
A Personalized Recommender System with Correlation
Estimation

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Fan Yang

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Doctor of Philosophy

Xiaotong Shen

May, 2018

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Minnesota Digital Conservancy

https://core.ac.uk/display/211363855?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c© Fan Yang 2018

ALL RIGHTS RESERVED

Acknowledgements

First and foremost, I would like to take this opportunity to express my greatest ap-

preciations to my thesis advisor Prof. Xiaotong Shen. Over the years, he has been

generously sharing his time and knowledge, and offering me invaluable advice in both

my academic research and personal development. I’m deeply grateful and honored to

be influenced by his insights and professionalism. It is his constant support, help, and

patience for various aspects of my life that made this work possible.

I would also like to thank the rest of my committee members, Prof. Charles Geyer,

Prof. Adam Rothman and Prof. Wei Pan. I’m grateful to have them as my committee

members and I deeply appreciate their guidance and words of encouragement along the

way.

I’m also grateful to my friends at the University of Minnesota for making the expe-

rience here enjoyable. Thanks go to Yunzhang Zhu, Yiping Yuan, Qi Yan, Zhihua Su,

Feng Yi, Ben Sherwood, Yiwen Sun, Yuwen Gu, Yanjia Yu, Bo Peng, Dootika Vats,

Subhabrata Majumdar, Xuetong Sun and many other friends in the Stat department,

as well as my friends in other departments.

My special thanks go to my mother and my sister, who loved me and supported me

all the time.

Finally, thank Jun for being by my side. I’m grateful to have you joining my life

and thank you for all your love and support.

i

Dedication

To the memory of my father Cuizhen Yang and

To my mother Xinrong Li.

ii

Abstract

Recommender systems aim to predict users’ ratings on items and suggest certain

items to users that they are most likely to be interested in. Recent years there has

been a lot of interest in developing recommender systems, especially personalized rec-

ommender systems to efficiently provide personalized services and increase conversion

rates in commerce. Personalized recommender systems identify every individual’s pref-

erences through analyzing users’ behavior, and sometimes also analyzing user and item

feature information.

Existing recommender system methods typically ignore the correlations between

ratings given by a user. However, based on our observation the correlations can be

strong. We propose a new personalized recommender system method that takes into

account the correlation structure of ratings by a user. General precision matrices are

estimated for the ratings of each user and clustered among users by supervised clustering.

Moreover, in the proposed model we utilize user and item feature information, such as

the demographic information of users and genres of movies. Individual preferences

are estimated and grouped over users and items to find similar individuals that are

close in nature. Computationally, we designed an algorithm applying the difference of

convex method and the alternating direction method of multipliers to deal with the

nonconvexity of the loss function and the fusion type penalty respectively. Theoretical

rate of convergence is investigated for our new method. We also show theoretically

that incorporating the correlation structure gives higher asymptotic efficiency of the

estimators compared to ignoring it. Both simulation studies and Movielens data indicate

that our method outperforms existing competitive recommender system methods.

iii

Contents

Acknowledgements i

Dedication ii

Abstract iii

List of Tables vi

List of Figures vii

1 Introduction 1

2 Four Kinds of Recommender Systems 5

2.1 Collaborative Filtering . 6

2.1.1 Traditional Collaborative Filtering 7

2.1.2 Recent Collaborative Filtering 9

2.2 Content-Based Recommender Systems 11

2.3 Hybrid Recommender Systems . 14

2.3.1 Combining Results and Augmenting Feature Space 15

2.3.2 Building a Unified Model . 16

2.4 Context-Aware Recommender Systems 20

2.4.1 Contextual Pre-filtering and Post-filtering 21

2.4.2 Contextual Modeling . 22

3 Personalized Recommender System via Clustering 26

3.1 Model Specification . 27

iv

3.1.1 Models . 27

3.1.2 A Special Case when Ωi = σ2I 30

3.2 Algorithm . 31

3.2.1 Applying the difference of convex algorithm 31

3.2.2 Mean updating . 35

3.2.3 Precision matrix updating . 38

3.2.4 Properties of the Algorithm . 40

3.3 Theoretical Results . 40

3.4 Advantage of Using Precision Matrix . 45

3.4.1 Correlation Validation on Data 45

3.4.2 Outperformance of the Correlated Linear Model Using Prediction

Error as a Criterion . 46

4 Numerical Results 53

4.1 Simulation Studies . 53

4.2 Movielens Data . 56

5 Conclusion and Discussion 58

References 59

Appendix A. 66

A.1 . 66

A.2 . 68

A.3 . 76

Appendix B. 85

v

List of Tables

4.1 Simulation results for seven methods are reported: LM is the linear re-

gression model using rating as the response and user and item features

as predictors; SOFT is the SOFT-IMPUTE method; RSVD is regular-

ized singular value decomposition; s-L1 is special L1 clustering ignoring

precision matrix; RLFM is the regression-based latent factor model; g-L1

is the general L1 clustering (considering precision matrix); g-TLP is the

general TLP clustering (considering precision matrix). Numbers in the

parentheses are the standard errors. 55

4.2 Movielens 100k RMSE with seven methods: LM is the linear regression

model using rating as the response and user and item features as pre-

dictors; SOFT is the Soft-Impute method; RSVD is regularized singular

value decomposition; RLFM is the regression-based latent factor model;

s-L1 is special L1 clustering ignoring precision matrix; g-L1 is the general

L1 clustering (considering precision matrix); g-TLP is the general TLP

clustering (considering precision matrix). 57

vi

List of Figures

2.1 SVD in recommender systems1 . 10

5.1 Correlation of two movie ratings . 85

5.2 Sample size v.s. correlation . 86

vii

Chapter 1

Introduction

Recommender Systems are used to predict users’ response to options/items. With the

development of the internet, recommender systems are becoming more and more impor-

tant. They are applied very widely to e-commerce, including recommending restaurants,

hotels, news, mobile phone games, movies and so on. For example, Netflix recommends

movies based on history ratings and movie rental information; Expedia recommends

hotels to book based on history information. Online retailers like Amazon.com and

ebay.com which sell a vast variety of goods and services also take advantage of rec-

ommender systems to sell their products. Amazon and eBay recommend items by

suggesting new lists like “More Items to Consider” and “Customers Who Bought This

Item Also Bought” etc.

Generally, the problem of recommender systems is for a given user, to recommend

some items this user is likely to be interested in. There are many specific formats

of recommender systems designed for data collected from different recommendation

scenarios.

Some recommendation applications inquire the user’s conditions or criteria before

they give recommendations thus they require the user to interact with the system in

order to provide a recommendation. For example, on yelp.com users can specify the

city they want to search, the price they would like to pay (divided to 4 price levels), the

neighborhoods, distance, features (breakfast, brunch etc.), style of meals (American,

Chinese etc.), and then get recommendations that meet their needs. This kind of

recommender system which depends on knowledge about the user’s needs and also

1

2

about the products is known as knowledge-based recommender systems [8].

Other recommender systems do not ask the user to input their needs and require-

ments for the next recommendation. They only use what is already in the system such as

history ratings of users on other items. The systems may also collect user demographic

information such as age and gender, and item feature information. These recommender

systems typically aim at predicting the rating of an item a user has not purchased or seen

before, using the information available. After the predictions are generated, items with

the highest predicted ratings are recommended to users. There are also recommender

systems that target at predicting ranking of unrated items, such as the rankboost algo-

rithm proposed in [21]. They care about the relative orders of products and recommend

items with the lowest ranking. We focus on these types of recommender systems which

don’t ask user needs for next item because they require less involvement of users and

is applicable to most practical recommendation problems. This is also the most widely

known and most commonly used formulation of recommender systems.

Recommender systems that predict ratings are the most commonly used format of

all recommender systems, and we are mainly talking about this kind of recommenders

in this introduction. The framework can be stated as follows. Suppose we have n users

and m items. Let rij be the rating of user i on item j. Then all the ratings can be

written in a matrix R = (rij), with some question marks to represent unknown ratings.

R =



r11 r12 ? . . . r1m

? r22 r23 . . . ?

r31 ? ? . . . r3m

...
...

...
. . .

...

? ? rn3 . . . ?


, (1.1)

where each row is the ratings of one user, and each column is the ratings on one item. In

recommender systems, only part of the matrix R is observed. The entry rij is observed

if user i has rated item j, and not observed otherwise. Usually there are a huge number

of items, and users only rated a few of them. So a very large proportion of R is missing.

We want to predict the missing ratings accurately.

Methods for building recommender systems have been discussed a lot in computer

3

science literature since collaborative filtering recommender systems appeared in the mid-

1990s [1]. Afterwards a lot of developments were made in both industry and academia.

Currently, there are two prevalent classes of approaches, i.e. collaborative filtering and

content-based recommender systems. Collaborative filtering makes use of the informa-

tion from similar users to predict the future action. Popular methods include matrix

factorization approaches such as SVD decomposition in [22, 30] and many variants,

matrix completion approaches such as [34].

Content-based recommender systems (e.g. [12, 7]) compare the content of an item

with a user’s profile and are mostly used in recommending textual materials. Techniques

such as TF-IDF [45] in information retrieval are utilized for item feature extraction. One

advantage of content-based methods is that ratings on new items can be predicted which

solves the “cold start” problem partially. There are also many hybrid recommender

systems developed combining collaborative filtering and content-based methods, for

example [44, 3, 64]. Context-aware recommender systems which take into account the

context under which a user rates an item have also been introduced, such as in [28]

and [5]. Hybrid and context-aware methods have become the trend in recommender

systems.

The existing methods typically assume the ratings of a given user on different items

are independent, and ignore the missing mechanism of R which is usually not missing

completely at random. The method in [6] takes one step further: they proposed a group-

specific singular value decomposition method, by clustering users or items according to a

certain missing mechanism they observed. Hence their method captures the individuals’

latent characteristics that are not used in other approaches, and provides more accurate

prediction than the previously mentioned methods. These will be explained with more

details in Chapter 2.

We propose a correlation-incorporated method, which takes one step further than

the typical methods, along a different direction from [6]. We notice that a user’s rating

on different items could be highly correlated: in the MovieLen data, this is extraordi-

narily apparent for different episodes of a movie series (Star Wars, for example); and

this is also obvious for different movies adopted from similar true stories or related lit-

erary works. In nowadays cyber-context, there is some phenomenon called Intellectual

Property (IP). Many movies can root from the same IP, and if this IP is particularly

4

preferred or disliked by a certain user, it is expected that such a user will rate these

different movies in a highly correlated way. This IP phenomenon is one evidence for

us to consider the correlation of ratings over different items, for further discussion see

section 3.4. Note that these correlations cannot be captured by the explicit feature or

latent characteristics. Inspired by this observation, we take the precision matrix into

consideration in our method.

Another motivation for considering the precision matrix is that we have a grouping

of users, according to their correlations. Our method of estimating the precision matrix

generalizes the method of [63], which automatically gives the grouping by fused type

penalty. Furthermore, we combine this grouping by taking into account user preference

on item features and item “preference” on user features. Also the grouping is auto-

matically given through our algorithm. Note that estimation the of precision matrix

together with the preference vectors requires a large amount of computation, and we

can reduce the effort by the above-mentioned grouping. Moreover, the incorporation of

the correlation structure is proved to deliver smaller asymptotic variance and prediction

error theoretically, thus increases the accuracy of the method.

The structure of the rest of this thesis is as follows: Chapter 2 is literature review

about state of the art recommender systems; Chapter 3 discusses about the statistical

model we propose, algorithm and theoretical results; Chapter 4 shows our numerical

results in simulations and Movielens dataset; Chapter 5 gives a conclusion and discussion

of our method.

Chapter 2

Four Kinds of Recommender

Systems

There are some very challenging problems to solve in recommender systems. In most real

applications, the number of users and items are both huge. For example, Amazon.com

currently has about 300 million active customers and sells over 400 million products.

With such a large dataset, fast computation inevitably becomes an issue. Scalability of

the algorithm is necessary in order for it to be used in recommender systems to solve

practical problems. Another challenge is that, although there are a huge number of

users and items, the number of items rated by a user takes up a very small proportion

of all items, usually below 1%. This makes it hard to predict unknown ratings precisely.

It can be easily imagined this is the case for Internet companies like Amazon.com or

Netflix as they have so many items. In research, the movie recommendation problem

is studied quite often because of the availability of datasets in the public domain. This

practical problem also has the issue of extremely low percentage of observed ratings.

The popular Movielens dataset is provided by GroupLens, a research lab which studies

recommender systems and some other related areas at the University of Minnesota. It

contains three movie rating data of 100k, 1M and 10M, and the average proportions

of rated movies among all movies in these three datasets are 6.3%, 4.2% and 1.3%

respectively.

According to what information is used for predicting ratings, recommender systems

5

6

can be classified into several kinds (here we again ignore knowledge-based recommender

systems which don’t predict ratings). They are listed below and the basic idea is stated

here.

• Collaborative Filtering recommender systems

This kind of recommender systems utilizes user history rating information. Similar

users are found by similar ratings, and their ratings are aggregated for prediction.

This allows preference of other users to be borrowed when predicting a user’s

rating on an item not consumed by him/her before.

• Content-Based recommender systems

This kind of recommender systems utilizes item contents or features. Similar items

are found by similar contents, and ratings on them are aggregated for prediction.

• Hybrid recommender systems

This kind of recommender systems seek ways to combine collaborative filtering and

content-based recommender systems. Thus they utilize both user history ratings

and item content information.

• Context-Aware recommender systems

As suggested by its name, this kind of recommender systems is aware of the context

where the recommendation is made, for example what time the user consumes the

item, or whether there is a companion. So context is an extra dimension considered

besides user history ratings and item contents by context-aware recommender

systems.

The following sections in this chapter are going to explain each of them in detail.

2.1 Collaborative Filtering

Collaborative filtering recommender systems are the earliest developed recommender

systems. They appeared in the mid-1990s. The earliest works are [43, 24, 49]. Collabo-

rative filtering utilizes the partially filled rating matrix R in (1.1). To predict for a user,

rather than only using ratings of this user, collaborative filtering believes there is some

7

latent connection between all users and items and thus pools available information from

all users on all items together in some way. Traditional collaborative filtering methods

directly find similar users based on past ratings on common items. Recent collaborative

filtering methods don’t define an explicit similarity measure but implicitly infers user

relations. This way it’s more flexible and doesn’t only depend on one metric between

users. Below they are discussed in more detail. An extensive review can be found in

[10].

2.1.1 Traditional Collaborative Filtering

Traditional collaborative filtering recommender systems are based on the idea that peo-

ple who share the same preferences in the past should also have the same preferences in

the future. Given history ratings, similar users can be found as the ones who gave the

closest ratings on the commonly rated items. Then the ratings of a user can be predicted

based on the ratings of his/her similar users using a weighted or unweighted average. To

be specific, following the notations in the Introduction chapter, suppose user i rated mi

items. Denote the indices of items user i rated by Ii , {i1,i2, · · · , imi} ⊆ {1, 2, · · · ,m}.
For every other users, we calculate the similarity with user i based on their ratings on

items they both rated. Let Iij = {k|k ∈ Ii and k ∈ Ij}. The two most commonly used

similarity measures are the cosine and correlation measure.

sim1(i, j) =

∑
k∈Iij

rikrjk√ ∑
k∈Iij

r2
ik

√ ∑
k∈Iij

r2
jk

(cosine)

sim2(i, j) =

∑
k∈Iij

(rik − ri)(rjk − rj)√ ∑
k∈Iij

(rik − ri)2
√ ∑
k∈Iij

(rjk − rj)2
(correlation)

(2.1)

In above, ri =

∑
k∈Iij

rik

|Iij | and rj =

∑
k∈Iij

rjk

|Iij | .

Besides cosine and correlation similarities, many other measures can be used. For

example as described in [49], inverse of distance measures such as mean squared dif-

ference. There are also variants of the cosine and correlation similarities such as the

8

constrained Pearson correlation in [49] which takes into account the positivity and nega-

tivity of ratings. Its idea is as follows. Many of the rating system adopt possible ratings

as consecutive integers. For instance, if the ratings are in 1, 2, · · · , s, then (s + 1)/2 is

the middle rating. Ratings greater than or equal to (s+ 1)/2 are positive, and smaller

than (s+1)/2 are negative. If only ratings that are both positive or negative are allowed

to increase the similarity, then a similarity measure can be

sim3(i, j) =

∑
k∈Iij

(
rik −

s+ 1

2

)(
rjk −

s+ 1

2

)
√ ∑
k∈Iij

(
rik −

s+ 1

2

)
2

√ ∑
k∈Iij

(
rjk −

s+ 1

2

)
2

. (2.2)

Given similarities between user i with all the other users, the K nearest neighbors

can be used to predict ratings on items not rated by user i yet, where K is a pre-specified

integer. when K = n − 1, it’s all users. Of course, when predicting user i’s rating on

item l, only users who rated this item will be used. After the users are fixed, either a

weighted or unweighted rating of these users can be calculated as the predicted rating

for user i. If weights are used, they are usually based on the similarities. To present it,

let U be the set of users used for predicting rating on item l of user i which is ril. Some

examples of averaging ratings are

1. r̂il =

∑
j∈U

rjl

|U |
(Unweighted average)

2. r̂il =

∑
j∈U

sim(i, j) · rjl∑
j∈U

sim(i, j)
(Weighted average)

(2.3)

There are also many other ways to average ratings. For example, to account for the

fact that different users may have different mean ratings, the ratings can be aggregated

9

as

3. r̂il = ri +

∑
j∈U

(rjl − rj)

|U |
(Unweighted average)

4. r̂il = ri +

∑
j∈U

sim(i, j) · (rjl − rj)∑
j∈U

sim(i, j)
(Weighted average)

(2.4)

The above methods to do collaborative filtering are the “traditional” methods and

the algorithms are quite intuition-based. They are easy to implement but if users don’t

share many rated items, then similarities are not accurate and thus affect the accuracy

of prediction.

2.1.2 Recent Collaborative Filtering

Many advanced methods have been developed for collaborative filtering. [35] described

a user-based and an item-based naive Bayes classifier. The user-based classifier treats

the rating of one user as the response, and ratings of other users as features. It assumes

given the rating of one user, ratings of all other users are independent. A posterior

probability of this user’s rating given all other user ratings can be calculated and used

for prediction. The item-based classifier is a similar idea.

Another popular approach is via matrix decomposition/completion. The Singular

Value Decomposition (SVD) is applied in recommender systems to reduce the dimension

of user and item feature space as well as approximating the history ratings [46, 30, 32].

Specifically, the rating matrix Rn×m is decomposed into the product of two low-rank

matrices An×k and Bm×k while minimizing ‖R−ABT ‖22. The column dimension k for

A and B satisfy k � min{m,n}.

10

Figure 2.1: SVD in recommender systems1

A and B can be understood as the latent user and item factors that influences final

ratings.

