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Abstract

The classical theory of algebraic surfaces is essential in both geometry and number
theory. The study of fibrations lies at the heart of the Enriques-Kodaira classification of
compact complex surfaces as well as the Mumford-Bombieri classification of algebraic
surfaces in positive characteristic. In my work, I consider the moduli of fibered algebraic
surfaces through the moduli of fibrations and produce its arithmetic invariants of motivic
nature with the aspiration of finding relevant applications to number theory under the
global fields analogy.
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Chapter 1

Introduction

I believe my research work could be looked upon as a journey from the differential geom-
etry of smooth 4-manifolds to the number theory in function fields through arithmetic
geometry. While these two opposite peaks offer very distinct sceneries with different
stories, the path to go from one extreme to another is a captivating adventure passing
through various milestones namely the classics on algebraic curves and complex surfaces,
the theory of moduli, the language of algebraic stacks, the invariants of arithmetic or
homotopic nature and finally the unifying principle of the global fields analogy that
connects function fields (geometry & topology) with number fields (number theory).
Let me share with you my journal so far and also explain some of my recent works
along the way.

As a geometer, we are inclined to seek the complete classification of class of ob-
jects we would like to understand. While difficult, such endeavors lead us to deeper
understanding of the structure of the invariants (the ‘geometry’ of invariants) which
often renders unexpected discoveries. Ever since learning about differential geometry &
algebraic topology of manifolds, I developed a long standing interest in 4-manifolds. In
many ways, 4-manifolds are more complicated than either lower or higher dimensional
manifolds. In low dimensions, there are simply not many possibilities for complex-
ity. The Geometrization conjecture and the 3-dimensional Poincaré conjecture were
resolved by G. Perelman in 2003, yielding a relatively complete understanding of 3-
manifolds [MT]. In dimensions strictly greater than 4, there is more fluidity than in
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2
4-dimensions. For example, the Whitney Trick allows one to untangle submanifolds by
moving them past each other in the extra dimensions. S. Smale used this trick to resolve
the Poincaré conjecture in dimension ≥ 5 in 1961 [Smale], showing that certain aspects
of high dimensional topology are quite tractable.

The dimension four is rather special, not only because we live in a spacetime which
is a smooth 4-manifold equipped with the Einstein’s field equation, it is the dimension
where all of our sophisticated techniques and elegant theory converge to show us the
intriguing behavior that is unique in dimension 4.

At the same time, it is also the desert where all of our efforts proved futile in a
way that when we were able to come up with a new technique that shed light on one
area, this ended up destroying the best classification conjectures of the given period as
the new theory due to its effectiveness revealed to us a totally different aspects of the
problem that weren’t even known to us in the past which is unfortunately intractable
with the current technology. That is, the smooth Poincaré Conjecture in 4 dimensions
remains open, and symbolizes the lack of understanding in this boundary case between
the simplicity of low dimensions and the fluidity of high dimensions. The discovery of
exotic smooth structures on 4-manifolds [DK] added further complexity to the study of
4-manifolds.

As a mathematician, we have learned to start working on the problem from an angle
where we can make slow but definite progresses. In this regard, the definitive result in
topological realm was the Freedman’s work on classifying simply-connected topological
4-manifolds upto homeomorphism by their intersection forms and in the differentiable
realm was the Donaldson SU(2) and Seiberg-Witten U(1) gauge theoretic moduli spaces
which gives us the smooth invariants.

This was truly revolutionary progress (an explosion in the 80’s) where mathematical
physics came into the differential geometry picture notably by Sir Simon Donaldson who
considered that given a moduli (the ‘space’ of invariants) associated to the geometric
objects, one can investigate the moduli space as a geometric object itself which means
one could consider doing the integrals over the moduli space, study the intersections of
the subvarieties on the moduli space or even count the size of the moduli space. While
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it was incredible what this invariant could do, the way Donaldson got to this invariant
was not only beautiful but also remarkably inspiring philosophy. That is, through the
notion of moduli we were able to find unity of the mathematical physics and the pure
mathematics namely geometry. Often this differential geometric perspective has an
analog in the algebraic geometry.

The classical theory of algebraic surfaces is essential in both geometry and number
theory. An algebraic surface is an algebraic variety of dimension two. In the case of
geometry over the field of complex numbers, an algebraic surface has complex dimension
two (as a complex manifold, when it is non-singular) and so of dimension four as a
smooth manifold. The theory of algebraic surfaces is much more complicated than that
of algebraic curves (including the compact Riemann surfaces, which are genuine surfaces
of (real) dimension two). The Enriques-Kodaira classification of surfaces was extended
to the case of an arbitrary algebraically closed base field by Bombieri and Mumford
(some results having been obtained previously by Zariski). It follows from their work
that the classification of surfaces in characteristics ̸= 2, 3 is identical to that over C;
in characteristics 2 and 3 certain non-classical surfaces appear. We restrict ourselves
to characteristics larger than 3 for the moduli of elliptic surfaces and larger than 5 for
the moduli of hyperelliptic genus 2 fibrations in this work. The study of fibrations lies
at the heart of the Enriques-Kodaira classification of compact complex surfaces as well
as the Mumford-Bombieri classification of algebraic surfaces in positive characteristic.
In my work, I consider the moduli of fibered algebraic surfaces through the moduli of
fibrations and produce its arithmetic invariants of motivic nature with the aspiration of
finding relevant applications to number theory under the global fields analogy.

This project could be considered as the generalization of the beautiful work done in
[EVW] where Jordan S. Ellenberg, Akshay Venkatesh and Craig Westerland proved a
function field analogue of the Cohen-Lenstra heuristics on distributions of class groups
by point counting the Hurwitz spaces which are the moduli spaces of branched covers
of the complex projective line. That is, the philosophy of considering the moduli of
fibrations and producing its arithmetic invariant with the aspiration of finding relevant
applications to number theory under the global fields analogy. As the branched covers of
the P1 are the fibrations with 0-dimensional fibers, the moduli of fibrations f : X → P1
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on fibered surfaces X with 1-dimensional fibers is the next most natural case to work on.
The counting technique in our project is driven largely by the inspiring work of Benson
Farb and Jesse Wolfson [FW] which in turn was motivated by the ideas in Graeme
Segal’s classical paper [Segal].



Chapter 2

Arithmetic of the moduli of
semistable elliptic surfaces

2.1 Introduction

The study of fibrations lies at the heart of the Enriques-Kodaira classification of compact
complex surfaces as well as the Mumford-Bombieri classification of algebraic surfaces in
positive characteristics. The Kodaira dimension κ ∈ {−∞, 0, 1, 2} plays a crucial role
in both classifications. In this regard, every elliptic surface has κ ≤ 1 and the main
classification result for surfaces states that every algebraic surface with κ = 1 is elliptic.

We call an algebraic surface X to be an elliptic surface, if it admits an elliptic
fibration f : X → C which is a flat and proper morphism f from a nonsingular surface
X to C where C is a nonsingular curve, such that a generic fiber is a smooth curve
of genus one. While this is the most general setup, it is natural to work with the case
when the base curve is the projective line P1 and there exists a distinguished section
S : P1 ↪→ X coming from the identity points on each of the elliptic fibers.

All possible types of singular fibers of elliptic surfaces have been classified by the
classical work of [Kodaira, Néron]. Recall that the singular fiber I1 (also known as the
fishtail fiber) is an irreducible rational curve with one unique node. The Ik–fiber (also
known as the necklace fiber) is a nodal k–cycle of P1’s of self–intersection −2. One could
restrict the class of elliptic fibrations to only have at worst nodal singular fibers such
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6
that the image of distinguished section S does not meet any of the nodal singular points
and this in turn makes the elliptic fibration semistable, meaning the only possible types
of fibers are smooth elliptic curves, fishtails, or necklaces.

What we have just described is a nonsingular semistable elliptic surface X which
has a relatively minimal, semistable elliptic fibration f : X → P1 that comes with a
distinguished section S : P1 ↪→ X. Note that semistable elliptic fibrations are also known
as elliptic Lefschetz fibrations in differential geometry. A smooth Lefschetz fibration over
S2 is a differentiable surjection f : M → S2 of a closed oriented smooth 4-manifold
M with finitely many critical points of the form f(z1, z2) = z21 + z22 . The structure
of Lefschetz fibrations is essential in symplectic geometry as it allows the topological
characterization of symplectic manifolds by the work of [Donaldson, Gompf]. Amazingly,
the classification of elliptic Lefschetz fibrations by Moishezon and Livné [Moishezon]
implies algebracity in all cases meaning every smooth elliptic Lefschetz fibration is indeed
diffeomorphic to a nonsingular semistable elliptic surface over P1.

To review a few other aspects of elliptic surfaces, we recall that the general elliptic
fibers of any semistable elliptic surface are all Calabi-Yau curves. Therefore one could
consider this family of elliptic curves as a Calabi-Yau fibration. In fact, these are the
only kinds of Calabi-Yau fibrations over P1 as there are no other Calabi-Yau curves
other than elliptic curves. Also from arithemetic geometry perspective, these can be
interpreted as a relative curve over a Dedekind scheme which is the central object in
the theory of arithmetic surfaces. Thus, any nonsingular semistable elliptic surface can
be characterized as a family of elliptic curves with squarefree conductor N .

Our primary goal of the paper is to enumerate the Fq–points of the moduli of non-
singular semistable elliptic surfaces with the discriminant degree 12n by considering
the moduli stack L1,12n of stable elliptic fibrations over P1 with 12n nodal singular
fibers and a distinguished section. This is justified by showing the bijection of K–points
between the two moduli spaces where K is any field of characteristic neither 2 nor 3
(see proposition 21 for the proof). We show that L1,12n

∼= Homn(P1,M1,1) which is a
Deligne–Mumford algebraic mapping stack of regular morphisms. For the purpose of
point counting, we consider the coarse moduli space L1,12n of L1,12n instead as to avoid
taking account of the automorphisms of the points of L1,12n.
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In order to acquire the Fq–points of the coarse moduli space L1,12n of Homn(P1,M1,1),

we consider the more general case of Homn(P1,P(a, b)) and its corresponding coarse
moduli space c(Homn(P1,P(a, b))). We provide the explicit stratification of
c(Homn(P1,P(a, b))) which allows us to obtain [c(Homn(P1,P(a, b)))], a class in the
Grothendieck ring of K–varieties with char(K) not dividing a or b, expressed as a poly-
nomial of the Lefschetz motive L := [A1].

Theorem 1 (Motive count of the moduli c(Homn(P1,P(a, b))) ). If char(K) does not
divide a or b, then the class [c(Homn(P1,P(a, b)))] in K0(VarK) for the coarse moduli
space of Homn(P1,P(a, b)) is equivalent to

[c(Homn(P1,P(a, b)))] = L(a+b)n+1 − L(a+b)n−1

Then, by recognizing M1,1
∼= P(4, 6) over any field K of characteristic ̸= 2, 3 and

by using #q : K0(VarFq) → Z (see section 2.6 for a discussion) to count Fq–points when
char(Fq) ̸= 2, 3, we acquire the point count of the moduli of nonsingular semistable
elliptic surfaces over Fq:

Corollary 2 (Motive/Point count of the moduli L1,12n). If char(Fq) ̸= 2, 3, then

[L1,12n(Fq)] = L10n+1 − L10n−1 .

Consequently,
|L1,12n(Fq)| = q10n+1 − q10n−1 .

Lastly, we consider the global fields analogy which is the observation that for any
finite field Fq, the finite extensions of the function field Fq(t) have much in common
with the finite extensions of Q. In our case, the arithmetic invariant |L1,12n(Fq)| in the
arithmetic function field realm lets us explicitly compute the growth rate of ZFq(t)(B)

which is the counting function of semistable elliptic fibrations through the notion of
bounded height of discriminant ∆(X).
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Theorem 3 (Computation of ZFq(t)(B)). The counting of semistable elliptic fibrations
over Fq(t) by ht(∆(X)) = q12n ≤ B satisfies the following inequality:

ZFq(t)(B) ≤ (q11 − q9)

(q10 − 1)
·
(
B

5
6 − 1

)
In other words, ZFq(t)(B) ∼ O

(
B

5
6

)
.

An analogous object in the number field realm ZQ(B) is the counting function of
semistable elliptic curves over Q with bounded height of discriminant ∆. In the end, we
formulate a conjecture that the asymptotic of ZK(B) will match for both of the global
fields.

