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Abstract 

 
 CD8 T cells play a critical role in controlling and eradicating virus-infected cells. 

Although many studies demonstrated the notable anti-viral effect of HIV-specific CD8 T cells 

during HIV infection, these cells fail to fully eliminate viral replication. The phenomenon that 

only a small population of HIV-specific CD8 T cells migrate into B cell follicles where HIV-

producing cells are most highly concentrated during chronic infection is one major mechanism 

account for the failure of these cells to fully suppress HIV replication. It is not known whether 

this phenomenon also occurs during early infection. Moreover, whether follicular HIV-specific 

CD8 T cells are functional in suppressing viral replication is not fully understood. Simian 

immunodeficiency virus (SIV)-infected rhesus macaques are a good animal model for HIV 

research. In the present study, we determined the location, abundance and phenotype of follicular 

SIV-specific CD8 T cells in lymph nodes from SIV-infected rhesus macaques using in situ 

tetramer staining combined immunohistochemistry, confocal microscopy and quantitative image 

analysis. We found that during chronic SIV infection, despite high levels of exhaustion and likely 

inhibition by Foxp3+ cells, a subset of follicular SIV-specific CD8 T cells are functional and 

suppress viral replication in vivo. Similar to chronic infection, low levels of SIV-specific CD8 T 

cells migrate into B cell follicles during early stages of infection and a subset of these cells likely 

possess cytolytic function and suppress viral replication. In addition, low levels of follicular SIV-

specific CD8 T cells from GCs during early infection may set the stage for the establishment of 

persistent chronic infection. These findings provide important insights into HIV 

immunopathogenesis and support HIV cure strategies that augment functional follicular virus-

specific CD8 T cells to enhance viral control. We also evaluated the effect of ALT-803, a novel 

human IL-15 superagonist and potent immunostimulatory molecule, on SIV-specific CD8 T cells 

in chronically SIV-infected rhesus macaques. We found that ALT-803 drives dramatic expansion 

of SIV-specific CD8 T cells in lymphoid tissues and, importantly, induces significant 
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accumulation of SIV-specific CD8 T cells in B cell follicles, reducing the number of SIV-

producing cells within B cell follicles. These data justify the further evaluation of ALT-803 for 

eradication of HIV-infected cells. 
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HIV Background 

 Human immunodeficiency virus type 1 (HIV-1) is the cause of acquired immune 

deficiency syndrome (AIDS) which continues to be a severe global pandemic. Since the 1980s, 

HIV has infected over 53 million people and caused more than 20 million deaths (1). Currently, 

more than 36 million people worldwide are living with HIV and there are still around 1.8 million 

new infections annually ("Fact sheet – Latest statistics on the status of the AIDS epidemic". 

UNAIDS.org. 2016). Although great effort has been invested in the development of effective 

antiretroviral therapy (ART) to limit HIV-1 replication and progression to AIDS, a protective 

vaccine and a sterilizing cure are still unavailable.  

 After infection, HIV preferentially infects CD4+ T cells, a key component of the human 

immune system, and results in a progressive loss of CD4+ T cells (2-4). In the absence of 

treatment, continuous loss of CD4+ T cells will ultimately severely damage most patients’ 

immune system and compromise the host’s capacity to fight against infection. This leave the 

patients unprotected to a myriad of pathogens in the natural environment.  Any infection, 

normally insignificant to healthy individuals, may lead to severe a health crisis or even death, of 

HIV infected patients.  

The discovery and global impact of HIV 

 In 1981, AIDS was first observed in clinic in a cluster of young homosexual males with 

pneumocystis  pneumonia (PCP) - a rare opportunistic infection that almost only occurred in 

severely immunocompromised patients (5). During the same time period, a relatively benign form 

of skin cancer called Kaposi’s sarcoma, which usually affected  elderly men, was reported in 

young homosexual men in the United States (6, 7). Around two years later, Dr. Luc Montagnier’s 

group declared that they isolated a virus that may be the causative agent of AIDS and named it 

lymphadenopathy-associated virus (LAV) (8). In the same year, another group led by Dr. Robert 
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Gallo announced that their isolated virus named human T-lymphotropic viruses-III, or HTLV-III 

was the cause of AIDS (9). In addition, Dr. Jay Levy and his colleagues independently published 

report about discovery of the AIDS virus and named it the AIDS associated retrovirus (ARV) 

(10). These viruses were soon discovered to be the same and arguments about the official name of 

this virus ensued. Finally, the International Committee on the Taxonomy of Viruses decided to 

use human immunodeficiency virus (HIV) to name the newly discovered virus in 1986 (11).  

 Currently, it is estimated that approximately 36.7 million people worldwide are living 

with HIV-1 and the number of new infections in 2016 was about 1.8 million which is lower than 

3.1 million in 2001 ("Fact sheet – Latest statistics on the status of the AIDS epidemic". 

UNAIDS.org. 2016). The distribution of HIV-1 infection in the world is uneven. Sub-Saharan 

African populations, which make up only 10% of the world’s population, contain approximately 

68% of the world’s HIV-1 infected individuals. In addition, around 70% of new infections each 

year occur in this region (1). HIV-1 infection remains a lifelong physical and psychological 

torment for infected individuals as well as an enormous economic burden for society. Globally, 

most HIV transmission is occurring by unprotected intercourse where girls and young women 

represent a particularly vulnerable group. HIV can be transmitted by blood or blood products 

where routine donor testing is not available. HIV infection is also prevalent among intravenous 

drug abusers through the use of contaminated needles. 

 

Origins and structure of HIV 

HIV belongs to the genus Lentivirus, family Retroviridae. Lentivirus, which means “slow 

virus”, takes a long time to cause serious diseases after infection in human and other mammalian 

species (11). There are two major types of HIV: HIV-1 and HIV-2. HIV-1 has higher virulence 

and infectivity, and can be further classified into groups M, N and O. Group M is responsible for 
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the majority of HIV infections worldwide (12-14). In contrast to HIV-1, HIV-2 is much rarer, less 

virulent and largely restricted to West Africa (14). (HIV-1 is referred to as HIV from this point 

on.) 

The HIV virion is about 120nm in diameter with 2 identical copies of a positive polarity, 

single-stranded RNA genome that encodes the nine genes of the virus. The HIV RNA genomes, 

along with the nucleocapsid proteins, reverse transcriptase, integrase and protease, are enclosed 

by a conical capsid which consists of p24 protein. The capsid is, in turn, protected by the matrix 

which is made of p17 protein. This entire structure is surrounded by the viral envelope which is 

comprised of viral glycoproteins (gp) and components acquired from the infected host cell 

membrane when new viral particles bud out from the cell (15, 16). Heterodimers consisting of 

viral proteins gp120 and gp41, are embedded in the envelope as homo-trimers, and play a critical 

role in attachment and initiation of the infectious cycle (17) (Fig. 1).  

The HIV genome has 9 genes that encode 19 proteins (three major genes: gag, pol and 

env; six regulatory genes: tat, rev, nef, vif, vpr, and vpu) (Fig. 2). The gag gene is translated to 

generate precursor polyproteins which in turn are cleaved to produce the viral structural proteins 

(the matrix protein, the capsid protein and the nucleocapsid protein) (18). The pol gene produces 

the viral enzymes including reverse transcriptase, integrase and protease which are critical for 

viral replication. The env gene encodes precursor proteins to produce viral surface proteins such 

as gp120 and gp41 that are key components for HIV to bind and enter the host cell (19). The 

proteins encoded by tat and rev genes are important to enhance the viral gene expression and 

promote viral replication (20). The functions of nef protein include enhancement of viral 

infectivity, down-regulation of HLA/MHC class I and class II molecules and stimulation of viral 

replication (21-23). The vif protein helps neutralize the action of host antiviral proteins such as 

APOBEC3G (24, 25). The vpu protein functions to efficiently release new viral particles from the 
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infected cells (26). The vpr protein promotes HIV pathogenesis by arresting the host cell cycle in 

G2 phase to stimulate virus transcription (27). 

 

The life cycle of HIV 

 The life cycle of HIV starts with the interaction  of the envelope glycoprotein, gp120, and 

CD4 molecules on the surface of target cells such as CD4+ T cells, macrophages and dendritic 

cells (28).  Following on from the interaction between gp120 and CD4, there are conformational 

changes that allow gp41 to interact with HIV co-receptors, either CXCR4 or CCR5, to complete 

membrane fusion and viral entry (29-32). After the fusion and entry are completed, core 

structures containing viral RNA genomes are released into the cytoplasm and the genomic RNA 

is converted into double-stranded viral DNA by the combined enzymatic activities of viral 

reverse transcriptase. After translocation into the cell nucleus, the viral DNA is inserted into the 

host cell genome by the viral integrase to create a provirus (33). Once the integration is 

completed, the provirus can lead to either a latent infection by producing few or no copies of new 

virus, or an active infection (20, 34). Under conditions of little or no provirus transcription, 

progeny virion formation does not occur and the infected cell could be considered to be in a 

quiescent but chronically-infected state. The provirus can be recognized and transcribed by host 

RNA polymerase II and that active transcription is necessary for a productive infection. When the 

provirus is activated, materials required for producing new viral particles start to be synthesized 

by using the host machinery (20). Newly formed viral cores assemble below the cell membrane 

where the envelope proteins gp120 and gp41 have accumulated. During budding, viral particles 

incorporate substantial portions of the cell membrane along with gp120 and gp41 to form a viral 

envelope (35). During the releasing process, the cleavage of Gag and GagPol polyproteins by 
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protease triggers the maturation of infectious viral particles. Finally, the newly generated mature 

viral particles are ready to infect new target cells (36).  

 

Non-human primate model for HIV infection 

 Non-human primate models have become a critical resource for better understanding of 

human disease progression and development of vaccines and effective therapeutic strategies. For 

quite a long time, simian immunodeficiency virus (SIV)-infected rhesus macaques have been 

commonly regarded as the best animal model for HIV research (37). Like HIV, SIV also belongs 

to the genus of lentivirus and is closely related to HIV in genetic structure (38, 39). SIV-infected 

rhesus macaques develop clinical symptoms of disease and show progressive changes in lymph 

node structure which are very similar to disease progression of HIV infection in humans (38, 40-

44). Different strains of SIV, either pathogenic or non-pathogenic, can be used in rhesus macaque 

models to help improve understanding of HIV pathogenesis, and develop an effective vaccine and 

functional cure (37). Generally, SIV-infected rhesus macaques, an indispensable animal model 

for HIV infection in humans, has been widely used in both basic and applied research.  

 

Stages of HIV infection 

 There are multiple stages of HIV infection. It is extremely hard to study the earliest 

stages of HIV infection in human patients because, ethically, treatment must be offered 

immediately when infection is suspected or confirmed and, in many patients at all stages of 

infection, it is impossible to define the exposure event leading to primary HIV infection. 

Therefore, SIV-infected rhesus macaques have been used to study the early stages of HIV 

infection. After experimental intravaginal infection, the virus crosses the mucosal barrier, infects 
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and replicates predominantly in CD4+ T cells close to the portal of entry. In this process, not only 

activated and proliferating CD4+ T cells, but also resting CD4+ T cells are infected. Among the 

infected CD4+ T cells, proliferating cells serve as a short-lived population that generates many 

viral particles, while resting cells may contribute to the latent and chronic infection. Other 

susceptible cells in this area such as macrophages and dendritic cells may also be infected (45, 

46). Sometime within the first 5-7 days of infection, virus infected cells migrate to the draining 

lymph node and distal lymphatic tissues including the gut-associated lymphoid tissue (GLAT) 

through the bloodstream and lymphatic system (47). Once virus-infected cells reach the lymphoid 

tissues, where many CD4+ T cells are located, easy access to target cells leads to high level viral 

replication and a peak viral load occurs between 10 to 14 days post infection (48). CD4+ T cell 

numbers decrease rapidly (49). During this process, a stable viral reservoir of chronically infected 

cells becomes established in lymphoid tissues. The large pools of virus and virus-infected cells 

cannot be fully eradicated naturally by this time even though the host immune system is still 

functional and has been primed to recognize HIV-specific antigens. In this stage of infection, 

many infected individuals only develop mild influenza-like symptoms and may not know that 

they are infected with HIV (50-53). Early infection is followed by an asymptomatic phase during 

which the patients typically show no clinical disease. This stage, which is called clinical latency 

or chronic infection, can last anywhere from three to twenty years without treatment (54-56). 

Progressive loss of CD4+ T cells also occurs in this phase. When the CD4+ T cell count is lower 

than 200 cells/µL, which meets the definition of AIDS, most patients start to develop 

opportunistic infections and viral-induced cancers. In the absence of specific treatment, the 

majority of patients succumb to the complexities of immunodeficiency syndrome and  die within 

1-2 years (48). 

 

Mechanisms of HIV and SIV to evade host immune response 
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 Both HIV and SIV have multiple mechanisms to evade attack and elimination by the host 

immune system. After infection, antibodies are developed within a few weeks of detectable 

viremia. However, these early antibodies don’t have detectable effect on controlling viremia. 

Neutralizing antibodies which have the potential to protect against HIV develop months later 

(57). Studies showed that HIV can evade vigorous neutralizing antibody response in many ways. 

The envelope proteins complexes on the surface of virion can serve as a direct antibody target 

(57, 58). Nonetheless, extensive glycosylation of the envelope proteins results in masking key 

epitopes. The modified surface proteins further act as a shield to protect other more vulnerable 

eptitopes by minimizing the physical access of antibody to these viral epitopes (59, 60). 

Moreover, quick generation of virions with unrecognizable antigens to the present antibody 

repertoire by rapid mutation makes a sterilizing antibody response impossible (60, 61). HIV 

mutation also seriously weakens CD8+ T cells immune response. HIV is able to change the main 

epitopes recognized by CD8+ T cells by mutating corresponding genes to form escape variants. 

These variants make recognition of the virus difficult for CD8+ T cells (62, 63).  

 T regulatory cells (Treg) play a pivotal role in maintaining immunological self-tolerance, 

controlling autoimmune disease (64, 65), and suppressing immune activation (66, 67). This cell 

population may also be utilized by HIV to promote its immune evasion. Previous studies showed 

that Treg may downregulate T cells response to facilitate the virus-infected cells to escape 

immune surveillance during HIV and SIV infection (68-70).  

 Quick establishment of productive infection is another way that HIV may use to escape 

the host immune response. Previous research showed that productive systemic infection of SIV 

and peak virus production in tissues were established between 7 to 10 days post infection. While 

virus-specific CD8+ T cell immune response typically was not fully developed until 21 days post 

infection (71, 72). Therefore, the relatively late specific immune response is unable to fully 

control the established productive systemic virus infection. 
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 HIV may also escape immune surveillance by hiding in an anatomical sanctuary in the 

host. During chronic HIV and SIV infections, virus-producing cells are concentrated within B cell 

follicles in secondary lymphoid tissues (73-77). In rhesus macaques undergoing long-term, fully 

suppressive combined antiretroviral therapy (cART), residual SIV infection is also preferentially 

localized in B cell follicles (78). A number of studies showed that HIV- and SIV-specific CD8+ T 

cells are typically most concentrated in T cell zones outside B cell follicles in lymph node and 

spleen tissues and, therefore, are largely excluded from follicles (73, 74, 79, 80). Thus, B cell 

follicles appear to be somewhat of an immunoprivileged site in which virus-specific CD8+ T 

cells are unable to clear all virus-producing cells. 

 

Current methods to treat HIV infection 

 Currently, there is no cure for HIV infection. However, building on decades of basic HIV 

research, effective antiretroviral drugs have been developed to target different steps of the HIV 

life cycle. Drugs, that bind to the chemokine receptor CCR5 or viral envelope protein gp41, serve 

as fusion and entry inhibitors are able to prevent HIV from entering into target cells (81, 82). 

Moreover, inhibitors that target viral reverse transcriptase, integrase and protease are available 

(83). Nucleoside reverse transcriptase inhibitors consist of chain-terminator deoxynucleotide 

analogues that lack the 3’-hydroxyl group on the deoxyribose moiety which is required for 

synthesis of the viral DNA.  They impair viral replication by competing with the natural 

deoxynucleotides. The newly synthesized viral DNA chain cannot further elongate once 

nucleoside reverse transcriptase inhibitors have been  incorporated (84). On the other hand, non-

nucleoside reverse transcriptase inhibitors are able to bind to the viral reverse transcriptase 

enzyme directly to induce conformational changes, thus interfering with active site function and 

independently disrupting the viral replication (85). Protease inhibitors prevent cleavage of the gag 
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precursor polyprotein into mature viral structural proteins (86). Integrase inhibitors interfere with 

viral replication by preventing the double-stranded proviral DNA from integrating into the host 

cell genome (87). Combinations of multiple antiretroviral drugs have been widely applied and 

current standard of care therapy in the USA is based on three drug combinations. This combined 

treatment regimen is now known as antiretroviral therapy (ART) and  has significantly decreased 

the morbidity and mortality of HIV infection, and prolonged the longevity of HIV infected 

patients (88). Studies have shown that a combination of different drugs that target 3 or more steps 

of HIV replication cycle has best curative effect in suppressing HIV infection (88-91).  

 Although antiretroviral therapies have many benefits for HIV patients, they also come 

with unpleasant side effects, such as diarrhea, nausea and vomiting, hepatotoxicity, lipodystrophy 

and skin rash (92, 93). Also, HIV is able to obtain resistance to antiretroviral drugs several 

months post treatment through mutations (92, 93). Furthermore, the drugs can be very expensive 

and are often unavailable for patients in underdeveloped countries where the disease is prevalent. 

Therefore, development of an effective HIV vaccine or a functional cure to fully eradicate HIV is 

still in urgent need. 

 

Host immune response to HIV infection 

 The immune system plays an indispensable role in controlling and eradicating invading 

pathogens in order to protect the host against diseases. The innate and adaptive immune systems 

are two separate but interrelated arms with the combined function of host protection. Once 

pathogens breach one of the hosts’ physical barriers, non-specific innate immune responses are 

triggered immediately. However, if the pathogen successfully evades innate immune responses, 

the adaptive immune system becomes activated producing responses specifically targeting the 

pathogen. Here I will mainly concentrate on the biology of T cells and their role in immune 
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responses against viral infection. This is important background directly related to my thesis 

project which mainly focuses on HIV/SIV-specific CD8 T cell immune responses post infection. 

 

CD4+ T cells 

 CD4+ T cells are a key cell population in development and maintenance of both humoral 

and cellular immune responses (94). Naive CD4+ T cells can be induced to become Type 1 helper 

T cells (Th1), Type 2 helper T cells (Th2), Type 17 helper T cells (Th17) and Tregs under 

stimulation of different cytokines (94-96). Th1 cells play an important role in immunity against 

intracellular pathogens. The key transcription factors of Th1 cells are STAT4 and T-bet. Th1 cells  

produce interleukin-2 (IL-2), interferon-γ (INF-γ) and tumor necrosis factor-α (TNF-α) which are 

of great importance in activation and proliferation of CD8+ T cells (94, 95). Th2 cells are 

important against extracellular pathogens including parasites. The key Th2 cells transcription 

factors are STAT6 and GATA3 (95). Th2 cells produce cytokines such as IL-4, IL-5, IL-6, IL-10 

and IL-13 which play a pivotal role in promoting antibody-mediated immunity involving B cells. 

Cytokines produced by Th2 cells and direct contacts with Th2 cells stimulate B cell proliferation, 

induce antibody class switching, direct affinity maturation and differentiation of B cells into 

plasma cells that are the major cell source of antibodies (94, 95). Th17 cells are defined by their 

production of IL-17. They contribute to pathogen clearance at mucosal surfaces. The 

dysregulation of these distinct types of CD4 T cells is associated with autoimmune disease and 

inflammatory disorders (97-99). The loss of Th17 cells leaves the intestinal barrier disrupted 

which in turn contributes to chronic HIV infection and disease progression via increased 

movement of bacteria out of the gut (100). In contrast to the positive regulation of immune 

response, Tregs are a subpopulation of CD4+ T cells are able to modulate overactive immune 



12 
 

response, maintain immunological self-tolerance and control autoimmune disease. These cells 

express CD4, CD25 and Foxp3 (64-67, 101).  

 

CD8+ T cells 

 CD8+ T cells, also known as cytotoxic T lymphocytes (CTLs), play a critical role in the 

cellular adaptive immune response against viral infections and cancer. There are two main 

mechanisms that CD8+ T cells use to trigger apoptosis of target cells. Firstly, CD8+ T cells can 

secrete lytic molecules such as perforin and granzymes which in turn work together to kill virus 

infected cells (75, 102). Perforin is released by CD8+ cytotoxic T cells by exocytosis and is able 

to make pores in the membrane of target cells recognized by CD8+ T cells (103). Granzymes, 

include granzymes A, B, H and M, belong to serine proteases family (104). Granzyme B 

possesses the strongest ability to induce target cell apoptosis in granzyme family (105). It can 

cleave and activate caspases which in turn trigger cell apoptosis (106). After the pores are formed 

by perforin in target cells membrane, granzmyes secreted by CD8+ T cells enter the target cells 

via these pores and induce cell death subsequently via different pathways (105, 107). Secondly, 

CD8+ T cells are able to induce apoptosis of target cells through cell surface interactions. 

