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Abstract

Modern statistical learning often faces high-dimensional data, for which the number of

features that should be considered is very large. In consideration of various constraints

encountered in data collection, such as cost and time, however, the available samples

for applications in certain domains are of small size compared with the feature sets. In

this scenario, statistical estimation becomes much more challenging than in the large-

sample regime. Since the information revealed by small samples is inadequate for finding

the optimal model parameters, the estimator may end up with incorrect models that

appear to fit the observed data but fail to generalize to unseen ones. Owning to the

prior knowledge about the underlying parameters, additional structures can be imposed

to effectively reduce the parameter space, in which it is easier to identify the true one

with limited data. This simple idea has inspired the study of high-dimensional statistics

since its inception.

Over the last two decades, sparsity has been one of the most popular structures to

exploit when we estimate a high-dimensional parameter, which assumes that the num-

ber of nonzero elements in parameter vector/matrix is much smaller than its ambient

dimension. For simple scenarios such as linear models, L1-norm based convex estima-

tors like Lasso and Dantzig selector, have been widely used to find the true parameter

with reasonable amount of computation and provably small error. Recent years have

also seen a variety of structures proposed beyond sparsity, e.g., group sparsity and low-

rankness of matrix, which are demonstrated to be useful in many applications. On

the other hand, the aforementioned estimators can be extended to leverage new types

of structures by finding appropriate convex surrogates like the L1 norm for sparsity.

Despite their success on individual structures, current developments towards a unified
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understanding of various structures are still incomplete in both computational and sta-

tistical aspects. Moreover, due to the nature of the model or the parameter structure,

the associated estimator can be inherently non-convex, which may need additional care

when we consider such unification of different structures.

In this thesis, we aim to make progress towards a unified framework for the estima-

tion with general structures, by studying the high-dimensional structured linear model

and other semi-parametric and non-convex extensions. In particular, we introduce the

generalized Dantzig selector (GDS), which extends the original Dantzig selector for s-

parse linear models. For the computational aspect, we develop an efficient optimization

algorithm to compute the GDS. On statistical side, we establish the recovery guarantees

of GDS using certain geometric measures. Then we demonstrate that those geometric

measures can be bounded by utilizing simple information of the structures. These results

on GDS have been extended to the matrix setting as well. Apart from the linear model,

we also investigate one of its semi-parametric extension – the single-index model (SIM).

To estimate the true parameter, we incorporate its structure into two types of simple

estimators, whose estimation error can be established using similar geometric measures.

Besides we also design a new semi-parametric model called sparse linear isotonic model

(SLIM), for which we provide an efficient estimation algorithm along with its statistical

guarantees. Lastly, we consider the non-convex estimation for structured multi-response

linear models. We propose an alternating estimation procedure to estimate the param-

eters. In spite of dealing with non-convexity, we show that the statistical guarantees for

general structures can be also summarized by the geometric measures.
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Chapter 1

Introduction

In recent years, data-driven approaches have gained unprecedented popularity in a wide

range of disciplines, such as social science, linguistics, healthcare and finance, to name

a few. Numerous applications of data analysis have greatly impacted our daily life.

For example, useful patterns and information are extracted from data to help people

make decisions (e.g., disease diagnosis [147], portfolio selection [103] and product recom-

mendation [142]). Emerging intelligent systems trained using massive data, like voice

assistant and autonomous vehicles, can emancipate people from time-consuming or te-

dious tasks. Moreover, the recent victory of the AlphaGo [149] against the top human

go players has created a tremendous sensation, registering a peak of “Big Data”.

The success of data science critically relies on the methodology developed in machine

learning and statistics. To harness the power of data, many statistical models have

been proposed to describe intrinsic structures hidden in the data, and searching for the

model that best explains the collected data often requires the estimation of the model

parameters. Classical statistical machine learning typically deals with data arising in the

low dimension, meaning that the number of features/predictors is relatively small, for

which the model estimation can be performed with moderate amount of data [101]. In

1



2

recent years, however, high-dimensional data are frequently encountered in practice [27],

where one has to consider a large set of features. Due to the expensive cost of data

collection process or other constraints, it is yet difficult to gather large samples in certain

scientific domain of applications, e.g., bioinformatics, climate informatics, ecology and

etc. The limited sample size in comparison to the data dimension has posed significant

challenges for the analysis.

In principle, the challenges brought by high-dimensional data are two-fold. In terms

of methodology, data scarcity usually leads to multiple, even infinitely many models

that seemingly well fit the observed data but fail to capture the true underlying pat-

terns. To address the issue, we need methods that can distinguish the true model from

the spurious ones. On the other hand, theoretical study for high-dimensional data also

needs new treatments. In the high-dimensional regime, large-sample based asymptotic

analysis [170] is not suitable for characterizing the behavior of estimators under small

sample. Therefore it is necessary to derive non-asymptotic results, which provide finite-

sample guarantees that hold with high probability. Aiming at the two main challenges,

the research on high-dimensional statistics has made substantial progress over the last

two decades. Simply put, the key philosophy behind the study of high-dimensional da-

ta is the exploitation of prior knowledge on the model structure. Generally speaking,

the source of such knowledge can be domain-specific expertise, experimental evidence

or certain subjective beliefs. By enforcing the consistency between the model and the

prior knowledge, we can effectively eliminate the incorrect models without using lots of

data, which explains, at high level, why we can survive the high dimension. Though

many previous works have demonstrated, both empirically and theoretically, that cer-

tain structural priors can significantly benefit the estimation of models, attention has

rarely been devoted to understanding different apriori structures in a unified framework.



3

To some extent, a general framework can facilitate both algorithmic design and theo-

retical analysis of the estimator, as well as reveal the essence that plays a role in the

estimation. Conversely, a unified understanding may inspire better ways to encode the

prior knowledge. This thesis is motivated by this thread of thought.

1.1 High-Dimensional Statistics

1.1.1 Statistical Estimation and Curse of High Dimensions

Suppose that a parametric model P = {fθ | θ ∈ Θ ⊆ Rp} is proposed for a sample

space Z, from which an independent and identically distributed (i.i.d.) data sample

Zn = {z1, z2, . . . , zn} is generated with a specific parameter θ∗. The size of a data

point usually reflects the ambient dimension p of the parameter space Θ. Given the data

Zn, one of the central goals of statistical learning is to find an accurate approximation

of θ∗. An estimator θ̂(Zn) is defined as a function that maps the (random) sample

Zn to an estimate in the parameter space, which is abbreviated as θ̂n or θ̂ when the

context is clear. One common way to design estimators is through the empirical risk

minimization (ERM) [171] framework. In order to characterize the fitness between a

single observation zi and a parameter θ, a loss function ` : Z × Θ 7→ R is associated

with the model P, and the ERM estimator tries to minimize the average of ` over Zn,

i.e.,

θ̂ERM = argmin
θ∈Θ

1

n

n∑
i=1

` (zi,θ) . (1.1)

Particularly the maximum likelihood principle is often used to specify the ERM es-

timator, where the loss function ` is the negative log-likelihood of the model, i.e.,

`(z,θ) = − log fθ(z). In general, the estimators designed in classical statistical learning

are focused on the low-dimensional setting in which n � p, and the parameter space

Θ is usually unrestricted and equal to Rp. The setup of the corresponding theoretical
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studies typically assumes that n→ +∞ while p is fixed. To be specific, let us consider

the following simple linear model,

y = 〈x,θ∗〉+ ε , (1.2)

where x ∈ Rp and y ∈ R are predictor vector and response respectively, and the stochas-

tic noise ε ∼ N (0, 1) is standard Gaussian. Given observed data Zn = {zi = (xi, yi)}ni=1

with n > p, the maximum likelihood principle gives rise to the ordinary least squares

(OLS) estimator, which estimates θ∗ by solving

θ̂OLS = argmin
θ∈Rp

1

2n

n∑
i=1

(yi − 〈xi,θ〉)2 =
1

2n
‖y −Xθ‖22 , (1.3)

where X = [x1,x2, . . . ,xn]T is called design matrix, and y = [y1, y2, . . . , yn]T is called

response vector. The unique solution to (1.3) can be compactly written as

θ̂OLS = (XTX)−1XTy , (1.4)

as long as XTX is invertible, and numerical methods can efficiently compute this solution

in polynomial time [97]. Regarding the theoretical analysis, based on central limit

theorem (CLT) and delta method [39], one has asymptotic normality for θ̂OLS as n →

+∞,
√
n
(
θ̂OLS − θ∗

)
d−→ N

(
0,Σ−1

)
, (1.5)

in which Σ = E
[
xxT

]
is the covariance matrix for x. That is to say, for sufficiently large

sample, the distribution of θ̂OLS is close to N
(
θ∗, Σ−1

n

)
, which can be further applied to

inferential tasks, such as constructing hypothesis test and confidence set. Therefore, the

study of linear models is rather complete in the low dimension for both computational

and statistical aspects. The same estimation problem, however, exhibits rather different
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characteristics in the high-dimensional setting. First, the OLS solution is not unique

when n < p, as the columns of X are linearly dependent. In fact, there can be infinitely

many θ that fit the data perfectly (i.e., satisfy y = Xθ), from which by no means can

θ∗ be distinguished. Second, the asymptotic normality may break down even if a θ̂ can

be specified, and the limiting case poorly captures the finite-sample behavior of θ̂. In

short, switching linear models to the high-dimensional regime renders the results for

the low dimension meaningless. What is worse, such situation is prevalent in statistical

learning.

1.1.2 Surviving High Dimension: Sparsity and Convexity

The striking differences between the high-dimensional estimation and that in low di-

mension inspire the development of high-dimensional statistics, which concerns the esti-

mation of statistical models under small sample. Since its inception [165], the core idea

behind high-dimensional estimation has been centered around imposing prior structure

on the true parameter θ∗, which can be fulfilled by restricting the parameter space Θ

to be a strict subset of Rp. The restricted parameter space often represents a parsi-

monious structure, which reflects the natural appeal to simplicity as suggested by the

old principle, Occam’s razor [163]. Parsimony is not only a subjective preference in

consideration of interpretability, but also supported by empirical evidence in real-world

applications. One of the most well-known parsimonious structures in high-dimensional

statistics is sparsity [165], which posits that θ∗ has only few non-zero elements. For

instance, natural images admit sparse representations in the wavelet basis, and a text

document is usually related to only a few topics out of thousands of categories. At

first glance, confining the parameter space using prior knowledge seems trivial, but the

subsequent estimation is in fact more challenging than it appears. Returning to the

linear model, if sparsity is assumed and Θ = {θ ∈ Rp | ‖θ‖0 = | supp(θ)| ≤ s � p} is
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an s-sparse parameter space, a straightforward estimator can be obtained by extending

(1.3),

θ̂0 = argmin
θ∈Rp

1

2n
‖y −Xθ‖22 s.t. ‖θ‖0 ≤ s . (1.6)

However, the combinatorial nature of (1.6) makes the optimization NP-hard in general,

which prevents us from pursuing this direction. To bypass the computational intractabil-

ity of (1.6), numbers of alternatives have been proposed to incorporate the sparsity. A

big family of approaches are based on convexification, which basically replaces ‖ · ‖0 by

its convex surrogate, L1 norm ‖ · ‖1, leading to a convex program,

θ̂cs = argmin
θ∈Rp

1

2n
‖y −Xθ‖22 s.t. ‖θ‖1 ≤ λ , (1.7)

where λ is a tuning parameter. In fact, the more widely adopted formulation is the

regularized estimator, known as Lasso [165],

θ̂rg = argmin
θ∈Rp

1

2n
‖y −Xθ‖22 + λ‖θ‖1 , (1.8)

which is also a convex optimization problem. In the literature, earlier analyses have

shown that under mild assumptions on the distribution of x and suitable choice of λ,

the L2-error of θ̂rg satisfies

∥∥∥θ̂rg − θ∗
∥∥∥

2
≤ O

(√
s log p

n

)
, (1.9)

with high probability if the true θ∗ is s-sparse. A similar result holds for the constrained

estimator θ̂cs as well. Unlike the asymptotic result, the finite-sample bound gives an

exact dependency of error on n, p and s. More importantly, the sample size only needs

to satisfy n = ω(s log p) in order to guarantee the estimation consistency, while the

low dimension requires n = ω(p). The sharp contrast between the requirements on
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sample size conveys a key message that additional structures of θ∗ can greatly benefit

the estimation.

The topic of sparsity has also been extensively investigated in the field of compressed

sensing (CS). The goal of compressed sensing is to estimate a sparse vector (i.e., signal)

from a small number of linear measurements, which is similar to the estimation of sparse

linear models. The most significant difference between the two settings is that the design

matrix X in CS is often well controlled by the experimenter. The ability to manipulate

the design can guarantee many nice properties, based on which several algorithms are

proposed for CS, including orthogonal matching pursuit (OMP) [167] and compressive

sampling matching pursuit (CoSaMP) [126], just to name a few. Though being fast in

practice, these algorithms are less extensible to other settings beyond sparsity and linear

measurements. Moreover, the data gleaned in statistical learning are less controllable,

and the methods above can be vulnerable to the violation of the desired properties.

1.2 Beyond Unstructured Sparsity

The sparsity structure introduced in Section 1.1.2 is sometimes termed as unstructured

sparsity, since no additional pattern of sparsity is known. Recent years have witnessed

a surge of development in other types of sparsity, which are considered as structured

sparsity [11,12,76] (see Figure 1.1). A popular example is the group sparsity [183], where

G1
G2
G3

G4

a few
non-zero 
groups

Group
sparsity

a few
change 
points

Fused
sparsity

= xp

q r (<< p, q)

Low-rankness

Figure 1.1: Examples of structures beyond unstructured sparsity
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sparsity is imposed on predefined groups of entries of θ∗ rather than the individuals.

The groups themselves can be structured as well, e.g., non-overlapping, overlapping with

hierarchy, and etc. Group sparsity has found numbers of specific applications in real-

world problems, such as expression quantitative trait loci (eQTL) mapping in genetics

[95], and sparse coding in signal processing [91]. Another widely-used structured sparsity

is the fused sparsity [166], where only a small fraction of neighboring pairs in θ∗ have

different values from each other. That is to say, θ∗ is piecewise constant with only few

change points. Apart from the adjacency induced by the inherent one-dimensional chain

structure, the elements of θ∗ can be organized as nodes of a graph, and the fused sparsity

can be defined over the edges of the graph. The applications of fused sparsity include

time-varying network recovery [2], DNA copy number variation (CNV) detection [164]

and so on. The notion of sparsity can also be suitably generalized to matrix setting,

resulting in the low-rank structure, which has been extensively exploited in the context

of recommender systems [96], natural language processing [50], image analysis [33]. The

low-rank structure simply assumes that the true matrix to be estimated has relatively

small rank, i.e., has only few non-zero singular values. Furthermore, more complex

structures can be created from simpler ones. For instance, one may assume that the true

parameter simultaneously has multiple different structures [143], or it is a superposition

of two or more structured components [66,87].

Given massive interesting structures, the key to extending the aforementioned idea

of convexification is to find the corresponding convex surrogate functions (usually norm-

s). For the group sparsity and fused sparsity, their convex surrogates are simply given

by the L2,1 group norm [183] and the total variation (TV) function [166] respective-

ly, while the low-rank structure is usually captured by the nuclear norm [141]. In the

literature, there are also systematic ways to define convex surrogates, for example, via

submodular function [13] and infimal convolution [40]. Broadly speaking, the surrogate
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function encodes the constrained parameter space in which θ has limited degree of free-

dom, such that the preferred structure has a small function value. Computationally,

using either constrained or regularized estimator with a convex loss `, we end up with a

convex program that can be solved globally in polynomial time [10,24,26]. Statistically,

however, the state-of-the-art understanding falls short for general structures. Earlier

works [21, 174, 188] were simply focused on the unstructured sparsity, which were lat-

er extended to group sparsity [75], fused sparsity [113], and etc. Those case-by-case

analyses lack a general view into the key factors that determine the performance of

the convex surrogates. On the contrary, a unified framework for general structures can

avoid complicacies and help the analysis when we cope with new structures.

In this thesis, our first goal is committed to have a deeper understanding towards

such unification. First, we concentrate on the Dantzig-type estimator for linear models,

which is less studied in the literature. In particular, we extend the original Dantzig se-

lector [32] to the generalized Dantzig selector (GDS), in order to accommodate general

structures. Unlike the loss-minimization formulation in (1.7) and (1.8), the objective

of Dantzig-type estimator is the convex surrogate instead of the loss, which is often

non-smooth and needs extra care. Therefore, we come up with an efficient alternating

direction method of multipliers (ADMM) to solve the associated optimization prob-

lem. On the statistical side, we introduce the critical geometric measures – Gaussian

width [63] and restricted norm compatibility – which describe the recovery guarantees of

GDS. Following that, we turn to bounding the geometric measures by utilizing simple in-

formation of the structures, which largely simplifies the calculation. Moreover, we have

extended those results to the matrix setting. Second, we focus on a semi-parametric

extension of linear models, the single-index model (SIM), where the response is assumed

to be an unknown transformation of the original linear measurement. To estimate the

underlying parameter, we propose two types of simple estimators, the constrained and
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the regularized one, based on U -statistics [98]. Under suitable conditions, the L2-error

bound of both estimators can be established using similar geometric measures. In

addition to SIMs, we also propose a new semi-parametric model called sparse linear iso-

tonic model (SLIM) for the high-dimensional setting, which allows nonlinear monotone

transformations of the features. For SLIM, we design the computational algorithm to

estimate the unknown parameter, which also leverages U -statistics. At the same time,

some statistical guarantees are derived to complement the computational development

of SLIM.

1.3 Beyond Convexity

As discussed in previous sections, the convexification plays a crucial role in high-

dimensional estimation, which addresses the computational challenge brought by the

combinatorial structure of θ∗. If the loss ` is convex, the optimization problems asso-

ciated with both the constrained and the regularized estimator can be solved globally,

which avoids the local optima that could be statistically erroneous. However, pursuing

convexity is not always a free lunch. For certain estimation problems, such as dictio-

nary learning [1] and phase retrieval [34], the natural formulation of the loss is inherently

non-convex, and exploring hidden convexity (if there is any) may require skillful refor-

mulations [8,37]. Furthermore the structure of the estimator θ̂ obtained by using convex

surrogate may slightly differ from the desired one. In some tasks, e.g., variable selection,

extra effort is needed to convert θ̂ into the sought structure. Though convexity guar-

antees global optimality, solving convex estimators sometimes can be computationally

expensive compared with local search heuristics applied to non-convex formulations,

e.g., in low-rank matrix estimation [83,84].

Given the above shortcomings of convex formulations, it is sometimes tempting to
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Sample space

Computationally

well-behaved

(under convexity)

Statistically

interesting

Figure 1.2: Though convexity guarantees computational optima for all data (blue) from
the sample space, only a subset of them (red) are of statistical interest. The rest of data
are fundamentally uninformative in the information-theoretic sense.

try non-convex estimators in high dimension, which could involve either non-convex loss-

es or unconvexified functions that capture the structure of θ∗. As far as computation

is concerned, non-convexity is notorious for the risk of getting trapped in local optima

as well as the computational hardness, especially when discrete structures present (see

(1.6) in Section 1.1.2). Despite those disadvantages, the statistical performance of non-

convex estimators is often superb in practice. Such gap between the computational and

the statistical aspects is rooted in the assumption on data. Without the access to unre-

stricted computational resources, convexity is essential for ensuring the computational

global optima for arbitrary input data. On the contrary, statistical recovery is typically

focused on generic data, since the worst-case scenario can be too pessimistic to en-

counter in practice. Moreover the computational results for untypical data could fail to

make any statistical sense even though they are globally optima guaranteed by convexi-

ty. To see a concrete example, we revisit the linear model (1.2). Suppose that the noise

ε is zero and the received data are of the form (xi, yi) = (0, 0). In this scenario, both

L1-regularized and L1-constrained estimator always yield the estimate θ̂ = 0, regardless

of the true s-sparse θ∗. Although θ̂ = 0 is the computational optimum, its statistical

error can be arbitrarily large due to the pathological data. Thus convexity, to some

extent, is an unnecessarily strong notion in the statistical context, which is illustrated
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by Figure 1.2. With that being said, it is of little interest to study the computation

alone without investigating the recovery guarantee, when it comes to statistical estima-

tion. On the other side, the focus of statistical recovery may give us an opportunity to

relax the convexity requirement and design non-convex methods tailored specifically for

generic data. Guided by this thinking, the study of non-convex optimization/estimation

has received considerable attention over the last few years. Several influential paper-

s [20, 34, 60, 86, 159] have managed to show that some non-convex estimators can be

empowered when generic data are considered. More precisely, under suitable stochastic

assumptions on data, these estimators are able to recover the underlying true parameter

with provably small error, which include the formulation (1.6) for sparse liner regres-

sion that is nevertheless computationally infeasible in the worst case. However, like the

convex setting, so far most of the related works on non-convex estimation have not yet

explored the general structure of parameter, with only few exceptions [130,154].

Motivated by both the success of non-convex optimization and the inadequate atten-

tion on general structures, the second goal of this thesis is to investigate the unification

of structured estimation under non-convexity, which parallels the goal for convex set-

ting. In particular, we consider the problem of estimating multi-response linear models

with general structures. Apart from the parameter vector θ∗ in vanilla linear models,

here we also need to deal with the unknown noise covariance across the responses, which

makes the estimation problem non-convex. We first propose an alternating estimation

(AltEst) framework, a generalization of the popular alternating minimization (AltMin)

procedure for non-convex optimization [82], and plug GDS in this framework to estimate

both parameter vector and noise covariance. In the meanwhile, we derive the statistical

guarantee for an idealized version of AltEst applied to multi-response linear models,

which utilizes the same geometric measures as mentioned earlier. Second we aim at

relaxing the requirement of a norm surrogate when using GDS, along with an improved
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statistical analysis without assuming any idealized conditions. Specifically the GDS in

the proposed AltEst framework is replaced by a constrained estimator which, from a

computational perspective, is more amenable to non-norm (or non-convex) character-

ization of the structure of θ∗. For the statistical analysis, by using a modified proof

strategy, we are able to concentrate on the practical version of AltEst instead of the

idealized one, whose theoretical guarantee is confirmed by the empirical observations.

1.4 Contributions and Organization

The main theme of this thesis is to develop both computational and statistical framework

for some high-dimensional estimation problems, with an emphasis on general structures.

For the computational aspect, we embrace both the idea of convexification and the non-

convexity as it is, and provide algorithmic recipes for different types of estimators. On

the statistical side, we focus on the L2-error analysis and establish the error bound in

terms of certain geometric measures. Moreover, we demonstrate the usefulness of these

geometric measures, by deriving their further bounds for a broad class of structures.

Hence our theoretical results do not leave in the bound any quantities that is hard to

calculate.

The organization of this thesis is as follows.

• In Chapter 2, we provide a review for some background knowledge in probability

theory, convex analysis and optimization. Also, we introduce an important notion

called Gaussian width [63] along with generic chaining [161], an advanced tool in

probability theory, which plays a key role in establishing the statistical guarantees.

• In Chapter 3, we extend the celebrated Dantzig selector for sparse linear models

to accommodate general structures. As to optimization, the proposed general-

ized Dantzig selector (GDS) [41] can be efficiently solved by a variant of basic
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alternating direction method of multipliers (ADMM). In terms of statistical anal-

ysis, we present a unified framework for various structures, which can succinctly

characterize the error bound with certain geometric measures, such as Gaussian

width.

• Chapter 4 is devoted to the study of the geometric measures introduced in Chapter

3. Those geometric measures essentially quantify the complexity of the associated

structures, which need to be computed or bounded in order to determine the final

error bound. For a broad class of structures that can be captured by atomic norms,

we have managed to bound the geometric measures using simple information of

the structure [43].

• In Chapter 5, we extend the results obtained in Chapter 3 and 4 to the matrix

scenario [44], in which we have general bounds for the structures induced by the

family of unitarily invariant norm.

• In Chapter 6, we study an important semi-parametric extension of linear models,

the single-index models (SIMs), which allow the response to be an unknown trans-

fer of the linear measurement. We develop two types of estimators for the recovery

of model parameters [46]. With minimal assumption on noise, the statistical guar-

antees are established for the proposed estimators under suitable conditions, which

also allow general structures of the underlying parameter. Moreover, the proposed

estimator is novelly instantiated for SIMs with monotone transfer function, and

the obtained estimator can better leverage the monotonicity.

• In Chapter 7, we make an attempt to introduce some nonlinearity in the features

of linear models, as opposed to the nonlinear response considered by single-index

models. In particular, we propose a novel model named sparse linear isotonic

model (SLIM) [47], which hybridizes the ideas in both parametric sparse linear
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models and additive isotonic models (AIMs) that assume the response to be a

summation of unknown monotone feature transformations. In the computational

aspect, a two-step algorithm is designed for estimating the sparse parameter as

well as the monotone functions. Under mild statistical assumptions, we show that

the algorithm can accurately estimate the parameter.

• In Chapter 8, we focus on the non-convex estimation of structured multi-response

linear models. By exploiting the noise correlations among different responses, we

employ an alternating estimation (AltEst) procedure [45] to estimate the param-

eters based on GDS. Under suitable sample size requirement and the resampling

assumption, we show that the error of the estimates generated by an variant of

AltEst, with high probability, converges linearly to certain minimum achievable

level, which can be tersely expressed by the geometric measures.

• In Chapter 9, we continue to investigate the structured multi-response linear mod-

els, with several extensions from Chapter 8. We allow the function encoding the

structure of the parameter to be non-convex, through replacing the GDS in the

AltEst framework by a constrained estimator, which results in an alternating-

minimization-type algorithm. In the statistical analysis, we relax the assumption

on the noise distribution. More importantly, we come up with a new analysis for

the practical version of the estimator, which does not resort to any resampling

assumptions. The result also reveals that random initializations of the estimation

algorithm can even yield good recovery of the unknown parameter.

• Chapter 10 is dedicated to the conclusion, in which we summarize the contribu-

tions of this thesis.



Chapter 2

Preliminaries

2.1 Convex Analysis

In this section, we briefly review some basics of convex analysis. Since the scope of this

topic is too wide, we will just cover those used in our works for the sake of simplicity as

well as keeping the self-containedness. For more complete materials, we refer interested

readers to [144].

2.1.1 Convex Set

We start with the definition of convex set in Rp.

Definition 1 (convex set) A set C ⊆ Rp is convex if the following holds for any

u,v ∈ C,

λu + (1− λ)v ∈ C, ∀ 0 ≤ λ ≤ 1 . (2.1)

Examples of convex set include affine set {u | Au = b} (A ∈ Rq×p, b ∈ Rq and q are

fixed), half-space {u | 〈w,u〉 ≥ β} (w ∈ Rp and β ∈ R are fixed), and so on. Another

important instance of convex set is convex cone.

16
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Definition 2 (cone/convex cone) A set C ⊆ Rp is a cone if it satisfies that

u ∈ C =⇒ λu ∈ C, ∀ λ > 0 . (2.2)

If C is further convex, then it is a convex cone.

Given a set A ⊆ Rp, we can construct a cone by the operator cone(A) = {c · a | c ≥

0, a ∈ A}. For an arbitrary set, we can also define a special convex set called convex

hull, which is its smallest convex superset.

Definition 3 (convex hull) Given any set S ∈ Rp, its convex hull, denoted by conv(S),

is the smallest convex set containing S. In particular, if S = {u1,u2, . . . ,un} is finite,

then conv(S) consists of all convex combinations of u1, . . . ,un, i.e.,

cone(S) =

{
λ1u1 + λ2u2 + . . .+ λnun

∣∣∣∣ n∑
i=1

λi = 1, λ1, λ2, . . . , λn ≥ 0

}
(2.3)

2.1.2 Convex Function

Based on the definition of convex set, the convex function can be defined as follows.

Definition 4 (convex function) A function f : Rp 7→ R is said to be convex if its

domain dom f is convex and f satisfies that for any u,v ∈ dom f

f (λu + (1− λ)v) ≤ λf(u) + (1− λ)f(v), ∀ 0 ≤ λ ≤ 1 . (2.4)

Specifically a convex function f is said to be proper if f(u) < +∞ for at least one u

and f(u) > −∞ for all u.

There are several useful notions related to convex functions, such as convex conjugate

and gauge function (a.k.a. Minkowski functional).
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Definition 5 (convex conjugate) For any function f : Rp 7→ R, its convex conjugate

f∗ : Rp 7→ R is given by

f∗(u) = sup
v∈dom f

{〈u,v〉 − f(v)} (2.5)

Note that f∗ is always convex even if f is not. f∗ is also known as Fenchel conjugate. A

special type of convex conjugate is support function, where f is the indicator function

of a non-empty set S, i.e.,

IS(u) =


0, if u ∈ S

+∞, otherwise

. (2.6)

Definition 6 (support function) The support function of a non-empty set S is given

by

hS(u) = sup
v∈Rp

{〈u,v〉 − IS(v)} = sup
v∈S
〈u,v〉 (2.7)

In some places, convex conjugate and support function are only considered for convex

f and S. In this thesis, it is also sufficient to just focus on convex case.

Definition 7 (gauge function) The gauge function (or simply gauge) of a non-empty

convex set C is defined as

γC(u) = inf
{
λ ≥ 0

∣∣ u ∈ λC
}

(2.8)

The gauge function is convex as well, and a useful class of gauge is norm, for which the

convex set C should be bounded, centrally symmetric about the origin (i.e., u ∈ C iff.

−u ∈ C), and include 0 in its interior.
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Definition 8 (norm) A norm ‖ ·‖ is a function mapping from Rp to R, which satisfies

• (positivity) ‖u‖ ≥ 0 ∀ u ∈ Rp, and ‖u‖ = 0 iff. u = 0

• (absolute homogeneity) ‖λu‖ = |λ| · ‖u‖ ∀ u ∈ Rp, λ ∈ R

• (subadditivity) ‖u + v‖ ≤ ‖u‖+ ‖v‖ ∀ u,v ∈ Rp

A dual norm ‖ · ‖∗ can be defined for the original norm ‖ · ‖ through support function,

‖u‖∗ = sup
‖v‖≤1

〈u,v〉 (2.9)

Simple examples of norm are L2 norm ‖u‖2 = (
∑p

i=1 u
2
i )

1/2, L1 norm ‖u‖1 =
∑p

i=1 |ui|,

L∞ norm ‖u‖∞ = max1≤i≤p |ui|, and etc. The dual norm of L2 norm is itself, and L1

and L∞ norm are dual to each other. Norm plays a central role in high-dimensional

statistics, which often acts as the convex surrogate for certain structure. One nice

property of dual norm is the Hölder’s inequality.

Proposition 1 (Hölder’s inequality) For any norm ‖ · ‖ and its dual norm ‖ · ‖∗, it

holds that |〈u,v〉| ≤ ‖u‖ · ‖v‖∗ for any u,v ∈ Rp.

Encompassing the norm as a special case, gauge function provides a different perspective

of view into Definition 8. The closure of the convex set C that induces the norm ‖ · ‖ is

actually the (closed) unit norm ball

Ω =
{
u ∈ Rp

∣∣ ‖u‖ ≤ 1
}
. (2.10)

Thus one can define the norm by specifying its unit ball, instead of giving the arithmetic

expression. Such correspondence is helpful when we introduce the atomic norm [40]

below.
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Definition 9 (atomic norm) Given a compact set A that is centrally symmetric

about origin and satisfies span(A) = Rp, define the atomic norm ‖ · ‖A of A by

‖u‖A = inf

{∑
a∈A

ca

∣∣∣∣ u =
∑
a∈A

caa, ca ≥ 0 ∀ a ∈ A

}
. (2.11)

The set A is called atomic set, and its element a ∈ A is called atom.

Though the expression of atomic norm seems complicated, the unit norm ball of ‖ · ‖A

turns out to be simple.

Proposition 2 (unit ball of atomic norm) The unit ball of atomic norm ‖ · ‖A is

the convex hull of A, i.e., ΩA = conv(A). It follow immediately from this fact that the

dual norm of ‖ · ‖A is

‖u‖∗A = sup
v∈conv(A)

〈u,v〉 = sup
v∈A
〈u,v〉 (2.12)

Now the definition of atomic norm may look tricky given that ΩA = conv(A), since any

norm ‖ · ‖ can be made atomic norm by choosing the atomic set A to its unit ball Ω. In

practice, typically we bring up this notion only when A is finite. L1 and L∞ norm are

representative atomic norms, whose atomic sets are AL1 = {±e1,±e2, . . . ,±ep} ({ei}

denotes the standard basis of Rp) and AL∞ = {±1}p, respectively.

2.2 Convex Optimization

Convex optimization is paramount in modern machine learning and statistics, as find-

ing the optimal parameters for statistical models can be often formulated as convex

optimization problem. We are not intended to give a comprehensive review for every

popular algorithms in the literature. Instead we will cover the basic gradient descent,
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proximal gradient method, and alternating direction method of multipliers. Generally

speaking, convex optimization problem (or convex program) can be cast as

min
θ∈Rp

g(θ) s.t. θ ∈ C , (2.13)

where both feasible set C ⊆ Rp and objective function g : Rp 7→ R are convex. In

particular, when C = Rp, we say that the optimization problem is unconstrained. Con-

vex optimization algorithms usually employ an iterative procedure to generate a se-

quence of iterates, θ(0),θ(1), . . . ,θ(T ) ∈ C, such that limT→∞ f(θ(T )) = f(θ̂), where

θ̂ = argminθ∈C g(θ).

2.2.1 Gradient Descent

In many scenarios, we deal with unconstrained convex problems with g being smooth,

which is arguably the simplest case of convex optimization. Unconstrained smooth

optimization can be solved by gradient descent (GD), which iteratively performs

θ(t+1) = θ(t) − η∇g(θ(t)) (2.14)

in which η is the step size. In practice, η can vary along the iterations, e.g., can be

determined by line search. The full algorithm is given in Algorithm 1. Under suitable

conditions on g and step size, GD converges at rate of O(1/T ), namely

g(θ(T ))− g(θ̂) ≤ O
(

1

T

)
(2.15)
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Algorithm 1 Gradient Descent (GD)

Input: step size η, number of iterations T
Output: iterate θT

1: Initialize θ(0)

2: for t = 0 to T − 1 do
3: θ(t+1) = θ(t) − η∇g(θ(t))
4: end for
5: return θ(T )

2.2.2 Proximal Gradient Method and Proximal Operator

In high-dimensional statistics, as shown in (1.7) and (1.8), we often face more complex

problems, with either nontrivial constraint or non-smooth objective. The two types of

estimators can be unified in a single optimization framework. Consider the following

problem

min
θ∈Rp

f(θ) + h(θ) , (2.16)

where f is smooth while h is non-smooth. For constrained problem, the constraint θ ∈ C

can be incorporated into h by setting h(·) = IC(·). Taking f(θ) = 1
2n‖y − Xθ‖22 and

h(·) = IλΩL1
(·) (or h(·) = λ‖ ·‖1), we recover (1.7) (or (1.8)). The problem (2.16) can be

Algorithm 2 Proximal Gradient Method (PGM)

Input: step size η, number of iterations T
Output: iterate θ(T )

1: Initialize θ(0)

2: for t = 0 to T − 1 do
3: θ′ = θ(t) − η∇f(θ(t))

4: θ(t+1) = argminθ∈Rp
1
2‖θ − θ

′‖22 + η · h(θ)
5: end for
6: return θ(T )

solved by proximal gradient method (PGM). The algorithmic description is provided in

Algorithm 2. Essentially PGM executes a gradient-descent step followed by a proximal

operator (or proximal mapping) (Line 4). The proximal operator is formally defined
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below.

Definition 10 (proximal operator) The proximal operator proxh : Rp 7→ Rp for a

closed proper convex function h is given as

proxh(u) = argmin
v∈Rp

1

2
‖u− v‖22 + h(v) . (2.17)

If h = IC is the indicator function for a set C, the proximal operator is also called

projection operator,

projC(u) = proxIC(u) = argmin
v∈C

1

2
‖u− v‖22 (2.18)

It can be shown that the proximal operator exists for all u ∈ Rp and is also unique.

The success of PGM heavily relies on the computation of the proximal operator being

inexpensive, which is often the case for many useful h. For suitable f , the convergence

rate of PGM is also O(1/T ).

2.2.3 Alternating Direction Method of Multipliers

In machine learning and statistics, sometimes we may come across more complicated op-

timization problems that involve two blocks of variables, subject to equality constraints,

i.e,

min
θ∈Rp
β∈Rq

f(θ) + g(β) s.t Aθ + Bβ = c , (2.19)

where f and g are both convex, but not necessarily smooth. A ∈ Rr×p, B ∈ Rr×q

and c ∈ Rr are generic matrices and vector. Since the smoothness of f and g is not

guaranteed, we cannot solve (2.19) using PGM. In recent years, an popular approach

to tackle such problem is the alternating direction method of multipliers (ADMM). The
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basic idea of ADMM is to form the augmented Lagrangian,

Lρ(θ,β,µ) = f(θ) + g(β) + 〈µ,Aθ + Bβ − c〉+
ρ

2
‖Aθ + Bβ − c‖22 , (2.20)

where µ ∈ Rr is the dual variable, and ρ > 0 is a tuning parameter. Then ADMM solves

the original problem by iteratively minimizing Lρ w.r.t. two blocks of primal variables,

θ and β, followed by an update of dual variable µ. Algorithm 3 gives the details of

ADMM. Under mild conditions on the problem (2.19), ADMM enjoys O(1/T ) rate of

convergence.

Algorithm 3 Alternating Direction Method of Multipliers (ADMM)

Input: tuning parameter ρ, number of iterations T
Output: iterates θ(T ) and β(T )

1: Initialize β(0) and µ(0)

2: for t = 0 to T − 1 do
3: θ(t+1) = argminθ Lρ

(
θ,β(t),µ(t)

)
4: β(t+1) = argminβ Lρ

(
θ(t+1),β,µ(t)

)
5: µ(t+1) = µ(t) + ρ

(
Aθ(t+1) + Bβ(t+1) − c

)
6: end for
7: return θ(T ) and β(T )

2.3 Basics of Probability Theory

In this section, we will review the basics of probability theory, including the notions of

sub-Gaussian and sub-exponential random variable and related concentration inequali-

ties.
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2.3.1 Gaussian Random Variable

Gaussian random variable (r.v. for short) is arguably the most well-known random

variable in probability theory, whose density function is

f(x;µ, σ2) =
1√
2πσ

e−
(x−µ)2

2σ2 , (2.21)

where µ and σ2 are mean and variance, respectively. The standard Gaussian r.v. has

zero-mean and unit-variance. In asymptotic setting, the limiting distributions for many

statistics follow Gaussian distributions, and lots of nice properties can be shown for

Gaussian random variable. We present below a few useful facts about Gaussian r.v.

that are frequently utilized in this thesis work.

Proposition 3 Suppose that x and y are two Gaussian random variables. Then x and

y are independent if and only if they are uncorrelated, i.e.,

Cov(x, y) = 0 ⇐⇒ x ⊥ y

In general, the equivalence above does not hold for other random variables, though

independence always implies uncorrelatedness. The Gaussianity can be carried to ran-

dom vector too. A Gaussian random vector (or multivariate Gaussian) x ∈ Rp has the

density of the form

f (x;µ,Σ) =
1√

(2π)p|Σ|
exp

{
−(x− µ)TΣ−1(x− µ)

2

}
, (2.22)

where µ is the mean vector and Σ is the covariance matrix. Standard Gaussian random

vector is referred to the one with µ = 0 and Σ = I. The Gaussianity of random vector

is preserved under linear transformation.
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Proposition 4 If x ∈ Rp is a Gaussian random vector with mean µ and covariance

Σ, i.e., x ∼ N (µ,Σ), then Ax ∈ Rq is also Gaussian for any fixed A ∈ Rq×p, with

E [Ax] = Aµ and Cov [Ax] = AΣAT . (2.23)

In particular, 〈a,x〉 ∼ N (aTµ,aTΣa) for any a ∈ Rp.

Lipschitz function of Gaussian random vector enjoys a dimensionality-independent type

of concentration via isoperimetric inequalities.

Proposition 5 Let x ∈ Rp be a standard Gaussian random vector, and f : Rp 7→ R be

an L-Lipschitz function. For any ε ≥ 0, we have

P (f(x)− Ef(x) > ε) ≤ exp

(
− ε2

2L2

)
(2.24)

2.3.2 Sub-Gaussian and Sub-Exponential Random Variable

A random variable x is sub-Gaussian if the ψ2-norm defined below is finite

|||x|||ψ2
, sup

q≥1

(E|x|q)
1
q

√
q

< +∞ (2.25)

A random vector x ∈ Rp is sub-Gaussian if 〈x,u〉 is sub-Gaussian for any u ∈ Rp, and

|||x|||ψ2
= supu∈Rp |||〈x,u〉|||ψ2

. A complete introduction can be found in [172]. Next we

present some useful properties of sub-Gaussian random variables/vectors.

Proposition 6 (sub-Gaussian tail) A random variable x satisfies the following in-

equality iff |||x|||ψ2
≤ κ,

P (|x| > ε) ≤ e · exp

(
−Cε

2

κ2

)
, (2.26)

where C > 0 is an absolute constant.
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Proposition 7 (rotation invariance) If x1, x2, . . . , xn are independent centered sub-

Gaussian random variables, then
∑

i xi is also a centered sub-Gaussian random variable

with ∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

xi

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

ψ2

≤ C2
n∑
i=1

|||xi|||2ψ2
, (2.27)

where C is an absolute constant.

The rotation invariance immediately implies the well-known Hoeffding’s inequality.

Proposition 8 (Hoeffding-type inequality) Let x1, x2, . . . , xn be independent cen-

tered sub-Gaussian r.v.s, and let κ = maxi |||xi|||ψ2
. Then for any a = [a1, a2, . . . , an]T ∈

Rn and t ≥ 0, we have

P

(∣∣∣∣∣
n∑
i=1

aixi

∣∣∣∣∣ ≥ ε
)
≤ e · exp

(
− Cε2

κ2‖a‖22

)
, (2.28)

where C > 0 is an absolute constant.

Proposition 9 If x1, x2, . . . , xp are independent centered sub-Gaussian random vari-

ables (not necessarily identical), then x = [x1, . . . , xp]
T is a centered sub-Gaussian ran-

dom vector with

|||x|||ψ2
≤ C max

1≤i≤p
|||xi|||ψ2

, (2.29)

where C > 0 is an absolute constant.

Essentially Proposition 9 can be shown using the definition of sub-Gaussian vector and

Proposition 7, which we generalize to independent sub-Gaussian vectors as follows.

Proposition 10 If x1,x2, . . . ,xn ∈ Rm are independent centered sub-Gaussian random

vectors, then x = [xT1 , . . . ,x
T
n ]T ∈ Rmn is also a centered sub-Gaussian random vector
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with

|||x|||ψ2
≤ C max

1≤i≤n
|||xi|||ψ2

, (2.30)

where C is an absolute constant.

Proof: Define a = [aT1 ,a
T
2 , . . . ,a

T
n ]T ∈ Smn−1, where each ai is m-dimensional. We

have

|||〈x,a〉|||ψ2
=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

〈xi,ai〉

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
ψ2

≤

√√√√C2

n∑
i=1

|||〈xi,ai〉|||2ψ2
≤

√√√√C2

n∑
i=1

‖ai‖22|||xi|||
2
ψ2

≤

√√√√C2

n∑
i=1

‖ai‖22 · max
1≤i≤n

|||xi|||ψ2
= C max

1≤i≤n
|||xi|||ψ2

,

where we use Proposition 7 for the first inequality. Based on the definition of sub-

Gaussian random vector, we complete the proof.

A random variable x is said to be sub-exponential if its ψ1-norm is finite, i.e.,

|||x|||ψ1
= sup

q≥1

(E|x|q)
1
q

q
< +∞ . (2.31)

Like sub-Gaussian random variable, some useful facts about sub-exponential variable

are listed below.

Proposition 11 (sub-exponential tail) A random variable x satisfies the following

inequality iff |||x|||ψ1
≤ κ,

P (|x| > ε) ≤ e · exp

(
−Cε
κ

)
, (2.32)

where C > 0 is an absolute constant.
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In contrast to sub-Gaussian case, rotation invariance does not hold for sub-exponential

random variable, which only yields a Bernstein-type inequality.

Proposition 12 (Bernstein-type inequality) Let x1, x2, . . . , xn be independent cen-

tered sub-exponential random variables, and let κ = maxi |||xi|||ψ1
. Then for any a =

[a1, a2, . . . , an]T and ε ≥ 0, we have

P

(∣∣∣∣∣
n∑
i=1

aixi

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

(
−C ·min

{
ε2

κ2‖a‖22
,

ε

κ‖a‖∞

})
, (2.33)

where C > 0 is an absolute constant.

Sub-exponential and sub-Gaussian random variables are connected by the following

proposition.

Proposition 13 A random variable x is sub-Gaussian if and only if x2 is sub-exponential.

Moreover, we have

|||x|||2ψ2
≤
∣∣∣∣∣∣x2

∣∣∣∣∣∣
ψ1
≤ 2|||x|||2ψ2

(2.34)

2.4 Gaussian Width and Generic Chaining

In this section, we briefly introduce the concept of Gaussian width and the important

probability tool called generic chaining. These topics are Interested readers are recom-

mended to

2.4.1 Gaussian Width

Gaussian width is defined for a set A ⊆ Rp, which roughly measures its size.
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Definition 11 (Gaussian width) The Gaussian width w(A) of a set A ⊆ Rp is de-

fined as

w(A) , E
[

sup
u∈A
〈u,g〉

]
, (2.35)

where g ∈ Rp is a standard Gaussian random vector.

The Gaussian width w(A) provides a geometric characterization of the complexity of

the set A. We present three perspectives of view to understand the Gaussian width.

First, consider the Gaussian process {Zu}u∈A where the constituent Gaussian random

variables Zu = 〈u,g〉 are indexed by u ∈ A, and g ∼ N (0, Ip×p). Then the Gaussian

width w(A) can be viewed as the expectation of the supremum of the Gaussian process

{Zu}. Second, 〈u,g〉 can be viewed as a Gaussian random projection of each u ∈ A

to one dimension, and the Gaussian width simply measures the expectation of largest

value of such projections. Third, if A is the unit ball of a norm ‖ · ‖, i.e., A = Ω,

then w(A) = E[‖g‖∗] by definition of the dual norm. Thus, the Gaussian width is the

expected value of the dual norm of a standard Gaussian random vector. For instance,

if A is unit ball of L1 norm, then w(A) = E[‖g‖∞]. Below we provide some simple yet

useful properties of the Gaussian width of set A ⊆ Rp:

• (monotonicity) w(A) ≤ w(B) for any A ⊆ B

• (positive homogeneity) w(A) = c · w(A) for any c > 0

• (convexification invariance) w(A) = w(conv(A))

• (rotation invariance) w(UA) = w(A) for any unitary matrix U ∈ Rp×p

• (translation invariance) w(A+ b) = w(A) for any fixed b ∈ Rp

The following result for Gaussian width is useful when we deal with union of sets, which

is extracted from Lemma 2 in [118].
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Lemma 1 (Gaussian width for union of sets) Let M > 4, A1, · · · ,AM ⊂ Rp, and

A = ∪mAm. The Gaussian width of A satisfies

w(A) ≤ max
1≤m≤M

w(Am) + 2 sup
z∈A
‖z‖2

√
logM (2.36)

The concept of Gaussian width can be directly extended to the matrix setting, and

w(A) for set A ⊆ Rd×p is given as

w(A) , EG

[
sup
Z∈A

〈〈G,Z〉〉
]
, (2.37)

in which 〈〈,̇〉̇〉 denotes the matrix inner product, i.e., 〈〈A,B〉〉 = Tr(ATB) for any

A,B ∈ Rd×p. Here G ∈ Rd×p is a random matrix with i.i.d. standard Gaussian entries,

i.e., Gij ∼ N (0, 1). The aforementioned properties also hold for the matrix case.

2.4.2 Generic Chaining

One important tool that we use in our probabilistic argument is generic chaining [161,

162], which is powerful for bounding the suprema of stochastic processes. Suppose

{Zt}t∈T is a centered stochastic process, where each Zt is a centered random variable.

We assume the index set T is endowed with some metric (distance function) s(·, ·). A

key notion in generic chaining is γ2-functional γ2(T , s), which is defined for the metric

space (T , s). One can think of γ2-functional as a measure of the size of set T w.r.t.

metric s. For self-containedness, we give the expression of γ2(T , s).

γ2(T , s) = inf
{Pn}

sup
t∈T

∑
n≥0

2n/2 · diam (Pn(t), s) , (2.38)

where {Pn}∞n=0 = {P0,P1, . . . ,Pn, . . .} is a sequence of partitions for T , which satisfy

that |P0| = 1, |Pn| ≤ 22n for n ≥ 1, and that Pn+1 is a finer partition than Pn, i.e., every
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Q ∈ Pn+1 is a subset of some Q′ ∈ Pn. Pn(t) denotes the subset of T that contains t

in the n-th partition, and diam (Pn(t), s) measures the diameter of Pn(t) w.r.t. metric

s(·, ·). Note that γ2-functional is a purely geometric concept, which involves no probabil-

ity. Given that γ2-functional is fairly involved, we are not going to discuss any insights

behind this definition, and refer interested readers to the introductory books [161,162].

Based on its definition, we list a few straightforward properties of γ2-functional here.

γ2(T , s1) ≤ γ2(T , s2) if s1(u,v) ≤ s2(u,v), ∀ u,v ∈ T (2.39)

γ2(T , βs) = β · γ2(T , s) for any β > 0 . (2.40)

γ2(T1, s1) = γ2(T2, s2) if ∃ a global isometry between (T1, s1) and (T2, s2) (2.41)

The following lemma concerned with the suprema of {Zt} combines Theorem 2.2.22 and

2.2.27 from [162].

Lemma 2 Given metric space (T , s), if the associated centered stochastic process {Zt}t∈T

satisfies the condition

P (|Zu − Zv| ≥ ε) ≤ C0 exp

(
− C1ε

2

s2(u,v)

)
, ∀ε > 0 and u,v ∈ T , (2.42)

then the following inequalities hold

E
[
sup
t∈T

Zt

]
≤ C2γ2 (T , s) , (2.43)

P

(
sup

u,v∈T
|Zu − Zv| ≥ C3 (γ2(T , s) + ε · diam (T , s))

)
≤ C4 exp

(
−ε2

)
, (2.44)

where C0, C1, C2, C3 and C4 are all absolute constants.