Conjecture 4 (Asymptotic of ZQ(B)). The asymptotic growth rate of ZQ(B), the
counting of semistable elliptic curves over Q by ht(∆) ≤ B, follows from the polynomial
growth rate of ZFq(t)(B) ∼ O

(
B

5
6

)
.

While the counting of the stable elliptic curves with squarefree ∆ has been done in
the past over Q by the work of [Baier], the counting ZFq(t) of the semistable elliptic curves
with non-squarefree ∆ over the (global) function field Fq(t) as well as the analogous
heuristic ZQ over the number field Q were previously unknown.
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2.2 Kodaira dimension κ and classification of curves and

surfaces

While the classification of algebraic surfaces is not yet complete like in the theory of
algebraic curves, we are able to say that it is reasonably complete by the combined effort
of algebraic geometers [BHPV]. Let us recall the definition of the Kodaira dimension κ.

Definition 5. For X a smooth projective variety and KX a canonical divisor on X.
There is a rational map ϕnK : X → PN associated to the pluricanonical linear system
|nKX |. The maximum dimension of the image of ϕnK is called κ(X) the Kodaira
dimension of X.

One can interpret this definition for smooth projective curves C (1-folds) where the
κ(C) ∈ {−∞, 0, 1}, Hodge theory tells us the dimension of the space of global sections
of the canonical line bundle KC is

dim(H0(C,KC)) = h1(OC) = genus(C) = g

where the g is the topological genus of C which is the main discrete invariant of
compact Riemann surface Σg. Thus the canonical map takes the form C 99K Pg−1. It
determines easily the Kodaira dimension, and the Enriques classification of curves is the
subdivision

1. κ(C) ⇔ g(C) = 0 ⇔ C ∼= P1,

2. κ(C) = 0 ⇔ g(C) = 1 ⇔ C ∼= c/(Z+ τZ), with τ ∈ c, Im(τ) > 0 ⇔ C is elliptic,

3. κ(C) = 1 ⇔ g(C) ≥ 2 ⇔ C is of general type.

Note that the Im(ϕnK(P1)) is an empty set as the canonical line bundle has no
global sections which we set the Kodaira dimension of the projective line P1 to be −∞.
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Furthermore, Im(ϕnK(E)) is a point as the canonical map simply collapses an elliptic

curve E to a point P0 and thus the Kodaira dimension of E is 0.

For a curve C of genus higher than 1, the canonical map C → Pg−1 is interesting
and at genus two the canonical map is C → P1 which makes all genus 2 curves to be
hyperelliptic.

As for the algebraic surfaces X (2-folds) where κ(X) ∈ {−∞, 0, 1, 2}, before giving
the Enriques-Kodaira-Mumford-Bombieri classification of projective surfaces over the
complex numbers or over a field K with characteristic larger than 3, it is convenient to
discuss further the birational invariants of surfaces [BHPV].

Remark 6. An important birational invariant of smooth varieties X is the fundamental
group π1(X).

For surfaces, the most important invariants are :

• the irregularity q := h1(OX)

• the geometric genus pg := P1 := h0(X,KX), which for surfaces combines
with the irregularity to give the holomorphic Euler-Poincaré characteris-
tic χ(X) := χ(OS) := 1− q + pg

• the bigenus P2 := h0(X, 2KX) and especially the twelfth plurigenus P12 :=

h0(X, 12KX).

If X is a non ruled minimal surface, then also the following are birational invariants:

• the selfintersection of a canonical divisor K2
X , equal to c1(X)2,

• the topological Euler number e(X), equal to c2(X) by the Poincaré Hopf
theorem, and which by Noether’s theorem can also be expressed as

e(X) = 12χ(X)−K2
S = 12(1− q + pg)−K2

S ,

• the topological index σ(X) (the index of the quadratic form
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qS : H2(X,Z)×H2(X,Z) → Z), which, by the Hodge index theorem, satisfies
the equality

σ(X) =
1

3
(K2

S − 2e(X)),

• in particular, all the Betti numbers bi(X) and

• the positivity b+(X) and the negativity b−(X) of qS (recall that b+(X)+b−(X) =

b2(X)).

The Enriques-Kodaira-Mumford-Bombieri classification of (complex) algebraic sur-
faces gives a very simple description of the surfaces with nonpositive Kodaira dimension:

• X is a ruled surface of irregularity g ⇐⇒ :

⇐⇒ : X is birational to a product Cg × P1, where Cg has genus g ⇐⇒

⇐⇒ P12(X) = 0, q(X) = g ⇐⇒

⇐⇒ κ(X) = −∞, q(X) = g.

• X has κ(X) = 0 ⇐⇒ P12(X) = 1.

There are four classes of such surfaces with κ(X) = 0:

• Tori ⇐⇒ P1(X) = 1, q(X) = 2,

• K3 surfaces ⇐⇒ P1(X) = 1, q(X) = 0,

• Enriques surfaces ⇐⇒ P1(X) = 0, q(X) = 0, P2(X) = 1,

• Hyperelliptic surfaces ⇐⇒ P12(X) = 1, q(X) = 1.

Next come the surfaces with strictly positive Kodaira dimension:

• X is a properly elliptic surface ⇐⇒ :

⇐⇒ : P12(X) > 1, and H0(12KX) yields a map to a curve with fibres elliptic
curves ⇐⇒

⇐⇒ X has κ(X) = 1 ⇐⇒

⇐⇒ assuming that X is minimal: P12(X) > 1 and K2
X = 0.
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• X is a surface of general type ⇐⇒ :

⇐⇒ : X has κ(X) = 2 ⇐⇒

⇐⇒ P12(X) > 1, and H0(12KX) yields a birational map onto its image Σ12

⇐⇒

⇐⇒ assuming that X is minimal: P12(X) > 1 and K2
X ≥ 1.

Note that since the Kodaira dimension is defined for all surfaces, not necessarily
minimal with respect to blow-downs, the above theorem does not require preparatory
blow-downs. Indeed, κ(X) is invariant with respect to blow-ups and blow-downs. Also,
the Kodaira dimension can be −∞, and, as stated above, that happens exactly for
rational and ruled surfaces.

2.3 Semistable elliptic fibrations over P1

In this section, we define the central object of our investigation the semistable elliptic
fibrations over P1 and review the classification, related invariants together with ex-
amples. For detailed references on elliptic curves and surfaces, we refer the reader to
[Silverman, Miranda] respectively.

Let us first define the semistable fibrations, let f : X → P1 be a fibration (a flat,
proper morphism) over the projective line with g > 0, where g is the genus of the general
fiber Xt for general geometric point t of P1.

Definition 7. A fiber Xt is semistable, if it has the following properties:

1. Xt is reduced,

2. The only singularities of Xt are nodes,

3. Xt contains no (−1)-curves.

The fibration f is semistable, if all fibers Xt are semistable.
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By the semistable reduction theorem one can always reduce the study of general

fibrations to the study of semistable fibrations which are much easier to handle. Note
that the stable reduction theorem turns all fibers of the fibration into stable curves
(unique nodal singularity) while producing singularities on the resulting surface as we
would contract (−2)-curves.

In this note, we work with nonsingular semistable elliptic fibrations where the fiber
genus is 1. The only semistable fibers with g(Xt) = 1 are of the following type Ik as in
[Kodaira, Néron]

1. I0 : nonsingular elliptic (generic smooth fiber),

2. I1 : irreducible rational with one node (fishtail singular fiber),

3. Ik≥2 : k–cycle of (−2)-curves (necklace singular fiber).

Definition 8. A nonsingular semistable elliptic surface X is a nonsingular surface
equipped with a relatively minimal, semistable elliptic fibration f : X → P1 that comes
with a distinguished section s : P1 ↪→ X such that the image of s does not intersect
nodal singular points of each fiber.

From now on, all semistable elliptic surfaces are assumed to be nonsingular. These
are exactly the nonsingular semistable elliptic fibrations over P1. Semistable elliptic
surfaces contain only nodal singular fibers of fishtail and necklace types Ik (k ≥ 1) such
that for a given semistable elliptic fibration it has 12n nodal singular fibers distributed
over µ distinct singular fibers that are Ik1 , · · · , Iki , · · · , Ikµ with

µ∑
i=1

ki = 12n as we

allow each of the singular fiber to contain multiple nodal singular points but no cuspidal
singularities.

The holomorphic Euler characteristic χ of the semistable elliptic surface X defined
over C determines the number of nodal singular fibers which in turn determines all the
other invariants of the smooth semistable elliptic surface X.

Example 9. Here we list some of the properties of a semistable elliptic surface X with
χ = n. This also works for any field K with Char K ̸= 2, 3.



14
1. When n = 1, X is a rational elliptic surface with the Kodaira dimension κ = −∞

which has 12 nodal singular fibers. It is acquired from a pencil of cubic curves in
P2 by blowing up a base locus of nine points coming from the intersection of two
general cubic curves.

2. When n = 2, X is a K3 surface with an elliptic fibration which has the Kodaira
dimension κ = 0 that has 24 nodal singular fibers. Note that X is a minimal
surface.

3. When n ≥ 3, X is called a properly elliptic surface with Kodaira dimension κ = 1

that has 12n nodal singular fibers. Note that X is also a minimal surface.

The semistable elliptic fibrations over P1 in algebraic geometry are also known as
elliptic Lefschetz fibrations over P1 in differential geometry. The smooth Lefschetz
fibration where the fibration map f is a differentiable surjection f :M → S2 of a closed
oriented smooth 4-manifold M to a 2-sphere S2 = P1. We will first define the mapping
class group Γg as Lefschetz fibrations are described by the monodromy factorizations
induced by the singular fibers of the fibration. After basic properties of genus g Lefschetz
fibration has been established, we will review the elliptic Lefschetz fibrations and discuss
the possible singular fibers which are the fishtails I1 and the necklaces In as well as
the classification which shows smooth elliptic Lefschetz fibrations are all isomorphic
to holomorphic elliptic Lefschetz fibrations. For more information on mapping class
groups we refer the readers to a book written by Farb and Margalit [FM] and the
proper reference for the geometry and topology of Lefschetz fibrations on 4-manifolds
is a book by Gompf and Stipsicz [GS].

The definition of mapping class groups

The study of the mapping class group Γg of Riemann surface was initiated by Max
Dehn and Jakob Nielsen in the twenties.
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Definition 10. Let Diff+ (Σg) denote the group of all orientation-preserving diffeo-
morphisms Σg → Σg and Diff+0 (Σg) be the canonical subgroup of Diff+ (Σg) con-
sisting of all orientation-preserving diffeomorphisms Σg → Σg that are isotopic to the
identity. The mapping class group Γg of Σg is defined to be the group of isotopy classes
of orientation-preserving diffeomorphisms of Σg, i.e.,

Γg = Diff+ (Σg) /Diff
+
0 (Σg) .

Definition 11. Let α be a simple closed curve on Σg. A right handed Dehn twist tα
about α is the isotopy class of a self-diffeomophism of Σg obtained by cutting the surface
Σg along α and gluing the ends back after rotating one of the ends 2π to the right.

Figure 2.1: A positive Dehn twist along α to a cylinder

The mapping class group Γg is finitely generated by 3g − 1 Dehn twists which was
proven by the work of Dehn and Lickorish (cf. [FM]). It follows that the conjugate of a
Dehn twist is again a Dehn twist. That is, if f : Σg → Σg is an orientation-preserving
diffeomorphism, then it is easy to check that f ◦ tα ◦ f−1 = tf(α). The result below is
well known [FM].

Theorem 12. The mapping class group Γ1 of the torus T 2 is isomorphic to SL(2,Z)
and can be presented as Γ1 = {A,B | ABA = BAB, (AB)6 = 1}

By the above isomorphism, we have the Dehn twists tα and tβ along the α meridian
curve and the β parallel curve intersecting each other transversally in a unique point in
T 2 map to the following matrices A and B respectively.

A =

1 1

0 1

 B =

 1 0

−1 1


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α
β

Figure 2.2: Meridian α and Parallel β curves on a torus

It is worth noting that A and B are in the same conjugacy class and the braid relation
ABA = BAB holds in Γ1. More importantly, there is the positive relation (AB)6 = 1.
This will later manifest as the monodromy of the building block genus 1 Lefschetz fibra-
tion f1 : E(1) = CP2#9CP2 → P1. Accordingly, the monodromy of E(n) is (AB)6n = 1

for fn : E(n) → P1.

The definition of Lefschetz fibrations

The Lefschetz fibration is a generalization of the ideas in complex Morse theory
applied to certain smooth and symplectic 4-manifolds.

