
On the Runtime Dynamics of the Univariate Marginal Distribution Algorithm on
Jump Functions

A THESIS
SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA
BY

Václav Hasenöhrl

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
MASTER OF SCIENCE

Dr. Andrew Sutton

May 2018

© Václav Hasenöhrl 2018

Acknowledgements

I would like to express my appreciation to Dr. Andrew Sutton for his support and

patience as my advisor. His critiques and advice were valuable assets while working

on this thesis. My thanks should also be extended to the faculty and staff of the

department of Computer Science at University of Minnesota Duluth. Together they

provided a daily support and guidance that made for a great learning environment. I

would also like to thank Dr. Pete Willemsen and Dr. Bruce Peckham for serving on

my committee. I would like to give special thanks to my family and closest friends. I

am grateful for their constant support and encouragement.

i

Abstract

Solving jump functions by using traditional evolutionary algorithms (EAs) seems to

be a challenging task. Mutation only EAs have a hard time flipping the right number

of bits to generate the optimum. To optimize a jump function, an algorithm must

be able to execute an initial hill-climbing phase, after which a point across a large

gap must be generated. We study a family of EAs called estimation of distribution

algorithms (EDAs) which works differently than standard EAs. In EDAs, we do

not store the actual bitstrings, but rather a probability distribution that is initially

uniform and should evolve to a model that always generates the global optimum.

We study an EDA called Univariate Marginal Distribution Algorithm (UMDA)

and analyze it on jump functions with gap k. We show experimental work on runtimes

and probability of succeeding to solve the jump function for different values of k. We

take an innovative approach and modify the UMDA by turning off selection. For

this new algorithm we present a formal analyses in which, if certain conditions are

met, we prove an upper bound on generating the optimum all 1s bistring. Lastly,

we compare our results with a different EDA called the compact Genetic Algorithm

(cGA) analyzing the jump function. We mention pros and cons of both algorithms

under different scenarios.

ii

Contents

Contents iii

List of Tables v

List of Figures vi

1 Introduction 1

2 Background 3

2.1 Evolutionary and Genetic Algorithms 3

2.1.1 Modules of Evolutionary Algorithms 11

2.1.2 Examples of Evolutionary Algorithms 14

2.2 Estimation of Distribution Algorithms 19

2.2.1 Compact Genetic Algorithm 19

2.2.2 Univariate Marginal Distribution Algorithm 21

2.3 The Jump fitness function . 26

3 Analysis of the Compact Genetic Algorithm 31

4 Analysis of the Univariate Marginal Distribution Algorithm 39

4.1 Selection-free Univariate Marginal Distribution Algorithm 44

iii

5 Conclusion 56

References 59

A Appendix 64

A.1 Main function . 64

A.2 Help functions . 67

A.3 Algorithms . 68

iv

List of Tables

2.1 Parameters notations used in the described evolutionary algorithms . 15

2.2 Results of the experiment depicted in Figure 2.10. For n = 100 we

show the mean values (top) and the standard deviations (bottom) of

100 trials for different gap lengths k. Note that for the (2+1) GA and

for k = 5 only one run finished in 107 fitness function evaluations and

thus the standard deviation is equal to zero. 30

5.1 Highest means of marginal probabilities during a run of both the cGA

and the UMDA. The runs are terminated after 108 fitness evaluations.

We also show the absolute largest gap and the relative largest gap

related to n each algorithm can solve with 100% success rate within 107

fitness evaluations. Numbers in the parenthesis denote the iteration

after which we turn off selection. 58

v

List of Figures

2.1 The OneMax : {0, 1}n → R fitness function for n = 25. 6

2.2 The Jump10 : {0, 1}n → R fitness function for n = 25 and k = 10. . . 6

2.3 Example of a k-point crossover for n = 12 and k = 5 generating one

offspring. 13

2.4 Number of fitness function evaluations to find the solution for different

bitstring length n for the Hill-climber (Alg 1), the (1 + 1) EA (Alg 2),

the (2 + 1) GA (Alg 3) and the (1 + λ, λ) GA (Alg 4). We show the

mean values of 1000 trials on the OneMaxfitness function. 18

2.5 Number of fitness function evaluations to find the solution for different

bitstring length n for the EDA algorithms - the cGA (Alg 5), the

UMDA (Alg 6), and one of the EAs - the (1 + λ, λ) GA (Alg 4). We

show the mean values of 1000 trials. For this experiment, we set K = n

for the cGA and λ = 400, µ = 100 for the UMDA. 23

2.6 The relative frequencies of fitness values among the λ = 400 individuals

generated. Red part denotes the µ = 100 fittest individuals chosen to

update the marginal probabilities. 24

vi

2.7 The marginal probabilities after one generation starting from the uni-

form distribution on the OneMaxfitness function. We set n = 100,

λ = 4000 and µ = 100 for this experiment. 24

2.8 The relative frequencies of fitness values among the λ = 4000 individu-

als generated. Red part denotes the µ = 100 fittest individuals chosen

to update the marginal probabilities. 25

2.9 The marginal probabilities after one generation starting from the uni-

form distribution on the OneMaxfitness function. We set n = 100,

λ = 4000 and µ = 100 for this experiment. 25

2.10 Number of fitness function evaluations to find the solution of the

Jumpk for different gap lengths k - the (1 + 1) EA (Alg 2), the (2 + 1)

GA (Alg 3), the (1 + λ, λ) GA (Alg 4). We show the mean values of

100 trials. For this experiment, we set n = 100 and limit the maximum

number of fitness function evaluations to 107. Missing points are due

to failure of the algorithm to finish within the allocated time. 29

2.11 Proportion of the Jumpk functions solved in 107 fitness function eval-

uations out of 100 trials for the mentioned EAs. We set n = 100. . . 30

3.1 The cGA’s marginal probabilities of vector pt over long-range time

for Jump20 with n = 200. The probabilities are tightly concentrated

in the subcritical phase while climbing to the gap, then eventually

disperse. A run is successful if the optimal solution is generated before

the marginals fix. 33

3.2 Drift sign factor as a function of gap probability PG(t). As λ in-

creases, the drift sign factor stays positive longer for gap probabilities

approaching one. 37

vii

3.3 Proportion of the Jumpk functions solved using the cGAλ (Alg 7) in

107 fitness evaluations out of 100 trials for four different values of λ

and n = 100. 38

3.4 Number of fitness evaluations of the regular cGA (Alg 5) for various

bitstring lengths n. We show the mean values and standard errors of

100 trials. 38

4.1 The UMDA’s (Alg 6) marginal probabilities of vector pt for Jump20

with n = 200. Compared to the cGA (Alg 5) the marginals are much

more dispersed. We set λ = 4000 and µ = 100. 40

4.2 The UMDA’s (6) marginal probabilities of vector pt for Jump20 with

n = 200. The marginals are still very dispersed. We set λ = 4000 and

µ = 100. 41

4.3 Number of fitness function evaluations to find the solution of the

Jumpk for different gap lengths k for UMDA (Alg 6). We show the

mean values of 100 trials. For this experiment, we set n = 100 and

limit the maximum number of fitness function evaluations to 107. . . 43

4.4 Proportion of the Jumpk functions solved using the UMDAλ,µ (Alg 6)

in 107 fitness function evaluations out of 100 trials for four different

values of λ. We set n = 100. 43

4.5 The UMDAsel
λ,µ’s (Alg 8) marginal probabilities of vector pt for Jump20

with n = 200. We zoom in to display only the first 200 iterations. The

marginals are much less dispersed. We set λ = 4000 and µ = 100. . . 46

viii

4.6 Number of fitness function evaluations to find the solution of the

Jumpk for different gap lengths k for the UMDAsel (Alg 8). We show

the mean values of 100 trials. For this experiment, we set n = 100

and limit the maximum number of fitness function evaluations to 107.

Selection was is turned off after first 9 iterations. 48

4.7 Proportion of the Jumpk functions solved using the UMDAλ,µ (Alg 6)

and the UMDAsel
λ,µ (Alg 8) in 107 fitness function evaluations out of

100 trials for five different values of λ and µ. We set n = 100. For the

UMDAsel
λ,µ we turn off selection after 9 iterations. 49

4.8 The marginal probabilities of vector pt for Jump20 with n = 200 for

the standard UMDA (Alg 6). For this experiment we choose large λ

(5 · 105) and µ (5 · 103). This marginals approach the ratio n−k
n

and

stay concentrated around the mean longer. 51

4.9 The UMDAsel’s (Alg 8) marginal probabilities of vector pt for Jump20

with n = 200. For this experiment we choose large λ (5 · 105) and µ

(5 · 103). We can see that the marginals ‘freeze’ around their values

when we turn off selection. Selection is turned off after 5 iterations. . 52

5.1 Number of fitness function evaluations to find the solution of the

Jumpk for different gap lengths k for the cGA (Alg 5) and the stan-

dard UMDA (Alg 6). We show the mean values of 100 trials. For this

experiment, we set n = 100 and limit the maximum number of fitness

function evaluations to 107. 57

ix

1 Introduction

Evolutionary Algorithms (EAs), sometimes also called Genetic Algorithms (GAs),

have been used both in practice and theory as optimization tools for decades. EAs

represent a robust method for optimizing as they do not require a lot of knowledge

about the underlying fitness function that is being optimized. In this thesis, we

focus on analyses of special class of evolutionary algorithms called Estimation of

Distribution Algorithms (EDAs). While the traditional EAs store actual individuals

from the given state space and use mutation or crossover to generate new offspring,

EDAs store a probability vector that is used to generate offspring instead. This gives

EDAs various advantages over the standard EAs. We discuss this more in detail in

Chapter 2.

We analyze an estimation of distribution algorithm called the Univariate Marginal

Distribution Algorithm (UMDA) and compare it to another EDA called the Compact

Genetic Algorithm (cGA). The difference between these two algorithms is in their

update policy of the probability vector. The fitness function we use for our analysis is

called Jump. The class of jump functions was introduced in the context of analyzing

situations where crossover could be beneficial. Jump functions are specific because

they exhibit a gap of length k in the fitness values. They are divided into two phases.

First, there is an initial hillclimbing phase in which the algorithm needs to climb

towards the gap. This phase is the same as in other very frequently used fitness

function called OneMax. After that the algorithm needs to jump across a ‘valley’

of points by flipping the right k bits to generate the global optimum. This becomes

1

very hard for traditional EAs as they usually tend to fail to flip multiple bits per

iteration. However, given the nature of EDAs, flipping multiple bits at once is not an

issues. If the individual marginal probabilities of the probability vector remain high

enough and tightly concentrated around their mean value we can easily generate the

optimum if given reasonable amount of time.

We present both theoretical and experimental analysis and posit an upper bound

for the UMDA (Chapter 4) on the Jump fitness function. We mention a result about

the cGA analysis on Jump from a recent paper [1] in Chapter 3. From our com-

parison between the cGA and the UMDA we draw a conclusion and suggest what

algorithm performs better under what circumstances. We also introduce a new in-

novative updating policy through a modified version of the UMDA. We call this new

algorithm the Selection Free Univariate Marginal Distribution Algorithm. What is

different about this algorithm is that we turn off selection after a certain number of

steps to preserve diversity throughout the run. There are other diversity-preserving

mechanisms, i.e. deterministic crowding or fitness sharing but we use this one, as it is

easy to extend the cGA analysis. This leads to an upgrade in maximum gap lengths

for which the UMDA is able to solve the Jump fitness function.

2

2 Background

2.1 Evolutionary and Genetic Algorithms

Before we jump into the actual topic of this work, we would like to spend some time

on a general background of Evolutionary Algorithms (EAs). As the name suggests,

evolutionary algorithms have their roots in natural biological evolution. Through

an evolving process we can model and study a certain problem. In biology, this

approach could be used to study the actual evolution itself. However, in computer

science the focus is different. Computer scientists treat an evolutionary algorithm

as a random process which can be applied to a specific problem to find a solution.

As in biology, the evolution favors the fittest, in computer science EAs are used

to search for improvement. Specifically, even though evolutionary algorithms have

many applications, the most common usage is for optimization. The origins of EAs

are dated to the middle of 20th century. Since then, a lot of different algorithms

have emerged. For the purposes of this chapter we only provide basic preliminaries

involving simpler algorithms. This should make it easy to understand the important

concepts of evolutionary algorithms.

The interest to use evolutionary algorithms as a tool for optimization stems from

their overall simplicity and robustness. If we decide to optimize a problem (function)

with a problem-tailored algorithm, we need to exploit the properties of this function

and make all kinds of explicit assumption before hand. With this approach, we

might obtain a perfect solution to the problem but at the cost of the algorithm used

3

being complex and possibly hard to understand. Moreover, sometimes domain-specific

knowledge is costly and unavailable, or the quality of a potential solution is only

available after an expensive simulation. However, this is not true about evolutionary

algorithms. With EAs we do not need to know a lot about the underlying function

being optimized. Normally, the only thing required is to be able to first, represent the

domain of a function and second, evaluate such function. This area of optimization

is called black-box optimization. Unlike with problem specific algorithms, EAs are

usually easy to implement, but might not produce the best or even any solution at all.

When we say solution, we mean an optimum (maximum or minimum) regarding an

optimization problem. What we expect is a good solution within a reasonable amount

of time. As mentioned before, there have been many different algorithms introduced

so far. One usually creates a new algorithm with some interesting idea in mind and

only after that tries to find problems which could be solved with this new approach.

This implies that the research of evolutionary algorithms is empirical. Nonetheless,

this does not mean that EAs are not studied theoretically. Their practical applications

justify the needs of theoretical work after all as well as the fact that their working

principles are not well-understood. However, the theoretical work can sometimes be

very challenging.

This being said, researchers tend to use simple frameworks which make it easier

to analyze algorithms. The reason for this is that these frameworks help to tease

out the general working principles of EAs without bogged down in messy details.

We normally work in a space of binary strings (bitstrings), where the bitstrings of

length n are vertices of the unit hypercube {0, 1}n. We will use the set {0, 1}n for

our formal analysis as well. We might also refer to bitstrings as individuals. Another

important thing to mention are the underlying functions used for analyses. We use the

notation from biology and call these fitness functions. As natural evolution favors

4

the fittest individuals, optimizing a fitness function is almost the same with one

difference - biology does not require any underlying knowledge to optimize fitness.

In black-box optimization we traditionally maximize or minimize a fitness function

and the optimum then can be interpreted as the fittest individual found. There is a

variety of fitness function classes, i.e. linear functions, unimodal functions, functions

of unitation, etc. For the purposes of this thesis we work with the functions of

unitation. See the following definition.

Definition 2.1. A function f : {0, 1}n → R is a function of unitation when f(x)

depends only on the number of ones in the bitstring x and is non-negative.