Interaction between Fas ligand (FasL or CD95L) on the surface of CD8+ T cells and Fas (CD95) 

drives apoptotic death of target cell (108, 109). Moreover, CD8+ T cells are able to produce IFN-

γ which can inhibit viral replication (110). It not only activates and recruits macrophages to the 

sites of infection, but also induces increased expression of MHC class I molecules as well as 

MHC class II molecules to facilitate antigen presentation (111).  

 In addition to the killing mechanisms mentioned above, CD8+ T cells also have other 

non-cytolytic mechanisms to contribute to host immune defense (112, 113). Anti-viral factors 

produced by CD8+ T cells such as β-chemokines, macrophage inflammatory protein-1 alpha and 
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-1 beta (MIP-1α and MIP-1β) and stromal cell-derived factor-1 (SDF-1) are able to competitively 

bind to co-receptors, necessary for HIV attachment, thus inhibiting viral entry (114, 115). 

Furthermore, CD8+ T cells are also able to suppress HIV replication by inhibiting its 

transcription process through CD8+ T cells antiviral factor (CAF) (116). 

 

T cells recognition of antigen 

 The first step of T cell immune response against infection is recognition of invading 

pathogens. This is accomplished by the ability of the T cell receptor (TCR) to recognize 

complexes that are comprised of peptide antigens and MHC class I and II molecules expressed on 

the surface of antigen presenting cells (APCs) or infected cells via surface T cell receptors (TCR). 

Two signals are required for activation of both CD4+ and CD8+ T cells. Signal 1 is triggered by 

the interaction between TCR-CD3 complexes on the T cell surface and peptide-MHC complexes 

on the surface of APC or infected cells with the assistance of co-receptors (CD4 or CD8 

molecules) (117). Signal 2 is provided by the interaction between co-stimulatory molecules on the 

surface of T cells (CD28) and APC (CD80 or CD86). There are two distinct pathways for antigen 

presentation. 

 First, intracellular pathogens including virus are degraded by proteasome into short 

peptides of 8-10 amino acids. Then these peptides are transported to the endoplasmic reticulum 

by transporters associated with antigen processing (TAP) where peptide-MHC class I complexes 

form. After loading of peptides on MHC class I molecules, the assembled complexes are brought 

to the cell surface via Golgi apparatus where they can be recognized by cytotoxic MHC class I 

restricted CD8+ T cells (118). Antigen recognition further results in CD8+ T cells activation, 

proliferation and differentiation. Once activated, cytotoxic CD8+ T cells play an indispensable 

role in eliminating viral infection.  
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 Second, extracellular pathogens including bacteria can be internalized by APC such as 

dendritic cells and macrophages. Subsequently, antigens are degraded into peptides are 13-18 

amino acids long in vesicles within APC. These peptides bind to MHC class II molecules to form 

complexes which are brought to the cell surface for recognition of CD4+ T cells. After antigen 

recognition and activation, CD4+ T cells start to proliferate and differentiate, and perform their 

functions in inducing and maintaining adaptive immune response such as antibody generation and 

promote CD8+ T cell activation (119-121). 

 

Structure of lymph nodes 

 The lymphatic system, consisting of a series of organs and vessels which carry lymph, 

serves as a vital part in initiating adaptive immune responses. Primary lymphoid organs (bone 

marrow and thymus) support production and maturation of lymphocytes whereas secondary 

lymphoid organs (including spleen, lymph nodes, tonsils and Peyer’s patches) comprise 

functional sites where immune responses are initiated. After HIV/SIV infection, the vast majority 

of virus-producing cells are CD4+ T cells located in secondary lymphoid tissues (2, 122, 123). 

Within secondary lymphoid tissues, virus-producing cells are most concentrated within B cell 

follicles during asymptomatic chronic infection (73-77). Here, we mainly focus on the events 

occur in lymph nodes. 

 Lymph nodes are small lymphoid organs, widely distributed throughout the body. They 

are connected through the lymphatic vessels to form a network as part of the circulatory system. 

A large number of lymphocytes, macrophages and APCs such as dendritic cells (DCs) located in 

lymph nodes. Typically, lymph nodes are protected by a fibrous capsule. The part underneath the 

capsule is cortex. The outer superficial part of cortex mainly houses B cells. The deep part of 

cortex, also known as paracortex, consists mainly of T cells. The inner portion of the lymph node 
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is the medulla which includes many memory B cells, plasma cells and macrophages (Fig. 3). 

Plasma cell precursors migrate from cortex to medulla, mature into plasma cells and secrete 

antibodies there as well (124). APCs travel through the lymphatic system within lymph. APC 

enter the lymph nodes through a series of afferent lymphatic vessels and pass through different 

compartments via a system of sinuses and eventually exit the lymph node through efferent 

lymphatic vessels. In this process, APC expressing foreign peptides on surface MHC molecules 

encounter the B and T lymphocytes in the cortex and paracortex. APC bearing foreign antigens 

will activate lymphocytes with surface receptors capable of recognizing specific peptide-MHC 

complexes and initiate specific immune response. Activated and memory B and T lymphocytes 

also circulate through the body and continuously traffic between blood stream and secondary 

lymphoid organs to search for invading pathogens. 

 B lymphocytes enter the lymph node through high endothelial venules and home to 

follicles in superficial cortex. Chemoattractant CXCL13 produced by follicular dendritic cells 

(FDC) drives migration of B cells into follicles by interacting with CXCR5, the receptor for 

CXCL13, on the B cell surface (125). Follicles can be further categorized into primary lymphoid 

follicles without germinal center (GC) and secondary lymphoid follicle with GC. Upon receiving 

antigen stimulation, B cells in follicles start to proliferate and ultimately form a GC (126-128). 

The GC consists of dark zone and light zone. In the dark zone, B cells go through clonal 

expansion, somatic hypermutation and isotype switching. During this time, rapidly proliferating B 

cells are also known as centroblasts (129). As time goes on, some centroblasts reduce their rate of 

division and begin to express higher levels of surface immunoglobulin. These cells, termed 

centrocytes, migrate from dark zone to light zone for selection. After selection, surviving cells 

further differentiate into plasma cells or memory B cells and exit the lymph node via efferent 

lymphatic vessels (130). During the GC reaction, resting B cells not experiencing this process are 

displaced to the edge of follicles and form the follicular mantle zone. Therefore, a fully formed 
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secondary lymphoid follicle includes both a GC and a mantle zone. T follicular helper cells (TFH) 

and FDC are very important for the GC reaction. TFH, a specialized subset of CD4+ helper T cells 

that express CXCR5 which is required for migration into B cell follicles, play a critical role in 

facilitating selection, survival, differentiation and antibody production of B cells (131, 132). FDC 

can capture large numbers of antigens in the form of immune complexes. Binding to these 

immune complexes presented by FDC  provides an indispensable stimulus for B cell expansion 

and differentiation (133).  

 

Role of B cell follicles in HIV and SIV infection 

 Virus-producing cells are highly concentrated within B cell follicles in both 

asymptomatic chronic HIV and SIV infections (73-75, 77). Furthermore, many studies have 

identified B cell follicles in secondary lymphoid organs as important anatomical reservoirs of 

residual productive HIV/SIV infection in controllers who can suppress viral replication either 

spontaneously or passively (74, 75, 77, 78, 134-136). CD4+ T cells located within B cell follicle 

are around 40 times more likely to be productively infected by HIV than CD4+ T cells outside B 

cell follicles (132). Recently, TFH have been implicated as the primary target and main site of 

HIV/SIV infection and replication inside B cell follicles (73-76, 78, 137). TFH expansion has been 

reported during chronic HIV and SIV infection, providing increased availability of target cells for 

virus replication (138, 139). In the context of ex vivo CCR5-tropic GFP reporter virus infection, 

Bcl-2, an antiapoptotic protein, is upregulated in CXCR5+ productively infected cells (140). This 

suggested that infected TFH cells may have increased survival during HIV infection with the 

consequence of prolonged virus production. Moreover, TFH function is severely impaired in 

untreated HIV infection which further damages the capability of host immune responses to 

control HIV infection (132). During HIV infection, FDC hold many virions as immune 
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complexes close to TFH in B cell follicles (141-143). This extracellular accumulation of virions is 

potently infectious to CD4+ T cells, even in the presence of neutralizing antibodies (143). Tumor 

necrosis factor-α (TNF-α) released by FDC further promotes HIV replication in TFH cells via 

upreguation of viral transcription (144). Therefore, despite the important positive roles in host 

immune responses by facilitating the GC reactions mentioned above, TFH and FDC also 

contribute to persistent HIV and SIV infection. Taken together, these findings provide strong 

evidence that the B cell follicle is a significant anatomical reservoir for HIV and SIV infection 

and impedes complete virus eradication.  

 

CD8 T cells are indispensable, but not fully effective for controlling HIV and SIV infection 

 Numerous studies strongly suggest that CD8+ cytotoxic T lymphocytes (CTL) play an 

indispensable role in controlling HIV and SIV infection both in vitro and in vivo. CD8+ T 

lymphocytes were demonstrated to be able to suppress HIV and SIV replication in vitro (145, 

146). We previously showed that HIV-specific CD8 T cells are capable of inducing lysis of 

infected cells in 51Cr release assays (74). The development of HIV-specific CD8 T cells coincides 

with a decline in plasma viremia during acute infection (147, 148). This suggests that CTL are 

critical determinants of the initial control of HIV replication. Effector CD8 T cells to virus-

infected cell ratios in lymphoid and genital tissues in vivo correlate with reductions in viral load 

(149), and levels of SIV-specific CD8 T cells in lymphoid compartments predict levels of SIV-

producing cells in those compartments (73). Further, disease progression is associated with 

diminished HIV- and SIV-specific CD8 T cells responses (150-152) and with mutations in HIV 

and SIV at epitopes recognized by HIV- and SIV-specific CD8 T cells (153-156). Elite control of 

HIV, defined as rare HIV-positive individuals who have very low or undetectable HIV plasma 

viral load in the absence of any HIV medications (157), is associated with specific MHC-class I 
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alleles and with polyfunctional CTL responses (158-163). Selective pressure from strong 

HIV/SIV-specific CD8 T cell responses in elite controllers is reflected by viruses carrying CTL 

escape mutations (164-166). Perhaps the most powerful evidence that CTL are important in 

controlling HIV and SIV infections comes from experiments in which CD8 cells were 

temporarily depleted in rhesus macaques during chronic SIV infection (167-170), which led to as 

much as 1000-fold increases in plasma viremia, and the subsequent recovery of CD8 cells led to 

decreased viremia (170). Additionally, another recent study in SIV-infected rhesus macaques 

showed that CD8+ lymphocyte depletion in elite controllers led to dramatic redistribution of 

productive SIV infection from TFH within the follicles into other non-TFH CD4+ T cells outside 

the follicle. The productive SIV infection was pushed back into follicles upon recovery of CD8 T 

cells (78). Nonetheless, despite the sufficient evidence showing that HIV- and SIV-specific CD8 

T cells are abundant and functional in controlling virus replication, they are unable to fully 

suppress all viral replication or prevent disease progression. Moreover, even the novel immune 

therapy of infusing exogenous virus-specific CTL into the patient still failed to significantly 

reduce HIV RNA level in plasma (171-173). It is not clear why HIV/SIV-specific CD8 T cells are 

unable to fully suppress all virus replication.   

 In contrast to concentrated HIV/SIV replication in B cell follicles, we and others 

previously observed that, typically, lower level of virus-specific CD8 T cells are located in B cell 

follicles compared to extrafollicular regions during both HIV and SIV chronic infection (73, 74, 

79, 80). Similarly, paucity of CD8 T cells in follicles was also reported in mice. In contrast to the 

deficiency in number, recent studies demonstrated that follicular CD8 T cells in mice are actually 

able to curtail viral infection (174). However, whether follicular HIV- and SIV-specific CD8 T 

cells are functional in killing virus-producing cells has not been fully understood. Further, 

whether SIV-specific CD8 T cells are able to migrate into GC where FDCs hold large amounts of 

infectious extracellular virions (2, 175) has not been tested yet. Tregs impede and impair the 
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proliferation and effector function of CTL (176, 177) and the programmed cell death protein 1 

(PD-1) is strongly related to the functional exhaustion of virus-specific CD8 T cells (178-180). 

Whether PD-1 expression and Tregs influence follicular virus-specific CD8 T cells function 

remain to be elucidated. CXCR5 is an important follicular homing molecule and all mature B 

cells express this molecule (181, 182). CXCR5 is also necessary for follicular CD4+ T cell 

localization (183). However, only a small fraction of virus-specific CTL within secondary 

lymphoid tissues express CXCR5 (73). Whether the lack of CXCR5+ CD8+ T cells is responsible 

for the low level of HIV/SIV-specific CD8 T cells within B cell follicles and failure in 

suppressing viral replication inside follicle is not clear. These unanswered questions require 

further investigations about virus-specific CD8 T cells in the follicular area during HIV/SIV 

infection. By using SIV-infected rhesus macaques, I studied the location, abundance and 

phenotype of follicular virus-specific CD8 T cells.  

 

Introduction of ALT-803, a novel IL-15 superagonist complex 

 Interleukin-15 (IL-15), a 14-15 kDa glycoprotein, was simultaneously discovered by two 

independent groups in 1994 and characterized as a T cell growth factor (184, 185). It belongs to 

common γ-chain cytokines which also include IL-2, IL-4, IL-7, IL-9 and IL-21 (186, 187). 

Previous research showed that IL-15 is a critical mediator of immunoglobulin synthesis in B 

cells, survival, activation and proliferation of T cells, and generation and function of (nature 

killer) NK cells (188). Moreover, IL-15 is required for long-term maintenance of CD8+CD44high 

memory T cells (188). IL-15 knockout mice showed markedly reduced numbers of memory CD8 

T cells and NKT cells, and deficiency of NK cells in both number and function (189). 

Administration of recombinant IL-15 in non-human primates drives significant expansion of 

memory CD8 T cells and NK cells in peripheral blood without preferentially increasing Tregs 



20 
 

which can down modulate immune responses by inhibiting effector CD8 T cells (190). IL-15 also 

prevents apoptosis of T cells (191). Importantly, IL-15 induces NK cell expansion and 

preferential proliferation of effector memory T cells, both CD4+ and CD8+, in SIV-infected non-

human primates (192, 193). Taken together, IL-15 is a good candidate for clinical 

immunotherapy. 

 Unlike to other γ-chain cytokines that circulate as soluble proteins until they bind their 

receptors directly on target immune cells, IL-15 is delivered through a novel mechanism termed 

trans-presentation. In this process, IL-15 first binds the high affinity IL-15 receptor alpha chain 

(IL-15Rα) in the endoplasmic reticulum (ER) to form an IL-15: IL-15Rα complex. Then the 

complexes are transported to the cell surface where they can stimulate the responding cell through 

the IL-2Rβ/γC receptor complex (194, 195). In addition, the IL-15: IL-15Rα complex can be 

internalized via endosomes (194). This process likely extends the half-life of the cytokine and 

reduces the demand of cytokine production. Like IL-15, IL-15Rα is also very important in 

maintaining lymphoid homeostasis as IL-15Rα knockout mice are significantly deficient in NK 

cells, NKT cells and CD8 T cells (196). Together with the short half-life and limited 

bioavailability, the unique trans-presentation mechanism, at least partially, restricts the 

therapeutic application of free IL-15. Development of an IL-15 superagonist complex, ALT-803, 

ameliorates these limitations and promotes clinical applications of IL-15.  

 A novel IL-15 mutant (N72D) which contains an asparagine to aspartic acid mutation at 

position 72 showed 5-fold higher biological activity than wild-type IL-15 (197, 198). This mutant 

can form a stable heterodimeric complex with IL-15Rα. The complex further exhibits enhanced 

biological activity compared to free IL-15 (197). ALT-803 consists of two IL-15N72D:IL-15Rα 

complexes fused onto a human IgG1 Fc fragment. Together, these modifications give ALT-803 

25-fold higher biological activity and a 35-fold longer half-life in serum than soluble IL-15, 

resulting in potent stimulation of NK and memory T cells (199). A recent study demonstrated that 
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ALT-803 is well-tolerated in both mice and cynomolgus macaques at doses up to 100 µg/kg and 

does not induce a cytokine storm despite potent activation of NK and memory T cells (198). 

ALT-803 is now being explored as a means to directly enhance anti-viral immune responses in 

chronic infection such as HIV. For example, in a humanized mice model of HIV, early 

administration of ALT-803 induced NK cell cytotoxicity and inhibited acute HIV replication 

(200). More recently, ALT-803 demonstrated the remarkable ability to both reverse HIV latency 

and enhance CD8 T cell recognition of HIV-infected cells in a primary in vitro cell culture model 

(201). Here, I studied the in vivo effects of ALT-803 on SIV-specific CD8 T cells in the context 

of chronic SIV infection in rhesus macaques.  
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Figure 1 

 

 
 

 

FIG 1 Structure of HIV virion. Figure adapted from National Institute of Allergy and Infectious 

Disease. How HIV Causes AIDS. National Institutes Health; Bethesda, MD: 2004. 
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Figure 2 

 
 

 

FIG 2 Schematic diagram of HIV-1 genome. The total size of HIV-1 genome is approximately 

9.7 kb. Each of the viral genes is drawn based on the relative orientation in the entire RNA 

genome. Arrows point to cleaved protein products. Dashed lines represent RNA splicing. The 

number in parenthesis is molecular weight of each protein. LTR long-term repeat, Gag group-

specific antigen, MA matrix protein, CA capsid domain, NC nucleocapsid, TF trans-frame protein, 

Pol polymerases, PR protease, RT reverse transcriptase, IN integrase, Env envelope protein, SU 

surface membrane protein, TM trans-membrane protein, Vif viral infectivity factor, Vpr viral 

protein R, Vpu viral protein U, Nef negative regulatory factor, Rev regulator of expression of viral 

proteins, Tat trans-activator of transcription. Figure adapted from Nkeze J. et al. Molecular 

characterization of HIV-1 genome in fission yeast Schizosaccharomyces pombe. Cell & 

Bioscience, 2015, 5:47. 
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Figure 3 

 
 

FIG 3 Schematic diagram of lymph node structure. Figure adapted from Janeway’s 

Immunobiology (8th Edition). 
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Chapter 2 

 

SIV-producing cells in follicles are partially suppressed by  

CD8+ cells in vivo1
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Reprinted from the Journal of Virology. Li S, Folkvord JM, Rakasz EG, Abdelaal HM, 

Wagstaff RK, Kovacs KJ, Kim HO, Sawahata R, MaWhinney S, Masopust D, Connick E, 

Skinner PJ. “Simian immunodeficiency virus-producing cells in follicles are partially suppressed 

by CD8+ cells in vivo”. Volume 90, pp. 11168-11180, 2016. 
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Synopsis  

HIV- and simian immunodeficiency virus (SIV)-specific CD8+ T cells are typically largely 

excluded from lymphoid B cell follicles where HIV- and SIV-producing cells are most highly 

concentrated, indicating that B cell follicles are somewhat of an immune privileged site. To gain 

insights into virus-specific follicular CD8+ T cells, we determined the location and phenotype of 

follicular SIV-specific CD8+ T cells in situ, the local relationship of these cells to Foxp3+ cells, 

and effects of CD8 depletion on levels of follicular SIV-producing cells in chronically SIV 

infected rhesus macaques. We found that follicular SIV-specific CD8+ T cells were able to 

migrate throughout follicular areas including germinal centers. Many expressed PD-1, indicating 

they may have been exhausted. A small subset was in direct contact with and likely inhibited by 

Foxp3+ cells and a few were themselves Foxp3+. In addition, subsets of follicular SIV-specific 

CD8+ T cells expressed low to medium levels of perforin and subsets were activated and 

proliferating. Importantly, after CD8 depletion, SIV-producing cells increased in B cell follicles 

and extrafollicular areas, suggesting that follicular and extrafollicular CD8+ T cells have a 

suppressive effect on SIV replication. Taken together, these results suggest that during chronic 

SIV infection, despite high levels of exhaustion and likely inhibition by Foxp3+ cells, a subset of 

follicular SIV-specific CD8+ T cells are functional and suppress viral replication in vivo. These 

findings support HIV cure strategies that augment functional follicular virus-specific CD8+ T 

cells to enhance viral control. 
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Introduction 

In the absence of combination anti-retroviral therapy (cART), the majority of HIV 

infected individuals experience persistent high-level viral replication that results in progressive 

loss of CD4+ T cells, AIDS and death eventually. During chronic HIV and SIV infections, the 

vast majority of virus-producing cells are CD4+ T cells located in secondary lymphoid tissues (2, 

122, 123). Within secondary lymphoid tissues, virus-producing cells are most concentrated within 

B cell follicles (73-77). When the frequency of virus-producing cells within follicles and 

extrafollicular compartments was adjusted by the frequency of target cells (i.e., either CD4+ or 

CD4+  Ki67+ cells), there was still significantly higher concentration of SIV-producing cells in B 

cell follicles compared to extrafollicular regions of spleen, lymph nodes, and gut-associated 

lymphoid tissues (73). In rhesus macaques undergoing long-term, fully suppressive cART, 

residual SIV infection is also preferentially localized in B cell follicles (78). In addition, follicular 

dendritic cells (FDCs) within mature B cell follicles hold onto extracellular virions (2, 202), and 

FDC bound virions are potently infectious to CD4+ T cells (143).  