Definition 13. A smooth map f : X → Σ from a closed connected oriented smooth
4-manifold X onto a closed connected oriented smooth 2-manifold Σ is said to be a
Lefschetz fibration, if f admits finitely many critical points C = p1, p2, · · · , pk on which
there are orientation-preserving complex coordinate neighborhoods such that locally f
takes the form (z1, z2) 7→ z21 +z

2
2 . It is consequence of this definition that X \f−1(C) →

Σ \ C is a smooth fiber bundle with fiber F a closed oriented 2-manifold. If the genus
of a generic fiber F is g, we refer to f as a genus g Lefschetz fibration. Furthermore,
we assume that f is relatively minimal, that is, there is no fiber containing a sphere of
square −1 so in particular the fiber genus is always strictly positive.

We will restrict our investigation to Lefschetz fibrations over the sphere (i.e., the
Σ = S2 in f : X → Σ). Restricting the class of Lefschetz fibrations to be over P1 is
natural as an exact sequence π1(F ) → π1(X) → π1(Σ) → π0(F ) → 0 implies that a
fiber F is always connected (cf. [GS]).
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By f having only the non-degenerate and isolated critical points, each singular fiber

of the Lefschetz fibration is a nodal curve with a unique nodal singularity and it is
obtained by shrinking a simple closed curve (the vanishing cycle) in the regular fiber to
the nodal point of the singular fiber. They fall into two classes: irreducible fibers, where
we collapse a non-separating vanishing cycle in the Riemann surface and reducible fibers,
where we collapse a separating vanishing cycle which gives the one-point union of smooth
Riemann surfaces of smaller genera. The local monodromy around a singular fiber of
a Lefschetz fibration f : X → S2 is a positive Dehn twist tα along the corresponding
vanishing cycle α. See Figure 2.1 on page 15. The product of all the local monodromies
of f is trivial in the mapping class group Γg of genus g as S2 \ D where D is a disk
big enough to contain all the critical values, has the trivial monodromy equal to the
identity in the mapping class group. Such a relation in Γg is called a positive relation,
where α1, α2, · · · , αn are vanishing cycles of f .

tα1tα2 · · · tαn = 1 (2.1)

Given a positive relation it encodes the topology of X as the identity monodromy
factorization determines the topology of X by a monodromy homomorphism ψX :

π1(S2\{f(pi)}) → Γg. The map ψX maps the generators of the fundamental group
which encircle a single critical point once in an anticlockwise fashion to positive Dehn
twists in the mapping class group.

Elliptic Lefschetz fibrations over P1

The Lefschetz fibrations over S2 whose regular fibers are smooth tori and singular
fibers are nodal elliptic curves are called elliptic Lefschetz fibrations over P1. We will
provide in this section the classification of the elliptic Lefschetz fibrations over P1 as
well as explain the possible singular fibers of elliptic Lefschetz fibrations which are either
fishtail fiber I1 or necklace fiber In (n ≥ 2). We will also describe the cyclic n−fold
branched covering construction which can be applied to E(1) along 2 regular fibers
to construct a complex elliptic surface which is diffeomorphic to the 4-manifold E(n)

acquired by the fiber sum construction.
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One has the building block genus 1 Lefschetz fibration f1 : E(1) = CP2#9CP2 → S2

which can be obtained from a (Lefschetz) pencil of cubic curves by blowing up base locus
of nine points coming from the intersection of two generic cubic curves. In terms of the
mapping class group monodromy, the rational elliptic surface E(1) has the positive
relation (tα · tβ)6 = 1 in Γ1

∼= SL(2,Z) where α is the meridian curve of the torus and
the β is the parallel curve of the torus.

For elliptic surfaces S1, S2, the fiber sum S1#ϕS2 is defined in the following way:
after deleting a neighborhood of a regular fiber in both surfaces, we glue the bound-
ary T 3’s via a fiber-preserving, orientation reversing diffeomorphism ϕ. The resulting
surface which inherits a complex structure and an elliptic fibration if ϕ = idF=T 2 ×
(complex conjugation) is called a untwisted fiber-sum of S1 and S2 and denoted by
S1#ϕS2. Note that E(2) is the famous K3 surface and E(n) is defined inductively as

E(n) = E(n− 1)#ϕ=idE(1)

Easy computation shows that π1(E(n)) = 1, e(E(n)) = 12n, σ(E(n)) = −8n and
b+2 (E(n)) = 2n− 1 with (χh(E(n)), c21(E(n))) = (n, 0). E(n) is spin iff n even.

Theorem 14. [Moishezon]
Let f :M → S2 be a genus 1 Lefschetz fibration and let e(M) be the Euler characteristic
of M . Then e(M) > 0, e(M) ≡ 0 (mod12) and f :M → S2 is isomorphic to f ∼= #nf1
the fiber sum of n = e(M)

12 copies of f1 : CP2#9CP2 → S2. The 4–manifold M is Kähler
and the Lefschetz fibration f is holomorphic.

The classification states that elliptic Lefschetz fibrations over P1 are classified to be
E(n) ∼= #nE(1) = #nf1 = f1# · · ·#f1︸ ︷︷ ︸

n

the untwisted fiber-sum of n copies of genus

1 Lefschetz fibration f1 : E(1) = CP2#9CP2 → S2. E(n) has the positive relation
(tα · tβ)6n = 1 in Γ1

∼= SL(2,Z). And the regular fibers are elliptic curves with marked
point for the identity giving the distinguished section. One thing to note is that the
number of irreducible singular fibers (nodal elliptic curves) n is always multiple of twelve.
(i.e., n ≡ 0 (mod12))
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For example, the standard elliptic fibration we get by blowing up nine base points

of a generic elliptic pencil in CP2 results the monodromy factorization (ab)6. Using the
braid relation aba = bab it can be shown that (a3b)3 also defines an elliptic fibration on
CP2#9CP2. Furthermore, it is easy to see that for any expression x ∈ Γ1 the mapping
class ax = xax−1 can be identified with the right–handed Dehn twist along the image of
a under a map giving x. Note, for example, that the braid relation implies that b = aab.

The monodromy of a fishtail fiber can be shown to be equal to the right–handed Dehn
twist along the vanishing cycle corresponding to the given singular fiber. An In–fiber
can be created by collapsing n parallel (homologically essential) simple closed curves,
therefore the monodromy of such a fiber is equal to the nth power of the right–handed
Dehn twist along one of the parallel curves.

In our constructions we will need the existence of a section, which can also be read
off from the monodromy factorization. In general, a Lefschetz fibration admits a section
if the monodromy factorization induced by it can be lifted from the mapping class group
of its generic fiber to the mapping class group of the fiber with one marked point. In the
case of a genus–1 Lefschetz fibration, however, the forgetful map f : Γ1

1 → Γ1 mapping
from the mapping class group Γ1

1 of T 2 with one marked point to Γ1 is an isomorphism,
implying in particular

Lemma 15. Any genus–1 Lefschetz fibration over S2 admits a section.

The above (smooth) symplectic fiber sum construction of E(n) can be made explic-
itly holomorphic by the cyclic n−fold branched covering construction,

E(n) = ϕ∗nE(1) //

fn
��

E(1)

f1
��

P1 ϕn
// P1

where one takes the ϕn : P1 → P1 such as ϕn(z) = zn that has 0 and ∞ as fixed
points. In the target Riemann sphere we arrange two regular elliptic fibers to be over the
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0 and ∞ such that when we use the map ϕn to pull back holomorphic elliptic Lefschetz
fibration f1 : E(1) = CP2#9CP2 → P1 it gives the holomorphic elliptic Lefschetz
fibration over P1 isomorphic to the above n−fold untwisted fiber-sum E(n) = ϕ∗nE(1)

(cf. [GS]).

2.4 Deligne–Mumford moduli stack M1,1 of stable elliptic
curves

In order to formulate the moduli L1,12n of nonsingular semistable elliptic fibrations over
P1, we are in need of the moduli of stable elliptic curves M1,1. The motivation for
moduli of curves is simple, the set of isomorphism classes of smooth curves of genus g
over c are in bijection with the complex points of an irreducible variety Mg,n called the
coarse moduli space of smooth genus g curves with n markings.

One might notice that we need singular fibers in Lefschetz fibrations, this is ac-
counted for by considering the ‘compactification’ of Mg,n by adding new points that
correspond to the so-called stable curves. Stable curves are complex algebraic curves
that are allowed to have exactly one type of singularity, namely, the simple nodal curve
with a unqiue nodal point. The above is what we call the coarse moduli space of curves.
Coarse moduli space is not enough for us, however, as we would like two points in the
moduli to be close to each other if the objects that they represent are small deformations
of each other (i.e, we want to be able to uniquely pullback families of (stable) curves).
That is, we want the fine moduli space of curves. However, even at genus 1, the fine
moduli ‘space’ M1,1 is not an easy object to define nor to describe due to the extra
automorphisms on objects we wish to parametrize (the special elliptic curves) which
make the M1,1 not a variety or even a scheme. As we will see, due to the simple fact
that there exists the elliptic involutions for each and every curves of genus 1 (i.e., every
point in the moduli has to have quotient singularity with Z2 isotropy), the moduli space
of elliptic curves is the worst case for naïve hope that a moduli is just a variety. This
means we must enlarge the category of varieties to include objects called ‘stacks’ which
are even more general than schemes. Stacks often arise in nature as the quotient of a
variety by an algebraic group action and these share many properties with true varieties.
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We will review notions and collect results that are necessary to reach a point where

we can present the following diagram over any fields K with characteristics not equal
to 2 or 3.

C1,1

p

��

M1,2

p

��

M1,1

π

��

P(4, 6)[a4:a6]

π

��

M1,1 P1
[j:1]

To explain briefly, the leading fine moduli is the Deligne–Mumford compactified
stack M1,1 of stable elliptic curves which comes with two wingmen, the universal family
C1,1 and the coarse moduli space M1,1. That is, as M1,1 is a DM stack, we are able to
say that the universal family C1,1

∼= M1,2 exists over M1,1 with p : C1,1 → M1,1 allowing
the unique pullback of the stable family of elliptic curves. It also has the coarse moduli
space M1,1

∼= P1
[j:1] (an honest variety which is the 1-point compactification A1 = P1

[j:1]

of the j-line) which has a natural morphism π : M1,1 → M1,1 giving the bijection on
geometric points. Remaining question is why the fine moduli of stable elliptic curves is
M1,1 = P(4, 6)[a4:a6] the weighted projective (line) stack with the weighted homogeneous
coordinate [a4 : a6]. In order to answer this we need to go back to the idea of Weierstrass
family of elliptic curves.

Let us start with the classification of elliptic curves over any fields K with prime
characteristic not equal to 2 or 3. We will use the idea of the Weierstrass form of elliptic
curves to talk about the family of elliptic curves as well as the Legendre form for thinking
of elliptic curves as branched cover of P1 with 4 branch points. Then, we will introduce
the unifying concept of a j-invariant and discuss the groups of extra automorphisms
on special elliptic curves related to the special values of the j-invariant. Once one
understands these elementary facts and connect it to the notion of the moduli of elliptic
curves. It is not hard to see that M1,1 = P(4, 6) over any fields K with characteristics
not equal to 2 or 3. In our exposition, we will freely adopt the established literature
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for elliptic curves [Silverman] and Deligne-Mumford stacks [ACGH, Olsson2]. Since we
are especially interested in presenting the Deligne–Mumford compactified stack M1,1

of stable elliptic curves as weighted projective quotient stack P(4, 6) over characteristic
zero fields as well as any fields K with positive characteristics not equal to 2 and 3, we
rely on [AOV] where the notion of ‘tame stack’ is developed carefully.

Elliptic curves E : Discriminant ∆ and j-invariant

Let us define and collect properties of elliptic curves we will be needing later. Good
reference for elliptic curves is a book written by [Silverman].

Definition 16. When a cubic equation called Weierstrass equation y2 = x3 + a4x+ a6

with a4, a6 ∈ K, char(K) /∈ {2, 3} has nonzero discriminant ∆ = −16(4a34 +27a26), it is
called nonsingular and the set

E = {(x, y) ∈ K2 | E(x, y) = 0} ∪ {∞}

is called an elliptic curve over K.