We denote the number of ones in a bitstring x by |x| and the ith bit by x[i]. Not

surprisingly, there are several different well-known functions of unitation. We will

mention two examples - OneMax(x) and Jumpk(x). The first mentioned function is

the simplest function which is used for both theoretical and empricial analyses. It is

defined as the number of ones in a bitstring x. See Definition 2.2 and Figure 2.1.

Definition 2.2. Let function f : {0, 1}n → R be defined as

f(x) =
n∑

i=1
x[i] = |x|

for all x ∈ {0, 1}n. Then, f is called OneMaxfitness function.

The focus of this work is the Jumpk(x) fitness function, described in Definition

2.3. The Jumpk fitness function is characterized by a gap of length k. We denote the

set of individuals which belong to this gap by G. In other words, individual x ∈ G if

n − k < |x| < n. Notice that there is an initial gradient stage where the algorithm

needs to climb up as it does in the OneMaxand then it needs to flip exactly k

bits to jump over a potentially large gap. This is normally hard for many black-box

5

0 5 10 15 20 25
0

5

10

15

20

25

|x|

O
ne

M
ax

(|x
|)

Figure 2.1: The OneMax : {0, 1}n → R fitness function for n = 25.

optimization algorithms, especially as the gap length gets bigger. See Figure 2.2 for

an example.

Definition 2.3. Let function f : {0, 1}n → R be defined as

f(x) =

k + |x| if |x| ≤ n− k or |x| = n,

n− |x| otherwise

for all x ∈ {0, 1}n. We call f the Jumpk fitness function parameterized by k.

0 5 10 15 20 25

5

15

25

35

|x|

Ju
m

p k
(|x

|)

Figure 2.2: The Jump10 : {0, 1}n → R fitness function for n = 25 and k = 10.

6

Jump functions were originally introduced as benchmarks on which recombinant

evolutionary algorithms can provably outperform those that use mutation alone.

Specifically, whether crossover even did anything provably useful. Standard EAs

mix mutation and crossover to achieve the initial climb and then crossing the gap.

Note that features as mutation and crossover will be discussed in Section 2.1.1 further

in this chapter. We will also mention additional preliminaries of the Jumpk fitness

function in Section 2.3. Before we start talking about some specific evolutionary al-

gorithms, we want to provide the reader with some ideas behind EAs. Let us consider

the following example.

Example 2.1. Imagine that the given fitness function g : {0, 1}10 → R is OneMaxand

that we would like to maximize this function. This means that the solution for this

problem is an all 1s binary string of length 10 yielding the maximum of g(x) = 10.

The solution for this example is rather straightforward, but how can we find it using

EAs? As is typical of many evolutionary algorithms, we initialize a bitstring (or a

population of bitstrings) uniformly at random (u.a.r.). We will do the same and start

with a random bitstring x generated u.a.r. Then, we will do the following. Choose a

position in a bitstring x uniformly at random and flip a bit in that position to create

a new bitstring y. After that, if f(y) ≥ f(x) let x ← y otherwise discard y. We

repeat the process until the solution is generated. Given the properties of OneMax,

we are guaranteed to generate the optimal binary string eventually.

In Example 2.1, we showed how to maximize the OneMaxfitness function with

a basic approach. The algorithm we used is a “Hello World” of EAs called Random

Local Search or Stochastic Hill-climber and is described in Algorithm 1. Even though

the example we present is simple, it brings up several important points we want to

make. One is the terminology - the bitstrings x and y are called the parent and the

7

offspring, respectively. While generating new offspring we denote the tth generation

by x(t) or y(t). The initial population size is normally denoted by µ while the number

of offspring generated is λ. Second, the operation we used to create new offspring

is called mutation and the algorithm’s termination criterion was finding the solution

(maximum). We will discuss these modules in the section 2.1.1. Lastly, how do

we measure the performance of an evolutionary algorithm? One way is to run the

algorithm and time it. This does not account for implementation or system details

and does not tell us how an algorithm is likely to generalize. Another was is to

describe the number of calls to the fitness function as a random variable and analyze

it. For our purposes, we count the total number of the fitness function evaluations.

This is a standard approach because in practice, the fitness function evaluation is

usually the most costly operation.

Algorithm 1: The Random Local Search (Hill-climber)
1 Choose x ∈ {0, 1}n u.a.r.;
2 while termination criterion not met do
3 Create y by flipping exactly one bit in x u.a.r.;
4 if f(y) ≥ f(x) then x← y;

In the Hill-climber algorithm one cannot generate an offspring that differs in more

than one position than its parent. The difference in fitness between two bitstrings is

formalized by the following definition.

Definition 2.4. Let x, y ∈ {0, 1}n. We denote the ith bit in x, y as x[i] and y[i],

respectively. Then,

H(x, y) =
n∑

i=1
(x[i] + y[i]− 2x[i]y[i])

is called the Hamming distance. Moreover, the set

N(x) = {x′ ∈ {0, 1}n | H(x, x′) = k}

8

is called the k-Hamming neighborhood. If k = 1 then we call that the direct Hamming

neighborhood.

This definition might be useful in later sections when we perform an analysis of

certain algorithms. Before we move onto a description of the modules of EAs we show

an additional example.

Example 2.2. Consider the same setup as in Example 2.1 with one difference. In-

stead of initializing the bitstring x u.a.r., we set x to be the all 0s bitstring. The goal

is to compute how many generations it takes on average to generate the solution - all

1s binary string. In this case, the number of generations is also equal to the number

of fitness function evaluations. For t = 0 we can flip any bit in x to generate y and

we are guaranteed that f(y) > f(x). However, for t > 0 the situation is different.

In case we choose to flip a bit i such that x[i] = 1, we discard offspring y because

f(y) < f(x). The following probability tree

0

· · ·

1
10

39
10

1
10

29
10

1
10

19
10

shows the situation when there is exactly one position j in x such that x[j] = 1.

We have 9
10 chance to flip a bit i such that i ̸= j and 1

10 for i = j. The nodes denote

the number of generations needed to flip a bit in x so that the new offspring y has

larger fitness value. The tree keeps growing infinitely in the described manner. We

denote the stochastic process described in the diagram by a random variable Xa,

9

where a = 9. The index a represents the number of bits remaining to flip. Then,

E[X9] = 1 9
10

+ 2 1
10

9
10

+ 3 1
10

1
10

9
10

+ . . .

E[X9] =
∞∑

i=1
i

9
10

(1
10

)i−1

E[X9] = 10
9

.

This means that it takes 10
9 generations on average to flip a bit which was not flipped

at t = 0. We can generalize the formula to

E[Xa] =
∞∑

i=1
i

a

10
10− a

10

i−1

where a is the number of all the remaining bits which need to be flipped. If we

consider a general bitstring of length n and sum over all bits (all positions must be

flipped from zero to generate the maximum) for i = 1, . . . , n we obtain the following

formula

E[X] =
n∑

j=1
(E[Xj]) =

n∑
j=1

(∞∑
i=1

j
i

n

(
n− j

n

)i−1)
=

n∑
j=1

(∞∑
i=1

j
i(n− j)i−1

ni

)
= nHn

where X denotes the random variable of the time it takes to flip all bits from 0 to

1 using the Hill-climber algorithm. Hn is called the nth harmonic number [2]. From

here, we can conclude that the expected running time of the simple Random local

search is O(nHn) since there is only O(1) calls to the fitness function in each step.

Example 2.2 shows an analysis of the Hill-climber algorithm. Normally, the anal-

yses of different algorithms might be more difficult, but we can use this as a building

block for more complex tasks. Note that the analysis presented in Example 2.2 mimics

the approach of analyzing the Coupon Collector’s problem [3]. The Coupon collec-

10

tor’s problem is an example where we need to collect all coupons to win a contest.

Specifically, imagine an urn from which coupons are being drawn. There is exactly

one coupon of each kind and every time you draw a coupon you put it back in the

urn. The question the problem asks is the following: How many times do you have to

put your hand in the urn to draw a coupon so that you see every kind of coupons at

least once? If we denote this random process by Y then the expected value is exactly

E[Y] = nHn, the same expectation as the process discussed in Example 2.2. The

value of E[Y] can also be expressed as

E[Y] = nHn = n log n + γn + 1
2

+O
(1

n

)
,

where γ ≈ 0.5772 is the Euler-Mascheroni constant [4].

2.1.1 Modules of Evolutionary Algorithms

One of the most important features of evolutionary algorithms is how offspring

are generated. In every generation, we might create one or more offspring. In other

words, we compute a sequence P1, P2, . . . , Pt of multisets (populations) of bitstrings.

In order to do that, we use the following modules: selection, mutation and crossover.

We provide brief description of these modules but one can find more details in [5].

The first module we start describing is selection. The selection mechanism appears

twice in offspring generation - for reproduction and for replacement. The selection

for replacement is usually influenced by the fact that we are trying to maximize the

fitness functions. Therefore, we replace the parent(s) with the fittest offspring. If

there are ties in fitness we resolve them by preferring the offspring over the parents

and then, if there are unresolved ties among the offspring, we break them uniformly at

random. When it comes to the selection for reproduction there are several approaches,

11

i.e. uniform selection, fitness proportional selection, tournament selection, roulette

selection, stochastic universal sampling, etc. [6, 7, 5]. Uniform selection is the simplest

type of selection and it selects an individual bitstring uniformly at random. Uniform

selection is widely used in evolutionary algorithms for its simplicity. Since the goal

of an EA is to maximize a given fitness function f , one can prefer different type of

selection - fitness proportional selection. In this case, an individual bitstring x is

selected from the population P with probability

f(x)∑
i∈P f(i)

.

An obvious drawback of fitness proportional selection is that if the differences between

the fitness values are large, then the fittest individuals will be highly favored. This

might lead to almost deterministic behavior. On the other hand, if the fitness values

are similar, fitness proportional selection will behave almost as uniform selection.

There are variants of the fitness proportional selection, for more details refer to [5].

After we select the parent bitstring we can start modifying it. The classical oper-

ation used to produce offspring in most EAs is mutation. We only mention mutation

operators for the search space {0, 1}n. First, standard bit mutation involves creating

an offspring y by flipping each bit in an individual x independently with probability

pm (the parameter pm is called the mutation probability). The most common muta-

tion probability is pm = 1/n. There is both experimental and theoretical support for

this. On linear functions, using any pm = c
n

does not affect asymptotic runtime [8],

but c = 1 seems to be optimal on linear functions [9] when considering exact leading

terms (referring to a fitness function called Leading Ones). Moreover, this choice of

pm = 1
n

leads to an average Hamming distance between x and y to be H(x, y) = 1.

Generally, we favor small changes in the parent bitstring x because otherwise the

12

mutation can be too aggressive and more likely to produce less fit offspring. We can

choose pm ∈ (0, 1/2] where if pm = 1/2, then the offspring y is generated uniformly at

random. Another version of mutation is b-bit mutation where we create an offspring

y from a parent x by flipping exactly b ∈ {1, 2, . . . , n} bits. The bits are normally

chosen u.a.r. As in the previous case, since we prefer small changes in x, b is usually

small.

The last module of evolutionary algorithms is crossover. From a biological point

of view, crossover is an analogy to an offspring sharing genes from both parents.

Normally, we use two parent individuals but there are some crossover operators which

utilize more parents. One example of crossover is uniform crossover - each bit is copied

from one of the parents and the choice between parents is made uniformly at random.

The second crossover operator we mention is k-point crossover. In this case, we select

k different bit chunks where one chunk is copied from one of the parents while the

next chunk is copied from the other parent. See an example for n = 12 and k = 5

in Figure 2.3. Note that the described crossover methods create a single offspring. If

Figure 2.3: Example of a k-point crossover for n = 12 and k = 5 generating one
offspring.

we wanted to produce two offspring instead of one, we would use the unused chunks

(bits) to produce the additional offspring. When crossover is applied, the offspring’s

bits should match with both parents at all positions where the parents are equal. It

might be desired not to use crossover for every generation. In such case, we define

13

the probability pc with which we perform crossover. The crossover probability pc is

normally a large constant value, i.e. pc >= 0.5.

Now, when we know how to produce offspring in evolutionary algorithms we must

establish the stopping point of an algorithm. Such stopping point is called the termi-

nation criterion. Normally, we distinguish between fixed termination criteria, adap-

tive termination criteria and no termination criteria. For fixed termination criteria,

we usually have a predefined number of generations or the fitness function evaluations

to be the stopping point. Adaptive termination criteria is more flexible. A typical

example is when certain predefined fitness value is found. This value is typically

the maximum, which is the solution of an optimization problem. We will use this

kind of termination criterion throughout this thesis and will be mostly interested in

what is the expected time before the optimum is generated (refer to Definition 2.5).

Lastly, no termination criteria means that the algorithm runs forever. This approach

is generally only theoretical.

Definition 2.5. The expected running time E(T) of an algorithm A on a fitness

function f is defined as expectation of the random variable that counts the number

of function evaluations performed during the run of the algorithm A.

2.1.2 Examples of Evolutionary Algorithms

The previous section summarized the modules used in EAs to produce offspring.

Therefore, we can now move on to presenting some specific examples of evolutionary

algorithms. The following table shows the notation used in the algorithms. A canon-

ical example of an evolutionary algorithm is the (µ + λ) EA. In this algorithm, we

keep a population P of µ individuals. In each generation, we create λ offspring using

the standard bit mutation with mutation probability pm = 1/n. Then, we choose

14

n Dimension of the search space {0, 1}n

P Parent population
µ Parent population size
λ Offspring population size
pc Crossover probability
pm Mutation probability

Table 2.1: Parameters notations used in the described evolutionary algorithms

the new generation to be the µ fittest individuals among both the offspring and the

previous parent generation. We break ties uniformly at random and by preferring the

offspring. This approach is called the truncation selection [10]. The pseudocode is

shown in Algorithm 2.

Algorithm 2: The (µ + λ) EA
1 t← 0;
2 Pt ← µ elements of {0, 1}n u.a.r.;
3 while termination criterion not met do
4 P ′ ← ∅;
5 for i ∈ {1, . . . , λ} do
6 Select x ∈ Pt u.a.r;
7 Create y by flipping each bit of x independently with probability 1/n;
8 P ′ ← P ′ ∪ y;
9 Sort all individuals in Pt ∪ P ′ breaking ties by preferring offspring and

breaking still unresolved ties u.a.r.;
10 Pt+1 ← first µ individuals from Pt ∪ P ′;
11 t← t + 1;

The simplest and most straightforward version of the (µ + λ) EA is the (1 + 1)

EA. In this case, we only have one individual bitstring x in the population P and in

every generation we only create one offspring y. If f(y) ≥ f(x), then y replaces x.

