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Abstract

Over the last three years, the Advanced Laser Interferometer Gravitational-wave

Observatory (LIGO) has detected signals from colliding black holes and a signal from

colliding neutron stars. These detections ushered in a new era of gravitational-wave

(GW) astrophysics and multimessenger astronomy that allows us to probe new regions of

the universe. One of the next frontiers for gravitational-wave astronomy is the detection

and characterization of the stochastic GW background (SGWB). A measurement of

the SGWB from unresolved compact binary systems could come as Advanced LIGO

reaches design sensitivity, and future detectors will be important for digging beyond

that astrophysical background towards trying to measure signals from relic gravitational

waves produced in the early universe.

In this dissertation, I present cross-correlation-based searches for a SGWB and other

persistent sources of GWs. I introduce and use a new method for setting limits on the

strain amplitude of a potential source of GWs in the directions of Scorpius X-1, the

galactic center, and Supernova 1987a in the frequency band from 20− 1726 Hz. I also

set limits on persistent, broadband point sources of GWs across the whole sky. Finally,

I show how we can implement data analysis techniques to improve the Advanced LIGO

detector sensitivity to persistent sources of GWs.

Improving sensitivity of current detectors and planning for future detectors is vital

to the effort to measure and understand the SGWB. This will requires a better un-

derstanding of the noise sources that limit sensitivity, especially at lower frequencies.

To this end, I outline a method for estimating and modeling correlated magnetic noise

between spatially separated GW detectors. I also present results from a 3D seismometer

array deployed at the Homestake Mine, aimed at characterizing seismic and Newtonian

noise for future GW detectors. I estimate the fundamental Rayleigh-wave eigenfunction,

and then use it in a seismic radiometer algorithm to separate different components of

the seismic field that contribute differently to the Newtonian noise. Finally, I present

estimates of the Newtonian noise as a function of depth in the frequency band from

0.5− 5 Hz based on results from the seismic radiometer.
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Chapter 1

Gravitational waves and detectors

Einstein’s theory of general relativity (GR), published in 1915, marked a paradigm

shift in the understanding of gravitational physics [2]. Since that publication, GR has

passed every test posed to it. One prediction of GR is the existence of gravitational

waves (GWs), which are weak perturbations to the spacetime metric that satisfy the

wave equation. GWs were not indirectly observed until the discovery of the Hulse-Taylor

binary pulsar system in 1974 [3] and subsequent analysis by Weisberg and Taylor [4].

The first direct measurement did not come until the detection of the merger of two black

holes in 2015 by the LIGO Scientific Collaboration [5].

Early GW detectors were resonant bar detectors [6], but today most GW detectors

are ground-based interferometric detectors like Advanced LIGO [7], Advanced Virgo [8],

KAGRA [9], GEO [10], and the planned LIGO India detector. There are also two

proposed ground-based experiments known as Cosmic Explorer [11] and Einstein Tele-

scope [12], and a proposed (now approved) space-based detector, LISA [13]. All of these

detectors seek to directly measure the distance change between separated test masses

due to passing GWs.

Since the first directly observed signal due to the inspiral and merger of two black

holes, several similar signals have also been seen [14, 15, 16, 17]. In August 2017, the

merger of two neutron stars was detected, first with GWs [18], two seconds later with

a short gamma ray burst, and then in the entire electromagnetic spectrum in the days

and weeks that followed [19].

In this chapter, we offer a brief introduction on the mathematical formalism of

1
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general relativity and gravitational waves in section 1.1. This includes a discussion of

different sources of GWs in section 1.2. We then discuss ground-based interferomet-

ric GW detectors, with an emphasis on the Laser Interferometer Gravitational-wave

Observatory in section 1.3.

1.1 General relativity and gravitational waves

1.1.1 Notation and definitions

Throughout this chapter we use a Minkowski spacetime metric given by

ηµν = diag(−1, 1, 1, 1). (1.1)

We also use Einstein summation notation, where we implicitly assume a sum over re-

peated indices. Greek indices (µ, ν, . . .) will be assumed to run from 0 to 3, while latin

indices (i, j, . . .) will be assumed to run from 1 to 3 and indicate spatial coordinates.

Finally, commas denote partial derivatives with respect to a specific coordinate. For

example, the partial derivative acting on a vector field ξµ is written as

∂ξµ

∂xν
= ξµ ,ν . (1.2)

We will use gµν for the general spacetime metric, which defines for us proper distances

between spacetime events that are separated by dxµ

ds2 =µν dx
µdxν . (1.3)

From the spacetime metric, we can define the Christoffel symbols

Γρµν =
1

2
gρσ(gσµ,ν + gσν,µ − gµν,σ), (1.4)

and then Riemann curvature tensor, which tells us about the geometry of spacetime

Rµνρσ = Γµνσ,ρ − Γµνρ,σ + ΓµαρΓ
α
νσ − ΓµασΓανρ. (1.5)

There are two useful quantities related to the Riemann curvature tensor, known as the



3

Ricci tensor and the Ricci scalar

Rµν = gσρRσµρν (1.6)

R = gµνRµν .

We will use most of these definitions in the course of the coming discussion of general

relativity and gravitational waves.

1.1.2 The Einstein field equations

The Einstein field equations relate the curvature of spacetime to mass and energy. They

are succinctly written as

Gµν =
8πG

c4
Tµν . (1.7)

In this case, Gµν is the Einstein tensor, and it carries with it information about the

curvature of spacetime. Tµν is the stress-energy tensor, and it describes the mass and

energy that create that curvature. G is Newton’s constant and c is the speed of light.

The Einstein tensor is defined in terms of the Ricci tensor and Ricci scalar

Gµν = Rµν −
1

2
gµνR. (1.8)

1.1.3 The weak field limit

In the weak field limit, we write our general spacetime metric as the sum of the

Minkowski metric of special relativity with some small perturbation

gµν = ηµν + hµν , where |hµν | � 1. (1.9)

If we substitute this into the expression for the Riemann curvature tensor in equa-

tion (1.5) and only keep terms to leading order in h, we find

Rµνρσ =
1

2
(hµσ,νρ + hνρ,µσ − hνσ,µρ − hµρ,νσ) . (1.10)

From here, it is customary to define a “trace-reversed” metric h̄µν = hµν − 1
2ηµνh where

h = ηµνhµν . Making this substitution and calculating the Ricci tensor and Ricci scalar
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allows us to write the Einstein tensor in terms of this trace-reversed perturbation and

substitute it into the field equations:

h̄µν,ρ
ρ + ηµν h̄ρσ

,ρσ − h̄µρ,ν ρ − h̄νρ,µ ρ = −16πG

c4
Tµν . (1.11)

1.1.4 The transverse trace-less gauge

We still have gauge freedom that we can use to simplify our expressions, which we can

see by looking at how h̄µν transforms under a small coordinate transformation. If we

take xµ → xµ + ξµ, and we assume that |ξµ ,ν | are of order |hµν |, then

h̄′µν = h̄µν − (ξν,µ + ξµ,ν − ηµνξρ ,ρ) (1.12)

and under this transformation the Riemann curvature tensor does not change to leading

order in h. This means we have found a symmetry in our linearized theory, and we are

free to choose ξµ as we like (so long as it satisfies our one constraint that its derivatives

are small). Specifically, we will choose it such that

h̄µν
,ν = 0 (1.13)

which is known as “harmonic gauge.” We are free to make this choice because, under

the same coordinate transformation, this expression transforms as

h̄′µν
,ν = h̄µν

,ν −�ξµ, (1.14)

where �ξµ ≡ ξµ,ρ
ρ is the d’Alembertian. Since the d’Alembertian is invertible, we can

always find ξµ such that it satisfies �ξµ = h̄µν
,ν . In this case equation (1.11) reduces

to

h̄µν,ρ
ρ = −16πG

c4
Tµν . (1.15)

We will consider only cases away from sources, so that we are in a region of space

where Tµν = 0. In this case, it is common to make h̄µν traceless and transverse. That

is, we choose h̄ = 0, and h0i = 0. The harmonic gauge condition in equation (1.13)

coupled with these assumptions defines what is known as “transverse-traceless gauge.”
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1.1.5 Waves and polarizations

When we are in free space and have moved to transverse traceless gauge, it is clear that

the field equations reduce to a set of wave equations, and so the simplest solution is

hTT
µν = ATT

µν e
ikαxα (1.16)

which we call a gravitational wave1. In this case, kα is the wave-vector, which is consis-

tent with a wave that travels at the speed of light (i.e. kαk
α = 0). Our gauge condition

also tells us that we have a transverse wave hTT
µν k

ν = 0.

If we choose a coordinate system where the wave travels along the z axis then we

can easily write down the amplitude from our wave equation, ATT
µν

ATT
µν =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 . (1.17)

The full perturbation in transverse-traceless gauge now reads hTT
µν (z, t) = ATT

µν cos(ωt−
kz/c). In this case we use h+ and h× to define our two polarizations. We can decompose

this onto a set of polarization tensors that we call e+
µν and e×µν

e+
µν =


0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0

 , e×µν =


0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

 (1.18)

so that ATT
µν = h+e

+
µν + h×e×µν .

1.1.6 The effect of GWs on separated test masses

Consider two test masses separated in space, initially with coordinates (t, x1, 0, 0) and

(t, x2, 0, 0) in the TT gauge. These could be the input and end test mass for one of the

1The superscript (TT) reminds us that we are working in transverse-traceless gauge.
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interferometer arms in figure 1.3, for example. In TT gauge the coordinate distance, (x2 -

x1) between these two test masses remains constant due to a passing GW2. However, the

proper distance between these events changes as a gravitational wave (GW) propagates

in the z direction, and is given by equation (1.3)

s =
√
ds2 = (x2 − x1)(1 + h+ cos(ωt))1/2 ≈ (x2 − x1)

(
1 +

1

2
h+ cos(ωt)

)
(1.19)

For two similar test masses separated only in the y-direction (but with the same x and

t-coordinates) we would have

s =
√
ds2 ≈ (y2 − y1)

(
1− 1

2
h+ cos(ωt)

)
. (1.20)

and so we can see that GWs will cause the proper distance to increase for events sepa-

rated in the x-direction, while it decreases for events separated in the y-direction. More

generally, for two events with the same time coordinate, but separated spatially by

vector ~l we can write down the proper distance

s2 = lili + hij(t)lilj . (1.21)

It is worth noting that the change in the proper distance is proportional to the initial

spatial separation between the two events. This is the motivation for the very long arms

of the GW interferometers we will discuss in section 1.3. In figure 1.1 we show the effect

of a plus-polarized (top) and a cross-polarized (bottom) GW moving into the page on

a ring of test masses.

1.1.7 Generation of GWs

A full treatment of the generation of GWs is beyond the current scope, but it involves in-

version of equation (1.15) using the Green’s function of the d’Alembertian [20]. GWs are

generated by a time-varying mass quadrupole moment

hTT
ij =

2G

c4r
Ïij(t− r/c) (1.22)

2This can be seen by looking at the equation of geodesic deviation between the two test masses. A
good discussion can be found in [20]
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t

Figure 1.1: The top line shows effect of a plus-polarized GW propagating into to the
page on a ring of test masses. The bottom line shows effect of cross-polarized GW
propagating into the page on a ring of test masses.

where r is the distance between the observer and the source, G is Newton’s constant, c is

the speed of light and Ïij is the spatial part of the trace-free mass quadrupole moment,

which is written in terms of the mass density ρ

Iij =

∫
dx3 ρ(t, ~x)

(
xixj −

1

3
δij |~x|2

)
. (1.23)

The pre-factor of G/c4 ∼ 10−44 N−1 means that very energetic events are needed

to generate GWs that could be detectable by ground-based instruments, which are

typically sensitive to strains around 10−23 in their most sensitive frequency band. In [21],

Saulson gave an estimate of the amplitude of GWs a distance r from two bodies of mass

M rotating around one another with frequency f and a separation radius of r0 for a

reasonable set of parameters one could produce in a lab on Earth:

|h| = 32π2G

rc4
Mr2

0f
2 (1.24)

= 9× 10−39

(
M

1000 kg

)(
300 km

r

)( r0

1 m

)2
(

f

1 kHz

)2

, (1.25)

which is much lower than the sensitivity of ground-based interferometric detectors.
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1.2 Common sources of GWs

The strain sensitivity of the GW detectors we will discuss in section 1.3 is now ∼
10−23 Hz−1/2 in their most sensitive frequency bands. Equation (1.24) expresses the

fact that to detect events at that strain level, we need to observe very energetic events.

As we will discuss in chapter 2, sources of GWs that last for very long periods of time

are detectable at levels below the typical noise in the instruments, but often require

very long observation times. Here we discuss a few sources of GWs that are targeted

by the current generation of GW detectors.

Compact binary systems

The merger of two black holes produced the first directly-detected GW signal [5].

Since that first detection several more binary black hole (BBH) signals have been de-

tected [14, 15, 17], along with a binary neutron star (BNS) merger [18]. The latter

was observed with an electromagnetic counterpart [19], kicking off the field of multi-

messenger astronomy.

Compact binary systems radiate GWs as the two bodies orbit one another. The loss

of energy in GWs results in a corresponding increase in the frequency of rotation and

decrease in the radius of the orbit [22]

f
−8/3
GW (t) =

(8π)8/3

5

(
GM
c4

)5/3

(t− tc) (1.26)

r3 = GM/ω2 for keplerian orbits. (1.27)

In this expression, r is the semi-major axis of the orbit, ω is the angular velocity of the

orbit, fGW is the frequency of GWs being emitted, M = (m1m2)3/5(m1 + m2)−1/5 is

the chirp mass, and tc is the coalescence time, where the two compact objects get close

enough that they merge together, forming a single remnant. As the binary system loses

energy and the objects rotate faster around one another, the frequency of GWs emitted

increases as well. This produces a characteristic “chirp”-like signal, so named because

the frequencies happen in the audio band and the characteristic rise in frequency re-

sembles the chirping of a bird. An example of the signal seen from the merger of black

holes is shown in figure 1.2.
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propagation time, the events have a combined signal-to-
noise ratio (SNR) of 24 [45].
Only the LIGO detectors were observing at the time of

GW150914. The Virgo detector was being upgraded,
and GEO 600, though not sufficiently sensitive to detect
this event, was operating but not in observational
mode. With only two detectors the source position is
primarily determined by the relative arrival time and
localized to an area of approximately 600 deg2 (90%
credible region) [39,46].
The basic features of GW150914 point to it being

produced by the coalescence of two black holes—i.e.,
their orbital inspiral and merger, and subsequent final black
hole ringdown. Over 0.2 s, the signal increases in frequency
and amplitude in about 8 cycles from 35 to 150 Hz, where
the amplitude reaches a maximum. The most plausible
explanation for this evolution is the inspiral of two orbiting
masses, m1 and m2, due to gravitational-wave emission. At
the lower frequencies, such evolution is characterized by
the chirp mass [11]

M ¼ ðm1m2Þ3=5

ðm1 þm2Þ1=5
¼ c3

G

!
5

96
π−8=3f−11=3 _f

"
3=5

;

where f and _f are the observed frequency and its time
derivative and G and c are the gravitational constant and
speed of light. Estimating f and _f from the data in Fig. 1,
we obtain a chirp mass of M≃ 30M⊙, implying that the
total mass M ¼ m1 þm2 is ≳70M⊙ in the detector frame.
This bounds the sum of the Schwarzschild radii of the
binary components to 2GM=c2 ≳ 210 km. To reach an
orbital frequency of 75 Hz (half the gravitational-wave
frequency) the objects must have been very close and very
compact; equal Newtonian point masses orbiting at this
frequency would be only ≃350 km apart. A pair of
neutron stars, while compact, would not have the required
mass, while a black hole neutron star binary with the
deduced chirp mass would have a very large total mass,
and would thus merge at much lower frequency. This
leaves black holes as the only known objects compact
enough to reach an orbital frequency of 75 Hz without
contact. Furthermore, the decay of the waveform after it
peaks is consistent with the damped oscillations of a black
hole relaxing to a final stationary Kerr configuration.
Below, we present a general-relativistic analysis of
GW150914; Fig. 2 shows the calculated waveform using
the resulting source parameters.

III. DETECTORS

Gravitational-wave astronomy exploits multiple, widely
separated detectors to distinguish gravitational waves from
local instrumental and environmental noise, to provide
source sky localization, and to measure wave polarizations.
The LIGO sites each operate a single Advanced LIGO

detector [33], a modified Michelson interferometer (see
Fig. 3) that measures gravitational-wave strain as a differ-
ence in length of its orthogonal arms. Each arm is formed
by two mirrors, acting as test masses, separated by
Lx ¼ Ly ¼ L ¼ 4 km. A passing gravitational wave effec-
tively alters the arm lengths such that the measured
difference is ΔLðtÞ ¼ δLx − δLy ¼ hðtÞL, where h is the
gravitational-wave strain amplitude projected onto the
detector. This differential length variation alters the phase
difference between the two light fields returning to the
beam splitter, transmitting an optical signal proportional to
the gravitational-wave strain to the output photodetector.
To achieve sufficient sensitivity to measure gravitational

waves, the detectors include several enhancements to the
basic Michelson interferometer. First, each arm contains a
resonant optical cavity, formed by its two test mass mirrors,
that multiplies the effect of a gravitational wave on the light
phase by a factor of 300 [48]. Second, a partially trans-
missive power-recycling mirror at the input provides addi-
tional resonant buildup of the laser light in the interferometer
as a whole [49,50]: 20Wof laser input is increased to 700W
incident on the beam splitter, which is further increased to
100 kW circulating in each arm cavity. Third, a partially
transmissive signal-recycling mirror at the output optimizes

FIG. 2. Top: Estimated gravitational-wave strain amplitude
from GW150914 projected onto H1. This shows the full
bandwidth of the waveforms, without the filtering used for Fig. 1.
The inset images show numerical relativity models of the black
hole horizons as the black holes coalesce. Bottom: The Keplerian
effective black hole separation in units of Schwarzschild radii
(RS ¼ 2GM=c2) and the effective relative velocity given by the
post-Newtonian parameter v=c ¼ ðGMπf=c3Þ1=3, where f is the
gravitational-wave frequency calculated with numerical relativity
and M is the total mass (value from Table I).

PRL 116, 061102 (2016) P HY S I CA L R EV I EW LE T T ER S week ending
12 FEBRUARY 2016

061102-3

Figure 1.2: An example of a chirp signal from the merger of two black holes. The top
illustrates numerical relativity estimates of the black hole horizons during the inspiral,
merger, and ringdown phases. The middle shows the best-fitting waveforms with the
estimated strain amplitude in the Hanford detector. This image is reproduced from [5].

Rapidly rotating neutron stars

Isolated, rapidly rotating neutron stars can produce GWs if they have some ellipticity.

The characteristic amplitude of GWs produced by rapidly rotating neutron stars is given

by [20]

h =
16π2G

c4

εIzzf
2

r
, (1.28)

where f is the rotation frequency of the neutron star, I is the principle moment of

inertia, and ε = (Ixx − Iyy)/Izz is the ellipticity of the star.

Sources of this kind produce nearly-sinusoidal signals and last for very-long timescales.
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Current searches tend to target known radio pulsars whose proposed GW emission fre-

quency is in the frequency band of GW detectors, as well as directions where one expects

a rotating neutron star to exist (a supernova remnant, for example) [23, 24, 25]. Searches

that observe for very long periods of time can find signals that are well below the typical

noise-level of the detectors.

Supernovae

Full-scale simulations of supernovae is a common area of research, but there is not a

shortage of schemes in which a core-collapse supernova can generate GWs. A few include

neutrino-driven convection, standing-shock instabilities (SASIs), and r-mode pulsations

in the resulting protoneutron star [26]. GWs from core-collapse supernovae are expected

to last for, at most O(s), and their GW signature is not well-modeled. This means that

searches for these signals typically focus on finding large bursts of coincident power in

multiple GW detectors [26, 27].

Stochastic background

The stochastic gravitational wave background (SGWB) is a superposition of unresolved

sources of GWs in the universe. One of the most promising sources right now is the

background due to unresolved compact binary coalescences [28]. Other sources could

include the combined signal from unresolved, rapidly rotating neutron stars in the Milky

Way galaxy [29], and relic GWs from the earliest epochs of the universe [30, 31, 32].

The stochastic background is typically defined in terms of a dimensionless energy density

parameter

ΩGW(f) =
f

ρc

dρGW

df
(1.29)

where ρc is the critical energy density to close the universe, and ρGW is the energy

density in GWs, which is given by [20]

ρGW =
c2

32πG
〈ḣTT
ij ḣ

TT
ij 〉. (1.30)

We will discuss sources for a SGWB further in chapter 2, as searching for a SGWB is a

major focuses of this thesis.
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Name Dates
Operational
instruments

# of published
detections3

O1
September 2015 –
January 2016

H1, L1 2

O2
November 2016 –
August 2017

H1, L1, V14 4

Table 1.1: Observation run dates and detections made with Advanced LIGO and Ad-
vanced Virgo instruments. H1 and L1 refer to the Advanced LIGO instruments in
Hanford, WA, and Livingston, LA, respectively. V1 refers to the Advanced Virgo inter-
ferometer.

1.3 Advanced LIGO interferometers

The Laser Interferometer Gravitational-wave Observatory (LIGO) is a large, collabora-

tive scientific project whose primary aim is the direct detection of GWs. The current

incarnation of LIGO (known as “Advanced LIGO”) consists of two identical, 4 km

long interferometric detectors, in Hanford, WA, and Livingston, LA. The initial run of

the LIGO instruments came from 2002-2007 and from 2009-2010, where strain sensi-

tivities as low as ∼ 10−22 Hz−1/2 were achieved, but no direct detection of GWs was

made. From 2010-2015, the LIGO instruments underwent numerous upgrades and be-

came known as Advanced LIGO. The first observing run for Advanced LIGO began

in September, 2015, which kicked off the “advanced detector” era with an immediate

detection of GWs from coalescing BBHs [5]. A summary of the Advanced LIGO and

Advanced Virgo observation runs is given in table 1.1.

In this section we discuss the layout and configuration of the Advanced LIGO detec-

tors, how they differ from their predecessors, and what noise sources limit the sensitivity

of the instruments.

1.3.1 Detector description and layout

The Advanced LIGO instruments are Michelson interferometers with Fabry-Pérot cav-

ities in the arms [7]. A depiction of the interferometer during the first observing run

3As of May 2018.
4Virgo was only operational during August 2017.
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is given in figure 1.3. The instrument uses an Nd:YAG laser with a wavelength of

λ = 1064 nm, currently operating at 25 W. The input and end mirrors for the cavities

double as test masses, which are assumed to be freely falling at frequencies far above the

resonant frequency of the pendulum system from which they are suspended (roughly

1 Hz). The instruments are configured such that when there is no GW passing, there is

very little light moving towards the bottom photodetector, while when a GW is present,

the length of the two arms changes differentially and the phase of the laser that has

traveled through one arm is slightly different from that which has traveled through the

other, and so there is a change in the power of the light at the bottom photodetector.

The Fabry-Pérot cavities are designed such that resonant light bounces many times

within it before exiting. This increases the effective length of the interferometer, and

therefore the phase shift imprinted on the light due to a passing GW. During O1, the

light bounced within the cavity roughly 270 times [33].

Due to the fact that LIGO operates on a “dark fringe,” meaning that very little light

is sent to the output mode cleaner, most of the light leaves the system propagating back

towards the laser. A power recycling mirror (PRM) is employed to recycle light leaving

the system in this fashion back into the cavities, effectively increasing the power in the

arms by a factor of 38 [33], and significantly reducing shot noise (discussed in the next

section).

In a similar fashion to the PRM, there is also a signal recycling mirror (SRM), which

recycles light that is leaving through the antisymmetric port (see figure 1.3) back into the

arms. Tuning the length of this cavity can broaden the response of the interferometer’s

sensitivity. The SRM was a new implementation in the Advanced LIGO configuration

that was not used in the initial instruments [33].

Finally, during the last run of the initial LIGO instruments, there was an addition of

an output mode cleaner (OMC), which is a “bow tie” shaped cavity at the antisymmetric

port that is used to reject unwanted modes in the laser that have been introduced in the

arm cavities, and also filter out unwanted radio frequency sidebands on the light that

are used for the Pound-Drever-Hall locking and control of different resonant cavities in

the instrument [33, 34].
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3

all investigated noise sources. We end with the conclu-
sions in Sec. IV.
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FIG. 1. Layout of an Advanced LIGO detector. The an-
notations show the optical power in use during O1. These
power levels are a factor of '8 smaller compared to the de-
signed power levels. The Nd:YAG laser [19], with wavelength
�=1064 nm, is capable of producing up to 180 W, but only
22 W were used. A suspended, triangular Fabry-Perot cav-
ity serves as an input mode cleaner [20, 21] to clean up the
spatial profile of the laser beam, suppress input beam jitter,
clean polarization, and to help stabilize the laser frequency.
The Michelson interferometer is enhanced by two 4-km-long
resonant arm cavities, which increase the optical power in the
arms by a factor of Garm ' 270. Since the Michelson interfer-
ometer is operated near a dark fringe, all but a small fraction
of the light is directed back towards the laser. The power re-
cycling mirror resonates this light again to increase the power
incident on the beamsplitter by a factor of ' 40, improv-
ing the shot noise sensing limit and filtering laser noises. On
the antisymmetric side, the signal recycling mirror is used to
broaden the response of the detector beyond the linewidth of
the arm cavities. An output mode cleaner is present at the
antisymmetric port, to reject unwanted spatial and frequency
components of the light, before the signal is detected by the
main photodetectors.

II. INTERFEROMETER CONFIGURATION

In general relativity, a gravitational wave far away from
the source can be approximated as a linear disturbance
of the Minkowski metric, gµ⌫ = ⌘µ⌫ +hµ⌫ with the space-
time deformation expressed as a dimensionless strain,
hµ⌫ . In a Michelson interferometer we define the dif-
ferential displacement as L = Lk�L?, where Lk and L?
are the lengths of the inline arm and the perpendicular
arm, respectively, as shown in Fig. 1. With equal macro-
scopic arm lengths, L0 ' Lk ' L?, the gravitational
wave strain and the di↵erential arm length are related
through the simple equation L(f) = Lk � L? = h(f)L0,

FIG. 2. The strain sensitivity for the LIGO Livingston de-
tector (L1) and the LIGO Hanford detector (H1) during O1.
Also shown is the noise level for the Advanced LIGO design
(gray curve) and the sensitivity during the final data collec-
tion run (S6) of the initial detectors.
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FIG. 3. The sensitivity to coalescing compact binaries for
the Advanced LIGO design, first observation run (O1) and
the final run with the initial detectors (S6). The traces show
the horizon distance, which is the distance along the most
sensitive direction of the interferometer for a binary inspiral
system that is seen head-on and for a signal-to-noise ratio of
8. The horizontal axis is the chirp mass which is defined as

M = (1 + z)µ
3
5 M

2
5 , where M = M1 + M2 is the total mass,

µ = M1M2/M is the reduced mass, and z is the cosmological
redshift. Units are in solar masses, M�. The horizon distance
is computed for the case of equal masses M1 = M2 and using
the inspiral–merger model from [22].

where h is the average di↵erential strain induced into
both arms at frequency f .

The test masses are four suspended mirrors that form
Fabry-Perot arm cavities. These mirrors can be consid-
ered as inertial masses above the pendulum resonance
frequency (⇠1 Hz). Any noise present in the di↵eren-
tial arm channel is indistinguishable from a gravitational
wave signal. Residual seismic noise, thermal noise asso-

Figure 1.3: The Advanced LIGO interferometer layout, along with design values. We
see several systems discussed in the text, including the input mode cleaner (IMC), the
power recycling mirror (PRM), the Fabry-Pérot cavity arms, the signal recycling mirror
(SRM), and the output mode cleaner (OMC). This plot is reproduced from Fig. 1 in
[33].

1.3.2 Interferometer controls and calibration

The test masses typically move as much as 1 µm near the frequencies associated with

the oceanic microseism, which is much larger than the wavelength of the laser. To

keep the interferometer “locked” such that the change in the laser power leaving the

OMC is linear with respect to the differential length of the two arms, the test masses

are passively isolated using a quadruple pendulum system and actively controlled using
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a global feed-forward system and electrostatic actuation [35, 36, 37].

Similar control systems are needed at higher frequencies as well, and it is the error

signal in the control loop for the differential arm motion that is proportional to the strain

imposed by GWs. In general, there is a signal, s, sent to the end test masses where a

reaction mass actuates directly on the end test mass with strength A. In addition, the

configuration of the interferometer means that the output signal power is not directly

proportional to the error signal, e, of that control loop. In the end the strain signal, h,

is related to s and e via

h(f) = As+ C−1e (1.31)

where C, known as the “optical transfer function,” is a frequency-dependent quantity

that depends upon the gain in power in the arms due to the presence of the PRM and

the number of bounces in the Fabry-Pérot cavities. A full expression can be found for

the O1 Advanced LIGO configuration in [33].

C is typically tracked with a “photon calibrator,” which is a 2 W laser with λ =

1047 nm that applies a sinusoidally varying signal directly on the test masses themselves

via radiation pressure. The known motion, h, induced by the radiation pressure can be

used to track the properties of C as a function of time [38, 39].

1.3.3 Noise sources

Anything that can cause the mirrors to move is, in principle, indistinguishable from

GWs. As we discuss in the next section, it is usually through a very specific signal seen

in multiple detectors simultaneously, or the coincidence of a loud, coherent increase in

power in multiple detectors, that we make a direct detections of GWs. However, the

less the mirrors move due to anything other than GWs, the easier it is to make these

detections. At low frequencies (10−50 Hz), the sensitivity is typically limited by seismic

noise and noise in the optical angular control systems. At higher frequencies (> 200 Hz)

the noise is dominated by laser shot noise, and in between (50− 200 Hz) we are limited

by noise due to thermal fluctuations in the coatings used on the test masses. A plot

indicating the estimated contribution from many different known sources of noise is

shown in figure 1.5, at the end of this section. In the rest of this section, we discuss

some of these noise sources in a bit more detail.
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A. Interferometer controls

In operation the laser light needs to resonate inside the
optical cavities. This requires that the residual longitudinal
motion of the optical cavities be kept within a small fraction
of the laser wavelength [30]. The suspended mirrors
naturally move by ∼1 μm in the microseismic band
(∼100 mHz)—much larger than the width of a resonance.
To suppress this motion, a sophisticated length sensing

and control system is employed, using both the well-known
Pound-Drever-Hall technique [31,32] and a version of
homodyne detection known as “DC readout” [33].
Table II shows linewidths and requirements for residual
root-mean-square (RMS) motion of the main interferomet-
ric degrees of freedom.
An electro-optic modulator generates radio frequency

(rf) phase modulation sidebands at 9 MHz and 45 MHz,
symmetrically spaced about the laser carrier frequency. The
Pound-Drever-Hall technique is used to sense all longi-
tudinal degrees of freedom except for the differential arm
channel. Feedback control signals actuate on the suspended
mirrors, using either coil-magnet or electrostatic actuation.
The common arm cavity length is also used as a reference
to stabilize the laser frequency, with sub-mHz residual
fluctuations (in detection band).
The gravitational wave signal is extracted at the anti-

symmetric port of the interferometer, where fluctuations in
the differential arm cavity length are sensed. The arm
cavities are held slightly off-resonance by an amount
referred to as the differential arm offset ΔL. This offset
of roughly 10 pm generates the local oscillator field, which
is necessary for the DC readout. An output mode cleaner
[34] located between the antisymmetric output and the
homodyne readout detectors, is used to filter out the rf
sidebands as well as any higher-order optical modes, as
these components do not carry information about the
differential arm cavity length.
A similar feedback control scheme is employed to keep

the optical axes aligned relative to each other and the laser
beam centered on the mirrors [35]. This system is required
to maximize the optical power in the resonant cavities and
keep it stable during data collection. A set of optical
wavefront sensors is used to sense internal misalignments
[36]. At the same time, DC quadrant photodetectors sense
beam positions relative to a global reference frame. The test
mass angular motions are stabilized to 3 nrad rms, keeping
power fluctuations in the arm cavities smaller than 1% on
the time scale of a few hours.

B. Strain calibration

For the astrophysical analyses, the homodyne readout of
the differential arm cavity length needs to be calibrated into
dimensionless units of strain [37]. This is complicated by

FIG. 2. The strain sensitivity for the LIGO Livingston detector
(L1) and the LIGO Hanford detector (H1) during O1. Also shown
is the noise level for the Advanced LIGO design (gray curve) and
the sensitivity during the final data collection run (S6) of the
initial detectors.

100 101 102 103
101

102

103

104

105

Advanced LIGO design
Advanced LIGO, H1 (2015)
Enhanced LIGO (2010)

FIG. 3. The sensitivity to coalescing compact binaries for the
Advanced LIGO design, first observation run (O1) and the final
run with the initial detectors (S6). The traces show the horizon
distance, which is the distance along the most sensitive direction
of the interferometer for a binary inspiral system that is seen
head-on and for a signal-to-noise ratio of 8. The horizontal axis is
the chirp mass which is defined as M ¼ ð1þ zÞμ3

5M
2
5, where

M ¼ M1 þM2 is the total mass, μ ¼ M1M2=M is the reduced
mass, and z is the cosmological redshift. Units are in solar
masses, M⊙. The horizon distance is computed for the case of
equal masses M1 ¼ M2 and using the inspiral–merger model
from [29].

TABLE II. The linewidths of Pound-Drever-Hall signals and
the requirements for residual RMS motion for the main inter-
ferometric degrees of freedom.

Degree of freedom Linewidth Residual

Common arm length 6 pm 1 fm
Differential arm length 300 pm 10 fm
Power recycling cavity length 1 nm 1 pm
Michelson length 8 nm 3 pm
Signal recycling cavity length 30 nm 10 pm

SENSITIVITY OF THE ADVANCED LIGO DETECTORS AT … PHYSICAL REVIEW D 93, 112004 (2016)

112004-5

Figure 1.4: Sensitivity of Advanced LIGO detectors at the start of the first observing
run. The sensitivity from the last science run of initial LIGO is also shown for com-
parison. Large spikes are typically caused by mechanical resonances in the suspensions
of the test masses, or injected calibration signals. The most prominent resonances can
be seen near 500 Hz, which are the “violin modes” of the suspension fibers for the test
masses. This plot is reproduced from [33]

Seismic noise

Ground motion due to seismic waves can be as large as 10−9 m/
√

Hz at 10 Hz, which is

much larger than the Advanced LIGO goal sensitivity at that frequency. To isolate the

test masses from ground motion, the Advanced LIGO input and end test masses are sus-

pended from quadruple pendula. Each of the four pendula offers (f/f0)−2 suppression,

where f0 is the resonant frequency of the pendulum (∼ 0.5 − 1 Hz) [7]. Feed-forward

schemes using seismometers on the ground and inertial sensors and actuators on the
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suspension platforms are also used to actively suppress motion of the platforms and the

mirrors [7]. This isolation increases strain sensitivity, and is also vital to the process of

bringing the interferometer into the “locked” regime where power at the antisymmetric

point is linear with respect to the motion of the arms. The passive and active isolation

helps reduce the time to it takes lock the instrument, improving the total observation

time of the instrument.

Quantum noise

Quantum noise, in general, is driven by vacuum fluctuations of the optical field at the

antisymmetric port that then enter the interferometer and become amplified [40, 41].

Shot noise is the noise that arises from the statistical uncertainty, introduced by those

vacuum fluctuations, of the number of photons circulating in the arms and exiting

through the OMC [41, 40]. Those statistical fluctuations are interpreted as fluctuations

in laser power, and therefore in strain [33, 42, 43]. In the first LIGO observing run, the

shot noise estimate was given by [33]

L(f) =
λ

4πGarm

(
2hνGsrc
GprcPinη

)1/2 1

K(f)
(1.32)

where G(·) gives the optical gain due to the arm, power recycling cavity, or signal

recycling cavity, Pin is the input power from the laser, 25 W in O1, η represents optical

losses, and K(f) is the optical response function that depends upon the properties of

the numerous coupled optical cavities that comprise the instrument. Shot noise is the

limiting noise source of most interferometric GW detectors at high frequencies.

Vacuum fluctuations can also create displacement noise by applying a changing

radiation pressure upon the test masses [44]. An estimate of the radiation pressure

noise is discussed in [33] and is given by

L(f) =
2

cMπ2f
(hνG−Parm)1/2K(f) (1.33)

where c is the speed of light, M is the mass of the test masses, Parm is the total power

circulating in the Fabry-Pérot cavities, and G− is an extra factor that depends upon

the properties of the interferometer.
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Thermal noise

Thermal noise refers to mechanical losses throughout the interferometer. Problems

especially arise in the connections between the suspension systems and the test masses

themselves [45], as well as in the optical coatings on the mirrors [46, 47]. Thermal noise

is typically estimated to be the limiting noise source in the instruments from 50−200 Hz,

but in the case of observing run 1 (O1), it is lower than the observed noise by a factor

of ∼ 3, and a cause for the discrepancy has not yet been identified [33].

Newtonian noise

Newtonian noise represents fluctuations in the gravitational field at the test masses. This

can be caused by temperature fluctuations in the atmosphere, vibration of the walls of

the surrounding building, and seismic waves in the Earth [48, 49, 42]. Newtonian noise

is not currently a limiting noise source for LIGO detectors, but predictions indicate that

will be the case at low frequencies in the future [48]. We will discuss Newtonian noise

further in chapter 6.

Correlated noise

One of the assumptions of most searches for GWs using LIGO data is that the noise

between spatially separated interferometers is uncorrelated. For searches for transient

GWs this is typically a good assumption. It is very unlikely that there would be a source

of transient noise large enough to cause fluctuations above the typical levels of noise

in the instruments that is also correlated between the two LIGO interferometers on a

time scale consistent with the light travel time between the detectors (∼ 1 ms). More-

over, tests are done to check that signals that might satisfy those criteria (like bursts

of magnetic power due to large lightning strikes) would also be observed in environ-

mental monitors like magnetometers [50] and would therefore be rejected as GW event

candidates.

On longer time scales, GW searches “dig into” the noise and search for signals

that are lower than the typical noise fluctuations in the instrument, and so noise from

similar electronics at both detectors [51], as well as long-wavelength magnetic fields, can

cause issues [52, 53, 1]. We will discuss estimates of correlated noise in cross-correlation
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searches in chapter 4, and ways to deal with it in chapter 5.

Other sources of noise

Sources of noise that limit the sensitivity of the interferometer on long timescales and

over broad frequency ranges have been the focus of this section to this point. Transient

noise in the interferometer, often associated with malfunctioning electronics or large

environmental disturbances, are also major problems for transient searches for GWs. A

thorough understanding of how to deal with and understand transient noise is a priority

for being able to reliably detect GWs, and discussions of it are somewhat common in

the literature [50, 54].

There are also sources of noise that cause significant losses in sensitivity in very

narrow frequency ranges. We often refer to these as “lines” because of how they appear

on the sensitivity curves (these are evident in figure 1.4). These lines are often caused

by narrow mechanical resonances with large quality factors, local electronics on site, or

aliasing in digital filters. Understanding and mitigating this type of noise is less common

in the literature, but that is changing [51]. I will discuss understanding and mitigating

lines in the LIGO detectors in chapters 3 and 4.

1.3.4 Data analysis techniques

Matched filtering

Matched filtering is a data analysis technique that correlates a data stream with a known

signal to try to detect the presence of that signal in the data stream. It is the optimal

linear filter for maximizing the signal-to-noise ratio (SNR) of a known waveform. In

GW data analysis, matched filtering is used to search for deterministic signals that can

be calculated analytically or numerically, like those from BBHs and BNSs [55, 56, 57],

and it played a vital role in the first detection of those signals [5, 14, 15, 16, 17, 18].