It is known that if E is a smooth projective algebraic curve of genus 1 over any fields
K with prime characteristic not equal to 2 or 3 then E is isomorphic to a smooth cubic
curve in P2 that can be presented in affine form by the Weierstrass equation. Coefficients
a4 and a6 are defined not uniquely but only up to admissible transformations (which
gives the same j-invariant and discriminant ∆ 7→ t12∆).

a4 7→ t4a4, a6 7→ t6a6

This presentation is useful for thinking of the family of elliptic curves as the variation
of the coefficients a4 and a6.

Also, there is another useful way to write down any elliptic curves called the Legendre
form y2 = x(x− 1)(x− λ) as any elliptic curves E ∈ M1,1 can be expressed as a 2-fold
branched covering of P1 branched at 0, 1, λ,∞ where λ ∈ P1 \ {0, 1,∞}. The choice
in normalizing the ramification points appear as S3 symmetry which can be dealt with
by associating to each curve its j-invariant which satisfies j(λ) = j(λ′) if and only if
λ′ ∈ {λ, 1− λ, 1λ ,

λ−1
λ , 1

1−λ ,
λ

λ−1}.
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Now, we recall the formula for the j-invariant of elliptic curves which unifies the two

presentations.

j = j(a4, a6) = 1728
4a34

4a34 + 27a26
= j(λ) = 256

(λ2 − λ+ 1)3

λ2(λ− 1)2

When two elliptic curves E1 and E2 are isomorphic, we know their j-invariants are
the same j(E1) = j(E2). The converse is not true in general due to the automor-
phisms on elliptic curves which makes two elliptic curves E1 and E2 with the identical
j-invariants to be isomorphic after taking the finite field extensions of degree equal
to the order of automorphism on E. To understand this better, let us work out the
Aut(E,P0) where P0 ∈ E can be chosen to be the unity of the group structure on E.
Regarding the automorphisms, every elliptic curves have at least one non-trivial auto-
morphism of order Z2, induced by elliptic involution or an inversion in the presentation
of Weierstrass form or Legendre form by sending y 7→ −y. In the cases where j = 1728

or j = 0 there are extra automorphisms given as follows.

Corollary 17 (Groups of automorphisms on elliptic curves). Let X be an elliptic curve
over K with char K ̸= 2, 3. Let P0 ∈ X, and let G = Aut(X,P0) be the group of
automorphisms of X leaving P0 fixed. Then G is a finite group of order

2 if j ̸= 0, 1728

4 if j = 1728

6 if j = 0

We may represent the second case with j = 1728 at a6 = 0 by the curve

y2 = x3 + x,

which has an automorphism group Z4 generated by x 7→ −x and y 7→ iy.

The third case with j = 0 at a4 = 0 could be represented by the curve

y2 = x3 + 1

which has automorphism group Z6 generated by x 7→ ωx and y 7→ −y where ω is a
primitive cubic root of 1.
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Weighted projective stacks

The weighted projective stack P(λ) is the quotient stack acquired from the affine
space An+1 under the action of Gm the multiplicative group of unity over the field K.
That is, fix a nondecreasing sequence of positive integers called weights λ⃗

λ⃗ = (λ0, · · · , λn)

and consider the associated linear action λ of Gm on affine space An+1

λ · (x0, · · · , xn) = (tλ0x0, · · · , tλnxn) for any t ∈ Gm.

The weighted projective space associated to the action λ is defined as the quotient
scheme

P(λ) = P(λ0, · · · , λn) = (An+1 ∖ 0) / Gm.

One defines the weighted projective stack as the quotient stack

P(λ) = P(λ0, · · · , λn) = [(An+1 ∖ 0) / Gm].

Each weighted projective stack has the corresponding weighted projective space as
its coarse moduli space. Note for each positive integer d we have

P(dλ0, · · · , dλn) ∼= P(λ0, · · · , λn)

However, the weighted projective stacks are not isomorphic unless d = 1. Note
that the stabilizer group of a point in the moduli space of curves is isomorphic to a
group of automorphisms of the corresponding curve. Thus, for us, it is important to
note that P(4, 6) ∼= P(2, 3) ∼= P1 as a variety through ‘rigidification’ while as a stack
P(4, 6) ̸= P(2, 3) as this would throw away the elliptic involution automorphism of order
Z2 on every elliptic curves.

Deligne–Mumford compactified stack M1,1 of stable elliptic curves

We can now present the Deligne–Mumford compactified stack M1,1 as the weighted
projective stack P(4, 6) in the category of schemes over a field K with characteristic
different from 2 or 3.
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M1,1
∼= P(4, 6)[a4:a6] = [(Spec K[a4, a6]− (0, 0))/Gm]

with Gm acting with weights (4, 6)

t · (a4, a6) 7→ (t4a4, t
6a6)

The coarse moduli is

M1,1 = A1
∼= (Proj K[a4, a6]− (0, 0)) ∼= P1

[j:1]

It is a Deligne–Mumford stack over any fields K with characteristic not equal to 2 or
3, where all points have Z2 isotropy of elliptic involution. There are two special points
with Z4 isotropy ([a4 : a6] = [1 : 0] with j = 1728) and Z6 isotropy ([a4 : a6] = [0 : 1]

with j = 0) respectively. By making sure the prime characteristic of the field K does not
divide the orders of the stabilizers, we have the tameness of M1,1 allowing the formation
of coarse moduli space M1,1 to commute with base field change [AOV].

∆ = 0 j = ∞

Figure 2.3: Nodal elliptic curve with ∆ = 0 and j = ∞

The Figure 2.3 is the geometric isomorphism class of a stable elliptic curve that
corresponds to the nodal divisor which is a unique point {∞} = M1,1∖ 1, 1 with ∆ = 0

and j = ∞.

The below is well known result on singular Weierstrass equations.

Proposition 18. Let E be a Weierstrass equation over K. Then

1. E is a smooth elliptic curve ⇐⇒ ∆ ̸= 0,

2. E is a nodal elliptic curve ⇐⇒ ∆ = 0 and a4 ̸= 0,
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3. E is a cuspidal elliptic curve ⇐⇒ ∆ = 0 and a4 = 0,

Note that the cuspidal elliptic curve is [a4 : a6] = [0 : 0] /∈ P(4, 6) = M1,1.

2.5 DM moduli stack L1,12n of stable elliptic fibrations over
P1

In this section, we formulate the moduli stack L1,12n of stable elliptic fibrations over P1

as the Deligne–Mumford algebraic mapping stack of regular morphisms Homn(P1,M1,1)

and establish the bijection between the isomorphism classes of semistable elliptic sur-
faces and that of stable elliptic fibrations over P1.

Let us first recall that a pair (E, p) is a stable elliptic curve if E is a nodal projective
curve of arithmetic genus 1 and p ∈ E is a smooth point. Then, it is well–known that
M1,1 is a proper Deligne-Mumford stack of stable elliptic curves with a coarse moduli
space M1,1

∼= P1. This P1 parametrizes the j–invariants of elliptic curves. When the
characteristic of the field K is not equal to 2 or 3, [Hassett] shows that (M1,1)K ∼=
[(Spec K[a4, a6] − (0, 0))/Gm] =: PK(4, 6) by using the Weierstrass equations. Note
that this is no longer true if characteristic of K is 2 or 3, as the Weierstrass equations
are more complicated.

Notice that M1,1 comes equipped with a universal family p : C1,1 → M1,1. Then,
by the definition of p, any stable elliptic fibration f : Y → P1 comes from a morphism
φf : P1 → M1,1 and vice versa. As this correspondence also works in families, we
can formulate the moduli of stable elliptic fibrations as Hom(P1,M1,1). Since M1,1

∼=
P(4, 6) with its coarse map c : M1,1 → M1,1

∼= P1, it is easy to see that deg(c ◦ φf ) =

12degφf (cf. [RT, CCFK]). Note that the discriminant divisor ∆ of f can be recovered
by pulling back ∞ ∈ P1 via c ◦ φf , which implies the following proposition:

Proposition 19. The moduli stack L1,12n of stable elliptic fibrations over P1 with 12n

nodal singular fibers and a distinguished section is the Deligne–Mumford mapping stack
Homn(P1,M1,1).
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Proof. Above discussion shows that L1,12n

∼= Homn(P1,M1,1). To show that this is a
Deligne–Mumford stack, notice that the target stack M1,1 over K with char K ̸= 2, 3

is a tame Deligne–Mumford stack by [AOV]. Thus, Homn(P1,M1,1) is also a Deligne–
Mumford stack by [Olsson].

We would like to relate L1,12n to the moduli of semistable elliptic surfaces. To do
so, consider any semistable elliptic surface f : X → P1 with a distinguished section
S : P1 ↪→ X that has the discriminant degree 12n. Denote this semistable family of
elliptic curves over P1 as (X, f, S). Note that by contracting all components of the fibers
of f not meeting the distinguished section S, we obtain g : Y → P1 with a distinguished
section S′ : P1 ↪→ Y . This process is called the stable reduction of the family of elliptic
curves (X, f, S). On the other hand, (X, f, S) can be recovered from (Y, g, S′) by taking
minimal resolution of singularities of Y and taking proper transform of the morphism
S′. This is summarized as the following diagram, where ν : X → Y is the minimal
resolution of singularities:

X

f

��

ν // Y = φ∗
f (C1,1) //

g

��

C1,1

p
��

P1 P1
φf

// M1,1

(2.2)

Note that the contraction morphism ν introduces singularities of type Ak on Y . Con-
versely, given any regular morphism φg ∈ Homn(P1,M1,1), the total space Y = φ∗

f (C1,1)

of the stable family g : φ∗
f (C1,1) → P1 can have Ak singularities because any one pa-

rameter deformation of nodal singularities cannot induce other types of singularities (cf.
[AB]). In fact, there is a criterion for when (Y, g, S′) coming from φg ∈ Homn(P1,M1,1)

has Ak singularities:

Proposition 20. The necklace singular fiber Ik with monodromy Ak or Bk which is
a nodal cycle of k smooth rational curves with self-intersections −2 corresponds to the
regular morphism φg ∈ Homn(P1,M1,1) being ramified over the nodal divisor point
[∞] = M1,1 ∖ 1, 1 of order k − 1.

Proof. This follows from the [AB, Lemma 4.1]. Indeed étale locally the coordinate for
the universal family C1,1 → M1,1 around the node of the fiber at infinity is xy = s where
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s is an étale local parameter at [∞] ∈ M1,1. Thus if the moduli map φg : P1 → M1,1

is ramified over [∞] to order k − 1, the equation is tk = s where t is a local parameter
at the ramified point on P1 which implies that the Weierstrass surface Y obtained by
pulling back C1,1 has local equation xy = tk, i.e. an Ak−1 singularity. Resolving this
produces an Ik singular fiber at that point.

For any field K of characteristic neither 2 nor 3, We are now able to establish the
bijection between L1,12n(K), the K–points of the moduli stack L1,12n of stable elliptic
fibrations over P1, and the moduli stack of semistable elliptic surfaces over K with the
discriminant degree 12n. In fact, we have a stronger result:

Proposition 21. Fix any field K of characteristic ̸= 2, 3. Then there is a canonical
equivalence of groupoids between L1,12n(K) and the groupoid of nonsingular semistable
elliptic surfaces over K with the discriminant degree 12n.

Proof. The minimal resolution of singularities and the stable reduction discussed in
diagram 2.2 gives the expected equivalences of groupoids. As it is easy to see that
they are inverses to each other on the level of objects, it suffices to show that these are
well-defined as morphisms of groupoids.

Given an isomorphism h : X1 → X2 between semistable elliptic surfaces, notice that
(−2)–curves in X1 maps to (−2)–curves in X2. This shows that h induces a morphism
s(h) : Y1 → Y2 between the corresponding stable elliptic fibrations. Similarly, singular
points of Y1 map to those of Y2, so that any isomorphism α : Y1 → Y2 lifts to an
isomorphism r(α) : X1 → X2 between the minimal resolutions. Since s and r are
inverses of each other, the minimal resolutions and the stable reductions are well-defined
and are inverse to each other.