Plenty of research has been done using this algorithm [11, 12] and there are known

results for several fitness functions. For example, the expected running time for any

linear function (OneMaxis also a linear function) is Θ(n log n) while for Jumpk it

is Θ(nk + n log n) where k ∈ {1, 2, . . . n}. In general, the (1 + 1) EA optimizes any

15

arbitrary fitness function in at most nn time. A modification to the (µ + λ) EA is

the (µ + λ) GA (GA stands for genetic algorithm). The difference between these two

algorithms is that the GA also involves crossover. A simplified version of the (µ + λ)

GA can be found in Algorithm 3. Other versions of this genetic algorithm include

the crossover probability pc. In such case, we perform crossover with the probability

pc on two parents x1 and x2 to produce an individual y and with probability 1− pc, y

is selected from the population without the crossover. In both cases, the parents can

be chosen either using uniform selection or fitness proportional selection.

Algorithm 3: The (µ + λ) GA
1 t← 0;
2 Pt ← µ elements of {0, 1}n u.a.r.;
3 while termination criterion not met do
4 P ′ ← ∅;
5 for i ∈ {1, . . . , λ} do
6 Select x1, x2 ∈ Pt u.a.r;
7 Create y by uniform crossover between x1, x2;
8 Flip each bit of y independently with probability 1/n;
9 P ′ ← P ′ ∪ y;

10 Sort all individuals in Pt ∪ P ′ breaking ties by preferring offspring and
breaking still unresolved ties u.a.r.;

11 Pt+1 ← first µ individuals from Pt ∪ P ′;
12 t← t + 1;

The Algorithm 3 is also a classical example of evolutionary algorithm which have

been widely studied on many different fitness functions [13]. This paper shows that

the (µ + λ) GA with uniform crossover and standard bit mutation is at least twice

as fast as every evolutionary algorithm that only uses standard bit mutations on the

OneMaxfitness function.

We also present a more advanced algorithm called the (1 + (λ, λ)) GA [14]. Refer

to Algorithm 4 for the pseudocode. The (1 + (λ, λ)) GA starts by initializing one

16

Algorithm 4: The (1 + (λ, λ)) GA
1 t← 0;
2 Choose x ∈ {0, 1}n u.a.r.;
3 while termination criterion not met do
4 Mutation phase: Sample ℓ from B(n, p);
5 Px ← λ elements of mutℓ(xt);
6 Choose x′ ∈ Px s.t. ∀v ∈ Px : f(x′) ≥ f(v) u.a.r;
7 Crossover phase:
8 Py ← λ elements of crossc(x, x′);
9 Choose y ∈ Py s.t. ∀v ∈ Py : f(y) ≥ f(v) u.a.r;

10 Selection step: if f(y) ≥ f(x) then x← y;
11 t← t + 1;

bitstring x uniformly at random. Then, by sampling a random number l from the

Binomial distribution B(n, p), we create λ offspring using a mutation operator mutl.

We choose the fittest individual x′ from the λ offspring we created with the mutation

(breaking ties u.a.r.) After that, we create λ offspring by applying crossover oper-

ator crossc(x, x′). Again, we choose an individual y with the highest fitness value

from the λ offspring we created with the crossover (breaking ties u.a.r.) Lastly, if

f(y) ≥ f(x) then we replace x with y. For more details on the (1 + (λ, λ)) GA, the

mutation operator mutl and the crossover operator crossc refer to [14]. The Algo-

rithm 4 was very innovative and presented a ground-breaking result. It was proven

to optimize OneMaxin runtime O(n
√

log n). The traditional bound for black-box

optimization algorithms using only unbiased unary operators (operators that mod-

ify only one individual) is Ω(n log n). This bound is broken because (1 + λ, λ) GA

uses non-unary operations. In general, the (1 + (λ, λ)) GA yields an optimization

time of O(1
λ
n log n + λn), which is minimized by λ =

√
log n, leading to the runtime

mentioned above.

As mentioned above, we evaluate our algorithms based on the number of fitness

function evaluations because it is, in practice, usually the most costly operation.

17

Let us denote this number by T . With this being said, we would like to look at

the performance of the three mentioned algorithms. Do they outperform a basic

algorithm such as the simple Hill-climber (Algorithm 1)? This is a very common

question in evolutionary algorithm research.

0 200 400 600 800 1000

0
2
4
6
8
10
12
14
16
18

·104

n

N
um

be
r
of

fit
ne

ss
ev
al
ua

tio
ns

Hill-climber
(1 + 1) EA
(2 + 1) GA

(1 + 8,8) GA

Figure 2.4: Number of fitness function evaluations to find the solution for different
bitstring length n for the Hill-climber (Alg 1), the (1 + 1) EA (Alg 2), the (2 + 1) GA
(Alg 3) and the (1 + λ, λ) GA (Alg 4). We show the mean values of 1000 trials on
the OneMaxfitness function.

In the graph above (Fig 2.4), we compare the average number of fitness function

evaluations on 1000 trials to solve OneMaxfor the presented algorithms. The param-

eters chosen for the algorithms were the following. Mutation probability pm = 1/n

for the (1 + 1) EA and the (2 + 1) GA. Moreover, for the (2 + 1) GA, we always

performed crossover as described in Algorithm 3. For the (1+8, 8) GA, we set k = λ,

p = k/n (mutation probability) and c = 1/k where λ = 8. Note that for the (1 + 8, 8)

GA, we follow the notation from the paper that introduced this algorithm [14]. We

can see that the Hill-climber outperforms the other algorithms for smaller values

18

of n. However, for large values of n, the (1 + λ, λ) GA becomes faster given that

O(n
√

log n) < O(nHn).

2.2 Estimation of Distribution Algorithms

In this part, we move on to the preliminaries of the main topic of this work. In

the previous section, we described the traditional evolutionary algorithms that use

selection, mutation and crossover. There is a special class of EAs that use differ-

ent optimization technique called Estimation of Distribution Algorithms [15] (EDAs).

Sometimes, they are also called Probabilistic model-building genetic algorithms (PM-

BGAs) or Iterated density estimation evolutionary algorithms (IDEAs). Recently,

EDAs have been applied to many optimization problems (see the references on p.

899 in [15]). In EDAs, we do not store the actual bitstrings, but rather a probability

distribution that is initially uniform and should evolve to a model that with reason-

able probability generates the global optimum. For each position i, i ∈ {1, . . . , n} in

a bitstring we have a probability, pi, which tells us how likely it is that a hypothetical

bitstring would have a 1 in that position. The probabilities pi are called frequencies or

marginal probabilities. In each generation, we modify the distribution in a certain way

that differs for different algorithms. We will mention two EDAs - Compact Genetic

Algorithm (cGA) [16] and Univariate Marginal Distribution Algorithm (UMDA) [17].

In the following sections we describe the two mentioned EDAs and compare their

runtimes to some of the previously mentioned EAs.

2.2.1 Compact Genetic Algorithm

In each generation, the cGA generates two parents x and y of length n from the

current version of the probability distribution pt = (p1,t, p2,t, . . . , pn,t) and then it

19

compares the fitness of both x and y. If f(x) < f(y) then swap x and y. Lastly,

for every bit i ∈ {1, . . . , n} if xi > yi we set pi,t+1 = pi,t + 1
K

and if xi < yi then

pi,t+1 = pi,t − 1
K

. If xi = yi then pi,t remains unchanged so it always moves the

probability distribution to increase the likelihood of generating the winner. See the

pseudocode of the algorithm in Algorithm 5. Note that the parameter K has a

significant impact on the runtime of the cGA. If K is large then the frequencies

updates are very small. Therefore, the optimization time can be slow due to that

and one might need to try different values of K for different problems to achieve a

satisfying performance.

Algorithm 5: The cGA
1 t← 0;
2 p1,t ← p2,t ← . . .← pn,t ← 1/2;
3 while termination criterion not met do
4 for i ∈ {1, . . . , n} do
5 xi ← 1 with probability pi,t;
6 xi ← 0 with probability 1− pi,t;
7 for i ∈ {1, . . . , n} do
8 yi ← 1 with probability pi,t;
9 yi ← 0 with probability 1− pi,t;

10 if f(x) < f(y) then swap x and y;
11 for i ∈ {1, . . . , n} do
12 if xi > yi then pi,t+1 ← min{pi,t + 1/K, 1− 1/n};
13 if xi < yi then pi,t+1 ← max{pi,t − 1/K, 1/n};
14 if xi = yi then pi,t+1 ← pi,t;
15 t← t + 1;

The first rigorous analysis of the cGA [18] presented a lower bound on the running

time of the cGA over all fitness functions f : {0, 1}n → R and an upper bound for

all linear functions over {0, 1}n. It was shown that the expected optimization time

on OneMaxis O(
√

nK) where K = n1/2+ϵ and ϵ > 0. However, the probability of

such runtime is only at least 1
2 . The cGA was also analyzed in the context of noisy

20

optimization. Noisy optimization means that there is a stochastic factor added to the

fitness function. Usually, Gaussian noise with mean 0 is used which yields the fitness

to be f + N (0, σ). The authors of [19] proved that the cGA scales gracefully with

noise, meaning that any polynomial increase in the variance of an additive Gaussian

variate only results in a corresponding polynomial slow down in optimization time.

2.2.2 Univariate Marginal Distribution Algorithm

A series of recent papers have supplied upper and lower bounds on the UMDA

algorithm optimizing OneMax[20, 21, 22, 23]. In 2017, the author of [20] showed

that the expected runtime of UMDA on OneMaxis O(µ
√

n) if µ ≥ c
√

n log n for a

constant c > 0 and λ = (1 + Θ(1))µ. This is better that the previously best known

upper bound O(n log n log log n) with λ = O(log n) by [21] from 2015. The univariate

marginal distribution algorithm works differently than the cGA. See the pseudocode

of the UMDA in Algorithm 6.

The UMDA samples λ parents from the current probability distribution pt =

(p1,t, p2,t, . . . , pn,t). Then, it chooses the µ fittest individuals breaking ties uniformly

at random and updates each pi using the following formula

pi,t+1 =
∑µ

j=1x
(j)
i

µ
.

In other words, pi,t+1 is a relative occurrence of 1s in bit position i among the µ

chosen individuals. Note that such an update, unlike for the cGA, allows the jumps

of the frequencies pi to be large, i.e. from µ−1
µ

to 1
µ

or vice versa. This means that

the UMDA can, in general, exhibit faster optimization time than the cGA (Fig 2.5.

This is especially true for large values of λ and µ chosen correspondingly. We can

demonstrate this behavior on a simple example.

21

Algorithm 6: The UMDA
1 t← 0;
2 p1,t ← p2,t ← . . .← pn,t ← 1/2;
3 while termination criterion not met do
4 Pt ← ∅;
5 for j ∈ {1, . . . , λ} do
6 for i ∈ {1, . . . , n} do
7 x

(j)
i ← 1 with probability pi,t;

8 x
(j)
i ← 0 with probability 1− pi,t;

9 Pt ← Pt ∪ {x(j)};
10 Sort all individuals in Pt in descending order breaking ties u.a.r.;
11 for i ∈ {1, . . . , n} do

12 r =

µ∑
j=1

x
(j)
i

µ
;

13 if r < 1/n then pi,t+1 ← 1/n;
14 else pi,t+1 ← r;
15 if r > 1− 1/n then pi,t+1 ← 1− 1/n;
16 else pi,t+1 ← r;
17 t← t + 1;

Example 2.3. Consider the UMDA optimizing the OneMaxfitness function with

bitstring length n = 100. Let the marginal probabilities pi,1 = 1
2 for each i ∈

{1, . . . , n}. This example is supposed to demonstrate how fast can the marginal

probabilities change in just one generation.

Part a. Let λ = 400 and µ = 100. We show (Fig 2.6) the distribution of fitness

values among the λ generated individuals. The red part of the bar plot depicts the µ

fittest individuals chosen to update the marginal probabilities. See the distribution of

the marginal probabilities along with their mean value (0.5679) and standard devia-

tion in Figure 2.7. We can say that on average, the change in the frequencies for this

generation is |0.5− 0.5679| = 0.0679. This is almost 7 times faster update compared

to the cGA with K = 1
n
. It is not uncommon to choose K to be even smaller. If

K = 1
n2 then the update would be 700 times faster.

22

0 200 400 600 800 1000

0

20

40

60

80

·104

n

N
um

be
r
of

fit
ne

s
ev
al
ua

tio
ns

(1 + 8,8) GA
cGA

UMDA

Figure 2.5: Number of fitness function evaluations to find the solution for different
bitstring length n for the EDA algorithms - the cGA (Alg 5), the UMDA (Alg 6),
and one of the EAs - the (1 + λ, λ) GA (Alg 4). We show the mean values of 1000
trials. For this experiment, we set K = n for the cGA and λ = 400, µ = 100 for the
UMDA.

Part b. Let λ = 4000 and µ = 100. We increase λ 10 times compared to the

previous part to demonstrate (Fig 2.8) how the distribution of fitness values changes

and also to show that we are more likely to generate even fitter individuals leading to

even bigger jumps in the marginal probabilities. In this case, we obtain mean value

of 0.6153 (Fig 2.9) yielding average frequency change |0.5− 0.6201| = 0.1201. This is

12 times faster update than the cGA with K = 1
n
.

In general, as λ approaches ∞ the distribution of fitness values gets smoother

and if we choose µ to be small, we can update the frequencies even faster. We ran

an experiment with λ = 5 · 106 and µ = 100 yielding an average change in marginal

probabilities of |0.5− 0.7107| = 0.2107. However, choosing λ too large might not be

desired. Increasing λ can lead to faster frequencies updates but it also means more

23

35 40 45 50 55 60 65
0

0.02

0.04

0.06

0.08

Fitness values

R
el
at
iv
e
fre

qu
en

ci
es

of
fit
ne

ss
va
lu
es

Figure 2.6: The relative frequencies of fitness values among the λ = 400 individuals
generated. Red part denotes the µ = 100 fittest individuals chosen to update the
marginal probabilities.

0 10 20 30 40 50 60 70 80 90 100
0.45

0.5

0.55

0.6

0.65

0.7

Bit positions

M
ar

gi
na

ls
af

te
r

on
e

ge
ne

ra
tio

n frequencies
mean and std

Figure 2.7: The marginal probabilities after one generation starting from the uniform
distribution on the OneMaxfitness function. We set n = 100, λ = 4000 and µ = 100
for this experiment.

fitness function evaluations in every generation and that is not desired. Thus, it is

important to choose λ carefully, so that it maximizes frequencies updates as much as

24

30 35 40 45 50 55 60 65

0

0.02

0.04

0.06

0.08

Fitness values

R
el
at
iv
e
fre

qu
en

ci
es

of
fit
ne

ss
va
lu
es

Figure 2.8: The relative frequencies of fitness values among the λ = 4000 individuals
generated. Red part denotes the µ = 100 fittest individuals chosen to update the
marginal probabilities.

0 10 20 30 40 50 60 70 80 90 100
0.5

0.55

0.6

0.65

0.7

0.75

Bit positions

M
ar

gi
na

ls
af

te
r

on
e

ge
ne

ra
tio

n frequencies
mean and sd

Figure 2.9: The marginal probabilities after one generation starting from the uniform
distribution on the OneMaxfitness function. We set n = 100, λ = 4000 and µ = 100
for this experiment.

