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Abstract 
 

 

High-throughput Next Generation RNA sequencing (RNA-Seq) technology is 

affluent with information about the transcriptome, which includes both protein-

coding and multiple non-coding regions. In a diseased state, complex 

interactions between these regions can go awry. Identification of such 

interactions is critical to translate the underlying biology of the transcriptome, 

especially for lethal diseases such as cancer. The field of bioinformatics is 

currently deficient in workflows that can analyze both coding and non-coding 

regions together efficiently, to identify disease-specific interactions.  

 

In this dissertation, I developed three coherent bioinformatics solutions that aim 

to address these shortcomings in RNA-Seq. First, a comprehensive workflow 

called MAPR-Seq was developed to analyze and report various features of 

protein-coding messenger RNAs. Second, a workflow for non-coding circular 

RNAs, called Circ-Seq, was developed to identify, quantify and annotate 

expressed circular RNAs. Third, an integration workflow called ReMIx was 

developed to identify microRNA response elements (MREs) and integrate them 

with the different types of RNAs (messenger RNAs, circular RNAs, and 

microRNAs).  
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Collectively, the three workflows were applied to the largest cohort of breast 

cancer samples (n=885) from The Cancer Genome Atlas (TCGA). Based on the 

results obtained from these workflows, I present several key findings that are 

pertinent to breast cancer. I show that circular RNAs may be a marker for tumor 

proliferation in estrogen response positive (ER+) breast cancer subtype. I also 

show how triple negative (TN) breast cancer subtype-specific MRE signatures of 

messenger RNA – microRNA interactions can be obtained using RNA-Seq data, 

which has not been explored to date and thus, is a novel undertaking. In the end, 

my results highlight candidate messenger RNAs, circular RNAs and microRNAs 

that are found to be associated with MAPK and PI3K/AKT signaling cascades in 

TN breast cancer subtype.    

 

In general, the developed bioinformatics solutions can also be applied to RNA-

Seq data of other cancer subtypes and diseases to identify unique messenger 

RNA – microRNA – circular RNA candidates that could be promising diagnostic 

targets towards improving treatment options for complex diseases. 
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Chapter 1: Introduction  
 

 

1.1 Evolutionary expansion of the genome 

Historically, scientists and researchers have been keen on studying genomic 

size, evolution and functional significance in numerous species [1-3]. During the 

era of the 1950s, it was assumed that genomic size correlates with organism 

complexity [4]. Scientists strongly believed that humans are one of the most 

complex species on earth and thus would have the largest genome with a 

maximum number of genes. However, this theory was proven wrong when it was 

discovered in 1971 that lower animals such as salamander have a genome 15 

times larger than that of humans [5]. This was a troubling paradox for many 

years. Later, experimental advances revealed that the genome is comprised of 

protein-coding and non-coding regions [6]. It was found that while a small subset 

is protein-coding, the non-coding content in the genomes of these different 

species varied by several folds [7, 8]. Since 2003, with the revolution of 

sequencing technologies and formation of the Encyclopedia of DNA Elements 

(ENCODE) consortium led by the US National Human Genome Research 

Institute (NHGRI), the mystery began to unfold by itself. It became surprisingly 

evident that non-coding regions of the genome also undergo transcription and, as 

shown in Figure 1, the number of transcribed non-coding regions increased for 

higher species [9, 10]. Thus it was clear, that the non-coding content has 
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undergone evolutionary expansion, suggesting their potential to correlate with 

organismal complexity.  

                     

Figure 1: Evolutionary expansion of non-coding regions in various organisms 
  

1.2 Current landscape of the human transcriptome 

As mentioned above, one of the many surprises that came from the ENCODE 

project was that over 70% of the non-coding regions in the human genome are 

transcribed and that only 2% of the genome encodes for proteins [10]. In 2012, 

the GENCODE project (Encyclopedia of genes and gene variants) emerged, 

leading to the categorization of transcribed, non-coding RNA molecules into 

several classes based on their characteristics and functional implications in the 
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genome [11]. It is worth a mention that even at present, the research community 

continues to discover new, unfound members of the non-coding RNA family as 

their presence continues to become evident using the latest and greatest 

sequencing technologies coupled with bioinformatics techniques.  

 

Non-coding RNAs have been broadly classified into categories such as long non-

coding RNAs (lncRNAs), small non-coding RNAs (sncRNAs), pseudogenes and 

an unclassified category of unprocessed transcripts (which consist of less 

understood genes that eventually get characterized based on on-going research 

and validation techniques) – for example, circular RNAs. The lncRNAs are 

defined as RNA molecules longer than 200 bases which exert pre- and post-

transcriptional regulatory effects on their messenger RNA (mRNA) counterparts 

[12]. The sncRNAs are typically 25 – 30 bases long which have a variety of 

functional and regulatory mechanisms and thus have been distinguished further 

into many more specific types such as transfer RNAs, ribosomal RNAs, small 

nucleolar RNAs, microRNAs, small interfering RNAs, etc. [13, 14]. Pseudogenes 

are non-functional relatives of mRNAs that have lost their protein-coding capacity 

due to various alterations [15]. Finally, circRNAs are non-canonical back-spliced 

by-products of transcription that form the most recent addition (discovered in 

2013 in humans) to the family of noncoding RNAs [16]. 
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In summary, according to the latest GENCODE version (v19) of human genome 

build hg19, the human transcriptome consists of 58,050 genes which comprise of 

35% mRNAs, 24% lncRNAs, 15% sncRNAs, 24%pseudogenes and 2% 

unclassified/unprocessed transcripts (which includes circRNAs). 

 

1.3 Types of RNA considered in this dissertation 

In this dissertation, I will focus on protein-coding mRNAs and two types of non-

coding RNAs, namely, microRNAs and circRNAs. This dissertation is an 

integrated study of these three RNA types. 

 

1.3.1 Messenger RNAs 

Messenger RNAs (mRNAs) are a well-studied class of RNA molecules that carry 

genetic codes from DNA in the nucleus to sites for protein synthesis in the 

cytoplasm. Structurally, mRNAs comprises of the following in the given order: 5’ 

cap, 5’ untranslated region (UTR), coding exons, 3’ untranslated region, poly-

adenylated (poly-A) tail. The poly-A tail protects the mRNA from degradation by 

exonucleases. However, the untranslated regions, especially the 3’UTR, can 

serve as hot spots for binding of specific non-coding RNAs called microRNAs 

(explained below) to mediate degradation of the expressed gene.  
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1.3.2 MicroRNAs 

MicroRNAs, a distinct category of sncRNAs, are highly conserved, single-

stranded RNA molecules of approximately 22 bases in length. Mature 

microRNAs are formed based on a unique transcription process. Export of 

microRNAs from the nucleus to the cytoplasm is performed by employing the 

Drosha, Exportin-5 and Dicer enzymes. Once mature, microRNAs accomplish 

their regulatory functions through the RNA-induced silencing complex (RISC) 

[17]. MicroRNAs activate and guide the RISC complex towards their target 

mRNAs to regulate gene expression. The RISC complex recognizes microRNA 

response elements (MRE) present on the 3’UTR of target mRNAs for 

complementary base-pairing with microRNAs. The degree and nature of the 

complementarity between the microRNA and its target gene determines the gene 

silencing mechanism, i.e., whether the gene undergoes mRNA degradation 

(imperfect pairing) or translation inhibition (perfect pairing). 

 

1.3.3 Circular RNAs 

Circular RNAs (circRNAs) are the most recent class of non-coding RNAs which 

are produced by back-splicing (3’ to 5’) of precursor mRNAs after transcription. 

Unlike linear RNAs that contain free 5’ and 3’ ends, circRNAs have these ends 

joined together to form a covalently closed loop. Because circRNAs do not have 

5’ or 3’ ends, they are resistant to exonuclease-mediated degradation and are 

thus expected to be more stable than most linear RNAs in cells. Additionally, 
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since circRNAs arise from otherwise protein-coding genes, these molecules can 

also contain MRE sites for microRNA binding. The genomic size of circRNAs can 

range from few to several kilo-bases and thus can contain a large number of 

MRE sites. For example, CiRS-7, discovered in 2013 by Memczak et al [16], is a 

classic example of a circRNA and is a back-spliced product of the CDR1 gene. 

CiRS-7 was found in human, mouse and nematode brain and consisted of 63 

conserved MRE sites for miR-7 binding. Lately, it has also been shown that a 

subset of circRNAs can be translated into functional proteins [18]. 

 

1.4 Cross-talk between different RNA types 

The expression of cancer-relevant genes such as tumor suppressors and 

oncogenes is critical in diseases, such as cancer. Complex interactions between 

mRNAs, circRNAs, and microRNAs can greatly influence the post-transcriptional 

activity of such genes in a normal versus cancerous environment within the cell. 

More precisely, mRNAs and circRNAs contain microRNA binding sites, called 

MRE sites from hereon, that are complimentary to microRNA seed regions. As 

shown in Figure 2, mRNAs and circRNAs use their MRE sites to interact with 

microRNAs. It is known that the interactions between MRE sites on mRNA 

targets and microRNA seed regions can lead to decreased gene expression or 

even gene silencing [19, 20]. However, in the presence of circRNAs that share 

the same MRE sites as mRNA targets, this now exposes microRNAs to non-

unidirectional interactions. Such mRNAs and circRNAs can act as competing 
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endogenous RNAs (ceRNAs) and sequester the same pool of microRNAs using 

their common MRE sites. As a result, not all microRNAs necessarily bind to the 

mRNA targets anymore, and thus the gene expression can remain intact.  

 

Figure 2: Endogenous competition between mRNAs and circRNAs for a 
common pool of microRNAs 
 

This form of RNA cross-talk is crucial to understand because the stability of 

mRNA targets, or lack of stability – depending on how the ceRNAs and 

microRNAs interact, can cause significant impact to gene expression in a 

cancerous versus normal environment.  
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1.5 Importance of studying RNA interactions in Breast 

Cancer 

Breast cancer is the second most common cancer in the United States. Being 

cancer that is formed in the cells of the breasts, this disease is more common in 

women. Breast cancer can be non-invasive, invasive or metastatic. Also, 

depending on the molecular diagnosis, breast cancer can be classified into 

subtypes based on the hormonal status of three key hormone receptors – 

estrogen receptor (ER), progesterone receptor (PR) and human epidermal 

growth factor receptor (HER2). There are three major molecular subtypes for 

breast cancer, listed in the order of tumor aggressiveness – ER positive (65 - 

80%), HER2 positive (20%) and Triple Negative (10 – 20%).  

 

As mentioned above, among the various molecular subtypes, Triple Negative 

(TN) cancer is highly heterogeneous and one of the most severe forms of breast 

cancer. A TN patient is found negative for all three hormone receptors and has a 

poor prognosis. At present, treatments such as chemotherapy, surgery and 

radiation therapy or their combination are provided to TN patients; unfortunately, 

their response to such treatment strategies is indigent, many times with the 

relapse of the tumor. Due to such treatment failures, there is an incisive need to 

identify alternative strategies to treat these patients in a more targeted and 

precise fashion.  
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On the bright side, we are now in the era of the revolutionary and groundbreaking 

technology of genome sequencing which is both low-cost and fast, and is 

famously called the Next Generation Sequencing (NGS) technology. NGS, which 

became available at the onset of the 21st century [21], has now become the 

standard in bioinformatics for analysis of the genome. Amongst the multitude of 

sequencing platforms offered by NGS, transcriptome profiling, or RNA-Seq, has 

been a significant breakthrough [22]. The wealth of information offered by RNA-

Seq is so vast that it not only helps uncover numerous features of the protein-

coding regions, such as gene expression, single nucleotide variants (SNVs) and 

gene fusions but also helps mine similar details on expressed but untranslated, 

non-coding regions of the transcriptome, such as lncRNAs, pseudogenes, and 

even circRNAs. 

 

1.6  Availability of high-throughput NGS datasets 
 

With the advent of NGS, it was clear that this technology could have an 

enormous impact on life sciences and would be an invaluable resource for the 

research community to analyze genomic profiles of heterogeneous diseases 

such as cancer. Thus the National Cancer Institute (NCI) and the National 

Human Genome Research Institute (NHGRI) collaborated in 2006 and built The 

Cancer Genome Atlas (TCGA) consortium (https://cancergenome.nih.gov/). 

TCGA is a unique repository of high throughput sequencing data from several 

https://cancergenome.nih.gov/
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NGS application types, such as DNA-Seq, RNA-Seq, microRNA-Seq, methyl-

Seq, etc. made available for many different cancer types. Several TCGA cases 

also have matched tumor and normal-adjacent tissues from the same patient 

available for most of the NGS data types, making individualized comparative 

genomics possible.  

 

While many studies have used TCGA datasets to  derive meaningful inferences 

for different cancers [23-25] successfully, many of these studies have been 

focused on a specific NGS application type. Very few bioinformatics projects [26-

30] have utilized TCGA data from different NGS application types to perform 

integrated analyses for a specific type of cancer. 

 

As stated in the previous section of this chapter – on the cross-talk between 

different RNA types, complex interactions between ceRNAs and microRNAs can 

lead to instability of tumor suppressors, oncogenes, and other relevant target 

genes, paving the way for tumor growth and progression. Such crosstalk 

between ceRNAs, i.e., mRNAs and circRNAs with microRNAs, has not yet been 

studied in breast cancer and is investigated for the first time in this dissertation, 

using TCGA breast cancer RNA-Seq data. This will be a novel undertaking, and 

we believe that results from this dissertation will provide a significant contribution 

towards the current knowledge base of medical research in breast cancer. 
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1.7 Challenges and Motivation 

 

Although several bioinformatics packages have been developed to analyze RNA-

Seq data [31-36], these are stand-alone packages that function independently, 

analyze different aspects of the transcriptome and cannot be plugged together 

easily. Distinct differences in software prerequisites and methodology of these 

packages make analysis of multiple features a challenging feat. One of the 

roadblocks in RNA-Seq data analysis has been the lack of easy integration of 

such packages as well as the absence of all-inclusive packages or workflows that 

can stand as a unified solution for interpreting the transcriptome at a broader 

scale.  