More concretely, note that any semistable elliptic surface (X, f, S) is associated
uniquely to a stable elliptic fibration (Y, g, S′) which is associated to a Weierstrass
model y2 = x3 + a4x + a6 where a4 ∈ H0(P1,O(4n)) and a6 ∈ H0(P1,O(6n)). Choice
of such models does not change the discriminant divisor ∆(X) = −16(4a34 + 27a26) ∈
Γ(P1,O(12n)) as the discriminant of g : Y → P1 will have kth order of vanishing at
a point in P1 where there used to be an Ik necklace. One can say that the total
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Deg(∆(X)) =
µ∑

i=1
ki = 12n while the order of the vanishing of the discriminant for a

given point t ∈ P1 depends on the arrangement of the semistable elliptic singular fibers.
That is, if the discriminant divisor ∆(X) has µ number of zeroes which corresponds to
the µ number of distinct singular fibers then the arrangement of the semistable elliptic
singular fibers is the same question as the partition of 12n nodal singular points into µ
distinct singular fibers Ik1 , · · · , Iki , · · · , Ikµ that comes from the minimal resolutions of
Ak1 , · · · , Aki , · · · , Akµ singularities which in turn gives kith vanishing for the i−th zero
of the discriminant divisor ∆(X).

Remark 22. A very important consequence of Proposition 21 is that counting points of
L1,12n gives the same number as counting points of the moduli of nonsingular semistable
elliptic surfaces. Since the former has a more concrete description through the algebraic
mapping stack, we will focus on acquiring the arithmetic invariants of L1,12n.

2.6 Motive/Point count of c(Homn(P1,P(a, b))) over finite
fields

In this section, we enumerate the moduli stack Homn(P1,P(a, b)) over finite fields Fq for
q prime power with characteristic not dividing a or b. Since the point counting is done
on the level of schemes, we work with the coarse moduli space c(Homn(P1,P(a, b))) over
Fq instead.

To count the Fq–points on c(Homn(P1,P(a, b))), we will use the idea of cut-and-paste
by Grothendieck:

Definition 23. Fix a field K. Then the Grothendieck ring K0(VarK) of K-varieties is
a group generated by isomorphism classes of K-varieties [X], modulo scissor relations
[X] = [Z] + [X − Z] for Z ⊂ X a closed subvariety. Multiplication on K0(VarK) is
induced by [X][Y ] := [X×KY ]. There is a distinguished element L := [A1] ∈ K0(VarK),
called the Lefschetz motive.

It is easy to see that whenK = Fq, the assignment [X] 7→ |X(Fq)| gives a well-defined
ring homomorphism #q : K0(VarFq) → Z. Thus, if we can express [c(Homn(P1,P(a, b)))]
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as the linear combination of classes of other varieties with their point counts, then we
can deduce |c(Homn(P1,P(a, b)))(Fq)|. Therefore, Corollary 2 follows from Theorem 1
and Proposition 21. Now we are ready to prove Theorem 1.

2.7 Proof of Theorem 1

Observe that the regular morphism φf from P1 → P(a, b) is equivalent to considering
the line bundles on P1 which are L ≃ φ∗

fOP(a,b)(1) of degree n together with sections
u ∈ H0(P1,L⊗a) and v ∈ H0(P1,L⊗b) such that the global sections u, v are not simul-
taneously vanishing at any points of P1 (cf. [RT, CCFK]). Moreover, such pairs (u, v)

and (u′, v′) are equivalent when there exists λ ∈ Gm(K) so that u′ = λau and v′ = λbv.
Hence, L1,12n can be thought of as an open substack of P(H0(OP1(an))⊕H0(OP1(bn))),
where the defining Gm-action is as above.

However, we would like to work with the coarse moduli c(Homn(P1,P(a, b))) of
Homn(P1,P(a, b)) instead. Denote U := H0(OP1(an)) and V := H0(OP1(bn)). Then,
we have a closed embedding

P(U ⊕ V ) ↪→ P(SymbU ⊕ SymaV )

(u, v) 7→ (ub, va)

where Gm acts on P(SymbU ⊕ SymaV ) by λ · (u′, v′) = (λabu′, λabv′). Since the coarse
moduli space for P(SymbU⊕SymaV ) is just a usual projective space P(SymbU⊕SymaV )

where Gm acts by λ ·(u′, v′) = (λu′, λv′), the coarse moduli space P(U⊕V ) parametrizes
sections u′, v′ ∈ H0(OP1(abn)) such that ∃u ∈ H0(OP1(an)) and ∃ v ∈ H0(OP1(bn)) (not
necessarily unique) with ub = u′ and va = v′. This shows that c(Homn(P1,P(a, b)))

parametrizes such (u′, v′) as above, with an additional condition that u′ and v′ do not
simultaneously vanish on any points of P1.

Now fix a chart A1 ↪→ P1 with x 7→ [1 : x], and call 0 = [1 : 0] and ∞ = [0 : 1].
Then, u and v become polynomials of x with degrees at most an and bn respectively. For
instance, degu < an if and only if u vanishes at ∞. Denoting degu := k and deg v := l,
then φf ∈ Homn(P1,P(a, b)) is characterized by equivalence classes of polynomials (u, v)
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where either k = an or l = bn (so that they do not simultaneously vanish at ∞) and
u, v have no common roots. φf ∈ c(Homn(P1,P(a, b))) has analogous descriptions in
terms of (u′, v′) where u′ = ub, v′ = va. Define Fk,l := {(u′, v′) ∈ c(Homn(P1,P(a, b))) :

degu′ = bk, deg v′ = al}. Since polynomials of degree k limits to degree k − 1 by
sending a root to the point of infinity, we obtain the following stratification:

c(Homn(P1,P(a, b))) = Fan,bn ⊔

(
an−1⊔
k=0

Fk,bn

)
⊔

(
bn−1⊔
l=0

Fan,l

)
c(Homn(P1,P(a, b))) = Fan,bn ⊋ Fan−1,bn ⊋ · · · ⊋ F0,bn = F0,bn

c(Homn(P1,P(a, b))) = Fan,bn ⊋ Fan,bn−1 ⊋ · · · ⊋ Fan,0 = Fan,0

Fan−k,bn ∩ Fan,bn−l = ∅ ∀k, l > 0

Then,

[c(Homn(P1,P(a, b)))] = [Fan,bn] +
an−1∑
k=0

[Fk,bn] +
bn−1∑
l=0

[Fan,l] (2.3)

Define

F ′
k,l := {(u, v) ∈ c(Homn(P1,P(a, b))) : deg(u′, v′) = (bk, al), u′, v′ are monic} .

Then, F ′
k,l ↪→ Fk,l is a section of the projection morphism Fk,l → F ′

k,l (induced by
making (u′, v′) to be a monic pair), which has Gm–fibers. Hence, Fk,l is a trivial Gm–
bundle over F ′

k,l, so that [Fk,l] = [Gm][F ′
k,l]. Moreover, given such (u′, v′) ∈ F ′

k,l, there is
a unique pair (u, v) of monic polynomials of degree k and l respectively, so that ub = u′

and va = v′, as char(K) does not divide a or b. This gives an alternative description of
F ′
k,l as below (inspired by [FW]):

Definition 24. Fix a field K with algebraic closure K. Fix k, l ≥ 0. Define Poly(k,l)
1 to

be the set of pairs (u, v) of monic polynomials in K[z] so that:

1. degu = k and deg v = l.
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2. u and v have no common root in K.

Therefore, F ′
k,l

∼= Poly(k,l)
1 . To finish the proof, it suffices to find a description of[

Poly(k,l)
1

]
as a polynomial of L. Farb and Wolfson [FW] found such expression when

k = l, and we claim that
[
Poly(k,l)

1

]
has a similar description, as below:

Proposition 25. Fix d1, d2 ≥ 0. Then,

[
Poly(d1,d2)

1

]
=

Ld1+d2 − Ld1+d2−1, if d1, d2 > 0

Ld1+d2 , if d1 = 0 or d2 = 0

Proof. The proof for this is analogous to [FW], Theorem 1.2 (1). Here, we only state
the differences to their work.

Step 1: The space of (u, v) monic polynomials of degree d1, d2 is instead the quo-
tient Ad1 ×Ad2/(Sd1 ×Sd2) ∼= Ad1+d2 . We have the same filtration of Ad1+d2 by R(d1,d2)

1,k ,
which is the space of (u, v) monic polynomials of degree d1, d2 respectively for which
there exists a monic h ∈ K[z] with deg(h) ≥ k and monic polynomials gi ∈ K[z] so that
u = g1h and v = g2h. The rest of the arguments follow analogously, keeping in mind
that the group action is via Sd1 × Sd2 .

Step 2: Here, we prove that R(d1,d2)
1,k − R

(d1,d2)
1,k+1

∼= Poly(d1−k,d2−k)
1 × Ak. Just as in

[FW], the base case of k = 0 follows from the definition. For k ≥ 1, the rest of the
arguments follow analogously just as in Step 1 of loc. cit.

Step 3: By combining Step 1 and 2 as in [FW], we obtain[
Poly(d1,d2)

1

]
= Ld1+d2 −

∑
k≥1

[
Poly(d1−k,d2−k)

1

]
Lk

For the induction on the class
[
Poly(d1,d2)

1

]
, we use lexicographic induction on the

pair (d1, d2). Since the order of d1, d2 does not matter for Grothendieck class, we assume
that d1 ≥ d2. For the base cases, consider when d2 = 0. Then the monic polynomial
of degree 0 is nowhere vanishing, so that any polynomial of degree d1 constitutes a
member of Poly(d1,0)

1 , so that Poly(d1,0)
1

∼= Ld1 . Similarly, d1 = 0 is taken care of. Then
for d1, d2 > 0, we obtain
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[
Poly(d1,d2)

1

]
= L(d1+d2) −

∑
k≥1

[
Poly(d1−k,d2−k)

1

]
Lk

= Ld1+d2 −

(
d2−1∑
k=1

(L(d1−k)+(d2−k) − L(d1−k)+(d2−k)−1)Lk + Ld1−d2Ld2

)

= Ld1+d2 −

(
d2−1∑
k=1

(Ld1+d2−k − Ld1+d2−k−1) + Ld1

)
= Ld1+d2 − Ld1+d2−1

Applying the Proposition 25 to the equation (2.3), we get the motive count:

[c(Homn(P1,P(a, b)))]

= [Fan,bn] +

an−1∑
k=0

[Fk,bn] +

bn−1∑
l=0

[Fan,l]

= [Gm]

([
Poly(an,bn)

1

]
+

an−1∑
k=0

[
Poly(k,bn)

1

]
+

bn−1∑
l=0

[
Poly(an,l)

1

])

= (L− 1)

(
(L(a+b)n − L(a+b)n−1) + Lbn +

an−1∑
k=1

(Lbn+k − Lbn+k−1)

)

+ (L− 1)

(
Lan +

bn−1∑
l=1

(Lan+l − Lan+l−1)

)
= (L− 1)(L(a+b)n − L(a+b)n−1 + Lbn + L(a+b)n−1 − Lbn + Lan + L(a+b)n−1 − Lan)

= L(a+b)n+1 − L(a+b)n−1

This finishes the proof of Theorem 1.
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2.8 Heuristic for counting semistable elliptic curves over

global fields

In this section, we would like to consider the connection between the number fields
and the function fields called the global fields analogy. That is, when one studies the
questions in number theory involving the number field Q and the algebraic extensions
of Q there is an observation that the questions can be brought to the geometry of
curves over the finite fields involving the (global) function field Fq(t) and the algebraic
extensions of Fq(t). While it was well known in the past that the elliptic surfaces over
the complex numbers have some strict analogies with elliptic curves over the number
fields, we take this analogy further by passing the arithmetic invariant of the moduli of
semistable elliptic surfaces over the finite fields through the global fields analogy (see
Remark 22).

Through the notion of bounded height, we will consider ZFq(t)(B) which is the count-
ing of semistable elliptic surfaces (Definition 8) with 12n nodal singular fibers and a
distinguished section. The growth rate of ZFq(t)(B) can be computed by the arithmetic
invariant |L1,12n(Fq)| in the function field setting. An analogous object in the number
field setting is ZQ(B) which is the counting of semistable elliptic curves over Q. In the
end, we formulate a heuristic that for both of the global fields the asymptotic of ZK(B)

will match with one another.

Let K be a global field and OK be its ring of integers such as

1. The function field K = Fq(t) with OK = Fq[t]

2. The number field K = Q with OK = Z

As the function field of P1
Fq

(the base of semistable elliptic fibrations) is indeed a
rational function field of one variable t over Fq, one could think of a semistable elliptic
surface X over P1 as the choice of a model for semistable elliptic curves E over K = Fq(t)

or equivalently over OK = Fq[t] by clearing the denominators. On the number field,
the analogy would be the semistable elliptic curves E with the squarefree conductors
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N = p1 · · · · · · pµ over Q or equivalently over OK = Z by the minimal integral Weierstrass
model of an elliptic curve. In order to draw the analogy, we need to fix an affine chart
A1
Fq

⊂ P1
Fq

and its corresponding ring of functions Fq[t], since Fq[t] could come from any
affine chart of P1

Fq
, whereas the ring of integers for the number field K is canonically

determined. We denote ∞ ∈ P1
Fq

to be the unique point not in the affine chart.