Numerous studies indicate that CD8+ cytotoxic T lymphocytes (CTL) play a key role in 

controlling HIV and SIV infections both in vitro (145, 146) and in vivo. For example, the 

development of HIV-specific CD8+ T cells during acute infection coincides with a decrease in 

plasma viremia (147, 148).  Effector CD8+ T cells to virus-infected cell ratios in lymphoid and 

genital tissues in vivo correlate with reductions in viral load (149), and levels of SIV-specific 

CD8+ T cells in lymphoid compartments predict levels of SIV-producing cells in those 

compartments (73).  Furthermore, disease progression is associated with diminished HIV- and 

SIV-specific CD8+ T cells responses (150, 151, 203). Elite control of HIV is associated with 

specific MHC-class I alleles and polyfunctional CTL responses (158, 161, 162, 204). In addition, 

HIV and SIV mutate virally encoded CTL epitopes to evade HIV- and SIV-specific CD8+ T cells 

responses (165, 166). Perhaps the most powerful evidence that CTL are important in controlling 
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HIV and SIV infections comes from experiments in which CD8+ cells were temporarily depleted 

in rhesus macaques during chronic SIV infection (167-170), which lead to as much as 1000-fold 

increases in plasma viremia, and the subsequent recovery of CD8+ cells led to decreased viremia 

(170). Nevertheless, HIV- and SIV-specific CD8+ T cells are not able to fully suppress all virus 

replication and prevent disease progression. 

We and others previously showed that HIV- and SIV-specific CD8+ T cells are typically 

most concentrated in T cell zones outside of B cell follicles in lymph node and spleen tissues, and 

are largely excluded from follicles (73, 74, 79, 80). Thus, B cell follicles appear to be somewhat 

of an immune privileged site in which virus-specific CD8+ T cells are not able to clear all virus-

producing cells. The relatively low levels of follicular virus-specific CD8+ T cells can be 

explained by a lack of expression of the follicular homing molecule CXCR5 on most lymphoid 

CD8+ T cells (73). In addition to numerical deficiencies of follicular virus-specific CD8+ T cells, 

there likely exist other factors that may inhibit follicular virus-specific CD8+ T cells function.  

Evolutionarily it makes sense for B cell follicles to be immune privileged sites in order to 

prevent unwanted CD8+ T cell cytolytic activity within follicles, which might lead to decreased 

ability of B cells to make antibodies. Follicular CD8+ T cells might primarily serve to provide 

help to CD4+ T follicular helper cells (TFH cells) or B cells. In support of this thesis, we 

previously reported that many SIV-specific CD8+ T cells down-modulate CD8 upon entering B 

cell follicles (205) and Xu et al. found that CD8low SIV-specific T cells show impaired function 

(206). In addition, we frequently observe SIV-specific CD8+ T cells in contact with B cells, with 

their cell membranes intertwined (unpublished data), and Quigley et al., showed that isolated 

follicular CD8+ T cells, to some extent, supported IgG production in tonsillar B cells (207). Thus, 

many follicular SIV-specific CD8+ T cells may down-modulate cytolytic function in favor of 

providing help to B cells to produce SIV-specific antibodies. 



29 
 

There is also evidence that at least some follicular CD8+ T cells likely maintain cytolytic 

function. For example, we found that subsets of follicular SIV-specific CD8+ T cells express the 

cytolytic enzymes granzyme B and perforin, indicating that some follicular CD8+ T cells have the 

capacity for cytolytic function (73). Furthermore, we found that levels of SIV-specific CD8+ T 

cells inversely correlated with levels of SIV RNA+ cells in follicular and extrafollicular 

compartments of lymph nodes, suggesting suppression of follicular virus-producing cells by 

virus-specific CD8+ T cells in vivo (73).    

 In this study, to gain further insights into follicular virus-specific CD8+ T cells, we 

determined the location and phenotype of follicular SIV-specific CD8+ T cells in situ, the local 

relationship of these cells to Foxp3+ cells, and effects of CD8 depletion on levels of follicular 

SIV-producing cells in SIV infected rhesus macaques. We hypothesize that subsets of follicular 

SIV-specific CD8+ T cells evade suppression by T regulatory cells (Tregs), evade functional 

exhaustion, display an effector memory phenotype, and can suppress follicular viral replication in 

vivo. Our findings support this hypothesis, and further support HIV cure strategies that increase 

frequencies of functional follicular virus-specific CD8+ T cells.  
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Materials and Methods 

Tissues from chronically SIV-infected animals 

Lymph nodes and spleen were obtained from captive-bred rhesus macaques of Indian 

origin chronically infected with either SIVmac239 or SIVmac251. Five animals were inoculated 

with SIVmac251 intravaginally, six were inoculated with SIVmac239 rectally and four 

intravenously. Two animals (R03094 and R01106) had <200 CD4+ T cells/mm3 (Table 1). All 

animals were housed and cared for according to American Association for Accreditation of 

Laboratory Animal Care standards in accredited facilities. All animal procedures were performed 

according to protocols approved by the Institutional Animal Care and Use Committees of the 

Wisconsin National Primate Research Center and the University of Minnesota. Portions of fresh 

lymphoid tissues were immediately snap frozen in OCT and/or formalin fixed and embedded in 

paraffin. In animals with MHC-class I alleles known to restrict SIV-specific CD8+ T cells, 

portions of fresh lymphoid tissue were also collected in RPMI 1640 medium with sodium heparin 

(18.7 U/ml) and shipped overnight to the University of Minnesota for in situ tetramer staining. 

Four rhesus macaques (rh2515, rh2516, rh2520 and rh2588) in early chronic phase of SIVmac239 

infection (59 days post-infection) received 50 mg/kg anti-CD8 monoclonal antibody (mAb) MT-

87R1 (Nonhuman Primate Reagent Resource, Boston, MA.) to deplete CD8+ cells. 

 

In situ tetramer staining combined with Immunohistochemistry 

In situ tetramer staining combined with immunohistochemistry was performed on fresh 

lymph tissue specimens shipped overnight, sectioned with a compresstome (208) and stained 

essentially as previously described (73, 74, 209). Biotinylated MHC-class I monomers were 

loaded with peptides (National Institute of Health Tetramer Core Facility, Emory University, 

Atlanta GA) and converted to MHC-class I tetramers. Mamu-A1*001 molecules loaded with SIV 
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Gag CM9 (CTPYDINQM) peptides (210) or irrelevant negative control peptides FV10 

(FLPSDYFPSV) from the hepatitis B virus core protein; Mamu-B*008 molecules loaded with 

Nef RL10 (RRHRILDIYL) peptides (211) and Env KL9 (KRQQELLRL) peptides (211); and 

Mamu-A1*002 monomers loaded with Nef YY9 (YTSGPGIRY) peptides (212). Fresh lymph 

node and spleen tissues sections were incubated with MHC-class I tetramers (0.5 µg/ml) alone or 

along with goat-anti-human PD-1 Abs (1 µg/mL, polyclonal, R&D Systems). For secondary 

incubations, sections were incubated with rabbit-anti-FITC Abs (0.5 µg/mL, BioDesign, Saco, 

ME) and mouse-anti-human Ki67 Abs (1:500 dilution, clone MM1, Vector), or mouse-anti-

human perforin Abs (0.1 µg/mL, clone 5B10, Novacastra), or mouse-anti-human Foxp3 Abs (2.5 

µg/mL, clone 206D, BioLegend) or mouse-anti-human CD20 Abs (0.19 µg/mL, clone L26, 

Novocastra). For the tertiary incubations, the sections stained with goat-anti-human PD-1 Abs 

were incubated with Cy3-conjugated donkey-anti-rabbit Abs (0.3 µg/mL, Jackson 

ImmunoResearch Laboratories, West Grove, PA), Alexa 488-conjugated donkey-anti-goat Abs 

(0.75 µg/mL, Jackson ImmunoResearch Laboratories), and Cy5-conjugated donkey-anti-mouse 

Abs (0.3 µg/mL, Jackson ImmunoResearch Laboratories). All other sections were incubated with 

Cy3-conjugated goat-anti-rabbit Abs (0.3 µg/mL, Jackson ImmunoResearch Laboratories), Alexa 

488-conjugated goat-anti-mouse Abs (0.75 µg/mL, Molecular probes), and Dylight 649-

conjugated goat anti-human IgM (0.3 µg/mL, Jackson ImmunoResearch Laboratories). Sections 

were imaged using an Olympus FluoView 1000 microscope. Confocal z-series were collected 

from ~6 µm from the surface of the section to 35-45 µm into the tissue. Montage images of 

multiple 800 × 800 pixels were created and used for analysis. 

 

Quantitative image analysis 

For the determination of levels of SIV-specific CD8+ T cells and percentages of SIV-

specific CD8+ T cells that co-expressed specific molecules, follicular areas were identified 
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morphologically as clusters of brightly stained closely aggregated CD20+ or IgM+ cells. Follicular 

and extrafollicular areas were delineated using Olympus FluoView 1000 software. Areas that 

showed loosely aggregated B cells that were ambiguous as to whether the area was a follicle were 

not included. Quantification of MHC-tetramer stained cells within GC and non-GC areas was 

performed on sections stained with IgM and Ki67 antibodies, where IgM antibody staining was 

used to delineate follicles and Ki67 antibody staining to delineate GC areas of follicles. GC 

delineation was only done in the studies that included Ki67 antibody staining. For PD-1 

expression analysis, an average of 174 tetramer+ cells (range, 46-313) was analyzed in follicular 

regions and 445 (range, 120-883) in extrafollicular regions. For quantification of tetramer+ cells 

that were in contact with Foxp3+ cells and express Foxp3+, an average of 271 tetramer+ cells 

(range, 100-486) was analyzed in follicular regions and 294 (range, 119-498) in extrafollicular 

regions. For perforin expression level analysis, an average of 107 tetramer+ cells (range, 22-300) 

was analyzed in follicular region and 201 (range, 82-389) in extrafollicular region. To determine 

levels of perforin expression, tetramer+ cells were scored using the following objective criteria as 

follows. Tetramer+ cells with no detectable perforin staining above background levels were 

scored as perforin negative. Tetramer+ cells with perforin staining 2-3X greater than background 

were scored as perforin low, with perforin staining 4-9X higher than background as perforin 

medium, and those with 10X or greater than background levels and with perforin staining 

detectable throughout much of the cytoplasm were scored as perforin high. Cell counts were done 

on single z-scans. While doing the cells counts, we stepped up and down through the z-scans to 

distinguish tops and bottoms of cells from non-specific background staining and demarcated cells 

using a software tool to avoid counting the same cell twice. Quantitative image analysis of PD-1, 

Foxp3 and perforin staining were done with lymph node tissues, while quantitative image 

analysis of Ki67 staining was done with both lymph node and splenic tissues. An average of 1.97 

mm2 (range, 1.19-2.64 mm2) was analyzed for each lymph node and 2.82 mm2 (range, 1.67-3.98 

mm2) for each spleen. 
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In situ hybridization combined with immunohistochemistry 

In situ hybridization for SIV RNA was performed as previously described (73, 75). This 

technique identifies cells that are actively transcribing SIV, but not extracellular virions 

encapsulated in envelope glycoprotein and bound to FDC. Briefly, 6 µm frozen sections were 

fixed in 3% paraformaldehyde (Sigma-Aldrich, St. Lousis, MO), hybridized overnight with 

digoxygenin labeled SIVmac239 antisense probes (Lofstrand Labs, Gaithersburg, MD) and 

visualized using NBT/5-bromo-4-chloro-3-indolyl phosphate (Roche, Nutley, NJ). 

Immunohistochemistry staining for B cells was performed in the same tissues using mouse-anti-

human CD20 (clone 7D1; AbD Serotec, Raleigh, NC) and detected using HRP-labeled polymer 

anti-mouse IgG (ImmPressKit; Vector Laboratories, Burlingame, CA) and Vector NovaRed 

substrate (Vector Laboratories). SIV RNA+ cells were counted by visual inspection and classified 

as either inside or outside of B cell follicles which were identified morphologically as a cluster of 

CD20+ cells as previously described (73, 75). Total tissue area and area of follicles was 

determined by quantitative image analysis (Qwin Pro version 3.4.0; Leica, Cambridge, U.K.) and 

used to calculate the frequency of SIV+ cells per mm2. An average of 49.3 mm2 (4.7 mm2 – 95.2 

mm2) was analyzed. 

 

Statistical analysis   

All statistical analysis assumed two-sided tests with a significant level of 0.05. Count 

data were analyzed using generalized linear mixed models that would accommodate within 

subject correlation, over-dispersion (negative binomial with log link) and an offset for total cells 

or area, as appropriate. Simple linear regression was used for modeling log10 viral load. Perforin 

expression on tetramer+ cells was analyzed using repeated measures ordinal (proportional odds) 
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logistic regression (213-215) with standard errors estimated via bootstrap. SAS version 9.3 (Cary, 

NC), R (216) and GraphPad Prism (6.0) software was used. Because of there were only four 

animals in the CD8 depletion study, statistics were not performed.  
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Results 

SIV-specific CD8+ T cells can migrate into germinal centers (GCs) 

Although HIV- and SIV-specific CD8+ T cells are typically most concentrated in T cell 

zones of lymphoid tissues, some localize inside of lymphoid B cell follicles (73, 74). Within B 

cell follicles, HIV- and SIV-specific CD8+ T cells are typically distributed near the border of 

follicles adjacent to the T cell zone (73, 74). In addition, greater than 50% of the follicular area is 

devoid of HIV- and SIV-specific CD8+ T cells in most follicles (73, 74). These findings led us to 

wonder whether virus-specific CD8+ T cells are restricted to certain areas of the follicle or are 

able to migrate throughout the entire follicular area including the GC where FDCs hold virus in 

immune complexes and are presumably actively infecting passing CD4+ T cells. 

To address this question, we used MHC-class I tetramers to stain SIV-specific CD8+ T 

cells in situ in lymph node tissue sections from SIV-infected rhesus macaques (Table 1). We 

counter-stained tissue sections with antibodies directed against IgM to label B cell follicles, and 

antibodies directed against Ki67 to label proliferating cells and allow us to delineate GCs. We 

found that within follicles, tetramer+ SIV-specific CD8+ T cells were located both inside and 

outside of GCs (Fig. 1A). They were present in similar levels inside and outside of the GC area of 

B cell follicles (p = 0.85), and as anticipated, were present at significantly lower levels in follicles 

compared to extrafollicular regions (Fig. 1B) (p < 0.0001). Thus, although SIV-specific CD8+ T 

cells are typically relatively low in numbers within B cell follicles, they can migrate throughout 

the entire follicle, including the GC. 

In addition, we previously found a positive correlation between levels of follicular and 

extrafollicular tetramer+ virus-specific CD8+ T cells (73). We performed a similar comparison in 

our current study including 7 animals from our previously published work (73), plus 8 additional 

animals. The results from the increased animal cohort strongly support our previous finding and 

showed a highly significant positive correlation between levels of follicular and extrafollicular 
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tetramer+ virus-specific CD8+ T cells in lymph node and spleen tissues (Fig. 1C) (p = 0.0001). 

Furthermore, we also observed significant correlation between levels of GC and extrafollicular 

tetramer+ virus-specific CD8+ T cells (Fig. 1D) (p = 0.014), and between levels of non-GC 

follicular and extrafollicular tetramer+ virus-specific CD8+ T cells (Fig. 1E) (p = 0.0030). Thus, as 

total numbers of virus-specific CD8+ T cells increase, there is a corresponding increase in 

extrafollicular as well as follicular virus-specific CD8+ T cells, including cells in the GC as well 

areas outside of the GC in follicles.  

 

Many follicular SIV-specific CD8+ T cells express PD-1 during chronic SIV infection 

As mentioned above, we previously showed that many SIV-specific CD8+ T cells appear 

to down-modulate surface expression of CD8 upon entering B cell follicles (205). Here we 

investigated additional factors that might inhibit follicular SIV-specific CD8+ T cells function. 

We investigated the inhibitory receptor PD-1, which is a marker of functional exhaustion of CD8+ 

T cells (178, 179) as well as a marker of CD8+ T cells that have recently been exposed to 

antigenic stimulation (178). PD-1 is markedly upregulated on the surface of dysfunctional virus-

specific CD8+ T cells during chronic HIV and SIV infections (217, 218), and blockade of PD-1 in 

vivo enhanced SIV-specific CD8+ T cells responses (219). The degree to which follicular SIV-

specific CD8+ T cells express PD-1 has not yet been investigated. To investigate this, we stained 

tissue sections from chronically SIV infected rhesus macaques with MHC-class I tetramers, 

antibodies directed against PD-1, and antibodies directed against CD20 to label B cell follicles 

(Table 1 and Fig. 2A) We found a broad range of 10-86% (average 54%) of follicular tetramer+ 

SIV-specific CD8+ T cells expressing PD-1. Levels were lowest in the animals Rh2515 and 

Rh2520 sacrificed at the earliest time point evaluated at 42 days post-infection. Comparison of 

viral loads and percentages of follicular tetramer+ SIV-specific CD8+ T cells expressing PD-1 

showed no significant correlation (p = 0.10). PD-1 expression was slightly higher (11.2%, p = 
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0.047) in follicular compared to extrafollicular tetramer+ SIV-specific CD8+ T cells (Fig. 2B). 

These results indicate that PD-1 expression is quite variable in animals during chronic SIV 

infection, and suggest that many follicular as well as extrafollicular SIV-specific CD8+ T cells are 

continually being exposed to antigen and likely exhausted. Importantly, these results also indicate 

that subsets follicular SIV-specific CD8+ T cells in each animal do not express PD-1, and are not 

exhausted.  

 

Foxp3+ cells likely inhibit follicular and extrafollicular SIV-specific CD8+ T cell function 

We also investigated whether Foxp3+ cells were in contact with, and potentially 

inhibiting, follicular SIV-specific CD8+ T cells. Tregs play a pivotal role in maintaining 

immunological self-tolerance, controlling autoimmune disease (64, 65) and suppressing immune 

activation (66, 67). A large subset of Tregs is characterized by the expression of the transcription 

factor Foxp3 (101, 220, 221). Although most Tregs are CD4+, a subpopulation of CD8+ T cells 

also functions as Tregs (222-224). During chronic infection, Tregs can suppress CD8+ T cell 

activity in a contact dependent manner (225). In this study, we investigated whether Foxp3+ Tregs 

were in contact with and potentially inhibiting follicular SIV-specific CD8+ T cells function. We 

stained lymph node tissue sections from chronically SIV infected rhesus macaques with MHC-

class I tetramers to label SIV-specific CD8+ T cells, anti-Foxp3 antibodies to label Foxp3+ Tregs, 

and anti-IgM antibodies to label B cell follicles, and quantified numbers of tetramer+ cells in 

contact with Foxp3+ cells and levels of tetramer+ Foxp3+ cells (Table 2). We found that on 

average 7% (range 5-9%) of follicular tetramer+ SIV-specific CD8+ T cells were in direct contact 

with Foxp3+ cells (Fig. 3A and 3B). In extrafollicular regions, significantly higher levels of 

tetramer+ SIV-specific CD8+ T cells were in contact with Foxp3+ cells (average 16%, range 9-

29%, Fig. 3B). In addition, a small subset of tetramer+ SIV-specific CD8+ T cells expressed 

Foxp3 (Fig. 3C). An average of 0.35% (range 0-1%) of follicular and 0.7% of extrafollicular 
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(range 0-3%) SIV-specific CD8+ T cells were Foxp3+ (Fig. 3D). No significant difference 

between follicular and extrafollicular Foxp3+ SIV-specific CD8+ T cells was observed. Thus, 

Foxp3+ cells are contacting and likely inhibiting subsets of follicular as well as extrafollicular 

SIV-specific CD8+ T cells. 

In addition, consistent with previous studies (5, 6, 30, 31), we found that tetramer+ SIV-

specific CD8+ T cells levels were significantly lower in follicular compared extrafollicular areas 

(p = 0.017; Fig. 3E). Similarly, Foxp3+ cells levels were significantly lower in follicular 

compared extrafollicular areas (p = 0.0004; Fig. 3F). Combining these data, we found that the 

ratio of tetramer+ SIV-specific CD8+ T cells: Foxp3+ cells tended to be higher in follicular areas 

than extrafollicular areas (p = 0.052; Fig. 3G). Moreover, the absolute number of tetramer+ cells 

in contact with Foxp3+ cells was higher in extrafollicular region (272 of 2057 tetramer+ SIV-

specific CD8+ T cells) than follicular region (115 of 1900 tetramer+ SIV-specific CD8+ T cells) as 

well (Table 2). These findings suggest that contact-mediated suppression of SIV-specific CD8+ T 

cells by Foxp3+ cells may be lower in follicular compared to extrafollicular compartments.  

Interestingly, when the percentages of follicular and extrafollicular tetramer+ SIV-

specific CD8+ T cells in contact with Foxp3+ cells were evaluated together vis-a-vis viral load 

(SIV RNA Copies/ml) in each animal, the percentage of follicular but not extrafollicular 

tetramer+ SIV-specific T cells in contact with Foxp3+ cells was a borderline significant predictor 

of viral load (p = 0.08, and p = 0.26 respectively; Fig. 3H).  