Matched filtering is also used in the F-statistic searches and Bayesian searches for signals

from rapidly rotating neutron stars [58, 59].
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(a) LIGO Livingston Observatory

(b) LIGO Hanford Observatory

FIG. 5. Noise budget plots for the gravitational wave channels
of the two LIGO detectors. The strain sensitivities are sim-
ilar between the two sites. Plot (a) shows the low-frequency
curves for L1, whereas Plot (b) shows the high-frequency
curves for H1 detector. Quantum noise is the sum of the
quantum radiation pressure noise and shot noise. Dark noise
refers to electronic noise in the signal chain with no light in-
cident on the readout photodetectors. Thermal noise is the
sum of suspension and coating thermal noises. Gas noise is
the sum of squeezed film damping and beam tube gas phase
noises. The coupling of the residual motion of the Michelson
(MICH) and signal recycling cavity (SRCL) degrees of free-
dom to gravitational wave channel is reduced by a feedforward
cancellation technique. At low frequencies, there is currently
a significant gap between the measured strain noise and the
root-square sum of investigated noises. At high frequencies,
the sensitivity is limited by shot noise and input beam jitter.

and alignment purposes. These very narrow lines are eas-
ily excluded from the data analysis, while the broadband
noise inevitably limits the instrument sensitivity. The
latter is therefore a more important topic of investiga-
tion.

A. Seismic and thermal noises

Below 10Hz, there is significant displacement noise
from residual seismic motion. On average, at both
the Livingston and Hanford sites, the ground moves by
⇠ 10�9 m/

p
Hz at 10Hz—ten orders of magnitude larger

than the Advanced LIGO target sensitivity at this fre-
quency. To address this di↵erence, seismic noise is fil-
tered using a combination of passive and active stages.
The test masses are suspended from quadruple pendu-
lums [25]. These passive filters have resonances as low
as 0.4 Hz and provide isolation as 1/f8 in the detection
bandwidth. The pendulums are mounted on multistage
active platforms [41, 42]. These systems use very-low-
noise inertial sensors to provide the required isolation
in the detection band and at lower frequencies (below
10 Hz). This isolation is crucial for bringing the interfer-
ometer into the linear regime and allowing the longitu-
dinal control system to maintain it on resonance. The
active platforms combine feedback and feedforward con-
trol to provide one order of magnitude of isolation at
the microseism frequencies (around 0.1 Hz) and three or-
ders of magnitude between 1 Hz and 10Hz. Most of the
suspension resonances are located in this band, where
ground excitation from anthropogenic noise and wind is
significant.

Fluctuations of local gravity fields around the test
masses—caused by ground motion and vibrations of the
buildings, chambers, and concrete floor—also couple to
the gravitational wave channel as force noise [43] (grav-
ity gradient noise). The coupling to the di↵erential arm
length displacement is given by

L(f) = 2
Ngrav(f)

(2⇡f)2

Ngrav(f) = �G⇢Nsei(f),

(8)

where Ngrav is the fluctuation of the local gravity field
projected on the arm cavity axis, the factor of 2 ac-
counts for the incoherent sum of noises from the four test
masses, G is the gravitational constant, ⇢ ' 1800 kg m�3

is the ground density near the mirror, � ' 10 is a geo-
metric factor, and Nsei is the seismic motion near the
test mass. Since the ground near the test masses moves
by ' 10�9m/

p
Hz at 10 Hz, local gravity fluctuations at

this frequency are Ngrav ⇡ 10�15m s�2/
p

Hz and the to-
tal noise coupled into the gravitational wave channel at
10 Hz is L ⇡ 5⇥ 10�19 m/

p
Hz. Gravity gradient noise is

one of the limiting noise sources of the Advanced LIGO
design in the frequency range 10–20Hz. However, the
typical sensitivity measured during O1 is still far from
this limitation.

Thermal noises arise from finite losses present in me-
chanical systems and couple to the gravitational wave
channel as displacement noises. Several sources of ther-
mal noise can be identified. Suspension thermal noise [45]
causes motion of the test masses due to thermal vibra-
tions of the suspension fibers. Coating Brownian noise

Figure 1.5: Top: noise sources at low frequencies at the LIGO Livingston interferometer.
Bottom: noise at high frequency in the LIGO Hanford interferometer. Both plots show
noise at the start of the first Advanced LIGO observation run in September, 2015.
At low frequencies noise is dominated by seismic noise, noise from the angular optical
control systems and an unknown source of noise believed to be light scattering noise.
At high frequencies the noise is dominated by quantum noise in the form of shot noise.
This plot is reproduced from [33].
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Coincident bursts

When searching the data for transient GW signals that do not have a deterministic

waveform, it is common to search for coincident “bursts” of strain power in multiple

detectors. These types of searches are used for sources like supernovae and any other

signal that does not have a deterministic waveform [27, 60, 26, 61]. Often these searches

either cross-correlate data between the detectors and look for larger-than-expected cross-

power, or they look for large, simultaneous excursions in the power in the individual

detectors. A combination of both can also be used [62].

Long-duration cross-correlation

Searches for long-lived signals that are not well-modeled, like the SGWB, typically rely

upon cross-correlating the data in pairs of detectors [63] to search for a signal common to

both instruments. This method can also be used to search for rapidly rotating neutron

stars [64, 24, 25]. We will discuss cross-correlation based searches for long-duration

signals extensively in chapters 2 and 3.

1.4 Concluding remarks

In this chapter we discussed GWs and interferometric detectors. We introduced the

mathematical formalism used when discussing GWs, and how GWs interact with inter-

ferometric detectors like Advanced LIGO and Advanced Virgo. We also briefly discussed

several different sources of GWs, as well as a cursory overview of different data analysis

techniques used in searching for them. In the next chapter, we expand on searches for

persistent GWs like the SGWB or rapidly rotating neutron stars, and in the subsequent

chapter we present results for those searches using data from O1.



Chapter 2

Cross-correlation searches for

persistent gravitational waves

The stochastic gravitational-wave background (SGWB) is a promising source of gravita-

tional waves (GWs) that is expected to arise due to the superposition of many individ-

ually unresolvable GW sources. It carries information about unresolved stellar sources

of GWs and potentially sources of GWs from the earliest epochs in the evolution of

the universe, such as inflation. To be consistent with the way different types of energy

in the universe are treated in cosmology, the SGWB is usually discussed in terms of a

dimensionless energy density parameter

ΩGW(f) =
1

ρc

dρGW
d ln f

(2.1)

where ρc =
3H2

0 c
2

8πG is the critical energy density to close the universe, and dρGW /d ln f

is the energy density in GWs per logarithmic frequency bin.

The rest of this chapter will discuss sources of an SGWB and methods of searching

for it using the Advanced LIGO and Advanced Virgo detectors. In section 2.1, we discuss

sources of an SGWB before moving on to current direct and indirect limits on the SGWB

in several different frequency bands. In section 2.3, we discuss the cross-correlation

strategy used to search for an isotropic SGWB in LIGO detectors. In section 2.4, we

discuss how the isotropic assumption about the SGWB can be relaxed so that we can

search instead for an anisotropic background of GWs. Finally, in section 2.5 we discuss

21



22

an unmodeled, directed search for GWs in each frequency bin and present a new method

for setting limits on the strain amplitude of a rapidly rotating neutron star using that

search.

2.1 Sources

Sources of the SGWB can be stellar in nature, like the inspiral and merger of many

unresolved compact binary systems [65, 66, 67, 68, 69, 70, 71], or non-stellar, like those

arising from inflationary models [72, 32, 73, 74, 75, 76, 31, 77], early-universe phase

transitions [32, 78, 79], or cosmic strings [80, 81, 82, 83, 84]. In this section, I describe

a few of these sources in more detail.

2.1.1 Unresolved compact binary coalescences

The superposition of GW signals from unresolvable mergers of compact objects will

contribute significantly to the SGWB in the LIGO and Virgo frequency band. Stud-

ies based on the recent LIGO detections of binary neutron star [18] and binary black

hole [85, 14, 15, 17] systems indicate that a detection of this background is possible

when the current generation of detectors reaches design sensitivity [28].

We will follow the the methods outlined in [28, 86] for estimating the amplitude

and spectrum of this source. The background due to unresolved CBCs is generally

characterized by a set of average parameters, ~θ, and a merger rate that is dependent on

these parameters and the redshift, Rm(z; ~θ). The parameters are quantities like chirp

mass and spin, and represent the ensemble average over all binary systems that can

contribute GWs in the LIGO/Virgo frequency band. We can write the SGWB due to

these sources as

ΩGW(f, ~θ) =
f

ρcH0

∫ zmax

0
dz

Rm(z; ~θ)dEGW(fs; ~θ)/dfs
(1 + z)E(ΩM ,Ωλ, z)

. (2.2)

In this case, dEGW (fs; ~θ)/dfs is the energy spectrum of the source in the source frame,

fs is the source frequency, and E(ΩM ,Ωλ, z) accounts for cosmology. We have also set

a cutoff for our integration over redshift at zmax.

It is customary to treat the background due to BBHs and BNSs separately due to
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differences in their energy spectra, formation conditions, and mass distributions. For

BNS systems, only the inspiral phase is considered because the merger happens at

a higher frequency, which means the energy spectrum is dE/dfs ∝ M
5/3
c f

−1/3
s where

Mc is the chirp mass of the system. In this case, ΩGW(f) ∝ f2/3. For BBHs, it is

common to consider full waveforms that include the merger and ringdown phase as

well [66, 70, 87, 65, 88].

The merger rate is typically assumed to track the star formation rate with some

time delay

Rm(z; ~θ) =

∫ tmax

tmin

Rf (zf ; ~θ)p(td; ~θ) dtd, (2.3)

where Rf (zf ; ~θ) is the binary formation rate at the time a binary is formed, zf is the

redshift at the formation time, and tmin is the minimum time delay between formation

of the binary system and merger. The formation time of the system can be written as

tf = t(z)− td, where t(z) is the merger time and td is the delay time from formation to

merger of the binary events. When using equation (2.3), we will use the star formation

rate from [89], although the final SGWB estimates are somewhat insensitive to the

choice of SFR. In general it is assumed that p(td) ∝ t−1
d . For BBH events, tmin is chosen

to be 50 Myr and for BNS events tmin = 20 Myr [28]. Rm is normalized to the local

rate (i.e. z = 0), which is estimated from LIGO observational results. For BBH events

where either component mass is > 30 M�, the binary merger rate is rescaled based on

the fraction of star formation at metallicity Z < Z�/2 because high-mass BBHs tend

to form in metal-poor environments [90, 28, 86].

For BNS events, the masses are drawn uniformly between 1 and 2 M� and the

local merger rate is estimated to be Rm(0, ~θ) = 1540+3200
−1220 Gpc−3yr−1 [18]. Replacing

the uniform distribution of masses with a Gaussian distribution centered on 1.4 M�

changes the results by less than the Poisson error in the merger rate [28]. For BBH

events we assume component masses where m1, m2 are greater than 5 M�, m1 > m2,

and m1+m2 < 100 M�. We also assume a power-law distribution in the first component

mass, p(m1) ∝ m−2.35
1 , and uniform for the other mass. Under this assumption, the

local merger rate of BBHs is taken to be Rm(0, ~θ) = 103+110
−63 [91, 15].

The resulting estimates for the BBH and BNS contributions to the SGWB are

summarized in figure 2.1, which is reproduced, with slight modifications, from [28].
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Figure 2.1: We show the expected SGWB due to unresolved binary mergers. The
sensitivity curves are shown as 1σ power law integrated curves (PI curves) [92] integrated
over 1 year. Any line crossing a PI curve for a large section of frequency space is
detectable by that search at the 2σ level. This plot is reproduced (with some minor
formatting changes) from [28].

2.1.2 Rotating neutron stars

Another source of persistent GWs are rapidly rotating neutron stars. These are most

commonly observed in the form of radio pulsars, named for their periodic pulses of radio

waves. The searches for an SGWB that I will discuss later can be used to search for an

ensemble of non-axisymmetric rotating neutron stars that are distributed on the sky.

However, the last search method I will discuss has also been modified to target specific

directions where we expect isolated neutron stars or neutron stars in binary systems.

Here, I will briefly discuss all three cases.

Isolated rotating neutron stars

A rapidly rotating neutron star that is not axisymmetric will emit GWs. GW emission,

in concert with magnetic braking, will contribute to the slow increase in the period

of rotation of the neutron star, often referred to as “spin-down.” The typical strain
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amplitude for a neutron star that has some ellipticity is

h0 =
16π2G

c4

εIzzf
2

r
. (2.4)

In the above expression, f is the rotational frequency of the neutron star, Izz is the

moment of inertia about the principle axis, ε = (Ixx − Iyy)/Izz is the ellipticity of the

star, and r is the distance from the source. The time evolution of this signal in a GW

detector is nearly periodic, and can be written as

h(t) = F+(n̂, ψ)h0 cos ι cos(2φ(t)) + F×(n̂, ψ)h0

[
1 + cos2 ι

2

]
sin(2φ(t)). (2.5)

We have used ι, the angle between the spin axis and the line of site, and F+,×, the de-

tector responses to plus and cross-polarizations, which will be discussed further in sec-

tion 2.3.1. It is also worth noting that the frequency of the GW signal is twice the

frequency of rotation of the neutron star. That is, φ(t) is the phase of the rotation of

the neutron star.

It is possible to use conservation of energy to put a näıve upper limit on the GW

emission of an isolated neutron star that is spinning down. If one assumes that the

spinning down of the neutron star is solely due to the emission of GWs, then it can be

shown that [93, 94]

hSD =

(
5

2

GIzz|ḟ |
c3r2f

)1/2

. (2.6)

Recent results from LIGOs first observing run include limits on 200 isolated radio pul-

sars. Eight of these limits are lower than the spin-down limit, while another 32 are

within an order of magnitude of this limit [23].

Accreting neutron stars

Accreting neutron stars in binary systems with a low-mass donor often exhibit high X-

ray emission as particles fall onto the neutron star and rapidly heat up. These systems

are most obviously visible when the neutron star is accreting near its Eddington limit,

and are typically referred to as low mass X-ray binary (LMXB) systems [95]. In these

systems, neutron stars are subject to torque both due to the accreting mass, which will
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spin the star up, and due to GW emission, which will spin it down.

Most neutron stars observed in these systems have relatively stable spins in a range

near ∼ 250− 650 Hz [96], which is well below most theoretical limits for the maximum

spin frequency. This has led some to postulate that the neutron star is in equilibrium.

If one assumes equilibrium and that all X-ray emission is due to accretion onto the

neutron star, then there is a direct relationship between the strain amplitude and the

X-ray flux [97]

h0 = 5× 10−27

(
300 Hz

frot

)1/2( Fx

10−8 erg cm−2 s−1

)1/2

. (2.7)

It is evident from this expression that the largest source of GWs correspond to the

brightest X-ray sources, which suggests that a useful target would be the first-discovered

and largest source of extra-solar X-rays: the LMXB Scorpius X-1 [98]. Given that the

spin frequency of the neutron star in Scorpius X-1 is unknown, it is possible to use the

X-ray flux to set a frequency-dependent estimate of the strain amplitude [99], commonly

referred to as the “torque-balance limit”

hscox1
0 (f) ≈ 3× 10−26

(
540 Hz

f

)1/2

. (2.8)

Detection of ensemble of neutron stars

We can also search for the collective contribution to the SGWB of GWs from rapidly

rotating neutron stars in the Milky Way. This involves constructing an estimate of

the frequency distribution of neutron stars in the galaxy using either a catalog or a

population synthesis model, as discussed in [29]. One can also construct a model for

the distribution of those stars on the sky using pulsar catalogs [100]. As we will see

in section 2.4, it is possible to create an optimal cross-correlation search for such a

distribution. While we will not discuss this further here, work by other members of

LIGO on constructing such a search is ongoing.

The discussion in the previous paragraph does not target known radio pulsars, in-

stead attempting to look for the background due to unresolved rapidly rotating neutron

stars. If assumptions are made about the ensemble properties of some set of known ra-

dio pulsars, it is possible to optimally combine their individual detection statistics into
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one final detection statistic. I will not discuss such a search further, but a discussion of

a possible implementation can be found in [101].

2.1.3 Early universe models

There are numerous models for GW production in the early universe. A few common

models are those involving amplification of vacuum fluctuations at the end of infla-

tion [72, 32, 73, 74, 75, 76, 31, 77], GW production as a result of phase transitions in

the early universe [32, 78, 79], and pre-Big bang models [102, 103, 104].

A direct detection of relic GWs would be a monumental discovery. However, reaching

that point requires a thorough understanding of the astrophysical foreground. General

rules of thumb for the characteristic amplitude and frequency of relic GWs are somewhat

common in the literature [32, 105] and for phase transitions models, for example, tend to

indicate a background in the range of ΩGW ∼ 10−12±2. A detection at this level would

require third generation ground-based detectors with phenomenal low-frequency sensi-

tivity or a detection at a lower frequency band by Pulsar timing arrays [106, 107, 108]

or proposed detectors like LISA [109], Big Bang Observatory [110], or DECIGO [111].

The spectral shape of relic GWs is heavily model dependent, and I will not discuss

the details of any specific models here. Many cosmological models produce a flat spec-

trum for ΩGW, and so the flat spectrum limit tends to be the “value of merit” used in

many LIGO searches. However, as I will discuss in chapter 5, we are developing meth-

ods for searching for and distinguishing between differently-shaped spectra and making

statements about how well the data support some models over others.

2.2 Current limits on the SGWB

A good discussion of limits on the SGWB across many decades in frequency can be found

in [112]. These limits fall into broad categories of “direct” and “indirect.” Observations

of both type are vital to an understanding of the GW spectrum across the history of the

Universe. Direct limits include those made from attempts to directly observe the effect

of GWs on the detector. These include limits made by ground-based interferometers like

LIGO and Virgo, which fall into the frequency band from 10− 103 Hz, and those from

pulsar timing arrays (PTAs), which fall in the band from 10−9 − 10−7 Hz. The most
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recent limits from LIGO were the first from advanced detectors [113] and a detection of

an astrophysical background could come in the next decade [28]. Limits from the Parkes

Pulsar Timing Array (PPTA) [106] are beginning to reach the expected background due

to super massive back holes, as are a few other PTA collaborations [108, 107].

Observational limits based on the effect of GWs on the CMB polarization attempt

to put constraints on the tensor-to-scalar ratio, r, as well as the spectral index of the

GW power spectrum. These tend to fall into the region of 10−17 − 10−15 Hz. Recent

limits come from the BICEP2 and Keck arrays [114], Planck [115], and SPTpol [116].

Indirect limits based on Big Bang Nucleosynthesis (BBN) and Baryon Acoustic Os-

cillations (BAO) are limits on the total, integrated, GW energy density at the epoch

at which they are measured. These can be converted into spectra using the formal-

ism of power-law integrated curves [92] under the assumption that the SGWB is well-

characterized by a power law and has some maximum frequency cut-off (often chosen

to be consistent with frequencies at the scale of inflation) [112].

Figure 2.2: We show limits on the SGWB in the form of power law integrated (PI)
curves [92]. Limits from LISA are made using the assumptions from [92], while those
for indirect limits are the BBN and BAO limits, as displayed in [112], and CMB mea-
surements are from [117]. Pulsar timing limits are from [106]. This plot is reproduced
from [113].

LIGO will continue to set limits on, and hopefully detect, an SGWB. As this hap-

pens, it will be important to keep in mind the context of these limits in the broader

field of GW cosmology.
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2.3 A cross-correlation search for an Isotropic SGWB

We want to effectively search for an SGWB, but we have no a priori template for how

the SGWB will manifest itself in the output of our detectors. Instead, we cross-correlate

the output of our detectors and rely on the fact that the SGWB will show up similarly

in both detectors. In this section, I will discuss how an isotoropic superposition of

GW plane waves interact with an interferometric detector and what that means for the

cross-correlation of two detectors that are mis-aligned and spatially separated. I will

then discuss an optimal search for an isotropic SGWB based on this cross-correlation

method.

2.3.1 Effect of a plane-wave on LIGO detectors

We can down metric perturbations in the transverse-traceless gauge [63],

hab(t, ~x) =
∑
A

∫
df

∫
dn̂ hA(f, n̂)e2πif(t−n̂·~x/c)eAab(n̂), (2.9)

where A is represents polarization and eAab(n̂) is a polarization tensor. Next we specify

our coordinate system in terms of the polar angle, θ, and the azimuthal angle, φ, defining

n̂ as the direction of propagation of the wave

n̂ = cosφ sin θx̂+ sinφ sin θŷ + cos θẑ (2.10)

m̂ = cosφ cos θx̂+ sinφ cos θŷ − sin θẑ (2.11)

l̂ = − sinφx̂+ cosφŷ. (2.12)

The choice of m̂ and and l̂ are somewhat arbitrary, as we can rotate them around n̂

by some angle ψ and keep a right-handed coordinate system. Some sources of GWs

that have a well-defined axis of symmetry interpret ψ as the polarization angle of the

source [118].

We define our polarization tensors in terms of these coordinates

e+
ab(n̂) = m̂am̂b − l̂a l̂b (2.13)

e×ab(n̂) = m̂a l̂b + m̂b l̂a. (2.14)
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The interaction between the different polarizations of a plane-wave and an interferometer

with arms in the X̂ and Ŷ directions is then given by

FA(n̂) = eAab
1

2

(
X̂aX̂b − Ŷ aŶ b

)
, (2.15)

which is sometimes referred to as the “antenna pattern” or the “detector response.”

We use this to write down the GW strain measured by a given detector (we will call it

detector “1”)

h1(t, ~x1) =
∑
A

∫
df

∫
dn̂ hA(f, n̂)FA1 (n̂)e2πif(t−n̂·~x1/c). (2.16)

2.3.2 Cross-correlation of separated and misaligned detectors

We have no deterministic model for how the SGWB will show up in the time-domain

in our detectors. Therefore, we cross-correlate the output of our two detectors. A GW

signal will show up differently in two detectors that are not colocated and co-aligned, but

if we make some reasonable assumptions about the GW background (namely isotropy,

stationarity, and that the background is unpolarized) then we can calculate how the

GW signal will be different in the two detectors.

We begin by constructing a cross-correlation estimator in the frequency domain

Y =

∫
df

∫
df ′δT (f − f ′)s̃∗1(f)s̃2(f ′)Q̃(f ′). (2.17)

where s̃1(f) = ñ1(f)+ h̃1(f) is the output of the detector in the Fourier domain, and h1

represents the gravitational-wave signal in detector 1, while n1 represents the intrinsic

detector noise in detector 1. Tilde indicates Fourier transform and an asterisk indicates

complex conjugation. We have added an an arbitrary, Q̃(f), which we will eventually

use to maximize our signal-to-noise ratio. δT (f − f ′) is the finite time approximation

to the Dirac delta function, where δT (0) = T and T is the observation time. If we

consider the expectation value of this quantity and assume that the detector noises are

uncorrelated with the GW signal and themselves (an assumption we will come back to
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in chapter 5), we find

〈Y 〉 =

∫
df

∫
df ′ δT (f − f ′)〈h̃∗1(f)h̃2(f ′)〉Q̃(f ′). (2.18)

The expression inside of the integration can now be re-expressed according to equa-

tion (2.16)

〈h̃∗1(f)h̃2(f ′)〉 =
∑
A

∑
A′

∫
dn̂ dn̂′ 〈h∗A(f, n̂)hA′(f

′, n̂′)〉FA1 (n̂)FA
′

2 (n̂′) (2.19)

× e2πif(t−n̂·~x1/c)e−2πif ′(t−n̂′·~x2/c). (2.20)

The two-point correlation function inside of the integral is where we now impose some

assumptions about the SGWB. We assume statistical independence for GWs of differ-

ent polarizations, frequency, and direction. We also assume that the background is

stationary. This is equivalent to saying that

〈h∗A(f, n̂)hA′(f
′, n̂′)〉 = δ(f − f ′)δ2(n̂, n̂′)δA,A′H(f), (2.21)

where H(f) is the gravitational wave power spectrum. If we substitute equation (2.21)

into equation (2.19) then we find

〈h̃∗1(f)h̃2(f ′)〉 =
8π

5
δ(f − f ′)H(f)γ(f). (2.22)

We have defined the overlap reduction function

γ(f) =
5

8π

∑
A

∫
dn̂ FA1 (n̂)FA2 (n̂)e2πifn̂·∆~x/c, (2.23)

which depends upon the separation, ∆~x = ~x1−~x2, and orientation (encapsulated in the

F functions) of the two detectors. The normalization is chosen such that γ(f) = 1 for

colocated and co-aligned detectors. A plot of γ(f) for several different detector pairs

can be found in figure 2.3. If we substitute this expression back in to equation (2.18)

we find

〈Y 〉 =
8π

5
T

∫
df γ(f)H(f)Q̃(f) (2.24)
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Figure 2.3: The overlap reduction function for several different detector pairs.

We have taken two finite-time Dirac delta functions and made one a “true” Dirac delta

function and integrated over it, while evaluating the other at f = f ′, giving us a factor

of T [63]. Now we would like to rewrite this in terms of ΩGW(f), which we defined back

in equation (2.1). We note that ρGW = c2

32πG〈ḣ(t, ~x)ḣ(t, ~x)〉. The expectation can be

written down in the frequency domain for the plane-wave expansion. We get a factor

of 4π2f2 from the derivatives, a factor of 4π from the integration over direction, and

a factor of 2 if we decide to integrate over only positive frequencies. We end up with

ρGW = 4πc2

G

∫∞
0 f2H(f) df . Substituting this back in to equation (2.1) and substituting

in for ρc we can solve for H(f)

H(f) =
3H2

0

32π3
f−3ΩGW(f). (2.25)

Putting this back in to equation (2.24) we see our cross-correlation is now in terms of

ΩGW(f)

µ = 〈Y 〉 = T
3H2

0

20π2

∫
df f−3γ(f)ΩGW(f)Q̃(f). (2.26)

Note that our cross-correlation statistic loses sensitivity to ΩGW at higher frequencies.

This is one motivation for improving the sensitivity of ground-based detectors at lower
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frequencies; something that I explore in chapter 6.

Next we need to explore the variance of our statistic 〈Y 〉,

σ2 = 〈Y 2〉 − 〈Y 〉2 ≈ 〈Y 2〉. (2.27)

We are still using the assumption that the signal and the detector noise are uncorrelated,

and so terms that look like 〈hn〉 and 〈n1n2〉 are taken to be zero. If we assume that

our signal is much smaller than the intrinsic noise in our detectors, then we can ignore

terms that look like h2. It follows that

σ2 =
T

4

∫
df P1(f)P2(f)|Q̃(f)|2, (2.28)

where we have defined the power spectral density of the detector

〈ñ∗1(f)ñ2(f ′)〉 =
1

2
δT (f − f ′)P1(|f |). (2.29)

Following [119] we define an inner product,

(A,B) =

∫ ∞
−∞

df A∗(|f |)B(|f |)P1(|f |)P2(|f |), (2.30)

where the P ’s are the power spectral densities of our detectors. Our statistic and its

variance can now be written in this notation

µ =
3H2

0

20π2
T

(
γ(f)ΩGW(f)

f3P1(f)P2(f)
, Q̃(f)

)
(2.31)

σ2 =
T

4

(
Q̃(f), Q̃(f)

)
(2.32)

SNR2 =
µ2

σ2
=

(
3H2

0

10π2

)2

T

(
γ(f)ΩGW(f)
f3P1(f)P2(f)

, Q̃(f)
)2(

Q̃(f), Q̃(f)
) . (2.33)

It is now evident that the expression for the square of the signal-to-noise ratio, SNR2,

looks like a projection onto the filter function, and so the filter should be given by

Q̃(f) = N γ(f)ΩM
GW(f)

f3P1(f)P2(f)
(2.34)
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where ΩM
GW(f) is now a spectral shape that weights frequency bins according to some

expectation of the spectral shape of the SGWB. Common choices include a flat spectrum,

and a powerlaw weighting according to f2/3 to match the expected background due to

CBC signals [120]. In the powerlaw case, ΩM
GW(f) = (f/fref )α. In chapter 5 we will

discuss an estimator for the background in each individual frequency bin and how that

can be used to extract information about the spectrum of the SGWB. If we consider the

broadband spectrum, though, it makes intuitive sense that our SNR will be maximized

when we use an optimal filter that matches the true spectrum of the SGWB. One can,

of course, do the search over a range of optimal filters and attempt to maximize the

SNR.

The optimal SNR for a given background1 is then

SNR =
√
T

3H2
0

10π2

[∫ ∞
−∞

df
γ2(|f |)Ω2

GW(|f |)
f6P1(|f |)P2(|f |)

]1/2

. (2.35)

The SNR is proportional to
√
T , which means that the longer we observe, the larger

the SNR. As noted previously, the SNR is proportional to f−3, which means that we

are more sensitive at lower frequencies.

When we substitute equation (2.34) in to equation (2.17), we complete the definition

of our cross-correlation statistic, up to an overall normalization factor. It is common

practice to choose a normalization factor that causes the expectation value of our statis-

tic to be proportional to the energy density, 〈Y 〉 ∝ TΩα where Ωα is the amplitude of

a power law with spectral index α at some reference frequency fref. In that case the

normalization for our statistic, with an optimal filter for a power law of spectral index

α, comes out to

Nα =

[
3H2

0

20π2

∫
df
γ2(f) (f/fref)

α

f6P1(f)P2(f)

]−1

. (2.36)

2.3.3 Bin-by-bin estimator

Using a similar calculation to the one in the previous section, we can calculate an

estimator for ΩGW(f) in each frequency bin, as opposed to an integrated statistic that

assumes a power law [118, 121]. This will be useful for several studies we present in

1By this we mean that our spectral model matches the true spectral shape of ΩGW(f).
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future chapters. We use a hat to denote that this is a measured quantity.

Ω̂GW(f) =
2

T

f3

γ(f)

10π2

3H2
0

Re [s̃∗1(f)s̃2(f)] (2.37)

σ2(f) =
1

2T∆f

f6

|γ(f)|2
(

10π2

3H2
0

)2

P1(f)P2(f).

2.3.4 Noise non-stationarity

One of the implicit assumptions of the derivation we have presented is that the power

spectral density of the instrumental noise of each detector is constant over the obser-

vation time. In practice, this is not true. Anthropogenic noise can cause a marked

increase in the noise floor during the day as compared to night time. A general rule of

thumb is that the noise changes by ∼10% on 10 minute time scales.

The non-stationarity of noise in our detectors leads us to break the analysis into

smaller segments, and combine those segments together. Generally, we choose 60 s

chunks of time, but in some analyses where finer frequency resolution is needed we have

used as long as 192 s segments [122, 24, 84]. Combining segments is done assuming each

individual segment is drawn from a separate Gaussian distribution

Ŷ =

∑
i Ŷiσ

−2
i∑

i σ
−2
i

(2.38)

σ2 =

(∑
i

σ−2
i

)− 1
2

where i labels time segments. This method naturally weights times of higher noise less

than times of lower noise, and optimizes the final SNR.

2.3.5 Setting upper limits and extracting information from the search

Traditional upper limits and detection methods

The SNR that we have constructed should, in principle, be normally distributed with

a mean given by the measured background and variance of unity. This tends to be

true in practice as well. This is because the analysis is done over many short time

segments which are combined in post-processing into one final estimator and uncertainty
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measurement. The central limit theorem then says that the sum over these many time

segments should give us a final statistic that is drawn from a normal distribution.

What has been done in the past is to look at the optimal SNR for several values of α

that are consistent with some common models for the spectral shape of the background.

The typical choices are α = (0, 2/3, 3). A “soft” detection would then correspond to an

SNR of 3 and a gold-plated detection would be an SNR of 5.

If SNR< 3 for the values of α we have chosen, we then set upper limits on Ωα for

several values of α. The 90% upper limit Ω90
α is then defined as:

0.90 =

∫ Ω90
α

−∞
p(Ω̂α|Ωα)p(Ωα) dΩα (2.39)

0.90 =

∫ Ω90
α

0

1√
2πσ2

e
− (Ω̂α−Ωα)2

2σ2
α dΩα. (2.40)

We have now defined our measurement using hats, Ω̂α = 〈Yα〉/T . In this case, p(A|B)

means the conditional probability of statement A given statement B, and p(Ωα) is the

prior probability we set on the background having a specific amplitude. This could be

from a previous measurement, or some model we have. Moving from the first line to

the second line above assumes a flat prior probability distribution (i.e. no preference).

We performed the upper limits using data that is a frequentist optimal estimator, but

with a Bayesian framework so that we can impose the fact that physically Ωα will be

greater than or equal to zero, but our estimator Ω̂α can be negative. We will use a

similar methodology in chapter 5 as well.

If there is uncertainty in the calibration of the detectors, then it is also common to

marginalize over that uncertainty in the above expression. Typically, we assume that

instead of being proportional to Ωα our estimator is proportional to λΩα where λ repre-

sents some calibration factor that is normally distributed with mean 1 and uncertainty

σλ, determined by the calibration process [123].

Joint limits on Ωα vs. α can also be set, and will be discussed in chapter 5.
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2.4 A cross-correlation search for an anisotropic SGWB

The assumption that the SGWB is isotropic is likely a good one if the SGWB is dom-

inated by GWs of primordial origin. If the SGWB is dominated by a limited number

of astrophysical sources, the assumption may not hold. It is also worthwhile to take an

eyes wide open approach to searching for an SGWB, and part of this means relaxing

assumptions that we have made when constructing our search. In [124], the authors lay

out a method to create an optimal filter based on a known distribution of GW power

on the sky using harmonics in the GW spectrum caused by the rotation of the earth.

More recent discussions, like those in [125, 126] attempt to solve the inverse problem of

inferring the GW power on the sky given the data.

Current searches for an anisotropic SGWB with LIGO fall into two categories: a

search for point sources (“radiometer”) [127, 125] and a search for diffuse sources using a

spherical harmonic decomposition [126]. The original presentation of these searches, on

the surface, appear to be quite different. However, [118] offers a very natural connection

of the two methods that highlights assumptions made in each case, and so the presenta-

tion of these searches draws heavily from discussions in that review article. In addition,

a very similar formalism is used in chapter 6 to explore the directional dependence of

the seismic field.

2.4.1 Directional dependence of the SGWB

A natural extension to the previous analysis is to assume that the GW power has a

directional dependence, P (n̂). We will assume that the frequency dependence of the

anisotropic background is not direction dependent, and so the GW power can be factored

into a directional term and a frequency term

H(f, n̂) = S(f)P (n̂), (2.41)

where S(f) is dimensionless and weights our frequency spectrum according to some

model, and P (n̂) carries units of strain power per steradian. This means that the
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power, P (n̂), does not pull out of the integral in equation (2.19) and so instead we find

〈Ĉ(t; f)〉 =
2

τ
〈s̃1(t; f)s̃2(t; f)〉 =

5

8π
S(f)

∫
dn̂ P (n̂)γ(t; n̂, f), (2.42)

where γ(t; n̂, f) is the integrand of equation (2.23). We have changed the definition of

our statistic a bit from the previous section, normalizing the cross-correlation by the

observation time and removing the finite-time Dirac delta; however, the delta function

in the definition of 〈h(f)h(f ′)〉 still gives us a factor of τ that cancels with the one in

the denominator. The variable t is a label that represents the mid-point of the time

over which this cross-correlation was done. The rotation of the earth causes γ(t; n̂, f) to

change over the course of a sidereal day. Therefore, we need to break our analysis into

many time segments. We then evaluate γ(t; n̂, f) at the midpoint of each time segment

of the analysis. To reduce error due to the rotation of the earth, we choose segments of

duration τ � Tsidereal day but much larger than the travel time between the detectors.

This does not change the analysis in practice, as we already break the analysis into

segments of time with duration between 60 − 200 s because the assumption that the

noise in the detector is stationary does not hold over long time-scales (see section 2.3.4).

We can also project P (n̂) onto a set of basis elements Qα(n̂), such that P (n̂) =∑
α PαQα(n̂). If we do this, then we rewrite equation (2.42) as

〈C(t; f)〉 =
5

8π
S(f)Pα

∫
dn̂Qα(n̂)γ(t; n̂, f)

=
5

8π
S(f)γα(t; f)Pα, (2.43)

where γα(t; f) ≡
∫
dn̂Qα(n̂)γ(t; f, n̂). The basis elements, Qα(n̂), could correspond to

spherical harmonics, Ylm(n̂), or pixels, where Qn̂′(n̂) = δ2(n̂, n̂′).

If we consider a vector of time, frequency pairs, labeled with (f, t), then equa-

tion (2.43) can be written abstractly as

Ĉ(f,t) = M(f,t),αPα (2.44)

where matrix multiplication has taken the role of integration over directions on the sky,

and M(f,t),α = 5
8πS(f)γα(t; f).
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We can also write down the covariance matrix for our cross-correlation statistic over

many times and many frequencies, assuming small signals, no correlated noise between

detectors, and stationary noise

Ntf,t′f ′ = 〈Ĉ(t; f)Ĉ(t′; f ′)〉 − 〈Ĉ(t; f)〉〈Ĉ(t′; f ′)〉 (2.45)

≈ δt,t′δf,f ′P1(t; f)P2(t; f).

From here, we generate an abstract Gaussian likelihood using our matrix representation

ln p(Ĉ|P ) = −1

2

(
Ĉ(f,t) −M(f,t),αPα

)†
(N−1)(f,t),(f ′,t′)

(
Ĉ(f ′,t′) −M(f ′,t′),α′Pα′

)
.

Supressing indices for a moment, the maximum-likelihood estimators for our power

distribution P follow immediately, P̂ = F−1X where

F ≡M †N−1M , and X ≡M †N−1Ĉ. (2.46)

The matrix F is the Fisher information matrix, the matrix X is referred to as the “dirty

map,” and P̂ is referred to as the “clean map.” It is worth pointing out that F may not

be invertible, and so it may require regularization. If we put our indices back in, then

we can write down F and X in terms of our previous quantities

Xα =
∑
t

∑
f

γ∗α(t; f)
S(f)

P1(t; f)P2(t; f)
Ĉ(t; f) (2.47)

Fα,α′ =
∑
t

∑
f

γα(t; f)
S2(f)

P1(t; f)P2(t; f)
γα′(t; f). (2.48)

It also follows simply from our likelihood function that the variance of our estimators

P̂ is given by the inverse of the Fisher matrix. If the Fisher matrix is not invertible, we

will need to regularize it, which introduces a bias in our recovered parameters and in

their variance.
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GW radiometer

We take point sources from widely-separated directions as a signal model for the GW

power on the sky:

P (n̂) = Pn̂0δ(n̂, n̂0). (2.49)

This would be applicable to a GW background dominated by a limited number of widely-

separated point-sources (how widely separated depends on the point-spread function,

given by the elements of the Fisher matrix [118]). Signals that are close enough together

on the sky will interfere with one another. In this method, the inverse of the Fisher

matrix, used in the definition of our estimators, gets replaced by the reciprocal of the

diagonal elements of the Fisher matrix:

P̂n̂ = (Fn̂,n̂)−1Xn̂. (2.50)

This method ignores correlations between neighboring pixels. This method should not

be confused with simply using a pixel basis for our definition of the Fisher matrix and

the dirty map. This is a choice of basis, but it is also an explicit assumption that the

point-spread function is small and that when we have many time segments covering

most of the sidereal day, the correlation between pixels is smaller than the spread of

sources we will attempt to recover with this method.2

In the end, this method becomes equivalent to explicitly defining an estimator for

each location on the sky, in analogy with equation (2.17)

Y (t; n̂) =

∫ ∞
−∞

df s̃∗1(t; f)s̃2(t; f ′)Q(t; f ′, n̂) (2.51)

Q(t; f, n̂) ∝ γ(t; f, n̂)S(f)

P1(f)P2(f)
. (2.52)

Within the GW community, this was the traditional starting point for the GW radiome-

ter analysis [125, 127]. In any case, the interpretation of a map created with the GW

radiometer method should always be that each pixel is a measurement of the GW power

from a potential point source coming from that direction. It should not be interpreted

2I make this point so vociferously because we will use a similar method in chapter 6 where we use
the pixel basis but we will perform a full inversion of the Fisher information matrix.
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as an unbiased map of the GW power on the sky.

An estimate of the correlation between pixels is found by looking at the rows of the

Fisher matrix, sometimes referred to as a point spread function. Plotting a map of a

single row of the Fisher matrix corresponds to how a signal at the direction associated

with that row gets spread into other pixels. An example of the point-spread function

for different choices of S(f) and different declinations is shown in figure 2.4. A full

characterization of the Fisher matrix for this method (including full inversion techniques

that extend it), along with an analytical estimate of the point-spread function using a

stationary-phase approximation can be found in [127].