25

possible, but does not extensively slow the whole algorithm down overall.

One drawback of the mentioned EDAs is a premature convergence of the marginal

probabilities. This can occur when pi,t ∈ {0, 1}, but the target solution does not have

the corresponding bit in the i-th position. Should this event occur, the cGA or UMDA

fail to converge in finite time. A natural way to prevent this is by restricting the

marginal probabilities to an interval [1/n, 1−1/n] to ensure there is always a nonzero

probability of producing either a 1 or a 0 in position i for all times t. This idea

comes from the field of Ant Colony Optimization [24]. We follow this procedure and

impose this restriction in lines 12 and 13 of Algorithm 5 and 13 and 15 of Algorithm

6, respectively.

We finish this section with the following remark which tells us what is the prob-

ability of generating the optimum at generation t.

Remark 2.1. The probability of generating the optimum for both the OneMaxand

the Jumpk fitness functions using either the cGA or the UMDA during tth generation

is
n∏

i=1
pi,t. (2.1)

Proof. We know that every bit i ∈ {1, . . . , n} during the tth generation is 1 with

probability pi,t. Since all bits are independent, the probability of generating the all

1s bitstring is p1,tp2,t . . . pn,t =
n∏

i=1
pi,t.

2.3 The Jump fitness function

The main focus of this work is to analyze the two estimation of distribution

algorithms on the Jumpk fitness function. We have recently presented an article

analyzing the cGA [1]. Optimizing the Jumpk fitness function seems to be especially

26

difficult for some of the traditional EAs. For example, the Hill-climber is not even be

able to solve the function - it fails to cross the gap as it can only generate offspring

with Hamming distance equal to one from its parent. The other mentioned algorithms

can solve the Jumpk fitness function, but it is required that they flip exactly the right

k bits when they reach the gap of length k. For large values of k it becomes very

unlikely. For example, the (µ + 1) EA, unlike the Hill-climber algorithm, can reach

any point in the search space in a single step. However, the probability decreases

rapidly with increasing Hamming distance from the original individual. In fact, it

requires Ω(nk) steps to solve the Jumpk which can be decreased to O(µn2k3 + 4k

pc
)

by performing an additional crossover operation with probability pc = O(1
kn

) [1].

The difficulty of crossing large gaps stays true for EDAs as well, but as long as the

probability distribution stays compact, we have a bigger chance of generating the

solution. This will be discussed in detail in the later chapters.

Definition 2.6. Given a particular jump function Jumpk, the set G= {x ∈ {0, 1}n :

n− k < |x| < n} is called gap points.

Remark 2.2. For any two individuals x, y ∈ {0, 1}n, if x, y /∈ G, then |x| ≥ |y| ⇐⇒

Jumpk(x) ≥ Jumpk(y). Otherwise |x| ≥ |y| ⇐⇒ Jumpk(x) ≤ Jumpk(y).

Remark 2.2 says an important fact about the µ individuals that are being chosen

through the selection process for the UMDA. As long as λ is large enough and µ is

relatively small compared to λ we do not, with high probability, ever accept gap indi-

viduals to update the marginal probabilities. In other words, there is always enough

‘outside of the gap’ individuals. However, in case we ever select a gap individual then

it is most likely a bitsring with fitness close the ‘edge’ value (n− k) due the result of

Remark 2.2.

27

Definition 2.7. Given a product distribution pt = (p1,t, p2,t, . . . , pn,t), we define the

gap probability as

PG(t) = Pr(x ∈ G | x ∼ pt),

i.e., the probability that a bitstring drawn from the product distribution pt is a gap

point.

Membership in G is uniquely determined by Hamming distance. The Hamming

distance of a bitstring drawn from pt follows the Poisson-Binomial distribution, and

so the precise gap probability PG on the Jumpk can be written down as a function of

pt as follows.

PG(t) =
n∑

l=n−k+1

∑
A∈Fl

∏
a∈A

pi.t

∏
j∈Ac

(1− pj,t), (2.2)

where Fl is the set of all cardinality-l subsets of {1, 2, . . . , n} and Ac = {1, 2, . . . , n}\A.

The expression 2.2 is rather hard to work with but later on, we will use it to formulate

a drift of the cGA.

The last part of this section is dedicated to experiments on the Jumpk fitness

function. First, we show runtimes (Fig 2.10 of the algorithms mentioned in the section

2.1. We omit the Hill-climber algorithm (1) because it cannot solve the Jumpk for

any value of k ≥ 1. Note that we are able to generate the all 1s bitstring only for very

small gap length k. It is also important to say that the bitstring length n does also

influence how far the evolutionary algorithms can jump. EAs need to flip the correct

k bits when they reach the gap and the probability to do that increases with n. As

we will see later, this is not the case for EDAs. Estimation of distribution algorithms

can jump further as n increases. In the experiment depicted in Figure 2.10, the

algorithms finished and found the solution in 107 fitness function evaluations only for

gap length k ∈ {2, 3}. For k ∈ {4, 5} the algorithms failed to generate the optimum

for some cases in the maximum given time. For k >= 6 it becomes very unlikely

28

that any of the EAs finds the solution. The ratios of how many runs finished in

the maximum allocated time is depicted in Figure 2.11. Additionally, refer to Table

2.2 for the standard deviations of the runs. For clarity, we chose not to show the

standard deviations in the graph. Overall, we can see that the standard evolutionary

algorithms using mutation and crossover only are not very efficient in solving the

Jumpk function.

2 3 4 5

0

1

2

3

4

5

6

7

8

9
·106

k

N
um

be
r
of

fit
ne

ss
ev
al
ua

tio
ns

(1 + 1) EA
(2 + 1) GA

(1 + 8,8) GA

Figure 2.10: Number of fitness function evaluations to find the solution of the
Jumpk for different gap lengths k - the (1 + 1) EA (Alg 2), the (2 + 1) GA (Alg 3),
the (1+λ, λ) GA (Alg 4). We show the mean values of 100 trials. For this experiment,
we set n = 100 and limit the maximum number of fitness function evaluations to 107.
Missing points are due to failure of the algorithm to finish within the allocated time.

29

2 3 4 5 60

0.2

0.4

0.6

0.8

1.0

k

Su
cc
es
se
s
in

10
7
fit
ne

ss
ev
al
ua

tio
ns

(1 + 1) EA
(2 + 1) GA

(1 + 8,8) GA

Figure 2.11: Proportion of the Jumpk functions solved in 107 fitness function eval-
uations out of 100 trials for the mentioned EAs. We set n = 100.

alg/k 2 3 4 5

(1 + 1) EA 29510.8 2490706.98 5165315.750 –
26792.26 231352.05 376196.266 –

(2 + 1) GA 9674.16 542521.15 4668166.93 8221911.0
947.8 51191.93 274470.23 0.00

(1 + 8, 8) GA 7496.68 504824.52 4020991.86 –
636.48 49943.03 325166.05 –

Table 2.2: Results of the experiment depicted in Figure 2.10. For n = 100 we show
the mean values (top) and the standard deviations (bottom) of 100 trials for different
gap lengths k. Note that for the (2 + 1) GA and for k = 5 only one run finished in
107 fitness function evaluations and thus the standard deviation is equal to zero.

30

3 Analysis of the Compact Ge-

netic Algorithm

Results in this chapter are taken from a recent paper [1] where we provide a de-

tailed analysis of the cGA on the Jumpk function. We prove that the cGA solves the

Jumpk in time bounded by O(2
√

2Kn3/2 log(n
2) + eΘ(k) + n) with probability 1− o(1)

for k = o(n) and sufficiently large K. When k = Ω(log(n)), this translates to a super-

polynomial speedup over mutation–only EAs (and other hillclimbing algorithms). We

briefly mention these results in order to be able to compare behavior of the UMDA

to the cGA.

Recall that EDAs maintain a product distribution pt over {0, 1}. The cGA gener-

ates two offspring x, y in each generation that are then used to update the distribution

as follows. Without loss of generality, assume f(x) ≥ f(y).

pi,t+1 =

pi,t + 1
K

if xi − yi = 1,

pi,t − 1
K

if xi − yi = −1,

pi,t if xi = yi.

Understanding the way of how the marginal probabilities in the distribution pt change

is the key to analyzing the estimation of distribution algorithms. As mentioned before,

at the beginning of optimizing the Jumpk the algorithm needs to climb up as if the

function was the classical OneMax. This seems to be relatively easy for both the

31

cGA and the UMDA. We call this phase the subcritical phase. In this phase, the

algorithm generates only (with high probability) non-gap individuals.

Let us focus on the cGA only from now but the notation we introduce in the

following section will be used for the UMDA as well. Once the cGA reaches the

gap, and starts generating both gap and non-gap individuals, an interesting behavior

occurs. Since it cannot simply keep climbing to the optimum, it starts to generate

offspring with certain number of 0s in them. Given the property from Remark 2.2,

the number of 0s is actually close to k. In other words, the number of 1s in individuals

generated once the gap is reached is roughly distributed around n − k (the edge of

the gap). We call this stage the critical phase. This actually means that since all the

frequencies are independent and follow Bernoulli distribution, the actual positions

of 0 and 1 bits are also independent. Thus, if we have roughly k zero bits in each

offspring, the marginal probabilities stabilize around the ratio

n− k

n
.

The compact genetic algorithm stays in the critical phase for a while and that

allows to eventually solve the Jumpk function. The duration of how long it stays in

this phase is determined by the parameter K. The bigger it is, the smaller the update

1/K is. However, large values of K also slow down the initial climbing phase since

it takes smaller steps toward the gap. After the critical phase a long-range diversity

loss follows. During this phase certain marginal probabilities converge toward 1 while

others converge toward 0. We cannot be sure which bits converge to what values

exactly but there is roughly n − k bits converging to 1 and k converging to 0. See

Figure 3.1 for better visualization and notice that the frequencies are really roughly

distributed around the value n−k
n

(200−20)/200 = 0.9) at the beginning of the critical

32

phase. Lastly, we confirm through experiments that the mean of all frequencies

throughout various runs is approximately n−k
n

for the whole critical phase and the

long-range diversity loss.

0 20 40 60 80 100 120 1400

0.2

0.4

0.6

0.8

1

subcritical
phase

critical phase

long-range
diversity
loss

t/105

M
ar

gi
na

lp
ro

ba
bi

lit
ie

s
of

ve
ct

or
p t

Figure 3.1: The cGA’s marginal probabilities of vector pt over long-range time for
Jump20 with n = 200. The probabilities are tightly concentrated in the subcritical
phase while climbing to the gap, then eventually disperse. A run is successful if the
optimal solution is generated before the marginals fix.

After understanding how the marginal probabilities change over time during a

run of the cGA, we define a drift of that process. Bounding the drift of the process

allows us to bound the hitting time of the process to a goal that coincides with some

state we are interested in. This is possible via various established ‘drift theorems’

[25]. In general, a (stochastic) drift is the change of an expected value of a stochastic

process {Xt : t ∈ N}, i.e. E[Xt+1 − Xt | Xt]. We focus on the dynamics of two

important entities during the execution of the cGA. The first is the stochastic process

33

{Xt : t ∈ N}, defined as the sum of the marginal probabilities

Xt =
n∑

i=1
pi,t. (3.1)

Note that Xt is exactly the expected number of 1s of a string drawn from the time-t

product distribution pt. The second value we study is the stochastic process {γt :

t ∈ N} that captures the absolute concentration of the marginal probabilities around

their average value:

γt = max
i
|Xt/n− pi,t|. (3.2)

In particular, we show that early in the process, the marginal probabilities remain

tightly concentrated.

Lemma 3.1. Let x and y be the offspring drawn from the product distribution

in iteration t at lines 4 and 7 of Algorithm 5. Let ∆t = |x| − |y|. Then ∆t =

∆1,t + ∆2,t + · · ·+ ∆n,t is the sum of n independent random variables

∆i,t =

1 with probability pi,t(1− pi,t),

−1 with probability pi,t(1− pi,t),

0 with probability 1− 2pi,t(1− pi,t);

with 1/n ≤ pi,t ≤ 1− 1/n for every i ∈ {1, . . . , n}. Then

E(|∆t|) ≥
√

2
n3/2 Xt.

34

Lemma 3.2. The drift of the process Xt is

E(Xt+1 −Xt | Xt) = |∆t|
K

(
1− 4PG(t) + 2PG(t)2

)
≥
√

2
n3/2K

Xt

(
1− 4PG(t) + 2PG(t)2

)
(3.3)

The drift of the process Xt is important because, as long as it stays positive,

the cGA is making progress towards the solution. Clearly, the expression in the

parenthesis, 1 − PG(t) + 2PG(t)2, from the equation (3.3) determines the sign of the

drift. We have that if PG(t) < 1− 1√
2 the drift is positive. We call this value critical

threshold. To bound the runtime of the cGA on the Jumpk, we need to show that the

drift stays positive long enough. In other words we must show that there is enough

probability to generate the optimal solution before diversity is lost and the marginal

probabilities fix (either at 0 or 1). By using the mentioned lemmas and focusing on

the two processes 3.1 and 3.2 we are able to formulate the result that bounds the

runtime of the cGA on the Jumpk as follows.

Theorem 3.1. Let β = min{1 + e4(c+k)/n, n1.5+ϵ/2} for a sufficiently large positive

constant c and any small positive constant ϵ. Setting K ≥ n2β, the cGA generates

an optimal solution for Jumpk with k = o(n) in

2
√

2Kn3/2 ln(n/2) + e4(c+k) + n

generations with probability 1− o(1).

For more details, proofs and experiments refer to the paper [1]. Additionally to

proving the bound on the runtime of the cGA, we also introduce a modification to the

classical version of the cGA. We call this modification cGAλ. The difference between

the two is that in the cGAλ, we generate λ offspring instead. Then, we choose the

35

two fittest individuals breaking ties uniformly at random. The rest of the algorithm

stays the same afterwards. See the pseudocode of the cGAλ in Algorithm 7.

Algorithm 7: The cGAλ

1 t← 0;
2 p1,t ← p2,t ← . . .← pn,t ← 1/2;
3 while termination criterion not met do
4 for j ∈ {1, . . . , λ} do
5 for i ∈ {1, . . . , n} do
6 x

(j)
i ← 1 with probability pi,t;

7 x
(j)
i ← 0 with probability 1− pi,t;

8 Select x and y s.t. x ̸= y and f(x) ≥ f(y) ≥ f(x(j) for all j ∈ {1, . . . , λ}
with ties broken u.a.r.;

9 if f(x) < f(y) then swap x and y;
10 for i ∈ {1, . . . , n} do
11 if xi > yi then pi,t+1 ← min{pi,t + 1/K, 1− 1/n};
12 if xi < yi then pi,t+1 ← max{pi,t − 1/K, 1/n};
13 if xi = yi then pi,t+1 ← pi,t;
14 t← t + 1;

The great thing about this new algorithm is that it increases the duration that the

drift stays positive (Fig 3.2). This means that the cGAλ stays longer in the critical

phase and it has more time to solve the Jumpk. This also implies that it can solve the

function with increasing gap lengths k for the same length-n bitstring when allocated

the same number of fitness evaluations. Despite the overhead incurred by evaluating

additional offspring, numerical results support the improved performance as well. For

the sake of completeness, we show a plot of runtimes of the cGA (Fig 3.4) and of the

ratio of successes for different values of k (Fig 3.3).

