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Co-Supervisors:  Andrew D. Ellington, George Georgiou 

 

Adaptive immunity is the foundation of recognition and protection against a 

diverse array of pathogens. The humoral arm of adaptive immunity whose most 

significant effector mechanism relies on antibodies is critical for protection against many 

viral and bacterial pathogens.  Additionally, antibodies are extremely important for 

clinical medicine either as therapeutics or for detection purposes. As a result, there is 

great interest in the development of technologies for isolating therapeutically or 

diagnostically useful antibodies from immunized animals or from patients. 

In this work I describe several high throughput approaches for the “mining” of the 

mammalian adaptive antibody response for the purpose of isolating antibodies with high 

affinity and selectivity towards desired antigens. The first technology capitalizes on the 

fact that the antibody repertoire encoded by B cells in the draining lymph node from the 

immunization site is highly enriched for antibodies specific to the immunogen. The 

second technology takes advantage of repertoire analysis by next-generation sequencing 

and yeast display for antibody discovery. The third technology integrates high-throughput 

VH:VL pairing with yeast surface display to enable rapid, high-throughput screening of all 

native antibodies in the repertoire. These three technologies have been used to identify a 
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large panel of antibodies against several different pathogens, including Ebola virus, ricin, 

influenza virus, and HIV-1 virus.  

These technologies will continue to play a critical role in adaptive immunity 

exploration for new therapeutics discovery, and in characterization of immune responses 

elicited by vaccination or natural infection to guide design of more effective vaccines. 
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Chapter 1: Introduction 

The immune system is specialized to recognize and fight against various arrays of 

exogenous and self pathogens (in autoimmunity). As the first defense, innate immunity, 

including complement pathways, phagocytosis by neutrophils, macrophages, and 

dendritic cells, and cytotoxicity by natural killer cells (NK) and eosinophils, helps to 

clear most common pathogens directly. However, when innate immunity fails (Kumar et 

al., 2011), adaptive immune responses that are tailored to recognize molecular features of 

the pathogen that is posing a challenge to the organism takes over. Adaptive immunity 

provides the basis for recognition of, and protection from, numerous pathogenic cells and 

viruses. There are two branches of adaptive immunity: B cell based humoral immunity 

and T cell based cellular immunity (Boehm, 2011).  The effector arm of B cell immunity 

is mediated by the production of antibodies, while T cells destroy cells with intracellular 

pathogens and help with B cell activation. 

ANTIBODY STRUCTURES 

Antibodies are a class of protein molecules secreted by B cells. They can not only 

recognize pathogens, but also opsonize them to initiate pathogen clearance by other 

effector cells. Hence, antibodies are very important effector molecules that protect host 

organisms from pathogenesis, and they connect adaptive immunity with innate immunity. 

The modular structures of antibodies are indispensable for their functions, which also 

make them convenient to manipulate. This modularity also forms part of the foundation 

of antibody discovery and engineering. 

Antibodies are ‘Y’ shaped symmetric homodimers of heterodimers, and each 

heterodimer is made of 1 heavy chain and 1 light chain. In humans, there are 5 different 

kinds of heavy chains (isotypes), IgG, IgA, IgE, IgM, and IgD, , which are encoded by 
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constant γ (including 4 subtypes, γ1, γ2, γ3, and γ4, with γ1 being the most abundant), α 

(including 2 subtypes, α1 and α2), ε, μ, and δ regions, respectively (Fig. 1-1). There are 

also 2 different kinds of light chains, kappa (κ) and lambda (λ), which can both pair with 

heavy chains. The heavy chain has 4 immunoglobulin superfamily (IgSF) domains (5 for 

IgM and IgE), namely VH (variable heavy), CH1 (constant heavy), CH2, and CH3 (CH4 for 

IgM and IgE), while the light chain has 2 IgSF domains, VL (variable light) and CL 

(constant light). Each IgSF domain is a 70-110 amino acid (aa) long, sandwich-like 

structure formed by antiparallel β-sheets that have a hydrophobic inner core and 

conserved cysteines that form disulfide bonds. Each heterodimer of 1 heavy chain and 1 

light chain is also connected by 1 conserved disulfide bond between the CH1 and CL 

domains, The two heterodimers are also connected by conserved disulfide bonds in the 

hinge region. IgG, IgD, and IgE antibodies are monomeric, while IgM are pentameric, 

and IgA are dimeric or monomeric. The multimerization of IgM and IgA is mediated by a 

small polypeptide called the J chain. Multimerization can significantly enhance the 

apparent affinity of IgM or IgA and also facilitates transport, especially of IgA across 

epithelial cells for secretion to mucosal surfaces. 