Another useful result based on generic chaining is the Theorem D in [125].



33

Lemma 3 (Theorem D in [125]) There exist absolute constants C1, C2 for which

the following holds. Let (Ω, µ) be a probability space on which x is defined, and x1, . . . , xn

be independent copies of x. Let set H be a subset of the unit sphere of L2(µ), i.e.,

H ⊆ SL2 =

{
h : |||h|||L2

=

√∫
Ω
h2(x)dx = 1

}
, (2.45)

Assume that suph∈H |||h|||ψ2
≤ κ. Then, for any β > 0 and n ≥ 1 satisfying

C1κ · γ2(H, |||·|||ψ2
) ≤ β

√
n , (2.46)

with probability at least 1− exp
(
−C2β2n

κ4

)
,

sup
h∈H

∣∣∣∣∣ 1n
n∑
i=1

h2(Xi)− E
[
h2
]∣∣∣∣∣ ≤ β . (2.47)

The suprema in both Lemma 2 and 3 are characterized in terms of γ2-functional, which

is not easily computable. In order to further bound the γ2-functional, one needs the

so-called majorizing measures theorem [160].

Lemma 4 Given any Gaussian process {Yt}t∈T , define s(u,v) =
√

E|Yu − Yv|2 for

u,v ∈ T . Then γ2(T , s) can be upper bounded by

γ2(T , s) ≤ C0E
[
sup
t∈T

Yt

]
, (2.48)

where C0 is an absolute constant.

In the analysis, we usually instantiate this lemma by constructing the simple Gaussian

process {Yt = 〈t,g〉}t∈T for any T ⊆ Rp, where g is a standard Gaussian random

vector. Hence s(u,v) =
√
E|Yu − Yv|2 =

√
E|〈u− v,g〉|2 = ‖u − v‖2. It follows from
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Lemma 4 that

γ2 (T , ‖ · ‖2) ≤ C0E
[
sup
t∈T
〈t,g〉

]
= C0 · w(T ) , (2.49)

which makes the connection between γ2-functional and Gaussian width. For matrix

setting, we can also get such connection by a similar construction of the Gaussian

process,

γ2 (A, ‖ · ‖F ) ≤ C0E
[

sup
Z∈A
〈〈G,Z〉〉

]
= C0 · w(A) , (2.50)

where the set A ∈ Rd×p.

combining Lemma 2 and 4, we can get the following theorem, which is more amenable

to some of the proofs.

Theorem 1 Let {Zt}t∈T be a stochastic process indexed by T ⊆ Rp, which satisfies

sup
t,t′∈T

|||Zt − Zt′ |||ψ2

‖t− t′‖2
≤ K < +∞

There exist absolute constants C0 and C1 such that the following bound holds with prob-

ability at least 1− C1 exp
(
− w2(T )

diam 2(T )

)
,

sup
t,t′∈T

|Zt − Zt′ | ≤ C0K · w(T ) , (2.51)

where diam (T ) = supt,t′∈T ‖t− t′‖2.

In the analysis, sometimes we need to bound product processes, which can be dealt

with by the following theorem. The result is essentially a simplified form of Theorem

1.13 in [124]. The original theorem is stated in terms of a variant of the γ2-functional

defined above, and contains a few more tunable variables, both of which are not central

to the core idea and thus have been hidden. The bound here is expressed using Gaussian

width.



35

Theorem 2 Let (Ω, µ) be a probability space, and Z1, Z2, . . . , Zn be an i.i.d. sample

distributed according to µ. Suppose that F = {fa}a∈A and H = {hb}b∈B are two

function classes defined on (Ω, µ), which are indexed by A ⊆ Rp and B ⊆ Rq respectively.

Assume that

sup
f∈F
|||f |||ψ2

≤ RF < +∞ , sup
h∈H
|||h|||ψ2

≤ RH < +∞ ,

sup
a,a′∈A

|||fa − fa′ |||ψ2

‖a− a′‖2
≤ KF < +∞ , sup

b,b′∈B

|||hb − hb′ |||ψ2

‖b− b′‖2
≤ KH < +∞ ,

and denote

ε = min

{
KF · w(A)

RF
,
KH · w(B)

RH

}
.

There exist absolute constants C0, C1 and C2 such that if n ≥ C0ε
2, the following

inequality holds with probability at least 1− 2 exp
(
−C1ε

2
)
,

sup
f∈F

sup
h∈H

∣∣∣∣∣ 1n
n∑
i=1

f(Zi)h(Zi)− E [fh]

∣∣∣∣∣ ≤ C2 ·
RHKF · w(A) +RFKH · w(B)√

n
(2.52)

The theorem above immediately leads to the following corollary, which is similar to

Lemma 3 but more flexible in some situations.

Corollary 1 Under the setting of Theorem 2, if F = H and A = B, then there exist ab-

solute constants C0, C1 and C2 such that if n ≥ C0

(
KF ·w(A)

RF

)2
, the following inequality

holds with probability at least 1− 2 exp

(
−C1

(
KF ·w(A)

RF

)2
)

,

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f2(Zi)− E
[
f2
]∣∣∣∣∣ ≤ C2 ·

RFKF · w(A)√
n

(2.53)



Chapter 3

Generalized Dantzig Selector

3.1 Introduction

The Dantzig Selector (DS) [21, 32] provides an alternative to regularized regression

approaches such as Lasso [165, 188] for sparse linear estimation. While DS does not

consider a regularized maximum likelihood approach, [21] has established clear simi-

larities between the estimates from DS and Lasso. While norm regularized regression

approaches have been generalized to more general norms, such as decomposable norm-

s [127], the literature on DS has primarily focused on the sparse L1 norm case, with

a few notable exceptions which have considered extensions to sparse group-structured

norms [112]. Here we consider linear models of the form

y = Xθ∗ + ε , (3.1)

where y ∈ Rn is a set of observations, X ∈ Rn×p is a design matrix, and ε ∈ Rn is a

noise vector of i.i.d. entries. For any given norm ‖ · ‖, the parameter θ∗ is assumed to

be structured so that ‖θ∗‖ is of small value. For this setting, we propose the following

36
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Generalized Dantzig Selector (GDS) for parameter estimation:

θ̂ = argmin
θ∈Rp

‖θ‖ s.t.

∥∥∥∥ 1

n
XT (y −Xθ)

∥∥∥∥
∗
≤ λn , (3.2)

where ‖·‖∗ is the dual norm of ‖·‖, and λn is a tuning parameter. If ‖·‖ is the L1 norm,

(3.2) reduces to standard DS [32]. A key novel aspect of GDS is that the constraint

is in terms of the dual norm ‖ · ‖∗ of the original structure inducing norm ‖ · ‖. It is

instructive to contrast GDS with the recently proposed atomic norm based estimation

framework [40] which, unlike GDS, considers constraints based on the L2 norm of the

error ‖y −Xθ‖2.

In this chapter, we consider both computational and statistical aspects of the GDS.

For the L1-norm Dantzig selector, [32] proposed a primal-dual interior point method

since the optimization is a linear program. DASSO and its generalization proposed

in [89,90] focused on homotopy methods, which provide a piecewise linear solution path

through a sequential simplex-like algorithm. However, none of the algorithms above can

be immediately extended to our general formulation. In recent work, the alternating

direction method of multipliers (ADMM) has been applied to the L1 Dantzig selection

problem [114,176], and the linearized version in [176] proved to be efficient. Motivated by

such results for DS, we propose a general inexact ADMM [175] framework for GDS where

the primal update steps, interestingly, turn out respectively to be proximal operators

involving ‖θ‖ and its convex conjugate, the indicator function of the norm ball. As

a result, by Moreau decomposition, it suffices to develop efficient proximal update for

either ‖θ‖ or its conjugate. As a non-trivial example, we consider estimation using

the recently proposed k-support norm [7, 120]. We show that proximal operators for

k-support norm can be efficiently computed in O(p log p + log k log(p − k)) time, and
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hence the estimation can be done efficiently. Note that existing work [7, 120] on k-

support norm has focused on the proximal operator for the square of the k-support

norm, which is not directly applicable in our setting.

On the statistical side, we establish non-asymptotic high-probability bounds on the

estimation error ‖θ̂ − θ∗‖2. Interestingly, the bound depends on the Gaussian width

of the unit norm ball of ‖ · ‖ as well as the Gaussian width of suitable set where the

estimation error belongs [40, 138]. Besides, the maximum ratio between ‖ · ‖ and ‖ · ‖2

over this set also plays a role, which is termed restricted norm compatibility.

The rest of the chapter is organized as follows. We propose general optimization

method for GDS in Section 3.2, along with an efficient algorithm to compute the prox-

imal operator for k-support norm. In Section 3.3, we present the L2-error bounds for

GDS. Experimental results are provided in Section 3.4.

3.2 Optimization Algorithm

The optimization problem in (3.2) is a convex program, and a suitable choice of λn

ensures that the feasible set is not empty. We start with an inexact ADMM framework

for solving problems of the form (3.2), and then present the algorithm for computing

proximal operator for the k-support norms.

3.2.1 Inexact ADMM for GDS

In optimization, we temporarily drop the subscript n of λn for convenience. We let

A = 1
nXTX, u = 1

nXTy, and define the set Ω∗λ = {v : ‖v‖∗ ≤ λ} as the scaled ball of

dual norm. Then the optimization problem is equivalent to

min
θ,v∈Rp

‖θ‖ s.t. u−Aθ = v, v ∈ Ω∗λ . (3.3)



39

Due to the nonsmoothness of both ‖ · ‖ and ‖ · ‖∗, a generally applicable algorithm

is alternating direction method of multipliers (ADMM), which we briefly reviewed in

Section 2.2. The augmented Lagrangian for (3.3) is given as

Lρ(θ,v, z) = ‖θ‖+ 〈z,Aθ + v − u〉+
ρ

2
‖Aθ + v − u‖22 , (3.4)

in which z is the dual variable and ρ controls the penalty introduced by the quadratic

term. The iterative updates of the variables (θ,v, z) in standard ADMM are given by

θt+1 ← argminθ Lρ(θ,v
t, zt) , (3.5)

vt+1 ← argminv∈Ω∗λ
Lρ(θ

t+1,v, zt) , (3.6)

zt+1 ← zt + ρ(Aθt+1 + vt+1 − u) . (3.7)

Note that update (3.5) amounts to a regularized least squares problem of θ, which can

be computationally expensive. Thus we use an inexact update for θ instead, which can

alleviate the computational cost and lead to a simple algorithm. Inspired by [176], we

consider a simpler subproblem for the θ-update which minimizes

L̃tρ(θ,v
t, zt) = ‖θ‖+

〈
zt,Aθ + vt − u

〉
+
ρ

2

(∥∥Aθt + vt − u
∥∥2

2
+

2
〈
θ − θt,AT (Aθt + vt − u)

〉
+
µ

2

∥∥θ − θt∥∥2

2

)
,

(3.8)

where µ is a user-defined parameter. L̃tρ(θ,v
t, zt) can be viewed as an approximation of

Lρ(θ,v
t, zt) with the quadratic term linearized at θt. Then the update (3.5) is replaced

by

θt+1 ← argminθ L̃
t
ρ(θ,v

t, zt)

= argminθ

{
2

ρµ
· ‖θ‖+

1

2

∥∥∥θ − (θt − 2

µ
AT (Aθt + vt − u +

zt

ρ
)
)∥∥∥2

2

}
.

(3.9)
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Algorithm 4 Inexact ADMM for Generalized Dantzig Selector

Input: A = XTX, u = XTy, ρ > 0, µ > 0
Output: Minimizer θ̂ of (3.2)

1: Initialize (θ0,v0, z0)
2: while not converged do

3: θt+1 ← prox 2‖·‖
ρµ

(
θt − 2

µAT
(
Aθt + vt − u + zt

ρ

))
4: vt+1 ← proxICλ

(
u−Aθt+1 − zt

ρ

)
5: zt+1 ← zt + ρ

(
Aθt+1 + vt+1 − u

)
6: end while

Similarly the update of v in (3.6) can be recast as

vt+1 ← argminv∈Ω∗λ
Lρ(θ

t+1,v, zt) = argminv∈Ω∗λ

1

2

∥∥∥∥v − (u−Aθt+1 − zt

ρ

)∥∥∥∥2

2

.

(3.10)

In fact, the updates of θ and v correspond to prox 2‖·‖
ρµ

(·) and proxICλ
(·), respectively,

which are proximal operators introduced in Section 2.2. Algorithm 4 provides the

general ADMM for our GDS. In order for the ADMM to work, we need two subroutines

that can efficiently compute the proximal operators in Line 3 and 4. The simplicity of

the proposed approach stems from the fact that we in fact need only one subroutine,

for any one of the functions, since the functions are conjugates of each other.

Proposition 14 Given β > 0 and a norm ‖ · ‖, the two functions, f(x) = β‖x‖ and

g(x) = ICβ (x) are convex conjugate to each other, thus giving the following identity,

x = proxf (x) + proxg(x) . (3.11)

Proof: the proposition simply follows the definition of convex conjugate and dual norm,

and (3.11) is just Moreau decomposition provided in [133].

The decomposition enables conversion of the two types of proximal operator to

each other at negligible cost (i.e., vector subtraction). Thus we have the flexibility in
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Algorithm 4 to focus on the proximal operator that is easier to compute, and the other

can be simply obtained through (3.11).

Remark on convergence: Note that Algorithm 4 is a special case of inexact Bregman

ADMM proposed in [175], which matches the case of linearizing quadratic penalty term

by using Bϕ′θ(θ,θt) = 1
2‖θ − θt‖

2
2 as Bregman divergence. In order to converge, the

algorithm requires µ
2 to be larger than the spectral radius of ATA, and the convergence

rate is O(1/T ) according to Theorem 2 in [175].

3.2.2 Proximal Operator for k-Support Norm

We first introduce some notations. Given any θ ∈ Rp, let |θ| denote its absolute-valued

counterpart and θ↓ denote the permutation of θ with its elements arranged in decreasing

order. In previous work [7, 120], the k-support norm is defined as

‖θ‖spk = min

 ∑
I∈G(k)

‖vI‖2

∣∣∣∣∣ supp(vI) ⊆ I,
∑
I∈G(k)

vI = θ

 , (3.12)

where G(k) denotes the set that includes all subsets of {1, . . . , p} of cardinality at most

k. The unit ball of this norm is the set Ωsp
k = conv ({θ ∈ Rp | ‖θ‖0 ≤ k, ‖θ‖2 ≤ 1}).

The dual norm of the k-support norm is given by

‖θ‖spk∗ = max
{
‖θI‖2

∣∣ I ∈ G(k)
}

=

(
k∑
i=1

|θ|↓
2

i

) 1
2

. (3.13)

Solving GDS with k-support norm ‖ ·‖spk requires that either proxλ‖·‖spk
(·) or proxICλ

(·)

for ‖ · ‖spk∗ is efficiently computable. Existing methods [7, 120] are inapplicable to our

scenario since they compute the proximal operator for squared k-support norm, from

which proxICλ
(·) cannot be directly obtained. In Theorem 3, we show that proxICλ

(·)

can be efficiently computed, and thus Algorithm 4 is applicable.
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Theorem 3 Given λ > 0 and x ∈ Rp, if ‖x‖spk∗ ≤ λ, then w∗ = proxICλ
(x) = x.

If ‖x‖spk∗ > λ, define Asr =
∑r

i=s+1 |x|
↓
i , Bs =

∑s
i=1(|x|↓i )2, in which 0 ≤ s < k and

k ≤ r ≤ p, and construct the nonlinear equation of β,

(k − s)A2
sr

[
1 + β

r − s+ (k − s)β

]2

− λ2(1 + β)2 +Bs = 0 . (3.14)

Let βsr be given by

βsr =

 nonnegative root of (3.14) if s > 0 and the root exists

0 otherwise
. (3.15)

Then the proximal operator w∗ = proxICλ
(x) is given by

|w∗|↓i =



1
1+βs∗r∗

|x|↓i if 1 ≤ i ≤ s∗

√
λ2−Bs∗
k−s∗ if s∗ < i ≤ r∗ and βs∗r∗ = 0

As∗r∗
r∗−s∗+(k−s∗)βs∗r∗

if s∗ < i ≤ r∗ and βs∗r∗ > 0

|x|↓i if r∗ < i ≤ p

, (3.16)

where the indices s∗ and r∗ with computed |w∗|↓ make the following two inequalities

hold,

|w∗|↓s∗ > |w
∗|↓k , (3.17)

|x|↓r∗+1 ≤ |w
∗|↓k < |x|

↓
r∗ . (3.18)

There might be multiple pairs of (s, r) satisfying the inequalities (3.17)-(3.18), and we

choose the pair with the smallest ‖|x|↓−|w|↓‖2. Finally, w∗ is obtained by sign-changing



43

and reordering |w∗|↓ to conform to x.

Remark: The nonlinear equation (3.14) is quartic, for which we can use general formula

to get all the roots [155]. In addition, if it exists, the nonnegative root is unique, as we

show in the proof.

Theorem 3 indicates that computing proxICλ
(·) requires sorting of entries in |x|

and a two-dimensional grid search of s∗ and r∗. Hence the total time complexity is

O(p log p + k(p − k)). However, a more careful observation can particularly reduce

the search complexity from O(k(p − k)) to O(log k log(p − k)), which is motivated by

Theorem 4.

Theorem 4 In search of (s∗, r∗) defined in Theorem 3, there can be only one r̃ for a

given candidate s̃ of s∗, such that the inequality (3.18) is satisfied. Moreover if such r̃

exists, then for any r < r̃, the associated |w̃|↓k violates the first part of (3.18), and for

r > r̃, |w̃|↓k violates the second part of (3.18). On the other hand, based on the r̃, we

have following assertion of s∗,

s∗


> s̃ if r̃ does not exist

≥ s̃ if r̃ exists and the corresponding |w̃|↓k satisfies (3.17)

< s̃ if r̃ exists but the corresponding |w̃|↓k violates (3.17)

. (3.19)

Based on Theorem 4, the accelerated search procedure of (s∗, r∗) is to execute a two-

dimensional binary search, and Algorithm 5 gives the details. Therefore the overall time

complexity becomes O(p log p + log k · log(p − k)). Compared with previous proximal

operators for squared k-support norm, this complexity is better than that in [7], and

roughly the same as the most recent one in [120].
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Algorithm 5 Algorithm for computing proxICλ
(·) of ‖ · ‖spk∗

Input: x, k, λ
Output: w∗ = proxICλ

(x)
1: if ‖x‖spk∗ ≤ λ then
2: w∗ := x
3: else
4: l := 0, u := k − 1, and sort |x| to get |x|↓
5: while l ≤ u do
6: s̃ := b(l + u)/2c, and binary search for r̃ that satisfies (3.18) and compute w̃

based on (3.16)
7: if r̃ does not exist then
8: l := s̃+ 1
9: else if r̃ exists and (3.17) is satisfied then

10: w∗ := w̃, l := s̃+ 1
11: else if r̃ exists but (3.17) is not satisfied then
12: u := s̃− 1
13: end if
14: end while
15: end if

3.3 Statistical Analysis

3.3.1 Deterministic Error Bound

Our goal is to provide error bounds on ‖θ̂− θ∗‖2 between the population parameter θ∗

and the GDS estimate θ̂. Let the error vector be defined as δ = θ̂ − θ∗. First we have

the definitions for error cone and error spherical cap.

Definition 12 (error cone/spherical cap) The error cone of θ∗ for norm ‖ · ‖ is

defined as

T = cone
{
u ∈ Rp

∣∣ ‖θ∗ + u‖ ≤ ‖θ∗‖
}

(3.20)

The error spherical cap is the intersection of error cone and the unit sphere, i.e.

C = T ∩ Sp−1 = cone
{
u ∈ Rp

∣∣ ‖θ∗ + u‖ ≤ ‖θ∗‖
}
∩ Sp−1 (3.21)
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Note that error cone contains a restricted set of directions and does not in general span

the entire space of Rp. One relevant notation to error cone and spherical cap is the

restricted norm compatibility, which is the largest quotient of ‖ · ‖ and ‖ · ‖2 over all the

directions in error cone.

Definition 13 (restricted norm compatibility) The restricted norm compatibility

for a norm ‖ · ‖ is defined as

Ψ , sup
v∈T

‖v‖
‖v‖2

= sup
v∈C
‖v‖ (3.22)

In the rest of the thesis, the notions introduced in Definition 12 and 13 will be frequently

used. For specific norms, we may add subscripts or superscripts to T , C and Ψ for clarity.

The deterministic L2-error of θ̂ depends on the following two conditions.

Definition 14 (restricted eigenvalue (RE) condition) The design matrix X sat-

isfies the restricted eigenvalue (RE) condition for a set C ⊆ Sp−1 with parameter α > 0,

if

inf
v∈C

1

n
‖Xv‖22 ≥ α (3.23)

Definition 15 (admissible tuning parameter) The tuning parameter λn of (3.2) is

said to be admissible if it satisfies that

∥∥∥∥ 1

n
XT (y −Xθ∗)

∥∥∥∥
∗

=

∥∥∥∥ 1

n
XT ε

∥∥∥∥
∗
≤ λn (3.24)

An admissible λn essentially guarantees that the true parameter θ∗ is inside the feasible

set of GDS, which further explains why T is called error cone. Since θ∗ is feasible, the

norm ‖θ̂‖ must be less than or equal to that of θ∗, which translates to ‖δ+θ∗‖ ≤ ‖θ∗‖.

Thus error cone encompasses all directions that the error δ could point towards. The
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RE condition ensures sufficient curvature of ‖Xv‖22 along the error cone, which help us

confine the magnitude of δ if ‖Xδ‖22 is known to be small. The next lemma bounds the

deterministic L2-error of GDS.

Lemma 5 Suppose that the RE condition (3.23) is satisfied by X for the error spherical

cap defined in (3.21), and the parameter λn is chosen to be admissible. Then GDS θ̂

given by (3.2) satisfies ∥∥∥θ̂ − θ∗∥∥∥
2
≤ 2Ψ · λn

α
(3.25)

Proof: Under the admissibility of λn and the optimality of θ̂ for (3.2), we have

∥∥∥∥ 1

n
XT (y −Xθ∗)

∥∥∥∥
∗
≤ λn ,

∥∥∥∥ 1

n
XT

(
y −Xθ̂

)∥∥∥∥
∗
≤ λn ,

‖θ̂‖ = ‖δ + θ∗‖ ≤ ‖θ∗‖ =⇒ δ ∈ T

Adding the first two inequalities and applying triangular inequality, we obtain

∥∥∥∥ 1

n
XTXδ

∥∥∥∥
∗
≤
∥∥∥∥ 1

n
XT (y −Xθ∗)

∥∥∥∥
∗

+

∥∥∥∥ 1

n
XT

(
y −Xθ̂

)∥∥∥∥
∗
≤ 2λn

=⇒ 1

n
‖Xδ‖22 =

〈
δ,

1

n
XTXδ

〉
≤ ‖δ‖

∥∥∥∥ 1

n
XTXδ

∥∥∥∥
∗
≤ 2λn‖δ‖ ,

which follows from Hölder’s inequality. By δ ∈ T and RE condition for C, we have

1

n
‖Xδ‖22 ≥ ‖δ‖

2
2 · inf

v∈C

1

n
‖Xv‖22 = α‖δ‖22

Combining the results above, we have

α‖δ‖22 ≤ 2‖δ‖λn =⇒ ‖δ‖2 ≤ 2 · ‖δ‖
‖δ‖2

· λn
α
≤ 2Ψ · λn

α
,

which completes the proof.
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3.3.2 Error Bound with Random Design and Noise

The deterministic bound (3.25) gives a clear characterization of L2-error of GDS. When

we consider the randomness of the design X and noise ε, there are two terms remain

to be resolved in the deterministic bound. First we need to find the parameter α for

RE condition. Under the sub-Gaussianity of X, we obtain the following result for RE

condition.

Theorem 5 Let the rows of X ∈ Rn×p be i.i.d. copies of an isotropic sub-Gaussian

random vector x ∈ Rp with |||x|||ψ2
≤ κ. With probability at least 1 − exp

(
−C1w

2(C)
)
,

we have

inf
v∈C

1

n
‖Xv‖22 ≥ 1− C0κ

2 · w(C)√
n

, (3.26)

where C0 and C1 are absolute constants.

Based on Theorem 5, we immediately have the corollary below.

Corollary 2 Under the setting of Theorem 5, if sample size n ≥ 4C2
0κ

4w2(C), then with

probability at least 1 − exp
(
−C1w

2(C)
)
, the RE condition holds for C with parameter

α = 1
2 .

Second, we have to choose the smallest admissible λn so that the upper bound is as

tight as possible, which requires an estimation of the random quantity ‖ 1
nXT ε‖∗.

Theorem 6 Let the rows of X ∈ Rn×p be i.i.d. copies of an isotropic sub-Gaussian

random vector x ∈ Rp with |||x|||ψ2
≤ κ, and the entries of ε ∈ Rn be i.i.d. copies of

a sub-Gaussian random variable ε with |||ε|||ψ2
≤ τ . The following inequality holds with

probability at least 1− exp(−c1n)− c2 exp
(
−w2(Ω)

c23ρ
2

)
,

∥∥XT ε
∥∥
∗ ≤ c0κτ ·

√
nw (Ω) , (3.27)
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in which Ω is the unit ball of ‖·‖, ρ = supv∈Ω ‖v‖2, and c0, c1, c2 and c3 are all absolute

constants.

Theorem 6 directly yields an “safe” choice of λn, which is admissible with high proba-

bility.

Corollary 3 Under the setting of Theorem 6, λn = c0κτ ·w(Ω)√
n

is admissible with proba-

bility at least 1− exp(−c1n)− c2 exp
(
−w2(Ω)

c23ρ
2

)
.

Combining Corollary 2 and 3, the L2-error bound is given in the theorem below.

Theorem 7 Let the rows of X ∈ Rn×p be i.i.d. copies of an isotropic sub-Gaussian

random vector x ∈ Rp with |||x|||ψ2
≤ κ, and the entries of ε ∈ Rn be i.i.d. copies of a

sub-Gaussian random variable ε with |||ε|||ψ2
≤ τ . if sample size n ≥ 4C2

0κ
4w2(C), with

probability at least 1− exp(−c1n)− c2 exp
(
−w2(Ω)

c23ρ
2

)
− exp

(
−C1w

2 (C)
)
, the L2-error of

GDS satisfies ∥∥∥θ̂ − θ∗∥∥∥
2
≤ cκτ · Ψ · w (Ω)√

n
(3.28)

Proof: the error bound is a direct result of Lemma 5 and Corollary 2 and 3.

Remark: In the above theorem, other than some constants and sub-Gaussian pa-

rameters, the error bound for θ̂ essentially depends on there quantities regarding the

structure of θ∗, the Gaussian width w(Ω) of the unit norm ball, the Gaussian width

w(C) of the error spherical cap, and the restricted norm compatibility Ψ. We call these

geometric measures, since they rely on the geometry of θ∗ and the norm ‖ · ‖.

3.4 Experimental Results

On optimization side, our ADMM framework is concentrated on its generality, and its

efficiency has been shown in [176] for the special case of L1 norm. Hence we focus on
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the efficiency of different proximal operators related to k-support norm. On statistical

side, we concentrate on the behavior and performance of GDS with k-support norm.

3.4.1 Efficiency of Proximal Operator

We tested four proximal operators related to k-support norm, which are our normal

proxICλ
(·) and its accelerated version, prox 1

2β
(‖·‖spk )2(·) in [7], and proxλ

2
‖·‖2Θ

(·) in [120].

The dimension p of vector in experiment varied from 1000 to 10000, and the ratio

p/k = {200, 100, 50, 20}. As illustrated in Figure 3.1, in general, the speedup of ac-

celerated proxICλ
(·) is considerable when compared with the normal proxICλ

(·) and

prox 1
2β

(‖·‖spk )2(·). Empirically it is also slightly better than the proxλ
2
‖·‖2Θ

(·).
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Figure 3.1: Efficiency of proximal operators for k-support norm. Diamond: nor-
mal proxICλ

(·), Square: prox 1
2β

(‖·‖spk )2(·), Downward-pointing triangle: proxλ
2
‖·‖2Θ

(·),
Upward-pointing triangle: accelerated proxICλ

(·). For each (p, k), 200 vectors are ran-

domly generated for testing.

3.4.2 Statistical Recovery

Data generation: We fix p = 600, and θ∗ = [10, . . . , 10︸ ︷︷ ︸
10

, 10, . . . , 10︸ ︷︷ ︸
10

, 10, . . . , 10︸ ︷︷ ︸
10

, 0, . . . , 0︸ ︷︷ ︸
570

]T

throughout the experiment, in which nonzero entries are divided equally into three

groups. The design matrix X are generated from a normal distribution such that the

entries in the same group have the same mean sampled from N (0, 1). X is normalized

afterwards. The response vector y is given by y = Xθ∗ + 0.01×N (0, 1). The number

of samples n is specified later.
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Figure 3.2: Statistical recovery of GDS with k-support norm. (a) The true positive rate
reaches 1 quite early for k = 1, 10. When k = 50, the ROC gets worse due to the strong
smoothing effect introduced by large k. (b) For each k, the L2-error is large when the
sample is inadequate. As n increases, the error decreases dramatically for k = 1, 10
and becomes stable afterwards, while the decrease is not that significant for k = 50 and
the error remains relatively large. (c) Both mean and standard deviation of L2-error
are decreasing as k increases until it exceeds the number of nonzero entries in θ∗, and
then the error goes up for larger k, which matches our analysis quite well. The result
also shows that the k-support-norm GDS with suitable k outperforms the L1 DS when
correlated variables present in data (Note that k = 1 corresponds to standard DS).
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ROC curves with different k: We fix n = 400 to obtain the ROC plot for k =

{1, 10, 50} as shown in Figure 3.2(a). λn ranged from 10−2 to 103.

L2-error vs. n: We investigate how the L2-error ‖θ̂−θ∗‖2 of Dantzig selector changes

as the number of samples increases, where k = {1, 10, 50} and n = {30, 60, 90, . . . , 300}.

The plot is shown in Figure 3.2(b).

L2-error vs. k: We also look at the L2-error with different k. We again fix n = 400

and vary k from 1 to 39. For each k, we repeat the experiment 100 times, and obtained

the mean and standard deviation plot in Figure 3.2(c).

Appendix

Appendix 3.A Proof of Proximal Operator for k-Support

Norm

3.A.1 Proof of Theorem 3

Proof: Let w∗ = proxIΩ∗
λ

(x) = argminw∈Ω∗λ
1
2‖x − w‖22. For simplicity, we drop the

constant 1
2 in later discussion. Given a vector x, we use the notation xi:j to denote its

subvector [xi,xi+1, . . . ,xj ]
T . We consider the following two cases.

Case 1: if ‖x‖spk∗ ≤ λ, it is trivial that w∗ = x, which is also the global minimizer of

‖x−w‖22 without the constraint x ∈ Ω∗λ.

Case 2: if ‖x‖spk∗ > λ, first we start by noting that given x and w, the following

inequality holds

‖x−w‖22 = ‖x‖22 − 2〈x,w〉+ ‖w‖22

≥ ‖x‖22 − 2〈|x|↓, |w|↓〉+ ‖w‖22 ,
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which implies that w∗ should achieve this lower bound by conforming with the signs

and orders of elements in x. Without loss of generality, we are simply focused on the

case where x = |x|↓.

For w∗ to be the optimal, w∗k:p should be chosen such that w∗k:r = [w∗k,w
∗
k, . . . ,w

∗
k]
T

and w∗r+1:p = x∗r+1:p, where r satisfies

xr > w∗k ≥ xr+1 ,

otherwise either the decreasing order of w∗ will be violated or the ‖xk:p −wk:p‖2 is not

minimized. As for w∗1:k−1, we similarly assume w∗s+1:k−1 = [w∗k,w
∗
k, . . . ,w

∗
k]
T for some

0 ≤ s ≤ k − 1, then w∗1:s should be chosen to minimize ‖x1:s −w1:s‖2 such that

‖w1:s‖22 = ‖w∗1:k‖22 − ‖w∗s+1:k‖22 ≤ λ2 − (k − s)(w∗k)2.

By Cauchy-Schwarz inequality, we have

‖x1:s −w1:s‖22 ≥ ‖x1:s‖22 − 2‖x1:s‖2‖w1:s‖2 + ‖w1:s‖22 ,

where the equality holds when w∗1:s follows the form of w∗1:s = 1
1+βsr

x1:s, and βsr ≥ 0

satisfies the constraint Bs
(1+βsr)2 = λ2 − (k − s)(wk)

2.

So far we have figured out the structure of w∗ = [w∗1:s,w
∗
s+1:r,w

∗
r+1:p]

T , in which

the three subvectors, compared with x, are shrunk by a common factor 1+βsr, constant

w∗k, or unchanged. Next we need to determine the value of βsr and w∗k. By optimality,
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‖x−w‖22 = ‖x1:r−w1:r‖22 must be minimized at w∗, so we have the following problem,

min
β,wk

‖x1:r −w1:r‖22 = ‖x1:s −w1:s‖22 + ‖xs+1:r −ws+1:r‖22

=

(
β

1 + β

)2

Bs +
r∑

i=s+1

(xi −wk)
2

(3.29)

s.t.
(
‖w‖spk∗

)2
=

Bs
(1 + β)2

+ (k − s)(wk)
2 = λ2 (3.30)

Replacing wk in (3.29) with wk =

√
λ2− Bs

(1+β)2

k−s obtained from (3.30), we express ‖x1:r−

w1:r‖22 as a function of β,

Φsr(β) =

(
β

1 + β

)2

Bs +
r∑

i=s+1

xi −

√
λ2 − Bs

(1+β)2

k − s

2

(3.31)

Set derivative of Φsr(β) to be zero, we have

d

dβ
Φsr(β) =

d

dβ

(
β

1 + β
)2Bs +

r∑
i=s+1

(
xi −

√
λ2 − Bs

(1+β)2

k − s
)2 (3.32)

=
2β

(1 + β)3
Bs −

2AsrBs

(1 + β)3(k − s)

√
λ2− Bs

(1+β)2

k−s

+
2(r − s)Bs

(k − s)(1 + β)3
(3.33)

=
2Bs

(k − s)(1 + β)3

(k − s)β − Asr√
λ2− Bs

(1+β)2

k−s

+ (r − s)

 = 0 (3.34)

If s > 0, then Bs > 0 and (3.34) is equivalent to (3.14). And we can see that the quantity

inside the bracket of (3.34) is monotonically increasing when β ≥ max
{

0,
√
Bs−λ
λ

}
, thus

ensuring the nonnegative root βsr is unique if it exists. If the nonnegative root exists,

the expression for w∗s+1:r can be obtained from (3.34), whose entries are all equal to w∗k.

If s > 0 and a nonnegative root of (3.34) is nonexistent, the derivative is always
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positive when β ≥ 0, which means that Φsr(β) is increasing. Hence the minimizer of

Φsr(β) is βsr = 0. If s = 0, we actually do not care about the value of βsr because

the problem defined by (3.29) and (3.30) is independent of β, and we set it to be 0 for

simplicity. According to (3.30), both cases of βsr = 0 lead to the same expression for

w∗s+1:r in (3.16).

As we do not know beforehand which s and r to choose, we need to search for s∗ and

r∗ that give the smallest ‖|x|↓−|w|↓‖2, and also need to check whether the w∗ obtained

by (3.16) is in decreasing order, which are the conditions (3.17) and (3.18) presented in

Theorem 3.

3.A.2 Proof of Theorem 4

To prove Theorem 4, we first need the following lemma derived from the proof of The-

orem 3.

Lemma 6 When β ≥ max
{

0,
√
Bs−λ
λ

}
, Φsr(β) defined in (3.31) is decreasing when

β < βsr, and increasing when β > βsr. Equivalently, Φsr(β) = ‖x1:r − w1:r‖22, when

treated as function of wk, is decreasing when wk < w∗k and increasing when wk > w∗k.

Proof: The first part simply follows the monotonicity of d
dβΦsr(β) mentioned in the

proof of Theorem 3, which implies that d
dβΦsr(β) is negative when β < βsr, and positive

when β > βsr . The constraint (3.30) implies that wk increases as β increases. So

‖x1:r −w1:r‖22, as a function of wk, has the same monotonicity w.r.t. wk.

Proof of Theorem 4: It suffices to just focus on the case where x = |x|↓. First we show

by contradiction that for a given s̃, the r̃ that satisfies (3.18) can be at most one.

Suppose there are two indices, say r1 and r2, which satisfy that condition with the

same s̃. Without loss of generality, let r1 < r2, we know that their corresponding w(1)

and w(2) should minimize ‖x1:r1−w1:r1‖22 and ‖x1:r2−w1:r2‖22, respectively. As r1 < r2,
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then w
(1)
k ≥ xr2 > w

(2)
k according to (3.18). Construct

w′ =

 x1

1 + β′
, . . . ,

xs̃
1 + β′︸ ︷︷ ︸

s̃

, xr2 , . . . ,xr2︸ ︷︷ ︸
r2−s̃

, xr2+1, . . . ,xp


T

,

where β′ is chosen to satisfy the constraint (3.30) with w′k = xr2 , and ‖x1:r2 −w
(2)
1:r2
‖22

can be decomposed as

∥∥∥x1:r2 −w
(2)
1:r2

∥∥∥2

2
=
∥∥∥x1:r1 −w

(2)
1:r1

∥∥∥2

2
+
∥∥∥xr1+1:r2 −w

(2)
r1+1:r2

∥∥∥2

2

>
∥∥x1:r1 −w′1:r1

∥∥2

2
+
∥∥xr1+1:r2 −w′r1+1:r2

∥∥2

2

=
∥∥x1:r2 −w′1:r2

∥∥2

2

which contradicts that w
(2)
1:r2

minimizes ‖x1:r2 −w1:r2‖22. Note that ‖x1:r1 −w
(2)
1:r1
‖22 >

‖x1:r1 −w′1:r1
‖22 simply follows Lemma 6 as w

(1)
k ≥ xr2 = w′k > w

(2)
k , and ‖xr1+1:r2 −

w
(2)
r1+1:r2

‖22 > ‖xr1+1:r2 − w′r1+1:r2
‖22 is due to the fact that xr1+1 ≥ . . . ≥ xr2 = w′k >

w
(2)
k .

Next we show by contradiction that if r̃ exists for given s̃, then any r < r̃ violates

the first part of (3.18), and any r > r̃ violates the second part.

Let w̃ denote the minimizer of ‖x1:r̃ −w1:r̃‖22. Suppose r < r̃ and the first part of

(3.18) is not violated, then its second part must be violated due to the uniqueness of r̃.

Then we can construct new

w′ =

 x1

1 + β′
, . . . ,

xs̃
1 + β′︸ ︷︷ ︸

s̃

, xr̃, . . . ,xr̃︸ ︷︷ ︸
r̃−s̃

, xr̃+1, . . . ,xp


T

,
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where β′ is again chosen to satisfy the constraint (3.30) with w′k = xr̃. This by the

same argument for proving the uniqueness of r̃ make the following inequality hold,

‖x1:r̃ − w̃1:r̃‖22 = ‖x1:r − w̃1:r‖22 + ‖xr+1:r̃ − w̃r+1:r̃‖22

> ‖x1:r −w′1:r‖22 + ‖xr+1:r̃ −w′r+1:r̃‖22

= ‖x1:r̃ −w′1:r̃‖22 .

This contradicts that w̃ is the minimizer of ‖x1:r̃ −w1:r̃‖22. Similar argument applies to

the case when r > r̃. Let β′′ satisfy (3.30) together with w′′k = xr+1, and we construct

w′′ =

 x1

1 + β′′
, . . . ,

xs
1 + β′′︸ ︷︷ ︸

s̃

, xr+1, . . . ,xr+1︸ ︷︷ ︸
r−s̃

, xr+1, . . . ,xp


T

,

which gives smaller ‖x1:r−w1:r‖22 than any w with wk < xr+1. Therefore it is impossible

for r > r̃ to violate the first inequality.

Finally we show the assertion (3.19) for s∗. We note that given s̃ , finding solution

to the proximal operator can be viewed as minimization of (3.29) under the constraint

‖w1:k‖2 ≤ λ and wk = wk−1 = . . . = ws̃+1. So for s < s̃, the minimization problem

is equivalent to the one for s̃ under additional constraint ws̃+1 = ws̃ = . . . = ws+1. If

the r̃ does not exist, for s < s̃, r̃ is nonexistent either, thus s∗ > s̃. If the r̃ exists and

(3.17) is satisfied, then s∗ ≥ s̃ because s < s̃ considers a more restricted problem and is

unable to obtain a smaller ‖x−w‖2.

For the situation in which r̃ exists for s̃ but the associated w̃k violates (3.17), we

show by contradiction that for any s > s̃, (3.17) is also violated. Assume that w′

(different from the previously used) satisfies both (3.17) and (3.18) for s′ = s̃ + 1 and

the corresponding r′. It is not difficult to see that w′k < w̃k and r′ ≥ r̃, otherwise
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‖w′1:k‖2 > λ. By the violation we have shown for r, the minimizer of (3.29) for (s′, r̃),

denoted by w′′, satisfies w′′k ≤ w′k (Note that w′ is the minimizer of (3.29) for (s′, r′) and

r′ ≥ r̃). Combined with w′k < w̃k, this indicates by Lemma 6 that Φs′r̃(·) is increasing

on the interval [w′′k, w̃k]. Then we consider two sequential modifications on w̃,

1. Replacing the w̃1:s′ in w̃ with
‖w̃1:s′‖2
‖x1:s′‖2

· x1:s′ ,

2. Decreasing w̃s′+1:r̃ by certain amount and amplifying the new w̃1:s′ by some factor,

such that (3.30) still holds for s′ and w̃s′+1 = w̃s′ .

Note that the two modifications both decrease ‖x1:r̃− w̃1:r̃‖2. Decrease in Modification

1 is the result of Cauchy-Schwarz Inequality, and decrease in Modification 2 is due to

the monotonicity of Φs′r̃(·) we mentioned upfront. The modified w̃ satisfies w̃s̃+1 =

w̃s̃+2 = . . . = w̃k, thus contradicting that the old w̃ is the minimizer of (3.29) for (s̃, r̃).

Hence, by induction, we conclude that for any s′ > s̃, its solution also violates (3.17).

Assembling the conclusions above, we complete the proof of (3.19) for s∗.

Appendix 3.B Proof of Statistical Guarantees

3.B.1 Proof of Theorem 5

Proof: Let (Ω, µ) be the probability space that x is defined on, and construct

H = {h = 〈·,v〉 | v ∈ C} .

|||x|||ψ2
≤ κ immediately implies that suph∈H |||h|||ψ2

≤ κ. As x is isotropic, i.e.,

E[〈x,v〉2] = 1 for any v ∈ C ⊆ Sp−1, thus we have H ⊆ SL2(µ) and E[h2] = 1 for

any h ∈ H. Given h1 = 〈·,v1〉, h2 = 〈·,v2〉 ∈ H, where v1,v2 ∈ C, the metric induced
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by ψ2 norm satisfies

|||h1 − h2|||ψ2
= |||〈x,v1 − v2〉|||ψ2

≤ κ‖v1 − v2‖2 .

Using (2.39) - (2.41) and Lemma 4, we have

γ2(H, |||·|||ψ2
) ≤ κγ2(C, ‖ · ‖2) ≤ κc4w(C) ,

where c4 is an absolute constant. Hence, by choosing β = c1c4κ2w(C)√
n

, we can guarantee

that condition c1κγ2(H, |||·|||ψ2
) ≤ β

√
n holds for H. Applying Lemma 3 to this H, with

probability at least 1− exp(−c2c
2
1c

2
4w

2(C)), we have

sup
h∈H

∣∣∣∣∣ 1n
n∑
i=1

h2(xi)− 1

∣∣∣∣∣ ≤ β ,
which implies infv∈C

1
n‖Xv‖22 ≥ 1−β . Letting C0 = c1c4 and C1 = c2c

2
1c

2
4, we complete

the proof.

3.B.2 Proof of Theorem 6

Proof: We first bound the magnitude of the error vector ε. For each entry in ε, we

have

√
E[ε2i ] ≤

√
2|||εi|||ψ2

=
√

2τ ,∣∣∣∣∣∣ε2i − E[ε2i ]
∣∣∣∣∣∣
ψ1
≤ 2
∣∣∣∣∣∣ε2i ∣∣∣∣∣∣ψ1

≤ 4|||εi|||2ψ2
≤ 4τ2 ,
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where we use the definition of ψ2-norm and Proposition 13. By Bernstein-type inequal-

ity, we get

P
(
‖ε‖22 − 2τ2 ≥ t

)
≤ P

(
‖ε‖22 − E[‖ε‖22] ≥ t

)
≤ exp

(
−c1 min

(
t2

16τ4n
,

t

4τ2

))
.

Taking t = 4τ2n, we have

P
(
‖ε‖2 ≥ τ

√
6n
)
≤ exp (−c1n) .

Next we bound the quantity ‖XTu‖∗ for any fixed unit vector u. For any fixed u ∈ Sn−1,

we have
∣∣∣∣∣∣XTu

∣∣∣∣∣∣
ψ2
≤ cκ since

∣∣∣∣∣∣〈XTu,v〉
∣∣∣∣∣∣
ψ2

= |||〈u,Xv〉|||ψ2
≤ |||Xv|||ψ2

≤ cκ for any v ∈ Sp−1 ,

where the last inequality is obtained by noting that Xv consists of i.i.d. sub-Gaussian

entries with ψ2-norm bounded by κ. Fixing u ∈ Sn−1, we construct the stochastic

process {Zv = 〈XTu,v〉}v∈Ω, and note that any Zv1 and Zv2 from this process satisfy

P (|Zv1 − Zv2 | ≥ t) = P
(∣∣〈XTu,v1 − v2〉

∣∣ ≥ t) ≤ e · exp

(
− Ct2

κ2‖v1 − v2‖22

)
,

which implies that {Zv} has sub-Gaussian incremental w.r.t. the metric s(v1,v2) =

κ‖v1 − v2‖2. Moreover, as Ω is symmetric, it follows that

sup
v1,v2∈Ω

|Zv1 − Zv2 | = 2 sup
v∈Ω

Zv

sup
v1,v2∈Ω

‖v1 − v2‖2 = 2 sup
v∈Ω
‖v‖2 = 2ρ
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Using Lemma 2, we have

P
(

2 sup
v∈Ω

Zv ≥ c4κ (γ2(Ω, ‖ · ‖2) + t · 2ρ)

)
≤ c2 exp

(
−t2
)
,

where c2 and c4 are absolute constant. By the definition of dual norm and Lemma 4,

there exist constants c3 and c5 such that

P
(
2
∥∥XTu

∥∥
∗ ≥ c5κ (w (Ω) + t)

)
= P

(
2 sup

v∈Ω
Zv ≥ c5κ (w (Ω) + t)

)
≤ c2 exp

(
− t2

c2
3ρ

2

)
.

Letting t = w(Ω), we have for any fixed u ∈ Sn−1

P
(∥∥XTu

∥∥
∗ ≥ c5κw (Ω)

)
≤ c2 exp

(
−w

2 (Ω)

c2
3ρ

2

)
.

Combining this with the bound for ‖ε‖2 and letting c0 =
√

6c5, by union bound and

the independence between X and ε, we have

P
(∥∥XT ε

∥∥
∗ ≥ c0κτ

√
nw (Ω)

)
≤ P

(
‖XT ε‖∗
‖ε‖2

≥ c5κw (Ω)

)
+ P

(
‖ε‖2 ≥ τ

√
6n
)

≤ sup
u∈Sn−1

P
(
‖XTu‖∗ ≥ c5κw (Ω)

)
+ P

(
‖ε‖2 ≥ τ

√
6n
)

≤ c2 exp

(
−w

2 (Ω)

c2
3ρ

2

)
+ exp (−c1n) ,

which completes the proof.



Chapter 4

Geometric Measures with Atomic

Norms

4.1 Introduction

In Chapter 3, we propose the generalized Dantzig selector (GDS) (3.2) for structured

linear models, where structure of the parameter θ∗ is captured by a general norm ‖‖̇.

In particular, we show that the L2-error ‖θ̂ − θ∗‖2 of the estimate θ̂ given by GDS are

determined by three geometric measures: (i) w(Ω), the Gaussian width of the unit norm

ball, (ii) w(C), the Gaussian width of the error spherical cap C, and (iii) Ψ, the restricted

norm compatibility, where ‖ · ‖ is the norm used in GDS to capture the structure of

θ∗. To be specific, if sample size n ≥ O(w2(C)) and the tuning parameter satisfies

λn = O
(
w(Ω)√
n

)
, then the following error bound hold with high probability,

∥∥∥θ̂ − θ∗∥∥∥
2
≤ O

(
Ψ · w(Ω)√

n

)
. (4.1)

61
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In order to make use of this result, the geometric measures should be easy to compute or

upper bound, which otherwise will render the bound meaningless. For the simple case

like L1 norm, accurate characterization of all three measures exists [40, 127]. However,

for more general norms, the literature is rather limited. For w(Ω), the characterization

is often reduced to comparison with either w(C) [14] or known results on other norm

balls [54]. While w(C) has been investigated for certain decomposable norms [4,36,40],

little is known about general non-decomposable norms. One general approach for upper

bounding w(C) is via the statistical dimension [4,40,132], which computes the expected

squared distance between a Gaussian random vector and the polar cone of T . To specify

the polar, one need full information of the subdifferential ∂‖θ∗‖, which could be difficult

to obtain for non-decomposable norms. A notable bound for (overlapping) L2,1 norms

is presented in [138], which yields tight bounds for mildly non-overlapping cases, but is

loose for highly overlapping ones. For Ψ, the restricted norm compatibility, results are

only available for decomposable norms [14,127].