In Figure 3.2, we can see the significance of generating λ > 2 offspring in every

generation. Even a small change in λ has a large impact on the critical threshold.

Despite the usage of the modified version of the cGA, even the classical version

outperforms all the mentioned EAs in both the actual runtime and the gap length it

36

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

λ = 2

λ = 3

λ = 4

λ = 5

λ = 10

critical threshold

1 − 1√
2

PG(t)

dr
ift

sig
n

fa
ct

or

Figure 3.2: Drift sign factor as a function of gap probability PG(t). As λ increases,
the drift sign factor stays positive longer for gap probabilities approaching one.

can solve. In Figure 3.3, see that for λ = 2, the algorithm succeeds 100% times for

k ∈ {2, . . . , 9} in maximum allocated fitness function evaluations (107). For bigger

values of k the performance starts to drop. Note that increasing the maximum number

of allowed fitness evaluations does not necessarily lead to a higher success rate. The

diversity loss still occurs at roughly the same time as in the previous case and, even

though we give the algorithm more time, it does not solve the function anyway.

We point out that for λ = 20, the cGAλ succeeds to solve the fitness function for

k ∈ {2, . . . , 16} in all cases (within 107 fitness evaluations). This is a significant jump

given that the bitstring length is only n = 100. Clearly, for larger values of n, the

ratio n−k
n

changes as well and hence, both the classical cGA and the new cGAλ are

able to cross even bigger gaps. From this experiment, we can draw a conclusion that

for λ = 20, the cGAλ can solve the Jumpk function for any values of

k ∈ {2, . . . , 0.16n}

37

if given a reasonable number of fitness evaluations as time constraint. Regarding

the actual runtime, the cGA scales more gracefully compared to the evolutionary

algorithms. See that (Fig 3.4) for k = 3 and n = 100 the order of the runtime is 105

while the EAs already need around 106, and as we increase k just by one, the runtime

changes dramatically.

2 4 6 8 10 12 14 16 18 20 22 240

0.2

0.4

0.6

0.8

1.0

λ
=

2

λ
=

5
λ

=
10

λ
=

20

k

Su
cc
es
se
s
in

10
7
fit
ne
ss

ev
al
ua

tio
ns

Figure 3.3: Proportion of the Jumpk functions solved using the cGAλ (Alg 7) in 107

fitness evaluations out of 100 trials for four different values of λ and n = 100.

50 60 70 80 90 100
0

1

2

3

·105

k = 3
k = 7

k = 2 log(n)

n

N
um

be
r
of

fit
ne
ss

ev
al
ua

tio
ns

Figure 3.4: Number of fitness evaluations of the regular cGA (Alg 5) for various
bitstring lengths n. We show the mean values and standard errors of 100 trials.

38

4 Analysis of the Univariate Marginal

Distribution Algorithm

This chapter is the main contribution of this thesis. We analyze the UMDA

algorithm on the Jumpk fitness function. Our goal is to draw a comparison between

the UMDA and the cGA based on the analysis we did for the cGA. Recall that for

the cGA we were able to define its drift on the Jumpk and that, as long as it stayed

positive, the algorithm was making progress towards the solution. Once it reached the

critical phase, we were able to show that the marginal probabilities stay concentrated

around their mean value for a long time. Therefore, the cGA can solve the the Jumpk

fitness function for much bigger values of k compared to the traditional mutation and

crossover only evolutionary algorithms.

First, we need to understand how the marginal probabilities are updated for the

UMDA. We mentioned that the UMDA makes much bigger updates in every iteration

than the cGA. Specifically, the update can easily exceed values like 0.1 (Fig 2.9) for

every frequency while the cGA’s marginals only change by 1
n2 (when K = n2). This

is a major difference between the two algorithms. To find out how the frequencies

change during a run of the UMDA, we perform a series of experiments for different

values of λ and µ. We already know that the ratio between these two parameters

influences the updates of the marginals, and also the speed of the algorithm itself.

See the following graphs in which we examine the marginal probabilities.

We can see (Fig 4.1) that the frequencies are much more dispersed compared to

39

0 10 20 30 40 50 60 70 80 90 1000

0.2

0.4

0.6

0.8

1

very short
critical
phase

t

M
ar

gi
na

lp
ro

ba
bi

lit
ie

s
of

ve
ct

or
p t

Figure 4.1: The UMDA’s (Alg 6) marginal probabilities of vector pt for Jump20 with
n = 200. Compared to the cGA (Alg 5) the marginals are much more dispersed. We
set λ = 4000 and µ = 100.

the cGA 3.1, which confirms the claims from above. In this experiment we accept 25%

of all generated individuals in every generation. This means that there are potentially

big differences between the fitness of the accepted offspring. Notice that some of the

marginals drop even below the initial value of 0.5 right at the beginning. We can still

observe an initial climb of the frequencies towards the ratio n−k
n

but there is definitely

more randomness involved than for the cGA. However, the biggest issue the UMDA

faces is the fact that its critical phase is very short. In fact, this example shows that

the critical phase is roughly only from t = 10 to t = 15. That is only five iterations

compared to tens of thousands for the cGA. This makes it harder for the UMDA to

solve the Jumpk as smoothly as the cGA does. One thing which remains the same

is that the number of bits converging to 0 is k and the number of bits converging to

1 is n − k. This implies that the mean value of the marginal probabilities is again

40

roughly n−k
n

after the short initial climbing stage. Let us repeat this experiment for

different values of λ and µ. We set λ = 4000 and µ = 100. We can see (Fig 4.2) an

0 10 20 30 40 50 60 70 80 90 1000

0.2

0.4

0.6

0.8

1

short criti-
cal phase

t

M
ar

gi
na

lp
ro

ba
bi

lit
ie

s
of

ve
ct

or
p t

Figure 4.2: The UMDA’s (6) marginal probabilities of vector pt for Jump20 with
n = 200. The marginals are still very dispersed. We set λ = 4000 and µ = 100.

improvement of the marginals in terms of how disperse they are. In this case, the

mean value of the frequencies stays closer to the value n−k
n

from even earlier iterations.

However, the critical phase still remains very short. How is it possible that, as we

show later in this chapter, the UMDA still solves the Jumpk function for relatively

large values of k? We need to realize that we generate a large number (λ = 4000)

of offspring under the current version of the probability vector pt in every iteration.

This means that if the critical phase is about 5 iterations long, then we still draw

20, 000 individuals from pt before the marginals completely disperse. It is less than

the cGA, but still enough to generate the optimum for various k.

At the initial stages of our UMDA analysis we were trying to mimic the approach

41

we took to analyze the cGA. We attempted to define UMDA’s drift and then bound

the marginal probabilities. If we were able to do that then we would just apply the

same lemmas and theorems. However, the nature of the univariate marginal distri-

bution algorithm does not allow us to do that. The way in which the frequencies are

updated makes it more difficult to formulate the drift formally. We cannot guarantee

what individuals are accepted as the µ fittest ones to update the marginals. Recently,

there have been papers published that show a way of analyzing OneMax [20] but

their approach does not necessarily work the same for the Jumpk function. This is

due to the problematic gap individuals. Recall that these bitstrings have more 1s in

them compared to the non-gap individuals (besides the optimum) but their fitness

is lower. Because of this we did not succeed in formulating the drift of the UMDA.

Instead, we performed experimental work (Fig 4.3, 4.4) to see how UMDA performs

on the Jumpk function.

For the sake of clarity, let us modify the UMDA’s notation slightly. We will write

UMDAλ,µ to make it obvious what parameters are used in the algorithm. From the

figures we can see that the runtimes are actually better than for the cGA but the

UMDA cannot jump as far even though we exploit the UMDA’s update policy by

choosing large values for λ and µ. Note that we get the best updates by choosing

large λ and small µ. However, we cannot pick µ too small otherwise the updates are

too coarse-grained. Unfortunately, choosing such λ and µ also makes the individual

frequencies converge towards 1 or 0 faster. Overall, we suggest choosing large λ and

relatively small µ because in such case all the marginals get closer to the mean value
n−k

n
. The closer and concentrated the marginal probabilities get to the mean value

the more likely it is that the UMDA finds the optimum.

For four out of five of our experiments we choose the ratio between λ and µ to

be 25%. We suggest choosing an even smaller ratio in order to exploit the UMDA’s

42

2 4 6 8 10 12 14

104

105

106

k

N
um

be
r
of

fit
ne

ss
fu
nc

tio
n
ev
al
ua

tio
ns

λ = 400, µ = 100
λ = 2000, µ = 500
λ = 4000, µ = 1000
λ = 20000, µ = 5000
λ = 200000, µ = 5000

Figure 4.3: Number of fitness function evaluations to find the solution of the Jumpk

for different gap lengths k for UMDA (Alg 6). We show the mean values of 100
trials. For this experiment, we set n = 100 and limit the maximum number of fitness
function evaluations to 107.

2 4 6 8 10 12 14 16 18 20 22 240

0.2

0.4

0.6

0.8

1.0

λ
=

400, µ
=

100

λ
=

2000, µ
=

500
λ

=
4000, µ

=
1000

λ
=

20000, µ
=

5000
λ

=
200000, µ

=
5000

k

Su
cc
es
se
s
in

10
7
fit
ne
ss

ev
al
ua

tio
ns

Figure 4.4: Proportion of the Jumpk functions solved using the UMDAλ,µ (Alg 6)
in 107 fitness function evaluations out of 100 trials for four different values of λ. We
set n = 100.

43

update policy as much as possible. We conclude that the UMDA is slightly more

efficient on Jumpk, but does not solve the function for such large values of k. Since

we are not able to analyze the UMDA in the same manner as the cGA we attempt

to take a different approach. The idea for the following comes from trying to prolong

the critical phase which we achieve with the cGAλ.

4.1 Selection-free Univariate Marginal Distribution

Algorithm

We introduce a new modified univariate marginal distribution algorithm. We

call it Selection-free Univariate Marginal Distribution Algorithm and denote it by

UMDAsel or UMDAsel
λ,µ (The Algorithm 8). For this algorithm we take an innovative

approach to perform optimization. Traditionally, selection is what makes it possible

for evolutionary algorithms to optimize problems. Removing selection in EAs would

normally cause them to fail in finding an optimum efficiently for most fitness functions.

For example, the (1+1) EA without selection becomes just a random walk. However,

turning off selection in an evolutionary distribution algorithm at the right time has

a different effect. Basically, when we stop selecting the fittest individuals, we ‘freeze’

the marginals at their current values. What we mean by turning off selection is not

choosing the µ fittest individuals to sum up their bits to update the frequencies, but

update them by summing up all λ individuals instead. The update formula is as

follows.

pi,t+1 =
λ∑

j=1

x(j)[i]
λ

where x(j), j ∈ {1, . . . , λ} denotes all the offspring in the generation t.

This new technique prevents the marginals from dispersing as fast as they do for

44

Algorithm 8: The UMDAsel

1 t← 0;
2 p1,t ← p2,t ← . . .← pn,t ← 1/2;
3 while termination criterion not met do
4 Pt ← ∅;
5 for j ∈ {1, . . . , λ} do
6 for i ∈ {1, . . . , n} do
7 x

(j)
i ← 1 with probability pi,t;

8 x
(j)
i ← 0 with probability 1− pi,t;

9 Pt ← Pt ∪ {x(j)};
10 if t < t∗ then
11 Sort all individuals in Pt in descending order breaking ties u.a.r.;
12 c← µ;
13 else
14 c← λ;
15 for i ∈ {1, . . . , n} do

16 r =

c∑
j=1

x
(j)
i

c
;

17 if r < 1/n then pi,t+1 ← 1/n;
18 else pi,t+1 ← r;
19 if r > 1− 1/n then pi,t+1 ← 1− 1/n;
20 else pi,t+1 ← r;
21 t← t + 1;

the regular UMDA after the algorithm performs the initial climb towards the gap.

This gives the UMDAsel
λ,µ more time to solve the Jumpk fitness function. One could

argue that this goes against the very basic principles of evolutionary algorithms –

being tools for black–box optimization. Here, it might seem that we are exploiting the

properties of the Jumpk function while we should not require any knowledge about

the fitness function at all. However, the idea which led to this modification of the

UMDA was more based on studying the marginal probabilities. This can be done

without any knowledge of the fitness function. This idea could potentially create a

new branch of evolutionary algorithms in the future.

45

For comparison in what happens to the frequencies using the UMDAsel refer to

Figure 4.5. This experiment has the same parameter setup as the one described in

Figure 4.2.

0 20 40 60 80 100 120 140 160 180 2000

0.2

0.4

0.6

0.8

1

extended
critical
phase

t

M
ar

gi
na

lp
ro

ba
bi

lit
ie

s
of

ve
ct

or
p t

Figure 4.5: The UMDAsel
λ,µ’s (Alg 8) marginal probabilities of vector pt for Jump20

with n = 200. We zoom in to display only the first 200 iterations. The marginals are
much less dispersed. We set λ = 4000 and µ = 100.

The first important step in our analysis is to define a time t∗ ∈ N when we turn

off selection. See the following definition.

Definition 4.1. Let t∗ ∈ N be the time when we turn off selection in the UMDAsel.

Also, define

m = n− k

n

where k is gap length and n is the bitstring length. We define t∗ as follows.

t∗ = min
t∈N

max
i
|pi,t −m|

46

for all i ∈ {1, . . . , n}.

The Definition 4.1 says that we choose t∗ so that the largest distance from any

of the marginals to the ratio m is the smallest out of all iterations t ∈ N. Note that

we use m to approximate the mean value of all marginal probabilities after the initial

climb towards the gap. As shown by the previous experiment, turning off selection

helps each marginal probability pi,t stay closer to the value pi,t∗ for t > t∗. This is

formalized in the following Remark.

Lemma 4.1. Denote the time when we turn off selection for the UMDAsel
λ,µ by t∗.

Then, the future expectation of the marginal probabilities becomes

E[pi,t∗+j | pi,t∗] = pi,t∗

for all i ∈ {1, . . . , n} and j ≥ 0.

Proof. The UMDA generates its offspring from the probability vector pt. Every bit

position i ∈ {1, . . . , n} follows Bernoulli distribution. This means that every gener-

ated individual has 1 at position i with probability pi,t and 0 with probability 1−pi,t.