If R is a complete matrix, then the solution of A and B will be the SVD of R by

taking the first k singular values. But since R is not complete, the minimization is done

on the observed entries:

(Â, B̂) = argmin
A,B

∑
(i,j)∈O

(rij − aTi bj)2, (2.5)

where O is the set of observed ratings, and ai and bj are the ith and jth row of A and

B respectively. A regularized form of (2.5) is

(Â, B̂) = argmin
A,B

∑
(i,j)∈O

(rij − aTi bj)2 + λ(
n∑
i=1

‖ai‖22 +
m∑
j=1

‖bj‖22), (2.6)

where λ > 0 is a regularization constant. The above shrinksA andB towards 0 to avoid

overfitting. Alternating least squares algorithm can be used to solve (2.6), in which A

and B are minimized alternately.

The method in [34] proposed to solve the following matrix completion problem for

recommender systems:

Ẑ = argmin
Z

∑
(i,j)∈O

(rij − zij)2 + λ‖Z‖∗. (2.7)

Here Z is a n×m matrix. ‖Z‖∗ is the nuclear norm (also known as trace norm) which

1Stanford CS 294-34 slides

11

is defined as

‖Z‖∗ =
n∑
i=1

σi, (2.8)

where the σi’s are the singular values of Z. The nuclear norm is used as a convex

relaxation of rank. [34] also gave an efficient algorithm based on SVD to solve the

above optimization.

Other people have proposed regularizing different matrix norms for the matrix com-

pletion. For example, the local max norm used in [20].

Rendle 2010 [41] proposed a new model class of factorization machine which can be

applied to predict ratings. FMs model all the main terms and interactions of the input

features. Parameters for the interaction terms are estimated through factorization. This

allows coefficients to share components, and works well in sparse data setting such as

recommender systems. The model equation is

ŷ(x) = w0 +
∑
i

wixi +
∑
i,j

< vi,vj > xixj , (2.9)

where w0,w,V are parameters to estimate, and x is the input covariates for the corre-

sponding response variable y. For example when y = rij , the rating of user i on item j,

then x can be a vector of indicator variables with the first part as n − 1 indicators to

index the user, and the second part as m− 1 indicators to index the item. If available,

the user and item feature vectors can also be incorporated in x, which makes it a hybrid

recommender system.

Collaborative filtering recommender systems commonly have the new user and new

item problem. For a new user entering the system, since no history rating is available,

the system cannot make predictions for this user. Also for a new item which nobody

has rated before, the system cannot predict ratings on it.

2.2 Content-Based Recommender Systems

Content-based recommender systems utilize the item features. The basic idea is users

will like items similar to what they liked in the past. It doesn’t combine information

12

across users. Current content-based recommender systems are mostly used in applica-

tions recommending items that contain texts such as web pages, documents [1], where

the feature of the item is abundant enough to reflect the user preference.

Given the features of two items, say pi and pj respectively for item i and j, the

similarity of these two items can be calculated using measures such as the cosine and

correlation similarities given in (2.1). For example, the cosine similarity is

sim(itemi, itemj) =
pi · pj

‖pi‖2 · ‖pj‖2
. (2.10)

Then the predicted rating on an item can be decided by using the ratings on its nearest

neighbors, such as using the unweighted or weighted average as in (2.3), (2.4).

In content-based recommender systems, since user preference is represented by the

items rated in the past, how to extract informative features is an important issue. Recent

advancements in information retrieval provides effective ways to extract features from

textual contents. Typically texts are represented by its keywords. The simplest way is to

count the times a word appears in the text. A more advanced and well-known approach

to measure the importance of a word in a text is the TF-IDF (term frequency/inverse

document frequency) measure [7, 45]. For keyword t, suppose it appears in document d

for ft,d times, then its TF (term frequency) can be defined in several formats including

but not limited to

TF(t, d) = ft,d,

TF(t, d) =
ft,d

max
s
fs,d

,

TF(t, d) = 1 + log(ft,d).

(2.11)

The IDF factor accounts for the fact that a keyword is not important if it appears in

many documents. Suppose keyword t appears in md documents among all m documents.

To make it clear, denote the collection of all documents by D. Then the IDF (inverse

document frequency) and some of its variants are

13

IDF(t,D) = log
m

md
,

IDF(t,D) = log

(
1 +

m

md

)
,

IDF(t,D) = log

(
1 +

max
d
md

md

)
.

(2.12)

And the TF-IDF weight is the product of TF and IDF:

TF-IDF(t, d) = TF(t, d) · IDF(t,D). (2.13)

Let wt,d be the weight of keyword t in document d. After all keyword weights are

derived, each document can be represented by the weights . Use wd to represent the

profile/feature vector of document d,

wd = (w1,d, w2,d, · · · , wT,d)T . (2.14)

Some content-based recommender systems build a user interest profile for each user.

The user profile is based on the keyword weight vectors wd’s of documents rated by

the user. A typical way is to use a weighted average of wd’s weighted according to the

ratings. Then prediction on new items is made by comparing the user profile and the

keyword weight vector of the new item. Items with high keyword similarities to the user

profile are predicted to have high ratings and items with low keyword similarities are

predicted to have low ratings.

Besides using the nearest neighbor type of approach, other techniques are applied to

content-based recommender systems. Naive Bayes can be applied assuming the features

are independent of each other given the rating. Machine learning methods such as

decision trees, random forest and neural network can also be applied.

As item feature is of essential importance to content-based recommender systems,

one limitation of content-based recommender systems is that it may not perform well

if the features cannot represent the item sufficiently. Even for texts where effective

ways of extracting features are available from information retrieval field, there is still a

concern whether keywords alone is sufficient to describe a text. That’s because even if

14

two documents use almost the same words, the way the words are organized can still

be different. This is related to the writing style or quality of the document. Currently

there’s no valid methods to capture this aspect of texts. For non-textual items such as

videos and images, automatic feature extraction still remains a problem. For example

in movie recommendation, features such as the director, time of release, genre and so on

can be obtained, but the movie video itself cannot be parsed and thus gives no features

at all. With such limited features, content-based recommender systems may not learn

the preferences of users well to give accurate predictions.

Another drawback of content-based recommender systems is that content-based sys-

tems can only recommend items similar to the ones rated before. Items dissimilar have

a low similarity score and the predicted rating will be low. So they are always ignored

and never get recommended to the user. But in fact, users are possible to select dif-

ferent items which are not similar to the previous ones next time. Thus content-based

recommender systems limit user interests to the old ones and give too low ratings to

dissimilar items.

Content-based recommender systems also have the new user problem, as collabora-

tive filtering systems. For a new user who hasn’t rated any item yet, a content-based

system cannot learn his/her preferences. So no prediction can be made for this user.

But different from collaborative filtering, content-based systems do not have the new

item problem. The system doesn’t rely on ratings of other people to predict for one

user. It only relies on the “content” of the item. So even though no one has rated this

item, based on the similarity of this item with the rated ones, the rating on this item

can still be predicted.

2.3 Hybrid Recommender Systems

In many applications, both the user history rating information and item feature infor-

mation can be obtained. Thus only using history ratings or only using item features

is not efficient. A hybrid recommender system combining collaborative filtering which

uses history ratings and content-based recommender systems which use item features

can perform better. Furthermore, combining these two types of recommender systems

can avoid the problems specific to one of them.

15

There are many ways to combine the two types of recommender systems. Hybrid

recommender systems can be categorized into three classes [1, 9].

1. Use both collaborative filtering and content-based recommender system to predict

the ratings. The ratings from these two systems are combined in some way.

2. Augment the feature space of one system from features in the other system.

3. Build a unified model that use both user history ratings and item features.

Details and some examples of three types of hybrid recommender systems are given

below.

2.3.1 Combining Results and Augmenting Feature Space

Directly combining results is the most straightforward way of combining collaborative

filtering and content-based recommender systems. To fulfill this, first both methods are

implemented. To combine them, the simplest way is to do a linear combination. In

real applications, the weights of two systems are often adjusted as more prediction are

made and performance are seen. For example one possibility is to use equal weights

at the beginning. As more predictions are made, the weight of the system that gives

ratings closer to the observed gets larger, and the other weight gets smaller. Another

approach used is switching between the two systems using some criteria. For example,

the DailyLearner system tries content-based recommender system first. If it doesn’t

have high confidence in the predicted rating, then collaborative filtering is implemented

and used.

An example of augmenting feature space can be to modify the similarity score calcu-

lation for two users in the traditional collaborative filtering system. To incorporate item

feature information, for a user the history ratings can be augmented by the user profile

built in a content-based recommender system. To be specific, suppose the user history

ratings are in vector ri, and the user profile is wi. Then the augmented representation

of this user is (all vectors are column vectors)

rwi = (rTi ,w
T
i)T . (2.15)

16

And the similarity score between users can be calculated based on rwi’s. For user i

and j, ri and rj are ratings on items they both rated. In cases where the number

of commonly rated items is small for a pair of users, only using ratings to compute

similarity may not give an accurate measure. The augmentation of item features can

relieve this issue by adding more elements to the base of the comparison.

2.3.2 Building a Unified Model

Many recently developed hybrid recommender systems do not combine the result from

the two methods or augment the features, like in section § 2.3.1. Instead, they utilize

user history ratings and item features at the beginning step of the model building. Some

examples of them are given below.

A unified probabilistic model was proposed in [47]. It builds a distribution over all

user and movie pairs. The probability of user i purchase/rate item j is modeled using

a latent class for users. Item content information is also incorporated to model the

probability.

In [44] another probabilistic model was proposed. It employed the Restricted Boltz-

mann machines to combine collaborative and content information in a coherent manner.

They only considered binary action on an item such as buying or not buying, watching

a movie or not. Actions on all movies of user i, denoted as ai is modeled to have joint

probability

p(ai;λ) =
1

z(λ)
exp

∑
j

λjaij +
∑
j<k

λjkaijaik

 . (2.16)

The unknown parameters are the λj ’s and λjk’s, corresponding to items and item pairs

respectively. And zλ is a normalization factor to make sure the probabilities sum to 1.

λ is modeled as

λj = µTyj ,

λjk = yTj Hyk.
(2.17)

Here yj is the features for item j. µ is an unknown parameter vector, and H is an

unknown matrix assumed to be diagonal to reduce number of parameters to estimate.

Actions of different users are assumed independent. Thus the log likelihood function

17

of all actions of all users is
∑

i logp(ai;λ). But as zλ is difficult to write out explicitly,

directly maximizing the log likelihood is hard. Instead, they used the psedo-likelihood

p(ai;λ) =
∑
j

p(aij |ai(−j);λ), (2.18)

where p(aij |ai(−j);λ) is the conditional probability of action on item j given actions on

all other items. Based on (2.16), this conditional probability has a logistic form and

doesn’t involve zλ,

p(aij |ai(−j);λ) =
exp(λj +

∑
k 6=j λjkak)

1 + exp(λj +
∑

k 6=j λjkak)
. (2.19)

Then optimization is done on the psedo-likelihood to get estimates for λ.

Two content-boosted matrix factorization models were proposed in [36] based on the

idea that if two items i and j have close features in the content-based system, then their

latent factors in the matrix factorization bi and bj (in (2.6)) should also be close. The

first model is as follows: If the similarity of two item features wi and wj is greater than

some threshold, then the objective function in (2.6) is augmented by a term encouraging

the closeness of bi and bj . More formally,

(Â, B̂) = argmin
A,B

∑
(i,j)∈O

(rij−aTi bj)2 +λ(
n∑
i=1

‖ai‖22 +
m∑
j=1

‖bj‖22)−λ′
∑

yTi yj>c

bTi bj . (2.20)

Here λ′ > 0 is another regularization constant.

The second model in [36] forces the similarity of the latent factors for two items

to be in accordance with the similarity of their features. Suppose item features are

of dimension T . Let Ym×T = (y1,y2, · · · ,ym)T be the item feature matrix. Instead

of using A · BT to approximate rating matrix R, the item latent factor matrix B is

factorized into Ym×T ·DT×k, the product of the item feature matrix and a coefficient

matrix. The optimization problem becomes

(Â, D̂) = argmin
A,D

∑
(i,j)∈O

(rij − aTi DTyj)
2 + λ

n∑
i=1

‖ai‖22 + λ′‖D‖2. (2.21)

18

A hierarchical Bayesian model was proposed in [4]. They use linear mixed effect

model to predict ratings. Some demographic features of users such as age and gender are

assumed available for the data which is true for some movie recommendation problems.

The model is set up as follows:

rij = zTijµ+ xTi γj + yTj λi + eij ,

γj ∼ N(0,Γ),

λi ∼ N(0,Λ),

eij ∼ N(0, σ2),

(2.22)

where zij is a vector containing features of user i and item j and their interactions, xi

is the feature vector of user i, yj is the feature vector of item j. γj is the random effect

of movie j, and λi is the random effect of user i. eij is a random noise. µ,Γ,Λ, σ2 are

unknown parameters and are estimated via Markov Chain Monte Carlo methods.

In fact, the model we propose has a similar setting of the mean part. But we do

not use random effects, so the estimation doesn’t need MCMC and is faster. And the

random errors eij are assumed to be dependent on a user in our model. The details of

our proposed models are given in the next chapter.

Also in a Bayesian framework, [3] proposed a regression-based latent factor model

(RLFM). In their method, the latent factors are estimated through regressions on the

explicit user and features. Assume a continuous rating, the model specifies that

rij = zTijµ+ αi + βj + aTi bj + eij ,

αi = g′0xi + εαi , εαi ∼ N(0, cα),

βj = d′0yj + εβj , εβj ∼ N(0, cβ),

ai = Gxi + εui , εui ∼MVN(0, Cu),

bj = Dyj + εvj , εvj ∼MVN(0, Cv).

(2.23)

The parameters Θ = (µ, g0,d0,G,D, cα, cβ, Cu, Cv) are estimated through a scalable

Monte Carlo EM algorithm.

In [64] Zhu et.al. proposed a likelihood based method seeking a sparsest latent

feature factorization. They also incorporate explicit feature into preference prediction.

19

More detailedly, they assume rij has expectation θij , and θij = xTi α + yTj β + aTi bj .

In this method xi and yj are user and item explicit features; α and β are regression

coefficients; and ai and bj are user and item latent features. Then they minimize

∑
(i,j)∈Ω

l(rij ,x
T
i α+ yTj β + aTi bj) + λ(

∑
i

∑
k

J(|aik|) +
∑
j

∑
k

J(|bjk|)), (2.24)

where l is the negative log likelihood, λ is a regularization constant, and J is a penalty

function. The L1 and L0 (with TLP [52] as a computation proxy) penalties are applied.

This method extends the SVD method by using likelihood to define the loss function,

and also utilizes user and item feature information. A very recent work in [33] proposed

a similar approach to [64]. In their method, they only considered using row covariates

which corresponds to user features, but they impose that the latent features are orthog-

onal to the explicit features. They also allow the missing probability to be dependent

on the observed features. The loss function is

f(β,B;λ1, λ2, λ3, α) =
1

nm
‖Xβ+B−W ◦Θ̂∗◦Y ‖2F+λ1‖β‖2F+λ2(α‖B‖∗+(1−α‖B‖2F)),

(2.25)

where X is the user feature matrix, β is a coefficient matrix, , Bn×m is a low rank

matrix orthogonal to X, ◦ is the Hadamard product,W is a binary missing indicator

matrix, and Θ̂∗ is the matrix of the inverse of the estimated missing probability.

In [6] a group-specific recommender system was proposed adding group-specific la-

tent features for users and items. Since the ratings are usually not missing completely

at random, they propose to use the missing pattern and features to group users and

items. The model has rij ’s expectation θij = (ai + svi)
′(bj + tuj) where vi is the group

the ith user belongs to, uj is the group the jth item belongs to, and s and t are the

group specific effects. The loss function is defined as

∑
(i,j)∈Ω

(rij − θij)2 + λ(
∑
i

‖ai‖22 +
∑
j

‖bj‖22 +
∑
v

‖sv‖22 +
∑
u

‖tu‖22). (2.26)

With this natural grouping of users and items, their method shows a significant im-

provement over other existing and commonly used methods.

20

2.4 Context-Aware Recommender Systems

In real applications, sometimes the contextual variables may influence or even determine

a user’s choice of items. For example in movie recommendations, the people with whom

users watch the movie may affect which movie they choose. If the movie is to be

watched with kids, then Disney cartoon movies may be selected; if the movie is for fun

with friends, other movies may have higher chance to be selected. And to recommend

a restaurant, time in a day may be an important factor. If it’s in the late morning,

restaurants that serve brunch may get a high chance of being selected; if it’s in the late

afternoon, restaurants that serve dinner may be more likely to get selected. The specific

meaning of context can vary for different recommendation problems.

Recently the importance of context for giving recommendations is realized. Rec-

ommender systems that also take context into consideration, besides the use of history

ratings and item content information are developed to improve the accuracy of the pre-

diction. A comprehensive overview of context-aware recommender systems was given

in Adomavicius and Tuzhilin’s book [2]. As mentioned in [2], for most existing recom-

mender system which doesn’t utilize context information, recommender systems attempt

to fill in the rating matrix R in (1.1), and this represents the relation:

User× Item→ Rating

But in context-aware recommender systems the space where the prediction is made is

augmented, and the relation becomes:

User× Item× Context→ Rating (2.27)

In context-aware recommender systems, the context information is represented by con-

text variables. Typically they are categorized into some limited number of cases like

user and item indices. Time is often used as a context variable in many applications.

The number of context variables is not limited to 1. For example in movie recommenda-

tion, if variable Companion is used to describe the people with whom to watch a movie,

then both Time and Companion can be used as the context variables. In a general rec-

ommender system, suppose there are C context variables “Context1”, “Context2”,· · · ,

21

“ContextC”, then the space for prediction is of C + 2 dimensions, with the extra 2

dimensions for user and item. So a more detailed format of (2.27) is

User× Item× Context1 × Context2 × · · · × ContextC → Rating (2.28)

By [2] context-aware recommender systems are classified into three classes according

to how the contextual information is used in the model building process, Contextual

pre-filtering, Contextual post-filtering and Contextual modeling. They are explained in

detail in the following part.

2.4.1 Contextual Pre-filtering and Post-filtering

The idea of contextual pre-filtering is group data into different context cases, and only

use data in one specific context case to build a recommender system for this context. Fol-

lowing the notations for context variables, a context case is a combination of one possible

value for each context variable, i.e, (Context1 = v1,Context2 = v2, · · · ,ContextC = vC)

for some possible values v1, v2, · · · , vC of the context variables.

A benefit of this approach is that for each context case, since the relation of the

prediction goes back to User×Item→ Rating, all previous techniques for non-contextual

recommender systems can be used. But this approach also has a serious drawback. The

number of context cases may be large as it’s the combination of all context variables.

There may be few observations under one specific case. In case the sizes of data for

the context cases are small, the individual recommender systems built for context cases

may not predict well due to lack of data. This method separates data and thus cannot

incorporate information for other context cases.

Contextual post-filtering paradigm ignores the contextual information at first and

builds a recommender system without considering it. After making the predictions, a list

of the top N items with the highest predicted ratings is given. Then some adjustments

of the predicted ratings are applied according to the context variables. Generally the

adjustments are made by analyzing the preference of users under specific contexts. For

example, if a user only goes to warm places like Florida in winter for vacation, then cold

places for vacation can be filtered out on the recommendation list.