Spherical harmonic decomposition

If we take diffuse sources to be our signal model, then it makes sense to decompose the

sky onto spherical harmonics (we refer to this as the “SHD” method). We can create

an overlap reduction function in that basis by decomposing γ(t; f, n̂) onto spherical

harmonics

γ(t; f, n̂) =
∞∑
l=0

l∑
m=−l

γlmY
∗
lm(n̂) (2.53)

γlm =

∫
dn̂ γ(t; f, n̂)Ylm(n̂). (2.54)

Equations (2.47) and (2.48) still hold, where now α = (lm), and our estimators are now

P̂lm = (F−1)lm,l′m′Xl′m′ .

In general, our search is not sensitive to arbitrarily small angular scales, and therefore

arbitrarily high l’s. A rough estimate of the maximum l to which we are sensitive comes

from looking at the diffraction limited spot size

θ =
c

2df
(2.55)

lmax ≈ π/θ. (2.56)

In this case f is roughly the frequency that contributes the most to our sensitivity

and d is the distance between our detectors. For f ≈ 50 Hz we find lmax ≈ 3 and for

f ≈ 250 Hz we have lmax ≈ 16 [24].
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Gaussian for Neff ! 100. Additionally the SNR distribu-
tion also passes a Kolmogorov-Smirnov test forNeff ! 100
at the 90% significance level.

The number of independent points Neff , which in effect
describes the diffraction limit of the LIGO detector pair,

was estimated by 2 heuristic methods.
(i) Spherical harmonics decomposition of the SNR

map. The resulting power versus l graph shows
structure up to roughly l ! 9 and falls off steeply
above that—the l ! 9 point corresponds to one
twentieth of the maximal power. The effective num-
ber of independent points then is Neff " #l $ 1%2 !
100.

(ii) FWHM area of a strong injected source, which is
latitude dependent but of the order of 800 square
degrees. To fill the sky we need about Neff " 50 of
those patches. We used the higher estimate Neff !
100 for this discussion.

Figure 4 suggests that the data are consistent with no
signal. Thus we calculated a Bayesian 90% upper limit for
each sky direction. The prior was assumed to be flat
between zero and an upper cutoff set to 5 & 10' 45 Hz' 1

at 100 Hz, the approximate limit that can be set from just
operating a single LIGO interferometer at the S4 sensitiv-
ity. Note, however, that this cutoff is so high that the upper
limit is completely insensitive to it. Additionally we margi-
nalized over the calibration uncertainty of 8% for H1 and
5% for L1 using a Gaussian probability distribution. The
resulting upper limit map is shown in Fig. 5. The upper
limits on the strain power spectrum H#f% vary between
1:2 & 10' 48 Hz' 1 #100 Hz=f%3 and 1:2 & 10' 47 Hz' 1

#100 Hz=f%3, depending on the position in the sky. These
strain limits correspond to limits on the gravitational
wave energy flux per unit frequency F#f% varying
between 3:8 & 10' 6 erg cm' 2 Hz' 1 #100 Hz=f% and 3:8 &
10' 5 erg cm' 2 Hz' 1 #100 Hz=f%.

FIG. 3 (color). Point spread function A#!̂; !̂0% of the radiome-
ter for ! ! ' 3 (top two figures) and for ! ! 0 (bottom two
figures). Plotted is the relative expected signal strength assuming
a source at right ascension 12 h and declinations 20( and 60(.
Uniform day coverage was assumed, so the resulting shapes are
independent of right ascension. An Aitoff projection was used to
plot the whole sky.
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FIG. 4. S4 Result: Histogram of the signal-to-noise ratio
(SNR) for ! ! ' 3. The gray curve is a maximum likelihood
Gaussian fit to the data. The black solid line is an ideal Gaussian,
the two dash-dotted black lines indicate the expected one sigma
variations around this ideal Gaussian for 100 independent points
(Neff ! 100).

UPPER LIMIT MAP OF A BACKGROUND OF . . . PHYSICAL REVIEW D 76, 082003 (2007)

082003-7

Figure 2.4: A map of the point-spread functions for the GW radiometer method. This
plot is reproduced from [122]. The first two are injections at two different declinations
for S(f) = (f/fref)

−3 and the second two are for S(f) = const.

The relatively poor resolution of our search might also lead one to think that there

are directions to which we are not sensitive. In fact, this is the case, and one symptom

of this issue is that the Fisher matrix is singular. The typical procedure in this case

is to regularize the matrix. We perform a singular value decomposition of the Fisher
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matrix and impose a minimum cut-off for the singular values. That is, all singular values

below some minimum value are either set to zero or are set to the minimum value. A

singular value decomposition is effectively a method of diagonalization where we factor

the Fisher matrix into three matrices

F = UΣV † (2.57)

If F is an n ×m matrix, then U is n × n, Σ is n ×m and V is m ×m.3 The singular

values are then the diagonal elements of Σ, assumed (without loss of generality) to be

arranged in decreasing order. We can define the pseudo-inverse of the Fisher matrix

F+ = V Σ+U † (2.58)

where Σ+ is generated by imposing the cutoff and then taking the reciprocal of the

remaining diagonal elements of Σ. We now define a new estimator based on the pseudo-

inverse

P̂lm = (F+)lm,l′m′Xl′m′ . (2.59)

There is a bias introduced by this method of matrix inversion. It can be estimated by

looking at F+F 6= I4. In addition, the proper variance of our new estimator is written

in terms of this bias: var
(
P̂lm

)
= F+FF+ [126].

From these estimators, it is also possible to calculate the angular power spectra,

Cl [126]. These describe the angular scale structure in the clean map. Like the other

parameters, they require an adjustment due to bias introduced by regularization of the

Fisher matrix

Ĉl ≡
1

2l + 1

∑
m

(
|P̂lm|2 − (F+)lm,lm

)
. (2.60)

The estimators, P̂lm, can also be converted back into estimates of the GW power in

each pixel on the sky

P̂ (n̂) =

lmax∑
l=0

m=l∑
m=−l

P̂lmY
∗
lm(n̂). (2.61)

3In this specific case, F is a square matrix, but that does not necessarily need to be the case to
construct a pseudo-inverse using this method.

4A longer discussion of this in the present context is given in [118], while a similar issue is discussed
in greater detail for the Homestake seismic array in chapter 6.



44

These can then be used to create a map of the GW power or GW energy density on the

sky.

Making a detection and setting limits with the GW radiometer and SHD

searches

As with the isotropic search, we assume that the integration over many time segments

and many frequency bins means that our estimators are Gaussian random variables.

However, using either the GW radiometer method or the SHD method, it is clear that

individual pixels will be correlated with one another. Therefore, we simulate maps by

generating many realizations of the dirty map, Xα using the measured covariances from

the fisher matrix Fα,α′ . We perform ∼ 1000 realizations to generate a distribution of

pixel SNRs. We then use this distribution to assess the significance of the loudest pixel

SNRs in our recovered maps.

In the case where we do not make a detection, we set upper limits on each pixel

independently using the same method as in equation (2.39).

Reporting results for the GW radiometer and SHD searches

Past analyses reported results for these two searches in terms of strain power, i.e. the

units of H(f). However, the most recent set of analyses [24] have chosen to use a more

intuitive set of units. The SHD analysis is reported as a map of the energy density

parameter, ΩGW(f, n̂). This can be expressed in terms of the strain power5

ΩGW(f, n̂) =
8π2

3H2
0

f3S(f)P (n̂) (2.62)

ΩGW(f, n̂) =
8π2

3H2
0

f3

(
f

fref

)α−3

P (n̂) (2.63)

In terms of our estimators, and after integrating over frequency, the map is

Ω̂α(n̂) =
8π2

3H2
0

f3
ref

lmax∑
l=0

l∑
m=−l

P̂lmY
∗
lm(n̂). (2.64)

5Note that our expressions here differ from those in [24] by a factor of 4. This comes from the
definition of H(f) in the two-point correlation function in equation (2.21), where they use a factor of 1

4

on the right-hand-side.



45

Note that α and fref come from the choice of the spectral model, S(f) =
(

f
fref

)α−3
6,

which is applied when constructing the dirty map and the Fisher matrix. This means

that our map has units of ΩGW sr−1.

In the case of the GW radiometer, results are reported in terms of energy flux

F(f, n̂) =
c3π

G
f2S(f)P (n̂). (2.65)

In terms of our estimators the map is then

F̂α,n̂ =
c3π

G
f2

refP̂n̂. (2.66)

where we have integrated over the delta function in the signal model. This means that

the units for this map are ergs cm−2 s−1 Hz−1.

2.5 An unmodeled, directed search for GWs across a wide

frequency band

In addition to probing the whole sky for broadband point-sources of GWs, we can use our

cross-correlation method to search across the whole available frequency band for GWs

coming from a single specific direction. This is often referred to as the “narrowband

radiometer” search. It can be used to target sources like non-axisymmetric, rapidly

rotation neutron stars. While our search will not be nearly as sensitive as traditional

matched-filter searches, it has the benefit of being unmodeled and computationally

cheap. This makes it ideal for searching in areas where we expect a source of GWs,

but do not know the specific parameters of the source like spin frequency or spin-down.

Examples of this would include the low mass X-ray binary Scorpius X-1, which is the

brightest extra-solar X-ray source in the sky and almost certainly contains a neutron

star spun up by accretion [128, 129]. The spin frequency of the neutron star, however,

is unknown. We also commonly search in the directions of the galactic center, where

there is potentially an old population of recycled pulsars in globular clusters [130], and

6The factor of −3 comes from the fact that in this case S(f) is a spectral model for the strain power
and not the energy density. We would like to continue to use α to denote the spectral index of the
energy density parameter, so we need the extra factor of −3.
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the core-collapse supernova, Supernova 1987a [131].

The search is done by choosing a direction, n̂, and reading off the frequency spec-

trum. This is equivalent to suppressing the sum over f in the calculation of the Fisher

matrix and dirty map in equations (2.47) and (2.48) and looking at a specific n̂ (notated

as α in equations (2.47) and (2.48)) from the dirty map and the corresponding diagonal

element of the Fisher matrix. The spectrum model S(f) is taken to be unity. In this

case our estimator and its uncertainty reduces to

Ŷ (t; f, n̂) = (Fn̂,n̂(t; f))−1Xn̂(t; f) = λ
Ĉ(f, t)

γ(t; n̂, f)
(2.67)

σ2
Y (t; f, n̂) = (Fn̂,n̂(t; f))−1 = λ2P1(f)P2(f)

|γ(t; n̂, f)|2 (2.68)

where λ is a normalization constant.

The result is an estimator for the GW power spectral density from a specific direction

in a specific frequency bin. The units are strain2 Hz−1, which we then convert to units

of strain2 by multiplying by the the frequency bin width of the spectrum, ∆f (this

amounts to effectively integrating over a small frequency range over which our spectrum

is assumed to be constant).

2.5.1 Reporting results on strain amplitude

The above search makes a statement about the strain power in the detector associated

with a specific direction and at a specific frequency bin. It takes more work to make

a statement about the strain amplitude, h0, of GWs produced by a rapidly rotating

neutron star, which is the source we commonly target with this search.

Below, we outline a method that we implemented for setting limits on the strain

amplitude h0 using this search. We also include results that validate the method on

realistic simulated signals. Pieces of this method have been discussed in internal LIGO

documents for several years [132]. A full implementation that properly takes into ac-

count Doppler broadening due to the relative motion of the source and the Earth, and

a marginalization over the inclination and polarization angle of the source were not

implemented until now.
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Source frame frequency

We need to convert the measurements that are in terms of our detector to be in terms

of the source. Our search is broken into a set of small frequency bins, fi = f0 + i×∆f

where f0 is the central frequency of the lowest frequency bin, i is an index for a specific

frequency bin, and ∆f is the width of each frequency bin. We will often refer to these

bins as “sub-bins”7, and refer to the detector strain power estimate and uncertainty in

each sub-bin in terms of the index i, Yi and σi.

In principle, the emission frequency in the frame of a source will be spread out

when viewed in the frame of the detector. Any change in the source frequency due to

spin-down can also spread the signal out over multiple frequency bins. We can write

down a generic expression for the frequency in our detector at a given time based on

the frequency of the source at the start of a run

fdet = [1−A(t)−B(t)− C(t)] fsource. (2.69)

In this expression we assume that the relative velocity of the source and the detectors

is small compared to the speed of light. A(t) is the modulation due to the motion of

the Earth with respect to the source, B(t) takes into account the orbital motion for

a source in a binary orbit, and C(t) takes into account any other modulation due to

intrinsic properties of the source (like spin-down for an isolated neutron star). We use

heliocentric equatorial coordinates to describe the motion of the Earth and the direction

of the source. The modulation term due to the motion of the earth is

A(t) =
~vE(t) · k̂

c
(2.70)

where ~vE(t) is the velocity of the Earth

~vE(t) = ωR[sin θ(t)û− cos θ(t) cosφv̂ − cos θ(t) sinφŵ]. (2.71)

In this expression, R is the mean distance between the Earth and the Sun, ω is the

angular velocity of the Earth around the sun and φ = 23◦, 26 min, 21.406 sec is the

obliquity of the ecliptic. The time dependent phase angle, θ(t), is written as θ(t) =

7because we will combine them into larger bins later
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2π(t−TVE)/Tyear, where Tyear is the number of seconds in a year and TVE is the time at

the Vernal equinox. The unit vector k̂ points from the source to the earth and is given

by

k̂ = − cos δ cosαû− cos δ sinαv̂ − sin δŵ (2.72)

where δ is the declination of the source and α is the right ascension.

For a source in a binary system, the modulation due to the binary motion is given

by

B(t) =
2π

Porb
a sin i× cos

(
2π
t− Tasc

Porb

)
(2.73)

where Porb is the orbital period of the binary system, a sin i is the projection of the

semi-major axis onto the line of site (in units of light-seconds), and Tasc is the time of

the orbital ascending node. In the case of isolated sources this term is set to zero. A

plot of A(t) +B(t) for Scorpius X-1 during O1 is shown in figure 2.5.
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Figure 2.5: The modulation of a signal due to the motion of the earth and the binary
motion of Scorpius X-1. The top plot shows the overall change due to the motion of the
Earth, the bottom plot zooms in on a few days to show the variation due to the motion
of the binary. In this case, I have used a sin i = 1.44 ls.
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Combining information from multiple frequency bins

We next consider source frequencies at the center of each frequency bin in our analysis

and calculate the minimum and maximum detector frequencies from equation (2.69)

over the analysis time using the edges of the frequency bins. We then combine detector

power from all frequency bins between the minimum and maximum detector frequencies

to account for the GW power spread over multiple frequency bins

Yc =
a∑

i=−b
Yi and σ2

Y,c =
a∑

i=−b
σ2
Y,i (2.74)

where i indexes our original frequency bins and i = 0 specifies the bin associated with

the source frequency. This means that a and b are the number of frequency bins we

want to combine above and below the source frequency bin, respectively. The resulting

set of combined frequency bins now represent the (observable8) GW strain power due to

a source whose frequency falls within that frequency bin. The combined frequency bins

are also now strongly correlated because they overlap. This helps us avoid issues where

the true source falls on the edge of one our original, detector frequency bins, but it also

introduces issues related to estimating the significance for our search. Since frequency

notching is done on the detector sub-bins, we often find ourselves in a situation where

the sum in equation (2.74) includes bins which are notched. If more than half of the bins

to be combined are notched, then we remove the combined bin from the analysis. If half

or fewer than half of the sub-bins are notched, then we combine the bins that are not

notched. The SNR used for a potential detection is calculated using this “uncorrected”

combined bin. If no detection is made, then for the purposes of setting upper limits, we

rescale Yc and σY,c for that combined bin, assuming the notched sub-bins had amplitude

consistent with the non-notched sub-bins. Otherwise, we would set a limit that is lower

than it should be.

8Observable here meaning that the source strain power will likely be larger than what we would infer
due to our assumption that polarization is optimal. This is discussed later in the section.
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Making a detection

In general, we consider the frequency bins in our analysis to be uncorrelated and, be-

cause they are the result of averaging over many time segments, drawn from a gaussian

distribution. This is generally true of the results in the detector frame. Creating the

set of combined bins to estimate source power results in a set of frequency bins that are

highly correlated. Therefore, I simulate many realizations of the sub-bins (i.e. detector

frame, uncorrelated frequency bins) under the assumption that they are drawn from a

gaussian distribution of mean 0 and variance σ2
Y,i. For each realization, I combine bins

as in equation (2.74) and record the maximum SNR across the whole set of combined

frequency bins. The goal is to empirically determine the noise distribution of SNRs. I

perform ∼ 1000 realizations (for each direction I am interested in) to get a distribution

of the maximum SNR from the combined bins. This distribution will then yield the

significance of our actual data.

Making statements about h0

By combining frequency bins we have an estimate of the GW power produced by the

source that would interact with our detector. For an isolated neutron star the inclina-

tion and polarization angles of the star can cause polarizations that violate the initial

assumptions of the search (i.e. equal power in plus and cross polarizations). The strain

in each polarization can be written in terms of the inclination angle of the neutron star

h+(t, f) = A+(f) cos(Φ(t, ~θ) + φ0) (2.75)

h×(t, f) = A×(f) sin(Φ(t, ~θ) + φ0) (2.76)

where ~θ is a set of parameters that determines the phase angle of the neutron star, and

A+ and A× are defined in terms of the strain amplitude h0,

A+ =
1

2
h0(1 + cos2 ι) (2.77)

A× = h0 cos ι. (2.78)

In this case ι is the inclination angle of the neutron star spin axis relative to the line of

sight.
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This means that the assumption of our two-point correlation function in equa-

tion (2.21) is incorrect and needs to be re-written

〈h∗a(f, n̂)ha′(f
′, n̂′) = δ(f − f ′)δ2(n̂, n̂′)δa,a′A

2
a(f) (2.79)

where this a is +,× (previously we used A, but the notation becomes confusing quickly).

It immediately follows that

〈h̃∗1(t; f, n̂)h̃2(t; f, n̂)〉 = (A2
+F

+
1 (t; n̂)F+

2 (t; n̂) +A2
×F
×
1 (t; n̂)F×2 (t; n̂))e2πif(n̂·∆~x/c).

(2.80)

This introduces a bias into our statistic if we want to use it to measure h0, because an

isolated neutron star certainly has a well-defined inclination angle. Therefore, we must

account for this bias by marginalizing over the inclination angle (since we do not know

it) when we attempt to make a statement about the strain amplitude h0 of the source.

We relate the strain amplitude of the source to our statistic Yc using a parameter µι,ψ

h2
0µι,ψ = Yc. (2.81)

The full calculation for µι,ψ was originally written down in [129] and has been used in

other recent analyses [64, 133] where the inclination angle is unknown. In the end the

bias factor is

µi,ψ =

∑M
j=1

[
(cos ι)2F+

1,jF
+
2,j + (1+cos2 ι

2 )2F×1,jF
×
2,j

]
(F+

1,jF
+
2,j + F×1,jF

×
2,j)∑M

j=1(F+
1,jF

+
2,j + F×1,jF

×
2,j)

2
(2.82)

where j is an index for each time segment in the analysis, M is the total number of time

segments in the analysis, and we have suppressed any frequency dependence; assuming

we are working a single frequency bin.

We write down the posterior distribution for h0 in terms of cos ι, the polarization

angle, ψ, and a calibration factor, l. We use uniform prior distributions on cos ι and ψ,

and a Gaussian distribution on l (with uncertainty given by the calibration uncertainty),
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Figure 2.6: An example posterior distribution on the strain amplitude of a pulsar using
the narrowband radiometer. We have also plotted the distribution if we ignore the bias
factor µi,ψ and we see that the “correct” method is much wider.

and then marginalize over all three parameters

p(h0|Yc) ∝
∫ 1

−1
d(cos ι)

∫ π/4

−π/4
dψ

∫ ∞
−1

dl e−
1
2
L(l) (2.83)

L(l) =

(
µi,ψh

2
0 − (l + 1)Yc)

(l + 1)σc

)2

+
l2

σ2
l

. (2.84)

The resulting posterior distribution shows a “double-hump” shape, shown in figure 2.6.

Validating new method using simulated injections

I validated this new method using simulated Scorpius-X1-like signals. That is, I injected

139 signals that span the frequency band, and are consistent with a neutron star in a

binary system. The parameters of the injections are drawn from distributions consistent

with the current estimates of various parameters of Scorpius X-1. These distributions,

along with other parameters that define the system, and the orbital parameters of the

Earth used for combining frequency bins, are shown in table 2.1. We claim a “detection”

for a p-value of 0.01, and in that case we construct 90% confidence intervals on h0. If
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we do not recover the signal, then we set 90% upper limits.

Parameter Description Distribution or value

Scorpius X-1 parameters

h0(f) Strain amplitude U(0, 3× σh0(f))
cos ι Cosine of inclination angle of neutron star U(0, 1)
a sin i Projection of semi-major axis onto line of site U(0.36, 3.44)
ψ Polarization angle of source U(−π/4, π/4)
tasc Time (GPS) of the orbital ascending node 897753994
α Right ascension 16h19m55.0850◦

δ Declination −15◦38′24.9′′

Porb Orbital period 68023.70 s
d Distance 2.8 kpc

Earth orbital parameters

φ Angle between Earth’s orbit and its equator 23◦26′21.406′′

TV E GPS Time of vernal equinox 953141535 s
R Mean distance between Earth and Sun 1.496× 1011 m
ω Orbital angular velocity of Earth 1.99× 10−7 rad/s

Table 2.1: Values and distributions for key parameters used in creating and recovering
software injections. h0 was drawn between 0 and 3 times the 1-σ uncertainty on h0 in
the bin into which we injected. U(a, b) indicates a uniform distribution between values
a and b.

We detected 47 out of the 139 injected signals. Confidence intervals are constructed

by sorting the posterior distribution on h0 from greatest to least likelihood and in-

tegrating over the sorted distribution until we reach 90% of the total area under the

curve. This can lead to a disjoint confidence interval. In general, we report the interval

spanning from the the minimum of the interval to the maximum, which means that this

reported interval likely contains more than 90% of the posterior. In the set of recovered

injections, the injected value of h0 was within the 90% confidence interval for all 47

recovered signals.

In addition to the disjoint nature of the interval, we use a value of a sin i = 1.44 s

to perform all recoveries, as opposed to maximizing over it within the range shown

in table 2.1. In cases where the true value of a sin i < 1.44, we are adding extra

noise into our recovery and thus our interval will be larger and perhaps shifted higher

than it should be. In the opposite case, we lose some of the signal because we do not
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combine over enough frequency bins, meaning we would underestimate h0. In both

cases, however, it would take a very specific combination of injected a sin i and cos ι (i.e.

on the edge of the distributions we chose) for our interval to miss the injected value

of h0. It is therefore not a complete surprise that we do not miss any signals in the

intervals, when normally we might expect to miss 0.9×47 ≈ 5 of them. A scatter plot of

the injected h0 vs. the median of the 90% confidence interval for all recovered injections

is shown in figure 2.7. The colors indicate | cos ι| while the sizes indicate a sin i.

In the absence of a detection, we set 90% upper limits on h0, integrating the posterior

distribution

0.90 =

∫ h90
0

0
p(h0|Yc, σYc) dh0. (2.85)
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Figure 2.7: A scatter plot of injected vs. recovered values of h0. The “recovered” value is
taken to be the median of the 90% confidence interval. The color indicates cos ι and the
size indicates a sin i. We see immediately that for large | cos ι| we tend to overestimate
the injection. The size of the points does not seem to show any obvious pattern.

2.5.2 Software injections to test upper limit coverage

We also tested the method of calculating upper limits using the posterior in equa-

tion (2.83) and integral in equation (2.85). We do this by first performing the search
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with an unphysical time shift between interferometers to remove correlations between

signals. We then calculate 90% upper limits as in equation (2.85) for each frequency

bin in the analysis. We choose 140 frequency bins at random and run yet another time

shifted analysis with simulated Scorpius X-1-like signals in each frequency bin. The

amplitude of h0 for each injection is equal to the 90% upper limit set by the first time

shifted run. If the limits provide correct coverage then the measurement in the injected

bins from the second run should be larger than the measurement from the first run 90%

of the time. Indeed, results showed this was true 93% of the time for our case.

2.6 Conclusions

In this section we have discussed searches for persistent gravitational waves using cross-

correlation methods. This includes searches for a broadband, Gaussian, unpolarized,

and isotropic SGWB as well as an anisotropic, broadband SGWB. Finally, we discussed

a narrowband, directed, unmodeled search for persistent GWs and a new method that

I implemented to use this search to set limits on the strain amplitude produced by a

rapidly rotating neutron star.



Chapter 3

Cross-correlation search results

from the first LIGO observing

run

In this chapter, we discuss the application of the search methods described in chapter 2

to data from Advanced LIGO’s first observing run (O1). We begin with a brief overview

of O1 in section 3.1 before discussing data quality studies and data quality cuts used

for the analyses in section 3.2. We then present results in section 3.3 for the isotropic

and anisotropic searches for an SGWB, along with the unmodeled, directed search for

persistent GWs (also referred to as the “narrowband radiometer search”).

3.1 The first LIGO observing run

Advanced LIGO was in operation for its first observing run from September 18th, 2015

15:00 UTC to January 12th, 2016 16:00 UTC. The fraction of total time in observation

mode for the run was 57% for the Livingston, LA, instrument (L1) and 65% for the

Hanford, WA instrument (H1), while the coincident fraction was 43%. In general, H1

was more sensitive than L1, with the H1 interferometer sensitive to signals from binary

neutron star inspirals at a range of roughly 75 Mpc compared to 65 Mpc for L1. These

last two values represent roughly a factor of 3−5 improvement compared to the range

56
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from the final run of initial LIGO [54].

O1 was plagued by several data quality issues, the worst of which was at H1 where

there was a bad driver for an electro-optical modulator that is used to imprint 45 MHz

sidebands on the light. A good summary of transient data quality issues around the

time of the first LIGO detection can be found in [50], and the data quality methods for

transient searches for GWs described there apply generally to the rest of the O1 data.

The Advanced LIGO detectors also exhibit many narrow spectral features (“lines”) that

can plague long-duration searches like those for rapidly rotating neutron stars and the

SGWB. How these lines are identified and mitigated in the detectors, and how they are

dealt with in searches for persistent GWs is discussed in [51], and we will summarize

them in section 3.2.4. In the next section, we will discuss these data quality issues and

how we dealt with them in the O1 cross-correlation searches.

3.2 Data quality for cross-correlation searches in O1

3.2.1 Signal processing steps

For all of our cross-correlation searches, the data were separated into a list of “jobs”

that corresponded to times when the detector was in an observational state. Data

quality studies were then performed; typically in the form of “time-shifted” analyses,

or coherence studies (which are described below). Data quality cuts were applied and,

if necessary, a new list of jobs was made. For each job and each search, the data were

downsampled from 16384 Hz to 4096 Hz, and separated into 50% overlapping, 192 s

segments. The segments were Hann-windowed and high-pass filtered using a 16th order

Butterworth digital filter with a knee frequency at 11 Hz. The data was padded with

zeros to double its length, and a discrete Fourier transform (DFT) of the data from

both interferometers was taken. The DFTs were then multiplied together and coarse-

grained to a frequency resolution of 0.03125 Hz, and the searches were perfromed on

the frequency band between 20− 1726 Hz. The power spectral density (PSD) of noise

in each detector for each 192 s segment was estimated using Welch’s method with 32 s

time windows on the adjacent 192 s segments, giving a total of 22 time-averages in each

frequency bin for the PSD estimate. Using off-source data to estimate detector noise

reduces bias in the statistic [134].
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The segment duration and frequency bin width of our analyses were informed by the

data quality studies presented below. It is worth noting that the final values chosen,

192 s and 0.03125 Hz, differ from the traditional choices of 60 s and 0.25 Hz used in

previous searches [135, 136]. This choice was made in large part due to a 0.5 Hz “comb”

of frequencies seen in the coherence spectrum of the two interferometers. Using longer

time segments and smaller frequency bins allowed us to effectively remove the affected

frequencies and to keep a larger amount of data than if we had used the traditional

choices of 60 s and 0.25 Hz.

3.2.2 Time shift method

It is customary to first run the searches in a way in which we are “blind” to real signals,

which helps identify how detector-related issues will show up in our search. We achieve

this by applying an unphysical time shift (> 10 ms) between the data streams of the

H1 and L1 detectors. It is important to note that this method does not fully blind our

analyses to certain types of sources. In the case of isolated pulsars and signals that are

very close to periodic, for example, this method might make a signal appear as coming

from a different direction or with a different sign, but will not completely blind the

search. In the typical search for an isotropic, Gaussian, SGWB, this method is quite

effective. This can be seen in Fig. 5 of the supplemental material in [135].

3.2.3 Time-domain data quality

Job list creation

When making our list of jobs, we began by removing a set of times, known as “vetoes,”

during which the detector was not operating properly, despite the fact that it was in

observation mode. These times were decided upon by the LIGO detector characteriza-

tion group, and collected in what is known as a “veto definer file.” We implemented

categories 1 and 2 (CATs 1 and 2) from the veto definer file. A veto falls into one of

three categories [50]

• CAT 1—times when data should not be analyzed because a key detector compo-

nent is not operating in its nominal configuration or the calibration filters are not

behaving properly.
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• CAT 2—times when a noise source with known physical coupling to the strain

channel is active.

• CAT 3—data quality triggers that are statistically generated, and data quality

flags where the coupling mechanism is not understood1.

To create the job list we assembled a list of times when both of the interferometers

were in observation mode and we found the intersection of times from this list with times

that were not vetoed by CAT 1 or CAT 2 vetoes in the veto definer file. The result is

a list of times when the interferometers are both in observation mode and functioning

properly.

A study of the effect of different vetoes on our search performance was done after

most analyses had reached a mature state and so no decisions were made based on that

study. We have presented that study at the end of this chapter in section 3.4.

∆σ cut

While CAT 1 and CAT 2 vetoes were generally effective at removing transient bursts of

power due to known detector-related issues, the noise in the detectors was non-Gaussian

and non-stationary even after their removal. To deal with this issue we implemented

what we call the ∆σ cut. As we mentioned above, the PSD of the instrumental noise

of the detectors for a single time segment was estimated using the average of the PSD

of the detector noise in the two adjacent time segments [134]. However, if there is a

transient artifact in the middle time segment, then using the adjacent segments results

in an underestimate of the PSD and an anomolously large SNR. To mitigate this issue,

we calculate the theoretical variance of our statistic, shown in equation (2.28), using

PSDs from adjacent time segments and compare it to the same calculation using PSDs

from the middle time segment. We remove times where these two values differ by > 20%,

meaning that for a time segment to be used in the analysis we require

0.8 <
σadjacent

σmiddle
< 1.2. (3.1)

1CAT 3 vetoes were not implemented by the detector characterization group for O1, but we mention
them here because they have been used in initial LIGO science runs.
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Because σ is calculated by integrating over frequency, this cut can miss transient sources

of noise that are localized to a small fraction of the frequency band. This can cause

outliers in the narrowband radiometer search because it makes a measurement in each

frequency bin individually. To mitigate this issue, we perform the cut where σ is cal-

culated for several different values of the power law spectral index α. The choices of

α = (−5, 0, 3) emphasize different parts of the frequency spectrum. The list of times

to remove from the analysis are then taken to be the union of the times removed from

those three runs.

Figure 3.1 shows an example of the effect of this cut on the distribution of the

SNR calculated in each 192 s time segment for the isotropic search. It is not the final

cut that was used, but is presented to show how effective it is. We also performed

an analysis to verify that 20% was an acceptable threshold for this cut. A receiver

operator characteristic (ROC) curve showing many different choices of the threshold is

shown in figure 3.2. The ROC curve plots “true positive” vs. “false positive,” where true

positive means that we have removed a time segment with the ∆σ cut and the signal-

to-noise ratio of that time segment is larger than one would expect from Gaussian noise

(in this case we chose —SNR— = 4.5 for that threshold). False positive means that

we have removed a time segment, but the SNR was consistent with fluctuations due to

Gaussian noise given the number of time segments over which have observed. A good

cut will produce an ROC statistic that is well above the line y = x on the true positive

vs. false positive plot. This is clearly the case for the ∆σ cut for many different choices

of the threshold in figure 3.2. In the bottom plot of figure 3.2 we show the distance

between our ROC curve and the line y = x, where we see that 20% is a reasonable

choice because it is conservative while still being effective.

Low frequency noise

Even after applying the ∆σ cut, there were still several individual jobs in the time-

shifted results of the narrowband radiometer analysis that showed loud signal-to-nosie

ratios at low frequencies. These artifacts were evident in the 20− 25 Hz region, and we

designed a cut to remove these automatically. A plot of the SNR spectrum for fifty jobs

from the narrowband radiometer analysis can be seen in figure 3.3.
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Figure 3.1: An example of the effect of the ∆σ cut on the O1 isotropic search. This cut
is made only using information from α = 0 and only on SNRs calculated for α = 0. The
top plot shows the distribution of SNR from all time segments in blue, the distribution
of SNRs for segments that fail the delta sigma cut in red. This is done with a job list
that implements no vetoes at all.

I simulated the point estimate, Y (f), based on the value of σ(f) (assuming a Gaus-

sian distribution with mean of 0, standard devation given by σ(f) in each bin) and

calculated the distribution of the following statistic

S =

∑
f |Y (f)|σ(f)−2∑

f σ(f)−2
×

∑
f

σ(f)−2

1/2

. (3.2)

We use the absolute value because the noisy frequency bins alternate between positive

and negative SNR. The sum over frequency is done over all bins between 20 and

25 Hz because this is where most of the power is concentrated. The distribution of this

statistic across all jobs for the simulated case and for the real case is shown in figure 3.4.

The vertical line indicates where the cut was made. All jobs to the right of that cut
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Figure 3.2: Using the same job list as in figure 3.1 we create an ROC curve using
different cut values for the ∆σ cut. “True Positive” indicates the segment had |SNR| >
4.5 and was flagged by the ∆σ cut, “False Positive” indicates the segment had |SNR| <
4.5 and was flagged by the ∆σ cut. We see a broad range of cuts that are roughly
equivalent under this statistic, and our chosen of value of 0.2 falls on the conservative
end of that range. The bottom plot shows the distance between the ROC curve and the
line y = x. The vertical line indicates the threshold used for the searches.

line are removed from the analysis. This removed a total of roughly 3.5 days of data.

The cut was cross-checked by looking at the actual SNR spectrum for each job and

this cut produced results that were consistent with what one would produce just using

an “eye test”2. A final cause of this issue was never identified. One of the more likely

2There was visible excess cross-power like that shown in figure 3.3) in the 20-25 Hz region for each
of the jobs that were removed.
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Figure 3.3: SNR spectrogram for fifty jobs in the O1 narrowband radiometer analysis.
Each column represents a spectrum that has been generated by summing over each
segment in a single job in the O1 job list, which are typically O(1000 s) long. Darker
red and blue pixels in several columns indicate jobs that show significant excess SNR at
low frequencies. Blue columns indicate jobs that were not long enough to be analyzed
by the analysis.

candidates–elevated ground noise–turned up no obvious correlations in studies that were

performed.

Wandering line

From September – December, 2015, the H1 data showed an obvious “wandering line”

that could be seen between 600 and 650 Hz and 1200 and 1300 Hz [137, 138]. This

line was caused by a beat note between two voltage controlled oscillators (VCOs). The

VCOs were used to lock each arm of the interferometer individually, before then locking

the full Michelson interferometer. When the interferometer is in observing mode the

VCOs are parked at their maximum or minimum voltages. The oscillation frequencies

of the two VCOs were nearly equal when parked at their minimum voltages, but their

frequencies drift as a function of time and this causes a beat note between the two
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Figure 3.4: The left-hatched curve is the distribution of the S statistic over all 1300+
jobs in the narrowband radiometer analysis. The right-hatched curve is the distribution
over jobs where we have simulated values of Y (f) for each job under the assumption
that Y (f) is normally distributed with mean zero and standard deviation σ(f).

signals. This beat note then gets picked up by other electronics systems, like control

loops used to damp the motion of mirrors, and can then get imprinted on the laser light

and show up in our strain data [51]. The line is shown in a spectrogram in figure 3.5.

The transition between frequency bins from one time to the next caused poor PSD

estimation that happened on such a limited scale in the frequency domain that it was

not caught by the ∆σ cut, but still resulted in large SNR for several frequency bins in

the narrowband radiometer search.

The narrowband radiometer search was more susceptible to the noise between 1200

and 1300 Hz than the noise between 600 and 650 Hz. Therefore, we removed the

whole band between 1200 and 1300 Hz from the analysis. This was a very conservative

decision, and a frequency-time-dependent cut based on the value of the two VCOs as a

function of time could have been designed. However, it would have required an overhaul

to the post processing code that is currently used for our searches, which would have

set back the timescale of the analysis by more than a month (at minimum). Therefore,

we decided to remove the whole frequency band from the searches.
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Figure 3.5: Spectrogram illustrating the ∼650 Hz wandering line seen in H1 strain
spectrogram for three hours. This line is caused by two voltage controlled oscillators
(VCO) creating a beat frequency that is picked up by local electronics systems. The
two VCOs are used in the lock acquisition process and during lock itself, their voltages
were railed, causing them to have values very close to one another. The solution was to
rail one VCO to +10 V and the other to -10 V.

3.2.4 Frequency-domain data quality

In addition to transient artifacts that can cause poor PSD estimation, we also worry

about persistent sources of noise that are nearly sinusoidal. We call these features

“lines” because of how they look in a spectrum. Lines that are coherent between the two

interferometers violate one of the core assumptions of our search statistic (specifically

that there is uncorrelated noise between detectors) and lines that are particularly loud

but not coherent degrade the sensitivity of our search in that frequency bin.

Below are detailed investigations performed during O1 that attempt to mitigate line

artifacts that affected the O1 cross-correlation searches.

General method

We removed well-known lines that are purposely injected into the detectors. These

include injected calibration lines, which require a notch of 0.05 Hz on either side of

their central frequency, and injected pulsar signals [139], which require a notch that

accounts for the simulated Doppler broadening and spin-down of the fake signal. We
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also notch the n× 20 Hz region on either side of the resonances in the suspension fibers

of the test mass (“violin modes”), where n is the harmonic of the mode, the known

resonances of several auxiliary mirrors [140]. Both classes of lines are evident in the

noise curves shown in figure 1.4. We also notch 0.1 Hz on either side of each harmonic

of the 60 Hz power mains.

If we observe a line that is coherent between the H1 and L1 interferometers we launch

a follow up investigation to determine if the line is caused by local environmental factors

instead of GWs. We define the coherence as a function of frequency between any two

channels, s1 and s2, by the normalized product of their Fourier transforms

C(f) =
|〈s̃∗1(f)s̃2(f)〉|2
〈|s̃1(f)|2〉〈|s̃2(f)|2〉 (3.3)

where tilde indicates Fourier transform, star indicates complex conjugation, and 〈·〉
indicates an average over time. The probability of finding coherence as large as C in a

given frequency bin when the coherence is created from many time averages, Navg, is

given by an exponential distribution

p(C) ∼ e−NavgC . (3.4)

The coherence spectrum between H1 and L1 with 1000 s time segments averaged over

the whole O1 run, with a frequency resolution of 1 mHz is shown in figure 3.6, along with

a histogram (and exponential fit) of that spectrum. A set of coherent lines is identified

by choosing frequencies that fall to the right of the exponential fit in the histogram plot.

In following up a line with larger than expected coherence, we cross-correlate the

strain channel with as many channels as possible that monitor the local environment and

auxiliary degrees of freedom of the interferometer. If we identify significant coherence

between the strain channel and one of these monitors at the frequency of interest, we

remove that frequency bin from the analysis.3 The auxiliary channel follow up was

performed by students at Carleton College using a tool for searching for very narrow

lines [141], by myself using the STAMP-PEM tool, discussed in chapter 4, or by staff

3The channels we use here are not sensitive to GWs. One method of checking this is by injecting loud
signals into the interferometer and checking which auxiliary channels identify a spike in power during
that same time. A discussion of this method is given in section 3, paragraph 5 of [54].
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members on site at the observatories.

In many cases, a set of lines with a well-defined spacing between them are evident

in the individal PSD spectrum of a single interferometer, or in the coherence spectrum

between two channels. We refer to this as a “comb.”4

Inter-site coherence study results

Through the quasi-real-time monitor stochmon, we look at the coherence between the

H1 and L1 strain channels with frequency resolutions of 0.25 Hz, 0.1 Hz and 0.001 Hz

on time scales of days, weeks, and the full observation run. The 0.001 Hz spectrum and

its associated histogram are shown in figure 3.6.