 

Levels of lymphoid SIV-specific CD8+ T cells tend to predict viral load 

We compared levels of follicular and extrafollicular tetramer+ SIV-specific CD8+ T cells 

and viral loads. We found that follicular tended to negatively predict (p = 0.060), and 

extrafollicular significantly negatively predicted plasma viral load (p = 0.036; Fig. 4). These 
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findings suggest that SIV-specific CD8+ T cells located in lymph nodes are important in 

controlling plasma viral loads. 

 

Activated proliferating SIV-specific CD8+ T cells are found in follicles 

We next assessed whether follicular SIV-specific CD8+ T cells express Ki67 in lymph 

nodes and spleen (Table 1). In T cells, Ki67 is a marker of activation and proliferation (226, 227). 

We found Ki67+ tetramer+ SIV-specific CD8+ T cells in follicular (Fig. 5A) as well as in 

extrafollicular regions (Fig. 5B), at similar levels (Fig. 5C). On average 11% (range 5-22%) of 

tetramer+ SIV-specific CD8+ T cells were Ki67+ in the GCs, 12% (range 0-33%) in non-GC 

follicular areas, and 13% (range 5-24%) in extrafollicular areas. These data indicate that a subset 

of both follicular and extrafollicular SIV-specific CD8+ T cells are activated and proliferating. 

 

Many follicular SIV-specific CD8+ T cells express low levels of perforin  

Perforin is an important cytolytic effector molecule which CTL use to lyse virus-infected 

cells. We previously showed that approximately 35% of follicular SIV-specific CD8+ T cells 

express perforin and that most expressed another effector molecule, granzyme B, which typically 

works in concert with perforin to lyse infected cells (73).   

Central memory (TCM) and effector memory (TEM) T cells are two distinct populations of 

memory T lymphocytes. TCM subsets of CTL can be identified by their absence of perforin 

expression (103, 228). TCM are known for proliferating and secreting cytokines upon contact with 

antigen, which serves to propagate antigen-specific CTL and send inflammatory signals to 

propagate inflammatory responses, but they are not able to kill infected cells immediately upon 

contact (103, 228). In contrast, TEM express perforin and importantly, can kill infected cells 

immediately upon contact (103, 228).  
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Based on the importance of perforin expression on the ability of CTL to immediately kill 

infected cells, we set out to characterize perforin expression levels within follicular and 

extrafollicular SIV-specific CD8+ T cells in lymph nodes during chronic SIV infection (Table 1). 

We determined levels of perforin (negative, low, medium, and high) in tetramer+ follicular and 

extrafollicular SIV-specific CD8+ T cells (Fig. 6A). We found that a wide range tetramer+ 

follicular SIV-specific CD8+ T cells did not express perforin (mean: 56%; range: 20-81%), 

consistent with being TCM. The percentage of perforin- tetramer+ cells was slightly higher in 

follicular compared with extrafollicular regions (p = 0.026, Fig. 6B). Among perforin+ tetramer+ 

cells, most expressed low to medium levels of perforin (mean 94%, range 91-97%), consistent 

with being TEM. A small population of perforin+ tetramer+ cells (mean 6%, range 3-9%) expressed 

high levels of perforin consistent with being effector T cells or terminally differentiated memory 

populations. Percentages of both follicular (p = 0.90) and extrafollicular (p = 0.91) tetramer+ SIV-

specific CD8+ T cells expressing perforin showed no significant correlation with plasma viral 

loads. The percentages of follicular and extrafollicular tetramer+ cells that expressed each level of 

perforin were not significantly different (Fig. 6C). Thus, there were similar levels of tetramer+ 

SIV-specific CD8+ T cells expressing low, medium, and high levels of perforin in follicular and 

extrafollicular compartments.  

 

Increase in follicular SIV-producing cells post-CD8 depletion  

To evaluate the ability of SIV-specific CD8+ T cells to kill SIV-producing cells in 

follicular and extrafollicular compartments in vivo, we temporarily depleted CD8+ T cells in four 

chronically SIV infected rhesus macaques using anti-CD8 antibodies. As anticipated from 

previous CD8 depletion studies (168-170), after administration of anti-CD8 antibodies, CD8+ T 

cells including tetramer-binding SIV-specific CD8+ T cells were temporarily depleted from blood 

and plasma viral loads increased (Fig. 7A). Ten days post-depletion, animals were sacrificed and 
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tissues collected for in situ analyses. Using in situ tetramer staining combined with 

immunohistochemistry, we visualized and quantified tetramer+ SIV-specific CD8+ T cells inside 

and outside of B cell follicles before (Fig. 7B) and after (Fig. 7C) CD8 depletion. Tetramer+ SIV-

specific CD8+ T cells were largely depleted in both follicular and extrafollicular areas (Fig. 7D 

and 7E). Using in situ hybridization combined with immunohistochemistry, we visualized and 

quantified SIV RNA+ cells inside and outside of B cell follicles before (Fig. 7F) and after (Fig. 

7G) CD8 depletion. We found higher levels of both follicular and extrafollicular SIV-producing 

cells after CD8+ T cells depletion in all four animals examined, albeit the increase was much 

more substantial in extrafollicular areas, with the average change in follicles being 3.8 cell/mm2 

(range 0.6 to 10.3 cells/mm2; Fig. 7H) and in extrafollicular areas 8.9 cells/mm2 (range 0.6 to 22.4 

cells/mm2; Fig 7I). These results suggest that both follicular as well as extrafollicular CD8+ T 

cells suppress viral replication in vivo.    
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Discussion 

B cell follicles are a major reservoir of HIV and SIV replication and remain a critical 

obstacle to the elimination of HIV and SIV infection. During chronic infection, HIV and SIV 

producing cells are highly concentrated within B cell follicles (73-75, 78), while virus-specific 

CD8+ T cells fail to accumulate in large number in these areas (73, 74, 79, 80), indicating that B 

cell follicles are somewhat of an immune privileged site where low concentrations of anti-viral 

CD8+ T cells permit ongoing viral replication. Furthermore during HIV and SIV infections, FDC 

within the GC of mature B cell follicles have large quantities of virions attached to their cell 

surface via complement and antibody complexes (2, 143, 202), and are thought to be continually 

infecting follicular CD4+ T cells.  

Prior to our study presented here, it was not clear whether SIV-specific CD8+ T cells are 

able to migrate throughout the entire follicular area including the GC, or are limited to only 

certain regions of the follicle. We found that tetramer+ SIV-specific CD8+ T cells were located 

throughout the entire follicle, including the GC as well as non-GC regions of follicles, at similar 

levels, in both lymph node and spleen tissues. These findings indicate that virus-specific CD8+ T 

cells are able to migrate throughout the entire follicular area, including GC areas laden with virus.   

In addition to there being relatively low levels of SIV-specific CD8+ T cells in follicles, 

other factors or cellular processes likely contribute to the inability of CTL to fully control 

follicular viral replication. We previously found that virus-specific CD8+ T cells often down-

modulate cell surface expression of the important CD8 co-receptor upon entering follicles (205), 

which likely impairs cytolytic function. We show here that some follicular tetramer+ SIV-specific 

CD8+ T cells are PD-1 positive and likely struggling with exhaustion. We also found that small 

subsets were in contact with Foxp3+ cells, or were Foxp3+, indicating a potential source of T cell 

inhibition. Thus, there exists several mechanisms that likely contribute to the failure of virus-

specific CD8+ T cells to fully control follicular HIV and SIV replication.   
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Although several mechanisms contribute to the failure of follicular virus-specific CTL to 

fully control HIV and SIV replication, evidence exists that at least a subset of follicular virus-

specific CD8+ T cells are able to suppress viral replication. In support of this hypothesis, we 

recently reported that virus-specific CD8+ T cells in lymphoid compartments predict levels of 

SIV-producing cells in those compartments (73), and as we show here, also tended to predict 

plasma viral load. We also show here that many follicular tetramer+ virus-specific CD8+ T cells 

express the effector molecule perforin at low to medium levels and small subset at high levels, 

and thus have machinery needed for cytolytic function. In addition, we show here that a subset of 

follicular tetramer+ SIV-specific CD8+ T cells express Ki67 indicating they are activated and 

proliferating. Importantly, we also show here a rise in follicular virus-producing cells after CD8 

depletion in all four animals examined, suggesting that follicular CD8+ T cells actively suppress 

follicular viral replication in vivo.   

Additional evidence that follicular CD8+ T cells suppress viral replication is presented in 

two recently published studies (174, 229).  Follicular, CXCR5+ LCMV-specific CD8+ T cells 

were shown to control LCMV infection of TFH cells and reduce viral loads significantly better 

than CXCR5- CD8+ T cells adoptively transferred into LCMV infected mice (174, 229). In 

addition, and importantly, HIV-specific CXCR5+ CD8+ T cell levels in blood inversely correlated 

with viral loads in chronically infected untreated HIV infected patients (174). Thus, substantial 

evidence is accumulating supporting an important role for follicular anti-viral CD8+ T cells in 

controlling infection.   

While the focus of this study is follicular CD8+ T cells, it is important to also discuss 

extrafollicular cells. We found a greater increase of extrafollicular SIV-producing cells after CD8 

depletion, compared to the increase seen to follicular areas. This finding  supports the hypothesis 

that we have been promoting for a decade that HIV- and SIV-specific CD8+ T are able to 

effectively clear virus producing cells in the extrafollicular region, but are not as effective in 
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targeting virus-producing cells in B cell follicles (73, 74, 163). These findings support the recent 

findings by Fukazawa Y. et al, who found that in vivo CD8+ lymphocyte depletion of chronically 

SIV-infected rhesus macaques led to a redistribution of SIV infection from TFH cells within the 

follicles to extrafollicular CD4+ T cells (78), which similarly suggest a superior ability of 

extrafollicular relative to follicular CD8+ T cells in controlling viral replication.  

There is clearly a need to develop strategies to eliminate of HIV and SIV virions and 

infected cells from B cell follicles. Studies presented here by us and others, support HIV cure 

strategies that augment functional follicular virus-specific CD8+ T cells to enhance viral control. 

This might be achieved in a number of ways. First, we found a highly significant positive 

correlation between levels of extrafollicular and follicular tetramer+ virus-specific CD8+ T cells, 

suggesting that increasing total numbers of lymphoid virus-specific CD8+ T cells may increase 

total numbers of both extrafollicular as well as follicular virus-specific CD8+ T cells. Second, 

given that CXCR5 directs CD8+ T cells to B cell follicles (174, 229), adoptive transfer of 

autologous HIV-specific CXCR5+ CD8+ T cells could increase levels of HIV-specific CXCR5+ 

CD8+ T cells in follicles and reduce follicular viral replication. Third, combining a therapy that 

increases levels of follicular HIV-specific CD8+ T cells with other therapies may be synergistic.  

For example, adding blockade of PD-1/PD-L1 to a therapy that augments levels of follicular 

HIV-specific CD8+ T cells may enhance reductions in viral replication, as it has been shown that 

blockade of PD-1/PD-L1 pathway in vivo restored the function of exhausted CD8+ T cells during 

chronic viral infection (178) and enhanced SIV-specific CD8+ T cells responses (219). In addition, 

anti-PD-L1 treatment synergistically strengthened the control of LCMV replication mediated by 

the adoptive transfer of CXCR5+ CD8+ T cells in mice (174). Inhibition of Tregs might also 

synergize with a therapy that augments levels of follicular HIV-specific CD8+ T cells. IL-15 is a 

cytokine that facilitates CD8+ and CD4+ effector T cell expansion, while having no preferential 

effect on the proliferation of Tregs (230). In addition, IL-27 delivery inhibits CD4+CD25+Foxp3+ 
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Tregs expansion and potentiates tumor-specific CTL reactivity (231). Based on these properties, 

it is reasonable to speculate that therapeutic IL-15 and IL-27 administration might lead to 

relatively lower levels of Tregs and increased effector T cells in lymphoid tissues, and lead to 

improved viral control. A therapy that increases levels of follicular HIV-specific CD8+ T cells 

might also be combined with HIV latency reversal agents to improve killing of reactivated cells. 

It might also be combined with approaches that create CD4+ T cells that are resistant to infection 

to improve overall viral suppression. Fourth, therapies that eliminate infectious HIV from the 

FDC network may be developed, and these may be combined with the strategies suggested above. 

Thus, there is a critical need to reduce HIV replication in B cell follicles, and there exist many 

new approaches that may tackle this problem. 

In summary, studies presented here suggest that during chronic SIV infection, despite 

likely inhibition of SIV-specific CD8+ T cells by Foxp3+ cells, and a subset of follicular SIV-

specific CD8+ T cells likely being exhausted, some follicular SIV-specific CD8+ T cells express 

the functional markers perforin and Ki67, and appear to suppress viral replication in vivo. These 

findings support HIV cure strategies that augment functional follicular virus-specific CD8+ T 

cells to enhance viral control.  
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TABLE 1 Rhesus macaques included in studies 

ID 

number 
DPI 

MHC-

genotypea  

Peptide 

Virus 

Plasma 

SIV RNA 

(log10 

Copies/ml) 

Routeb Ki67 Perf Foxp3 
PD-

1 

Rh2515 42 A01 Gag-

CM9 

SIVmac239 4.22 IV ND - + + 

Rh2516 42 A01 Gag-

CM9 

SIVmac239 5.55 IV + ND + + 

Rh2520 42 A01 Gag-

CM9 

SIVmac239 7.58 IV + ND + + 

Rh2306 84 A01 Gag-

CM9 

SIVmac239 6.15 R - + - - 

R03111 105 A02 Nef-

YY9 

SIVmac239 6.45 R - + - - 

R03094c 154 A01 Gag-

CM9 

SIVmac239 6.20 R - + - - 

R03116 161 A01 Gag-

CM9 

SIVmac239 3.78 R - + - - 

11-57 258 A01 Gag-

CM9 

SIVmac251 4.51 V + d + - + 

11-45 272 A01 Gag-

CM9 

SIVmac251 6.26 V ND + + + 

JD85 272 A01 Gag-

CM9 

SIVmac251 4.56 V + d ND + + 

11-89 349 A01 Gag-

CM9 

SIVmac251 5.15 V + d + + + 

11-061 545 A01 Gag-

CM9 

SIVmac251 3.72 V + d ND + + 

Rhax18c 546 B08 Nef-

RL10 

SIVmac239 4.97 R + d + - + 

R01106 567 B08 Env-

KL9 

SIVmac239 4.73 R + d + - - 

Rhau10 1687 B08 Nef-

RL10 

SIVmac239 4.11 IV - + - - 

 

a Full MHC allele names are as follows. A01 is Mamu-A1*001:01; A02 is Mamu-A1*002:01; and 

B08 is Mamu-B*008:01 

b Route of SIV infection. 

c Animals had < 200 CD4+ T cells/mm3. 

d Quantitative image analysis was done with both lymph node and splenic tissue. 

- There were not enough follicles in stained tissue sections for quantitative image analysis. 

DPI: Days Post-Infection. 

ND: Not Done. 
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TABLE 2 Numbers of tetramer+ cells counted in contact with Foxp3+ cells 

ID 

number 

Total # tet+ cells 

counted in 

follicular areas 

Total # tet+ cells 

that contact 

Foxp3+ cells in 

follicular areas 

Total # tet+ cells 

counted in 

extrafollicular 

areas 

Total # tet+ cells 

that contact Foxp3+ 

cells in 

extrafollicular areas 

Rh2515 100 6 176 40 

Rh2516 261 17 352 47 

Rh2520 212 20 119 35 

11-45 406 23 486 43 

JD85 486 23 498 63 

11-89 129 11 129 18 

11-061 306 15 297 26 

Total 1900 115 2057 272 
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Figure 1 
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FIG 1 SIV-specific CD8+ T cells can migrate throughout B cell follicles including germinal 

centers (GC). (A) Representative lymph node section stained with Mamu-A1*001/Gag CM9 

tetramers to label SIV-specific CD8+ T cells (red, and indicted with arrows in the enlargement), 

IgM antibodies (blue) to define follicles (F), and Ki67 antibodies (green) to label GC. Confocal 

images were collected with a 20X objective and each scale bar indicates 100 µm. (B) Frequencies 

of tetramer+ SIV-specific CD8+ T cells in different compartments of lymph nodes and spleen 

during chronic SIV infection. Samples from spleen are indicated with red, whereas all others are 

from lymph node. There were no significant differences between frequencies of tetramer+ SIV-

specific CD8+ T cells in GC and non-GC follicular areas (p = 0.85). Frequencies of extrafollicular 

tetramer+ SIV-specific CD8+ T cells were 109% (95% CI, 60, 172%) higher than GC (p < 0.0001) 

and 104% (95% CI, 56, 166%) higher than non-GC follicular areas (p < 0.0001). (C) Relationship 

between frequencies of follicular and extrafollicular tetramer+ SIV-specific CD8+ T cells. The 

frequency of extrafollicular tetramer+ SIV-specific CD8+ T cells predicted the frequency of 

follicular tetramer+ SIV-specific CD8+ T cells. For every 1 log10 increase in extrafollicular 

tetramer+ SIV-specific CD8+ T cells, there was an estimated 1.14 log10 (95% CI 0.86, 1.42) 

increase in the frequency of follicular tetramer+ SIV-specific CD8+ T cells (p = 0.0001). After 

adjusting for extrafollicular tetramer+ SIV-specific CD8+ T cells, tissue type (LN or Spleen) was 

not a significant predictor of follicular tetramer+ SIV-specific CD8+ T cells (p = 0.39). (D) The 

relationship between frequencies of GC and extrafollicular tetramer+ SIV-specific CD8+ T cells. 

The frequency of extrafollicular tetramer+ SIV-specific CD8+ T cells predicted the frequency of 

GC tetramer+ SIV-specific CD8+ T cells. For every 1 log10 increase in extrafollicular tetramer+ 

SIV-specific CD8+ T cells, there was an estimated 1.11 log10 (95% CI 0.34, 1.88) increase in the 

frequency of GC tetramer+ SIV-specific CD8+ T cells (p = 0.014). After adjusting for 

extrafollicular tetramer+ SIV-specific CD8+ T cells, tissue type (LN or spleen) was not a 

significant predictor of GC tetramer+ SIV-specific CD8+ T cells (p = 0.96). (E) Relationship 

between frequencies of non-GC follicular and extrafollicular tetramer+ SIV-specific CD8+ T cells. 



50 
 

The frequency of extrafollicular tetramer+ SIV-specific CD8+ T cells predicted the frequency of 

non-GC follicular tetramer+ SIV-specific CD8+ T cells. For every 1 log10 increase in 

extrafollicular tetramer+ SIV-specific CD8+ T cells, there was an estimated 0.87 log10 (95% CI 

0.45, 1.28) increase in the frequency of non-GC follicular tetramer+ SIV-specific CD8+ T cells (p 

= 0.0030). After adjusting for extrafollicular tetramer+ SIV-specific CD8+ T cells, tissue type (LN 

or spleen) was not a significant predictor of non-GC follicular tetramer+ SIV-specific CD8+ T 

cells (p = 0.86). 
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Figure 2 
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FIG 2 Many follicular tetramer+ SIV-specific CD8+ T cells express PD-1. (A) Representative 

lymph node section stained with Mamu-A*001:01/Gag CM9 tetramers to label SIV-specific 

CD8+ T cells (red), PD-1 antibodies (green) to label PD-1 expressing cells and CD20 antibodies 

(blue) to define follicles. Confocal images were collected with a 20X objective and the scale bar 

is 100 µm. (B) The percentage of PD-1+ cells within the tetramer-binding population was 11.2% 

(p = 0.047, 95% CI, 0.2, 23%) higher in follicles compared with extrafollicular regions.  
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Figure 3 
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FIG 3 A subset of follicular tetramer+ SIV-specific CD8+ T cells are likely inhibited by Foxp3+ 

cells. (A) Representative lymph node section stained with Mamu-A*001:01/Gag CM9 tetramers 

(red), IgM (blue), and Foxp3 (green) showing tetramer+ cells in contact with Foxp3+ cells. (B) 

Percentages of follicular tetramer+ SIV-specific CD8+ T cells that were in direct contact with 

Foxp3+ cells were significantly lower than extrafollicular tetramer+ SIV-specific CD8+ T cells (p 

= 0.0014). (C) Representative image showing tetramer+ cells are Foxp3+. (D) There was no 

significant difference between percentages of tetramer+ SIV-specific CD8+ T cells inside and 

outside follicle that were Foxp3+ (p = 0.37). (E) Frequencies of tetramer+ SIV-specific CD8+ T 

cells inside follicles were significantly lower than outside of follicle (p = 0.017). (F) Frequencies 

of Foxp3+ cells inside follicles were significantly lower than outside of follicle (p = 0.0004) as 

well. (G) Tetramer+ SIV-specific CD8+ T cells: Foxp3+ cells ratios inside follicle tend to be 

higher than outside of follicle (p = 0.052). (H) Separate linear regression lines were fit for 

follicular and extrafollicular percentage of tetramer+ cells in contact with Foxp3+ cells as 

predictors of plasma viral load. In the follicle, for every 1% increase in percentage of tetramer+ 

cell in contact with Foxp3+ cells, there was an estimated 0.51 (-0.09, 1.1) log10 increase in SIV 

RNA log10 copies/ml (p = 0.08, R2 = 38.8%). In the extrafollicular region, for every 1% increase 

in tetramer+ cell in contact with Foxp3+ cells, there was an estimated 0.09 (-0.09, 0.26) 

log10 increase in SIV RNA log10 copies/ml (p = 0.26, R2 = 9.5%). 
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Figure 4 

 

 

FIG 4 Relationship between plasma viral load and frequencies of tetramer+ SIV-specific CD8+ T 

cells in follicular and extrafollicular areas. (A) Log10 follicular tetramer+ SIV-specific CD8+ T 

cells tended to predict plasma viral load (p = 0.060). For every 1 log10 increase in follicular 

tetramer+ SIV-specific CD8+ T cells, there was an estimated 1.25 (95% CI: -0.064, 2.57) log10 

decrease in SIV RNA log10 copies/ml; (B) Log10 extrafollicular tetramer+ SIV-specific CD8+ T 

cells significantly predicted plasma viral load (p = 0.036). For every 1 log10 increase in follicular 

tetramer+ SIV-specific CD8+ T cells, there was an estimated 1.60 (95% CI: 0.12, 3.08) log10 

decrease in SIV RNA log10 copies/ml. 
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Figure 5 
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FIG 5 Ki67 expression levels in follicular and extrafollicular tetramer+ SIV-specific CD8+ T cells. 