22

In [2], contextual post-filtering is divided into heuristic-based and model-based meth-

ods. Heuristic-based methods analyze the choices of items of a user under a context

to find out common features of these items. Then based on these common features,

either filtering or re-ranking of the recommendation list can be done. Filtering counts

how many features a new item has that are common features of previously consumed

items under this context. New items with this number of features smaller than some

threshold value get filtered out. Reranking adjusts the ranking of the recommendations

by taking the number of “good” features of an item into account. For example, use the

product of the predicted rating from the non-contextual recommender systems and the

number of ”good” features as a new rating on the item. A new recommendation list of

items is given according to the new rating. The higher the new rating, the higher the

item appears on the list.

Model-based methods estimate the probability distribution of the item features un-

der a context. Then the rating of an item is weighted by the probability of its features

to generate a new rating. According to the new rating, the system can also choose to

do filtering or re-ranking of the items.

Contextual post-filtering, like contextual pre-filtering, also has the benefit that all

techniques for recommender systems without considering contexts can be applied. But

how to effectively incorporate contextual information after predictions are made is still

an open research area.

2.4.2 Contextual Modeling

Contextual modeling is the most active research area of contextual-aware recommender

systems. Many researchers have been developing new methods for this area recently.

Contextual modeling doesn’t divide the modeling process into two stages like in con-

textual pre-filtering or contextual post-filtering. It builds contextual information into

a unified model from the beginning of the modeling. Thus methods for traditional

non-contextual recommender systems cannot be directly used in this setting.

One idea to do contextual modeling is to extend the heuristic-based traditional rec-

ommender systems that don’t consider context. For example, the traditional similarity

based collaborative filtering can be generalized as follows. To predict the rating of user

i on item j under context t, denoted as rijt, we can use all the ratings ri′jt′ ’s on item j

23

for a different user and context combination (i′, t′) where i′ 6= i or t′ 6= t. The similarity

of the combinations (useri, contextt) and (useri′ , contextt′) can be calculated based on

ratings on other items except item j. This is an exact extension of the similarity based

collaborative filtering. Many variants of it can be derived such as changing the similarity

calculation to be based on features instead of ratings, that is to employ user features

and context variables to compute similarity. Yet another way is to use both features

and ratings.

Besides the heuristic-based methods from generalizing traditional recommender sys-

tems, there are some model-based methods proposed recently for contextual modeling.

Some examples of them are given below.

Koren(2009) proposed timeSVD++, a model-based method considering time as the

context variable in [29]. This work is an extension of the SVD matrix factorization

method in collaborative filtering. It made some refinements of the basic SVD matrix

factorization recommender system, and let the parameters vary with time. To be spe-

cific, first the proposed method extended the prediction model from

r̂ui = qTi pu, (2.29)

where r̂ui is the predicted rating of user u’s rating on item i, to

r̂ui = µ+ bi + bu + qTi

pu + |R(u)|−1/2
∑

j∈R(u)

yj

 . (2.30)

In above µ, bi, bu are additional parameters to capture the grand mean effect, user i

effect and item j effect. R(u) is the set of items rated by user u, and yj is a item

factor of the same dimension as qi’s and pu’s. The term |R(u)|−1/2
∑

j∈R(u) yj is added

to reflect implicit information in the specific set of items rated. Furthermore, (2.30) is

extended to allow parameters bi, bu and pu to change over time and make the model

dynamic as

r̂ui = µ+ bi(t) + bu(t) + qTi

pu(t) + |R(u)|−1/2
∑

j∈R(u)

yj

 . (2.31)

24

For item effect, it’s assumed the change over time is slow. So they divided the time

interval to smaller bins, and in each bin use a different item effect. More formally,

bi(t) = bi + bi,Bin(t). (2.32)

But for effects relevant to a user, because the change of user preference is usually

fast, the paper used more precise ways to describe it, such as splines of t. The model

was experimented on Netflix dataset and did better than the nontemporal matrix fac-

torization models.

Another contextual modeling method was proposed in [28]. They used N-dimensional

tensor to include contextual information in recommender systems. Tensor is a general-

ization of matrix to more than two dimensions. The rating matrix in 2-D is extended

to a rating tensor of N (N> 2) dimensions with the extra (N-2) dimensions for context

variables. The idea of building the recommender system is similar to the 2-D case. The

HOSVD (High Order Singular Value Decomposition) was applied on the rating tensor

with the optimization of parameters done using the observed ratings, and the sizes of

the parameters regularized, as in the 2-D SVD decomposition collaborative filtering

method. For the simplest case, if there is a single context variable, then the tensor

is three dimensional. To show it, suppose the context variable takes l different values

and following the notations before assume there are n users and m items. Use R to

denote the rating tensor. Then Rn×m×l is decomposed into a core tensor Bdu×dm×dc

and matrices representing factors for users Un×du , factors for items Mm×dm , and factors

for contexts Cl×dc as follows,

rijk = B×1 Ui· ×2 Mj· ×3 Ck·, (2.33)

where the ×1,×2,×3 products are the mode-1, mode-2 and mode-3 products between

a tensor and a matrix. For a general N -dimensional tensor Pn1×n2×···nN the mode-q

product [13] with a matrix Ad×nq is another tensor of the same dimension

Q = P ×q A ∈ Rn1×n2×···nq−1×d×nq+1···nN (2.34)

25

with

qi1,i2···iq−1,jq ,iq+1,···iN =

nq∑
k=1

pi1,i2···iq−1,k,iq ···iNajq ,k (2.35)

for jq = 1, 2, · · · , d.

With the decomposition in (2.33) they minimized the objective function

∑
i,j,k

l(rijk, yijk) + λU‖U‖22 + λM‖M‖22 + λC‖C‖22, (2.36)

where yijk is the true rating and l is a loss function.

Rendle et.al. [42] used the factorization machine to realize a context-aware rec-

ommender system by increasing the feature space with context variables and adding

pairwise interactions between user, item and context variables.

In [5] Xuan Bi et al. extended their method in the matrix scenario [6] to tensor to

deal with context information. Identiability of the tensor method is proved which is

not an issue in the matrix case. With the grouping defined by explicit features, for a

new user, new item or new context, the group effect can be used for prediction. This is

more accurate than using the grand mean. So this method helps solve the “cold start”

problem. In our proposed method, we can also use explicit features to find closest users

to a new user or closest items to a new item. Thus by K-nearest neighbor kind of

approach, we can also predict for a new subject (user or item) and thus solve the “cold

start” problem.

Chapter 3

Personalized Recommender

System via Clustering

We propose a personalized recommender system model with correlation estimation.

The dependencies of all the ratings made by a single user are taken into consideration

and a separate precision matrix is estimated for each user. Similar user and items are

identified via supervised clustering on individual preferences and user precision matrices.

The idea of supervised clustering was previously discussed in [51, 38, 58] and we apply it

in recommender systems for grouping users and items similar in nature. We propose to

use a non-convex penalty for clustering. The ratings are built into a multivariate normal

model incorporating both user and item feature information as predictors, where the

random errors are allowed to have a general covariance matrix. We estimate the user

“preference” and item “preference” for each user and each item. Users and items are

clustered by adding regularization terms in the model objective function, thus different

users and items are allowed to borrow information from each other.

In the grand map of the entire recommender system area, our method belongs to a

unified hybrid recommender system as both user ratings and user and item features are

taken into account in the model. Details of our model are explained in the following

sections.

26

27

3.1 Model Specification

3.1.1 Models

Following the notations before, consider a situation in which we have a n ×m rating

matrix R = (rij)n×m. Each row and column of R correspond to one user and one item

respectively, and some entries of R are missing. So rij is the rating of user i on movie

j. Let zij be the binary indicator of missing, that is

zij =

1 if rij is observed

0 if rij is missing
.

In this thesis we assume ignorable missing where the distribution of zij ’s don’t depend

on the missing part of R. For nonignorable missing, [31] can be referred for detailed

discussion.

To account for correlations among item ratings associated with the same user, we

assume that ratings from a user follow a multivariate normal distribution with some

covariance matrix, and ratings from different users are independent.

To be specific, suppose user i rated mi items with indices in set Ii , {i1,i2, · · · ,
imi} ⊆ {1, 2, · · · ,m} as mentioned previouly in the Introduction, where i1 < i2 <

· · · < imi . For observed ratings ri = (ri,i1 , ri,i2 , · · · , ri,imi)
T from user i, we assume

ri ∼ N(µi,Ω
−1
i), where µi = (µi,i1,µi,i2 , · · · , µi,imi)

T is the mean of the observed ratings

of user i, and Ωi is the precision matrix of observed ratings of user i to describe the

correlations on ratings given by user i. Here the precision matrix is used instead of the

covariance matrix to facilitate computation, because the log likelihood is convex in the

precision matrix but not in the covariance matrix. More formally, our prediction model

can be written as

rij = µij + εij , µij = xTi αj + yTj βi, (εi,i1 , · · · , εi,imi)
T ∼ N(0,Ω−1

i) (3.1)

for i = 1, 2 · · · , n, j = 1, 2, · · · ,mi, where xi and yj are user feature and item feature

variables such as the demographic information of user i and the genre of movie j. To

allow each user to have his/her own mean rating of items, the first element of an item

feature vector yj is always set to constant 1. Suppose user feature x′is have dimension

28

K1 and item feature y′js have dimension K2. Then αj is a K1-dim vector representing

“preference” of item j over user feature variables, and βi is a K2-dim vector representing

“preference” of user i over item feature variables. So for the mean, items and users

are treated equally. εij is the random error. Let α = (α1, · · · ,αm) be the K1 × m
item preference matrix, β = (β1, · · · ,βn)T be the n ×K2 user preference matrix, and

Ω = (Ω1, · · · ,Ωn).

Without loss of generality, we assume the distribution of the missing indicator zij ’s

doesn’t depend on the parameters α,β,Ω that are related to the distribution of {rij}.
Then to do inference about (α,β,Ω), we only need to look at the log likelihood of the

observed part of R. This can be written as

l(α,β,Ω) =

n∑
i=1

[
1

2
logdet(Ωi)−

(ri − µi)TΩi(ri − µi)
2

]
. (3.2)

To cluster the “preference” of different users and movies, we penalize the pairwise

differences among αj ’s and βi’s. To group users, we also penalize the differences of

the entries of different precision matrices corresponding to the same item or the same

pair of items. A sparse structure on the precision matrix is also assumed to depict the

conditional independence of ratings of one user on two items given the other ratings by

the same user. For an item or an item pair, if at least one user rated it, we propagate to

estimate the corresponding entry in the precision matrices for all users. Since at least

one user rated each of the m items, we can estimate the diagonal elements for m items

in the precision matrices for all users. To facilitate presentation, we put all estimated

entries for each user i in a m ×m precision matrix ΩTi . If an item pair (j, l) is rated

by none of the n users, the entry ωTi,jl is fixed at 0 for all i. The submatrix of ΩTi for

items rated by user i is Ωi.

Specifically, for item pair j and l (j < l), suppose they are simultaneously rated

by at least one user. Then we penalize the difference |ωTi,jl − ωTk,jl| for all user pair

i and k. The diagonal entry difference |ωTi,jj − ωTk,jj | is also penalized for all item j

and all user pair i and k. For the sparsity pursuit, we penalize |ωTi,jl| for j 6= l. Let

Si = (ri − µi)(ri − µi)T and let J be a general penalty function, the penalized log

likelihood is

29

l(α,β,Ω) =
1

2

∑
i

[logdet(Ωi)− tr(ΩiSi)]−
λ1

2

∑
i<k

∑
t

J(|αit − αkt|)

− λ1

2

∑
i<k

∑
t

J(|βit − βkt|)− λ1

∑
i<k

∑
j6l

∃h,{j,l}⊆Ih

J(|ωTi,jl − ωTk,jl|)

− λ2

∑
i

∑
j<l

J(|ωTi,jl|)

(3.3)

where λ1, λ2 > 0 are regularization parameters. To maximize (3.3), equivalently we

minimize

− l(α,β,Ω) =
1

2

∑
i

[tr(ΩiSi)− logdet(Ωi)] +
λ1

2

∑
i<k

∑
t

J(|αit − αkt|)

+
λ1

2

∑
i<k

∑
t

J(|βit − βkt|) + λ2

∑
i

∑
j<l

J(ωTi,jl) + λ1

∑
i<k

∑
j6l

∃h,{j,l}⊆Ih

J(|ωTi,jl − ωTk,jl|)

(3.4)

with respect to α, β and Ω.

For the penalty function J , we considered the L1-norm and the L0-norm. Since the

L0-norm is not continuous and hard to minimize, we use a computation surrogate for

it, which is the truncated L1 penalty [52] abbreviated as TLP. The objective function

to minimize with the L1 penalty is

− l1(α,β,Ω) =
1

2

∑
i

[tr(ΩiSi)− logdet(Ωi)] +
λ1

2

∑
i<k

‖αi −αk‖1 +
λ1

2

∑
i<k

‖βi − βk‖1

+ λ2

∑
i

∑
j<l

|ωTi,jl|+ λ1

∑
i<k

∑
j6l

∃h,{j,l}⊆Ih

|ωTi,jl − ωTk,jl|.

(3.5)

(3.5) is convex in α, β and Ω separately as shown in Appendix A.1. But it’s not

convex in (α,β,Ω) together. In order to minimize it, we apply the difference of convex

30

algorithm. And inside each iteration of the difference of convex algorithm, the objective

function is convex in (α,β,Ω). So we minimize with respect to α, β and Ω alternately.

The loss function with the L0 penalty is

− l0(α,β,Ω) =
1

2

∑
i

[tr(ΩiSi)− logdet(Ωi)] +
λ1

2

∑
i<k

‖αi −αk‖0 +
λ1

2

∑
i<k

‖βi − βk‖0

+ λ2

∑
i

∑
j<l

I(|ωTi,jl| 6= 0) + λ1

∑
i<k

∑
j6l

∃h,{j,l}⊆Ih

I(|ωTi,jl − ωTk,jl| 6= 0).

(3.6)

And the TLP function is defined as Jτ (x) = min(|x|, τ). Note that TLP is not

convex and Jτ (x)/τ approximates the L0−penalty as τ > 0 goes to 0+. The objective

function to minimize with the TLP penalty is

− lTLP(α,β,Ω) =
1

2

∑
i

[tr(ΩiSi)− logdet(Ωi)] +
λ1

2

∑
i<k

∑
t

Jτ (|αit − αkt|)

+
λ1

2

∑
i<k

∑
t

Jτ (|βit − βkt|) + λ2

∑
i

∑
j<l

Jτ (|ωTi,jl|) + λ1

∑
i<k

∑
j6l

∃h,{j,l}⊆Ih

Jτ (|ωTi,jl − ωTk,jl|).

(3.7)

To minimize lTLP, we also first apply the difference of convex algorithm, and inside

each iteration update α, β and Ω alternately. We talk about the details of solving this

problem in the next section.

3.1.2 A Special Case when Ωi = σ2I

If we ignore the correlations of ratings between different movies by the same user, we

get a special case of (3.1).

rij = µij + εij , µij = xTi αj + yTj βi, εij ∼ N(0, σ2), (3.8)

where σ2 is the error variance. Or equivalently, in this case Ωi = σ2I for i = 1, · · ·n.

That is, ratings on all items from the same user are indepedent with the same variance.

31

In this case the estimate of σ2 doesn’t influence the estimates of α and β, thus can be

omitted. To estimate α and β, we minimize the objective function

− l(α,β) =
1

2

∑
i

∑
j

(
rij − xTi αj − yTj βi

)2
+
λ1

2

∑
i<k

∑
t

J(|αit − αkt|)

+
λ1

2

∑
i<k

∑
t

J(|βit − βkt|).
(3.9)

Since the covariance structure among ratings given by the same user is ignored, the

model may fail to employ some useful information. In following sections, performance

of this special case was compared to the general model.

3.2 Algorithm

To minimize (3.5) and (3.7) which are non-convex, we combine the difference of convex

algorithm, alternating direction method of multipliers algorithm, blockwise coordinate

descent algorithm, and accelerated alternating minimization algorithm[14] to solve con-

vex relaxations of them. First the difference of convex algorithm is applied, then inside

each iteration the mean and the precision matrices are updated alternately.

A DC decomposition of Jτ is Jτ (x) = |x|−max(|x|−τ, 0). We use this decomposition

for dealing with Jτ in (3.7).

3.2.1 Applying the difference of convex algorithm

For the L1 method, we represent its loss function as the difference of (3.5) plus some

quadratic terms for α, β and Ω and (3.5) itself. That is,

− l1(α,β,Ω) = Sl11 (α,β,Ω)− Sl12 (α,β,Ω), (3.10)

where

32

Sl11 (α,β,Ω) =
1

2

∑
i

[tr(ΩiSi)− logdet(Ωi)] +
λ1

2

∑
i<k

‖αi −αk‖1 +
λ1

2

∑
i<k

‖βi − βk‖1

+ λ2

∑
i

∑
j<l

|ωTi,jl|+ λ1

∑
i<k

∑
j6l

∃h,{j,l}⊆Ih

|ωTi,jl − ωTk,jl|

+ c(‖α‖2F + ‖β‖2F +
∑
i

‖Ωi‖2F),

Sl12 (α,β,Ω) = c(‖α‖2F + ‖β‖2F +
∑
i

‖Ωi‖2F).

(3.11)

In above c > 0 is a constant. With a proper value of c, we can have Sl11 to be a convex

function of (α,β,Ω). Then at the (l)th iteration of the difference of convex algorithm,

we replace Sl12 with the linear approximation and minimize

S
(l)
l1

(α,β,Ω) = Sl11 (α,β,Ω)− 2c(〈α,α(l)〉+ 〈β,β(l)〉+
∑
i

〈Ωi,Ω
(l)
i 〉). (3.12)

Here 〈X,Y 〉 = tr(XY T) represents the Frobenius inner product of two matrices X and

Y .

Similarly, for the TLP method, we represent the loss function as

− lTLP(α,β,Ω) = STLP
1 (α,β,Ω)− STLP

2 (α,β,Ω), (3.13)

with

33

STLP
1 (α,β,Ω) = Sl11 (α,β,Ω),

STLP
2 (α,β,Ω) =

λ1

2

∑
i<k

∑
c

max(|αic − αkc| − τ, 0) +
λ1

2

∑
i<k

∑
c

max(|βic − βkc| − τ, 0)

+ λ2

∑
i

∑
j<l

max(|ωTi,jl| − τ, 0) + c(‖α‖2F + ‖β‖2F +
∑
i

‖Ωi‖2F)

+ λ1

∑
i<k

∑
j6l

∃h,{j,l}⊆Ih

max(|ωTi,jl − ωTk,jl| − τ, 0).

(3.14)

Here c is the same constant as in (3.11). At the (l)th iteration of the difference of

convex algorithm, we replace STLP
2 with the linear approximation and minimize

S
(l)
TLP(α,β,Ω) =

1

2

∑
i

[tr(ΩiSi)− logdet(Ωi)] +
λ1

2

∑
(i,k,c)∈E(l−1)

α

|αic − αkc|

+
λ1

2

∑
(i,k,c)∈E(l−1)

β

|βic − βkc|+ λ2

∑
(i,j,l)∈E(l−1)

Ω1

|ωTi,jl|

+ λ1

∑
(i,k,j,l)∈E(l−1)

Ω2

|ωTi,jl − ωTk,jl|+ c(‖α‖2F + ‖β‖2F +
∑
i

‖Ωi‖2F)

− 2c(〈α,α(l)〉+ 〈β,β(l)〉+
∑
i

〈Ωi,Ω
(l)
i 〉).