 

Another significant gap found in bioinformatics research is that the depth of 

information offered by RNA-Seq technology is often not utilized to its full extent. 

RNA-Seq data can be mined for both protein-coding and non-coding regions 

using comprehensive and novel bioinformatics techniques; however, this 

incredible opportunity has often been overlooked. Integrative analyses including 

both protein-coding and multiple non-coding regions, such as mRNAs and both 

circRNAs and microRNAs respectively, are essential to enable precise and 

deeper understanding of the expression, interaction, and regulation of these 

regions in the transcriptome. 
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Thus, in light of the above bioinformatics challenges as well as the open 

possibilities to utilize RNA-Seq data to explore coding and non-coding RNA 

interactions in cancer patients with both tumor and normal-adjacent samples 

from same patient, and importantly, with a devoted motivation to strive towards 

improving diagnostic targets in breast cancer, I hereby present my dissertation 

with the following objectives:   

 

1. Development of comprehensive bioinformatics workflows: develop 

bioinformatics workflows for the identification, characterization, and 

quantification of 

a. MRNAs (protein-coding) 

b. CircRNAs (non-coding), and 

c. Integration of mRNAs and microRNAs 

 

2. Bioinformatics workflows application in TCGA breast cancer: 

Application of the developed bioinformatics workflows to high-throughput 

TCGA RNA-Seq breast cancer dataset to detect mRNAs and circRNAs 

 

3. MRE quantification and RNA integration analysis in breast cancer: 

Analysis of TCGA breast RNA-Seq results from the three workflows and 

TCGA breast microRNA data to  

a. quantify microRNA response element (MRE) sites 
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b. identify differentially expressed MRE sites between tumor and 

normal-adjacent, and 

c. use results from MRE analysis to identify competing endogenous 

RNA networks in breast tumor that involve mRNAs, circRNAs, and 

microRNAs 

 

1.8 Outline of the chapters 
 

The objectives of my dissertation are formulated to address the challenges as 

listed in the section above specifically. The outcomes of these objectives are 

described in the subsequent chapters of this dissertation. A brief outline of these 

chapters is provided below. 

 

Chapter 2 introduces the Mayo Analysis Pipeline for RNA-Seq called MAP-RSeq 

[37]. MAP-RSeq is a comprehensive bioinformatics workflow developed for the 

identification of mRNAs from RNA-Seq data and can also be used to obtain 

various genomic features of mRNAs, such as gene and exon expression 

quantification, single nucleotide variants and gene fusions, for human as well as 

any well-annotated genome. MAP-RSeq can be used on high-performance 

computing clusters and can also be run on a single node. The comprehensive 

reporting style, as well as extensive post-analysis quality checks of MAP-RSeq, 
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offers an end-to-end solution to researchers for their RNA-Seq bioinformatics 

needs. 

 

Chapter 3 describes the bioinformatics workflow developed for the identification 

and characterization of circRNAs, called Circ-Seq [38]. Circ-Seq is a 

comprehensive and configurable workflow with unique filters designed to report 

expressed circRNA candidates. Furthermore, this chapter explains the results 

obtained from the application of Circ-Seq to a) breast cancer cell lines and b) the 

biggest cohort of breast cancer samples from the TCGA consortium. Validation 

experiments using qRT-PCR and Sanger sequencing of a 7kb long circRNA 

identified in MCF7 breast cancer cell line by Circ-Seq is also a significant part of 

the results in this chapter.  

 

Chapter 4 describes a novel bioinformatics approach called ReMIx that utilizes 

TCGA RNA-Seq data to integrate mRNAs and microRNAs by identifying and 

quantifying microRNA binding or MRE sites in tumor and normal-adjacent 

samples of the Triple Negative breast cancer subtype. Differentially expressed 

MREs are selected, and genes and microRNA candidates associated with these 

MREs are analyzed in further detail. Significant canonical pathways are 

identified, and the MRE-associated genes and microRNAs, as well as circRNAs 

that belong to the genes in these pathways, are studied to identify complex 
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interactions between mRNAs, circRNAs, and microRNAs in Triple Negative 

breast cancer.  

 

Chapter 5 is a conclusion of this dissertation. This chapter offers a quick recap of 

the bioinformatics challenges faced and the three specific objectives pursued in 

this dissertation. The results accomplished from individual objectives are 

outlined. Further, chapter 5 offers future insights into potential directions in which 

work from this dissertation can be carried forward.  
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Chapter 2: MAP-RSeq – Mayo Analysis Pipeline 

for RNA Sequencing 

 

 

2.1 Background 
 

Next-generation sequencing (NGS) technology breakthroughs have allowed us to 

define the transcriptome landscape for cancers and other diseases [39]. RNA-

Sequencing (RNA-Seq) is information-rich; it enables researchers to investigate 

a variety of genomic features, such as gene expression, characterization of novel 

transcripts, alternative splice sites, single nucleotide variants (SNVs), fusion 

transcripts, long non-coding RNAs, small insertions, and small deletions. Multiple 

alignment software packages are available for read alignment, quality control 

methods, gene expression and transcript quantification methods for RNA-Seq 

[40-43]. However, the majority of the RNA-Seq bioinformatics methods are 

focused only on the analysis of a few genomic features for downstream analysis 

[44-47]. At present, there is no comprehensive RNA-Seq workflow that can 

simply be installed and used for multiple genomic feature analysis. At the Mayo 

Clinic, we have developed MAP-RSeq - a comprehensive computational 

workflow, to align, assess and report multiple genomic features from paired-end 
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RNA-Seq data efficiently with quick turnaround time. We have tested a variety of 

tools and methods to estimate genomic features from RNA-Seq data accurately. 

Best performing publically available bioinformatics tools along with parameter 

optimization were included in our workflow. As needed we have integrated in-

house methods or tools to fill in the gaps. We have thoroughly investigated and 

compared the available tools and have optimized parameters to make the 

workflow run seamlessly for both the virtual machine and cluster environments. 

Our software has been tested with paired-end sequencing reads from all Illumina 

platforms. Thus far, we have processed over 5,000 Mayo Clinic samples using 

the MAP-RSeq workflow. The MAP-RSeq research reports for RNA-Seq data 

have enabled Mayo Clinic researchers and clinicians to exchange datasets and 

findings. Standardizing the workflow has allowed us to build a system that 

enables us to investigate across multiple studies within the Mayo Clinic. MAP-

RSeq is a production application that allows researchers with minimal expertise 

in LINUX or Windows to install, analyze and interpret RNA-Seq data. 

 

2.2 Availability and requirements 
 

Project name: MAP-RSeq 

Project home page: http://bioinformaticstools.mayo.edu/research/maprseq/ 

Operating system(s): Linux or VM 

Programming language: PERL, Python, JAVA, R, and BASH 

Other requirements: none 

http://bioinformaticstools.mayo.edu/research/maprseq/
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License: Open Source 

Any restrictions to use by non-academics: none 

 

2.3 Implementation 
 

MAP-RSeq uses a variety of freely available bioinformatics tools along with in-

house developed methods using Perl, Python, R, and Java. MAP-RSeq is 

available in two versions. The first version is single threaded and runs on a virtual 

machine (VM). The VM version is straightforward to install. The second version is 

multi-threaded and is designed to run on a cluster environment. 

 

2.3.1 Virtual machine 

 

Virtual machine version of MAP-RSeq is available for download at the provided 

URL [48]. This includes a sample dataset, references (limited to chromosome 

22), and the complete MAP-RSeq workflow pre-installed. Virtual Box software 

(free for Windows, Mac, and Linux at [49]) needs to be installed on the host 

system. The system also needs to meet the following requirements: at least 4GB 

of physical memory, and at least 10GB of available disk. Although our sample 

data is only from Human Chromosome 22, this virtual machine can be extended 

to the entire human reference genome or to other species. However, this 

requires allocating more memory (~16GB) than may be available on a typical 

desktop system and build the index references files for the species of interest. 
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Tables 1 and 2 shows the install and runtime metrics of MAP-RSeq in virtual 

machine and Linux environments respectively. For Table 2, we downloaded the 

breast cancer cell line data from CGHub [50] and randomly chose 4 million reads 

to run through the QuickStart VM. It took 6 hours for the MAP-RSeq workflow to 

complete. It did not exceed the 4GB memory limit but did rely heavily on the 

swap space provided; making it run slower than if it would have had more 

physical memory available. Job profiling indicates that the system could have 

used 11GB of memory for such a sample. 

 

QuickStart VM File size Timeline 

Download 2.2GB ~ 20 minutes to download on 

consumer grade internet 

Unpacked size 8GB - 

Time to import into VM - ~ 10 minutes 

VM boot - 3 minutes 

Runtime with sample data 

(chr22 only) 

- ~ 30 minutes 

 
Table 1: MAP-RSeq installation and runtime for QuickStart virtual machine 
 

 

 

 

 

 

 



 

 20 

Linux File size Timeline 

Download 930 MB ~10 minutes to download on consumer 

grade internet 

Install time - ~6 hours (mostly downloading and 

indexing references) 

Unpacked size 9GB - 

Runtime - Depends on the sample data used 
 

Table 2: MAP-RSeq installation and runtime in a Linux environment 
 

 

2.3.2 Sun grid engine 

 

MAP-RSeq requires four processing cores with a total of 16GB RAM to get 

optimal performance. It also requires 8GB of storage space for tools and 

reference file installation. For MAP-RSeq execution the following packages such 

as JAVA version 1.6.0_17 or higher, Perl version 5.10.0 or higher, Python 

version 2.7 or higher, Python-dev, Cython, Numpy and Scipy, gcc and g++ , Zlib, 

Zlib-devel, ncurses, ncurses-devel, R, libgd2-xpm, and mailx need to be 

preinstalled and referenced in the environment path. It does also require having 

additional storage space for analyzing input data and writing output files. MAP-

RSeq uses bioinformatics tools such as BEDTools [34], UCSC Blat [51], Bowtie 

[52], Circos [53], FastQC [54], GATK [33], HTSeq [55], Picard Tools [56], 

RSeqQC [57], Samtools [58], and TopHat [59]. Our user manual and README 

files provide detailed information of the dependencies, bioinformatics tools and 
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parameters for MAP-RSeq. The application requires configuration, such as run, 

tool, and sample information files, as described in the user manual. 

 

Table 3 shows the processing time of the workflow across different sequencing 

read depths. Time was recorded from a server with eight quad-core Intel Xeon 

2.67 GHz processors and 530 GB of shared memory using Centos 6. For a 

sample with 1 million reads, MAP-RSeq completes in less than 2 hours. For 

samples with 150 million to 300 million reads, MAP-RSeq completes in 12-48 

hours depending on the hardware used. 

 

MAP-RSeq processing time Read Counts 

118 minutes 1,000,000 

82 minutes 500,000 

71 minutes 200,000 

 

Table 3: Wall clock times to run MAP-RSeq at different read counts 
 

2.4 Results 
 

NGS technology has been outpacing bioinformatics. MAP-RSeq is a 

comprehensive simple-to-use solution for analysis of RNA-Sequencing data. We 

have used both simulated and real datasets to optimize parameters of the tools 

included in the MAP-RSeq workflow. The high-level design of MAP-RSeq is 

shown in Figure 3. MAP-RSeq consists of the six major modules such as 

alignment of reads, quality assessment of sequence reads, gene expression and 
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exon expression counts, expressed SNVs from RNA-Seq, fusion transcript 

detection, summarization of data and final report. 

 

Reads are aligned by TopHat 2.0.6 [59] against the human reference genome 

build (default = hg19) using the bowtie1 aligner option. Bowtie is a fast memory 

efficient, short sequence aligner [52]. The remaining unaligned reads from Bowtie 

are used by TopHat to find splice junctions and fusions. At the end of the 

alignment step, MAP-RSeq generates binary alignment (BAM) and junction bed 

files for further processing. The workflow uses the RSeQC software [57] to 

estimate the distance between paired-end reads, evaluate sequencing depth for 

alternate splicing events, determine the rate of duplicate reads, and calculate 

coverage of reads across genes as shown in the example report file (Figure 4). 

The summary statistics and plots generated by MAP-RSeq workflow are used for 

further quality assessments. The example MAP-RSeq result set (files and 

summary report) from a RNA-Sequencing run can be downloaded from the MAP-

RSeq homepage [48]. 
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Figure 3: Flowchart of the MAP-RSeq workflow. High-level representation of the 
MAP-RSeq workflow for processing RNA-Seq data. 
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Figure 4: Screenshot output report (html) of MAP-RSeq. An example screenshot 
report of the MAP-RSeq output file. 
 

Several research and clinical projects [60-62] at Mayo Clinic have applied MAP-

RSeq workflow for obtaining gene expression, single nucleotide variants and 

fusion transcripts for a variety of cancer and disease-related studies. Currently, 

there are multiple ongoing projects or clinical trial studies for which we generate 

both RNA-Sequencing and exome sequencing datasets at the Mayo Clinic 

Sequencing Core. We have developed our RNA-Seq and DNA-Seq workflows 

such that sequencing data can be directly supplied to the pipelines with less 

manual intervention. Analysis of the next generation sequencing datasets along 

with phenotype data enables a further understanding of the genomic landscape 

to better diagnose and treat patients. 
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2.4.1 Gene expression and exon expression read counts 

 

A Gene expression count is defined as the sum of reads in exons for the gene 

whereas an exon expression count is defined as the sum of reads in a particular 

exon of a gene. Gene expression counts in MAP-RSeq pipeline can be obtained 

using HTSeq [55] software (default) or featureCounts [32] software. The gene 

annotation files were obtained from the Cufflinks website [63]. Exon expression 

counts are obtained using the intersectBed function from the BEDTools Suite 

[34]. 

