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Chapter 1: Introduction 

Metabolic Networks Provide a Scaffold for Systems Biology 

With the advent of whole genome sequencing, systems biology has emerged as a 

new approach to understanding biology. A chief goal of systems biology is to predict 

phenotypes from genotypes by creating comprehensive models of cells (1). Due to the 

massive scale of this challenge, cells are not modeled directly as the interaction of 

trillions of molecules, but instead as abstracted sub-models that simulate specific cellular 

processes (2). Metabolic network reconstruction is a subset of systems biology focused 

on associating elements of the genome with metabolic functions and reconstructing the 

network of chemical reactions that make up an organism’s metabolism (3). 

Following the sequencing and annotation of the Haemophilus influenza genome 

(4), the first draft of a complementary genome-scale metabolic network was 

reconstructed, encompassing 488 reactions and 343 metabolites (5). A key metric of 

network completeness for this network and all networks to follow was the production of 

vital chemical compounds, referred to as biomass, from available nutrients (6). 

Organisms that are known to live on well-defined nutrient sources should be able to 

produce all essential biomass metabolites from available nutrients and energy using 

enzymes encoded in their genome. The combination of well-defined chemical laws and 

relatively straightforward measures of success have allowed metabolic networks to 

become the first truly “genome-scale” models that can provide a framework for 

interpreting the function of genes at the scale of an entire cell.  
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Due to their relative simplicity and the depth of existing research, single-cell 

microorganisms such as Haemophilus influenza and Escherichia coli were early targets 

for metabolic network reconstruction (5, 7). Ongoing efforts have greatly expanded the 

reconstructed networks of single-cell model organisms, producing multiple versions of E. 

coli and Sacchromyces cerevisiae networks (8, 9).  The scope of metabolic network 

reconstruction has also broadened to include many more bacteria (10), plants (11), 

animals (12, 13), and humans (14, 15). While early network reconstructions treated 

cellular metabolism as a single compartment of metabolites and enzymes, now networks 

incorporate multiple compartments each with well-defined transporters to model 

eukaryotic cells (16–19). The scope of genome-scale modeling of metabolism has 

steadily expanded to include more cellular systems, including gene expression (20), 

protein synthesis and stability (21, 22), and microbial community interaction (23–25). 

Ambitious work is already underway to create comprehensive “whole cell” models 

integrating many systems into a coherent whole (2). 

Although work to model whole cells has aimed to comprehensively model all 

major cellular systems, the modeling approach for each system necessarily makes 

assumptions and simplifications to allow for tractable computational simulations. The 

aphorism attributed to statistician George Box applies well here: “All models are wrong, 

but some are useful.” As such, whole-cell models are only as valid and useful as the 

component sub-models that they are composed of, and further effort is required to 

improve the theory, methods, and validation of each. The thesis presented here focuses on 

advancing the reconstruction, reconciliation, and validation of metabolic networks of 
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microorganisms using genome sequences and thermodynamic properties of biochemical 

reactions. 

Automated Gene Annotation Provides a Functional Parts List of a 

Cell 

Metabolic networks are composed of a collection of annotated enzymes 

discovered in an organism’s genome, so assembling all available gene annotations for a 

target organism is the first step in building the “parts list” of a metabolic network 

reconstruction. New enzymes are discovered and annotated frequently, but improvements 

in sequencing technology have allowed the rate of genome sequencing to rapidly outpace 

the ability to experimentally probe the function of individual genes (26). In response, 

automated genome annotation tools and services have been developed to keep pace with 

sequencing. Early approaches used gene comparison techniques, such as BLAST (27, 28) 

and HMMer (29–31), to compare new sequences to known genes in order to assign high 

confidence gene annotations (32, 33). Newer approaches use ensembles of genes to guide 

annotation rather than relying on individual comparisons. One notable approach is the 

Rapid Annotation using Subsystems Technology (RAST) service, which developed the 

concept of functional subsystems to guide gene annotation (34–36). Subsystems are 

expert-defined modules of genes that together carry out a coherent function. All 

constituent parts of the subsystem are thought to be present in the organism’s genome for 

the function to operate. For instance, if 90% of genes in the isoprenoid biosynthesis 

subsystem were annotated, the remaining 10% of missing subsystem roles could be 

prioritized for more rigorous analysis with the assumption that they exist in the genome, 
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but have not yet been found. In this way, the many elements of a genome are used to 

mutually inform on individual gene function. 

Metabolic Network Reconstruction Assembles Enzymes in a 

Computational Framework 

While gene annotations from services such as RAST provide a “parts list” of 

enzymes for a draft metabolic network reconstruction, the list of enzymes needs to be 

converted into a format that can represent the “network” aspect of metabolism. Several 

services and tools have been developed to facilitate the initial reconstruction process of 

integrating the enzymes into a coherent model of metabolism (10, 36–42). The Kyoto 

Encyclopedia of Genes and Genomes (KEGG) provides a large database of enzymes and 

associated reactions and metabolites, while also providing comprehensive human 

readable maps of metabolism and extensive literature citations (37). MetaCyc is another 

database that catalogs metabolic pathways and provides an online environment for 

viewing genome elements, pathway maps, logical relations between genes and metabolic 

functions, as well as the related Pathway Tools software suite for computationally 

working with the database (42). EcoCyc is a subset of the MetaCyc database that catalogs 

pathways and related information specific to E. coli, enabling a systems biology approach 

to researching the important model organism (43). Metabolic databases such as KEGG 

and MetaCyc are especially important for network reconstruction because they represent 

the space of known metabolic reactions, and all organism-specific reconstructions are 

necessarily a subset of a metabolic database. The Biochemical, Genetic and Genomic 

(BiGG) knowledgebase created at the University of San Diego took a similar approach 
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but instead focused on creating computational models of metabolism, with a primary 

focus on building constraint-based models, which define a space of allowable metabolic 

phenotypes that are constrained by properties such as reaction irreversibility and 

available nutrient transport mechanisms (41). The COnstraints Based Reconstruction and 

Analysis (COBRA) toolbox, which was developed in parallel to BiGG, provided tools for 

manipulating metabolic network representations, adding or removing constraints, and 

performing computational analyses (40, 44). The Raven Toolbox is similar to the 

COBRA toolbox but adds more integrated reconstruction tools to facilitate automated 

reconstruction of draft metabolic networks (39). Recently, the Model SEED (10, 11) and 

the DOE KBASE (38) projects have aimed to provide comprehensive services from 

genome annotation to metabolic network reconstruction. 

The Model SEED provides an online web service that automatically assembles 

the annotations returned from RAST into a draft metabolic network in common 

computable formats, such as the Systems Biology Markup Language (SBML) (45). In 

addition to assembling the draft network, the Model SEED also generates a hypothetical 

list of biomass components that an organism should be able to produce, given the 

bacterial type (e.g. gram positive or gram-negative bacteria). Reactions are automatically 

added to the network to allow the organism to simulate biomass production in the 

presence of a rich media source (10). This process is known as gap-filling, or network 

reconciliation, as the network is reconciled with an observed phenotype of biomass 

synthesis from available nutrients.  
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Extensive databases of metabolic reactions are crucial for finding network 

reconciliation solutions that expand a metabolic network and allow it to simulate 

observed phenotypes (3). Since databases such as KEGG, MetaCyc, and BiGG were 

developed independently, the databases use different chemical identifiers and 

nomenclature that are often incompatible. Comparing metabolism between different 

metabolic databases remains a major challenge, spurring efforts to create comprehensive 

maps between databases (46) and adopt rigorous chemical naming standards (47, 48). 

The Model SEED used the KEGG database as a starting point for assembling a metabolic 

database, but carefully validated all chemical reactions to ensure no stoichiometric 

inaccuracies were introduced into draft reconstructions (10). This attention to detail 

allowed the draft reconstructions to be computationally analyzed using the COBRA 

toolbox, whereas uncorrected stoichiometric errors would allow network simulations to 

violate physical laws, such as the conservation of matter and energy (49, 50). By creating 

a full reconstruction pipeline with a common database of enzyme, reaction, and 

metabolite definitions, the Model SEED generated thousands of metabolic networks 

which could be analyzed with computational methods and compared between organisms 

(10, 51). 

Incomplete Networks Require Reconciliation with Observed 

Phenotypes 

Despite extensive gene annotation efforts, network reconciliation is required for 

all metabolic networks assembled to date. Even well-studied organisms such as E. coli 

and S. cerevisiae are not annotated in sufficient detail to reconstruct a functioning 
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metabolic network capable of producing biomass from high confidence gene annotations 

alone (9, 52, 53). Considerable effort has been devoted to network reconciliation, with 

initial work focused on developing algorithms to find solutions that made the fewest 

number of network modifications (53, 54). Soon after, other types of data were used to 

select solutions that optimized various parameters, including sequence similarity (49, 55–

58), and predicted thermodynamic reversibility (10, 59). Computational efficiency 

improvements were also pursued to reduce the time required to find gap-filling solutions 

(56, 60). 

Metabolic network reconciliation is accomplished through two primary 

approaches: relaxation of reaction directionality constraints and addition of transporters 

and reactions to a metabolic network without necessarily requiring a corresponding gene 

and enzyme to be identified (53, 61). Relaxation of reaction directionality constraints can 

be simulated by adding fully reversible reaction versions in place of irreversible versions 

that may exist in a model; in this way, network reconciliation can be approached more 

simply as just the addition of new reactions to a metabolic network (53, 56). A 

reconciliation solution is a set of reactions that when added to the metabolic network 

allow for the simulation of an observed phenotype, such as biomass production from 

available nutrients (61). Early reconciliation approaches, such as the SMILEY algorithm 

(54), took a bottom-up approach to gap filling, where reactions were iteratively added to 

metabolic networks until a gap-filling solution was found. Mixed integer linear 

programming (MILP) was used to search through possible solutions until a minimal 

solution was discovered and a variety of extensions to this approach were developed (53, 
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62–64). While bottom-up approaches showed success in finding reconciliation solutions, 

it was computationally intensive and was not guaranteed to find a solution with the 

fewest possible number of added reactions, and in some cases, bottom-up approaches 

were unable to find reconciliation solutions that were possible (49). 

Top-down network reconciliation is an alternative approach to bottom-up 

reconciliation, where many reactions are added to a metabolic network initially, and then 

iteratively removed if their removal does not prevent biomass production (54, 55). By 

adding an entire metabolic database to an organism-specific network, all biomass 

metabolites that could be produced with any reconciliation algorithm can be found, since 

all potential reconciliation reactions are present (49, 55, 56). This allows top-down gap-

filling to achieve the maximal reconciliation of biomass production, whereas bottom-up 

reconciliation can fail to reconcile the production of individual biomass metabolites (49). 

Additional methods have been developed to preferentially select reconciliation 

reactions based on other sources of biological data. For instance, a top-down 

reconciliation approach developed by Christian et al. (55), used BLAST to quantify the 

support for a given reconciliation reaction and then preferentially removed unsupported 

reactions in a stochastic fashion to select more accurate reconciliation reactions. The 

consequence of tradeoffs between top-down and bottom-up had not been rigorously 

analyzed, and important questions remained about what approach could yield more 

accurate networks. Top-down and bottom-up reconciliation approaches are explored in 

depth in chapter 2 of this thesis, along with a hybrid algorithm that builds on the method 

of Christian et al. to preferentially add reactions from phylogenetically related organisms. 
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Early gap-filling approaches that relied on MILP led to multiple solutions due to 

the stochastic nature of MILP algorithms (49, 53). This made it difficult to replicate 

specific reconciliation solutions and it was unclear if simple optimization strategies, such 

as minimizing the number of reconciliation reactions would yield realistic reconciliation 

solutions. Furthermore, the space of possible reconciliation solutions was not well 

understood, although it was clear that multiple solutions existed. New reconciliation 

algorithms are put forth in chapter 3 and 4, where linear programming (LP) and quadratic 

programming (QP) are used in place of MILP to find unique solutions. QP is also used to 

probe the space of possible reconciliation solutions. 

Network Constraints Aim to Align Simulated Phenotypes with 

Observed Phenotypes 

 Constraint-based models of metabolism have become a standard representation of 

metabolic network reconstructions (40). Constraints are applied to metabolic networks to 

limit the space of phenotypes that a metabolic network can simulate, with the goal of 

aligning the model’s feasible space with observed metabolic phenotypes (44, 65). 

Examples of constraints include defining the types of transporters that allow chemicals in 

the environment to pass through the cellular membrane and enter the compartments of the 

cell (17, 18), as well as constraining the direction that a chemical reaction can proceed in, 

effectively making certain chemical reactions irreversible in the metabolic network (66–

69). 

 Simulating steady-state metabolic flux was a primary early motivation for 

developing constraint-based models, and flux balance analysis (FBA) was developed in 
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parallel to constraint-based models (65, 70, 71). FBA uses LP to calculate the intake of 

nutrients, excrement of waste products, production of biomass metabolites, and balance 

of energy carrying molecules while simultaneously accounting for reaction stoichiometry, 

reaction reversibility, upper and lower reaction rate bounds, and maximizing or 

minimizing a hypothesized cellular objective (65). FBA held great promise to massively 

simplify the calculation of metabolic flux, which would otherwise require 

computationally intensive solutions to differential equations for each metabolic reaction, 

and early results showed agreement between measured growth rates and predicted growth 

rate (72, 73). However, the prediction of growth rate was directly tied to the validity of 

the hypothetical cellular objective optimized for using FBA (6), and recent results for 

some metabolic networks have shown only weak agreement with measured values, even 

with the consideration of multiple objective functions (74–76). Despite the potential 

shortcomings of FBA, it still has valuable applications, such as testing network 

completeness by efficiently searching for the existence of biomass production pathways, 

yielding Boolean growth or no-growth calls in place of quantitative growth rates (52, 56, 

77). 

Further constraints to metabolic networks can define the relationship between 

genes, enzymes, and reactions using Boolean relationships (3). Gene-to-enzyme-to-

reaction mapping allows for gene deletions to be simulated in terms of the resulting loss 

of chemical reactions in a metabolic network (77). Simulated gene deletions can be 

compared to experimental gene deletions to assess the quality of the metabolic network 

and the constraints applied to the network (8, 52, 56). Computational gene essentiality is 
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a valuable metric that can be compared to experimental gene essentiality without 

assuming detailed quantitative network parameters related to the rates of reactions in an 

organism. Experimental gene deletions and observed growth or no growth on a variety of 

nutrient sources can be used to guide the application of constraints with the goal of 

aligning simulated phenotypes with experimental phenotypes. Several algorithms have 

been developed to improve metabolic networks using these experimental data (62, 78, 

79). Experimental gene essentiality is assessed by attempting to create a mutant organism 

lacking a single gene, this approach has been systematically performed for every known 

gene in well studied microorganisms such as E. coli (80), but is also becoming possible in 

many new microorganisms by using transposon mutagenesis (81) and the 

CRISPER/CAS9 system (82).  

Despite increasing ability to delete genes, determining if a gene is essential is not 

necessarily straightforward. The essentiality of a gene is strongly determined by the 

specific environmental conditions and available nutrients. To account for this, mutant 

libraries are typically grown on a well-defined nutrient source in standardized conditions. 

If a viable mutant cannot be created, or cannot sustain sufficient growth, the gene may be 

considered experimentally essential, but confounding variables must always be 

considered. Ideally, essential genes are validated by repetition using multiple knockout 

strategies, positive controls where the gene function is independently added back into the 

organism, and wildtype negative controls. However, due to the large scale of mutant 

libraries, such validation is often not yet feasible. Nonetheless, even imperfect calls on 

experimental gene essentiality can provide valuable data points for network validation 
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when interpreted with care (83). Computational gene essentiality is simulated by deleting 

a metabolic network gene, and in turn any reactions that are uniquely associated with that 

gene’s enzymatic product. After the gene is deleted, the production of biomass 

metabolites is tested in conditions that mirror the experimental nutrient conditions, and if 

any essential biomass metabolite can no longer be produced, then the gene is considered 

computationally essential. 