(3.15)

where E
(l−1)
α = {(i, k, c) : |α(l−1)

ic −α(l−1)
kc | 6 τ}, E(l−1)

β = {(i, k, c) : |β(l−1)
ic −β(l−1)

kc | 6 τ},
E

(l−1)
Ω1 = {(i, j, l) : |ω(l−1)

Ti,jl
| 6 τ}, and E

(l−1)
Ω2 = {(i, k, j, l) : |ω(l−1)

Ti,jl
− ω(l−1)

Tk,jl
| 6 τ} are

index sets determined by the values of the pameters in the previous difference of convex

iteration.

Then objective functions inside the d.o.c. iterations (3.12) and (3.15) are convex

in (α,β,Ω). Note that these two objective functions are very similar, and the only

difference is we have the index sets for the TLP objective function. So next we only

discuss about the method used to minimize (3.15) and skip the method for solving the

L1 problem. In order to deal with the non-differential and non-separable fused cost

34

in the TLP objective function, we apply Alternating Direction Method of Multipliers

(ADMM).

To simplify notations below, below i ∼β k is used to represent i 6= k and there is

at least one c such that |β(l−1)
ic − β(l−1)

kc | 6 τ ; i ∼α k is used to represent i 6= k and

there is at least one c such that |α(l−1)
ic − α(l−1)

kc | 6 τ . To apply ADMM, we introduce

constraints βi − βk = γik for i ∼β k and i < k, αi − αk = θik for i ∼α k and i < k,

ΩTi = ZTi for all i. That is, we solve the following equivalent problem:

min
1

2

∑
i

[tr(ΩiSi)− logdet(Ωi)] +
λ1

2

∑
(i,k,c)∈E(l−1)

α

|θikc|+
λ1

2

∑
(i,k,c)∈E(l−1)

β

|γikc|

+ λ2

∑
(i,j,l)∈E(l−1)

Ω1

|zTi,jl|+ λ1

∑
(i,k,j,l)∈E(l−1)

Ω2

|zTi,jl − zTk,jl|

+ c(‖α‖2F + ‖β‖2F +
∑
i

‖Ωi‖2F)− 2c(〈α,α(l)〉+ 〈β,β(l)〉+
∑
i

〈Ωi,Ω
(l)
i 〉),

with βi − βk = γik for i ∼β k and i < k,

αi −αk = θik for i ∼α k and i < k,

ΩTi = ZTi for i = 1, · · ·n.
(3.16)

With dual variables uik,νik,UTi and constant ρ > 0, the scaled augmented La-

grangian is

1

2

∑
i

[tr(ΩiSi)− logdet(Ωi)] +
λ1

2

∑
(i,k,c)∈E(l−1)

α

|θikc|+
λ1

2

∑
(i,k,c)∈E(l−1)

β

|γikc|

+ λ2

∑
(i,j,l)∈E(l−1)

Ω1

|zTi,jl|+ λ1

∑
(i,k,j,l)∈E(l−1)

Ω2

|zTi,jl − zTk,jl|

+ c(‖α‖2F + ‖β‖2F +
∑
i

‖Ωi‖2F)− 2c(〈α,α(l)〉+ 〈β,β(l)〉+
∑
i

〈Ωi,Ω
(l)
i 〉)

+
ρ

2

∑
i∼βk&i<k

‖βi − βk − γik + uik‖22 +
ρ

2

∑
i∼αk&i<k

‖αi −αk − θik + vik‖22

+
ρ

2

∑
i

‖ΩTi −ZTi +UTi‖2F .

(3.17)

35

At each iteration of the ADMM algorithm, we minimize w.r.t. α,β,Ω,γ,θ,Z and

also update the dual variables u,ν,U . Repeat the iterations until convergence. Detailed

algorithm for updating the mean parameters α,β,γ,θ and precision matrice parameters

Z,U are given in the following subsections.

At convergence of the ADMM algorithm we get (α(l),β(l),Ω(l)). The difference of

convex algorithm is terminated when the decrease of the objective function (3.7) is

smaller than some precision.

The outline of the algorithm to solve the TLP problem is summarized in Algorithm

1.

Algorithm 1 Algorithm outline to solve the TLP problem

1. Start from (α(0),β(0),Ω(0)).

2. To get (α(l),β(l),Ω(l)) from (α(l−1),β(l−1),Ω(l−1)),

i. Start ADMM iterations to solve (3.15) with (α0,β0,Ω0) =
(α(l−1),β(l−1),Ω(l−1)), γ0 = 0,θ0 = 0,u0 = 0,ν0 = 0, Z0 = Ω(l−1),
U0 = 0.

ii. Update from (αt,βt,Ωt,γt,θt,ut,νt,Zt,U t) →
(αt+1,βt+1,Ωt+1,γt+1,θt+1,ut+1,νt+1,Zt+1,U t+1) with the formulas
in the subsections below.

iii. Terminate the ADMM algorithm if the difference between variables in two
iterations are below a precision.

3. Terminate if change in the objective function (3.7) is less than some precision ε.
Otherwise repeat 2.

3.2.2 Mean updating

Suppose user i rated mi items, let their indices be Ii , {i1,i2, · · · , imi}. Without loss

of generality, assume that i1 < i2 < · · · < imi . Let αIi denote the submatrix of α

consisting of columns indexed in Ii. Let Y = (y1,y2, · · · ,ym)T be the matrix of item

features and YIi be the submatrix of Y with rows indexd in Ii. To solve β, note that

µi = αTIixi + YIiβi. (3.18)

36

The part of the augmented Lagrangian (3.17) related to β is,

1

2

∑
i

(ri − µi)TΩi(ri − µi) +
λ1

2

∑
(i,k,c)∈E(l−1)

β

|γikc|+
ρ

2

∑
i∼βk&i<k

‖βi − βk − γik + uik‖22

+ c‖β‖2F − 2c〈β,β(l)〉.
(3.19)

Minimize the above w.r.t. variables β,γ. This is a quadratic form of each βi. And
n∑
i=1

(ri − µi)TΩi(ri − µi) is separable in β′is. We update β by alternately updating

βi. γ can be solved by soft-thresholding. Denote the soft-thresholding function by

ST (x, α) = sign(x)(|x| − α)+ for x real and α > 0. Let li be the number of βk’s

satisfying i ∼β k. Start from some β0,γ0,u0, update β,γ and u as follows. At step

t+ 1,

• βt+1
i = [Y T

Ii
ΩiYIi + ρ(li − 1)I + 2cI]−1

(
Y T
Ii

Ωi(ri − αTIixi) + ρ
∑

i∼βk&i<k

βtk +

ρ
∑

i∼βk&i>k

βt+1
k + ρ

∑
i<k&i∼βk

(γtik − utik) − ρ
∑

k<i&i∼βk
(γtki − utki) + 2cβ(l)

)
for i =

1, 2 · · · , n.

• γt+1
ikc = ST (βt+1

ic − β
t+1
ik + utikc,

λ1

2ρ
) for i < k and (i, k, c) ∈ E

(l−1)
β , γt+1

ikc = βt+1
ic −

βt+1
ik + utikc for i < k, i ∼β k and (i, k, c) /∈ E

(l−1)
β .

• ut+1
ik = utik + βt+1

i − βt+1
k − γt+1

ik for i < k and i ∼β k.

Note that in above the update for γik can be done in parallel across paired indices (i, k),

so as for uik. For these parts and parts mentioned below that can be done parallelly,

we used the openmp API for shared memory multiprocessing programming in C++ to

do parallel computing.

α can be updated likewise. At lth iteration of d.o.c., the part of the objective

function related to α is,

37

1

2

∑
i

(ri − µi)TΩi(ri − µi) +
λ1

2

∑
(i,k,c)∈E(l−1)

α

|θ|ikc +
ρ

2

∑
i∼αk&i<k

‖αi −αk − θik + vik‖22

+ c‖α‖2F − 2c〈α,α(l)〉.
(3.20)

Minimize it w.r.t. variables α and θ. If a user i rated item j, and suppose it’s the tith

item rated by user i. Let ri(−j) denote the ratings of user i excluding item j, and µi(−j)

accordingly. Let Ωi,ti·(−ti) denote the tith row of Ωi without the tith element. The part

of tr(ΩiSi) that involves αj is

ωi,titi(rij − (xTi αj +yTj βi))
2 + 2(rij − (xTi αj +yTj βi))Ωi,ti·(−ti)(ri(−j)−µi(−j)). (3.21)

The above is quadratic in αj . θjk can be solved by soft-thresholding. Let hj be the

number of αk’s satisfying j ∼α k. Start from some α0,θ0,v0, update α,θ and v as

follows.

• αt+1
j =

[∑
j∈Ii

ωi,titixix
T
i + ρ(hj − 1)I + 2cI

]−1{ ∑
j∈Ii

[Ωi,ti·(−ti)(ri(−j) − µi(−j)) +

ωi,titi(rij − yTj βi)]xi + ρ
∑

j∼αk&j<k

αtk + ρ
∑

j∼αk&j>k

αt+1
k + ρ

∑
j∼αk&j<k

(θtjk − vtjk)−

ρ
∑

j∼αk&k<j

(θtkj − vtkj) + 2cα(l)
}

for j = 1, 2 · · · ,m.

• θt+1
jkc = ST (αt+1

jc −α
t+1
kc +νtjk,

λ1

2ρ
) for j < k and (i, k, c) ∈ E

(l−1)
α ; θt+1

jkc = αt+1
jc −α

t+1
kc

for j < k, j ∼α k and (i, k, c) /∈ E
(l−1)
α .

• vt+1
jk = vtjk +αt+1

j −αt+1
k − θt+1

jk for j < k and j ∼α k.

The update for θjk and vjk are done in parallel across index pairs (j, k).

38

3.2.3 Precision matrix updating

The part of the augmented Lagrangian (3.17) related to Ω is

gρ(Ω,Z,U) =
1

2

∑
i

[tr(ΩiSi)− logdet(Ωi)] +
ρ

2

∑
i

‖ΩTi −ZTi +UTi‖2F

+ λ2

∑
(i,j,l)∈E(l−1)

Ω1

|zTi,jl|+ λ1

∑
(i,k,j,l)∈E(l−1)

Ω2

|zTi,jl − zTk,jl|

+ c
∑
i

‖Ωi‖2F − 2c
∑
i

〈Ωi,Ω
(l)
i 〉.

(3.22)

At ADMM step t + 1, first minimize gρ(Ω,Z
t,U t) with respect to Ω. Decompose

the last term
ρ

2

∑
i ‖ΩTi −ZTi +UTi‖2F to

ρ

2

∑
i

‖Ωi −Zi +Ui‖2F +
ρ

2

∑
i

‖Ω−i −Z−i +U−i‖2F , (3.23)

where Ω−i represent the part of ΩTi after taking Ωi out, and Z−i ,U−i likewise. The

‖·‖2F on this term is just sum of squared entries. So we can solve Ωi and Ω−i separately.

The solution for Ω−i is Z−i −U−i. Take gradient with respect to Ωi, we get

1

2

∑
i

(Si −Ω−1
i) + ρ(Ωi −Zt

i +U t
i) = 0. (3.24)

Let T ti ,
1

2
Si−ρ(Zt

i −U t
i). Suppose T ti has eigen decomposition V ΛV T with eigenval-

ues λkk for k = 1 · · · ,mi, then the solution for Ωt+1
i is V Λ′V T with λ′kk =

−λkk+
√
λ2kk+2ρ

2ρ

[16]. The positive-definiteness of Ωt+1
i is automatically satisfied. Notice this step can

be done in parallel for all i.

To minimize gρ(Ω
t+1,Z,U t) w.r.t. Z, it is to solve

min
Z

1

2

∑
i

‖ZTi −ATi‖2F + λ2

∑
(i,j,l)∈E(l−1)

Ω1

|zTi,jl|+ λ1

∑
(i,k,j,l)∈E(l−1)

Ω2

|zTi,jl − zTk,jl|, (3.25)

where ATi = Ωt+1
Ti

+U t
Ti

. The above can be decomposed as the summation of terms for

each item pair which are off-diagonal terms and terms for each item which are diagonal

terms. Thus we can solve for each entry separately and in parallel. For pair k < l which

39

at least one user rated, all relevant terms in (3.25) are

∑
i

(zTi,kl − aTi,kl)
2 + λ2

∑
i:(i,k,l)∈E(l−1)

Ω1

|zTi,kl|+ λ1

∑
(i,j):(i,j,k,l)∈E(l−1)

Ω2

|zTi,kl − zTj ,kl|. (3.26)

We use the alternating minimization algorithm to minimize

∑
i

(zTi,kl − aTi,kl)
2 + λ1

∑
(i,j):(i,j,k,l)∈E(l−1)

Ω2

|zTi,kl − zTj ,kl|

as proposed in [14]. Then we do soft-thresholding to get the solution with the size

penalty λ2
∑

i:(i,k,l)∈E(l−1)
Ω1

|zTi,kl|. Diagonal entries can be solved in the same way, except

without the size penalty.

Algorithm 2 ADMM algorithm for solving Ω(l)

1. Start from some initial value Ω0,Z0,U0.

2. T ti =
1

2
Si−ρ(Zt

i−U t
i). Suppose T ti has eigen decomposition V ΛV T , then update

Ωi parallelly: Ωt+1
i =V Λ′V T with λ′kk =

−λkk +
√
λ2
kk + 2ρ

2ρ
.

3. Zt+1 ← argminZ{gρ(Ωt+1,Z,U t)}. That is, solve

min
Z

1

2

∑
i

‖ZTi −ATi‖2F + λ2

∑
(i,k,j,l)∈E(l−1)

Ω

|zTi,jl − zTk,jl|

w.r.t. each entry of Z in parallel, where ATi = Ωt+1
Ti

+U t
Ti

.

4. Parallelly update U t+1
Ti

= U t
Ti

+ Ωt+1
Ti
−Zt+1

Ti
.

5. Terminate if change in Ω, Z and U are less than some precision ε. Otherwise
repeat 2. 3. 4.

The dual variable U is updated as

U t+1
Ti

= U t
Ti + Ωt+1

Ti
−Zt+1

Ti
. (3.27)

40

The algorithm to solve Ω part is summarized in Algorithm 2.

The codes of the algorithm are all available at https://github.com/yang2732umn/

RS with correlation.

3.2.4 Properties of the Algorithm

Proposition 3.2.1. The estimate (α̂, β̂, Ω̂) from Algorithm 1 is a stationary point of

the loss function −lTLP (α,β,Ω) in (3.7). For the L1 method, the estimate from the

L1-version of Algorithm 1 is a stationary point of the loss function −l1(α,β,Ω) in (3.5).

Here the stationary point follows the same definition as in [55], i.e., all directional

derivatives are non-negative.

For the computational complexity of the algorithm, the matrix inversion and matrix

eigenvalue decomposition steps are O((n + m)K3 +
∑n

i=1m
3
i). Suppose for item pair

(j, k), it’s rated by njk users. Then the computation complexity of solving (3.26) is

O(m2n2
jk). Denote the number of difference of convex iterations as I1, the number of

ADMM iterations as I2, and the number of the blockwise iterations as I3, then the total

computational complexity is O(((n+m)K3 +
∑n

i=1m
3
i +

∑
j,k n

2
jk)I1I2I3).

For the storage cost of the algorithm, we look at the mean parameter part and preci-

sion matrix separately. The mean parameters need storage of user and item preference

vectors, and is (n + m)K numbers. For {Ωi, i = 1, 2, · · · , n} the precision matrix part

needs storage of
∑n

i=1m
2
i numbers where mi is the number of items user i rated. For

the part in Ω−i which represents the part of ΩTi after taking Ωi out, suppose there are

S pair of items rated by at least one user. Then the storage of {Ω−i, i = 1, 2, · · · , n}
only needs S numbers to record the corresponding entry of the precision matrix for the

users who didn’t rate this pair. This is due to the fact that, for a pair of items (j, k), for

all users that didn’t rate this pair, their ωTi,jk’s are all equal. This can be easily seen

from the definition of the penalized log likelihood function (3.3). Note S < m2

2 , so the

storage cost is O((n+m)K +
∑n

i=1m
2
i + m2

2).

3.3 Theoretical Results

In this section, the theoretical properties of our proposed method is provided in a general

setting. For each user u, we allow ru to follow a general distribution with mean related

https://github.com/yang2732umn/RS_with_correlation
https://github.com/yang2732umn/RS_with_correlation

41

parameters βu, α and precision matrix related parameters ΩTu .

Let ξ represent a vectorized form of (α,β,ΩT), and Ω be the indices of the user-item

pairs corresponding to observed ratings. Denote the observed ratings by RΩ = {ruj :

(u, j) ∈ Ω}. Let ηuj and ηu be defined as

ηuj = xTuαj + yTj βu,

ηu = αTxu + Y βu,
(3.28)

where Y = (y1, · · · ,ym)T is the item feature matrix.

Suppose the expected value of ruj is a function of ηuj , which is

E(ruj) = µ(ηuj). (3.29)

And suppose the covariance matrix of ru, the ratings on the m items by the uth

user is a function of ΩTu , that is

Cov(ru) = φ(ΩTu). (3.30)

The distribution of the ratings by one user ru can be either a multivariate continuous

or categorical distribution. For example multivariate normal distribution has µ(ηuj) =

ηuj and φ(ΩTu) = Ω−1
Tu

. And if ruj is bernoulli distribution, µ(ηuj) = 1
1+exp(−ηuj) .

Let θA be a vectorization of (η,ΩT), and θu,A be the vectorization of (ηu,ΩTu).

Then the distribution of ru depends on ξ only through θu,A. Denote the multivariate

probability density function of ru by fu = f(ru|ξ) = f(ru|θu,A). Then the density

function of the observed part of ru is also determined and denote it by fu,o. The

regularized negative log-likelihood function is defined as

L(ξ|RΩ) = −
∑
u

log fu,o + λ|Ω|D(ξ), (3.31)

where λ|Ω| is the penalization coefficient, |Ω| is the size of the set Ω, which is the

total number of observed ratings, and D(·) is a non-negative penalty function of ξ with

several parts. It includes fused type penalty on the mean parameters and both fused

type and size penalty on the precision matrices. For example, the L1 version of D(·) is

42

1

2

∑
i<k ‖αi−αk‖1 +

1

2

∑
i<k ‖βi−βk‖1 +c0

∑
i

∑
j<l |ωTi,jl|+

∑
i<k

∑
j6l

∃h,{j,l}⊆Ih
|ωTi,jl−

ωTk,jl| where c0 > 0 is a constant.