The spectrum shows an obvious comb with a separation of 0.5 Hz whose odd har-

monics are visible in the H1-L1 coherence spectrum from 20 − 40 Hz. This comb was

caused by blinking LEDs on timing chips synced to GPS clocks at both sites [51], and

attempts have been made to try to mitigate the issue. The comb was initially notched

from the SGWB O1 analyses only in the band from 20 − 40 Hz 5. However, when our

group ran the search for an isotropic SGWB with an unphysical time shift, the SNR

was ∼ 3. A follow-up study indicated that while at frequencies >40 Hz, the coherence

between H1 and L1 was not significant in any individual frequency bin, the sum over

only teeth in the comb showed a value much larger than what is expected from the sum

of frequency bins from Gaussian random noise [142, 143, 144]. Therefore, we removed

all harmonics above 40 Hz as well.

The comb causes one frequency notch in each 1 Hz interval, and so if we used 0.25 Hz

bins we would lose at least 25% of the frequency bins in the analysis. This motivated the

decision to use 192 s segments and 1/32 Hz frequency bins for our analyses. While we

lost a significant amount of time due to edge effects of breaking our jobs into segments

(see section 3.4.1), the amount of time lost moving from 192 s to 60 s represented a

smaller loss in sensitivity than notching 25% of our frequency bins. We can use the

far left column of table 3.4 to estimate the loss in sensitivity due to the longer time

segments. Using 192 s segments results in a drop of roughly ∼ 1 −
√

33/37 = 6%

4Mathematically, we mean that there are lines of high coherence at a regular spacing, fs, that
might only start at some offset from zero fo. We can then define all “teeth” in that comb as ft =
{n× fs + fo for n < Nteeth}.

5i.e. we removed 20.5 Hz, 21.5 Hz...
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Figure 3.6: Coherent lines in O1. In the left panel, the coherence spectrum is shown
between Hanford and Livingston detectors in the frequency band 10-200 Hz with 1 mHz
resolution measured over the full O1 data run. The horizontal dashed line shows the
expected mean value of the coherence based on uncorrelated Gaussian noise. Individual
frequency bins where the coherence rises above the noise floor indicate strongly coherent
lines. In the right panel, the distribution of coherences in each frequency bin is shown,
compared to the behavior expected for uncorrelated Gaussian noise, in the frequency
band 20-200 Hz with 1 mHz resolution. Red bins show the raw coherence. Loud lines
are followed up by studying the coherence between the GW and auxiliary channels
to determine if the correlation has a terrestrial origin. Blue bins are the resulting
distribution of the frequency bins after notching lines known to have known terrestrial
origin. These plots also appear in [51].

sensitivity due to lost time, while removing 25% of our frequency bins results in a loss

of roughly ∼ 1−
√

0.75 = 14%.
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There were also several coherent lines not found in stochmon but that did show

up with significant SNR in at least one time shifted run of the narrowband radiometer

search. In all cases but two we found that these either fell on a known comb that was

present in one of the detectors, had significant coherence with an auxiliary channel, or

significantly changed its behavior as a function of time in a way not consistent with our

source model. In the other two cases, a line at 26.17 Hz and a line at 1352.90 Hz, we

notched bins because the lines appeared very strongly in a single detector and with a

bandwidth of < 1/1800 Hz. It is very unlikely these are GWs based on the orientation of

our detectors on Earth, the rotation of the Earth, and the motion of the Earth around

the solar system barycenter. Given that these lines appeared in only a single time

shift of the radiometer search, and their properties would require a very unlikely set of

source parameters (i.e. directly overhead, polarization such that it appears in only one

detector), we opted to remove the frequency bins from the final analysis [145].

A table summarizing all of the notches made for the O1 searches can be found

in appendix A.

3.3 Results

In this section, We present results for the isotropic and directional cross-correlation

searches for persistent gravitational-waves. In section 3.3.1, we show results for the

search for an isotropic SGWB. In section 3.3.2, we show results for the search for a

broadband anisotropic SGWB from diffuse sources and point sources for three different

spectral indices. In section 3.3.3, we show results for the directed, narrowband search

for persistent GWs.

3.3.1 Isotropic search for SGWB

There was no evidence of an isotropic SGWB. The data were consistent with statistical

fluctuations assuming Gaussian noise. As a result, limits were placed on the energy

density assuming a power law form ΩGW(f) = Ωα(f/fref)
α.

For a spectral index of α = 0, the 95% confidence upper limit on energy density is

Ω0 < 1.7 × 10−7. This represents a 33–fold improvement over the previous best direct

limits set in this frequency band [136]. Joint limits on Ωα vs. α are shown in figure 3.7.
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Limits on several other spectral indices, along with their previously-reported values, are

shown in table 3.1 with a reference frequency of fref = 25 Hz.

We also show an estimate of ΩGW(f) and σ(f) in each frequency bin6 in figure 3.8.

The inset shows the distribution of SNR in each frequency bin, along with a Gaussian

fit to that distribution.

α Frequency band Amplitude Ωα 95% CL UL Previous UL [136]

0 20− 85.8 Hz (4.4± 5.9)× 10−8 1.7× 10−7 5.6× 10−6

2/3 20− 98.2 Hz (3.5± 4.4)× 10−8 1.3× 10−7 –

3 20− 305 Hz (3.7± 6.5)× 10−9 1.7× 10−8 7.6× 10−8

Table 3.1: For three representative values of the spectral index, α, we show the frequency
band containing 99% of the sensitivity for the analysis, the measurement of Ωα with its
associated uncertainty, and 95% confidence upper limits on Ωα for a reference frequency
of 25 Hz. In the last column we show the corresponding previous best limits set from the
LIGO/Virgo S6/VSR23 analysis [113, 136]. This information is reproduced from [113].

3.3.2 Broadband search for anisotropic persistent GWs

This search produces three different results: maps of the flux of GWs from broadband

point sources (broadband radiometer), maps of the GW energy density from diffuse

sources using a spherical harmonic decomposition (SHD), and estimates of the angular

power spectrum of GWs. All of these results integrate over the frequency band from

20–500 Hz weighted with a power law model. Depending upon the spectral index of the

power law, different searches tend to be more sensitive to different parts of the frequency

band.

I show maps of the search for broadband point sources in figure 3.9. The columns

represent different choices of the power law spectral index, α, and the top row shows

SNR. No directions exhibit SNRs with significant p-values and so limits were set on the

energy flux from a broadband point source in each direction, which is defined in equa-

tion (2.66). These upper limit maps are shown in the bottom row of figure 3.9, and a

summary of the results of the search is in table 3.2.

We show maps of the search for broadband diffuse sources of GWs in figure 3.10.

6see equation (2.37) or [118] for a definition of the bin-by-bin estimator
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Figure 3.7: Joint 95% confidence contours on Ωα vs. α for the O1 isotropic search (thick,
middle) [113], the joint S6/VSR23 search (top, solid) [136], and an estimate of sensitivity
can be set for Advanced LIGO/Advanced Virgo operating at design sensitivity [146]
(bottom dashed). This plot is reproduced from [84].

The columns again represent different choices of the spectral index, α, and the top

row represents SNR. Like the broadband radiometer search, no SNRs are statistically

significant and the map is consistent with statistical fluctuations of Gaussian noise. In

the bottom row we set limits on the energy density parameter per steradian in each

direction, as defined in equation (2.64). These results are summarized in table 3.2.

Finally, using the estimates for the P̂lm’s from this search, we can set limits on

the angular power spectra of the GW energy density, as discussed in section 2.4.1.

In figure 3.11 we show limits on C
1/2
l in units of the energy density parameter per

steradian.
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Figure 3.8: We show a frequency bin by frequency bin estimator for the O1 Isotropic,
along with its uncertainty. The inset shows the distribution of SNR over frequency bins
along with a Gaussian fit. It is clear that the frequency spectrum is consistent with
fluctuations due to Gaussian noise, which is one of the assumptions of the search. Parts
of this plot are reproduced from [84].

3.3.3 Directed, unmodeled search for persistent GWs

The search for unmodeled, persistent GWs focuses on three directions: Scorpius X-

1 (ScoX1), the galactic center (GC), and supernova 1987a (SN1987a). We searched in

frequency bins of varying size (described below) between 20 and 1726 Hz. As described

in section 2.5, we combine detector-frame frequency bins in order to set limits on the

strain amplitude, h0, for a neutron star rotating at a given frequency in the source’s

frame of reference. In the case of Scorpius X-1, a low-mass X-ray binary system, we

combine frequency bins in order to account for both the binary motion of the potential

source, as well as the motion of the Earth over the 116 days of O1. This results in an
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All-sky (broadband) Results
Max SNR (% p-value) Upper limit range

α θ (deg) lmax BBR SHD BBR (×10−8) SHD (×10−8)

0 55 3 3.32 (7) 2.69 (18) 10 – 56 2.5 – 7.6
2/3 44 4 3.31 (12) 3.06 (11) 5.1 – 33 2.0 – 5.9
3 11 16 3.43 (47) 3.86 (11) 0.1 – 0.9 0.4 – 2.8

Table 3.2: Values of the power-law index α investigated in this analysis are shown in
the first column. The angular resolution θ, and corresponding harmonic order lmax

(equation (2.55)) for each α are also shown. The right hand section of the table shows
the maximum SNR, associated significance (p-value), and best upper limit values from
the broadband radiometer (BBR) and the spherical harmonic decomposition (SHD).
The BBR sets upper limits on energy flux [erg cm−2 s−1 Hz−1(f/25 Hz)α−1], while the
SHD sets limits on the energy density parameter per steradian [ΩGW sr]. This table is
a subset of table 1 in [24].

Figure 3.9: All-sky radiometer maps for point-like sources. In the top we show SNR
and in the bottom we show upper limits at 90% confidence on energy flux Fα,Θ0

[erg cm−2s−1 Hz−1]. Each column represents a different power law spectral index from
the analysis with α = 0, 2/3 and 3, from left to right. The search parameters, maximum
SNR, and associated p-values are summarized in table 3.2). These plots are reproduced
from [24]

optimal combined-bin size that is frequency-dependent.

In the case of the other two directions, we expect isolated sources of GWs but wish

to remain as agnostic about the signal model as possible when making a detection.

Therefore, we combine frequency bins to account for the spread of a monochromatic

signal in the detectors due to the motion of the Earth according to equation (2.70).
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Figure 3.10: All-sky spherical harmonic decomposition maps for extended sources. In
the top row we show SNR and in the bottom row we show upper limits at 90 % confidence
on the GW energy density parameter in each direction, Ωα [ sr−1]. Each column displays
a different choice of the power law spectral index. From left, these correspond to α =
0, 2/3 and 3. The search parameters, maximum SNR, and associated p-values are
summarized in table 3.2). These plots are reproduced from [24]

Figure 3.11: Upper limits on C
1/2
l at 90% confidence vs l for the SHD analyses for α = 0

(top, blue squares), α = 2/3 (middle, red circles) and α = 3 (bottom, green triangles).
This plot and caption are reproduced from [24].

Instead of implementing a frequency-dependent bin size, as we did for ScoX1, we chose

the maximum across the frequency band of that spread and all bins were combined to

the same width. For SN1987a, we choose a combined bin size of 0.09 Hz. This leaves us

sensitive to spin-modulations of a neutron star of up to |ḟspin| < 9×10−9 Hz s−1. For GC,

which is at a lower declination, and therefore likely to experience larger modulation due

to the Earth’s motion, we choose a bin size of 0.53 Hz across the frequency band. In this
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Narrowband Radiometer Results
Direction Max SNR p-value (%) Freq (Hz) Best UL (×10−25) Freq (Hz)

Sco X-1 4.58 10 616− 617 6.7 134− 135
SN1987A 4.07 63 195− 196 5.5 172− 173

GC 3.92 87 1347− 1348 7.0 172− 173

Table 3.3: Results for the narrowband radiometer search for three sky directions. From
left we show maximum SNR and the corresponding p-value and 1 Hz frequency band in
which the max SNR fell. We also show the 90% gravitational wave strain upper limits,
and corresponding frequency band. The best upper limits are taken as the median of
the most sensitive 1 Hz band. This table is reproduced from [24]

case, we are sensitive to frequency modulation in the range of |ḟspin| < 5.3×10−8 Hz s−1.

In all three cases, we use the method defined in section 2.5 to estimate the back-

ground distribution for the SNR of our frequency bins. We find that the resulting

measurements are consistent with fluctuations of Gaussian noise. A summary of the

maximum SNR and its p-value for each direction is shown in table 3.3. Therefore, we

set upper limits on h0 in each frequency bin using the method described in section 2.5.

Plots of the 1σ sensitivity and 90% upper limits on h0 in each frequency bin are shown

in figure 3.12. In table 3.3 we show the best upper limit set in each direction in each

frequency bin. Due to the large variation in our measurements from one frequency bin

to the next, we take a running median of the upper limits in the 1 Hz region around

each frequency bin and report the best of those values.

Figure 3.12: Upper limits on h0 from the narrowband radiometer search in three di-
rections. From left: Scorpius X-1, Supernova 1987a and the Galactic Center. In gray
are 90% upper limits in each frequency bin, while in black is the 1–σ sensitivity of the
search. The best upper limit in h0 for each direction is quoted in table 3.3.
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At the time of publication, these were the best limits set on h0 for possible sources

from these three directions. Since that time, the limits on a source in the direction

of Sco-X1 have been exceeded by two modeled searches that use known parameters of

Scorpius X-1 to guide their search [133, 147].

3.4 Post-search studies

In this section, we present several studies we undertook to evaluate the effectiveness

of different data quality cuts made during the O1 analyses. Due to the fact that the

interferometer was effectively a “new” instrument, we were conservative in our approach

to data quality. Below, we re-evaluate the decision about what vetoes to use. we offer

some statistics illustrating examples of “effective” vetoes for our search and “ineffective”

vetoes for our search, and discuss a general approach to choosing a set of vetoes that

effectively removes times when our search will be biased, while keeping times where

the vetoes are obviously ineffective. In all cases, we use the isotropic search with an

unphysical time shift as the test case. A similar study should eventually be performed

for at least the narrowband radiometer search.

3.4.1 Veto analysis

I created a job list using no vetoes, and ran the isotropic SGWB search with α = 0

and an unphysical time shift on that job list. For each veto, we found which time

segments coincided with times when the veto indicated a problem with the detector.

We then compared the distribution of |SNR| for that set of time segments with the

overall distribution of |SNR| for all time segments. From this, one can calculate an

ROC point for each data quality veto to evaluate the effectiveness of the veto, under

the assumption that the goal of the veto is to remove time segments with |SNR| > 57.

A scatter plot of ROC points for all vetoes can be seen in figure 3.13. We also include

the ∆σ cut with a threshold of 20% in this analysis.

It is clear from figure 3.13 that there are many vetoes that should probably not have

7This is a rough estimate of the threshold where individual time segments are not consistent with
fluctuations due to Gaussian noise. A more formal way of doing this would be instead of a binary

classification of < 5 or > 5 we use the a multi-trial p-value like p(|SNR|) ∼ 1− erf
(
|SNR|/

√
2
)Nsegs
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been included in the analysis. One idea was to include all CAT 2 vetoes in the job list

for future analyses, especially because most of those “loud” SNR times will be removed

by the ∆σ cut anyway. However, it is evident in figures 3.13 and 3.14 that there are

several CAT 2 vetoes that are effective.

While many “loud” SNR segments are a subset of the ∆σ cut, it is important to

make sure that our PSD estimation gives reasonable results for those segments that

would not be removed by the ∆σ cut. Otherwise, this could result in a bias of the PSD

estimation. An example of a veto where our PSD estimation clearly “makes sense”

during times when the veto is active is shown in the bottom right of figure 3.14. In

this case, the distribution of the ratio of σ from the middle time segment and σ from

adjacent time segments is Gaussian and centered around 1. An example of a veto where

the PSD estimation is clearly biased is shown in the left hand side of figure 3.14.

While the choice to remove times from all CAT 2 vetoes when generating our job

list was likely too cautious, simply not applying any of them would have been a poor

decision as well. That said, CAT 2 vetoes did severely limit the length of our jobs,

which in turn increased the time lost due to the fact that jobs do not factor evenly into

an integer number of 192 s segments. Table 3.4 shows the live time of different job lists

made using different sets of vetoes. We also show live times for both 192 s and 60 s

segments. The choice to stay with the original job list (the one that implemented CAT

1 and 2 vetoes) was made because nearly all of the other data quality studies presented

were done using this job file. The choice between 60 s and 192 s segments came down

to a trade-off between live time losses and losses due to notching narrow lines from our

analysis, especially the 0.5 Hz comb (see section 3.2).

The results in table 3.4 do not take into account losses from the ∆σ cut. One might

ask whether, after removing all of the times that fail the ∆σ cut when running with

a job list that only rejects CAT 1 vetoes, do we end up with a similar amount of live

time as the job list where we have rejected CAT2 vetoes as well. Essentially: “do most

of the CAT2 vetoes get rejected by the ∆σ cut?” The answer is almost certainly no.

While this comparison has not been directly made, the CAT2 vetoes almost all show

poor results for the ROC statistics. In addition, for the CAT2 vetoes that remove the

most data, all of the plots like the bottom right of figure 3.14, (which shows that the

∆σ statistic is well-behaved during times when the flag is active), indicate that the ∆σ
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Figure 3.13: Receiver operator characteristic for each data quality veto. True positive
and false positive are defined in the same way as figure 3.2. Vetoes that fall in the
upper-left of the plot are more effective, while those that fall in the lower right are less
effective. Color and shape indicate whether it is CAT 1 or CAT 2. The best veto is the
∆σ cut used in our analysis (threshold of 20%), which is also included on this plot (the
top, center star). It is evident that most vetoes are not effective for this search. |SNR|
for α = 0 is not the only statistic that matters, however, and so this plot should not be
used by itself to decide whether or not to use a specific DQ veto.

cut probably would not remove the majority of these times.
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Figure 3.14: Summary of the effect of the CAT 2 ve-
toes, H1:DCH-RF45 AM STABILIZATION BLRMS 1SEC STRIDE:2 (right),
H1:DMT-ETMY ESD DAC OVERFLOW:1 (left). Top is the distribution of the absolute
value of SNR for all time segments run with a job list with no vetoes applied. The two
lines indicate the original distribution of SNRs (blue, solid), the distribution of SNRs
from times where the veto was active (red, dash-dotted), and the difference between
the two (green, dotted). The right top plot shows that during times when this flag
is active, we are not seeing larger than expected SNRs. The left top plot shows an
example of a “good” veto. The bottom plot looks at the ratio of naive to actual σ
values during times where this flag is active and that pass the ∆σ cut. It is clear
that the right hand one follows a Gaussian distribution centered on 1, as expected for
true noise, while the left hand one does not. While the loud SNR segments associated
with H1:DMT-ETMY ESD DAC OVERFLOW:1 might be removed by the delta sigma cut, the
non-loud ones will likely be biased by poor PSD estimation.
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Segment Duration [s]
Live time [days]

CAT 1 + CAT 2 CAT 1 only CAT 2 only No vetoes

60 37.51 46.10 42.21 48.23
192 33.87 44.94 38.65 47.43

Table 3.4: Live time for the O1 SGWB searches when applying different types of vetoes
and using different segment durations. These live times do not take into account losses
due to the ∆σ cut, which is applied after a job list is already made. The difference
between segment durations has to do with dead time associated with splitting a single
continuous job into shorter segments. The final choice was 192 s and CAT 1 + CAT
2 vetoes. All original data quality investigations, including ∆σ cuts and low frequency
noise investigations discussed in the previous sections, were done with a job file made
from CAT 1 + CAT 2 vetoes, and the choice of 192 second segments ultimately came
from balancing the loss due to frequency notches (specifically the 0.5 Hz comb discussed
below) with the loss due to extra dead time on the ends of jobs. We include the other
three columns to exhibit the penalty we incur by using CAT 2 vetoes.



Chapter 4

Characterization of Advanced

LIGO detectors

4.1 Introduction

Sources of noise couple into the LIGO instruments in many ways and can degrade the

sensitivity of the GW searches. Identification of noise sources is often done on-site by

instrumental experts. More involved data analysis techniques are sometimes needed to

identify the coupling mechanism of a noise source, or experts in each type of search are

needed in order to assess whether a source of noise will be a serious problem for their

search. This can help prioritize the effort of hunting down and mitigating the cause of

noise sources in the instrument.

The use of data analysis techniques to hunt down noise sources and to assess their

affect on the searches is known broadly as “detector characterization.” This effort can

help identify the coupling mechanism of some sources of noise, aiding on-site commis-

sioners in their own efforts to do the same. The detector characterization effort also

results in a summary of known problems that can affect searches. This information

is released in the form of a “veto definer file,” which identifies periods of time when

there are significant malfunctions with the instrument that cause the data to be of poor

quality (“glitches” or “transient noise sources”), or in the form of a “line list” which

identifies persistent sources of noise that are each localized to a very small region of

Fourier-space (“lines” or “persistent noise sources”).

81
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A suite of automated tools for performing LIGO detector characterization are used

to produce a daily snapshot of the performance of each interferometer each day. The

results are summarized in daily web pages that make it easy to identify where and when

problems in the interferometer begin, or where some follow up analysis might be needed.

Below, we will often refer to these pages as the “daily summary pages,” and results from

some of the monitoring tools we will discuss below now appear on those pages.

In the rest of this chapter, we describe several examples of detector characterization

studies, and the development of tools used to carry them out. In section 4.2, we discuss

the development of tools that are used to monitor persistent noise sources in the detector,

and how those tools can be used to produce of a list of lines that will affect the cross-

correlation searches discussed in chapter 2. I have also helped characterize on-site

and inter-site correlated magnetic noise. We will discuss measurements taken of long-

wavelength magnetic fields and how we expect them to cause problems for SGWB

searches in the future in section 4.3. Finally, a known source of transient noise, referred

to as “RF beat notes” or “whistles”1, is discussed in section 4.4. We discuss how we

monitor and characterize their rates, as well as how we think they are generated in the

detectors and how they might eventually be removed.

4.2 Identification and characterization of spectral lines

It is common to see large lines in LIGO strain spectra, and often those lines are asso-

ciated with resonances in the instrument with very high quality factors, like the violin

modes of the test mass suspensions which are evident near 500 Hz in figure 1.4. A set

of lines that show a well-defined spacing is known as a comb, and we often talk about

individual lines in that comb as “teeth.” We discussed in chapter 3 how noise lines that

are coherent between two interferometers can affect cross-correlation searches for GWs,

and gave a brief overview of the follow-up process. In this section, we expand on the

methods used to identify, characterize, and mitigate sources of lines and combs. We

also discuss and show examples of how those methods can be applied to shorter periods

of data to identify new sources of noise that might be introduced after maintenance or

1These two names come from their likely source–beat notes produced from two different radio
frequencies–and the way they sound when converted into audio.
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commissioning of the interferometers.

4.2.1 Finding spectral lines in the data

Stochmon

Stochmon is a tool developed by Thomas Callister that monitors certain diagnostic

statistics relevant to the cross-correlation GW searches described in chapter 2. It gen-

erally operates with a lag time of O(1 hour). Stochmon produces an estimate of the

sensitivity of the isotropic search as a function time, an estimate of the contribution of

correlated magnetic noise to GW searches, and the modulus of the coherence spectrum

of the two LIGO interferometers, defined in equation (3.3). It is this last feature that

is commonly used for detector characterization. We identify lines that are coherent

between the interferometers using the method described in section 3.2.4. We construct

a histogram of the coherence spectrum and compare that histogram to what one would

expect for a coherence spectrum generated from Gaussian noise. This was shown in fig-

ure 3.6. Any frequency bins found as outliers from that histogram require follow-up to

see if they are caused by a known detector issue or if they could potentially be caused

by GWs. This follow-up is often performed using STAMP-PEM or the coherence tool,

which are discussed in section 4.2.2.

The comb seen with 1 Hz spacing and 0.5 Hz offset from the integer that was

discussed in section 3.2 (colloquially referred to as the “0.5 Hz comb”) was observed

first in stochmon coherences and FScans (discussed below) and eventually the source of

this comb was found to be blinking LEDs on timing chips [51].

Time shifts of SGWB searches

As described in section 3.2.2, we often perform our cross-correlation searches with an

unphysical time shift in an attempt to identify detector-related issues. For broadband

searches for a Gaussian SGWB, this method is good at blinding our searches. When

we use the data for individual frequency bins to try to detect signals from sources like

rotating pulsars or to try to identify spectral artifacts, we must be careful because

an unphysical time-shift will not remove correlations due to GWs. It will change the

relative phase between the detectors (making it appear as though the signal is coming
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from a different direction), but it does not remove the signal from the data. Therefore,

we cannot simply notch narrow frequency bins that have excess cross-correlation just

because they are outliers in a time-shifted search. We must treat them the same way

we do lines we find from stochmon: we need compelling evidence that this noise is not

caused by GWs.

Most of the lines marked “unknown” in appendix A were identified as issues for

the O1 SGWB searches due to time shifted runs. We followed up on these lines with a

combination of the coherence tool, STAMP-PEM, and FScans; all of which are discussed

below.

Comb finder

Many stochastic searches integrate over frequency. While we need to remove obvious

excess coherence, there are also cases where an integration over sub-threshold combs

yield a broadband excess in coherence. By this we mean that there is not an obvious

single frequency exceeding the typical levels of noise, but there is a set of frequencies with

a specific spacing that, when summed together, gives something larger than expected

if the same number of frequency bins were chosen from random noise and summed.

To deal with this we developed a “comb-finder” which sums power over many possible

tooth-spacings and offsets and checks whether that sum is larger than expected.

For a time-shifted isotropic SGWB search, we calculate the signal-to-noise-ratio

(SNR) from the cross-correlation bin-by-bin estimator Ŷ (fi) and the associated uncer-

tainty σY (fi), defined in equation (2.37), for a variety of different potential combs. We

then combine these bins using a weighted sum (the same weighted sum as in equa-

tion (2.38) except over frequency bins instead of time segments). For a comb with N

teeth, the combined statistic becomes

Ŷ N
comb =

∑N
i Ŷiσ

−2
Yi∑N

i σ
−2
Yi

(4.1)

σNYcomb
=

[
N∑
i

σ−2
Yi

]−1/2

. (4.2)

The subscript indicates the discrete frequency bin fi so that, for example, Ŷi = Ŷ (fi).
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We parameterize a specific comb by the offset of the first bin from the start of

the search band and the frequency spacing between the teeth of the comb. The offset

number of bins m and spacing n determine which frequency bins contribute to the

comb in question. For a search over a given frequency band ∆f = fmax − fmin, with a

frequency resolution of df , the number of teeth in a comb with bin spacing n will be

given by N = 1 + floor
[

∆f
n

]
. We then define the combined SNR statistic using our

optimal combination method

Sm,n =
Ŷ

(m,n)
comb

σ
(m,n)
Ycomb

=

∑N
i Ŷ (fm+ni)σ

−2
Y (fm+ni)[∑N

i σ
−2
Y (fm+ni)

]1/2
. (4.3)

Figure 4.1 shows an example output of the comb-finder tool demonstrating the 0.5 Hz

comb found during O1. Excess SNR is visible at regular 1 Hz spacings and offsets of

0.5 Hz.

This tool also identified an 8 Hz comb in the observing run 2 (O2) time shifted SGWB

results, which was eventually identified as a detector artifact using the coherence tool.

FScans and FineTooth

FScans and FineTooth are tools that are used to identify narrow lines in the strain

spectrum of the individual interferometers, as well as auxiliary channels. They are

maintained by researches at the University of Michigan. FScans generates 1800 s am-

plitude spectral densities for the strain channel and many auxiliary channels. The

long-duration spectra allow for very narrow frequency resolution, which is often neces-

sary when performing very sensitive searches for known rapidly rotating neutron stars.

FineTooth then sorts and searches through the spectra produced by FScans to identify

combs that are evident in the spectra and track the amplitude of those combs over time.

It can be used to identify new combs, potentially introduced by changes in the inter-

ferometers, as well as quantify the effect of efforts made by commissioners to mitigate

sources of those combs and lines.

For SGWB searches, we commonly use the results of FScans and FineTooth as

follow up tools to identify whether coherent lines that show up in time shifted results
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Figure 4.1: Example output of the comb-finder. White pixels indicate strong SNR. The
loudest pixels indicate a coherent 1 Hz comb with 0.5 Hz offset identified during O1.
This comb is also discussed in section 3.2
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or inter-site strain channel coherences appear in just a single interferometer, both in-

terferometers, or are part of an obvious comb in one of the detectors. A source of

GWs would be expected to have a measurable amplitude in both detectors and because

the Earth rotates and moves relative to any prospective source of narrowband GWs,

there is an expected Doppler broadening that should smear any real GW signals over

multiple 1/1800 Hz frequency bins. Therefore, large lines that are seen in just a single

frequency bin in one detector for spectra that have been averaged over several hundred

days are very likely caused by digital noise in the detectors.

This analysis technique was very useful in removing several coherent lines identified

by time shifted SGWB studies and recorded in appendix A.

4.2.2 Identifying a cause for narrow spectral lines

In some cases, the best we can do is make the argument discussed in the FScans section

above to identify that a coherent line is not caused by GWs. However, it is helpful

to both our searches, and commissioners, to try to find the actual source of the noise

lines. For searches for rapidly rotating neutron stars, each frequency bin is a separate

search for a potential source. For broadband SGWB searches, a forest of coherent lines

and combs require frequency notches. Individually, each notch may not significantly

reduce the search sensitivity, but in large numbers they do begin to meaningfully affect

the SGWB to which we could be sensitive. They also reduce confidence in a potential

detection; especially sub-threshold combs like the 0.5 Hz comb. Therefore, we work

hard to try to identify and remove as many of the sources of spectral lines as possible.

STAMP-PEM

STAMP-PEM2 is a tool used to calculate coherence between the strain channel and

many other environmental monitoring channels. It can be run as a way of trying to

identify a cause of a spectral line we already know about. During observational and

engineering runs, it is automatically run every two hours to monitor coherence between

the strain channel and O(1000) auxiliary channels. STAMP-PEM is maintained as a

code package written in python [148] based on GWpy [149]. It is capable of submitting

2STAMP for “Stochastic transient analysis multidetector pipeline” and “PEM” for “physical envi-
ronmental monitor”
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many coherence calculations to run in parallel on a scientific computing cluster. The

coherence results, which typically use a frequency resolution of 0.1 Hz and are averaged

over thirty minute time spans, are archived. There are tools in the code package for

accessing and visualizing archived data.

Monitoring—STAMP-PEM can be used to monitor coherence between the strain chan-

nel3 and many auxiliary channels throughout the interferometer. It produces a daily

web page that is updated every two hours with new information. Data are presented

in the form of “coherence matrices.” A coherence matrix is a list of channels on the

y-axis, frequency on the x-axis and coherence as the color. Channels from the same

subsystem of the interferometer are generally grouped together, which helps to make

couplings stand out on the plots, since many channels from the same subsystem will

often witness the same source of noise.

There is a top-level page that gives information about the times over which the

coherence has been averaged, and a (very large) coherence matrix for the full interfer-

ometer. An example of this top-level page is shown in a screen shot in figure 4.2. From

this large coherence matrix, one can pick out subsystems that exhibit couplings to the

strain channel and navigate to the individual subsystem pages, which show coherence

matrices with only channels from those subsystems. There are also interactive plots

written in D3js [150] that can automatically sort columns (most coherent frequencies

for a given channel) and rows (most coherent channels for a given frequency).

Finally, a table colloquially known in the LIGO Collaboration as a “BruCo table”4

is also produced from the data each day. Each row of the BruCo table is the list of

the most coherent channels with the strain channel at a single frequency. This table is

also displayed on the daily summary pages because it a terse and easily interpretable

visualization of the STAMP-PEM results. An example of how the STAMP-PEM results

appear on the daily summary pages, including this BruCo table, is shown in figure 4.3.

Follow up—The follow up part of the tool allows for users to pull coherence data from

any time when the interferometer is locked during an observational run. There is a

3Or any other channel.
4Named for the tool that originated this particular visualization of coherence between many channels.
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Figure 4.2: Screen shot of top-level STAMP-PEM monitoring web page from July 2017.
At the top there is a navigation bar for changing days, viewing the BruCo table for the
current day, and looking at coherence matrices for individual subsystems. Below that
is a set of instructions for navigating through the STAMP-PEM web page, followed
by a table indicating the data over which STAMP-PEM has been run for that day.
Finally, there is a large coherence matrix. The y-axis labels are subsystems and the
individual rows are channels in those subsystems. The x-axis is frequency, and the color
is coherence SNR. The 60 Hz power mains are evident throughout, as is noise around
300 Hz from the resonance of a periscope on the same table as the pre-stabilized laser.
Large white areas indicate channels or subsystems that have failed, or that an individual
channel is not sampled fast enough to produce data at those specified frequencies.
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Figure 4.3: Screenshot of STAMP-PEM on the LIGO detector characterization daily
summary pages. This webpage receives more traffic and links to the web page shown
in figure 4.2. At the top are instructions and times over which the analysis was per-
formed. Below that is the full-interferometer coherence matrix, followed by the BruCo
table that shows the five most coherent channels at each frequency for the data that
day. The darker the shade of red in the BruCo table, the higher the coherence. There
are also links to documentation about how to query archived STAMP-PEM data.

simple tool that allows one to pull archived data from the monitoring pipeline to easily

track coherence of a specific channel over very long time scales. It is also possible to

regenerate the coherence matrices from the monitoring pages with averaged coherences

over arbitrary time scales.

These follow up tools are useful in two main contexts. First, they can be used to

identify when a new source of noise coupling has started. If we identify a channel that

is coherent with the strain channel at a frequency where a new noise source has popped

up, the spectrogram tool can be used to help identify when the coherence first appeared
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and therefore when this new noise source likely started. This can help identify if certain

maintenance or commissioning on the interferometer was the cause of the noise source.

The follow up tools are also useful for identifying the source of noise that causes

narrow spectral lines, which can cause problems for searches for persistent or long-

duration transient gravitational waves. If there is a spectral line that is coherent between

the sites, STAMP-PEM can be used to check if there are possible couplings within the

interferometer that could be the cause of that line.

Examples of the use of STAMP-PEM

Acoustic coupling of fans—In April 2014, STAMP-PEM was used to identify acoustic

noise coupling into the length degree of freedom of one arm of the LIGO Hanford

Observatory (LHO) interferometer. At the time, the full interferometer had not been

locked, but one arm was locked on a regular basis and we monitored coherence between

the length degree of freedom of that arm and many environmental monitoring channels.

Strong coherence at 55 Hz and 85 Hz was seen in the STAMP-PEM results between the

length channel and a mix of accelerometers, magnetometers, and microphones in the

building housing the X-end test mass. A commissioner on site posited that this could

be caused by a fan that was constantly running to cool electronics. He placed a large

piece of plastic on the top of the fan. This reduced the rotation frequency of the fan and

the coherence showed a simultaneous downward shift in frequency. Coherence matrices

for a group of channels before and during this test are shown in figure 4.4.

Angular control coupling— A search for very-long-duration, O(104 s), GW transients

identified spectral lines at 197 Hz, 203 Hz, 217 Hz and 333 Hz on November 20, 2015,

as the dominant source of background triggers. This means that this specific noise

source makes the search much less sensitive, and so identifying a specific cause of these

spectral lines (which only appear for roughly one day) would allow those running the

search pipeline to safely remove these frequencies from the analysis during that day

without fear that they were removing a true gravitational-wave signal.

STAMP-PEM was re-run for that day with a narrower frequency resolution than

usual and it showed strong coherence with three channels associated with the angular

sensing and control of the interferometer: H1:ASC-AS B RF36 I PIT OUT DQ,
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Figure 4.4: Top: coherence matrix showing strong coherence between the single-arm
length channel and many environmental monitors. Bottom: the same coherence matrix
after plastic was placed on top of the fans that were identified as the likely source of
noise. We see on the right that the coherence has dropped significantly in frequency for
one of the lines and is essentially gone for the other. These channels include a mix of
seismometers, microphones, and magnetometers in the building housing the X-end test
mass at LHO.

H1:ASC-AS B RF45 Q PIT OUT DQ and H1:ASC-AS B RF36 I PIT OUT DQ. It was found

that during that day, sensors were installed to monitor changes that had been made to

a malfunctioning driver used to imprint radio frequency sidebands on the light. Those

sensors were the cause the noise lines seen by the search. The sensors were removed the

following day and the noise lines that caused problems for the search went away.

Monitoring the 0.5 Hz comb in O1— The comb discussed in the comb-finder section

above can immediately be seen as coherent between many magnetometer channels and
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the strain channel at LHO. During O1, I ran a separate instance of STAMP-PEM to

monitor these lines. It used a much finer frequency resolution of 1/900 Hz, and only

monitored coherence over a small subset of magnetometers that we knew witnessed this

noise. An example of coherence between the strain channel and a single magnetometer

that witnessed this comb, integrated over 20 hours of archived STAMP-PEM data, is

shown in figure 4.5.

Using the full channel list at this frequency resolution would require very large

storage, and so STAMP-PEM with very fine frequency bins can only be used for a

subset of channels to monitor a known noise or a known set of channels where one

might expect very narrow features to crop up. Otherwise, the coherence tool should be

used.
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Figure 4.5: A witness channel for the 0.5 Hz comb seen as coherent in the O1 SGWB
searches. The orange line shows the expected level of noise given the number of segments
we have averaged together. This comb was caused by blinking LED lights on timing
chips [51]. This channel is a magnetometer in the room that contains most of the
electronics for the corner station (the building housing the LVEA, where the beam
splitter, laser, and readout systems are located).
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Coherence tool

The “coherence tool” is very similar to STAMP-PEM, in that it calculates coherence

between the strain channel at a given interferometer and many auxiliary and environ-

mental monitoring channels [151]. The main differences are that it focuses on longer

durations and smaller frequency resolutions. It is run on a weekly basis, and so is less

useful for finding a specific day for when a new noise source arises, but it is better at

identifying coherence between the strain channel and auxiliary channels for very narrow

spectral lines.

During observing run 1 (O2), there is an 8 Hz comb seen as coherent between the

LIGO Livingston Observatory (LLO) and LHO strain channels. The teeth of these

combs are visible in a single 1 mHz frequency bin, which means that the wider, 0.1 Hz

bins used for STAMP-PEM were not able to resolve any obvious correlations. However,

the coherence tool, which uses frequency bins on the order of 1 mHz, identified the same

comb in the coherence spectrum between the power mains monitors at LLO and the

strain channel at LLO. This is shown in figure 4.6.

This tool was also used to find auxiliary channels that were witnesses to coherent

spectral lines found with time shifts in the O1 SGWB searches, including lines at 20.22,

47.69, and 453.32 Hz.

4.3 Long-wavelength magnetic fields

A source of correlated noise we expect to eventually cause problems for SGWB searches

is long-wavelength, correlated magnetic fields, like Schumann resonances [152]. Corre-

lated noise is insidious for SGWB searches because one of the main assumptions of the

search is that correlated noise is negligible. We need to make sure we understand the

level of correlated noise due to Schumann resonances so that we can help to distinguish

it from GWs. I discuss methods for distinguishing between GWs and correlated noise

due to Schumann resonances in chapter 5. In this section, I discuss ways of modeling

and estimating the level of correlated noise we expect to eventually see.

Schumann resonances are eigenmodes of the Earth-ionosphere resonant cavity, and

are typically excited by lightning strikes [153]. An example of a measurement of the

Schumann resonances is apparent in the spectra shown in the left hand side of figure 4.7.
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Figure 4.6: Follow-up of a coherent 8 Hz comb seen in O2 using the coherence tool.
The harmonics of the comb are marked with a dashed black line. The auxiliary channel
used to make this plot is a monitor of the power mains at LLO.

The first four peaks at roughly 8, 14, 20, and 26 Hz are evident in this spectrum. These

resonances are coherent across very long distances, as seen in a plot of the coherence of

magnetometers at widely separated locations in figure 4.7.