Genes can be classified into four categories when comparing computational gene 

essentiality to experimental gene essentiality. Two are considered correct predictions: 

computationally essential (CE) and experimentally essential (EE), as well as 

computationally nonessential (CNE) and experimentally nonessential (ENE). The other 

two cases, CE-ENE and CNE-EE, are considered incorrect predictions. Metrics such as 

the percent of correct predictions can be used to compare the quality of metabolic 

networks (8, 56). It should be noted, however, that disagreements between computational 

and experimental essentiality do not necessarily guarantee that the network is incorrect 

(3). For instance, it is possible that a gene is experimentally essential, but 

computationally non-essential because the experimental deletion affects a process that is 

not modeled by the metabolic network, such as gene regulation. In contrast, genes that 

are computationally essential but experimentally non-essential indicate definite errors in 

the metabolic network, since some mechanism that is not modeled in the network, but 

exists in the actual organism allows the organism to grow without the associated gene 

product (56). 
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While gene essentiality can provide valuable experimental validation that probes 

the structure of metabolic networks, the sensitivity of gene essentiality to changes in the 

metabolic network has not been reported in detail. This has particular relevance to the 

application of network constraints, and network reconciliation, both of which affect the 

outcome of gene essentiality simulations. Furthermore, since gene essentiality 

simulations are derived from data that is independent of the application of constraints and 

reconciliation reactions, it has the potential to report on the quality of constraints and 

reconciliation algorithms. Important questions that have remained unanswered are: 1) Do 

constraints, such as reaction reversibility constraints, demonstrably improve the quality of 

metabolic networks? 2) Can biological data such as sequence similarity, or chemical data 

such as Gibbs free energy estimates, be used to improve network reconciliation when 

compared to parsimonious reconciliation algorithms that aim to make the fewest network 

modifications? Both of these questions require negative controls to establish baselines for 

network quality and ensure that rational approaches have significant benefits over 

randomized approaches. 

The thesis research presented here focuses on the reconstruction of organism-

specific metabolic networks from genome annotations and methods for 

improving metabolic networks by reconciling them with observed phenotypes, 

specifically the synthesis of essential biomass metabolites. Gene sequence similarity and 

estimations of thermodynamic reaction parameters are used to guide network 

reconciliation through the use of numerical optimization algorithms. Particular attention 

is devoted to the validation of metabolic networks using experimental data, such as gene 
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essentiality, and the development of computational controls using parameter 

randomization. 

Chapter 2: Genome-wide Metabolic Network 

Reconstruction of the Picoalga Ostreococcus  

Synopsis  

The green picoalga Ostreococcus is emerging as a simple plant model organism, and two 

species, O. lucimarinus and O. tauri, have now been sequenced and annotated manually. 

To evaluate the completeness of the metabolic annotation of both species, metabolic 

networks of O. lucimarinus and O. tauri were reconstructed from the KEGG database, 

thermodynamically constrained, elementally balanced, and functionally evaluated. The 

draft networks contained extensive gaps and, in the case of O. tauri, no biomass 

components could be produced due to an incomplete Calvin cycle. To find and remove 

gaps from the networks, an extensive reference biochemical reaction database was 

assembled using a stepwise approach that minimized the inclusion of microbial reactions. 

Gaps were then removed from both Ostreococcus networks using two existing gap-filling 

methodologies. In the first method, a bottom-up approach, a minimal list of reactions was 

added to each model to enable the production of all metabolites included in our biomass 

equation. In the second method, a top-down approach, all reactions in the reference 

database were added to the target networks and subsequently trimmed away based on the 

sequence alignment scores of identified orthologues. Because current gap-filling methods 
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do not produce unique solutions, a quality metric that includes a weighting for 

phylogenetic distance and sequence similarity was developed to distinguish between gap-

filling results automatically. The draft O. lucimarinus and O. tauri networks required the 

addition of 56 and 70 reactions, respectively, in order to produce the same biomass 

precursor metabolites that were produced by our plant reference database. 

Supplementary material is available at Journal of Experimental Botany online, URL: 

https://academic.oup.com/jxb DOI: 10.1093/jxb/err407 

Introduction  

Due to the large research investments in genome projects and the rapid advancement of 

sequencing technologies, the number of sequenced genomes is growing exponentially 

(26, 84). These sequences have great potential value, but their use is limited by the 

amount of time and effort required functionally to annotate a genome. Genes annotated 

with metabolic reactions are readily interpret- able at the biochemical reaction level, but 

their metabolic function is dependent on which other reactions are present. Flux balance 

analysis (FBA) (65) performs such a functional evaluation and has the capability to 

evaluate in which metabolic functions a reaction participates. FBA is therefore an 

excellent technology to evaluate the annotations for metabolic genes (85). Before such 

functional analysis can be performed, all the reactions associated with annotated 

metabolic genes must first be aggregated into a metabolic network. For prokaryotes, 

metabolic network reconstruction has become routine and, in many cases, sequence 

annotation and network reconstruction can be produced in a fully automated fashion (10). 

The quality of such machine annotations is dependent on the ability to take contextual 
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information into consideration during the annotation process. For instance, prokaryote 

annotation algorithms take the location of a gene relative to other functionally related 

genes into account. Eukaryotic genomes have much greater complexity, and the location 

of genes in eukaryotic genomes is much less informative. Consequently, annotation 

methods developed for prokaryotes have struggled when applied to plant genomes, 

requiring that these genomes still be annotated by expert teams (86). A metabolic 

network by itself can potentially provide a wealth of contextual information that is also 

applicable to eukaryotic systems. Metabolism can be viewed as multifaceted, highly 

interdependent machinery, containing functionality that is easily computer interpretable. 

Missing or superfluous reactions in the metabolic network can be readily identified and 

addressed by modifying the network in such a way that the functional metabolic unit is 

restored. 

Here FBA has been applied on metabolic networks to evaluate the completeness of 

metabolic annotations for two Ostreococcus species. The prevalent marine microalga 

Ostreococcus (87) is an ideal model organism in plant biology due to its simplicity and 

its phylogenetic position as an early-diverging green plant lineage (88, 89). O. tauri is the 

smallest known existing eukaryote (<1 µm), it can be kept in culture and can be 

genetically transformed (90). Ostreococcus is haploid (90, 91) and has a single copy 

mitochondrion and chloroplast. Ostreococcus has been discovered relatively recently (92, 

93), but its importance is broadly recognized which has resulted in over 150 scientific 

publications, of which 70 were published in just the last two years. The significance of 

Ostreococcus is further exemplified by the complete genome sequencing of three species, 
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and the resequencing of 15 more. Two of these genome sequences, O. tauri and O. 

lucimarinus, have been manually annotated (88, 89), setting the stage for metabolic 

network analysis.  

Besides the quality of an organism’s annotation, the ability to reconstruct its metabolic 

network algorithmically depends on a well-curated biochemical reaction database with 

gene-to-reaction associations. Gene-to-reaction mappings are organized in an orthology 

database that associates sequences of individual species with a biochemical reaction and 

allows for the identification of probable homology between organisms. FBA requires that 

the reactions included within the metabolic network be balanced at the element level. If a 

reaction is not elementally balanced, FBA will produce biologically meaningless 

solutions. For instance, a network that contains an oxygen unbalanced reaction might 

apply that reaction as part of a cycle consuming all oxygen produced by photosynthesis. 

One of the best known large ontology databases associated with biochemical reactions is 

produced by KEGG (94). This work makes use of the balanced subset of the KEGG 

Orthology (KO) database to associate the gene annotations with biochemical reactions.  

Flux balance analysis of the reconstructed draft networks reveals network functionality 

for some pathways, but more importantly a lack of functionality for others. Non-

functional pathways can be gap-filled by adding reactions to the network until the 

demanded network functionality is achieved (61). Gap-filling requires a large reference 

database of reactions that may be used to fill the network gaps. For this purpose, the 

complete set of balanced reactions in the KEGG KO database was used. The KO 

database spans all kingdoms of organisms and many of the reactions exist in microbial 



 

 18 

organisms only, making them unsuitable for the gap-filling of plant networks. To address 

this potential issue, a layered gap-filling approach was introduced, where the 

Ostreococcus networks were almost exclusively filled with reactions known to exist in 

the set of plants annotated in the KEGG database. This database of plant reactions has 

been called the meta-plant. The meta-plant database was curated using nested layers of 

the KEGG database in an attempt to retain the functionality of the complete KO database. 

Hence, the KO database biomass capability represents the maximum feasible biomass 

any model based on gene annotations from KEGG can achieve. Using a gap-filling 

algorithm, this functionality can be added to smaller databases through the addition of a 

minimal set of reactions from the KO database. The set of all eukaryotic and 

cyanobacteria annotations was gap-filled using the KO database to produce a reduced 

database, which was subsequently used to gap-fill the meta-plant.  

The model systems Ostreococcus, Arabidopsis, and Chlamydomonas represent three 

clades that provide the full scope of green plant-specific genes: ‘the green cut’ (95). 

Curated genome-wide metabolic networks for Arabidopsis (96, 97) and Chlamydomonas 

(55, 98, 99) already exist, and this work presents and compares the metabolic 

reconstructions of two Ostreococcus species.  

Materials and Methods  

Functional gene annotations were collected from the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) Orthology (KO) database on 28 April 2011. This database contains 

mappings between the KEGG KO identifiers, organism-specific genes, predicted enzyme 

functionalities (EC numbers), and KEGG reactions. In addition, the KEGG reaction, 
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compound, and enzyme databases were downloaded on the same date in flat file format 

from the KEGG FTP website. The databases were loaded into Matlab (The MathWorks, 

Natick, MA) structures and organized according to the flat file field names.  

To generate an SBML model from a KEGG genome, metabolic genes must be linked to 

metabolic reactions, but KEGG does not provide such a mapping. Instead, genes 

annotated with a functional role are assigned a KEGG orthology identifier (KO number). 

Most KO entries point directly to a set of reactions, all of which were included. If this 

was not the case, a KO entry often pointed to an Enzyme Classification (EC) identifier, in 

which case all reactions associated with the enzyme activity were added to the KO 

structure. The complete database mapping structure is shown in Supplementary Fig. S1 at 

JXB online.  

The database structure was then reorganized to be rooted at the reaction level. Unique 

reaction identifiers were annotated with (potentially multiple) KO identifiers, EC 

numbers, and genes associated with these KO identifiers and EC numbers. After removal 

of unbalanced or incomplete reactions, SBML models (level 2, version 4) were generated 

using the System Biology toolbox (100). The SBML reaction field was populated with 

the organism-specific subset of the reaction database. Compounds were pulled from this 

reaction set and added to the SBML species field. Multi-organism models were generated 

by creating a union of organism-specific reaction databases. Each model was 

supplemented with a list of spontaneous reactions (see Supplementary Table S1 at JXB 

online). SBML models were subsequently converted to COBRA compliant format to 

access COBRA toolbox functionality. COBRA toolbox v2.0 (40) was downloaded from 
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the openCOBRA project at sourceforge.net. (http://opencobra.sourceforge.net/). The 

generated models were uncompartmentalized. 

Gene comparisons  

Genomes of organisms were downloaded in FASTA format from the KEGG database on 

28 April 2011. A best gene match between genes in O. tauri and O. lucimarinus and 

genes in the union of KEGG plant genomes (meta-plant) was found using the Smith–

Waterman algorithm (101) performed on a TimeLogic DeCypher (Active Motif Inc., 

Carlsbad, CA) gene comparison server. The union of plant genes for each reaction 

present in the KEGG database was used as a query sequence and the gene models of O. 

tauri and O. lucimarinus were used as the databases to search against. In this way, a 

mapping between each metabolic gene in the meta-plant genome and the best matching 

gene from both O. tauri and O. lucimarinus was created. Once the meta-plant model was 

complete, each reaction present in the meta-plant model was associated with the best 

scoring gene comparison. This method allowed every reaction in a large database to be 

annotated with a specific gene from an organism of interest and a corresponding gene 

from a plant database regardless of gaps in previous annotations or poor sequence 

similarity between available genes annotated with a particular reaction.  

Elemental balance of reactions  

The KEGG orthology database (28 April 2011) contained mappings to 4523 reactions. 

The elementary mass balance of each reaction was tested using a custom-developed 

Matlab routine. To prevent stoichiometric matrix errors, reactions that contained the same 
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metabolite as substrate and product were removed (see Supplementary Table S2 at JXB 

online). The results were verified with the elementary balancing functionality of the 

Cobra toolbox and no discrepancies were found. Generic compound equations containing 

(n) or R-groups were substituted with a large prime number for n or a large arbitrary 

group for R-groups to ensure that elemental balance was maintained in reactions with 

non-explicit formulas. In 601 reactions an imbalance in H, C, N, O, P or S, or an 

imbalance in n or R-groups was detected. These reactions were removed, with the 

exception of a small set of reactions that were manually balanced to retain the ability to 

reach five biomass precursor metabolites (see Supplementary Table S3 at JXB online).  

Reversibility index for reactions  

The reversibility of reactions was determined using the free energy calculations for 

reactions based on a group theory approach (67, 102, 103), which was further refined by 

the Milo laboratory (104). Elad Noor (Milo laboratory) kindly provided a custom reaction 

list adjusted to pH 7.5 and an ionic strength of 0.3 upon request. The reversibility index 

was generated according to the metric developed by Noor et al. (E Noor et al., 

unpublished data). Default metabolite concentrations were assumed to be 100 µM and 

allowed to vary between 3 µM and 3 mM which corresponds to an index cut-off value of 

1000. Using these constraints, approximately half of the reactions in the KO database 

were considered irreversible. Reversibility information was included in the first two 

kinetic parameters of each reaction following the COBRA format. A reversible reaction 

was added as a chemical description of photosynthesis to allow the model to intake 
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energy. This reaction is listed as R99999 (equation: 2H2O+4 oxidized ferredoxin/4H à 

O2+4 reduced ferredoxin).  

Phylogenetic reconstruction  

The phylogenetic distance among all KEGG plant taxa was inferred from publicly 

available, fully sequenced and annotated genomes. Phylogenetic distance between 

species was estimated from six nuclear protein-coding genes: isoleucyl-tRNA synthetase, 

arginyl-tRNA synthetase, ribosomal protein L14, ribosomal protein S7, DNA-directed 

RNA polymerase alpha subunit, and DNA-directed RNA polymerase beta subunit (see 

Supplementary Table S6 at JXB online). These genes were previously identified by 

Ciccarelli et al. (105) as useful for reconstructing phylogenies among widely divergent 

taxa.  

Gene sequences were downloaded from the KEGG Genome database using the KEGG ID 

as a search string. Many genes have variable copy number within and among taxa; 

therefore, single consensus sequences were generated for genes with multiple copies 

using Clustal X (106) by aligning the copies and generating a single, consensus sequence 

(see Supplementary Table S6 at JXB online). Gene sequences were then aligned across 

taxa using Clustal X with default parameters. The software package jModelTest 0.1(107) 

was used to select the best fitting-model of nucleotide evolution for each gene 

individually using the Akaike information criterion (AIC). The generalized time 

reversible (GTR) model with branch-specific evolutionary rates following a gamma 

distribution (GTR+G) and independent frequencies for each nucleotide (GTR+I+G) was 

chosen for isoleucyl-tRNA synthetase (K01870), while the GTR+G model with equal 
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nucleotide frequencies was chosen for all other genes. Genes were concatenated by hand. 

A maximum-likelihood (ML) tree was then inferred from the concatenated and 

partitioned genetic data set using Garli 2.0 (108). Models parameters estimated using 

jModelTest were used for each gene, and a cladogram based on current systematic 

knowledge (G Weiblen, University of Minnesota, personal communication) was enforced 

as a constraint to ensure accurate topology. All other parameters were left at the default 

values. The default termination criteria were used to determine when the run was 

complete. A Newick string with distances was converted to a distance matrix using the 

ape package for R 2.10.1 (R Core Development Team, 2009) (see Supplementary Table 

S7 at JXB online).  

Network visualization  

Cytoscape v2.8.1 (109) was used to generate metabolic network visualizations from 

SBML level 2 version 1 files. The advanced network merge plugin was used to create a 

difference network for O. lucimarinus against O. tauri and O. tauri against O. 

lucimarinus. The difference networks were combined with the union function to generate 

a complete difference network. The network was rendered with the VizMapper function 

using the yFiles ‘organic’ layout algorithm. Organism-specific reactions were identified 

in VizMapper by storing identifier strings in the sbml ‘name’ field of reactions (109). 
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Results and Discussion  

Functional network analysis  

FBA was used to investigate the ability of reconstructed networks to produce biomass 

components. The unedited O. lucimarinus and O. tauri networks were able to produce 18 

and 0 biomass components, respectively (Table 1). Limited network functionality of draft 

networks reconstructed from genomic databases is not uncommon, and is predominantly 

caused by the presence of gaps in the network. Network gaps arise from missed 

annotations, and in the case of KEGG, disconnects between generic and specific 

definitions of the same metabolites. Other gaps arise from the removal of unbalanced 

equations during the network reconstruction process. The difference in network 

annotation between O. tauri and O. lucimarinus also suggest that O. tauri was annotated 

more conservatively. An example of the conservative annotation of O. tauri was the lack 

of Calvin cycle capability [ribulose-5-phosphate-3-epimerase (EC: 5.1.3.1) was not 

included in the draft network].  