In practice, the ratings ruj ’s typically take non-negative finite values, so we can

assume the size of the parameters and features are bounded by some constant. That is,

‖ξ‖∞ 6 φ, ‖X‖∞ 6 φ, ‖Y ‖∞ 6 φ, where φ > 0 is a constant. The parameter vector

space is defined as

S(k) = {ξ : ‖ξ‖∞ 6 φ, D(ξ) 6 k2}. (3.32)

Let K = max(K1,K2) be the larger number of the user and item feature vector

dimensions. Suppose there are N and M clusters for user and item “preference” vec-

tors. That is, in the n vectors of β1,β2, · · · ,βn , there are N unique vectors; and

in the m vectors of α1,α2, · · · ,αm , there are M unique vectors. Then the dimen-

sion of parameters in (α,β) is upper bounded by (N + M)K. For the paramters

of {ΩTu , u = 1, · · ·n}, suppose there are Ñ distinct matrices, which are Ñ clusters.

And the matrices are assumed to be sparse with at most K̃ < m non-zero entries in

each row on average. Then the dimension of parameters in ΩT is upper bounded

by ÑmK̃. Therefore the total dimension of ξ is dim(ξ) 6 (N + M)K + ÑmK̃

and dim(ξ) goes to infinity as n,m goes to infinity. Since ‖ξ‖∞ 6 φ, we assume

k ∼ O(
√

(N(N − 1) +M(M − 1))K + ÑmK̃ + Ñ(Ñ − 1)mK̃). Similarly the parame-

ter vector space for θA is defined as

SΘA(k) = {θA : ‖ξ‖∞ 6 L, D(ξ) 6 k2}. (3.33)

Assumption 3.3.1. There exists some constant Ḡ > 0, and θu,A, θ̃u,A ∈ SΘA(k),

|f1/2(ru|θu,A)− f1/2(ru|θ̃u,A)| 6 G(ru)‖θu,A − θ̃u,A‖2, (3.34)

where EG2(ru) 6 Ḡ2 for u = 1, · · · , n.

The Hellinger metric hΘA(·, ·) on SΘA(k) is defined as

hΘA(θu,A, θ̃u,A) =

[∫
(f1/2(ru|θu,A)− f1/2(ru|θ̃u,A))2dν(ru)

]1/2

, (3.35)

43

where ν(·) is a probability measure. Based on Assumption 3.3.1, it’s easy to see

hΘA(θu,A, θ̃u,A) 6 Ḡ‖θu,A − θ̃u,A‖2 . So it’s bounded by ‖θu,A − θ̃u,A‖2.

For ξ, ξ̃ ∈ S(k), let

hS(k)(ξ, ξ̃) =

[
1

n

n∑
u=1

h2
ΘA

(θu,A, θ̃u,A)

]1/2

. (3.36)

It’s easy to see that hS(k)(·, ·) is a still metric. For simplicity, in the following part

of the dissertation, we use h(·, ·) to denote the Hellinger metric on S(k) and omit the

subscript. In the lemma stated below, it is shown that h(ξ, ξ̃) is bounded by ‖ξ − ˜ξ‖2.

Lemma 3.3.2. Under Assumption 1, we can find a constant d0, such that for ξ, ξ̃ ∈
S(k),

h(ξ, ξ̃) 6 d0‖ξ − ξ̃‖2

√
max(m,n)

n
. (3.37)

Let ξ̂ = arg min
ξ∈S(k)

L(ξ|RΩ) be a penalized maximum likelihood estimator of ξ, and

let ξ0 be the true parameters. Theorem 3.3.3 states that ξ̂ converges to ξ exponentially

in probability, with a convergence rate of ε|Ω|.

Theorem 3.3.3. Under Assumption 3.3.1 and suppose λ|Ω| <
1

2k
ε2|Ω|, there exists a

constant c > 0, such that

P (h(ξ0, ξ̂) > ε|Ω|) 6 7exp(−c|Ω|ε2|Ω|), (3.38)

where

ε|Ω| ∼

√
(N + Ñm)K̄

|Ω|

log
|Ω|
√

max(n,m)√
n(N + Ñm)K̄

1/2

, (3.39)

and K̄ = max(K, K̃).

Remark 3.3.4. Theorem 3.3.3 is quite general in terms of the rates of n and m. As

n,m goes to infinity, N and Ñ can also go to infinity, and |Ω|
(N+Ñm)K̄

should also go to

infinity.

44

Remark 3.3.5. Our method assumes the ratings given by a single user are not in-

dependent, which is different from other recommender system models. When defining

Hellinger distance, we use

hS(k)(ξ, ξ̃) =

[
1

n

n∑
u=1

∫
(f1/2(ru|θu,A)− f1/2(ru|θ̃u,A))2dν(ru)

]1/2

,

where f(ru|θu,A) is the density function of the random vector ru.

Other methods have the Hellinger distance as

h̃S(k)(ξ, ξ̃) =

[
1

nm

n∑
u=1

m∑
i=1

∫
(f1/2(rui|θui)− f1/2(rui|θ̃ui))2dν(rui)

]1/2

,

where f(rui|θui) is the density function of the univariate random variable rui.

In order to compare the convergence rates of the Hellinger distances of our method

and other methods, we need to convert the Hellinger distances to the same scale. To

achieve this, we can define another Hellinger distance for other methods assuming in-

dependence of ratings by a single user. That is, let

h̃S(k)(ξ, ξ̃) =

[
1

n

n∑
u=1

∫
(
m∏
i=1

f1/2(rui|θui)−
m∏
i=1

f1/2(rui|θ̃ui))2dν(ru)

]1/2

,

Or equivalently, our Hellinger distance should be divided by
√
m. That gives us a

convergence rate of
√

(N+Ñm)K̄
|Ω|

(
log

|Ω|
√

max(n,m)√
nm(N+Ñm)K̄

)1/2
.

The following theorem indicates that if ξ̃ is outside the ε|Ω|-neighborhood of ξ0 in

Hellinger distance, then the probability that the regularized negative log likehood of ξ̃

be close to that of ξ0 is exponentially small.

Theorem 3.3.6. Under Assumption 3.3.1 and λ|Ω| <
1
2k ε

2
|Ω|, there exist c1 > 0, c2 > 0,

such that for ε|Ω| > 0 and h(ξ0, ξ̃) > ε|Ω|, the following holds:

P ∗
(

1
|Ω|(L(ξ0|RΩ)− L(ξ̃|RΩ)) > −c1ε

2
|Ω|
)
6 7exp(−c2|Ω|ε2|Ω|), (3.40)

where P ∗ is the outer measure (see Pollard (1984)).

45

Now we assume the distribution of ru is in the exponential family. That is, the

density fu is a member of the exponential family in its canonical form. Denote the

canonical parameters by θu, we can write fu as

f(ru|θu) = h(ru)exp(θTu T (ru)−A(θu)). (3.41)

With the exponential family distribution assumption, we have the following corollary

holds. It still holds when f is in the over-dispersed exponential family. Below we use

θu0 to represent the true value of θu.

Corollary 3.3.7. Under Assumption 3.3.1 and λ|Ω| <
1
2k ε

2
|Ω|, there exist c1 > 0, c2 > 0,

such that for ε|Ω| > 0, there exists δ|Ω| > 0, and min
16u6n

‖θ̃u − θu0‖1 > δ|Ω| implies

P ∗
(

1
|Ω|(L(ξ0|RΩ)− L(ξ̃|RΩ)) > −c1ε

2
|Ω|
)
6 7exp(−c2|Ω|ε2|Ω|), (3.42)

where P ∗ is the outer measure (see Pollard (1984)).

We also have the following result with a minor change in the condition of the l1-norm

between θ̃u’s and θu0’s.

Corollary 3.3.8. Under Assumption 3.3.1 and λ|Ω| <
1
2k ε

2
|Ω|, there exist ci > 0, i = 1, 2,

and a constant φ ∈ (0, 1] such that for 1√
φ
ε|Ω| > 0, there exists δ|Ω| > 0. Assume there

are at least φn values of u satisfying ‖θ̃u − θu0‖1 > δ|Ω|, then

P ∗
(

1
|Ω|(L(ξ0|RΩ)− L(ξ̃|RΩ)) > −c1ε

2
|Ω|
)
6 7exp(−c2|Ω|ε2|Ω|). (3.43)

Proofs of the results are given in Appendix A.2.

3.4 Advantage of Using Precision Matrix

3.4.1 Correlation Validation on Data

We first use some real data to show that it’s reasonable and necessary to assume the

ratings given by users are correlated. The Movielens 100k dataset is investigated here

46

for an illustration. The movielens data are collected by GroupLens Research Lab at

the University of Minnesota. They are available at https://grouplens.org/datasets/

movielens/. The 100k dataset contains 100,000 ratings (1-5) from 943 users on 1682

movies. We use ratings on a pair of movies from all users that rated them both to assess

the correlation between the two movies. By calculating the correlations between ratings

of movies, we find some movie pairs present high correlations.

For example, the correlation between Star Wars (1977) and The Empire Strikes Back

(1980), the sequel of the former, is 0.75 based on 345 user ratings; and the correlation

between The Empire Strikes Back and its sequel Return of the Jedi (1983) is also quite

high value of 0.72 based on 317 users who rated both. Not surprisingly, Star Wars

(1977) and Return of the Jedi (1983) also have a high positive correlation of 0.67 based

on 480 users. Other examples include the God Father I (1972) and II (1974) which has

a correlation of 0.68, and the Die Hard (1990) and Die Hard with a Vengeance (1995)

which has a correlation of 0.75 etc. Two graphs showing the correlations in this data are

shown in Appendix B. This reflects the fact that people’s ratings on a movie series tend

to be highly positively correlated, though there may be years of time between watching

two movies. Also, we notice that the Movielens 100k data only have movies before or

in 1998. As time goes on, the same IP fuels more and more movies, which certainly

strengthens the correlations between different items. Hence with more recent or future

movie data, this phenomenon of correlation will be more evident.

3.4.2 Outperformance of the Correlated Linear Model Using Predic-

tion Error as a Criterion

With the correlation assumption validated on data, if a statistical model assumes inde-

pendence of ratings, it cannot depict the true underlying distribution. Typically if the

true distribution is dependent, using a model assuming independence leads to larger

variances for the coefficient estimates as well as the predictions. For instance, the or-

dinary least squares estimator is the best linear unbiased estimator for ordinary linear

regression, but loses efficiency (in terms of larger variances) if the random errors are not

independent and identically distributed. An analogy applies to our case here. While

estimating the correlation structure via the precision matrix in our proposed method,

we can isolate the mean effect from the covariance effect and reduce variability in the

https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/

47

parameter estimates. This way the mean parameters are estimated more accurately and

thus the predicted ratings are more precise.

Through estimating the precision matrix, we can also have a grouping of users,

according to the correlations on items. Our method of estimating the precision matrix

generalizes the method of [63] by allowing incompleteness in the precision matrices. We

don’t require estimating the whole m × m precision matrix, but only the part where

we have information available, either from the corresponding user or other users. Also,

the grouping is automatically given through our algorithm. Note that estimation of

the precision matrix requires a large amount of computation, and we can reduce the

effort by the above-mentioned grouping. Moreover, the grouping of correlation makes

it possible for our method to obtain more accuracy than other methods.

Next we show theoretically employing the covariance structure gives the benefit of

a smaller asymptotic variance of the estimators and smaller prediction errors.

First we reformulate our model (3.1) as a linear regression with correlation structure.

Let r be the vectorized response, γ be the vectorized form of (α,β), W be the design

matrix, and Ω be the block-diagonal matrix of Ωi’s as follows:

r =


r1

r2

...

rn

 , γ =



β1

...

βn

α1

...

αm


, Ω =


Ω1

. . .

Ωn

 . (3.44)

So r has dimension |Ω| =
n∑
i=1

mi which is the total number of observed ratings, γ has

dimension mK1 + nK2. The design matrix W has dimension |Ω| × (mK1 + nK2) and

each row of W contains the item and user features related to a specific rating in r at

the corresponding location. For example, if user 1 rated item 1, then the first row w1

of W is (yT1 ,0, · · · ,0,xT1 ,0, · · · ,0). So the model can be equivalently written as

r = Wγ + ε, where ε ∼ N(0,Ω−1). (3.45)

48

Note this is exactly the same model as in our previous model specification (3.1). And

for this linear regression model, the sample size is |Ω| and the number of regression

coefficients is mK1 + nK2. Since our model assumes there’s grouping among user pref-

erences and among item preferences, we only penalize the differences between different

βi’s and different αj ’s. It’s easy to check all the theories and corollaries below apply to

this special case.

We prove that for a linear regression model with dependent covariance of the random

errors and grouping structure in the parameters, if the covariance matrix is known and

the penalty is TLP on pairwise differences, then adopting the dependent likelihood in the

penalized log-likelihood gives uniformly smaller asymptotic variances of the parameters

than adopting the independent likelihood. Furthermore, in terms of prediction, using

the dependent likelihood gives smaller prediction error compared to the independent

likelihood. In the following discussion, instead of using notation of the special case in

(3.45), we adopt the notation of a general linear regression setting.

Assume in linear regression, there is a correlation structure in the random errors,

i.e.

Y = Xβn + ε, ε∼N(0,Ω−1), (3.46)

where Yn×1 is the response, Xn×pn is the design matrix, Ωn×n is a general positive

definite matrix and not in the form of σ2I. For X, we treat it as given and fixed here.

For βn, the subscript is to emphasize that its dimension pn is allowed to go to infinity

as n goes to infinity and it’s assumed to have a grouping structure. Specifically, let βn0

be the true value of βn. Suppose in βn0 there are sn groups, i.e. sn unique values.

Without loss of generality, let the first sn values of βn0 be distinct, and each of the rest

pn − sn elements share the same value as one of βn10, · · · , βnsn0. Denote

βn0 = (βTn10,β
T
n20)T , (3.47)

where βn10 = (βn10, · · · , βnsn0)T and βn20 = (βn(sn+1)0, · · · , βnpn0)T . Let

tn(·) : {sn + 1, · · · , pn} → {1, · · · , sn} (3.48)

be the function that has βnj0 = βntn(j)0 for j = sn + 1, · · · , pn. Let Zn×sn be the

49

condensed design matrix, i.e.

zi = xi +
∑

tn(j)=i

xj , (3.49)

where zi and xj represents the ith column of Z and the jth column of X respectively.

The log-likelihood function and the penalized log-likelihood function about βn are

Sn(βn) = −1

2
(Y −Xβn)TΩ(Y −Xβn),

Ln(βn) = Sn(βn)− n
∑

16j<k6pn

pλn,τn(|βnj − βnk|),
(3.50)

where p is the TLP function with pλ,τ (x) = λmin(
|x|
τ
, 1)1.

But if the model is misspecified as independent, we have the incorrect log-likelihood

and the penalized log-likelihood

S̃n(βn) = −1

2
(Y −Xβn)T (Y −Xβn),

L̃n(βn) = S̃n(βn)− n
∑

16j<k6pn

pλn,τn(|βnj − βnk|).
(3.51)

In the following with some assumptions on the design matrices, we give two theorems

about the properties of the penalized log-likelihood estimators. And in two corollaries

it’s shown that the dependence estimator uniformly outperforms the independence es-

timator in terms of the asymptotic variance and prediction error.

We have some regularity conditions on the design matrices and precision matrices

to guarantee the asymptotic properties of the estimators: there exist constants h1 and

h2 such that for all n, the following holds

(i) 0 < h1 < λmin(
1

n
XTX) 6 λmax(

1

n
XTX) < h2 <∞ .

(ii) 0 < h1 < λmin(
1

n
XTΩ−1X) 6 λmax(

1

n
XTΩ−1X) < h2 <∞ .

(iii) 0 < h1 < λmin(
1

n
XTΩX) 6 λmax(

1

n
XTΩX) < h2 <∞.

where λmin(·) and λmax(·) are the smallest and largest eigenvalues of a matrix.

1Here for convenience, a notation different from Section 3.1 and 3.2 is used for TLP. Note pλ,τ (x) =
λJτ (x)/τ .

50

These regularity conditions assume the design matrix X is reasonably good. This

type of condition was considered for example in [39, 15, 19, 66, 17]. As pointed out

by [39], condition (i) holds when its row vectors {xi} behave like a random sample

from an appropriate multivariate distribution. Note condition (i) is exactly the same

as the condition (A) in [15], condition (F) in [19], condition (A1) of [66] and condition

(C) of [17]. Let the sequence of multivariate distributions of the rows of X have mean

{µn} and covariance matrix {Σn}. Then the requirement is that {|µnj |} has uniform

upper bound for all n, j and the sequence of {Σn} has bounded minimum and maximum

eigenvalue.

Given that condition (i) above holds, one sufficient condition that guarantees con-

ditions (ii) and (iii) is: there exist constants d1 and d2 such that

0 < d1 < λmin(Ω) 6 λmax(Ω) < d2 <∞. (3.52)

This is based on the observation that λmin(1
nX

TΩX) > λmin(1
nX

TX)λmin(Ω) and

λmax(1
nX

TΩX) 6 λmax(1
nX

TX)λmax(Ω). So it requires the sequence of the covariance

matrices of the response variables also have uniformly bounded minimum and maximum

eigenvalue, which is also typically satisfied.

Next we state the theories about the penalized log-likelihood estimators.

Theorem 3.4.1. Assume Ω is known for all n, and the likelihood function is correctly

specified as in (3.50). If in addition to the regularity conditions on the design matrices

and precision matrices, the following conditions are satisfied,

(i’) lim inf
n→∞

1

τn
min(|βnj0 − βnk0| : βnj0 6= βnk0) > 1

(ii’)
pn
n
→ 0

(iii’)
τn√
pn/n

→∞

(iv’)

√
n

pn

λn
τn
→∞

then as n→∞ the statements below hold:

(1) There exists a
√
n/pn-consistent local maximizer β̂n of the penalized log-likelihood

Ln, i.e. ‖β̂n − βn0‖2 = Op(
√
pn/n).

51

(2) Grouping consistency: With probability tending to 1, β̂nj = β̂ntn(j) for j > sn.

(3) With probability tending to 1: β̂n1 is unbiased and for any dim-sn vector z,

var(zT (β̂n1 − βn10)) = zT
(
ZTΩZ

)−1
z.

Theorem 3.4.2. Assume Ω is known for all n, if the likelihood function is misspecified

as independent as in (3.51), with the same conditions as in theorem 3.4.1, the following

holds:

(1) There exists a
√
n/pn-consistent local maximizer β̃n of the penalized log-likelihood

L̃n, i.e. ‖β̃n − βn0‖2 = Op(
√
pn/n).

(2) Grouping consistency: With probability tending to 1, β̃nj = β̃ntn(j) for j > sn.

(3) With probability tending to 1: β̃n1 is unbiased and for any dim-sn vector z,

var(zT (β̃n1 − βn10)) = zT (ZTZ)−1(ZTΩ−1Z)(ZTZ)−1z.

Corollary 3.4.3. For any dim-pn vector x, and the estimators β̂n and β̃n in theorem

3.4.1 and theorem 3.4.2 respectively, the asymptotic variance of xT β̂n is smaller than

or equal to that of xT β̃n. That implies if asymptotic variance is used as the criterion,

β̂n uniformly outperforms the independence estimator β̃n.

The corollary indicates that at any x for prediction, the dependent estimator achieves

smaller asymptotic variance than the independence estimator. Consequently, for our set-

ting of (3.45), at any vector w for prediction, asymptotically the variance of wT γ̂ with

γ̂ being the dependence estimator using the correct dependent likelihood is smaller than

or equal to that of wT γ̃ with γ̃ being the independence estimator using the misspecified

independent likelihood.

