlled by the technique that was used to obtain the Vs profile(s). Thus, 

strategies of accounting for Vs uncertainty should ultimately take into account the 

method that was used to obtain the final Vs profile(s). This requires a different approach 

from current practice.  

4) While the results in Chapter 5 illustrate that one-dimensional site 

characterization coupled with 1D site response analyses can produce satisfactory 

estimates of the true seismic site response at real-world sites, all sites are truly three-

dimensional in nature. Ultimately, the three-dimensionality of real-world sites and the 

corresponding influence on the seismic site response must be considered. This will 

inevitably involve modifications to the manner in which site characterization is 

performed and the way in which seismic site response analyses are executed.    
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