When we sum up λ generated individuals, the sum of each bit i then follows Poisson

binomial distribution (sum of λ Bernoulli distributions denoted by B). Therefore,

pi,t+1 = 1
λ

λ∑
l=1
B(pi,t).

Then, given that the mean of the Poisson binomial distribution is pi,t in this case, we

get E[pi,t+1 | pi,t] = pi,t. By induction we get the same result for pi,t+j for any j > 0.

This completes the proof.

47

In other words, Lemma 4.1 states that the ratio between the number of 1s and 0s

at each bit i for t > t∗ is equal to the marginal probability pi,t∗ , or at least very close

to it, for the rest of the run. Before we attempt to analyze this new version of the

UMDA, let us perform experiments on runtimes and on the ratios of successes within

the maximum allocated number of fitness evaluations. The experiment (Fig 4.7)

confirms what we are hoping for. We can see an increase in the maximum possible

jump for each configuration of λ and µ. The labels we use in Figure 4.7 are the

following. The numbers 1−5 denote the configurations of λ and µ where 1 is λ = 400

and µ = 100, 2 is λ = 2000 and µ = 500, 2 is λ = 4000 and µ = 1000, 4 is λ = 20000

and µ = 5000 and 5 is λ = 200000 and µ = 5000. The letter a denotes the original

UMDAλ,µ while b stands for the new UMDAsel
λ,µ. The runtimes stay nearly the same

as for the original UMDAλ,µ. This was not the case with the cGAλ. For λ > 2 all the

runtimes increased instead.

2 4 6 8 10 12 14

104

105

106

k

N
um

be
r
of

fit
ne

ss
fu
nc

tio
n
ev
al
ua

tio
ns

λ = 400, µ = 100
λ = 2000, µ = 500
λ = 4000, µ = 1000
λ = 20000, µ = 5000
λ = 200000, µ = 5000

Figure 4.6: Number of fitness function evaluations to find the solution of the Jumpk

for different gap lengths k for the UMDAsel (Alg 8). We show the mean values of 100
trials. For this experiment, we set n = 100 and limit the maximum number of fitness
function evaluations to 107. Selection was is turned off after first 9 iterations.

48

2 4 6 8 10 12 14 16 18 20 22 240

0.2

0.4

0.6

0.8

1.0

1a
1b 2a 2b

3a
3b

4a

4b
5a

5b

k

Su
cc
es
se
s
in

10
7
fit
ne
ss

ev
al
ua

tio
ns UMDAλ,µ

UMDAsel
λ,µ

Figure 4.7: Proportion of the Jumpk functions solved using the UMDAλ,µ (Alg 6)
and the UMDAsel

λ,µ (Alg 8) in 107 fitness function evaluations out of 100 trials for five
different values of λ and µ. We set n = 100. For the UMDAsel

λ,µ we turn off selection
after 9 iterations.

We continue with the analysis. The important step is to bound all the marginal

probabilities. We need to know what the frequencies look like around the moment

when we turn off selection. We showed in the experiments that the mean of the

marginals approaches the ratio n−k
n

. However, this does not tell us anything about

the individual marginal probabilities. Thus, we need to put a constraint on the

maximum distance of the smallest of all the marginal probabilities from the mean

value. We formulate a constraint on the marginal probabilities with the following

lemma.

49

Lemma 4.2. Let t∗ ∈ N and m be defined as in Definition 4.1. Then, with probability

1− o(1), when selection is turned off the marginals are bounded s.t.

|pi,t −m| < c

n
= O

(1
n

)

for c > 0 and i ∈ {1, . . . , n}.

Lemma 4.2 bounds all the frequencies, most importantly, from below at the time

when we turn off selection. We are not concerned as much about the upper bound

because the higher the individual marginals get the easier it is for the algorithm to

find the optimum. We are not able to prove this result formally due to the UMDA’s

complicated update policy but it is clear from the experiments (Fig 4.5) that the

marginals actually approach the ratio n−k
n

fairly nice. Another fact is that for larger

values of λ and µ the frequencies are concentrated around the mean as well. To

support this claim even more we show one more plot of the marginal probabilities

over time for very large λ for the UMDAsel (Fig 4.9). For comparison we also display

the same plot for the traditional UMDA (Fig 4.8) as well. Note that with λ = 500000

we generate very large number of offspring in every iteration. In Figure 4.9, the

marginals almost do not change over time and stay the same for the rest of the run.

We terminate the algorithm after 200 iterations but that still means that we generate

108 individuals. Given that the mean of the marginals climbs to the ratio n−k
n

really

fast, we generate a majority of the individuals from probability vector pt which has

very high mean. This increases the chances of solving the Jumpk fitness function

significantly.

An important mechanism in many evolutionary algorithms analyses is knowing an

expectation of a future state given the current state. In terms of EDAs, it translates

to knowing what is the expectation of a marginal probability pi,t+1 given pi,t. This is

50

0 20 40 60 80 100 120 140 160 180 2000

0.2

0.4

0.6

0.8

1.0

t

M
ar

gi
na

lp
ro

ba
bi

lit
ie

s
of

ve
ct

or
p t

Figure 4.8: The marginal probabilities of vector pt for Jump20 with n = 200 for
the standard UMDA (Alg 6). For this experiment we choose large λ (5 · 105) and µ
(5 · 103). This marginals approach the ratio n−k

n
and stay concentrated around the

mean longer.

formalized in the following definition.

Definition 4.2. A stochastic process {Zn, n ≥ 1} is a martingale [26] if E[|Zn|] <∞

and E[Zn+1 | Z1, . . . , Zn] = Zn.

Definition 4.2 says that the expectation of the process Zn does not change over

time. The following lemma assess that the marginal probabilities of the UMDAsel are

martingale.

Lemma 4.3. For every bit position i ∈ {1, . . . , n} and its marginal probability pi,t

we get

E[pi,t+1 | pi,t] = pi,t. (4.1)

This means that the marginal probabilities are a martingale sequence.

51

0 20 40 60 80 100 120 140 160 180 2000

0.2

0.4

0.6

0.8

1.0

t

M
ar

gi
na

lp
ro

ba
bi

lit
ie

s
of

ve
ct

or
p t

Figure 4.9: The UMDAsel’s (Alg 8) marginal probabilities of vector pt for Jump20
with n = 200. For this experiment we choose large λ (5 · 105) and µ (5 · 103). We
can see that the marginals ‘freeze’ around their values when we turn off selection.
Selection is turned off after 5 iterations.

Proof. The result (4.1) follows directly from Lemma 4.1.

At this point we are ready to formally bound the frequencies of the UMDAsel after

turning off the selection for the first T iterations.

Lemma 4.4. Let t∗ be the time when we turn off selection for the UMDA, then the

marginals pi,t are sum of λ independent Bernoulli variables denoted by B(p), i.e.

pi,t+1 = 1
λ

λ∑
j=1
B(pi,t),

For any t ∈ N s.t. t∗ ≤ t ≤ t∗ + T and T = poly(n) and for any i ∈ {1, . . . , n}, with

52

probability at least 1−exp
(
−2λ

a2 +O(log(n))
)

,

|pt+1 − pi,t| ≤
1
a

where a = Ω(n
√

T).

Proof. Let t ∈ [t∗, t∗ + T] where T = poly(n) and i ∈ {1, . . . , n} be given. Also let

Xj =

1
λ

with probability pi,t,

0 otherwise.

Define S = X1 + X2 + . . . + Xλ = pi,t+1. Also,

E[S] = E[pi,t+1] = E

1
λ

λ∑
j=1
B(p(j)

i,t)

 = 1
λ
E

 λ∑
j=1
B(p(j)

i,t)

 = 1
λ

λpi,t = pi,t.

Then, |pi,t+1 − pi,t| = |S − E[S]| and by Hoeffding’s inequality [27] we get that

Pr
(
|S − E[S]| ≥ 1

a

)
≤ 2exp

(
−

2
a2

λ 1
λ2

)
= 2exp

(
−2λ

a2

)
.

By taking a union bound over all choices of i ∈ {1, . . . , n} and all t∗ ≤ t ≤ T , we

obtain a probability that |S − E[S]| ≥ 1
a

happens

2nT exp
(
−2λ

a2

)
= 2exp

(
−2λ

a2 + log(nT)
)

. (4.2)

Since we are interested in when |S−E[S]| ≤ 1
a

we take the complement of (4.2). This

finishes the proof.

The following theorem asserts the marginal probabilities stay concentrated around

53

the mean long enough in the UMDAsel process.

Theorem 4.1 (Azuma-Hoeffding Inequality [27]). Suppose {Yt : t ∈ N} is a mar-

tingale and |Yt − Yt−1| < ct almost surely. Then for any positive integer T and any

z > 0

Pr(|YT − Y0| ≥ z) ≤ 2 exp
(
−z2

2∑T
t=1 c2

t

)
. (4.3)

Theorem 4.2. Suppose that the marginals are bounded as in Lemma 4.2 when we turn

off selection at t∗. For a sufficiently large positive constants c and c′, a = Ω(n1+ϵ/2
√

T)

and any small positive constant ϵ the UMDAsel
λ,µ generates an optimal solution for the

Jumpk with k = o(n) in

O(t∗ + ek+c+c′ + n)

generations with probability 1− o(1).

Proof. We split the run of the UMDAsel into two phases. In the first phase, before

we turn off selection, we know that the algorithm runs for

t∗ (4.4)

iterations. Because of the condition posed by Lemma 4.2 we have that the smallest

marginal probability at t∗ is at least pi,t∗ ≥ n−k
n
− c

n
. From Lemma 4.1 we have

that |pi,t+1 − pi,t| ≤ 1
a

at least during the first T iterations and since the marginal

probabilities are martingale (Lemma 4.3) we can apply Theorem 4.1. We get that

Pr(|pi,t∗+T − pi,t∗ | ≥ c′

n
) ≤ 2 exp

− c′2

n2

2T
a2

 = 2 exp
(
− c′2a2

2n2T

)
.

Therefore, the probability that |pi,t∗+T − pi,t∗| ≤ c′

n
is at least 1 − 2 exp

(
− c′2a2

2n2T

)
.

All together, during the first T iterations after turning off selection the marginal

54

probabilities are at least
n− k

n
− c

n
− c′

n

with probability 1− 2 exp
(
− c′2a2

2n2T

)
. Since a ≥ n1+ϵ/2

√
T we have

1− 2 exp
(
− c′2a2

2n2T

)
= 1− e−Ω(nϵ).

During each of the ek+c+c′ +n iterations after we turn off selection, the probability

that the UMDAsel generates the optimal solution 1n is

n∏
i−1

pi,t ≥
(

1− k − c− c′

n

)n

≥ e−Ω(k). (4.5)

The failure probability to produce the optimal solution during the ek+c+c′+n iterations

is at most (
1− e−Ω(k)

)(ek+c+c′ +n)
= e−Ω(n/k).

As k = o(n), we have e−Ω(n/k) = o(1). By combining (4.4) and (4.5) we get

λt∗ + ek+c+c′ + n

with probability 1− o(1).

This is the final step of our analysis. By conditioning on Lemmas 4.2 and 4.1 we

were able to prove an upper bound on the UMDAsel runtime. Even though we did

not prove Lemma 4.2 formally, we believe that the experiments presented sufficiently

support our results.

55

5 Conclusion

In this work we compare performance of two estimation of distribution algorithms,

namely the cGA and the UMDA, on the Jumpk fitness function. The analysis of the

cGA is described in the chapter 3 and comes from the recent paper [1]. In this thesis,

we focused on the analysis of the UMDA. By combination of experiments and formal

proofs we bound the runtime of the algorithm and show its performance on Jumpk

for various parameter settings.

We also present a new innovative way of modifying the UMDA (and perhaps other

EDAs) by turning off selection. This approach allows the UMDA’s marginal proba-

bilities to stay tightly concentrated around their mean value and gives the algorithm

more time to succeed and find the optimum. It also allows the UMDA to jump across

larger gaps of the Jumpk function. Additionally, we show that the cGAλ can jump

farther than the UMDAsel. However, for certain choices of parameters λ and µ, the

UMDA is faster than the cGA. Refer to Figure 5.1 for comparison. We limit the val-

ues of k so that both algorithms find the optimum in 107 fitness function evaluations

with 100% success rate. Therefore, if the runtime is of importance we suggest using

the UMDA and if we need to solve the Jumpk for larger values of k, then the cGA

should be the choice.

We observe a very interesting phenomenon for the marginal probabilities of the

cGA. Unlike the UMDA’s frequencies, whose mean stay very close to the ratio n−k
n

,

the cGA’s mean value can go beyond that ratio. This is the main reason why the

cGA can jump across larger gaps. Even a very small change in the overall mean

56

2 3 4 5 6 7 8 9104

105

106

107

k

N
um

be
r
of

fit
ne

ss
fu
nc

tio
n
ev
al
ua

tio
ns

λ = 2000, µ = 500
λ = 4000, µ = 1000

λ = 2
λ = 10
λ = 20

Figure 5.1: Number of fitness function evaluations to find the solution of the Jumpk

for different gap lengths k for the cGA (Alg 5) and the standard UMDA (Alg 6). We
show the mean values of 100 trials. For this experiment, we set n = 100 and limit
the maximum number of fitness function evaluations to 107.

value can lead to a significant increase of the maximum potential gap length that

the algorithm can solve. The Table 5.1 summarizes the highest mean values that we

obtained throughout the cGA and the UMDA runs for different parameter settings.

It also shows the absolute maximum gap length and the relative gap length in terms

of n that the algorithms can solve with 100% success rate. The time when to turn off

selection for the UMDAsel is chosen experimentally and depicted in the parenthesis

next to the mean value. It is important not to turn selection too early, so the marginals

have enough time to climb to the ratio n−k
n

. Also, we cannot switch it off too late,

otherwise the frequencies are already too dispersed.

The reason why the mean of the marginals for the cGAλ goes beyond the ratio n−k
n

is due to the fact that in every iteration we generate very small number of individuals.