 

MAP-RSeq gene expression counts module was validated using a synthetic 

dataset for which RNA-Seq reads were simulated using the BEERS software - a 

computational method that generates paired-end RNA-sequencing reads for 

Illumina platform [64]. The parameters used for BEERS to generate simulated 

data are: total reads = 2 million reads, hg19 annotation from RefSeq, read 

length = 50 bases, base error = 0.005 and substitution rate = 0.0001. Simulated 

reads were aligned and mapped using the MAP-RSeq workflow. The mapped 

reads were then input into HTSeq for gene expression counts. Genes with fewer 

than 30 reads were excluded from the analysis. A correlation of r = 0.87 was 

observed between the Reads Per Kilobase per Million (RPKM) simulated gene 

counts and the counts reported by MAP-RSeq, as shown in Figure 5.  
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Figure 5: Correlation of gene counts reported by MAP-RSeq in comparison to 
counts simulated by BEERS. MAP-RSeq uses the HTSeq software to classify 
reads to genomic features. The intersection nonempty mode of HTSeq was 
applied, and the query-name sorted alignment (BAM) file along with the 
reference GTF file obtained from BEERS were provided as input files to HTSeq 
for accurate assignment of paired-end reads to genomic features. Comparison of 
the gene counts (RPKM) obtained from MAP-RSeq with counts for respective 
genes simulated by BEERS yielded a Pearson correlation of 0.87. The genomic 
regions where gene expression reported by HTSeq did not completely correlate 
with simulated expression are due to ambiguous reads or due to the fact that 
either mate of the paired-end read mapped to a different genomic feature, thus 
categorizing the read as ambiguous by HTSeq. 
 

 

For simulated data (50 bases), Table 4 summarizes various statistics reported by 

the MAP-RSeq workflow regarding the alignment of reads to transcriptome and 
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junctions, gene and exon abundance as well as number of SNVs identified and 

annotated using GATK.  

 

MAP-RSeq features Statistics 

Total number of single reads 4,000,000 

Reads used for alignment 3,999,995 

Total number of reads mapped 3,851,539 (96.3%) 

Reads mapped to transcriptome 3,401,468 (85.0%) 

Reads mapped to junctions 450,071 (11.3%) 

Reads contributing to gene abundance 1,395,844 

Reads contributing to exon abundance 11,266,392 

Number of SNVs identified 6,222 
 

Table 4: Alignment statistics from MAP-RSeq using a simulated dataset from 
BEERS 
 

 

An example of MAP-RSeq gene counts table; exon counts table, and normalized 

counts (RPKM) along with annotations for each run are shown in Figure 6. 
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Figure 6: Screenshots of gene and exon expression reports by MAP-RSeq. An 
example of the gene and exon expression counts from the output reports of 
MAP-RSeq. 
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2.4.2 Differential expression 

 

Each sample is associated with a phenotype, such as a tumor, normal, treated, 

control, etc and that meta-data needs to be obtained to form groups for 

differential expression analysis. To remove any outlier samples, it is required to 

perform detailed quality control checks prior to gene expression analysis. There 

are a variety of software packages that are used for differential expression 

analysis using RNA-Seq gene expression data [42, 65-67]. Several studies have 

been published comparing the differential expression methods and concluded 

that there are substantial differences regarding sensitivity and specificity among 

the methods [68-70]. We have chosen edgeR software [42] from R statistical 

package for gene expression analysis. In our source code for MAP-RSeq 

pipeline, we have Perl, R scripts and instructions that can be used post MAP-

RSeq run for differential expression analysis. 

 

2.4.3 Expressed SNVs (eSNVs) from RNA-Seq 

 

After filtering out multiple mapped and fusion reads, the MAP-RSeq calls SNVs 

using UnifiedGenotyper v.1.6.7 and VariantRecalibrator from Genome Analysis 

ToolKit (GATK) with the alignment files generated by Tophat. The 

UnifiedGenotyper from GATK is a single nucleotide variant (SNV) and indel caller 

developed by the BROAD institute [33]. SNVs are further annotated by the 

variant quality score recalibration (VQSR) method. The annotated SNVs are 

further filtered based on read quality (QD), coverage (DP), strand bias (FS), and 
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positional bias (ReadPosRankSum) to identify true variants. A 1000 genome 

sample (NA07347) with both exome and RNA-Seq data was used to validate the 

SNV calling module of MAP-RSeq workflow. A concordance rate of 95.6% was 

observed between the MAP-RSeq SNV calls, and the exome sequencing variant 

calls for NA07347. Figure 7 shows a screenshot of the MAP-RSeq variant calling 

file. Confident variant calls from MAP-RSeq workflow at high and low read depths 

of sequencing are shown in Figure 8A and 8B respectively. 

 

 

Figure 7: Screenshot of a MAP-RSeq VCF file after VQSR annotation. An 
example of SNV data representation from MAP-RSeq runs. 
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Figure 8: Examples of SNVs called in RNA and DNA data for NA07347. An IGV 
screenshot representation of SNV regions for the 1000 genome sample 
NA07347 A) at high read depths called in RNA when compared to exome/DNA 
data and B) at low read depth called in RNA when compared to exome/DNA 
data. 
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2.4.4 Fusion transcript detection 

 

The TopHat-Fusion algorithm identifies fusion transcripts accurately [31]. MAP-

RSeq uses the TopHat-Fusion algorithm and provides a list of expressed fusion 

transcripts. In addition to the output from TopHat-Fusion, we have implemented 

modules to visualize fusion transcripts using circos plots [53]. Fusion transcript 

candidates are reported and summarized by MAP-RSeq. As shown in Figure 9, 

intra and inter fusion transcripts along with annotations are provided for each 

sample by the workflow. A circos plot is generated to visualize fusion transcripts 

across an entire RNA-Seq run. MAP-RSeq also generates 5′–3′ fusion spanning 

sequence for PCR validation of fusion transcripts identified. These primer 

sequences can be selected by researchers to validate the fusion transcripts. 
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Figure 9: Fusion transcripts reported by MAP-RSeq. An example of the fusion 
transcripts output file from MAP-RSeq workflow. 
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2.4.5 Summarization of data and final report 

 

The workflow generates two main reports for end users: 1) summary report for all 

samples in a run with links to detailed reports and six QC visualizations per 

sample 2) final data report folder consisted of exon, gene, fusion and expressed 

SNV files with annotations for further statistical and bioinformatics analysis. 

 

A screenshot of an example report from MAP-RSeq is shown in Figure 4. 

Detailed descriptions of the samples processed by MAP-RSeq along with the 

study design and experiment details are reported by the workflow. Results are 

summarized for each sample in the report. Detailed quality control information, 

links to gene expression counts, exon counts, variant files, fusion transcript 

information and various visualization plots are also reported. 

 

2.5 Conclusions 
 

MAP-RSeq is a comprehensive simple-to-use application. MAP-RSeq reports 

alignment statistics, in-depth quality control statistics, gene counts, exon counts, 

fusion transcripts, and SNVs per sample. The output from the workflow can be 

plugged into other software or packages for subsequent downstream 

bioinformatics analysis. Several research and clinical projects at the Mayo Clinic 

have used the gene expression, SNVs and fusion transcripts report from the 

MAP-RSeq workflow for a wide range of cancers and other disease-related 
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studies. In future, we plan to extend our workflow such that alternate splicing 

transcripts and non-coding RNAs can also be obtained. 
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Chapter 3: CircRNAs and their associations with 

breast cancer subtypes 

 

 

3.1 Introduction 
 

Circular RNAs (circRNAs) are recently discovered members of noncoding RNAs. 

They range in length from a few hundred to thousands of nucleotides [71]. In 

contrast to linear RNA transcripts, which are normally spliced tail-to-head, 

circRNAs are formed by the covalent bonding of their 3′ and 5′ (head-to-tail) ends 

[72]. The lack of open sites at the 5′ and 3′ ends exempts circRNAs from 

exonuclease degradation [73], making them stable in cells [74]. When circRNAs 

were initially identified in plants, they were considered pathogenic because of 

their structural similarity to viruses [75, 76]. Meanwhile, circRNAs observed in 

mammalian cells around the same time were thought to result from splicing 

errors [77-79]. However, more recent studies of circRNAs in Drosophila, mouse, 

and other eukaryotes suggest that these RNA molecules are evolutionarily 

conserved and thus are not simple artifacts of faulty splicing [80, 81]. In addition, 

advances in sequencing technology and bioinformatics analyses have renewed 

interest in these forms of RNA transcripts [16, 72, 82]. 
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After discovering that circRNAs are highly abundant in not only C. elegans and 

zebrafish, but also mouse and human, researchers have begun to uncover many 

intriguing facets about these diverse RNAs [73]. Many studies have confirmed 

that circRNAs possess significant pre- and post-transcriptional regulatory 

functions in mammalian cells [71, 82, 83] and changes in the abundance of 

circRNAs can adversely affect gene expression [84, 85]. Recent studies indicate 

that some of the most common functions of circRNAs include their active 

participation in pre-mRNA splicing [80] as well as promoting transcription of their 

parent mRNAs [86]. Apart from the above, circRNAs can sometimes serve as 

microRNA sponges, such as the human circRNA CDR1as, which was shown to 

contain over 70 binding sites for miR-7 [16, 87]. 

 

Stable, cell-free circRNAs have been found in saliva [88] and exosomes [89], 

making them promising candidates for diagnosis and therapeutics. In particular, 

discovering disease-specific circRNAs could help identify diagnostic targets in 

heterogeneous diseases such as cancer. Memczak et al. and Salzman et al. 

have developed bioinformatics approaches to detect circRNAs using high-

throughput transcriptome sequencing, and to date, several hundred human 

circRNAs have been identified and cataloged [16, 72, 90]. However, the 

significance of these RNAs in health and disease is still poorly understood. 

Recently, Bachmayr-Heyda et al. reported that colorectal tumor samples have a 

lower number of circRNAs compared to matched normal colon mucosa [91]. It is 
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known that circRNAs are also associated with single nucleotide polymorphisms 

linked to a wide range of diseases, including various types of cancer, Parkinson’s 

disease, Alzheimer’s disease, multiple sclerosis, and schizophrenia [92]. 

 

Here, we have enhanced existing methodologies of circRNA detection [16] and 

developed a parallelized and configurable workflow, Circ-Seq, that annotates and 

reports expressed and exclusive circRNAs as final candidates from the analysis. 

We applied Circ-Seq to one of the largest transcriptome sequencing data 

available for breast cancer samples, provided by The Cancer Genome Atlas 

(TCGA) consortium. We identified unique and novel circRNAs present in breast 

tumor samples and normal-adjacent breast tissue. We identified circRNAs 

specific to breast tumor samples and cataloged circRNAs unique to each of the 

three breast cancer subtypes: triple negative (TN), estrogen receptor positive 

(ER+), and ErbB2 overexpressed–HER2 positive (HER2+). Notably, a lower 

number of circRNAs were observed in breast tumors compared to both normal-

adjacent breast tissues from TCGA as well as normal mammary tissue samples 

from GTEx. Finally, using a panel of 11 cell proliferation gene markers (ROR-P 

score), we show that the number of circRNAs detected in the ER+ tumor is 

associated with gene proliferation markers [93]. We also demonstrate that 

Luminal B tumors have a distinct trend compared to Luminal A tumors based on 

their circRNA numbers. On the basis of its ability to detect circRNAs in breast 
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cancer samples, we believe that Circ-Seq will be a valuable tool for researchers 

to identify circRNAs for diagnosis and treatment of complex diseases. 

3.2 Results 
 

 

3.2.1 Circ-Seq: an automated workflow for circRNA identification 

 

Using existing bioinformatics approaches for circRNA identification by Memczak 

et al. [16], we developed an integrated analytical workflow called Circ-Seq, for 

identifying and characterizing circRNAs using high-throughput transcriptome 

sequencing data. Briefly, it improves the existing methodology by applying filters 

namely, expression, genomic size, and validation filters, to report a more 

confident and final catalog of expressed candidate circRNAs. The expression 

filter retains circRNAs based on the desired number of junction-spanning reads, 

which is configurable based on sequencing throughput of the sample being 

analyzed. Next, the genomic size filter is applied to discard any circRNA 

candidate with tail-to-head genomic distance less than six bases. Finally, the 

validation filter uses BLAT [51] to query circRNAs to ensure they do not 

represent repetitive regions of the genome. Towards the end of the workflow, 

circRNA fused junctions of the final candidates are annotated with valuable 

genomic information. Annotation of whether the circRNA is a spliced product of a 

single gene (‘intra-gene’) or formed across 2 or more genes (‘inter-gene’), and 

exon location of its 3′ and 5′ ends (‘exon-exon boundary’ or ‘within_exon’) are 

provided for users discretion to prioritize circRNA candidates in the final report. 
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The workflow is fully automated and designed to run in a multi-threaded cluster 

environment and can also be used to analyze single-end or paired-end 

transcriptome samples. Circ-Seq workflow can be downloaded from 

(http://bioinformaticstools.mayo.edu/research/circ-seq/). 

 

3.2.2 Identification of circRNAs in breast cancer cell lines 

 

To demonstrate the utility of Circ-Seq, we first tested the workflow on the 

transcriptomes of eight cell lines – seven from breast tumors (BT20, BT474, 

MCF7, MDAMB231, MDAMB468, T47D, and ZR751) and one from non-tumor 

breast cell line (MCF10A) [94], and validated one of the largest circRNA 

candidates reported by the workflow. 