Representative lymph node section stained with Mamu-A*001:01/Gag CM9 tetramers (red), IgM 

(blue), and Ki67 (green) showing tetramer+ Ki67+ cells in follicle (A) and in extrafollicular region 

(B). Scale bar indicates 10 µm. (C) Percentages of tetramer+ SIV-specific CD8+ T cells that 

expressed Ki67 in GC, non-GC areas of follicles and extrafollicular areas in lymph nodes and 

spleen. Samples from spleen are indicated with red, and from lymph node black. There was no 

significant difference between compartments in lymph nodes or spleen (p = 0.13). 
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Figure 6 
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FIG 6 Perforin expression levels in follicular and extrafollicular tetramer+ SIV-specific CD8+ T 

cells. (A) Representative lymph node section stained with Mamu-A*001:01/Gag CM9 tetramers 

(red) and perforin (green) showing perforin negative, perforin low, perforin medium and perforin 

high MHC-class I tetramer+ SIV-specific CD8+ T cells. Scale bar indicates 10 µm. (B) 

Percentages of tetramer+ SIV-specific CD8+ T cells that expressed perforin in follicular and 

extrafollicular regions. The percentage of tetramer+ SIV-specific CD8+ T cells didn’t express 

perforin was ~5.4% (95% CI, 0.7, 10.2%) higher in follicles compared with extrafollicular 

regions (p = 0.026). (C) Among tetramer+ cells that express perforin, the distribution of cells 

across low, medium and high perforin expression is not significantly different between follicular 

and extrafollicular regions (p = 0.66).  
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Figure 7 
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FIG 7 Increase in follicular and extrafollicular SIV-producing cells post-CD8 depletion. (A) 

Dynamics of plasma viral loads and Mamu-A*001:01/Gag CM9 tetramer+ cells concentration in 

blood post SIV infection. Representative lymph node tissue sections stained with MHC-class I 

tetramers (red) to label SIV-specific CD8+ T cells, CD8 antibodies (blue) to label T cells and 

CD20 antibodies (green) to label B cells and define B cell follicles. (B) A lymph node section 

from animal Rh2516 stained with Mamu-A*001:01/Gag CM9 tetramers demonstrating an 

example of tetramer+ SIV-specific CD8+ T cells level and location before CD8 depletion. (C) A 

lymph node section from animal Rh2516 stained with Mamu-A*001:01/Gag CM9 tetramers 

demonstrating an example after CD8 depletion. Scale bars indicate 100 µm. (D) Tetramer+ SIV-

specific CD8+ T cells in B cell follicles were almost completely depleted after CD8 depletion in 

all four animals. (E) Tetramer+ SIV-specific CD8+ T cells in extrafollicular regions dramatically 

decreased after CD8 depletion. Representative images of in situ hybridization for SIV RNA to 

identify virus-producing cells (blue/black cells indicated by arrows) and CD20 staining (brown) 

to morphologically identify B cell follicles in lymph node before (F) and after CD8 depletion (G). 

Scale bars indicate 50 µm. (H) Frequencies of SIV RNA+ cells in B cell follicles increased after 

CD8 depletion in all four animals. (I) Frequencies of SIV RNA+ cells in extrafollicular regions 

dramatically increased after CD8 depletion. 
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Chapter 3 

 

Low levels of SIV-specific CD8 T cells in germinal centers 

during early infection may set the stage for persistent chronic 

infection 
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Synopsis  

HIV-specific CD8 T cells contribute to the control of HIV infection. These cells are typically 

excluded from B cell follicles during chronic infection. It is not known whether this phenomenon 

also occurs during early infection. Here, we determined the distribution and phenotype of simian 

immunodeficiency virus (SIV)-specific CD8 T cells in lymph nodes from SIV-infected rhesus 

macaques during early infection. We found that levels of SIV-specific CD8 T cells in B cell 

follicles were also significantly lower than in extrafollicular regions. Furthermore, follicular SIV-

specific CD8 T cells were largely excluded from germinal centers (GCs). Despite high level of 

PD-1 expression and potential inhibition from Foxp3+ cells, subsets of follicular SIV-specific 

CD8 T cells express the proliferation molecule Ki67 and high levels of cytolytic molecule 

perforin. We found a small population of follicular SIV-specific CD8 T cells are PARP+ in early 

chronic infection, suggesting that cell death is not a critical factor for low levels of follicular SIV-

specific CD8 T cells. Taken together, these data suggest that despite high levels of exhaustion and 

likely inhibition by Foxp3+ cells, a subset of follicular SIV-specific CD8 T cells likely possess 

cytolytic function and suppress viral replication. Furthermore, these data suggest that the low 

levels of follicular SIV-specific CD8 T cells in GCs may be a major factor for the establishment 

of persistent chronic infection. These findings here provide important insights into SIV 

immunopathogenesis and may help inform future cure strategies. 
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Introduction 

 Most human immunodeficiency virus (HIV)-infected individuals fail to adequately 

control persistent high-level viral replication that results in gradual loss of CD4 T cells and AIDS 

ultimately in the absence of combination antiretroviral therapy (cART). B cell follicles in 

secondary lymphoid tissues have been identified as important sanctuaries that contain large 

amounts of virus-producing cells during chronic HIV and simian immunodeficiency virus (SIV) 

infection (73-77). CD4+ T follicular helper (TFH) cells, a specialized CD4 T cell population that 

mainly resides in B cell follicles and provides pivotal help to B cell activation and maturation, 

serve as a major site of productive HIV and SIV infection in B cell follicles (2, 74-76, 137, 232, 

233). In SIV-infected rhesus macaques with full control of viral replication, either via natural 

highly effective immune response or receiving long-term, fully suppressive cART, residual 

productive SIV infection is strikingly restricted to TFH cells (78). In HIV infected aviremic 

individuals treated with long-term ART, TFH also serves as a major reservoir for active and 

persistent virus transcription (136). Therefore, understanding the immune activity needed to kill 

virus-infected TFH cells in B cell follicle is necessary for developing novel therapies to fully 

eradicate HIV or SIV infection.  

 Development of HIV-specific CD8 T cells during acute infection is associated with a 

decline in plasma viremia, suggesting that the positive effect of these cells in initial viral control 

(147, 148, 234). Moreover, CD8 depletion experiments in acute SIV and SHIV infection induces 

continuously high levels of plasma viremia which don’t reduce until reconstitution of CD8+ 

lymphocytes (169, 170). Certain individual HIV-specific CD8 T cell responses elicited in acute 

HIV infection have been shown to modulate the subsequent immune control of viremia (235). 

Similarly, multiple studies to date have determined the indispensable role of anti-viral CD8 T cell 

responses in suppressing viral replication during chronic SIV infection (168, 170). Furthermore, 

strong HIV-specific CD8 T cell activity is directly associated with long-term elite control of 
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infection (150, 151, 203). We previously showed a significant inverse relationship between SIV-

specific CD8 T cell frequency and SIV-producing cell levels in different compartments of the 

lymph node during chronic SIV infection (73). However, in spite of the notable anti-viral effect in 

both acute and chronic infection, HIV/SIV-specific CD8 T cells fail to fully eliminate viral 

replication and the vast majority of HIV/SIV-infected individuals eventually develop disease in 

the absence of cART. 

 We and others previously showed that HIV- and SIV-specific CD8 T cells are largely 

excluded from B cell follicles in lymph node and spleen tissues during chronic infection (73, 74, 

79, 80, 236). The apparent paucity of virus-specific CD8 T cells inside B cell follicles, where 

HIV- and SIV-producing cells are highly concentrated, has been identified as an important 

mechanism of immune evasion by HIV and SIV. This mechanism may, at least partially, account 

for the failure to eradicate HIV/SIV infection. However, the exclusion of anti-viral CD8 T cells 

from B cell follicles is not absolute. A couple of recent studies reported a population of functional 

CD8 T cells expressing CXCR5 in B cell follicles in chronic LCMV, HIV and SIV infections 

(174, 229, 237, 238). Moreover, modest increases in SIV-producing cells in B cell follicles were 

observed following CD8 depletion experiments during chronic SIV infection (236), suggesting 

follicular CD8 T cells mediate control of SIV replication to some extent in B cell follicles. 

Together, these studies strongly suggest that at least a fraction of follicular CD8 T cells are 

functional and able to suppress HIV/SIV replication during chronic infection. However, whether 

virus-specific CD8 T cells migrate into B cell follicles during early HIV/SIV infection remains 

unaddressed and if so, whether these cells are functional in controlling virus replication has not 

been tested. 

 In this study, we sought to determine and characterize the distribution of SIV-specific 

CD8 T cells in lymph nodes, the functional phenotype of these cells and the local relationship of 

these cells to Foxp3+ cells during early SIV infection. We observed a small population of SIV-
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specific CD8 T cells migrate into B cell follicles. Furthermore, follicular SIV-specific CD8 T 

cells were largely excluded from germinal centers (GCs). Although suffering from potential 

suppression of regulatory T cells (Tregs) and possible exhaustion, a subset of follicular SIV-

specific CD8 T cells are activated and proliferating, and exhibit effector phenotype and possibly 

contribute to control of viral replication in early SIV infection. We next compared the functional 

phenotype of follicular SIV-specific CD8 T cells in early and chronic SIV infection. We found 

that more follicular SIV-specific CD8 T cells in early infection are activated and display effector 

phenotype. These findings suggest that, similar to chronic infection, SIV-specific CD8 T cells in 

early infection are also largely excluded from B cell follicles, and these cells are likely possess 

cytolytic potential. Importantly, low levels of follicular SIV-specific CD8 T cells from GCs 

during early infection may pave the road for persistent chronic infection. 
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Materials and Methods 

Tissues from animals in early SIV infection 

 Lymph nodes were obtained from captive-bred rhesus macaques of Indian origin infected 

with SIVmac239 intravenously (IV) (Table 1). All animals were housed and cared for according 

to American Association for Accreditation of Laboratory Animal Care standards in accredited 

facilities. All animal procedures were performed according to protocols approved by the 

Institutional Animal Care and Use Committees of the Wisconsin National Primate Research 

Center. Portions of fresh lymphoid tissues were immediately snap frozen in OCT and/or formalin 

fixed and embedded in paraffin. Simultaneously, portions of fresh lymphoid tissues were also 

collected in RPMI 1640 medium with sodium heparin (18.7 U/ml) and shipped overnight to the 

University of Minnesota for in situ tetramer staining. 

 

In situ tetramer staining combined with Immunohistochemistry 

In situ tetramer staining combined with immunohistochemistry was performed on fresh 

lymph tissue specimens shipped overnight, sectioned with a compresstome (208) and stained 

essentially as previously described (73, 74, 209). Biotinylated MHC-class I monomers were 

loaded with peptides (National Institute of Health Tetramer Core Facility, Emory University, 

Atlanta GA) and converted to MHC-class I tetramers. Mamu-A1*001 molecules loaded with SIV 

Gag CM9 (CTPYDINQM) peptides (210) or irrelevant negative control peptides FV10 

(FLPSDYFPSV) from the hepatitis B virus core protein. Fresh lymph node sections were 

incubated with MHC-class I tetramers (0.5 µg/ml) alone or along with goat-anti-human PD-1 Abs 

(1 µg/mL, polyclonal, R&D Systems). For secondary incubations, sections were incubated with 

rabbit-anti-FITC Abs (0.5 µg/mL, BioDesign, Saco, ME) and mouse-anti-human Ki67 Abs 

(1:500 dilution, clone MM1, Vector), or mouse-anti-human perforin Abs (0.1 µg/mL, clone 
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5B10, Novacastra), or mouse-anti-human Foxp3 Abs (2.5 µg/mL, clone 206D, BioLegend) or 

mouse-anti-human CD20 Abs (0.19 µg/mL, clone L26, Novocastra), or mouse-anti-human PARP 

Abs (3.5 µg/mL, clone Asp214, Cell signaling). For the tertiary incubations, the sections stained 

with goat-anti-human PD-1 Abs were incubated with Cy3-conjugated donkey-anti-rabbit Abs (0.3 

µg/mL, Jackson ImmunoResearch Laboratories, West Grove, PA), Alexa 488-conjugated 

donkey-anti-goat Abs (0.75 µg/mL, Jackson ImmunoResearch Laboratories), and Cy5-conjugated 

donkey-anti-mouse Abs (0.3 µg/mL, Jackson ImmunoResearch Laboratories). All other sections 

were incubated with Cy3-conjugated goat-anti-rabbit Abs (0.3 µg/mL, Jackson ImmunoResearch 

Laboratories), Alexa 488-conjugated goat-anti-mouse Abs (0.75 µg/mL, Molecular probes), and 

Dylight 649-conjugated goat anti-human IgM (0.3 µg/mL, Jackson ImmunoResearch 

Laboratories). Sections were imaged using a Zeiss LSM 800 confocal microscope. Montage 

images of multiple 512 × 512 pixels were created and used for analysis. 

 

Quantitative image analysis 

For the determination of levels of SIV-specific CD8+ T cells and percentages of SIV-

specific CD8+ T cells that co-expressed specific molecules, follicular areas were identified 

morphologically as clusters of brightly stained closely aggregated IgM+ or CD20+ cells. 

Follicular and extrafollicular areas were delineated using ImageJ software. Areas that showed 

loosely aggregated B cells that were ambiguous as to whether the area was a follicle were not 

included. For PD-1 expression analysis, an average of 112 tetramer+ cells (range, 67-190) was 

analyzed in follicular regions and 213 (range, 117-272) in extrafollicular regions. For 

quantification of tetramer+ cells that were in contact with Foxp3+ cells and express Foxp3+, an 

average of 102 tetramer+ cells (range, 57-193) was analyzed in follicular regions and 298 (range, 

168-560) in extrafollicular regions. For Ki67 expression analysis, an average of 133 tetramer+ 

cells (range, 30-246) was analyzed in follicular regions and 307 (range, 130-464) in 
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extrafollicular regions. For perforin expression level analysis, an average of 97 tetramer+ cells 

(range, 22-193) was analyzed in follicular region and 276 (range, 98-530) in extrafollicular 

region. To determine levels of perforin expression, tetramer+ cells were scored using the 

following objective criteria as follows. Tetramer+ cells with no detectable perforin staining above 

background levels were scored as perforin negative. Tetramer+ cells with perforin staining 2-3X 

greater than background were scored as perforin low, with perforin staining 4-9X higher than 

background as perforin medium, and those with 10X or greater than background levels and with 

perforin staining detectable throughout much of the cytoplasm were scored as perforin high. Cell 

counts were done on single z-scans. While doing the cells counts, we demarcated cells using a 

software tool to avoid counting the same cell twice. All quantitative image analyse were done 

with lymph node tissues. An average of 7.42 mm2 (range, 5.63-10.08 mm2) was analyzed for 

each lymph node. 

 

In situ hybridization combined with immunohistochemistry 

In situ hybridization for SIV RNA was performed as previously described (73, 75). This 

technique identifies cells that are actively transcribing SIV, but not extracellular virions 

encapsulated in envelope glycoprotein and bound to FDC. Briefly, 6 µm frozen sections were 

fixed in 3% paraformaldehyde (Sigma-Aldrich, St. Lousis, MO), hybridized overnight with 

digoxygenin labeled SIVmac239 antisense probes (Lofstrand Labs, Gaithersburg, MD) and 

visualized using NBT/5-bromo-4-chloro-3-indolyl phosphate (Roche, Nutley, NJ). 

Immunohistochemistry staining for B cells was performed in the same tissues using mouse-anti-

human CD20 (clone 7D1; AbD Serotec, Raleigh, NC) and detected using HRP-labeled polymer 

anti-mouse IgG (ImmPressKit; Vector Laboratories, Burlingame, CA) and Vector NovaRed 

substrate (Vector Laboratories). SIV RNA+ cells were counted by visual inspection and classified 

as either inside or outside of B cell follicles which were identified morphologically as a cluster of 
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CD20+ cells as previously described (73, 75). Total tissue area and area of follicles was 

determined by quantitative image analysis (Qwin Pro version 3.4.0; Leica, Cambridge, U.K.) and 

used to calculate the frequency of SIV+ cells per mm2. An average of 12.5 mm2 (7.1 mm2 – 87.2 

mm2) was analyzed. 

 

Statistical analysis   

All statistical analysis assumed two-sided tests with a significant level of 0.05. GraphPad 

Prism version 6.0 (GraphPad Software, La Jolla, California, USA) was used to conduct statistical 

analyses.   
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Results 

SIV-specific CD8 T cells are largely excluded from B cell follicles in early infection 

 We and others previously showed that CD8 T cells in HIV-infected individuals and SIV-

specific CD8 T cells in rhesus macaques are able to immigrate into entire follicular area including 

the GCs during chronic infection (236-238). Here, to understand whether SIV-specific CD8 T 

cells are able to enter B cell follicles in early infection, we determined the distribution and 

magnitude of Gag CM9 tetramer+ CD8 T cells (Tet+) in the lymph nodes on 21 days post 

infection in a group of SIV-infected Mamu A01+ rhesus macaques.  

 In addition to Gag CM9 tetramer staining in situ in lymph node sections to label SIV-

specific CD8 T cells, antibodies against IgM were used to label B cell follicles. We found that, 

similar to chronic infection, Tet+ cells also migrate into B cell follicles in early infection (Fig. 

1A). Moreover, level of follicular Tet+ cells was significantly lower than their extrafollicular 

counterparts (Fig. 1B) (p = 0.0023). We previously showed a positive correlation between levels 

of follicular and extrafollicular Tet+ cells (73). We next investigated the relationship between 

Tet+ cells inside and outside B cell follicles in the current study. A highly significant positive 

correlation between levels of follicular and extrafollicular Tet+ cells in lymph node was also 

observed in early SIV infection (Fig. 1C) (p < 0.0001). These data demonstrated that SIV-specific 

CD8 T cells are largely excluded from B cell follicles in early SIV infection and the level of 

follicular SIV-specific CD8 T cells is positively correlated to the level of SIV-specific CD8 T 

cells in extrafollicular regions. 

 We next analyzed whether Tet+ cells accumulate within GCs inside follicular areas 

where follicular dendritic cells (FDCs) hold large amount of virus in immune complexes and are 

potently infectious to CD4+ T cells around. To address this question, we used Gag CM9 tetramer 

to stain SIV-specific CD8 T cells, antibodies against IgM to label B cell follicles and antibodies 
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against Ki67 to identify GCs. Among all GCs that were counted here, 60.3% (44/73) were 

completely devoid of Tet+ cells (Fig. 1D). Furthermore, throughout the rest of the B cell follicles 

(39.7%, (29/73)), very few Tet+ cells in GCs were found (Fig. 1E). These data indicate that 

follicular SIV-specific CD8 T cells are largely excluded from GCs in early infection. 

 

Many follicular SIV-specific CD8 T cells express PD-1 in early SIV infection 

 PD-1 is a marker of functional exhaustion of CD8 T cells (178, 179) as well as a marker 

of CD8 T cells that have recently been exposed to antigenic stimulation (178). PD-1 is markedly 

upregulated on the surface of dysfunctional virus-specific CD8 T cells during chronic HIV and 

SIV infections (217, 218), and blockade of PD-1 in vivo enhanced SIV-specific CD8 T cells 

responses (219). Moreover, recent studies found that high percentages of follicular CD8 T cells in 

chronic HIV and SIV infection express inhibitory molecule PD-1 (236, 237). However, the 

degree to which follicular SIV-specific CD8 T cells in early infection express PD-1 has not yet 

been investigated. 

To understand this, we stained lymph node tissue sections from SIV infected rhesus 

macaques with MHC-class I tetramers, antibodies directed against PD-1, and antibodies directed 

against CD20 to label B cell follicles. We found PD-1+ Tet+ cells in both follicular and 

exteafollicular areas in early SIV infection (Fig. 2A). To our surprise, quantitative analysis 

showed that more than 50% of both follicular and extrafollicular Tet+ cells express PD-1 in all 

animals except one (Rh2588). No significant difference was observed between the percentage of 

PD-1+ Tet+ cells inside and outside B cell follicles (Fig. 2B). We further compared the 

percentage of Tet+ cells that express PD-1 between early and chronic SIV infection in follicular 

and extrafollicular regions respectively. Again, no significant differences were observed (Fig. 2C 

and 2D). These data indicate that, even though around half of follicular SIV-specific CD8 T cells 
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are PD-1+, a subset of follicular SIV-specific CD8 T cells evade the inhibitory effect of PD-1 in 

early SIV infection.  