Magnetic noise is not currently a limiting source of noise for the LIGO interferom-

eters. An estimate of how magnetic fields couple into the interferometers can be found

by performing “physical environmental monitoring injections” (PEM injections). These

coupling estimates can be combined with measurements of the correlation of the mag-

netic fields on long distance scales to give us an idea of the level of correlated strain

noise we expect to see between widely separated interferometers.

In the rest of this section, I discuss a global array of magnetometers we use to

monitor Schumann resonances, how magnetic noise can couple into the interferometer,

estimates of the strength of current magnetic coupling, and an estimated budget for the

level of correlated noise SGWB searches could expect to see in the future. I reserve a
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Figure 4.7: Left: spectra from several low-frequency magnetometers around the world
that exhibit Schumann resonances. Right: coherence spectrum between magnetometers
in Poland and Colorado, which are separated by ∼ 104 km. A map showing the location
of these instruments can be found in figure 4.8. The left hand plot is reproduced from [1].

discussion of distinguishing correlated magnetic noise from GWs for chapter 5.

4.3.1 Global array of magnetometers

For the rest of this section, we will use data from a global array of magnetometers [1].

A figure showing where these magnetometers are located can be found in figure 4.8 and

information for each sensor used is shown in tables 4.1 and 4.2. Most of these sensors

are in magnetically quiet locations, which means they are buried underground in remote

areas. The LIGO magnetometers are not placed in the LVEA near the instrument, but

instead outside along the arms of the beam tubes as far away as possible from the

buildings on site. These sites are not as magnetically quiet as those in Colorado (Hugo

station) and Poland (Hylaty station), for example, and so we use the COL and POL

magnetometers to do some of our characterization studies below.

4.3.2 Magnetic coupling mechanisms and measurements

Magnetic coupling measurements are made by LIGO commissioners on site by gener-

ating large magnetic fields in various locations around the interferometers [157]. These
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acronym Location Orientation

Hanford H1 46◦27’42.2”N 119◦25’03.6”W X, Y arms
Livingston L1 30◦32’12.9”N 90◦45’57.5”W X, Y arms
Virgo V1 43◦37’54.7”N 10◦30’20.1”E NS, EW
Villa Cristina VC 43◦32’22.2”N, 10◦24’36”E NS, EW
KAGRA 1 K1 36◦24’33.5”N 137◦18’39.4”E NS, EW, Vertical
KAGRA 2 36◦24’42”N, 137◦18’18”E NS, EW
Hylaty POL 49.2◦N, 22.5◦E NS, EW
Hugo COL 38.9◦N, 103.4◦W NS, EW
Patagonia PAT 51.5◦S, 69.3◦W NS, EW

Table 4.1: Properties of all the magnetic antennas occurring in the text. There are two
LEMI magnetometers each at Hanford and Livingston, aligned along the arms of the
interferometers. This table and caption are is reproduced from [1]. COL is short for
“Colorado, U.S.A” and POL is short for “Poland.”

acronym Type Notes

Hanford H1 LEMI-120 [154] permanent
Livingston L1 LEMI-120 [154] permanent
Virgo V1 MFS-06 [155] permanent (8-26 Aug 2017)
Villa Cristina VC MFS-06 [155] temporary (20-22 July and 22-24 Nov 2016)
KAGRA 1 K1 MFS-06 [155] temporary (20-22 July 2016)
KAGRA 2 MFS-06 [155] temporary
Hylaty POL AAS1130 [156] permanent
Hugo COL AAS1130 [156] permanent
Patagonia PAT AAS1130 [156] permanent

Table 4.2: Properties of all the magnetic antennas occurring in the text. This table and
caption are is reproduced from [1]

magnetic fields can couple into the strain channel. There are two likely coupling mech-

anisms:

1. Coupling to the magnets on the second-to-last stage of the quadruple pendulum

suspensions for the test masses.

2. Coupling through electronics.

The first mechanism is likely to produce coupling that falls off in frequency as f−5. This
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Figure 4.8: Map of the location of global array of magnetometers. Numbers indicate
distance between stations. This figure is reproduced from [1].

comes from a factor of f−2 from converting from acceleration noise to displacement noise

(i.e. a force is applied to the mirror, but we measure strain), f−1 from eddy current

damping due to the steel skin of the vacuum chambers [158], and f−2 from the fact

that the coupling happens in the second-to-last stage of the suspensions, and so there

is the extra suppression in moving from the second-to-last to the bottom stage of the

quadruple pendulum. The second mechanism will likely produce a different coupling

that does not fall off as quickly with frequency.

Measurements of these coupling functions are made by generating large magnetic

fields at a specific set of frequencies in various locations around the LIGO interferom-

eters. These fields will then couple into the strain channel and be seen as lines in the

strain spectrum. Coupling is calculated by taking the ratio of the peak seen in the strain

channel with the peak seen in a magnetometer in the building where the injection is

made5. The peak will be seen in several magnetometers, and so the magnetometer that

5These are different from the low-noise, low-frequency LEMI magnetometers discussed in the previous
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Amplitudes [m/T]

TLHO 1.5× 10−8

TLLO,1 1.1× 10−8

TLLO,2 7.1× 10−11

Spectral indices

αLHO -3.55
αLLO,1 -4.61
αLLO,2 -0.95

Table 4.3: Estimates of the parameters in the power law model that was fit to the
coupling functions at LLO and LHO. The expressions that use these parameters are
summarized in equation (4.4).

sees the largest peak is used for the coupling measurement for that injection. Since the

magnetometers are not colocated with the coupling location, and the distances to the

injection source are small6 there is a good chance that this is an overestimate of the

coupling.

In figure 4.9 we show the maximum coupling measurements at each frequency across

each site. The color of the dot indicates which injection location produced the largest

coupling measurement. The location of the injections that were made can be found

in [157].

We fit the coupling measurements with power laws in one case and the sum of power

laws in the other case. The model is:

TLHO(f) = TLHO

(
f

10 Hz

)αLHO

(4.4)

TLLO(f) = TLLO,1

(
f

10 Hz

)αLLO,1

+ TLLO,2

(
f

10 Hz

)αLLO,2

(4.5)

I performed a least squares fit of the models to the data to estimate the model param-

eters. The results are summarized in table 4.3.

These measurements indicate that electronic coupling through cabling is probably

section.
6This means that small differences in distance to the source still matter in terms of source amplitude.
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Figure 4.9: Left: results of coupling measurements at LHO. Dots indicate measurements,
triangles indicate the injection was not seen in the strain channel and so an upper limit
on the coupling was set. Right: the same measurements at LLO. These plots are
reproduced from [157]. The fits to these coupling functions are also included, and their
parameters are summarized in table 4.3.
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the dominant coupling mechanism and so there is the potential that general mainte-

nance and commissioning of the interferometers could drastically change these coupling

functions on short time scales. There have been proposals to continuously inject a

magnetic “calibration” line or lines that could be used to monitor the strength of this

coupling in the future.

4.3.3 Properties of Schumann resonances

Schumann resonances are coherent on very large distance scales, and their amplitudes

exhibit variations that happen on time scales of 12 hours, 24 hours, and 24 days. The

first two variations are due to the fact that the resonances are generally excited by

lightning strikes from storms that start at roughly the same time and roughly the same

place each day. The last variation is due to the rotation of the sun, which can cause

changes in the ionosphere that will affect the quality factor, amplitude, and central

frequency of the resonance peaks in the spectrum.

I have developed a simple method to track the properties of the Schumann reso-

nances, and this allows us to estimate at what times their amplitudes are larger and

what the typical diurnal fluctuation in amplitude is near the LIGO sites. This method

could be used to re-weight the optimal combination of time segments, expressed in equa-

tion (2.38), to give larger weight to times when the amplitude of the Schumann peaks

are lower and less weight to times when the peaks are higher.

We track the amplitude of the Schumann peaks by fitting a Lorentzian profile to the

first four peaks in the spectrum using a least squares fitter provided by astropy [159].

This fit gives three parameters for each of the four peaks: amplitude, quality factor,

and central frequency. An example of Lorentzian fits to the Poland magnetometer

spectrum for each two hours of a single day is shown in figure 4.10. I performed this

fitting on spectra from each two hours of data for 10 days using the Poland NS-oriented

magnetometer. A plot of the amplitude of each peak as a function of time is shown

in figure 4.11. We see obvious diurnal variations where the peak of the first harmonic

of the Schumann resonances changes by as much as 40 % over a single day.
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Figure 4.10: Lorentzian fit to the Poland NS-direction magnetometer for the spectra
produced from each two hours of the day on October 15th, 2015. The blue is the
magnetometer spectrum and the orange is the fit to that spectrum. Note that the
peaks change amplitude from one chunk of two hours to the next. The amplitude of
each peak as a function of time over ten days is plotted in figure 4.11. The last plot is
missing above due to missing data during that time.

4.3.4 Correlated noise budget for SGWB searches

We can use the correlation between the LEMI magnetometers located at the two LIGO

sites (summarized in tables 4.1 and 4.2) and the coupling measurements to create a

correlated noise budget for the isotropic SGWB search. We use an expression similar

to that shown in [52, 53]. We note that the cross-power between our two detectors now

has a correlated magnetic noise piece

s∗1(f)s2(f) = λf−3γ(f)ΩGW︸ ︷︷ ︸
GWs

+

Magnetic Noise︷ ︸︸ ︷
T ∗1 (f)T2(f)M(f) . (4.6)

where λ is a normalization constant, T1(f) is the coupling function for detector 1, T2(f)

is the coupling function for detector 2 and M(f) is the power spectrum of correlated
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Figure 4.11: Amplitude of the peak for each of the first four harmonics of the Schumann
spectrum plotted over ten days. An obvious diurnal variation is present whose amplitude
is roughly 0.2 pT/

√
Hz, corresponding to a daily variation in amplitude of roughly 40 %.

magnetic noise between the two detectors in units of T2/Hz. Isolating the second piece,

if we substitute this in for s∗1(f)s2(f) to our bin-by-bin estimator in equation (2.37)

then we find that the contribution to our estimate of ΩGW(f) in each frequency bin due

to correlated noise is given by:

ΩMAG
GW (f) =

10π2

3H2
0

f3

γ(f)
Re [T ∗1 (f)T2(f)M(f)] . (4.7)

We estimate M(f) by taking the cross-power between magnetometers located on-

site at the two detectors, and we use the fits to the estimates of the coupling functions

from section 4.3.2 to create the budget. This budget is presented, along with sensitivity

estimates for an isotropic SGWB, in figure 4.12. We present many lines for the budget

on the same plot to give an idea of the range we expect. The dark line indicates the

arithmetic mean of those lines.

These measurements indicate that, given an optimal choice of the spectral index,

α, we could measure this contamination by the time we reach design sensitivity. There

are several proposed methods for reducing this noise. One method, involving Wiener
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Figure 4.12: An estimate of the correlated magnetic noise budget is shown in light blue
lines. Each line represents a different realization, measured with 1 hour of data over
the course of four days starting on August 15th, 2017. The blue lines show the varying
amplitude of the Schumann resonances. The orange lines represent the median, 10th,
and 90th percentile of the blue lines in each frequency bin. The other curves indicate
projected 2-σ sensitivity over 1 year of integration time of the isotropic SGWB search at
design sensitivty, and the estimated SGWB due to unresolved CBCs [28]. Image credit:
Rixing Xu.

filtering using magnetometers as witness sensors [160, 1] is promising, but relies upon

using separate witness magnetometers to clean different detectors. However, one worry

about this approach is that poor filter construction could result in injection of correlated

noise using this method. Another method, which leverages the different spectral shapes

of this correlated noise and SGWB background due to compact binary coalescences is

presented in chapter 5.

4.4 Identifying and mitigating whistle glitches

Searches for transient sources of GWs generally either use matched-filtering techniques

to search for compact binary coalescences (CBCs) or they use excess-power statistics
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to search for unmodeled sources like supernovae [27, 161, 162, 26]. Typically, these

searches assess significance of a candidate by performing “time-slide studies,” where

they apply an unphysical time-shift to the two detectors, run the search, and look

at how often their detection statistic takes on certain values by random chance. The

(usually reasonable) assumption is that there is not a source of correlated, transient

noise between the two detectors, and so this method will give an independent estimate

of how often, by chance, glitches in the detectors might overlap in time with one another

and cause a multi-detector detection statistic to take on a certain value. This is used to

generate the background distribution against which detection candidates are compared.

It seems obvious, then, that reducing the overall occurrence of glitches in the de-

tector will improve the background distribution used to set a significance threshold for

detection. At minimum, if we know the source of the glitches, but cannot change the

detector configuration or hardware to make them stop happening, then we can remove

times when those glitches happen from the analysis completely. This means that we

lose time that could be used for detecting GWs, but we also remove glitches we know

are not GWs from our background.

Below, we discuss one type of transient glitch that I have spent time working to

understand and characterize.

4.4.1 Whistle glitches introduction

A common class of glitches in the LIGO detectors are known as “whistle glitches”

because of the sound they make when converted to audio. In frequency-time space they

quickly sweep through the full 8 kHz band to which LIGO is sensitive in less than a

second. Right now, these glitches are most prevalent at LLO, and so unless otherwise

noted, the following discussion relates to that detector.

The current hypothesis is that whistles are the product of a beat note between two

radio frequency (RF) sources. One of those sources is a voltage controlled oscillator

(VCO) used to modulate the laser wavelength as part of the common mode servo7. The

other source varies. In some cases, it is a different VCO and in other cases it is an

ambient RF signal. Henceforth, we refer to this “other” RF signal as a “stationary

7The “common mode servo” is used to control the common motion of the two arms of the interfer-
ometer.
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line.”

We test this hypothesis by plotting the time series of the VCO in question, the input

mode cleaner VCO (PSL-VCO) (which is discussed in more detail in section 4.4.3), below

a strain spectrogram containing a whistle glitch. An example is shown in figure 4.13.

We see that twice during this time, the whistle hits zero frequency when the PSL-VCO

crosses a specific value. We also fit the whistle by calculating a beat note between the

PSL-VCO and the stationary frequency, and we overlay that fit on the spectrogram in

red and green. We discuss in section 4.4.2 how to generate the fast read back of the

PSL-VCO to create the time series in the bottom plot, as well as different methods

of automatically finding the frequency of stationary lines which cause beat notes that

appear as glitches.

Whistles are also seen in many auxiliary channels in the LIGO detectors, and some

efforts to reduce RF pickup and increase shielding of cables have resulted in a reduction

of whistles in those channels.

4.4.2 Characterizing and monitoring whistle glitches

Fast readback of PSL-VCO

The radio frequency of the PSL-VCO is sampled at just 1 Hz, but stored in data frames

as if it is sampled at 16 Hz; meaning the data stream consists of 16 repeated samples

followed by a change and 16 more repeated samples. It is unclear what the proper time

stamp is for the repeated sample. On short time-scales, this channel is linearly related

to the IMC-F OUT DQ channel, which is the explicit control signal sent to the VCO, which

is in turn sent to an acousto-optic modulator (AOM) that is used to modulate the laser

wavelength.8

We fit the IMC-F OUT DQ channel with the PSL-VCO frequency repeatedly using a

linear model, changing the time stamps at which the 1 Hz samples of the PSL-VCO

are taken for each fit. The times consistent with the best linear fit correspond to the

“true” sampling times of the PSL-VCO channel. We show a plot of the residual of many

linear fits in figure 4.14. From here, we create a “new” PSL-VCO channel sampled at

8We could use this IMC-F OUT DQ channel to identify whistles, but we see secular changes in the linear
relationship between it and the VCO, and so backtracking to identify the frequency of any stationary
lines we found using that channel would take extra work.



107

0

1000

2000

3000

4000

5000

6000

7000

8000
F

re
qu

en
cy

[H
z]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time [seconds] from 2018-02-14 14:43:37 UTC

79.74

79.75

79.76

79.77

79.78

79.79

79.80

V
C

O
F

re
qu

en
cy

[M
H

z]

79.77900 MHz

79.80460 MHz

Figure 4.13: Top: example of three whistle glitches caused by two stationary lines at
LLO during tests in February 2018. We also show our ability to fit it by calculating a
beat note between the PSL-VCO and the stationary lines marked on the lower plot. We
calculate a beat note between the blue curve on the bottom plot and the red (green)
curve, and multiply that beat note by a factor of 2. That produces the red (green)
curve in the upper plot that is overlaid on top of the whistle glitches, which are visible
in yellow. The source of the extra factor of 2 is unknown.

just 1 Hz with correct time stamps. We can then up-sample that channel to try to get

better resolution by either using a univariate spline interpolation between samples or by

measuring the fit between the IMC-F OUT DQ channel (which is sampled at 16 kHz) and
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of the PSL-VCO channel (assuming we originally labeled the time stamp as the time
immediately after the samples change values). An example of the time-stamps before
and after the shift can be seen on the right.

the PSL-VCO channel and using the fit to generate a “fast” PSL-VCO channel. Both

methods produce similar results for our purposes.

Sometimes the whistle glitch does not appear simply as the difference of the two

frequencies, but instead as some higher harmonic of that beat note (values between 2

and 6 have been identified), indicating that the coupling mechanism of the beat note

into the strain channel could be different for different stationary lines. While RF pickup

into essential electronics is likely the culprit, the exact coupling path is still unknown.

It can be a tedious task to fit each glitch and compile a set of stationary lines

manually. We have developed methods to either automatically identify these glitches,

or at least infer information about their population like the stationary line and the rate

at which the glitches are occurring. Once we have a catalog of stationary frequencies,

we can try to manipulate the PSL-VCO such that it always remains in a “clean” range

in frequency space. This was done at LLO during O1 and was effective at significantly

reducing the rate of whistle glitches. This is discussed more in section 4.4.3.

Below, we outline three methods that have been used to try to automatically identify

the stationary frequencies that cause problems.
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Characterization methods

Stochtrack fitting

Stochtrack is a “seedless clustering” algorithm that can be used to identify tracks of

large amplitude in a frequency-time map (ft-map) [163]. It does so by drawing many

tracks in an ft-map. For each track, it sums the value of the pixels the track passes

through and normalizes by the square root of the number of pixels the track passes

through to generate a “track statistic”. It then records which track has the largest

track statistic.

I helped design and implement a custom track-drawing method for stochtrack that

was optimized for whistles. It produces an ft-map of the PSD of a given channel, and

then normalizes each row of that ft-map by the median across all pixels in that row.

This helps reduce the effect of loud spectral lines (like calibration lines) and accentuates

transient artifacts (an example is the top plot of figure 4.13). The track-drawing method

guesses a value of the stationary frequency (and harmonic of the beat note), calculates

a beat note between the PSL-VCO and the stationary frequency, and uses this beat

note as the track that is drawn on the map. The stationary frequency and harmonic

associated with the track with the loudest track statistic is then recorded. In cases where

there is not a whistle, this statistic is low and the stationary frequency and harmonics

for those tracks are meaningless. In cases where there are whistles, the method does a

good job of recovering the correct parameters one would get performing the fit manually,

and the track statistic is large.

An example of running stochtrack on each 4 s time segment over 4.5 hours of data

is shown in figure 4.15. Map pixels in the ft-maps had 1/16 s× 16 Hz resolution. The

results show an obvious stationary frequency that dominates most of the tracks. In

addition, taking the median track statistic across all tracks in that outlying bin results

in a significantly larger value than when the same thing is done for the other bins.

While this method can clearly be effective, it takes a very long time to run and it is

not feasible to run in real-time. It could be used to analyze a pre-selected population of

whistles, but it is not effective at monitoring data as it is collected. In addition, because

only the largest track statistic is recorded for each 4 s stretch of data, if there are multiple

whistles from different sources, like what is displayed in figure 4.13, then this method
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would miss one of the stationary lines causing whistles in that map. Below, I outline

two methods that can operate on shorter time scales and with much less computational

cost.
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Figure 4.15: Left: histogram of the estimated stationary line frequency for the largest
recovered track in each 4 s ft-map that was analyzed. Right: average track statistic
for recovered track for each bin in the left hand plot. This indicates that only one
bin in the left hand plot was likely consistent with whistles, and it was the outlier
near 68.264 MHz. This data was from June 4th 2015 06:00 UTC – 10:30 UTC. The
PSL-VCO was operating near 68 MHz, as opposed to where it is now, near 79 MHz. It
is important to note that this histogram conveys very different information than those
presented in the next section, despite visually looking similar.

Histogram method

We can also look at the rate at which glitches happen when the PSL-VCO sits near

certain values. We use the external trigger generator, Omicron [164] to construct a list

of glitches that occur in the detectors. We measure the frequency of the PSL-VCO

value around the time of each glitch and we construct a histogram of those frequencies.

VCO frequencies associated with a stationary line should appear as higher bins in that

histogram. These histograms are much faster to make, and give similar-quality results

to the stochtrack fitting method.

I wrote a piece of code to compare the histogram of the VCO frequency at each
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trigger to the histogram of the time-series values of the VCO. If there are no whistles,

then we should be able to rescale the latter to be very similar to the former. The

assumption here is that in the absence of whistles, one expects glitches to happen at a

specific PSL-VCO frequency in proportion to the rate at which the PSL-VCO crosses

that frequency. I used the Markov chain monte carlo (MCMC) sampler9 emcee [165] to

simultaneously rescale the histogram of the VCO time series to fit on top of the trigger

histogram and estimate excess bin heights above that background. An example plot

illustrating the use of this method to estimate the rate of whistles associated with the

4 identified stationary frequencies is shown in figure 4.16.

I used a Gaussian log-likelihood, where I label the trigger histogram bins using Ti,

the estimated whistle rate in each bin as wi, the histogram of the VCO time series as Bi,

and estimated rescaling value of the VCO timeseries as r. I have chosen capital letters

for measured quantities and lower-case letters for parameters over which we sample.

The dimension of the parameter space is Nbins + 1.

log p(Ti|Bi, wi, r) = −1

2

(∑
i

[Ti − (r Bi + wi)]
2

Ti

)
. (4.8)

I used a log-uniform prior on the wi’s, which should keep the initial estimates for the

whistle rates close to zero. This helps to properly fit the background in the earlier stages

of sampling, before the MCMC walkers slowly pick out larger bins. If one is not careful

about this selection of initial guesses, then the background can be severely-underfit and

the difference is then made-up by the wi estimates. This issue arises in part because

we are using 50 data points to estimate 51 parameters. We use our prior information

to inform initial guesses for the start locations of the MCMC walkers to try to make

up for this deficiency. Therefore, we start the estimates for the wi’s very low, while

we start the estimate for r very near to the overall glitch rate (that includes whistles).

These guesses generally serve us well in producing sensible results. An example of this

method in action that shows the individual steps for four hundred MCMC chains is

shown in figure 4.17. We see that the rate is fit properly first, followed by the individual

bins.

From the results of the MCMC sampler, stationary radio frequencies are identified

9MCMC samplers and Bayesian inference will be discussed in more detail in chapter 5



112

by taking the the relative maxima of the wi’s (see right hand plot of figure 4.16). We

sum over frequency bins adjacent to each of the relative maxima to achieve an estimate

of the whistle rate associated with each stationary frequency. The results for the sample

data from February 2018, are summarized in table 4.4.
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Figure 4.16: Left: reconstruction of trigger histogram using an MCMC sampler. The
parameter space is Nbins + 1 in size; one parameter for the overall rescaling of the VCO
time-series and then Nbins parameters for the rate of of whistles in each bin. We see
four obvious stationary frequencies. Individual bin errors are given by the square root
of the number of counts in each bin. Right: estimate of the rate of whistle glitches in
each bin.

Stationary Frequency [MHz] Rate [Hz]

79.5575± 0.006 0.0076± 0.0014
79.5698± 0.006 0.016± 0.0025
79.5863± 0.006 0.027± 0.003
79.5986± 0.006 0.046± 0.0036
Total Whistles 0.119± 0.007
Background 0.655± 0.012

Table 4.4: Summary of whistle triggers for a 4 hour lock stretch on February 19th, 2018
at LLO.
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Figure 4.17: The “burn in” MCMC chains for two parameters: the background rate of
triggers and the number of whistle counts in the bin with the most whistles. Each trace
is a separate MCMC “walker,” and we see the log-uniform spacing of those walkers in
the bottom plot allows the convergence of the background rate to a reasonable value
first, followed by the migration of the whistle trigger counts increasing to their correct
value near roughly 400.

GravitySpy

GravitySpy is a citizen-science project that attempts to classify glitches in the detector

as belonging to certain families using a machine learning (ML) classifier [166, 167]. It

trains the classifier using citizen scientists and then applies that classifier to all of the

glitches registered at both detectors. Whistles are one classification of glitches available.

GravitySpy results are available on time scales of ∼ hours after glitches are registered,

and so GraviySpy could also be used to characterize whistles. One would likely look at

the VCO frequency at each of the glitches classified as whistles.

In the future, the hope is to combine information from the histogram method de-

scribed above with GravitySpy to perform better classification of whistles.
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Monitoring

During O1 and O2, I implemented and maintained an online monitor that created

histogram diagnostic plots like those discussed above. The MCMC portion of the code

was not complete until more recently, but evaluating histograms by eye allowed us to

find a region of space in the radio frequency band at LLO10 where there were relative

few stationary lines that caused whistle glitches. The PSL-VCO operated in this region

for most of O1 and O2, however, in pre-observing run 3 (O3) cabling has changed

and it appears that this region of RF space now contains stationary frequencies that

cause whistles. This calls for identification of a new list of stationary frequencies, and

hopefully, finding a new area of RF space where the PSL-VCO can operate and not

cause whistles.

The monitor waits until two hours after the end of a UTC day, when it then queries

a database for segments of time when the interferometer is in an observational state.

It then creates trigger and time series histograms for each of the locked segments and

displays those histograms on a web page as part of the LIGO Detector Characterization

Summary Pages [168]. It does this for triggers for several different channels, including

the strain channel. This is done because often there are other channels that witness

whistles at the same time as the strain channel, which could be helpful for identifying a

coupling mechanism in the future or creating a veto for whistles that could help increase

the sensitivity of certain GW searches.

The latest version of the monitor that is in development is based on the latest version

of the histogram method described above. It includes explicit estimates for stationary

RF lines, as well as the rate of whistles associated with each line, the overall rate

of whistles, and the non-whistle glitch rate as identified using the MCMC histogram

method described above. It also makes all of the raw data for the plots available for

download.

4.4.3 Whistle glitches and the LIGO detectors

How the beat notes couple into the detectors is a difficult question to answer. RF pickup

can happen any place there are wires. Simply plugging a coaxial cable into a spectrum

10where whistles were a much larger problem, compared to at LHO



115

analyzer in the LVEA shows a forest of lines in the 60− 200 MHz frequency band. RF

sidebands are imprinted directly on the light to aid in Pound-Drever-Hall locking, and

those signals are carried throughout the interferometer to be used for demodulation and

recording purposes. Poorly designed cables can lead to leakage that can result in very

large RF signals that can then be picked up by other electronics.

The PSL-VCO

The PSL-VCO is used in the common mode servo [169]. In broad terms, the common

mode servo adjusts the wavelength of the laser based on the common free-swinging

motion of the test masses. However, generally, this must be balanced with the fact that

before the light enters the interferometer it goes through a triangular mode cleaner that

extracts the Gaussian TEM00 mode of the laser [170], and so we must adjust the laser

frequency in such a way as to keep both the mode cleaner and the full interferometer

locked. In principle, the control signal sent to the laser (known as “MC-F”11) consists

of the error signal from the mode cleaner and the high-frequency-filtered error signal

from the common mode of the free swinging test masses. The former is used because the

low-frequency error signal from the common mode of the test masses is used to actuate

directly on one of the mirrors in the mode cleaner. The PSL-VCO is used as input to

the AOM that controls the laser wavelength. The control signal the PSL-VCO follows

is MC-F.

RF survey at LLO and LHO

I performed a survey of the RF fields near most electronics racks in the electronics bay

and the laser and output mode cleaner racks in the LVEA at LLO in August, 2015.

A similar survey was also conducted the following week at LHO. We used wire coiled

around a ferrite core as our magnetic probe, and a simple short 1/2 dipole antenna as

an electric field probe. A rough calibration of the probes suggest that pickup values of

-70 dBm with the magnetic probe need attention, as they correspond to surface current

density values of greater than 1/3 mA/m at a skin depth of 10−5 m associated with

100 MHz [171]. At a frequency of 100 MHz, lines with pickup values of -60 dBm or larger

11This control signal is read out and saved as the IMC-F OUT DQ channel mentioned above.
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with the electric probe need attention. These correspond to electric fields of ∼3 mV/m

and larger. The maximum values are based on crude estimates of the detectability of

RF on forward biased semiconductor junctions and could well be smaller [171].

During the survey, the amplitude of peaks in the frequency band around 80 MHz

and 160 MHz were recorded if they exceeded -70 dBm. The two interferometers showed

similar amplitudes at each site using the same probes, and most peaks exceeding our

threshold were associated with the fundamental and first harmonics of three VCOs.

These included the PSL-VCO, discussed above, along with the ALS-COMM and ALS-

DIFF VCOs discussed in the wandering line section of section 3.2. These peaks were

largest in the electronics racks where these VCOs were plugged in, which are ISC-R1 and

ISC-C1. Details on these racks can be found in two LIGO internal documents [172, 173].

Generally, these VCOs are connected to racks using BALUN transformers.

The survey found that RF connections using BALUN transformers showed larger

levels of leakage than those that did not. Later tests confirm that these BALUNs greatly

increased RF pickup and leakage [174] by a factor of ∼1000 unless capacitors were added

to provide an RF ground to the metal body of the BALUN. Without the ground, the

wires in the BALUN are free to radiate. These capacitors were not used initially, and

should be added with caution, as they could change the phase of the signals being run

through these wires.

Some mitigation efforts that included removing the BALUNs reduced these peaks,

and even mitigated whistle glitches in some auxiliary channels. A more updated survey

should probably be performed in the future, with more precise probes.

There are several causes of radiation that have been determined. These are laid out

by Richard Abbott in [175, 174].

1. Use of a poor RF connection in the VCO circuit layout of the local oscillator input

to phase frequency discriminators.

2. Radiation out of several BALUN transformers.

3. RF emission from cables exiting an amplifier for the PSL-VCO, likely associated

with RF imbalance between currents in the shield of the coaxial cable and the

center conductor.
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Figure 4.18: Left: Omicron triggers for LSC-REFL at LLO for March 7th, 2017. The
y-axis indicates the value of the PSL-VCO and the x-axis is time. Color represents SNR
from Omicron. It is clear that there are several stationary lines that cause louder SNRs.
Right: Omicron triggers from March 9th, 2017, after RF mitigation efforts [176]. We
see no such lines, despite the fact that the PSL-VCO sweeps through a similar range of
frequencies.

Mitigation efforts and proposals

Stay away from stationary lines—On days when the common swinging of the test masses

is higher12, the PSL-VCO will take on a broader range in RF space. In general, we have

some choice over the range of RF space that the PSL-VCO traverses, as it is relative

changes in the VCO value that are useful for the AOM. We can use this choice to try

to steer the PSL-VCO into regions where there are no stationary lines that we know

cause whistles in the strain channel. During O1 and O2, this method was effective at

reducing the rate whistles seen in the strain channel. Several channels, including the

power recycling cavity length (PRCL), and the low frequencies of the reflected light

from the power recycling cavity (LSC-REFL), still showed whistles throughout most of

the runs.

Remove BALUNs—As discussed above, removing the BALUNs can reduce RF pickup

and potentially help reduce whistles. During O2, we continued to keep the PSL-VCO

in a region away from stationary lines, and so assessing this effect on the strain channel

is difficult. We did see a decrease in whistles in LSC-REFL when BALUNs used for RF

connections for the three VCOs were removed on March 7th, 2017 [176]. In figure 4.18

we see plots for this channel before and after the removal of the BALUNs.

12this might happen if the oceanic microseism is elevated, as is often the case during the winter at
LLO when there are many storms in the Gulf of Mexico
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General methods for reducing RF pickup— Below are several proposals for reducing RF

pickup, all suggested by Richard Abbott based on independent testing he performed

after the RF surveys were finished. These are summarized in [174]

1. Fix the poor RF connections on frequency discriminator chassis in rack ISC-

C1 [177, 173].

2. Remove BALUNs from cables carrying the PSL-VCO, ALS-DIFF, and ALS-

COMM VCOs away from the laser racks in the LVEA. These are in racks ISC-C1

and ISC-R1 [172, 173]

3. Remove BALUN serving the intensity stabilization servo AOM in rack PSL-R2.

4. Attach clip-on RF ferrite common-mode chokes around coaxial cable serving the

PSL-VCO at the output of the amplifier mentioned in the “causes” list above.

4.5 Conclusions

In this chapter we have presented detector characterization work to help find and miti-

gate sources of lines in the LIGO interferometers. We have introduced a variety of tools

used by members of the LIGO community to find and track lines and combs, as well as

a new one used for tracking many channels at once, STAMP-PEM, in detail.

We also discussed one particular source of transient “glitch” that is prevalent in the

LIGO Livingston detector. We discussed ways of estimating the rate of these glitches,

possible sources, and several routes one could take to try to mitigate the problem.



Chapter 5

Parameter estimation and model

selection applications to LIGO

SGWB searches

As Advanced LIGO and Advanced Virgo inch closer to their design sensitivities, a

detection of an astrophysical SGWB is on the horizon [28]. In the event of such a

detection, it is worthwhile to consider making a statement about how strongly the data

support the astrophysical models that have been constructed versus any one of the many

other models put forth in the literature. If, for example, there is strong support for an

astrophysical SGWB, (i.e. a 2/3 power law scaling in frequency), another interest would

be in simultaneously accounting for the detection we have made while also trying to set

limits on, or detect other models that could contribute at a lower level. In addition,

correlated noise will likely affect searches for an SGWB at some point, and this method

could also be used to estimate and account for this correlated noise.

In this chapter we seek to provide a general framework for quickly and efficiently

making such statements using the data products of the typical LIGO SGWB searches

discussed in chapter 2. We do this using a “hybrid” Bayesian approach that is very sim-

ilar to the method outlined in [178]. The approach we present will produce qualitatively

similar upper limits and detection levels for the cases described in chapter 2, under the

assumption that the background is a power law, but it also easily generalizes to the other

119
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cases of interest. Past methods of applying a similar hybrid Bayesian approach have

focused on specific applications, like parameter estimation for simple, low-dimensional

models [179], or testing whether the LIGO SGWB searches show consistency with the

tensor polarization modes predicted by general relativity [178]. Here, we provide a

general framework for performing Bayesian parameter estimation and model selection

for a generic set of models using the data products from the LIGO SGWB searches.

We then illustrate how this framework can be applied in a few simple, representative

examples. Finally, we’ll apply this method to full-scale simulations where we use real

magnetometer data to simulate correlated magnetic noise in LIGO detectors.

Throughout this chapter we will use the bin-by-bin estimator defined in equa-

tion (2.37), but without the normalization by the overlap reduction function, γ(f).

This makes the estimator, Ŷ , proportional to γ(f)ΩGW(f), which mimics the conven-

tion in [178]. This allows us to easily generalize the code and the method to searching

for alternative polarizations of GWs, as discussd in that manuscript. Therefore, the

estimator we use is given by

Ŷ (f) =
2

T

10π2

3H2
0

f3Re [s̃∗1(f)s̃2(f)] ∝ γ(f)ΩGW (f) (5.1)

σ2(f) =
1

2T∆f

(
10π2

3H2
0

)2

f6P1(f)P2(f)

where T is the length of the time segments over which we run the analysis, ∆f is the

width of the frequency bins we use, H0 is the Hubble constant today, s̃I(f) is the Fourier

transform of the data in detector I, PI(f) is the power spectrum in detector I, and γ(f)

is the traditional isotropic overlap reduction function defined in equation (2.23).

The outline of the rest of this chapter is as follows: in sections 5.1.1 and 5.1.2 we

discuss Bayesian parameter estimation and model selection from a bird’s-eye view. In

section 5.2 we discuss MCMC methods for exploring posterior distributions and for

estimating the Bayesian evidence. In section 5.3 we discuss the SMBS code package that

has been developed to perform parameter estimation and model selection on both real

and simulated LIGO data using arbitrary models for the SGWB. We then discuss in

greater detail a few specific examples of applying these techniques to making a detection

for an SGWB, distinguishing between different models, and even creating a budget for
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what sources contribute to the SGWB at what levels.

Finally, in section 5.4 we apply these methods to the case where we have correlated

noise in the LIGO detectors. We construct a framework for detecting an SGWB in the

presence of correlated magnetic noise, and test that framework using simulations with

realistic magnetic noise at low frequencies.

5.1 Bayesian inference

5.1.1 Parameter Estimation

We often use Bayes’ Theorem to write the probability for a set of parameters, ~θ, given

some model M(f ; ~θ), and the measured data Ŷ

p(~θ|Ŷ ,M) =
p(Ŷ |~θ,M)p(~θ|M)

p(Ŷ |M)
. (5.2)

In this expression Ŷ is given by equation (5.1), M is some pre-determined model for

the SGWB, and ~θ is the set of parameters upon which the model depends1. In words,

we say the posterior distribution is given by the product of the likelihood and the prior

and is normalized by the marginal likelihood (or evidence).

The prior contains any previously-known information we have on the parameters in

the model, and the likelihood function assigns a probability for the data given some

model for the SGWB. One common likelihood function, which we use throughout the

rest of this chapter, is a Gaussian likelihood

log p(Ŷ |~θ,M) = −1

2

∑
f

(
Ŷ (f)− γ(f)M(f ; ~θ)

)2

σY (f)2
. (5.3)

The Gaussian likelihood states that after subtracting the model from the data, the resid-

ual distribution should be consistent with Gaussian noise. As we discussed in chapter 2,

Ŷ (f) is averaged over many short time segments and so, in practice, it should be Gaus-

sian distributed by virtue of the central limit theorem.

1For a power law model, for example, the parameters would be the amplitude and spectral index of
the power law ~θ = (Ωα, α)
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After choosing a likelihood and prior probability distribution for each parameter, we

calculate the joint posterior distribution on ~θ, which makes a statement about which

regions of parameter space are preferred by the data. For the purposes of parameter

estimation, the marginal likelihood is a normalization factor that has no bearing on the

final results. We will come back to it in the next section.

It is worth stressing again that Ŷ (f) is the frequentist optimal estimator for the

SGWB in each frequency bin, and we are performing a Bayesian analysis on that opti-

mal estimator. This allows us to very quickly test many models without doing a fully

Bayesian analysis from the start. This method should be equivalent to a fully Bayesian

method, like those employed in the Pulsar timing community [180], under the assump-

tion that the power spectral densities in the detectors are known quantities and not

parameters of the model. Indeed, simulations done in [181] compare a fully Bayesian

search that marginalizes over the uncertainty in the power spectral density of the de-

tector with the traditional cross-correlation method presented in chapter 2. The two

searches show comparable results when power law models are considered. An analytic

comparison of the two methods can be found in [182].

5.1.2 Model Selection

Previous studies have made statements about whether one model for the data is more

realistic than another using the LIGO bin-by-bin optimal estimator defined in equa-

tion (5.1). Some of those studies use the ratio of the maximum likelihood estimates

between two different models [183]. In [178] they present a method for identifying alter-

native polarizations of GWs in LIGO measurements of the SGWB based on Bayesian

model selection. It is the latter that we use as the basis for this analysis.

Presented with two different models, M1 and M2, we can make a statement about

which one is preferred by the data using a ratio of the Bayesian evidences. The evidence,

often called the marginal likelihood, is given by

ZM1 = p(Ŷ |M1) =

∫
d~θ p(Ŷ |M1, ~θ)p(~θ|M1). (5.4)
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We also define a Bayes factor comparing the evidences for the two models

BM1
M2

=
ZM1

ZM2

. (5.5)

A large positive Bayes factor means that modelM1 is preferred to model M2. We can

also construct an odds ratio where we take into account the prior odds of one model

relative to the other.

OM1
M2

=
ZM1

ZM2

π(M1)

π(M2)
. (5.6)

If we are predisposed to believe one model over a second model, i.e. that π(M1) >

π(M2) then it would take more evidence in favor of the second model to convince us

that it is preferred to the first.

In some cases, one model might include a signal (perhaps a power-law background

for the SGWB) and the other model might be that there is no signal. Distinguishing be-

tween these two models would correspond to making a detection of a power law SGWB.

We will discuss this example, and others, in section 5.3. Table 5.1 summarizes the

interpretation of bayes factors comparing two models.