This means that when the marginals get high enough we only generate offspring from

57

Algorithm Highest Absolute Relative
mean Largest gap Largest gap

cGA2 0.8835 9 0.09n
cGA5 0.9079 14 0.14n
cGA10 0.9182 16 0.16n
cGA20 0.9258 16 0.16n

UMDA400,100 0.8987 6 0.06n
UMDA2000,500 0.8995 8 0.08n
UMDA4000,1000 0.8995 9 0.09n
UMDA20000,5000 0.8993 11 0.11n
UMDA200000,5000 0.9000 13 0.13n

UMDAsel
400,100 0.8971 (12) 6 0.06n

UMDAsel
2000,500 0.9012 (12) 9 0.09n

UMDAsel
4000,1000 0.9008 (12) 10 0.10n

UMDAsel
20000,5000 0.9012 (12) 12 0.12n

UMDAsel
200000,5000 0.9002 (7) 13 0.13n

Table 5.1: Highest means of marginal probabilities during a run of both the cGA and
the UMDA. The runs are terminated after 108 fitness evaluations. We also show the
absolute largest gap and the relative largest gap related to n each algorithm can solve
with 100% success rate within 107 fitness evaluations. Numbers in the parenthesis
denote the iteration after which we turn off selection.

the gap. Clearly, the gap individuals have higher number of 1s among their bits and

therefore, the overall mean can grow bigger. However, what is interesting is that for

smaller λs, i.e. two, we see that the mean is even below the ratio n−k
n

. The reason

for that is because we only generate two offspring, the initial climb is not as efficient

as it is for larger values of λ. For λ > 2 we climb more efficiently and when we start

generating gap individuals, the mean is already higher than for smaller λs. Lastly, the

mean of the marginals is not the only factor that determines how far the algorithm

can jump. We can have a mean of exactly n−k
n

but there is k bits already very close

to zero. Clearly, it is complicated to find the solution in such case.

This finishes the conclusion and summary of the results that we obtained in our

analysis. All the experiments were performed in MATLAB and the code used to

examine all the EAs and EDAs is in Apendix.

58

References

[1] V. Hasenöhrl and A. Sutton. “On the Runtime Dynamics of the Compact Ge-

netic Algorithm on Jump Functions”. In: Genetic and Evolutionary Computa-

tion Conference. GECCO ’18. July 2018. doi: 10.1145/3205455.3205608.

url: https://doi.org/10.1145/3205455.3205608 (cit. on pp. 2, 26, 27, 31,

35, 56).

[2] D. E. Knuth. The art of computer programming. Vol. 1. 1997, pp. 75–79. isbn:

0-201-89683-4 (cit. on p. 10).

[3] R. Motwani and P. Raghavan. Randomized algorithms. Cambridge University

Press, Cambridge, 1995, pp. xiv+476. isbn: 0-521-47465-5. doi: 10 . 1017 /

CBO9780511814075. url: https://doi.org/10.1017/CBO9780511814075

(cit. on p. 10).

[4] L. Euler. De Progressionibus harmonicus observationes. 1735 (cit. on p. 11).

[5] T. Jansen. Analyzing evolutionary algorithms from the computer science per-

spective. Springer, 2013, pp. 7–29 (cit. on pp. 11, 12).

[6] T. Blickle and L. Thiele. “A Comparison of Selection Schemes Used in Evo-

lutionary Algorithms”. In: Evol. Comput. 4.4 (Dec. 1996), pp. 361–394. issn:

1063-6560. doi: 10.1162/evco.1996.4.4.361. url: http://dx.doi.org/10.

1162/evco.1996.4.4.361 (cit. on p. 12).

59

https://doi.org/10.1145/3205455.3205608
https://doi.org/10.1145/3205455.3205608
https://doi.org/10.1017/CBO9780511814075
https://doi.org/10.1017/CBO9780511814075
https://doi.org/10.1017/CBO9780511814075
https://doi.org/10.1162/evco.1996.4.4.361
http://dx.doi.org/10.1162/evco.1996.4.4.361
http://dx.doi.org/10.1162/evco.1996.4.4.361

[7] D. E. Goldberg and K. Deb. “A Comparative Analysis of Selection Schemes

Used in Genetic Algorithms”. In: vol. 1. Foundations of Genetic Algorithms. El-

sevier, 1991, pp. 69 –93. doi: https://doi.org/10.1016/B978-0-08-050684-

5.50008-2. url: http://www.sciencedirect.com/science/article/pii/

B9780080506845500082 (cit. on p. 12).

[8] B. Doerr and L. A. Goldberg. “Adaptive Drift Analysis”. In: CoRR abs/1108.0295

(2011). url: http://arxiv.org/abs/1108.0295 (cit. on p. 12).

[9] C. Witt. “Tight Bounds on the Optimization Time of a Randomized Search

Heuristic on Linear Functions”. In: Combinatorics, Probability and Computing

22.2 (2013), pp. 294–318. issn: 0963-5483. doi: 10.1017/S0963548312000600

(cit. on p. 12).

[10] J. F. Crow and M. Kimura. “Efficiency of truncation selection”. In: Proceedings

of the National Academy of Sciences 76.1 (1979), pp. 396–399. issn: 0027-8424.

doi: 10.1073/pnas.76.1.396. eprint: http://www.pnas.org/content/76/

1/396.full.pdf. url: http://www.pnas.org/content/76/1/396 (cit. on

p. 15).

[11] S. Droste, T. Jansen, and I. Wegener. “On the Analysis of the (1+1) Evo-

lutionary Algorithm”. In: Theor. Comput. Sci. 276.1-2 (Apr. 2002), pp. 51–

81. issn: 0304-3975. doi: 10.1016/S0304-3975(01)00182-7. url: https:

//doi.org/10.1016/S0304-3975(01)00182-7 (cit. on p. 15).

[12] T. Jansen and I. Wegener. “On the Choice of the Mutation Probability for the

(1+1) EA”. In: Parallel Problem Solving from Nature PPSN VI. Springer Berlin

Heidelberg, 2000, pp. 89–98. isbn: 978-3-540-45356-7 (cit. on p. 15).

60

https://doi.org/https://doi.org/10.1016/B978-0-08-050684-5.50008-2
https://doi.org/https://doi.org/10.1016/B978-0-08-050684-5.50008-2
http://www.sciencedirect.com/science/article/pii/B9780080506845500082
http://www.sciencedirect.com/science/article/pii/B9780080506845500082
http://arxiv.org/abs/1108.0295
https://doi.org/10.1017/S0963548312000600
https://doi.org/10.1073/pnas.76.1.396
http://www.pnas.org/content/76/1/396.full.pdf
http://www.pnas.org/content/76/1/396.full.pdf
http://www.pnas.org/content/76/1/396
https://doi.org/10.1016/S0304-3975(01)00182-7
https://doi.org/10.1016/S0304-3975(01)00182-7
https://doi.org/10.1016/S0304-3975(01)00182-7

[13] D. Sudholt. “How Crossover Speeds Up Building-Block Assembly in Genetic

Algorithms”. In: CoRR abs/1403.6600 (2014). eprint: 1403.6600. url: http:

//arxiv.org/abs/1403.6600 (cit. on p. 16).

[14] B. Doerr, C. Doerr, and F. Ebel. “Lessons from the black-box: Fast crossover-

based genetic algorithms”. In: (July 2013), pp. 781–788 (cit. on pp. 16–18).

[15] M. Pelikan, M. W. Hauschild, and F. G. Lobo. “Estimation of Distribution Al-

gorithms”. In: Springer Handbook of Computational Intelligence. 2015, pp. 899–

928. isbn: 978-3-662-43505-2. doi: 10.1007/978-3-662-43505-2_45. url:

https://doi.org/10.1007/978-3-662-43505-2_45 (cit. on p. 19).

[16] G. R. Harik, F. G. Lobo, and D. E. Goldberg. “The Compact Genetic Algo-

rithm”. In: Trans. Evol. Comp 3.4 (Nov. 1999), pp. 287–297. issn: 1089-778X.

doi: 10.1109/4235.797971. url: http://dx.doi.org/10.1109/4235.797971

(cit. on p. 19).

[17] H. Mühlenbein. “The Equation for Response to Selection and Its Use for Pre-

diction”. In: Evol. Comput. 5.3 (Sept. 1997), pp. 303–346. issn: 1063-6560. doi:

10.1162/evco.1997.5.3.303. url: http://dx.doi.org/10.1162/evco.

1997.5.3.303 (cit. on p. 19).

[18] S. Droste. “A rigorous analysis of the compact genetic algorithm for linear

functions”. In: Natural Computing 5.3 (2006), pp. 257–283. issn: 1572-9796. doi:

10.1007/s11047-006-9001-0. url: https://doi.org/10.1007/s11047-

006-9001-0 (cit. on p. 20).

[19] T. Friedrich, T. Kötzing, M. S. Krejca, and A. M. Sutton. “The Compact Ge-

netic Algorithm is Efficient Under Extreme Gaussian Noise”. In: IEEE Transac-

tions on Evolutionary Computation 21.3 (2017), pp. 477–490. issn: 1089-778X.

doi: 10.1109/TEVC.2016.2613739 (cit. on p. 21).

61

1403.6600
http://arxiv.org/abs/1403.6600
http://arxiv.org/abs/1403.6600
https://doi.org/10.1007/978-3-662-43505-2_45
https://doi.org/10.1007/978-3-662-43505-2_45
https://doi.org/10.1109/4235.797971
http://dx.doi.org/10.1109/4235.797971
https://doi.org/10.1162/evco.1997.5.3.303
http://dx.doi.org/10.1162/evco.1997.5.3.303
http://dx.doi.org/10.1162/evco.1997.5.3.303
https://doi.org/10.1007/s11047-006-9001-0
https://doi.org/10.1007/s11047-006-9001-0
https://doi.org/10.1007/s11047-006-9001-0
https://doi.org/10.1109/TEVC.2016.2613739

[20] C. Witt. “Upper Bounds on the Runtime of the Univariate Marginal Distribu-

tion Algorithm on Onemax”. In: Proceedings of the Genetic and Evolutionary

Computation Conference. GECCO ’17. ACM, 2017, pp. 1415–1422. isbn: 978-

1-4503-4920-8. doi: 10.1145/3071178.3071216. url: doi.acm.org/10.1145/

3071178.3071216 (cit. on pp. 21, 42).

[21] D.-C. Dang and P. K. Lehre. “Simplified Runtime Analysis of Estimation of

Distribution Algorithms”. In: Proceedings of the 2015 Annual Conference on

Genetic and Evolutionary Computation. GECCO ’15. ACM, 2015, pp. 513–

518. isbn: 978-1-4503-3472-3. doi: 10.1145/2739480.2754814. url: http:

//doi.acm.org/10.1145/2739480.2754814 (cit. on p. 21).

[22] M. S. Krejca and C. Witt. “Lower Bounds on the Run Time of the Univari-

ate Marginal Distribution Algorithm on OneMax”. In: Proceedings of the 14th

ACM/SIGEVO Conference on Foundations of Genetic Algorithms. FOGA ’17.

ACM, 2017, pp. 65–79. isbn: 978-1-4503-4651-1. doi: 10 . 1145 / 3040718 .

3040724. url: http://doi.acm.org/10.1145/3040718.3040724 (cit. on

p. 21).

[23] P. K. Lehre and P. T. H. Nguyen. “Improved Runtime Bounds for the Univariate

Marginal Distribution Algorithm via Anti-concentration”. In: Proceedings of the

Genetic and Evolutionary Computation Conference. GECCO ’17. ACM, 2017,

pp. 1383–1390. isbn: 978-1-4503-4920-8. doi: 10.1145/3071178.3071317. url:

http://doi.acm.org/10.1145/3071178.3071317 (cit. on p. 21).

[24] F. Neumann, D. Sudholt, and C. Witt. “A Few Ants Are Enough: ACO with

Iteration-best Update”. In: Proceedings of the 12th Annual Conference on Ge-

netic and Evolutionary Computation. GECCO ’10. ACM, 2010, pp. 63–70. isbn:

62

https://doi.org/10.1145/3071178.3071216
doi.acm.org/10.1145/3071178.3071216
doi.acm.org/10.1145/3071178.3071216
https://doi.org/10.1145/2739480.2754814
http://doi.acm.org/10.1145/2739480.2754814
http://doi.acm.org/10.1145/2739480.2754814
https://doi.org/10.1145/3040718.3040724
https://doi.org/10.1145/3040718.3040724
http://doi.acm.org/10.1145/3040718.3040724
https://doi.org/10.1145/3071178.3071317
http://doi.acm.org/10.1145/3071178.3071317

978-1-4503-0072-8. doi: 10.1145/1830483.1830493. url: http://doi.acm.

org/10.1145/1830483.1830493 (cit. on p. 26).

[25] B. Doerr and L. A. Goldberg. “Drift Analysis with Tail Bounds”. In: Parallel

Problem Solving from Nature, PPSN XI. Springer Berlin Heidelberg, 2010. isbn:

978-3-642-15844-5 (cit. on p. 33).

[26] D. Williams. Probability with Martingales. Cambridge mathematical textbooks.

Cambridge University Press, 1991. isbn: 9780521406055. url: https://books.

google.com/books?id=e9saZ0YSi-AC (cit. on p. 51).

[27] W. Hoeffding. “Probability Inequalities for Sums of Bounded Random Vari-

ables”. In: Journal of the American Statistical Association 58.301 (1963), pp. 13–

30. issn: 01621459 (cit. on pp. 53, 54).

63

https://doi.org/10.1145/1830483.1830493
http://doi.acm.org/10.1145/1830483.1830493
http://doi.acm.org/10.1145/1830483.1830493
https://books.google.com/books?id=e9saZ0YSi-AC
https://books.google.com/books?id=e9saZ0YSi-AC

A Appendix

The following is the MATLAB code used to run all the experiments.

A.1 Main function

1 function varargout = main(alg, fcn_vec, param, varargin)

2 %MAIN Function to run all implemented evolutionary algorithms with an

3 %option to set parameters through the input.