Gap-filling  

Two complementary approaches to gap-filling of metabolic networks exist in the 

literature. Bottom-up gap-filling is based on a mixed integer optimization routine usually 

aiming to add a minimal number of reactions to a network (54). This method can 

distinguish between different classes of reactions either by adding reactions in a preferred 

order, or by associating different weights with the different reaction classes (10). The 
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bottom-up gap-filling method is the most commonly applied approach, and it was used 

for gap-filling all the reference databases described below.  

A top-down approach to gap-filling, pioneered by (55), adds the complete gap-filling 

reaction database to a draft network followed by the iterative removal of the added 

reactions. This removal process is continued until no more added reactions can be 

removed without losing biomass production capability. Both the top-down and bottom-up 

methods are iterative approaches that do not have unique solutions. Candidate gap-filling 

reactions from species closely related to the target species are more likely to feature in 

the target species’ network. By gap-filling reference networks of decreasing taxonomic 

diversity, a layered approach to gap-filling was used that takes advantage of this quality. 

(Fig. 1) With this in mind, gap-filling of the Ostreococcus networks was performed with 

a list of just the reactions that KEGG has associated with the 17 plant genomes in their 

database. This meta-plant network was not free of gaps itself, and has been filled with the 

combined reactions of eukaryotes and cyanobacteria. Similarly, the cyano–eukaryote 

model was gap-filled using the complete KEGG ontology reaction list. The complete 

network database was able to produce 44 out of the 94 defined biomass precursor 

metabolites, which increased to 49 after adding 12 previously H-unbalanced reactions 

(see Supplementary Table S3 at JXB online). After the consecutive gap-filling of 

increasingly small networks, the smaller networks approximated the biomass production 

capability of the ontology dataset (Table 1). This biomass component number fell well 

short of the target list of over 90 biomass precursors, but covered the fundamentals such 

as most amino acids and DNA. To expand the achievable biomass list, the number of 
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balanced reactions in the reference reaction database will have to be increased 

significantly beyond the current number of balanced reactions in the KEGG. To enable 

objective comparison between the different gap-filling solutions for the Ostreococcus 

networks, a quality score was developed. The quality score includes the sequence 

similarity score, and a weighting factor for the phylogenetic distance of the species to 

which sequences are compared.  

To calculate this score, each reaction within the meta-plant network was associated with 

all sequences that were annotated with that reaction. Every gene associated with any 

reaction was than compared with all genes in the O. tauri and O. lucimarinus genomes 

using the Smith–Waterman algorithm. The Smith–Waterman e-score is a likelihood score 

applicable to a set of translated amino acids, which was weighted with the phylogenetic 

distance between respective species: 𝜔 =	∑ −𝑝'/log	(𝑒')' , where e is the Smith-

Waterman e-score and p is the normalized phylogenetic distance score. Each sequence 

comparison thus yields a quality-score, and the best quality score, 𝜔, for each reaction is 

assigned to that reaction in the meta-plant network: 𝜔 = min(𝜔), where j is the number of 

reference sequences associated with the reference reaction. The e-value was capped at a 

value of one to prevent sign inversion. The domain of 𝜔 is from 0 (perfect match) to N 

(very poor match), i.e. if a reaction had been annotated for the target organism, the value 

for that reaction would be zero (zero over minus infinity). A lack of a close sequence 

comparison would result in a value proportional to the phylogenetic distance and 

inversely proportional to the e-value. This quality metric allows for the rapid 

discrimination between gap-filling solutions (Fig. 2). Phylogenetic relationships among 
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plant species included in the KEGG database was inferred using a maximum likelihood 

approach, see the Materials and methods for a detailed explanation. 

Gap-filling of the Ostreococcus networks  

The Ostreococcus networks were gap-filled using the meta-plant network as the reference 

reaction database. To enable the production of all 48 biomass components produced by 

the reference database, the O. tauri and O. lucimarinus networks gained 70 and 56 

reactions respectively (Table 1). The iterative nature of the employed gap-filling methods 

resulted in multiple solutions. The results presented in Table 1, were selected based on 

their overall quality scores. For the O. lucimarinus network, alternative solutions did 

exist that included one less reaction, but these solutions had a lower quality score. Note 

that the number of reactions capable of carrying flux dramatically increased upon gap-

filling, demonstrating the significantly improved connectivity of the networks. The 

included reactions with the worst sequence comparison (O. lucimarinus: e = 0.063, O. 

tauri: e = 0.21) indicates that both networks were filled with at least one highly unlikely 

reaction. This is an unfortunate reflection of the lack of completeness of the gap-filling 

reaction database.  

The bottom-up algorithm enabled the production of only a subset of the 48 biomass 

metabolites. A comparison of the two methods for the O. tauri network is shown in Fig. 

3. For a valid comparison, the top-down method was made to fill the O. tauri network for 

the 36 biomass metabolites that the bottom-up method found. In this direct comparison 

between the best gap-filling solutions for the two methods, the bottom-up method used 

seven fewer reactions than the top-down approach. However, the top-down approach had 
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a better quality score, indicating a more realistic gap-filling solution. Finally, poor 

estimates of the imposed thermodynamic constraints could have led to incorrect 

reversibility constraints, causing unrealistic pathway shunts to accomplish the required 

biomass capability. However, if thermodynamic constraints had not been imposed, flux 

balance analysis could have found solutions that make use of thermodynamically 

infeasible pathways. That the thermodynamic constraints were active is readily 

demonstrated: FBA of the unconstrained O. lucimarinus network yielded a biomass flux 

of 2.079, compared to 0.275 for the constrained version, underlining the importance of 

accurate thermodynamic constraints. Other previously published studies also emphasize 

the importance of thermodynamic constraints to the accuracy of FBA models (110).  

Network comparison  

A large share of the reactions added during the gap-filling process were added to both 

networks (Fig. 4). Only a single reaction originally annotated for O. tauri was added to 

the O. lucimarinus network. Conversely, 13 reactions originally annotated for O. 

lucimarinus were added to the O. tauri network. Two and four reactions were added to 

the networks of O. lucimarinus and O. tauri, respectively, that were unique to the 

networks. Network changes resulting from gap-filling are shown in Fig. 5.  

The differences between the draft Ostreococcus networks were visualized (Fig. 6) by 

calculating a difference network that only shows reactions exclusively present in only one 

network (logical XOR). The same difference network was generated after gap-filling, and 

the changes between the difference networks, which resulted from gap-filling, are shown 

in a third panel. Because only the connected differences between the networks are shown, 
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the connectivity of the difference network shows the alternative routes in central 

metabolism utilized by the Ostreococcus species connecting ribose and glyoxylate 

metabolism. The differentially added reactions show increased divergence between the 

two Ostreococcus networks, but a much larger number of reactions disappeared after 

gap-filling, illustrating the converging effect on the networks resulting from gap-filling.  

Comparison to existing reconstructions  

Due to the relatively recent discovery of Ostreococcus, little biochemical data are readily 

available. Consequently, the presented genome-scale reconstructions were exclusively 

based on genomic orthology. In comparison, for the established model green alga 

Chlamydomonas, at least three large-scale metabolic reconstructions exist (55, 111, 112). 

One of these models (111) is a detailed manual reconstruction that focuses on a 

comparison of predictions for heterotroph, autotroph, and mixotroph growth conditions. 

This reconstruction was not genome-wide (458 metabolites and 484 metabolic reactions), 

but it was compartmentalized and contained an extensive description of photosynthesis to 

investigate linear and cyclic electron transport. The first genome-scale model of 

Chlamydomonas was produced to introduce the bottom-up gap-filling algorithm (55). 

This model was uncompartmentalized, and compares most closely in scope and approach 

to the Ostreococcus models reconstructed in this paper. Recently, a second genome-wide 

Chlamydomonas reconstruction appeared (112) that includes cellular compartmentation. 

This work also addresses the role of light in algal metabolism and is the most 

sophisticated algal model to date. The network has roughly double the number of 
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reactions in the Ostreococcus models, with the Chlamydomonas model having 2019 

reactions and 1069 metabolites.  

Conclusions  

The layered construction of the meta-plant reference database prevented incorporation of 

microbial reactions where possible. However, the bottom-up gap filing algorithm was 

unable to maintain the full biomass capability whilst gap-filling networks of reduced 

taxonomy (see Supplementary Tables S8 and S9 at JXB online). This limitation was also 

encountered during gap-filling of the Ostreococcus networks using the meta-plant 

network. By contrast, the trimming algorithm was able to retain all biomass functionality 

albeit at the cost of requiring more reactions.  

The complete reference database was able to produce just over half of the target biomass 

metabolites. This biomass list is more extensive and varied than most models in the 

literature, but some common biomass components could not be produced (see 

Supplementary Table S9 at JXB online). This may reflect the limited list of balanced 

reactions contained within the KEGG database. Due to the limited size of this reference 

database, the Ostreococcus networks presented should not be regarded as definitive. The 

development of an exhaustive, open source and curated biochemical reaction list specific 

to plants should therefore be a priority in the development of plant-model reconstruction 

technology.  

Although the quality of the reconstructed Ostreococcus networks is not on a par with 

carefully manually curated networks, the reconstruction process highlighted the ability to 

evaluate the completeness of the genome annotation for the Ostreococcus species. The 
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large number of reactions that needed to be added for the evaluated biomass components 

suggests that the O. tauri genome annotation in particular is lacking a substantial number 

of enzyme annotations. Comparison of the two metabolic network reconstructions 

suggested that O. tauri had been annotated more conservatively than O. lucimarinus. The 

difference between the two networks decreased somewhat after gap-filling, suggesting 

that the difference network of the two species was partly the consequence of the under 

annotation of O. tauri.  

Bottom-up and top-down gap-filling approaches are both iterative methods resulting in 

many solutions. The ability to rapidly evaluate the quality of the gap-filling attempt is 

essential if many iterations are run or if the network contains many gaps. The 

Ostreococcus networks contained many such gaps, and the introduced measure for 

network quality provided a valuable tool to discriminate between the many gap-filling 

solutions automatically. The inclusion of the phylogenetic distance for reactions enriched 

the networks with reactions of closely related species, and thus the likelihood of these 

reactions existing within the actual metabolic networks. Recognition of realistic gap-

filling solutions and this first network-wide functional comparison between the 

Ostreococcus species will help guide the comprehensive biochemical characterization of 

Ostreococcus.  
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Tables 

Table 1 

 

Table 1. Scale and functionality of networks.  

The eukaryote–cyanobacteria model was refined using bottom-up gap-filling from the 

KEGG Orthology (KO) database. The meta-plant model was subsequently gap-filled with 

the gap-filled eukaryote–cyanobacteria model using the bottom-up method. Finally, the 

Ostreococcus networks were gap-filled with the gap-filled meta-plant model using the 

top-down approach. In all gap-filling instances, more reactions were added to the model 

than metabolites indicating an increase in overall network connectivity. All producible 

biomass functionality was transferred from the KO model to the eukaryote–cyanobacteria 

model. However, the meta-plant model was only able to produce 48 biomass 

components, one less than the KO and eukaryote–cyanobacteria models. Both 

Ostreococcus models were able to produce all 48 biomass components from the meta-

plant model after gap-filling even though no biomass components were producible in O. 

tauri prior to gap-filling. Gap-filling increased the percentage of reactions with feasible 

fluxes in both Ostreococcus species, suggesting a substantial improvement in network 
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connectivity as a result of gap-filling. Feasible (%) = 100 * number of feasible 

fluxes/(number of feasible fluxes+number of non-feasible fluxes).  

 

 

Figures 

Figure 1 

 

Figure 1. Stepwise database generation. 

The meta-plant reaction reference database was procured using a nested gap-filling 

approach. The KO database (gene annotated reactions in KEGG) was evaluated for 

biomass production capability, representing the maximum feasible biomass that any 

model based on gene annotations from KEGG can achieve. Using the bottom-up gap-

filling algorithm, this functionality can be added to smaller databases using a minimal set 

of added reactions. The set of all eukaryote and cyanobacteria annotations (A) was gap-

filled using the KO database (B), and, in turn, the meta-plant network was gap- filled 
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using this gap-filled database (C). Reactions were therefore added with increasing 

priority from the database of closer phylogenetic proximity. KO reactions, which were 

not included in the euk- cyano model gap-filling (1) cannot be used to gap fill the meta-

plant model. (2) Reaction added to gap-fill the euk-cyano model. (3) Reactions added to 

the meta-plant from the euk-cyano database.  
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Figure 2 

 

Figure 2. Network quality metric. 

Draft networks can be gap-filled with the fewest number of added reactions (1A). 

Alternatively, reactions can be weighted for their likelihood to exist in a target organism 

(1B) by considering the phylogenetic proximity (2A) and sequence orthology (2B) of best 

matching sequences. Both factors were included in a quality metric (x) and associated 

with each reaction (3). This allowed the top-down gap-filling algorithm to preferentially 

include reactions with low (good) quality scores and was used to compare gap-filling 

results. All genes annotated with a particular reaction in the reaction database have a best 

match with a gene in both O. tauri and O. lucimarinus. A gap-filling solution with the 
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lowest sum of quality metrics for all reactions in a network was considered the best 

solution.  
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Figure 3 

 

Figure 3. Comparison of top-down and bottom-up gap-filling. 

Fair comparison between top-down and bottom-up gap-filling requires the biomass 

targets to be identical. Because the bottom-up algorithm was only able to produce 36 

biomass components, these same 36 components were used as a target for the top-down 

method. Top-down gap-filling added a total of 57 reactions to the draft O. tauri metabolic 

network of 801 reactions. The bottom-up algorithm added 50 reactions, 44 of which were 

also present in the top-down solution. Although the bottom-up algorithm included seven 

fewer reactions than the top-down algorithm, the combined quality score for the 50 added 

reactions was 6.204 whereas the top-down method scored 6.044 for 57 reactions. 

Comparison of gap-filling results  

Before gap-filling 25.8% of the reactions in the O. tauri network were capable of 

carrying flux (Feasible) using the available uptake metabolites while allowing all other 

metabolites to export. After bottom-up gap-filling 48% of the reactions were capable of 

carrying flux. After top-down gap filling 48.9% of reactions could carry flux. When the 

top-down approach was made to produce the entire meta-plant biomass target of 48 

reactions, 70 reactions were added with a combined quality score of 7.252 and 49.8% of 



 

 38 

the reactions in the network could carry flux. The network quality score is the sum of all 

quality scores of the reactions included in the network, and the maximum x-value 

indicates the worst reaction quality score of the included reactions.   
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Figure 4 

 

Figure 4. Reactions added by gap-filling to O. tauri and O. lucimarinus. 

 The draft networks of O. tauri and O. lucimarinus consisted of 801 and 908 reactions 

respectively, and contained an overlap of 765 reactions. The gap-filling process added a 

total of 70 reactions to O. tauri and 56 reactions to O. lucimarinus. O. tauri and O. 

lucimarinus shared 53 gap-filled reactions, which were present in neither draft network. 

O. lucimarinus donated 13 reactions to O. tauri during the gap-filling process, but O. 

tauri only donated one reaction to O. lucimarinus. Only six gap-filled reactions were 

unique to a single network, four were added to O. tauri and two were added to O. 

lucimarinus. Despite the large amount of shared reactions added during the gap-filling 

process, the networks retained many of their unique reactions (reactions present in only 

O. tauri or O. lucimarinus): the gap-filled O. tauri contained 39 unique reactions, and the 

gap-filled O. lucimarinus contained 132 unique reactions.  
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Figure 5 

 

Figure 5. Comparison of O. lucimarinus and O. tauri.  

To produce all 48 meta-plant biomass targets, the top-down gap-filling added 56 

reactions and 34 metabolites to O. lucimarinus, and 70 reactions and 43 metabolites to O. 

tauri. Fewer metabolites than reactions were added in both cases, indicating that the 

network connectivity had improved for both O. lucimarinus and O. tauri. Upon gap-

filling, an additional 133 reactions in O. lucimarinus and 224 reactions in O. tauri were 

able to carry flux (labelled ‘Feasible’). 153 reactions where required for the minimal 

geometric FBA solution in O. tauri compared with 138 reactions in O. lucimarinus 

(labelled ‘Minimal’). The numbers of essential reactions, as determined by reaction 

knockouts, in both Ostreococcus networks were similar: 82 in O. lucimarinus and 83 in 

O. tauri. 14 more essential reactions were added to O. tauri after gap-filling (labelled 

‘Essential’).  
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Figure 6 

 

Figure 6. O. tauri compared with O. lucimarinus before and after gap-filling. 