Corollary 3.4.4. For any dim-pn vector x, and the estimators β̂n and β̃n in theorem

3.4.1 and theorem 3.4.2 respectively, with probability tending to 1, the prediction error

of using estimator β̂n is smaller than or equal to that using β̃n.

52

This corollary shows taking the correlation structure into account which is realized

in our method delivers smaller prediction error and enhances the prediction accuracy.

So theoretically we’ve shown the dependence estimator which utilizes the correlation

structure outperforms the independence estimator. Next, we will use numerical results

to verify this point.

Remark 3.4.5. For our model of (3.45), in addition to {Ω} eigenvalues has a uniform

lower and upper bound, assuming a similar condition to (i) that { 1
|Ω|W

TW } uniformly

have minimum and maximum eigenvalues bounds at the same rate, in particular O(n) =

O(m) which is usually the case in real data, then all theories and corollaries can be

derived with similar arguments.

Chapter 4

Numerical Results

4.1 Simulation Studies

For simulation, 100 users and 30 items are used. To select the tuning parameters, we

create the train, tune and test datasets and choose the tuning parameter that gives the

best performance on the tuning data. The feature of each movie is a size 18 vector

with values 0 and 1 with every element generated independently from the Bernoulli

distribution with probability 0.5 (a constant feature of 1 is added as another item

feature to fit individual user intercept effect); and the feature of each user is a size 24

vector with values 0 and 1, also generated from Bernoulli(1,0.5). It is set up in this way

to be similar to the Movielens user and item features, which are also coded as 0’s and

1’s. In all cases we used 12 clusters for user “preferences” β and 10 clusters for item

“preferences” α. All users in the same cluster have the same β, and all items in the same

cluster have the same α. We assign users and items to clusters, making the number

of users or items in each cluster as close to each other as possible. For example, there

are 100 users, so 8 clusters have 8 users and 4 clusters have 9 users. The 12 distinct β

vectors and 10 distinct α vectors are randomly generated from the multivariate normal

distribution with some mean vector and identity covariance matrix. In our simulation,

we used 8 for the mean of all elements in α and β. Use Y as the matrix of item features

as above, and α the item “preference” matrix also as defined before, the mean of user

i’s rating is µi = αTxi + Y βi. The missing probability for each user is set to be 80%.

So on average, each user rated 6 items out of 30.

53

54

The random noise εi is from a multivariate normal distribution with mean 0 and

precision matrix Ωi. In the simulation, we chose precision matrices which can lead to

large correlations between parts of the ratings of the same user. After constructing two

30 by 30 such precision matrices denoted as Ωs1 and Ωs2 , Ωs1 is used for the first 80

users and Ωs2 is used for the last 20 users.We take the inverse of the precision matrix for

the train data to get its covariance matrix. Then the covariance matrix on train dataset

is expanded to a larger covariance for the union of the train, tune and test dataset.

The train, tune and test data random errors are generated together according to the

expanded covariance matrix.

For each user, 60% of the observed ratings are randomly selected for the train set,

and 20% for the tune set, 20% for the test set. To be able to predict the rating for each

item of each user, we made sure that in the train set each user at least had one observed

rating, and each item was rated at least by one user. To ensure every element in the

tune precision matrix is estimated, we made another restriction that if a pair of items

was observed for at least one user in the union of the train, tune and test dataset, then

there was also at least one user who observed this pair in the train set. We used the

log-likelihood as our criterion to select tuning parameter. Submatrix of the estimated

30 by 30 precision matrix of each user corresponding to the items in tune set is used as

the estimated precision matrix for the tune set. 100 simulations are performed.

The code for implementation of our method is written in C++, and the OpenMP

API for parallel computing is applied whenever the computation can be done in parallel.

Also, when possible we always used the warm start initial values for the parameters,

either from a previous set of tuning parameters or from a previous method. This can

give faster convergence of the algorithm.

We compared seven models: (a.) the linear regression model using rating as the

response and user and item features as predictors, (b.) the SOFT-IMPUTE in [34] that

penalizes the nuclear norm in matrix completion, (c.) the regularized singular value

decomposition method (RSVD) discussed in [22] and [30], (d.) a regression-based latent

factor model (RLFM) in [3], (e.) the special the case of our proposed model which

doesn’t consider the precision matrix with L1 norm clustering, (f.) our proposed model

with L1 norm clustering and (g.) our proposed model with TLP penalized clustering.

For the SOFT-IMPUTE method, grid points from 0.01 to 20 are selected for the

55

regularization parameter λ. For the RSVD method, the regularization parameter takes

grid values from 0.1 to 2. For the RLFM, we used 6 latent factors. The special case of

the proposed method without precision matrix used grid values from 0.05 to 800. The

proposed model with L1 norm used three values for λ1 as 10, 5, 1 and three values for

λ2 as 1, 0.1, 0.05. The proposed model with TLP norm used three values for λ1 as 5,

0.5 ,0.2, and three values for λ2 as 1, 0.1, 0.05, and two values for τ as 0.01, 0.005.

To compare the performance of the different methods, the root mean squared error

(RMSE) and weighted root mean squared error (wRMSE) on the test set are calculated.

The wRMSE used the true test set precision matrix to weight the errors. As the data

is generated with heterogeneous error, the wRMSE is our main criterion. Results are

summarized in Table 4.1.

Table 4.1: Simulation results for seven methods are reported: LM is the linear regres-
sion model using rating as the response and user and item features as predictors; SOFT
is the SOFT-IMPUTE method; RSVD is regularized singular value decomposition; s-L1
is special L1 clustering ignoring precision matrix; RLFM is the regression-based latent
factor model; g-L1 is the general L1 clustering (considering precision matrix); g-TLP is
the general TLP clustering (considering precision matrix). Numbers in the parentheses
are the standard errors.

wRMSE RMSE

LM 33.781(16.619) 5.983(1.963)

SOFT 80.605(36.839) 11.038(3.789)

RSVD 66.853(23.401) 10.785(1.816)

RLFM 43.362(30.011) 7.722(5.008)

s-L1 27.494(9.087) 10.636(1.374)

g-L1 25.001(6.959) 5.029(1.399)

g-TLP 24.752(6.508) 5.021(1.475)

The table indicates that our proposed models perform much better than the Lin-

ear Model, the Soft-Impute, RSVD and RLFM methods. Specifically, the proposed

three methods improve over the Linear Model, Soft-Impute, RSVD, RLFM in wRMSE

by about 23%, 67%, 61%, 40% respectively. And in terms of RMSE, the general L1

and TLP clustering methods considering precision matrix show improvements over the

Linear Model, the Soft-Impute, RSVD and RLFM by about 16%, 54%, 53%, 35% re-

spectively.

56

Also, for both criteria, the general L1 and TLP clustering methods considering

precision matrix perform better than the special L1 clustering method ignoring precision

matrix. Note the linear model (LM) performs better compared to the Soft-Impute,

RSVD and RLFM methods due to the fact that the simulation data are generated from

a linear model with dependent errors. All the comparisons mentioned here are tested

to be highly significant with very small p-values via two-sample t-tests.

4.2 Movielens Data

As mentioned in Chapter 3, the movielens data are collected by GroupLens Research

Lab at the University of Minnesota. And they are available at https://grouplens.org/

datasets/movielens/. We compared seven methods including linear regression, Soft-

Impute, RSVD, RLFM, special L1 method ignoring precision matrix, L1 method consid-

ering the precision matrix, TLP method considering precision matrix on the Movielens

100k dataset. It contains 100,000 ratings (1-5) from 943 users on 1682 movies. User

features used include age, gender and occupation. Movie features used include genre

and release year. We deleted movies rated by no more than 5 users, and that left us

with 1298 movies. The missing percentage of the data is 92%. We divided the data

for each user to 60% training, 20% tuning and 20% testing, and made sure each item,

each user, and each item pair that appeared in the whole dataset also appeared in the

training data.

For the seven methods, except the LM and RLFM, tuning parameters are selected

from grid points to minimize the negative log-likelihood on the tuning data. For RLFM,

we used 10 latent factors in the model. We calculated the RMSE for the seven meth-

ods. Since the true covariance matrix on the test data is unavailable, the wRMSE is

omitted. The results are summarized in Table 4.2. The general TLP clustering method

considering precision matrix outperforms the Linear Model, the Soft-Impute method,

the RSVD method, the RLFM method, the special L1 clustering method ignoring pre-

cision matrix, the general L1 clustering method considering precision matrix with the

amount of improvement 12.37%, 5.31%, 1.18%, 0.57%, 0.30% and 0.13% respectively.

So the proposed TLP penalized method considering precision matrix has the best per-

formance and our three models deliver higher predictive accuracy compared to the other

https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/

57

four methods.

Table 4.2: Movielens 100k RMSE with seven methods: LM is the linear regression
model using rating as the response and user and item features as predictors; SOFT is
the Soft-Impute method; RSVD is regularized singular value decomposition; RLFM is
the regression-based latent factor model; s-L1 is special L1 clustering ignoring precision
matrix; g-L1 is the general L1 clustering (considering precision matrix); g-TLP is the
general TLP clustering (considering precision matrix).

LM SOFT RSVD RLFM s-L1 g-L1 g-TLP

RMSE 1.0632 0.9840 0.9428 0.9370 0.9345 0.9329 0.9317

Chapter 5

Conclusion and Discussion

We propose and explore a personalized recommender system via clustering users and

items based on their individual “preferences”. Besides modeling the mean structure

using user and item features, we also model the covariance structure between ratings

given by the same user through estimating the individual precision matrices. This is

a major contribution of our work and no other recommender system in the literature

which does covariance parameter estimation are noticed. Through this thesis, methods

of undirected graphical models are introduced into personalized recommender systems.

Theoretically, it’s shown when covariance exists, taking the covariance into account

uniformly gives a smaller asymptotic variance of the estimators and smaller prediction

errors. Numerical results indicate estimating the covariance parameters improves the

prediction accuracy significantly.

For extension of our method, we can add latent features in the model for users and

items. We can also incorporate context information by adding extra terms for preference

of users and items on different context features and preference of contexts on user and

item features. For the correlation part, for example we can consider only the correlations

of user ratings on items under one context. Computationally, it is also an option to use

Maximum block improvement, in this way one can have the linear convergence rate of

the algorithm. Finally, as time goes by, the correlations between movies become more

significant, and it is natural to expect our method being more efficient in some new or

future movie data sets.

58

References

[1] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of

recommender systems: A survey of the state-of-the-art and possible extensions.

IEEE Transactions On Knowledge And Data Engineering, 17(6):734–749, 2005.

[2] Gediminas Adomavicius and Alexander Tuzhilin. Context-aware recommender sys-

tems. In Recommender Systems Handbook, pages 217–253. Springer US, 2011.

[3] Deepak Agarwal and Bee-Chung Chen. Regression-based latent factor models. In

Proceedings of the 15th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD ’09, pages 19–28, New York, NY, USA, 2009.

ACM.

[4] Asim Ansari, Skander Essegaier, and Rajeev Kohli. Internet recommendation sys-

tems. Journal of Marketing Research, 37(3):363–375, 2000.

[5] Xuan Bi, Annie Qu, and Xiaotong Shen. Multilayer tensor factorization with

applications to recommender systems. The Annals of Statistics, To Appear, 2017.

[6] Xuan Bi, Annie Qu, Junhui Wang, and Xiaotong Shen. A group-specific recom-

mender system. Journal of the American Statistical Association, 112(519):1344–

1353, 2017.

[7] Peter Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl. Content-Based Recommen-

dation Systems, pages 325–341. Springer Berlin Heidelberg, Berlin, Heidelberg,

2007.

[8] Robin Burke. Knowledge-based recommender systems. In Encyclopedia of Library

and Information Systems, page 2000. Marcel Dekker, 2000.

59

60

[9] Robin Burke. Hybrid recommender systems: Survey and experiments. User Mod-

eling and User-Adapted Interaction, 12(4):331–370, 2002.

[10] Fidel Cacheda, Vı́ctor Carneiro, Diego Fernández, and Vreixo Formoso. Compar-

ison of collaborative filtering algorithms: Limitations of current techniques and

proposals for scalable, high-performance recommender systems. ACM Trans. Web,

5(1):2:1–2:33, February 2011.

[11] Fidel Cacheda, Vı́ctor Carneiro, Diego Fernández, and Vreixo Formoso. Compar-

ison of collaborative filtering algorithms: Limitations of current techniques and

proposals for scalable, high-performance recommender systems. ACM Trans. Web,

5(1):2:1–2:33, February 2011.

[12] Jorge Castro, Rosa M. Rodriguez, and Manuel J. Barranco. Weighting of features

in content-based filtering with entropy and dependence measures. International

Journal of Computational Intelligence Systems, 7(1):80–89, 2014.

[13] Jie Chen and Yousef Saad. On the tensor svd and the optimal low rank orthogonal

approximation of tensors. SIAM Journal on Matrix Analysis and Applications,

30(4):1709–1734, 2009.

[14] Eric C. Chi and Kenneth Lange. Splitting methods for convex clustering. Journal

of Computational and Graphical Statistics, 23(1):111–128, 2014.

[15] Hyunkeun Cho and Annie Qu. Model selection for correlated data with diverging

number of parameters. Statistica Sinica, 23(2):901–927, 2013.

[16] Patrick Danaher, Pei Wang, and Daniela M. Witten. The joint graphical lasso

for inverse covariance estimation across multiple classes. Journal of the Royal

Statistical Society: Series B, 76(2):373–397, 2014.

[17] Lee Dicker, Baosheng Huang, and Xihong Lin. Variable selection and estimation

with the seamless-l ¡sub¿0¡/sub¿ penalty. Statistica Sinica, 23(2):929–962, 2013.

[18] Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likeli-

hood and its oracle properties. Journal of the American Statistical Association,

96(456):1348–1360, 2001.

61

[19] Jianqing Fan and Heng Peng. Nonconcave penalized likelihood with a diverging

number of parameters. The Annals of Statistics, 32(3):928–961, 2004.

[20] Rina Foygel, Nathan Srebro, and Ruslan Salakhutdinov. Matrix reconstruction

with the local max norm. In NIPS, pages 944–952, 2012.

[21] Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer. An efficient boosting

algorithm for combining preferences. Journal of Machine Learning Research, 4:933–

969, December 2003.

[22] Simon Funk. Netflix update: Try this at home.

http://sifter.org/simon/journal/20061211.html, 2006.

[23] Asela Gunawardana and Christopher Meek. A unified approach to building hybrid

recommender systems. In Proceedings of the third ACM conference on Recom-

mender systems, RecSys ’09, pages 117–124, New York, NY, USA, 2009. ACM.

[24] Will Hill, Larry Stead, Mark Rosenstein, and George Furnas. Recommending and

evaluating choices in a virtual community of use. Proc. Conf. Human Factors in

Computing Systems, 1995.

[25] Holger Hoefling. A path algorithm for the fused lasso signal approximator. Journal

of Computational and Graphical Statistics, 19(4):984–1006, 2010.

[26] Mingyi Hong and Zhi-Quan Luo. On the linear convergence of the alternating

direction method of multipliers. Math. Program., 162(1-2):165–199, March 2017.

[27] Cho-Jui Hsieh, Matyas A. Sustik, Inderjit S. Dhillon, and Pradeep Ravikumar.

Sparse inverse covariance matrix estimation using quadratic approximation. In

J. Shawe-Taylor, R.S. Zemel, P. Bartlett, F.C.N. Pereira, and K.Q. Weinberger,

editors, Advances in Neural Information Processing Systems 24, pages 2330–2338.

http://nips.cc/, 2011.

[28] Alexandros Karatzoglou, Xavier Amatriain, Nuria Oliver, and Linas Baltrunas.

Multiverse recommendation: n-dimensional tensor factorization for context-aware

collaborative filtering. In In Proceedings of the fourth ACM conference on Recom-

mender systems, 2010.

62

[29] Yehuda Koren. Collaborative filtering with temporal dynamics. In In Proc. of

KDD ’09, pages 447–456, 2009.

[30] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques

for recommender systems, 2009.

[31] Roderick J. A. Little and Donald B. Rubin. Statistical Analysis with Missing Data.

John Wiley and Sons, Inc., second edition edition, 2002.

[32] Lester Mackey. Stanford practical machine learning collaborative filtering slides.

[33] Xiaojun Mao, Song Xi Chen, and Raymond K. W. Wong. Matrix completion with

covariate information. Journal of the American Statistical Association, To Appear,

2017.

[34] Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. Spectral regularization

algorithms for learning large incomplete matrices. Journal of Machine Learning

Research, 11, 2010.

[35] Koji Miyahara and Michael J. Pazzani. Improvement of collaborative filtering with

the simple bayesian classifier. Information Processing Society of Japan, 43(11),

2002.

[36] Jennifer Nguyen and Mu Zhu. Content-boosted matrix factorization techniques for

recommender systems. Statistical Analysis and Data Mining, 6(4):286 – 301, 2013.

[37] Mina Ossiander. A central limit theorem under metric entropy with l2 bracketing.

The Annals of Probability, 15(3):897–919, 1987.

[38] Wei Pan, Xiaotong Shen, and Binghui Liu. Cluster analysis: Unsupervised learning

via supervised learning with a non-convex penalty. Journal of Machine Learning

Research, 14:1865–1889, 2013.

[39] Stephen Portnoy. Asymptotic behavior of m estimators of p regression parameters

when p2/n is large; ii. normal approximation. Ann. Statist., 13(4):1403–1417, 12

1985.

63

[40] Garvesh Raskutti, Martin J. Wainwright, and Bin Yu. Minimax rates of estima-

tion for high-dimensional linear regression over lq -balls. IEEE Trans. Inf. Theor.,

57(10):6976–6994, October 2011.

[41] Steffen Rendle. Factorization machines. pages 995–1000. IEEE Publishing, Decem-

ber 2010.

[42] Steffen Rendle, Zeno Gantner, Christoph Freudenthaler, and Lars Schmidt-Thieme.

Fast context-aware recommendations with factorization machines. In Proceedings

of the 34th international ACM SIGIR conference on research and development in

information retrieval, SIGIR ’11, pages 635–644. ACM, July 2011.

[43] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John

Riedl. Grouplens: An open architecture for collaborative filtering of netnews. pages

175–186. ACM Press, 1994.

[44] Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. Restricted boltzmann

machines for collaborative filtering. In Proceedings of the 24th International Con-

ference on Machine Learning, ICML ’07, pages 791–798, New York, NY, USA,

2007. ACM.

[45] Gerald Salton, editor. Automatic Text Processing. Addison-Wesley Longman Pub-

lishing Co., Inc., Boston, MA, USA, 1988.

[46] Badrul M. Sarwar, George Karypis, Joseph A. Konstan, and John T. Riedl. Appli-

cation of dimensionality reduction in recommender system – a case study. In ACM

WebKDD Workshop, 2000.

[47] Andrew I. Schein, Alexandrin Popescul, Lyle H. Ungar, and David M. Pennock.

Methods and metrics for cold-start recommendations. In Proceedings Of The 25Th

Annual International Acm Sigir Conference On Research And Development In In-

formation Retrieval, pages 253–260, 2002.

[48] Andrew I. Schein, Alexandrin Popescul, Lyle H. Ungar, and David M. Pennock.