In this chapter, we consider the class of atomic norms ‖ · ‖A that are invariant

under sign-changes, i.e., the norm of a vector stays unchanged if any entry changes only

by flipping its sign. The class is quite general, and covers most of the popular norms

used in practical applications, e.g., L1 norm, ordered weighted L1 (OWL) norm [22]

and k-support norm [7]. For such atomic norms, we confirm the practicability of error

bound (4.1) by presenting a set of general bounds for their Gaussian width w(ΩA),

w(CA), and the restricted norm compatibility ΨA. Specifically we show that sharp

bounds on w(ΩA) can be obtained using simple calculation based on a decomposition

inequality from [118]. To upper bound w(CA) and ΨA, instead of a full specification

of TA, we only require some information regarding the subgradient of ‖θ∗‖A, which is

often readily accessible. The key insight is that bounding statistical dimension often

ends up computing the expected distance from Gaussian vector to a single point rather
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than to the whole polar cone, thus the full information on ∂‖θ∗‖A is unnecessary. In

addition, we derive the corresponding lower bounds to show the tightness of our results

on w(CA) and ΨA. As examples, we illustrate the bounds for L1 and OWL norms [22].

Finally, we give sharp bounds for the recently proposed k-support norm [7], for which

existing analysis is incomplete.

The rest of the chapter is organized as follows. In Section 4.2, we introduce the

general upper bounds for the geometric measures. We discuss the corresponding lower

bounds in Section 4.3. Section 4.4 is dedicated to the example of k-support norm.

4.2 General Upper Bounds

In this section, we present detailed analysis of the general bounds for the geometric

measures. In general, knowing the atomic set A is sufficient for bounding w(ΩA). For

w(CA) and ΨA, we only need a single subgradient of ‖θ∗‖A and some simple additional

calculations.

4.2.1 Gaussian Width of Unit Norm Ball

Although the atomic set A may contain uncountably many vectors, we assume that

A can be decomposed as a union of M “simple” sets, A = A1 ∪ A2 ∪ . . . ∪ AM . By

“simple”, we mean the Gaussian width of each Ai is easy to compute/bound. Such a

decomposition assumption is often satisfied by commonly used atomic norms, e.g., L1,

L2,1, OWL, k-support norm. The Gaussian width of the unit norm ball of ‖ · ‖A can be

easily obtained using the following lemma, which is essentially the Lemma 2 in [118].

Lemma 7 Let M > 4, A1, · · · ,AM ⊂ Rp, and A = ∪mAm. The Gaussian width of
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unit norm ball of ‖ · ‖A satisfies

w(ΩA) ≤ max
1≤m≤M

w(Am) + 2 sup
z∈A
‖z‖2

√
logM (4.2)

Proof: This inequality is a direct result of Lemma 1 and the properties of atomic norm

and Gaussian width, w(ΩA) = w(conv(A)) = w(A).

Next we illustrate application of this result to bounding the Gaussian width of the

unit norm ball of L1 and OWL norm.

Example 1 (w(ΩA) for L1 norm): Recall that the L1 norm can be viewed as the

atomic norm induced by the set AL1 = {±ei : 1 ≤ i ≤ p}, where {ei}pi=1 is the

canonical basis of Rp. Since the Gaussian width of a singleton is 0, if we treat A as the

union of individual {+ei} and {−ei}, we have

w(ΩL1) ≤ 0 + 2
√

log 2p = O(
√

log p) . (4.3)

Example 2 (w(ΩA) for OWL norm): A recent variant of L1 norm is the so-called

ordered weighted L1 (OWL) norm [22, 54, 185] defined as ‖θ‖owl =
∑p

i=1wi|θ|
↓
i , where

w1 ≥ w2 ≥ . . . ≥ wp ≥ 0 are pre-specified ordered weights, and |θ|↓ is the permutation

of |θ| with entries sorted in decreasing order. In [185], the OWL norm is proved to be

an atomic norm with atomic set

Aowl =
⋃

1≤i≤p
Ai =

⋃
1≤i≤p

⋃
| supp(S)|=i

{
u ∈ Rp : uSc = 0,uS =

vS∑i
j=1wj

,v ∈ {±1}p
}

.
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We first apply Lemma 7 to each set Ai, and note that each Ai contains 2i
(
p
i

)
atomic

vectors.

w(Ai) ≤ 0 + 2

√
i

(
∑i

j=1wj)
2

√
log 2i

(
p

i

)
≤ 2i∑i

j=1wj

√
2 + log

(p
i

)
≤ 2

w̄

√
2 + log

(p
i

)
,

where w̄ is the average of w1, . . . , wp. Then we apply the lemma again to Aowl and

obtain

w(Ωowl) = w(Aowl) ≤
2

w̄

√
2 + log p+

2

w̄

√
log p = O

(√
log p

w̄

)
, (4.4)

which matches the result in [54].

4.2.2 Gaussian Width of Error Spherical Cap

In this subsection, we consider the computation of general w(CA). Using the definition

of dual norm, we can write ‖θ∗‖A as ‖θ∗‖A = sup‖u‖∗A≤1〈u,θ∗〉, where ‖ · ‖∗A denotes

the dual norm of ‖ · ‖A. The u∗ for which 〈u∗,θ∗〉 = ‖θ∗‖A, is a subgradient of ‖θ∗‖A.

One can obtain u∗ by simply solving the so-called polar operator [187] for the dual norm

‖ · ‖∗A,

u∗ ∈ argmax
‖u‖∗A≤1

〈u,θ∗〉 . (4.5)

Based on polar operator, we start with the Lemma 8, which plays a key role in our

analysis of w(CA).

Lemma 8 Let u∗ be a solution to the polar operator (4.5), and define the weighted L1

semi-norm ‖ · ‖u∗ as ‖v‖u∗ =
∑p

i=1 |u∗i | · |vi|. Then the following relation holds

TA ⊆ Tu∗ ,

where Tu∗ = cone{v ∈ Rp | ‖θ∗ + v‖u∗ ≤ ‖θ∗‖u∗}.
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Proof: As both Tu∗ and Tu∗ are cones, it is sufficient to show that {v | ‖v‖A ≤

‖θ∗‖A} ⊆ {v | ‖v‖u∗ ≤ ‖θ∗‖u∗}. Since ‖θ∗‖u∗ = ‖θ∗‖A, it also suffices to show that

{v | ‖v‖A ≤ 1} ⊆ {v | ‖v‖u∗ ≤ 1}, i.e., the ‖v‖A ≥ ‖v‖u∗ for v ∈ Rp. Using the dual

norm definition and sign-change invariance of ‖ · ‖∗A, we obtain

‖v‖A = sup
‖a‖∗A≤1

〈a,v〉 ≥ 〈sign(v)� |u∗|,v〉 = 〈|u∗|, |v|〉 = ‖v‖u∗ ,

thus TA ⊆ Tu∗ .

Lemma 8 finds a superset of the error cone through ‖ · ‖u∗ , which has simpler

structures that can be utilized in subsequent analysis. Note that the solution to (4.5)

may not be unique. A good criterion for choosing u∗ is to avoid zeros in u∗, as any

u∗i = 0 will lead to the unboundedness of unit ball of ‖ · ‖u∗ , which could potentially

increase the size of Tu∗ . Next we present the upper bound for w(CA).

Theorem 8 Suppose that u∗ is one of the solutions to (4.5), and define the following

sets,

Q = {i | u∗i = 0}, S = {i | u∗i 6= 0, θ∗i 6= 0}, R = {i | u∗i 6= 0, θ∗i = 0} .

The Gaussian width w(CA) is upper bounded by

w(CA) ≤


√
p , if R is empty

√
m+ 3

2s+ 2κ2
max

κ2
min

s log
(p−m

s

)
, if R is nonempty

, (4.6)

where m = |Q|, s = |S|, κmin = mini∈R |u∗i | and κmax = maxi∈S |u∗i |.
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Suppose that θ∗ is a s-sparse vector. We illustrate the above bound on the Gaussian

width of the error spherical cap using L1 norm and OWL norm as examples.

Example 3 (w(CA) for L1 norm): The dual norm of L1 is L∞ norm, and its easy

to verify that u∗ = [1, 1, . . . , 1]T ∈ Rp is a solution to (4.5). Applying Theorem 8 to u∗,

we have

w(CL1) ≤
√

3

2
s+ 2s log

(p
s

)
= O

(√
s+ s log

(p
s

))
. (4.7)

Example 4 (w(CA) for OWL norm): For OWL, its dual norm is given by ‖u‖∗owl =

maxb∈Aowl
〈b,u〉. W.l.o.g. we assume θ∗ = |θ∗|↓, and a solution to (4.5) is given by

u∗ = [w1, . . . , ws, w̃, w̃, . . . , w̃]T , in which w̃ is the average of ws+1, . . . , wp. If all wi’s

are nonzero, the Gaussian width satisfies

w(Cowl) ≤
√

3

2
s+

2w2
1

w̃2
s log

(p
s

)
. (4.8)

4.2.3 Restricted Norm Compatibility

The next theorem gives general upper bounds for the restricted norm compatibility ΨA.

Theorem 9 Assume that ‖u‖A ≤ max{β1‖u‖1, β2‖u‖2} for all u ∈ Rp. Under the

setting of Theorem 8, the restricted norm compatibility ΨA is upper bounded by

ΨA ≤

 Φ , if R is empty

ΦQ + max
{
β2, β1

(
1 + κmax

κmin

)√
s
}
, if R is nonempty

, (4.9)

where Φ = supu∈Rp
‖u‖A
‖u‖2 and ΦQ = supsupp(u)⊆Q

‖u‖A
‖u‖2 .
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Proof: As analyzed in the proof of Theorem 8, vQ for v ∈ Tu∗ can be arbitrary, and

the vS∪R = vQc satisfies

‖vQc + θ∗Qc‖u∗ ≤ ‖θ∗Qc‖u∗ =⇒
∑
i∈S
|θ∗i + vi||u∗i |+

∑
j∈R
|vj ||u∗j | ≤

∑
i∈S
|θ∗i ||u∗i |

=⇒
∑
i∈S

(|θ∗i | − |vi|) |u∗i |+
∑
j∈R
|vj ||u∗j | ≤

∑
i∈S
|θ∗i ||u∗i | =⇒ κmin‖vR‖1 ≤ κmax‖vS‖1

If R is empty, by Lemma 8, we obtain

ΨA ≤ Ψu∗ , sup
v∈Tu∗

‖v‖A
‖v‖2

≤ sup
v∈Rp

‖v‖A
‖v‖2

= Φ .

If R is nonempty, we have

ΨA ≤ Ψu∗ ≤ sup
v∈Tu∗

‖vQ‖A + ‖vQc‖A
‖v‖2

≤ sup
supp(v)⊆Q, supp(v′)⊆Qc
κmin‖v′R‖1≤κmax‖v′S‖1

‖v‖A + ‖v′‖A
‖v + v′‖2

≤ sup
supp(v)⊆Q

‖v‖A
‖v‖2

+ sup
supp(v′)⊆Qc

κmin‖v′R‖1≤κmax‖v′S‖1

max{β1‖v′‖1, β2‖v′‖2}
‖v′‖2

≤ ΦQ + max

{
β2, sup

supp(v′)⊆S

β(1 + κmax
κmin

)‖v′‖1
‖v′‖2

}

≤ ΦQ + max

{
β2, β1

(
1 +

κmax

κmin

)√
s

}
,

in which the last inequality in the first line uses the property of Tu∗ .

Remark: We call Φ the unrestricted norm compatibility, and ΦQ the subspace norm

compatibility, both of which are often easier to compute than ΨA. The β1 and β2 in the

assumption of ‖ · ‖A can have multiple choices, and one has the flexibility to choose the

one that yields the tightest bound.
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Example 5 (ΨA for L1 norm): To apply the Theorem 9 to L1 norm, we can choose

β1 = 1 and β2 = 0. We recall the u∗ for L1 norm, whose Q is empty while R is

nonempty. So we have for s-sparse θ∗

ΨL1 ≤ 0 + max

{
0,

(
1 +

1

1

)√
s

}
= 2
√
s .

Example 6 (ΨA for OWL norm): For OWL, note that ‖ · ‖owl ≤ w1‖ · ‖1. Hence we

choose β1 = w1 and β2 = 0. As a result, we similarly have for s-sparse θ∗

Ψowl ≤ 0 + max
{

0, w1

(
1 +

w1

w̃

)√
s
}
≤ 2w2

1

w̃

√
s .

4.3 General Lower Bounds

So far we have shown that the geometric measures can be upper bounded for general

atomic norms. One might wonder how tight the bounds in Section 4.2 are for these

measures. For w(ΩA), as the result from [118] depends on the decomposition of A for

the ease of computation, it might be tricky to discuss its tightness in general. Hence we

will focus on the other two, w(CA) and ΨA.

To characterize the tightness, we need to compare the lower bounds of w(CA) and

ΨA, with their upper bounds determined by u∗. While there can be multiple u∗, it is

easy to see that any convex combination of them is also a solution to (4.5). Therefore

we can always find a u∗ that has the largest support, i.e., supp(u′) ⊆ supp(u∗) for any

other solution u′. We will use such u∗ to generate the lower bounds. First we need the

following lemma for the cone TA.

Lemma 9 Consider a solution u∗ to (4.5), which satisfies supp(u′) ⊆ supp(u∗) for any

other solution u′. Under the setting of notations in Theorem 8, we define an additional
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set of coordinates P = {i | u∗i = 0, θ∗i = 0}. Then the tangent cone TA satisfies

T1 ⊕ T2 ⊆ cl(TA) , (4.10)

where ⊕ denotes the direct (Minkowski) sum operation, cl(·) denotes the closure, T1 =

{v ∈ Rp | vi = 0 for i /∈ P} is a |P|-dimensional subspace, and T2 = {v ∈ Rp | sign(vi) =

−sign(θ∗i ) for i ∈ supp(θ∗), vi = 0 for i /∈ supp(θ∗)} is a | supp(θ∗)|-dimensional

orthant.

The following theorem gives us the lower bound for w(CA) and ΨA.

Theorem 10 Under the setting of Theorem 8 and Lemma 9, the following lower bounds

hold,

w(CA) ≥ O(
√
m+ s) , (4.11)

ΨA ≥ ΦQ∪S . (4.12)

Proof: To lower bound w(CA), we use Lemma 9 and the relation between Gaussian

width and statistical dimension (Proposition 10.2 in [4]),

w(TA) ≥ w(T1 ⊕ T2 ∩ Sp−1) ≥

√
E
[

inf
z∈NT1⊕T2

‖z− g‖22
]
− 1 (∗) ,

where the normal cone NT1⊕T2 of T1 ⊕ T2 is given by NT1⊕T2 = {z : zi = 0 for i ∈

P, sign(zi) = sign(θ∗i ) for i ∈ supp(θ∗)}. Hence we have

(∗) =

√√√√√E

∑
i∈P

g2
i +

∑
j∈supp(θ∗)

g2
j I{gjθ∗j<0}

− 1

=

√
|P|+ | supp(θ∗)|

2
− 1 = O(

√
m+ s) ,
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where the last equality follows the fact that P∪supp(θ∗) = Q∪S. This completes proof

of (4.11). To prove (4.12), we again use Lemma 9 and the fact P ∪ supp(θ∗) = Q ∪ S.

Noting that ‖ · ‖A is invariant under sign-changes, we get

ΨA = sup
v∈TA

‖v‖A
‖v‖2

≥ sup
v∈T1⊕T2

‖v‖A
‖v‖2

= sup
supp(v)⊆P∪supp(θ∗)

‖v‖A
‖v‖2

= ΦQ∪S .

Remark: We compare the lower bounds (4.11) (4.12) with the upper bounds (4.6)

(4.9). If R is empty, m+ s = p, and the lower bounds actually match the upper bounds

up to a constant factor for both w(CA) and ΨA. If R is nonempty, the lower and upper

bounds of w(CA) differ by a multiplicative factor 2κ2
max

κ2
min

log(p−ms ), which can be small in

practice. For ΨA, as ΦQ∪S ≥ ΦQ, we usually have at most an additive O(
√
s) term in

upper bound, since the assumption on ‖ · ‖A often holds with a constant β1 and β2 = 0

for most norms.

4.4 Application to k-Support Norm

In this section, we apply our general results on geometric measures to a non-trivial

example, k-support norm [7], which has been proved effective for sparse recovery [41,42,

120]. The definitions of k-support norm and its dual have been given in (3.12) and (3.13).

The k-support norm can be viewed as an atomic norm, for which A = {a ∈ Rp | ‖a‖0 ≤

k, ‖a‖2 ≤ 1}. Suppose that all the subsets of coordinates {1, 2, . . . , p} with cardinality

k can be listed as S1,S2, . . . ,S(pk)
. Then A can be written as A = A1 ∪ . . . ∪ A(pk)

,

where each Ai = {a ∈ Rp | supp(a) ⊆ Si, ‖a‖2 ≤ 1}. It is not difficult to see that

w(Ai) = E
[
supa∈Ai〈a,g〉

]
= E‖gSi‖2 ≤

√
E‖gSi‖22 ≤

√
k. Using Lemma 7, we know

the Gaussian width of the unit ball of k-support norm

w(Ωsp
k ) ≤

√
k+2

√
log

(
p

k

)
≤
√
k+2

√
k log

(p
k

)
+ k = O

(√
k log

(p
k

)
+ k

)
. (4.13)
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Now we turn to the calculation of w(Cspk ) and Ψsp
k . As we have seen in the general

analysis, the solution u∗ to the polar operator (4.5) is important in characterizing the

two geometric measures. We first present a simple procedure in Algorithm 6 for solving

the polar operator for ‖·‖spk∗. The time complexity is only O(p log p+k). This procedure

can be utilized to compute the k-support norm, or be applied to estimation with ‖ · ‖sp
∗

k

using generalized conditional gradient method [187], which requires solving the polar

operator in each iteration.

Algorithm 6 Solving polar operator for ‖ · ‖spk∗
Input: θ∗ ∈ Rp, positive integer k
Output: Solution u∗ to the polar operator (4.5)

1: z = |θ∗|↓, t = 0
2: for i = 1 to k do
3: γ1 = ‖z1:i−1‖2, γ2 = ‖zi:p‖1, d = k − i + 1, β = γ2√

γ2
2d+γ2

1d
2
, α = γ1

2
√

1−β2d
,

w = z1:i−1

2α

4: if
γ2

1
2α + βγ2 > t and β < wi−1 then

5: t =
γ2

1
2α +βγ2, u∗ = [w, β1]T (1 is (p− i+1)-dimensional vector with all ones)

6: end if
7: end for
8: change the sign and order of u∗ to conform with θ∗

9: return u∗

Theorem 11 For a given θ∗, Algorithm 6 returns a solution to polar operator (4.5)

for ‖ · ‖spk∗.

Now we consider w(Cspk ) and Ψsp
k for s-sparse θ∗ (here s-sparse θ∗ means | supp(θ∗)| = s)

in three scenarios: (i) over-specified k, where s < k, (ii) exactly specified k, where s = k,

and (iii) under-specified k, where s > k. The bounds are given in Theorem 12.

Theorem 12 For given s-sparse θ∗ ∈ Rp, the Gaussian width w(Cspk ) and the restricted
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norm compatibility Ψsp
k for a specified k are given by

w(Cspk ) ≤



√
p , if s < k

√
3
2s+ 2θ∗2max

θ∗
2

min

s log
(p
s

)
, if s = k

√
3
2s+ 2κ2

max

κ2
min

s log
(p
s

)
, if s > k

, (4.14)

Ψsp
k ≤



√
2p
k , if s < k

√
2(1 + θ∗max

θ∗min
) , if s = k

(1 + κmax
κmin

)
√

2s
k , if s > k

, (4.15)

where θ∗max = maxi∈supp(θ∗) |θ∗i | and θ∗min = mini∈supp(θ∗) |θ∗i |.

Proof: For s < k, we note that ‖θ∗‖spk = ‖θ∗‖2, and u∗ can be obtained in a closed-

form u∗ = θ∗

‖θ∗‖2 . Applying Theorem 8, we find that the set R is empty, and thus the

Gaussian width w(Cspk ) =
√
p. For s = k, u∗ is in closed-form as well,

u∗i =


θ∗i
‖θ∗‖2 , if i ∈ supp(θ∗)

|θ∗|↓k
‖θ∗‖2 =

θ∗min
‖θ∗‖2 , if otherwise

.

In this case, Q is empty, R is nonempty, and |S| = s = k. Hence Theorem 8 implies the

corresponding Gaussian width, and κmax
κmin

= θ∗max
θ∗min

. For s > k, the closed-form solution is

generally unavailable, but we can see from Algorithm 6 that β should be nonzero, thus

Q is empty and R is nonempty, which gives us the corresponding Gaussian width.

Base on the analysis of θ∗, Q, R and S, and the fact that ‖·‖spk ≤ ‖·‖1, the restricted

norm compatibility constant for s ≥ k directly follows Theorem 9. For s < k, we need to
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compute the unrestricted norm compatibility constant Φ. As ‖·‖spk <
√

2 max{‖·‖2, ‖·‖1√k }

shown in [7], we have

Φ = sup
u∈Rp

‖u‖spk
‖u‖2

≤ sup
u∈Rp

√
2 max{‖u‖2, ‖u‖1√k }

‖u‖2
≤ max{

√
2,

√
2p

k
} =

√
2p

k
.

Remark: Previously Ψsp
k is unknown and the bound on w(Cspk ) given in [41] is loose,

as it used the result in [138]. Based on Theorem 12, we note that the choice of k can

affect the recovery guarantees. Over-specified k leads to a direct dependence on the

dimensionality p for w(Cspk ) and Ψsp
k , resulting in a weak error bound. The bounds are

sharp for exactly specified or under-specified k. Thus, it is better to under-specify k in

practice. where the estimation error satisfies

∥∥∥θ̂ − θ∗∥∥∥
2
≤ O

√s+ s log
( p
k

)
n

 (4.16)

Appendix

Appendix 4.A Supplementary Proofs

4.A.1 Proof of Theorem 8

Proof: By Lemma 8, we have w(CA) ≤ w(Tu∗ ∩ Sp−1) , w(Cu∗). Hence we can focus

on bounding w(Cu∗). We first analyze the structure of v that satisfies ‖θ∗ + v‖u∗ ≤

‖θ∗‖u∗ . For the coordinates Q = {i | u∗i = 0}, the corresponding entries vi’s can be

arbitrary since it does not affect the value of ‖θ∗ + v‖u∗ . Thus all possible vQ form a

m-dimensional subspace, where m = |Q|. For S ∪R = {i | u∗i 6= 0}, we define θ̃ = θ∗S∪R
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and ṽ = vS∪R, and ṽ needs to satisfy

‖ṽ + θ̃‖u∗ ≤ ‖θ̃‖u∗ ,

which is similar to the L1-norm error cone except that coordinates are weighted by |u∗|.

Therefore we use the techniques for proving the Proposition 3.10 in [40]. Based on the

structure of v, The normal cone at θ∗ for Tu∗ is given by

N = {z : 〈z,v〉 ≤ 0 ∀ v s.t. ‖v + θ∗‖u∗ ≤ ‖θ∗‖u∗}

=
{

z : zi = 0 for i ∈ Q, zi = |u∗i |sign(θ̃i)t for i ∈ S,

|zi| ≤ |u∗i |t for i ∈ R, for any t ≥ 0
}
.

Given a standard Gaussian random vector g, using the relation between Gaussian width

and statistical dimension (Proposition 2.4 and 10.2 in [4]), we have

w2(Cu∗) ≤ E
[

inf
z∈N
‖z− g‖22

]
= E

 inf
z∈N

∑
i∈Q

g2
i +

∑
j∈S

(zj − gj)2 +
∑
k∈R

(zk − gk)2


= |Q|+ E

 inf
zS∪R∈N

∑
j∈S

(|u∗j |sign(θ̃j)t− gj)2 +
∑
k∈R

(zk − gk)2


≤ |Q|+ t2

∑
j∈S
|u∗j |2 + |S|+ E

[∑
k∈R

inf
|zk|≤|u∗k|t

(zk − gk)2

]

≤ |Q|+ t2
∑
j∈S
|u∗j |2 + |S|+

∑
k∈R

2√
2π

(∫ +∞

|u∗k|t
(gk − |u∗k|t)2 exp(

−g2
k

2
)dgk

)

≤ |Q|+ t2
∑
j∈S
|u∗j |2 + |S|+

∑
k∈R

2√
2π

1

|u∗k|t
exp

(
−
|u∗k|2t2

2

)
(∗) .
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The details for the derivation above can be found in Appendix C of [40]. If R is empty,

by taking t = 0, we have

(∗) ≤ |Q|+ t2
∑
j∈S
|u∗j |2 + |S| = |Q|+ |S| = p .

If R is nonempty, we denote κmin = mini∈R |u∗i | and κmax = maxi∈S |u∗i |. Taking

t = 1
κmin

√
2 log

(
|S∪R|
|S|

)
, we obtain

(∗) ≤ |Q|+ |S|(κ2
maxt

2 + 1) +
2|R| exp

(
−κ2

mint
2

2

)
√

2πκmint

= |Q|+ |S|
(

2κ2
max

κ2
min

log

(
|S ∪ R|
|S|

)
+ 1

)
+

|R||S|

|S ∪ R|
√
π log

(
|S∪R|
|S|

)
≤ |Q|+ 2κ2

max

κ2
min

|S| log

(
|S ∪ R|
|S|

)
+

3

2
|S| .

Substituting |Q| = m, |S| = s and |S ∪ R| = p −m into the last inequality completes

the proof.

4.A.2 Proof of Lemma 9

Proof: For any fixed θ∗ ∈ Rp and its P, we define a vector sequence {v(k) = δ(k)w}

based on a given w ∈ Rp and a monotonically decreasing positive scalar sequence {δ(k)}

with δ(1) < mini∈supp(θ∗) |θ∗i | and limk→+∞ δ
(k) = 0. w satisfies

wi =


0 , if i /∈ P ∪ supp(θ∗)

−sign(θ∗i ) , if i ∈ supp(θ∗)

arbitrary , if i ∈ P

.
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Let u(k) be one solution to the polar operator for θ∗ + v(k), and form another sequence

{u(k)}. Note that sign(θ∗i + v
(k)
i ) = sign(θ∗i − sign(θ∗i )δ

(k)) = sign(θ∗i ) = sign(u
(k)
i ) for

i ∈ supp(θ∗). Then we have

‖θ∗ + v(k)‖A − ‖θ∗‖A ≤ 〈θ∗ + v(k),u(k)〉 − 〈θ∗,u(k)〉 = 〈v(k),u(k)〉

≤ −δ(k)‖u(k)
supp(θ∗)‖1 + δ(k)〈wP ,u(k)

P 〉

≤ −δ(k)(‖u(k)
supp(θ∗)‖1 − ‖wP‖∞‖u

(k)
P ‖1)

As δ(k) approaches 0, θ∗+v(k) converges to θ∗, and a subsequence {u(ki)} of {u(k)} will

converge to a solution u′ to the polar operator for θ∗. Hence limi→+∞ ‖u(ki)
supp(θ∗)‖1 =

‖u′supp(θ∗)‖1 > 0, limi→+∞ ‖u(ki)
P ‖1 = ‖u′P‖1 = 0, and for large enough ki, we have

‖θ∗ + v(ki)‖A − ‖θ∗‖A ≤ −δ(ki)(‖u(ki)
supp(θ∗)‖1 − ‖wP‖∞‖u

(ki)
P ‖1) ≤ 0,

thus v(ki) belongs to TA. Since v(k) = δ(k)w, w also belongs to TA.

Now we show T1 ⊆ cl(TA). For any a ∈ T1 = {v ∈ Rp | vi = 0 for i /∈ P}

and arbitrarily small ξ > 0, we construct w such that wi = ai
ξ for i ∈ P. Based

on the argument above, this w is in TA. Therefore a′ , ξw ∈ TA, and ‖a − a′‖2 ≤√
| supp(θ∗)|ξ, which can be arbitrarily close to 0. Therefore taking the closure of TA

gives us T1 ⊆ cl(TA).

Next we show T2 ⊆ TA. For any coordinate i ∈ supp(θ∗), construct v ∈ Rp such

that vi = −θ∗i and vj = 0 for j 6= i, and θ′ ∈ Rp such that θ′i = −θ∗i and θ′j = θ∗j for

j 6= i. As the norm ‖ · ‖A is invariant under sign-changes, we can verify that

‖θ∗ + v‖A = ‖θ
∗ + θ′

2
‖ ≤ 1

2
‖θ∗‖A +

1

2
‖θ′‖A = ‖θ∗‖A .

Thus v ∈ TA. Repeat the construction of v for each i ∈ supp(θ∗), and then the conic
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combination of these v’s forms T2. Therefore we have T2 ⊆ TA, which together with

T1 ⊆ cl(TA) implies T1 ⊕ T2 ⊆ cl(TA).

4.A.3 Proof of and Theorem 11

Proof: The polar operator for 2-k symmetric gauge norm is essentially

u∗ = argmax 〈u,θ∗〉 s.t. ‖u∗‖spk∗ ≤ 1 .

As 2-k symmetric gauge norm is sign and permutation invariant, u∗ should conform

with the sign and order of θ∗ in order to achieve maxima, i.e., 〈u∗,θ∗〉 ≤ 〈|u∗|↓, |θ∗|↓〉.

W.l.o.g, we assume θ∗ = |θ∗|↓ , z. Now we analyze the structure of the solution u∗,

whose entries should be nonnegative and sorted in descending order. Assume that u∗k

takes certain fixed but unknown value β. It is easy that the entries in u∗k+1:p can take the

value of β, as it will always maximize 〈u∗k+1:p,θ
∗
k+1:p〉 without violating the constraint

‖u∗‖(k) ≤ 1. Generally we also assume that u∗i:k take the value of β and u∗i−1 > u∗i .

Then the maximization problem becomes

max
u1:i−1,β

〈u1:i−1, z1:i−1〉+ β‖zi:p‖1

s.t. ‖u1:i−1‖22 ≤ 1− (k − i+ 1)β2, uj > β for 1 ≤ j < i .

Then we let w = u1:i−1 and introduce the Lagrange multiplier λ ∈ Ri−1 and α ∈ R.

Using strong duality, we have the equivalent problem

min
λ�0,α≥0

max
β,w

〈w, z1:i−1〉+ β‖zi:p‖1 + 〈λ,w − b〉 − α((k − i+ 1)β2 + ‖w‖22 − 1) ,

where b = [β, β, . . . , β]T ∈ Ri−1. By complementary slackness, we know λ = 0 for the

optimal solution if it is feasible. Taking the gradient of the objective function w.r.t β
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and w, we obtain

‖zi:p‖1 −
∑
i

λi − 2αβ(k − i+ 1) = ‖zi:p‖1 − 2αβ(k − i+ 1) = 0 (4.17)

z1:i−1 + λ− 2αw = z1:i−1 − 2αw = 0 . (4.18)

It is also not difficult to see that the optimal solution will make the constraint ‖u1:i−1‖22 ≤

1− (k − i+ 1)β2 hold with equality, i.e.,

‖w‖22 = 1− (k − i+ 1)β2 (4.19)

Combining the Equation (4.17) (4.18) (4.19), we solve β and α and w

β =
‖zi:p‖1√

‖zi:p‖21(k − i+ 1) + ‖z1:i−1‖22(k − i+ 1)2
,

α =
‖z1:i−1‖2

2
√

1− (k − i+ 1)β2
,

w =
z1:i−1

2α
,

which is essentially the Line 3 in Algorithm 6. As we do not know the i beforehand,

we have to check every possible 1 ≤ i ≤ k to find the one that achieves the maxima

without violating the constraint, which corresponds to the loop and if-then statement in

Algorithm 6. Since the optimal w is proportional to z1:i−1, which is sorted in descending

order, we only need to ensure β < wi−1.



Chapter 5

Structure Matrix Recovery via

Generalized Dantzig Selector

5.1 Introduction

In Chapter 3 and 4, we have studied the estimation of structured linear models for

vector setting. In this Chapter, we extend the results obtained there to the matrix

setting, with an emphasis on general structures as well. Structured matrix recovery has

found a wide spectrum of applications in real world, e.g., recommender systems [96],

face recognition [33], etc. In the context of matrix estimation, the linear model has the

form

y = 〈〈Θ∗,X〉〉+ ω , (5.1)

where Θ∗ ∈ Rd×p is the unknown matrix to be recovered, X ∈ Rd×p is the measure-

ment matrix, y is the response and ω is the additive noise. 〈〈·, ·〉〉 denotes the matrix

inner product. Our goal is to recovery the matrix Θ∗ given n i.i.d. copies of (X, y),

denoted by {(Xi, yi)}ni=1. In the literature, various types of measurement matrices X

80
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has been investigated, for example, Gaussian ensemble where X consists of i.i.d. stan-

dard Gaussian entries [40], rank-one projection model where X is randomly generated

with constraint rank(X) = 1 [30]. A special case of rank-one projection is the matrix

completion model [31], in which X has a single entry equal to one with all the rest set

to zero, i.e., y takes the value of one entry from Θ∗ at each measurement. Other mea-

surement models include row-and-column affine measurement [192], exponential family

matrix completion [67,68], and so on.

Like the vector scenario, previous works have shown that low-complexity structure

of Θ∗ can significantly benefit its recovery [40, 127]. For instance, one of the popular

structures of Θ∗ is low-rank, which can be approximated by a small value of trace norm

(a.k.a. nuclear norm) ‖ ·‖tr. Under the low-rank assumption of Θ∗, recovery guarantees

have been established for different measurement matrices using convex programs, e.g.,

trace-norm regularized least-square estimator [35,68,127,141],

min
Θ∈Rd×p

1

2

n∑
i=1

(yi − 〈〈Xi,Θ〉〉)2 + λn‖Θ∗‖tr , (5.2)

and constrained trace-norm minimization estimators [30,35,40,67,141], such as

min
Θ∈Rd×p

‖Θ‖tr s.t.

∥∥∥∥∥
n∑
i=1

(〈〈Xi,Θ〉〉 − yi) Xi

∥∥∥∥∥
op

≤ λn , (5.3)

where λn is a tuning parameter, and ‖ · ‖op denotes the operator (spectral) norm.

Among the convex approaches, the exact recovery guarantee of a matrix-form basis-

pursuit [48] estimator was analyzed for the noiseless setting in [141], under certain

matrix-form restricted isometry property (RIP). In the presence of noise, [35] also used

matrix RIP to establish the recovery error bound for both regularized and constraint

estimators, i.e., (5.2) and (5.3). In [30], a variant of estimator (5.3) was proposed

and its recovery guarantee was built on a so-called restricted uniform boundedness
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(RUB) condition, which is more suitable for the rank-one projection based measurement

model. Despite the fact that the low-rank structure has been well studied, only a

few works extend to more general structures. In [127], the regularized estimator (5.2)

was generalized by replacing the trace norm with a decomposable norm ‖ · ‖ for other

structures. [40] extended the estimator in [141] with ‖ · ‖tr replaced by an atomic norm,

but the consistency of the estimator is only available when the noise vector is bounded.

In this work, we first present a general framework for estimation of structured ma-

trices via the generalized Dantzig sector (GDS) [28,41] as follows

Θ̂ = argmin
Θ∈Rd×p

‖Θ‖ s.t.

∥∥∥∥∥
n∑
i=1

(〈〈Xi,Θ〉〉 − yi) Xi

∥∥∥∥∥
∗

≤ λn , (5.4)

in which ‖ · ‖ can be any norm and its dual norm is ‖ · ‖∗. Computationally the

matrix GDS can be solved using the inexact ADMM algorithm proposed in Chapter

3. By assuming sub-Gaussian X and ω, we can bound the statistical error using the

matrix counterpart of the geometric measures in Chapter 3. This result can be extended

to heavy tailed measurement and noise, following recent advances [150]. Second, by

extending the idea in Chapter 4, we further bound those geometric measures for the

structures captured by the class of unitarily invariant norms, which include the widely-

used trace norm, spectral norm and Frobenius norm. We also illustrate concrete versions

of the bounds using the trace norm and the recently proposed spectral k-support norm

[121].

The rest of the chapter is organized as follows: we first provide the determinis-

tic analysis in Section 5.2. In Section 5.3, we present the probabilistic analysis for

sub-Gaussian measurement matrices and noise, along with the general bounds of the

geometric measures for unitarily invariant norms. Section 5.4 is dedicated to the ex-

amples for the application of general bounds. Throughout the chapter, the symbols
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c, C, c0, C0, etc., are reserved for universal constants, which may be different at each

occurrence. We also introduce some notations before proceeding with the analysis. We

denote by σ(Θ) ∈ Rd the vector of singular values (sorted in descending order) of matrix

Θ ∈ Rd×p, and may use the shorthand σ∗ for σ(Θ∗). For any θ ∈ Rd, we define the

corresponding |θ|↓ by arranging the absolute values of elements of θ in descending order.

Given any matrix Θ ∈ Rd×p and subspaceM⊆ Rd×p, we denote by ΘM the orthogonal

projection of Θ onto M. Besides we let colsp(Θ) (rowsp(Θ)) be the subspace spanned

by columns (rows) of Θ. The notation Sdp−1 represents the unit sphere of Rd×p, i.e.,

the set {Θ|‖Θ‖F = 1}. The unit ball of norm ‖ · ‖ is denoted by Ω = {Θ | ‖Θ‖ ≤ 1}.

5.2 Deterministic Analysis

5.2.1 Deterministic Error Bound

To evaluate the performance of GDS (5.4), we focus on the Frobenius-norm error, i.e.,

‖Θ̂ −Θ∗‖F . Throughout the analysis, w.l.o.g. we assume that d ≤ p. In the follow-

ing theorem, we provide a deterministic bound for ‖Θ̂ − Θ∗‖F under some standard

assumptions on λn and X.

Theorem 13 Define the error cone

T = cone{ ∆ ∈ Rd×p | ‖∆ + Θ∗‖ ≤ ‖Θ∗‖} . (5.5)

Assume that

λn ≥

∥∥∥∥∥
n∑
i=1

ωiXi

∥∥∥∥∥
∗

, (5.6)

n∑
i=1

〈〈Xi,∆〉〉2

‖∆‖2F
≥ α > 0, ∀ ∆ ∈ T . (5.7)
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Then the estimation ‖Θ̂−Θ∗‖F error satisfies

‖Θ̂−Θ∗‖F ≤
2Ψ · λn
α

, (5.8)

where Ψ is the restricted norm compatibility defined as

Ψ = sup
∆∈T

‖∆‖
‖∆‖F

. (5.9)

Proof: Since λn satisfies the condition (5.6) and ωi = yi − 〈〈Xi,Θ
∗〉〉, we have

∥∥∥∥∥
n∑
i=1

(〈〈Xi,Θ
∗〉〉 − yi) Xi

∥∥∥∥∥
∗

≤ λn ,

which indicates that the constraint set in (5.4) is feasible, thus

∥∥∥∥∥
n∑
i=1

(
〈〈Xi, Θ̂〉〉 − yi

)
Xi

∥∥∥∥∥
∗

≤ λn .

Using triangular inequality, one has∥∥∥∥∥
n∑
i=1

〈〈Xi, Θ̂−Θ∗〉〉 ·Xi

∥∥∥∥∥
∗

≤ 2λn .

Denote Θ̂−Θ∗ by ∆, and by the definition of dual norm, we get

n∑
i=1

〈〈Xi,∆〉〉2 =

〈〈
∆,

n∑
i=1

〈〈Xi,∆〉〉 ·Xi

〉〉

≤ ‖∆‖ ·

∥∥∥∥∥
n∑
i=1

〈〈Xi, Θ̂−Θ∗〉〉 ·Xi

∥∥∥∥∥
∗

≤ 2λn ‖∆‖ .
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On the other hand, the objective function in (5.4) implies that ‖Θ̂‖ ≤ ‖Θ∗‖. Therefore

the error vector ∆ must belong to the set T . Using condition (5.7), we obtain

α‖∆‖2F ≤
n∑
i=1

〈〈Xi,∆〉〉2 ≤ 2λn‖∆‖ =⇒

‖∆‖F ≤
2λn
α

‖∆‖
‖∆‖F

≤ 2Ψ · λn
α

,

which complete the proof.

In this work, we are particularly interested in the norm ‖ · ‖ from the class of uni-

tarily invariant matrix norm, which essentially satisfies the following property, ‖Θ‖ =

‖UΘV‖ for any Θ ∈ Rd×p and unitary matrices U ∈ Rd×d, V ∈ Rp×p. A useful result

for such norms is given in Lemma 10 (see [19,102] for details).

Lemma 10 Suppose that the singular values of a matrix Θ ∈ Rd×p are given by σ =

[σ1, σ2, . . . , σd]
T . A unitarily invariant norm ‖ · ‖ : Rd×p 7→ R can be characterized by

some symmetric gauge function1 f : Rd 7→ R as ‖Θ‖ = f(σ), and its dual norm is given

by ‖Θ‖ = f∗(σ), in which f∗ is the dual norm of f .

As the sparsity of σ equals the rank of Θ, the class of unitarily invariant matrix norms

is useful in structured low-rank matrix recovery and includes many widely used norms,

e.g., trace norm with f(·) = ‖ · ‖1, Frobenius norm with f(·) = ‖ · ‖2, Schatten p-norm

with f(·) = ‖ · ‖p, Ky Fan k-norm when f(·) is the L1 norm of the largest k elements in

magnitude, etc.

In the rest of our analysis, we will frequently use the so-called ordered weighted L1

(OWL) norm for Rd [55], which is defined as ‖θ‖w , 〈|θ|↓, |w|↓〉, where w ∈ Rd is a

predefined weight vector. Noting that the OWL norm is a symmetric gauge, we define

1Symmetric gauge function is a norm that is invariant under sign-changes and permutations of the
elements.
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the spectral OWL norm for Θ as: ‖Θ‖w , ‖σ(Θ)‖w, i.e., applying the OWL norm on

σ(Θ).

5.2.2 Bounding Restricted Norm Compatibility

Given the definition of restricted norm compatibility in Theorem 13, Ψ involves no

randomness and purely depends on the ‖ · ‖ and the geometry of T . Hence we directly

work on its upper bound for unitarily invariant norms. In general, characterizing the

error cone T is difficult, especially for non-decomposable norm. To address the issue,

we first define the seminorm below.

Definition 16 (subspace spectral OWL seminorm) Given two orthogonal subspaces

M1,M2 ⊆ Rd×p and two vectors w, z ∈ Rd, the subspace spectral OWL seminorm for

Rd×p is defined as

‖Θ‖w,z , ‖ΘM1‖w + ‖ΘM2‖z , (5.10)

where ΘM1 and ΘM2 are the orthogonal projections of Θ onto M1 and M2, respec-

tively.

Next we will construct such a seminorm based on a subgradient θ∗ of the symmetric

gauge f associated with ‖ · ‖ at σ∗, which can be obtained by solving the polar operator

[187]

θ∗ ∈ argmax
x:f∗(x)≤1

〈x,σ∗〉 . (5.11)

Given that σ∗ is sorted, w.l.o.g. we may assume that θ∗ is nonnegative and sorted

because 〈σ∗,θ∗〉 ≤ 〈σ∗, |θ∗|↓〉 and f∗(θ
∗) = f∗(|θ∗|↓). Also, we denote by θ∗max (θ∗min)

the largest (smallest) element of the θ∗, and define ρ = θ∗max/θ
∗
min (if θ∗min = 0, we define

ρ = +∞). As shown in the lemma below, a constructed seminorm based on θ∗ will

induce a set T ′ that contains T and is considerably easier to work with.
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Lemma 11 Assume that rank(Θ∗) = r and its compact SVD is given by Θ∗ = UΣVT ,

where U ∈ Rd×r, Σ ∈ Rr×r and V ∈ Rp×r. Let θ∗ be any subgradient of f(σ∗), w =

[θ∗1, θ
∗
2, . . . , θ

∗
r , 0, . . . , 0]T ∈ Rd, z = [θ∗r+1, θ

∗
r+2, . . . , θ

∗
d, 0, . . . , 0]T ∈ Rd, U = colsp(U)

and V = rowsp(VT ), and define M1, M2 as

M1 = {Θ | colsp(Θ) ⊆ U, rowsp(Θ) ⊆ V} , (5.12)

M2 = {Θ | colsp(Θ) ⊆ U⊥, rowsp(Θ) ⊆ V⊥} , (5.13)

where U⊥, V⊥ are orthogonal complements of U and V respectively. Then the specified

subspace spectral OWL seminorm ‖ · ‖w,z satisfies

T ⊆ T ′ , cone{∆ | ‖∆ + Θ∗‖w,z ≤ ‖Θ∗‖w,z} (5.14)

The proof is given in the appendix. Base on the superset T ′, we are able to bound the

restricted norm compatibility for unitarily invariant norms by the following theorem.

Theorem 14 Assume there exist η1 and η2 such that the symmetric gauge f for ‖ · ‖

satisfies

f(δ) ≤ max {η1‖δ‖1, η2‖δ‖2} for any δ ∈ Rd. (5.15)

Then given a rank-r Θ∗, the restricted norm compatibility Ψ is upper bounded by

Ψ ≤ 2Φf (r) + max
{
η2, η1(1 + ρ)

√
r
}
, (5.16)

where ρ = θ∗max
θ∗min

, and Φf (r) = sup‖δ‖0≤r
f(δ)
‖δ‖2 is called sparse norm compatibility.

Remark: The assumption for Theorem 14 might seem cumbersome at the first glance,

but the different combinations of η1 and η2 give us more flexibility. In fact, it trivially

covers two cases, η2 = 0 along with f(δ) ≤ η1‖δ‖1 for any δ, and the other way around,
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η1 = 0 along with f(δ) ≤ η2‖δ‖2.

5.3 Probabilistic Analysis

For the probabilistic analysis, we assume that the measurement matrix X is sub-

Gaussian with |||X|||ψ2
≤ κ for a constant κ, i.e.,

|||〈〈X,Z〉〉|||ψ2
≤ κ for any Z ∈ Sdp−1 .

The noise ω is also assumed to be sub-Gaussian with ‖ω‖ψ2 ≤ τ for a constant τ .

5.3.1 Bounding Restricted Convexity α

The RE condition in (5.7) is equivalent to

n∑
i=1

〈〈Xi,∆〉〉2 ≥ α > 0, ∀ ∆ ∈ T ∩ Sdp−1 . (5.17)

In the following theorem, we express the restricted convexity α in terms of Gaussian

width.

Theorem 15 Assume that X is a centered isotropic sub-Gaussian random matrix X

with |||X|||ψ2
≤ κ, and let the error spherical cap be

C = T ∩ Sdp−1 . (5.18)

With probability at least 1− exp(−ζw2(C)), the following inequality holds with absolute

constant ζ and ξ,

inf
∆∈C

1

n

n∑
i=1

〈〈Xi,∆〉〉2 ≥ 1− ξκ2 · w(C)√
n

. (5.19)
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The bound (5.19) involves the Gaussian width of error spherical cap C, i.e., the

error cone intersecting with unit sphere. For unitarily invariant R, the theorem below

provides a general way to bound w(C).

Theorem 16 Under the setting of Lemma 11, let ρ = θ∗max
θ∗min

and rank(Θ∗) = r. The

Gaussian width w(C) satisfies

w(C) ≤ min
{√

dp,
√

(2ρ2 + 1) (d+ p− r) r
}
. (5.20)

The proof of Theorem 16 is included in the appendix, which relies on a few specific

properties of Gaussian random matrix [4, 40].

5.3.2 Bounding Regularization Parameter λn

In view of Theorem 13, we should choose the λn large enough to satisfy the condition

in (5.6). Hence we need an upper bound for random quantity ‖
∑n

i=1 ωiXi‖∗.

Theorem 17 Assume that X is a centered isotropic sub-Gaussian random matrix X

with |||X|||ψ2
≤ κ, and the noise ω is sub-Gaussian |||ω|||ψ2

≤ τ . Let Ω be the unit ball of

‖ · ‖ and η = sup∆∈Ω ‖∆‖F . With probability at least 1− exp(−c1n)− c2 exp
(
−w2(Ω)

c23η
2

)
,

the following inequality holds∥∥∥∥∥
n∑
i=1

ωiXi

∥∥∥∥∥
∗

≤ c0κτ ·
√
nw(Ω) . (5.21)

The theorem above shows that the lower bound of λn depends on the Gaussian

width of the unit ball of ‖ · ‖. Next we give its general bound for the unitarily invariant

matrix norm.
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Theorem 18 Suppose that the symmetric gauge f associated with ‖ · ‖ satisfies f(·) ≥

ν‖ · ‖1. Then the Gaussian width w(Ω) is upper bounded by

w(Ω) ≤
√
d+
√
p

ν
. (5.22)

Proof: As f(·) ≥ ν‖ · ‖1, we have

‖ · ‖ ≥ ν‖ · ‖tr =⇒ Ω ⊆ Ων‖·‖tr .

Hence it follows that

w (Ω) ≤ w (Ωtr)

ν
=

E‖G‖op

ν
≤
√
d+
√
p

ν
,

5.4 Examples

Combining results in Section 5.3, we have that if the number of measurements n >

O(w2(C)), then the recovery error, with high probability, satisfies

∥∥∥Θ̂−Θ∗
∥∥∥
F
≤ O

(
Ψ · w(Ω)√

n

)
. (5.23)

Here we give two examples based on the trace norm [35] and the recently proposed

spectral k-support norm [121] to illustrate how to bound the geometric measures and

obtain the error bound.

5.4.1 Trace Norm

Trace norm has been widely used in low-rank matrix recovery. The trace norm of Θ∗ is

basically the L1 norm of σ∗, i.e., f = ‖·‖1. Now we turn to the three geometric measures.

Assuming that rank(Θ∗) = r � d, one subgradient of ‖σ∗‖1 is θ∗ = [1, 1, . . . , 1]T .
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Restricted norm compatibility Ψtr: It is obvious that assumption in Theorem 14

will hold for f by choosing η1 = 1 and η2 = 0, and we have ρ = 1. The sparse

compatibility constant ΦL1(r) is
√
r because ‖δ‖1 ≤

√
r‖δ‖2 for any r-sparse δ. Using

Theorem 14, we have

Ψtr ≤ 4
√
r . (5.24)

Gaussian width w(Ctr): As ρ = 1, Theorem 16 implies that

w (Ctr) ≤
√

3r(d+ p− r) . (5.25)

Gaussian width w(Ωtr): Using Theorem 18 with ν = 1, it is easy to see that

w (Ωtr) ≤
√
d+
√
p . (5.26)

Putting all the results together, we have the following bound hold with high proba-

bility when n > O(r(d+ p− r))

∥∥∥Θ̂−Θ∗
∥∥∥
F
≤ O

(√
rd

n
+

√
rp

n

)
, (5.27)

which matches the bound in [31].