(A, B) Reactions present only in O. tauri or O. lucimarinus before and after gap-filling 

following binary XOR logic. Reactions present only in O. tauri are shown as light-grey 

nodes and reactions present only in O. lucimarinus are shown as dark-grey nodes, 
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metabolites are represented by small black nodes. (C) The third network shows the 

differences between the O. tauri XOR O. lucimarinus before and after gap-filling, 

including the EC numbers of the selected reactions. The networks show the largest 

connected component of the XOR graphs in the union of the before and after conditions, 

and are thus a subset of the total XOR networks between O. tauri and O. lucimarinus. 

Reactions represented with squares were removed from the O. tauri XOR  

O. lucimarinus network during the gap-filling process by adding the corresponding 

reaction to the other species’ metabolic network. These reactions represent functionality 

that converged as a result of gap-filling. Stars indicate new additions to the O. tauri XOR 

O. lucimarinus network as a result of gap-filling. Star reactions were required by only 

one organism during the gap-filling process and represent diverged functionality. The 

only star reaction for O. lucimarinus shown here is EC 2.6.1.44 alanine–glyoxylate 

transaminase. This reaction converts glyoxylate (3) and L-alanine (2) into pyruvate (1) 

and glycine (4) and is not present in O. tauri. O. tauri also diverged with four unique 

reactions, one of which (1.4.3.3, D-amino-acid oxidase) involved the interconversion of 

glyoxylate (3), hydrogen peroxide (5), and ammonia (6) to glycine (4), O2 (not shown), 

and H2O (not shown). The converged reactions 2.4.2.10 and 4.1.1.23 demonstrate the 

gap-filling of a missing reaction in O. tauri by incorporating reactions from O. 

lucimarinus. Reaction 2.4.2.10 converts ortidine 5’-phosphate (8) and diphosphate (not 

shown) into orotate (10) and 5- phospho-alpha-D-ribose 1-diphosphate (11). Reaction 

4.1.1.23 converts orotidine 5’-phosphate (8), into uridine monophosphate (UMP) (7) and 

CO2 (9). EC number key: 1.5.1.5 methylenetetrahy- drofolate dehydrogenase; 3.5.4.9 
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methenyltetrahydrofolate cyclohydrolase; 6.3.4.3 formate-tetrahydrofolate ligase; 

2.6.1.44 alanine–glyoxylate transaminase; 1.7.7.1 ferredoxin-nitrite reductase; 1.4.3.3 D-

amino-acid oxidase; 5.4.99.5 chorismate mutase; 2.4.2.10 orotate 

phosphoribosyltransferase; 4.1.1.23 orotidine-5’-phosphate decarboxylase; 3.2.2.1 purine 

nucleosidase; 2.7.1.15 ribokinase. 
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CHAPTER 3: Sequence-based Network Completion 

Reveals the Integrality of Missing Reactions in 

Metabolic Networks 

Synopsis 

Genome-scale metabolic models are central in connecting genotypes to metabolic 

phenotypes. However, even for well-studied organisms such as Escherichia coli, draft 

networks do not contain a complete biochemical network. Missing reactions are referred 

to as gaps. These gaps need to be filled to enable functional analysis, and gap-filling 

choices influence model predictions. To investigate if functional networks existed where 

all gap-filling reactions were supported by sequence similarity to annotated enzymes, 

four draft networks were supplemented with all reactions from the Model SEED database 

for which minimal sequence similarity was found in their genomes. 

Quadratic programming revealed that the number of reactions that could partake in a gap-

filling solution was vast: 3,270 in the case of E. coli, where 72% of the metabolites in the 

draft network could connect a gap-filling solution. Nonetheless, no network could be 

completed without the inclusion of orphaned enzymes, suggesting that parts of the 

biochemistry integral to biomass precursor formation are uncharacterized. But, many 

gap-filling reactions were well-determined, and the resulting networks showed improved 

prediction of gene essentiality compared to networks generated through canonical gap-

filling. In addition, gene-essentiality predictions that were sensitive to poorly determined 
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gap-filling reactions were of poor quality, suggesting that damage to the network 

structure resulting from the inclusion of erroneous gap-filling reactions may be 

predictable. 

Supplementary material is available at Journal of Biological Chemistry online, URL: 

http://www.jbc.org/ DOI: 10.1074/jbc.M114.634121 

Introduction 

Metabolic network reconstructions are instrumental in aggregating metabolic knowledge 

about organisms (1–3). Network reconstructions have steadily grown in size, reflecting 

increasingly comprehensive genome annotations (4–7). In addition, reconstructions have 

grown in complexity. Current reconstructions contain detailed gene-to-protein-to-reaction 

(GPR) mappings, thermodynamic constraints, and in some cases, signal transduction layers 

(8–10). The most sophisticated reconstructions have been extensively curated (6, 11, 12), 

but draft reconstructions are now mostly machine-generated or machine-assisted (7, 13–

16). The Model SEED uses annotations from the “Rapid Annotation using Subsystems 

Technology” (RAST) web service (17, 18) as part of a network reconstruction pipeline for 

prokaryotes (15). In addition to a starting point for curated reconstructions, draft metabolic 

networks facilitate interpretation of the metabolic capabilities of newly sequenced 

organisms or communities of organisms (7, 19, 20). 

Metabolic networks are reconstructed in a bottom-up fashion from identified genes 

following genome annotation (21). Knowledge of metabolic pathways can guide gene 

annotation, as implemented by the Pathway Tools software (22). Similarly, RAST 
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simultaneously annotates genes that are part of a metabolic subsystem (18), utilizing 

mutually corroborating information on genes involved in closely related metabolic 

processes. As a logical extension of the subsystem approach, network-wide mutually 

corroborating information may be used to guide reconstructions. An application of this 

concept is to require draft networks to be able to carry out the production of all essential 

cellular building blocks, collectively referred to as biomass, from a well-defined media 

source (23).  

Metabolic networks resulting from assembling all reactions inferred from gene annotations 

(draft networks) are currently unable to describe the synthesis of all biomass components. 

Draft networks contain gaps, isolated reactions, and reactions that cannot carry flux under 

any circumstances (1). Although isolated or blocked reactions are easily identified (24), it 

is not obvious whether they result from under-annotation or over-annotation. Hence, an 

isolated reaction may need to be connected through additional reactions that were under-

annotated in the draft network, or the isolated reaction resulted from a spurious annotation. 

Gaps in the network pose the opposite problem: although a network can be readily 

completed to enable production of all biomass components (25), the location of the actual 

missing reaction may be illusive. The appearance of gaps in metabolic networks is not 

exclusively the result of under-annotation. Incorrect reaction reversibility assignments 

(thermodynamic constraints) (26), or stoichiometric constraints resulting from dead-end 

metabolites, may also prevent production of biomass components (25, 27). Lastly, part of 

the biochemistry of an organism may not have been associated with genes, or the 

biochemistry may yet to be discovered. Adding reactions to fill these gaps is known as 
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“gap-filling” and has been the subject of considerable inquiry and has been reviewed in 

detail elsewhere (24).  

Commonly, mixed integer linear programming (MILP) optimization is used to perform 

bottom-up gap-filling (27). In this approach, reactions are iteratively added until production 

of biomass becomes feasible, often while minimizing the number of reactions required (15, 

25, 27). Several other optimization strategies have been reviewed here (28). In the case of 

the Model SEED, reactions are prioritized based on their nature. For instance, adding an 

internal reaction incurs a lower cost than adding a transporter. Bottom-up gap-filling works 

well for well-annotated genomes, but for networks that require extensive gap-filling a top-

down approach is more robust (29). In the more recently developed top-down methods, all 

gap-filling reactions are added, followed by the successive preferential removal of 

unneeded gap-filling reactions with little or no sequence similarity in the genome of the 

organism for which the network is reconstructed (14, 29, 30). Prioritization of the removal 

of reactions without sequence similarity minimizes the inclusion of locally (enzymes with 

an associated sequence that is not present in the target genome), and globally (reactions 

without sequence association) orphaned reactions. Very recently, a bottom-up MILP 

approach also used sequence similarity as a likelihood metric for the existence of a gap-

filling reaction in the target genome (31). Gap analysis itself has been used to identify 

knowledge gaps in human metabolism (32) and to leverage contextual information of 

networks to hypothesize gene function (33). 

This work investigated the need for adding gap-filling reactions to draft networks, the 

extent for which sequence similarity to enzymes can be found for these reactions, and how 
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orphaned enzymes influence gene essentiality predictions by metabolic networks. To 

assess the extent that sequence similarity to known enzymes can support the choice of gap-

filling solutions, new linear programming (LP) and quadratic programming (QP) based 

gap-filling problems were formulated that minimize the utilization of unsupported 

reactions. All gene sequences associated with the Model SEED gap-filling reaction 

database (11,858 reactions, received on April 20, 2012) (15) were queried against four 

prokaryotic genomes and unique gap-filling solutions were retrieved that minimized the 

utilization of unsupported reactions. Unlike recently reported BLAST-weighted MILP-

based work (31), the networks resulting from our approach outperformed networks gap-

filled by the Model SEED (15). 

Experimental Procedures 

Metabolic networks, biochemistry database, and gene annotations 

Metabolic networks for Streptococcus pneumoniae, Bacillus subtilis, Escherichia coli 

MG1655, and Acinetobacter baylyi ADP1 were downloaded from the Model SEED 

(http://seed-viewer.theseed.org/) on May 3, 2013 (15) along with media conditions and 

biomass formulations. The Model SEED gap-filling biochemistry database, experimental 

gene-essentiality results, and associated media formulations were kindly provided by 

Chris Henry (Argonne National Laboratory, IL). Gene annotations for 891 prokaryotic 

species were downloaded from the RAST sapling server (34), totaling 690,445 genes 

encoding 7,218 functional roles. The biochemistry database maps genes to reactions 

through the use of functional roles and enzyme complexes made up of functional roles 
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(15). Table 2 includes a summary of the size of the downloaded Model SEED database 

and draft metabolic networks. 

Identification of functional roles 

For each functional role in the biochemistry database, a BLAST amino acid database was 

generated using all protein sequences associated with that particular role. The complete 

genomes of target organisms were queried against each functional role BLAST-database 

using BLASTX (35) with the BLOSUM62 scoring matrix (36). The E-values for the best 

BLAST high-scoring segment pairs (HSPs) from each functional role database query 

were used to weight biochemical reactions. E-values were chosen because they are 

comparable between different calls against distinct functional role databases and they 

correct for multiple comparisons by penalizing the score by both the length of the enzyme 

database and the length of the target genome (37). Only the lowest E-value was recorded. 

To adjust the weights for each enzyme complex independently, duplicate reactions were 

created so that each complex had an independent mapping with a reaction. Reactions 

were weighted with the geometric mean of the E-values for the constituent roles of an 

enzyme complex. This treats the E-values as probabilities in determining the support for 

the existence of an enzyme, which is here defined as enzyme sequence support (ESS). 

Reactions with an ESS of less than 1.0E-240 were set to the value of 1.0E-240. Reactions 

were weighted by the logarithm of the ESS values of the associated enzymes:  

 (1) 

where WR is the weight for a reaction, ER is the ESS for a reaction, and Emin is the 

minimum E-value. This formulation results in small weights for well-supported reactions 

minln( ) ln( )R RW E E= -
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relative to unsupported reactions, while constraining the weights to a smaller numerical 

range, which improved the numerical stability of the LP and QP solver software. 

Gene essentiality and metabolite production  

Flux balance analysis (FBA) (38) was used to check for the existence of a synthesis route 

for individual biomass components. A gene was classified as computationally essential if 

removing the reaction(s) uniquely associated with an enzyme complex resulted in a 

network that could not carry flux greater than 1.0e-6 to biomass. Similarly, an individual 

metabolite was classified as producible if a flux solution could be found that carried a 

flux >1.0e-6 of the tested metabolite through an export reaction that was temporarily 

added for testing purposes (25). 

Gap-filling algorithm 

The BLAST-weighted LP gap-filling algorithm was formulated as:  

  (2) 

Such that:       (3) 

where w is a column vector of weights (Eq. 1) and v is a column vector of reaction fluxes 

including separate terms for forward and reverse reactions. The stoichiometric matrix (S) 

relates reactions to metabolites through stoichiometric coefficients. A negative value in 

the stoichiometric matrix specifies a metabolite that is consumed by a reaction, and a 

min
v
f (v) = wTv

Sv = 0
0 ≤ v ≤ vmax
vbio =1e−3
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positive value describes the production of a metabolite by a reaction. S has dimensions m 

(metabolites) by 2n (n reactions, 2n for both directions). The constraint Sv=0 enforces 

that all metabolites have a net balance of production and consumption, known as a mass 

balance constraint.  vmax is a vector of upper bounds on reaction fluxes, vbio is the 

required flux through the biomass reaction. Similarly, a weighted QP gap-filling 

algorithm was formulated as: 

   (4) 

Such that:       (5)

 

where W is a diagonal matrix of the weights. Other terms were identical to the LP 

formulation, except that reactions did not need to be divided into forward and reverse 

directions and were constrained directly using two vectors: vmin and vmax. The QP 

formulation results in fluxes that minimize the sum of weighted squared fluxes, which 

effectively distributes fluxes across available biomass routes inversely proportional to the 

weights and number of reactions of a given route.  

Software 

LP and QP problems were solved with CPLEX™ (IBM, Armonk, New York, 

http://www.ibm.com/). LP problems were solved using the dual simplex solver to 

minimize constraint violations. Custom Matlab™ (Mathworks, Natick, Massachusetts, 

http://www.mathworks.com/) and Python (www.python.org) scripts were used for the 

min ( )f = T

v
v v Wv

1 3biov e
£ £

= -
min max

Sv = 0
v v v
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preparation of matrices and databases. Producibility of metabolites from media 

components was tested by FBA using the COBRA Toolbox (39).  

BLASTX comparisons for the four target genomes were run on a commodity quad core 

Intel i3 desktop computer, taking roughly eight total hours to complete. Further 

processing of the BLASTX output using custom Python scripts required approximately 

four hours of computation time. 

Results 

Metabolic networks require gap-filling 

Draft metabolic networks for S. pneumoniae, B. subtilis, E. coli MG1655, and A. baylyi 

ADP1 were downloaded from the Model SEED on May 3, 2013. Corresponding 

experimental gene essentiality results of genome-scale single gene knockout libraries 

(40–43), along with mappings to the model genes were provided by the Model SEED 

upon request in October 2011. The four organisms were selected because the associated 

gene knockout libraries were generated through full-length gene deletion methods rather 

than transposon insertion methods. Transposon knockouts can display complex gene 

knockdown behavior which complicates the interpretation of gene essentiality predictions 

(44). The gap-filling reactions added by the Model SEED were stripped from the 

downloaded models. In addition, all genes not directly associated with metabolic 

reactions were not evaluated to limit gene essentiality evaluations to precursor 

metabolism only.  
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The draft networks now contained gaps resulting from under-annotation of the genome, 

incorrect reaction reversibility constraints resulting from inaccurate Gibbs free energy 

estimates, and stoichiometric constraints caused by dead-end metabolites. Consequently, 

there were three approaches to gap-fill metabolic networks by addressing each of the 

three causes. To test if removal of thermodynamic constraints alone could enable biomass 

production, all reactions were made reversible. The existence of a route to biomass was 

tested using FBA by maximizing flux through the biomass reaction. No such route 

existed for any of the four networks, demonstrating that removal of thermodynamic 

constraints alone was insufficient to gap-fill the tested networks. Removal of 

stoichiometric constraints caused by dead-end metabolites by allowing all metabolites to 

leave the network was also insufficient. Furthermore, a combination of relaxing 

thermodynamic constraints and allowing metabolites to leave the network (all reactions 

in the metabolic network were made reversible and all metabolites could leave the 

network) also did not result in feasible biomass production in the networks. Hence, 

addition of reactions to all tested metabolic networks was necessary.  

Network completion requires reactions with no enzyme sequence support 

(ESS) 

For all further gap-filling approaches, the reactions from the Model SEED gap-filling 

database (11,858 reactions, Table 2) were used as candidates for gap-filling (Fig. 7). The 

database included a subset of curated transport reactions, and had been 

thermodynamically constrained using the group contribution method (45). The sequences 

of the RAST annotated genes of all organisms in the Model SEED database were 
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extracted, and a sequence database was generated for each gene. Using the RAST 

mapping between genes, functional roles, enzyme complexes, and reactions, an 

organism-specific weight (Eq. 1) was calculated for each reaction of the gap-filling 

database (Fig. 7, see Experimental Procedures for details).  