Bαβ lnBαβ Evidence for model Mα relative to Mβ

< 1 < 0 Negative (supports model Mβ)
1− 3 0− 1 No preference
3− 20 1− 3 Some preference
20− 150 3− 5 Strong preference
> 150 > 5 Very strong preference

Table 5.1: Guidelines for the interpretation of Bayes factors that relate some model,
Mα to a different model, Mβ. This is modified from [118], which in turn is modified
from [184].

5.2 Nested sampling for evidence estimation

Some of the examples we discuss below are low-dimensional, and in those cases a brute-

force approach can be employed. In the brute-force approach, the posterior is calculated
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for some pre-determined set of values in the parameter space. If we choose N values to

evaluate for each of the d parameters in the model, then the computational cost of this

method scales as Nd. This can become prohibitively large very quickly. Therefore, it is

worthwhile to also discuss MCMC methods of exploring the posterior distribution. One

particularly interesting method that also estimates the evidence is known as “nested

sampling.”

Developed by John Skilling [185, 186], nested sampling relies upon calculation of the

likelihood at n “live points.” The live point with the lowest likelihood, Lmin is replaced

by drawing a new point from the prior. Associated with each new point is a width

(or volume) in prior space, and the evidence is tabulated as a sum over the likelihood

multiplied by that volume in prior space.

The method by which a replacement is chosen depends upon the implementation of

nested sampling. Some methods, like cpnest [187], choose the new point by performing

a Metropolis-hastings walk [188] to try to choose a point that is uncorrelated from the

point it is replacing. Other methods, like MultiNest [189, 190, 191], draw elliptical

iso-likelihood contours in the the d-dimensional likelihood space, which can allow for

faster identification of a suitable new point. MultiNest is also capable of sampling

multi-modal distributions, which it does by clustering live points together and drawing

iso-likelihood contours on the separate clusters of live points.

There are many MCMC methods that do not calculate the Bayesian evidence and

which are solely concerned with constructing an accurate shape of the posterior distri-

bution of each parameter. It can be overkill to use nested samplers when only the shape

of the posterior distribution is desired [192], and so in some cases (where I will explicitly

mention it), I use the sampler emcee [165] to sample the posterior.

5.3 The SBMS package for SGWB inference

I have developed a code package, known as SBMS2, that is built around PyMultiNest [193],

which itself is a python interface to the MultiNest nested sampler [189, 190, 191]. The

goal of this package is to allow users to easily estimate parameters and perform evidence

calculations for a large number of different models (and combinations of models) for the

2“stochastic background model selection”
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SGWB 3. The use of a nested sampler like MultiNest has the distinct advantage over

traditional MCMC samplers of giving a robust estimate of the model evidence, which

allows model selection for models with large parameter spaces.

The package features a python application programming interface (API) that allows

users to perform parameter estimation and model selection on SGWB models using

real or fake LIGO SGWB data. Any model that can be used in the likelihood expres-

sion, equation (5.3), can also be used to perform software injections (in the frequency

domain). There is also a command-line interface for running similar injections and re-

coveries based on parameter files. The package includes a set of built-in models for the

SGWB, but the included set of models is not nearly a complete survey of the current

literature. Therefore, it is possible to define a new model for the SGWB on-the-fly, and

perform injections and recoveries with that model.

In the following section are several instructive examples where Bayesian model se-

lection and parameter estimation are useful for understanding the SGWB and potential

sources of noise. All of these examples utilize the SBMS code package, and code for

reproducing those examples are included in the SBMS documentation, which is included

with the code package.

In all examples below, we generate fake data in the frequency domain. We generate

σ2
Y (f) from equation (5.1), where the noise power spectral densities, P1(f), P2(f), come

from the projected Advanced LIGO design sensitivity curve [28], T = 1 year and ∆f =

0.25 Hz in a frequency range from 10−100 Hz. We then generate a realization for Y (f)

from this noise curve, σ2
Y (f), by drawing a random gaussian number of mean zero and

variance σY (f) for each frequency bin. We call this YN (f). Finally, we generate a curve

for Y (f) in the frequency domain corresponding to the model we plan to inject, YI(f),

and add it to the noise realization. We then use Ŷ (f) = YN (f) + YI(f) as the data in

our likelihood shown in equation (5.3).

Power law detection and parameter estimation

The model selection scheme can be used to discriminate between signal and noise models.

A simple noise model, which we will call N , would be that there is no SGWB, i.e.

3git.ligo.org/patrick-meyers/sgwb_model_selection

git.ligo.org/patrick-meyers/sgwb_model_selection
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ΩGW(f) = 0. Meanwhile, our power law model, P, is given by

ΩGW(f) = Ωα

(
f

fref

)α
. (5.7)

In this case, our detection statistic is just equation 5.5:

BPN =
ZP
ZN

=

∫
dΩα

∫
dα p(Ŷ |Ωα, α,P)p(Ωα, α|P)

p(Ŷ |N )
. (5.8)

Using an Advanced LIGO design sensitivity curve, we can compare this detection statis-

tic to the traditional statistic set out in equation (2.35). We do this for different values

of Ω2/3 (i.e. the amplitude for a background with a power law index of 2/3). This plot is

shown in figure 5.1 where the left axis is our Bayesian statistic and the color represents

our traditional frequentist optimal signal-to-noise ratio. We see that a Bayes factor of

8 roughly corresponds to an optimal SNR of 3.
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Figure 5.1: We show the correspondence between the odds ratio we have constructed
and the traditional optimal SNR. We can use this odds ratio to make a statement about
the presence of a stochastic GW background in the same way we can use the optimal
SNR. We see that a Bayes factor of 8 corresponds roughly to an optimal SNR of 3.

We have assumed a flat prior on α, a log uniform prior on Ωα, and that they are
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independent variables, so that

p(Ωα, α|P) =
1

Ωα
log

(
Ωmax

Ωmin

)
1

αmax − αmin
(5.9)

on the intervals where αmin ≤ α ≤ αmax and Ωmin ≤ Ωα ≤ Ωmax and zero otherwise.

We can estimate the parameters in the model. In figure 5.2, we show the two-

dimensional posterior distribution on Ωα and α. We see that the two-dimensional pos-

terior peaks at the correct values for the injected values (marked by the blue cross). We

also see that the marginalized posterior for each individual parameter allows us to put

error bars on our measurement of each variable.
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Figure 5.2: Recovery of amplitude and spectral index for power law model. Injection
amplitude and spectral index are indicated with blue cross, (Ωα, α) = (10−8, 2/3). In
this case the optimal SNR is ∼4. The vertical dashed lines indicate 16th and 84th
percentiles of the posterior samples from the MCMC chains. This plot is made with the
help of the corner.py package [194].
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In this case we used only a two-dimensional model for the SGWB, and so a brute-

force approach for both parameter estimation and model selection would have been

feasible. However, this served as a nice example of how the code is used and how we

interpret the results.

Discriminating between signal models

This method of model selection can also be used for distinguishing between two different

signal models. If, for example, one wanted to determine if the data supports evidence for

a “broken” power law, which changes spectral index at a specific frequency, as opposed

to a single power law, then this method would be a means to do so. We again consider

the case of a power law like equation (5.7), but fix the spectral index to α = 2/3 in the

recovery to imply we look specifically for an astrophysical background due to binary

mergers. We will call this P2/3. We also consider a broken power law model, K, which

we write as a piecewise function:

ΩGW(f) =

Ω?

(
f
f?

)α1

f ≤ f?

Ω?

(
f
f?

)α2

f > f?
(5.10)

where there are four parameters: Ω?, f
?, α1, α2. In this case, we fix α1 = 2 and

α2 = −1, in both the injection signal and the recovery, which corresponds to a model

similar to what is presented in [195].

In figure 5.3, we show different odds ratios for many injected broken power law

backgrounds of increasing Ω? at a fixed value of f? = 30. We show that at the level

where one would make a detection of an SGWB relative to noise, the P2/3 model and

K model are essentially indistinguishable. At a value of Ω? about 4 times higher than

what would be detectable, one can begin to distinguish between the two different signal

models. Obviously, this factor depends strongly on how much the signal models look

like one another and what prior information we have on the parameters beforehand. For

example, more and more detections of compact mergers can restrict the prior on Ω2/3,

which will allow us to better distinguish it from other backgrounds.
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Figure 5.3: Odds ratios comparing different models as we increase the amplitude of a
broken power law injection with α1 = 2, α2 = −1, f? = 30. In each case we use equal
prior odds for all models. We see that using our traditional power law search we would
make a GW detection at a similar time as using the correct broken power law model.
At an amplitude roughly a factor four higher, we are able to make a statement about
the ability to distinguish between the two models (blue points).

Budgeting

Based on current estimates of the rate of mergers of compact binary systems, we expect

there to be an SGWB due to unresolved CBCs with Ω2/3 ≈ 5 × 10−10 − 5 × 10−9

(where fref = 25 Hz). As shown in [183], the astrophysical SGWB due to CBCs is

likely to be indistinguishable from a simple 2/3 power law model, and so we use the

simple power law model with α = 2/3 as a proxy for the astrophysical SGWB due to

CBCs. With suitable priors based on rates and population estimates, we can attempt to

simultaneously measure (or set limits on) the astrophysical CBC SGWB and a second

power law background.

We injected the sum of two power laws, one at α = 3 and the other at α = 2/3 with

many different amplitudes. We then attempted to distinguish between three different

models. One model assumes just a single 2/3 power law background (P2/3), another

model assumes just noise (N ), and a third includes a 2/3 power law background and a

second, generic power law background P2/3 +Pα. The results are indicated in figure 5.4,
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where we see results for three different odds ratios. Each plot includes contours for where

the log odds ratio exceeds a factor of 8. We see especially that at low values of injected

Ω3, the simple P2/3 model is slightly preferred to the combined model. We also see that

it takes an extra factor of roughly 2 in amplitude for Ω3 before we can truly distinguish

between the single-power law and the sum of two power law models.
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Figure 5.4: Axes on all plots indicate injection strength for 2/3 power law (y-axis) and
α = 3 power law (x-axis). Left: odds ratios between model for a single α = 2/3 power
law and noise. Center: odd ratios between model consisting of two power law spectra,
P2/3 +Pα, and a model consistent with noise. Right: odds ratio between two-spectrum
model and one-spectrum model. Injection amplitudes for the α = 2/3 models are drawn
from the uncertainty band shown in [28] and we have used a LIGO design sensitivity
curve and 1 year of integration time. The black contours indicate lines where log B
are 8. We see that, in general at Ω3 = 2.5 × 10−9, we should be able to separate this
background from the estimated background due to unresolved BNS and BBH events.
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We would like to understand how well we can estimate the individual amplitudes of

these two models once we have established that both are present. The blue star on the

plots in figure 5.4 indicate the injection strengths for the two models whose parameters

we attempt to recover in figure 5.5. In figure 5.5 we show the parameter estimation

results for 1 (black dashed), 5 (purple solid), and 10 (dash-dotted red) year integration

times. We see that the variable power law is generally well-recovered, but it takes a

much longer period of time to resolve the amplitude of the 2/3 power law background

reliably.

5.4 SGWB detection and parameter estimation with cor-

related magnetic noise

5.4.1 Correlated magnetic noise model

One issue that could hinder the detection of an SGWB is low frequency, correlated

magnetic noise. This was discussed in section 4.3.4 and has also been discussed in the

literature [52, 53]. Methods discussed in the literature for dealing with correlated noise

often focus on Wiener filtering or creating a magnetic noise budget at low frequen-

cies [52, 53, 1]. Here, we consider a model that depends upon the coupling of magnetic

fields into the detectors, Ti(f), and the correlated magnetic spectrum M(f) (in units of

pT2Hz−1 now because of the definition of T (f) below) the same as used in the budget

discussed in section 4.3.4. In principle, M(f) can be measured by magnetometers near

the detectors, and Ti(f) can be measured using magnetic injections around the sites [53].

Any estimates of the transfer functions made using injections will likely be very uncer-

tain, and so we can also allow for some parameters characterizing its functional form to

vary. The model is defined in terms of these quantities

M(f ; ~θ) =
10π2

3H2
0

f3Re
[
T ∗1 (f ; ~θ)T2(f ; ~θ)M(f)

]
. (5.11)

When we run the stochastic isotropic search on real data we break our analysis into

60 s time segments and then we optimally combine those time segments using equa-

tion (2.38). Therefore, we calculate M(f) in a similar fashion. We calculate Mi(f)

for each time segment i of the analysis and we combine those segments using the same
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Figure 5.5: Parameter estimation results for the sum of two power laws. We show the
parameter estimation results for 1 (black dashed), 5 (purple solid), and 10 (dash-dotted
red) year integration times for Advanced LIGO at design sensitivity. We see that the
variable power law is generally well-recovered, but it takes a much longer period of time
to resolve the amplitude of the 2/3 power law background reliably.
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weights used for the stochastic isotropic optimal combination. That is, in the end, we

use:

M(f) =

∑
iMi(f)σ−2

Y,i(f)∑
i σ
−2
Y,i(f)

(5.12)

where σY,i is the uncertainty on the optimal estimator Ŷ for time segment i.

5.4.2 Correlated magnetic noise simulation scheme

We simulate correlated magnetic noise between the Hanford and Livingston detectors

using real magnetometer data from the LEMI magnetometers located at each site4. The

simulation is performed separately for the two data streams. For each data stream we

simulate, we take a fast Fourier transform of the data from the local LEMI magne-

tometer, apply a transfer function in the frequency domain, and take an inverse Fourier

transform. We then add this to Gaussian interferometer data simulated using a LIGO

design sensitivity curve [146] using the lalsimulation package 5. For simplicity, the

functional form of the transfer function is taken to be a power law in all simulations

discussed below, and the parameters for that power law are assumed to be the same at

both interferometers. While we showed in section 4.3.2 that this is not the exact case

we have in our instruments, it is a simple starting point. We consider two parameters,

κ and β, which characterize that power law

T (f ; ~θ) = κ× 10−23

(
f

10 Hz

)−β strain

pT
. (5.13)

This expression is consistent with the convention used in [53]. We create injection sets

that are three days long, with transfer functions that are larger than is realisitic (κ ≈ 0.1

was the estimate at Livingston presented in chapter 4, for example). This is done to

reduce the time it takes to perform the simulations. The results should generalize to

longer time scales and smaller coupling functions, but this is something we plan to test

explicitly in the future.

Once we have created the timeseries data with correlated noise, we run the full

stochastic isotropic search pipeline on a subset of the data to generate Ŷ (f) and σ2
Y (f).

4details on these magnetometers are discussed in chapter 4
5https://wiki.ligo.org/DASWG/LALSuite

https://wiki.ligo.org/DASWG/LALSuite
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We do this with 60 s time segments and 0.25 Hz frequency bins in a frequency band from

10−128 Hz6. We then determine at what level one could detect a power law background

with α = 2/3 for different models in the presence of magnetic noise. We do this by

injecting, in the frequency domain, sucessively stronger power law backgrounds and

running the full parameter estimation and model selection pipeline for several different

models. The models considered are summarized in table 5.2. We then construct odds

ratios corresponding to several different detection schemes using the results of those

individual models and find at what injection level those odds ratios are greater than

eight. The detection schemes considered include the odds ratios discussed in the next

subsection. We then repeat this process for successively longer subsets of the data. This

allows us to look at how the sensitivity to Ω2/3 scales as a function of time in the context

of realistic magnetic noise for our different detection methods.

We also save the median, fifth, and ninety-fifth percentile estimates for each model

parameter in each model considered in table 5.2. This is done for each power law

injection and for each subset of data over which we run, which allows us to look at how

the estimate of those parameters scales with time.

Name Model parameters

M only correlated magnetic
noise

κ, β

M+ P2/3
correlated magnetic noise and
GWs with a 2/3 power law

κ, β, Ω2/3

N Uncorrelated Gaussian noise none

P GWs with a 2/3 background Ωα, α

Table 5.2: Models used in parameter estimation and model selection on magnetic noise
simulations.

Below, we present odds ratios we will use for interpreting our results, followed by

results for several different simulations with different levels of correlated magnetic noise

that show the power of this method. In each case, we assume that transfer functions

at the two sites that are constant in time and have the same power law parameters at

both sites. While it will be imperative to relax these assumptions in the future, for now

6There are frequency notches around the power mains (2 Hz on either side) and at 20 Hz, where
there is a large site-wide magnetic field at the Livingston detector.
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it is easier to consider simple situations.

Odds ratios

We define three odds ratios that will help us understand the effect of correlated magnetic

noise on our search. The first is between a typical power law model and a model for

generic Gaussian noise, BPN (this is comparable to maximizing the optimal SNR, defined

in equation (2.35), over power-law spectral index). The second odds ratio is used to

discriminate between magnetic noise plus a 2/3 power law and just magnetic noise,

BM+P2/3

M . In the case where there is no magnetic noise, this should reduce to the case

where we compare a 2/3 power-law to generic Gaussian noise 7, and we will consider

this our proxy for detecting GWs consistent with a 2/3 power law SGWB in the context

of magnetic noise. The third odds ratio is defined to compare our model for magnetic

noise plus a 2/3 power law to a generic power law, BM+P2/3

P . As we show in the

simulation section below, this is included to help justify using the full magnetic model

defined in equation (5.11) as opposed to a simple, generic power law model with a steep

spectral index to account for magnetic noise. It can also help prove to us that there

is correlated magnetic noise contributing to the measured spectrum. In summary, the

three odds ratios are

BPN =
ZP
ZN

(5.14)

BM+P2/3

M =
ZM+P2/3

ZM
(5.15)

BM+P2/3

P =
ZM+P2/3

ZP
(5.16)

where Z indicates the model evidence for the model specified in the subscript. While

this is certainly not the only choice for such odds ratios, they are well-motivated choices

that should, when considered together, give a clear picture of what signal models are

supported by the data.

7This statement assumes that κ=0 is included in the prior on κ. If it is not then the model will
include a magnetic contribution where there should not be one, and this limiting case will not hold.
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Figure 5.6: Amplitude spectral density of Gaussian detector noise (orange, dashed),
simulated magnetic noise (green, dashed-dotted), and the final combination of the two
(blue, solid) for Livingston (left) and Hanford (right). We see that at low frequencies at
Livingston the spectrum is dominated by magnetic noise. The difference between the two
is due to the differing levels of ambient magnetic noise picked up by the magnetometers
used for the two separate injections. The large dips are due to a high-pass filter, a
notch around 20 Hz (due to a large site-wide magnetic field at Livingston), and a notch
around 60 Hz power mains.

Constant transfer function, κ = 6, β = 3

We use parameters of κ = 6 and β = 3 for the transfer function for both detectors. The

choice of κ to be large compared to the measurements discussed in chapter 4 means

that we can generate a shorter data set and still observe the tangible effects of real

magnetic noise on our simulations. In this case, the magnetic noise is so large that

it is comparable to the simulated Gaussian detector noise. The ratio between these

contributions is shown in figure 5.6.

A plot of how the detection statistic, BM+P2/3

M , scales with time for the magnetic

injection with transfer function parameters of κ = 6 and β = 3 and an injected 2/3

power law SGWB injection of amplitude Ω2/3 = 2× 10−8 is shown in the left hand side

of figure 5.7. The right hand side of figure 5.7 shows how a simple power law search,

using the BPN could be tricked by magnetic noise even when there are no GWs present,

along with proof that our model for the magnetic noise is preferred to the simple power

law model. This tells us that 1. When magnetic noise is present, our searches could be
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tricked into thinking there are GWs when there are not and 2. using the cross-power

of the magnetometer spectra seems to work better for fitting the magnetic noise than a

simple power law would.
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Figure 5.7: Left: A plot of the proxy detection statistic as a function of time for an
isotropic 2/3 power law SGWB injection at a level of Ω2/3 = 2 × 10−8. Right: a
comparison of our model for magnetic noise to a simple variable power law model when
there is no injected SGWB present. We see that using the magnetometer spectrum,
M(f), to model the correlated magnetic noise does a better job than if we were to use
a simple, strongly negative, power law to fit the magnetic noise.

In figures 5.8 and 5.9 we show how the parameter estimation results for the same

medium-strength SGWB injection shown in figure 5.7 change as a function of integration

time for the M + P2/3 model and for the P models respectively. We see that there is

clear bias in the upper limits and recoveries for the P model, and the spectral index

is very low. For the M + P2/3 model, the Ω2/3 recovery is fairly robust. There does

appear be some bias in the parameter estimation recovery for Ω2/3. This is something

we are still investigating.

We can also look at how our sensitivity to a SGWB with a 2/3 power law scales

with time for the BM+P2/3

M odds ratio considered in section 5.4.2. In this case, we use

the method discussed in the previous section for estimating our sensitivity as a function

of time. For each subset of the data, we make eighty logarithmically spaced injections

of a 2/3 power law SGWB in the range 10−9 − 10−5. We find at which injection the

odds ratio of interest exceeds a value of eight or higher. A plot of that sensitivity as a
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Figure 5.8: Parameter estimation results for M + P2/3 model for medium strength
magnetic injection plus a 2/3 power law injection of amplitude Ω2/3 = 2× 10−8, which
is the same as in figure 5.7. The orange dots indicate the median of the equal weighted
posterior samples from the nested sampling. The blue vertical bars indicate the 5th
and 95th percentiles of those same samples. The green horizontal line indicates the true
injected value. We see that around the time the background becomes detectable the
parameter estimation on Ω2/3 also becomes very well constrained. There does appear
to be a bias in the recovery of the κ and β parameters. The parameter estimation
converges to κ ≈ 5.3 and β ≈ 2.6, as opposed to the true values of 6 and 3 respectively.
Likewise, there is a systematic bias in the recovery of Ω2/3 that is a factor of ≈ 2 too
large.

function of time for BM+P2/3

M is shown in figure 5.10.

Bias in the results

There is a bias of 10−8 in the parameter estimation results for Ω2/3. This bias appears

whether or not we perform an SGWB injection. In figure 5.11 we show that this bias
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Figure 5.9: Parameter estimation results for P model for a medium strength magnetic
injection plus a 2/3 power law injection of amplitude Ω2/3 = 2×10−8, which is the same
as in figure 5.7. The orange dots indicate the median of the equal weighted posterior
samples from the nested sampling. The blue vertical bars indicate the 5th and 95th
percentiles of those same samples. The green horizontal line indicates the true injected
value. We see a clear bias in the recovery. The parameter estimation picks up only the
magnetic noise in this case, preferring a strong negative power law spectral index.

appears in the parameter estimation recovery of Ω2/3 as we integrate over time for an

injection of strength Ω2/3 = 10−7. The green line shows the nominal injection strength,

while the red-dotted line shows the injection plus the extra bias factor. In figure 5.12

we show that this bias appears when we do not perform an SGWB injection. In this

case the injection is at Ω2/3 = 2× 10−12, but we see a recovery peaked near 10−8.

The source of the bias is unknown at this point. It does not occur when we inject

no correlated magnetic noise, but it does occur for the louder injection of κ = 6 as well

as a quieter injection at κ = 2. One potential cause could be poor magnetometer data

quality. Figure 5.7 indicates that around 1.5 days into the simulation there is a sharp

change in the way we recover our transfer function parameters, which could indicate a

change in the data quality in the magnetometers that significantly affects M(f), but

has less impact on Ŷ and σY because of the presence of the injected Gaussian noise.
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Figure 5.10: The detectable Ω2/3 background as a function of time using our odds ratio

BM+P2/3

M . We have also included a power law fit to the blue curve. One would expect

this curve to scale roughly as T
−1/2
obs if we had only Gaussian noise.

Comparison of results

When we compare how the detectable level of Ω2/3 scales with time for several different

correlated magnetic noise injections, we find that the κ = 6 and κ = 2 injections appear

to be better than κ = 0. However, once we account for the bias discussed in the previous

section we find that the three injections are comparable. This is shown in figure 5.13.

On the left is the uncorrected sensitivity and on the right is the corrected sensitivity.

The cases we have considered are representative of the true situation, but are cer-

tainly simplistic. In the future we will need to look at how the model can be extended if

there is a time-varying transfer function, how to account for a different transfer function

at the two sites, how to account for a transfer function that is described by something

different from a simple power law. In many cases, we will have coupling measurements

to guide us. In addition, the current methodology does not include uncertainty in the
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Figure 5.11: Recovery of a κ = 6 correlated magnetic noise injection with an Ω2/3 = 10−7

isotropic SGWB injection showing an obvious bias in the recovery. The red line indicates
Ω2/3 = 1.1 × 10−8, while the green line shows in the originally injected value of 10−7.
This bias is more evident in figure 5.12, where there is no SGWB injection made at all.

measurement of the correlated magnetic spectrum, M(f). This will need to be included,

and one way to do so could be by measuring the mean and variance of the correlated

spectrum, M̄(f) and σM (f), and then treating it with a Gaussian prior, such that

ln p(M(f)|M̄(f), σM (f)) = −1

2

(
M(f)− M̄(f)

σM (f)

)2

. (5.17)

Marginalizing over the parameter M(f) in our likelihood shown in equation (5.3) would

then yield a new likelihood that accounts for the variance of the correlated magnetic

noise spectrum. In contrast, our current prior is effectively a delta function, where

p(M(f)) ∝ δ(M(f)− M̄(f)) where M̄(f) is the time-averaged correlated spectrum we

have measured with our magnetometers.
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Figure 5.12: Parameter estimation results for a correlated magnetic noise injection of
κ = 6 and β = 3 with 3 days of integration time. The SGWB injection is at an
undetectable level, but the posterior distribution on Ω2/3 still peaks near 10−8. The
source of this bias is still unknown.

5.5 Conclusions and future work

In this chapter we have discussed a framework for performing parameter estimation and

model selection on the stochastic gravitational-wave background. We introduced a new

code package that can be used to compare and combine different SGWB models and run

a nested sampling algorithm to compare those models and estimate their parameters.

In the latter half of the chapter we applied this framework to the case where we

attempt to measure an SGWB when there is correlated magnetic noise present. We
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Figure 5.13: Sensitivity as a function of time for three different magnetic noise injections.
The left-hand plot does not account for the bias shown in figure 5.12, while the right-
hand plot corrects this bias by adding 10−8 to sensitivity of both the κ = 2 and κ = 6
(β = 3 in both cases) correlated magnetic noise injections, which were the two injection
sets that observed the bias.

have done this by using magnetometers that witness the correlated noise to generate

a model that we then apply to our data. The method was tested by injecting real

magnetic noise into Gaussian interferometer data at varying levels, and then attempting

to simultaneously extract information about the magnetic noise and a potential SGWB

signal. While the results are promising, there is still a bias whose source we do not

understand. However, when accounting for the bias, it appears that the detectable

amplitude of Ω2/3 is independent of the level of magnetic noise that has been injected.

We eventually hope to compare this to other methods, like Wiener filtering.



Chapter 6

Seismic and Newtonian noise in

the Homestake mine

6.1 Seismic and Newtonian noise in GW Interferometers

The LIGO test masses are susceptible to residual ground motion below 10 Hz. At these

frequencies, ground motion can be as high as ∼ 10−9 m/
√

Hz, which is ten orders of

magnitude larger than Advanced LIGO’s goal in that frequency range [33]. The test

masses benefit from passive isolation from the quadruple pendulum suspension, which

gives 1/f8 suppression above the resonant frequency of the pendulums, which is as low

as 0.4 Hz [7]. Feed-forward schemes using seismometers on the ground and inertial

sensors and actuators on the suspension platforms are also employed to reduce seismic

noise [37]. This isolation is useful not just for increasing strain sensitivity but also for

bringing the interferometer into the linear regime and keeping it there. This means it

takes less time to lock the instrument and the overall duty cycle is greatly improved.

Seismic waves cause the ground motion discussed above, but they are also responsible

for Newtonian noise, which is the fluctuation in the gravitational field due to density

changes in the earth (i.e. seismic waves) and the atmosphere. As better passive and

active isolation systems become available, and noise is reduced in the LIGO optical

angular control systems, Newtonian noise will become a limiting noise source for GW

interferometers [48]. The dominant source of Newtonian noise is likely to be from surface

seismic waves and from atmospheric density fluctuations [48]. In the rest of this section,

144



145

I’ll briefly discuss the basic mathematical formalism of seismic waves, how they create

Newtonian noise, and how that noise couples into GW interferometers.

6.1.1 Seismic waves

Introduction and body waves

An intuitive understanding of seismic waves can be quickly understood from basic

physics. We’ll follow the introductory seismology discussion presented in [196]. In

analogy with F = ma we can write down the equation of motion for a continuum

fi + ∂jτij = ρ
∂2ui
∂t2

(6.1)

where the first term of the left hand side is a “body force” term (which we will ignore

for the rest of this introduction), and the next term is the stress tensor, which is a 3×3

matrix that gives the force per unit area in the j direction on the face of an infinitesimal

cube with a normal vector pointing in the i direction. The right hand side is the mass

density, ρ, multiplied by the second time derivative of the displacement field, which is

the displacement of a point particle from its equilibrium position. We can couple this

with a linear stress-strain relationship, which expresses how applying a stress to one

face of an infinitesimal cube causes a change in the size and shape of the cube

τij = λδijekk + 2µeij

τij = λδij∂kuk + µ(∂iuj + ∂jui). (6.2)

In the second line we have substituted in for the strain tensor eij = 1
2(∂iuj + ∂jui) in

terms of the displacement field. λ and µ are known as the Lamé parameters and are

related to the more commonly discussed shear and bulk moduli. It is common practice

to define the displacement field in terms of a scalar and a vector potential, φ and ~ψ

(where ∇ · ~ψ = 0), such that ~u = ∇φ + ∇ × ~ψ. Combining this with equations (6.1)
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and (6.2) yields two wave equations

∇2φ =
1

α2

∂2φ

∂2
t

(6.3)

∇2 ~ψ =
1

β2

∂2 ~ψ

∂t2
. (6.4)

This tells us that we expect to have two types of waves in a continuous medium, the

first, associated with φ, we call P-waves (for primary because they move faster) and the

second we call S-waves. P and S-waves are often referred to as body waves because they

travel within the body of the medium. The velocity of P and S-waves are given by

α =

√
λ+ 2µ

ρ

β =

√
µ

ρ
. (6.5)

Consider a plane-wave propagating through our homogeneous continuum, ~u(~x, t) =

~A(ω)e−i(ωt−~k·~x). If we take P-waves propagating in the x direction we can use equa-

tion (6.3) to say that α2∂2
xφ = ∂2

t φ. The general solution to this expression is φ =

φ0(t ± x/α). Therefore, it follows from the definition of the potential that only ux

survives

ux = ∂xφ. (6.6)

A similar exercise for S-waves tells us that ~u = ∂xψz ŷ − ∂xψy ẑ, which is a transverse

wave. There are two distinct polarizations. The first is motion parallel to the surface and

perpendicular to the direction of motion, which we call Sh waves. The second is motion

perpendicular to both the direction of motion and Sh waves. We call these Sv waves.

Surface waves

Surface waves are solutions to the continuum equation of motion when there is a free

surface. There are two types of surface waves: Rayleigh waves (R-waves) and Love waves

(L-waves). R-waves are radially and vertically polarized and exist at any free surface,

whereas L-waves require some depth-dependence of the velocity. Because surface waves

travel along the surface, as the waves travel away from the source, their amplitude falls
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off slower than body waves. Therefore, when looking at the waveform for an earthquake

the amplitude of surface waves is often much larger than that of the earlier-arriving P

and S-waves.

Love waves come from constructive interference of Sh waves that reflect off of the

surface boundary. If the velocity increases with depth then the waves refract, turn

back to the surface, reflect off of the surface again and can repeat the process many

times. The travel time between successive reflections off of the surface is different from

the travel time along the ray path, and so constructive interference between multiply

reflected Sh waves can only occur at certain frequencies [196]. Because Love waves are

made up of the constructive interference of Sh waves, they induce displacement only in

the direction perpendicular to their horizontal motion and parallel to the ground-surface

interface. A visualization of the particle displacement due to Love waves can be found

in figure 6.1.

Rayleigh waves are the result of interference between Sv-waves and P-waves at a

surface-ground interface. A mathematical treatment [197, 196] involves setting the

normal and shear stresses to zero at the surface, which results in a set of coupled linear

equations, one solution of which is an evanescent wave that travels along the surface

and whose amplitude decays with depth. The displacement field of R-waves is confined

to the vertical-radial plane and a π/2 phase difference between the vertical and radial

displacements results in the characteristic retrograde (on the surface) particle motion.

That means we can write down the displacement field due to a single R-wave traveling

in the k̂ direction

~u(~r, t) = rH(k, z) cos(2πft− ~k · ~x)k̂ + rV (k, z) sin(2πft− ~k · ~x)ẑ. (6.7)

In this case the two functions rH and rV are the fundamental Rayleigh wave eigenfunc-

tions, and they determine how the amplitude in the radial and vertical directions change

with depth. In the case of a homogeneous half-space these functions have analytic solu-

tions, which are shown in figure 6.2 for different values of Poisson’s ratio1. At depth the

phase difference between the vertical and radial directions can flip sign and the particle

motion can change to prograde motion (something evident in the measurements shown

1Poisson’s ratio is the ratio of the lateral contraction of a cylinder to its longitudinal extension [196].
It can be defined in terms of the Lamé parameters: ν = λ

2(λ+µ)
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in section 6.3), which corresponds to rH changing sign. In a homogeneous medium,

R-waves do not exhibit dispersion, but in the presence of a vertical velocity gradient it

can occur. In fact, vertical S-wave velocity gradients can be used to estimate R-wave

eigenfunctions and dispersion curves [198], and we will compare explicit measurements

of the R-wave eigenfunctions to those estimates in section 6.3.

Figure 6.1: Left: a visualization for the particle displacement due to a passing Love
wave. Right: the same for a Rayleigh wave. These plots are from [199] and [200].

6.1.2 Newtonian noise due to seismic waves

For this discussion, we’ll follow [48]. While seismic waves cause noise in GW interfer-

ometers by disturbing the ground and thus the test masses, they also cause density

perturbations that result in changes to the local gravitational field. Here, I will talk

briefly about how those density changes can cause noise in a GW interferometer. Later,

I will extend this to the specific case of Rayleigh waves.

We start our calculation by writing down a continuity equation in terms of local

density perturbations

δρ(~r, t) = −∇ · (ρ(~r)~u(~r, t)). (6.8)

We can then write down the gravitational field due to these density perturbations and
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As far as the displacement fields are concerned, they can be computed
introducing the solution of the characteristic equation into the respective
formulations. The resulting horizontal and vertical components of motion are out of
phase of exactly 90° one with the other, with the vertical component bigger in
amplitude than the horizontal one, hence the resulting particle motion is an ellipse.
On the ground surface the ellipse is retrograde (e.g. counter-clockwise if the
motion is propagating from left to right as shown in Figure 3.2), but going into
depth the ellipse is reversed at a depth equal to about 1/2@ of the wavelength.

Another important remark is that being the decrease with depth exponential,
the particle motion amplitude becomes rapidly negligible with depth. For this
reason it can be assessed that the wave propagation affects a confined superficial
zone (see Figure 3.3), hence it is not influenced by mechanical characteristics of
layers deeper than about a wavelength.

Figure 3.3 Amplitude ratio vs. dimensionless depth for Rayleigh wave in a
homogenous halfspace (from Richart et Al. 1970)

Figure 6.2: Theoretical depth dependence of Rayleigh waves for several different values
of Poisson’s ratio. Note that the relative sign between the vertical and horizontal curves
flips. Figure is from [201].

make a substitution

δφ(~r0, t) = −G
∫
dV

δρ(~r, t)

|~r − ~r0|

= G

∫
dV
∇ · (ρ(~r)~u(~r, t))

|~r − ~r0|
. (6.9)

Integration by parts and taking all surfaces to be at infinity moves the divergence to a

gradient of 1/|~r − ~r0| term. Then we convert our gravitational field to an acceleration,

which is done by taking the gradient of the field with respect to the reference point, ~r0

δ~a(~r0, t) = −G
∫
dV ρ(~r)(~u(~r, t) · ∇0)

~r − ~r0

|~r − ~r0|3
. (6.10)

The noise in the GW channel of an interferometer is the differential length change
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between the two arms induced by something other than GWs

h =
δx− δy
L

=
δax − δay
(2πf)2L

(6.11)

where L is the length of the arms of the interferometer. If we consider the motion

of four tests masses adding incoherently, then the noise in the GW channel due to

the acceleration induced by Newtonian noise can be found by multiplying x and y

accelerations by
√

2 and considering only the RMS acceleration

hNN =

√
2
(
δa2
x,rms + δa2

y,rms

)
(2πf)2L

. (6.12)

Given that the integral in equation (6.10) is different for different types of seismic waves

and in the case where we have a boundary between rock and air, we need to consider

contributions from different components of the seismic field separately. The contribution

of NN from different components of the seismic field under different circumstances are

discussed in [48]. This is part of the motivation for efforts like the seismic radiometer,

which is discussed in section 6.4.

6.2 Homestake seismometer array

The Homestake Mine in Lead, SD, is a retired gold mine that is now home to the

Sanford Underground Research Facility (SURF). Even before the founding of SURF in

2007, Homestake had a long history of hosting scientific experiments. From the 1960’s

through the 1990’s it was host to Ray Davis’s solar neutrino experiment [202]. Today,

it is home to several high profile experiments that span from Neutrino physics to Dark

Matter searches to the search for the neutrino-less double beta decay.

The Deep Underground Gravity Lab (DUGL) experiment was established in 2008

and involved a three-dimensional seismometer array at Homestake to investigate how

seismic noise and Newtonian noise can change with depth and to test techniques for

subtraction of noise using a network of sensors. The initial plan for DUGL included

nine stations at depths of 300, 800, 2000, 4100 ft [203]. However, during the initial

run from December 2009 to January 2010 three stations were inoperative due to poor
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conditions, and in the end only three stations were used for most analyses [203, 204].

One of the main goals of the initial array was to explore coherent subtraction methods,

like Wiener filtering, to clean one seismometer’s data stream using the data from an-

other seismometer. While this was shown to work in principle, the initial analysis was

limited by the small number of detectors, large timing uncertainty, and cross-talk from

electronics in the data acquisition system [204].

Since the decommissioning of the original array, DUGL has expanded to become a

larger collaboration, now including seismologists at California Institute of Technology

(CIT) and Indiana University. The second generation of the array consisted of 24 sta-

tions, including 9 on the surface and 15 underground. It was operational from November

2014 through December 2016. Low-noise broadband seismic instruments and commer-

cial data acquisition systems were rented from the Portable Array Seismic Studies of

the Continental Lithosphere (PASSCAL), which is a part of the Incorporated Research

Institutions for Seismology (IRIS). The added expertise of our seismology colleagues,

along with strong hardware and software support from PASSCAL led to a successful

two-year experiment that included up-time near 100 % for most instruments (with the

exception of one, which will be discussed later) and several active excitation experiments

throughout the mine and the town of Lead.

6.2.1 Array description

The second generation of the Homestake seismometer array took data between Novem-

ber 2014 and December 2016. There were 15 stations below ground and nine stations on

the surface. Five surface stations were on SURF property, one was located at the local

high school, and three were located on private property at different locations around

Lead and Deadwood, SD. Installation took place between September 2014 and May

2015 and decommissioning took place between September 2016 and December 2016.

Figure 6.3 shows the array layout along with contours indicating elevation on the

surface and colored lines indicating drifts within the mine. In table 6.1 each station is

listed by its ID with a short description of the location. In table 6.2 locations are given

for each station. The surface station locations are from GPS data, while underground

station locations are maps of mine drifts created by mine surveyors. The uncertainty is

≈2 m on these locations.
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Figure 6.3: Map of the Homestake seismometer array. Contours indicate surface ele-
vation levels. The three stations on private land do not appear here, but the general
direction of their locations are indicated by arrows on the edges of the map. The colored
lines indicate the drifts in the mine where the stations are located.

6.2.2 Individual station set-up

Each seismic station consisted of at least a seismometer, a data acquisition system, and

electronics related to power and timing. Most equipment was rented from PASSCAL.

Twenty stations used Streckeisen STS-2 broadband seismometers [206] and four

stations required more rugged, Guralp CMG-3T broadband seismometers [207]. These

four stations stations, DEAD, ROSS, YATES, and 300, tended to have concerns about

moisture levels.