 

CircRNAs were expressed in both the tumor and normal breast cell lines. As 

shown in Table 5, we identified an average of 10 circRNAs in the triple negative 

(TN) cancer cell lines, 22 in the estrogen receptor positive (ER+) cancer cell 

lines, and 9 in the non-tumor MCF10A cell line. On average, circRNAs detected 

in the cancer cell lines had 12 junction supporting reads in both TN and ER+ 

subtypes. Assuming that the exon-intron structures of circRNAs remain intact 

[86], we observed variable genomic sizes for circRNAs in the tumor and non-

tumor cell lines. While the smallest circRNA was of size 51 bases in the tumor 

(ZR751 and BT474) and 70 bases in the non-tumor MCF10A, large circRNAs 

with genomic sizes exceeding 5kb were found in MCF7, BT474, ZR751 and 

http://bioinformaticstools.mayo.edu/research/circ-seq/
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MDAMB231 tumor lines. After annotating the head-to-tail fused junctions of these 

circRNAs with gene models, we found that 31% of circRNAs are spliced products 

of a single gene (intra-gene) and 12% are inter-gene circRNAs. Additionally, 25% 

of the circRNAs have their head-to-tail fused junctions along legitimate exon-

exon boundaries whereas 18% were found with circRNA junctions inside exons 

and not on the exon boundaries.  

 

Cell line Tissue Breast 
Cancer 
Subtype 

Total number 
of circRNAs 
identified 

Final number of 
circRNAs (after 
three filters) 

Average number of 
circRNA junction 
supporting reads 

MDAMB231 Tumor TN 1,111 10 11.2 

MDAMB468 Tumor TN 2,540 15 9.8 

BT20 Tumor TN 1,592 6 15 

BT474 Tumor ER+ 4,662 43 14.5 

ZR751 Tumor ER+ 3,148 31 11.1 

T47D Tumor ER+ 1,306 5 13.2 

MCF7 Tumor ER+ 1,838 9 10 

MCF10A Non-
Tumor 

– 1,363 9 10.4 

 

Table 5: Number of circRNAs identified in breast cell lines using the Circ-Seq 
workflow 
 

3.2.3 Validation of circRNA in MCF7 breast cancer cells 

 

To establish the reliability of circRNA candidates reported by Circ-Seq, we 

validated one of the largest circRNAs identified in MCF7, the most widely 

accessible tumor breast cell line that was available in-house. Circ-Seq results for 

MCF7 indicated that 2 out of 9 circRNAs were found to span legitimate exon-

exon boundaries, of which one had a genomic size of 64 bases and the other 7 
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kb. Since some circRNAs were previously reported to act as microRNA sponges 

and thus had to be long enough to harbor multiple microRNA binding sites [87], 

we decided to select the largest out of the two circRNAs in MCF7 for validation. 

This circRNA was found at chr14:102,466,325–102,500,789 and had 12 

supporting junction-spanning reads. The validation consisted of using two 

independent sets of qRT-PCR experiments. To validate the existence of 

circRNAs, two different primers were prepared – convergent and divergent [16]. 

Convergent primers are traditional primers that confirm the existence of linear or 

tail-to-head (5′ to 3′) RNA transcripts, however divergent primers are designed in 

a circular or head-to-tail fashion (3′ to 5′) to enable binding to circRNA fragments 

for validation. As shown in Figure 10A, the divergent primer amplified circRNA 

from MCF7 total RNA but not from genomic DNA (gDNA) whereas GAPDH, 

which was used as a control, had no results from divergent primers but confirmed 

its linear RNA using convergent primers. Additionally, Sanger sequencing of the 

qRT-PCR product validated the head-to-tail splicing. In Figure 10B, the 

underlined genomic sequence CAATAGGGCAACCTT represents the circRNA 

spliced junction with the 3′ tail fusing to 5′ head at the highlighted ‘G’ nucleotide. 
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Figure 10: Validation of a circRNA at locus chr14:102,466,325–102,500,789. (A) 
circRNA was amplified by divergent primers using total RNA but not genomic 
DNA (gDNA). GAPDH was used as a control. (B) Head-to-tail splicing was 
confirmed by Sanger Sequencing. 
 

 

3.2.4 Presence of circRNAs in TCGA breast cancer 

transcriptomes 

 

We applied Circ-Seq workflow to 885 whole-transcriptome sequences from 

breast tumor and normal-adjacent samples provided by the TCGA consortium. 

Our goal was to use this unique repository to identify circRNAs that differ 
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between normal-adjacent and tumor tissue. CircRNA results from the workflow 

for 885 RNA-Seq breast TCGA samples are available for download at 

https://noncodingrnaexplorer.wordpress.com. 

 

3.2.4.1 Breast cancer subtype analysis 

 

3.2.4.1.1 circRNAs in tumors and normal-adjacent tissue 

Using the Circ-Seq workflow, we processed 128 tumor and 13 normal-adjacent 

TN samples, 503 tumor and 56 normal-adjacent ER+ samples, and 162 tumor 

and 20 normal-adjacent HER2+ samples. As shown in Table 6, we observed a 

total number of 4,542 and 342 circRNAs in tumor and normal-adjacent samples 

respectively for the TN subtype. Next, we found the number of unique circRNAs 

that represented exclusive genomic coordinates in tumor and normal-adjacent 

samples. Note that a unique circRNA is counted once although it may occur in 2 

or more samples with the same genomic coordinate. We observed 1,395 unique 

circRNAs in TN tumor samples and 208 circRNAs in normal-adjacent tissue 

samples. Similarly, we identified 14,113 (total) and 3,012 (unique) circRNAs in 

ER+ tumor samples and 2,317 (total) and 1,409 (unique) circRNAs in normal-

adjacent tissue samples. Finally, 6,340 (total) and 2,660 (unique) circRNAs were 

identified in HER2+ tumors and 532 (total) and 284 (unique) in normal-adjacent 

tissue samples. A summary of the unique circRNAs for the three breast cancer 

subtypes is shown in Table 6. 

 

https://noncodingrnaexplorer.wordpress.com/
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 Triple Negative 
(TN) 

Estrogen 
Receptor (ER+) 

ERBB2 
overexpressed 
(HER2+) 

Categories Tumor Adjacent Tumor Adjacent Tumor Adjacent 

Total number of samples 128 13 503 56 162 20 

Total number of circRNAs 4,542 342 14,113 2,317 6,340 532 

Total number of unique circRNAs 1,395 208 3,012 1,409 2,660 284 

Ratio of total circRNAs to samples 35 26 28 41 39 27 

Ratio of unique circRNAs to samples 12 16 7 25 17 14 

Number of unique circRNAs seen in 
10% or more samples 

729 162 1,086 455 896 193 

Number of tumor-specific circRNAs 256 – 288 – 411 – 

 

Table 6: Summary of breast tumors, adjacent tissues, and tumor-specific 
circRNAs in sequence data made available by the cancer genome atlas 
 

We further investigated the unique circRNAs between tumor and normal-adjacent 

to find circRNAs distinct to the tumor. We observed that normal circRNAs 

spanned larger genomic regions (from 3′ head to 5′ tail). Interestingly, within the 

same genomic region of the normal circRNAs, we found one or more smaller 

circRNAs that belonged to the tumor samples. Assuming that circRNAs coming 

from the same region have similar functional implications during transcriptional 

regulation, we considered such circRNAs as common candidates between tumor 

and normal-adjacent tissues. Therefore, if a circRNA was identified in tumor and 

not in the normal-adjacent tissue, we termed such candidates as tumor-specific 

circRNAs and found 256, 288 and 411 tumor-specific circRNAs in TN, ER+ and 

HER2+ breast cancer subtypes respectively. 

 

Because the number of normal-adjacent samples was much smaller than the 

number of breast tumor samples (most tumor samples did not have a paired 
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normal-adjacent tissue sample), we also calculated the ratio of unique circRNAs 

to the number of samples. Interestingly, after normalization, we see that 

circRNAs have a higher count in normal-adjacent samples, as shown in Table 6. 

We tested the significance of this observation using ANOVA and found that 

normal-adjacent samples of ER+ subtype had a p-value < 8.96e–06 compared to 

the tumor. However, for TN and HER2+ subtypes the probability measure was 

insignificant (p-value > 0.05), and combining all subtypes also did not show a 

significant increase in a number of normal-adjacent tissue circRNAs (p-value 

0.11). 

 

3.2.4.1.2 Tumor-specific circRNAs in breast cancer cell lines also 

present in breast cancer tissues 

circRNAs from the TN and ER+ cancer cell lines were compared to those from 

the non-tumor MCF10A breast cell line (see Table 5 for subtype classification of 

cell lines; no HER2+ cell lines were available). This comparison yielded 10 TN-

specific and 53 ER+ –specific circRNAs (Figure 11A). We checked for common 

tumor-specific circRNAs between breast cancer cell lines and breast cancer 

TCGA samples. We also compared these circRNAs to the 256 circRNAs 

identified earlier in TCGA TN breast cancer samples and the 288 circRNAs 

obtained from TCGA ER+ breast cancer samples. As shown in Figure 11B, we 

found that three circRNAs were shared between TN breast cancer cell lines and 
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TCGA TN breast cancer samples, and 15 circRNAs were shared between ER+ 

breast cancer cell lines and TCGA ER+ breast cancer samples. 

 

 

Figure 11: TCGA tumor-specific circRNAs also found in breast cell lines. (A) 
overlap of circRNAs between different subtypes for breast cell lines, (B) overlap 
of TN and ER+ tumor-specific circRNAs between TCGA and cell lines. 
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3.2.4.1.3 Tumor-specific circRNAs are associated with cancer-related 

canonical pathways 

The TN, ER+, and HER2+ breast cancer subtypes have unique prognostic and 

therapeutic characteristics. Although the gene expression profiles of these 

subtypes are markedly different [95, 96], a shared population of genes behaves 

similarly across them. We observed a comparable trend for circRNAs. We found 

that 42 tumor-specific circRNAs were common across TN, ER+, and HER2+ 

subtypes. At the same time, we also observed 142 TN, 164 ER+ and 245 HER2+ 

tumor-specific circRNAs that are exclusive to each subtype. 

Because circRNAs have post-transcriptional regulatory functions and tend to 

influence overlapping or neighboring genes [16, 77], we annotated the tumor-

specific circRNAs with protein-coding genes using the Ensembl reference system 

(version GRCh37.75). Pathway analysis demonstrated that most tumor-specific 

circRNAs were associated with cancer-related canonical pathways. The 42 

circRNAs common to all three breast cancer subtypes were annotated with 45 

genes, of which 33 genes (p-value = 8.43E-05–4.09E-03) were associated with 

cancer-related pathways. As shown in Figure 12, these circRNAs are likely 

involved in various hormone signaling, immune cell communication, and OX40 

signaling pathways. The circRNAs (n = 142) unique to TN tumor samples were 

linked to a total of 370 genes of which 220 genes (p-value = 7.79E-06–1.26E-02) 

were associated with cancer pathways such as tight junction, antigen 

presentation, and mTOR signaling pathways. Likewise, HER2+-specific circRNAs 
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(n = 245), annotated with over 1,500 protein-coding genes, had 855 cancer-

related genes (p-value = 1.65E-14–2.24E-03) involved in Wnt signaling, Cdc42, 

and ILK signaling pathways. The ER+-specific circRNAs (n = 164) were found to 

overlap and/or neighbor 170 genes of which 129 cancer-related genes (p-value = 

2.28E-12–6.82E-03) were associated with estrogen receptor signaling, 

epigenetic signaling, and oxidative stress response pathways.  

 

 

Figure 12: Tumor-specific circRNAs common and unique to TN, ER+ and 
HER2+ subtypes and the top canonical pathways associated with each subtype. 
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3.2.4.2 Paired normal-adjacent tissue analysis 

 

3.2.4.2.1 Normal-adjacent samples have more unique circRNAs than 

tumor samples in ER+ subtype 

We obtained paired breast tumor and normal-adjacent data from TCGA for 13 

TN, 56 ER+, and 20 HER2+ samples. The circRNA results showed that the 

normal-adjacent samples had a higher number of unique circRNAs than the 

matched tumors in 5/13 TN patients, 23/56 ER+, and 6/20 HER2+ samples. 

Using standard paired t-test, again we found that in ER+ cancer, number of 

circRNAs was higher in normal-adjacent than tumor with p-value < 0.027. No 

correlation was observed between number of unmapped reads and circRNA 

number (R2 = 0.099), and after normalizing for unmapped reads, we still 

observed significant difference (p-value < 0.041) between ER+ normal-adjacent 

tissue and tumor samples. The TN and HER2+ patients did not show 

significance, p-value > 0.05  and combining all subtypes (89 pairs) yielded p-

value < 0.1. 

 

A large number of circRNAs were observed in normal breast samples from GTEx 

data. To confirm that number of circRNAs observed in normal samples is higher 

than breast tumors, we analyzed an independent cohort of 218 normal breast 

mammary tissues from the GTEx project (http://www.gtexportal.org/home/). After 

normalizing for library size, we observed a higher number of circRNAs compared 

to all three TCGA breast subtypes (Figure 13). 

http://www.gtexportal.org/home/
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Figure 13: Increased number of circRNAs in normal breast samples compared to 
breast tumor subtypes in TCGA. A legend from left to right – Gtex_female and 
Gtex_male represent female and male mammary tissues from the Gtex project; 
ER+, HER2+ and TN normal-adjacent and matched tumors from TCGA are 
represented by ER_norm_adj, ER_tumor, HER2_norm_adj, HER2_tumor, 
TN_norm_adj and TN_tumor respectively. 
 

 

Recently, Bachmayr-Heyda et al. [91] reported that total number of circRNAs is 

negatively correlated with tumor proliferation marker MKI67 in colorectal cancer. 