5.4.2 Spectral k-Support Norm

The k-support norm proposed in [7] is defined as

‖θ‖spk , inf

{∑
i

‖ui‖2
∣∣∣ ‖ui‖0 ≤ k, ∑

i

ui = θ

}
, (5.28)
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and its dual norm is simply given by

‖θ‖spk∗ =
∥∥∥|θ|↓1:k

∥∥∥
2
. (5.29)

Spectral k-support norm (denoted by ‖ · ‖sk) of Θ∗ is defined by applying the k-support

norm on σ∗, i.e., f = ‖ · ‖spk , which has demonstrated better performance than trace

norm in matrix completion task [121]. For simplicity, We assume that rank(Θ∗) = r = k

and ‖σ∗‖2 = 1. One subgradient of ‖σ∗‖spk is θ∗ = [σ∗1, σ
∗
2, . . . , σ

∗
r , σ
∗
r , . . . , σ

∗
r ]
T .

Restricted norm compatibility Ψsk: The following relation has been shown for

k-support norm in [7],

max

{
‖ · ‖2,

‖ · ‖1√
k

}
≤ ‖ · ‖spk ≤

√
2 max{‖ · ‖2,

‖ · ‖1√
k
} . (5.30)

Hence the assumption in Theorem 14 will hold for η1 =
√

2
k and η2 =

√
2, and we have

ρ =
σ∗1
σ∗r

. The sparse compatibility constant Φsp
k (r) = Φsp

k (k) = 1 because ‖δ‖spk = ‖δ‖2

for any k-sparse δ. Using Theorem 14, we have

Ψsk ≤ 2
√

2 +
√

2

(
1 +

σ∗1
σ∗r

)
=
√

2

(
3 +

σ∗1
σ∗r

)
. (5.31)

Gaussian width w(Csk): Theorem 16 implies

w (Csk) ≤

√
r(d+ p− r)

[
2σ∗21

σ∗2r
+ 1

]
. (5.32)

Gaussian width w(Ωsk): The relation above for k-support norm shown in [7] also

implies that ν = 1√
k

= 1√
r
. By Theorem 18, we get

w (Ωsk) ≤
√
r(
√
d+
√
p) . (5.33)
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Given the upper bounds for geometric measures, with high probability, we have

∥∥∥Θ̂−Θ∗
∥∥∥
F
≤ O

(√
rd

n
+

√
rp

n

)
(5.34)

when n > O(r(d + p − r)). The spectral k-support norm was first introduced in [121],

in which no statistical results are provided. Although [67] investigated the statistical

aspects of spectral k-support norm in matrix completion setting, the analysis was quite

different from our setting. Hence this error bound is new in the literature.

Appendix

Appendix 5.A Proof of Deterministic Analysis

5.A.1 Proof of Lemma 11

Proof: Both T and T ′ are induced by scaled (semi)norm balls (i.e., Ω and Ωw,z) cen-

tered at −Θ∗, and note that

Θ∗M1
= Θ∗ , Θ∗M2

= 0 .

Thus we obtain

‖Θ∗‖w,z = ‖Θ∗M1
‖w =

r∑
i=1

σ∗i θ
∗
i = 〈σ∗,θ∗〉 = ‖Θ∗‖ ,

which indicates that the two balls have the same radius. Hence we only need to show that

‖ ·‖w,z ≤ ‖·‖. For any ∆ ∈ Rd×p, assume that the SVD of ∆M1 and ∆M2 are given by

∆M1 = U1Σ1V
T
1 and ∆M2 = U2Σ2V

T
2 . The corresponding vectors of singular values

are in the form of σ′ = [σ′1, σ
′
2, . . . , σ

′
r, 0, . . . , 0]T ,σ′′ = [σ′′1 , σ

′′
2 , . . . , σ

′′
d−r, 0, . . . , 0]T ∈ Rd,
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as rank(∆M1) ≤ r and rank(∆M2) ≤ d− r. Then we have

‖∆‖w,z = ‖∆M1‖w + ‖∆M2‖z = 〈σ′,w〉+ 〈σ′′, z〉 =

〈
θ∗,

 σ′1:r

σ′′1:d−r

〉 = 〈〈Θ,∆〉〉 ,

where Θ = U1 Diag(θ∗1:r)V1 + U2 Diag(θ∗r+1:n)V2. From this construction, we can see

that θ∗ are the singular values of Θ, thus ‖Θ‖∗ ≤ 1. It follows that

〈〈Θ,∆〉〉 ≤ max
‖Z‖∗≤1

〈〈Z,∆〉〉 = ‖∆‖ ,

which completes the proof.

5.A.2 Proof of Theorem 14

Proof: Under the setting of Lemma 11, as Θ∗ ∈M1, we have

‖∆ + Θ∗‖w,z ≤ ‖Θ∗‖w,z =⇒ ‖∆M1 + Θ∗‖w + ‖∆M2‖z ≤ ‖Θ∗‖w =⇒

−‖∆M1‖w + ‖Θ∗‖w + ‖∆M2‖z ≤ ‖Θ∗‖w =⇒ ‖∆M2‖z ≤ ‖∆M1‖w .

As the set {∆ | ‖∆M2‖z ≤ ‖∆M1‖w} itself is a cone, we obtain

T ′ ⊆ {∆ | ‖∆M2‖z ≤ ‖∆M1‖w}
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Define M⊥ as the orthogonal complement of M1 ⊕M2. By the definition and Lemma

11, we have

Ψ = sup
∆∈T

‖∆‖
‖∆‖F

≤ sup
∆∈T ′

‖∆‖
‖∆‖F

≤ sup
‖∆M2

‖z≤‖∆M1
‖w

‖∆‖
‖∆‖F

≤ sup
‖∆M2

‖z≤‖∆M1
‖w

‖∆M⊥‖+ ‖∆M1 + ∆M2‖
‖∆‖F

≤ sup
∆∈M⊥

‖∆‖
‖∆‖F

+ sup
‖∆M2

‖tr
‖∆M1

‖tr
≤ρ

‖∆M1 + ∆M2‖
‖∆‖F

It is not difficult to see that any ∆ ∈M⊥ has rank at most 2r, thus

sup
∆∈M⊥

‖∆‖
‖∆‖F

= sup
∆∈M⊥

f(σ(∆))

‖σ(∆)‖2
≤ sup
‖δ‖0≤2r

f(δ)

‖δ‖2
≤ 2 sup

‖δ‖0≤r

f(δ)

‖δ‖2
= 2Φf (r) .

Using (5.15) and ‖∆M1 + ∆M2‖F ≤ ‖∆‖F , we have

sup
‖∆M2

‖tr
‖∆M1

‖tr
≤ρ

‖∆M1 + ∆M2‖
‖∆‖F

≤ sup
‖∆M2

‖tr
‖∆M1

‖tr
≤ρ

max {η2‖∆‖F , η1‖∆M1 + ∆M2‖tr}
‖∆‖F

≤ max

{
η2, sup

∆∈M1

η1(1 + ρ)‖∆‖tr
‖∆‖F

}
≤ max

{
η2, η1(1 + ρ)

√
r
}
,

where the last inequality uses the fact that any ∆ ∈M1 is at most rank-r, and ‖δ‖1 ≤
√
r‖δ‖2 for any r-sparse vector δ. Combining all the inequalities, we complete the proof.
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Appendix 5.B Proof of Probabilistic Analysis

5.B.1 Proof of Theorem 15

Proof: Let (Ω, µ) be the probability space that X is defined on, and construct

H = {h(·) = 〈〈·,∆〉〉 | ∆ ∈ C} .

|||X|||ψ2
≤ κ immediately implies that suph∈H |||h|||ψ2

≤ κ. As X is isotropic, i.e.,

E[〈〈X,∆〉〉2] = 1 for any ∆ ∈ C ⊆ Sdp−1, thus H ⊆ SL2 and E[h2] = 1 for any

h ∈ H. Given h1 = 〈〈·,∆1〉〉, h2 = 〈〈·,∆2〉〉 ∈ H, where ∆1,∆2 ∈ C, the metric induced

by ψ2 norm satisfies

|||h1 − h2|||ψ2
= |||〈〈X,∆1 −∆2〉〉|||ψ2

≤ κ ‖∆1 −∆2‖F .

Using the properties of γ2-functional and Lemma 4, we have

γ2(H, |||·|||ψ2
) ≤ κγ2(C, ‖ · ‖F ) ≤ κc4w(C) ,

where c4 is an absolute constant. Hence, by choosing β = c1c4κ2w(C)√
n

, we can guarantee

that condition c1κγ2(H, |||·|||ψ2
) ≤ β

√
n holds for H. Applying Lemma 3 to this H, with

probability at least 1− exp(−c2c
2
1c

2
4w

2(C)), we have

sup
h∈H

∣∣∣∣∣ 1n
n∑
i=1

h2(Xi)− 1

∣∣∣∣∣ ≤ β ,
which implies

inf
∆∈A

1

n

n∑
i=1

〈〈Xi,∆〉〉2 ≥ 1− β .
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Letting ζ = c2c
2
1c

2
4, ξ = c1c4, we complete the proof.

5.B.2 proof of Theorem 17

Proof: Let ω = [ω1, ω2, . . . , ωn]T . For each entry in ω, we have

√
E[ω2

i ] ≤
√

2|||ωi|||ψ2
=
√

2τ ,∣∣∣∣∣∣ω2
i − E[ω2

i ]
∣∣∣∣∣∣
ψ1
≤ 2
∣∣∣∣∣∣ω2

i

∣∣∣∣∣∣
ψ1
≤ 4|||ωi|||2ψ2

≤ 4τ2 ,

where we use the definition of ψ2 norm and its relation to ψ1 norm. By Bernstein’s

inequality, we get

P
(
‖ω‖22 − 2τ2 ≥ ε

)
≤ P

(
‖ω‖22 − E[‖ω‖22] ≥ ε

)
≤ exp

(
−c1 min

(
ε2

16τ4n
,

ε

4τ2

))
.

Taking ε = 4τ2n, we have

P
(
‖ω‖2 ≥ τ

√
6n
)
≤ exp (−c1n) .

Denote Yu =
∑n

i=1 uiXi for u ∈ Rn. For any u ∈ Sn−1, we get |||Yu|||ψ2
≤ cκ due to

|||〈〈Yu,∆〉〉|||ψ2
=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

ui〈〈Xi,∆〉〉

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
ψ2

≤ c

√√√√ n∑
i=1

u2
i |||〈〈Xi,∆〉〉|||2ψ2

≤ cκ, ∀ ∆ ∈ Sdp−1.

For the rest of the proof, we may drop the subscript of Yu for convenience. We construct

the stochastic process {Z∆ = 〈〈Y,∆〉〉}∆∈Ω, and note that any ZU and ZV from this

process satisfy

P (|ZU − ZV| ≥ ε) = P (|〈〈Y,U−V〉〉| ≥ ε) ≤ e · exp

(
− Cε2

κ2‖U−V‖2F

)
,
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for some universal constant C due to the sub-Gaussianity of Y. As Ω is symmetric, it

follows that

sup
U,V∈Ω

|ZU − ZV| = 2 sup
∆∈Ω

Z∆ ,

sup
U,V∈Ω

‖U−V‖F = 2 sup
∆∈Ω
‖∆‖F = 2η .

Using Lemma 2, we have

P
(

2 sup
∆∈Ω

Z∆ ≥ c4κ (γ2(Ω, ‖ · ‖F ) + ε · 2η)

)
≤ c2 exp

(
−ε2

)
,

where c2 and c4 are absolute constant. By Lemma 4, there exist constants c3 and c5

such that

P (2‖Y‖∗ ≥ c5κ (w(Ω) + ε)) = P
(

2 sup
∆∈Ω

Z∆ ≥ c5κ (w(Ω) + ε)

)
≤ c2 exp

(
− ε2

c2
3η

2

)
.

Letting ε = w(Ω), we have for any u ∈ Sn−1

P (‖Yu‖ ≥ c5κw(Ω)) ≤ c2 exp

(
−
(
w(Ω)

c3η

)2
)

Combining this with the bound for ‖ω‖2 and letting c0 =
√

6c5, by union bound, we

have

P

(∥∥∥∥∥
n∑
i=1

ωiXi

∥∥∥∥∥
∗

≥ c0κτ
√
nw(Ω)

)
≤ P

(
‖Yω‖∗
‖ω‖2

≥ c5κw(Ω)

)
+ P

(
‖ω‖2 ≥ τ

√
6n
)

≤ sup
u∈Sn−1

P (‖Yu‖∗ ≥ c5κw(Ω)) + P
(
‖ω‖2 ≥ τ

√
6n
)

≤ c2 exp

(
−w

2(Ω)

c2
3η

2

)
+ exp (−c1n) ,
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which completes the proof.

5.B.3 Proof of Theorem 16

To facilitate the proof of Theorem 16, we will use some properties specific to the Gaus-

sian random matrix G ∈ Rd×p, which are summarized as follows. The symbol “∼”

means “has the same distribution as”.

Property 1: Given an m-dimensional subspace M ⊆ Rd×p spanned by orthonormal

basis U1, . . . ,Um,

GM ∼
m∑
i=1

giUi,

where gi’s are i.i.d. standard Gaussian random variables. Moreover, E
[
‖GM‖2F

]
= m.

Proof: Given the orthonormal basis U1, . . . ,Um of subspace M, GM can be written

as

GM =
m∑
i=1

〈〈G,Ui〉〉 ·Ui

Since ‖U1‖F = . . . = ‖Um‖F = 1, each 〈〈G,Ui〉〉 is standard Gaussian. Moreover, as

U1, . . . ,Um are orthogonal, 〈〈G,Ui〉〉 are independent of each other.

Property 2: GM1 and GM2 are independent if M1,M2 ⊆ Rd×p are orthogonal sub-

spaces.

Proof: Suppose that the orthonormal bases ofM1,M2 are given by U1, . . . ,Um1 and
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V1, . . . ,Vm2 respectively. Using Property 1 above, GM1 and GM2 can be written as

GM1 =

m1∑
i=1

〈〈G,Ui〉〉 ·Ui ∼
m1∑
i=1

giUi ,

GM2 =

m2∑
i=1

〈〈G,Vi〉〉 ·Vi ∼
m2∑
i=1

hiVi ,

where g1, . . . , gm1 and h1, . . . , hm2 are all standard Gaussian. As M1,M2 ⊆ Rd×p are

orthogonal, U1, . . . ,Um1 and V1, . . . ,Vm2 are orthogonal to each other as well, which

implies that g1, . . . , gm1 and h1, . . . , hm2 are all independent. Therefore GM1 and GM2

are independent.

Property 3: Given a subspace

M = {Θ ∈ Rd×p | colsp(Θ) ⊆ U , rowsp(Θ) ⊆ V} ,

where U ⊆ Rd, V ⊆ Rp are two subspaces of dimension m1 and m2 respectively, then

‖GM‖op satisfies

‖GM‖op ∼ ‖G′‖op ,

where G′ is an m1 ×m2 matrix with i.i.d. standard Gaussian entries.

Proof: Suppose that the orthonormal bases for U and V are U = [u1, . . . ,um1 ] and

V = [v1, . . . ,vm2 ] respectively, and U⊥ and V⊥ denote the orthonormal bases for their

orthogonal complement. It is easy to see that the orthonormal basis forM can be given
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by {uivTj | 1 ≤ i ≤ m1, 1 ≤ j ≤ m2}. Using Property 1, we have

GM ∼
m1∑
i=1

m2∑
j=1

G′ijuiv
T
j = UG′V

= [U,U⊥] ·

 G′ 0m1×(p−m2)

0(d−m1)×m2
0(d−m1)×(p−m2)

 ·
 VT

VT
⊥


where G′ is a m1 ×m2 standard Gaussian random matrix. Note that both [U,U⊥] ∈

Rd×d and [V,V⊥] ∈ Rp×p are unitary matrices, because they form the orthonormal bases

for Rd and Rp respectively. If we denote

 G′ 0

0 0

 by W, then ‖GM‖op = ‖W‖op as

spectral norm is unitarily invariant. Further, if the SVD of G′ is G′ = U1Σ1V
T
1 , where

U1 ∈ Rm1×m1 , Σ1 ∈ Rm1×m2 and V1 ∈ Rm2×m2 , then the SVD of W is given by

W =

 U1 0m1×(d−m1)

0(d−m1)×m1
U2

×
 Σ1 0m1×(p−m2)

0(d−m1)×m2
0(d−m1)×(p−m2)


×

 VT
1 0m2×(p−m2)

0(p−m2)×m2
VT

2

 ,

where U2 ∈ R(d−m1)×(d−m1) and V2 ∈ R(p−m2)×(p−m2) are arbitrary unitary matrices.

From the equation above, we can see that W and G′ share the same singular values,

thus ‖GM‖op = ‖W‖op = ‖G′‖op.

Property 4: The operator norm ‖G‖op satisfies

P
(
‖G‖op ≥

√
d+
√
p+ ε

)
≤ exp

(
−ε

2

2

)
, (5.35)

E [‖G‖op] ≤
√
d+
√
p , (5.36)

E
[
‖G‖2op

]
≤
(√

d+
√
p
)2

+ 2 . (5.37)



102

(5.35) and (5.36) are the classical results on the extreme singular value of Gaussian

random matrix [146,172] (see Theorem 5.32 and Corollary 5.35 in [172]). (5.37) is used

in [40] (see (82) - (87) in [40]).

Property 5: For a subset of unit sphere A ⊆ Sdp−1, A useful inequality [4,40] is given

by the Gaussian width satisfies

w2(A) ≤ EG

[
inf

Z∈N
‖G− Z‖2F

]
, (5.38)

in which N = {Z | 〈〈Z,∆〉〉 ≤ 0 for all ∆ ∈ A} is the polar cone of cone(A).

This property is essentially Proposition 10.2 in [4], and the right-hand side is often

called statistical dimension. Now we are ready to present the proof of Theorem 16.

Proof of Theorem 16: Let θ∗ be any subgradient of f(·) at σ∗, i.e., θ∗ ∈ ∂f(σ∗), and

Γ = U Diag(θ∗1:r)V. We define

D = {W | W ∈M2, σ(W) � z} , K = {Γ + W | W ∈ D} ,

where the symbol “�” means “elementwise less than or equal”. It is not difficult to see

that K is a subset of ∂‖Θ∗‖, as any Z ∈ K satisfies ‖Z‖∗ = f∗(σ(Z)) ≤ f∗(θ∗) = 1 and

〈〈Z,Θ∗〉〉 = 〈σ(Z),σ∗〉 = 〈θ∗1:r,σ
∗
1:r〉 = f(σ∗) = ‖Θ∗‖. Hence we have

cone(K) ⊂ cone{∂‖Θ∗‖} = N ,

where N is the polar cone of T , and the equality follows from the Theorem 23.7 of [144].

We define the subspace M⊥ as the orthogonal complement of M1 ⊕M2. For the sake

of convenience, we denote by G1 (G2, G⊥) the orthogonal projection of G onto M1
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(M2, M⊥), and denote cone(K) by CK. Using (5.38), we obtain

w(C)2 ≤ E
[

inf
Z∈N
‖G− Z‖2F

]
≤ E

[
inf

Z∈CK
‖G1 − Z1‖2F + ‖G2 − Z2‖2F + ‖G⊥ − Z⊥‖2F

]
= E

[
inf

t≥0, W∈tD
‖G1 − tΓ‖2F + ‖G2 −W‖2F

]
+ E

[
‖G⊥‖2F

]
.

(5.39)

To further bound the expectations, we let t0 =
‖G2‖op

θ∗min
, which is a random quantity

depending on G. Therefore, we have

E
[

inf
t≥0, W∈tD

‖G1 − tΓ‖2F + ‖G2 −W‖2F
]

≤ E
[
‖G1 − t0Γ‖2F

]
+ E

[
inf

W∈t0D
‖G2 −W‖2F

]
= E

[
‖G1‖2F

]
+ 2E [〈〈G1, t0Γ〉〉] + ‖θ∗1:r‖22 · E

[
t20
]

+ 0

= r2 + 0 + E
[
‖G2‖2op

]
· ‖θ

∗
1:r‖22
θ∗2min

≤ r2 + ((
√
d− r +

√
p− r)2 + 2) · ‖θ

∗
1:r‖22
θ∗2min

≤ r2 + 2ρ2r (d+ p− 2r) ,

(5.40)

where the second equality uses Property 1 and 2, and the second inequality follows from

Property 3 and 4. SinceM⊥ is a r(d+ p− 2r)-dimensional subspace, by Property 1 we

have E
[
‖G⊥‖2F

]
= r(d+ p− 2r). Combining it with (5.39) and (5.40), we have

w(C) ≤
√

(2ρ2 + 1) (d+ p− r) r . (5.41)

On the other hand, as C ⊆ Sdp−1, we always have

w(C) ≤ E [‖G‖F ] ≤
√
E
[
‖G‖2F

]
=
√
dp . (5.42)
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We finish the proof by combining the two bounds for w(C).



Chapter 6

Robust Structured Estimation for

Single-Index Models

6.1 Introduction

In previous chapters, we focus on structured estimation for linear models. The simplicity

of linear model leads to its great interpretability and computational efficiency, which

are often favored in practical applications. Despite these attractive merits, one main

drawback of linear models is the stringent assumption of linear relationship between x

and y, which may fail to hold in complicated scenarios. To introduce more flexibility,

one option is to consider the general single-index models (SIMs) [73,77],

E[y|x] = f∗(〈θ∗,x〉) , (6.1)

where f∗ : R 7→ R is an unknown univariate transfer function (a.k.a. link function).

This class of models enjoys rich modeling power in the sense that it encompasses several

useful models as special cases, which are briefly described below:

105
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• One-bit Compressed Sensing: In one-bit compressed sensing (1-bit CS) [23,

134], the response y is restricted to be binary, i.e., y ∈ {+1,−1}, and the range of

transfer function f∗ is [−1, 1]. Given the measurement vector x, one can generate

y from the Bernoulli model,

y + 1

2
∼ Ber

(
f∗(〈θ∗,x〉) + 1

2

)
. (6.2)

In the noiseless case, f∗(z) = sign(z) and y always reflects the true sign of 〈θ∗,x〉,

while y can be incorrect for other f∗ whose shape determines the noise level in

some way.

• Generalized Linear Models: In generalized linear models (GLMs) [119], the

transfer function is assumed to be monotonically increasing and conditional dis-

tribution of y|x belongs to exponential family. Different choices of f∗ give rise to

different members in GLMs. If f∗ is identity function f∗(z) = z, one has the sim-

ple linear models, while the sigmoid function f∗(z) = 1
1+e−z results in the logistic

model for binary classification. In this work, however, we have no access to exact

f∗ other than knowing it is monotone.

• Noise in Monotone Transfer: Instead of having the general expectation form

of y as GLMs, one could directly introduce the noise inside monotone transfer f̃

to model the randomness of y [135],

y = f̃ (〈θ∗,x〉+ ε) . (6.3)

In this setting, the transfer function f̃ is slightly different from the f∗ in (6.1),

which are related by f∗(z) = Eε[f̃(z + ε)|z].

A key advantage of SIM is its robustness. First, allowing unknown f∗ prevents the

mis-specification of transfer function, which could otherwise lead to a poor estimate of
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θ∗. Second, the model in (6.1) makes minimal assumption on the distribution of y, thus

being able to tolerate potentially heavy-tailed noise.

In the absence of exact f∗, though 1-bit CS and related variants were well-studied

in recent years [23, 42, 62, 81, 104, 134, 151, 152, 181, 186, 191], the exploration of general

SIMs or the cases with monotone transfers is relatively limited, especially in the high-

dimensional regime. [93] and [92] investigated the low-dimensional SIMs with mono-

tone transfers, and they proposed perceptron-type algorithms to estimate both f∗ and

θ∗, with provable guarantees on prediction error. In high dimension, general SIMs

were studied by [3] and [136], in which only unstructured sparsity of θ∗ is considered.

The algorithm developed in [3] relies on reversible jump MCMC, which could be slow.

In [136], a path fitting algorithm is designed to recover f∗ and θ∗, but only asymptotic

guarantees are provided. [58] considered the high-dimensional setting with monotone

transfer, and their iterative algorithm is based on non-convex optimization, for which it

is hard to establish the convergence. Besides, the prediction error bound they derived

is also weak (in the sense that it is even worse than the initialization of the algorith-

m). Recently [131] proposed a constrained least-squares method to estimate θ∗, with

recovery error characterized by Gaussian width and related quantities. Though their

analysis considered the general structure of θ∗, it only holds for noiseless setting where

y = f(〈θ∗,x〉). General structure of θ∗ was also explored in [173] and [135]. Other

types of statistical guarantees for high-dimensional SIMs is also available, such as sup-

port recovery of θ∗ in [129]. It is worth noting that all the aforementioned statistical

analyses rely on sub-Gaussian noise or the transfer function being bounded or Lipschitz,

which indicates that none of the results can immediately hold for heavy-tailed noise (or

without Lipschitzness and boundedness).

In this chapter, we focus on the parameter estimation of θ∗ instead of the prediction

of y given new x, given n measurements of (x, y) ∈ Rp × R, denoted by {(xi, yi)}ni=1.
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In particular, we propose two families of generalized estimators, constrained and regu-

larized, for model (6.1) under Gaussian measurement. The parameter θ∗ is assumed to

possess certain low-complexity structure, which can be either captured by a constrain-

t θ∗ ∈ K or a norm regularization term ‖θ∗‖. Our general approach is inspired by

U -statistics [98] and the advances in 1-bit CS, and subsumes several existing 1-bit CS

algorithms [42,186] as special cases. Similar to those algorithms, our estimator is simple

and often admits closed-form solutions. Apart from 1-bit CS, we particularly investigate

the model (6.3), for which the generalized estimator is specialized in a novel way. The

resulting estimator better leverages the monotonicity of the transfer function, which

is also demonstrated through experiments. Regarding the recovery analysis, there are

two appealing aspects. First our results work for general structure, with error bound

characterized by Gaussian width and some other easy-to-compute geometric measures.

Instantiating our results with specific structure of θ∗ recovers previously established

error bounds for 1-bit CS [42,186], which are sharper than those yielded by the general

analysis in [134]. Second, our analysis works with limited assumptions on the condi-

tion distribution of y. In particular, our estimator is robust to heavy-tailed noise and

permit unbounded transfer functions f∗ as well as non-Lipschitz ones. For the ease of

exposition, whenever we say “monotone”, it means “monotonically increasing” by de-

fault. Throughout the chapter, we will use c, C,C ′, C0, C1 and so on to denote absolute

constants, which may differ from context to context.

The rest of the chapter is organized as follows. In Section 6.2, we introduce our ro-

bust estimators for SIMs. Section 6.3 presents the statistical guarantees of the proposed

estimators. Different structures of θ∗ are also discussed. In Section 6.4, we provide two

few examples, 1-bit CS and monotone transfer, to illustrate the specialization of the

general estimators. In Section 6.5, we complement our theoretical developments with

some experiment results.
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6.2 Robust Estimators

6.2.1 Assumptions

For the sake of identifiability, we assume w.l.o.g. that ‖θ∗‖2 = 1 throughout the chap-

ter. At the first glimpse of model (6.1), we may realize that it is difficult to recover θ∗

due to unknown f∗. In contrast, when f∗ is given, the recovery guarantees of θ∗ can be

established under mild assumptions of x and y, such as boundedness or sub-Gaussianity.

If we know certain properties of the transfer function like the monotonicity introduced

in GLMs and (6.3), the structure of f∗ is largely restricted, and it is tempting to expect

that similar results will continue to hold. Unfortunately, we first have the following

claim, which indicates that without other constraints on f∗ beyond strict monotonicity,

θ∗ cannot be consistently estimated under general sub-Gaussian (or bounded) measure-

ment, even in the noiseless setting of (6.3).

Claim 1 Suppose that each element xi of x is sampled i.i.d. from Rademacher dis-

tribution, i.e., P(xi = 1) = P(xi = −1) = 0.5. Under model (6.3) with noise ε = 0,

there exists a θ̄ ∈ Sp−1 together with a monotone f̄ , such that supp(θ̄) = supp(θ∗)

and yi = f̄(〈θ̄,xi〉) for data {(xi, yi)}ni=1 with arbitrarily large sample size n, while

‖θ̄ − θ∗‖2 > δ for some constant δ.

Proof: In the noiseless setting with unknown f∗, provided that S , supp(θ∗) is given

and |S| = s, the estimation of θ∗ is simplified as

Find θS ∈ Ss−1 s.t. sign
(
〈θS ,xiS − xjS〉

)
= sign(yi − yj), ∀ 1 ≤ i < j ≤ n ,

(6.4)

any of whose solution θ can be true θ∗ on the premise that no other information is

available, since there always exists a monotone f satisfying f(〈θ,xi〉) = yi. Given the
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distribution of x, xiS − xjS only has 3s possibilities even if n → +∞. We denote

the feasible set of (6.4) by C, which is basically an intersection of Ss−1 and at most

min{n(n − 1), 3p} halfspaces (or hyperplanes if yi = yj). Depending on the 3 different

values of each sign(yi − yj), this feasible set C has at most 3min{n(n−1),3p} possibilities,

which is finite, and the union of them should be Ss−1. When s ≥ 2 and the constant δ is

small enough, we can always find a C, in which there exist two different points away by

δ. Specify them as θ∗S and θ̄S respectively, and we are unable to distinguish between

them, as both can be solution to (6.4) for any samples.

Now that consistent estimation of θ∗ is not possible for general sub-Gaussian mea-

surement, it might be reasonable to focus on certain special cases. For this work, we

assume that x is standard Gaussian N (0, I). For SIM (6.1), we additionally assume that

the distribution of y depends on x only through the value of 〈θ∗,x〉, i.e., the distribution

of y|x is fixed if 〈θ∗,x〉 is given (no matter what the exact x is). This assumption is

quite minimal, and it turns out that the examples we provide in Section 6.1 all satisfy

it (if noise ε is independent of x in (6.3)). The same assumption is used in [135] as well.

Under the assumptions above, given m i.i.d. observations (x1, y1), . . . , (xm, ym), we

define

u ((x1, y1), . . . , (xm, ym)) =
m∑
i=1

qi (y1, . . . , ym) · xi , (6.5)

where all qi : Rm 7→ R are bounded functions with |qi| ≤ 1, which are chosen along with

m based on the properties of the transfer function. In Section 6.4, we will see examples

for their choices. The vector u ∈ Rp is critical due to the key observation below.

Lemma 12 Suppose the distribution of y in model (6.1) depends on x through 〈θ∗,x〉

and we define accordingly

bi (z1, . . . , zm;θ∗) = E [qi (y1, . . . , ym) |〈θ∗,x1〉 = z1, . . . , 〈θ∗,xm〉 = zm] . (6.6)
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With x being standard Gaussian N (0, I), u defined in (6.5) satisfies

E [u ((x1, y1), . . . , (xm, ym))] = βθ∗ , (6.7)

where β =
∑m

i=1 E[bi (g1, . . . , gm;θ∗) · gi], and g1, . . . , gm are i.i.d. standard Gaussian.

Proof: Let θ⊥ be any vector orthogonal to θ∗. For convenience, we use the shorthand

notation u for u ((x1, y1), . . . , (xm, ym)). Then we have

〈Eu,θ⊥〉 = E

[
m∑
i=1

qi (y1, . . . , ym) · 〈xi,θ⊥〉

]
=

m∑
i=1

E [qi (y1, . . . , ym) · 〈xi,θ⊥〉]

=

m∑
i=1

E [〈xi,θ⊥〉 · E [qi (y1, . . . , ym) |x1, . . . ,xm]] (∗)

As xi follows N (0, I), 〈xi,θ∗〉 and 〈xi,θ⊥〉 are two zero-mean independent Gaussian

random variables. Since the distribution of yi depends on x only via 〈θ∗,xi〉, we can

split the expectation and obtain

(∗) =
m∑
i=1

E [〈xi,θ⊥〉 · bi (〈θ∗,x1〉, . . . , 〈θ∗,xm〉;θ∗)]

=
m∑
i=1

E [〈xi,θ⊥〉] · E [bi (〈θ∗,x1〉, . . . , 〈θ∗,xm〉;θ∗)] = 0 .

Hence u has to point towards either θ∗ or −θ∗, and note that

〈Eu,θ∗〉 =

m∑
i=1

E [qi (y1, . . . , ym) · 〈xi,θ∗〉]

=
m∑
i=1

E [bi (〈θ∗,x1〉, . . . , 〈θ∗,xm〉;θ∗) · 〈xi,θ∗〉]

=
m∑
i=1

E [bi (g1, . . . , gm;θ∗) · gi] = β
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We complete the proof by recalling that ‖θ∗‖2 = 1, thus Eu = βθ∗.

Note that Lemma 12 is true for all choices of qi, and the proof is given in the

appendix. This lemma presents an insight towards the design of our estimator, that is,

the direction of θ∗ can be approximated if we have a good sense about Eu. As we will

see in the sequel, the scalar β plays a key role in the estimation error bound, which can

give us clues to the choice of qi. We can assume w.l.o.g. that β ≥ 0 since we can flip

the sign of each qi.

6.2.2 Estimators

Inspired by Lemma 12, we define the vector û for the observed data {(xi, yi)}ni=1,

û =
(n−m)!

n!

∑
1≤i1,...,im≤n
i1 6=... 6=im

u ((xi1 , yi1), . . . , (xim , yim)) , (6.8)

which is an unbiased estimator of Eu, meaning that Eû = Eu = βθ∗. For instance,

when m = 2, we essentially have

û =
1

n(n− 1)

∑
1≤i,j≤n
i 6=j

u ((xi, yi), (xj , yj)) (6.9)

In fact, û can be treated as a vector version of U -statistics with order m. Given û, a

naive way to estimate θ∗ is to simply normalize û, i.e., θ̂ = û/‖û‖2, . which is the

solution to

θ̂ = argmin
θ∈Rp

− 〈û,θ〉 s.t. θ ∈ Sp−1 .

In high-dimensional setting, θ∗ is often structured, but the naive estimator fails to take

such information into account, which would lead to large error. To incorporate the
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prior knowledge on θ∗, we design two types of estimator, the constrained one and the

regularized one.

Constrained Estimator: If we assume that θ∗ belongs to some structured set K ⊆

Sp−1, then the estimation of θ∗ is carried out via the constrained optimization

θ̂cs = argmin
θ∈Rp

− 〈û,θ〉 s.t. θ ∈ K . (6.10)

Similar estimator has been used in [135], but they only focused on specific û. Here the

set K can be non-convex, as long as the optimization can be solved globally. Since the

objective function is very simple (i.e., linear), we can often end up with a global mini-

mizer. Moreover, the solution to (6.10) also minimizes its relaxed convex counterpart,

min
θ∈Rp

− 〈û,θ〉 s.t. θ ∈ conv(K) . (6.11)

Although (6.11) may yield a solution outside K, it could help recover a feasible solution

for the original problem.

Regularized Estimator: If we assume that the structure of θ∗ can be captured by

certain norm ‖ · ‖, we may alternatively use the regularized estimator to find θ∗,

θ̂rg = argmin
θ∈Rp

− 〈û,θ〉+ λ‖θ‖ s.t. ‖θ‖2 ≤ 1 . (6.12)

Previously this estimator was used in 1-bit CS scenario with L1 norm [186]. The opti-

mization associated with θ̂rg is convex, thus the global minimum is always attained. In

fact, the following theorem characterizes the solution to (6.12).
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Theorem 19 The regularized estimator θ̂rg in (6.12) is given by

θ̂rg =



proxλ‖·‖(û)

‖proxλ‖·‖(û)‖
2

, if λ < ‖û‖∗

0 , otherwise

, (6.13)

where proxλ‖·‖(·) is the proximal operator for λ‖ · ‖, and ‖ · ‖∗ is the dual norm of ‖ · ‖.

Remark: When the regularization parameter λ is appropriately chosen, the regularized

estimator is the solution to a proximal operator with normalization. The simplicity of

the solution makes the computation highly efficient.

6.3 Statistical Analysis

Regarding the constrained estimator, the recovery of θ∗ relies on the geometry of θ̂cs,

which is described by

CK = cone
{

v
∣∣∣ v = θ − θ∗, θ ∈ K

} ⋂
Sp−1 (6.14)

The set CK essentially contains all possible directions that error δ = θ̂cs − θ∗ could lie

in. The following theorem characterizes the error of θ̂.

Theorem 20 Suppose that the optimization (6.10) can be solved to global minimum.

Then the following error bound holds for the minimizer θ̂cs with probability at least

1− C ′′ exp
(
−w2 (CK)

)
,

∥∥∥θ̂cs − θ∗∥∥∥
2
≤ Cκm

3
2

β
· w(CK) + C ′√

n
, (6.15)

where κ is the sub-Gaussian norm of a standard Gaussian random variable, and C, C ′,
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C ′′ are all absolute constant.

Remark: Note that estimator is consistent as long as β 6= 0. The error bound inversely

depends on the scale of β, which implies that we should construct suitable qi such that

β is large according to its definition in Lemma 12. The choice of qi further depends

on the assumed property of f∗. Though dependency on m may prevent us from using

higher-order u, m is typically small in practice and can be treated as constant.

For regularized estimator, we can similarly establish the recovery guarantee in terms

of Gaussian width.

Theorem 21 Define the following set for any ρ > 1,

Cρ = cone

{
v
∣∣∣ ‖v + θ∗‖ ≤ ‖θ∗‖+

‖v‖
ρ

} ⋂
Sp−1 .

Let ‖ · ‖∗ be the dual norm of ‖ · ‖. If we set λ = ρ ‖û− βθ∗‖∗ = O
(
ρm3/2w(Ω)√

n

)
and

it satisfies λ < ‖û‖∗, then with probability at least 1 − C ′ exp
(
−w2 (Ω)

)
, θ̂rg in (6.12)

satisfies ∥∥∥θ̂rg − θ∗∥∥∥
2
≤ C(1 + ρ)κm

3
2

β
· Ψ · w (Ω)√

n
, (6.16)

where Ψ = supv∈Cρ ‖v‖, and Ω is the unit ball of norm ‖ · ‖.

Remark: The geometry of the regularized estimator is slightly different from the con-

strained one. Instead of having CK, here the set Cρ depends on the choice of the reg-

ularization parameter λ through the coefficient ρ. There is a tradeoff regarding ρ. A

larger ρ results in a larger coefficient in the error bound, while the spherical cap Cρ will

shrink, which potentially leads to a smaller Ψ. The same phenomenon also appears in

the [14].
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6.4 Applications

6.4.1 1-bit Compressed Sensing

For 1-bit CS problem (6.2), the u defined in (6.5) can be chosen with m = 1 and qi = yi,

ending up with

u ((x, y)) = yx and û =
1

n

n∑
i=1

yixi . (6.17)

By such choice of u, the β defined in Lemma 12 is simply β = E[f∗(g)g] with g being

standard Gaussian random vector. Under reasonably mild noise, y is likely to take the

sign of the linear measurement, which means that f∗(g) should be close to 1 (or -1) if g

is positive (or negative). Thus we expect f∗(g)g to be positive most of time and β to be

large. Given the choice of u, we can specialize our generalized constrained/regularized

estimator to obtain previous results. If θ∗ is assumed to be s-sparse, for constrained

estimator, we can choose a straightforward K = {θ | ‖θ‖0 ≤ s} ∩ Sp−1, which results in

the k-support norm estimator [42],

θ̂ks = argmin
θ∈Rp

− 〈û,θ〉 s.t. ‖θ‖0 ≤ s, ‖θ‖2 = 1 (6.18)

Though K is non-convex, the global minimizer can actually be obtained in closed form,

θ̂ks
j =


ûj∥∥∥|û|↓1:s

∥∥∥
2

, if |ûj | is in |û|↓1:s

0 , otherwise

(6.19)

where |û|↓ is the absolute-value counterpart of û with entries sorted in descending

order, and the subscript takes the top s entries. Similarly if the regularized estimator is

instantiated with L1 norm ‖ · ‖1, we obtain the so-called passive algorithm introduced
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in [186],

θ̂ps = argmin
θ∈Rp

− 〈û,θ〉+ λ‖θ‖1 s.t. ‖θ‖2 ≤ 1 , (6.20)

whose solution is given by the elementwise soft-thresholding operator

θ̂ps =
S (û, λ)

‖S (û, λ)‖2
, where Si(û, λ) = max{sign(ûi)(|ûi| − λ), 0} . (6.21)

Based on Theorem 20 and 21, we can easily obtain the error bound for both k-support

norm estimator and passive algorithm.

Corollary 4 Assume that {(xi, yi)}ni=1 follow 1-bit CS model in (6.2) and û is given as

(6.17). For any s-sparse θ∗, with high probability, θ̂ produced by both (6.18) and (6.20)

(i.e., θ̂ks and θ̂ps) satisfy

∥∥∥θ̂ − θ∗∥∥∥
2
≤ O

(√
s log p

n

)
(6.22)

Proof: For the k-support norm estimator, the cone CK is given by

CK = cone
{
θ̂ − θ∗

∣∣∣ ‖θ̂‖0 ≤ s, ‖θ̂‖2 ≤ 1
} ⋂

Sp−1

=⇒ CK ⊆ S = {v | ‖v‖0 ≤ 2s} ∩ Sp−1

Using (19) from [43], we have

w(CK) ≤ w(S) ≤ O
(√

s log p
)
.
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By Theorem 20, the error of k-support norm estimator satisfies

∥∥∥θ̂ks − θ∗
∥∥∥

2
≤ O

(√
s log p

n

)

For the passive algorithm, if we choose ρ = 2, the restricted norm compatibility Ψ for

L1 norm satisfies

ΨL1 ≤ 4
√
s (6.23)

according to the results in [14, 127]. [43] also show that the Gaussian width of the

L1-norm ball is bounded by

w(ΩL1) ≤ O
(√

log p
)
. (6.24)

Now combining (6.23), (6.24) and Theorem 21, we can conclude that

∥∥∥θ̂ps − θ∗
∥∥∥

2
≤ O

(√
s log p

n

)
,

which completes the proof.

The above result was shown by [151] and [186], but their analyses do not consider the

general structure. Compared with O

(
4

√
s log p
n

)
yielded by the general result in [134],

our bound is much sharper.

6.4.2 A New Estimator for Monotone Transfer

In this subsection, we specifically study model (6.3). Here we further assume that f̃ is

strictly increasing. What is worth mentioning is that the estimator we develop here can

be applied to GLMs as well. To avoid the confusion with u and û used for 1-bit CS, we
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instead use new notations h and ĥ respectively in this monotone transfer setting. To

motivate the design of h, it is helpful to rewrite model (6.3) by applying the inverse of

f̃ on both sides,

f̃−1(y) = 〈θ∗,x〉+ ε . (6.25)

Note that the new formulation resembles the linear model except that we have no access

to the value of f̃−1(y). Instead, all we know about r = [f̃−1(y1), . . . , f̃−1(yn)]T ∈ Rn

is that it preserves the ordering of y = [y1, . . . , yn]T . Put in another way, r needs to

satisfy the constraint that ri > rj iff. yi > yj and ri < rj iff. yi < yj . To move one step

further, it is equivalent to sign(yi−yj) = sign(ri−rj) = sign(〈θ∗,xi−xj〉+εi−εj) based

on model assumption. Hence the information contained in sample {(xi, yi)}ni=1 can be

interpreted from the perspective of 1-bit CS, where sign(yi − yj) reflects the perturbed

sign of linear measurement 〈θ∗,xi−xj〉. Inspired by the u for 1-bit CS, we may choose

m = 2 and define h, ĥ as

h ((x1, y1), (x2, y2)) = sign(y1 − y2) · (x1 − x2) , (6.26)

ĥ =
1

n(n− 1)

∑
1≤i,j≤n
i 6=j

h ((xi, yi), (xj , yj)) , (6.27)

Given the definition of ĥ, Lemma 12 directly implies the following corollary.

Corollary 5 Suppose that (x1, y2) and (x2, y2) are generated by model (6.3), where

x1,x2 follow Gaussian distribution N (0, I), and the noise ε1, ε2 are independent of x1,x2

and identically (but arbitrarily) distributed. Then the expectation of h ((x1, y1), (x2, y2))

satisfies

E [h ((x1, y1), (x2, y2))] =
√

2β′θ∗ , (6.28)

where β′ = Eg∼N (0,1)

[
sign

(
g + (ε1 − ε2)/

√
2
)
· g
]
.
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Remark: The scalar
√

2β′ serves as the role of β in Lemma 12, and β′ is always

guaranteed to be strictly positive regardless how the noise is distributed, which keeps

θ∗ distinguishable all the time. To see this, let ξ = (ε1 − ε2)/
√

2. Note that ξ is

symmetric, thus εξ has the same distribution as ξ, where ε is a Rademacher random

variable. Therefore

β′ = E [sign (g + ξ) · g] = Eg,ξEε [sign (g + εξ) · g]

= EξEg
[

sign (g − ξ) + sign (g + ξ)

2
· g
]

Since g(g − ξ) + g(g + ξ) = 2g2 ≥ 0, it follows that sign(g(g − ξ)) + sign(g(g + ξ)) =

(sign(g − ξ) + sign(g + ξ)) · sign(g) ≥ 0, thus (sign(g − ξ) + sign(g + ξ)) · g is always

nonnegative. Find a large enough M > 0 such that P(|ξ| ≤M) = 0.5 > 0, and we have

β′ = E [sign (g + ξ) · g] ≥ EξEg [|g| · I{|g| > |ξ|}]

≥ 0.5Eg [|g| · I{|g| > M}] =
M

2
· P(|g| > M) > 0 .

In the ideal noiseless case, β′ achieve its maximum, β′max = E[sign(g)g] = E[|g|] =√
2/π. In the worst case, if ε1 and ε2 are heavy-tailed and dominate g, then β′ ≈

E
[
sign

(
(ε1 − ε2)/

√
2
)
· g
]
≈ 0.

Now we can instantiate the generalized estimator based on ĥ. For example, if θ∗ is

s-sparse, we estimate it by

θ̂ = argmin
θ∈Rp

− 〈ĥ,θ〉 s.t. ‖θ‖0 ≤ s, ‖θ‖2 = 1 (6.29)

which enjoys O

(√
s log p
n

)
error rate as shown in Corollary 4. The regularized estimator

can also be obtained with the same ĥ according to (6.20). The bottleneck of computing

θ̂ lies in the calculation of ĥ. A simple proposition below enables us to get ĥ in a fast
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manner.

Proposition 15 Given {(xi, yi)}ni=1, let π↓ be the permutation of {1, . . . , n} such that

y
π↓1
> y

π↓2
> . . . > y

π↓n
. Then we have

ĥ =
2

n(n− 1)

n∑
i=1

(n+ 1− 2i) · x
π↓i

(6.30)

Proof: We rearrange the terms inside the summation of (6.27) based on π↓,

ĥ =
1

n(n− 1)

∑
1≤i,j≤n
i 6=j

sign(yi − yj) · (xi − xj) =
2

n(n− 1)

∑
1≤i,j≤n
i 6=j

sign(yi − yj) · xi

=
2

n(n− 1)

n∑
i=1

∑
j 6=π↓i

sign
(
y
π↓i
− yj

)
· x

π↓i
=

2

n(n− 1)

n∑
i=1

(n+ 1− 2i) · x
π↓i
,

where the last inequality uses the fact that there are (i− 1) yj larger than and (n− i)

smaller than y
π↓i

, thus
∑

j 6=π↓i
sign

(
y
π↓i
− yj

)
= (n− i)− (i− 1) = n+ 1− 2i.

Remark: Based on the proposition above, ĥ can be efficiently computed in O(np +

n log n) time, i.e., O(n log n) time for sorting y and O(np) time for the weighted sum of

all xi. This is a significant improvement compared with the the naive calculation using

(6.27), which takes O(n2p) time.

6.4.3 Other Parameter Structures

So far we have illustrated the Gaussian width based error bounds, viz (6.15) and (6.16),

only through unstructured sparsity of θ∗. Here we provide two more examples, non-

overlapping group sparsity and fused sparsity.

Non-Overlapping Group Sparsity: Suppose the coordinates of θ∗ has been par-

titioned into K predefined disjoint groups I1, . . . , IK ⊆ {1, 2, . . . , p} with |Ij | ≤ G
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(1 ≤ j ≤ K), out of which only k groups are non-zero. If we use the regularized es-

timator with L2,1 norm ‖θ‖2,1 =
∑K

j=1 ‖θIj‖2, the optimal solution can be similarly

obtained as (6.20), with elementwise soft-thresholding replaced by the groupwise one,

θ̂rg =
GS (û, λ)

‖GS (û, λ)‖2
, where GSI(û, λ) = max

{
1− λ

‖ûI‖2
, 0

}
· ûI . (6.31)

The related geometric measures that appears in (6.16) can be found in [14], which are

given by

ΨL2,1 ≤ O(
√
k) (6.32)

w
(
ΩL2,1

)
≤ O(

√
logK +

√
G) , (6.33)

Fused Sparsity: θ∗ is said to be s-fused-sparse if the cardinality of the set F(θ∗) =

{1 ≤ i < p | θ∗i 6= θ∗i+1} is smaller than s. If we resort to the constrained estimator

(6.10) with K = {θ | |F(θ)| ≤ s, ‖θ‖2 = 1}, the associated optimization can be solved

by dynamic programming [18]. The proposition below upper bounds the corresponding

Gaussian width w(CK) in (6.15).