 

Foxp3+ cells likely inhibit follicular SIV-specific CD8 T cell function in early infection 

 Tregs play a crucial role in maintaining immunological self-tolerance and controlling 

autoimmune diseases (64, 65). However, they also get involved in suppressing immune activation 

in viral infection (66, 67). A large proportion of Tregs is characterized by the expression of the 

transcription factor Foxp3 (220, 221, 239). While most Tregs are CD4+, there exist a small 

population of CD8+ Tregs (222-224). Directed contact is an important mechanism mediates 

suppression of Tregs on CD8 T cells (225).  

We next investigated whether Foxp3+ cells were in contact with and potentially 

inhibiting function of follicular SIV-specific CD8 T cells in early infection. We stained lymph 

node tissue sections from rhesus macaques in early stage of SIV infection with MHC-class I 

tetramers to label SIV-specific CD8 T cells, anti-Foxp3 antibodies to label Foxp3+ Tregs, and 

anti-IgM antibodies to label B cell follicles. We found follicular Tet+ cells that directly contact 

Foxp3+ cells (Fig. 3A) and follicular Tet+ cells that are Foxp3+ (Fig. 3B). An average of 12.4% 

(range 7-20%) follicular Tet+ cells were in direct contact with Foxp3+ cells (Fig. 3C) and the 

corresponding number in extrafollicular was 18.6% (9-26%). No significant difference was 

shown between the percentage of Tet+ cells that contact Foxp3+ cells inside and outside B cell 

follicles in early SIV infection (Fig. 3C). Simultaneously, the percentages of Foxp3+ Tet+ cells 

inside and outside B cell follicles showed no significant difference either (Fig. 3D). Therefore, 

these data suggest that function of a small population of follicular as well as extrafollicular SIV-

specific CD8 T cells are likely inhibited by Foxp3+ cells in early SIV infection. 
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Similar to SIV-specific CD8 T cells, Foxp3+ cells levels were also significantly lower in 

follicular than extrafollicular regions (Fig. 3E and 3F) (p = 0.008). In addition, there was no 

significant difference between the ratios of Tet+ cells: Foxp3+ cells in follicular and 

extrafollicular regions (data not shown). These findings suggest that contact mediated suppression 

of Foxp3+ Tregs on SIV-specific CD8 T cells are similar in follicular and extrafollicular regions 

in early SIV infection. 

We then evaluated whether the effects of Foxp3+ Tregs on SIV-specific CD8 T cells in 

early and chronic infection are different. We first found significantly higher level of Foxp3+ cells 

in early infection than chronic infection in follicular area (Fig. 4A) (p = 0.0382), but not in 

extrafollicular (Fig. 4B) (p = 0.1007). Second, the percentage of follicular Tet+ cells that contact 

Foxp3+ cells in early infection was significantly higher than chronic infection (Fig. 4C) (p = 

0.0194), but the this difference was not observed in extrafollicular SIV-specific CD8 T cells (Fig. 

4D) (p = 0.4999). Third, the percentage of Tet+ cells in follicular area that express Foxp3 tended 

to be higher in early infection (Fig. 4E) (p = 0.0508) and the same percentage in extrafollicular 

area was significantly higher in early infection (Fig. 4F) (p = 0.0468) than chronic infection. Last, 

the ratios of Tet+ cells: Foxp3+ cells in both follicular and extrafollicular regions were 

dramatically lower in early infection compared to chronic infection (Fig. 4G and 4H) (p = 0.0419 

and p = 0.0197). Taken together, these data suggest that the suppressive effect of Foxp3+ Tregs 

on follicular SIV-specific CD8 T cells is stronger in acute infection compared to chronic 

infection. Similar but milder difference in effect of Foxp3+ Tregs on extrafollicular SIV-specific 

CD8 T cells in different phase of infection was observed as well. 

 

Activated proliferating follicular SIV-specific CD8 T cells are found in early infection  
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Ki67 is an activation and proliferation marker of T cells (226, 227). We next assessed the 

level of follicular SIV-specific CD8 T cells express Ki67 in lymph nodes in early SIV infection. 

Ki67+ Tet+ cells were found in follicular as well as in extrafollicular regions (Fig. 5A). 

Quantitative analysis showed that the percentage of follicular Ki67+ Tet+ cells was significantly 

lower than their extrafollicular counterparts (Fig. 5B) (p = 0.0007). An average of 39.7% (range 

7-61%) of Tet+ cells were Ki67+ in follicular area and this percentage was 54.4% (range 19-

76%) in extrafollicular areas. By comparing the level of  Ki67+ Tet+ cells among all Tet+ cells in 

early and chronic infection, we found that significantly more Tet+ cells in both follicular and 

extrafollicular regions from early SIV infection express Ki67 (Fig. 5C and 5D) (p = 0.002 and p = 

0.0004). These data demonstrate that significantly lower level of follicular SIV-specific CD8 T 

cells are activated and proliferating than their extrafollicular counterparts in early SIV infection. 

Besides, SIV-specific CD8 T cells in early infection generally proliferate more vigorously than 

SIV-specific CD8 T cells during chronic infection. 

 

A large proportion of follicular SIV-specific CD8 T cells express perforin in early infection 

Perforin is a crucial factor for cytolytic function in virus-specific CD8 T cells. We 

previously showed that approximately 35% of follicular SIV-specific CD8+ T cells express 

perforin and that most expressed another cytolytic effector molecule, granzyme B, which 

typically works in concert with perforin to lyse infected cells (73).  

We next characterized the expression of perforin in SIV-specific CD8 T cells in early 

infection. SIV-specific CD8 T cells were divided into four categories (negative, low, medium, 

and high) according to perforin expression levels (Fig. 6A). We found that a wide range of 

follicular Tet+ cells were perforin negative (mean 26.7%; rang 6-65%) (Fig. 6B). There was no 

significant difference between the percentage of perfroin- Tet+ cells in follicular and 
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extrafollicular regions (Fig. 6B). Among follicular perforin+ Tet+ cells, a large fraction expressed 

low to medium levels of perforin. At the same time, a population of perforin+ Tet+ cells express 

high levels of perforin (mean 21.5%; range 0-44%), consistent with being effector T cells. No 

significant differences were observed between the percentages of follicular and extrafollicular 

Tet+ cells that expressed each level of perforin (Fig. 6B). By comparison of perforin expression 

between Tet+ cells in early and chronic infection, we found that proportion of follicular perforin+ 

Tet+ cells in early SIV infection was significantly higher than chronic infection (Fig. 6C) (p = 

0.0206). While the percentage of extrafollicular perforin+ Tet+ cells in early SIV infection tended 

to be higher than chronic infection (Fig. 6D) (p = 0.0502). Furthermore, there were significantly 

more follicular and extrafollicular perforinhigh Tet+ cells in early SIV infection than chronic 

infection (Fig. 6E and 6F) (p = 0.0242 and p = 0.0135). Taken together, these data showed that 

similar levels of follicular and extrafollicular SIV-specific CD8 T cells express perforin in early 

infection. The subset of SIV-specific CD8 T cells in early infection express high level of perforin 

may be effector CD8 T cells can immediately kill virus-infected cells. 

 

Cell death is not a major factor accounts for the low levels of follicular SIV-specific CD8 T 

cells 

 Poly (ADP-ribose) polymerase (PARP) is involved in cells death by promoting release of 

apoptosis-inducing factor (AIF) (240). Here we assessed whether SIV-specific CD8 T cells 

express PARP in early chronic SIV infection (50-60 dpi) to test whether the cell death is 

responsible for the low frequency of follicular SIV-specific CD8 T cells. We found a small 

population of Tet+ cells were themselves PARP+ (Fig. 7A). Quantitative analysis showed no 

significant difference between the levels of PARP+ Tet+ cells inside and outside B cell follicles 

(Fig. 7B). Interestingly, we found some Tet+ cells that directly contact PARP+ cells (Fig. 7A). 

Quantitative analysis showed that the percentage of Tet+ cells that contact PARP+ cells in 
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follicular area was significantly higher than extrafollicular area (Fig. 7C) (p = 0.0043). These 

results suggest that even though a small number of follicular SIV-specific CD8 T cells are likely 

undergoing apoptosis, cell death is not a major factor accounts for the low levels of follicular 

SIV-specific CD8 T cells.  
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Discussion 

 Eradication of HIV-infected cells in vivo remains a critical obstacle to cure HIV 

infection. B cell follicles are major anatomical reservoirs that permit active HIV and SIV 

replication during chronic infection (73, 74, 78). However, virus-specific CD8 T cells fail to 

accumulate in B cell follicles in high frequency (73, 74, 236, 237). The ongoing viral replication 

in B cell follicles during chronic infection is due, at least partially, to the paucity of follicular 

anti-viral CD8 T cell responses (73-75, 78, 163). It is not known whether this phenomenon also 

occurs during early stages of infection. Here, we determined the location, abundance, and 

phenotype of SIV-specific CD8 T cells in follicular and extrafollicular regions during early SIV 

infection. We found that a small population of SIV-specific CD8 T cells accumulate in B cell 

follicles during early SIV infection, similar to what we reported in chronic disease (73). Subsets 

of these cells are activated and proliferating, and likely have cytolytic potential. Moreover, our 

data suggest that a population of follicular SIV-specific CD8 T cells may be actively killing virus 

infected cells exist in B cell follicles in early chronic SIV infection. 

 Previous studies demonstrated that high magnitude of anti-viral CD8 T cell responses in 

early HIV and SIV infection contribute to initial viral control (147, 148, 169, 170, 234). But these 

cells fail to completely suppress viral replication in early infection. Here we found that frequency 

of SIV-specific CD8 T cells located inside B cell follicles was significantly lower than outside B 

cell follicles in early SIV infection. Furthermore, follicular SIV-specific CD8 T cells are largely 

excluded from GCs. The relatively low levels of follicular SIV-specific CD8 T cells and its 

uneven distribution in follicles may, at least in part, account for the inability to fully control viral 

replication despite strong virus-specific CD8 T cells responses elicited in primary infection and 

set the stage for persistent chronic infection.  

 In addition to relatively low levels of follicular SIV-specific CD8 T cells during early 

infection, other negative regulators likely influence the functionality of these cells. We found 
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some follicular SIV-specific CD8 T cells are PD-1 positive and likely struggling with exhaustion. 

However, multiple studies showed that follicular CD8 T cells demonstrate strong cytotoxic 

capacity despite the expression of inhibitory receptors such as PD-1 (174, 237). Besides, we 

found a small subset of these cells directly contacted with Foxp3+ cells, or were themselves 

Foxp3+, suggesting a potential inhibitory effect from Tergs. We also found a small fraction of 

follicular SIV-specific CD8 T cells in early chronic infection were PARP+, suggesting they were 

undergoing apoptosis. 

 The presence of follicular virus-specific CD8 T cells with strong ability to control viral 

replication were identified during chronic LCMV, HIV and SIV infections (73, 174, 229, 236-

238). In particular, a perforin- and granzyme B-dependent mechanism was suggested as the 

dominant killing mechanism of follicular CD8 T cells in chronic HIV and SIV infection (237, 

238). In line with this data, we found a large fraction of follicular SIV-specific CD8 T cells 

during early infection exhibit cytolytic potential characterized by perforin expression. In 

particular, many of follicular SIV-specific CD8 T cells expressed high levels of perforin, 

consistent with being effector T cells that are able to kill virus-infected cells immediately after 

recognition. Perforin expression level during early SIV infection was significantly higher than 

chronic infection. Moreover, large proportions of follicular SIV-specific CD8 T cells expressed 

Ki67 in early infection which was also significantly higher than chronic SIV infection, suggesting 

they were activated and proliferating. A recent study demonstrated that frequency of CD8 T cells 

express high levels of Ki67 during acute HIV infection was inversely correlated with plasma viral 

load set point, suggesting CD8 T cells proliferation elicited in acute HIV infection is associated 

with ensuing viral control (234). During early chronic infection, we found a fraction of SIV-

specific CD8 T cells that contact PARP+ cells, suggesting these cells are actively killing virus-

infected cells. Taken together, our data suggested that follicular SIV-specific CD8 T cells have 
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vigorous cytolytic potential to eliminate SIV-infected cells in B cell follicles during early 

infection. 

  Simultaneously, we found a significantly higher fraction of extrafollicular SIV-specific 

CD8 T cells express Ki67 than their follicular counterparts during early infection. In addition to 

lack of CXCR5 expression which is necessary for homing to B cell follicles, this may be another 

factor contributes to the low level of follicular SIV-specific CD8 T cells. Moreover, we found 

similar level of extrafollicular SIV-specific CD8 T cells express perforin as their counterparts in 

B cell follicles. In consideration of higher frequency, extrafollicular SIV-specific CD8 T cells in 

early infection likely have strong potential in controlling viral replication as well. 

 Rapid and high magnitude of anti-viral CD8 T cell responses are critical for immune 

control of acute HIV infection (234). The strategy to induce augmented frequency of functional 

follicular virus-specific CD8 T cells may further enhance viral control. We found a significant 

positive correlation between follicular and extrafollicular Tet+ cells during early SIV infection, 

suggesting that induction of increased level of total SIV-specific CD8 T cells via vaccination may 

also generate more follicular SIV-specific CD8 T cells during early infection. IL-15 is a cytokine 

that facilitates CD8 T cells expansion, but has no preferential effect on the proliferation of Tregs 

(190, 230). Blockade of PD-1/PD-L1 in vitro and in vivo recovered the function of exhausted 

CD8 T cells (178, 219, 237) and synergistically strengthened the viral control mediated by 

adoptive transfer of CXCR5+CD8+ T cells in LCMV infected mice (174). Given the high level of 

PD-1 expression in follicular SIV-specific CD8 T cells during early infection, blocking PD-1/PD-

L1 interaction may further assist vaccines or therapies in reducing viral replication. Moreover, IL-

27 impedes CD4+CD25+Foxp3+ Tregs expansion and promotes activity of tumor-specific CD8 T 

cells (231). Therefore, vaccination accompanied by therapeutic administration of IL-15 and IL-27 

might result in relatively lower suppressive effect of Tregs and enhanced anti-viral CD8 T cell 

responses. A recent study demonstrated that the presence of a bi-specific antibody promotes the 
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cytolytic activity of follicular CD8 T cells to kill HIV infected cells (237). This justifies the 

potential of a bi-specific antibody in facilitating the elimination of HIV-infected cells. Another 

study showed that a significant fraction of newly differentiated effector CD8 T cells undergo 

apoptosis in spite of ongoing viral replication in acute HIV infection (234). Therefore, induction 

of more follicular CD8 T cells with long-term memory phenotype is necessary to generate long-

lasting viral suppression. 

In summary, our data suggest that despite high levels of exhaustion and likely inhibition 

by Foxp3+ cells, the scarce follicular SIV-specific CD8 T cells during early infection are likely 

possess cytolytic potential and contribute to suppression of viral replication. Importantly, we 

found follicular SIV-specific CD8 T cells are largely excluded from GCs during early infection. 

This low levels of follicular SIV-specific CD8 T cells in GCs may set the stage for subsequent 

persistent chronic infection. These findings support the strategy that induction of a large 

magnitude of follicular virus-specific CD8 T cells in early HIV and SIV infection via vaccination 

can contribute to the elimination of virus infected cells, and thus have implications for future 

strategies of HIV vaccines. 
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TABLE 1 Rhesus macaques included in studies 

ID 

number 
DPI 

MHC-

genotypea  

Peptide 

Virus 

Plasma 

SIV RNA 

(log10 

Copies/ml) 

Routeb Ki67 Perf Foxp3 
PD-

1 

Rh2515 21 A01 Gag-

CM9 

SIVmac239 5.94 IVc + + + -d 

Rh2516 21 A01 Gag-

CM9 

SIVmac239 6.61 IV + + + + 

Rh2520 21 A01 Gag-

CM9 

SIVmac239 7.08 IV + + + + 

Rh2578 21 A01 Gag-

CM9 

SIVmac239 6.87 IV + + - - 

Rh2579 21 A01 Gag-

CM9 

SIVmac239 7.13 IV + + + - 

Rh2583 21 A01 Gag-

CM9 

SIVmac239 7.00 IV + + + - 

Rh2584 21 A01 Gag-

CM9 

SIVmac239 6.78 IV + + + + 

Rh2587 21 A01 Gag-

CM9 

SIVmac239 6.75 IV + + - + 

Rh2588 21 A01 Gag-

CM9 

SIVmac239 6.43 IV - - - + 

 

a Full MHC allele name is A01 is Mamu-A1*001:01. 

b Route of SIV infection.  

c Rhesus macaques were infected with SIVmac 239 intravenously. 

d There were not enough follicles in stained tissue sections for quantitative image analysis. 

DPI: Days Post-Infection. 
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Figure 1 
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FIG 1 SIV-specific CD8 T cells are largely excluded from B cell follicles in early SIV infection. 

(A) Representative lymph node section shows the distribution of SIV-specific CD8 T cells in 

different compartments of lymph node. This section was stained with Mamu-A1*001/Gag CM9 

tetramers to label SIV-specific CD8 T cells (red, and indicted with arrows in the image on the 

right which shows tetramer staining alone), IgM antibodies (blue) to define follicles (F). Confocal 

images were collected with a 20X objective and each scale bar indicates 100 µm. (B) Frequencies 

of tetramer+ SIV-specific CD8 T cells in different compartments of lymph nodes during early 

SIV infection. Frequencies of tetramer+ SIV-specific CD8 T cells in B cell follicle were 

significantly lower (p = 0.0023) than those in extrafollicular region. (C) Relationship between 

frequencies of follicular and extrafollicular tetramer+ SIV-specific CD8 T cells. The frequency of 

follicular tetramer+ SIV-specific CD8 T cells is significantly correlated with those located in 

extrafollciular area (p < 0.0001). Representative images demonstrate the distribution of SIV-

specific CD8 T cells within B cell follicle during early SIV infection (D and E). Sections were 

stained with Mamu-A1*001/Gag CM9 tetramers to label SIV-specific CD8 T cells (red, and 

indicted with arrows in the image on the right which shows tetramer staining alone), IgM 

antibodies (blue) to define follicles (F), and Ki67 antibodies (green) to label GC. Confocal images 

were collected with a 20X objective and each scale bar indicates 100 µm. We observed that 

60.3% (44/73) of GCs were totally devoid of tetramer+ SIV-specific CD8 T cells (D). Very few 

of tetramer+ SIV-specific CD8 T cells were found in the rest of GCs (E). 
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Figure 2 

 

 

FIG 2 Many follicular tetramer+ SIV-specific CD8 T cells express PD-1 during early SIV 

infection. (A) Representative lymph node section shows tetramer+ SIV-specific CD8 T cells 

express PD-1 inside and outside B cell follicle. This section was stained with Mamu-

A*001:01/Gag CM9 tetramers to label SIV-specific CD8+ T cells (red), PD-1 antibodies (green) 

to label PD-1 expressing cells and CD20 antibodies (blue) to define follicles. Confocal images 

were collected with a 20X objective and the scale bar is 100 µm in the image on the left and 10 

µm in the enlargement. (B) There is no significant difference between the percentages of PD-1+ 

cells within the tetramer-binding population locate in follicular and extrafollicular regions. There 

is no significant difference between percentages of tetramer+ SIV-specific CD8 T cells that are 

PD-1+ during early and chronic SIV infection in both follicular (p = 0.8450) (C) and 

extrafollicular area (p = 0.8238) (D). 
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Figure 3 
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FIG 3 A subset of follicular tetramer+ SIV-specific CD8 T cells are likely inhibited by Foxp3+ 

cells during early SIV infection. (A) Representative lymph node section stained with Mamu-

A*001:01/Gag CM9 tetramers (red), IgM (blue), and Foxp3 (green) showing tetramer+ cells in 

contact with Foxp3+ cells. Confocal images were collected with a 20X objective and the scale bar 

is 100 µm and 10 µm in low- and high-magnification images respectively. (B) Representative 

image showing tetramer+ cell is Foxp3+. (C) Percentages of follicular tetramer+ SIV-specific 

CD8 T cells that were in direct contact with Foxp3+ cells tend to be lower than extrafollicular 

tetramer+ SIV-specific CD8 T cells (p = 0.0956). (D) There was no significant difference 

between percentages of tetramer+ SIV-specific CD8+ T cells inside and outside follicle that were 

Foxp3+ (p = 0.5676). (E) Representative image showing distribution of Foxp3+ cells in lymph 

node. Scale bar is 100 µm. (F) Frequencies of Foxp3+ cells inside follicles were significantly 

lower than outside of follicle (p = 0.0080) 
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Figure 4 
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FIG 4 Foxp3+ Tregs may have a stronger suppressive effect on follicular SIV-specific CD8 T 

cells during early SIV infection. There was significantly higher frequency of Foxp3+ cells during 

early SIV infection than chronic SIV infection in follicular area (p = 0.0382) (A), but not in 

extrafollicular area (p = 0.1007) (B). Significantly higher percentage of tetramer+ SIV-specific 

CD8 T cells during early SIV infection contact Foxp3+ cells than those during chronic SIV 

infection in follicular area (p = 0.0194) (C), but not in extrafollicualr area (p = 0.4999) (D). (E) 

Percentage of follicular tetramer+ SIV-specific CD8 T cells contact Foxp3+ cells during early 

SIV infection tend to be higher than chronic infection (p = 0.0508). (F) At the same time, the 

percentage of extrafollicular tetramer+ SIV-specific CD8 T cells contact Foxp3+ cells during 

early SIV infection is significnatly higher than chronic infection (p = 0.0486). Ratios of tetramer+ 

SIV-specific CD8 T cells to Foxp3+ cells during early SIV infection were significantly lower 

than chronic SIV infection in both follicular (p = 0.0419) (G) and extrafollicular area (p = 

0.0197) (H). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



90 
 

Figure 5 

 

 

FIG 5 Ki67 expression levels in follicular and extrafollicular tetramer+ SIV-specific CD8 T cells 

during early SIV infection. Representative lymph node section stained with Mamu-

A*001:01/Gag CM9 tetramers (red), IgM (blue), and Ki67 (green) showing tetramer+ Ki67+ 

cells in follicular and extrafollicular region (A). Scale bars indicate 100 µm and 10 µm in low- 

and high-magnification images respectively. (B) Percentages of tetramer+ SIV-specific CD8 T 

cells that expressed Ki67 in follicular areas is significantly lower than extrafollicular areas in 

lymph nodes during early SIV infection (p = 0.0007). Percentages of tetramer+ SIV-specific CD8 

T cells that are Ki67+ during early SIV infection were significantly higher than chronic SIV 

infection in both follicular (p = 0.0020) (C) and extrafollicular area (p = 0.0004) (D). 
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Figure 6 
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FIG 6 There are significantly more tetramer+ SIV-specific CD8 T cells express perforin during 

early SIV infection than during chronic SIV infection in follicular area. (A) Representative lymph 

node section stained with Mamu-A*001:01/Gag CM9 tetramers (red) and perforin (green) 

showing perforin negative, perforin low, perforin medium and perforin high MHC-class I 

tetramer+ SIV-specific CD8 T cells. Scale bar indicates 10 µm. (B) Percentages of tetramer+ 

SIV-specific CD8 T cells that expressed perforin in follicular and extrafollicular regions. Among 

tetramer+ SIV-specific CD8 T cells, the distribution of cells across perfroin negative, low, 

medium and high is not significantly different between follicular and extrafollicular regions. 