Methods and metrics for cold-start recommendations. In Proceedings Of The 25Th

Annual International Acm Sigir Conference On Research And Development In In-

formation Retrieval, pages 253–260, 2002.

64

[49] Upendra Shardanand and Pattie Maes. Social information filtering: Algorithms for

automating ”word of mouth”. pages 210–217. ACM Press, 1995.

[50] Xiaotong Shen. On the method of penalization. Statistica Sinica, 8:337–357, 1998.

[51] Xiaotong Shen and Hsin-Cheng Huang. Grouping pursuit through a regularization

solution surface. Journal of the American Statistical Association, 105(490):727–739,

2010.

[52] Xiaotong Shen, Wei Pan, and Yunzhang Zhu. Likelihood-based selection and sharp

parameter estimation. Journal of American Statistical Association, 107:223–232,

2012.

[53] Nathan Srebro and Tommi Jaakkola. Generalization error bounds for collaborative

prediction with low-rank matrices. In In Advances In Neural Information Process-

ing Systems 17, pages 5–27. MIT Press, 2005.

[54] P. Tseng. Convergence of a block coordinate descent method for nondifferentiable

minimization. Journal of Optimization Theory and Applications, 109(3):475–494,

Jun 2001.

[55] Paul Tseng and Sangwoon Yun. A coordinate gradient descent method for nons-

mooth separable minimization. Math. Program., 117(1):387–423, July 2008.

[56] Naisyin Wang. Marginal nonparametric kernel regression accounting for within-

subject correlation. Biometrika, 90(1):43–52, 2003.

[57] Wing Hung Wong and Xiaotong Shen. Probability inequalities for likelihood ratios

and convergence rates of sieve mles. Ann. Statist., 23(2):339–362, 04 1995.

[58] Chong Wu, Sunghoon Kwon, Xiaotong Shen, and Wei Pan. A new algorithm

and theory for penalized regression-based clustering. Journal of Machine Learning

Research, 17(188):1–25, 2016.

[59] Fan Yang and Xiaotong Shen. A personalized recommender system with correlation

estimation. In Preparation.

65

[60] Gui-Bo Ye and Xiaohui Xie. Split bregman method for large scale fused lasso.

Computational Statistics and Data Analysis, 55(4):1552–1569, 2011.

[61] Ian En-Hsu Yen, Nanyun Peng, Po-Wei Wang, and Shou-De Lin. On convergence

rate of concave-convex procedure. Proceedings of the NIPS 2012 Optimization

Workshop, 2012.

[62] Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan. Large-scale

parallel collaborative filtering for the netflix prize. In Proceedings of the 4th In-

ternational Conference on Algorithmic Aspects in Information and Management,

AAIM ’08, pages 337–348, Berlin, Heidelberg, 2008. Springer-Verlag.

[63] Yunzhang Zhu, Xiaotong Shen, and Wei Pan. Structural pursuit over multiple

undirected graphs. Journal of the American Statistical Association, 109(508):1683–

1696, 2014.

[64] Yunzhang Zhu, Xiaotong Shen, and Changqing Ye. Personalized prediction and

sparsity pursuit in latent factor models. Journal of the American Statistical Asso-

ciation, 111(513):241–252, 2016.

[65] Hui Zou. The adaptive lasso and its oracle properties. Journal of the American

Statistical Association, 101(476):1418–1429, 2006.

[66] Hui Zou and Hao Helen Zhang. On the adaptive elastic-net with a diverging number

of parameters. Ann. Statist., 37(4):1733–1751, 08 2009.

Appendix A

Proofs

A.1 Technical details for section 3.2

Proof of Convexity of (3.5) in α, β and Ω separately:

(3.5) is the objective function with the L1 penalty

− l1(α,β,Ω) =
1

2

∑
i

[tr(ΩiSi)− logdet(Ωi)] +
λ1

2

∑
i<k

‖αi −αk‖1

+
λ1

2

∑
i<k

‖βi − βk‖1 + λ2

∑
k6l

∑
{k,l}⊆∪

h
Ih

|ωTi,kl − ωTj ,kl|

(a) Convexity in α:

The part involving α is

1

2

∑
i

tr(ΩiSi) +
λ1

2

∑
i<k

‖αi −αk‖1

=
1

2

∑
i

(ri −αTIixi − YIiβi)
TΩi(ri −αTIixi − YIiβi) +

λ1

2

∑
i<k

‖αi −αk‖1

The first term is quadratic in α and because Ωi is positive definite, thus this term

is convex in α. The second term consists of L1-norm of the differences of the α’s

66

67

which are basically absolute values, and is also convex in α. So their sum is also

convex in α.

(b) Convexity in β:

The part involving β is

1

2

∑
i

tr(ΩiSi) +
λ1

2

∑
i<k

‖βi − βk‖1

=
1

2

∑
i

(ri −αTIixi − YIiβi)
TΩi(ri −αTIixi − YIiβi) +

λ1

2

∑
i<k

‖βi − βk‖1

The first term is quadratic in β and because Ωi is positive definite, thus this term

is convex in β. The second term consists of L1-norm of the differences of the β’s

which are basically absolute values, and is also convex in β. So their sum is also

convex in β.

(c) Convexity in Ω: The part involving Ω is

1

2

∑
i

[tr(ΩiSi)− logdet(Ωi)] + λ2

∑
k6l

∑
{k,l}⊆∪

h
Ih

|ωTi,kl − ωTj ,kl|

Each summand in the first term only involves Ωi. It is the negative log normal

likelihood and is convex in Ωi. Thus their sum is a convex function of Ω. The

second term consists of absolute values of the differences of Ω entries, and is also

convex in Ω. So their sum is also convex in Ω.

Proof of Proposition 3.2.1:

First we show that we can find a c > 0 to make Sl11 in (3.11) convex. Let function

M(α,β,Ω) =
∑n

i=1

[
1

2
logdet(Ωi)− (ri−µi)TΩi(ri−µi)

2

]
which is the log likelihood part

of the penalized log likelihood function, where µi = αTIixi + YIiβi. Note that M() is

convex in α,β,Ω separately. Then the Hessian matrix of M() (think of Ω as a long

vector also) w.r.t. α,β,Ω has three positive definite blocks on the diagonal. For the off-

diagonal of the Hessian, it only comes from the term (ri−µi)TΩi(ri−µi) as logdet(Ωi)

only involves Ω. Since we assumed the parameter space satisfies ‖α‖∞ 6 L, ‖β‖∞ 6 L

68

and ‖Ω‖∞ 6 L, it can be seen that the off-diagonal of the Hessian is also bounded.

Thus we can find c > 0 and make M(α,β,Ω) + c(‖α‖2F + ‖β‖2F +
∑

i ‖Ωi‖2F) have a

Hessian with the diagonal blocks dominating, which makes the Hessian of M(α,β,Ω)+

c(‖α‖2F + ‖β‖2F +
∑

i ‖Ωi‖2F) positive definite and thus convex.

By Theorem 3.3 of [61], the difference of convex algorithm converges to a stationary

point of the TLP problem (3.7). For the objective function inside the d.o.c. algorithm,

the ADMM method applied converges to an optimal solution by Theorem 4.1 of [54].

Thus the overall algorithm converges to a stationary point of (3.7). The same argument

works for the L1 problem. This completes the proof.

A.2 Technical details for section 3.3

Proof of Lemma 3.3.2:

Since θu,A = (ηu, vec(ΩTu)), we have

‖θu,A − θ̃u,A‖22 = ‖ηu − η̃u‖22 + ‖ΩTu − Ω̃Tu‖2F ,

where ‖ · ‖F is the Frobenius norm of a matrix. For the first part, ηu = αTxu + Y βu.

Thus,

‖ηu − η̃u‖22 = ‖(α− α̃)Txu + Y (βu − β̃u)‖22
6 2(‖(α− α̃)Txu‖22 + ‖Y (βu − β̃u)‖22)

6 4‖xu‖2∞‖(α− α̃)T ‖2F + 4m‖Y ‖2max‖βu − β̃u‖22,

where ‖ · ‖max is the max norm of a matrix with ‖A‖max = max
i,j

(|aij |). Let X =

(x1, · · · ,xn) be the user feature matrix. The last inequality above is obtained from the

fact that

69

‖(α− α̃)Txu‖22 =

m∑
i=1

(

K1∑
j=1

(αji − α̃ji)xju)2

6 2
m∑
i=1

K1∑
j=1

(αji − α̃ji)2x2
ju

6 2‖xu‖2∞‖(α− α̃)T ‖2F ,

and

‖Y (βu − β̃u)‖22 =
m∑
i=1

(

K2∑
j=1

yij(βuj − β̃uj))2

6 2

m∑
i=1

K2∑
j=1

y2
ij(βuj − β̃uj)2

6 2 max
j

(
m∑
i=1

y2
ij)‖βu − β̃u‖22

6 2m‖Y ‖2∞‖βu − β̃u‖22.

Then using Assumption 3.3.1, there is a constant C1 > 0, such that

70

h(ξ, ξ̃) = [
1

n

n∑
u=1

h2
ΘA

(θu,A, θ̃u,A)]1/2

= [
1

n

n∑
u=1

(

∫
(f1/2(ru|θu,A)− f1/2(ru|θ̃u,A))2dν(ru))]1/2

6 [
1

n

n∑
u=1

∫
G2(ru)‖θu,A − θ̃u,A‖22dν(ru)]1/2

6 Ḡ[
1

n

n∑
u=1

‖θu,A − θ̃u,A‖22]1/2

6 Ḡ[
1

n

n∑
u=1

(4‖xu‖2∞‖(α− α̃)T ‖2F + 4m‖Y ‖2∞‖βu − β̃u‖22 + ‖ΩTu − Ω̃Tu‖2F)]1/2

6 Ḡ[
1

n
(4n‖X‖2∞‖(α− α̃)T ‖2F + 4m‖Y ‖2∞‖β − β̃‖2F + ‖ΩT − Ω̃T ‖2F)]1/2

6 ḠC1

√
max(n,m)

n
‖ξ − ξ̃‖2.

Let d0 = ḠC1, the result then follows. This completes the proof.

Proof of Theorem 3.3.3:

First let g(δ) = d0

√
max(n,m)

n δ, which is a strictly increasing continous function.

Then it satisfies the condition of Lemma 2.1 of Ossiander (1987) [37]. This is because

based on Lemma 3.3.2,

[
1

n

n∑
u=1

E(sup
ξ̃∈Bδ(ξ)

|f1/2
u (r, ξ)− f1/2

u (r, ξ̃)|2)

]1/2

=

[
1

n

n∑
u=1

∫
sup

ξ̃∈Bδ(ξ)
|f1/2(ru, ξ)− f1/2(ru, ξ̃)|2dν(ru)

]1/2

6

[
Ḡ2C2

1

max(n,m)

n
sup

ξ̃∈Bδ(ξ)
‖ξ − ξ̃‖22

]1/2

6 g(δ).

71

Therefore we have for u > 0,

HB(u,S(k), ρ) 6 H(g−1(u/2),S(k), ρ),

where HB is the metric entropy of S(k) with bracketing of f1/2, H is the ordinary

metric entropy of S(k), and ρ is the L2-norm.

Next we provide an upper bound for H(g−1(u/2),S(k), ρ). Since ‖ξ‖∞ 6 φ, N 6 n,

M 6 m, for x > 0, we have

H(x,S(k), ρ)

6 log

{
max

[(φ√((N +M)K + ÑmK̃)

x

)(N+M)K+ÑmK̃
, 1

]}

6 max

[
((N +M)K + ÑmK̃)log

(φ√((N +M)K + ÑmK̃)

x

)
, 0

]

6 max

[
((N +M + Ñm)K̄)log

(φ√((N +M)K + ÑmK̃)

x

)
, 0

]

6 max

[
((N +M + Ñm)K̄)log

(φ√((N +M + Ñm)K̄)

x

)
, 0

]
.

Since g−1(u/2) =

√
n

2d0

√
max(n,m)

u, we have

0 6 HB(u,S(k), ρ)

6 H(g−1(u/2),S(k), ρ)

6 max

[
((N +M + Ñm)K̄)log

(2d0φ
√

max(n,m)(N +M + Ñm)K̄
√
nu

)
, 0

]

= max

[
((N +M + Ñm)K̄)log

(C√max(n,m)(N +M + Ñm)K̄
√
nu

)
, 0

]
,

where C = 2d0φ.

We now find the convergence rate ε|Ω|, which is the smallest ε that satisfies the

conditions of Theorem 1 of Shen (1998) [50]. That is

72

sup
k>k0

ψ1(ε, k) 6 c2|Ω|1/2

for a constant k0, where ψ1(ε, k) =
∫ x1/2
x {HB(u,F(k))}1/2du/x with x = c1ε

2 +λ|Ω|(k−
k0), and F(k) = {f(r, ξ)1/2 : ξ ∈ S(k)}.

Note that when x > 1, ψ1 6 0 6 c2|Ω|1/2. So we only look at the case when 0 < x <

1. Notice that for sufficiently large L, and with x 6 u 6 x1/2,
C
√

max(n,m)(N+M+Ñm)K̄√
nu

>

1. So

max

[
((N +M + Ñm)K̄)log

(C√max(n,m)(N +M + Ñm)K̄
√
nu

)
, 0

]

= ((N +M + Ñm)K̄)log
(C√max(n,m)(N +M + Ñm)K̄

√
nu

)
.

Thus

ψ1(ε, k) =

∫ x1/2

x
{HB(u,F(k))}1/2du/x

6
((N +M + Ñm)K̄)1/2

x

∫ x1/2

x

{
log
(C√max(n,m)(N +M + Ñm)K̄

√
n

)
− logu

}1/2
du

6((N +M + Ñm)K̄)1/2(
1√
x
− 1)

{
log
(C√max(n,m)(N +M + Ñm)K̄

√
n

)
− logx

}1/2
.

Notice that k ∼ O(
√

(N(N − 1) +M(M − 1))K + ÑmK̃ + Ñ(Ñ − 1)mK̃) and λ|Ω| <

1

2k
ε2|Ω|, we have λ|Ω| = o(ε2|Ω|). Also note M 6 m. Therefore, we solve

sup
k>k0

ψ1(ε, k) = ψ1(ε, k0)

∼ ((N + Ñm)K̄)1/2 1

ε|Ω|

{
log
(√max(n,m)(N + Ñm)K̄

ε2|Ω|
√
n

)}1/2

= c2|Ω|1/2.

73

Then the smallest rate ε|Ω| satisfies

1

ε|Ω|

{
log
(√max(n,m)(N + Ñm)K̄

ε2|Ω|
√
n

)}1/2
∼ |Ω|1/2

((N + Ñm)K̄)1/2
.

So we have

ε|Ω| ∼

√
(N + Ñm)K̄

|Ω|

(
log
|Ω|
√

max(n,m)√
n(N + Ñm)K̄

)1/2
.

For ε|Ω| and λ|Ω|, the conditions of Corollary 1 of Shen (1998) [50] are now satisfied.

The result then follows. This completes the proof. �

Explanation of Remark 3.3.5:

With the Hellinger metric in (3.36) divided by
√
m, result in Lemma 3.3.2 becomes

h(ξ, ξ̃) 6 d0‖ξ − ξ̃‖2

√
max(m,n)

nm
.

Thus the g(δ) in the proof of Theorem 3.3.3 becomes

g(δ) = d0

√
max(n,m)

nm
δ.

Then we have

HB(u,S(k), ρ) 6 max

[
((n+m+ Ñm)K̄)log

(C√max(n,m)(n+m+ Ñm)K̄
√
nmu

)
, 0

]
.

Solve for

sup
k>k0

ψ1(ε, k) 6 c2|Ω|1/2.

With similar arguments, we can get

ε̃|Ω| ∼

√
(N + Ñm)K̄

|Ω|

(
log

|Ω|
√

max(n,m)√
nm(N + Ñm)K̄

)1/2
.

Proof of Theorem 3.3.6:

74

This is a direct result implied from Theorem 1 of Shen (1998) [50].�

Proof of Corollary 3.3.7:

For simplicity, write hΘA(θu,A, θ̃u,A) as hΘ(θ, θ̃), and f(ru|θu) as f(r|θ). We now

lower-bound h(ξ, ξ̃) by a function of ‖θu − θ̃u‖2.

h2
Θ(θ, θ̃) =

∫
(f1/2(r|θ)− f1/2(r|θ̃))2dν(r)

=
[∫
{f(r|θ)>f(r|θ̃)}

+

∫
{f(r|θ̃)>f(r|θ)}

]
(f1/2(r|θ)− f1/2(r|θ̃))2dν(r)

:= I1 + I2,

where

I1 =

∫
{f(r|θ)>f(r|θ̃)}

(f1/2(r|θ)− f1/2(r|θ̃))2dν(r),

I2 =

∫
{f(r|θ̃)>f(r|θ)}

(f1/2(r|θ)− f1/2(r|θ̃))2dν(r).

For I1, since f(r|θ) > f(r|θ̃), we have Z := (θ̃ − θ)TT (r) − (A(θ̃) − A(θ)) 6 0.

Since ‖ξ‖∞ 6 L, we have ‖θ‖∞ also bounded andθ is in a closed set of Rm. Hence

A′(θ) = Eθ[T (r)] is also bounded in l∞-norm. Let LA = sup
θ

(
‖EθT (r)‖∞

)
, then

|A(θ̃)−A(θ)| 6 LA‖θ̃ − θ‖1.

Hence −Z = |Z| > |(θ̃− θ)TT (r)| −LA‖θ̃− θ‖1. If θ̃− θ and T (r) have the same sign

elementwise, then

|(θ̃ − θ)TT (r)| > ‖T (r)‖min‖θ̃ − θ‖1,

where ‖x‖min = min
i
|xi|. So −Z = |Z| > (‖T (r)‖min − LA)‖θ̃ − θ‖1. Thus

1− exp(−1

2
|Z|) > max{1− exp[

1

2
(LA − ‖T (r)‖min)‖θ̃ − θ‖1], 0}.

When vectors a and b have the same signs elementwise, we write sign(a) = sign(b). Let

75

S1 = {r : f(r|θ) > f(r|θ̃) and sign(T (r)) = sign(θ̃ − θ)}, we have

I1 =

∫
{f(r|θ)>f(r|θ̃)}

f(r|θ)[1− exp(−1

2
|Z|)]2dν(r)

>
∫
S1

f(r|θ){max{1− exp[
1

2
(LA − ‖T (r)‖min)‖θ̃ − θ‖1], 0}}2dν(r).

Similarly, let S2 = {r : f(r|θ̃) > f(r|θ) and sign(T (r)) = sign(θ̃ − θ)}, we have

I2 =

∫
{f(r|θ̃)>f(r|θ)}

f(r|θ̃)[1− exp(−1

2
Z)]2dν(r)

>
∫
S2

f(r|θ̃){max{1− exp[
1

2
(LA − ‖T (r)‖min)‖θ̃ − θ‖1], 0}}2dν(r)

>
∫
S2

f(r|θ){max{1− exp[
1

2
(LA − ‖T (r)‖min)‖θ̃ − θ‖1], 0}}2dν(r).