Proposition 16 For s-fused-sparse θ∗, the Gaussian width of set CK with K = {θ ∈

Rp | |F(θ)| ≤ s, ‖θ‖2 = 1} satisfies

w(CK) ≤ O(
√
s log p) (6.34)

6.5 Experimental Results

In the experiment, we focus on model (6.3) with sparse θ∗. The problem dimension is

fixed as p = 1000, and the sparsity of θ∗ is set to 10. Essentially we generate our data
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(b) Error for f̃(z) = log(1 + exp(z))
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(c) Error for f̃(z) = z3

Figure 6.1: Recovery error vs. sample size. (a) Our estimator has similar performance
compared with iSILO, both of which outperform SILO by a large margin. (b) iSILO
has smaller error when σ is small, while our estimator works better in high-noise regime
(c) The error of SILO is reduced compared with other f̃ , but iSILO fails to give further
improvement over SILO when σ is large. Our estimator still outperforms them when
σ ≥ 0.6.
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Figure 6.2: Recovery error vs. sample size, with f̃(z) = z3 under heavy-tailed noise
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(x, y) from

y = f̃ (〈θ∗,x〉+ ε) ,

where x ∼ N (0, I) and ε ∼ N (0, σ2). σ ranges from 0.3 to 1.5. We choose three

monotonically increasing f̃ , f̃(z) = 1/(1 + exp(−z)) (which is bounded and Lipschitz),

f̃(z) = z3 (which is unbounded and non-Lipschitz), and f̃(z) = log(1 + exp(z)) (which

is unbounded but Lipschitz). The sample size n varies from 200 to 1000. We use

the estimator (6.29) in Section 6.4.2. The baselines we compare with is the SILO

and iSILO algorithm introduced in [58]. SILO does not quite take the monotonicity

in account. In fact, it is the special case of our generalized constrained estimator

which uses the same choice of u as 1-bit CS. The original SILO use the constraint

set {θ | ‖θ‖1 ≤
√
s, ‖θ‖2 ≤ 1}, which is computationally less efficient and statistically

no better than K = {θ | ‖θ‖0 ≤ s} ∩ Sp−1 [42, 186]. Hence we also use K in SILO for a

fair comparison. iSILO relies on a specific implementation of isotonic regression which

explicitly restricts the Lipschitz constant of f̃ to be one. To fit iSILO into our setting,

we remove the Lipschitzness constraint and perform the standard isotonic regression.

Since the convergence is not guaranteed for the iterative procedure of iSILO, the number

of its iterations is fixed to 100. The best tuning parameter of iSILO is obtained by grid

search.

The experiment results are shown in Figure 6.1. Overall the iSILO algorithm works

well under small noise, while our estimator has better performance when the variance of

noise increases. To better demonstrate the robustness of our estimator to heavy-tailed

noise, instead of Gaussian noise, we sample ε from the Student’s t distribution with

degrees of freedom equal to 3. We repeat the experiments for f̃(z) = z3, and obtain the

plots in Figure 6.2. We can see that the error of our estimator consistently decreases
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for all choice of σ as n increases. For SILO and iSILO, the errors are relatively large,

and unable to shrink for large σ even when more data are provided.

Appendix

Appendix 6.A Supplementary Proofs

6.A.1 Proof of Theorem 19

Proof: For λ ≥ ‖û‖∗, by Hölder’s inequality, the objective function of (6.12) satisfies

−〈û,θ〉+ λ‖θ‖ ≥ −〈û,θ〉+ ‖û‖∗‖θ‖ ≥ 0 ,

and we can easily verify that 0 is a solution. When λ < ‖û‖∗, the minimum of (6.12) is

negative, thus the optimal solution is always obtained at the boundary of the constraint,

i.e., ‖θ̂rg‖2 = 1. For this case, we construct the Langrangian of (6.12) and swap the

minimization and maximization step,

max
β≥0

min
θ∈Rp

−〈û,θ〉+ λ‖θ‖+ β(‖θ‖22 − 1) .

The minimization step over θ can be equivalently written as

min
θ∈Rp

−〈û,θ〉+ λ‖θ‖+ β(‖θ‖22 − 1) +
1

4β
‖û‖22

⇐⇒ min
θ∈Rp

β‖θ‖22 − 〈û,θ〉+
1

4β
‖û‖22 + λ‖θ‖

⇐⇒ min
θ∈Rp

β

∥∥∥∥θ − û

2β

∥∥∥∥2

2

+ λ‖θ‖

⇐⇒ min
θ∈Rp

1

2
‖2βθ − û‖22 + λ‖2βθ‖ =⇒ 2βθ̂rg = proxλ‖·‖ (û)
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As we have shown that ‖θ̂rg‖2 = 1 for λ < ‖û‖∗, θ̂rg must be the normalized version of

the proximal operator of û for λ‖ · ‖, which completes the proof.

6.A.2 Proof of L2-Error Bound

We prove Theorem 20 and Theorem 21 here. To show them, we need a Hoeffding-

type inequality for sub-Gaussian U -statistics. In the literature, most of the studies

are centered around bounded U -statistics, for which the celebrated concentration is

established by [72]. Yet it is not easy to locate the counterpart for sub-Gaussian case.

Therefore we provide the following result and attach a proof.

Lemma 13 (concentration for sub-Gaussian U-statistics) Define the U -statistic

Un,m(h) =
(n−m)!

n!

∑
1≤i1,...,im≤n
i1 6=i2 6=... 6=im

h (zi1 , . . . , zim) (6.35)

with order m and kernel h : Rd×m 7→ R based on n independent copies of random vector

z ∈ Rd, denoted by z1, · · · , zn. If h(·, . . . , ·) is sub-Gaussian with ‖h‖ψ2 ≤ κ, then the

following inequality holds for Un,m(h) with any δ > 0,

P (|Un,m(h)− EUn,m(h)| > δ) ≤ 2 exp

(
−C

⌊ n
m

⌋
· δ

2

κ2

)
, (6.36)

in which C is an absolute constant.

Proof: Our proof is based on Hoeffding’s decomposition for U -statistics. For simplicity,

we use U as shorthand for Un,m(h). Given a permutation π of {1, . . . , n}, define

Wπ =
1⌊
n
m

⌋ b nmc−1∑
k=0

h
(
zπmk+1

, . . . , zπm(k+1)

)
,
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The U -statistic can be rewritten as U = 1
n!

∑
πWπ, and the summation is over all

possible permutations of {1, . . . , n}. As no copy of z appears more than twice in a

single Wπ, Wπ is an average of b nmc independent sub-Gaussian random variables. Hence

the ψ2-norm of its centered version satisfies ‖Wπ−EWπ‖ψ2 ≤ cκ/
√
b nmc. Using Chernoff

technique, we have for any t > 0,

P (U − EU > δ) ≤ e−tδ · E [exp(t(U − EU))]

= e−tδ · E

[
exp

(
t

n!

∑
π

(Wπ − EU)

)]

≤ e−tδ · E

[
1

n!

∑
π

exp (t(Wπ − EU))

]

= e−tδ · E [exp (t(Wπ − EWπ))]

≤ exp

(
−tδ + ct2 · κ

2⌊
n
m

⌋) ,

(6.37)

where the second inequality is obtained via Jensen’s inequality and the last one follows

the moment generating function bound for centered sub-Gaussian random variable.

Choosing t =
⌊
n
m

⌋
δ/2cκ2 to minimize right-hand side of (6.37), we obtain

P (U − EU > δ) ≤ exp

(
−C

⌊ n
m

⌋
· δ

2

κ2

)
,

where C = 1/2c. To complete the proof, we just need to repeat the argument above for

P (U − EU < −δ).

Proof of Theorem 20: As θ̂ attains the global minimum of (6.10), we have

〈θ̂ − θ∗, û〉 ≥ 0 ⇐⇒
〈
θ̂ − θ∗, û

β
− θ∗ + θ∗

〉
≥ 0

=⇒ 〈θ̂,θ∗〉 ≥ 1−
〈
θ̂ − θ∗, û

β
− θ∗

〉
≥ 1− ‖θ̂ − θ∗‖2 · sup

v∈CK∪{0}

〈
v,

û

β
− θ∗

〉
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In order to bound the supremum above, we use the result from generic chaining. We

define the stochastic process {Zv = 〈v, û
β−θ

∗〉}v∈CK∪{0}. First, we need to check the pro-

cess has sub-Gaussian incremental. For simplicity, we denote u ((xi1 , yi1), . . . , (xim , yim))

by ui1,...,im . By the definitions and properties of sub-Gaussian norm, the sub-Gaussian

norm of ui1,...,im satisfies

‖ui1,...,im‖ψ2
= sup

v∈Sp−1

∥∥∥∥∥∥
m∑
j=1

qj (y11 , . . . , yim) · 〈xj ,v〉

∥∥∥∥∥∥
ψ2

≤ sup
v∈Sp−1

∥∥∥∥∥∥
m∑
j=1

|〈xj ,v〉|

∥∥∥∥∥∥
ψ2

≤ m · sup
v∈Sp−1

‖|〈xj ,v〉|‖ψ2
≤ κm ,

thus we know ‖〈ui1,...,im ,v −w〉‖ψ2 ≤ κm · ‖v −w‖2. By Lemma 13, we have

P (|Zv − Zw| > δ)

= P
(∣∣∣∣〈v −w,

û

β
− θ∗

〉∣∣∣∣ > δ

)

= P

∣∣∣∣(n−m)!

n!

∑
1≤i1,...,im≤n
i1 6=... 6=im

1

β
· 〈ui1,...,im ,v −w〉 − 〈v −w,θ∗〉

∣∣∣∣ > δ


≤ 2 exp

(
−C

⌊ n
m

⌋
· β2δ2

m2κ2 · ‖v −w‖22

)
≤ 2 exp

(
−C ′ · nβ2δ2

m3κ2 · ‖v −w‖22

)
,

where we set C ′ = C/2. Therefore we can conclude that {Zv} has sub-Gaussian incre-

mental w.r.t. the metric s(v,w) , κm
3
2 ·‖v−w‖2
β
√
n

. Now applying Lemma 2 to {Zv}, we
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obtain

P

(
sup

v,w∈CK∪{0}
|Zv − Zw| ≥ C1

(
γ2 (CK ∪ {0}, s) + δ · diam (CK ∪ {0}, s)

))

≤ C2 exp
(
−δ2

)
=⇒ P

(
sup

v∈CK∪{0}
|Zv| ≥

C1κm
3
2

β
√
n
· (γ2 (CK ∪ {0}, ‖ · ‖2) + 2δ)

)
≤ C2 exp

(
−δ2

)
Using Lemma 4 γ2 (CK ∪ {0}, ‖ · ‖2) ≤ C0 · w (CK ∪ {0}) and taking δ = w (CK ∪ {0}),

we get

sup
v∈CK∪{0}

〈
v,

û

β
− θ∗

〉
≤ sup

v∈CK∪{0}
|Zv| ≤

C3κm
3
2

β
√
n
· w (CK ∪ {0})

≤ C3κm
3
2

β
· w (CK) + C4√

n

with probability at least 1−C2 exp
(
−w2 (CK)

)
. The last inequality follows from Lemma

1. Now we turn to the quantity ‖θ̂ − θ∗‖2,

‖θ̂ − θ∗‖22 ≤ 2− 2〈θ̂,θ∗〉 ≤ 2− 2

(
1− ‖θ̂ − θ∗‖2 ·

C3κm
3
2

β
· w (CK) + C4√

n

)

≤ ‖θ̂ − θ∗‖2 ·
2C3κm

3
2

β
· w (CK) + C4√

n
.

We finish the proof by letting C = 2C3, C ′ = C4 and C ′′ = C2.

Proof of Theorem 21: Based on the optimality of θ̂, we have

−〈û, θ̂〉+ λ‖θ̂‖ ≤ −〈û,θ∗〉+ λ‖θ∗‖

=⇒ 〈βθ∗ − û− βθ∗, θ̂〉+ λ‖θ̂‖ ≤ 〈βθ∗ − û− βθ∗,θ∗〉+ λ‖θ∗‖

=⇒ β(1− 〈θ∗, θ̂〉) ≤ 〈û− βθ∗, θ̂ − θ∗〉+ λ(‖θ∗‖ − ‖θ̂‖)
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Since 〈θ∗, θ̂〉 ≤ 1, we have

〈û− βθ∗, θ̂ − θ∗〉+ λ
(
‖θ∗‖ − ‖θ̂‖

)
≥ 0 =⇒

‖θ̂‖ ≤ ‖θ∗‖+
1

λ
· 〈û− βθ∗, θ̂ − θ∗〉

≤ ‖θ∗‖+
1

λ
· ‖û− βθ∗‖∗‖θ̂ − θ∗‖

= ‖θ∗‖+
1

ρ
‖θ̂ − θ∗‖ =⇒ θ̂ − θ∗ ∈ Cρ

Therefore it follows that

1− 〈θ∗, θ̂〉 ≤ 〈 û
β
− θ∗, θ̂ − θ∗〉+

λ

β

(
‖θ∗‖ − ‖θ̂‖

)
≤ ‖θ̂ − θ∗‖2

(∥∥∥∥ û

β
− θ∗

∥∥∥∥
∗
· ‖θ̂ − θ

∗‖
‖θ̂ − θ∗‖2

+
λ

β
· ‖θ̂ − θ

∗‖
‖θ̂ − θ∗‖2

)

≤ (1 + ρ)‖θ̂ − θ∗‖2 ·
∥∥∥∥ û

β
− θ∗

∥∥∥∥
∗
· sup

v∈Cρ
‖v‖

= (1 + ρ)‖θ̂ − θ∗‖2 ·
∥∥∥∥ û

β
− θ∗

∥∥∥∥
∗
·Ψ

(6.38)

Now we try to bound
∥∥∥ û
β − θ

∗
∥∥∥
∗
. We first rewrite it as

∥∥∥ û
β − θ

∗
∥∥∥
∗

= supv∈Ω

〈
û
β − θ

∗,v
〉

.

Construct the stochastic process {Zv = 〈v, û/β−θ∗〉}v∈Ω, and it is not difficult to verify

that {Zv} has sub-Gaussian incremental using the proof in Theorem 20. Now applying

Lemma 2 and 4, we have

sup
v∈Ω

〈
û

β
− θ∗,v

〉
=

1

2
· sup

v,w∈Ω
|Zv − Zw| ≤

C1κm
3
2

β
· w (Ω)√

n
, (6.39)

with probability at least 1− C ′ exp
(
−w2 (Ω)

)
. Therefore we know that λ satisfies

λ = O

(
ρm3/2w(Ω)√

n

)
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As indicated by Theorem 19, if λ < ‖û‖∗, we can assert that ‖θ̂‖2 = 1. Combining

(6.38) and (6.39), we finally get

‖θ̂ − θ∗‖ =
2− 2〈θ̂,θ∗〉
‖θ̂ − θ∗‖

≤ Cmκ(1 + ρ)

β
· Ψ · w (Ω)√

n
,

where the equality uses the fact that ‖θ̂‖2 = 1.

6.A.3 Proof of Proposition 16

Proof: Define the following sets

T =
⋃
i≤j
Ti,j , where (6.40)

Ti,j =

{
αu ∈ Rp

∣∣∣ |α| ≤ √2s+ 1, ui = . . . = uj =
1√

j − i+ 1
,

uk = 0 (k < i or k < j)

} (6.41)

For each Ti,j , its Gaussian width can be calculated as

w(Ti,j) = E

[
sup

v∈Ti,j
〈v,g〉

]
=
√

2s+ 1 · E [|〈u,g〉|] =
√

2s+ 1 · E |g| = O(
√

2s+ 1) ,

where u is defined in (6.41) and g is a standard Gaussian random variable. We apply

Lemma 1 to T , and obtain

w(T ) ≤ max
i≤j

w(Ti,j) + 2 sup
z∈T
‖z‖2

√
log

((
p

2

)
+ p

)
≤ O(

√
2s+ 1) +O(

√
2s+ 1 ·

√
log p)

= O(
√
s log p)
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Next we show that CK ⊆ conv(T ). Since K = {θ | |F(θ)| ≤ s, ‖θ‖2 = 1} and

CK = cone
{

v
∣∣∣ v = θ̂ − θ∗, θ̂ ∈ K

} ⋂
Sp−1 by definition, we have |F(v)| ≤ 2s for any

v ∈ CK. Suppose |F(v)| = t ≤ 2s and F(v) = {i1, i2, . . . , it}. For simplicity, we also let

i0 = 0 and it+1 = p. Then any v ∈ CK can be written as a convex combination of t+ 2

points in T . To see this, we rewrite v as

v =

t∑
r=0

vir+1:ir+1 =

t∑
r=0

‖vir+1:ir+1‖2√
t+ 1

·
√
t+ 1vir+1:ir+1

‖vir+1:ir+1‖2
+

(
1−

t∑
r=0

‖vir+1:ir+1‖2√
t+ 1

)
· 0 ,

(6.42)

where vir+1:ir+1 is obtained from v by keeping the entries from index ir+1 to ir+1 while

zeroing out the rest. Let uir+1:ir+1 =
√
t+1vir+1:ir+1

‖vir+1:ir+1
‖2 , and we have

‖uir+1:ir+1‖2 =
√
t+ 1 ≤

√
2s+ 1 =⇒ uir+1:ir+1 ∈ Tir+1:ir+1 ⊆ T .

It follows from ‖v‖2 = 1 that

t∑
r=0

‖vir+1:ir+1‖2√
t+ 1

≤

√
(t+ 1)

∑t
r=0 ‖vir+1:ir+1‖22√
t+ 1

= 1

=⇒ 1−
t∑

r=0

‖vir+1:ir+1‖2√
t+ 1

≥ 0

Hence (6.42) is indeed a convex combination of t + 2 points in T , which implies CK ⊆

conv(T ). Finally, by the properties of Gaussian width, we conclude that

w(CK) ≤ w(conv(T )) = w(T ) ≤ O(
√
s log p)



Chapter 7

Sparse Linear Isotonic Models

7.1 Introduction

As discussed in Chapter 6, despite the prevalent success of linear models, modern data

often arise from complex environments in which the linear correlation could break down,

leading to poor performance of linear models. Similar to the single-index model that

captures the nonlinearity in response, progress has been made to relax the stringent

assumption of linear models by allowing nonlinearity in features. In particular, [9]

consider the following additive isotonic models (AIMs),

y =

p∑
j=1

fj(xj) + ε , (7.1)

where {fj}pj=1 , F is a set of monotone univariate functions. To estimate F , a

commonly-used procedure is cyclic pooled adjacent violators (CPAV). At each itera-

tion of CPAV, isotonic regression is called to estimate one fj and its solution can be

efficiently found by the pooled adjacent violators algorithm (PAVA) [16]. Though the

nonlinearity can be captured by F , one need to specify the monotonicity for each fj

133
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(either increasing or decreasing) in advance, which could be unknown in real-world appli-

cations, and enumerating all possible combinations can be computationally prohibitive.

In high dimension, the estimation of F becomes even more challenging, because the

number of monotone functions is very large.

To address the challenges in AIMs, we propose the sparse linear isotonic models

(SLIMs) for the high-dimensional setting, which assume

E [y|x] =

p∑
j=1

θ̃jfj(xj) =
〈
θ̃, f(x)

〉
, (7.2)

where f(x) , x̃ = [f1(x1), . . . , fp(xp)]
T . SLIMs combine the parametric form from the

sparse linear models with the monotone transformations from AIMs, and generalize the

assumption of additive noise ε to the conditional expectation form E[y|x]. Throughout

the chapter, the parameter θ̃ is assumed to be s-sparse. For identifiability, we also

assume w.l.o.g. that each fj is monotonically increasing (as the monotonicity can be

flipped by changing signs of θ̃j), and properly normalized such that every x̃j = fj(xj)

is zero-mean and unit-variance. Note that without losing any representational power of

AIM, the assumption of increasing fj avoids the pre-specification of monotonicity for

each fj as required in (7.1). For such hybrid model, given n i.i.d. samples {(xi, yi)}ni=1,

our goal is to estimate both θ̃ and F . Since the hidden predictor x̃ is inaccessible,

brutally fitting data into a linear model could result in a poor estimate of θ̃. In this

work, we design a two-step algorithm to accomplish this goal, which estimates θ̃ followed

by F . The estimation of θ̃ is inspired by the rank-based approaches for structure learning

of graphical models. At the high level, those approaches do not rely on the exact values

of samples generated from the graphical model, in order to learn its structure. Instead

they resort to rank correlations (e.g., Kendall’s tau correlation [94]) that are invariant

under monotonically increasing transformation, so that observing x and x̃ makes no
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difference to the method. By leveraging a similar idea, we propose the Kendall’s tau

Dantzig selector (KDS) to estimate θ̃, with certain Kendall’s tau correlation coefficients

appropriately plugged in. Under some distributional assumptions, we show that this

estimator is guaranteed to recover a normalized version of θ̃ with small error. After θ̃

is estimated, we have a CPAV-type algorithm tailored for estimating transformations

F , which efficiently extends CPAV at little cost.

To sum up, we highlight a few merits of SLIM as follows. First, as aforementioned,

SLIM need not specify the monotonicity of fj whereas AIM requires. Second, the

two-step estimation for SLIM is particularly useful in high-dimensional settings. The

estimation of θ̃ may identify many “don’t-care” fj ’s as their corresponding θ̃j ’s are zero,

thus reducing the problem size of estimating F . Besides, estimating θ̃ will suffice if one

only focuses on variable selection.

For the ease of exposition, we introduce a few notations which will be used in the

rest of the chapter. We let y = [y1, y2, . . . , yn]T ∈ Rn be the response vector, X =

[x1,x2, . . . ,xn]T ∈ Rn×p be the observed design matrix , and denote its columns by

xj ∈ Rn. Similarly X̃, x̃i and x̃j will denote the hidden counterpart of X, xi and xj .

Matrix is bold capital, and the corresponding bold lowercase is reserved for its rows

(columns) with suitable subscripts (superscripts), and its entries are plain lowercase

with subscripts indexing both row and column. In general, vectors are bold lowercase

while scalars are plain lowercase. For a matrix, ‖ · ‖2 denotes its spectral norm (i.e. the

largest eigenvalue) and ‖ ·‖max denotes the value of the largest entry in magnitude. The

rest of the chapter is organized as follows: we first review the related work in Section

7.2, and provide an overview of estimation for SLIM in Section 7.3. Next we analyze

the recovery of θ̃ and present the algorithmic details for estimating F in Section 7.4. In

Section 7.5, we demonstrate the effectiveness of SLIM through experiments.
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7.2 Related Work

AIM was initially proposed in [9]. [117] established the asymptotic properties of the

CPAV procedure. The high-dimensional counterpart of AIMs (i.e., assuming most of

fj ’s are zero), Lasso ISO (LISO), was studied by [53], where a modified CPAV is used

to achieved the sparsity in F . [49] considered a semiparametric additive isotonic model

by introducing an additional parametric model into (7.1). On the other hand, [71]

considered an additive model of the same form as (7.1) for general F . With suitable

smoothing operator on fj ’s, a coordinate descent procedure called backfitting can be

applied to estimating F . In high-dimensional regime , [140] correspondingly investigated

the sparse additive models (SpAMs), which is solved a backfitting algorithm with extra

soft-thresholding steps. Many other efforts have been spent by relying on the smoothness

of fj ’s, including [106], [122], [74], and etc.

The method we use to estimate θ̃ is closely related to the high-dimensional structure

learning of graphical models. For sparse Gaussian graphical model, [123] proposed a

neighborhood selection procedure for estimating the graph structure, which iteratively

regresses each variable against the rest via Lasso. The neighborhood Dantzig selector

[182] shares the similar spirit with this approach, which switches Lasso to Dantzig

selector. Recent progress has shown that these approaches continue to work for some

non-Gaussian distributions, such as nonparanormal distribution [110], by using rank

correlations to approximate the latent correlation matrix [108, 178]. Similar results

have been further generalized to transelliptical distribution [69, 70,109].

7.3 Overview of Two-Step Algorithm

In this section, we present an overview of the two-step algorithm for the estimation of

SLIM, which first estimates θ̃ and then F .
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For the estimation of θ̃, if the hidden design matrix X̃ could be observed, Dantzig

selector [32] can be used to estimate θ̃ as normal linear models,

θ̂orc = argmin
θ∈Rp

‖θ‖1 s.t.

∥∥∥∥ 1

n
X̃T

(
X̃θ − y

)∥∥∥∥
∞
≤ γn , (7.3)

where γn is a tuning parameter. A key observation from (7.3) is that instead of ex-

actly knowing X̃ and y, it is sufficient to be given the (approximate) value of X̃T X̃
n

and X̃Ty
n in order for (7.3) to work. Note that the quantity X̃T X̃

n and its expectation

Σ̃ = E[x̃x̃T ] also arise in the structure learning of nonparanormal graphical models.

Specifically if x̃ follows a multivariate Gaussian N (0, Σ̃), then the observed predictor

x, represented as f−1(x̃) , [f−1
1 (x̃1), . . . , f−1

1 (x̃p)]
T , is by definition a nonparanormal

distribution NPN(Σ̃, f−1), in which Σ̃ is often called latent correlation matrix. Simply

speaking, the nonparanormal distribution models the random vector whose coordinates

are element-wise monotone transformations of a Gaussian random vector. To estimate

Σ̃ without knowing f or f−1, Kendall’s tau correlation coefficient [94] plays a key role

in rank-based methods. Given data X = [xij ] ∈ Rn×p, we define the sample Kendall’s

tau correlation matrix T̂ = [t̂ij ] ∈ Rp×p as

t̂ij =
∑

1≤k,k′≤n

sign((xki − xk′i)(xkj − xk′j))
n(n− 1)

, (7.4)

and its transformed version Σ̂ = [σ̂ij ] ∈ Rp×p,

σ̂ij = sin
(π

2
t̂ij

)
, (7.5)

One straightforward yet critical property of T̂ and Σ̂ is the invariance to monotone

increasing transformations on columns of X, indicating that the two quantities remain

unchanged if X is replaced by X̃ in the definitions. More importantly, later analysis will
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reveal for the class of transelliptical distributions (a generalization of nonparanormal

distribution) the closeness between the transformed sample Kendall’s tau correlation

matrix Σ̂ and the latent correlation matrix Σ̃, thus Σ̂ can serve as an approximation

to X̃T X̃
n as X̃T X̃

n ≈ Σ̃ in expectation. For x̃Ty
n and its expectation β̃ = E[yx̃] =

Σ̃θ̃, we similarly define the sample Kendall’s tau correlation vector b̂ ∈ Rp and its

transformation β̂

b̂j =
∑

1≤k,k′≤n

sign((xkj − xk′j)(yk − yk′))
n(n− 1)

, (7.6)

β̂j = sin
(π

2
b̂j

)
, (7.7)

and use β̂ as a replacement for x̃Ty
n . Therefore the estimation of θ̃ can proceed with

(7.3) by replacing X̃T X̃
n and X̃Ty

n with Σ̂ and β̂ respectively, which leads to the following

estimator which we call Kendall’s tau Dantzig selector (KDS),

θ̌ = argmin
θ∈Rp

‖θ‖1 s.t.
∥∥∥Σ̂θ − β̂∥∥∥

∞
≤ γn . (7.8)

Later it will be shown in the analysis that the θ̌ only approximates the direction of

θ̃, and the scale should be attached on the final estimate θ̂ by calculating the sample

variance of y.

To estimate the transformations F , one needs to first find out an X̂ = [x̂ij ] that ap-

proximates the hidden design X̃ = [fj(xij)] for the observed X = [xij ], which essentially

gives us the estimated values of each fj at n points x1j , . . . , xnj . To be specific, we fit

X̂ into y and the estimated θ̂ through the following convex program,

X̂ = argmin
Z∈Rn×p

1

2
‖Zθ̂ − y‖22 (7.9)

s.t. zj ∈M(xj), 1T zj = 0, ‖zj‖2 ≤
√
n, ∀ 1 ≤ j ≤ p,



139

Algorithm 7 Estimating θ̃ and F for SLIM

Input: X ∈ Rn×p, y ∈ Rn, tuning parameter γn
Output: Estimated θ̂ for θ̃ and F̂ for F

1: Compute the transformed sample Kendall’s tau correlation matrix Σ̂ and vector β̂
using (7.4) - (7.7)

2: Estimate θ̌ via Kendall’s tau Dantzig selector (7.8)
3: θ̂ := σ̂yθ̌, where σ̂y is the sample variance of y

4: Estimate the hidden design X̂ via (7.9)
5: F̂ := {f̂j}pj=1, where f̂j is given by (7.10)

6: Return θ̂ and F̂

where M(x) = {v | vi ≥ vj iff xi ≥ xj , ∀ 1 ≤ i, j ≤ p}. In order to get the fj

defined everywhere, we need to interpolate the n estimated points x̂1j , . . . , x̂nj . In the

algorithm, we simply use nearest-neighbor interpolation as follows,

f̂j(x) =
n∑
i=1

x̂ij · I
{
i = argmin

1≤k≤n
|xkj − x|

}
, (7.10)

where I{·} is the indicator function that outputs one if the predicate is true and zero

otherwise. Other interpolation technique, e.g., linear/spline interpolation, can be ap-

plied in the need of certain desired properties of fj . The full estimation algorithm is

given in Algorithm 7.

7.4 Statistical and Algorithmic Analysis

In this section, we detail the Algorithm 7 in several aspects. We analyze the recovery

guarantee of the KDS for estimating θ̃. Under the assumption of transelliptically dis-

tributed (x, y) and the so-called sign sub-Gaussian condition, we show that the sample

complexity of KDS can be sharpened compared with [108, 178]. To estimate F , we

present a CPAV-type algorithm for solving (7.31), where each step can be solved almost

at no more cost than isotonic regression.
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7.4.1 Recovery Guarantee of θ̃

In this subsection, we consider the estimation of θ̃. The KDS (7.8) can be casted as a

linear program, which can be solved efficiently by many optimization algorithms [41,99].

Hence we focus on the statistical aspect of KDS. From Section 7.3, we know that the

success of KDS relies on Σ̂ and β̂, which replace X̃T X̃
n and X̃Ty

n in the Dantzig selector

(7.3). Hence we first investigate the property of Σ̂ and β̂. The definition (7.4) - (7.7)

are sample versions of (transformed) Kendall’s tau correlation matrix and vector. Here

we define their population counterparts.

Definition 17 Given (x, y) and its independent copy (x′, y′), the population Kendall’s

tau correlation matrix T = [tij ] ∈ Rp×p and vector b ∈ Rp are defined as

tij = P
(
(xi − x′i)(xj − x′j) > 0

)
− P

(
(xi − x′i)(xj − x′j) < 0

)
, (7.11)

bj = P
(
(xj − x′j)(y − y′) > 0

)
− P

(
(xj − x′j)(y − y′) < 0

)
, (7.12)

and their transformed versions Σ = [σij ] ∈ Rp×p and β ∈ Rp are given by

σij = sin
(π

2
tij

)
, βj = sin

(π
2
bj

)
. (7.13)

To specify the statistical assumptions, we first introduce two family of distributions,

elliptical and transelliptical. The transelliptical distribution is defined based on the

elliptical distribution given as follows.

Definition 18 (elliptical distribution) A random vector z ∈ Rp follows an elliptical

distribution EC(µ, Σ̃, ξ) iff z has a stochastic representation:

z ∼ µ+ ξAu . (7.14)
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Here µ ∈ Rp, q , rank(A), A ∈ Rp×q, ξ ≥ 0 is a random variable independent of u,

u ∈ Sq−1 is uniformly distributed on the unit sphere in Rq, and AAT = Σ̃. Note that

E[z] = µ , Cov[z] =
E[ξ2]

q
Σ̃ . (7.15)

This family of distribution contains the Gaussian distribution as a special case, and more

details can be found in [52]. The extension from elliptical to transelliptical distribution

parallels that from normal to nonparanormal distribution.

Definition 19 (transelliptical distribution) A random vector x ∈ Rp is said to fol-

low the transelliptical distribution TE(Σ̃, ξ, f) if f(x) = [f1(x1), f2(x2), . . . , fp(xp)]
T ∼

EC(µ, Σ̃, ξ), where f1, f2, . . . fp are all strictly increasing functions, µ = 0, diag(Σ̃) = I,

and P(ξ = 0) = 0.

The conditions on µ and diag(Σ̃) are imposed for identifiability. If the underlying el-

liptical distribution is multivariate Gaussian, then the transelliptical family is reduced

to the nonparanormal. We refer the readers to [109] for more discussions on transellip-

tical distribution. Based on the elliptical and transelliptical family, we introduce our

assumptions on distribution of (x, y):

• x ∈ Rp follows transelliptical distribution TE(Σ̃, ξ, f), or equivalently x̃ follows

elliptical distribution EC(0, Σ̃, ξ), where E[ξ2] = p.

• The smallest eigenvalue λmin of Σ̃ is strictly positive.

• x̃ and y are jointly elliptically distributed.

The assumption E[ξ2] = p is also out of the consideration of identifiability. The last

assumption on the joint distribution of (x̃, y) may seem obscure. But it can be satis-

fied, for example, when x is nonparanormal and y is a noisy observation of 〈θ̃, f(x)〉



142

perturbed by an additive zero-mean Gaussian noise. Under these assumptions, we have

the following recovery guarantee for the KDS θ̌.

Theorem 22 For any s-sparse θ̃, if we set γn = 5π√
λmin

√
s log p
n and n ≥

(
24π
λmin

)2
s2 log p

, with probability at least 1− 2
p −

1
p2.5 , θ̂ given by (7.8) satisfies

∥∥∥∥∥θ̌ − θ̃

σy

∥∥∥∥∥
2

≤ 40π

λ
3/2
min

√
s2 log p

n
, (7.16)

In the theorem above, though KDS only approximates a normalized version of θ̃, the

scale σy can be estimated by computing the sample variance σ̂2
y of y, and the final

estimate of θ̃ is θ̂ = σ̂yθ̌ as given in Algorithm 7.

To prove the theorem above, we need to characterize certain properties of Σ̂ and

β̂. One notable result that has been shown for Σ, Σ̂ and Σ̃ is given in the following

lemma.

Lemma 14 For x ∼ TE(Σ̃, ξ, f), the transformed population Kendall’s tau correlation

matrix Σ satisfies

Σ = Σ̃ , (7.17)

and the sample version Σ̂ for Σ defined in (7.5), with probability at least 1 − p−2.5,

satisfies

‖Σ̂− Σ̃‖max ≤ 3π

√
log p

n
(7.18)

The lemma is essentially Theorem 3.2 and 4.1 in [70]. Similarly we have the following

lemma for β, β̂ and β̃.

Lemma 15 The transformed population Kendall’s tau correlation vector β satisfies

β =
β̃

σy
=

Σ̃θ̃

σy
, (7.19)
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where σ2
y is the variance of y. The transformed sample Kendall’s tau correlation vector

β̂, with probability at least 1− 2
p , satisfies

‖β̂ − β‖∞ ≤ 2π

√
log p

n
(7.20)

Proof: By definition, β̃ = E[yx̃] = Ex̃[x̃ · Ey[y|x̃]] = E[x̃x̃T θ̃] = Σ̃θ̃. Given that

λmin > 0 and the properties of elliptical distribution (7.15), we have E[x̃] = 0, rank(A) =

rank(Σ̃) = p and Cov[x̃] = Σ̃. Since x̃, y are jointly elliptical and β is invariant to f ,

using Theorem 2 in [107], we have for each βj ,

βj =
E[yx̃j ]− E[y]E[x̃j ]√

Var[y]
√

Var[x̃j ]
=

E
[
〈θ̃, x̃〉 · x̃j

]
√

Var[y]
=
〈θ̃, σ̃j〉
σy

,

which implies (7.19). Using Hoeffding’s inequality for U-statistics [72], we have for each

βj and β̂j

P
(∣∣∣βj − β̂j∣∣∣ ≥ ε) ≤ P

(∣∣∣bj − b̂j∣∣∣ ≥ 2

π
ε

)
≤ 2 exp

(
−nε

2

2π2

)
.

Letting ε = 2π
√

log p
n and taking union bound, we obtain

P

(∥∥∥β − β̂∥∥∥
∞
≥ 2π

√
log p

n

)
≤ 2

p
,

which completes the proof.

In the light of Lemma 14 and 15, it becomes clear that X̃T X̃
n and X̃Ty

n in (7.3) are

replaced by Σ̂ and β̂ in (7.8). The population counterpart of Σ̂ is Σ = Σ̃ = E[ X̃T X̃
n ].

Unfortunately, the population version β of β̂ is not equal to β̃ = E[ X̃Ty
n ], which is

additionally normalized by σy. Therefore we will see later that KDS recovers a scaled

θ̃.
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In order to bound the estimation error, we additionally need to show that the trans-

formed sample Kendall’s tau correlation matrix Σ̂ satisfies the following restricted eigen-

value (RE) condition [14,21,127,139,190], which is critical in the recovery analysis.

Lemma 16 Define the error spherical cap for any s-sparse vector θ∗ ∈ Rp,

C = {v ∈ Rp | ‖θ∗ + v‖1 ≤ ‖θ∗‖1} ∩ Sp−1 . (7.21)

If x ∼ TE(Σ̃, ξ, f) and n ≥
(

24π
λmin

)2
s2 log p = O(s2 log p), with probability at least

1− p−2.5, the following RE condition holds for Σ̂ and C,

inf
v∈C

vT Σ̂v ≥ λmin

2
, (7.22)

where λmin is the smallest eigenvalue of Σ̃.

Remark: The proof is given in the appendix. Similar proof steps appear in [178]

amid the analysis of rank-based neighborhood Dantzig selector, in which the concept

of RE condition is not formulated. Here we single out this lemma in order for the later

comparison in Section 7.4.2.

Now we are ready to present the proof of Theorem 22.

Proof of Theorem 22: For the sake of convenience, we denote θ∗ = θ̃
σy

, and it is easy

to see that Σ̃θ∗ = β. We first show that θ∗ is feasible when γn = 5π√
λmin

√
s log p
n , by

bounding the left-hand side of the constraint for θ∗.

∥∥∥Σ̂θ∗ − β̂∥∥∥
∞

=
∥∥∥(Σ̂− Σ̃

)
θ∗ − (β̂ − β)

∥∥∥
∞

≤
∥∥∥(Σ̂− Σ̃

)
θ∗
∥∥∥
∞

+
∥∥∥β̂ − β∥∥∥

∞

≤ ‖θ∗‖1
∥∥∥Σ̂− Σ̃

∥∥∥
max

+ 2π

√
log p

n
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≤
√
s · ‖θ∗‖2

∥∥∥Σ̂− Σ̃
∥∥∥

max
+ 2π

√
log p

n

≤ 3π√
λmin

√
s log p

n
+ 2π

√
log p

n
≤ 5π√

λmin

√
s log p

n
,

where we use Lemma 14 and 15, and thus θ∗ is feasible with probability 1− 2
p −

1
p2.5 by

union bound. On the other hand, since θ̌ is optimal solution to (7.8), it satisfies

‖θ̌‖1 ≤ ‖θ∗‖1 and
∥∥∥Σ̂θ̌ − β̂∥∥∥

∞
≤ γn .

Letting z = θ̌ − θ∗, we thus have

∥∥∥Σ̂z
∥∥∥
∞
≤
∥∥∥Σ̂θ̌ − β̂∥∥∥

∞
+
∥∥∥Σ̂θ∗ − β̂∥∥∥

∞
≤ 2γn =⇒

zT Σ̂z =
〈
z, Σ̂z

〉
≤ ‖z‖1

∥∥∥Σ̂z
∥∥∥
∞
≤ 2γn‖z‖1

Using Lemma 16 combined with the inequality above, with probability at least 1− 2
p −

1
p2.5 , we get

λmin

2
‖z‖22 ≤ zT Σ̂z ≤ 2γn‖z‖1 =⇒ ‖z‖2 ≤

4γn
λmin

‖z‖1
‖z‖2

≤ 40π

λ
3/2
min

√
s2 log p

n
,

where we use the fact that supz∈C
‖z‖1
‖z‖2 ≤ 2

√
s.

7.4.2 Improved RE Condition

From the result stated in Lemma 16, we see that the O(s2 log p) sample complexity for

RE condition of Σ̂ is worse than that of X̃T X̃
n , which is O(s log p) [21,127]. Next we show

that this sharper bound (see Theorem 23) can be obtained for Σ̂ if the distribution of x

further satisfies the sign sub-Gaussian condition [69]. This result may be of independent

interest.
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Definition 20 (sign sub-Gaussian condition) For a random variable x, the opera-

tor ψ : R 7→ R is defined as

ψ(x;α, t0) , inf
{
c > 0 : E exp{t(xα − Exα)} ≤ exp(ct2), for |t| < t0

}
. (7.23)

The random vector x ∈ Rp satisfies the sign sub-Gaussian condition iff

sup
v∈Sp−1

ψ
(〈

sign(x− x′),v
〉

; 2, t0
)
≤ κ‖T‖22 , (7.24)

for a fixed constant κ and some t0 > 0 such that t0κ‖T‖22 is lower bounded by a fixed

constant, where x′ is an independent copy of x and T is the population Kendall’s tau

correlation matrix defined in (7.11).

Detailed discussions on the sign sub-Gaussian condition can be found in [69], which is

out of the scope of this work. In particular, [69] show that if sign sub-Gaussian condition

for transelliptical x, the Σ̂ will converge with high probability to Σ̃ at rate O(
√

s log p
n )

in terms of restricted spectral norm,

‖Σ̂− Σ̃‖2,s , sup
v∈Sp−1

‖v‖0≤s

∣∣∣vT (Σ̂− Σ̃)v
∣∣∣ = O

(√
s log p

n

)
. (7.25)

Starting from this result, we show that with high probability the RE condition will hold

for Σ̂ with O(s log p) samples.

Theorem 23 Let X = [x1,x2, . . . ,xn]T be i.i.d. samples of x ∼ TE(Σ̃, ξ, f) for which

the sign sub-Gaussian condition holds with constant κ. Define the constant

c0 = max

{
320κπ4‖Σ̃‖22

λ2
min

,
π2

λmin

}
,
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in which λmin is the smallest eigenvalue Σ̃. If n ≥ 128c0
λmin

s log p = O(s log p), with

probability at least 1− 2
p −

1
p2 , Σ̂ satisfies the following RE condition,

inf
v∈C

vT Σ̂v ≥ λmin

2
, (7.26)

where C is defined in (7.21).

Remark: The proof of Theorem 23 is deferred to the appendix. Note that Theorem

22 relies on the RE condition described in Lemma 16, but we emphasize that if sign

sub-Gaussian condition holds we can obtain similar result as long as n attains the bound

in Theorem 23, which is smaller than the one required in Lemma 16.

7.4.3 Computation of F

After θ̂ is obtained, we can turn to the estimation of transformations F . As we only

have access to a finite number of samples {(xi, yi)}ni=1, it is impossible to know the exact

function. Hence we use the simple nearest-neighbor interpolation to approximate the

fj as mentioned in (7.10). By leveraging the monotonicity of fj , we can estimate X̃ via

solving the constrained least squares problem below,

X̂ = argmin
Z∈Rn×p

`(Z) =
1

2
‖Zθ̂ − y‖22 s.t. zj ∈M(xj), ∀ 1 ≤ j ≤ p , (7.27)

where the set M(x) denotes the monotone cone induced by vector x, i.e.,

M(x) = {v | vi ≥ vj iff xi ≥ xj , ∀ 1 ≤ i, j ≤ p} . (7.28)

The problem (7.27) is convex w.r.t. Z. Note that if θ̂ = 1, the problem (7.27) is reduced

to the estimation of F in AIM, which can be solved by the CPAV algorithm. Hence

similar CPAV-type algorithm applies here, which is essentially a procedure of cyclic
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block coordinate descent (BCD) with exact minimization (i.e., minimizing `(Z) w.r.t.

each zj cyclically while keeping other blocks fixed). In this scheme, each subproblem

turns out to be an isotonic regression [16]. To be specific, we let X̂(k) be the iterate of

the k-th round update, and define the residue for the j-th block as

rj(k) = y −
∑
i<j

θ̂ix̂
i
(k) −

∑
i>j

θ̂ix̂
i
(k−1). (7.29)

Then each x̂j(k) is obtained by solving

x̂j(k) = argmin
zj∈M(xj)

1

2

∥∥∥zj − rj(k)

θ̂j

∥∥∥2

2
, (7.30)

which can be efficiently computed in O(n) time using a skillful implementation of PAVA

[65]. If we define for a set A the projection operator as PA(z) = argminx∈A
1
2‖x− z‖22,

the isotonic regression (7.30) is simply the projection of rj(k)/θ̂j onto the monotone cone

M(xj). Note that `(·) is a function of the design Z instead of the coefficient vector

θ̂. Though being convex, the problem (7.27) can have infinitely many solutions, some

of which can be far from the original X̃. For example, given any X̂, we can construct

another optimum via shifting two columns x̂i and x̂j by µi and µj respectively, such

that θ̂iµi + θ̂jµj = 0. To avoid these “bad” solutions, we further impose on each x̂j the

constraints 1T x̂j = 0 and ‖x̂j‖2 ≤
√
n, as the marginal distribution of x̃ij is zero-mean

and unit-variance. With additional constraints, the new problem is given by

X̂ = argmin
Z∈Rn×p

`(Z) (7.31)

s.t. zj ∈M(xj), 1T zj = 0, ‖zj‖2 ≤
√
n, ∀ 1 ≤ j ≤ p,
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and the subproblem for each block boils down to

x̂j(k) = argmin
zj∈M(xj)

1

2

∥∥∥zj − rj(k)

θ̂j

∥∥∥2

2
s.t. 1T zj = 0, ‖zj‖2 ≤

√
n, (7.32)

which we name standardized isotonic regression. The solution to (7.32) can be viewed as

the projection onto the intersection of monotone coneM(xi), hyperplane L = {z | 1T z =

0}, and scaled L2-norm ball B = {z | ‖z‖2 ≤
√
n}. The next theorem show that the

standardized isotonic regression is equivalent to the ordinary isotonic regression followed

by successive projection on L and B.

Theorem 24 Given any monotone cone M, the following equality holds

PM∩L∩B(·) = PB(PL(PM(·))) , (7.33)

where PL(z) = z− 1T z
n · 1 and PB(z) = min{

√
n

‖z‖2 , 1} · z.

The proof of Theorem 24 is given in the appendix. Theorem 24 indicates that the extra

cost for each subproblem of our CPAV algorithm is very minimal, since the projection

onto L and B can be done in linear time. Note that the CPAV for AIM needs to work

with p blocks of variables, and pre-specifying the monotonicity for each fj could lead to

as many as 2p different combinations, which is computationally prohibitive. In contrast,

our algorithm only deals with roughlyO(s) blocks and need not specify the monotonicity.

The details of our CPAV is given Algorithm 8. For θ̂j = 0, the corresponding fj will

have no contribution to the estimated SLIM, which is thus skipped in our CPAV. The

convergence of Algorithm 8 basically follows from the extensive studies on cyclic BCD

type algorithms [17, 115, 168]. Recently [158] show that the convergence rate of BCD

with exact minimization achieves O(1/t) for a family of quadratic nonsmooth problem

without linear dependency on the number of blocks, which applies to Algorithm 8 for
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solving (7.31).

Algorithm 8 Estimating X̃

Input: Data y ∈ Rn, X ∈ Rn×p, estimated θ̂, number of round t
Output: Estimated hidden design X̂

1: Initialize X̂(0) = 0n×p
2: for k:= 1, 2, . . . , t do
3: for j:= 1, 2, . . . , p do
4: if θ̂j 6= 0 then

5: Compute rj(k) using (7.29)

6: Compute zj(k) = PM(xj)

(
rj
(k)

θ̂j

)
using PAVA

7: x̂j(k) := PB(PL(zj(k)))
8: end if
9: end for

10: end for
11: Return X̂ = X̂(t)

7.5 Experimental Results

In this section, we show some experimental evidence for the effectiveness of SLIM. We

test our estimation algorithm on the synthetic data. Specifically we fix the problem

dimension p = 500, the sparsity level of θ̃, s = 10. The distribution of x is chosen as

NPN(Σ̃, f), and y ∼ 〈θ̃, x̃〉+N (0, 0.25). The covariance matrix is given by Σ̃ = AAT ,

where A is a Gaussian random matrix with normalized rows. In data preparation, we

first generate x̃ from N (0, Σ̃). For the ten x̃j ’s whose corresponding θ̃j ’s are nonzero,

we then apply ten different monotonically increasing functions to obtain xj ’s, which

are basically the inverse of fj ’s. The ten inverse functions are summarized in the table

below. The Φ(·) in f−1
4 is the CDF of standard norm distribution. For the rest of x̃j ,

we randomly apply one of the functions above. All the results are obtained based on

the average over 100 trials.
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f−1
1 (x) = x3 f−1

6 (x) = x log(|x|+ 1)

f−1
2 (x) = sign(x)

√
|x| f−1

7 (x) = 1/(1 + exp(−x))

f−1
3 (x) = exp(x) f−1

8 (x) = x− 1

f−1
4 (x) = Φ(x) f−1

9 (x) = sign(x) log(|x|+ 1)

f−1
5 (x) = x exp(

√
|x|) f−1

10 (x) = log(exp(x) + 1)

Table 7.1: Inverse of function fj for nonzero θ̃j

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

n (sample size)

no
rm

al
iz

ed
 e

rr
or

s = 10, p = 500

 

 

Estimation error of θ̃

Estimation error of X̃

(a) Estimation error vs. sample size

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

n (sample size)

pr
ed

ic
tio

n 
er

ro
r

s = 10, p = 500

 

 

Error of LIM

Error of linear model

(b) Prediction error vs. sample size

0 2 4 6 8 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

tuning parameter

pr
ed

ic
tio

n 
er

ro
r

s = 10, p = 500, n = 500

 

 

LIM

linear model

(c) Prediction error vs. tuning parameter

Figure 7.1: Error for SLIM

We plot in Figure 7.1(a) the normalized estimation error of θ̃ and X̃, ‖θ̃−θ̂‖2‖θ̃‖2
and

‖X̃−X̂‖2
‖X̃‖2

. As sample size n increases from 100 to 500, we can see the clear decreasing trend

of error. We also compare the prediction error of SLIM with the simple linear model on

200 new data points, which is shown in Figure 7.1(b). The best tuning parameters for

both methods are picked up via grid search. The simple linear model fails to capture

the nonlinear correlation between x and y, thus incurring large prediction errors. In

contrast, SLIM better fits the data and has substantially smaller errors. In Figure
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Figure 7.2: Function fj (blue curves) and the corresponding estimated f̂j at observed
xj (red dots) (n = 500)

7.1(c), we specifically plot the prediction errors along the parameter-tuning paths when

n = 500, and see that SLIM always outperforms the linear model (The actual parameters

are different for both methods, but we keep the largest as 29 times the smallest). In

Figure 7.2, we also provide the plots for f1, f2, ·, f10 and the corresponding estimated

ones at the observed x1, x2, . . . , x10. It is not difficult to see that the red dots are closely

distributed around the function curves except for some tails.