A Quanterra Q330 datalogger [208], shown in figure 6.4, was used for digitizing the

analog seismometer data and powering the seismometer itself. The Q330 can provide
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Station ID Station Type Station Description

DEAD Surface Private landowner’s yard in Deadwood

LHS Surface At Lead-Deadwood High School

ORO Surface Near Oro Hondo shaft

ROSS Surface Near Ross warehouse

RRDG Surface Rhyolite Ridge

SHL Surface Private landowner’s yard on Strawberry Hill

TPK Surface Private landowner’s yard near Terry Peak

WTP Surface Near Yates water treatment plant

YATES Surface Near Yates administration building

300 Underground 300 level, near side entrance

800 Underground 800 level, near Ross shaft

1700 Underground 1700 level, near Ellison shaft

A2000 Underground 2000 level, near ramp at Y intersection

B2000 Underground 2000 level, near Ross lunch room

C2000 Underground 2000 level, 7 ledge, A limb

D2000 Underground 2000 level, top of ramp

E2000 Underground 2000 level, north 9 ledge

A4100 Underground 4100 level, powder magazine west of Oro Hondo

C4100 Underground 4100 level, Bill Roggenthen’s room

D4100 Underground 4100 level, Yates station old locomotive barn

A4850 Underground 4850 level, 17 ledge

B4850 Underground 4850 level, roll-up door

C4850 Underground 4850 level, 4 Winze Wye

D4850 Underground 4850 level, Davis incline

Table 6.1: Station IDs with a brief description of the location for each of the 24 seis-
mic stations in the Homestake seismometer array. This table is reproduced verbatim
from [205].

real-time data either through an ethernet connection or through a radio antenna. Data

packets were sent to a computer on-site at Homestake and this computer processed and

stored the data and then broadcast it to remote computers in Minnesota. All of the

channels present in the data packets are shown in table 6.3. The Q330 also saved data

to a local hard drive using a serial connection. We used Quanterra PB14 Packet Balers,

shown in figure 6.5, for this purpose because they are rugged, water resistant, and made

specifically to be used with Q330 digitizers.

The Balers were capable of storing 20 GB of data at a time, which was exceeded
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Station ID Easting [m] Northing [m] Elevation [m] Install Date

DEAD -187 3386 -127.0 05/18/2015

LHS -1849 -572 59.0 05/19/2015

ORO -49 -967 -82.0 03/30/2015

ROSS -474 -796 3.0 11/19/2014

RRDG -1120 794 52.0 05/20/2015

SHL 3385 -3869 147.0 05/17/2015

TPK -3687 -1322 115.0 05/19/2015

WTP 730 200 -70.0 01/22/2015

YATES 0 0 0.0 11/19/2014

300 -421 -651 -119.9 01/13/2015

800 -582 -542 -275.0 01/15/2015

1700 -549 -64 -551.2 03/25/2015

A2000 -859 -135 -641.7 03/24/2015

B2000 -712 -344 -641.7 03/25/2015

C2000 -971 -81 -641.9 03/25/2015

D2000 -1389 101 -642.0 03/25/2015

E2000 -1609 442 -641.9 03/25/2015

A4100 -147 -813 -1282.5 01/21/2015

C4100 65 -110 -1282.7 01/21/2015

D4100 46 -955 -1282.6 01/21/2015

A4850 -857 -1313 -1509.8 04/02/2015

B4850 -516 -663 -1510.1 11/19/2014

C4850 -94 -657 -1510.4 11/19/2014

D4850 78 90 -1509.8 11/19/2014

Table 6.2: Coordinates of each seismic station in the Homestake seismometer array.
Coordinates are quoted in the UTM coordinate system in zone 13T and all locations are
relative to the YATES surface station. The YATES station has absolute coordinates of
(Easting, Northing, Elevation) = (599504, 4911750, 1625.0) m. Surface station locations
are obtained from GPS data, while underground coordinates are based on maps of the
mine drifts. Uncertainties are on the order of ≈2 m.

by the amount of data collected by a station during the full run. Therefore, we made a

dedicated trip in April 2016 to “clean” the data from many of the Balers. This provided

a second copy of the data in most cases and was the only copy in cases where we did

not have telemetry (i.e. the three stations on private property) or telemetry dropped

out and data was not continuously available off-site.

Each station received a GPS timing signal so that the timing was synchronized to



155
203

Figure 6.2: Photo of a Quanterra Q330 datalogger. The seismometer is connected
through one of the SENSOR ports on the left. A GPS antenna may be connected to
the GPS ANT port or an external GPS source may be connected to the EXT GPS
port. The Q330 is connected to a Baler via the SERIAL port and/or to a local network
through the QNET port. The Q330 is powered either via the POWER port or through
the QNET port. All connections (other than GPS ANT) are military-type; more details
can be found in the Q330 manual [326].

Figure 6.3: Photo of a Quanterra PB14 Packet Baler. The Baler is connected to a Q330
via the QNET + SERIAL port and receives its power through this connection. The
ATTN button is used to “wake” the Baler from its low-power state; when the Baler has
completed its boot cycle, the Q330 it is connected to will automatically begin transferring
data to it.

Figure 6.4: Quanterra Q330 Digitizer. The seismometer is connected through one of the
SENSOR ports on the left. A GPS antenna may be connected to the GPS ANT port.
The Quanterra B14 Packet Balers were connected through the SERIAL port. The Q330
is powered either by the POWER port or the QNET port. The Q330 can be connected
to a local network, or a local radio antenna, via the QNET port.

sub-µs precision. Surface stations used a local GPS antenna, connected to the Q330s

through the GPS ANT port. Underground stations received a GPS signal from an

antenna on the roof of the SURF administration building, which was then distributed

throughout the mine through optical cables sent down the shafts, and connected to

splitters on each level that then sent an optical signal to each station on that level. The

optical signals were then converted using custom built GPS transceivers. Details on the

optical signals and the real-time data acquisition system can be found in [205].

Surface stations

Stations on the surface required isolation from, among other things, weather, rodents,

and humans. Seismometers were placed on a concrete pad in a small enclosure under-

ground (ideally ∼3 ft). Putting it below ground kept the seismometer (or the concrete

pad) as close to bed rock as possible, while helping to keep the temperature of the

instrument as stable as possible. The enclosure consisted of a small log “house” with a

foam hut place inside of it and then covered with a sheet of plywood. An example of

the log house and concrete pad can be seen in figure 6.6. The seismometer was oriented

to North using a magnetic compass, which accounted for magnetic declination.

Electronics, including the Q330, the Baler, and the battery for powering each station
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Channel code Description

HHE East seismic channel (100 Hz)

HHN North seismic channel (100 Hz)

HHZ Vertical seismic channel (100 Hz)

LHE East seismic channel (1 Hz)

LHN North seismic channel (1 Hz)

LHZ Vertical seismic channel (1 Hz)

LCQ Q330 clock quality (percent)

LCE Q330 clock phase error (µs)

LCC GPS clock quality (percent)

LPL Q330 clock phase lock loop status

LCL Time since GPS lock was lost (seconds)

QBD Total number of Q330 reboots in last 24 hours

QBP Logical port buffer percent full from real-time status

QDG Data gaps (s)

QDL Current data latency (s)

QDR Current total input and output data rate (bits/s)

QEF Overall communications efficiency (percent)

QG1 Total number of data gaps in last hour

QGD Total number of data gaps in last 24 hours

QID Total number of Q330 IP address changes in last 24 hours

QLD Total number of comm link cycles in last 24 hours

QPD Total number of POCs received in last 24 hours

QRD Total number of bytes read in last 24 hours

QRT Current run time (s)

QTH Current throttle setting (bits/s)

QTP Ratio of seconds read to real-time clock

QWD Total number of bytes written in last 24 hours

VCO Voltage controlled oscillator value

VEA Antenna current (A)

VEC Main system current (A)

VEP Main system voltage (V)

VKI Main system temperature (◦C)

VM1 Mass position for channel 1

VM2 Mass position for channel 2

VM3 Mass position for channel 3

VPB Packet buffer

VTW Main system opto inputs

Table 6.3: Q330 and Antelope seismic and state-of-health channels. Channel sample
rates are indicated by the first letter of the channel code. H indicates 100 Hz, L indicates
1 Hz, V indicates 0.1 Hz, and Q indicates 0.05 Hz. This table is reproduced verbatim
from [205]
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Figure 6.2: Photo of a Quanterra Q330 datalogger. The seismometer is connected
through one of the SENSOR ports on the left. A GPS antenna may be connected to
the GPS ANT port or an external GPS source may be connected to the EXT GPS
port. The Q330 is connected to a Baler via the SERIAL port and/or to a local network
through the QNET port. The Q330 is powered either via the POWER port or through
the QNET port. All connections (other than GPS ANT) are military-type; more details
can be found in the Q330 manual [326].

Figure 6.3: Photo of a Quanterra PB14 Packet Baler. The Baler is connected to a Q330
via the QNET + SERIAL port and receives its power through this connection. The
ATTN button is used to “wake” the Baler from its low-power state; when the Baler has
completed its boot cycle, the Q330 it is connected to will automatically begin transferring
data to it.

Figure 6.5: Quanterra P14 Packet Baler. The QNET serial port is used to connect to
the Q330. The ATTN button will turn on the baler and request that Q330 buffer dump
its data to the baler.

were locked in a large Pelican case or were placed in a dog house that was sealed with

a small custom built door and plumber’s putty (these were stations on SURF property

where we did not fear equipment would be stolen).

Two solar panels, tilted at an angle and facing south, were used to power the stations.

The solar panels were connected to a power box which connected to the Q330 and a

55 A-h battery to help power the stations at night and on cloudy days. The solar

panels were mounted on a wooden post, on top of which was a GPS antenna. The GPS

antenna was connected to the Q330 via the GPS ANT port. Overall timing error for

these stations was typically within ± 5 µs.

The YATES, ROSS, ORO, WTP, RRDG, and LHS stations used Wilan radios [209],

connected to the Q330 via the QNET port. The radios were used to transmit data to the

Yates Administration building, where another radio was configured as a receiver. The

receiver was connected to a master Q330, which transferred data to a local computer.
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Figure 6.6: An example of a the small enclosure that housed the surface station seis-
mometers.

The WTP station suffered from a poor line of site to the antenna on the administration

building and so dropouts of real time data were frequent.

Three surface stations, DEAD, SHL, and TPK were set up on private land around

Lead, SD, and were stand-alone stations. They were installed in May 2015 and then

serviced in September 2015, March 2016, and April 2016. The DEAD station showed

severe dropouts during January and February 2016 because the sun fell below a line

of trees and so the solar panel did not receive direct sunlight. In addition, the RRDG

station suffered from large data dropouts during the summer of 2016, in part due to do

damage to cables caused by rodents.

Underground stations

There were 15 underground stations at various depths of the mine. Each seismometer

was placed on a granite tile, laid using thinset mortar, on top of a concrete pad. The

concrete pad was either newly laid or reused from the initial iteration of the array. The
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Figure 6.7: An example of a surface station (RRDG) after it is completed. Note the
dog house where electronics are stored, the solar panels, the radio on the pole, and the
GPS antenna above the radio (the small hemispherical object on top of the pole). A
single cable, reinforced to protect against rodents, was run from the electronics house
to the seismometer enclosure.

seismometers were then enclosed in two “huts” made of 1” thick Styrofoam to isolate

them from their environments. An example of an underground seismometer enclosure

can be seen in figure 6.8.

Electronics were placed on a table several feet from the seismometer and covered

with plastic tubs to isolate them from dust and moisture.

All underground stations had AC power, which was connected through a 12 A-h

battery that was then connected to the Q330. The batteries were kept charged in case

of AC power dropouts due to mine construction. They provided enough power to be

able to take data for one extra day in the result of an interruption of AC power. A

complete underground station, including electronics and seismometer enclosure, can be

seen in figure 6.9.



160

Figure 6.8: An example of the enclosure used for seismometers underground. This was
taken at the B4850 station.

Underground stations received a GPS timing signal through a set-up of optical ca-

bles, splitters and transceivers that were connected to a GPS antenna on the roof of the

Yates administration building. The signal was sent to each level of the mine through

optical cables, where it was split and sent to each station, converted from optical to

electrical using a GPS transceiver and fed into the Q330 through the GPS EXT port.

More details of the GPS signal distribution can be found in [205].

6.2.3 Amplitude spectra

The seismic environment at the Homestake mine is very quiet, often below the Peterson

global low noise models [210]. In figure 6.10 we show the median amplitude spectral

density for all surface stations and for a station at each depth of the mine. All amplitude

spectral densities are taken with 900 s Fourier transforms and all available data are used

to generate these medians. In figure 6.11 we show “spectral variance” plots for the A4850

station and the RRDG station. Each column is a separate histogram for that frequency
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Figure 6.9: A full underground station set-up, with plastic tubs removed to show the
electronics. This was taken at the B4850 station.

bin across all of the 900 s amplitude spectral densities we have taken.

For all of these spectra, we use all data, including noise transients and seismic events

like earthquakes and mine blasts. All spectra show evidence for the microseismic peak

between 0.1 and 0.2 Hz, followed by a sharp drop-off in displacement from 0.2− 1 Hz.

We can see in the median ASD plot in the top right of figure 6.10 that above 1 Hz,

the spectrum appears to depend more strongly on the location, but with generally less

noise with increasing depth. The plot in the top left, showing the median ASD for

all surface stations, indicates that there is large variation between stations at higher

frequencies. The ROSS and YATES stations, which are located near mine shafts, show

significantly more noise than the ORO station, which is located in a remote area. The

RRDG station is the loudest at high frequencies, likely because it is exposed to very

high winds. At frequencies below the microseismic peak, we see that surface stations

tend to show larger amplitudes, likely due to temperature fluctuations. It is also worth

noting that at low frequencies the vertical amplitude is almost an order of magnitude
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lower than the amplitude for the North channels. This is likely due to tilt noise that

increases with decreasing frequency for the horizontal components [211].

Figure 6.10: Left column: median amplitude spectral density for surface stations across
one year of data for the vertical (top) and North (bottom) channels. Right column:
the same plot but for one station at each depth of mine. We see that these spectra are
regularly close to the Peterson low noise models.

6.3 Rayleigh-wave eigenfunction measurements

We have established that the array shows phenomenal sensitivity across a wide frequency

band, so we would like to use it to make substantive measurements that will help us

to better understand the seismological environment. One example is a measurement of

the Rayleigh wave eigenfunction.

The properties of the Rayleigh wave eigenfunctions determine how R-waves propa-

gate and how the horizontal and vertical amplitudes change with depth. While many
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Figure 6.11: Left column: Spectral variance plots for the vertical (top) and North
(bottom) channels for the A4850 station. Right column: Spectral variance plots for
the vertical (top) and North (bottom) channels for the RRDG (surface) station. These
plots are (normalized) histograms of all 900 s amplitude spectral densities taken for all
data we have available for the Homestake seismometer array. We see that, especially for
the A4850 station, the seismic environment at Homestake is very quiet; seismic activity
is often below the Peterson low noise model. The white line indicates the median of all
amplitude spectral densities included in the histogram. The black lines indicate the 5th
and 95th percentiles.

properties are location-dependent, the eigenfunction typically exhibits a retrograde par-

ticle motion at the surface and at some depth the particle motion switches from ret-

rograde to prograde motion. The radial component generally falls off in amplitude at

close to an exponential rate at the surface, while the vertical component might increase

with depth initially before eventually showing an exponential tail with increasing depth.

An example of the theoretical eigenfunctions for a homogeneous half-space are shown

in figure 6.2.
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An accurate measurement of the eigenfunctions is important for extracting how much

power is in different modes of the seismic field, which we will explore in section 6.4. It

could also be important for site selection for future GW detectors. If, for example,

building a detector 300 m below ground means that whenever there is earthquake the

R-wave amplitude from the earthquake is 25% higher at the underground detector than

it is on the surface, then perhaps it is better to stay on the surface.

In this section, we discuss a method to estimate the depth dependence of R-waves

from a set of mine blasts. In section 6.3.1, we discuss the data processing steps em-

ployed for choosing which mine blasts to use and how we extract amplitude and phase

information from the data. In section 6.3.2, we present estimates of parameters for a

biexponential model for the R-wave eigenfunctions and compare those results to models

from the literature.

6.3.1 Analysis of transient events

During the course of its run, the Homestake seismometer array regularly recorded mine

blasts that can be used to measure the R-wave eigenfunctions. These events were

initially identified and characterized by colleagues at Indiana University (IU), and for

each event we have an estimate of the time when the blast occurred, and an estimate

of the latitude and longitude of the blast location. Figure 6.12 shows that most of the

blasts in this catalogue happen in the Powder River Basin in Wyoming.

We need to identify and isolate which blast events have waveforms with distinct times

that are dominated by Rayleigh waves. For each blast, I create plots for several surface

stations showing the traces of the radial2 and vertical timeseries and a spectrogram of

the vertical-to-radial phase. We calculate this phase using the complex cross-spectrum

of the radial and vertical channels

ρ = R̃∗(f)× Z̃(f) (6.13)

φrz = arctan

(
Imag(ρ)

Real(ρ)

)
.

where Z̃(f) and R̃(f) are the fast Fourier transforms of the vertical and radial channels

2For each event, we use the direction information from IU to apply a rotation from East and North
data records to “radial” and “transverse” with respect to the source direction.
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Figure 6.12: The estimated location of many of the mine blasts used in this analysis.
The star indicates the Homestake seismometer array.

respectively.

Event waveforms that show consistent vertical-to-radial phase and relatively stable

amplitude are ideal for this analysis. We call the piece of the waveform exhibiting these

qualities the “Rayleigh region.” If a waveform does not clearly have a Rayleigh region at

most surface stations then it gets thrown out. This was the case for 22 of the 50 events

that were tested, and was likely caused by local noise effects for the station I used to

make this determination. An example of a “good” event is plotted in figure 6.13 using

a segment duration of 5 s and frequency bin width of 0.2 Hz. For the list of “good”

events, I chose a reasonable start and end time to the Rayleigh region by eye (see the

green box in figure 6.13). A table showing the start and end times and locations for

each event are shown in table 6.4.

We will analyze blast events at frequencies in the range from f = [0.2, 1.1] Hz in

increments of 0.1 Hz because these are the frequencies where it is most evident that

there are R-waves in the mine blast waveforms. For each event and for each frequency

we perform the following set of data analysis steps.

1. Using the estimated blast location, we apply a rotation to the East and North
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Time [UTC] Start [s] End [s] Latitude Longitude

07-01-2015 18:06:14 70.0 140.0 43.6738 -105.1743
07-01-2015 23:34:48 50.0 130.0 43.8012 -105.2607
07-02-2015 18:26:23 70.0 130.0 43.8643 -105.3683
07-03-2015 16:18:38 60.0 135.0 43.7044 -105.211
07-03-2015 19:58:32 70.0 125.0 43.765 -105.229
07-03-2015 20:08:52 80.0 130.0 43.4864 -105.133
07-04-2015 18:01:33 70.0 130.0 43.7763 -105.2415
07-05-2015 00:42:03 80.0 120.0 43.825 -105.3284
07-05-2015 18:39:42 60.0 115.0 44.1201 -105.4577
07-05-2015 18:39:47 55.0 110.0 43.5167 -104.755
07-06-2015 23:55:31 70.0 125.0 43.9907 -105.4678
07-07-2015 14:34:39 90.0 135.0 43.7146 -105.2251
07-07-2015 19:19:15 60.0 130.0 43.5741 -105.0976
07-08-2015 19:17:53 55.0 115.0 43.6686 -105.1436
07-08-2015 20:06:45 60.0 120.0 43.4386 -104.7081
07-08-2015 23:32:28 70.0 140.0 43.8375 -105.3513
07-10-2015 16:01:25 50.0 100.0 44.1077 -105.2465
07-10-2015 19:38:10 65.0 125.0 43.6801 -105.2104
07-10-2015 21:05:02 70.0 135.0 43.7104 -105.2142
07-14-2015 18:28:01 70.0 120.0 43.7859 -105.2327
07-14-2015 19:17:30 60.0 130.0 43.5559 -105.0599
07-19-2015 15:34:31 70.0 115.0 43.6938 -105.1198
07-19-2015 18:01:50 70.0 115.0 43.7123 -105.2381
07-20-2015 18:03:39 70.0 110.0 43.7791 -105.2019
07-21-2015 16:06:42 70.0 130.0 43.704 -105.1685
07-23-2015 17:49:23 50.0 90.0 44.0382 -105.2385
07-23-2015 20:17:00 75.0 120.0 43.7242 -105.1273
07-23-2015 22:49:37 70.0 110.0 43.8121 -105.2407

Table 6.4: List of events used for measuring the R-wave eigenfunctions. The start and
end columns indicate how long after the time of the event the Rayleigh region we use to
make measurements begins. The latitude, longitude, and event times are estimates from
IU of the blast location and time. The latitude and longitude are used to generate radial
and transverse coordinates by applying a simple rotation to the East/West/North/South
orientation.

channels of the data to create radial and transverse channels.

2. We take the amplitude spectral density at the chosen frequency for both the radial
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Figure 6.13: Data for an event that is in the analysis. These plots are for the YATES

station. The top plot shows the timeseries for vertical (blue) and radial (red) channels
and the next plot shows the vertical-radial phases. In the bottom plot there is a distinct
region of time-frequency space from 0.25-1 Hz and 70-140 s where the vertical-radial
phase is roughly - 90◦, which is consistent with the expected retrograde motion.

and vertical channels for each 10 s segment in the Rayleigh region. Each segment

and each 0.1 Hz frequency bin within our range will be a data point. We now

have measurements that can be specified in terms of their depth, frequency and

the time at which they were taken: |R̃i(f, zi; t)| for radial and |Z̃i(f, zi; t)| for

vertical. The subscript i indicates at which seismometer, at depth z, the data

point was taken.
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3. We normalize all radial and vertical data points by the mean of the radial ampli-

tude across all surface stations with corresponding time and frequency.

ĥi(f, zi; t) =
|R̃i(f, zi; t)|

mean({|R̃j(f, zj ; t)| for j where zj=0})
(6.14)

v̂i(f, zi; t) =
|Z̃i(f, zi; t)|

mean({|R̃j(f, zj ; t)| for j where zj=0})
(6.15)

4. To reduce the impact of very large amplitude individual measurements on the

mean and standard deviation we will take in item 8, we cut all data points with

normalized amplitude greater than 1.5. This removes outliers, likely caused by

site-specific effects, that could have a large impact on our measurements, and

typically removes surface station data points. This cut removes 14.5% of the

data.

5. We take the vertical-to-radial phase associated with each data point as specified

in equation (6.13).

6. We assign a negative sign to all vertical amplitudes to be consistent with [198].

7. We take the part of the radial amplitude that is consistent with retrograde motion

with respect to the vertical channel. That is,

ĥi(f, zi; t)→ −|ĥi(f, zi; t)| × Imag
(
eiφi,rz(f,zi;t)

)
(6.16)

where φi,rz(f, zi; t) is the vertical-to-radial phase for the corresponding data point

taken at frequency f , time t, and station i. The minus sign is there to keep the

convention that ĥi(f, zi; t) is positive if the vertical-to-radial phase is consistent

with retrograde motion and negative if it is consistent with prograde motion. We

choose to apply this factor to the radial channel because it is expected from the

theory of Rayleigh waves that that the radial amplitude falls off faster with depth

than the vertical amplitude due to the fact that the P-wave velocity is larger than

the S-wave velocity. This is discussed in much greater detail in [212] chapter 4.

The tacit assumption here is that the piece of the radial channel measurement

that is not consistent with retrograde or prograde motion is due to noise.
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8. At each depth and each frequency, we take the mean and standard error of the

normalized vertical and radial measurements across all data points.

ˆ̄h(f, z) =
1

N

∑
i for zi=z

∑
t

ĥi(f, zi; t) (6.17)

σ2
h(f, z) =

1

N

∑
i for zi=z

∑
t

(ĥi(f, zi; t)− ˆ̄h(f, z))2. (6.18)

where N is the number of times across at all stations at depth, z (that have not

been cut). Similar expressions hold for the vertical data as well.

9. We then renormalize all data points again such that the radial amplitude at the

surface is 1.

ˆ̄h(f, z) = ˆ̄h(f, z)/ˆ̄h(f, 0) (6.19)

ˆ̄v(f, z) = ˆ̄v(f, z)/ˆ̄h(f, 0). (6.20)

The final data products are radial and vertical amplitudes, ˆ̄h(f, z) and ˆ̄v(f, z), as a

function of depth for each frequency. In figure 6.14, we show violin plots indicating the

distribution of vertical and radial measurements at each depth, ĥ(f, zi; t) and v̂(f, zi; t).

The orange dots indicate the mean over all points at that depth, ˆ̄h(f, z) and ˆ̄v(f, z),

before the final normalization in equation (6.19). The red points indicate the median

over measurements in the violin plots. The black bars indicate the 16th and 84th

percentiles for the data.

6.3.2 Biexponential model and parameter estimation

The plot in figure 6.14 shows a distinctive shape that can be fit by a biexponential model.

In [198] they construct a model for the fundamental R-wave eigenfunction based on a

power-law velocity depth profile for S-waves. They fit a biexponential model to the

R-wave eigenfunction for many different theoretical power-law velocity depth profiles

and Poisson ratios and calculate the mean and standard deviation of the parameters in

those fits.

We use our measurements to constrain the parameters in the biexponential fits to
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Figure 6.14: Violin plots showing the distributions of measurements of vertical and

radial amplitudes at 1 Hz, ˆ̄h(1 Hz, z) (top) and ˆ̄v(1 Hz, z) (bottom), normalized by mean
radial amplitude at 1 Hz at the surface. Data points not consistent with the amplitude
criteria have been removed. Each point in the distributions represents a separate 10 s
measurement of the Rayleigh region of a specific mine blast at a specific station. The
orange points indicate the mean of each distribution before the final normalization,
while the black lines indicate the 16th and 84th percentiles of the data points that make
up the violin plots. We see that the radial measurements at the 1700 ft and 2000 ft
(roughly 500 and 600 m) stations tend to zero, while for the deepest levels we see there
is a slight preference for prograde motion. The orange points will be normalized again
by the radial measurement on the surface using equation equation (6.19), and then used
as data for our likelihood in equation (6.21).

the radial and vertical data points. We use the functions rH and rV to refer to the two

biexponential functions, and we use a Gaussian likelihood when we do the parameter
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estimation

ln p({ˆ̄h, ˆ̄v}|~θ) = −1

2

∑
f

∑
z


[
ˆ̄h(f, z)− rH(f, z; ~θ)

]2

σ2
h(f, z)

+

[
ˆ̄v(f, z)− rV (f, z; ~θ)

]2

σ2
V (f, z)


(6.21)

where ˆ̄h(f, z) and ˆ̄v(f, z) are the radial and vertical measurements, z labels depth, f

labels frequency, H is for horizontal (radial), and V is for vertical. In this case, for

the measurements we use the mean across all time-segments at each depth and for each

frequency. For 1 Hz, for example, this corresponds to the orange points in figure 6.14.

The two biexponential functions, rH and rV , depend on a set of parameters ~θ, depth,

z, and frequency f

rH(f, z; ~θ) =
(
e
−2πfz

a1
vR(f) + c2e

−2πfz
a2

vR(f)

)
× 1

1 + c2
(6.22)

rV (f, z; ~θ) =
(
e
−2πfz

a3
vR(f) + c4e

−2πfz
a4

vR(f)

)
× Nvh

1 + c4
. (6.23)

We try to estimate the parameters in the biexponential model

~θ = (Nvh, c2, c4, a1, a2, a3, a4, {vR(f)})

using the data, ˆ̄v(f, z) and ˆ̄h(f, z). The assumption that the c’s and the a’s do not

change with frequency is intrinsic to the theoretical model outlined in [198] and could

also be relaxed in the future.

Note that we calculate the Rayleigh wave phase velocity at each frequency {vR(f)}
assuming a power law dispersion relation whose parameters we allow to vary. The

parameters over which we sample are v1Hz and α where

vR(f) = v1Hzf
α. (6.24)

That is, in this case ~θ now includes α and v1Hz and for each biexponential function, vR

is calculated at each frequency using this dispersion relation.

We use the MultiNest package [190] to perform a MCMC analysis to estimate

the parameters, ~θ. MultiNest is commonly used in the GW community, is designed

to efficiently sample multimodal distributions and large parameter spaces, and offers
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robust Bayesian evidence estimates. We discuss nested sampling and MultiNest in

detail in chapter 5.

Due to the large parameter space, it is important to include any prior information

we have. We use velocity estimates from [213] to set prior probabilities on the velocity

parameters. We also use [198] to inform the Gaussian prior probability distributions

we use on the c’s and the a’s. The definition of our parameters differ slightly from

those in [198], but we can generate prior information on each parameter using some

combination of information from that manuscript. We also widen the error bars on

those parameters enough to allow for sufficient exploration of the parameter space,

given that our situation is likely different from the theoretical one considered in [198].

The biexponential model is flexible, and allowing our parameters to vary widely

results in multi-modal posterior distributions. Therefore, while we widen the error

bars from [198], we do not allow for very large excursions into parts of the parameter

space that will result in multi-modality of the distribution. Using 28 mine blast events,

each with a Rayleigh region that is roughly 50–80 s long, we find reasonable fits to

the data using our prior information. The results of the parameter estimation, along

with the prior information on each parameter is summarized in figures 6.15 and 6.16

and table 6.5. Figure 6.16 shows that there is very little difference between the prior and

posterior distributions, which implies that the measurements generally agree with the

theoretical predictions. These measurements represent the first explicit estimate of the

depth dependence of the R-wave eigenfunctions using a three-dimensional seismometer

array.

6.4 Seismic radiometer

The complexity of the seismic field and the difference in the contribution of surface

and body waves to the overall Newtonian noise budget leads us to construct a method

for estimating the power in different components of the seismic field coming from each

direction. We employ a method that is similar to the GW radiometer [125], and so we

call this method the “seismic radiometer” method. The method has been developed

by members of the University of Minnesota LIGO group over the last several years,

and I have extended this method while also characterizing its limits of use based on
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Parameter Mean Error Prior Mean Prior Error

c2 -0.76 0.06 -0.8 0.1
a1 0.86 0.06 0.85 0.1
a2 0.63 0.06 0.7 0.1
c4 -0.69 0.07 -0.74 0.1
a3 0.49 0.06 0.7 0.4
a4 0.81 0.1 0.8 0.2
Nvh -0.68 0.02 -0.6 0.2
ln v1Hz 8.11 0.07 8.0 0.5
α -0.25 0.02 -0.17 0.1

Table 6.5: Results for R-wave eigenfunction parameter estimation. We show estimates
and uncertainty for the parameters from the 1-dimensional marginalized posterior dis-
tribution on each parameter. We also show the mean and standard deviation of the
Gaussian prior probability distribution used for each parameter.

theoretical and numerical arguments.

In this section, I present an extension of the previously-developed method described

in [205]. I begin by discussing the seismic radiometer formalism for body waves and

Rayleigh waves in sections 6.4.1 and 6.4.2. I then provide a detailed discussion of

solving large-dimensional linear equations using matrix methods. Finally, I present

a simple extension of the original method that allows for simultaneously extracting

multiple components of the seismic field in section 6.4.3. In section 6.4.6, I apply this

method to real data for a stationary source of surface waves that appears to turn on

and off at various times of the day and the microseismic peak at 0.2 Hz on two different

days that show different seismic behavior.

6.4.1 Body wave formalism

We begin by writing down the seismic displacement field due to a specific type of body

wave (i.e. P-waves) as a plane-wave expansion over different polarizations, frequen-

cies, and directions. For now we will write this down as a general expression that is

independent of the mode of the seismic field:

~sm(~x, t) =
∑
A

∫
df dΩ̂ s̃m,A(f, Ω̂)~eA(Ω̂) e2πif(t−Ω̂·~x/vm). (6.25)
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Figure 6.15: Rayleigh-wave parameter estimation fits for all of the data used. The red
and green curves are examples of the biexponential models evaluated at parameters
whose values are generated with random draws from the posteriors presented in fig-
ure 6.16. The width of those lines is proportional to the range of values at each depth
one might expect the R-wave eigenfunction to take given the parameter estimation we
have performed and the model we have used. The orange points are the data supplied

to the sampler. That is, the orange points correspond to ˆ̄h(f, z) and the blue points
correspond to ˆ̄v(f, z).

In this case, m specifies the component of the seismic field (i.e. P-waves), A denotes the

polarization of the wave, Ω̂ denotes propagation direction, and ~em,A(Ω̂) is a polarization

vector for a wave of polarization A traveling in the direction Ω̂3. The phase velocity

of mode m is given by vm. s̃m,A(f, Ω̂) represents the Fourier amplitude in mode m at

frequency f coming from direction Ω̂.

This expansion assumes that stationary plane-waves are a good approximation to

3 For a P-wave, em,A(Ω̂) = Ω̂), and there is only one polarization. For S-waves, this vector would
point perpendicular to Ω̂.
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Figure 6.16: Rayleigh-wave parameter estimation posteriors sampling over velocity dis-
persion.

our data, which which means that the sources for the seismic field are far away and

constant in power.

We define a two-point correlation function in which we assume that waves of different

modes, directions, polarizations, and frequencies are uncorrelated4

〈s̃∗m,A(f, Ω̂)s̃m′,A′(f
′, Ω̂′)〉 = δA,A′δm,m′δ

2(Ω̂, Ω̂′)δ(f − f ′)Hm,A(f, Ω̂). (6.26)

In this case, Hm,A(f, Ω̂) is the displacement power spectrum at this frequency coming

from direction Ω̂. It therefore has units of m2 Hz−1 sr−1. We now consider the cross-

correlation of two seismometer channels, assuming that the data in those channels is

made up of contributions from different modes of the seismic field. We use Latin indices

to denote different seismometers, and Greek indices to denote which channel of the

seismometer we are considering (i.e. East, North, vertical). Greek letters with a hat

over them indicate a vector pointing in the direction of that channel. We define our

cross-correlation statistic

4For transient events like earthquakes and mine blasts this may not be a good assumption.
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〈Yiα,jβ〉 =

∫ T/2

−T/2
dt diα(~xi, t)djβ(~xj , t) (6.27)

=

∫ T/2

−T/2
dt

∫
df dΩ̂

∑
m

∑
A

Hm,A(f, Ω̂)
(
~em,A(Ω̂) · α̂

)(
~em,A(Ω̂) · β̂

)
e2πifΩ̂·∆~x/vm

(6.28)

where ∆~x = ~xi−~xj is the vector pointing between the two seismometers. In the second

line we have substituted in for the displacement in the two channels with equations (6.25)

and (6.26) and integrated (or summed) over the delta functions. If we consider only a

small frequency range centered at f with width ∆f , over which the amplitude is flat,

we can perform the time and frequency integrations trivially (including a factor of 2 to

account for positive and negative frequencies)

〈Yiα,jβ(f)〉 = 2T∆f

∫
dΩ̂
∑
m

∑
A

Hm,A(f, Ω̂)
(
~em,A(Ω̂) · α̂

)(
~em,A(Ω̂) · β̂

)
e2πifΩ̂·∆~x/vm .

(6.29)

We now decompose our amplitudes onto a set of basis vectors {Qa(Ω̂)}. One common

choice is spherical harmonics, Ylm(Ω̂). A different choice, which we will use in the next

few sections is “pixels,” QΩ̂0
(Ω̂) = δ2(Ω̂, Ω̂0). The field is now fully-described by the

power associated with each basis vector

Hm,A(f, Ω̂) =
∑
a

Sm,A,a(f)Qa(Ω̂). (6.30)

It is worth pointing out that in the case where the basis functions are delta functions,

the map, S, has units of m2 Hz−1 because the basis functions carry units of sr−1. We can

substitute this expression into equation (6.29) and factor Sm,A,a out of the Ω̂ integral

to get the following result

〈Yiα,jβ(f)〉 = 2T∆f
∑
m

∑
A

∑
a

Sm,A,aγ
iα,jβ
m,A,a. (6.31)

where we have defined the “overlap reduction functions5” between different channels,

5we use this name because of the similarity to the function of the same name used in the GW
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(i, α) and (j, β) for different basis vectors a of a given mode of the seismic field m and

polarization, A, as

γiα,jβm,a,A =

∫
dΩ̂Qa(Ω̂)

(
~em,A(Ω̂) · α̂

)(
~em,A(Ω̂) · β̂

)
e2πifΩ̂·∆~x/vm . (6.32)

The value of γ is different for each seismic wave direction, each set of channels, and each

frequency. It is a property of the geometry of our array.

6.4.2 Rayleigh wave formalism

In the case of Rayleigh waves we can write down the plane-wave expansion in a similar

fashion to the body waves. However, surface waves are attenuated with depth and the

relative amplitude and phase between vertical and horizontal components of Rayleigh

waves can also depend on depth. We write the plane-wave expansion for Rayleigh waves

in terms of two functions, rV (z) and rH(z), which define the fundamental Rayleigh wave

eigenfunction. These are real quantities that we measure and discuss in section 6.3.1.

The plane-wave expansion in terms of these new functions is then

~r(~x, t) =

∫
df

∫
dΩ̂ r̃(f, Ω̂)

(
rH(z)Ω̂− e−iπ/2rV (z) ẑ

)
e2πif(t−Ω̂·~x/vR). (6.33)

Note that the factor of e−iπ/2 imposes the retrograde motion that is characteristic of

Rayleigh waves, and the sign between the two functions comes about because of the

sign convention used when we defined rH(z) and rV (z) in equation (6.22). In this case,

Ω̂ is assumed to be confined to the East/West/North/South plane. We can carry out a

calculation similar to the one done in the previous section and find the overlap reduction

functions for Rayleigh waves

γiα,jβR,a =

∫
dΩ̂
[
Qa(Ω̂)

(
rH(z)Ω̂ · α̂− eiπ/2rV (z) ẑ · α̂

)
× (6.34)(

rH(z)Ω̂ · β̂ − e−iπ/2rV (z) ẑ · β̂
)
e2πifΩ̂·∆~x/vR

]
.

Because the functions rH(z) and rV (z) are normalized such that rH(0) = 1, the in-

terpretation of the R-wave maps should be that they represent the radial amplitude

community [214]
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induced by the R-wave at the surface. Other directions and other depths can then be

inferred using the R-wave eigenfunctions themselves.

6.4.3 Map making

Formalism

We need to create maps of the power contained in each polarization of each mode of the

seismic field. To do this, we construct a likelihood function based on the cross-correlation

statistic defined in equation (6.31). We begin with a single mode for simplicity. For a

single mode of the seismic field, m, and cross-correlation measurements for each pair of

detectors, Y we write a log-likelihood as

log p(Y|Ma) ∝ −
1

2
(Y− γmM)†N−1 (Y− γmM) (6.35)

In this case Y is a matrix of shape Npairs × 1 which contains our cross-correlation

statistic for each pair of channels. γm is a matrix of shape Npairs × Nb.e. where “b.e.”

is short for “basis elements.” This is a matrix of overlap reduction function values. M

is a matrix of shape Nb.e. × 1 where each element represents the power associated with

a specific basis element for a seismic field mode m that we aim to estimate. In the case

we are talking about a map for P-waves, we will notate the map with P, for example6.

This is a matrix representation of equation (6.30). N is an instrument-noise covariance

matrix of shape Npairs×Npairs. If we assume that the instrumental noise in each of our

detectors is roughly of the same order and is uncorrelated between different instruments

and channels, then N ∝ I. What we consider “noise” might depend on what we are

trying to measure. In general, however, it will be the instrumental noise and so this

approximation will be valid. For now, though, we opt to leave things general. The

maximum likelihood estimate for M can be found by setting the derivative with respect

to M equal to zero. The result is

M̂ML = (γ†N−1γ)−1γ†N−1Y. (6.36)

In the case where F ≡ γ†N−1γ is invertible, this expression is exact. However, it

6For maps with multiple modes, like R and P-waves, we will use J for ”joint”.
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is very likely that F , also known as the Fisher information matrix, is singular. This

indicates that γ does not have full column rank, and so there are either fewer data

points (pairs of detectors) than basis elements we are trying to measure or there are

directions to which we are not sensitive.