Here we used a collection of 11 genes: BIRC5, CCNB1, CDC20, CEP55, MKI67, 

NDC80, NUF2, PTTG1, RRM2, TYMS, and UBE2C that are signatures for 

proliferation and are also part of the PAM50 classification gene panel [97]. We 

calculated the risk-of-relapse proliferation score (ROR-P) [93] for these genes to 

see if they have similar negative correlations with breast cancer subtypes. 
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We observed that ER+ normal-adjacent tissue samples had a higher number of 

circRNAs and displayed lower levels of proliferation marker gene expression than 

ER+ tumor samples. Figure 14 is plotted between the ROR-P score and circRNA 

numbers for the tumor samples and indicates that the number of circRNAs in the 

ER+ tumors tends to decrease with average increase in gene proliferation. This 

trend is explained by a slightly negative correlation of −0.22. A corresponding 

analysis of paired HER2+ and TN samples revealed correlations of −0.15 in 

HER2+ and 0.24 in TN tumors. 
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Figure 14: Lower number of circRNAs as gene proliferation increases in ER+ 
tumor samples 
 

3.2.4.2.2 ER+ luminal A and luminal B tumor tissues have distinct 

proliferation patterns based on the number of circRNAs 

 

Because circRNAs appear to be promising markers for proliferation in ER+ 

tumors, and since a number of circRNAs were significantly different between 

normal-adjacent and tumors, (p-value < 0.027), we further investigated if they 

could distinguish between the luminal A and luminal B types, as luminal B tumors 

proliferate more rapidly. First, we used PAM50 centroid modeling to identify the 
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tumor and normal-adjacent Luminal A and B subtypes for TCGA ER+ samples. 

Next, using all matched tumor and normal-adjacent ER+ samples (56 pairs), we 

plotted the number of circRNAs with respect to tumor proliferation. A clear 

distinction between the two ER+ types was evident for the tumor samples (Figure 

15A). Luminal B tumors had fewer circRNAs (18 on average) than Luminal A 

tumors (25 on average) and this difference in circRNAs number was significant 

with p-value < 0.011 using Welch t-test. Luminal B normal–adjacent samples had 

a similar number of circRNAs to luminal A normal–adjacent samples –24 and 30 

on average, respectively, which was not statistically significant (p-value = 0.31). 

An unsupervised hierarchical clustering analysis, shown in Figure 15B, also 

indicated that tumor and normal-adjacent samples cluster separately based on 

their circRNA numbers. In addition, Luminal B tumors separated out into their 

own sub-cluster within the tumor arm. These results suggest that Luminal A and 

B tumor samples show distinct differences in terms of proliferation marker gene 

expression based on their circRNA numbers. We hypothesize that this measure 

may be of use for other cancers with heterogeneous subtypes. 
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Figure 15: (A) Luminal A and Luminal b tumor samples show distinct separation 
based on their circRNA numbers when plotted against tumor proliferation, (B) 
Unsupervised hierarchical clustering analysis shows separation of Luminal A and 
Luminal B tumor and adjacent samples based on their circRNA numbers. 
 

3.3 Methods 
 

3.3.1 Circ-Seq workflow 

 

The Circ-Seq workflow flowchart is represented in Figure 16. Circ-Seq is an 

extension of the circRNA detection methodology by Memczak et al. [16] and 

incorporates essential filters as well as a comprehensive annotation to the final 

list of circRNA candidates. Circ-Seq starts by fragmenting unmapped reads from 

the aligned transcriptome BAM file into short 20-mer anchors from their 5′ and 3′ 
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ends and are then realigned against the reference genome. For every unmapped 

read, if the anchor pair maps in a 3′ to 5′ fashion, the alignment is shortlisted as 

possible evidence for a circRNA. Next, acceptor and donor splice sites, i.e., AG 

and GT, are checked for the selected 3′ and 5′ anchors. The presence of anchors 

within the splice sites is treated as initial confirmation of the fusion of exons in a 

circRNA fashion. At this point, the workflow quantifies the number of anchors 

supporting each circRNA candidate. 

 

Next, three unique filters are applied to eliminate unexpressed and false-positive 

circRNAs: an expression filter, a genomic size filter, and a validation filter. The 

expression filter retains circRNA candidates supported by a sufficient number of 

junction-spanning reads and is set to 5 reads by default, which is considerably 

more stringent than existing approaches [16].The genomic size filter discards any 

candidates shorter than six bases. Finally, to ensure that circRNAs reported by 

the workflow are not identified from repetitive regions of the genome, the 

validation filter uses BLAT [51] to confirm that the 3′ (head) and 5′ (tail) 

coordinates of the circRNA represent unique locations of the genome. After 

completing the analysis, the workflow provides a circRNA quantification report 

and a FASTA file that contains 50-base nucleotide sequences containing the 3′–

5′ fused junction of all circRNAs identified. 
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Figure 16: Circ-Seq bioinformatics workflow flowchart. 
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3.3.2 TCGA breast cancer transcriptome data 

 

We downloaded 1,034 breast cancer RNA-Seq binary alignment map (BAM) files 

from the TCGA Research Network (http://cancergenome.nih.gov/) using the 

National Cancer Institute (NCI) Genomic Data Commons (GDC) resource 

(https://gdc.cancer.gov/). The un-stranded Illumina TrueSeq protocol was used to 

obtain 50 nucleotide paired-end reads from TCGA breast cancer RNA-Seq 

samples. The paired-end reads were then aligned using MapSplice v12_07 [43]; 

these reads contained both reads mapped to the human reference genome 

(hg19 / NCBI 37.1) and unmapped reads. 

 

3.3.3 TCGA breast tumor and normal-adjacent samples and 

normal breast mammary tissue from GTEx 

We obtained clinical metadata for the 1,034 breast cancer samples from the NCI 

GDC Data Portal (https://gdc-portal.nci.nih.gov/). Because TCGA continues to 

add breast cancer cases to its repository, the most recent number of breast 

cancer samples available from TCGA may be higher than the number used in 

this work. We first classified the samples into the three predominant molecular 

subtypes – TN, ER+, and HER2. Out of 1,034 samples, we were able to classify 

subtypes for 885 samples of which 561 were ER+, 141 were TN, and 183 were 

HER2+ samples.  

 

http://cancergenome.nih.gov/
https://gdc.cancer.gov/
https://gdc-portal.nci.nih.gov/
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We downloaded BAM files for 218 normal breast samples (126 male and 92 

female samples) from the Gtex project (http://www.gtexportal.org/home/) using 

Aspera client (http://asperasoft.com/). Samples were sequenced using Illumina 

TrueSeq paired-end RNA sequencing with read length 75 bp. The transcriptome 

BAM files that were downloaded for the 218 samples were aligned to the hg19 

reference genome using Tophat [59]. 

 

3.3.4 Breast cancer cell lines 

 

We also obtained RNA-Seq paired-end sequence files for six breast cancer cell 

lines (BT20, BT474, MCF7, MDAMB468, T47D, and ZR751) and one cell line 

derived from normal breast cells (MCF10A) [94]. Sequences from the cell lines 

were processed using the Mayo Analysis Pipeline for RNA Sequencing (MAP-

RSeq) to yield BAM files for use with the Circ-Seq workflow [37]. The number of 

unmapped reads for the cell lines varied from 5 to 22 million reads. 

 

3.3.5 Pathway analysis for tumor-specific circRNAs 

 

Gene names and annotations of genes that either overlap or neighbor tumor-

specific circRNAs were obtained using the Ensembl reference system (version 

GRCh37.75). Enriched canonical pathway analysis for tumor-specific circRNAs in 

the breast molecular subtypes was performed using the Ingenuity pathway 

analysis software IPA (Ingenuity® Systems, http://www.ingenuity.com). Biological 

functions and diseases information within the IPA software was used for critical 

http://www.gtexportal.org/home/
http://asperasoft.com/
http://www.ingenuity.com/
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investigation of cancer-related pathways. Open source analysis toolkit 

WebGestalt [98] was also used to derive pathway results. 

 

3.3.6 CircRNA validation 

 

MCF7 breast cancer cells (American Type Culture Collection Manassas, VA) 

were cultured in EMEM medium containing 10% fetal bovine serum (FBS) at 

37ºC in 5% CO2. Total RNA and genomic DNA were isolated using the RNeasy 

Plus Micro Kit and DNeasy Blood & Tissue Kit (QIAGEN, Inc.,Valencia, CA) 

respectively. DNA and RNA quality was analyzed using the NanoDrop 8000 

spectrophotometer. qRT-PCR was performed with the Power SYBR® Green 

RNA-to-CTTM 1-Step Kit (AB, Foster, CA) using a Stratagene Mx3005P Real-

Time PCR detection system. GAPDH DNA and RNA were used as controls for 

the experiment. We designed two sets of primers, convergent primers that bound 

to linear 5′–3′ mRNA transcripts and divergent primers that bound to the circRNA 

transcript (chr14:102,466,325–102,500,789) formed in a 3′–5′ fashion, which 

were provided by Integrated DNA Technologies. After gel purification using the 

QIAquick Gel Extraction Kit (QIAGEN), the qRT-PCR product was sequenced 

using the Sanger method to confirm the head-to-tail splicing. 
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3.4 Discussion 
 

In this study, using existing bioinformatics approaches defined by Memczak et al. 

[16] we developed a comprehensive analytical workflow called Circ-Seq. We also 

introduced three essential filters for identification and characterization of stable 

and expressed circRNAs in Circ-Seq. The workflow was designed with flexibility 

to allow users to configure these filters based upon their choice to report results 

that are either stringent or lenient. Circ-Seq is also designed with speed in mind. 

It is built to work on a multi-threaded cluster environment and can analyze 

numerous samples in parallel at any given time. 

 

Circ-Seq was applied to the transcriptome of 885 TCGA breast cancer samples, 

and we identified numerous circRNAs unique to breast tumors and normal-

adjacent tissues. To our knowledge, this is the first report to catalog circRNAs 

unique to the TN, HER2+, and ER+ molecular subtypes of breast cancer, as well 

as circRNAs common to all of the subtypes but absent from normal-adjacent 

tissue. Finally, using a panel of 11 tumor proliferation marker genes in 

combination with circRNA abundance, we show that circRNA number is 

associated with tumor proliferation and that luminal A and luminal B tumors have 

distinct representations of circRNA numbers within the ER+ breast molecular 

subtype. 
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We also identified circRNAs in the breast cell lines and were able to successfully 

validate the largest circRNA identified in MCF7 found at genomic location 

chr14:102,466,325–102,500,789 with 12 supporting junction reads. This circRNA 

was a spliced product of gene DYNC1H1 and spanned from exons 17 to 56 of 

the gene. Considering that the exon-intron structure remains intact, the size of 

this circRNA is about 7 kb and may play a role in post-transcriptional regulation. 

Notably, the circRNA contained microRNA response elements (MRE) for miR-

150 and miR-661 with 29 and 23 unique binding sites respectively. These two 

microRNAs have been previously reported to have associations with cancer [99, 

100]. In searching for other microRNAs that have over 20 binding sites, we found 

non-conserved microRNAs such as miR-3613, miR-4731 and miR-5095, each 

contains 25 MRE sites along the circRNA. It is possible that since the circRNA 

contains several binding sites for microRNAs, this could be a candidate player in 

breast cancer competing endogenous RNA (ceRNA) networks. 

 

Recent studies suggest that circRNAs have other functions that are more 

common than the microRNA sponge effect. Notably, circRNAs are shown to 

participate actively in pre-mRNA splicing [80] and also as active promoters of 

transcription of parent mRNAs [86]. We believe that the circRNAs reported in this 

study can also have implications similar to the above functions in breast cancer. 
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Although validation results suggest that the workflow reported legitimate 

circRNAs, the reliability of the workflow and the measure of the false positive rate 

can only be determined based on its application to more transcriptome datasets 

and validation of results in future. The number of unmapped reads is a key player 

in identifying circRNAs within a sample. We observed that unmapped reads for 

the breast tumor and non-tumor cell lines range was 5–22 million and the range 

for TCGA samples was 5–78 million. Samples with unmapped reads at the low 

end of the spectrum can likely have a correspondingly low number of circRNAs 

reported. We hypothesize that the number of circRNAs identified for BT20, T47D, 

MCF7, and MCF10A was artificially low due to the small number of unmapped 

reads available for these samples. 

 

One of the limitations of this study is that the RNA-Seq libraries from TCGA are 

prepared using Illumina TruSeq, which enriches for poly-A tail transcripts [101], 

thus substantially limiting the number of circRNAs detected. Despite this 

limitation, we identified large numbers of circRNAs in the TCGA breast cancer 

data. Stranded total RNA and RiboMinus libraries may improve the detection of 

circRNAs [16, 72, 73, 82, 84, 87]. We acknowledge that the circRNAs identified 

here are only a small subset of the actual population of the circRNAs present in 

breast cancer samples. Because the number of circRNAs detected increases 

with the number of samples investigated, as shown in Table 6, the number of 

circRNAs detected for the TN, and HER2+ subtypes are probably 
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underestimated due to their smaller sample size. This could also be indicative of 

why we observed poor correlations and non-significant probability measures for 

these subtypes when the corresponding associations always held true for ER+ 

samples. Likewise, it is uncertain at this point whether the tumor proliferation 

analysis for TN and HER2+ patients with matched tumor and normal-adjacent 

tissues would indeed have a negative correlation with circRNA numbers or not, if 

an adequate number of samples were available for these subtypes. 

 

Taking together the biological complexities of cancer, individual RNA classes 

cannot be considered in isolation. Cooperative communication between different 

types of noncoding RNAs and protein-coding genes or mRNAs exists [23, 25, 

102, 103] which eventually tune the expression of target genes. In cancer, 

regulated expression of tumor suppressors and oncogenes is critical to 

tumorigenesis. Competing endogenous RNA networks comprising of complex 

interactions between mRNA, microRNA and circRNA molecules can greatly 

influence the post-transcriptional activity of such genes. MRNA stability, or lack of 

stability—depending on how the circRNAs and microRNAs interact via microRNA 

binding sites—can significantly impact gene expression, with serious 

repercussions for tumorigenesis. Innovative and ingenious bioinformatics 

techniques need to be developed that can unravel ceRNA crosstalk between 

such RNA types and eventually lead to novel findings which can be used as 

potential diagnostic targets to improve treatment of cancer. It is possible that the 



 

 65 

findings that emerge from the study of circRNAs will lead to improvements in the 

diagnosis and treatment of complex, heterogeneous diseases such as cancer. 
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Chapter 4: ReMIx - A novel bioinformatics 

approach to integrate mRNA-microRNA 

interactions using MRE frequencies from RNA-

Seq data 

 

4.1 Introduction  
 

 

The transcriptome activity in a tumor or normal cell involves complex interactions 

between mRNAs (mRNAs) and other coding and non-coding RNAs that greatly 

influence the post-transcriptional availability of genes in the cell. One such 

interaction, which has shown to have enormous implications in cancer, is the 

interaction between mRNAs and microRNAs [26, 28, 104]. MicroRNAs regulate 

gene expression by using their seed sequences (6 - 8 bases long) to bind to the 

microRNA response element (MRE) sites located on the 3’ untranslated regions 

(3’ UTR) of mRNAs. Genes can have one or more distinct MRE sites, thus being 

targets to multiple microRNAs, and likewise, microRNAs can bind to MRE sites of 

several different gene targets [105, 106]. Most of the times microRNAs bind 

partially, and sometimes entirely, to MRE sites of their target leading to 

suppressed translation or mRNA degradation. Lately, it has been shown that 

non-coding circRNAs (circRNAs) also contain conserved binding sites for 
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microRNAs and thus can function as critical post-transcriptional regulators [16]. 