Appendix

Appendix 7.A Proof of Lemma 16

Proof: Let S be the support of θ∗, then we have

v ∈ C =⇒ ‖θ∗S + vS‖1 + ‖vSc‖1 ≤ ‖θ∗‖1

=⇒ ‖θ∗S‖1 − ‖vS‖1 + ‖vSc‖1 ≤ ‖θ∗‖1 =⇒

‖vSc‖1 ≤ ‖vS‖1 =⇒ ‖v‖1 ≤ 2‖vS‖1 ≤ 2
√
s‖vS‖2 ≤ 2

√
s
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With probability at least 1− p−2.5, we have for any v ∈ C

vT Σ̂v ≥ vT Σ̃v −
∣∣∣vT (Σ̂− Σ̃

)
v
∣∣∣

≥ λmin −

∣∣∣∣∣∣
∑

1≤i,j≤p
vivj (σ̂ij − σ̃ij)

∣∣∣∣∣∣
≥ λmin − ‖v‖21

∥∥∥Σ̂− Σ̃
∥∥∥

max

≥ λmin − 12π

√
s2 log p

n
,

where we use Lemma 14 and the fact ‖v‖1 ≤ 2
√
s. As n ≥

(
24π
λmin

)2
s2 log p, we have

vT Σ̂v ≥ λmin − 12π

√
s2 log p

n
≥ λmin −

λmin

2
=
λmin

2
,

which completes the proof.

Appendix 7.B Proof of Theorem 23

To prove Theorem 23, we first formally state below the convergence result for Σ̂ and Σ̃

in [69].

Lemma 17 (Theorem 4.10 in [69]) Let X = [x1,x2, . . . ,xn]T be i.i.d. samples of

x ∼ TE(Σ̃, ξ, f) for which the sign sub-Gaussian condition holds with constant κ. With

probability at least 1− 2α− α2, Σ̂ constructed from X satisfies

‖Σ̂ − Σ̃‖2,s0 ≤ π2

(
s0 log p

n
+ 2
√

2κ‖Σ̃‖2

√
s0 (3 + log(p/s0)) + log(1/α)

n

)
, (7.34)

where ‖A‖2,s0 , supv∈Sp−1,‖v‖0≤s0 vTAv.
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The next step for showing Theorem 23 is to extend the RE condition on all s0-sparse unit

vectors (s0 needs to be appropriately specified) to all unit vectors inside the targeted

error spherical cap C. Lemma 18 accomplishes this goal.

Lemma 18 Given Σ̂ constructed from X whose rows are generated from TE(Σ̃, ξ, f),

we assume that for every s0-sparse unit vector v, the condition vT Σ̂v ≥ µ is satisfied.

Then we have for any u ∈ C,

uT Σ̂u ≥ µ− 4s

s0 − 1
(1− µ) . (7.35)

Proof: For any u ∈ C, let z ∈ Rp be a random vector defined by

P (z = ‖u‖1sign(ui) · ei) =
|ui|
‖u‖1

, (7.36)

where {ei}pi=1 is the canonical basis of Rp. Therefore, E[z] = u. Let z1, z2, . . . , zs0 be

independent copies of z and set z̄ = 1
s0

∑s0
i=1 zi. Therefore z̄ is an s0-sparse vector, and

by our assumption on quadratic forms on s0-sparse vectors

z̄T Σ̂z̄ ≥ µ‖z̄‖22 =⇒ E
[
z̄T Σ̂z̄

]
≥ µE

[
‖z̄‖22

]
, (7.37)

where the expectation is taken w.r.t z̄. Since z̄ = 1
s0

∑s0
i=1 zi, we have

E
[
z̄T Σ̂z̄

]
=

1

s2
0

∑
1≤i,j≤s0

E
[
zTi Σ̂zj

]
=

1

s2
0

∑
1≤i,j≤s0
i 6=j

E
[
zTi Σ̂zj

]
+

1

s2
0

∑
1≤i≤s0

E
[
zTi Σ̂zi

]

=
s0(s0 − 1)

s2
0

uT Σ̂u +
s0

s2
0

p∑
i=1

|ui|
‖u‖1

‖u‖21σ̂ii
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=
s0 − 1

s0
uT Σ̂u +

‖u‖21
s0

,

since σ̂ii = 1, and
∑p

i=1
|ui|
‖u‖1 = 1. Replacing Σ̂ in the above expression by the identity

matrix I ∈ Rp×p, we have

E‖z̄‖22 =
s0 − 1

s0
‖u‖22 +

‖u‖21
s0

.

Plugging both these expressions back in (7.37), we have

s0 − 1

s0
uT Σ̂u +

‖u‖21
s0
≥ µs0 − 1

s0
‖u‖22 + µ

‖u‖21
s0

=⇒

uT Σ̂u ≥ µ‖u‖22 −
‖u‖21
s0 − 1

(1− µ) ≥ µ− 4s

s0 − 1
(1− µ) ,

where we use the facts that ‖u‖2 = 1 and ‖u‖1 ≤ 2
√
s. That completes the proof.

Equipped with Lemma 17 and 18, we present the proof of Theorem 23.

Proof of Theorem 23: For Lemma 17, we set α = 1
p , s0 = 16s

λmin
, and let c0 =

max{320κπ4‖Σ̃‖22
λ2

min
, π2

λmin
}. When n ≥ 128c0

λmin
s log p = 8c0s0 log p, by Lemma 17, we have

‖Σ̂− Σ̃‖2,s0 ≤ π2

(
s0 log p

n
+ 2
√

2κ‖Σ̃‖2

√
s0(3 + log(p/s0)) + log p

n

)

≤ π2

 s0 log p
π2

λmin
· 8s0 log p

+ 2
√

2κ‖Σ̃‖2

√√√√s0(3 + log(p/s0)) + log p
320κπ4‖Σ̃‖22

λ2
min

· 8s0 log p


≤ π2

(
λmin

π2

√
5s0 log p

320s0 log p
+
λmin

π2

s0 log p

8s0 log p

)

≤ λmin

8
+
λmin

8
=
λmin

4
,
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with probability at least 1− 2
p −

1
p2 . It follows that for any s0-sparse unit vector v,

vT Σ̂v ≥ vT Σ̃v −
∣∣∣vT (Σ̂− Σ̃

)
v
∣∣∣ s ≥ λmin − ‖Σ̂− Σ̃‖2,s0 ≥

3

4
λmin ,

which satisfies the assumption in Lemma 18 with µ = 3
4λmin. With the same s0 = 16s

λmin
,

by Lemma 18, we have for any v ∈ C,

vT Σ̂v ≥ 3

4
λmin −

4s
16s
λmin
− 1

(
1− 3

4
λmin

)
≥ 3

4
λmin −

4s
16s
λmin
− 12s

(
1− 3

4
λmin

)
=

3

4
λmin −

4s
16s
λmin

(1− 3
4λmin)

(
1− 3

4
λmin

)
=

3

4
λmin −

λmin

4
=
λmin

2
,

which completes the proof.

Appendix 7.C Proof of Theorem 24

Proof: It is easy to verify the the analytic expression for PL(·) and PB(·). To show

(7.33), we let x∗ = PM(z) and x̃∗ = PM∩L∩B(z). We assume w.l.o.g. that the monotone

cone is M = {x | x1 ≥ x2 ≥ . . . ≥ xn}. By introducing the Lagrange multipliers

λ = [λ1, . . . , λn−1]T , the isotonic regression PM(z) can be casted as

max
λ�0

min
x

g(x,λ) =
1

2
‖x− z‖22 +

n−1∑
i=1

λi(xi − xi+1) ,
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where we use the strong duality. The optimum x∗ has to satisfy the stationarity

∇x g(x,λ) = 0, i.e.,

x∗1 − z1 + λ1 = 0 ,

x∗2 − z2 − λ1 + λ2 = 0 ,

...

x∗n−1 − zn−1 − λn−2 + λn−1 = 0 ,

x∗n − zn − λn−1 = 0 .

(7.38)

Using (7.38) to express x∗ in terms of λ, we denote minx g(x,λ) by another function

h(λ), and the optimal dual variables λ∗ satisfies

λ∗ = argmax
λ�0

h(λ) .

For the standardized isotonic regression PM∩L∩B(z), we can also introduce the Lagrange

multipliers λ = [λ1, . . . , λn−1]T , β and γ, and obtain the following optimization problem

max
λ�0,γ≤0,β

min
x

g̃(x,λ, β, γ) =
1

2
‖x− z‖22 +

n−1∑
i=1

λi(xi − xi+1) + β

n∑
i=1

xi + γ(n− ‖x‖22) .

Again the optimum x̃∗ has to satisfy ∇x g̃(x̃∗,λ, β, γ),

(1− 2γ)x̃∗1 − z1 + β + λ1 = 0 ,

(1− 2γ)x̃∗2 − z2 + β − λ1 + λ2 = 0 ,

...

(1− 2γ)x̃∗n−1 − zn−1 + β − λn−2 + λn−1 = 0 ,

(1− 2γ)x̃∗n − zn + β − λn−1 = 0 .

(7.39)
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By substituting x̃∗ for λ, β and γ, we have

min
x
g̃(x,λ, β, γ)

=
1− 2γ

2

n∑
i=1

(
x̃∗i −

zi − β
1− 2γ

)2

+
n−1∑
i=1

λi(x̃
∗
i − x̃∗i+1) +

‖z‖22
2
−
∑n

i=1(zi − β)2

2(1− 2γ)
+ γn

=
h(λ)

1− 2γ
+
‖z‖22

2
−
∑n

i=1(zi − β)2

2(1− 2γ)
+ γn ,

in which we note that the last three terms are free of λ. Hence the optimal λ for

standardized isotonic regression,

λ̃∗ = argmax
λ�0

h(λ)

1− 2γ
+
‖z‖22

2
−
∑n

i=1(zi − β)2

2(1− 2γ)
+ γn = argmax

λ�0
h(λ)

is the same as the one for isotonic regression. Thus, combining (7.38) and (7.39), we

have

x̃∗ =
x∗ − β · 1

1− 2γ
. (7.40)

On the other hand, by summing up the equations respectively in (7.38) and (7.39) and

using the primal feasibility
∑n

i=1 x̃
∗
i = 0, we have

n∑
i=1

x∗i =

n∑
i=1

zi,

n∑
i=1

zi = nβ =⇒ β =
1Tx∗

n
,

which implies that

x∗ − β · 1 = PL(x∗) = PL(PM(z)) . (7.41)

Denoting x∗−β ·1 by x̂∗, we now show that scaling x̂∗ by 1
1−2γ is exactly the projection

onto B. If ‖x̂∗‖2 >
√
n, then γ < 0 due to (7.40) and primal feasibility ‖x̃∗‖2 ≤

√
n. By

complementary slackness γ(n− ‖x̃∗‖22) = 0, we have ‖x̃∗‖2 =
√
n. If ‖x̂∗‖2 <

√
n, then

‖x̃∗‖ <
√
n due to (7.40) and dual feasibility γ ≤ 0. It follows from complementary
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slackness that γ = 0, which result in x̃∗ = x̂∗. If ‖x̂∗‖2 =
√
n, by similar argument, we

have x̃∗ = x̂∗ as well. In a word, we have

x̃∗ =

 x̂∗, if ‖x̂∗‖2 ≤
√
n

√
n

‖x̂∗‖2 x̂∗, if ‖x̂∗‖2 >
√
n

,

which matches the expression for PB(·). Thus we complete the proof by noting x̃∗ =

PB(x̂∗) = PB(PL(PM(z))).



Chapter 8

Structured Estimation for

Multi-Response Linear Models

8.1 Introduction

In Chapter 3 and 4, we have studied the estimation of structured linear models using

generalized Dantzig selector (GDS), and demonstrate that our statistical analysis based

on geometric measures is of great applicability for general structures. In this chapter,

we investigate the possibility of extending the analysis to a more complex setting, multi-

response (a.k.a. multivariate) linear models. Multi-response linear models [5,25,78,79]

have found numerous applications in real-world problems, e.g. expression quantita-

tive trait loci (eQTL) mapping in computational biology [95], land surface temperature

prediction in climate informatics [61], neural semantic basis discovery in cognitive sci-

ence [111], etc. Unlike simple linear model where each response is a scalar, one obtains

a response vector at each observation in multi-response model, given as a (noisy) linear

combinations of predictors, and the parameter (i.e., coefficient vector) to learn can be

either response-specific (i.e., allowed to be different for every response), or shared by

160



161

all responses. The multi-response model has been well studied under the context of the

multi-task learning [38], where each response is coined as a task. In recent years, the

multi-task learning literature have largely focused on exploring the parameter structure

across tasks via convex formulations [6,51,88]. Another emphasis area in multi-response

modeling is centered around the exploitation of the noise correlation among different

responses [100,145,153,177,184], instead of assuming that the noise is independent for

each response. To be specific, we consider the following multi-response linear models

with m real-valued outputs,

yi = Xiθ
∗ + ηi, ηi ∼ N (0,Σ∗) , (8.1)

where yi ∈ Rm is the response vector, Xi ∈ Rm×p consists of m p-dimensional feature

vectors, and ηi ∈ Rm is a noise vector sampled from a multivariate zero-mean Gaussian

distribution with covariance Σ∗. For simplicity, we assume Diag(Σ∗) = Im×m through-

out the chapter. The m responses share the same underlying parameter θ∗ ∈ Rp, which

corresponds to the so-called pooled model [64]. In fact, this seemingly restrictive setting

is general enough to encompass the model with response-specific parameters, which can

be realized by block-diagonalizing rows of Xi and stacking all coefficient vectors into

a “long” vector. Under the assumption of correlated noise, the true noise covariance

structure Σ∗ is usually unknown. Therefore it is typically required to estimate the

parameter θ∗ along with the covariance Σ∗. In practice, we observe n data points,

denoted by D = {(Xi,yi)}ni=1, and the maximum likelihood estimator (MLE) is simply

as follows,

(
θ̂MLE, Σ̂MLE

)
= argmin
θ∈Rp, Σ�0

1

2
log |Σ|+ 1

2n

n∑
i=1

∥∥∥Σ− 1
2 (yi −Xiθ)

∥∥∥2

2
(8.2)
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Although being convex w.r.t. either θ or Σ when the other is fixed, the optimiza-

tion problem associated with the MLE is jointly non-convex for θ and Σ. A popular

approach to dealing with such problem is alternating minimization (AltMin), i.e., alter-

nately solving for θ (and Σ) while keeping Σ (and θ) fixed. The AltMin algorithm for

(8.2) iteratively performs two simple steps, solving least squares for θ and computing

empirical noise covariance for Σ. Recent work [85] has established the non-asymptotic

error bound of this approach for (8.2) with a brief extension to sparse parameter setting

using iterative hard thresholding method [86]. But they did not allow more general

structure of the parameter. Previous works [100, 137, 145] also considered the regu-

larized MLE approaches for multi-response models with sparse parameters, which are

solved by AltMin-type algorithms as well. Unfortunately, none of those works provide

finite-sample statistical guarantees for their algorithms. AltMin technique has also been

applied to many other problems, such as matrix completion [84], sparse coding [1], and

mixed linear regression [180], with provable performance guarantees. Despite the suc-

cess of AltMin, most existing works are dedicated to recovering unstructured sparse or

low-rank parameters, with little attention paid to general structures, e.g., overlapping

sparsity [80], hierarchical sparsity [91], k-support sparsity [7], etc.

In this chapter, we study the multi-response linear model in high-dimensional setting,

and the structure of the coefficient vector θ∗ can be captured by a norm ‖ · ‖ [10]. We

propose an alternating estimation (AltEst) procedure for finding the true parameters,

which essentially alternates between estimating θ through the GDS using norm ‖ · ‖

and computing the approximate empirical noise covariance for Σ. Our analysis puts

no restriction on what the norm can be, thus the AltEst framework is applicable to

general structures. In contrast to AltMin, our AltEst procedure cannot be casted as a

minimization of some joint objective function for θ and Σ, thus is conceptually more

general than AltMin. For the proposed AltEst, we provide the statistical guarantees for
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the iterate θ̂(t) with the resampling assumption (see Section 8.2), which may justify the

applicability of AltEst technique to other problems without joint objectives for two set

of parameters. Specifically, we show that with overwhelming probability, the estimation

error ‖θ̂(t)−θ∗‖2 for generally structured θ∗ converges linearly to a minimum achievable

error given sub-Gaussian design under moderate sample size. With a straightforward

intuition, this minimum achievable error can be tersely expressed by the aforementioned

geometric measures which simply depend on the structure of θ∗. Moreover, our analysis

implies the error bound for single response high-dimensional models as a by-product [41].

Note that the analysis in [85] focuses on the expected prediction error E[Σ
−1/2
∗ X(θ̂(t)−

θ∗)] for unstructured θ∗, which is related but different from our ‖θ̂(t)−θ∗‖2 for generally

structured θ∗. Compared with the error bound derived for unstructured θ∗ in [85], our

result also yields better dependency on sample size by removing the log n factor, which

seems unnatural to appear.

The rest of the chapter is organized as follows. We elaborate our AltEst algorithm

in Section 8.2, along with the resampling assumption. In Section 8.3, we present the

statistical guarantees for AltEst. We provide experimental results in Section 8.4 to

support our theoretical development.

8.2 Alternating Estimation with GDS

Given the high-dimensional setting for (8.1), it is natural to consider the regularized

MLE for (8.1) by adding the norm ‖·‖ to (8.2), which captures the structural information

of θ∗ in (8.1),

(
θ̂rg, Σ̂rg

)
= argmin
θ∈Rp, Σ�0

1

2
log |Σ|+ 1

2n

n∑
i=1

∥∥∥Σ− 1
2 (yi −Xiθ)

∥∥∥2

2
+ γn‖θ‖ , (8.3)
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where γn is a tuning parameter. Using AltMin the update of (8.3) can be given as

θ̂(t) = argmin
θ∈Rp

1

2n

n∑
i=1

∥∥∥∥Σ̂− 1
2

(t−1)(yi −Xiθ)

∥∥∥∥2

2

+ γn‖θ‖ , (8.4)

Σ̂(t) =
1

n

n∑
i=1

(
yi −Xiθ̂(t)

)(
yi −Xiθ̂(t)

)T
, (8.5)

where the subscript t denotes the t-th iteration. The update of θ̂(t) is basically solving

a regularized least squares problem, and the new Σ̂(t) is obtained by computing the

approximated empirical covariance of the residues evaluated at θ̂(t). In this work, we

consider GDS as an alternative to (8.4), which is given by

θ̂(t) = argmin
θ∈Rp

‖θ‖ s.t.

∥∥∥∥∥ 1

n

n∑
i=1

XT
i Σ̂−1

(t−1)(Xiθ − yi)

∥∥∥∥∥
∗

≤ γn , (8.6)

where ‖ · ‖∗ is the dual norm of ‖ · ‖. Compared with (8.4), GDS has nicer geometrical

properties, which is favored in the statistical analysis. More importantly, since iterative-

ly solving (8.6) followed by covariance estimation (8.5) no longer minimizes a specific

objective function jointly, the updates go beyond the scope of AltMin, leading to our

broader alternating estimation (AltEst) framework, i.e., alternately estimating one pa-

rameter by suitable approaches while keeping the other fixed. For the ease of exposition,

we focus on the m ≤ n scenario, so that Σ̂(t) can be easily computed in closed form as

shown in (8.5). When m > n and Σ−1
∗ is sparse, it is beneficial to directly estimate Σ−1

∗

using more advanced estimators [29, 57]. Especially the CLIME estimator [29] enjoys

certain desirable properties, which fits into our AltEst framework but not AltMin, and

our AltEst analysis does not rely on the particular estimator we use to estimate noise

covariance or its inverse. The algorithmic details are given in Algorithm 9, for which

it is worth noting that every iteration t uses independent new samples, D2t−1 and D2t
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in Step 3 and 4, respectively. This assumption is known as resampling, which facili-

tates the theoretical analysis by removing the statistical dependency between iterates.

Several existing works benefit from such assumption when analyzing their AltMin-type

algorithms [84, 128, 180]. Conceptually resampling can be implemented by partitioning

the whole dataset into T subsets, though it is unusual to do so in practice. Loosely

speaking, AltEst (AltMin) with resampling is an approximation of the practical AltEst

(AltMin) with a single dataset D used by all iterations. For AltMin, attempts have

been made to directly analyze its practical version without resampling, by studying the

properties of the joint objective [159], which come at the price of invoking highly so-

phisticated mathematical tools. This technique, however, might fail to work for AltEst

since the procedure is not even associated with a joint objective. In the next section,

we will leverage such resampling assumption to show that the error of θ̂(t) generated by

Algorithm 9 will converge to a small value with high probability. We again emphasize

that the AltEst framework may work for other suitable estimators for (θ∗,Σ∗) although

(8.5) and (8.6) are considered in our analysis.

Algorithm 9 Alternating Estimation with Resampling

Input: Number of iterations T , Datasets D1 = {(Xi,yi)}ni=1, . . . , D2T =
{(Xi,yi)}2Tni=(2T−1)n+1

1: Initialize Σ̂0 = Im×m
2: for t:= 1 to T do
3: Solve the GDS (8.6) for θ̂(t) using dataset D2t−1

4: Compute Σ̂(t) according to (8.5) using dataset D2t

5: end for
6: return θ̂T

8.3 Statistical Analysis

In this section, we establish the statistical guarantees for our AltEst algorithm. The

road map for the analysis is to first derive the error bounds separately for both (8.5)
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and (8.6), and then combine them through AltEst procedure to show the error bound of

θ̂(t). Throughout the analysis, the design X is assumed to centered, i.e., E[X] = 0m×p.

λmax(·) and λmin(·) are used to denote the largest and smallest eigenvalue of a real

symmetric matrix. Before presenting the results, we provide some basic but important

concepts. First we give the definition of sub-Gaussian matrix X used in this section.

Definition 21 (sub-Gaussian matrix) X ∈ Rm×p is sub-Gaussian if the ψ2-norm

below is finite,

|||X|||ψ2
= sup

v∈Sp−1, u∈Sm−1

∣∣∣∣∣∣∣∣∣∣∣∣vTΓ
− 1

2
u XTu

∣∣∣∣∣∣∣∣∣∣∣∣
ψ2

≤ κ < +∞ , (8.7)

where Γu = E[XTuuTX]. Further we assume there exist constants µmin and µmax such

that

0 < µmin ≤ λmin(Γu) ≤ λmax(Γu) ≤ µmax < +∞ , ∀ u ∈ Sm−1 (8.8)

The definition (8.7) is also used in earlier work [85], which assumes the left end of (8.8)

implicitly. Lemma 19 gives an example of sub-Gaussian X, showing that condition (8.7)

and (8.8) are reasonable.

Lemma 19 Assume that X ∈ Rm×p has dependent anisotropic rows such that X =

Ξ
1
2 X̃Λ

1
2 , where Ξ ∈ Rm×m encodes the dependency between rows, X̃ ∈ Rm×p has

independent isotropic rows, and Λ ∈ Rp×p introduces the anisotropy. In this setting, if

each row of X̃ satisfies |||x̃i|||ψ2
≤ κ̃, then condition (8.7) and (8.8) hold with κ = Cκ̃,

µmin = λmin(Ξ)λmin(Λ), and µmax = λmax(Ξ)λmax(Λ).
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Proof: Let w = Ξ
1
2 u for any u ∈ Sm−1, and we have

Γu = E
[
Λ

1
2 X̃TΞ

1
2 uuTΞ

1
2 X̃Λ

1
2

]

= E


[
Λ

1
2 x̃1, . . . ,Λ

1
2 x̃m

]
·


w1

...

wm

 · [w1, . . . , wm] ·


x̃T1 Λ

1
2

...

x̃TmΛ
1
2




=

m∑
i=1

m∑
j=1

wiwjE
[
Λ

1
2 x̃ix̃

T
j Λ

1
2

]
=

m∑
i=1

w2
iΛ

1
2E
[
x̃ix̃

T
i

]
Λ

1
2 =

∥∥∥Ξ 1
2 u
∥∥∥2

2
·Λ

It is clear that

λmin(Ξ) · λmin(Λ) ≤ λmin(Γu) ≤ λmax(Γu) ≤ λmax(Ξ) · λmax(Λ) ,

which indicates that condition (8.8) holds. If |||x̃i|||ψ2
≤ κ̃, then

|||X|||ψ2
= sup

v∈Sp−1

u∈Sm−1

∣∣∣∣∣∣∣∣∣∣∣∣vTΓ
− 1

2
u XTu

∣∣∣∣∣∣∣∣∣∣∣∣
ψ2

= sup
v∈Sp−1

u∈Sm−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ vTΛ−

1
2

‖Ξ
1
2 u‖2

·Λ
1
2 X̃TΞ

1
2 u

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
ψ2

= sup
v∈Sp−1

u∈Sm−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ vT X̃T

‖Ξ
1
2 u‖2

·Ξ
1
2 u

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
ψ2

= sup
v∈Sp−1

∣∣∣∣∣∣∣∣∣X̃v
∣∣∣∣∣∣∣∣∣
ψ2

≤ Cκ̃

where the inequality follows from noting that the vector X̃v has independent elements

with ψ2-norm bounded by κ̃, and thus
∣∣∣∣∣∣∣∣∣X̃v

∣∣∣∣∣∣∣∣∣
ψ2

≤ Cκ̃ for any v ∈ Sp−1. Therefore

condition (8.7) also holds with κ = Cκ̃.

Similar to the analysis of GDS in Section 3.3, the recovery guarantee of multi-

response GDS also relies on the restricted eigenvalue (RE) condition and an admissible

tuning parameter γn. In multi-response setting, RE condition is defined jointly for

designs Xi and a noise covariance Σ as follows.
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Definition 22 (multi-response RE condition) The designs X1,X2, . . . ,Xn and the

covariance Σ together satisfy the RE condition for set C ⊆ Sp−1 with parameter α > 0,

if

inf
v∈C

vT

(
1

n

n∑
i=1

XT
i Σ−1Xi

)
v ≥ α . (8.9)

The admissibility of tuning paramter γn also depends on the noise covariance Σ.

Definition 23 (multi-response admissible tuning parameter) The γn for GDS

(8.6) is said to be admissible if γn is chosen such that θ∗ belongs to the constraint set,

i.e., ∥∥∥∥∥ 1

n

n∑
i=1

XT
i Σ−1(Xiθ

∗ − yi)

∥∥∥∥∥
∗

=

∥∥∥∥∥ 1

n

n∑
i=1

XT
i Σ−1ηi

∥∥∥∥∥
∗

≤ γn (8.10)

For the rest of the chapter, we use C,C0, C1 and so on to denote universal constants,

which are different from context to context. We will also drop the subscript ‖ · ‖ for the

geometric measures and the related sets, unless it is referred to a specific norm.

8.3.1 Estimation of Coefficient Vector

In this subsection, we focus on estimating θ∗, i.e., Step 3 of Algorithm 9, using GDS of

the form,

θ̂ = argmin
θ∈Rp

‖θ‖ s.t.

∥∥∥∥∥ 1

n

n∑
i=1

XT
i Σ−1(Xiθ − yi)

∥∥∥∥∥
∗

≤ γn , (8.11)

where Σ is an arbitrary but fixed input noise covariance matrix. Like Lemma 5, we

first have the following result showing a deterministic error bound for θ̂ under the RE

condition and admissible γn defined in (8.9) and (8.10).

Lemma 20 Suppose the RE condition (8.9) is satisfied by X1, . . . ,Xn and Σ with α > 0

for the error spherical cap

C = cone {v | ‖θ∗ + v‖ ≤ ‖θ∗‖ } ∩ Sp−1 . (8.12)
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If γn is admissible, θ̂ in (8.11) satisfies

∥∥∥θ̂ − θ∗∥∥∥
2
≤ 2Ψ · γn

α
, (8.13)

in which Ψ = supv∈C
‖v‖
‖v‖2 is the restricted norm compatibility.

Proof: Since θ̂ is feasible and γn is selected to be admissible, we have∥∥∥∥∥ 1

n

n∑
i=1

XT
i Σ−1(Xiθ̂ − yi)

∥∥∥∥∥
∗

≤ γn,

∥∥∥∥∥ 1

n

n∑
i=1

XT
i Σ−1(Xiθ

∗ − yi)

∥∥∥∥∥
∗

≤ γn

=⇒

∥∥∥∥∥ 1

n

n∑
i=1

XT
i Σ−1Xi(θ̂ − θ∗)

∥∥∥∥∥
∗

≤ 2γn

=⇒

〈
θ̂ − θ∗, 1

n

n∑
i=1

XT
i Σ−1Xi(θ̂ − θ∗)

〉
≤ ‖θ̂ − θ∗‖ ·

∥∥∥∥∥ 1

n

n∑
i=1

XT
i Σ−1Xi(θ̂ − θ∗)

∥∥∥∥∥
∗

=⇒ (θ̂ − θ∗)T
(

1

n

n∑
i=1

XT
i Σ−1Xi

)
(θ̂ − θ∗) ≤ 2γn‖θ̂ − θ∗‖

As ‖θ̂‖ ≤ ‖θ∗‖, we have θ̂−θ∗
‖θ̂−θ∗‖2

∈ C. By the assumption of RE condition, we further

obtain

α‖θ̂ − θ∗‖22 ≤ (θ̂ − θ∗)T
(

1

n

n∑
i=1

XT
i Σ−1Xi

)
(θ̂ − θ∗) ≤ 2γn‖θ̂ − θ∗‖

=⇒ ‖θ̂ − θ∗‖2 ≤
‖θ̂ − θ∗‖
‖θ̂ − θ∗‖2

· 2γn
α
≤ 2Ψ · γn

α
,

where we use the definition of restricted norm compatibility.

Considering the randomness of Xi and ηi, now we turn to verifying the RE condition

and finding the smallest admissible value of γn.

Restricted Eigenvalue Condition: First the following lemma characterizes the re-

lation between the expectation and empirical mean of XTΣ−1X.
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Lemma 21 Given sub-Gaussian X ∈ Rm×p with its i.i.d. copies X1, . . . ,Xn, and

covariance Σ ∈ Rm×m with eigenvectors u1, . . . ,um, let Γ = E[XTΣ−1X] and Γ̂ =

1
n

∑n
i=1 XT

i Σ−1Xi. Define the set CΓj for C ⊆ Sp−1 and each Γj = E[XTuju
T
j X] as

CΓj =

{
v ∈ Sp−1

∣∣∣ Γ
− 1

2
j v ∈ cone(C)

}
. (8.14)

If n ≥ C1κ
4 ·maxj

{
w2(CΓj )

}
, with probability at least 1−m exp

(
−C2n

κ4

)
, we have

vT Γ̂v ≥ 1

2
vTΓv, ∀ v ∈ C . (8.15)

Instead of w(CΓj ), ideally we want the condition above on n to be characterized by

w(C), which can be easier to compute in general. The next lemma accomplishes this

goal.

Lemma 22 Let κ0 be the ψ2-norm of standard Gaussian random vector and Γu =

E[XTuuTX], where u ∈ Sm−1 is fixed. For CΓu defined in Lemma 21, we have

w(CΓu) ≤ Cκ0

√
µmax

µmin
· (w(C) + 3) , (8.16)

Lemma 22 implies that the Gaussian width w(CΓj ) appearing in Lemma 21 is of the

same order as w(C). Putting Lemma 21 and 22 together, we can obtain the RE condition

for the analysis of GDS.

Corollary 6 Under the notations of Lemma 21 and 22, if n ≥ C1κ
2
0κ

4 · µmax

µmin
· (w(C) +

3)2, then the following inequality holds for all v ∈ C ⊆ Sp−1 with probability at least

1−m exp
(
−C2n

κ4

)
,

vT Γ̂v ≥ µmin

2
· Tr(Σ−1) (8.17)
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Proof: Given the definition of sub-Gaussian X and Lemma 21, we have

vT Γ̂v ≥ 1

2
vTΓv =

1

2
vT

 m∑
j=1

1

σj
· E
[
XTuju

T
j X
]v

≥ µmin

2
· vTv

 m∑
j=1

1

σj

 =
µmin

2
Tr
(
Σ−1

)
.

Using the bound in Lemma 22, we have

n ≥ C1κ
2
0κ

4 · µmax

µmin
· (w(C) + 3)2 =⇒ n ≥ Cκ4 ·max

j

{
w2(CΓj )

}
We complete the proof by combining the two equations above.

Admissible tuning parameter: Finding the admissible γn amounts to estimating

‖ 1
n

∑n
i=1 XT

i Σ−1ηi‖∗ in (8.10), which involves random Xi and ηi. The next lemma es-

tablishes a high-probability bound for this quantity, which can be viewed as the smallest

“safe” choice of γn.

Lemma 23 Assume that Xi is sub-Gaussian and ηi ∼ N (0,Σ∗). The following in-

equality holds with probability at least 1− exp
(
−nτ2

2

)
− C2 exp

(
−C2

1w
2(Ω)

4ρ2

)
∥∥∥∥∥ 1

n

n∑
i=1

XT
i Σ−1ηi

∥∥∥∥∥
∗

≤
Cκ
√
µmax√
n

·
√

Tr (Σ−1Σ∗Σ−1) · w(Ω) , (8.18)

where Ω denotes the unit ball of norm ‖ · ‖, ρ = supv∈Ω ‖v‖2, and τ = ‖Σ−1Σ
1
2
∗ ‖F

‖Σ−1Σ
1
2
∗ ‖2

.

Estimation error of GDS: Building on Corollary 6, Lemma 20 and 23, the theorem

below characterizes the estimation error of GDS for the multi-response linear model.

Theorem 25 Under the setting of Lemma 23, if n ≥ C1κ
2
0κ

4 · µmax

µmin
· (w (C) + 3)2, and

γn is set to C2κ

√
µmax Tr(Σ−1Σ∗Σ−1)

n · w(Ω), the estimation error of θ̂ given by (8.11)
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satisfies ∥∥∥θ̂ − θ∗∥∥∥
2
≤ Cκ

√
µmax

µ2
min

·
√

Tr (Σ−1Σ∗Σ−1)

Tr (Σ−1)
· Ψ · w(Ω)√

n
, (8.19)

with probability at least 1−m exp
(
−C3n

κ4

)
− exp

(
−nτ2

2

)
− C4 exp

(
−C2

5w
2(Ω)

4ρ2

)
.

Proof: By Corollary 6, we have the RE condition hold with α = µmin
2 · Tr(Σ−1) for C.

Combining Lemma 20 and 23, we get

‖θ̂ − θ∗‖2 ≤ 2Ψ · γn
α
≤ Cκ

√
µmax

µ2
min

·
√

Tr (Σ−1Σ∗Σ−1)

Tr (Σ−1)
· Ψ · w(Ω)√

n
, (8.20)

and the probability is computed via union bound.

Remark: We can see from the theorem above that the noise covariance Σ input to

GDS plays a role in the error bound through the multiplicative factor

ξ (Σ) =

√
Tr (Σ−1Σ∗Σ−1)

Tr (Σ−1)
. (8.21)

By taking the derivative of ξ2(Σ) w.r.t. Σ−1 and setting it to 0, we have

∂ξ2(Σ)

∂Σ−1
=

2 Tr2
(
Σ−1

)
Σ∗Σ

−1 − 2 Tr
(
Σ−1

)
Tr
(
Σ−1Σ∗Σ

−1
)
· Im×m

Tr4 (Σ−1)
= 0

Then we can verify that Σ = Σ∗ is the solution to the equation above, and thus is the

minimizer of ξ(Σ) with ξ(Σ∗) = 1/
√

Tr(Σ−1
∗ ). This calculation confirms that multi-

response regression could benefit from taking into account the noise covariance, and the

best performance is achieved when Σ∗ is known. If we perform ordinary GDS by setting

Σ = Im×m, then ξ(Σ) = 1/
√
m. Therefore using Σ∗ will reduce the error by a factor of√

m
Tr(Σ−1

∗ )
, compared with ordinary GDS.

One simple structure of θ∗ to consider for Theorem 25 is the sparsity encoded by L1

norm. Given s-sparse θ∗, it follows from previous results [40, 127] that ΨL1 = O(
√
s),
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w(CL1) = O(
√
s log p) and w(ΩL1) = O(

√
log p). Therefore if n ≥ O(s log p), then with

high probability we have

∥∥∥θ̂ − θ∗∥∥∥
2
≤ O

(
ξ(Σ) ·

√
s log p

n

)
(8.22)

8.3.2 Estimation of Noise Covariance

In this subsection, we consider the estimation of noise covariance Σ∗ given an arbitrary

parameter vector θ. When m is small, we estimate Σ∗ by simply using the sample

covariance

Σ̂ =
1

n

n∑
i=1

(yi −Xiθ) (yi −Xiθ)T . (8.23)

Theorem 26 reveals the relation between Σ̂ and Σ∗, which is sufficient for our AltEst

analysis.

Theorem 26 If n ≥ C4m·max

{
4
(
κ0 + κ

√
µmax

λmin(Σ∗)
‖θ∗ − θ‖2

)4
, κ4

(
λmax(Σ∗)µmax

λmin(Σ∗)µmin

)2
}

and Xi is sub-Gaussian, with probability at least 1 − 2 exp(−C1m), Σ̂ given by (8.23)

satisfies

λmax

(
Σ
− 1

2
∗ Σ̂Σ

− 1
2
∗

)
≤ 1 + C2κ2

0

√
m

n
+

2µmax

λmin (Σ∗)
‖θ∗ − θ‖22 (8.24)

λmin

(
Σ
− 1

2
∗ Σ̂Σ

− 1
2
∗

)
≥ 1− C2κ2

0

√
m

n
(8.25)

Remark: If Σ̂ = Σ∗, then λmax(Σ
− 1

2
∗ Σ̂Σ

− 1
2
∗ ) = λmin(Σ

− 1
2
∗ Σ̂Σ

− 1
2
∗ ) = 1. Hence Σ̂ is

nearly equal to Σ∗ when the upper and lower bounds (8.24) (8.25) are close to one. We

would like to point out that there is nothing specific to the particular form of estimator

(8.23), which makes AltEst work. Similar results can be obtained for other methods

that estimate the inverse covariance matrix Σ−1
∗ instead of Σ∗. For instance, when

m < n and Σ−1
∗ is sparse, we can replace (8.23) with GLasso [57] or CLIME [29], and
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AltEst only requires the counterparts of (8.24) and (8.25) in order to work.

Section 8.3.1 shows that the noise covariance in GDS affects the error bound through

the factor ξ(Σ) defined in (8.21). In order to bound the error of θ̂T given by AltEst, we

need to further quantify how θ affects ξ(Σ̂).

Lemma 24 If Σ̂ is given as (8.23) and the condition in Theorem 26 holds, then the

inequality below holds with probability at least 1− 2 exp(−C1m),

ξ
(
Σ̂
)
≤ ξ (Σ∗) ·

(
1 + 2Cκ0

(m
n

) 1
4

+ 2

√
µmax

λmin (Σ∗)
‖θ∗ − θ‖2

)
(8.26)

8.3.3 Error Bound for Alternating Estimation

Based on Lemma 24, the following theorem provides the error bound for θ̂(T ) given by

Algorithm 9.

Theorem 27 Let eorc = C1κ
√

µmax

µ2
min
· ξ(Σ∗)·Ψw(Ω)√

n
and emin = eorc ·

1+2Cκ0(mn )
1
4

1−2eorc
√

µmax
λmin(Σ∗)

. If

n ≥ C4m ·max

{
4
(
κ0 + C1

C2

√
λmin(Σ∗)
λ2

max(Σ∗)
Ψw(Ω)
m

)4

,

(
2C1κµmax

C2µmin
· ξ(Σ∗)Ψw(Ω)√

m·λmin(Σ∗)

)2

,

κ4
(
λmax(Σ∗)µmax

λmin(Σ∗)µmin

)2
}

and also satisfies the condition in Theorem 25, with high probabil-

ity, the iterate θ̂(T ) returned by Algorithm 9 satisfies

∥∥∥θ̂(T ) − θ∗
∥∥∥

2
≤ emin +

(
2eorc

√
µmax

λmin (Σ∗)

)T−1

·
(∥∥∥θ̂(1) − θ∗

∥∥∥
2
− emin

)
(8.27)

Remark: The three lower bounds for n inside curly braces correspond to three intu-

itive requirements. The first one guarantees that the covariance estimation is accurate

enough, and the other two respectively ensure that eorc and the initial error of θ̂(1) are

reasonably small , such that the subsequent errors can contract linearly. eorc is the
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estimation error incurred by the following oracle estimator,

θ̂orc = argmin
θ∈Rp

‖θ‖ s.t.

∥∥∥∥∥ 1

n

n∑
i=1

XT
i Σ−1
∗ (Xiθ − yi)

∥∥∥∥∥
∗

≤ γn , (8.28)

which is impossible to implement in practice. On the other hand, emin is the minimum

achievable error, which has an extra multiplicative factor compared with eorc. The

numerator of the factor compensates for the error of estimated noise covariance provided

that θ = θ∗ is plugged in (8.23), which merely depends on sample size. Since having

θ = θ∗ is also unrealistic for (8.23), the denominator further accounts for the ballpark

difference between θ and θ∗. As we remark after Theorem 25, if we perform ordinary

GDS with Σ set to Im×m in (8.11), its error bound eodn satisfies

eodn = eorc

√
Tr(Σ−1

∗ )

m
. (8.29)

Note that this factor
√

Tr(Σ−1
∗ )/m is independent of n, whereas emin will approach eorc

with increasing n as the factor between them converges to one.

8.4 Experimental Results

In this section, we present some experimental results to support our theoretical analysis.

Specifically we focus on the sparse structure of θ∗ captured by L1 norm. Throughout the

experiment, we fix problem dimension p = 500, sparsity level of θ∗ s = 20, and number

of iterations for AltEst T = 5. Entries of design X is generated by i.i.d. standard

Gaussians, and θ∗ = [1, . . . , 1︸ ︷︷ ︸
10

,−1, . . . ,−1︸ ︷︷ ︸
10

, 0, . . . , 0︸ ︷︷ ︸
480

]T . Σ∗ is given as a block diagonal

matrix with blocks Σ′ =

[
1 a

a 1

]
replicated along diagonal, and number of responses

m is assumed to be even. All plots are obtained by averaging 100 trials. In the first
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(b) Error for resampled AltEst
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Figure 8.1: L2-error of AltEst v.s. n. (a) When n = 40, AltEst is not quite stable due to
the large initial error and poor quality of estimated covariance. Then the errors start to
decrease for n ≥ 50. (b) Resampld AltEst does benefit from fresh samples, and its error
is slightly smaller than AltEst as well as more stable when n is small. (c) Oracle GDS
outperforms the others, but the performance of AltEst is also competitive. Ordinary
GDS is unable to utilize the noise correlation, thus resulting in relatively large error.
By comparing the two implementations of AltEst, we can see that resampled AltEst
yields smaller error especially when data is inadequate, but their errors are very close
if n is suitably large.

set of experiments, we set a = 0.8, m = 10 and investigate the error of θ̂t as n varies

from 40 to 90. We run AltEst (with and without resampling), the oracle GDS, and the

ordinary GDS with Σ = I. The results are given in Figure 8.1.

For the second experiment, we fix the product mn ≈ 500, and let m = 2, 4, . . . , 10.

For our choice of Σ∗, the error incurred by oracle GDS eorc is the same for every m. We
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Figure 8.2: L2-error of AltEst v.s. m. (a) Larger error comes with bigger m, which
confirms that emin is increasing along with m when mn is fixed. (b) The plots for oracle
and ordinary GDS imply that eorc and eodn remain unchanged, which matches the error
bounds in Theorem 25. Though emin increases, AltEst still outperform the ordinary
GDS by a margin.
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(b) Error comparison for different a

Figure 8.3: L2-error of AltEst v.s. a. (a) The error goes down when the true noise
covariance becomes closer to singular, which is expected in view of Theorem 27. (b)
eorc also decreases as a gets larger, and the gap between emin and eodn widens. The
definition of emin in Theorem 27 indicates that the ratio between emin and eorc is almost a
constant because both n and m are fixed. Here we observe that all the ratios at different
a are between 1.05 and 1.1, which supports the theoretical results. Also, Theorem 25
suggests that eodn does not change as Σ∗ varies, which is verified here.

compare AltEst with both oracle and ordinary GDS, and the result is shown in Figure

8.2(a) and 8.2(b).
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In the third experiment, we test AltEst under different covariance matrices Σ∗ by

varying a from 0.5 to 0.9. m is set to 10 and sample size n is 90. We also compare

AltEst against both oracle and ordinary GDS, and the errors are reported in Figure

8.3(a) and 8.3(b).

Appendix

Appendix 8.A Proof of Statistical Guarantees for GDS

8.A.1 Proof of Lemma 21

Proof: Assume that the eigenvalue decomposition of Σ is given by Σ =
∑m

i=j σiuju
T
j .

For convenience, we denote zj = XTuj , zji = XT
i uj , and Γ̂j = 1

n

∑n
i=1 XT

i uju
T
j Xi.

Note that Γj = E[zjzj
T

], Γ =
∑m

i=j
Γj
σj

, Γ̂j = 1
n

∑n
i=1 zjiz

jT

i , and Γ̂ =
∑m

j=1
Γ̂j
σj

. In order

to apply Lemma 3, we let (Ωj , µj) be the probability measure that zj is defined on, and

construct the function set

Hj =

{
hv =

〈
Γ
− 1

2
j v, ·

〉
| v ∈ CΓj

}

It is easy to see that for any hv ∈ Hj ,

E[h2
v] = Ezj∼µj

[
vTΓ

− 1
2

j zjzj
T
Γ
− 1

2
j v

]
= vTΓ

− 1
2

j

(
Ezj∼µj

[
zjzj

T
])

Γ
− 1

2
j v = vTv = 1 ,

i.e., Hj ⊆ SL2(µj) = {h | |||h|||L2(µj)
= 1}. Based on the definition of sub-Gaussian X,

we also have for any v ∈ CΓj ,

|||hv|||ψ2
=

∣∣∣∣∣∣∣∣∣∣∣∣〈Γ
− 1

2
j v, zj

〉∣∣∣∣∣∣∣∣∣∣∣∣
ψ2

=

∣∣∣∣∣∣∣∣∣∣∣∣vTΓ
− 1

2
j XTuj

∣∣∣∣∣∣∣∣∣∣∣∣
ψ2

≤ κ ,
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and also for any v1,v2 ∈ CΓj , we have

|||hv1 − hv2 |||ψ2
=

∣∣∣∣∣∣∣∣∣∣∣∣(v1 − v2)TΓ
− 1

2
j zj

∣∣∣∣∣∣∣∣∣∣∣∣
ψ2

≤ κ · ‖v1 − v2‖2 .

If we choose β = 1
2 , using (2.39), (2.40) and (2.41), then we have

c1κ · γ2(Hj , |||·|||ψ2
) ≤ c1κ

2 · γ2(CΓj , ‖ · ‖2) ≤ c1c4κ
2 · w(CΓj ) ≤ β

√
n

when n ≥ C1κ
4w2(CΓj ) where C1 = 4c2

1c
2
4. By Lemma 3, with probability at least

1− exp(−c2β
2n/κ4) = 1− exp(−C2n/κ

4) where C2 = c2/4, we have

sup
h∈Hj

∣∣∣∣∣ 1n
n∑
i=1

h2(zji )− E[h2]

∣∣∣∣∣ = sup
v∈CΓj

∣∣∣∣∣ 1n
n∑
i=1

vTΓ
− 1

2
j zjiz

jT

i Γ
− 1

2
j v − 1

∣∣∣∣∣
= sup

v∈CΓj

∣∣∣∣vTΓ
− 1

2
j Γ̂jΓ

− 1
2

j v − 1

∣∣∣∣ ≤ 1

2

=⇒ vTΓ
− 1

2
j Γ̂jΓ

− 1
2

j v ≥ 1

2
, ∀ v ∈ CΓj

=⇒ vTΓ
− 1

2
j Γ̂jΓ

− 1
2

j v ≥ 1

2

(
vTΓ

− 1
2

j ΓjΓ
− 1

2
j v

)
, ∀ v ∈ CΓj

Let w = Γ
− 1

2
j v, and note that the inequalities above are preserved under arbitrary

scaling of w. By recalling the definition of CΓj , it is not difficult to see that

wT Γ̂jw ≥
1

2
wTΓjw, ∀ w ∈ C . (8.30)

Combining (8.30) for each Γj using union bound, we obtain

wT

(
m∑
i=1

Γ̂j
σj

)
w ≥ 1

2
wT

(
m∑
i=1

Γj
σj

)
w, ∀ w ∈ C =⇒ wT Γ̂w ≥ 1

2
wTΓw, ∀ w ∈ C ,
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which completes the proof by renaming w as v.

8.A.2 Proof of Lemma 22

Proof: Recall the definition of Gaussian width w(CΓu) = E
[
supv∈CΓu

〈v,g〉
]
, where g

is a standard Gaussian random vector. Given the assumption (8.8), we have µmin ≤

λmin(Γu) ≤ λmax(Γu) ≤ µmax, and note that

sup
v∈CΓu

〈v,g〉 = sup
v∈CΓu

〈
Γ
− 1

2
u v,Γ

1
2
ug

〉
≤ sup

v∈cone(C)∩ 1√
µmin

Bp

〈
v,Γ

1
2
ug

〉

=
1

√
µmin

· sup
v∈cone(C)∩Bp

〈
v,Γ

1
2
ug

〉
,

(8.31)

where the inequality follows from Γ
− 1

2
u v ∈ cone(C) and ‖Γ−

1
2

u v‖2 ≤ 1√
µmin

. Now we use

generic chaining to bound the right-hand side above. Denote the set cone(C) ∩ Bp by

T , and we consider the stochastic process {Zv = 〈v,Γ
1
2
ug〉}v∈T . For any v1,v2 ∈ T , we

have

|||Zv1 − Zv2 |||ψ2
=

∣∣∣∣∣∣∣∣∣∣∣∣〈Γ 1
2
u(v1 − v2),g〉

∣∣∣∣∣∣∣∣∣∣∣∣
ψ2

≤ κ0

∥∥∥∥Γ 1
2
u(v1 − v2)

∥∥∥∥
2

≤ κ0
√
µmax · ‖v1 − v2‖2 .