It is customary to “whiten” the data points using a Cholesky decomposition on

the noise matrix N 7. This means we write N−1 = LL† where L is a lower-triangular

matrix. We can then define Ȳ = L†Y and γ̄ = L†γ and rewrite our maximum likelihood

expression

M̂ML = (γ̄†γ̄)−1γ̄†Ȳ (6.37)

M̂ML = γ̄+Ȳ (6.38)

In the second line we have defined the pseudo-inverse of γ̄, which we denote as γ̄+.

There are several ways of finding approximate solutions to this expression. There are

many linear solvers that can be used; common ones include damped LSQR [216] and

conjugate gradient methods [217]. Iterative, damped least-squares solvers often end up

being very similar mathematically to creating a regularized pseudo-inverse matrix, and

I have found in practice that the results are often very similar as well. We opt for

the latter because it draws a nice parallel with the spherical harmonics decomposition

method discussed in section 2.4. As discussed in section 2.4, we can always construct a

pseudo-inverse for a matrix using a singular value decomposition (SVD).

The SVD involves writing a matrix in terms of two unitary matrices Ū and V̄ of

size Npairs×Npairs and Nb.e.×Nb.e. and one rectangular matrix, Σ̄, of size Npairs×Nb.e..

Σ̄ contains the singular values {s̄k} of the matrix on the diagonal and zeros everywhere

else

γ̄ = ŪΣ̄V̄
†
. (6.39)

The pseudo-inverse is then constructed from these matrices

γ̄+ = V̄Σ̄+Ū
†

(6.40)

7A Cholesky decomposition can be performed on any Hermitian, positive definite matrix. Our inverse
noise matrix, assumed to be diagonal with entries given by the reciprocal of the product of the power
spectral densities will satisfy these requirements [215].
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where Σ̄+ is found by taking the reciprocal of each (nonzero) singular value and then

taking the transpose. In this process, we can also regularize this matrix, which means

manually setting to zero any singular values that are smaller than some minimum smin.

When talking about smin we will typically assume we have normalized the singular

values such that the maximum is 1. A plot of the singular values of the P-wave overlap

reduction function using all instruments and channels in the Homestake array is shown

in figure 6.17.
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Figure 6.17: Singular values of P-wave overlap reduction function using all instruments
and channels in the Homestake seismometer array. In this case we have normalized the
singular values such that the maximum is 1. In orange is a proposed cutoff, smin.

The choice of smin is important. Small values of smin will increase the variance of the

estimator because we allow for smaller values of Σ̄ which will cause more large values

in γ̄+. Small smin values, though, will also leave fewer null or close-to-null directions,

increasing resolution. On the other hand, large values of smin reduces covariance but

increase the number of null-directions and the spread of a point-source on the two-

sphere.

var(M̂ML) = 〈M̂MLM̂†
ML〉 − 〈M̂ML〉〈M̂†

ML〉 ≈ γ̄+
(
γ̄+
)†
. (6.41)
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Unfortunately, for our purposes this weak signal limit does not hold, and so our covari-

ance matrix is more difficult to calculate. It will typically involve the amplitude of the

signal itself. See section 5 of [63], for example. We will not discuss this full calculation

further.

Before discussing how to choose smin we define the “model resolution matrix,” M,

and the “map coherence,” C

M = γ̄+γ̄ (6.42)

C =
1
2(M†

1M2 + M†
2M1)√

(M†
1M1)(M†

2M2)
. (6.43)

M helps us look at the bias in our recovery given some regularized pseudo-inverse and

C helps us compare two maps, M1 and M2.

M is a symmetric matrix that is the identity matrix when F is invertible. The

columns ofM show the spread on the sky that one would see assuming a unity-amplitude

injection at the pixel associated with that column. We can see this by observing that for

some “true” map Mtrue, our cross-spectra Y, in the absence of noise, should be given

by Y = γMtrue. In this case, our estimator has the form

M̂no noise
ML = γ̄+Y (6.44)

= γ̄+(γMtrue) (6.45)

=MMtrue. (6.46)

If Mtrue has a single non-zero value, then it corresponds to picking out a column ofM.

If we plot a column ofM as a map we should see a bright spot whose size depends upon

smin, which is done in figure 6.18 for smin = 10−3.

This plot, and all other maps, use the HEALPix8 [218] formalism for pixelating the

two-sphere for P and S-waves. This helps reduce over-sampling near the poles and re-

duces the total number of basis elements we analyze. Plots are made using the healpy9

8http://healpix.sf.net
9https://github.com/healpy/healpy

http://healpix.sf.net
https://github.com/healpy/healpy
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python package. All matrix algebra is performed using the scipy.linalg10. All simu-

lations are done, and overlap reduction functions calculated, with all available channels

in the Homestake seismometer array unless otherwise specified.

In figure 6.19 we show M and the corresponding P-wave maximum likelihood re-

covery map, P̂ML, for a simulated signal in the same place (the injection scheme will

be discussed further in the next section). We see that for very small values of smin, the

noise in the map, P̂ML, is very loud and we cannot even see the injection. This comes

from very small values of Σ̄, which correspond to null or near-null directions, amplifying

noise in the cross-spectra, Y. This same noise doesn’t exist when multiplying M by

Ptrue because outside of a single pixel, all other values of Ptrue are zero. As we increase

smin the injection emerges, but with very little SNR compared to the surrounding pixels.

Finally, we see the spot size grow, but its significance with respect to the other pixels in

the map grows as well. This exemplifies the trade-off between covariance and resolution

we discussed previously.

In figure 6.20 we attempt to quantify the trade-off discussed in the previous para-

graph. We look at the map coherence betweenMPtrue and P̂ML for a P-wave propagat-

ing in the East direction. We do this for different choices of smin. This can be thought

of as calculating C between the left and right columns of figure 6.19. Figure 6.20 shows

how the coherence between the ideal recovery and the actual recovered maps change

as a function of smin. We would like to have very good map coherence between these

two cases, but also maintain a reasonable level of resolution. We see that the coherence

begins to level off near smin ≈ 10−3 and so this is a reasonable choice for the SVD cutoff.

This choice will likely be source-type specific.

If we want to extend to recovering multiple modes of the seismic field simultaneously

we can stack our γ matrices for different modes. So if we want to recover maps for P

and R-waves simultaneously, then our new gamma matrix in equation (6.35) becomes

γtot =

Npairs×(NmodesNb.e.)︷ ︸︸ ︷(
γP︸︷︷︸

Npairs×Nb.e.

γR︸︷︷︸
Npairs×Nb.e.

)
(6.47)

and MML becomes a column matrix with maps for each mode stacked on top of one

10https://docs.scipy.org/doc/scipy/reference/linalg.html

https://docs.scipy.org/doc/scipy/reference/linalg.html
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Figure 6.18: The left is a the full model resolution matrix of the P-wave overlap reduction
function. On the right is column 300 of the model resolution matrix plotted as a map.
The bright lines on the left plot show up as bright pixels on the right plot. In this case,
the bright lines on the left plot are separated because of the order in which the HEALPix

program reads pixels.

another. It now has shape (NmodesNb.e.) × 1. In figure 6.21 we show a column from

each separate block of the model resolution matrix. If we consider now simultaneous

recovery of P- and R-waves using an overlap reduction function like equation (6.47),

then in figure 6.21 we plot

Ĵno noise
ML =MJtrue (6.48)

under a few different conditions. In this case, we have used “J” to indicate that this

is a “joint” recovery of multiple modes of the seismic field at the same time. The top

row corresponds to the R- and P-wave portions of Ĵno noise
ML where Jtrue corresponds to

a unity-amplitude P-wave injection. The bottom row corresponds to the same thing for

a unity-amplitude R-wave injection. This shows us how, in theory, P-wave injections

should show up in R-wave maps, and vice-versa.

6.4.4 Angular resolution of seismic radiometer

There are a few ways to study the angular scale we are capable of resolving with the

seismic radiometer. The simplest is to use a back-of-the-envelope calculation of the

resolution one can achieve using our array based on the extent of the array and the

wavelength of the source. This has been used in the GW community to estimate the
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Figure 6.19: The left is a column of the model resolution matrix of the P-wave overlap
reduction function, plotted as a map. On the right is the maximum likelihood recovery
for a simulated P -wave injection. We discuss how these injections are performed further
in section 6.4.5. Each row represents a different choice of smin. We see that as as the spot
size in the model resolution plots increases, the covariance in each pixel decreases. This is
the trade-off we must make because our system is underdetermined (i.e. Npairs < Nb.e.).
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Figure 6.20: Map coherence, C, between a map with a P-wave injected into one pixel,
MPtrue, and a map where we inject and recover a simulated P-wave, P̂ML, for various
values of smin. We see that the coherence begins to level off at smin ≈ 1×10−3. Smaller
values will make the resolution of the recovery worse, while offering minimal increases
in coherence between maps.

resolution for the GW radiometer [122], and is common in the astronomical interferom-

eter community as well. The rough estimate of the resolution is given by

∆θ ≈ λ

2d
(6.49)

where d is the projected distance between stations and λ is the wavelength. In our

case this will likely be polar angle and azimuthal angle-dependent because the array has

different projected distances in different directions. However, in general, if we estimate

d ≈ 5 km then

∆θ ≈ λ

10 km
. (6.50)

We also calculate resolution for our array by producing MMtrue where Mtrue cor-

responds to an East-propagating wave for wave type m. The SVD cutoff in this case

is 10−3 for all cases. The resolution for the array is estimated by drawing a contour

around the region containing 95 % of the total map power and finding the maximum
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Figure 6.21: MJtrue for a combined P- and R-wave overlap reduction function for two
different choices of Jtrue. The top row corresponds to a simple P-wave injection and
the bottom row corresponds to a single R-wave injection. Regularization is done with
smin = 10−3. These are not full-scale injections where we calculate cross-spectrum, Y
between all of our channels and solve equation (6.37), but instead correspond to the
zero-noise situation of equation (6.44).

extent in azimuthal and polar angles that the contour encompasses. The resolution as a

function of wavelength, along with the diffraction limit estimate, is shown in figure 6.22.

We observe better resolution in the azimuthal angle than in the polar angle, which is

likely due to the fact that the array is just ∼1.5 km deep but is ∼5 km wide. We have

also put the diffraction limit estimate, given by equation (6.49), on each plot. We see

that in general after a certain wavelength we stop being limited due to the diffraction

limit. This is because we are using polarization information for the direction recov-

ery, as opposed to time-delays between stations. We must be careful when working in

this regime, because in this regime it can be difficult to distinguish between two waves

propagating with roughly equal amplitude, like the case shown below in figure 6.23.
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Figure 6.22: An estimate of the angular resolution for the different components of the
seismic field. We calculate this resolution using MMtrue where Mtrue corresponds to
an East-propagating wave for each wave type. The resolution is estimated by drawing a
contour around the region containing 95 % of the total map power and finding the extent
in azimuth and polar angle that contour encompasses. We see that in general we have
better azimuth resolution than polar angle, which is likely due to the fact that the array
is just ∼1.5 km deep but is ∼5 km wide. We have also put the diffraction limit estimate
on each plot. We see that in general after a certain wavelength we stop being limited
due to the diffraction limit. This is likely because we are primarily using polarization
information for the recovery, as opposed to time-delays between the instruments. We
must be careful when working in this limit because it can be difficult to distinguish
between two waves propagating of roughly equal amplitude, like the case shown below
in figure 6.23.
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6.4.5 Software injections

We perform software injections for various situations to validate our method and to test

end-to-end examples of what might arise in practice. All software injections presented

below are performed at 1 Hz. We generate a 1 Hz sinusoidal timeseries with amplitude

10−4 m for different components of the seismic field. We then apply phase delays for

the data for each individual station such that the phase difference in the data between

each station is consistent with the travel time between those stations. As a first check,

we verified by eye, using simple examples, that the injected signals propagate across the

array in the correct direction and with the correct polarization. This includes checking

the vertical-to-radial phase for R-waves and the polarization direction for East-traveling

P-, S-, and R-waves.

These injections do not include any sort of simulated instrument noise, as the in-

strument noise is generally expected to be at least an order of magnitude lower than the

seismic field. For all recoveries we use 200 s of data and calculate the cross-spectrum

between each channel pair by multiplying the Fourier transforms of the two channels at

the frequency of interest (1 Hz for all injections in this section). We use 50 s Fourier

transforms, meaning the final cross-spectrum for each channel pair is averaged over

four time segments. We then multiply the cross-spectra by the frequency bin width

(0.02 Hz) so that the units of the cross-spectra are in m2 as opposed to m2/Hz. These

final cross-spectra constitute the Y we use in equation (6.37).

Below, we will discuss estimates for the recovered amplitude of the injected waves.

In general, this is done by summing the power across all pixels in the map. The implicit

assumption here is that pixels not associated with our peak will sum to zero over the

rest of the map. An alternative method would be to identify peaks in the map and

report total power associated with each peak.

In figure 6.23 we show the recovery when we have injected two point sources of

P-waves. In this case, the recovered total amplitude in the map is larger than expected

by a factor of ∼ 25%. When we inject just a single P-wave, we recover the correct

direction and amplitude reliably. The “expected” recovery assumes that the two waves

will add incoherently, i.e. that if one wave has Fourier amplitude ã1(f) and the other

has Fourier amplitude ã2(f), then total recovered power in the radiometer map would

be |ã1(f)|2 + |ã2(f)|2. Given that we have injected two sinusoidal waves with stationary
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phases, these waves will be coherent and so there will be cross terms and the amplitude

we measure will be larger than if we were to add the amplitude of the two waves

incoherently. In fact, the recovery amplitude when there are two P-waves depends

strongly on the direction of the two waves: If one is traveling East and the other is

traveling vertically, then there is no coherence and the amplitudes add incoherently. If

they are both traveling East, then the waves add completely coherently.

�2 �1 0 1 2

Power [m2] ⇥10�10

Figure 6.23: We show the injection and recovery of pressure waves. There are two
injected sources indicated by stars. In this case the recovered amplitude in the map is
larger than expected, at 2.6×10−8 m2 instead of 2×10−8 m2. The contours enclose 95 %
of the total map power. The larger than “expected” amplitude has to do with coherence
between the two signals breaking one of the assumptions of the seismic radiometer. This
is discussed further in the text.

In figure 6.24 we show the recovery for an injection of Sh-waves and the separate

recovery maps for the two different S-wave polarizations. In this case, the amplitude

recovered is correct. In figure 6.25 we show the recovery maps when we inject P and

R-waves and recover both simultaneously. We recover amplitudes that are within 10 %

of the injected values. Finally, in figure 6.26 we show recovery in the case where we

have injected P, Sh, and R-waves in different directions, and try to recover all three
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Figure 6.24: Injection and recovery of a horizontally polarized shear wave with λ =
3.3 km using the full Homestake seismometer array. We clearly see the recovered wave
in the map for horizontal polarization and we see nothing in the vertically polarized
map. The recovered power in the map is 0.92 × 10−9 m2 compared with the injected
value of 10−8 m2. The contours enclose 90 % of the total map power.
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Figure 6.25: Rayleigh and P-wave injection and recoveries. Both injections have power
at 10−8 m2. The R-wave total map power is 1.05× 10−8 m2 and the P-wave total map
power is 1.16× 10−8 m2. The contours enclose 95 % of the total map power.

at once. We see peaks in roughly the correct directions for all cases; however, there

appears to be power from P-waves leaking into the Sv wave map, and potentially some

R-waves being seen in the P-wave map. The amplitudes of these recoveries (listed in

the captions) also show significant bias. In addition, recovery of these different types of

waves becomes especially unreliable near the poles (i.e. a vertically propagating wave).

Injections within 30◦ of the poles begin to become degenerate across maps and much
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more difficult to resolve. This can also be seen by looking at the the model resolution

matrix that encompasses all 4 wave types. For situations where we are dominated by a
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Figure 6.26: R-, P-, and Sh-wave injection and recovery. The total power in each map is
biased. The injection strength was unity for all three injections, while the total power in
the R-wave map was 0.55 m2, for the P-wave map it is 1.50 m2, and for the Sh-wave map
it is 2.24 m2. Adding the power across all four maps yields a total amplitude of 4 m2,
which is too large by a factor of 33 %. For these injections λR = 2500 m, λP = 5700 m,
and λS = 4000 m. The contours enclose 95 % of the total map power.

single source of waves, we will likely recover the correct amplitude and direction of the

waves. In cases where there are several different wave types with similar amplitudes, our

direction recoveries will likely be informative, but the amplitude estimates are unreliable.

This likely has to do with the fact that the different modes can also add coherently (like

the case of two P-waves above). Understanding this effect will be important for properly

interpreting maps we make in the future. While we will run full-scale inversions for R,

S, and P-waves together, it is important to keep these issues in mind.
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6.4.6 Real data applications

Source at 1.5 Hz

There is an obvious and strong source of seismic waves from 1.5 − 2.0 Hz that shows

up in several stations in the Homestake seismometer array. It is most prominent in

the surface stations. The phase between the vertical and horizontal channels for these

stations indicates that we see mostly Rayleigh waves. The source also seems to turn

on and off at various times during the day. In figure 6.27 we show the phase difference

between vertical and horizontal channels for the YATES station, and a timeseries plot

with a narrow band-pass filter around 1.5 Hz for a period of twelve hours. It shows

the source going from off to on about half an hour into the time-period. We would

like to use this source as a test bed for the radiometer algorithm. To do this, we first

attempt to use only the time-delays between the seismometers to localize the direction

of the source assuming the field consists of plane-waves. Then we run the radiometer

algorithm. We show that there is obvious consistency between these two approaches,

and that the radiometer algorithm shows indication for much higher amplitudes for

R-waves than for body waves.

Timing analysis—The phase delay, ϑ, for a surface plane-wave between two different

seismometer channels will depend on the velocity, v, the azimuth of the source, φ, and

a vector pointing between the two stations, ~x1 − ~x2

ϑ =
2πf(~x1 − ~x2) · Ω̂

v
(6.51)

where Ω̂ = (cosφ, sinφ). We measure the phase delay between stations 1 and 2, ϑ12,

by multiplying the Fourier transforms of detectors 1 and 2 together and finding the

complex phase of that cross-spectrum:

ρ = Z̃∗1 (f)× Z̃2(f) (6.52)

ϑ12(f) = arctan

(
Imag ρ

Real ρ

)
. (6.53)

In this case Z̃I(f) is the Fourier transform of the vertical channel of seismometer I and

star indicates complex conjugation. We use only stations YATES, ROSS, ORO, DEAD,
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Figure 6.27: Top: Timeseries for YATES station, bandpass filtered between 1.49 and
1.51 Hz for the first twelve hours of October 2nd, 2015. Bottom is the vertical-to-
horizontal phase between the East and the Vertical channels of the YATES station. It
is clear that the phase hovers near π/2 radians, which is consistent with the retrograde
motion we expect from Rayleigh waves. We also see that there are periods where this
source of surface waves appears to turn off and then turn back on.

TPK, and 300, as these stations see the source most strongly. We use 1 hour of data
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Parameter Recovered Value

φ 2.4+0.7
−0.7 degrees

c 2.94+.07
−.07 km/s

logBsurface plane
noise 794

Table 6.6: We show results for parameter estimation using only a subset of stations for
the timing-only analysis where we model the phases between pairs of seismometers as
if the data consists of a single surface plane-wave. The log Bayes factor is calculated
by comparing the marginal likelihood using our model to the marginal likelihood in the
case where we replace our model with zeros. It shows strong evidence for the surface-
plane-wave model compared to a model with no preference for direction.

starting from October 2nd, 2015 03:00 UTC. We use 100 s fast Fourier transforms at

1.5 Hz, which corresponds to 36 phase measurements for each channel pair.

We then use data in a student’s-t likelihood (because we do not have a reliable

method of finding the variance on ϑ) to try to estimate φ and v. The likelihood function

is

p({ϑ} |Ω̂, v) = Π
Npairs
i=1

Γ(mi/2− 1)

2πmi/2−1

 mi∑
k=1

∣∣∣∣∣ϑi,k − 2πfΩ̂ ·∆~xi
v

∣∣∣∣∣
2
−mi/2 , (6.54)

where mi is the number of phase measurements for detector pair i (in this case 36), and

Γ is the gamma function. We ran a Bayesian analysis where we evaluated the above

likelihood function on a grid of points for the propagation direction φ and velocity v.

We also constructed Bayes factors to determine whether the surface-plane-wave model

is preferred to a noise-only model. The parameters for the analysis and the results are

summarized in table 6.6. The 2-D posterior and 1-D marginalized posteriors for the

velocity and direction using this model can be found in figure 6.28.

We see that the posterior distributions are very strongly peaked for both azimuth

of the source, φ, and velocity, v. The velocity is consistent with the expected velocity

of R-waves at a frequency of 1.5 Hz, and the azimuth roughly corresponds to a wave

traveling in the East direction. This analysis offers a solid basis for cross-checking the
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Figure 6.28: Above we show the posterior distribution for the phase-delay analysis for a
persistent 1.5 Hz source. The source direction is roughly consistent with a second gold
mine located outside of Lead, SD.

results of the radiometer analysis.

Radiometer matrix inversion analysis—We run the radiometer recovery using

cross-correlations averaged over 12 hours of data, although using shorter periods of

time yields self-consistent results. The results are summarized in the plots in figure 6.29,

where we see clear evidence for R-waves in roughly the same direction as the timing-only

analysis above. The plots also show a histogram of pixels normalized by the median

of the absolute value of all pixels in the map. This should help add intuition to the

idea that we see a strong peak for R-waves, while for P-waves (despite the bold colors)

there are no obvious directions that dominate. The total sum power in each map

are 1.2 × 10−19 m2 for body waves and 7.2 × 10−19 m2 for R-waves, again indicating

that we see strong evidence for R-waves.
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Figure 6.29: Recovery of 1.5 Hz source from October 2nd 03:00-04:00 UTC. We see that
there is a strong peak between 0 and 30◦ for R-waves, while for P-waves there is no
obviously preferred direction. The total power in the R-wave map is 7.2 × 10−19 m2

while for P-waves it is more than a factor of 5 times lower at 1.2× 10−19 m2.

Microseism measurements

The oceanic microseism is the cause of the peaks that dominate the spectra seen in sec-

tion 6.2.3 at low frequencies. These peaks are caused by ocean waves interacting with

the continent, and tend to be elevated when wave heights are higher. There is evidence

in our data that indicates that during times when the microseism has low amplitude

in our data, the dominant source of seismic waves at low frequencies are body waves,

while when the microseism has high amplitude, the dominant source of seismic waves
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in our array is R-waves. This evidence is discussed further in [213].

As a second test of the seismic radiometer, I attempted to recover P-, S-, and R-

waves at 0.2 Hz on a day when the microseism is relatively quiet and a day when the

microseism is at a higher level.

The first recovery comes on a day when the microseism is elevated, and the results

show evidence for a preference for R-waves propagating in the westward direction. By

comparison, there is no obviously preferred direction in the body-wave maps. The total

power in each map is summarized in table 6.7, which shows that there is slight preference

for R-waves over body waves in our data. The power in the individual body wave maps

fluctuates with the choice of SVD cutoff, but the total power across all three of those

maps remains relatively consistent. This likely has to do with the fact that there is

very little information gained from the phase differences between individual stations

due to the very large wavelengths of the body-waves, and so most of this information

comes solely from the amplitude seen in the individual NS/EW/vertical channels. The

properties of the R-wave eigenfunctions, however, can help us to distinguish between

R-waves and body waves, even in the absence of the information from phase-delays

between stations.

Wave type Total map power [m2]

R 1.7×10−14

P 2.4×10−15

Sh 2.9×10−15

Sv 8.7×10−15

Total Body 1.4×10−14

Table 6.7: Results for seismic radiometer at 0.2 Hz July 10th, 2015, when the microseism
is elevated. The results above are made using an SVD regularization cutoff of 0.005.
While total power in each individual body-wave map recovery varies with the choice of
the SVD regularization, the ratio of R-wave to body-wave total power does not. We see
that the total power in R-waves is larger than that of body waves, although we do not
have estimates of the uncertainty on these values yet.

The second test of the radiometer method on the microseism comes on a day when

11The reason for this is that a recovery for R-waves with an incorrect polar angle is often what happens
when one performs a recovery with an incorrect velocity
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Figure 6.30: Surface and body wave recoveries for microseism on July 10th, 2015, for
three hours. In this case, we allow the polar angle of the surface waves to vary11.
The color scale on all four plots is the same, to emphasize the strong preference for R-
waves. We use velocities of 3500 m/s for R-waves, 7000 m/s for P-waves, and 5000 m/s
for S-waves. The R-wave velocity comes from an estimate using very-long-duration
correlations [213], as do the body wave velocity estimates. The total sum power power
across the body-wave maps is 1.4×10−14 m2 while for R-waves it is 1.7×10−14 m2. The
ratio of the total power in body waves to surface waves is independent of the choice
of cutoff for the SVD regularization, as is the dominant direction. The choice of SVD
regularization cutoff for the maps above is 0.005. The pixel histograms are normalized
by the median of the absolute value of all pixels across all maps.

the microseism is relatively quiet. On these days, there is evidence that there is sig-

nificant body-wave content in our data [213]. This is borne out in the recoveries with

the seismic radiometer. The total map power across all of the body-wave recoveries is

significantly larger than the R-wave recovery. As in the previous case, the individual

body-wave map recoveries show varying total power with a change in the choice of the

cutoff for SVD regularization, but the overall ratio of R-wave to body-wave power is

relatively stable. There is no preferred direction across any of the maps, which are

shown in figure 6.31. The total map power in the recoveries for an SVD-cutoff of 0.005

are shown in table 6.8.
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Figure 6.31: Surface and body wave recoveries for microseism on June 3rd, 2015 for
twelve hours. In this case, we allow the polar angle of the surface waves to vary. The
color scale on all four plots is the same, to emphasize that in this case there is little
preference between wave types. We use velocities of 3500 m/s for R-waves, 7000 m/s
for P-waves, and 5000 m/s for S-waves. The R-wave velocity comes from an estimate
using very-long-duration correlations [213], as do the body wave velocity estimates.
The total sum power across the body-wave maps is 5.8 × 10−15 m2 while for R-waves
it is 2.0×10−15 m2. The result for the total power in body waves vs. surface waves is
independent of the choice of cutoff for the SVD, as, generally, is the direction result
across all three maps. The maps above are calculated with an SVD regularization cut-
off at 0.005. The pixel histograms are normalized by the median of the absolute value
of all pixels across all maps, and it shows no obviously preferred directions in any of the
maps.

6.4.7 Newtonian noise estimates

Now we use the seismic radiometer to estimate the Newtonian noise from 0.5 − 5 Hz

at several depths. As we discussed in section 6.1.2, the fluctuations in the acceleration

field at a specific location, ~r0, due to a changing displacement field, ~u(~r, t), is given by

δ~a(~r0, t) = −G
∫
dV ρ(~r)(~u(~r, t) · ∇0)

~r − ~r0

|~r − ~r0|3
, (6.55)
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Wave type Total map power [m2]

R 2.0×10−15

P 2.2×10−15

Sh 9×10−16

Sv 2.7×10−15

Body waves 5.8×10−15

Table 6.8: Results for seismic radiometer at 0.2 Hz on June 3, 2015, when the microseism
is generally quiet. The results above are made using an SVD regularization cutoff of
0.005. While total power in each individual body-wave map recovery varies with the
choice of the SVD regularization, the ratio of R-wave to body-wave total power does
not.

where G is Newton’s gravitation constant, ρ is the density field of the solid we are

considering, ~u is the displacement field, and ∇0 is the gradient with respect to the

reference point ~r0.

The noise in the GW channel of an interferometer is the differential length change

between the two arms induced by something other than GWs, and so we convert this

acceleration noise into displacement noise

h =
δx− δy
L

=
δax − δay
(2πf)2L

(6.56)

where L is the length of the arms of the interferometer. If we assume that the motion

of the four test masses adds incoherently, then the noise in the GW channel due to

the acceleration induced by Newtonian noise can be found by multiplying x and y

accelerations by
√

2 and considering the incoherent sum of the RMS accelerations

hNN =

√
2
(
δa2
x,rms + δa2

y,rms

)
(2πf)2L

. (6.57)

The fluctuations themselves, δa(~r0, t), are strongly dependent upon ρ(~r, t) and ~u(~r, t).

The former changes if we are considering a ground-air interface, or a geometry like a

spherical cavity, or a depth-dependent density profile. The latter depends upon the

seismic wave we are considering. In section 6.1.1 we discuss the displacement field due

to a few different types of seismic waves. A treatment of δa(~r0, t) at different depths
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and due to many different types of seismic waves and density geometries can be found

in [48]. Here we briefly summarize the different geometries and waves types considered

in that manuscript

1. Incident P-waves interacting with the surface, displacing the air above the inter-

face, and generating a reflected P-wave and a reflected Sv-wave.

2. Incident P-wave inducing density fluctuations in the rock.

3. Incident P-wave interacting with the wall of a spherical cavity, inside of which is

the point of reference.

4. Incident Sv-wave interacting with the surface, displacing the air above the interface

5. Incident Sv-wave reflecting off of the surface and generating a P-wave and Sv-wave.

The P-wave can then cause density fluctuations in the rock.

6. Incident S-wave interacting with the wall of a spherical cavity, inside of which is

the point of reference.

7. Incident R-waves interacting with the surface. The vertical component of the

wave displaces the air above the surface of the earth and the radial component

generates density perturbations.

8. Incident R-waves interacting with the wall of a spherical cavity, inside of which is

the point of reference.

We use maps generated by the seismic radiometer and code written by Andrew

Matas, Vuk Mandic, and myself to estimate the Newtonian noise under a few different

assumptions. The code is based on the calculations in [48]. The estimates are made

on the same two days used for the microseism measurements. In all Newtonian noise

estimates below, we assume a constant density profile of ρ = 2.5 × 103 kg/m3. We

estimate the Newtonian noise for a set of test masses on the surface and at 4850 ft

below ground. In the latter case we assume that the test masses are in a small cavity,

and consider the interaction of seismic waves with the walls of that cavity as well.

On both days we generate seismic radiometer maps with data from the first two hours

of the day at frequencies of 0.5 − 5 Hz in intervals of 0.5 Hz. For each frequency, we
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average together many Fourier transforms that are 10 s long to calculate cross-spectra,

and run the seismic radiometer inversion with an SVD cutoff of 10−3.

We then calculate the total sum power across all pixels in all four maps, Pmaps. We

make sure to multiply the R-wave maps by a factor of (1 + N2
vh) to account for the

vertical amplitude of the R-waves. This arises due to the interpretation of the R-wave

maps as being the radial amplitude on the surface associated with the R-waves. We

also calculate the total power, Pseis,i in each seismometer, i, on the surface, summed

across the three directional channels. We renormalize our radiometer maps by

norm = max(Pseis,i)/Pmaps.

In this way, we interpret our maps as having correct relative amplitudes, but not nec-

essarily correct absolute amplitudes.

Using the radiometer maps to estimate Newtonian noise requires certain assumptions

and it is currently unclear how to handle certain aspects of the data. Specifically,

dealing with negative power in some pixels – an artifact of the maximum likelihood

method we are currently using – has proved difficult. Therefore, for the results below

we assume that the total map power is distributed isotropically across all directions

for each polarization. This means that the relative difference in total map power across

each polarization is the main byproduct of the radiometer method used in our estimates.

The results for the Newtonian noise estimate for the two days, June 3rd 2015 and

July 10th, 2015 are shown in figures 6.32 and 6.33. For these estimates we assume a

Cosmic Explorer-like instrument with 40 km long arms and an ”L” shaped interferome-

ter. The figures show a design Cosmic Explorer sensitivity curve and a design Einstein

Telescope sensitivity curve. The latter is not directly comparable to the Newtonian

noise estimates because the interferometer has a triangular shape and 10 km long arms.

July 10th showed elevated levels of microseism compared to June 3rd, however, the

levels of Newtonian noise estimated at 0.5 Hz and above are comparable, indicating

that the elevated microseism has little effect on higher frequencies in the seismic field.

It does appear that the 1.5 Hz source is larger on June 3rd than it is on July 10th.

It is important to note that as we move from the surface to 4850 ft, we move from

the Newtonian noise being domianted by surface waves to the Newtonian noise being
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dominated by body waves.
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Figure 6.32: Newtonian noise estimate assuming a Cosmic Explorer-like instrument
for June 3rd, 2015. The colored lines are Newtonian noise estimates using the different
mechanisms above and the seismic radiometer recoveries for a cavity on the surface (left)
and at 4850 ft (right). The black line (with circles) is the total Newtonian noise estimate.
The solid black curve on the right of each plot indicates the estimated sensitivity for
the proposed Cosmic Explorer experiment [11], while the dashed black curve indicates
the estimated sensitivity for the proposed Einstein Telescope experiment. It appears
that on the surface the Newtonian noise is dominated by surface waves, while at depth
the body waves are dominant.

6.5 Conclusions

In this chapter, we have discussed the deployment and maintenance of a 3-dimensional

seismometer array in the Homestake gold mine. We discussed the general seismic envi-

ronment at the mine, before introducing analysis techniques used to extract interesting

and important information from the data that was acquired. We made a measurement

of the fundamental Rayleigh-wave eigenfunction, and then used that information in

the seismic radiometer, which attempts to decouple different seismic field components

and map the directional dependence of the seismic field. While the seismic radiometer

method has drawbacks and limits, illustrated with some of our software injections, the

initial results when one component of the seismic field is dominant are promising. We

have also attempted to use the seismic radiometer to estimate the Newtonian noise at
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Figure 6.33: Newtonian noise estimate assuming a Cosmic Explorer-like instrument for
July 10th, 2015. The colored lines are Newtonian noise estimates using the different
mechanisms above and the seismic radiometer recoveries for a cavity on the surface
(left), and at 4850 ft (right). The black line (with circles) indicates the total Newtonian
noise estimate. The solid black curve on the right indicates the estimated sensitivity for
the proposed Cosmic Explorer experiment, while the dashed black curve indicates the
estimated sensitivity for the proposed Einstein Telescope experiment [11]. It appears
that on the surface the Newtonian noise is dominated by surface waves, while at depth
the body waves are dominant.

low frequencies. While a more complete understanding of the seismic radiometer is still

necessary to consider the Newtonian noise estimates reliable, the results thus far give

answers that are on the same order of magnitude of prior Newtonian noise estimates

and illustrate that such an approach is feasible.
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Conclusion and Discussion

Throughout this thesis I have covered a wide array of subjects related to gravitational

waves (GWs) and gravitational-wave detectors. The overarching theme has been the

overall improvement of the noise level and data quality of the ground-based interferom-

eteric detectors like Advanced LIGO, and the impact that improvement has on current

and future searches for a stochastic gravitational-wave background (SGWB).

In chapters 2 and 3 I discussed searches for persistent gravitational waves using

LIGO detectors, including searches for an isotropic and anisotropic SGWB, and a di-

rected search for continuous GWs that spans the frequency band from 20 − 1700 Hz.

I implemented a new method for the narrowband radiometer search that set limits on

the strain amplitude, h0, of a potential source of GWs from Scorpius X-1, the galactic

center, and Supernova 1987a. Those limits were, at the time they were published, the

best limits on h0 from a potential GW source in those directions.

In chapter 4 I laid out in detail how we come to understand and characterize differ-

ent aspects of the instrumental noise in the LIGO detectors. This included a discussion

of the tools and methods we use in identifying and mitigating “noise lines,” including

details about a new tool that I designed called STAMP-PEM. I also describe a perva-

sive class of glitches in the detectors caused by radio-frequency pickup throughout the

instrument. I designed a method for tracking the source of the glitches and estimating

their rate of occurrence, while also helping to characterize the local radio frequency

environment at the LIGO Livingston detector.

One of the takeaways from the search for an isotropic SGWB is that increasing

205



206

the sensitivity of GW detectors at lower frequencies drastically improves the sensitivity

to ΩGW (f), and so improved low-frequency sensitivity will be vital for a detection

of the SGWB from unresolved compact binary coalescences. The goal of improving

sensitivity at lower frequencies is motivation for the work on understanding seismic and

Newtonian noise in the Homestake seismometer array (chapter 6), as well as correlated

noise (chapter 5). In chapter 6 I outlined the installation and commissioning of the

3D Homestake seismometer array, and then I used data from the array to make novel

measurements of the seismic environment. This included a measurement of the surface-

wave eigenfunctions, which determine how surface-wave amplitude decays as a function

of depth. I then used that eigenfunction measurement in an attempt to separate and

measure the individual contribution of each component of the seismic field, which in turn

can be used to make an estimate of the Newtonian noise. While the seismic radiometer

method is still under development, the results on real data that we presented are a

promising step forward in this field.

In chapter 5 I outlined a framework for parameter estimation and model selection

using the data products from chapter 2. I then introduced a new code package that

can be used to set limits on and distinguish between different models of the SGWB. I

then used this method to simultaneously measure an injected SGWB and account for

correlated magnetic noise between the GW detectors. While this method is still under

development, the current results are encouraging. I have shown that I can successfully

perform parameter estimation and model selection on models consisting of both corre-

lated magnetic noise and a combination of correlated magnetic noise and an SGWB.

We hope to apply this method to upcoming SGWB searches it Advanced LIGO and

Advanced Virgo data.

With the recent observations of the signals from merging black holes and neutron

stars, the SGWB now stands as one of the next unexplored frontiers of GW astrophysics.

We first hope to measure the SGWB due to unresolved compact binary systems, but

down the road a measurement of relic GWs from the early Universe should be a target

for future detectors. Those detectors will require phenomenal sensitivity at lower fre-

quencies than LIGO or Virgo have yet reached. Understanding Newtonian noise and

correlated noise due to long-wavelength magnetic fields will be vital to the operation

and utility of those future detectors.
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Appendix A

Notches made for O1 analysis

Line or Comb Frequency (Hz) Description/justification

Comb Offset 0.5 Hz, Spacing 1 Hz 1 Hz comb

Comb Offset 0 Hz, Spacing 16 Hz 16 Hz comb

Comb Offset 60 Hz, Spacing 1 Hz Power mains

Line 20.22 Unknown, H1 aux

Line 20.40 Unknown, turns on mid-run at H1 only

Line 23.36 Unknown, overlaps comb at LLO

Line 24.25 Unknown, part of comb at both sites

Line 25.00 Unknown, part of comb at both sites

Line 26.17 Unknown, very strong single-detector line at H1 only

Line 30.00 Unknown, 1 Hz comb

Line 47.69 Unknown, aux channel coherence

Line 100.00 Unknown, 1Hz comb

Line 453.32 Unknown, aux channel coherence

Line 1352.90 Unknown, likely digital line at LHO

Line 34.7 Calibration (L1)

Line 35.3 Calibration (L1)

Line 36.7 Calibration (H1)

Line 37.3 Calibration (H1)

Line 331.3 Calibration (L1)

Line 331.9 Calibration (H1)

Line 1083.1 Calibration (L1)

Line 1083.7 Calibration (H1)

Line 3001.1 Calibration (L1)

Line 3001.3 Calibration (H1)

Line 480-520 Violin mode first harmonic region

Line 960-1040 Violin mode second harmonic region

Line 1455-1540 Violin mode third harmonic region
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Line 1200-1300 Wandering line at Hanford

Line 12.43 Pulsar injection

Line 26.34 Pulsar injection

Line 31.42-31.43 Pulsar injection

Line 38.43-38.51 Pulsar injection

Line 52.80-52.81 Pulsar injection

Line 108.85-108.87 Pulsar injection

Line 146.11-146.21 Pulsar injection

Line 190.95-191.09 Pulsar injection

Line 575.11-575.22 Pulsar injection

Line 265.55-265.60 Pulsar injection

Line 763.77-763.92 Pulsar injection

Line 848.88-849.06 Pulsar injection

Line 1220.43-1220.68 Pulsar injection

Line 1393.23-1393.79 Pulsar injection

Table A.1: Notch list used in SGWB searches for O1. This table lists the frequencies
which were not analyzed in SGWB searches in O1 due to strong instrumental contami-
nation. A 0.1 Hz region around each of the harmonics of the 60 Hz lines was removed.
Calibration lines at each site, and frequencies with hardware injections simulating pul-
sars were also removed. For the pulsar injections, we account for the Doppler shift and
the spin-down of the pulsar over the course of the run. We remove a broad band around
the harmonics of the violin modes because of excess noise in these regions. We also
remove a wandering line seen at H1. Finally, we remove lines seen as coherent between
H1 and L1 which have been determined to contaminated with instrumental artifacts.
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