Note that for a maximal ideal p in OK , the residue field OK/p is finite for both of
our global fields: In the function field if p = (p(t)) for a monic irreducible polynomial
p(t) ∈ Fq[t] of degree k, then OK/p ∼= Fqk which is the splitting field of p(t) over Fq

whereas for the number field if p = (p) for p prime integer, then OK/p = Zp
∼= Fp. One

could think of p as a point in Spec OK and define the height of a point p which connects
the global fields together.

Definition 26. Define the height of a point p to be ht(p) := |OK/p| the cardinality of
the residue field OK/p.

We now introduce the notion of bad reduction & good reduction.

Definition 27. Let E be an elliptic curve given by an Weierstrass equation y2 =

x3 + a4x + a6, with a4, a6 ∈ OK . Then E has bad reduction at p if through the base
change from OK to OK/p on E, the resulting curve Ep is a singular cubic. The prime
p is said to be of good reduction if Ep is a smooth elliptic curve.

For simplicity, assume that X does not have a singular fiber over ∞ ∈ P1
Fq

. Note
that the primes of bad reductions are precisely the divisors of the discriminant ∆ which
in the function field K = Fq(t) we have ∆(X) ∈ H0(P1,O(12n)) that has the following
factorization for pairwise distinct maximal ideals pi ⊂ Fq[t] and α ∈ F∗

q over the affine
chart:

∆(X) = −16(4a34 + 27a26) = α

µ∏
i=1

pkii

There are two ways in which the bad reductions can occur: E can become nodal
which is called a multiplicative reduction at p or E can become cuspidal which is called
an additive reduction at p. For our consideration, we only have multiplicative reductions
as possible bad reductions since semistable elliptic fibrations contain only singular fibers
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of fishtail I1 or necklace Ik (k ≥ 2) types such that for a given semistable elliptic
fibration it has 12n nodal points distributed over µ distinct singular fibers that are
Ik1 , · · · , Iki , · · · , Ikµ with

µ∑
i=1

ki = 12n as we allow each of the singular fiber to

contain multiple nodal singular points but no cuspidal singularities.

As the discriminant divisor ∆(X) is an invariant of the choice of semistable model
f : X → P1, we count the number of isomorphism classes of nonsingular semistable
elliptic fibrations on the function field Fq(t) by the bounded height of ∆(X).

ht(∆(X)) =

µ∏
i=1

|Fq|ki = qk1 · · · qki · · · qkµ = qk1+···+kµ = q12n

In general, the height of a discriminant ∆(X) of any X (without nonsingular fiber
assumption over ∞) is defined as q12n where Deg(∆(X)) = 12n. Now we are ready to
define a function ZK(B) which in the function field realm is ZFq(t)(B).

ZFq(t)(B) :=

{ # Nonsingular semistable elliptic fibrations over P1
Fq

with 12n nodal singular fibers
and a distinguished section counted by 0 < ht(∆(X)) =

∏
p
ht(p) = q12n ≤ B }

This counting is equivalent to counting semistable elliptic surfaces over Fq. We now
compute the ZFq(t)(B) by the arithmetic invariant |L1,12n(Fq)|.

Theorem 28 (Computation of ZFq(t)(B)). The counting of semistable elliptic fibrations
over Fq(t) by ht(∆(X)) = q12n ≤ B satisfies the following inequality:

ZFq(t)(B) ≤ (q11 − q9)

(q10 − 1)
·
(
B

5
6 − 1

)
In other words, ZFq(t)(B) ∼ O

(
B

5
6

)
.

Proof. Knowing the exact point count of the coarse moduli space for semistable elliptic
surfaces over P1

Fq
to be |L1,12n(Fq)| = q10n+1 − q10n−1 by Remark 22 and Theorem 1,

we can explicitly compute the bound for ZFq(t)(B) as the following,
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ZFq(t)(B) =

⌊
logqB

12

⌋∑
n=1

|L1,12n(Fq)| =

⌊
logqB

12

⌋∑
n=1

(q10n+1 − q10n−1)

= (q1 − q−1)

⌊
logqB

12

⌋∑
n=1

q10n ≤ (q1 − q−1)
(
q10 + · · ·+ q10·(

logqB

12
)
)

= (q1 − q−1)
q10(B

5
6 − 1)

(q10 − 1)
=

(q11 − q9)

(q10 − 1)
· (B

5
6 − 1)

(2.4)

Note that we have an equality ZFq(t)(B) = (q11−q9)
(q10−1)

·(B
5
6 −1) when logqB

12 is a positive
integer.

Switching to the number field realm with K = Q and OK = Z, one could choose
the minimal integral Weierstrass model of an elliptic curve which has the discriminant
divisor ∆ that is already a number.

In order to match the counting with the function field, we define the ht(∆) to be
the cardinality of ring of functions on subscheme Spec(Z/(∆)). And this leads to the
following analog of ZK(B) over Q which is ZQ(B).

ZQ(B) = {# Semistable elliptic curves E over Spec Z with 0 < ht(∆) ≤ B }

Our arithmetic invariant |L1,12n(Fq)| for the moduli of nonsingular semistable elliptic
fibrations over P1

Fq
renders the following number theoretic heuristic by the global fields

analogy on ZK(B).

Conjecture 29 (Asymptotic of ZQ(B)). The asymptotic growth rate of ZQ(B), the
counting of semistable elliptic curves over Q by ht(∆) ≤ B, follows from the polynomial
growth rate of ZFq(t)(B) ∼ O

(
B

5
6

)
.

It would be interesting if one could show this analogy holds at least asymptotically.
Note that the asymptotic of our counting ZFq(t)(B) ∼ O

(
B

5
6

)
for the semistable elliptic
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curves over Fq(t) matches with the asymptotic of the counting done by [Baier] for the
stable elliptic curves over Q. The semistable elliptic curves were used by Andrew Wiles
to prove Taniyama-Shimura-Weil conjecture now known as modularity theorem which
was enough to establish Fermat’s last theorem as a true theorem [Wiles].



Chapter 3

Arithmetic of the moduli of
semistable hyperelliptic fibrations

3.1 Introduction

Naturally, we wish to acquire similar arithmetic invariants for Lg,∆ the moduli of higher
genus g ≥ 2 fibrations over P1. We are indeed able to do so by changing the target stack
to be Hg the moduli of genus g stable hyperelliptic curves. The reason for focusing
upon the hyperelliptic curves of genus g ≥ 2 is that the moduli of stable hyperelliptic
curves are known to be rational.

3.2 Rationality of Hg

The unirationality of the target stack X in Homn(P1,X) is crucial for us to acquire
arithmetic invariants the way we did. In higher genus, Mg is known to be rational for
2 ≤ g ≤ 6 and unirational for 7 ≤ g ≤ 14 while for g ≥ 14, Mg is known to be of general
type.

Surprisingly, rationality is known to continue to the moduli of higher genus curves
as long as they are hyperelliptic.

39
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Theorem 30 (Rationality of Hg). For any genus g, there is a regular morphism Hg →
P2g+2//SL2.

Proof. This follows from the [AL, Section 2]. Avritzer and Lange show in Proposition 2.4
that there is canonical isomorphism of moduli spaces Hg of stable hyperelliptic curves
of genus g onto the moduli spaces H2,g of admissible double covers of (2g + 2)−marked
curves of genus 0 and in Corollary 2.5 they show that Hg is isomorphic onto the moduli
space M0,2g+2 of stable (2g + 2)−marked curves of genus 0. We note that the moduli
of rational curves with n marked points M0,n is birational to Pn−3 for every n ≥ 3.

This result stems from the fact that Hg
∼= M0,2g+2//S2g+2 where S2g+2 is the sym-

metric group of 2g + 2 letters. While we know that Hg is a (2g − 1)-fold moduli stack
that is birational to P2g+2//SL2, it is not a simple matter to identify it as a weighted
projective stack. For genus 2, P6//SL2 which is a 3-fold moduli is a hypersurface in
P(2, 4, 6, 10, 15) since there is an additional invariant of degree 15. But [Dolgachev]
shows that this hypersurface is isomorphic to P(2, 4, 6, 10). For genus 3, P8//SL2 is
5-dimensional subvariety of P(2, 3, 4, 5, 6, 7, 8, 9, 10). As in the case of g = 2, this em-
bedding is not an optimal one. While one may find an embedding into a smaller weighted
projective space we do not know a general algorithm to find a better embedding. And
this is indeed a very difficult invariant theoretic problems with long history.

Using the definition of projective GIT quotient which says any projective GIT quo-
tient is the Proj of the invariant ring, we see that for genus 4 the P10//SL2 is 7-
dimensional subvariety of P(λ⃗) = P(λ0, · · · , λn) where the weights for the ambient
weighted projective stack would come from the invariant theory of binary forms.

3.3 Semistable hyperelliptic genus 2 fibrations over P1

In this section, we give the presentation of the hyperelliptic mapping class group
Γhyp
g and define the hyperelliptic genus g Lefschetz fibration f : X → P1 where the
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basespace is a parametrized P1 and the generic fiber is a smooth hyperelliptic genus g
curve. Similarly, every general type surface with κ = 2 admits a pencil of genus g ≥ 2

curves which can be blown up at the base locus to provide the structure of a genus g ≥ 2

fibration.

We will focus on the genus 2 case as all closed, orientable, Riemann surfaces of
genus 2 are hyperelliptic which induces isomorphism between the hyperelliptic and the
generic mapping class groups Γhyp

2
∼= Γ2 which in turn makes all genus 2 Lefschetz

fibrations hyperelliptic whereas for higher genus g ≥ 3 Lefschetz fibrations we must
start to distinguish between the hyperelliptic and non-hyperelliptic Lefschetz fibrations.

Contrary to the elliptic fibrations, there are many smooth, symplectic genus 2 Lef-
schetz fibrations which are non-holomorphic and thus the total space X is non-complex
(non-Kähler) mainly due to the existence of the reducible nodal singularities in the
fibration.

We will end our review of the genus 2 hyperelliptic Lefschetz fibrations by providing
the classification result of holomorphic genus 2 Lefschetz fibrations in terms of (n, s)

type and its corresponding fibersum decompositions which are unique decompositions
into fibersum of 3 types of holomorphic building block genus 2 Lefschetz fibrations which
are CP2#13CP2, K3#2CP2, and HK the Horikawa surface that all lie on (extended)
Noether-Horikawa line for the fibrations with only irreducible nodal singularities by the
work of Siebert, Tian, Auroux, Smith and Chakiris. For fibrations with reducible nodal
singularities, there is yet to be a complete classfication and thus we will provide the
stabilization that shows all smooth genus 2 Lefschetz fibration with irreducible as well
as reducible nodal singularities become holomorphic after sufficient number of fibersum
with the rational genus 2 Lefschetz fibrations where the stabilized genus 2 fibration
decompses uniquely into fibersum of holomorphic building blocks that are CP2#13CP2,
K3#2CP2, and the Auroux’s fibration by the work of Endo, Kamada and Auroux.

Hyperelliptic mapping class groups
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The presentation of Γhyp

g the hyperelliptic mapping class groups was originally ob-
tained by Birman [Birman, FM]. Let ti (i = 1, . . . , 2g + 1) be positive Dehn twists
along the loops ci illustrated in Figure 3.1. The mapping class group Γhyp

g of a hyperel-
liptic genus-g Riemann surface is generated by t1, . . . , t2g+1 with the following defining
relations.

c1

c2

c3

c4

c5

δ

Figure 3.1: Curves c1, c2, c3, c4, and c5

titj = tjti if |i− j| ≥ 2, (3.1)

titi+1ti = ti+1titi+1 for i = 1, . . . , 2g, (3.2)

τ ti = ti τ for i = 1, . . . , 2g + 1. (3.3)

τ2 = 1 where τ = t1t2 . . . t2gt
2
2g+1t2g . . . t2t1, (3.4)

(t1t2 . . . t2gt2g+1)
2g+1 = 1, (3.5)

(t1t2 . . . t2g−1t2g)
2(2g+1) = 1, (3.6)

(th = (t1 · · · t2h)4h+2, (3.7)

The first relation is the commutativity relation for two disjoint cycles followed by
the braid relation for three joint cycles. The hyperelliptic relation τ is central and
involutive. One could succinctly define the hyperelliptic mapping class group as the
centralizer of the hyperelliptic relation τ that corresponds to the hyperelliptic involution
automorphism element in the mapping class group (i.e., Γhyp

g := Z(τ) ⊆ Γg). The rests
are various chain relations which consists of chain of Dehn twists along the sequence of
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joint cycles. It is important to note the last chain relation for h = 1, . . . , [g/2], we let
th be a positive Dehn twist along the loop h (the separating closed curve) illustrated in
Figure 3.1.