If we define for T the metric s(v1,v2) = κ0
√
µmax ·‖v1−v2‖2, it follows from Proposition

6 that

P (|Zv1 − Zv2 | ≥ ε) ≤ e · exp

(
− cε2

κ2
0µmax‖v1 − v2‖22

)
= e · exp

(
− cε2

s2(v1,v2)

)
.
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By Lemma 2, (2.40) and (2.49), we obtain

E
[

sup
v∈T
〈v,Γ

1
2
ug〉
]

= E
[

sup
v∈T

Zv

]
≤ c1γ2(T , s)

= c1κ0
√
µmaxγ2(T , ‖ · ‖2)

≤ c1c2κ0
√
µmax · w(T )

(8.32)

Note that T = cone(C) ∩ Bp ⊆ conv(C ∪ {0}). By Lemma 1, we have

w(T ) ≤ w(conv(C ∪ {0})) = w(C ∪ {0}) ≤ max {w(C), w(0)}+ 2
√

ln 4 ≤ w(C) + 3 .

(8.33)

Combining (8.31), (8.32) and (8.33), we have

w(CΓu) = E

[
sup

v∈CΓu

〈v,g〉

]
≤ 1
√
µmin

E
[

sup
v∈T

〈
v,Γ

1
2
ug

〉]
≤ c1c2κ0

√
µmax

µmin
· (w(C) + 3) ,

(8.34)

where the last inequality follows from condition (8.8).

8.A.3 Proof of Lemma 23

Proof: Since design Xi and noise ηi are independent, we first consider the scenario

where each ηi is arbitrary but fixed vector. Using the definition of dual norm, we have∥∥∥∥∥ 1

n

n∑
i=1

XT
i Σ−1ηi

∥∥∥∥∥
∗

=
1

n
· sup

v∈Ω

〈
v,

n∑
i=1

XT
i Σ−1ηi

〉

=
1

n
· sup

v∈Ω

n∑
i=1

〈
Λ

1
2
i v, Λ

− 1
2

i XT
i Σ−1ηi

〉
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where Λi = EXi [X
T
i Σ−1ηiη

T
i Σ−1Xi]. Based on the definition of sub-Gaussian Xi, we

get

∣∣∣∣∣∣∣∣∣∣∣∣Λ− 1
2

i XT
i Σ−1ηi

∣∣∣∣∣∣∣∣∣∣∣∣
ψ2

≤ κ =⇒

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

〈
Λ

1
2
i v, Λ

− 1
2

i XT
i Σ−1ηi

〉∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
ψ2

≤ c0 max
1≤i≤n

∣∣∣∣∣∣∣∣∣∣∣∣Λ− 1
2

i XT
i Σ−1ηi

∣∣∣∣∣∣∣∣∣∣∣∣
ψ2

·

√√√√ n∑
i=1

∥∥∥∥Λ 1
2
i v

∥∥∥∥2

2

≤ c0κ

√√√√ n∑
i=1

∥∥∥∥Λ 1
2
i

∥∥∥∥2

2

‖v‖22

≤ c0κ
√
µmax ·

√√√√ n∑
i=1

‖Σ−1ηi‖22 · ‖v‖2

where we use Proposition 10 in the first inequality by treating the sum of inner products

as one “big” inner product. The last inequality follows from the definition of µmax in

(8.8). Now we consider the stochastic process
{
Zv =

〈
v,
∑n

i=1 XT
i Σ−1ηi

〉}
v∈Ω

, where

ηi is still fixed. For any Zv1 and Zv2 , by the argument above and Proposition 6, we

have

|||Zv1 − Zv2 |||ψ2
≤ c0κ

√
µmax ·

√√√√ n∑
i=1

‖Σ−1ηi‖22 · ‖v1 − v2‖2 , s(v1,v2)

=⇒ P (|Zv1 − Zv2 | > ε) ≤ e · exp

(
− C1ε

2

s2(v1,v2)

)

It follows from (2.40), (2.49) and Lemma 2 that

γ2(Ω, s) = c0κ
√
µmax ·

√√√√ n∑
i=1

‖Σ−1ηi‖22 · γ2(Ω, ‖ · ‖2)

≤ c0c1κ
√
µmax ·

√√√√ n∑
i=1

‖Σ−1ηi‖22 · w(Ω) ,
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PXi

(
sup

v1,v2∈Ω
|Zv1 − Zv2 | ≥ c2 (γ2(Ω, s) + ε · diam (Ω, s))

)
≤ c3 exp

(
−ε2

)
Combining the two inequalities above with the symmetry of Ω, we obtain

PX

sup
v∈Ω

Zv ≥ c0c2κ
√
µmax ·

√√√√ n∑
i=1

‖Σ−1ηi‖22
(
c1

2
· w(Ω) + ε · sup

v∈Ω
‖v‖2

)
≤ c3 exp

(
−ε2

)
Letting ρ = supv∈Ω ‖v‖2, ε = c1w(Ω)

2ρ , with probability at least 1− c3 exp(− c21w
2(Ω)

4ρ2 ), we

have

sup
v∈Ω

Zv =

∥∥∥∥∥
n∑
i=1

XT
i Σ−1ηi

∥∥∥∥∥
∗

≤ c0c1c2κ
√
µmax ·

√√√√ n∑
i=1

‖Σ−1ηi‖22 · w(Ω) (8.35)

for any given set of ηi. Now we incorporate the randomness of ηi. Essentially we need

to bound √√√√ n∑
i=1

‖Σ−1ηi‖22 =

√√√√ n∑
i=1

∥∥∥∥Σ−1Σ
1
2
∗ η̃i

∥∥∥∥2

2

,

where each η̃i is an m-dimensional standard (isotropic) Gaussian random vector. Given

v = [vT1 , . . . ,v
T
n ]T ∈ Rmn, Denote f(v) =

√∑n
i=1

∥∥∥∥Σ−1Σ
1
2
∗ vi

∥∥∥∥2

2

, and we have

|f(v)− f(w)| =

∣∣∣∣∣∣
√√√√ n∑

i=1

∥∥∥∥Σ−1Σ
1
2
∗ vi

∥∥∥∥2

2

−

√√√√ n∑
i=1

∥∥∥∥Σ−1Σ
1
2
∗wi

∥∥∥∥2

2

∣∣∣∣∣∣
≤

√√√√ n∑
i=1

(∥∥∥∥Σ−1Σ
1
2
∗ vi

∥∥∥∥
2

−
∥∥∥∥Σ−1Σ

1
2
∗wi

∥∥∥∥
2

)2
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≤

√√√√ n∑
i=1

∥∥∥∥Σ−1Σ
1
2
∗ (vi −wi)

∥∥∥∥2

2

≤

√√√√ n∑
i=1

∥∥∥∥Σ−1Σ
1
2
∗

∥∥∥∥2

2

‖vi −wi‖22

=

∥∥∥∥Σ−1Σ
1
2
∗

∥∥∥∥
2

‖v −w‖2

which implies that f is a Lipschitz function with parameter ‖Σ−1Σ
1
2
∗ ‖2. The first two

inequalities use the triangular inequality for L2 norm. Letting η̃ = [η̃T1 , . . . , η̃
T
n ]T ,

by the concentration inequality for Lipschitz function of Gaussian random vector (see

Proposition 5.34 in [172]), we obtain

P (f(η̃)− Ef(η̃) > t) ≤ exp

 −t2

2‖Σ−1Σ
1
2
∗ ‖22


=⇒ P

√√√√ n∑
i=1

∥∥∥∥Σ−1Σ
1
2
∗ η̃i

∥∥∥∥2

2

− E

√√√√ n∑
i=1

∥∥∥∥Σ−1Σ
1
2
∗ η̃i

∥∥∥∥2

2

> t

 ≤ exp

 −t2

2‖Σ−1Σ
1
2
∗ ‖22


=⇒ P

√√√√ n∑
i=1

‖Σ−1ηi‖22 −

√√√√E
n∑
i=1

Tr

(
Σ−1Σ

1
2
∗ η̃iη̃Ti Σ

1
2
∗Σ−1

)
> t


≤ exp

 −t2

2‖Σ−1Σ
1
2
∗ ‖22


=⇒ P

√√√√ n∑
i=1

‖Σ−1ηi‖22 −
√
n
√

Tr (Σ−1Σ∗Σ−1) > t

 ≤ exp

 −t2

2‖Σ−1Σ
1
2
∗ ‖22


where we use Jensen’s inequality in the third step for bounding the expectation Ef(η̃).

Letting t =
√

Tr (Σ−1Σ∗Σ−1) · n and τ = ‖Σ−1Σ
1
2
∗ ‖F /‖Σ−1Σ

1
2
∗ ‖2, with probability at

least 1− exp
(
−nτ2

2

)
, we have

√√√√ n∑
i=1

‖Σ−1ηi‖22 ≤ 2
√
n ·
√

Tr (Σ−1Σ∗Σ−1) , (8.36)
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where we use the relation Tr
(
Σ−1Σ∗Σ

−1
)

= ‖Σ−1Σ
1
2
∗ ‖2F . By applying a union bound

to (8.35) and (8.36), with probability at least 1 − exp
(
−nτ2

2

)
− c3 exp(− c21w

2(Ω)
4ρ2 ), the

following inequality holds∥∥∥∥∥ 1

n

n∑
i=1

XT
i Σ−1ηi

∥∥∥∥∥
∗

≤
2c0c1c2 · κ

√
µmax√

n
·
√

Tr (Σ−1Σ∗Σ−1) · w(Ω) (8.37)

Finally we complete the proof by letting C = 2c0c1c2, C1 = c1, and C2 = c3.

Appendix 8.B Proof of Noise Covariance Estimation

8.B.1 Proof of Theorem 26

Proof: By introducing the true parameter θ∗, Σ̂ can be rewritten as

Σ̂ =
1

n

n∑
i=1

(ηi + Xi(θ
∗ − θ)) (ηi + Xi(θ

∗ − θ))T

And note that

Σθ , E[Σ̂] = Σ∗ + ∆θ, where ∆θ = E
[
X(θ∗ − θ)(θ∗ − θ)TXT

]
.

The ψ2-norm of Σ
− 1

2
∗ (η + X(θ∗ − θ)) satisfies

∣∣∣∣∣∣∣∣∣∣∣∣Σ− 1
2
∗ (η + X(θ∗ − θ))

∣∣∣∣∣∣∣∣∣∣∣∣
ψ2

≤
∣∣∣∣∣∣∣∣∣∣∣∣Σ− 1

2
∗ η

∣∣∣∣∣∣∣∣∣∣∣∣
ψ2

+

∣∣∣∣∣∣∣∣∣∣∣∣Σ− 1
2
∗ X(θ∗ − θ)

∣∣∣∣∣∣∣∣∣∣∣∣
ψ2

= |||η̃|||ψ2
+ sup

u∈Sm−1

∣∣∣∣∣∣∣∣∣∣∣∣(θ∗ − θ)TΓ
1
2
∗uΓ

− 1
2
∗u XTΣ

− 1
2
∗ u

∣∣∣∣∣∣∣∣∣∣∣∣
ψ2

≤ κ0 + sup
v∈Sp−1

u∈Sm−1

∥∥∥∥Γ 1
2
∗u(θ∗ − θ)

∥∥∥∥
2

·
∣∣∣∣∣∣∣∣∣∣∣∣vTΓ

− 1
2
∗u XTΣ

− 1
2
∗ u

∣∣∣∣∣∣∣∣∣∣∣∣
ψ2

≤ κ0 + κ sup
u∈Sm−1

∥∥∥∥Γ 1
2
∗u

∥∥∥∥
2

‖θ∗ − θ‖2
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≤ κ0 + κ

√
µmax

λmin (Σ∗)
‖θ∗ − θ‖2

where Γ∗u = E[XTΣ
− 1

2
∗ uuTΣ

− 1
2
∗ X], and ‖Γ∗u‖22 ≤ µmax‖Σ

− 1
2
∗ u‖22 ≤

µmax

λmin(Σ∗)
by the

definition of sub-Gaussian X. κ0 is the ψ2-norm of standard Gaussian random vector.

By Theorem 5.39 and Remark 5.40 in [172], if n ≥ C4
0m
(
κ0 + κ

√
µmax

λmin(Σ∗)
‖θ∗ − θ‖2

)4
,

with probability at least 1− 2 exp(−C1m), we have

∥∥∥∥Σ− 1
2
∗

(
Σ̂−Σθ

)
Σ
− 1

2
∗

∥∥∥∥
2

≤ C2
0

(
κ0 + κ

√
µmax

λmin (Σ∗)
‖θ∗ − θ‖2

)2√m

n
(8.38)

Hence we have

λmax

(
Σ
− 1

2
∗ Σ̂Σ

− 1
2
∗

)
=

∥∥∥∥Σ− 1
2
∗ Σ̂Σ

− 1
2
∗

∥∥∥∥
2

≤ 1 +

∥∥∥∥Σ− 1
2
∗

(
Σ̂−Σθ

)
Σ
− 1

2
∗

∥∥∥∥
2

+

∥∥∥∥Σ− 1
2
∗ ∆θΣ

− 1
2
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2

≤ 1 + C2
0

(
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√
µmax

λmin (Σ∗)
‖θ∗ − θ‖2

)2√m

n
+

µmax
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2
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√
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n
+

2C2
0κ

2µmax
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‖θ∗ − θ‖22

√
m

n
+

µmax
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λmin

(
Σ
− 1

2
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√
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where C2 = 2C2
0 . For (a) and (b), we use the assumption n ≥ C4mκ4

(
λmax(Σ∗)µmax

λmin(Σ∗)µmin

)2
=

4C4
0mκ

4
(
λmax(Σ∗)µmax
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)2
. This completes the proof.

8.B.2 Proof of Lemma 24

Proof: Based on the definition of ξ(·), we have
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√√√√√Tr
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where the inequality follows from von Neumann’s trace inequality. Now we can bound

ξ(Σ̂) by invoking Theorem 26,

ξ
(
Σ̂
)
≤ ξ (Σ∗) ·

√√√√1 + C2κ2
0

√
m
n + 2µmax

λmin(Σ∗)
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0

√
m
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√√√√1 +
2C2κ2

0

√
m
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√
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√
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m
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) 1
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√
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√
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) 1
4
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√
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)

where the last inequality follows from n ≥ 4C4m ·
(
κ0 + κ

√
µmax

λmin(Σ∗)
‖θ∗ − θ‖2

)4
≥

4C4mκ4
0.

Appendix 8.C Proof of AltEst Procedure

8.C.1 Proof of Theorem 27

Proof: Since n ≥ C4mκ4
(
λmax(Σ∗)µmax

λmin(Σ∗)µmin

)2
and Σ̂(0) is initialized as Σ̂(0) = Im×m, by

applying Theorem 25 to θ̂(1), we have
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It follows that

n ≥ C4m · 4

(
κ0 +

C1

C2

√
λmin (Σ∗)

λ2
max (Σ∗)

Ψw(Ω)
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)4
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κ0 + κ

√
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∥∥∥θ∗ − θ̂(1)

∥∥∥
2

)4

By applying Lemma 24 and Theorem 25 to the second iteration,
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≤ eorc ·
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) 1
4
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·
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Since n ≥ C4m ·
(

2C1κ
C2 · µmax

µmin
· ξ(Σ∗)Ψw(Ω)√

m·λmin(Σ∗)

)2

, we have 2eorc

√
µmax

λmin(Σ∗)
≤ 1, which

indicates that
∥∥∥θ̂(2) − θ∗

∥∥∥
2
≤
∥∥∥θ̂(1) − θ∗

∥∥∥
2
. Therefore the condition in Lemma 24 on

sample size n also holds for θ̂(2) and so on. By repeatedly applying Lemma 24 and

Theorem 25, we have the following inequality for every t > 0,

∥∥∥θ̂(t+1) − θ∗
∥∥∥

2
− emin ≤ 2eorc

√
µmax

λmin (Σ∗)
·
(∥∥∥θ̂(t) − θ∗

∥∥∥
2
− emin

)
(8.39)

By combining (8.39) for every t, we obtain

∥∥∥θ̂(T ) − θ∗
∥∥∥

2
− emin ≤

(
2eorc

√
µmax

λmin (Σ∗)

)T−1

·
(∥∥∥θ̂(1) − θ∗

∥∥∥
2
− emin

)

which completes the proof.



Chapter 9

Improved Estimation for

Structured Multi-Response

Linear Models

9.1 Introduction

In this chapter, we continue to focus the multi-response linear model [5, 25, 79] with m

real-valued outputs,

y = Xθ∗ + η , where η = Σ
1/2
∗ η̃ (9.1)

where y ∈ Rm is the response vector and X ∈ Rm×p consists of m p-dimensional

feature vectors. Compared with that given in Chapter 8, one difference here is the

relaxed assumption on the noise vector η. Instead of being Gaussian, η is now a linear

transformation of an underlying zero-mean isotropic η̃ ∈ Rm, which could be non-

Gaussian. Given this relaxed model, our goal remains the estimation of the parameter
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θ∗ under the unknown noise covariance Σ∗, based on a sample D = {(Xi,yi)}ni=1. In

this work, the true parameter θ∗ is assumed to possess certain low-complexity structure

measured by some function f : Rp 7→ R+, which is not necessarily a norm as assumed

in Chapter 8. Instead f can be even non-convex, e.g., L0 cardinality function. In

principle, we still adhere to the AltEst procedure to alternatingly estimate θ∗ and Σ∗,

but the GDS used in Chapter 8 needs to be replaced as it cannot handle the potential

non-convexity of f . To this end, we switch the GDS to the constraint estimator in the

AltEst framework, which gives rise to the following updates

Σ̂(t+1) =
1

n

n∑
i=1

(
yi −Xiθ̂(t)

)(
yi −Xiθ̂(t)

)T
, (9.2)

θ̂(t+1) = argmin
θ∈Rp

1

2n

n∑
i=1

∥∥∥∥Σ̂− 1
2

(t+1) (yi −Xiθ)

∥∥∥∥2

2

s.t. f(θ) ≤ λ . (9.3)

In fact, this procedure is exactly the AltMin algorithm applied to the objective function

below,

(
θ̂cs, Σ̂cs

)
= argmin
θ∈Rp, Σ�0

1

2n

n∑
i=1

∥∥∥Σ− 1
2 (yi −Xiθ)

∥∥∥2

2
+

1

2
log |Σ| s.t. f(θ) ≤ λ , (9.4)

which corresponds to the constrained maximum likelihood estimator of (Σ,θ) when

the noise is Gaussian. With the replacement of the GDS, though the update (9.3)

of θ̂(t+1) remains non-convex if f is so, the simplicity of its objective actually favors

the optimization. More precisely, the recent progress in optimization with non-convex

constraints enables various algorithms to find the global minimum under mild conditions

on data [15,86,148].

As we have discussed in Chapter 8, the current statistical understanding of AltMin

(and AltEst) falls short. The statistical guarantees for non-convex AltMin procedures

are often shown under the notorious resampling assumption [45,84,128,179,180], which
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assumes that each iteration receives a fresh sample. Albeit this can be achieved by

partitioning the data into disjoint subsets and using different batches in each update,

people seldom do so in practice, as it usually results in worse performance than using all

data in every iteration. From the theoretical perspective, the resampling-based analysis

is neither a satisfactory explanation for the power of AltMin, since the probability with

which the statistical guarantees hold often decays as iteration goes, which is unnatural

to see.

In this chapter, we aim at a better way to bound the statistical error of the above

AltMin procedure for general structure-inducing f . In principal, non-asymptotic sta-

tistical analyses for high dimension typically involve bounding suprema of stochastic

processes [14, 127, 135, 173]. The difficulty of analyzing AltMin lies in the dependency

between the data and the obtained iterates, and the lack of independence prevents ap-

plications of various concentration inequalities to bounding the supremum of the target

processes. The resampling assumption facilitates the analysis of AltMin by assuming

new data that are independent of previous iterates. In contrast to resampling, we here

resort to uniformity to tackle the dependency issue, which ends up dealing with more

complicated stochastic processes. By carefully applying generic chaining [161], an ad-

vanced tool from probability theory, we are able to obtain the desired bounds for the

processes under consideration, and eventually express the error bound in terms of Gaus-

sian width [40,63]. In particular, we analyze the AltMin procedure under two different

choices of initialization, one with an arbitrarily initialized iterate and the other starting

at a point close to θ∗. The L2-error for both types of AltMin is shown to converge

geometrically to certain minimum achievable error emin with overwhelming probability,

i.e.,

∥∥∥θ̂(T ) − θ∗
∥∥∥

2
≤ emin + ρTn ·

(∥∥∥θ̂(0) − θ∗
∥∥∥

2
− emin

)
(9.5)
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where ρn < 1 is the contraction factor and emin is given by

emin = O

(
w(C) +m√

n

)
(arbitrary initialization) ,

emin = O

(
w(C)√
n

)
(good initialization) .

Here w(C) is the Gaussian width of a set C related the structure of θ∗. Surprisingly the

error for good initializations matches the resampling-based result up to some constant,

which requires more fresh data to achieve such a bound. In summary, this work improves

the results in Chapter 8 in several aspects. First, our analysis for AltMin does not

rely on the resampling assumption, which can be adapted with suitable modifications

to obtain resampling-free results for the original AltEst as well. Second our statistical

guarantees work for general sub-Gaussian noise. Third, we allow the complexity function

f to be non-convex, whereas in Chapter 8 f is required to be a norm. Moreover, our

result suggests that when the amount of data is adequate the AltMin with arbitrary

initialization can even achieve the same level of error as the well-initialized one, which

is not discovered in the earlier study.

The rest of the chapter is organized as follows. In Section 9.2, we outline the s-

trategies for combating non-convexity and present the algorithmic details of the AltMin

procedure for structured multi-response regression. In Section 9.3, we present the de-

terministic statistical guarantees for the AltMin algorithm, and instantiate the error

bounds under probabilistic assumptions in Section 9.4. Finally we provide some exper-

imental results in Section 9.5. All proofs are deferred to the appendix.

9.2 Strategy to Conquer Non-Convexity

For many statistical estimation problems, we can construct the estimator of the un-

derlying model parameter by minimizing certain loss function over the given sample



194

D,

ŵ = argmin
w∈W

L(w;D) . (9.6)

For non-convex problem with the associated objective function L being non-convex,

finding its global minimizer is challenging in general due to spurious local minima, which

can be poor estimates of the true parameter. Thanks to the stochastic models assumed

for the observed data D, however, the scenario we face is often much more benign than

the worst case that causes the failure of the optimization algorithms. Therefore it is

widely believed that non-convex estimation can be done through the usual local search

method with suitable initialization point. Since our ultimate goal is the statistical

recovery instead of the optimization performance itself, it is reasonable to leave out the

“unfriendly” data which our model is unlikely to encounter.

In order to show the recovery guarantee for non-convex estimation, there are mainly

two commonly-used strategies. One strategy is to show certain local convergence in

a neighborhood N of the global minimizer ŵ of (9.6) [34, 116, 130, 169, 189]. With a

proper initialization inside N , subsequent iterates produced by some local search might

be able to converge to ŵ, whose statistical error is expected to be small. This strategy

is particularly suitable for the noiseless setting, as ŵ is equal to w∗, and most of the

existing works use gradient descent type or its variants as workhorse algorithms. The

other strategy is to show that there is no spurious local minima of L under the assumed

the statistical models, so that any optimization algorithms that provably converge to

local minima will suffice for a good estimation [20,59,60,105,156,157].

For our multi-response regression problem, however, it is difficult to apply the afore-

mentioned strategies. First, bounding the statistical error of the global minimizer is

nontrivial in the noisy setting, especially when the objective L(w) involves more than

one set of variables like the multi-response regression, let alone characterizing the e-

quivalence of all local minima. Second, the gradient-based local search is inefficient
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for the problem (9.4), since the update of Σ involves matrix inversion and projection

onto positive semidefinite (PSD) cone. In contrast, AltMin procedure has a closed-form

solution to Σ-step, which is preferred in this setting.

In this work, we consider another strategy for the non-convex estimation in which

w is composed of two parameters (a and b), and L is jointly non-convex over them

but might be marginally convex w.r.t. a (b) when b (a) is fixed. When the marginal

subproblems are easy to solve, alternating minimization procedure is appealing for the

purpose of estimation, which applies to the multi-response regression. The AltMin

algorithm typically executes the following updates,

â(t+1) = argmin
a∈A

L(a, b̂(t);D) (9.7)

b̂(t+1) = argmin
b∈B

L(â(t+1),b;D) (9.8)

The basic idea for showing the statistical guarantees of AltMin is to derive the error

bounds for both a- and b-step when the other is fixed to the latest estimate. Since both

subproblems (9.7) and (9.8) are usually simpler, the separate errors might be easier to

characterize than considered jointly, which are ideally of the form,

d1

(
â(t+1), a∗

)
≤ e1

(
d2

(
b̂(t),b∗

))
(9.9)

d2

(
b̂(t+1), b∗

)
≤ e2

(
d1

(
â(t+1),a∗

))
(9.10)

where a∗ and b∗ are true underlying parameters. The function d1 (d2) characterizes the

closeness between â(t+1) and a∗ (b̂(t+1) and b∗), which is nonnegative with d1(a∗,a∗) = 0

(d2(b∗,b∗) = 0) but not necessarily a metric. The upper bound e1 (e2) may depend

on other quantities such as n, but our emphasis is the dependence on the estimation

accuracy of b (a). It is natural to expect that e1 (e2) will shrink as b̂(t) (â(t)) moves
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closer to b∗ (a∗). Under this condition, we can get

d1(â(T ),a∗) ≤ e1

(
d2

(
b̂(T−1),b∗

))
≤ . . . . . . ≤ e1

(
e2

(
. . . e1

(
d2

(
b̂(0),b∗

))
. . .
))

︸ ︷︷ ︸
composition of T e1(·) and T − 1 e2(·)

(9.11)

d2(b̂(T ),b∗) ≤ e2

(
d1

(
â(T ),a∗

))
≤ . . . . . . ≤ e2

(
e1

(
. . . e1

(
d2

(
b̂(0),b∗

))
. . .
))

︸ ︷︷ ︸
composition of T e2(·) and T e1(·)

(9.12)

which may imply the error of â(T ) and b̂(T ) under other metrics of interest. Compared

with the previous strategies, one notable difference of our treatment is that we do not

care about the optimization convergence of AltMin, as we neither characterize the error

of any local minimizers of L(·) nor show any iterate convergence to those minimizers.

Instead the ingredients we need are simply the statistical error bounds (9.9) and (9.10).

Given this fact, our analysis can be extended to the alternating estimation (AltEst)

procedure [45] that need not optimize a joint objective over a and b, which certainly

cannot be handled by the earlier strategies.

In order to get (9.9) and (9.10), the analysis for each AltMin step is often confronted

with a technical challenge due to the dependency between data and the iterates obtained

so far, which is bypassed by many existing analyses via the resampling assumption.

Essentially the resampling-based result states that with any fixed b̂(t) (â(t+1)), given a

fresh sample D(t) independent of b̂(t) (â(t+1)), the next iterate â(t+1) (b̂(t+1)) satisfies the

corresponding bound in (9.9) ((9.10)) with high probability. To avoid the resampling,

we leverage the idea of uniform bounds [171], which aims to show that given a sample D,

the bounds (9.9) and (9.10) hold uniformly with high probability for all possible value

of the input b̂(t) and â(t+1). This argument asks for no fresh data in each iteration,

and the probability of the error bounds being true does not deteriorate with growing

number of iterations. For structured multi-response regression, we will focus on the
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Algorithm 10 Alternating minimization for multi-response regression

Input: Number of iterations T , Data D = {(Xi,yi)}ni=1 and Tuning parameter λ
Output: Estimated θ̂(T )

1: Initialize θ̂(0) (e.g., solving (9.3) with Σ̂(0) = I)
2: for t:= 1 to T do
3: Compute Σ̂(t) according to (9.2)

4: Compute θ̂(t) by solving (9.3)
5: end for
6: return θ̂(T )

AltMin procedure shown in Algorithm 10. For the rest of the paper, C0, C1, c0, c1 and

so on are reserved for absolute constants.

9.3 Deterministic Analysis

In this section, we apply the resampling-free analysis framework to the multi-response

regression problem, for which a = Σ and b = θ. First we introduce a few notations.

We denote the smallest and the largest eigenvalue of Σ∗ as σ−∗ and σ+
∗ , and assume

Diag(Σ∗) = Im×m throughout the chapter for simplicity. In addition, we drop the

subscripts indexing the iteration, and analyze both Σ-update and θ-update in a broader

setting, where the other parameter is fixed as a generic input in certain regions, i.e.,

Σ̂(θ) =
1

n

n∑
i=1

(yi −Xiθ) (yi −Xiθ)T (9.13)

θ̂(Σ) = argmin
θ∈Rp

1

2n

n∑
i=1

∥∥∥Σ− 1
2 (yi −Xiθ)

∥∥∥2

2
s.t. f(θ) ≤ f(θ∗) , (9.14)

Note that here the tuning parameter λ for θ-step is set as λ = f(θ∗), which will be

kept for the rest of the analysis. For instance, if f = ‖ · ‖0, then λ has to be set to the
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sparsity of the true θ∗. The input regions we consider for θ and Σ are simply given by

R =
{
θ ∈ Rp

∣∣∣ f(θ) ≤ f(θ∗)
}

(9.15)

M(e0) =
{

Σ ∈ Rm×m
∣∣∣ Σ = Σ̂(θ), f(θ) ≤ f(θ∗), ‖θ − θ∗‖2 ≤ e0

}
(9.16)

in which e0 is the error tolerance to be specified for the initialization. Note that the

input regionM(e0) implicitly depends on R as well as the sample D = {(x,y)}ni=1 used

for computing Σ̂(θ). All matrices in M(e0) need to be invertible for the computation

of (9.14), which will be guaranteed by the later analysis when the randomness of data

is considered.

Definition 24 (distance functions) The distance function d1(·, ·) for Σ and Σ∗ is

defined as

d1(Σ,Σ∗) =
ξ(Σ)

ξ(Σ∗)
− 1 , (9.17)

in which ξ(·) is given by

ξ(Σ) =

√
Tr(Σ−1Σ∗Σ−1)

Tr(Σ−1)
. (9.18)

The distance function d2(·, ·) for θ and θ∗ is defined as the standard L2-distance, i.e.,

d2(θ̂,θ∗) = ‖θ − θ∗‖2 (9.19)

It is worth noting that ξ(Σ) is minimized at Σ = Σ∗. The error bound of Σ̂(θ) relies

on the definitions below.

Definition 25 (error spherical cap) For a complexity function f , its error spherical

cap is defined as

C = cone
{

u ∈ Rp
∣∣∣ f(θ∗ + u) ≤ f(θ∗)

}
∩ Sp−1 , (9.20)
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where Sp−1 = {u | ‖u‖2 = 1} is the unit sphere of Rp.

The cone in the definition above is sometimes called descent cone in the literature [4],

which is critical to the analysis of many high-dimensional estimation problems [40,130].

The next definition is directly extended from the notion of restricted eigenvalue (RE)

[21,139].

Definition 26 (uniformly restricted eigenvalue) For designs X1,X2, . . . ,Xn, the

smallest uniformly restricted eigenvalue (URE) the for error spherical cap C ⊆ Sp−1 is

defined as

α−n , inf
v∈Sm−1

inf
u∈C

uT

(
1

n

n∑
i=1

XT
i vvTXi

)
u (9.21)

Similarly the largest URE is given as

α+
n , sup

v∈Sm−1

sup
u∈C

uT

(
1

n

n∑
i=1

XT
i vvTXi

)
u (9.22)

In comparison with the standard restricted eigenvalue, the uniformity of the URE is

reflected by the infimum and the supremum operation over v ∈ Sm−1 in the above

definitions.

Definition 27 (type-I noise-design interaction strength) For designs X1, X2, . . .,

Xn and untransformed noises η̃1, η̃2, . . ., η̃n, the type-I noise-design interaction (NDI)

strength is defined as

γn , sup
u∈C

∥∥∥∥∥ 2

n

n∑
i=1

Xiuη̃
T
i

∥∥∥∥∥
2

(9.23)

With the definitions presented above, we are ready to give the deterministic guarantee

for (9.13).
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Lemma 25 (error bound for Σ-estimation) Given data {(Xi,yi)}ni=1, let {δn} be

a sequence such that ∥∥∥∥∥ 1

n

n∑
i=1

η̃iη̃
T
i − I

∥∥∥∥∥
2

≤ δn . (9.24)

If δnα
−
n

γ2
n
≥ σ+

∗
4σ−∗

and δn ≤ 1
4 , then Σ̂(θ) given by (9.13) is invertible for any θ ∈ R and

its error satisfies

d1

(
Σ̂(θ), Σ∗

)
≤ 4δn + 2

√
α+
n

σ−∗
· ‖θ − θ∗‖2 . (9.25)

To analyze the error of θ̂(Σ), we assume that the global minimum of (9.14) can be

attained despite the possible non-convexity of the constraint, which is fairly reasonable

in view of the recent development on non-convex optimization [15, 86]. In addition, we

need the definition of another noise-design interaction strength.

Definition 28 (type-II noise-design interaction strength) For designs X1, X2,

. . ., Xn and noises η1, η2, . . ., ηn, the type-II noise-design interaction (NDI) strength

βn for a set of matrices K is defined as

βn(K) , sup
Σ∈K

sup
u∈C

2

n

n∑
i=1

ηTi Σ−1Xiu

‖Σ1/2
∗ Σ−1‖F

, (9.26)

where the invertibility is assumed for every Σ ∈ K.

In the analysis, we specifically focus on βn(M(e0)) as M(e0) is the set of input Σ

under consideration. From its definition, it is not difficult to see that βn(M(e0)) is a

monotonically increasing function of e0, as M(e0) ⊆ M(e′0) for any e0 ≤ e′0. In the

probabilistic analysis, we will bound βn(M(e0)) at specific values of e0. Based on the

definition of βn, the next lemma characterizes the estimation error for (9.14).
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Lemma 26 (error bound for θ-estimation) Given data {(Xi,yi)}ni=1 and a set K ⊆

Rm×m such that every Σ ∈ K is invertible, the following error bound holds for θ̂(Σ)

given by (9.14) with any input Σ ∈ K,

d2

(
θ̂(Σ), θ∗

)
≤ ξ(Σ) · βn(K)

α−n
, (9.27)

where ξ(Σ) is defined in (9.18). In particular, the error for θ̂(Σ) with any input Σ ∈

M(e0) satisfies

d2

(
θ̂(Σ), θ∗

)
≤ ξ(Σ) · βn(M(e0))

α−n
. (9.28)

Remark: Apart from K = M(e0), other specific instantiations of this lemma also

yield interesting error bounds. For example, setting K = {I} bounds the error of the

constrained ordinary least squares (OLS), i.e.,

∥∥∥θ̂odn − θ∗
∥∥∥

2
≤ ξ(I) · βn({I})

α−n
=

1√
m
· βn({I})

α−n
, eodn , (9.29)

where θ̂odn is given by

θ̂odn = argmin
θ∈Rp

1

2n

n∑
i=1

‖yi −Xiθ‖22 s.t. f(θ) ≤ f(θ∗) . (9.30)

If we choose K = {Σ∗}, the error bound corresponds to the oracle estimator with the

information Σ∗, i.e.,

∥∥∥θ̂orc − θ∗
∥∥∥

2
≤ ξ(Σ∗) ·

βn({Σ∗})
α−n

=
1√

Tr(Σ−1
∗ )
· βn({Σ∗})

α−n
, eorc , (9.31)
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in which θ̂orc is defined as

θ̂orc = argmin
θ∈Rp

1

2n

n∑
i=1

∥∥∥∥Σ− 1
2
∗ (yi −Xiθ)

∥∥∥∥2

2

s.t. f(θ) ≤ f(θ∗) . (9.32)

Equipped with the error bounds for both θ- and Σ-step, we have the following

theorem for the whole AltMin procedure.

Theorem 28 (deterministic error bound for AltMin) Define εn, ρn and emin as

εn = ξ(Σ∗) ·
βn(M(e0))

α−n
, ρn = 2εn

√
α+
n

σ−∗
, emin = εn ·

1 + 4δn
1− ρn

in which δn is defined in Lemma 25. Assume that the tuning parameter λ = f(θ∗),

and the initialization satisfies both f(θ̂(0)) ≤ f(θ∗) and ‖θ̂(0) − θ∗‖2 ≤ e0. Under the

conditions that emin < e0, ρn < 1, δnα
−
n

γ2
n
≥ σ+

∗
4σ−∗

and δn ≤ 1
4 , then θ̂(T ) returned by

Algorithm 10 satisfies

∥∥∥θ̂(T ) − θ∗
∥∥∥

2
≤ emin + ρTn · (e0 − emin) , (9.33)

Remark: The above inequality indicates that the upper bound of the error for AltMin

procedure will decrease geometrically to the minimum achievable error emin, provided

that there exists room for improvement (i.e., emin < e0). Note that emin is given

in a multiplicative form in terms of εn, which is similar to the bound for the error

eorc incurred by the oracle estimator. The contraction factor ρn not only controls the

convergence rate of error, but also affects the value of emin. The theorem also reveals the

role of e0, which is calibrating the quality of initialization. The better the initialization

is, the smaller the error emin is.

In the next section, we will verify the conditions in Theorem 28 under suitable

stochastic assumptions, so that the above error bound is valid.
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9.4 Probabilistic Analysis

9.4.1 Preliminaries

In order for the deterministic results to hold, we need the conditions stated in Theo-

rem 28 to be satisfied. The proposition below translates those requirements into the

desired individual growth rates of α−n , α+
n , βn, γn and δn, which need to hold (with high

probability) when the randomness of X and y is considered.

Proposition 17 For any fixed e0 and an initialization with f(θ̂(0)) ≤ f(θ∗) and ‖θ̂(0)−

θ∗‖2 ≤ e0, the error bound (9.33) holds with large enough n, if α−n , α+
n , δn, γn and

βn(M(e0)) satisfy the following conditions,

(i) The smallest and the largest URE: α−n = Θ(1) and α+
n = Θ(1)

(ii) The rate of convergence for
∥∥ 1
n

∑n
i=1 η̃iη̃

T
i − I

∥∥
2
: δn = o(1)

(iii) The type-I noise-design interaction strength: γn = o(δ
1/2
n )

(iv) The type-II noise-design interaction strength: βn(M(e0)) = o(1)

The analysis of these conditions is built upon the concept of sub-Gaussian vectors

and matrices, which are defined below.

Definition 29 (sub-Gaussian vector and matrix) A vector x ∈ Rp is said to be

sub-Gaussian if its ψ2-norm satisfies,

|||x|||ψ2
= sup

u∈Sp−1

|||〈x,u〉|||ψ2
≤ κ < +∞ , (9.34)

where |||·|||ψ2
is defined for a random variable x ∈ R as |||x|||ψ2

= supq≥1
(E|x|q)

1
q

√
q . A
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matrix X ∈ Rm×p is sub-Gaussian if the following ψ2-norm for X is finite,

|||X|||ψ2
= sup

u∈Sp−1

v∈Sm−1

∣∣∣∣∣∣∣∣∣∣∣∣uTΓ
− 1

2
v XTv

∣∣∣∣∣∣∣∣∣∣∣∣
ψ2

≤ κ < +∞ , (9.35)

where Γv = E[XTvvTX]. Further, Γv for any v ∈ Sm−1 is assumed to satisfy

0 < µ− ≤ λmin(Γv) ≤ λmax(Γv) ≤ µ+ < +∞ , (9.36)

where µ− and µ+ are some constants.

This definition is adopted from [85,172]. If rows of X are i.i.d. copies of an isotropic sub-

Gaussian random vector x with |||x|||ψ2
≤ κ, it is not difficult to verify that |||X|||ψ2

≤ Cκ

for a universal constant C, and µ− = µ+ = 1. Our assumptions on the randomness of

{Xi} and {η̃i} are given below.

(A1) The designs X1,X2, . . . ,Xn are i.i.d. copies of a sub-Gaussian X with parameter

κ, µ− and µ+.

(A2) The isotropic noises η̃1, η̃2, . . . , η̃n are i.i.d. copies of a sub-Gaussian η̃ with

parameter τ .

Since the definitions of α−n , α+
n , γn and βn involve the error spherical cap C, it is expected

that certain complexity measure of C will show up in the analysis, which turns out to

be the notion of Gaussian width given in Definition 11. In the next two subsections, we

show that the conditions (i)−(iv) hold with overwhelming probability by characterizing

the corresponding non-asymptotic bounds.

9.4.2 Arbitrarily-Initialized AltMin

The lemma below justifies the claim of the condition (i).
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Lemma 27 Under the assumption (A1), if the sample size n ≥ C0 max

{
κ4
(
µ+

µ−

)2
, 1

}
·

max
{
w2(C),m

}
, with probability at least 1− 2 exp

(
−C1 max

{
w2(C),m

})
, the smallest

and the largest URE satisfy

1

2
µ− ≤ α−n ≤ α+

n ≤
3

2
µ+ , (9.37)

where w(C) is the Gaussian width of the error spherical cap.

The condition (ii) is simply implied by the following bound for the convergence of sample

covariance matrix, which is a direct result of Lemma 5.36 and Theorem 5.39 in [172].

Proposition 18 Under the assumption (A2), there exist absolute constants C0, C1

and C2 such that if n ≥ C0τ
4m, the following inequality holds with probability at least

1− 2 exp (−C1m), ∥∥∥∥∥ 1

n

n∑
i=1

η̃iη̃
T
i − I

∥∥∥∥∥
2

≤ C2τ
2

√
m

n
, δn (9.38)

Next we show that the rate of γn also has a 1√
n

-dependence as δn, thus implying that

γn = o(δ
1/2
n ) in the condition (iii).

Lemma 28 Under the assumptions (A1) and (A2), if n ≥ C0m, the following inequality

holds with probability at least 1− 2 exp (−C1m) for the type-I NDI strength γn,

γn ≤ C2 ·
κτ
√
µ+(
√
m+ w(C))√
n

. (9.39)

Lastly we verify the condition (iv). Given the statement of Theorem 28, we need to

bound βn(M(e0)) for e0 = +∞ if allowing arbitrary initializations.

Lemma 29 Suppose that the conditions of Lemma 25 are satisfied with probability

1 − ε when n ≥ n0. Under the assumptions (A1) and (A2), if sample size n ≥
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max
{
n0, C0τ

4m
}

, the type-II NDI strength for M(e0) with e0 = +∞ satisfies,

βn(M(e0)) ≤ C3 ·
κ
√
µ+ (m+ w(C))√

n
, (9.40)

with probability at least 1− ε− C2 exp (−C1m).

Remark: The proof of Lemma 29 suggests that βn for any singleton K satisfies

βn(K) ≤ C ′3 ·
κ
√
µ+ · w(C)√

n
, (9.41)

with probability 1− C ′2 exp (−C ′1m) if n ≥ C ′0τ
4m. Combined with Lemma 26 and 27,

this immediately implies the error of both the OLS and the oracle estimator

eodn ≤
C ′κ

√
µ+

µ−
√
m
· w(C)√

n
, (9.42)

eorc ≤
C ′κ

√
µ+

µ−
√

Tr(Σ−1
∗ )
· w(C)√

n
, (9.43)

which indicates that the oracle estimator improves the OLS by a factor of

eorc

eodn
=

√
m

Tr(Σ−1
∗ )

. (9.44)

In practice, this improvement can be significant, when there is strong cross-correlation

among the responses, such that Σ∗ is close to singular.

Assembling the results in Lemma 27 - 29 and Proposition 18, we have the following

corollary for the error of algorithm 10.

Corollary 7 Under the assumptions (A1) and (A2), if n ≥ C0·max
{

1, τ4, κ4
(
µ+σ+

∗
µ−σ−∗

)2
,
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κ2
(
µ+

µ−

)2 (
σ+
∗
σ−∗

)}
·max

{
w4(C)
m ,m

}
, with probability at least 1−C2 exp(−C1m), the min-

imum achievable error emin of Algorithm 10 with arbitrary initialization satisfies

emin ≤
C3κ

√
µ+

µ−
√

Tr(Σ−1
∗ )
· m+ w(C)√

n
· 1 + δn

1− ρn
, (9.45)

where δn and ρn satisfies

δn = C4τ
2

√
m

n
≤ 1

4

ρn ≤
C5κµ

+

µ−
√
σ−∗ Tr(Σ−1

∗ )
· m+ w(C)√

n
≤ 1

2

Remark: Though the initialization condition f(θ̂(0)) ≤ f(θ∗) may not be true for arbi-

trary θ̂(0), it should be satisfied by the first iterate θ̂(1), from which Theorem 28 starts

to work with e0 = +∞. Hence the result holds for any initialization θ̂(0). Following the

analysis in Chapter 8, the resampled AltMin has an error bound that matches the oracle

error eorc up to a constant factor. Hence the price paid for this resampling-free result

is only an additive O
(
m√
n

)
term. It is also worth noting that the result in Chapter 8

needs a good initialization to hold, whereas this does not.

To illustrate the error bound above, we complement it with an example, in which

the complexity function f is chosen to be L1 norm.

Example with L1 norm: For f = ‖ · ‖1 and an s-sparse θ∗, the Gaussian width of

the L1 error spherical cap satisfies

w(C) = O
(√

s log p
)
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according to [40]. This gives the order of emin as

emin = O

(
m+

√
s log p√
n

)

when n = Ω
(

max
{
s2 log2 p

m ,m
})

.

9.4.3 Well-Initialized AltMin

For well-initialized AltMin, most of the analysis stays the same, with the exception

being βn(M(e0)). With a small value of e0, the index set M(e0) in the definition of

βn(M(e0)) will shrink, so that we are able to sharpen the upper bound of βn(M(e0)).

Before presenting the results, we introduce the set called error spherical sector.

Definition 30 (error spherical sector) For a complexity function f , its error spher-

ical sector is defined as

S = cone
{

u ∈ Rp
∣∣∣ f(θ∗ + u) ≤ f(θ∗)

}
∩ Bp−1 , (9.46)

where Bp = {u | ‖u‖2 ≤ 1} is the unit ball of Rp.

Geometrically S is closely related to the previously defined set C (Definition 25), for

which C ⊆ S and S ⊆ conv(C ∪ {0}) hold. More importantly, their Gaussian widths

satisfy

w(S) ≤ w(C) + c (9.47)

for some constant c. The following lemma bounds the βn(M(e0)) at e0 =
√

σ−∗
µ+ using

w(S).

Lemma 30 Suppose that the conditions of Lemma 25 are satisfied with probability

1 − ε when n ≥ n0. Under the assumptions (A1) and (A2), if n ≥ max
{
n0, C0 ·
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max{τ4, κ4, 1}· max{w2(C), m3

w2(C) ,m
2}
}

, the type-II NDI strength for M(e0) with e0 =√
σ−∗
µ+ satisfies

βn (M(e0)) ≤ C3 ·
κ
√
µ+ · w(S)√

n
(9.48)

with probability at least 1− ε− C2 exp
(
−C1 ·min

{
w2(S),m

})
.

Together with the analysis presented in the previous subsection, the improved bound

for βn(M(e0)) immediately yields the error bound of Algorithm 10 under good initial-

ization.

Corollary 8 Under the assumptions (A1) and (A2), if n ≥ C0·max

{
1, τ4, κ4

(
µ+σ+

∗
µ−σ−∗

)2
,

κ2
(
µ+

µ−

)2 (
σ+
∗
σ−∗

)}
·max

{
w4(C)
m , m3

w2(C) ,m
2
}

and the initialization θ̂(0) satisfies f(θ̂(0)) ≤

f(θ∗) and ‖θ̂(0)−θ∗‖2 ≤
√

σ−∗
µ+ , with probability at least 1−C2 exp

(
−C1 ·min

{
w2(S),m

})
,

the minimum achievable error emin of Algorithm 10 satisfies

emin ≤
C3κ

√
µ+

µ−
√

Tr(Σ−1
∗ )
· w(S)√

n
· 1 + δn

1− ρn
(9.49)

where δn and ρn satisfies

δn = C4τ
2

√
m

n
≤ 1

4

ρn ≤
C5κµ

+

µ−
√
σ−∗ Tr(Σ−1

∗ )
· w(S)√

n
≤ 1

2

Remark: Since w(S) only differs from w(C) by a constant, the error bound (9.49) is

sharper compared with Corollary 7, matching the order of the resampling-based result

and the bound for eorc. A good initialization of θ̂(0) can be obtained by solving (9.30),

whose error is guaranteed by (9.42). Therefore the initialization condition will hold as

long as the sample size is sufficiently large. On the other hand, the iterates obtained by
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running randomly-initialized AltMin may also satisfy the initialization requirements as

Corollary 7 guarantees a moderate error for any initialization. Once the requirements

are met during the iteration, the randomly-initialized AltMin can attain this sharper

bound as well as the well-initialized.

Example with L0-cardinality: For f = ‖ · ‖0 and an s-sparse θ∗, the set S satisfies

S ⊆
{
θ ∈ Sp−1 | ‖θ‖0 ≤ 2s

}
,

which by simple calculation implies that

w(S) = O
(√

s log p
)
.

Therefore it follows from Corollary 8 that

emin = O

(√
s log p

n

)

if n = Ω
(

max
{

m3

s log p ,
s2 log2 p

m ,m2
})

.

9.5 Experimental Results

In this section, we present some experimental results to support our theoretical analysis.

Specifically we focus on the sparsity structure of θ∗, and consider L0-cardinality as

complexity function f . Throughout the experiment, we fix problem dimension p = 1000,

sparsity level of θ∗ s = 20, and number of iterations for AltMin T = 10. Entries of design

X is generated by i.i.d. standard Gaussians, and θ∗ = [1, . . . , 1︸ ︷︷ ︸
10

,−1, . . . ,−1︸ ︷︷ ︸
10

, 0, . . . , 0︸ ︷︷ ︸
980

]T .
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Σ∗ is given as

Σ∗ =



1 a

a 1
02×2 . . . 02×2

02×2

1 a

a 1
. . . 02×2

...
...