4 %

5 %Call the 'main ' function by: main(arg1, arg2, arg3, arg4)

6 %

7 % −−−−−−−−− INPUT ARGUMENTS: −−−−−−−−−−−

8 %arg 1 − integer

9 % Choose an algorihtm you want to run

10 % 1 − RLS

11 % 2 − (mu + 1) EA

12 % 3 − (mu + 1) GA

13 % 4 − (1 + lambda,lambda) GA

14 % 5 − cGA

15 % 6 − UMDA

16 % 7 − UMDA selection free

17 %

18 %arg 2 − vector

19 % Choose what fitness function you want to use (must be a vector)

20 % [1] − OneMax

21 % [2, k] − Jump, where k is the length of the gap

22 %

23 %arg 3 − vector

24 % List of parameters specific for the chosen algorithm (vector)

25 % RLS − [n]

26 % (mu + 1) EA − [n, mu, mutation probability]

64

27 % (mu + 1) GA − [n, mu, mutation probability]

28 % (1 + lambda,lambda) GA − [n, lambda]

29 % cGA − [n, lambda, 1/K]

30 % UMDA − [n, lambda, mu]

31 %

32 %arg 4 − integer

33 % varargin − not mandatory input

34 % sets a limit to maximum fitness evaluations

35 %

36 % −−−−−−−−− OUTPUT ARGUMENTS: −−−−−−−−−−−

37 %Algorithms 1−4 have one output: out1 − integer

38 % out1 − number of fitness evaluations

39 %Algortihms 5−7 have two outputs: out1 − integer, out2 − matrix

40 % out1 − number of fitness evaluations

41 % out2 − marginal probabilities

42 %

43 %Example − [t, freq] = main(5, [2, 10], [100, 5, 1/100], 10ˆ7);

44 % This runs the cGA with n = 100, lambda = 5, K = 100 on jump_20 and

45 % if the solution is not found within 10ˆ7 fitness evaluations then

46 % the algorithm is terminated

47

48 switch alg

49 case 1

50 if nargin == 3

51 t = hillclimber(fcn_vec, param);

52 else

53 t = hillclimber(fcn_vec, param, varargin{1});

54 end

55 varargout{1} = t;

56 case 2

57 if nargin == 3

58 t = EA(fcn_vec, param);

59 else

60 t = EA(fcn_vec, param, varargin{1});

61 end

62 varargout{1} = t;

63 case 3

64 if nargin == 3

65 t = GA(fcn_vec, param);

65

66 else

67 t = GA(fcn_vec, param, varargin{1});

68 end

69 varargout{1} = t;

70 case 4

71 if nargin == 3

72 t = lambdalambdaGA(fcn_vec, param);

73 else

74 t = lambdalambdaGA(fcn_vec, param, varargin{1});

75 end

76 varargout{1} = t;

77 case 5

78 if nargin == 3

79 [t, Freq] = cGA(fcn_vec, param);

80 else

81 [t, Freq] = cGA(fcn_vec, param, varargin{1});

82 end

83 varargout{1} = t;

84 varargout{2} = Freq;

85 case 6

86 if nargin == 3

87 [t, Freq] = UMDA(fcn_vec, param);

88 else

89 [t, Freq] = UMDA(fcn_vec, param, varargin{1});

90 end

91 varargout{1} = t;

92 varargout{2} = Freq;

93 case 7

94 if nargin == 3

95 [t, Freq] = UMDA_sel(fcn_vec, param);

96 else

97 [t, Freq] = UMDA_sel(fcn_vec, param, varargin{1});

98 end

99 varargout{1} = t;

100 varargout{2} = Freq;

101 otherwise

102 fprintf('Invalid algorithm choice. ')

103 end

104

66

105 end

Listing A.1: Main function.

A.2 Help functions

1 function Xfit = onemax(N, ˜)

2 %ONEMAX onemax fitness function

3

4 Xfit = 0:N;

5

6 end

Listing A.2: Generate fitness values for the OneMaxfitness function.

1 function [Xfit] = jumpfunction(N, k)

2 %JUMPFUNCTION jump_k fitness function

3

4 Xfit = 0:N;

5

6 onemax = Xfit <= N − k | Xfit == N;

7 gap = Xfit > N − k & Xfit < N;

8 Xfit(onemax) = k + Xfit(onemax);

9 Xfit(gap) = N − Xfit(gap);

10

11 end

Listing A.3: Generate fitness values for the Jumpk fitness function.

1 function [X] = initializepopulation(N, mu)

2 %SELECTION u.a.r chooses a bit string from {0,1}ˆn

3

4 X = randi(2, mu, N) − 1;

5

6 end

Listing A.4: Initialize a population of µ individuals of length n.

67

1 function [val] = bino(n, p)

2 %BINO Generates a random number from binomial distribution

3

4 val = random('bino ', n, p);

5

6 end

Listing A.5: Generates a random number from Binomial distribution.

A.3 Algorithms

1 function t = hillclimber(fcn_vec, param, varargin)

2 % Random local search

3

4 % stopping criterion

5 T = Inf(1);

6 if nargin == 3

7 T = varargin{1};

8 end

9

10 % param

11 N = param(1); % bitstring length

12

13 % init

14 k = 0;

15 f = onemax(N);

16 if length(fcn_vec) == 2

17 k = fcn_vec(2);

18 f = jumpfunction(N, k);

19 end

20 t = 0;

21 x = initializepopulation(N, 1);

22 xfit = f(sum(x) + 1);

23

24 while xfit ˜= N + k

25 e = randi(N);

68

26 if x(e) == 0

27 x(e) = 1;

28 xfit = f(sum(x) + 1);

29 end

30

31 t = t + 1;

32 if t > T

33 t = −1;

34 break;

35 end

36 end

37

38 end

Listing A.6: Random Local Search

1 function t = EA(fcn_vec, param, varargin)

2 % (mu + 1) EA

3

4 % stopping criterion

5 T = Inf(1);

6 if nargin == 3

7 T = varargin{1};

8 end

9

10 % param

11 N = param(1); % bitstring length

12 mu = param(2); % population size

13 p = param(3); % mutation probability

14

15 % init

16 k = 0;

17 f = onemax(N);

18 if length(fcn_vec) == 2

19 k = fcn_vec(2);

20 f = jumpfunction(N, k);

21 end

22 t = mu;

23 X = initializepopulation(N, mu);

69

24 Xfit = f(sum(X, 2) + 1);

25 Xmax = max(Xfit);

26

27 while Xmax ˜= N + k

28 y = mod((rand([1, N]) <= p) + X(randi(mu), :), 2);

29 yfit = f(sum(y) + 1);

30 [˜, index] = min(Xfit);

31 if Xfit(index) <= yfit

32 X(index, :) = y;

33 Xfit(index) = yfit;

34 end

35

36 if yfit > Xmax

37 Xmax = yfit;

38 end

39

40 t = t + 1;

41 if t > T

42 t = −1;

43 break;

44 end

45 end

46

47 end

Listing A.7: (µ + 1) EA

1 function t = GA(fcn_vec, param, varargin)

2 % (mu + 1) GA

3

4 % stopping criterion

5 T = Inf(1);

6 if nargin == 3

7 T = varargin{1};

8 end

9

10 % param

11 N = param(1); % bitstring length

12 mu = param(2); % population size

70

13 p = param(3); % mutation probability

14

15 % init

16 k = 0;

17 f = onemax(N);

18 if length(fcn_vec) == 2

19 k = fcn_vec(2);

20 f = jumpfunction(N, k);

21 end

22 t = mu;

23 pc = 1/2;

24 X = initializepopulation(N, mu);

25 Xfit = f(sum(X, 2) + 1);

26 Xmax = max(Xfit);

27

28 while Xmax ˜= N + k

29 % crossover

30 g = rand([1, N]);

31 p1 = randi(mu);

32 p2 = randi(mu);

33 while p1 == p2

34 p2 = randi(mu);

35 end

36

37 y = X(p1, :);

38 y(g >= pc) = X(p2, g >= pc);

39

40 % mutation

41 y = mod((rand([1, N]) <= p) + y, 2);

42 yfit = f(sum(y) + 1);

43 [˜, index] = min(Xfit);

44 if Xfit(index) <= yfit

45 X(index, :) = y;

46 Xfit(index) = yfit;

47 end

48

49 if yfit > Xmax

50 Xmax = yfit;

51 end

71

52

53 t = t + 1;

54 if t > T

55 t = −1;

56 break;

57 end

58 end

59

60 end

Listing A.8: (µ + 1) GA

1 function t = lambdalambdaGA(fcn_vec, param, varargin)

2 % (1+(lambda,lambda)) GA

3

4 % stopping criterion

5 T = Inf(1);

6 if nargin == 3

7 T = varargin{1};

8 end

9

10 % param

11 N = param(1); % bitstring length

12 lambda = param(2);

13

14 % init

15 kgap = 0;

16 f = onemax(N);

17 if length(fcn_vec) == 2

18 kgap = fcn_vec(2);

19 f = jumpfunction(N, kgap);

20 end

21 t = 1;

22 k = lambda;

23 p = k/N;

24 c = 1/k;

25 x = initializepopulation(N, 1);

26 xfit = f(sum(x) + 1);

27

72

28 while xfit ˜= N + kgap

29 X = zeros(lambda, N);

30 l = bino(N, p);

31 for i = 1:lambda

32 mut = randperm(N, l);

33 y = x;

34 y(mut) = mod(y(mut)+1, 2);

35 X(i, :) = y;

36 end

37

38 Xfit = f(sum(X, 2) + 1);

39 [˜, index] = max(Xfit);

40 xprime = X(index, :);

41 t = t + lambda;

42

43 for i = 1:lambda

44 g = rand([1, N]);

45 y = x;

46 y(g < c) = xprime(g < c);

47 X(i, :) = y;

48 end

49

50 Xfit = f(sum(X, 2) + 1);

51 [˜, index] = max(Xfit);

52 xprime = X(index, :);

53 xprimefit = Xfit(index);

54

55 if xprimefit >= xfit

56 x = xprime;

57 xfit = xprimefit;

58 end

59

60 t = t + lambda;

61 if t > T

62 t = −1;

63 break;

64 end

65 end

66

73

67 end

Listing A.9: (1 + λ, λ) GA

1 function [t, Freq] = cGA(fcn_vec, param, varargin)

2 % cGA

3

4 % stopping criterion

5 T = Inf(1);

6 if nargin == 3

7 T = varargin{1};

8 end

9

10 % param

11 N = param(1); % bitstring length

12 lambda = param(2);

13 K = param(3);

14

15 % init

16 k = 0;

17 f = onemax(N);

18 if length(fcn_vec) == 2

19 k = fcn_vec(2);

20 f = jumpfunction(N, k);

21 end

22 t = 0;

23 xfit = 0;

24 p(1, 1:N) = 1/2;

25 Freq = zeros(10ˆ6, N);

26 Freq(1, :) = p;

27 counter = [1, 1];

28

29 while xfit ˜= N + k

30 % stores every 10ˆ2 vector of marginal probabilities for

31 % efficiency reasons (can be changed as desired)

32 if mod(counter(1), 10ˆ2) == 1

33 Freq(counter(2), :) = p;

34 counter(2) = counter(2) + 1;

35 end

74

36 P = rand([lambda, N]) <= p;

37 Pfit = f(sum(P, 2) + 1);

38 if lambda == 2

39 x = P(1, :);

40 xfit = Pfit(1);

41 y = P(2, :);

42 yfit = Pfit(2);

43 else

44 [˜, I] = sort(Pfit, 'descend ');

45 x = P(I(1), :);

46 xfit = Pfit(I(1));

47 y = P(I(2), :);

48 yfit = Pfit(I(2));

49 end

50

51 if yfit > xfit

52 temp = x;

53 x = y;

54 y = temp;

55 xfit = yfit;

56 end

57

58 high = x > y;

59 low = x < y;

60 p(high) = p(high) + K;

61 p(low) = p(low) − K;

62 bounds = true;

63 if bounds

64 p(p < 1/N) = 1/N;

65 p(p > 1 − 1/N) = 1 − 1/N;

66 end

67

68 t = t + lambda;

69 counter(1) = counter(1) + 1;

70 if t > T

71 t = −1;

72 break;

73 end

74 if all(p >= 1 − 1/N | p <= 1/N)

75

75 t = −2;

76 break;

77 end

78 end

79

80 Freq = Freq(1:counter(2) − 1, :);

81 end

Listing A.10: cGAλ

1 function [t, Freq] = UMDA(fcn_vec, param, varargin)

2 % UMDA

3

4 % stopping criteion

5 T = Inf(1);

6 if nargin == 3

7 T = varargin{1};

8 end

9

10 % param

11 N = param(1); % bitstring length

12 lambda = param(2); % offspring size

13 mu = param(3); % number of best offspring to choose

14

15 % init

16 k = 0;

17 f = onemax(N);

18 if length(fcn_vec) == 2

19 k = fcn_vec(2);

20 f = jumpfunction(N, k);

21 end

22 t = 0;

23 xfit = 0;

24 p(1, 1:N) = 1/2;

25 Freq = zeros(100000, N);

26 Freq(1, :) = p;

27 counter = 1;

28

29 while xfit ˜= N + k

76

30 Freq(counter, :) = p;

31 P = rand([lambda, N]) <= p;

32 Pfit = f(sum(P, 2) + 1);

33 xfit = max(Pfit);

34

35 [˜, I] = sort(Pfit, 'descend ');

36 update = sum(P(I(1:mu), :));

37 update = update / mu;

38

39 bounds = true;

40 if bounds

41 low = update < 1/N;

42 high = update > 1 − 1/N;

43 p(low) = 1/N;

44 p(high) = 1 − 1/N;

45 rest = ˜(low | high);

46 p(rest) = update(rest);

47 else

48 p(1, :) = update(1, :);

49 end

50

51 t = t + lambda;

52 counter = counter + 1;

53 Freq(counter, :) = p;

54 if t > T

55 t = −1;

56 break;

57 end

58 if all(p >= 1 − 1/N | p <= 1/N)

59 t = −2;

60 break;

61 end

62 end

63

64 Freq = Freq(1:counter − 1, :);

65 end

Listing A.11: UMDA

77

1 function [t, Freq] = UMDA_sel(fcn_vec, param, varargin)

2 % UMDA selection free

3

4 % stopping criterion

5 T = Inf(1);

6 if nargin == 3

7 T = varargin{1};

8 end

9

10 % param

11 N = param(1); % bitstring length

12 lambda = param(2); % offspring size

13 mu = param(3); % number of best offspring to choose

14 sel_off = param(4); % time to turn off selection

15

16 % init

17 k = 0;

18 f = onemax(N);

19 if length(fcn_vec) == 2

20 k = fcn_vec(2);

21 f = jumpfunction(N, k);

22 end

23 t = 0;

24 xfit = 0;

25 p(1, 1:N) = 1/2;

26 Freq = zeros(100000, N);

27 Freq(1, :) = p;

28 counter = 1;

29

30 while xfit ˜= N + k

31 Freq(counter, :) = p;

32 P = rand([lambda, N]) <= p;

33 Pfit = f(sum(P, 2) + 1);

34 xfit = max(Pfit);

35

36 if counter > sel_off

37 update = sum(P) / lambda;

38 else

39 [˜, I] = sort(Pfit, 'descend ');

78

40 update = sum(P(I(1:mu), :));

41 update = update / mu;

42 end

43

44 bounds = true;

45 if bounds

46 low = update < 1/N;

47 high = update > 1 − 1/N;

48 p(low) = 1/N;

49 p(high) = 1 − 1/N;

50 rest = ˜(low | high);

51 p(rest) = update(rest);

52 else

53 p(1, :) = update(1, :);

54 end

55

56 t = t + lambda;

57 counter = counter + 1;

58 if t > T

59 t = −1;

60 break;

61 end

62 if all(p >= 1 − 1/N | p <= 1/N)

63 t = −2;

64 break;

65 end

66 end

67

68 Freq = Freq(1:counter − 1, :);

69 end

Listing A.12: UMDAsel

79

	Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Evolutionary and Genetic Algorithms
	Modules of Evolutionary Algorithms
	Examples of Evolutionary Algorithms

	Estimation of Distribution Algorithms
	Compact Genetic Algorithm
	Univariate Marginal Distribution Algorithm

	The Jump fitness function

	Analysis of the Compact Genetic Algorithm
	Analysis of the Univariate Marginal Distribution Algorithm
	Selection-free Univariate Marginal Distribution Algorithm

	Conclusion
	References
	Appendix
	Main function
	Help functions
	Algorithms