Significantly higher percentage of tetramer+ SIV-specific CD8 T cells during early SIV infection 

express perforin than those during chronic SIV infection in follicular area (p = 0.0206) (C), but 

not in extrafollicualr area (p = 0.0502) (D). Simultaneously, significantly higher percentages of 

tetramer+ SIV-specific CD8 T cells during early SIV infection express high level of perforin than 

those during chronic SIV infection in both follicular (p = 0.0242) (E), and extrafollicular regions 

(p = 0.0135) (F). 
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Figure 7 

 

 

FIG 7 Cell death is not a major factor accounts for the low levels of follicular SIV-specific CD8 

T cells. (A) Representative lymph node section stained with Mamu-A*001:01/Gag CM9 

tetramers (red), IgM (blue), and PARP (green) showing tetramer+ PARP+ cells and tetramer+ 

cells in contact with PARP+ cells. Confocal images were collected with a 20X objective and the 

scale bar is 100 µm and 10 µm in low- and high-magnification images respectively. (B) The 

percentage of tetramer+ SIV-specific CD8 T cells that are PARP+ is not significantly different 

between follicular and extrafollicular regions (p = 0.1991). (C) However, percentages of 

follicular tetramer+ SIV-specific CD8 T cells that were in direct contact with PARP+ cells was 

significantly higher than extrafollicular tetramer+ SIV-specific CD8 T cells (p = 0.0043). 
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Chapter 4 

 

The human IL-15 superagonist ALT-803 directs SIV-specific 

CD8 T cells into B cell follicles 
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Synopsis  

During chronic asymptotic HIV and SIV infection, virus-producing cells are highly concentrated 

in B cell follicles in secondary lymphoid tissues. However, virus-specific CD8 T cells are largely 

excluded from this area. Therefore, limited access of virus-specific CD8 T cells to follicular 

virus-producing cells is an important obstacle to eradicate HIV. Here, by using SIV-infected 

rhesus macaques, we show that ALT-803, a novel human IL-15 superagonist and potent 

immunostimulatory molecule, drives dramatic expansion of SIV-specific CD8 T cells in blood 

and lymphoid tissues. Importantly, ALT-803 drives significant accumulation of SIV-specific CD8 

T cells in B cell follicles, reducing the number of SIV-producing cells within B cell follicles. 

These data justify the further evaluation of ALT-803 for eradication of HIV-infected cells. 
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Introduction 

While many studies demonstrated that virus-specific CD8+ T cells are crucial for viral 

control in HIV and SIV infection (73, 147, 148, 150, 151, 168-170, 203), these cells fail to fully 

control persistent viral replication. B cell follicles have been identified as major sites of 

productive HIV and SIV infection during asymptomatic chronic infection (73, 74, 78, 136). 

CD4+ follicular helper T cells (TFH) within B cell follicles are significant reservoirs responsible 

for the persistent HIV/SIV infection (78, 136). However, virus-specific CD8 T cell typically fail 

to accumulate in large numbers in B cell follicles (73, 74, 79, 80, 236). The paucity of functional 

follicular virus-specific CD8 T cells is an important cause for the failure in controlling persistent 

HIV/SIV infection. Therefore, induction of high levels of follicular virus-specific CD8 T cells is a 

promising immunotherapeutic approach to reduce or eliminate virus-infected TFH hide in B cell 

follicles. 

 Interleukin-15 (IL-15), a common γ-chain cytokine, is critical for mediating T cell and 

NK cell activation and proliferation. It has been previously explored as a candidate to decrease 

HIV reservoir size in patients on combined antiretroviral therapy (cART). Previous studies 

showed that IL-15 triggers NK cell expansion and preferentially stimulates proliferation of CD4+ 

and CD8+ effector memory T cells in non-human primate models for HIV infection (192, 193, 

241). Besides, IL-15 has been demonstrated to effectively reactivate HIV replication in latently 

infected cells (242). Therefore, IL-15 is a good candidate for immunotherapy against HIV 

infection. 

However, the short half-life and limited bioavailability of the soluble IL-15 molecule 

restrict its clinical application. Moreover, in contrast to other γ-chain cytokines such as IL-2 and 

IL-7 that circulate as soluble protein until they bind to their receptor directly on target immune 

cells, IL-15 needs to bind the IL-15 receptor alpha chain (IL-15Rα) first to be ready for 

subsequent presentation to target cells (194, 195). These limitations impede the use of free IL-15 



97 
 

in clinical immunotherapy. Development of the IL-15 superagonist, ALT-803, circumvents these 

limitations, allowing for a more comprehensive evaluation of IL-15 administration during HIV 

infection. 

ALT-803 consists of a human IgG1 Fc fused onto two IL-15Rα units, each of which 

bounds to a novel IL-15 monomer mutant, IL-15N72D, which possesses 5-fold higher activity than 

wild type IL-15 (198). Through these modifications, ALT-803 exhibits 25-fold higher biological 

activity and a 35-fold longer half-life in serum compared to free IL-15 (199) . Therefore, it results 

in potent stimulation of NK and memory T cells (199). ALT-803 is well tolerated in both mice 

and cynomolgus macaques at a dose of 100 µg/kg and no systemic cytokine storm was induced 

after ALT-803 administration (198). In consideration of the safety and promising results in cancer 

immunotherapy research, ALT-803 is being explored as a method to enhance anti-viral immune 

response during chronic HIV infection. For example, ALT-803 has been demonstrated to drive 

NK cells activation and suppress HIV replication during acute infection in a humanized mouse 

model of HIV infection (200). Moreover, ALT-803 was shown to markedly reverse HIV latency 

and strengthen the ability of CD8 T cells to kill HIV-producing cells in an in vitro cell culture 

model (201).   

 Here, we explored the in vivo effect of ALT-803 in the setting of established chronic viral 

infections using SIV-infected rhesus macaques. We showed that ALT-803 drove dramatic 

expansion of SIV-specific CD8 T cells within peripheral blood and lymph nodes. Moreover, in 

the presence of ALT-803, CD8+ T cells displayed a 50-fold increase in CXCR5 mRNA and a 

corresponding increase in surface expression of CXCR5. Importantly, we observed significant 

accumulation of SIV-specific CD8 T cells inside B cell follicle and more even distribution of 

these cells in the follicular and extrafollicular regions. These findings suggest that ALT-803 is a 

good candidate to promote progress in HIV eradication. 
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Materials and Methods 

Reagents, animals, and veterinary procedures. 

All rhesus macaques (Macaca mulatta) and Mauritian cynomolgus macaques (Macaca 

fascicularis) used in this study were housed at the Oregon National Primate Research Center 

(ONPRC) and utilized for studies under the approval of the Oregon Health and Science 

University (OHSU) Institutional Animal Care and Use Committee (IACUC). All macaques in this 

study were managed according to the ONPRC animal care program, which is fully accredited by 

AAALAC International and is based on the laws, regulations, and guidelines set forth by the 

United States Department of Agriculture (e.g., the Animal Welfare Act and its regulations, and 

the Animal Care Policy Manual), Institute for Laboratory Animal Research (e.g., Guide for the 

Care and Use of Laboratory Animals, 8th edition), and the Public Health Service Policy on 

Humane Care and Use of Laboratory Animals. The IL-15 superagonist ALT-803 was generated 

by Altor Biosciences as previously described6. All ALT-803 injections were given as intravenous 

bolus doses of either 6 μg/kg or 100 μg/kg. For BrdU injections, BrdU was suspended at 10 

mg/ml in HBSS (HyClone Laboratories, Logan, UT, USA), and then injected intravenously in the 

saphenous vein at a rate of 2–3 ml/min for a total dose of 60 mg/kg of BrdU.  

 

Blood and tissue processing.  

Whole blood was collected into EDTA-treated tubes (BD Biosciences, San Jose, Ca, 

USA). Blood was assessed for complete blood counts using an ABX Pentra 60 C+ (Horiba, 

Irvine, CA, USA). Lymph node and spleen were diced with scalpels and then forced through a 

70-μm cell strainer. The strainer was rinsed repeatedly with R10 to obtain a single-cell 

suspension. Immune cell phenotyping was conducted on whole blood samples that were washed 

twice in 1X PBS and then surface-stained for 30 minutes at room temperature. Samples were then 
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incubated in 1 ml FACSLyse for 10 minutes, spun at 830 g for 4 minutes, and washed three times 

in 1X PBS, supplemented with 10% FCS (FACS buffer). For Ki67 assessment, fixed cells were 

washed twice in 1 mg/ml saponin (saponin buffer) and stained overnight at 4°C. For BrdU 

assessment, fixed cells were washed twice in 1:1 mixture of saponin buffer and 2X BD 

FACSPerm, then washed once in saponin buffer, and stained for 1 hour at room temperature in 

the presence of 0.5 mg/ml DNase I. Following staining, samples were washed twice in saponin 

buffer and then run on an LSR II (Becton Dickinson, Franklin Lakes, NJ, USA). Flow cytometric 

data were analyzed using FlowJo, version 10 (TreeStar Ashland, OR, USA).  

 

Quantitative real-time reverse transcriptase PCR. 

PBMC were sorted for CD8β+ T cells via magnetic sorting using a PE-conjugated anti-

CD8β antibody (clone 2ST8.5H7, Beckman Coulter) and anti-PE MicroBeads (Miltenyi Biotec). 

Purified cells were resuspended in R10 and incubated with or without 10nM ALT803. Cells were 

subsequently collected at days 1, 3, and 5 and RNA was extracted using AllPrep DNA/RNA mini 

kit (Qiagen). Relative quantitative real-time reverse transcriptase PCR was performed using 

AgPath-ID One-Step RT-PCR reagents (ThermoFisher Scientific). Primer pairs for detection of 

rhesus CXCR5 and internal beta-actin control are as follows: CXCR5 (forward, 5’-

TTCACCTCCCGATTCCTCTA-3’; reverse, 5’-CAACCTGTGCACTACCCC-3’), beta-actin 

(forward, 5’-ATGCTTCTAGGCGGACTGTG-3’; reverse, 5’-AAAGCCATGCCAATCTCATC-

3’). The TaqMan probe sequence for CXCR5 was 5’-GGATTCCTGCTGCCCATGCT-3’ and for 

beta-actin, the probe sequence was 5’-TGCGTTACACCCTTTCTTGACAAAACC-3’. Both 

probes were labeled at the 5’ end with a 5’ 6-carboxyfluorescein (6-FAM) and a 3’ black hole 

quencher-1 (BHQ-1). The Applied Biosystems StepOnePlus Real-Time PCR System 

(ThermoFisher Scientific) was used for real-time PCR analysis. Thermal cycling conditions were 

designed as follows: initial denaturation at 95°C for 10 minutes, followed by 40 cycles of 95°C 
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for 15 s and 60°C for 45s. RNA levels in all samples are relative to housekeeping gene, beta-

actin. 

 

In situ tetramer staining combing with immunohistochemistry. 

In situ tetramer staining combined with immunohistochemistry was performed on fresh 

lymph tissue specimens shipped overnight, sectioned with a compresstome and stained essentially 

as previously described2. Biotinylated peptide-loaded MHC-class I monomers for Mamu-

A1*001:01 Gag181-189CM9, Mamu-A1*002:01 Nef159-167YY9, and Mamu-B*08:01 Nef137-146RL10 

(National Institute of Health Tetramer Core Facility, Emory University, Atlanta GA) were 

converted to FITC-labeled MHC-class I tetramers. Fresh lymph node sections were incubated 

with MHC-class I tetramers (0.5 µg/ml) and rat-anti-human CD8 antibody (2 µg/mL, 

clone YTC182.20, Acris). For secondary incubations, sections were incubated with 1) rabbit-anti-

FITC Abs (0.5 µg/mL, BioDesign, Saco, ME) and mouse-anti-human CD20 Abs (0.19 µg/mL, 

clone L26, Novocastra), or 2) mouse-anti-human CD20 Abs (0.19 µg/mL, clone L26, 

Novocastra) and rat-anti-human CD3 Abs (2 µg/mL, clone CD3-12, BioRad). For the tertiary 

incubations, all sections were incubated with Cy3-conjugated goat-anti-rabbit Abs (0.3 µg/mL, 

Jackson ImmunoResearch Laboratories), Alexa 488-conjugated goat-anti-mouse Abs (0.75 

µg/mL, Molecular probes), and Cy5-conjugated goat anti-rat Abs (0.3 µg/mL, Jackson 

ImmunoResearch Laboratories). Sections were imaged using a Zeiss LSM 800 confocal 

microscope. Montage images of multiple 512 × 512 pixels were created and used for analysis. 

Confocal z-series were collected in a step size of 1.23 µm. 

 

Detection and quantification of SIVmac239 RNA producing cells in lymphoid tissue. 
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SIVmac239 RNA producing cells were detected on 5 µm thick formalin fixed paraffin 

embedded sections of lymph node (LN) using RNAscope® technology (Advanced Cell 

Diagnostics, ACD, Newark, CA).  Briefly, fresh cut sections were dewaxed in Xylene, subjected 

to epitope unmasking by heating in citrate buffer (ACD, treatment 2), protease treated (ACD) and 

incubated with probe to SIVmac239 for 2 hours at 40˚C.  RNAscope® 2.5 detection kit with 

FastRed was used to amplify and detect the probe.  Sections were counterstained by blocking 

with 1% normal donkey serum (Jackson Labs, Bar Harbor, ME) and 0.5% Casein (Vector 

laboratories, Burlingame, CA) in Tris Buffered Saline (TBS), staining with Rabbit anti CD20 

(abcam, Cambridge, MA) to identify follicles, followed by secondary staining with AF647 

labeled donkey anti Rabbit IgG (Invitrogen).  Sections were counterstained with DAPI, mounted 

in Slowfade™ Diamond antifade (Invitrogen) and scanned at 40X on an Aperio Versa 8 (Leica 

Biosystems).  Aperio Image Scope (vs12.3.2.5030, Leica Biosystems) was used to quantify virus 

producing cells and measure total and follicular areas. Four sections at least 30 μm apart were 

evaluated for each LN. 

 

Statistical analysis.  

The repeated-measures ANOVA test was used for all longitudinal studies. Statistical 

analyses were conducted using GraphPad Prism version 6.0 (GraphPad Software, La Jolla, 

California, USA). Statistical significance of the findings was set at a p-value of less than 0.05. 
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Results 

ALT-803 induces expansion of T cells and NK cells  

 Due to its effects on T cell and NK cell proliferation within the blood, administration of 

IL-15 has been previously explored as a potential candidate for immune restoration during 

chronic SIV infection in macaques (192, 193). Since ALT-803 has a longer serum half-life, 

greater tissue distribution, and is more biologically active than wild-type IL-15, we hypothesized 

that ALT-803 would also positively impact anti-SIV immune response, particularly in elite 

controller macaques with low plasma viremia. To explore this hypothesis, three SIV-infected 

controller rhesus macaques were administered 100 µg/kg of ALT-803 intravenously. 

 Similar to IL-15, ALT-803 induced expansion of both CD4 and CD8 T cells in peripheral 

blood (Fig. 1A). The change in T cell populations were associated with a significant increase in 

expression of the cell proliferation marker Ki67 after ALT-803 injection (Fig. 1B). 

Simultaneously, CD16+ NK cells exhibited a marked expansion on 5 days post ALT-803 

treatment (Fig. 1A). Consistent with increased NK cell populations, we observed significantly 

increased expression of Ki67 in CD16+ NK cells on day 5 post treatment too (Fig. 1C). These 

data indicate that ALT-803 stimulates dramatic proliferation of CD4, CD8 T cells and NK cells in 

vivo. 

 

ALT-803 drives significant increase of SIV-specific CD8 T cells within lymph nodes 

 After evaluating the effect of ALT-803 on total CD8 T cells, we next assess its effect on 

SIV-specific CD8 T cells. Six SIV-infected rhesus macaques (3 progressors and 3 controllers) 

received 100 µg/kg ALT-803. Lymph nodes were sampled before ALT-803 treatment and 5 days 

post-treatment. Percentage of SIV-specific CD8 T cells was measured by MHC class I tetramer 
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staining in lymph nodes and PBMC. There was a trend toward increased numbers of SIV-specific 

CD8+ T cell in peripheral blood, but it did not reach statistical significance. In contrast, there was 

a marked and statistically significant increase of SIV-specific CD8 T cells within lymph nodes 

post ALT-803 (Fig. 2).  

 

CXCR5 expression in CD8 T cells increases after ALT-803 treatment in vitro 

 Chemokine receptor, CXCR5, is typically upregulated in activated T cells and promotes 

T cell migration into B cell follicles within secondary lymphoid tissues (174, 207, 229). We next 

measured whether ALT-803 treatment affect expression of CXCR5 on CD8+ T cells by treating 

PBMC with 15 nM ALT-803 for 5 days in vitro. Quantitative real-time reverse transcriptase PCR 

detected that CD8+ T cells exposed to ALT-803 exhibited a 50-fold increase in CXCR5 mRNA 

(Fig. 3A). Accordingly, flow cytometry showed that ALT-803 treated CD8+ T cells displayed a 

significantly increased surface expression of CXCR5 (Fig. 3C). 

 

ALT-803 stimulates significant accumulation of SIV-specific CD8 T cells within B cell 

follicles 

 A major hurdle to eliminate HIV infection is that limited ability of virus-specific CD8+ T 

to enter B cell follicles to kill HIV-infected intrafollicular CD4+ T cells within lymph nodes of 

HIV-infected patients (73, 74, 78). This exclusion of virus-specific CD8+ T cells from B cell 

follicles allows for the persistence of HIV infection. The significant increase of SIV-specific CD8 

T cell in lymph nodes and elevated expression of B cell follicle homing molecule CXCR5 in CD8 

T cells led us to test whether virus-specific CD8 T cells were gaining access to the B cell 

follicles.  
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 In order to address this, we attained lymph node samples from six SIV-infected rhesus 

macaques (progressor n=3 and controller n=3) before and five days after 100 µg/kg ALT-803 

treatment and subsequently performed in situ staining of lymph node sections with MHC class I 

tetramers to stain for SIV-specific CD8 T cells. We also counterstained with antibodies against 

CD8 to specify CD8+ T cells as well as CD20, allowing us to identify B cells and thus define B 

cell follicles. As previously described (73, 74), SIV-specific CD8 T cells localized predominantly 

in the extrafollicular space in lymph nodes of SIV-infected rhesus macaques before treatment 

(Fig. 4A). However, following ALT-803 treatment, the total number of SIV-specific CD8 T cells 

within the lymph node increased dramatically, with significant accumulation within B cell 

follicles (Fig. 4B and C). This infiltration of SIV-specific CD8 T cells into B cell follicles 

normalized the distribution of anti-viral CD8+ T cells between the follicular and extrafollicular 

space (Fig. 4D). In accordance with the presence of increased anti-viral effector CD8+ T cells in 

follicles, lower numbers of SIV-producing cells were found within the B cell follicles of the 

controller rhesus macaques following ALT-803 treatment (Fig. 5). 