. . .
...

02×2 02×2 . . .
1 a

a 1


.

The experimental results are obtained based on the average over 100 random trials.

First we set a = 0.9, m = 10, and vary sample size n from 30 to 80. We run the

AltMin initialized by both constrained ordinary least squares and Gaussian random

vector, where θ-step is solved by the hard-thresholding pursuit (HTP) algorithm [56].

The error plots are shown in Figure 9.1.
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Figure 9.1: (a)A phase transition is observed for the randomly-initialized AltMin around
n = 40, whose error is on a par with the well-initialized for n ≥ 40. This coincides with
the remark for Corollary 8. Also, the error of AltMin is close to the oracle estimator,
which is significantly better than OLS. (b) Our theoretical results suggest that larger
sample size leads to smaller ρn, thus making AltMin converge faster as shown in the
plots.

For the second set of experiments, we fix m = 10, and vary the parameter a in Σ∗

from 0.5 to 0.9 for n = 30, 40, 50 and 60. The plots in Figure 9.2(a) shows the error
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of AltMin against a. As indicated by (9.29) and (9.31), the improvement of the oracle

least squares over the ordinary one is amplified with increasingly large a. Figure 9.2(b)

compares the actual ratio of eorc to eodn and the suggested one.
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Figure 9.2: (a) With a varying from 0.5 to 0.9, the responses become increasingly
correlated and the error of AltMin reduces more quickly. (b) The actual ratio of eorc to
eodn is very close the predicted one given by (9.44).

Finally we fix a = 0.8, and the number of responses m ranges from 10 to 18 for

n = 30, 40, 50 and 60. The results are presented in Figure 9.3.
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(b) L2-error of all estimators for n = 30

Figure 9.3: (a) As m increases from 10 to 18, the error of AltMin does not decrease
drastically. The main reason is the increasingly large error in the estimation of Σ∗.
(b) Compared with the error of OLS, the advantage of AltMin becomes marginal with
growing m, while its gap with the oracle estimator is widened.
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Appendix

Appendix 9.A Proofs for Deterministic Analysis

9.A.1 Proof of Lemma 25

Proof: We will use the shorthand notation Σ̂ for Σ̂(θ).

ξ(Σ̂)

ξ(Σ∗)
=

√
Tr
(
Σ̂−1Σ∗Σ̂−1

)
ξ(Σ∗) Tr

(
Σ̂−1

) =

√√√√√Tr
(
Σ−1
∗
)
· Tr

(
Σ̂−1Σ∗Σ̂−1

)
Tr2

(
Σ̂−1

)

=

√√√√√Tr
(
Σ̂

1
2 Σ−1
∗ Σ̂

1
2 Σ̂−1

)
· Tr

(
Σ̂−

1
2 Σ∗Σ̂

− 1
2 Σ̂−1

)
Tr2

(
Σ̂−1

)

≤

√√√√√λmax

(
Σ̂

1
2 Σ−1
∗ Σ̂

1
2

)
Tr
(
Σ̂−1

)
· λmax

(
Σ̂−

1
2 Σ∗Σ̂

− 1
2

)
Tr
(
Σ̂−1

)
Tr2

(
Σ̂−1

)

=

√
λmax

(
Σ̂

1
2 Σ−1
∗ Σ̂

1
2

)
λmax

(
Σ̂−

1
2 Σ∗Σ̂

− 1
2

)
=

√√√√√√√
λmax

(
Σ
− 1

2
∗ Σ̂Σ

− 1
2
∗

)
λmin

(
Σ
− 1

2
∗ Σ̂Σ

− 1
2
∗

) ,

where the inequality follows from Von Neumann’s trace inequality. Now we try to bound

λmax

(
Σ
− 1

2
∗ Σ̂Σ

− 1
2
∗

)
and λmin

(
Σ
− 1

2
∗ Σ̂Σ

− 1
2
∗

)
separately. Note that any θ given by the

solution of (9.14) satisfies that θ−θ∗
‖θ−θ∗‖2 ∈ C. By the expression for Σ̂ in (9.13), we have

for λmax

(
Σ
− 1

2
∗ Σ̂Σ

− 1
2
∗

)
,

λmax

(
Σ
− 1

2
∗ Σ̂Σ

− 1
2
∗

)
= 1 + λmax

(
Σ
− 1

2
∗ Σ̂Σ

− 1
2
∗ − I

)
= 1 +

∥∥∥∥Σ− 1
2
∗ Σ̂Σ

− 1
2
∗ − I

∥∥∥∥
2

≤ 1 +

∥∥∥∥∥ 1

n

n∑
i=1

η̃iη̃
T
i − I

∥∥∥∥∥
2

+

∥∥∥∥∥ 2

n

n∑
i=1

Σ
− 1

2
∗ Xi(θ − θ∗)η̃Ti

∥∥∥∥∥
2

+ λmax

(
1

n

n∑
i=1

Σ
− 1

2
∗ Xi(θ − θ∗)(θ − θ∗)TXT

i Σ
− 1

2
∗

)



214

= 1 + δn + ‖θ − θ∗‖2 ·

∥∥∥∥∥ 2

n

n∑
i=1

Σ
− 1

2
∗ Xi ·

θ − θ∗
‖θ − θ∗‖2

· η̃Ti

∥∥∥∥∥
2

+ ‖θ − θ∗‖22 · sup
v∈Sm−1

vT

(
1

n

n∑
i=1

Σ
− 1

2
∗ Xi ·

(θ − θ∗)(θ − θ∗)T

‖θ − θ∗‖22
·XT

i Σ
− 1

2
∗

)
v

≤ 1 + δn + ‖θ − θ∗‖2 ·
∥∥∥∥Σ− 1

2
∗

∥∥∥∥
2

· sup
u∈C

∥∥∥∥∥ 2

n

n∑
i=1

Xiuη̃
T
i

∥∥∥∥∥
2

+ ‖θ − θ∗‖22 ·
∥∥Σ−1
∗
∥∥

2
· sup

v∈Sm−1

sup
u∈C

uT

(
1

n

n∑
i=1

XT
i vvTXi

)
u

= 1 + δn +
γn√
σ−∗
‖θ − θ∗‖2 +

α+
n

σ−∗
‖θ − θ∗‖22

Similarly we bound λmin

(
Σ
− 1

2
∗ Σ̂Σ

− 1
2
∗

)
as follows,

λmin

(
Σ
− 1

2
∗ Σ̂Σ

− 1
2
∗

)
= 1 + λmin

(
Σ
− 1

2
∗ Σ̂Σ

− 1
2
∗ − I

)
≥ 1 + λmin

(
1

n

n∑
i=1

η̃iη̃
T
i − I

)

+ λmin

(
1

n

n∑
i=1

Σ
− 1

2
∗ Xi(θ − θ∗)η̃Ti +

1

n

n∑
i=1

η̃i(θ − θ∗)TXT
i Σ
− 1

2
∗

)

+ λmin

(
1

n

n∑
i=1

Σ
− 1

2
∗ Xi(θ − θ∗)(θ − θ∗)TXT

i Σ
− 1

2
∗

)

≥ 1−

∥∥∥∥∥ 1

n

n∑
i=1

η̃iη̃
T
i − I

∥∥∥∥∥
2

−

∥∥∥∥∥ 2

n

n∑
i=1

Σ
− 1

2
∗ Xi(θ − θ∗)η̃Ti

∥∥∥∥∥
2

+ λmin

(
1

n

n∑
i=1

Σ
− 1

2
∗ Xi(θ − θ∗)(θ − θ∗)TXT

i Σ
− 1

2
∗

)

≥ 1− δn − ‖θ − θ∗‖2 ·
∥∥∥∥Σ− 1

2
∗

∥∥∥∥
2

· sup
u∈C

∥∥∥∥∥ 2

n

n∑
i=1

Xiuη̃
T
i

∥∥∥∥∥
2

+ ‖θ − θ∗‖22 · λmin(Σ−1
∗ ) inf

v∈Sm−1
inf
u∈C

u

(
1

n

n∑
i=1

XT
i vvTXi

)
u

= 1− δn −
γn√
σ−∗
‖θ − θ∗‖2 +

α−n
σ+
∗
‖θ − θ∗‖22
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Combining the inequalities above, we obtain

ξ(Σ̂)

ξ(Σ∗)

≤

√√√√√√1 + δn + γn√
σ−∗
‖θ − θ∗‖2 + α+

n

σ−∗
‖θ − θ∗‖22

1− δn − γn√
σ−∗
‖θ − θ∗‖2 + α−n

σ+
∗
‖θ − θ∗‖22

≤

√√√√√1 + 2δn + γ2
n

4σ−∗ δn
‖θ − θ∗‖22 + α+

n

σ−∗
‖θ − θ∗‖22

1− 2δn − γ2
n

4σ−∗ δn
‖θ − θ∗‖22 + α−n

σ+
∗
‖θ − θ∗‖22

(
use
√
ab ≤ a+ b

2
for a, b ≥ 0

)

≤

√√√√1 + 2δn + 2α+
n

σ−∗
‖θ − θ∗‖22

1− 2δn

(
use the condition

δnα
−
n

γ2
n

≥ σ+
∗

4σ−∗

)

≤
√

1 + 2δn
1− 2δn

+

√
2α+

n ‖θ − θ∗‖22
(1− 2δn)σ−∗

(
follow from

√
a+ b ≤

√
a+
√
b for a, b ≥ 0

)
≤ 1 +

2δn
1− 2δn

+

√
2α+

n ‖θ − θ∗‖22
(1− 2δn)σ−∗

(
follow from

√
1 + a ≤ 1 +

a

2
for a ≥ 0

)
≤ 1 + 4δn + 2

√
α+
n

σ−∗
· ‖θ − θ∗‖2

(
use the condition δn ≤

1

4

)
.

The invertibility of Σ̂ is guaranteed by λmin(Σ
− 1

2
∗ Σ̂Σ

− 1
2
∗ ) > 1

2 following from the deriva-

tion above.

9.A.2 Proof of Lemma 26

Proof: We use the shorthand notation θ̂ for θ̂(Σ). Since the tuning parameter λ is set

to ‖θ∗‖, the optimality of θ̂ implies that

1

2n

n∑
i=1

∥∥∥Σ− 1
2 (yi −Xiθ̂)

∥∥∥2

2
≤ 1

2n

n∑
i=1

∥∥∥Σ− 1
2 (yi −Xiθ∗)

∥∥∥2

2

=⇒ 1

2n

n∑
i=1

∥∥∥Σ− 1
2 (yi −Xiθ∗) + Σ−

1
2 Xi(θ∗ − θ̂)

∥∥∥2

2
≤ 1

2n

n∑
i=1

∥∥∥Σ− 1
2 (yi −Xiθ∗)

∥∥∥2

2
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=⇒ 1

2n

n∑
i=1

∥∥∥Σ− 1
2 Xi(θ̂ − θ∗)

∥∥∥2

2
+

1

n

n∑
i=1

(yi −Xiθ∗)
TΣ−1Xi(θ∗ − θ̂) ≤ 0

=⇒ 1

n

n∑
i=1

∥∥∥Σ− 1
2 Xi(θ̂ − θ∗)

∥∥∥2

2
≤ 2

n

n∑
i=1

ηTi Σ−1Xi(θ̂ − θ∗)

=⇒
∥∥∥θ̂ − θ∗∥∥∥

2
≤

2
n

∑n
i=1 η

T
i Σ−1Xi · θ̂−θ∗

‖θ̂−θ∗‖2

1
n

∑n
i=1

∥∥∥Σ− 1
2 Xi · θ̂−θ∗

‖θ̂−θ∗‖2

∥∥∥2

2

Now we try to bound the numerator and the denominator on the right-hand side. Note

that f(θ̂) ≤ λ = f(θ∗), we thus have θ̂−θ∗
‖θ̂−θ∗‖2

∈ C according to the definition of the error

spherical cap. Assuming the eigenvalue decomposition Σ =
∑m

j=1 σjvjv
T
j , we further

get

1

n

n∑
i=1

∥∥∥∥∥Σ− 1
2 Xi ·

θ̂ − θ∗
‖θ̂ − θ∗‖2

∥∥∥∥∥
2

2

≥ inf
u∈C

1

n

n∑
i=1

∥∥∥Σ− 1
2 Xiu

∥∥∥2

2

= inf
u∈C

1

n

n∑
i=1

uTXT
i

 m∑
j=1

σ−1
j vjv

T
j

Xiu

= inf
u∈C

m∑
j=1

σ−1
j · u

T

(
1

n

n∑
i=1

XT
i vjv

T
j Xi

)
u

≥

 m∑
j=1

σ−1
j

 · inf
v∈Sm−1

inf
u∈C

uT

(
1

n

n∑
i=1

XT
i vvTXi

)
u

= α−n · Tr(Σ−1)

2

n

n∑
i=1

ηTi Σ−1Xi ·
θ̂ − θ∗
‖θ̂ − θ∗‖2

≤ sup
u∈C

2

n

n∑
i=1

ηTi Σ−1Xiu

=
∥∥∥Σ1/2
∗ Σ−1

∥∥∥
F
· sup

u∈C

2

n

n∑
i=1

ηTi Σ−1Xiu

‖Σ1/2
∗ Σ−1‖F

≤
∥∥∥Σ1/2
∗ Σ−1

∥∥∥
F
· sup

Σ∈M
sup
u∈C

2

n

n∑
i=1

ηTi Σ−1Xiu

‖Σ1/2
∗ Σ−1‖F
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= βn ·
√

Tr(Σ−1Σ∗Σ−1)

Combining the results above, we can get (9.28).

9.A.3 Proof of Theorem 28

Proof: Since the initialization θ̂(0) satisfies f(θ̂(0)) ≤ f(θ∗) and ‖θ̂(0) − θ∗‖2 ≤ e0, we

have Σ̂(1) ∈ M(e0) by Lemma 25 and 26, we have for the first iteration of Algorithm

10,

d1

(
Σ̂(1), Σ∗

)
≤ 4δn + 2

√
α+
n

σ−∗
· d2

(
θ̂(0), θ∗

)
d2

(
θ̂(1), θ∗

)
≤ ξ(Σ̂(1)) ·

βn(M(e0))

α−n
= εn ·

(
1 + d1

(
Σ̂(1), Σ∗

))

Combining the two inequalities, we obtain the recurrence relation for the error of θ̂(1)

and θ̂(0),

d2

(
θ̂(1), θ∗

)
≤ εn ·

1 + 4δn + 2

√
α+
n

σ−∗
· d2

(
θ̂(0), θ∗

)
As ρn < 1 and emin ≤ e0, we have d2(θ̂(1),θ∗) ≤ e0, thus Σ̂(2) ∈ M(e0). By induction,

we can recursively apply the result to t = 2, 3, . . . , T ,

d2

(
θ̂(T ), θ∗

)
≤ qT , where qt = εn (1 + 4δn) + 2εn

√
α+
n

σ−∗
· qt−1 and q0 ≤ e0
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Solving the recurrence of rt, we get

qT =
εn (1 + 4δn)

1− 2εn

√
α+
n

σ−∗

+

2εn

√
α+
n

σ−∗

T

·

q0 −
εn (1 + 4δn)

1− 2εn

√
α+
n

σ−∗


= emin + ρTn · (q0 − emin)

≤ emin + ρTn · (e0 − emin) ,

which completes the proof.

Appendix 9.B Proofs for Probabilistic Analysis

9.B.1 Proof of Proposition 17

Proof: Since α−n = Θ(1) and βn(M(e0)) = o(1), we have εn = o(1). As (ii) holds, it

follows from that δn ≤ 1
4 when n is large. Due to (iii), the condition δnα

−
n

γ2
n
≥ σ+

∗
4σ−∗

is true

for sufficiently large n. Given that εn = o(1) and α+
n = Θ(1), we have ρn = o(1). With

δn = o(1) and ρn = o(1), it is easy to see that emin ≤ e0 for large enough n.

9.B.2 Proof of Lemma 27

Proof: First we have

α−n = inf
v∈Sm−1

inf
u∈C

uT

(
1

n

n∑
i=1

XT
i vvTXi

)
u

≥ inf
v∈Sm−1

inf
u∈C

uT
(
E
[
XTvvTX

])
u

+ inf
v∈Sm−1

inf
u∈C

uT

(
1

n

n∑
i=1

XT
i vvTXi − E

[
XTvvTX

])
u
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≥ inf
v∈Sm−1

inf
u∈C

uT
(
E
[
XTvvTX

])
u− sup

v∈Sm−1

sup
u∈C

∣∣∣∣∣ 1n
n∑
i=1

(uTXT
i v)2 − E(uTXTv)2

∣∣∣∣∣
≥ µ− − sup

v∈Sm−1

sup
u∈C

∣∣∣∣∣ 1n
n∑
i=1

(uTXT
i v)2 − E(uTXTv)2

∣∣∣∣∣
α+
n = sup

v∈Sm−1

sup
u∈C

uT

(
1

n

n∑
i=1

XT
i vvTXi

)
u

≤ sup
v∈Sm−1

sup
u∈C

uT
(
E
[
XTvvTX

])
u

+ sup
v∈Sm−1

sup
u∈C

uT

(
1

n

n∑
i=1

XT
i vvTXi − E

[
XTvvTX

])
u

≤ sup
v∈Sm−1

sup
u∈C

uT
(
E
[
XTvvTX

])
u + sup

v∈Sm−1

sup
u∈C

∣∣∣∣∣ 1n
n∑
i=1

(uTXT
i v)2 − E(uTXTv)2

∣∣∣∣∣
≤ µ+ + sup

v∈Sm−1

sup
u∈C

∣∣∣∣∣ 1n
n∑
i=1

(uTXT
i v)2 − E(uTXTv)2

∣∣∣∣∣
Now the goal is to bound supv∈Sm−1 supu∈C

∣∣ 1
n

∑n
i=1(uTXT

i v)2 − E(uTXTv)2
∣∣. In order

to apply Corollary 1, we let A = Sm−1 × C ⊂ Rm+p, a = (v,u), and the function class

F = {fa = uTXTv}a∈A. We then verify the conditions required by Corollary 1 for F

and A.

sup
f∈F
|||f |||ψ2

= sup
v∈Sm−1

sup
u∈C

∣∣∣∣∣∣uTXTv
∣∣∣∣∣∣
ψ2

= sup
v∈Sm−1

sup
u∈C

∣∣∣∣∣∣∣∣∣uTΓ
1/2
v Γ

−1/2
v XTv

∣∣∣∣∣∣∣∣∣
ψ2

≤ κ · sup
v∈Sm−1

sup
u∈C

∥∥∥Γ
1/2
v u

∥∥∥
2

≤ κ · sup
v∈Sm−1

∥∥∥Γ
1/2
v

∥∥∥
2
≤ κ

√
µ+ =⇒ RF = κ

√
µ+
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∀ a,a′ ∈ A, |||fa − fa′ |||ψ2

=
∣∣∣∣∣∣uTXTv − u′TXTv′

∣∣∣∣∣∣
ψ2

=
∣∣∣∣∣∣(u− u′)TXTv + u′TXT (v − v′)

∣∣∣∣∣∣
ψ2

≤
∥∥u− u′

∥∥
2

∣∣∣∣∣∣∣∣∣∣∣∣ (u− u′)T

‖u− u′‖2
XTv

∣∣∣∣∣∣∣∣∣∣∣∣
ψ2

+
∥∥v − v′

∥∥
2

∣∣∣∣∣∣∣∣∣∣∣∣u′TXT (v − v′)

‖v − v′‖2

∣∣∣∣∣∣∣∣∣∣∣∣
ψ2

≤ κ
√
µ+
(∥∥u− u′

∥∥
2

+
∥∥v − v′

∥∥
2

)
≤
√

2κ
√
µ+ ·

√
‖u− u′‖22 + ‖v − v′‖22

=
√

2κ
√
µ+
∥∥a− a′

∥∥
2

=⇒ KF =
√

2κ
√
µ+

It follows from Corollary 1 that if n ≥ c0w
2(A), the following result holds with proba-

bility at least 1− 2 exp
(
−c1w

2(A)
)
,

sup
v∈Sm−1

sup
u∈C

∣∣∣∣∣ 1n
n∑
i=1

(uTXT
i v)2 − E(uTXTv)2

∣∣∣∣∣ ≤ c2 ·
κ2µ+ · w(A)√

n
(9.50)

If n further satisfies n ≥ 4c2
2κ

4
(
µ+

µ−

)2
w2(A), then

sup
v∈Sm−1

sup
u∈C

∣∣∣∣∣ 1n
n∑
i=1

(uTXT
i v)2 − E(uTXTv)2

∣∣∣∣∣ ≤ 1

2
µ−

=⇒ α−n ≥ µ− −
1

2
µ− =

1

2
µ−, α+

n ≤ µ+ +
1

2
µ− ≤ 3

2
µ+

Finally we note that

w(A) = E
[

sup
a∈A
〈a,gm+p〉

]
= E

[
sup

u∈Sm−1

〈u,gm〉+ sup
v∈C
〈v,gp〉

]
= E [‖gm‖2] + w(C) = Θ

(√
m
)

+ w(C)

By renaming the constants, we finish the proof.
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9.B.3 Proof of Lemma 28

Proof: First we have

γn = sup
u∈C

∥∥∥∥∥ 2

n

n∑
i=1

Xiuη̃
T
i

∥∥∥∥∥
2

= 2 sup
u∈C

sup
v∈Sm−1

sup
b∈Sm−1

1

n

n∑
i=1

(
vTXiu

) (
η̃Ti b

)
= 2 sup

u∈C
sup

v∈Sm−1

sup
b∈Sm−1

∣∣∣∣∣ 1n
n∑
i=1

(
vTXiu

) (
η̃Ti b

)
− E

[
vTXuη̃Tb

]∣∣∣∣∣
Next we use Theorem 2 to bound the stochastic process above. Let A = Sm−1 × C ⊂

Rm+p, a = (v,u) and B = Sm−1. Construct F = {fa = vTXu}a∈A and H = {hb =

η̃Tb}b∈B. We start by verifying the assumptions. Note that

sup
f∈F
|||f |||ψ2

= sup
u∈C

sup
v∈Sm−1

∣∣∣∣∣∣uTXTv
∣∣∣∣∣∣
ψ2

≤ sup
u∈C

sup
v∈Sm−1

∣∣∣∣∣∣uTXTv
∣∣∣∣∣∣
ψ2

= sup
u∈C

sup
v∈Sm−1

∣∣∣∣∣∣∣∣∣uTΓ
1/2
v Γ

−1/2
v XTv

∣∣∣∣∣∣∣∣∣
ψ2

≤ sup
u∈C

sup
v∈Sm−1

κ
∥∥∥Γ1/2

v u
∥∥∥

2

≤ κ
√
µ+ =⇒ RF = κ

√
µ+

sup
h∈H
|||h|||ψ2

= sup
b∈Sm−1

∣∣∣∣∣∣η̃Tb
∣∣∣∣∣∣
ψ2
≤ τ =⇒ RH = τ

Similar to the proof for Lemma 27, we have

∀ a,a′ ∈ A, |||fa − fa′ |||ψ2

=
∣∣∣∣∣∣∣∣∣vTXTΣ

−1/2
∗ u− v′TXTΣ

−1/2
∗ u′

∣∣∣∣∣∣∣∣∣
ψ2

≤
∣∣∣∣∣∣(v − v′)TXTu + v′TXT (u− u′)

∣∣∣∣∣∣
ψ2

≤
∥∥v − v′

∥∥
2

∣∣∣∣∣∣∣∣∣∣∣∣ (v − v′)T

‖v − v′‖2
XTu

∣∣∣∣∣∣∣∣∣∣∣∣
ψ2

+
∥∥u− u′

∥∥
2

∣∣∣∣∣∣∣∣∣∣∣∣v′TXT (u− u′)

‖u− u′‖2

∣∣∣∣∣∣∣∣∣∣∣∣
ψ2
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≤ κ
√
µ+
(∥∥v − v′

∥∥
2

+
∥∥u− u′

∥∥
2

)
≤
√

2κ
√
µ+ ·

√
‖v − v′‖22 + ‖u− u′‖22

=
√

2κ
√
µ+
∥∥a− a′

∥∥
2

=⇒ KF =
√

2κ
√
µ+

∀ b,b′ ∈ B, |||hb − hb′ |||ψ2
=
∣∣∣∣∣∣η̃T (b− b′)

∣∣∣∣∣∣
ψ2
≤ τ

∥∥b− b′
∥∥

2
=⇒ KH = τ

By invoking Theorem 2 and noting that w(Sm−1) = Θ(
√
m), w(A) = w(Sm−1)+w(C) ≥

w(B), if n ≥ c0m, we get

γn ≤ 2 sup
u∈C

sup
v∈Sm−1

sup
b∈Sm−1

∣∣∣∣∣ 1n
n∑
i=1

(
vTXiu

) (
η̃Ti b

)
− E

[
vTXuη̃Tb

]∣∣∣∣∣
≤ c2 · κτ

√
µ+ ·

√
m+ w(C)√

n

with probability at least 1 − 2 exp (−c1m). The proof is completed by renaming the

constants.

9.B.4 Proof of Lemma 29

Proof: When the conditions of Lemma 25 is satisfied, the invertibility holds for all

Σ ∈M. using the relation η = Σ
1/2
∗ η̃, we have

βn = sup
Σ∈M

sup
u∈C

2

n

n∑
i=1

ηTi Σ−1Xiu

‖Σ1/2
∗ Σ−1‖F

= sup
Σ∈M

sup
u∈C

2

n

n∑
i=1

η̃Ti Σ
1/2
∗ Σ−1Xiu

‖Σ1/2
∗ Σ−1‖F

≤ sup
Λ∈Sm×m−1

sup
u∈C

2

n

n∑
i=1

η̃Ti ΛXiu︸ ︷︷ ︸
νn
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Therefore we just need to bound νn. Since the design and noise are independent, we

will consider their randomness in a sequential fashion. The proof proceeds in two steps.

First we show that the noises η̃1, η̃2, . . . , η̃n will behave “well” with high probability.

By the word “well”, we mean that the following event is true,

E =

{
{η̃i}

∣∣∣∣ sup
Λ∈Sm×m−1

1

n

n∑
i=1

∥∥ΛT η̃i
∥∥2

2
≤ 2

}
. (9.51)

Denoting the columns of Λ by λ1,λ2, . . . ,λm, we have

sup
Λ∈Sm×m−1

1

n

n∑
i=1

∥∥ΛT η̃i
∥∥2

2
= sup

Λ∈Sm×m−1

1

n

n∑
i=1

Tr
(
ΛT η̃iη̃

T
i Λ
)

= sup
Λ∈Sm×m−1

m∑
j=1

λTj

(
1

n

n∑
i=1

η̃iη̃
T
i

)
λj

= sup
Λ∈Sm×m−1

m∑
j=1

‖λj‖22 ·

∥∥∥∥∥ 1

n

n∑
i=1

η̃iη̃
T
i

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

n

n∑
i=1

η̃iη̃
T
i

∥∥∥∥∥
2

By Proposition 18, if n ≥ c0τ
4m, we have∥∥∥∥∥ 1

n

n∑
i=1

η̃iη̃
T
i

∥∥∥∥∥
2

≤ 1 +

∥∥∥∥∥ 1

n

n∑
i=1

η̃iη̃
T
i − I

∥∥∥∥∥
2

≤ 2

with probability at least 1− 2 exp (−c1m).

Next we consider the randomness of Xi given that η̃i’s are fixed and E is true.

Construct the stochastic process
{
Zt = 1√

n

∑n
i=1 η̃

T
i ΛXiu

}
t∈T

, where T = Sm×m−1 ×

C ⊂ Rm×m+p and t = (vec(Λ),u). Note that

∀ t, t′ ∈ T ,
∥∥t− t′

∥∥
2

=

√
‖Λ−Λ′‖2F + ‖u− u′‖22 ≤ 2

√
2 =⇒ diam (T ) ≤ 2

√
2
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In order to apply Theorem 1 to {Zt}, we first verify the required condition.

∀ t, t′ ∈ T , |||Zt − Zt′ |||ψ2

=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 1√
n

n∑
i=1

η̃Ti ΛXiu−
1√
n

n∑
i=1

η̃Ti Λ′Xiu
′

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
ψ2

≤

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 1√
n

n∑
i=1

η̃Ti (Λ−Λ′)Xiu

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
ψ2

+

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 1√
n

n∑
i=1

η̃Ti Λ′Xi(u− u′)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
ψ2

(a)

≤ c2

√√√√ 1

n

n∑
i=1

‖(Λ−Λ′)T η̃i‖22 · sup
v∈Sm−1

∣∣∣∣∣∣vTXu
∣∣∣∣∣∣
ψ2

+ c2

√√√√ 1

n

n∑
i=1

‖Λ′T η̃i‖22 ·
∥∥u− u′

∥∥
2
· sup

v∈Sm−1

∣∣∣∣∣∣∣∣∣∣∣∣vTX
u− u′

‖u− u′‖2

∣∣∣∣∣∣∣∣∣∣∣∣
ψ2

≤
√

2c2κ
√
µ+
(∥∥Λ−Λ′

∥∥
F

+
∥∥u− u′

∥∥
2

)
≤ 2c2κ

√
µ+

∥∥∥∥∥∥
vec(Λ)

u

−
vec(Λ′)

u′

∥∥∥∥∥∥
2

=⇒ K = 2c2κ
√
µ+ ,

where step (a) follows from Proposition 10. By Theorem 1, we have for fixed {η̃i} under

event E ,

νn =
2√
n
· sup

t∈T
Zt =

1√
n
· sup

t,t′∈T
|Zt − Zt′ | ≤ c3 ·

κ
√
µ+ · w(T )√

n

with probability at least 1−c4 exp
(
− w2(T )

diam 2(T )

)
≥ 1−c4 exp

(
−w2(T )

8

)
. Now we combine

the randomness of Xi and η̃i, and get

PX,η̃

(
νn ≤ c3 ·

κ
√
µ+ · w(T )√

n

)

=

∫
PX

(
νn ≤ c3 ·

κ
√
µ+ · w(T )√

n

∣∣∣∣ {η̃i}
)
p (η̃1, . . . , η̃n) dη̃1 . . . dη̃n
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≥
∫
E
PX

(
νn ≤ c3 ·

κ
√
µ+ · w(T )√

n

∣∣∣∣ {η̃i}
)
p (η̃1, . . . , η̃n) dη̃1 . . . dη̃n

≥
(

1− c4 exp

(
−w

2(T )

8

))
· P (E)

≥
(

1− c4 exp

(
−w

2(T )

8

))
(1− 2 exp (−c1m))

≥ 1− 2 exp (−c1m)− c4 exp

(
−w

2(T )

8

)
≥ 1− c5 exp(−c6m) ,

where the last step follows from w(T ) = w(Sm×m−1 × C) = w(Sm×m−1) + w(C) =

Θ(m) + w(C). Since the invertibility for M is implied by the conditions of Lemma 25,

we have that if n ≥ max{n0, C0τ
4m},

βn ≤ c7 ·
κ
√
µ+(m+ w(C))√

n

with probability at least 1−ε−c5 exp(−c6m). Finally we complete the proof by renaming

the constants.

9.B.5 Proof of Lemma 30

Proof: Throughout the proof, e0 is set as
√

σ−∗
µ+ , and we will use the shorthand notation

βn and M for βn(M(e0)) and M(e0). First we introduce the following notations

S ′ = e0 · S = {e0u | u ∈ S}

Γw = E
[
XwwTXT

]
Σθ = Σ∗ + Γθ−θ∗

Γ̂w = − 1

n

n∑
i=1

Xiwη
T
i −

1

n

n∑
i=1

ηiw
TXi +

1

n

n∑
i=1

XiwwTXT
i
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Σ̂θ =
1

n

n∑
i=1

ηiη
T
i + Γ̂θ−θ∗ =

1

n

n∑
i=1

(yi −Xiθ) (yi −Xiθ)T

Note that µ− ≤ λmin(Γw) ≤ λmax(Γw) ≤ µ+ for any w ∈ Sp−1, Γw = E[Γ̂w], Σθ =

E[Σ̂θ] and M⊆ {Σ̂θ | θ ∈ S ′ + θ∗}. Then we decompose βn as

βn = sup
Σ∈M

sup
u∈C

2

n

n∑
i=1

ηTi Σ−1Xiu

‖Σ1/2
∗ Σ−1‖F

= sup
Σ∈M

sup
u∈C

2

n

n∑
i=1

η̃Ti Σ
1/2
∗ Σ−1Xiu

‖Σ1/2
∗ Σ−1‖F

≤ sup
θ∈S′+θ∗

sup
u∈C

2

n

n∑
i=1

η̃Ti

(
Σ

1/2
∗ Σ̂−1

θ

‖Σ1/2
∗ Σ̂−1

θ ‖F
−

Σ
1/2
∗ Σ−1

θ

‖Σ1/2
∗ Σ−1

θ ‖F

)
Xiu

+ sup
θ∈S′+θ∗

sup
u∈C

2

n

n∑
i=1

η̃Ti Σ
1/2
∗ Σ−1

θ Xiu

‖Σ1/2
∗ Σ−1

θ ‖F

≤ sup
Λ∈Sm×m−1

sup
u∈C

2

n

n∑
i=1

η̃Ti ΛXiu︸ ︷︷ ︸
νn

· sup
θ∈S′+θ∗

∥∥∥∥∥ Σ
1/2
∗ Σ̂−1

θ

‖Σ1/2
∗ Σ̂−1

θ ‖F
−

Σ
1/2
∗ Σ−1

θ

‖Σ1/2
∗ Σ−1

θ ‖F

∥∥∥∥∥
F︸ ︷︷ ︸

ζn

+ sup
θ∈S′+θ∗

sup
u∈C

2

n

n∑
i=1

η̃Ti Σ
1/2
∗ Σ−1

θ Xiu

‖Σ1/2
∗ Σ−1

θ ‖F︸ ︷︷ ︸
φn

where νn is analyzed in the proof of Lemma 29. Therefore we focus on bounding ζn and

φn. We first try to bound ζn,

ζn = sup
θ∈S′+θ∗

∥∥∥∥∥ Σ
1/2
∗ Σ̂−1

θ

‖Σ1/2
∗ Σ̂−1

θ ‖F
−

Σ
1/2
∗ Σ−1

θ

‖Σ1/2
∗ Σ−1

θ ‖F

∥∥∥∥∥
F

≤ sup
θ∈S′+θ∗

∥∥∥∥∥ Σ
1/2
∗ Σ̂−1

θ

‖Σ1/2
∗ Σ̂−1

θ ‖F
−

Σ
1/2
∗ Σ̂−1

θ

‖Σ1/2
∗ Σ−1

θ ‖F

∥∥∥∥∥
F

+ sup
θ∈S′+θ∗

∥∥∥∥∥ Σ
1/2
∗ Σ̂−1

θ

‖Σ1/2
∗ Σ−1

θ ‖F
−

Σ
1/2
∗ Σ−1

θ

‖Σ1/2
∗ Σ−1

θ ‖F

∥∥∥∥∥
F

≤ sup
θ∈S′+θ∗

∣∣∣∣∣‖Σ
1/2
∗ Σ̂−1

θ ‖F − ‖Σ
1/2
∗ Σ−1

θ ‖F
‖Σ1/2
∗ Σ−1

θ ‖F

∣∣∣∣∣+ sup
θ∈S′+θ∗

∥∥∥Σ1/2
∗ Σ̂−1

θ −Σ
1/2
∗ Σ−1

θ

∥∥∥
F

‖Σ1/2
∗ Σ−1

θ ‖F
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≤ 2 sup
θ∈S′+θ∗

∥∥∥Σ1/2
∗ Σ̂−1

θ −Σ
1/2
∗ Σ−1

θ

∥∥∥
F

‖Σ1/2
∗ Σ−1

θ ‖F

≤ 2 sup
θ∈S′+θ∗

∥∥∥Σ1/2
∗ (Σ̂−1

θ −Σ−1
θ )Σ

1/2
∗

∥∥∥
2
·
∥∥∥Σ−1/2
∗

∥∥∥
F

λmin

(
Σ

1/2
∗ Σ−1

θ Σ
1/2
∗

)
·
∥∥∥Σ−1/2
∗

∥∥∥
F

≤ 2 sup
θ∈S′+θ∗

∥∥∥Σ−1/2
∗ (Σ̂θ −Σθ)Σ

−1/2
∗

∥∥∥
2
·
∥∥∥Σ1/2
∗ Σ̂−1

θ Σ
1/2
∗

∥∥∥
2
·
∥∥∥Σ1/2
∗ Σ−1

θ Σ
1/2
∗

∥∥∥
2

λmin

(
Σ

1/2
∗ Σ−1

θ Σ
1/2
∗

)
= 2 sup

θ∈S′+θ∗

∥∥∥Σ−1/2
∗ (Σ̂θ −Σθ)Σ

−1/2
∗

∥∥∥
2
· λmax

(
Σ
−1/2
∗ ΣθΣ

−1/2
∗

)
λmin

(
Σ
−1/2
∗ Σ̂θΣ

−1/2
∗

)
· λmin

(
Σ
−1/2
∗ ΣθΣ

−1/2
∗

)
≤

2 supθ∈S′+θ∗

∥∥∥Σ−1/2
∗ (Σ̂θ −Σθ)Σ

−1/2
∗

∥∥∥
2
· supw∈S′ λmax

(
Σ
−1/2
∗ (Σ∗ + Γw)Σ

−1/2
∗

)
infθ∈S′+θ∗ λmin

(
Σ
−1/2
∗ Σ̂θΣ

−1/2
∗

)
· infw∈S′ λmin

(
Σ
−1/2
∗ (Σ∗ + Γw)Σ

−1/2
∗

)
≤

2 supθ∈S′+θ∗

∥∥∥Σ−1/2
∗ (Σ̂θ −Σθ)Σ

−1/2
∗

∥∥∥
2
·
(

1 + µ+

σ−∗
· supw∈S′ ‖w‖22

)
(1− 2δn) ·

(
1 + µ−

σ+
∗
· infw∈S′ ‖w‖22

)
≤ 8 sup

θ∈S′+θ∗

∥∥∥Σ−1/2
∗ (Σ̂θ −Σθ)Σ

−1/2
∗

∥∥∥
2

where the last two steps use the conditions in Lemma 25 and borrow some derivations

from its proof. The last term can be further bounded as follows,

sup
θ∈S′+θ∗

∥∥∥∥Σ− 1
2
∗ (Σ̂θ −Σθ)Σ

− 1
2
∗

∥∥∥∥
2

= sup
w∈S′

∥∥∥∥∥Σ− 1
2
∗

(
1

n

n∑
i=1

ηiη
T
i + Γ̂w −Σ∗ − Γw

)
Σ
− 1

2
∗

∥∥∥∥∥
2

≤

∥∥∥∥∥ 1

n

n∑
i=1

η̃iη̃
T
i − I

∥∥∥∥∥
2

+ sup
w∈S′

(∥∥∥∥∥ 1

n

n∑
i=1

Σ
− 1

2
∗ Xiwη̃

T
i

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

n

n∑
i=1

η̃iw
TXi

TΣ
− 1

2
∗

∥∥∥∥∥
2

)

+ sup
w∈S′

∥∥∥∥∥Σ−1/2
∗

(
1

n

n∑
i=1

XiwwTXi
T − Γw

)
Σ
−1/2
∗

∥∥∥∥∥
2

≤ δn +
e0√
σ−∗
· sup

w∈C

∥∥∥∥∥ 2

n

n∑
i=1

Xiwη̃
T
i

∥∥∥∥∥
2

+
e2

0

σ−∗
· sup

w∈C

∥∥∥∥∥ 1

n

n∑
i=1

XiwwTXi
T − Γw

∥∥∥∥∥
2
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≤ δn +
e0γn√
σ−∗

+
e2

0

σ−∗
· sup

v∈Sm−1

sup
w∈C

∣∣∣∣∣ 1n
n∑
i=1

(wTXT
i v)2 − E(wTXTv)2

∣∣∣∣∣
≤ c1τ

2

√
m

n
+
c2κτ(

√
m+ w(C))√
n

+
c3κ

2(
√
m+ w(C))√
n

which holds with probability at least 1 − c4 exp(−c5m) when n ≥ c6 max
{
τ4, 1

}
·

max
{
w2(C),m

}
. The last step follows from Proposition 18, Lemma 28 and intermediate

results in the proof of Lemma 27. Hence ζn can be bounded by

ζn ≤ c7 ·max
{
τ2, κ2

}
·
√
m+ w(C)√

n

Now we turn to bounding φn. Following the idea for proving Lemma 29, we also consider

the randomness of {η̃i} and {Xi} sequentially. For {η̃i}, we first have that the event

E =

{
{η̃i}

∣∣∣∣ sup
Λ∈Sm×m−1

1

n

n∑
i=1

∥∥ΛT η̃i
∥∥2

2
≤ 2

}

holds with probability at least 1 − 2 exp(−c′1m) if n ≥ c′0τ
4m, which is shown in the

proof of Lemma 29. Now we consider the randomness of {Xi} under any fixed {ηi} ∈ E .

We have

φn = sup
θ∈S′+θ∗

sup
u∈C

2

n

n∑
i=1

η̃Ti Σ
1/2
∗ Σ−1

θ Xiu

‖Σ1/2
∗ Σ−1

θ ‖F

≤ 1

e0
· sup

w∈S′
sup
u∈S′

2

n

n∑
i=1

η̃Ti Σ
1/2
∗ (Σ∗ + Γw)−1Xiu

‖Σ1/2
∗ (Σ∗ + Γw)−1‖F

=
2

e0
√
n
· sup

t∈T
Zt ,

where Zt = 1√
n

∑n
i=1

η̃Ti Σ
1/2
∗ (Σ∗+Γw)−1Xiu

‖Σ1/2
∗ (Σ∗+Γw)−1‖F

, t = (w,u) and T = S ′ × S ′. Note that

∀ t, t′ ∈ T ,
∥∥t− t′

∥∥
2

=

√
‖w −w′‖2F + ‖u− u′‖22 ≤ 2

√
2e0 =⇒ diam (T ) ≤ 2

√
2e0
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Then we try to bound the stochastic process {Zt}t∈T using Theorem 1. We start with

verifying the required condition.

∀ t, t′ ∈ T ,

|||Zt − Zt′ |||ψ2

=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 1√
n

n∑
i=1

η̃Ti Σ
1/2
∗ (Σ∗ + Γw)−1Xiu

‖Σ1/2
∗ (Σ∗ + Γw)−1‖F

− 1√
n

n∑
i=1

η̃Ti Σ
1/2
∗ (Σ∗ + Γw′)

−1Xiu
′

‖Σ1/2
∗ (Σ∗ + Γw′)−1‖F

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
ψ2

≤

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 1√
n

n∑
i=1

η̃Ti

(
Σ

1/2
∗ (Σ∗ + Γw)−1

‖Σ1/2
∗ (Σ∗ + Γw)−1‖F

− Σ
1/2
∗ (Σ∗ + Γw′)

−1

‖Σ1/2
∗ (Σ∗ + Γw′)−1‖F

)
Xiu

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
ψ2

+

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 1√
n

n∑
i=1

η̃Ti Σ
1/2
∗ (Σ∗ + Γw′)

−1Xi(u− u′)

‖Σ1/2
∗ (Σ∗ + Γw′)−1‖F

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
ψ2

(a)

≤ c′2

√√√√√√ 1

n

n∑
i=1

∥∥∥∥∥∥∥
 Σ

1
2
∗ (Σ∗ + Γw)−1

‖Σ
1
2
∗ (Σ∗ + Γw)−1‖F

− Σ
1
2
∗ (Σ∗ + Γw′)−1

‖Σ
1
2
∗ (Σ∗ + Γw′)−1‖F

T

η̃i

∥∥∥∥∥∥∥
2

2

× sup
v∈Sm−1

∣∣∣∣∣∣vTXu
∣∣∣∣∣∣
ψ2

+

c′2

√√√√√√ 1

n

n∑
i=1

∥∥∥∥∥∥∥
 Σ

1
2
∗ (Σ∗ + Γw′)−1

‖Σ
1
2
∗ (Σ∗ + Γw′)−1‖F

T

η̃i

∥∥∥∥∥∥∥
2

2

·
∥∥u− u′

∥∥
2
· sup

v∈Sm−1

∣∣∣∣∣∣∣∣∣∣∣∣vTX
u− u′

‖u− u′‖2

∣∣∣∣∣∣∣∣∣∣∣∣
ψ2

(b)

≤
√

2c′2κ
√
µ+

e0

∥∥∥∥∥∥ Σ
1
2
∗ (Σ∗ + Γw)−1

‖Σ
1
2
∗ (Σ∗ + Γw)−1‖F

− Σ
1
2
∗ (Σ∗ + Γw′)

−1

‖Σ
1
2
∗ (Σ∗ + Γw′)−1‖F

∥∥∥∥∥∥
F

+
∥∥u− u′

∥∥
2


(c)

≤
√

2c′2κ
√
µ+
(
8
∥∥w −w′

∥∥
2

+
∥∥u− u′

∥∥
2

)
≤ 16c′2κ

√
µ+

∥∥∥∥∥∥
w

u

−
w′

u′

∥∥∥∥∥∥
2

=⇒ K = 16c′2κ
√
µ+ ,
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where step (a) follows from Proposition 10 and step (b) follows from the event E . Step

(c) follows from the calculation below (similar to bounding ζn),
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≤ 8e0
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By invoking Theorem 1, we have for φn with any fixed {η̃i} ∈ E ,

φn =
2

e0
√
n
· sup

t∈T
Zt ≤

2

e0
√
n
· sup

t,t′∈T
|Zt − Zt′ |

≤ 2c′3
e0
· κ
√
µ+ · w(T )√

n
= 4c′3 ·

κ
√
µ+ · w(S)√

n

with probability at least 1−c′4 exp
(
− w2(T )

diam 2(T )

)
≥ 1−c′4 exp

(
−w2(S)

2

)
. Now we combine

the randomness of Xi and η̃i, and get

PX,η̃

(
φn ≤ 4c′3 ·

κ
√
µ+ · w(S)√

n

)

=

∫
PX

(
φn ≤ 4c′3 ·

κ
√
µ+ · w(S)√

n

∣∣∣∣ {η̃i}
)
p (η̃1, . . . , η̃n) dη̃1 . . . dη̃n

≥
∫
E
PX

(
φn ≤ 4c′3 ·

κ
√
µ+ · w(S)√

n

∣∣∣∣ {η̃i}
)
p (η̃1, . . . , η̃n) dη̃1 . . . dη̃n

≥
(

1− c′4 exp

(
−w

2(S)

2

))
· P (E)

≥
(

1− c′4 exp

(
−w

2(S)

2

))(
1− 2 exp

(
−c′1m

))
≥ 1− 2 exp

(
−c′1m

)
− c′4 exp

(
−w

2(S)

2

)



232

We obtain the final bound by assembling everything above. If n ≥ max
{
n0, C

′
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In particular, if the sample size also satisfies n ≥ C ′5·max
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which completes the proof.



Chapter 10

Conclusions

In this thesis, we present our research on both computational and statistical aspects of

some high-dimensional estimation problems, with a focus on general structures. The

problems we consider have covered a set of models that are widely used in practice,

from vector to matrix, linear to nonlinear, parametric to semi-parametric, and convex

to non-convex. The main contributions of this thesis are two-fold. On one hand, the

thesis establishes computational frameworks for estimating the model parameters in

those problems, which are allowed to possess diverse structures. On the other hand, it

also provides unified views into the corresponding statistical guarantees. At the heart

of the statistical analyses are the geometric measures, which can tersely characterize

the recovery error of the estimators.

In Chapter 3, we start with the estimation of high-dimensional linear models, and

propose the generalized Dantzig selector (GDS) to incorporate the structure information

of the parameter. With an ADMM-type optimization algorithm, we can efficiently

compute the GDS, whose statistical error is later shown to be conveniently bounded by

certain geometric measures, such as Gaussian width and restricted norm compatibility.

In Chapter 4, we are committed to a comprehensive study of the geometric measures
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introduced in Chapter 3. For a broad class of structures that can be captured by atomic

norms, we can further bound the geometric measures using simple information of the

structure, which are believed to facilitate the statistical analysis for new structures.

In Chapter 5, we extend the GDS to the matrix setting, which yields similar type

of results as obtained in Chapter 3 and 4. The general bounds derived in this chapter

apply to a broad family of matrix structures, which can be encoded by the unitarily

invariant norms.

In Chapter 6, we move from the parametric linear model to a semi-parametric non-

linear extension, which is the single-index model (SIM). Based on U -statistics, we pro-

pose two simple estimators for the model parameter estimation, which are robust to

heavy-tailed noise. The statistical guarantees of both estimators are built on similar ge-

ometric measures as in Chapter 3. Instantiated for both one-bit compressed sensing and

the monotone transfer setting, the estimators lead to novel algorithms with provably

guarantees.

In Chapter 7, we continue to focus on semi-parametric models. Specifically we

propose a new model called sparse linear isotonic model (SLIM), in order to introduce

nonlinearity in the features of sparse linear models. The model is parameterized by a

vector (as in linear models) as well as a set of unknown monotone functions applied on

features. Computationally a two-step algorithm is designed for the sequential estimation

of the sparse parameter and the monotone functions, which avoids the specification of

the monotonicity compared with other related models. Statistically we show that the

algorithm can recover the parameter with provably small error.

In Chapter 8, we switch our attention to non-convex problems. We propose an al-

ternating estimation (AltEst) procedure for solving the structured multi-response linear

models in high dimension. The procedure uses the GDS in the estimation of the pa-

rameter vector, and its statistical guarantee is determined by the geometric measures
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under the idealized resampling assumption. By leveraging the noise correlation among

responses, AltEst can achieve significantly smaller estimation error than ignoring the

noise structure.

Lastly, in Chapter 9, we present several extensions to the results in Chapter 8. With

the GDS substituted by the constrained estimator in AltEst framework, we allow non-

convex characterizations of the parameter structure. In the statistical analysis, we are

able to relax the Gaussian assumption imposed on the noise, and show the recovery

guarantee without the resampling assumption. The theoretical result yields a new dis-

covery that randomly-initialized AltEst could also have great statistical performance,

which is confirmed by the empirical study.
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