To test if networks could be completed by restricting incorporation of reactions with a 

predefined level of support, reactions were divided into three tiers: highly-supported 

reactions (ESS of 1.0e-240), significantly supported reactions (30) (ESS≤1.0e-10), and 

unsupported reactions (ESS>1.0e-10). For each tier, all reactions were added to the base 

models, and FBA was used to evaluate if biomass could be produced. This revealed that 

no networks could be completed with only highly-supported reactions, or even 

significantly supported reactions   (Table 3). This suggested that the tested networks 

required locally orphaned enzymes (no similarity to known enzymes in the organism), or 

globally orphaned enzymes (no known sequence) to produce all biomass components. 

Hence, orphaned metabolic functionality was integral to the core of metabolic networks 

and included reactions essential to biomass production. However, after releasing all 

thermodynamic constraints including those in the gap-filling reactions and stoichiometric 

constraints caused by dead-end metabolites, networks containing only significantly 

supported reactions were able to produce all biomass components. The role of 

thermodynamic constraints on network completion was investigated in detail and will be 

reported in a specialist journal.  
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Non-producible biomass metabolites are distributed across metabolism 

The four tested organisms were unable to produce a significant portion of their biomass 

components, in each case spanning multiple classes of metabolites (Figs. 8 and 9). Some 

of the biomass components in S. pneumoniae, B. subtilis, and A. baylyi that were not 

producible in the base models, were producible with the models that were augmented 

with the strongly supported reactions only. This suggested that the original networks 

were under-annotated. This was especially true for S. pneumoniae, which could not 

produce half of its biomass metabolites (39 out of 79), yet 33 metabolites could be 

produced solely using significantly supported reactions (Fig. 9, Table 3). Only six to 

eight biomass metabolites could not be produced with only supported reactions in each 

organism. The ability of the augmented networks to produce often many more biomass 

components than the base models, even if only the highly supported reactions were used, 

suggests that there was sufficient potential for ESS values to guide gap-filling solutions. 

Two biomass components, acyl carrier protein (ACP) and peptidoglycan polymers, could 

not be produced by any of the organisms. Spermidine and thiamine pyrophosphate (TPP) 

could also not be produced by any organism, but were imported from the media by S. 

pneumoniae (Fig. 8). The gram-positive bacteria S. pneumoniae and B. subtilis required 

the cell wall precursor glycerol teichoic acid (GTA). ACP, peptidoglycan polymers, 

calomide, and GTA could be produced in isolation with significantly supported reactions 

if the biomass reaction was replaced by independent export reactions for all biomass 

components. However, ACP, peptidoglycan polymers, and calomide biosynthesis was not 

required for total biomass production in the models because their precursors were 
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regenerated by the biomass equation itself. All other non-producible metabolites are 

discussed in detail below. 

Note that not all biomass components were necessarily essential, for instance, spermidine 

is part of the canonical E. coli biomass equation, but may not be essential (5, 46). In some 

cases genetic evidence may support the classification of a metabolite as essential if a sole 

pathway synthesizes the metabolite, riboflavin is one such example. In the biosynthesis of 

riboflavin in E. coli, all genes associated with riboflavin biosynthesis were 

experimentally essential (40), suggesting that riboflavin is indeed an essential biomass 

metabolite. It was surprising that the complete synthesis of riboflavin required 

unsupported reactions, despite the final steps in riboflavin synthesis being present in the 

metabolic network (see below).  

Blast-weighted gap-filling 

A weighted LP problem was formulated to incorporate reactions into gap-filling solutions 

depending on their ESS. Each reaction in the gap-filling database was weighted inversely 

proportional to the associated ESS scores (Experimental Procedures). The improbability 

(approximated by 1-E-value) of a sequence similarity score occurring by chance was 

treated as the level of support for an enzyme activity existing in the network. This 

simplification was vulnerable to detecting false positives caused by strong similarity to a 

short sequence or domain only, but assessment at network level immunizes this approach 

to most effects of false positives. Hence, for an incorrect pathway to be included, all 

reactions in a pathway would have to be false positives. Treating support for a reaction as 

a probability, the support for a pathway was expected to scale with the product of the 
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support of the underlying ESS values. Support for the existence of a pathway of n 

reactions may then be described as the product of the ESS values for the individual 

reactions: . To avoid penalties against existing reaction annotations, reactions 

already included in the draft network received a weight of zero. The linear and quadratic 

programming objectives were minimized, while requiring a set flux through the biomass 

reaction (Experimental Procedures). Utilization of LP and QP made gap-filling very fast. 

On a typical desktop computer, solutions were retrieved in seconds, compared to minutes 

for MILP.  

Quadratic programming reveals the gap-filling solution space  

The QP formulation of the weighted gap-filling algorithm minimized the squared sum of 

weighted reaction fluxes. Squaring the weighted reaction fluxes limited large fluxes 

because penalties increased quadratically with flux. Conversely, small fluxes were 

penalized lightly, even if the associated weights are high. This resulted in the distribution 

of flux through alternative gap-filling solutions inversely proportional to the combined 

weights of reactions in a given pathway (Fig. 10). The number of reactions used in a QP 

gap-filling solution can thus provide a lower bound estimate on the number of reactions 

that can participate in gap-filling solutions. QP revealed that several thousand reactions 

could participate in gap-filling reactions for each organism (Fig. 11). Importantly, QP is 

not guaranteed to identify all potential gap-filling routes. Combinations of irreversible 

reactions and reaction weights can lead to hidden gap-filling reactions (Fig. 10). 

Removing reversibility constraints and adding random reaction weights allowed for an 

extreme estimate of gap-filling solutions in the gap-filling database. It was revealed that 

1

n
ii
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even more reactions could potentially participate in gap-filling. For E. coli, this extreme 

QP solution included 7,337 reactions, almost double the number of reactions in the 

constrained QP solution. 

The LP solutions were necessarily always contained in a subset of the QP solution for a 

given set of reversibility constraints and reaction weights. LP solutions that were based 

on uniform weights were mostly, but not always, contained in the QP solution (Figs. 10 

and 11). The solutions of the Model SEED were more frequently outside the QP solution 

space (Fig. 11). The uniformly weighted LP solutions contained the lowest number of 

gap-filling reactions for the four tested networks, and were likely the minimal reaction 

solutions in most cases. Strictly, the uniformly weighted LP solution was a minimal flux 

solution, making it imaginable that an alternative LP solution with fewer reactions, but 

that carries more flux, may exist. In contrast, the weighted LP solutions often contained 

high flux reactions, but only if such reactions were associated with very low weights (Fig. 

9). The weighted LP solution always contained substantially more reactions than either 

the uniformly weighted LP or the Model SEED gap-filling solutions, suggesting that a 

strong enough ESS signal existed to significantly influence gap-filling. LP and Model 

SEED gap-filling solutions often shared several reactions, indicating that some biomass 

components may only be made producible in a limited number of ways, but no solutions 

were close to identical (Figs. 11 and 12).  

The sheer size of the QP solution made it clear that many different gap-filling solutions 

existed (Fig. 12). 78% of the metabolites of the original network were used in the 

quadratic gap-filling solution of S. pneumoniae (Fig. 12), suggesting that there were no 
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obvious metabolites that should serve as connecting metabolites to gap-filling reactions. 

With the size and level of connections in mind, it was surprising that gap-filling solutions 

shared reactions at all. Further investigation revealed that the shared reactions were often 

associated with high ESS values, and sometimes represented a sole gap-filling solution to 

a subset of biomass components (Table 3, S1, S2, available at JBC online). The high ESS 

values of the shared reactions indicated that, in reality, alternative pathways to these 

biomass components may exist, as well as highlighted the possible existence of missing 

biochemistry in the gap-filling database. 

Comparison of computational and experimental gene essentiality 

To investigate the quality of the gap-filling solutions, gene essentiality predictions from 

the gap-filled networks were compared to experimental data of full-length single gene 

knockout libraries. Gene deletions were simulated by removing all reactions that required 

a given gene. Gene essentiality was then predicted from the feasibility of biomass 

production from the specified media using FBA. Gene deletions that resulted in networks 

that could no longer produce biomass were considered computationally essential.  

Networks that were gap-filled with weighted gap-filling (referred to as BLAST LP) 

predicted gene knockout outcomes better than networks filled by the Model SEED or 

uniformly-weighted gap-filling (Table 4). Weighted gap-filling outperformed the 

alternatives methods both at the essential as well as nonessential gene predictions. The 

improved performance for both essential gene and nonessential gene predictions was 

striking because the weighted gap-filling added significantly more reactions to networks, 

yet this did not result in fewer true essential gene predictions (except for in B. subtilis). 
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More importantly, it suggested that the ESS signal was strong enough to enhance gap-

filling of draft metabolic networks, even though all the solutions included reactions 

associated with maximum ESS values. All genes associated with supported reactions in 

the BLAST LP gap-filling solutions for the E. coli network were consistent with RAST 

annotations. However, the additional functionalities associated with AceE and SucB (S1, 

available at Biophysical Journal online) were not supported by the literature (47) and 

were likely incorrect. 

A subset of knockout predictions are sensitive to weight changes 

Two sensitivity analyses were performed to investigate the robustness of the network 

support (NS) for the weighted gap-filling solutions, and the influence of the gap-filling 

solutions on gene essentiality predictions. NS is here defined as how well a gap-filling 

reaction selection is determined by the entire network. NS for a reaction is calculated 

from the gap-filling penalty function increase after exclusion of that reaction from the 

gap-filling database. To test which gene essentiality predictions were sensitive to any 

gap-filling solution, 100 Monte Carlo gap-filling simulations of the E. coli network with 

randomly shuffled weights were calculated. This resulted in 97 genes with alternating 

essentiality prediction (S2, available at JBC online), suggesting that a significant portion 

(9.1%) of gene predictions were sensitive to gap-filling. 

In a second sensitivity analysis, weights were shifted by a small, random amount from the 

sequence-derived weights to test sensitivity to variations in the ESS calculation. Only 18 

genes changed predicted essentiality status over 100 runs (S2, available at JBC online). 

This suggested that the sequence-based gap-filling approach was fairly robust to 
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variations in the BLAST sequence comparisons. The number of genes changing 

essentiality prediction was fairly insensitive to the magnitude of the added noise, ranging 

from a normal distribution centered at zero, with a standard deviation from 0.1 to 10 units 

(reaction weights scaled between 0 and 553), indicating that most essentiality predictions 

were well determined by the gap-filling approach.  

The BLAST LP optimal gap-filling solution utilized 15 reactions, eight of which were 

present within all shifted weight Monte Carlo gap-filling solutions. The additional 

reactions varied substantially over the Monte Carlo runs, but the number of reactions that 

were featured at least once in the gap-filling solutions was insensitive to the magnitude of 

the noise (S2, available at JBC online). Of the eight reactions that were always retrieved, 

four had minimal ESS values and four had maximum ESS values, including one 

mandatory reaction for which no alternative existed. Removal of any of the eight 

reactions that were always included resulted in solutions with substantially higher 

objectives, indicating strong NS and explaining their consistent inclusion. 17 of the 18 

genes with variable essentiality predictions were essential in the noiseless solution. 

Remarkably, 15 out of these 17 computationally essential predictions were wrong, which 

was on par with random predictions, considering that only 10% of genes were 

experimentally essential. Note that overall, 70% of the experimentally essential genes 

were correctly predicted as essential. However, of the computationally essential genes, 

only 44.6% were experimentally essential. Disregarding the 18 genes with alternating 

essentiality calls improved the latter statistic to 48.3%.        
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Combined, these results indicated that the ESS signal was strong enough to determine 

>80% of otherwise variable essentiality predictions. The seven gap-filling reactions for 

which the inclusion was sensitive to reaction weights, determined the 18 gene essentiality 

calls that were of very poor quality (S2, available at JBC online). Therefore, the implied 

presence of orphaned enzymes in all networks did not nullify the ability to find 

meaningful gap-filling solutions, but the poorly determined reactions significantly 

deteriorated a subset of essentiality calls.  

Analysis of gap-filling reactions with high ESS values 

A subset of the metabolites that could not be produced by significantly supported 

reactions still required unsupported reactions for production after breaking the biomass 

equation into independent export reactions. These unsupported metabolites were 

investigated in more detail by using the BLAST LP algorithm on the gap-filled networks 

to calculate flux utilization of the gap-filling reactions for unsupported metabolites (Fig. 

13).  

The two reactions required by E. coli for riboflavin, FAD, and TPP synthesis had strong 

NS values and were therefore always included in shifted weight sensitivity analysis. The 

remaining reaction associated with spermidine synthesis was included in 71 out of 100 

solutions. This suggested that these reactions were strongly determined by the gap-filling 

approach. In contrast, only the reaction associated with riboflavin and FAD was always 

included in the shuffled weight sensitivity analysis because no alternative reaction was 

present in the gap-filling database. The reactions for TPP and spermidine synthesis were 

only included in four and 24 cases out of 100 in the shuffled weight solutions 
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respectively. This suggests that despite the lack of ESS support for these reactions, NS 

strongly determined gap-filling reactions among many other poor alternatives.  

Two reactions implicated by NS were supported by circumstantial evidence. The gap-

filling export reaction for TPP may be through spontaneous diffusion due to the chemical 

properties of 4-hydroxy-benzyl alcohol, a byproduct of TPP synthesis. Riboflavin and 

FAD required a reaction for which no alternative existed in the Model SEED database. 

This reaction has been hypothesized in the literature and only recently a gene in E. coli 

has been associated with the activity (48).  

Discussion 

Draft metabolic networks of four species were investigated for the ability to produce a 

complete set of biomass metabolites. The observed inability of networks to produce 

biomass, even after removal of thermodynamic and stoichiometric constraints caused by 

dead-end metabolites, necessitated the addition of gap-filling reactions. Although each 

network could be readily filled using the Model SEED biochemistry database, no 

networks could be filled solely with reactions that were supported by sequence similarity 

to known enzymes. The need for orphaned enzymes implied that all metabolic networks 

were missing essential biochemistry annotations. Possibly, these reactions are of 

unknown biochemistry, suggesting fundamental gaps in our biochemistry knowledge for 

even the best-studied organisms. This realization suggests that our biochemistry 

knowledge or inclusion of this knowledge in the database, rather than the quality of 

machine annotations, is limiting our ability to further improve automated network 

reconstructions. Note that given the very small flux requirement through unsupported 
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reactions (Fig. 9), it is conceivable that some of the orphaned activities may be attributed 

to secondary catalytic activity of promiscuous enzymes. 

The presence of orphaned enzymes in gap-filling solutions, and the very large size of the 

solution spaces, made evident by the quadratic programming, prompted the question of 

how robust the gap-filling solutions were in response to noise, and to what extent gene 

essentiality predictions were influenced by gap-filling solutions. One hundred repeated 

gap-filling runs using randomly shuffled weights for the E. coli network showed that a 

substantial number of reactions could be part of the gap-filling solution, which resulted in 

many alternate gene essentiality assignments (S2, available at JBC online). However, in 

response to noise added to the correct weights, a much smaller subset of genes showed 

alternating gene essentiality. This suggested that many gene essentiality predictions 

sensitive to the gap-filling solutions were strongly determined by the sequence-derived 

weights. Additionally, eight gap-filling reactions were always present in gap-filling 

solutions, suggesting that they were strongly determined by NS. Interestingly, the 

essentiality of the group of genes sensitive to gap-filling was predicted very poorly, 

which suggested that the fallout of the partially arbitrary gap-filling process due to a 

simplified relationship between E-values and ESS, as well as the addition of orphaned 

enzymes, may be limited to a small subset of gene essentiality predictions.            

LP- and QP-based gap-filling algorithms generated fast and meaningful gap-filling 

solutions. LP optimization resulted in gap-filled networks that performed superior in gene 

essentiality predictions in comparison to networks that were filled with existing gap-

filling technology. The large majority of gap-filling reactions was supported by sequence 
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similarity and had often been identified by RAST, yet these reactions had not been 

included in the Model SEED draft models. The fairly insignificant computational time to 

establish ESS values (2 hours per organism on a quad core Intel i3 desktop computer) 

should be well worth the effort even though the network quality improvement may be 

modest. This is particularly true for the inclusion of BLAST LP in network reconstruction 

pipelines.   