Notice 1 − exp[
1

2
(LA − ‖T (r)‖min)‖θ̃ − θ‖1] > 0 if and only if ‖T (r)‖min > LA. Let

S = {r : ‖T (r)‖min > LA and sign(T (r)) = sign(θ̃ − θ)}. Hence,

h2
Θ(θ, θ̃) = I1 + I2

>
∫
S
f(r|θ){1− exp[

1

2
(LA − ‖T (r)‖min)‖θ̃ − θ‖1]}2dν(r),

which is a non-decreasing function of ‖θ̃ − θ‖1.

Hence for each θu0, and given the ε|Ω| in Theorem 3.3.3, there exists a δ|Ω|(θu0) > 0

such that ‖θ̃u − θu0‖1 > δ|Ω|(θu0) implies hΘ(θ̃u,θu0) > ε|Ω|. Take δ|Ω| = max
u

δ|Ω|(θu0),

then ‖θ̃u − θu0‖1 > δ|Ω| for each u implies hΘ(θ̃u,θu0) > ε|Ω| for all u. By definition

of h(ξ, ξ̃), we have h2(ξ0, ξ̃) =
1

n

∑n
u=1 h

2
Θ(θ̃u,θu0) > ε2|Ω| and so h(ξ0, ξ̃) > ε|Ω|. The

result then follows from Theorem 3.3.6. �

Proof of Corollary 3.3.8:

Define Φ = {u : ‖θ̃u − θu0‖1 > δ|Ω|}. Then the size of Φ satisfies |Φ| > φn. From

76

the proof of Corollary 3.3.7 it can be seen, for u ∈ Φ, hΘ(θ̃u,θu0) > 1√
φ
ε|Ω|. Then

h(ξ0, ξ̃) =

√√√√ 1

n

n∑
u=1

h2
Θ(θ̃u,θu0) >

√
1

n
φn

ε2|Ω|

φ
> ε|Ω|.

This completes the proof. �

A.3 Technical details for section 3.4

Proof of Theorem 3.4.1:

Proof of Statement (1):

Let cn =
√
pn/n. For ‖u‖ = A, since p(0) = 0,

Ln(βn0 + cnu)− Ln(βn0)

6Sn(βn0 + cnu)− Sn(βn0)− n
∑

j<k,βnj0 6=βnk0

{pλn,τn(|βnj0 − βnk0 + cn(uj − uk)|)

− pλn,τn(|βnj0 − βnk0|)}.

(5.1)

For the third term, because of condition (iii’), cn(uj−uk) = o(τn). Since lim inf
n→∞

1

τn
min(|βnj0−

βnk0| : βnj0 6= βnk0) > 1, when n is large enough, |βnj0 − βnk0| > τn and |βnj0 − βnk0 +

cn(uj − uk)| > τn. Also note for TLP, if |x| > τ , pλ,τ (|x|) = λ. Thus when n is large

enough the third term in (5.1) is 0.

For the first two terms of (5.1), since Sn is quadratic in βn, we have

Sn(βn0 + cnu)− Sn(βn0)

=cn(
∂Sn(βn0)

∂βn
)Tu+

1

2
uT

∂2Sn(βn0)

∂βn∂βTn
uc2

n

(5.2)

The gradient and Hessian of Sn have the following forms:

∂Sn(βn0)

∂βn
= XTΩ(Y −Xβn0),

∂2Sn(βn0)

∂βn∂βTn
= −XTΩX. (5.3)

77

Since the eigenvalue of X
TΩX
n is assumed to have a uniform upper bound, we have

1√
n

∂Sn(βn0)

∂βnj
= Op(1). Thus ‖∂Sn(βn0)

∂βn
‖ = Op(

√
npn).

So applying Cauchy-Schwarz inequality, we get

|cnuT (
∂Sn(βn0)

∂βn
)| 6 cn‖u‖‖

∂Sn(βn0)

∂βn
‖ = Op(pn)‖u‖. (5.4)

1

2
uT

∂2S(βn0)

∂βn∂βTn
uc2

n = −1

2
pnu

TX
TΩX

n
u. (5.5)

Because λmin(
XTΩX

n
) > h1, uT

XTΩX

n
u > h1‖u‖22. So when ‖u‖ is large enough,

the second term of (5.2) which is negative dominates the first term. Thus, given any

ε > 0, there exist A and N large enough, such that when n > N ,

P (sup
‖u‖=A

Ln(βn0 + cnu) < Ln(βn0)) > 1− ε.

That means there is a local maximizer in the ball of {βn0 + cnu : ‖u‖ 6 A} with

probability at least 1 − ε. Hence there exists a local maximizer β̂n of Ln(βn) and

‖β̂n − βn0‖ = Op(
√
pn/n). �

To prove Statement (2), first we prove the following claim.

Claim 5.0.1. Suppose ‖βn−βn0‖ = Op(
√
pn/n) and λn, τn satisfy the same conditions

of theorem 3.4.1, i.e.

(i’) lim inf
n→∞

1

τn
min(|βnj0 − βnk0| : βnj0 6= βnk0) > 1

(ii’)
pn
n
→ 0

(iii’)
τn√
pn/n

→∞

(iv’)

√
n

pn

λn
τn
→∞

When ∂Ln(βn)
∂βnj

exists at βnj, with probability tending to 1, the sign of ∂Ln(βn)
∂βnj

is deter-

mined by −
∑

k 6=j,βnk0=βnj0

sign(βnj − βnk).

78

To prove the claim, note when differentiable,

∂Ln(βn)

∂βnj
=
∂Sn(βn)

∂βnj
− n

∑
k 6=j

p′λn,τn(|βnj − βnk|)sign(βnj − βnk). (5.6)

For the first term,

∂Sn(βn)

∂βnj
=
∂Sn(βn0)

∂βnj
+

pn∑
k=1

∂2Sn(βn0)

∂βnj∂βnk
(βnk − βnk0). (5.7)

As argued in the proof of Statement (1),
1√
n

∂Sn(βn0)

∂βnj
= Op(1). Thus

∂Sn(βn0)

∂βnj
=

Op(
√
n) = Op(

√
npn).

For
pn∑
k=1

∂2Sn(βn0)

∂βnj∂βnk
(βnk − βnk0), with Cauchy-Schwarz inequality, it’s smaller than

or equal to

n

√√√√[

pn∑
k=1

(
XTΩX

n (j,k)
)2]‖βn − βn0‖. (5.8)

Because of the eigenvalue assumption on
XTΩX

n
,

[

pn∑
k=1

(
XTΩX

n (j,k)
)2] = O(1), (5.9)

thus
pn∑
k=1

∂2Sn(βn0)

∂βnj∂βnk
(βnk − βnk0) is also Op(

√
npn).

For the second term of (5.6),

n
∑
k 6=j

p′λn,τn(|βnj − βnk|)sign(βnj − βnk)

=n
∑

k 6=j,βnk0 6=βnj0

p′λn,τn(|βnj − βnk|)sign(βnj − βnk)

+ n
∑

k 6=j,βnk0=βnj0

p′λn,τn(|βnj − βnk|)sign(βnj − βnk).

(5.10)

For the first term of (5.10), since lim inf
n→∞

1
τn

min(|βnj0 − βnk0| : βnj0 6= βnk0) > 1, when

n is large enough |βnj0 − βnk0| > τn. Since ‖βn − βn0‖ = Op(
√

pn
n), it’s easy to see

79

|βnj − βnj0| = Op(
√

pn
n) for all j and

|βnj − βnk| − |βnj0 − βnk0| = Op(

√
pn
n

).

And because τn/
√

pn
n →∞,

|βnj − βnk| − |βnj0 − βnk0| = op(τn).

So when n is large enough, we also have |βnj − βnk| > τn, thus p′λn,τn(|βnj − βnk|) = 0.

For the second term of (5.10), since τn/
√

pn
n →∞, when n is large enough, p′λn,τn(|βnj−

βnk|) =
λn
τn

> 0. So with a large enough n, (5.10) simplifies to

n
λn
τn

∑
k 6=j,βnk0=βnj0

sign(βnj − βnk).

So for (5.6), the first term is of order Op(
√
npn), and the second term is of order n

λn
τn

.

Since

√
n

pn

λn
τn
→ ∞, the sign of (5.6) is determined by the second part which reduces

to

−
∑

k 6=j,βnk0=βnj0

sign(βnj − βnk).

So the claim is proved. �

Proof of Statement (2):

Next we show for the
√
n/pn-consistent local maximizer β̂n of Ln(βn) , with prob-

ability tending to 1 it has the grouping consistency that

β̂nj = β̂ntn(j) for all j > sn, (5.11)

with tn the true group mapping function defined in (3.48).

80

At a local maximizer β̂n, for β̂nj and a small enough ε, it must satisfy

∂Ln(βn)

∂βnj

∣∣∣∣
β̂nj−ε

> 0 and
∂Ln(βn)

∂βnj

∣∣∣∣
β̂nj+ε

6 0.

Now we show if (5.11) is violated, the above inequalities cannot hold.

Define groups Mnk , {k} ∪ {j > sn : tn(j) = k} for k = 1, 2, · · · , sn. Without loss

of generality, look at the group Mn1. We show if β̂nj ’s with j ∈ Mn1 are not all equal,

there’s a contradiction to β̂n being a local maximizer. Suppose there are H different

values in {β̂nj : j ∈Mn1}, and order them increasingly as β̂n(1), β̂n(2), · · · , β̂n(H). Let gi

be the size of the subset of Mn1 which corresponds to β̂n(i), i.e.

gi = |{j : j ∈Mn1 and β̂nj = β̂n(i)}|.

So
∑
i
gi = |Mn1| , G. First look at the subset that has the largest value β̂n(H). Suppose

for some j, β̂nj = β̂n(H), we look at the partial derivative ∂Ln(βn)
∂βnj

∣∣∣
β̂nj−ε

with ε small

enough. Based on the claim 5.0.1, we only need to look at the sum of signs. It can be

seen for β̂nj − ε, in
∑

k 6=j,βnk0=βnj0

sign(βnj − βnk) there are gH − 1 negatives and G− gH

positives. To make the partial derivative at β̂nj − ε non-negative, G− 2gH + 1 6 0 must

hold. So gH > (G+ 1)/2. Similarly look at the subset that has the smallest value β̂n(1).

Suppose for some k, β̂nk = β̂n(1), then for ∂Ln(βn)
∂βnk

∣∣∣
β̂nk+ε

, there are g1 − 1 positives and

G− g1 negatives. To make the partial derivative non-positive, we have 2g1−G− 1 > 0,

so g1 > (G + 1)/2. Then g1 + gH > G + 1 > G which cannot hold. The contradiction

means H = 1, i.e. all β̂nj ’s for j ∈Mn1 are equal. The grouping consistency is proved.

�

Proof of Statement (3):

Based on Statement (2), with probability tending to 1, the
√
n/pn-consistent local

maximizer of the penalized likelihood takes the form of (β̂Tn1,
˜̂
βTn2)T , where β̂n1 is the

estimator for the sn unique values βn10 and in
˜̂
βn2,

˜̂
βnj = β̂ntn(j) for j > sn. It’s

easy to see that β̂n1 is a
√
n/pn-consistent local maximizer of Ln((βTn1, β̃

T
n2)T), where

β̃nj = βntn(j) for β̃nj in β̃n2 which makes Ln a function of βn1 alone. Redefine this

81

function as Ln,1(βn1). So β̂n1 satisfies
∂Ln,1(β̂n1)

∂βnj
= 0 for j = 1, 2, · · · , sn. Accordingly

we also have a log-likelihood function Sn,1(βn1). Detailedly,

Sn,1(βn1) = (Y −Zβn1)TΩ(Y −Zβn1),

Ln,1(βn1) = Sn,1(βn1)− n
∑

16k<j6sn

|Mnj ||Mnk|pλn,τn(|βnj − βnk|).
(5.12)

Thus

∂Ln,1(β̂n1)

∂βnj

=
∂Sn,1(β̂n1)

∂βnj
− n

∑
k 6=j
|Mnj ||Mnk|p′λn,τn(|β̂nj − β̂nk|)sign(β̂nj − β̂nk)

(5.13)

Since lim inf
n→∞

1
τn

min(|βnj0 − βnk0| : βnj0 6= βnk0) > 1 and p′λ,τ (x) = 0 for x > τ , with a

large enough n, we have the second term in (5.13) equals 0. For the first term we have

∂Sn,1(β̂n1)

∂βn1
=
∂Sn,1(βn10)

∂βn1
+
∂2Sn,1(βn10)

∂βn1∂βTn1

(β̂n1 − βn10).

So

ZTΩ(Y −Zβn10)−ZTΩZ(β̂n1 − βn10) = 0.

Since XTΩX are positive definite for all n, it’s easy to see ZTΩZ are also positive

definite for all n. Multiplying the above equation by (ZTΩZ)−1 we get

(ZTΩZ)−1ZTΩ(Y −Zβn10)− (β̂n1 − βn10) = 0.

Take expectation we can see E(β̂n1 − βn10) = 0, so β̂n1 is unbiased. For any given

vector z,

zT (ZTΩZ)−1ZTΩ(Y −Zβn10) = zT (β̂n1 − βn10).

So with probability tending to 1,

var(zT (β̂n1 − βn10)) = zT
(
ZTΩZ

)−1
z.

82

Proof of Theorem 3.4.2:

The proof follows similar arguments as in the proof of theorem 3.4.1.

For the proof of Statement (1), the gradient and Hessian of S̃n are

∂S̃n(βn0)

∂βn
= XT (Y −Xβn0),

∂2S̃n(βn0)

∂βn∂βTn
= −XTX. (5.14)

Since λmax(
1

n
XTΩ−1X) < h2 < ∞ and 0 < h1 < λmin(

1

n
XTX), again using

Cauchy-Schwarz inequality, we have in

S̃n(βn0 + cnu)− S̃n(βn0) = cn(
∂S̃n(βn0)

∂βn
)Tu+

1

2
uT

∂2S̃n(βn0)

∂βn∂βTn
uc2

n,

the first term is dominated by the second, which is negative.

So given any ε > 0, there exists A and N large enough, such that when n > N ,

P (sup
{‖u‖=A}

Ln(βn0 + cnu) < Ln(βn0)) > 1− ε.

This implies there exists a local maximizer β̂n of Ln(βn) and ‖β̂n−βn0‖ = Op(
√
pn/n).

Statement (1) is proved.

For the proof of Statement (2), it uses the eigenvalue assumption on
1

n
XTΩ−1X

and
1

n
XTX, otherwise it’s the same as the proof for theorem 3.4.1.

For the proof of Statement (3),

∂S̃n,1(β̃n1)

∂βn1
=
∂S̃n,1(βn10)

∂βn1
+
∂2S̃n,1(βn10)

∂βn1∂βTn1

(β̃n1 − βn10).

So

ZT (Y −Zβn10)−ZTZ(β̃n1 − βn10) = 0.

Since XTX are positive definite for all n, it’s easy to see ZTZ are also positive definite

for all n. Multiplying the above equation by (ZTZ)−1 we get

(ZTZ)−1ZT (Y −Zβn10)− (β̃n1 − βn10) = 0.

Taking expectation we can see E(β̃n1 − βn10) = 0.

83

And for any given vector z,

zT (ZTZ)−1ZT (Y −Zβn10) = zT (β̃n1 − βn10).

So with probability tending to 1,

var(zT (β̃n1 − βn10)) = zT [(ZTZ)−1
(
ZTΩ−1Z

)
(ZTZ)−1]z.

Proof of Corollary 3.4.3:

By standard Gauss-Markov theorem in linear regression, for a linear model Y =

Zβ10+ε where ε ∼ N(0,Ω−1), the best linear unbiased estimator is β̂B = (ZTΩZ)−1ZTΩY .

Its covariance matrix is (ZTΩZ)−1. The estimator β̂U = (ZTZ)−1ZTY is also unbi-

ased and has variance (ZTZ)−1(ZTΩ−1Z)(ZTZ)−1. So for any vector z, we have

var(zT β̂B)6var(zT β̂U), which is

zT (ZTΩZ)−1z 6 zT (ZTZ)−1ZTΩ−1Z(ZTZ)−1z.

This shows the asymptotic variance of zT β̂n1 is always smaller than or equal to that

of zT β̃n1. For any x, with probability tending to 1, var(xT β̂n) = var(zT β̂n1) and

var(xT β̃n) = var(zT β̃n1) where z is the condensed form of x summing up covariates

corresponding to the coefficients in the same group. So with probability tending to 1,

var(xT β̂n) 6 var(xT β̃n) �

Proof of Corollary 3.4.4:

Since it’s proved with probability tending to 1, β̂n and β̃n both have grouping

consistency and β̂n1 and β̃n1 are both unbiased, it can be seen β̂n and β̃n are also

unbiased. The prediction error at any x is

E(y − ŷ)2

=E(xTβn0 + ε− xT β̂n)2

=E(ε2) + (E(xT β̂n)− xTβn0)2 + E(xT β̂n − xTEβ̂n)2

=σ2
ε + bias2 + variance.

84

For both β̂n and β̃n, with probability tending to 1, the bias terms are 0. Based on

corollary 3.4.3, β̂n gives a smaller variance. So the conclusion is derived. �

Appendix B

This appendix uses plots to illustrate the correlation phenomenon of movie ratings

mentioned in Section 3.4 with the Movielens 100k data.

correlation

fr
eq

ue
nc

y

−1.0 −0.5 0.0 0.5 1.0

0
20

00
0

60
00

0

Figure 5.1: Correlation of two movie ratings

This figure shows the correlation of two movie ratings for the Movielens 100k data.

We can see the center of the correlation is around 0.3, and there are many movie pairs

that have very high positive correlation.

85

86

Figure 5.2: Sample size v.s. correlation

This figure is the scatterplot of correlations of movie ratings and the sample size for

the Movielens 100k data. The sample size is the number of users that rated the two

movies simultaneously. 27% of movie pairs have correlations above 0.5. Among these

highly correlated pairs, there’re some correlations calculated based on relatively small

sample size, which means they can be either nonsignificant or represent the group effect

for a small group. Furthermore, from the plot we can also see there are some movie

pairs with very large positive correlation based on ratings from a large number of users.

These correlations with large sample sizes are more representative. Among them there

are the Star Wars series, the God Father series, the Die Hard series, etc.

	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction
	Four Kinds of Recommender Systems
	Collaborative Filtering
	Traditional Collaborative Filtering
	Recent Collaborative Filtering

	Content-Based Recommender Systems
	Hybrid Recommender Systems
	Combining Results and Augmenting Feature Space
	Building a Unified Model

	Context-Aware Recommender Systems
	Contextual Pre-filtering and Post-filtering
	Contextual Modeling

	Personalized Recommender System via Clustering
	Model Specification
	Models
	A Special Case when i=2I

	Algorithm
	Applying the difference of convex algorithm
	Mean updating
	Precision matrix updating
	Properties of the Algorithm

	Theoretical Results
	Advantage of Using Precision Matrix
	Correlation Validation on Data
	Outperformance of the Correlated Linear Model Using Prediction Error as a Criterion

	Numerical Results
	Simulation Studies
	Movielens Data

	Conclusion and Discussion
	References
	Appendix A.
	A.1
	A.2
	A.3

	Appendix B.