Hyperelliptic Lefschetz fibrations over P1

A smooth Lefschetz fibration is a differentiable surjection f :M → S2 of a closed ori-
ented smooth 4-manifold M with finitely many critical points of the form w◦f(z1, z2) =
z21 + z22 . Here z1, z2 and w are complex coordinates on M and S2 respectively that are
compatible with fixed global orientations on M and S2. Hyperelliptic Lefschetz fibra-
tions are Lefschetz fibrations for which the image of the monodromy is included in the
hyperelliptic mapping class group. From complex algebraic surfaces point of view, genus
2 is where we begin to have the total spaces 4-manifolds that have the Kodaira dimen-
sion 2 (in symplectic category we also have the notion of symplectic Kodaira dimension
and this notion matches with the holomorphic Kodaira dimension when they are both
defined).

If we restrict the genus 2 fibration over the small circle C, the X|C is fibration of
genus 2 curve Σ2× [0, 1] where Σ2×0 is glued to Σ2×1. The isotopy class of this gluing
of the singular fiber can be encoded in the mapping class group of the fiber namely Γ2.
This extends globally for the Lefschetz fibrations in the way that given an arbitrary
Lefschetz fibration f : X → P1 we can consider the positive relation as the global
monodromy factorization in the mapping class group that determines the arrangement
of the singular fibers.

They are considered to be a natural generalization of elliptic surfaces because several
properties are common to these two kinds of fibrations. For instance, many of fibrations
can be obtained by branched covering construction, the signature of a fibration localizes
on the singular fibers, typical fibrations are used as building blocks for constructions of
more complicated fibrations and 4–manifolds, etc.

Lefschetz fibrations on a closed oriented smooth 4-manifolds have crucial role in 4-
manifolds theory as they form the natural stage for investigating the boundaries among
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the three different structures on 4-manifolds namely differentiable, symplectic and holo-
morphic structures. In the late nineties, Simon Donaldson established a remarkable
result on the existence of symplectic Lefschetz pencils on arbitrary symplectic mani-
folds [Donaldson]. This implies that after appropriately blowing up basepoints of the
symplectic Lefschetz pencil one acquires symplectic Lefschetz fibrations on any given
symplectic manifolds. Conversely, by the observation of Robert Gompf the total space
of differentiable Lefschetz fibration has a symplectic structure that is unique up to iso-
topy [Gompf]. Therefore, the study of differentiable Lefschetz fibrations is essentially
equivalent to the study of symplectic manifolds.

Naturally, one is curious about how far smooth Lefschetz fibrations are from holo-
morphic ones. A Lefschetz fibration is called holomorphic if the total space M is a
smooth complex surface, and for a suitable complex structure on the base sphere P1 ∼= S2

the fibration map f :M → P1 is holomorphic.

The definitive result on holomorphicity of genus 2 Lefschetz fibrations is the work of
Siebert and Tian where they consider genus 2 Lefschetz fibrations with only irreducible
nodal singularities (equivalently has no reducible nodal singularities) that also has the
transitive monodromy. We say that a monodromy factorization is transitive if the images
of the factors under the morphism Γ2 → S6 mapping ti to the transposition (i, i + 1)

generate the entire symmetric group S6.

Theorem 31 (Siebert and Tian [ST]). Let f : X → S2 be a genus 2 differentiable
Lefschetz fibration with transitive monodromy. If all nodal singularities are irreducible
then f is isomorphic to a holomorphic Lefschetz fibration.

By the work of Auroux, holomorphicity result of Siebert and Tian can be reformu-
lated terms of the mapping class group factorizations.

Theorem 32 ([Auroux]). Let f : X → S2 be a genus 2 differentiable Lefschetz fibration
with transitive monodromy. If all nodal singularities are irreducible then f is isomorphic
(Hurwitz equivalence in Γ2) to a holomorphic Lefschetz fibration which has the transitive
monodromy factorization of the form Ak ·Bϵ = 1 for some integer k ≥ 0 and ϵ ∈ {0, 1}
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And finally there is the work of Chakiris and Smith which says we can reduce

all complex genus two fibrations with no reducible fibres to fibre sums of three basic
examples. If the Lefschetz fibration has no reducible nodal singularity and only has
irreducible nodal singularities namely the type (n, s) = (n, 0) then we are able to say that
it is holomorphic and it must be decomposable as one of the following types Rationals,
K3 blown up at 2pts, and the Horikawa.

Theorem 33 ([Chakiris, Smith] ). Let f : X → S2 be a genus 2 Lefschetz fibration that
has no reducible nodal singularities and total space X is Kähler. Then it is a fibresum
of the shape AmBn = 1 or Cp = 1 where m,n, p ∈ Z ≥ 0 and the basic words A,B,C
are given by:

1. A : (t1t2t3t4t
2
5t4t3t2t1)

2 = 1

2. B : (t1t2t3t4t5)
6 = 1

3. C : (t1t2t3t4)
10 = 1

These basic holomorphic genus 2 Lefschetz fibrations building blocks are very im-
portant since from complex point of view they are Kähler surfaces that are on (the
extension of) the Noether-Horikawa line K2 = 2pg − 4 and they are the generators of
the genus 2 Lefschetz fibrations with no separating nodal singularities which are all
holomorphic by the work of Chakiris and Smith.

Thus if we are given genus 2 Lefschetz fibration of type (20, 0) then we know it is
isomorphic to the CP2#13CP2, and for type (30, 0) then it is K3#2CP2, and (40, 0)

then it is the Horikawa surface. Similarly (50, 0) then it is fibersum AB, (60, 0) is A3,
(70, 0) is A2B, (80, 0) is either A4 or C2 and so on. Except for the ambiguity at the
number of irreducible nodal singularities being the multiple of 40m we have a unique
fibersum decomposition in terms of known holomorphic building blocks. And for the
40m ones we have two possible fibersum decompositions. For any (n, s) = (10m, 0) with
m ̸= 0 (mod 4) we have exactly one type of decomposition while at (n, s) = (40m, 0)

we have exactly two kinds of decompositions and they are not deformation equivalent
by the work of [Horikawa].
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It seems there is little prospect for a complete classification of isomorphism classes

of hyperelliptic Lefschetz fibrations. In fact, there are infinitely many distinct Lefschetz
fibrations of genus two with the same numbers of singular fibers of each type. Two
Lefschetz fibrations of the same genus over a given base space are called stably isomor-
phic if they become isomorphic after fiber-summed with the same number of copies of
a ‘universal’ Lefschetz fibration.

If the Lefschetz fibration has reducible nodal singularity and thus it is of type (n, s)

then we do not know priori whether this smooth and symplectic Lefschetz fibration is
holomorphic or not. While for small Euler characterstic ones we can determine given
ones underlying 4-manifolds diffeomorphic type, the complete classification is not yet
complete. We do have, however, a classfication in stable sense where one can consider
fiber summing with large number of rational genus 2 holomorphic Lefschetz fibrations
which makes the fiber summed one to be holomorphic as well as to admit explicit
decomposition in terms of known types that are Rationals, K3 blown up at 2pts, and
Auroux’s fibration. This stabilization is in a way complexificaiton of a non-holomorphic
genus 2 Lefschetz fibration in a sense that it remembers the number of reducible nodal
singularities that the original non-holomorphic one had in stabilized copy.

Theorem 34 (Endo and Kamada [EK]). Let f : X → S2 be a genus 2 Lefschetz fibration
with (n, s). There exists a positive integer m0 such that for any integer m ≥ m0,

f#mf0 ∼= #(a+m)f0#bf1#sf2,1
for a sufficiently large integer m

What this shows is that every genus 2 Lefschetz fibration with s number of reducible
nodal singularities (which obstruct the holomorphicity of the fibration) will become
holomorphic after it stablizes by fibersumming with sufficient number of rational genus
2 Lefschetz fibrations and it also decomposes in a way that it is fibersum determined
number of AaBb together with s number of Auroux’s fibration which is known to be
holomorphic by the work of Auroux.
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3.4 Formulation of L2,10m via H2 → P(2, 4, 6, 10)

Recall that all genus 2 curves are hyperelliptic which gives M2 = H2 and starting
with genus 2, we are able to reach infinitely many surfaces of general type with κ = 2.
Thus in terms of the geography lattice (χ, c21), the general type surfaces have K2 = c21 >

0 meaning they are strictly above the elliptic line (c21 = 0). Also the genus 2 fibrations
play a special role for surfaces of general type as the presence of a genus 2 fibration
accounts for the standard exception to the birationality of the bicanonical map.

In order to formulate the moduli stack L2,10m of fibered algebraic surfaces over P1

with genus 2 curves as fibers and discriminant divisor degree equal to 10m = n+2s with
n number of irreducible and s number of reducible nodal singularities distributed over
µ number of singular fibers, we are in need of M2 the Deligne–Mumford compactified
stack of stable genus 2 curves that has two distinct nodal divisors M2 ∖M2 = {δ0, δ1}
where δ0 is the irreducible and δ1 is the reducible stable nodal genus 2 curve respectively.

As M2 is a 3-fold moduli, we bring Mori’s minimal model program on M2 [Hassett,
Moon] and GIT quotient result [Dolgachev] as well as Igusa’s invariant & moduli of
genus 2 curves over Spec(Z[1/2]) [Igusa] to arrive at the following birational geometric
fact on the coarse moduli space (over c as well as over Fq with characteristic Fq ̸= 2, 3, 5)
that the tame Deligne–Mumford compactified moduli stack M2 of stable genus 2 curves
has a minimal model P6//SL2 acquired through the divisorial contraction of the nodal
divisor δ1 to a point. The diagonal maps are divisorial contractions.

M2

δ0

}}{{
{{
{{
{{ δ1

((QQ
QQQ

QQQ
QQQ

QQQ

ASat
2 P6//SL2

∼= P(2, 4, 6, 10)

Figure 3.2: Mori’s program for M2

Let us designate the regular morphism φf ∈ Homm(P1,M2) that induces the stable
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genus 2 fibrations f : Y = φ∗

f (C2) → P1 as the moduli map φf : P1 → M2 which
becomes nonsingular semistable genus 2 fibrations f : X → P1 after the resolution of
singularity ν : X → Y

X

f

��

ν // Y = φ∗
f (C2) //

g

��

C2

p
��

P1 P1
φf

//

φ̂f

''PP
PPP

PPP
PPP

PPP

φ̃f

  A
AA

AA
AA

AA
AA

AA
AA

AA
AA

A M2

δ1
��

P(2, 4, 6, 10)

π
��

P3

(3.8)

Proposition 35. The moduli stack L2,10m of stable genus 2 fibrations over P1 with
degree of the discriminant divisor equal to 10m = n+ 2s with (n, s) nodal singularities
is the Deligne–Mumford mapping stack Homm(P1,M2).

Proof. Above discussion shows that L2,10m
∼= Homn(P1,M2). To show that this is a

Deligne–Mumford stack, notice that the target stack M2 over K with char K ̸= 2, 3, 5

is a tame Deligne–Mumford stack by [AOV]. Thus, Homm(P1,M2) is also a Deligne–
Mumford stack by [Olsson].

3.5 Motive count of Homm(P1,P(2, 4, 6, 10))

We first need to work out the motive counts for the class
[
Poly(d1,··· ,dm)

1

]
inK0(VarK).

Proposition 36. Fix 0 ≤ d1 ≤ d2 ≤ · · · ≤ dm. Then,

[
Poly(d1,··· ,dm)

1

]
=

Ld1+···+dm − Ld1+···+dm−m+1, if d1 ̸= 0

Ld1+···+dm , if d1 = 0
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Proof. The proof for this is analogous to [FW], Theorem 1.2 (1), and is a direct gen-
eralization of Proposition 15 in [HP]. Here, we recall the differences to the work in
[FW].