This work demonstrated that orphaned enzymes were integral to essential metabolic 

functions, and that a fully supported and functionally complete metabolic network could 

not be assembled even with the extensive compilation of enzymes and biochemistry from 

RAST and the Model SEED. Nonetheless, sequence similarity driven gap-filling 

improved the quality of the networks and identified deficiencies in our biochemistry 

knowledge. The large set of significantly supported gap-filling reactions in all gap-filling 

solutions showed the potential for network-based identification of candidate gene 

annotations. Truly realistic models will likely require further expansion of the Model 

SEED biochemistry database, or the discovery of not yet observed metabolic reactions 

and their gene associations. 
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Tables 

Table 2 

 

Model SEED 

Gap-Filling 

Database 

Streptococcus 

pneumoniae  
Bacillus subtilis  

Escherichia coli 

K-12 MG1655  

Acinetobacter 

baylyi ADP1  
Number of functional roles 7,218 1,496 2,606 3,658 2,200 

Number of unique reactions 10,516 880 1,537 1,638 1,287 

Number of metabolites 7,732 848 1,280 1,278 1,095 

Number of enzyme complexes 

(equal to number of reactions 

including duplicated reactions) 

11,858 NA NA NA NA 

Number of genes 690,445 480 952 1067 701 

Table 2. Model SEED database and model summary. 

Metabolic networks produced by the Model SEED are subsets of the complete Model 

SEED gap-filling database. Relationships from gene to functional role to enzyme 

complex to reaction are encoded as a gene to reaction relationship in draft metabolic 

networks, thus removing the enzyme complex abstraction from the model. This compact 

encoding of relationships allows gene knockouts to be quickly translated into reaction 

knockouts in draft networks. 
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Table 3 

Biomass metabolites producible with: 

Streptococcus 

pneumoniae  Bacillus subtilis  

Escherichia coli K-12 

MG1655  

Acinetobacter baylyi 

ADP1  

Base model 39 57 60 47 

Highly-supported reactions  

(ESS = 1e-240) 

41 74 60 51 

Significantly supported reactions 

(ESS < 1e-10) 

71 76 66 61 

All reactions in gap-filling database 79 83 73 67 

Table 3. Biomass components that require gap-filling. 

To investigate which biomass metabolites required gap-filling, FBA was used to 

maximize the export of each individual biomass component, given the stoichiometric and 

thermodynamic constraints imposed on the network. An exchange reaction was added for 

each biomass component that was tested, and FBA was used to maximize flux through 

each component exchange reaction in turn. Metabolites that could not be exported at a 

flux greater than a numerical cutoff of 1.0e-6 were considered non-producible. 

Production of the individual biomass components was attempted using gap-filling 

reaction sets with three different levels of support, as well as the base models with no 

gap-filling reactions. 
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Table 4 

 Gap-filling 
method E. coli B. subtilis A. baylyi S. pneumoniae 

Essentiality  EE ENE EE ENE EE ENE EE ENE 

Computationally  
essential 

BLAST LP 75 93 60 84 111 37 38 49 

Model SEED 75 94 58 77 110 39 37 50 

Uniform LP 75 93 58 83 111 36 37 50 

Computationally 
nonessential 

BLAST LP 32 864 39 765 110 333 38 157 

Model SEED 32 863 41 772 111 331 39 156 

Uniform LP 32 863 39 766 110 334 39 156 

Table 4. Essentiality predictions by gap-filled networks. 

Compared to the Model SEED and uniformly-weighted gap-fillings, BLAST LP resulted 

in metabolic networks that had equal or improved predictions for both essential and 

nonessential genes in three out of four organisms. Surprisingly, the uniformly-weighted 

solutions, which always contained the fewest reactions, did not result in networks with 

more computationally essential genes. Essentiality predictions are compared to 

experimentally essential (EE) and nonessential (ENE) observations. 
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Figures 

Figure 7 

 

 

Figure 7. Gap-filling algorithm. 

Weighted biochemistry databases were generated for target organisms by comparing the 

target genomes to functional role-specific BLAST databases for each known enzyme 

functional role in the RAST database. The best HSP returned from each database search 

was translated into a weight value for the reactions associated with the enzyme function. 

LP was used to select an optimally supported gap-filling solution from the weighted 

database and QP was used to identify a space of possible gap-filling solutions.  
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Figure 8 

 

Figure 8. Comparison of metabolites that required unsupported reactions to become 

producible. 

All four organisms shared a small subset of metabolites that required unsupported 

reactions. Further shared metabolite groups were Gram-specific, with Gram-negative 

species requiring fewer unsupported metabolites. Not all organisms had identical biomass 

equations, metabolites colored black were shared in all biomass equations, but 

metabolites colored green were specific to E. coli and metabolites colored blue were 

specific to B. subtilis and S. pneumoniae.  Metabolite abbreviations: (FAD: flavin 

adenine dinucleotide, RIBF: riboflavin, ACP: acyl carrier protein, TPP: thiamine 

pyrophosphate, GTA: glycerol teichoic acid, NADP: nicotinamide adenine dinucleotide 

phosphate, NAD: nicotinamide adenine dinucleotide.) 
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Figure 9 

 

Figure 9. Role of reactions in E. coli gap-filling solutions. 

Removal of a single reaction from the gap-filling solutions revealed metabolites for 

which that reaction was essential for metabolite production. This relationship is shown as 

lines connecting the gap-filling reaction axis to the biomass metabolites axis. Reactions 

are grouped by ESS and metabolites are grouped by class. A third axis illustrates the 

amount of flux through gap-filling reactions required for the production of a set biomass 

flux. In all cases, the gap-filling solutions included reactions with maximum ESS values, 

and for which no alternatives existed, in spite of the large space of potential gap-filling 

solutions. The BLAST LP gap-filling solutions minimized flux through unsupported 

reactions, yet a small flux through unsupported reactions was always required.  
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Figure 10 

 

Figure 10. LP vs. QP gap-filling. 

LP minimizes the weighted reaction fluxes to select the most supported pathway. QP 

minimizes the weighted squared flux, which distributes flux in inverse proportion to the 

pathway weights. However, QP does not result in flux through all possible solutions. 

Irreversibility of reactions may result in exclusion of reactions. The bottom figure shows 

how two different reaction weightings on the same network lead to two different flux 

solutions. If the reaction converting magenta metabolites to blue metabolites is 

irreversible, it will only be used in a QP flux solution if the blue to green pathway is 

favorable relative to the magenta to green pathway.  
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Figure 11 

 

Figure 11. Overlaps between BLAST-weighted QP, BLAST-weighted LP, 

uniformly-weighted LP, and Model SEED gap-filling. 

The QP gap-filling approach includes vastly more reactions than the other three gap-

filling approaches, and almost all reactions from other methods were contained in the 

quadratic solution. Only the BLAST LP solution is guaranteed to be a subset of the QP 

gap-filling solution, because they use identical weights. The BLAST LP, uniformly-

weighted LP, and Model SEED gap-filling approaches overlap, but are all unique and 

lead to distinct gene knockout predictions. 
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Figure 12 

 

 

Figure 12. S. pneumoniae gap-filling solutions. 

Metabolites contained in the QP solution were organized using force-directed network 

visualization. The BLAST LP, uniformly weighted LP and Model SEED gap-filling 

solutions are shown in separate colors. Metabolites that exist in both the draft metabolic 

model and the quadratic gap-filling solutions are orange, while metabolites that only exist 

in the quadratic gap-filling solution are gray. The QP gap-filling solution reveals the large 

space of potential gap-filling routes, as well as the high degree of connectivity with the 

draft metabolic network. Gap-filling solutions can begin and end in many parts of the 
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metabolic network, yet the network can be filled with a small subset of potential gap-

filling reactions, as few as 32 reactions in this case.  
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Figure 13 

 

 

Figure 13. Unsupported metabolite gap-filling reactions. 
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Chapter 4: Thermodynamic Constraints Improve 

Metabolic Networks  

Synopsis 

In pursuit of establishing a realistic metabolic phenotypic space, the reversibility of 

reactions is thermodynamically constrained in modern metabolic networks. The 

reversibility constraints follow from heuristic thermodynamic poise approximations that 

take anticipated cellular metabolite concentration ranges into account. Because 

constraints reduce the feasible space, draft metabolic network reconstructions may need 

more extensive reconciliation, and a larger number of genes may become essential. 

Notwithstanding ubiquitous application, the effect of reversibility constraints on the 

predictive capabilities of metabolic networks has not been investigated in detail. Instead, 

work has focused on the implementation and validation of the thermodynamic poise 

calculation itself. With the advance of fast linear programming-based network 

reconciliation, the effect of reversibility constraints on network reconciliation and gene 

essentiality predictions have become feasible and are the subject of this study. 

Networks with thermodynamically informed reversibility constraints outperformed gene 

essentiality predictions compared to networks that were constrained with randomly 

shuffled constraints. Unconstrained networks predicted gene essentiality as accurately as 

thermodynamically constrained networks but predicted substantially fewer essential 

genes. Networks that were reconciled with sequence similarity data and strongly enforced 

reversibility constraints outperformed all other networks. We conclude that metabolic 
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network analysis confirmed the validity of the thermodynamic constraints, and that 

thermodynamic poise information is actionable during network reconciliation. 

Supplementary material is available at Biophysical Journal online, URL: 

https://www.cell.com/biophysj/home DOI: 10.1016/j.bpj.2017.06.018 

Introduction 

Metabolic networks provide a backbone for the integration of biological data and have 

emerged as a powerful complement to genome annotation by contextualizing the role of 

individual genes (5, 113, 114). They provide a genome-scale structure to organize 

organism specific knowledge (37, 115, 116) and facilitate the generation and evaluation 

of testable genotype-to-phenotype predictions (117–119). In metabolic networks, a 

biochemical database maps enzymes to reactions and their component metabolites. For 

well-studied organisms, experimental literature makes up the bulk of enzyme and 

associated gene annotations (3), leading to highly curated metabolic networks (5, 8, 15). 

For less studied organisms, enzyme activities are inferred from sequence similarity to 

known enzymes (36, 49, 59).  

The explosion of sequencing data has driven efforts to automate both gene annotation and 

reconstruction of draft metabolic networks, and several algorithms and services have 

been developed to facilitate draft network reconstruction (10, 11, 39, 79, 120). One such 

service is the Model SEED (10), which automatically annotates genomes through Rapid 

Annotation using Subsystem Technology (RAST)(34, 36) and reconstructs draft 

metabolic networks. Draft network reconstruction removes much of the initial work in 

creating an organism specific metabolic network. A curated common biochemistry 
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database standardizes reaction and metabolite names, facilitating the communication and 

analysis of metabolic networks (46). Once reconstructed, metabolic networks are used to 

investigate expected genetic interactions (75, 79, 121, 122), gene essentiality (52, 83, 

123–125), and characteristics of the feasible flux space (126, 127). These evaluations 

often use Flux Balance Analysis to model metabolic flux in the network (65). Continuing 

effort is made to model flux as realistically as possible by imposing constraints on the 

allowable flux space (Constraint-Based Reconstruction and Analysis (20, 73, 74, 128)). 

Constraints may be optimality-based, such as a maximum yield requirement or parsimony 

(65, 126, 129), but are also to prevent thermodynamically infeasible behavior such as 

circular flux (50, 130) or flux against a strong thermodynamic poise (64, 67, 131). The 

first is easily imposed by minimizing flux through a network in combination with a fixed 

biomass production (50), and the latter can be imposed by assigning reversibility 

constraints to reactions (132).   

Several heuristic approaches are used to estimate the thermodynamic poise for reactions, 

including “group contribution” (67, 133, 134), and more recently “component 

contribution” (135). In addition to feasible Gibbs free energy ranges calculated using 

group contributions, the Model SEED incorporates heuristic constraints based on 

literature values and canonical knowledge on reaction types (59). Due to the broad 

adoption of constraint based modeling for metabolic network reconstruction, the 

inclusion of reaction reversibility constraints has become ubiquitous in metabolic 

networks (3, 10, 66). Despite the ubiquity, the consequence of applying reaction 

reversibility constraints (RCs) to metabolic networks has not been investigated 



 

 80 

extensively in relation to genome-scale gene essentiality predictions (GEP) and 

observations. 

Note that the application of RCs on reactions reduces the accessible thermodynamically 

infeasible space to the model but does not eliminate this space. For instance, for one 

reaction to be feasible in the reverse direction, product concentrations in the upper 

physiological range may be required. A second reaction may produce these metabolites, 

but only if their concentrations are in the lower physiological range. Yet, both reactions 

are allowed simultaneously if reaction RCs are implemented without modeling metabolite 

concentrations, resulting in thermodynamically under-constrained RCs. The 

thermodynamically feasible flux space can be approached or achieved by using 

“Thermodynamics-based Metabolic Flux analysis” (TMFA) (64, 136), Energy Balance 

Analysis” (EBA) (137) or TR-fluxmin (138), where metabolite concentrations are 

modeled in conjunction with fluxes.        

Upon reconstruction, draft metabolic networks are incomplete and/or overly constrained 

(3, 54, 56) and lack the ability to synthesize a complete set of vital metabolites, such as 

DNA and amino acids, which are collectively referred to as biomass metabolites, or 

simply biomass (3, 6). Before metabolic networks can be evaluated functionally, the 

network must be curated to ensure the inclusion of the complete synthesis of biomass 

from defined nutrient sources. This process of network reconciliation with observed 

biomass production is referred to as gap-filling in the literature (3), and can be 

accomplished through three primary modifications: (i) addition of internal reactions; (ii) 

addition of transport reactions, and; (iii) relaxation of reaction reversibility constraints (3, 
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53). Here, modifications (i) and (ii) are referred to as reaction addition (RA) and 

modification (iii) is referred to as reversibility constraint relaxation (RCR). Strictly, the 

terms gap and gap-filling could be considered misnomers. The term “gap” implies that 

the network is incomplete at a specific location that is discovered once a “gap-filling 

reaction” is found. This definition is problematic because there are multiple unique and 

independent ways of fixing incomplete metabolite synthesis, and it is often unclear which 

solution is more representative of the actual biochemistry of the organism (56). Rather, 

the network is inoperable, and is reconciled with an observed or inferred phenotype, 

specifically biomass production, although networks can be reconciled with other 

observations, such as growth/no-growth for a variety of mutants and nutrient conditions 

(62). Some network reconciliation (NR) strategies explicitly quantify the tradeoffs 

associated with each modification by assigning a penalty to each type of modification and 

computationally searching for a solution that has a minimal penalty (10, 39, 55–57, 138–

140). Although specific weighting schemes have been presented, no weighting scheme 

has been explicitly evaluated by quantifying the effect of the weighting parameters on the 

quality of network gene essentiality prediction (GEP). 

Here, thermodynamically informed reaction reversibility constraints were evaluated for 

their effect on metabolic network predictions. Unconstrained models were compared to 

constrained ones, and uninformed constraints were compared to thermodynamically 

informed constraints. In addition, the role of how reaction RCs may be handled during 

the reconciliation stage of network reconstruction was investigated in detail. For this 

purpose, ∆rG´° values were used to select modifications among potential alternatives. To 
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test the quality of metabolic networks, GEP was compared to experimentally observed 

gene essentialities. GEP makes no assumptions on yield or rate optimalities, and only 

evaluate feasibility of biomass production for a given set of genes.  

Experimental Procedures 

Model SEED models and the reaction database 

Metabolic networks for Streptococcus pneumoniae, Bacillus subtilis, Escherichia coli 

MG1655, and Acinetobacter baylyi ADP1 were downloaded from the Model SEED 

(http://seed- viewer.theseed.org/) along with media conditions and biomass formulations. 

The Model SEED biochemistry database was utilized for reconciliation, and models were 

stripped of RA modifications as described in detail previously (56). The Model SEED 

constrained the reversibility of reactions in the biochemistry database and draft metabolic 

models using a hybrid approach that incorporated group contribution estimation of ∆rG´°, 

literature sources, and heuristic annotations based on chemical reaction classes (10, 59).  

Network reconciliation 

Weighted linear programming, calculated using the CPLEX™ software (IBM, Armonk, 

New York, http://www.ibm.com) running in the Matlab™ programming environment 

(Mathworks, Natick, Massachusetts, http://www.mathworks.com/), was used to calculate 

reconciliation solutions that minimized the total flux through unsupported reactions in 

metabolic networks while simultaneously forcing a set flux through a defined biomass 

equation as previously described (56). RA selected by the reconciliation algorithm, as 

well as any RCR modifications, were retained in the organism specific reconciled 
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network. As before, each reversible reaction was separated into forward and reverse 

partial reactions for all fluxes to have a positive value, and weighted linear programming 

was used to minimize the sum of all reaction fluxes multiplied by the associated reaction 

weights. For all irreversible reactions, including those in the draft metabolic models, the 

disallowed partial reaction was made available as a reconciliation reaction, and a weight 

was added to the sequence-similarity weight. For all NR reactions, both partial reactions 

were assigned the same sequence-similarity weight. The reconciliation algorithm is given 

by: 

Minimize	5(𝑠' +	rcr:𝑟𝑐𝑟')𝑣'

>?