CircRNAs can use their MRE binding sites to compete with mRNAs for a shared 

pool of microRNAs. For heterogeneous diseases such as cancer, it is critical to 

understand how complex interactions between mRNAs, circRNAs, and 

microRNAs impact the levels of target mRNA expression in the tumor. The 

mRNAs belong to diverse biological pathways and thus alterations in target gene 

expression via microRNA binding as well as regulation via circRNA competition 

can impact several cellular processes, such as cell cycle, proliferation, cell death, 

apoptosis, etc., during cancer development, progression and migration. Thus, 

finding key players among the mRNA-microRNA-circRNA interacting networks 

can yield identification of new biomarkers in cancer, especially for cancer 

subtypes that are least responsive to current modalities of treatment.  

 

 

 Eminent advancement in NGS technologies has allowed consortia such as The 

Cancer Genome Atlas (TCGA) to sequence large populations of cancer patients 

and to make data available for research. Studies have used microRNA and 

mRNA expression profiles across many cancer types in TCGA to infer 

microRNA-target interactions that could be active and functional in different 

cancer types [107]. Other studies have looked into alternative polyadenylation of 

3’UTRs in TCGA bladder cancer to show how short 3’UTR lengths affect mRNA 

stability and attenuate protein translation [108]. There have also been focused 
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analyses of SNPs present at 3’UTR regions of genes that affect microRNA 

binding and are shown to be associated with multiple cancer subtypes [109]. 

However, no work has been done so far to extrapolate TCGA RNA-Seq data 

alone to analyze MRE sites across the transcriptome of the tumor and normal 

samples to obtain insights into unique interactions between mRNAs and 

microRNAs at the 3’ UTR regions in the tumor. 

 

Here we present a new bioinformatics approach called ReMIx (pronounced 

“remix”) – mRNA-MicroRNA Integration, that leverages RNA-Seq data to quantify 

microRNA binding sites (MREs) at the 3’ UTR of genes across the transcriptome. 

ReMIx quantitates MRE sites in tumor and normal separately, which later 

enables identification of differentially expressed MREs that are statistically 

significant in the tumor. Since MRE is the link between mRNAs and microRNAs, 

ReMIx effectively reports candidate mRNAs and microRNAs that have a 

differential pattern of binding in the tumor. Additionally, based on our previous 

work in circRNAs [38], we also integrated circRNA transcripts for mRNAs with 

differential tumor MRE sites. Finally, bringing together a) mRNAs with tumor-

specific MRE sites, b) microRNAs that have the potential to bind to these MRE 

sites, and c) circRNA transcripts for these targets, ReMIx reports potential 

mRNA-miRNA-circRNA candidates that have unique interactions specific to the 

tumor. The method can be applied to study any cancer subtype of complex 

disease with tumor/affected and normal sequencing datasets. As an example, 
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here we have shown the application of ReMIx method to TCGA RNA sequencing 

data [110, 111] for Triple Negative  Breast  Cancer (TNBC) cases, normal-

adjacent tissues, along with  ER+ and HER2+ tumors, to identify ReMIx 

candidates unique to the TNBC tumors. Our analysis of the TCGA breast cancer 

cohort has identified promising targets for better diagnosis and treatment of 

TNBC disease.  

 

4.2 Results 
 

 

4.2.1 Application of ReMIx to triple-negative tumor and normal-
adjacent pairs 

 

The RNA-Seq aligned BAM files for 13 pairs (Tumor and Normal-Adjacent) cases 

from TN subtype, 56 pairs of ER+ subtype and 20 pairs of HER2+ subtype were 

obtained from the MAPR-Seq workflow [37]. These BAM files were further subset 

to 3’ UTR regions of individual genes (n=12,455 as per TargetScan v7.0) and 

converted to fastq format for input to the ReMIx workflow (see Methods). The 

pre-computed MRE sequences (n=329 microRNA seeds, as per TargetScan 7.0) 

were also provided as input to FIMO [112] to report a read count for individual 

MREs located on every gene. The MRE counts were then normalized by 

factoring the library size, 3’UTR lengths and 3’UTR GC content of individual 

genes. Since genes can contain multiple MRE sites, at the end of the MRE 
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quantification process, we obtained normalized counts for a total of 111,522 MRE 

sites in tumor and normal-adjacent samples separately, for each subtype.  

 

Next, we sought to identify MRE sites that had unique and significant levels of 

expression (high or low)  in the TN tumor cases when compared to ER+ tumors, 

HER2+ tumors as well as TN, ER+ and HER2+ normal-adjacent cases. Using 

Dunnett-Tukey-Kramer pairwise multiple comparison statistical test on these 

tumor and normal-adjacent cases across all subtypes (total of 6 groups), we 

found 614 TN tumor-specific MRE sites that were significant at p-value < 0.05. As 

shown in Figure 17, we observed that more than half of the 614 MRE sites had 

lower expression in TN tumors when compared to other subtypes as well as TN 

normal-adjacent cases.  
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Figure 17: Heatmap of 614 TN-tumor specific MREs. The normalized CQN 
values of 614 MREs were obtained for TN, ER+ and HER2+ tumors and normal-
adjacent (norm-adj) cases. As shown in the heatmap, these MREs have a 
distinct expression in TN tumors in comparison to the other subtypes as well as 
TN normal-adjacent cases.  
 

4.2.2    614 MREs associated to 272 genes and 198 microRNAs  

 

 Since one MRE site is the combination of a gene and microRNA, the 614 TN 

tumor-specific MRE candidates were de-coupled to identify the respective genes 

and microRNAs. We obtained 272 genes and 198 microRNAs that were 

associated with these MREs. The heatmaps in Figure 18 represent the 

expression of the 614 MREs (CQN normalized values), 272 genes (RPKM values 

obtained from RNA-Seq data) and 198 microRNAs (CPM values obtained from 

microRNA-Seq data) for the 13 Triple-Negative Tumor and Normal-Adjacent 

samples. Un-supervised hierarchical clustering showed that the samples 

clustered well within their Tumor and Normal-Adjacent groups for all three data 
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types. Differential patterns of expression for the 614 MREs were also reflected in 

the heatmaps for the 272 genes and 198 microRNAs.  

 

 

Figure 18: Un-supervised clustering and heatmap representation 614 TN-tumor 
specific MREs and their associated genes and microRNAs. The 614 MREs were 
associated with 272 genes and 198 microRNAs. CQN normalized values were 
obtained for the MRE sites. Likewise, RPKM normalized values from RNA-Seq 
and CPM normalized values from microRNA-Seq were obtained for these 13 
pairs of TN tumor and normal-adjacent cases to generate their respective 
heatmaps. Unsupervised clustering of the cases indicates that tumor (purple) and 
normal-adjacent (cyan) were clustered well within their groups. 
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So far, based on MRE sites, we found that 272 genes showed evidence of 

differential expression at their MRE sites (614 MREs) for the TN tumors. Next, 

we were curious whether this MRE expression change for the 272 genes would 

continue to be reflective at the gene level and if they would still be distinct for the 

TN tumors when compared to other subtypes. For this we used RNA-Seq gene 

expression data for the TCGA cases (13 TN pairs, 56 ER+ pairs, and 20 HER2+ 

pairs) and found that, when looking across the ER+ and HER2+ subtypes, not all 

but a subset of the 272 genes still had high as well as low expression that was 

distinct to the TN tumors, as shown in Figure 19. 

 

Figure 19: Heatmap of gene expression for 272 genes. Using supervised 
clustering, the RPKM normalized values were plotted for 272 genes from TN, 
ER+ and HER2+ subtypes. The heatmap indicates that a subset of these genes 
have different expression profiles in TN tumors when compared to other 
subtypes and normal-adjacent cases. 
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4.2.3    MAPK and PI3K-AKT signaling identified among top 

pathways  

 

The 272 genes obtained from MRE analysis were further analyzed to identify 

their associated canonical pathways. Using gene set enrichment analysis 

(GSEA) [113] on KEGG and REACTOME databases, we found the mitogen-

activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K-AKT) 

signaling cascades reported among the top significant pathways. Additionally, 

application of the Signaling Pathway Impact Analysis (SPIA) package also 

reported MAPK signaling pathway to be activated in these TN tumors.  

 

Closer examination of the genes in the MAPK and PI3K-AKT pathways revealed 

that among several genes that were activated and repressed, oncogenes KRAS, 

NRAS, AKT, and NFKB were notably activated and tumor suppressor PTEN was 

repressed in the MAPK and PI3K-AKT pathways. Figures 20 and 21 illustrate the 

respective KEGG pathway diagrams for MAPK and PI3K-AKT signaling 

cascades. 
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Figure 20: MAPK signaling pathway. Genes in the pathway are colored based on 
their expression in TN tumors. Oncogenes NFKB and AKT are notably activated 
in this pathway. 
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Figure 21: PI3K-AKT signaling pathway. Genes in the pathway are colored 
based on their expression in TN tumors. Oncogenes PI3K, Ras, and AKT found 
activated and tumor suppressor PTEN repressed in this pathway. 
 

 

 

MAPK and PI3K-AKT signaling pathways are huge network cascades with 

connections to several essential biological pathways downstream such as 

proliferation, cell cycle, glycolysis, apoptosis, protein synthesis, etc. As a result, 

these cascades comprise of large number of genes involved in conducting and 
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maintaining activities within the MAPK and PI3K-AKT pathways. From our MRE 

analysis, we know the gene-microRNA pairs that formed the 614 MRE sites that 

are distinct to TN tumors. We therefore investigated the relevant gene-microRNA 

pairs that were part of the MAPK and PI3K-AKT pathways. This information is 

tabulated in Table 7, where we found that 12 out of 294 genes (~ 4%) in the 

MAPK pathway and 13 out of 351 genes (~4%) in the PI3K-AKT pathway have 

MRE sites that have potential for differential binding of microRNAs in TN tumors. 

The microRNAs that bind to these differential MRE sites for respective genes are 

also provided in Table 7. 

 

mRNAs microRNAs 

MAPK signaling pathway 

CACNA2D1 hsa-miR-429 

PPP3CB hsa-miR-330-5p; hsa-miR-486-5p 

RASGRF1 hsa-miR-384 

IGF1 hsa-miR-142-5p; hsa-miR-488-3p 

HGF hsa-miR-495-3p 

EFNA5 hsa-miR-101-3p.2; hsa-miR-130b-3p; hsa-miR-489-3p; hsa-miR-96-5p 

PDGFRA hsa-miR-132-3p; hsa-miR-140-5p; hsa-miR-491-5p 

FOS hsa-miR-802 

TGFBR2 hsa-miR-361-5p; hsa-miR-665 

FLNC hsa-miR-377-3p 

ARRB1 hsa-miR-140-3p.1; hsa-miR-296-5p 

PPM1A hsa-miR-488-3p 

PI3K-AKT signaling pathway 

DUSP1 
hsa-miR-141-3p; hsa-miR-144-3p; hsa-miR-194-5p; hsa-miR-379-3p; hsa-
miR-411-5p.1; hsa-miR-495-3p 

IGF1 hsa-miR-142-5p; hsa-miR-488-3p 

HGF hsa-miR-495-3p 

EFNA5 hsa-miR-101-3p.2; hsa-miR-130b-3p; hsa-miR-489-3p; hsa-miR-96-5p 

PDGFRA hsa-miR-132-3p; hsa-miR-140-5p; hsa-miR-491-5p 

GHR hsa-miR-129-5p; hsa-miR-132-3p; hsa-miR-505-3p.2 

COL1A1 hsa-miR-129-5p;hsa-miR-133a-3p.2  

THBS2 hsa-miR-182-5p; hsa-miR-379-3p 

ITGA1 hsa-miR-27a-3p 

PIK3R1 hsa-miR-126-3p.2; hsa-miR-361-5p; hsa-miR-455-3p.1; hsa-miR-488-3p; 
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hsa-miR-493-5p 

LPAR1 hsa-miR-142-3p.2 

GNB4 hsa-miR-29a-3p; hsa-miR-381-3p 

PTEN hsa-miR-140-3p.2 

 

Table 7: Gene-microRNA pairs with distinct TN-specific MRE sites that are part 
of the MAPK and PI3K-AKT pathways. This table lists genes that are a subset of 
the 272 genes obtained from the MRE analysis, which are members of the MAPK 
and PI3K-AKT signaling pathways. The microRNAs that bind to the MRE sites 
which were found to have distinct counts in TN tumors are also provided. 
 

 

 

4.2.5 CircRNAs associated with MAPK and PI3K-AKT pathways 

 

Based on our previous work in TCGA breast cancer [38], we identified several 

circRNAs in TN breast tumors. The Circ-Seq workflow classified circRNAs as 

inter-gene and intra-gene circRNAs (based on genomic coordinates), and in this 

study, we focused on intra-gene circRNAs, which were annotated as circular 

transcripts formed from a single gene. We were curious if there was any 

evidence of circRNAs for the genes involved in the MAPK and PI3K-AKT 

pathways and found that indeed, a subset of genes also contained evidence of 

circular transcripts. Table 7 presents the candidate intra-gene circRNAs that 

were identified and the corresponding genes they are associated with, in the 

MAPK and PI3K-AKT signaling pathways.  