Step 1: The space of (f1, . . . , fm) monic polynomials of degree d1, . . . , dm is instead
the quotient Ad1 × · · · × Adm/(Sd1 × · · · × Sdm)

∼= Ad1+···+dm . We have the same fil-
tration of A

∑
di by R

(d1,...,dm)
1,k : the space of monic polynomials (f1, . . . , fm) of degree

d1, . . . , dm respectively for which there exists a monic h ∈ K[z] with deg(h) ≥ k and
monic polynomials gi ∈ K[z] so that fi = gih for any i. The rest of the arguments
follow analogously, keeping in mind that the group action is via Sd1 × · · · × Sdm .

Step 2: Here, we prove that R(d1,...,dm)
1,k −R

(d1,...,dm)
1,k+1

∼= Poly(d1−k,...,dm−k)
1 ×Ak. Just

as in [FW], the base case of k = 0 follows from the definition. For k ≥ 1, the rest of the
arguments follow analogously just as in Step 1 of loc. cit.

Step 3: By combining Step 1 and 2 as in [FW], we obtain[
Poly(d1,...,dm)

1

]
= Ld1+···+dm −

∑
k≥1

[
Poly(d1−k,...,dm−k)

1

]
Lk

For the induction on the class
[
Poly(d1,...,dm)

1

]
, we use lexicographic induction on the

pair (d1, . . . , dm). For the base case, consider when d1 = 0. Here the monic polynomial
of degree 0 is nowhere vanishing, so that any polynomial of degree di for i > 1 constitutes
a member of Poly(0,d2,...,dm)

1 , so that Poly(0,d2,...,dm)
1

∼= Ad2+···+dm .
Now assume that d1 > 0. Then, we obtain
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[
Poly(d1,...,dm)

1

]
= L(d1+···+dm) −

∑
k≥1

[
Poly(d1−k,...,dm−k)

1

]
Lk

= Ld1+···+dm

−

(
d1−1∑
k=1

(L(d1−k)+···+(dm−k) − L(d1−k)+···+(dm−k)−m+1)Lk + L(d2−d1)+···+(dm−d1)Ld1

)
= Ld1+···+dm

−

(
d1−1∑
k=1

(Ld1+···+dm−(m−1)k − Ld1+···+dm−(m−1)(k+1)) + Ld1+···+dm−(m−1)d1

)
= Ld1+···+dm − Ld1+···+dm−m+1

Note that whenever di ̸= 0,

[Poly(d1,··· ,dm)
1 ] = [Poly(1,··· ,1)

1 ](L(d1+···+dm)−m) = (Lm − L)(L(d1+···+dm)−m)

And we set [F(d1,··· ,dm)] = [Gm] · [Poly(d1,··· ,dm)
1 ].

Here is the class [Homm(P1,P(2, 4, 6, 10))] in K0(VarK) for the coarse moduli space
of Homm(P1,P(2, 4, 6, 10)) over field K that char(K) ̸= 2, 3, 5.

We can easily see how below method would generalize to the motive count of P(λ⃗)

[c(Homd(P1,P(λ⃗)))] ∈ K0(VarK)
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[c(Homm(P1,P(2, 4, 6, 10)))]

= [F2m,4m,6m,10m] +
2m−1∑
i=0

[Fi,4m,6m,10m] +
4m−1∑
j=0

[F2m,j,6m,10m]

+

6m−1∑
k=0

[F2m,4m,k,10m] +

10m−1∑
l=0

[F2m,4m,6m,l]

= [Gm]

([
Poly(2m,4m,6m,10m)

1

]
+

2m−1∑
i=0

[
Poly(i,4m,6m,10m)

1

])

+

4m−1∑
j=0

[
Poly(2m,j,6m,10m)

1

]
+

6m−1∑
k=0

[
Poly(2m,4m,k,10m)

1

]
+

10m−1∑
l=0

[
Poly(2m,4m,6m,l)

1

]
= (L− 1)

(
L22m − L22m−3

)
+ (L− 1)

(
L20m +

2m−1∑
i=1

(L20m+i − L20m+i−3)

)

+ (L− 1)

L18m +

4m−1∑
j=1

(L18m+j − L18m+j−3)


+ (L− 1)

(
L16m +

6m−1∑
k=1

(L16m+i − L16m+k−3)

)

+ (L− 1)

(
L12m +

10m−1∑
l=1

(L12m+l − L12m+l−3)

)
= (L− 1)

(
L22m − L22m−3

)
+ (L− 1)

(
−L20m−2 − L20m−1 + L22m−3 + L22m−2 + L22m−1

)
+ (L− 1)

(
−L18m−2 − L18m−1 + L22m−3 + L22m−2 + L22m−1

)
+ (L− 1)

(
−L16m−2 − L16m−1 + L22m−3 + L22m−2 + L22m−1

)
+ (L− 1)

(
−L12m−2 − L12m−1 + L22m−3 + L22m−2 + L22m−1

)
= (L− 1)

(
L22m + 4 · L22m−1 + 4 · L22m−2 + 3 · L22m−3

)
+ (L− 1)

(
−L20m−2 − L20m−1 − L18m−2 − L18m−1

)
+ (L− 1)

(
−L16m−2 − L16m−1 − L12m−2 − L12m−1

)
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3.6 Point count of L2,10m the moduli of semistable genus 2

hyperelliptic fibrations

Given the above motive count of [c(Homm(P1,P(2, 4, 6, 10)))], we are now able to
give the upper bound for the point count of the moduli L2,10m of nonsingular semistable
genus 2 fibrations over P1 with discriminant divisor degree equal to 10m = n + 2s

with (n, s) nodal singularities distributed over µ distinct number of singular fibers.
Taking the motivic measure to Z to acquire the |c(Homm(P1,P(2, 4, 6, 10)))(Fq)|, then
we will subtract the point count of the boundary component P1 ↪→ δ0 which is when
the projective line P1 is embedded to be entirely inside the nodal divisor δ0. While
we can’t get the exact point count of this, we are able to provide the upper bound
point count through the identification δ0 = M1,2/Z2 which implies |c(Homm(P1, δ0 =

M1,2/Z2))(Fq)| and apply the Tate-Shioda formula for the upperbound of the rank of
MW (X) the Mordell-Weil group of X.

As usual, we let X → P1 be an elliptic surface over k with generic fibre E over
k(P1). The K-rational points E(K) form a group which is traditionally called MW (X)

the Mordell-Weil group of X. The MW (X) is a group of sections on elliptic surface X.

Theorem 37 (The Shioda-Tate formula). Let X be a nonsingular elliptic surface over
P1 with a distinguished section and µ number of distinct singular fibers. Denote by
ρ(X) the rank of NS(X) which is the same as Picard number of X and ri the number
of irreducible components of a singular fiber together with MW (X) the Mordell-Weil
group of X.

ρ(X) = 2 +

µ∑
i=1

ri + rk(MW (X))

The following relation is worth noticing:

#

components of

singular fibre

 =

v(∆) in the multiplicative case;

v(∆)− 1 in the additive case;
(3.9)
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Note that if X is semistable (only Iki singular fibers) then ri = ki − 1, ∀i. Thus, we

have

ρ(X) = 2 +

µ∑
i=1

(ki − 1) + rk(MW (X))

ρ(X) = 2 +

µ∑
i=1

(ki)− µ+ rk(MW (X))

ρ(X) = 2 + 12n− µ+ rk(MW (X))

Note by the Igusa bound 0 ≤ ρ ≤ b2 and by b2 = 12n− 2

0 ≤ ρ ≤ 12n− 2

which leads us to

4 ≤ µ ≤ 12n

by
µmin = 2 + 12n− ρ+ rk(MW (X)) = 2 + 12n− (12n− 2) + 0 = 4

and µmax = 12n when X is stable.

Thus

rk(MW (X))max = ρmax + µmax − (2 + 12n) = (12n− 2) + (12n)− (2 + 12n) = 12n− 4

(Note that the rk(MW (X))max is achieved when X has the maximal Picard number
as well as being a stable elliptic surface.) Finally,

0 ≤ rk(MW (X)) ≤ 12n− 4
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Theorem 38 (Point count of the moduli L2,10m). If char(Fq) ̸= 2, 3, 5, then

||L2,10m(Fq)|

≤ (q − 1)
(
q22m + 4 · q22m−1 + 4 · q22m−2 + 3 · q22m−3

)
+ (q − 1)

(
−q20m−2 − q20m−1 − q18m−2 − q18m−1

)
+ (q − 1)

(
−q16m−2 − q16m−1 − q12m−2 − q12m−1

)
−
(
(12m− 4)

2
(q10m+1 − q10m−1)

)
Proof. Note that the point count of the Igusa data space is

|c(Homm(P1,P(2, 4, 6, 10)))(Fq)|

= (q − 1)
(
q22m + 4 · q22m−1 + 4 · q22m−2 + 3 · q22m−3

)
+ (q − 1)

(
−q20m−2 − q20m−1 − q18m−2 − q18m−1 − q16m−2

)
+ (q − 1)

(
−q16m−1 − q12m−2 − q12m−1

)
From this, we substract the point count of the boundary component which is

|c(Homm(P1, δ0 = M1,2/Z2))(Fq)|.

(
(12m− 4)

2
(q10m+1 − q10m−1)

)
Since P1 → M1,2 would correspond to the semistable elliptic surfaces with a dis-

tinguished section for the zero in the Mordell-Weil group of elliptic fiber together with
another point in Mordell-Weil lattice, this is equivalent to the rank of the Mordell-Weil
group of X which is bounded above by (12m − 4) for a degree m semistable elliptic
surface which we divide by 2 and multiply by (q10m+1 − q10m−1) since that is exactly
how many degree m semistable elliptic surfaces there are.

3.7 Upper bound point counts of c(Homm(P1,Hg)) for g ≥ 2
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Begin with the observation that,

∣∣∣c(Homm(P1,Hg)
)
(Fq)

∣∣∣ ≤ ∣∣∣c(Homm(P1,P(λ⃗g))
)
(Fq)

∣∣∣
which follows from the minimal model of Hg → P2g+2//SL2 → P(λ⃗g) being a proper,

birational map.

We are now able to state how the upper bound point counts are for c
(

Homm(P1,Hg)
)

for g ≥ 2 by using
[
c
(

Homm(P1,P(λ⃗g))
)]

∈ K0(VarK) for λ⃗g = (d1, · · · , dη) over any
field K with char(K) ∤ di for 1 ≤ i ≤ η

We apply to the following,

Lg,(4g+2)m
∼= Homm(P1,Hg) for g even.

Lg,2(4g+2)m
∼= Homm(P1,Hg) for g odd.

Begin with g = 2, note M2 = H2 → P6//SL2 → P(2, 4, 6, 10)

[
c
(

Homm(P1,P(2, 4, 6, 10))
)]

∼ O
(
q22m+1

)
This is by the above.

g = 3, note H3 → P8//SL2 → P(2, 3, 4, 5, 6, 7, 8, 9, 10)

[
c
(

Homm(P1,P(2, 3, 4, 5, 6, 7, 8, 9, 10))
)]

∼ O
(
q54m+1

)
The proof follows directly from the above g = 2 case.

g = 4, note that H4 → P10//SL2 → P(λ⃗4) where λ⃗4 is
λ⃗4 = (2, 4, 6, 6, 6, 6, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10,−
−11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13,−
−13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,−
−15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16,−
−17, 17, 17, 17, 17, 18, 19, 19, 21, 21)
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There are 106 invariants [BP] and
η=106∑
i=1

di = 1352

[
c
(

Homm(P1,P(λ⃗4))
)]

∼ O
(
q1352m+1

)
Starting with g = 4 there is an explosion of the invariants of binary forms, and yet,

using the above we can show that the motive count can be computed given that we
have the weights λ⃗g related to the minimal model of Hg. The weights come from the
invariant theory of binary forms.

g ≥ 4, note that Hg → P2g+2//SL2 → P(λ⃗g)

[
c
(

Homm(P1,P(λ⃗g))
)]

∼ O

q( η∑
i=1

di)m+1



Theorem 39 (Point count of the moduli Lg,∆). For λ⃗g = (d1, · · · , dη) over any field
K with char(K) ∤ di for 1 ≤ i ≤ η, then |Lg,∆(Fq)| is bounded above by the polynomial
in q.

Proof. Let O(Vn)
SL2 denote the algebra of invariants of binary forms (forms in two

variables) of degree n with complex coefficients. O(Vn)
SL2 has a finite basis for all n by

the Hilbert’s theorem. And thus we see that the point count will be a polynomial in q.
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