'@A

 

𝐒𝑣 = 0	

0 ≤ 𝑣' < 𝑢𝑏'	

𝑣H'I = 1𝑒 − 3 

Where v, s, and rcr are vectors of length 2r and vi is the flux through a directional 

reaction, i. si and rcri are corresponding sequence and thermodynamic weights. rcrs is a 

scaling factor that adjusts the relative effects of the two weighting vectors. The network 

is constrained to steady-state, where S is a 2r by m irreversible stoichiometric matrix, 

with r reactions and m metabolites. Flux vi, was constrained to be positive and less than 

the upper bound, ubi. The biomass reaction, vbio, was constrained to a flux of 1e-3, to 

ensure a set biomass production. Reconciled models included RA modifications for 

reconciliation reactions that carried a flux >1e-6 during reconciliation, and RCR 

modifications were retained for reactions for which the same minimal flux in the 
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penalized direction was observed in the linear programming (LP) solution. Reaction 

reversibility constraints were taken from the Model SEED (10), and calculated with the 

Von Bertalanffy toolbox (135) (Supplementary Material Section 1, available at 

Biophysical Journal online). 

RA and RCR weighting vectors 

For the s and rcr vectors, two specific versions were generated to test informed weights 

and uniform constraints of 0 and 1. Transformed BLAST sequence similarity e-values 

were used as the informed weighting vector for s, and were generated for each reaction in 

the Model SEED reaction data as described previously (56). The calculated ∆rG´° values 

in the Model SEED (10) reaction database were used as the informed rcr weighting 

vector. Negative ∆rG´° values lead to a positive weight equal to the absolute value of 

∆rG´° on the reverse reaction. Positive ∆rG´° values lead to a positive weight on the 

forward reaction. A uniform s vector was generated where all NR reactions received a 

weight of 1 and all draft metabolic network reactions received a weight of 0. Similarly, a 

uniform rcr vector was generated based on the heuristic reaction reversibility constraints 

in the Model SEED reaction database. Both directions for reactions annotated as 

reversible received a weight of 0, and the disallowed directional reactions in irreversible 

reactions were weighted as 1. Thus, four NR weighted schemes were used, informed 

weights for both s and rcr (RCRwRAw), uniform weights for both s and rcr (RCRuRAu), 

and two mixed combinations, RCRwRAu and RCRuRAw. 
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Gene essentiality simulations 

Reconciled networks were evaluated for their ability predict experimentally observed 

gene essentiality as before (56). Briefly: for each gene knockout, all reactions uniquely 

associated with that gene were removed from the metabolic network. The reduced 

network was evaluated for biomass production >1e-4 using LP. If no flux solution could 

be found, the gene was considered computationally essential, whereas the existence of a 

solution resulted in the gene being considered computationally nonessential. 

Computational essentiality was compared to experimental essentiality resulting from 

experimental whole-gene deletion studies for all four organisms (80, 123, 141–143). The 

quality of metabolic networks was assessed by comparing percent correct gene 

essentiality predictions (GEP) (correctly predicted essential genes + correctly predicted 

nonessential genes) / total number of evaluated genes, and the diagnostic odds ratio 

(DOR) of GEP (correctly predicted essential genes * correctly predicted nonessential 

genes) / (incorrectly predicted essential genes * incorrectly predicted nonessential genes). 

Sensitivity analyses 

Three types of sensitivity analyses were performed, (1) shuffling of RCs and RCR 

weights, (2) shuffling of RCR weights alone, and (3) shuffling of RCs and RCR weights 

with controlled portions of reversible and irreversible reactions. For (1), the reversibility 

constraints and corresponding rcr weights were randomly shuffled between reactions, 

allowing previously reversible reactions to become irreversible in either the forward or 

reverse direction and vice versa. Shuffling the constraints and weights ensured that the 

portion of reversible or irreversible reactions remained constant, along with the overall 
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distribution of values in the rcr vector. For (2), only the rcr vector was shuffled, leaving 

the original reversibility constraints in place. For (3), the total number reversible 

reactions were controlled by first making all reactions reversible, and then randomly 

selecting a fixed portion of reactions to be irreversible in either the forward or reverse 

direction. Uniform RCR and RA weights were used for subsequent NR, and the uniform 

RCR weights were generated from the randomly shuffled RCs, ensuring that the RCR 

weights matched the randomized RCs. The portion of forward to reverse irreversible 

reactions was controlled to be equal to that of the reaction database. 

Results 

Thermodynamically-informed constraints outperform random constraints 

The space of allowable flux solutions is expected to decrease with the application of 

constraints to metabolic networks. To establish a realistic view of feasible phenotypic 

states of an organism, metabolic networks are constrained to disallow biologically 

infeasible states. One category of such constraints is reaction reversibility constraints, 

which are derived from Gibbs free energy calculations, literature sources, and heuristics 

based on reaction type (59). To test the effect of thermodynamically informed RCs on 

metabolic networks, networks constrained by the Model SEED RCs were compared to 

networks with randomly shuffled RCs and RCR weights. This shuffling approach 

retained the same portion of irreversible to reversible reactions, but removed the 

information provided by rationally defined reversibility constraints. The quality of 

networks was evaluated by comparing correct GEP, which was summarized as percent 
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correct GEP and the DOR of GEP. Genes were evaluated if they were annotated in the 

draft model, and if experimental gene essentiality data was available. Each random 

shuffling was repeated twenty times to generate representative outcomes. Following 

shuffling, networks were reconciled using LP to find a biomass synthesis solution while 

minimizing flux through poorly supported reactions or against RCs, penalizing flux 

through RA and RCR reactions equally.  

Networks with thermodynamically-informed constraints improved both percent correct 

predictions and DORs over randomly shuffled thermodynamic constraints (Figure 14). 

For three out of four organisms, original networks achieved higher DOR than any 

network with randomized constraints, but for all organisms except A. baylyi, a network 

with the highest percent correct GEP resulted from one of the randomly shuffled 

networks. An alternative set of reversibility constraints calculated using the recently 

released version 2.0 of Von Bertalanffy toolbox (135) did not improve network quality 

compared to the constraints defined by the Model SEED (10) (Supplementary Material 

Section 1, available at Biophysical Journal online), and the Model SEED defined 

thermodynamics were used for further analyses. 

Uninformed constraints degrade predictions 

The effect of uninformed RCs on network quality was tested in more detail using the E. 

coli metabolic network and shuffling RCs while controlling the total portion of reversible 

and irreversible reactions. All reactions were initially made reversible, and successively 

more reversible reactions were randomly selected and constrained to be irreversible until 

all reactions were set to irreversible. At each step, twenty unique networks were 
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generated by randomly shuffling the constraints among reactions. Networks were 

reconciled using RCRuRAu NR with rcrs=1, and evaluated for GEP to measure the quality 

of the reconciled networks. On average, network predictions degraded with the number of 

random constraints added, but network instances were found that outperformed 

unconstrained networks (Figure 15). Note that the unconstrained E. coli network (Figure 

15, Supplementary Material Section 2 Table 2, available at Biophysical Journal online) 

outperformed the network containing default Model SEED constraints in terms of percent 

correct GEP, but not DOR (Figure 14, Supplementary Material Section 2 Table 2, 

available at Biophysical Journal online). The two networks had distinct advantages and 

disadvantages: The Model SEED-constrained network predicted many more essential 

genes and predicted them correctly much more frequently. In contrast, the unconstrained 

model identified more nonessential genes, and did so correctly more often 

(Supplementary Material Section 2 Table 2, available at Biophysical Journal online). In 

the default E. coli metabolic network 41.34% of reactions are constrained, which 

suggests that the quality of the constraint-assignments fully compensates the negative 

effects associated with the addition of random constraints (Figure 15). Networks that 

were randomly constrained at 41.34%, included on average 4 more unsupported reactions 

and greater utilization of unsupported reactions than the network with informed 

constraints (Supplementary Material Section 3 Table 3, available at Biophysical Journal 

online). This separate measure of network quality corroborates the notion that the 

improvement in predictive power of a network that is constrained with informed 

constraints may be modest, but the informed constraints do not damage the network. 
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Using linear regression, we further observed that RA was slightly, but significantly, 

correlated with a degradation of nonessential gene predictions regardless of the support 

level of the NR-added reactions. However, correct essential predictions were harmed by 

the addition of unsupported reactions, but improved with the addition of supported 

reactions (Supplementary Material Section 4, available at Biophysical Journal online), 

suggesting that the addition of supported reactions has a small positive effect on the 

ability to correctly predict essential genes.  

Networks with randomized constraints that were reconciled using NR that prioritized RA 

required fewer modifications and performed on par with networks that were reconciled 

while prioritizing RCR. Considering that the requirement for extensive NR was caused 

by random reversibility constraints, this was a surprising result. Separately, the RA-

prioritized networks demonstrated that a substantial set of genes (~1/3 experimentally 

essential and ~1/6 of the experimentally nonessential genes) showed variable gene 

essentiality predictions in response to network constraints (Supplement Material Section 

5, available at Biophysical Journal online). 

Model predictions reveal tradeoffs in NR strategies  

Erroneous reversibility constraints can result in networks that cannot produce biomass 

under any conditions. Consequently, attempting to overturn erroneous constraints is 

usually part of a NR process (10, 53). Here, several NR strategies were explored to 

investigate how RCR and RA affects the quality of network predictions. Several existing 

NR algorithms make explicit tradeoffs between RCR and RA (10, 54, 57). For example, 

the Model SEED NR algorithm (10) preferentially uses RA over RCR, and individual 
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RCR modifications are weighted using ∆rG´° for the associated reactions. However, the 

consequences of the various tradeoff schemes in terms of GEP has not yet been reported.  

To investigate the tradeoffs between RCR and RA, a weighted linear programming-based 

NR algorithm was used that explicitly controlled the tradeoff through a scaling factor 

(rcrs) and allowed for individual reactions to be weighed based on the calculated ∆rG´° 

(RCRw) and sequence similarity values (RAw). Large rcrs values favored RA over RCR, 

while small rcrs values lead to the opposite effect (Figure 16). Uniform weighting 

schemes that applied Boolean weights to RA (RAu) and RCR (RCRu) modifications for 

all reactions were compared to weighted RCR and weighted RA weighting schemes to 

investigate the value of the thermodynamic and sequence similarity weighting 

information. (Figure 17). 

Networks reconciled by weighted RA showed consistently strong DOR of GEP across all 

organisms and for different rcrs values (Figure 17). All organisms showed improved 

predictions for large rcrs values relative to small rcrs values. S. pneumoniae and E. coli 

had an optimal result for an rcrs value of 1e-2, but E. coli had equal results for a range of 

rcrs values from 1e-2 to 1e8. Overall, weighting of RA was more consequential than 

weighting of RCR. The E. coli metabolic network showed the clearest response to the 

doubly weighted NR. Doubly weighted NR with a large rcrs value led to the best 

predicting network. Because the E. coli network was the most complete and best 

performing metabolic network examined, the network may be most sensitive to 

improvement. For the E. coli network, the benefit of a large scaling factor combined with 
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doubly weighted NR should strongly favor RA over RCR, except where RCR weights 

were equal to zero. 

∆rG´° values can qualitatively guide network reconciliation  

Reactions with ∆rG´° values that had an opposite poise compared to the heuristically 

defined RC received a RCR weight of zero and were found to be the sole RCR that were 

observed during NR when rcrs was large (Supplementary Material Section 6 Table 6, 

available at Biophysical Journal online). To investigate if the observed increase in DOR 

of GEP indeed resulted from heuristic reversibility constraints and RCR weights, a set of 

randomization controls were performed (Figure 18). For a range of rcrs values, the E. coli 

metabolic network was reconciled using  RCRwRAw and RCRuRAu. For each 

combination, two sensitivity analyses were performed: (i) shuffling of RC calls and RCR 

weights, or (ii) shuffling of only the RCR weights. Shuffling of both RC calls and RCR 

weights removed all information about the specific reaction directionality throughout the 

draft network and the reaction database, leaving the NR algorithm to find the cheapest 

biomass synthesis route through randomized RC and RCR weights. Shuffling just RCR 

weights tested the sensitivity of the NR algorithm to erroneous RCR weights, and also 

tested if rational weights consistently performed better than randomized weights. 

All rcrs values and NR weightings led to improved networks relative to networks with 

randomized RC and RCR weights, and just randomized RCR weights. This suggests that 

both RC and RCR weights contain information that improved network GEPs. 

Randomized weighting vectors demonstrated that weighted NR in combination with large 

rcrs values consistently outperformed the unweighted case relative to randomized 
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controls, suggesting that weighted vectors with large rcrs values usefully guided NR. For 

both weighted and unweighted cases, superior networks were again observed after 

reconciliation with a randomized weight vector, indicating that reaction constraint sets 

exist that result in better DOR of GEP than rationally obtained constraints. 

∆rG´° weighted NR rationally overturns heuristics 

Large rcrs values avoided RCR in favor of RA (Figure 18), yet the RCR weighted case 

significantly improved networks over the uniformly weighted case. A difference between 

the uniform and RCR weighted cases occurred where the ∆rG´° value disagreed with the 

heuristic directionality assignment. In such cases, the RCR weighted NR approach 

overturned heuristically assigned constraints without cost. Overturning heuristic 

assignments based on corroborating evidence of ∆rG´°, sequence-similarity weights, and 

biomass demand thus improved the predictive performance of metabolic networks. While 

heuristic annotations in general outperformed a purely ∆rG´° weighted approach using 

VBT values (Supplementary Material Section 1, available at Biophysical Journal online), 

selective disregard for heuristics were the predominant cause of the superior performance 

of RCR weighted NR. Indeed, the reaction reversibilities that were overturned by the 

RCR based approach were annotated with a ∆rG´° that implied a reverse poise compared 

to the heuristic irreversibility constraints (Supplementary Material Section 6, available at 

Biophysical Journal online). The ∆rG´° values were crosschecked with the Von 

Bertalanffy toolbox, which reported similar values for the majority of reactions 

(Supplementary Material Section 6, available at Biophysical Journal online). 
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In the E. coli metabolic network, a combination of weighted RA and RCR led to a 

significantly different reconciliation solution than weighted RA alone. By allowing RCR 

in the NR process, the total NR penalty to produce a unit of biomass decreased 

(Supplementary Material Section 6 Table 7, available at Biophysical Journal online). 

Overall, the total number of reactions required to produce biomass, including existing 

model reactions and reconciliation reactions, decreased from 489 to 476 in the dually 

weighted case (Figure 19, Supplementary Material Section 6 Table 7, available at 

Biophysical Journal online). This reconciliation algorithm shared eight reactions with the 

weighted RA case. For one shared reaction, no other alternatives existed, necessitating 

inclusion in any NR solution (56). Seven RA reactions differed between algorithms, and 

all but one of the variable reactions were sufficiently supported to incur no penalty for 

usage. The poorly supported reaction in the weighted RA was replaced in the dually 

weighted algorithm, thus reducing the number of unsupported reconciliation reactions 

required for biomass production (Figure 19, Supplementary Material Section 6 Table 7, 

available at Biophysical Journal online). 

Note that the NR algorithm overturned reversibility constraints only when required for 

biomass production. When all disagreements between ∆rG´° and RCs were overturned, 

the percent correct GEP and DOR decreased (Supplementary Material Section 2 Table 2, 

available at Biophysical Journal online). Similarly, penalizing the use of the same 

disagreeing reactions resulted in a decrease in model performance (Supplementary 

Material Section 2 Table 2, available at Biophysical Journal online). This suggest that the 
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combination of biomass demand, sequence-similarity, and ∆rG´° estimates more 

accurately guided NR than the use of either alone. 

Corroboration through alternate network quality assessment 

To investigate how other quality metrics corroborate the DOR of GEP analysis for the E. 

coli network, producible metabolites and the biomass solution space were inspected for 

the same rsrs range. Interestingly, high rsrs values resulted in many more producible 

metabolites coinciding with a smaller biomass solution space (Figure 20). The tripling of 

producible metabolites must be associated with a particularly enabling RA, that is used as 

an alternative for RCR that solves for biomass demand during low rsrs values. At the 

same time, the retentions of the RCs also led to a reduction in the biomass solution space, 

explaining the greater number essential gene predictions associated with higher rsrs 

values (Supplementary Material Section 2 Table 2, available at Biophysical Journal 

online). Both trends, the increase in producible metabolites and decrease in biomass 

solution space with increasing high rsrs values were also visible for randomly constrained 

networks. This suggests that RA tends to create better access to all reactions. Conversely, 

RCR allows for more incorrect redundancy to biomass through pathways such as 

catabolic pathways, which are prevented from running in the anabolic direction in a 

correctly constrained network.           