 

circRNA Average 
expression 
in TN 
tumors 

Gene  
(activated –A, 
repressed – R in 
TN tumors) 

circRNA type 

MAPK signaling pathway 

circ_PRKACB 3 PRKACB (R) Tumor 

circ_ANGPT1 5 ANGPT1 (R) Tumor 
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circ_MYC 1.73 MYC (R) Tumor 

circ_STMN1 5 STMN1 (A) Tumor 

circ_TGFB1 1.75 TGFB1 (A) Tumor 

circ_RAC1 1.64 RAC1 (R) Tumor-Specific 

circ_IRAK1 1.53 IRAK1 (A) Tumor-Specific 

circ_MAP3K7 1.91 MAP3K7 (A) Tumor 

circ_MAPK13 3 MAPK13 (A) Tumor 

circ_DUSP16_1 2 DUSP16 (R) Tumor 

circ_DUSP16_2 3 DUSP16 (R) Tumor 

circ_NR4A1 1.5 NR4A1(R) Tumor-Specific 

circ_RELA 6 RELA (A) Tumor 

PI3K-AKT signaling pathway 

circ_ANGPT1 5 ANGPT1 (R) Tumor 

circ_RAC1 1.64 RAC1 (R) Tumor-Specific 

circ_FN1 1.61 FN1 (A) Tumor 

circ_SPP1 1.43 SPP1 (A) Tumor 

circ_TNC 1.67 TNC (R) Tumor-Specific 

circ_ITGB3 7 ITGB3 (R) Tumor 

circ_DDIT4 1.71 DDIT4 (A) Tumor-Specific 

circ_PPP2R1A 2.2 PPP2R1A (A) Tumor 

Circ_COL1A1 2.3 COL1A1 (A) Tumor-Specific 

circ_PPP2R5E 3 PPP2R5E (R) Tumor 

circ_HSP90B1 2.55 HSP90B1 (A) Tumor 

circ_CRTC2 1.44 CRTC2 (A) Tumor 

circ_GSK3B 12 GSK3B (A) Tumor 

circ_G6PC3 1.71 G6PC3 (R) Tumor-Specific 

circ_MYC 1.73 MYC (R) Tumor 

circ_CCND2 5 CCND2 (R) Tumor 

circ_MCL1 1.47 MCL1 (R) Tumor 

circ_NR4A1 1.5 NR4A1 (R) Tumor-Specific 

circ_RELA 6 RELA (A) Tumor 

 

Table 8: Intra-gene circRNAs identified in MAPK and PI3K-AKT pathways. 
Circular transcripts obtained from the Circ-Seq workflow on TCGA TN breast 
cancer cases were used to identify intra-gene circRNAs associated with genes in 
the MAPK and PI3K-AKT pathways. CircRNA type ‘Tumor-Specific’ denotes that 
the circRNA was found only in TN Tumors, whereas circRNA type ‘Tumor’ 
indicates that there is a different circRNA isoform in the reported gene was found 
in TN normal-adjacent.   
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4.2.6 mRNA-microRNA-circRNA interacting candidates in MAPK 
and PI3K-AKT pathways for TN breast cancer 

 

Based on the mRNA-microRNA results from the ReMIx methodology as well as 

the circRNAs from Circ-Seq workflow, we expanded the MAPK and PI3K-AKT 

pathways in the TN tumors by including the interacting non-coding microRNAs 

and circRNAs that, based on our results, are also essential members of these 

pathways. Figures 22 and 23 represent the MAPK and PI3K-AKT endogenous 

RNA networks with both protein-coding and non-coding RNAs that are likely to 

interact with each other and regulate expression of the central mRNAs, such as 

oncogenes PI3K, AKT, Ras, NFKB and tumor suppressor PTEN.  
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Figure 22: MAPK endogenous RNA network. This figure shows the network 
of interacting protein-coding and non-coding genes in the MAPK singling 
pathway. The mRNAs and microRNAs reported by ReMIx are represented in 
colors orange and blue, respectively. Intra-gene circRNAs are represented 
in green color. Oncogenes AKT, RAS, NF-kB, PI3K, ERK and MEK are 
shown to interact either directly or indirectly with the mRNA-microRNA-
circRNA candidates. 
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Figure 23: PI3K-AKT endogenous RNA network. This figure illustrates the 
network of interacting protein-coding and non-coding genes in the PI3K-
AKT singling pathway. The mRNAs and microRNAs reported by ReMIx are 
represented in colors orange and blue, respectively. Intra-gene circRNAs 
are represented in green color. Oncogenes AKT, RAS, NF-kB and PI3K as 
well as tumor suppressor PTEN are shown to interact either directly or 
indirectly with the mRNA-microRNA-circRNA candidates. 
 

 

At the end, by including the interacting mRNAs, microRNAs and circRNAs and 

further expanding the MAPK and PI3K-AKT signaling pathways, we believe that 

we have identified a set of protein-coding and non-coding RNAs that have the 

potential to influence and modulate the overall expression of these pathways.  

Based on further analysis using expression-correlation methods, we trust the 

possibility of finding candidate RNAs can be promising diagnostic targets towards 

improving current treatment modalities in TN breast cancer patients. 
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4.3 Methods 

 

4.3.1 ReMIx – a novel methodology to compute MRE frequency 
from RNA-Seq data 

 

Here we present an innovative bioinformatics approach called ReMIx, which was 

used to quantify MRE sites at the 3’UTR regions of mRNAs from RNA-Seq data. 

This methodology, called ReMIx, uses reads aligned to the 3’UTR and scans 

them for evidence of any given MRE sequence. MRE sequences, which are 

complimentary to the seed sequences of microRNAs, are searched in the 3’UTR 

aligned reads of genes that are known to be associated with microRNAs (based 

on TargetScan – human version 7.0 [114]). A hypothetical example of this 

approach is illustrated in Figure 22. The reads aligned to 3’UTR regions of genes 

Gene A and Gene B are shown in Tumor and Normal-Adjacent samples. Gene A 

contains two MRE sites, and Gene B has one MRE site, with a common site 

(MRE1) in both genes.  The number of reads mapped to these MRE sites are 

quantified for each gene and tabulated separately for Tumor and Normal-

Adjacent samples. Later, MRE counts per gene are normalized and statically 

evaluated to identify differentially expressed MREs for downstream analysis.   
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Figure 24: Hypothetical representation of MRE frequency counting using RNA-
Seq data. The example shows a Tumor and Normal-Adjacent sample with reads 
mapped to the 3’ UTRs of two genes, Gene A and Gene B that consist of 2 and 1 
MRE sites respectively, with a common site (MRE 1). Reads that align with 
individual MRE sites (vertical dotted lines) are quantified. For every MRE site that 
belongs to a gene, the counts are then statistically evaluated between Tumor and 
Normal-Adjacent for evidence of differential frequency (as shown in the table). 
 

 

 

 

 

4.3.2 MRE frequency analysis from RNA-Seq data 

 

Seed sequences for all the conserved microRNA families (n=320) were 

downloaded from TargetScanHuman 7.1, and the corresponding complementary 

MRE sequences were derived using in-house bioinformatics scripts. Figure 23 is 
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a flowchart representation of the bioinformatics methodology behind ReMIx, 

developed for MRE frequency analysis.   

 

Figure 25: Flowchart representation of MRE frequency quantification from RNA-
Seq BAM. The RNA-Seq BAM is first subset to 3’UTR regions of all genes, 
converted to FASTQ and then processed through FIMO to obtain raw MRE 
counts per microRNA for every target gene. The raw MRE counts are normalized 
to account for library size, 3’UTR length and 3’UTR GC content and individual 
Tumor and Normal-adjacent quantification reports are generated. 
 

 

First, the RNA-Seq BAM files for both Tumor and Normal-Adjacent were subset 

to the 3’UTR regions for all genes using the SAMTools suite [58], thereby 
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obtaining one BAM per gene. Second, the newly obtained BAM files were 

converted into a FASTQ format so that for every gene, we had a collection of all 

reads that were mapped to their 3’UTR regions. BAM to FASTQ conversion was 

achieved using the bam2fastx module from Tophat [59].  Third, using the 

complementary seed (or MRE) sequences of individual microRNAs and the 

FASTQ files for corresponding genes that are known targets of these 

microRNAs, we quantified the occurrence of each MRE site by utilizing the motif 

searching bioinformatics tool called Find Individual Motif Occurrences (FIMO) 

[112]. Briefly, FIMO is an efficient and statistically rigorous software tool that 

scans nucleotide or protein sequences for the occurrence of a motif, or in this 

case, a MRE sequence. FIMO evaluates the occurrence of the MRE against a 

background frequency of nucleotides present in the hg19/NCBI 37.1 human 

reference genome and computes a log-likelihood ratio score. These scores are 

then converted to p-values, indicating whether the occurrence was a statically 

significant observation or not.  The output from FIMO is a table indicating the 

number of occurrences per MRE and their associated p-values. MRE sites with 

p-value < 0.05 were selected from the FIMO output for downstream processing. 

Fourth, the raw MRE counts were normalized to account for the differences in 

library size/sequencing depths as well as the 3’ UTR length and 3’ UTR GC 

content per gene. Finally, for every gene and every conserved microRNA that 

targets the gene, the normalized MRE counts were reported in a tab-delimited 
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format for each gene-microRNA pair in the Tumor and Normal-Adjacent cases 

separately. 

 

4.3.3 3’UTR definitions obtained from TargetScan 

 

Recently, Dr. David Bartel’s group developed an improved quantitative model to 

predict canonical targeting of microRNAs to 3’UTR regions of mRNA [114]. A 

combination of 14 features in the model coupled with experimental approaches 

such as poly(A)-position profiling by sequencing called 3P-seq was used to 

define 3’UTR positions of genes in the transcriptome accurately. This data, 

available at the TargetScanHuman 7.1 database, is what was used for 3’UTR 

definitions of genes in the MRE analysis study.  

 

4.3.4 RNA-Seq and microRNA-Seq data from TCGA 

 

The RNA-Seq binary alignment map (BAM) files and the microRNA Sequencing 

fastq files for the Triple Negative Tumor and Normal-Adjacent paired cases were 

downloaded from the TCGA Research Network (http://cancergenome.nih.gov/) 

using the National Cancer Institute (NCI) Genomic Data Commons (GDC) 

resource (https://gdc.cancer.gov/). The RNA-Seq BAM files were then converted 

to fastq files and aligned to the hg19/NCBI 37.1 human reference genome using 

the MAP-RSeq workflow [37]. The microRNA fastq files were aligned to the same 

human genome build using the CAP-miRSeq workflow [115].The normalized 

http://cancergenome.nih.gov/
https://gdc.cancer.gov/
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microRNA counts from the workflow were used to obtain the microRNA 

expression values in the Triple Negative samples. The unmapped reads from the 

RNA BAM files obtained from MAP-RSeq [37] were further processed through 

the Circ-Seq workflow [38] to identify and annotate stable and expressed 

circRNAs for all the Triple Negative Tumor and Normal-Adjacent samples. 

 

4.3.5 Statistical analyses on MRE sites and activated pathway 

identification 

 

Evaluation of MRE sites that represented distinct counts specific to TN tumors as 

opposed to ER+ and HER2+ subtypes as well as TN normal-adjacent pairs were 

obtained using the R package Dunnett-Tukey-Kramer Pairwise Multiple 

Comparison Test Adjusted for Unequal Variances and Unequal Sample Sizes. 

MRE sites significantly associated with TN tumors were selected based on a p-

value cut-off < 0.05. Identification of the relevance and activation/inhibition status 

of pathways was evaluated using the R package called Signaling Pathway 

Impact Analysis (SPIA).  

 

 

 

4.3.6 Pathway analysis for canonical pathways 

 

Enriched canonical pathway analyses for 272 genes with differential MRE counts 

in TN breast tumors were identified using KEGG and Reactome functional 
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databases. Open source analysis toolkit WebGestalt [98] was used to for 

pathway identification by using the Gene set enrichment analysis (GSEA) option.   

 

4.4 Discussion 
 

In this study, we developed an innovative bioinformatics methodology called 

ReMIx that uses RNA-Seq data to identify and quantify microRNA binding sites 

or MREs at 3’UTR regions of genes. We applied this methodology to TCGA 

paired tumor and normal-adjacent breast cancer cases for TN, ER+, and HER2+ 

molecular subtypes and identified 614 MRE sites that had a distinct expression in 

TN tumors only. Majority of these sites had lower expression in TN tumors. Upon 

de-coupling, we found that the 614 MRE sites corresponded to 272 genes and 

198 microRNAs. Canonical pathway analysis revealed that the top significant 

pathways in these TN tumors were MAPK and PI3K-AKT signaling cascades. 

About 4% of gene members in these pathways were represented by genes we 

obtained from the MRE analysis. Based on our previous work in circRNAs in 

TCGA breast cancer [38], we found a number of intra-gene circRNAs that were 

associated with genes in the MAPK and PI3K-AKT pathways. Based on our 

results from this study, we provide a list of potential mRNA-microRNA-circRNA 

candidates that are likely to interact with each other at the network level of MAPK 

and PI3K-AKT signaling cascades and could be possible targets for identification 

of novel biomarkers in TN tumors. 
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One of the limitations of this study is that while ReMIx enables identification of 

candidate mRNA and microRNA players via MRE analysis using RNA-Seq data, 

this does not establish the fact that the identified microRNAs are indeed present 

and expressed in the particular disease, in this case, TN tumors. ReMIx results 

only confirm that the sites on 3’UTR of mRNAs where microRNAs bind to, show 

distinct expression profiles in tumor and thus have the potential to be regulated 

by microRNAs in a disease-specific manner. To complement these results, 

microRNA expression profiles can be used to validate the existence of 

microRNAs and to check for expression correlation with the corresponding 

mRNA target(s) identified by ReMIx.  