 

Moderate increase of NK cells in B cell follicles is observed after ALT-803 treatment 

 In contrast to significantly increased percent of CD8+ T cells in lymph nodes, we 

observed similar percent of NK cells in lymph node before and after ALT-803 treatment (Fig. 

1D). Given the dramatic accumulation of SIV-specific CD8 T cell in B cell follicle after 

treatment, we tested if ALT-803 affected the distribution of NK cells in lymph nodes.  

 To answer this question, we performed immunohistochemistry on lymph node sections 

from three SIV-infected rhesus macaques before and five days after 100 µg/kg ALT-803 

treatment. We used anti-NKG2A antibody to stain NK cells. Simultaneously, we counted-stained 

sections with antibodies directly against CD20 to label B cell follicles, and antibodies against 
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CD3 to label T cells. We found that NK cells located both inside and outside B cell follicles 

before and after treatment (Fig. 6A and B). Quantitative analysis showed no significant increase 

in total and extrafollicular NK cells. However, we observed a modest increase of NK cells in B 

cell follicle after ALT-803 treatment (Fig. 6C). Similar to SIV-specific CD8 T cells, there was 

lower level of NK cells located in B cell follicles compared to extrafollicular regions (Fig. 6D). 

These results suggest that ALT-803 can induce elevated level of NK cells within B cell follicle in 

SIV-infected rhesus macaques.  
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Discussion 

 IL-15 is considered a powerful candidate for immunotherapy in the context of cancer and 

HIV infection because of its ability to promote T cell and NK cell proliferation. Moreover, 

therapeutic administration of IL-15 induces restoration of the primary target of HIV, the CD4+ 

effector memory T cell population, in the context of ART (193). Additionally, IL-15 causes HIV 

reactivation in latently infected cells in vitro (201). Although IL-15 treatment is a viable strategy 

as an immunotherapy, the special trans-presentation mechanism, restricted bioavailability and 

short half-life in serum of IL-15 limit its application in clinic.  

 ALT-803, a novel IL-15 superagonist, exhibits potent immunostimulatory effect on CD8 

T cells and NK cells, and prolonged half-life in serum than IL-15. Moreover, it demonstrated 

superior antitumor activity and has been proved as an ideal substitute for IL-15 in cancer 

immunotherapy (198, 199, 243, 244). Recent studies also showed that ALT-803 can not only 

activate NK cells that can suppress in vivo acute HIV infection in humanized mice (200), but also 

can reverse viral latency (201). In this study, we found that a single administration of ALT-803 

substantially increased proliferation of CD4 and CD8 T cells, and CD16+ NK cells in SIV-

infected rhesus macaques. Many studies demonstrated that CD8 T cells have a critical role in 

controlling both HIV and SIV infection (73, 147, 148, 150, 151, 168-170, 203). Expanded 

populations of CD8 T cells in peripheral blood and lymphoid tissues induced by ALT-803 may 

further strengthen the viral control. A previous study showed that IL-15 may promote restoration 

of CD4 T cell compartments in the setting of ART (193). ALT-803 may also contribute to the 

restoration of CD4 T cells through triggering significant proliferation of this cell population. 

However, consistent with previous observations (198), we showed that the stimulation of ALT-

803 on lymphocytes proliferation was transient, which is inadequate for long-term viral control. 

ALT-803 is capable of improving NK cell activity in vitro through inducing increased expression 

of cytolytic molecules perforin and granzyme B, as well as increased CD107a, a marker of 
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degranulation (200). Thus the impaired NK cell responses induced by HIV infection may be 

ameliorated by ALT-803 treatment which is able to enhance the proliferation and cytotoxicity of 

NK cells (245). 

 It is well known that HIV- and SIV-CD8 T cells are largely excluded from B cell follicles 

(73, 74, 79, 80). Moreover, it has been demonstrated that these B cell follicles become major sites 

for viral replication and can avoid the threat of antiviral CD8 T cells during asymptomatic HIV 

and SIV infection (73, 78, 136, 238). In the apparent lack of virus-specific CD8 T cell 

surveillance, B cell follicles are established as long-lasting anatomical viral reservoirs of the HIV 

and SIV infection. Here we demonstrated that, in SIV-infected rhesus macaques, ALT-803 

triggers significant upregulation of CXCR5 which is the key homing molecule for CD8 T cells to 

lymphoid follicles. Importantly, more SIV-specific CD8 T cells accumulate in B cell follicles in 

vivo. Given our observations, ALT-803 promotes the trafficking of virus-specific CD8 T cells 

into B cells follicles in lymph nodes, thus providing a powerful tool to more effectively bring 

potent antiviral CD8+ T cells to the site of the latent viral reservoir. Furthermore, we also found a 

significantly lower level of NK cells in B cell follicles. Importantly, ALT-803 drove moderate 

increase of NK cells in B cell follicles too. These findings suggest that, in addition to enhancing 

NK cells activity, ALT-803 also induces increased frequency of NK cells in the major sites of 

viral replication during SIV infection.  

 In conclusion, by using SIV-infected rhesus macaques, we demonstrated that ALT-803 is 

a good candidate as immunotherapeutic agent for HIV eradication strategies.  First, given its 

potent immunostimulatory effect on memory T cells and cytotoxic NK cells, ALT-803 may 

improve immune cell effector functions to contribute to reduction and clearance of the viral 

reservoir. Secondly, we found that ALT-803 stimulates accumulation of SIV-specific CD8 T cells 

and NK cells in follicular sanctuaries of virus-producing cells. Taken together, these data 
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highlight the great potential of the application of ALT-803 in seeking strategies to eradicate HIV 

infection. 
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Figure 1 
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FIG 1 In vivo administration of ALT-803 induces expansion of CD4, CD8 and NK cells in 

peripheral blood. SIV-infected controller rhesus macaques (n=3) were administered 100 µg/kg of 

ALT-803 intravenously. (A) Dynamics of CD4, CD8 and NK cells in whole blood before and 

after ALT-804 administration. Proliferation of CD4, CD8 T cells (B) and NK cells (C) were 

determined as a percentage of Ki67+ cells of that particular lymphocyte population. Absolute 

counts were calculated based on the percentage of the particular cell subset and the WBC count. 

Data shown are means (± SEM) of combined data from all three animals. *, P<0.05; **, P<0.01; 

***, P<0.001 comparing time points to time point zero. 
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Figure 2 

 

FIG 2 ALT-803 drives significant increase of SIV-specific CD8 T cells within lymph nodes. 

Percentage of SIV-specific CD8 T cells, measured by MHC class I tetramer staining, increased 

significantly after ALT-803 administration in lymph nodes but not in PBMC. 
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Figure 3 

 

FIG 3 ALT-803 stimulates increased CXCR5 expression of CD8 T cell in vitro. (A) CD8β-sorted 

T cells from 6 rhesus macaques were cultured in vitro for 7 days with or without 15 nM ALT-803 

and CXCR5 mRNA levels were determined via quantitative RT-PCR at days 1, 3, 5 and 7 post-

treatment. (B) PBMC from 9 rhesus macaques and 3 cynomolgus macaques were cultured in vitro 

for 5 days with or without 15 nM ALT-803. CD8+ T cells were then assessed for surface 

expression of CXCR5.  
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Figure 4 
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FIG 4 ALT-803 stimulates significant accumulation of SIV-specific CD8 T cells within B cell 

follicles. Representative images of Mamu-A*001/GagCM9-specific tetramer positive cells (red), 

CD20+ cells (green) and CD8+ cells (blue) in lymph node sections taken from SIV-infected 

animal Rh31252 before (A) and 5 days after (B) ALT-803 treatment. CD20 staining is used to 

define B cell follicles (F) and extrafollicular regions (EF) outside B cell follicles. The images on 

the far right show the same field as presented in middle panel with only the red tetramer staining 

shown. Each tetramer-binding cell is indicated with a white arrow. Bars indicate 100 μm. (C) 

Numbers of tetramer positive SIV-specific CD8 T cells per mm2 inside and outside of the B cell 

follicle as well as total tissue before and after ALT-803 treatment. (D) F:EF ratio of tetramer 

positive SIV-specific CD8 T cells per mm2 before and after ALT-803 treatment.  
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Figure 5 

 

FIG 5 ALT-803 reduces the number of SIV-producing cells within B cell follicles. SIV-infected 

controller rhesus macaques (n=3) were administered 100 ug/kg of ALT-803 intravenously. 

Lymph nodes were sampled before ALT-803 treatment and 5 days post-treatment and RNAscope 

analysis was used to determine the number of SIV-producing cells in lymph nodes. (A) 

Representative image of RNAscope analysis of lymph node. RNA+ cells (red, white arrows) 

detected in lymph node tissue section of SIVmac239-infected rhesus macaque prior to treatment 

with ALT-803 (animal 25884). B cell follicle (demarcated by white line) was determined 

morphologically by staining with CD20 (white). Tissue was counterstained with DAPI (blue) to 

identify cell nuclei. Bar indicates 200 μm. (B) Compiled data of the number of SIV-producing 

cells in B cell follicular (F) or extrafollicular (EF) space within lymph nodes of SIV-infected 

controller rhesus macaques pre and post ALT-803 treatment. (C) F:EF ratio of SIV-producing 

cells evaluated in lymph nodes before and after ALT-803 treatment.  
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Figure 6 
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FIG 6 ALT-803 drives moderate increase of NK cells in B cell follicles. Representative images 

of NKG2A+ cells (red), CD20+ cells (green) and CD3+ cells (blue) in lymph node sections taken 

from SIV-infected animal Rh31210 before (A) and 5 days after (B) ALT-803 treatment. CD20 

staining is used to define B cell follicles (F) and extrafollicular regions (EF) outside B cell 

follicles. Each NKG2A+ cell is indicated with a white arrow. Bars indicate 100 μm. (C) Numbers 

of NKG2A+ cells per mm2 inside and outside of the B cell follicle as well as total tissue before 

and after ALT-803 treatment. (D) F:EF ratio of NKG2A+ cells per mm2 before and after ALT-

803 treatment. 
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Chapter 5 

 

Conclusion and future direction 
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 HIV/AIDS has caused severe global pandemic since it was first identified in 1980s. 

Currently, more than 36 million people worldwide are living with HIV and there are still around 

1.8 million new infections annually ("Fact sheet – Latest statistics on the status of the AIDS 

epidemic". UNAIDS.org. 2016). Even though the wide clinical application of cART substantially 

reduced the morbidity and mortality of HIV infection, and prolonged the longevity of HIV 

infected individuals (88), their unpleasant side effects, high cost and low availability for patients 

in underdeveloped area can’t be ignored (84, 92, 246, 247). Moreover, cART can suppress HIV 

replication, but can’t eliminate it. Thus there is still an urgent need for development of an 

effective HIV vaccine and a functional cure to fully eradicate HIV infection.  

 Many studies have demonstrated that CD8 T cells have critical role in controlling both 

HIV and SIV infection (147, 148, 150, 151, 168-170, 203). However, these cells fail to fully 

suppress viral replication. HIV- and SIV-producing cells are highly concentrated in B cell 

follicles during chronic HIV and SIV infection (73-75, 77). Moreover, residual productive 

HIV/SIV infection also preferentially localized in B cell follicles in the setting of long-term, 

suppressive cART (78, 136). In contrast to the concentrated HIV/SIV replication in B cell 

follicles, virus-specific CD8 T cells fail to accumulate in large number in these sites (73, 74, 79, 

80). The relative paucity of effective anti-viral CD8 T cell responses inside B cell follicles is an 

important mechanism that, at least partially, accounts for the persistent HIV and SIV infection. 

The main objective here is to study the follicular virus-specific CD8 T cells during HIV infection 

using SIV-infected rhesus macaques.  

 First, our data suggest that during chronic SIV infection, despite the expression of 

inhibitory receptor PD-1 and likely inhibition by Foxp3+ Tregs, a subset of follicular SIV-

specific CD8 T cells are activated and proliferating, and expressing cytolytic molecule perforin. 

Results from CD8 depletion study indicate that follicular SIV-specific CD8 T cells are functional 

in suppressing viral replication in B cell follicles. These findings are consistent with recent 
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studies about follicular CXCR5+ CD8 T cells during chronic viral infection in different species 

(174, 229, 237, 238). Together, these studies strongly support HIV cure strategies that boosting 

functional follicular virus-specific CD8 T cells to enhance viral control.  

 Many studies demonstrate that CD8 T cells are critical in initial viral control during 

primary HIV and SIV infection (147, 148, 169, 170, 234). However, this control is incomplete. 

We found that, similar to chronic infection, SIV-specific CD8 T cells in early infection are also 

largely excluded from B cell follicles, and these cells are likely possess cytolytic potential. 

Importantly, low levels of follicular SIV-specific CD8 T cells from GCs during early infection 

may pave the road for persistent chronic infection. These findings may help inform future HIV 

vaccine design.  

 IL-15 plays a crucial role in mediating T cells and NK cells activation and 

proliferation. ALT-803, a novel IL-15 superagonist, demonstrates stronger biological activity and 

prolonged half-life in serum than free IL-15. Last, we found that ALT-803 stimulated substantial 

proliferation of SIV-specific CD8 T cells in lymph nodes, and drove significant accumulation of 

these cells inside B cell follicles and more evenly distribution of these cells in the follicular and 

extrafollicular regions. Additionally, frequency of SIV-producing cells was reduced in all rhesus 

macaques. These data suggest that ALT-803 is a good candidate to promote progress in seeking 

HIV eradication. 

 Taken together, these data describe the dynamics of follicular SIV-specific CD8 T cells 

during early and chronic infection, and effect of ALT-803 treatment on these cells. The model we 

propose based on these findings is shown in Figure 1. After HIV infection, a large number of 

CD4 T cells are infected and there is little difference in the frequencies of virus-producing cells 

inside and outside B cell follicles in secondary lymphoid tissues prior to the emergence of anti-

viral CD8 T cell responses (Fig. 1A). When CD8 T cell responses are initiated in early infection, 
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a small population of virus-specific CD8 T cells with cytolytic potential migrate into B cell 

follicles while most of these cells locate in T cell zones. At this moment, because HIV-specific 

CD8 T cells just emerge, relatively even distribution of virus-producing cells inside and outside B 

cell follicles has not been changed in spite of quantitative advantage of HIV-specific CD8 T cells 

in T cell zones compare to those in follicles (Fig. 1B). Both follicular and extrafollicular HIV-

specific CD8 T cells are able to kill virus-producing cells. However, because of their low 

frequency, follicular HIV-specific CD8 T cells fail to eliminate virus-producing cells as 

efficiently as their counterparts outside the follicles. As time goes on, most virus-producing cells 

are gradually confined inside B cell follicles (Fig. 1C). These virus-producing cells still generate 

new infectious virions. If the host immune system is highly functional, HIV-producing cells are 

largely trapped in follicles. However, when host immune systems compromises and lose the 

control on HIV replication, HIV-producing cells come out from the B cell follicles and diffuse 

into T cell zones, blood and other non-lymphoid tissues progressively. Administration of ALT-

803 not only stimulates large expansion of HIV-specific CD8 T cells in lymph nodes, but also 

drives significant accumulation of SIV-specific CD8 T cells inside B cell follicle, more evenly 

distribution of these cells in the follicular and extrafollicular regions and reduced virus-producing 

cells inside B cell follicles (Fig. 1D).  

 However, despite the striking characteristics of follicular CXCR5+ CD8 T cells have 

been revealed, more information is required to fully explore the potential of these cells for 

functional cure efforts in HIV research. First, we characterized the phenotypes of follicular SIV-

specific CD8 T cells during early infection, but didn’t directly evaluate their function in 

suppressing viral replication. Further comprehensive functional analyses are required. Vaccine 

design to establish large pool of virus-specific CD8 T cells inside B cell follicles deserves further 

exploration in seeking prevention of HIV infection. This strategy is supported by a recent study 

which demonstrated that transfer of large number of molecularly engineered SIV-specific T cells 
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limit the establishment of infection (248). Second, although ALT-803 stimulates significant 

accumulation of follicular SIV-specific CD8 T cells, comprehensive analyses about phenotype 

and functionality of these induced cells have not been done. Whether they are able to potently 

suppress viral replication remain inconclusive. There is a heterogeneity exists within follicular 

CXCR5+ CD8 T cells which may lead to divergent function in suppressing viral replication 

(207). A population of follicular regulatory CD8 T cells has been recently reported in HIV and 

SIV infection (249). The proportion of follicular regulatory CD8 T cells among total follicular 

SIV-specific CD8 T cells after ALT-803 treatment, and the positive and negative effect of this 

cell population in HIV infection deserve further evaluation. Besides, stimulation of ALT-803 on 

lymphocytes proliferation is transient, which is an obstacle that needs to be taken into account to 

pursue long-term viral control. Third, application of bispecific antibodies and blockade of PD-

1/PD-L1 pathway have been demonstrated to potentiate the anti-viral effect of follicular CXCR5+ 

CD8 T cells (174, 237). Therapeutic administration of IL-27 may could enhance the reactivity of 

follicular CXCR5+ CD8 T cells along with blocking suppression from Tregs, as shown in cancer 

research (250). Exploration of ALT-803 administration in conjunction with other potentiators will 

be needed to further improve immune responses and eradication of HIV infection. 

 In addition to ALT-803 treatment, adoptive transfer of autologous HIV-specific 

CXCR5+ CD8 T cells has been proposed to increase levels of HIV-specific CXCR5+ CD8 T 

cells in follicles and reduce follicular viral replication. However, given the low percentage of 

CXCR5+ HIV-specific CD8 T cells in infected individuals, producing sufficient numbers of 

autologous CXCR5+ HIV-specific CD8 T cells for infusion is a big challenge to be considered. 

Genetic modification of CD8 T cells is a feasible solution for this obstacle. A recent study 

successfully introduced engineered CXCR5+ CD8 T cells into B cell follicles in SIV-infected 

rhesus macaques (251). Besides, transduction of SIV-specific TCR gene into CD8 T cells confers 

the ability to suppress SIV replication on these cells (252). Application of chimeric antigen 
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receptors (253-257) may be another possible way to produce large number of HIV-specific CD8 

T cells. Moreover, potential enhancers are able to improve immune responses mentioned above 

can be applied in adoptive cell transfer too. Different studies about adoptive transfer of 

autologous SIV-specific CD8 T cells all observed high frequencies of infused cells localized in 

lung instead of lymphoid tissues which reduce the efficacy of cell transfer (248, 251, 258, 259). 

While CXCR5 has been demonstrated to be necessary for localization of CD8 T cells in B cell 

follicles (174, 229, 251), whether CXCR5 alone is sufficient for entry of these cells into B cell 

follicles remain controversial. A better understanding about the network that drives trafficking of 

CD8 T cells into B cell follicles may further enhance the efficacy of adoptive transfer of 

autologous CD8 T cells. Therefore, adoptive cell transfer is another promising measure to 

augment HIV-specific CXCR5+ CD8 T cells in lymphoid follicles, but more exploration is 

required to further enhance its efficiency. 

 Notably, besides HIV-producing cells, there exist a population of latently HIV-infected 

resting cells which serve as important viral reservoirs that can’t be efficiently eliminated by anti-

viral CD8 T cells. Antigen-specific stimulation of CD8 T cells results in efficient killing of 

reactivated viral infected cells (260, 261). Therefore, the strategies that combine augment of 

follicular HIV-specific CD8 T cells, antigen-specific stimulation and latency reverse agent would 

be required for eradication of HIV infection. 

 In conclusion, our findings strongly support the HIV cure strategies that augment 

functional follicular virus-specific CD8 T cells to enhance viral control and demonstrate that 

ALT-803 is a potential candidate for this strategy. 
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FIG 1 The dynamics of follicular HIV-specific CD8 T cells during early and chronic infection. 

(A) After HIV infection, a large number of CD4 T cells are infected and there is little difference 

in the frequencies of virus-producing cells inside and outside B cell follicles in secondary 

lymphoid tissues prior to the emergence of anti-viral CD8 T cell responses. (B) When anti-viral 

CD8 T cell responses are first initiated in early infection, a small population of HIV-specific CD8 

T cells with cytolytic potential express CXCR5 and migrate into B cell follicles. Despite high 

level of exhaustion and likely inhibition by Foxp3+ Tregs, these cells effectively kill HIV-

infected TFH cells through secretion of cytolytic molecules and/or contact dependent killing 

mechanism. Simultaneously, a significantly higher level of HIV-specific CD8 T cells locate in T 

cell zones and exert strong cytotoxicity as well. At this time point, because HIV-specific CD8 T 

cells just emerge, relatively even distribution of virus-producing cells inside and outside B cell 

follicles has not been changed in spite of quantitative advantage of HIV-specific CD8 T cells in T 

cell zones compare to those in follicles. (C) During chronic infection, HIV-producing cells in T 

cell zones are effectively suppressed by extrafollicular HIV-specific CD8 T cells. However, 

because of their low frequency, follicular HIV-specific CD8 T cells fail to control HIV 

replication as efficiently as their counterparts in T cell zones. As time goes on, most HIV-

producing cells are gradually confined inside B cell follicles. (D) Administration of ALT-803 not 

only stimulates large expansion of HIV-specific CD8 T cells in lymph nodes, but also drives 

significant accumulation of SIV-specific CD8 T cells inside B cell follicle, more evenly 

distribution of these cells in the follicular and extrafollicular regions and reduced virus-producing 

cells inside B cell follicles. 
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