Discussion 

Interpretation of gene essentiality outcomes  
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The comparison of predicted GE to experimentally observed GE results in one of four 

outcomes for each gene (represented by the confusion matrix, Figure 21). I e. each 

prediction can be correct or incorrect for either essential or nonessential genes: True 

Essential (TE), False Essential (FE), True Nonessential (TN) and, False Nonessential 

(FN). FE predictions can result from (i) inclusion of biomass compounds that are not 

vital, (ii) missing reactions (transporters), (iii) overly-constrained RC, (iv) under-

annotation of promiscuous enzyme activities and, (v) an incomplete description of the 

experimental growth media. FN predictions are due to under-constrained aspects of the 

network such as (i) signaling: isozymes that are not expressed under the test conditions, 

(ii) lax reversibility constraints or (iii) inclusion of reactions in the model that are not 

present in the organism. Assigning network quality scores from the four quadrant scores 

is not straightforward and to some extent arbitrary. The metabolic interpretation of the 

scores is non-trivial, and the number of nonessential genes is much larger than the 

number of essential genes, which suggests that TE predictions are more valuable than TN 

predictions.  

For an accurate network one should expect a nonzero outcome for FN because genes can 

be essential for reasons not captured by the network such as toxicity resulting from 

metabolite build-up. Consequently, the correct numbers for TE and TN are unknown, and 

a genome scale comparison cannot achieve a perfect score. However, an accurate 

network should not have FE outcomes, because if an organism is viable, its model must 

be able to produce all essential biomass components. In this work, sometimes accuracy 

(expressed as percent correct GEP), but mostly DOR was used to translate outcomes to a 
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network quality score. Although accuracy is the more straightforward interpretation, but 

in contrast to DOR, it does not correct for the uneven frequencies of nonessential and 

essential genes. By working with a scalar quality metric various NR approaches could be 

compared directly, but due to the uncertain expectation for FN, DOR scores are an 

imperfect measure and should be interpreted alongside other network quality measures. 

In contrast, minimization of FE outcomes is of clear importance, as FE predictions are a 

definite sign of shortcomings of the model. 

Gene essentiality informs on network-wide parameters 

Gene essentiality provides a conserved profile that is fundamental characteristic of a 

species (51). Here, GEP was used as measure of network accuracy to test the validity of 

informed RCs and to the usefulness of RCs in guiding NR of metabolic networks. 

Randomized models were used as controls to filter out random effects from true network 

improvements. A substantial set of genes (~1/3 experimentally essential and ~1/6 of the 

experimentally nonessential genes) showed variable GEP in response to network 

constraints, suggesting that the quality of investigated networks could be sensitively 

assessed with DOR of GEP. 

Thermodynamically informed RCs improve metabolic networks  

With the aid of randomized controls, we observed that the influence of 

thermodynamically informed RCs on DOR of GEP by networks was clear, but modest. 

Randomized constraints led to networks with substantially different predictions, a small 

number of which outperformed rational constraints. This suggests that annotated 



 

 97 

constraints may have room for improvement, but it may also indicate that draft networks 

are incorrect and/or incomplete. In the Model SEED networks, about 41% of the 

reactions are directionally constrained. Compared to networks with 41% randomly 

constrained reactions, the Model SEED RC network clearly outperformed DOR of GEP, 

demonstrating that the thermodynamic inferences produce a valid signal. However, 

completely unconstrained networks performed on par with the Model SEED RC 

networks in terms of percent GEP suggesting that metabolic networks may be over-

constrained in their current form. In addition, all four tested metabolic networks 

contained gene annotations that were computationally essential, but experimentally 

nonessential, again suggesting that the networks were incomplete or overly constrained. 

Note that notwithstanding that networks were over-constrained, all networks had high 

dimensional null spaces (hundreds of dimensions) indicating the large degree of under-

determinacy of their stoichiometric matrices and thus flux spaces. 

Computational nonessential/experimental essential scores may be the result of regulatory 

or signaling constraints that were not modeled in the metabolic network. Errors of this 

nature could arise even in accurate and complete networks, and can therefore not be 

interpreted without reservation (3). Consequently, the better percent correct prediction of 

the experimentally essential genes by the Model SEED default model must be interpreted 

with caution. Note that even the unconstrained network contained more predicted 

essential genes than observed essential genes (157 and 107 respectively), where the 

above suggest that one should expect to observe more essential genes than that one 

should predict. The NR reaction database contained 1012 reaction with the highest level 
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of support for E. coli K12, which further corroborates the suggestion that the draft E. coli 

model of the Model SEED is incomplete. Interestingly, addition of all 1012 reactions to 

the model barely reduces the number of essential gene predictions and results in the best 

network performance in terms of percent correct GEP and DOR of GEP after weighted 

NR (Supplementary Material Section 2 Table 2, available at Biophysical Journal online). 

Conversely, the over-prediction of essential genes could also be due to the inclusion of 

nonessential metabolites in the E. coli biomass equation, as well as an incomplete 

description of the experimental growth media (56). The latter was not the result of an 

incomplete set of transporters, as allowing access of all media metabolites to the cell did 

not alter GEP. But, because of the much heavier weighting of essential genes, the DOR of 

GEP interpretation of network quality strengthened the case for thermodynamically-

informed RC networks (Supplementary Material Section 2 Table 2, available at 

Biophysical Journal online). Altogether, correct RCs appear necessary for a complete set 

of essential gene predictions, where further addition of supported reactions appears to 

improve nonessential gene predictions. 

Weighted NR balances competing NR objectives 

Networks reconciled that favored RA over RCR predicted gene essentiality significantly 

better than other approaches for the E. coli network. The consistent improvement 

observed using weighted NR in combination with large rcrs value suggested that RA 

should take priority over RCR with the exception of overturning heuristic reversibility 

constraints. When the heuristic annotations conflicted with ∆rG´°-based constraints, our 

approach preferentially overturned reversibility constraints with conflicting sources of 
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information. The observed improvement may be interpreted as the poor quality of these 

reversibility annotations. Finally, the introduced weighted linear programming approach 

is not limited to the set of reconciliation information that was used here but may for 

instance be applied to evidence pertaining to properties such as cellular 

compartmentation or time of expression. Parameterization of scaling factors may again be 

compared against randomized models to ensure that the specific selection of weightings 

is resulting in optimal network quality. 
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Figures 

Figure 14 

 

Figure 14. DOR and Percent Correct GEP for networks with randomly shuffled 

reaction direction constraints. 

Networks for the four tested organisms were reconciled while equally penalizing both RA 

and RCR (rcrs = 1) using RCRuRAu NR. DOR of GEP (plot A) and percent correct GEP 

(plot B) of unshuffled networks are shown as a large dot. Each box plot shows 20 

randomized models for an organism that were reconciled and evaluated for GEP. The 

Model SEED RC consistently outperformed uninformed RC for both metrics, except for 

the S. pneumoniae network. The E. coli and B. subtilis networks outperformed the A. 

baylyi and S. pneumonia networks for both DOR and percent correct metrics, indicating a 

better quality of these draft networks.  
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Figure 15 

 

Figure 15. DOR of GEP as a function of uninformed constraints. 

The percent of reaction reversibility constraints on the E. coli network was controlled by 

randomly constraining a portion of reactions in the E. coli metabolic network. The 

network was then reconciled while equally penalizing both RA and RCR (rcrs = 1), 

followed by a gene essentiality evaluation. Each boxplot constitutes 20 randomly 

constrained networks. The average quality of predictions decreases with the number of 

constraints, but network instances were found that outperform the unconstrained case for 

all percent constrained values. For reference, 42.31% of reactions are constrained in the 

network reconciled by the Model SEED (black square), and 41.34% for the network 

reconciled using the weighted RA and weighted RCR algorithm, with a rcrs value of 1e8 

(black triangle). The weighted NR algorithm achieved the highest DOR of 22.6, while the 

Model SEED NR achieved a DOR of 21.5. 
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Figure 16 

 

Figure 16. Network reconciliation overview. 

Black arrows are reactions present in the unreconciled network. The network can be 

reconciled to carry flux by RCR or RA. A low scaling factor (rcrs) preferentially causes 

RCR, and a high rcrs preferentially results in RA. Using uniform weighting (A-C), 

reversibility constraints on reactions with a very strong thermodynamic poise may be 

overturned as easily as reactions that are annotated as near-reversible. Reaction specific 

weightings (D-F) prevent the relaxation of strongly poised reactions, which results in the 

preferential relaxation of multiple less strongly poised reactions (F). Note that under a 

low rcrs, the poise weighting become less consequential than the number of added 

reactions (D). 
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Figure 17 

 

 

Figure 17. NR approaches with highest DOR of GEP as function of rcrs. 

Four metabolic networks reconciled using four different NR approaches compared by 

their DOR of GEP for a range of rcrs values (best DOR highlighted). Best performing NR 

approaches for a given rcrs are color-coded. RCRu indicates uniform reversibility 

constraints relaxation (RCR), RCRw indicates weighted RCR. Similarly, RAu indicates 

uniformly weighted penalties for reaction addition (RA), and RAw indicates sequence 

similarity weighted reaction addition. Black borders around boxes indicate the highest 

DOR value for all tested cases. Note that unlike thermodynamic poise weights, sequence 

similarity weights consistently benefitted network GEP performance. 
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Figure 18 

 

Figure 18. Sensitivity analysis of NR parameters. 

Sensitivity of GEP to rcrs values and NR weights were investigated through two 

approaches: (1) randomly shuffled RC and RCR weights (purple box plots), and (2), 

randomly shuffled RCR weights (yellow box plots). Shown are the uniformly weighted 

(RCRuRAu), and the doubly weighted approach, which uses ∆rG´° poise and sequence 

similarity weights (RCRwRAw). Blue lines represent DOR of GEP for the E. coli network 

reconciled with RCRuRAu NR, and Green lines represent DOR of GEP from the E. coli 

network reconciled with RCRwRAw NR. Box plots for each rcrs value, NR method, and 

sensitivity analysis represent 20 randomized networks that were reconciled and evaluated 

for GEP. Both NR approaches outperform most networks with randomized constraints 

and randomized weights, but the RCRwRAw NR with large rcrs values consistently 
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achieve the highest DOR. The number of NR modifications made using RCRwRAw NR 

and comparing to randomized constraints are shown at the bottom of the figure. Large 

rcrs values predictably resulted in more RA and fewer RCR. 
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Figure 19 

 

Figure 19. Reactions used in E. coli NR. 

Compared to RCRuRAw NR, RCRwRAw NR allowed for twenty reactions to become 

reversible, and six of the relaxed constraints were for added reactions (rcrs = 1e8). While 

both approaches added fifteen new reactions to the model, the RCRwRAw case led to a 

substantially different set of reactions required for biomass and overall thirteen fewer 

reactions. RCRwRAw NR also required the inclusion of one fewer reaction with less than 

perfect sequence support (bold), resulting in a smaller NR penalty contribution of the 

sequence similarity weighting. 
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Figure 20 

 

Figure 20. Alternate validating of reconciled networks. 

Boxplots of various network properties for networks with randomly shuffled RC and the 

Model SEED RC (line). Networks were reconciled using RCRwRAw NR. (A) Metabolites 

that can be produced from available nutrients when allowing all metabolites to leave the 

cell, determined using LP. (B) Reactions carrying significant flux in a QP solution for 

biomass production, indicative for the size of the solution space. (C) QP solution space as 

function of percent RC (rcrs = 1e8). Note that large rcrs values led to networks with 

smaller QP solutions but that produced more metabolites. 
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Figure 21 

 

Figure 21. Gene essentiality prediction confusion matrix. 

Computational vs. experimental gene essentiality outcomes were compared using 

quantities associated with the confusion matrix. For metabolic networks, the expected 

value of TE, TN, and FN is unknown. Despite being a false prediction, TN is expected >0 

because some genes are essential for non-metabolic reasons. Only FE predictions are 

expected to be 0 for a correct metabolic network, FE>0 indicates missing functionality in 

the metabolic network. 
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Chapter 5: Conclusions 

 The research presented in the previous chapters followed two major themes: 

synthesizing data to improve network reconstruction and reconciliation, and developing 

controls for metabolic networks to test network validity and underlying assumptions. The 

network reconciliation algorithms developed use specific data, such as sequence 

comparison scores, but the underlying approaches are flexible and can be modified to 

accommodate a wide variety of data, which will be useful as new types of high 

throughput data become available for more organisms. Gene essentiality is used to 

evaluate network reconciliation methods and compare rational approaches to randomized 

controls, which provide a necessary measure of success for evaluating the resulting 

metabolic networks. 

Chapter 2 focused on the reconstruction of the metabolic networks of the picoalga 

Ostreococcus tauri and O. lucimarinus, and advanced a new concept for network 

reconciliation. Phylogenetically structured tiers of reactions were preferentially used to 

reconcile biomass production, minimizing the inclusion of reactions from distantly 

related organisms as an alternative to previous approaches that simply minimized the 

total number of added reactions. The reconstruction process allowed for bottom-up and 

top-down network reconciliation to be compared in a common computational framework, 

highlighting the strengths of the top-down approach. Network reconciliation also 

revealed missing annotations in the O. tauri genome, which lacked a gene annotated with 

an essential enzyme involved in the Calvin cycle. The phylogenetically tiered approach to 

network reconstruction can be advanced to include a more explicit and fine-grained 
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approach to estimating the phylogeny, even down to the level of individual enzymes. 

Future work can also explore the effects of horizontal gene transfer in metabolism and the 

confounding effects it may have on phylogenetic approaches to metabolic network 

reconstruction. 

 Chapters 3 and 4 dealt with the network reconciliation of well-studied bacterial 

metabolic networks for which experimental gene essentiality data sets were available. 

Chapter 3 introduced two new computational tools for probing metabolic networks and 

finding reconciliation solutions. An LP algorithm was used to efficiently find 

reconciliation reactions by minimizing metabolic flux required to produce biomass 

metabolites. This algorithm is further improved by weighting reactions based on the 

target organism’s genome sequence, which was compared to a large set of enzyme 

sequences. A second QP algorithm was used to probe the space of possible reconciliation 

solutions, and revealed that the concept of defined “gaps” in metabolic networks is 

illusory. The QP algorithm revealed a space of reconciliation solutions spanning 

thousands of reactions, illustrating that missing functionality in a metabolic network can 

be reconciled in many ways, and selecting a “best” solution is not straightforward. This 

surprising result motivated the development of negative controls on the reconciliation 

process to ensure that the solutions discovered were more accurate than random 

solutions, which was indeed the case. 

 Chapter 4 built on chapter 3 by combining sequence similarity data with 

thermodynamic data, specifically a calculation of Gibbs energy for metabolic reactions 

under biological conditions. The combination of two data types laid a groundwork for 
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synthesizing multiple independent data types into a network reconciliation algorithm. 

Although existing reconciliation algorithms have used these types of data, this research 

was the first to report a systematic analysis of the network reconciliation parameters. 

Furthermore, the reconciliation parameters are evaluated for multiple networks using 

gene essentiality and compared to randomized controls to identify reconciliation 

approaches that select solutions from the large space of possible solutions. This approach 

revealed the value of prioritizing reaction addition over thermodynamic constraint 

relaxation, but also demonstrated that heuristic assumptions of reaction irreversibility can 

be usefully overturned when multiple lines of evidence disagree with heuristics. 

The approaches developed in chapter 4 also allowed for the evaluation of reaction 

reversibility constraints in general. Even early network reconstructions were constrained 

by making certain reactions irreversible (144). While these constraints were reasonable 

given experimental assays, the value of irreversibility constraints in metabolic networks 

had not previously been demonstrated. The randomized controls and novel reconciliation 

approach allowed for unconstrained networks to be compared to constrained networks. 

Surprisingly, unconstrained networks were shown to predict gene essentiality with 

similar accuracy as rationally constrained metabolic networks, highlighting the 

importance of testing assumptions in computational models.  

Randomization and experimental validation could be used to probe other aspects 

of metabolic networks that have not been thoroughly analyzed. Aspects of particular 

interest include: 1) Compartmentation and transportation of molecules in metabolic 

networks. 2) Classification of essential biomass metabolites while accounting for a range 
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of nutrient and environmental conditions. 3) Promiscuous enzyme functionalities. 4) 

Spontaneous chemical reactions.  

While truly accurate whole-cell models of microorganisms are still far away, 

incremental progress can be made by steadily modeling more organisms, integrating new 

and more accurate data, and most importantly, carefully validating methods and models 

at each step.  
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