 

The libraries for the TCGA RNA-Seq samples were prepared using Illumina’s 

TruSeq library preparation protocol [110, 111]. One significant advantage of this 

protocol is that mRNAs are selected using poly-A enrichment. This enables pull-

down of not just coding features of genes, but also 3’ UTRs, to which poly-A tails 

are attached. While studies have utilized RNA-Seq to look into alternatively 

spliced 3’UTRs [116] and examine the impact of expressed variants present in 

the 3’UTR of genes [117, 118], no work has been done to date to extrapolate 

RNA-Seq data alone and obtain insights into the interactions between mRNAs 

and microRNAs at these 3’ UTR regions.  
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Lately, there has been much focus in research to explore and identify therapeutic 

strategies to better treat Triple Negative breast cancer patients and improve their 

chances of survival. It has been shown that activation of the MAPK and PI3K-

AKT pathways result in cancer cell proliferation and survival in the tumor [119]. 

Previous studies have shown these pathways to be highly prevalent in TN breast 

cancer as opposed to other breast cancer subtypes [120-122], thus supporting 

our findings. Studies have also shown that activation of MAPK [122-127] and 

PI3K-AKT [122, 128-134] pathways significantly correlate with tumor proliferation 

and disease progression in TN tumors.  MAPK pathway is a sequentially 

activated cascade consisting of key genes such as Ras, Raf, MEK, and ERK. 

Activation of Ras leads to phosphorylation of Raf thereby advancing into 

activation of MEK and ERK downstream, finally resulting in tumor proliferation 

and cell survival. The PI3K-AKT pathway is yet another signaling cascade where 

kinase PI3K is the central driver of oncogenic transformation and plays a 

fundamental role in proliferation and tumor survival. PI3K activates oncogene 

AKT that modulates downstream signaling pathways such as mTOR. The end 

result is inhibition of apoptosis and increased cell proliferation. 

 

Pre-clinical experiments have shown that MAPK and PI3K-AKT pathways have 

significant cross-talk and that inhibition of one cascade activates the other, and 

vice versa [119]. Thus, pre-clinical trials are underway that focus on co-targeting 

both pathways to improve clinical outcomes [119]. At present, clinicaltrials.gov 
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lists identifiers NCT01623349 (active), NCT03337724 (not yet recruiting), 

NCT03218826 (not yet recruiting) and NCT01629615 (completed) as trials that 

are investigating the effect of various PI3K drug inhibitors in Triple Negative 

patients. We believe that upon further evaluation and validation of our current 

mRNA-microRNA-circRNA results in this study, there is a potential to identify 

novel biomarkers, especially circRNA and microRNA candidates that interact with 

mRNA targets and regulate their gene expression in MAPK and PI3K-AKT 

pathways. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 93 

Chapter 5: Conclusions and Discussion 
 

 
 

RNA-Seq is a significant breakthrough in Next Generation Sequencing 

technology and has become the standard in bioinformatics for analysis of the 

transcriptome. The vast wealth of information offered by RNA-Seq helps uncover 

not only numerous features of protein-coding regions but also non-coding regions 

that are expressed in the transcriptome. There are many stand-alone 

bioinformatics packages which analyze different aspects of the transcriptome. 

However, they cannot be plugged together quickly, and they do not provide a 

complete, integrated picture. In addition, the field of bioinformatics lacks simple-

to-use workflows that can comprehensively analyze several features of the 

transcriptome together, and report in an integrated fashion. The first half of this 

dissertation offers bioinformatics solutions to address the above challenges. 

 

Chapter 1 is an introduction to the various RNA types in the human 

transcriptome that are studied in this dissertation, namely – mRNAs (protein-

coding), microRNAs and circRNAs (both non-coding). The unique interaction 

between these RNA types as well as the possible implications of these 

interactions in the etiology of diseases such as breast cancer is outlined in this 

chapter. Existing bioinformatics challenges are identified, and the motivation to 

address these is established by listing the three main specific aims that are 

pursued in this dissertation. 
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Chapter 2 presents a comprehensive bioinformatics workflow called MAP-RSeq 

[37] that was developed to both analyze and obtain several features of protein-

coding regions in the transcriptome. MAP-RSeq consists of six major modules 

such as alignment of reads, quality assessment of reads, gene expression 

assessment and exon read counting, identification of expressed single nucleotide 

variants (SNVs), detection of fusion transcripts, and summarization of 

transcriptome data in a final report.  

 

Chapter 3 presents a bioinformatics workflow called Circ-Seq [38] that was 

developed to characterize circRNAs, which are newly discovered and highly 

stable forms of non-coding RNAs with diverse biological functions. Circ-Seq 

consists of five major modules such as alignment of unmapped reads, 

identification of circRNA junctions, application of circRNA specific filters and 

extensive genomic annotation of expressed circRNA candidates, all summarized 

in a final report.  

 

Circ-Seq can be used seamlessly after MAP-RSeq, and at the end of both 

workflows, researchers can quickly and efficiently acquire information on various 

perspectives of protein-coding mRNAs and non-coding circRNAs without 

spending time and effort in dealing with multiple stand-alone packages and 

integrating results across them.  
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In this dissertation, MAP-RSeq and Circ-Seq workflows were applied to the 

largest cohort of breast cancer (n=885 samples) from The Cancer Genome Atlas 

(TCGA) as well as breast cancer and breast normal cell lines. MAP-RSeq results 

were used to obtain gene expression profiles across all three molecular subtypes 

– ER+, HER2+, and TN, of breast cancer. By applying the Circ-Seq workflow and 

analyzing the results, we reported for the first time in breast cancer research, the 

identification and annotation of a 7kb long circRNA, which was experimentally 

validated in the MCF7 breast cancer cell line using qRT-PCR and Sanger 

sequencing. In addition, comprehensive analysis of circRNAs in TCGA ER+ 

breast cancer subtype suggested that circRNA frequency may be a marker for 

cell proliferation in breast cancer.  

 

Complex interactions between mRNAs, circRNAs, and microRNAs can greatly 

influence post-transcriptional activity in the cell. For heterogeneous diseases 

such as breast cancer, it is of paramount value to understand such interactions 

and elucidate the key players that cause ultimate changes in target gene 

expression in the disease. It is a well-known fact that microRNAs interact with 

mRNAs through MRE binding sites, located on the 3’ UTR of genes, and regulate 

gene expression. Studies have looked into mRNA-microRNA interactions using 

their expression profiles, alternative polyadenylation of 3’UTRs, SNPs along 

MRE sites, etc. However, no study has investigated the use of RNA-Seq data 
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alone to obtain MRE frequencies and gather insights about MREs that show 

evidence of being differentially expressed in tumors until now, and this is being 

addressed in this dissertation. 

 

  Chapter 4 of this dissertation presents a novel bioinformatics approach called 

ReMIx that uses TCGA RNA-Seq data of tumor and normal-adjacent pairs and 

quantifies known MRE sites by screening 3’UTR regions across the whole 

transcriptome. We focused on the TN breast cancer subtype and by using 

definitive statistical measures, identified a set of MREs that showed distinct 

expression in TN tumors, when compared to TN normal-adjacent, ER+, and 

HER2+ subtypes. MRE results from ReMIx also highlighted a) mRNA genes in 

TN tumors that contain the differential MREs, and b) candidate microRNAs that 

have the potential to regulate these genes. Further analysis showed that the 

identified genes belonged to MAPK and PI3K-AKT pathway cascades. These 

genes have direct or indirect interactions with some of the key cancer genes in 

these pathways, such as AKT and Ras oncogenes, which are activated, and 

tumor suppressors such as PTEN and NFKB, which are repressed in TN 

subtype. Finally, we overlaid the TN tumor circRNAs that were obtained from the 

Circ-Seq workflow to these pathways and found that a subset of genes, both 

from the ReMIx analysis as well as gene members of these pathways, contain 

expressed circRNA transcripts.  Here, we have identified a set of mRNA-

microRNA-circRNA candidates that have the potential to interact with each other 
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in a TN tumor-specific manner and regulate some of the vital cancer genes within 

the MAPK and PI3K-AKT pathways.  

 

There are several directions in which work from this dissertation can be pursued 

forward. For example, the mRNA and microRNA candidates identified in chapter 

4 using the ReMIx approach need to be further investigated to elucidate how 

their changes in expression can transmit changes to their neighboring gene 

partners and how this eventually affects the expression of cancer-relevant genes.  

At present, there are no targeted treatment options available for TN breast 

cancer. Identification of novel biomarkers for this disease type is the need of the 

hour, and we hope that the results from this dissertation can help shed light 

towards identifying new targets for TN breast cancer. Studies have shown that 

PIK3CA mutations are found in approximately 20% of breast cancers [122, 135, 

136]. It is hypothesized that PIK3CA may have a role in tumor proliferation in TN 

breast cancer. However, the impact of mutated PIK3CA on the TN subtype has 

not been established [135, 136]. Likewise, mutations in AKT1 are reported in 

about 8% of breast cancers, which lead to higher kinase activity than the wild-

type AKT1 [137], but apparently, this has to be investigated in TN breast cancer. 

MAP-RSeq reports genomic variants such as SNVs and gene fusions as part of 

the workflow output. These reports can be further explored to look into MAPK 

and PI3K-AKT pathways to identify any aberrations in the TN breast cancer 

cases. Further, these findings can be correlated with the ReMIx results to check 
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whether mutations lead to increased or decreased MRE sites in the affected 

genes in TN tumors.  

 

Another prospective approach for ReMIx algorithm in chapter 4 is to analyze the 

ER+ and HER2+ breast cancer subtypes. We have already shown from our Circ-

Seq results for the TCGA ER+ subtype that Luminal A ER+ tumors (which are 

less proliferative) appear to have a higher number of circRNAs compared to the 

more proliferative Luminal B ER+ tumors, indicating that presence of more 

circRNAs tends to control tumor growth. It is not known how this regulatory 

mechanism works, but one could hypothesize that circRNAs in Luminal A tumors 

aid with the sustained activity of tumor suppressor genes by acting as microRNA 

sponges, thereby sequestering microRNAs towards them, which otherwise would 

bind to tumor suppressor genes and induce repression. Our ReMIx methodology 

can be used to identify candidate mRNA-microRNA pairs that show differential 

MRE sites in Luminal A and B ER+ tumors and thereafter, validate whether the 

hypothesis above holds true. Similar analysis can also be performed with 

ER+/HER2+ and ER-/HER2+ in breast cancer and other cancers as well. 

 

The work in this dissertation was focused on using RNA-Seq data alone to 

characterize various features of protein-coding/mRNAs and non-coding 

circRNAs, and also to investigate regulatory elements along 3’UTR regions of 

mRNAs to assess their potential impact on mRNA-microRNA-circRNA 
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interactions in breast cancer. One could extend this work by including data from 

other sequencing applications such as whole-exome (WES) or whole-genome 

(WGS) from DNA-Seq and corroborate the results presented in this dissertation. 

For example, a commonly-used approach is to use WES to verify SNVs identified 

in RNA-Seq. Using SNVs results that are reported by MAPR-Seq for the TCGA 

breast samples, one could integrate SNVs from WES and subset to candidates 

reported in both sequencing types. These SNVs could then be further 

investigated to identify mutation signatures that are specific to the three breast 

cancer subtypes. Another approach is to use WES that includes 3’UTR regions. 

Studies have shown that alternative polyadenylation (APA) can lead to either 

short or long 3’UTRs in TN tumors [138]. Thus, one could inspect whether ReMIx 

gene candidates, with differential MRE sites in TN breast cancer, show 

differences due to dissimilar 3’UTR sizes in tumor and normal-adjacent cases. To 

investigate noncoding RNAs, WGS offers a great validation platform. For 

example, unmapped reads from WGS can be used to confirm the non-coding 

circRNA candidates found by Circ-Seq, by checking for the presence of 3’-5’ 

reads that were identified using RNA-Seq data.  

 

This dissertation has taken a deep dive into non-coding circRNAs and 

understanding their associations with breast cancer subtypes. However, there 

are other non-coding RNAs such as lincRNAs that can also be  brought into the 

picture. As known, lincRNAs are widely present in the human genome, exhibit 
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tissue-specific expression and importantly, have strong regulatory implications on 

target mRNAs [139]. Additionally, lincRNAs can also contain MRE sites along 

their 3’UTR regions and therefore compete with mRNAs and circRNAs for 

microRNA binding [140-142]. Thus, work from this dissertation can be extended 

to include lincRNAs, and potentially other non-coding RNAs like pseudogenes as 

well, to investigate the complex and competitive biological interactions in different 

types of RNAs from tumor and normal cell environments. 

 

In conclusion, the future of bioinformatics research is promising. There is a 

continued demand for bioinformatics advancements, especially towards resolving 

deadly diseases such as cancer and to enable the research community in de-

convoluting the complex biological networks in the transcriptome. We need to 

understand the intricate interactions between various RNA types that lead to the 

ultimate transformation from normal to tumor cells, and bioinformatics research 

can uncover such answers. 
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Appendix  
 

6.1 Permissions  

 

 

This section contains Creative Commons license agreement and journal 

permissions obtained from BMC Bioinformatics and Oncotarget to reproduce 

published articles that are part of this dissertation. Snapshots of the published 

articles are also provided. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 112 

 

         
 

Figure 26: Permission from BMC Bioinformatics to reproduce MAP-RSeq 
publication  
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Figure 27: Snapshot of publication for MAP-RSeq workflow 
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Figure 28: Permission from Oncotarget to reproduce circular RNA publication 
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Figure 29: Creative Commons license agreement used by Oncotarget 
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Figure 30: Snapshot of publication for Circ-Seq workflow and circular RNA 
associations found in breast cancer 
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