The entire antibody molecule can be separated into 3 parts: 2 antigen binding 

fragments (Fab) and 1 crystallizable fragment (Fc). The Fab fragment binds antigen with 

contributions from both the VH and VL, while the Fc fragment binds to Fc receptors 

expressed on different cells. This interaction is very important for antibody effector 

functions, extending the antibody half-life, and linking innate immunity to adaptive 

immunity. Different antibody isotypes have diverse effector functions. IgG antibodies 

usually elicit cytotoxicity and phagocytosis by binding to different Fcγ receptors 

expressed on various innate immune cells (including natural killer cells (NK), 

neutrophils, macrophages, and dendritic cells), IgE antibodies induce inflammation by 
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binding to Fcε receptors expressed on mast cells, while IgA antibodies elicit phagocytosis 

by binding to Fcα receptors expressed on certain cellular subsets (including neutrophils, 

macrophages, and Kuppfer cells). Another important Fc receptor is the neonatal Fc 

receptor (FcRn), which only IgG can bind to. The binding of IgG to FcRn provides the 

molecular basis for the long half-life of IgG in the serum, which explains why most 

therapeutic antibodies are of IgG isotype. Different FcRs have cytoplasmic domains that 

contain different signaling motifs, either activating immunoreceptor tyrosine-based 

activation motifs (ITAMs) or inhibiting immunoreceptor tyrosine-based inhibitory motifs 

(ITIMs), which determine downstream signaling pathways after antibody binding to the 

FcR.  Notably, the Asn-Ser-Thr motif in the CH2 domain where Asn is glycosylated is 

indispensable for FcR binding, and the glycan composition has large effects on FcR 

specificity and affinity. 

Previous research has shown that there are 3 regions within the VH and VL 

domains that show very high variability, namely heavy chain complementary determining 

regions (CDRH) 1, 2, 3, and light chain CDRL 1, 2, 3 (Johnson and Wu, 2004) (Fig. 1-2). 

These 6 CDRs are supported by 4 framework regions (FR) on each chain, and they 

determine much of the specificity and affinity of the antibody to the antigen by forming 

the main contact interface between the two. This provides the structural basis of antibody 

recognition of diverse antigens. Within these 6 CDRs, CDRH3 is the most variable and is 

typically thought to contribute the most to antigen binding. It is noteworthy to mention 

that these 6 CDRs, especially CDRH3, are not only variable in the amino acid 

compositions, but also in their lengths. The discovery of HIV-1 broadly neutralizing 

antibodies (bnAbs) that have longer than 30 aa CDRH3s shows the effectiveness of long 

CDRs to penetrate viral glycan shields to target conserved epitopes (Doria-Rose et al., 

2014). 
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On the other hand, whether such a diverse amino acid composition in CDRs is 

essential for binding is under investigation, as previous research has shown that high-

affinity binding to some antigens can still be achieved with just Tyr and Ser in CDRs 

(Fellouse et al., 2004; Persson et al., 2013). However, a more diverse aa composition 

provides a larger sequence space for the immune system to search through, which ensures 

a higher success rate to identify antibodies specific for an antigen. 

As a result of the large size of full-length antibodies, several different formats of 

small antibody fragments have been engineered. The most common format is that of the 

single chain fragment variable (scFv), which is a VH linked to a VL with a flexible linker, 

usually (Gly4Ser)3, and the other common format is that of the Fab (Fig. 1-3). These 

fragments can be easily functionally expressed in E. coli and yeast with high yields. 

However, the reconstitution of a scFv as an IgG antibody after the identification of 

antigen-specific clones is usually necessary, and sometimes this may result in a loss of 

binding. It is noteworthy to mention that some species, including lamas, produce 

antibodies that only have heavy chains, from which nanobodies (VH) have been designed 

(Muyldermans, 2013). Nanobodies are the smallest antigen binding fragment. 

Since the Fc fragment is not involved in antigen binding, only Fab fragments need 

to be engineered to select for antibodies that bind different antigens. Furthermore, as 

CDRs contribute the most to antigen binding, the antibody selection procedure can be 

focused more specifically on CDR engineering. 

Finally, the modular structure of antibodies also inspired the design and 

engineering of novel antibody formats, with the most well-known one being that of a 

bispecific antibody, which has two different Fab fragments in one single antibody 

molecule (Chan and Carter, 2010). Several different techniques have been developed for 

bispecific antibody production, including Fab arm exchange (Labrijn et al., 2013), and 
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the introduction of mutations to favor heterodimer formation and prevent homodimer 

formation (Lewis et al., 2014). Spiess et al. recently demonstrated co-culture of E. coli 

strains that express two half-antibodies (1 heavy chain and 1 light chain), and purification 

and combination of the half-antibodies to make the entire bispecific antibodies (Spiess et 

al., 2013). The US Food and Drug Administration (FDA) approval of the bispecific 

Blinatumomab (CD19 and CD3 targeting) demonstrated the therapeutic potential of 

bispecific antibodies and encouraged more effort towards their development (Goebeler et 

al., 2016). 

Other formats of antibodies include the minibody, diabody, tetrabody, and the 

IgG-scFv (Chan and Carter, 2010). However, the therapeutic potential of these antibody 

formats are yet to be tested, and a large potential problem for in vivo use of these 

antibody formats is their immunogenicity, which is a result of their ‘irregular’ structures 

compared to that of normal antibodies. 

IMMUNOGLOBULIN LOCI AND B CELL DEVELOPMENT 

Based on the well-known International Immunogenetics Information System 

(IMGT) database (Giudicelli and Lefranc, 1999; Giudicelli et al., 2006; Lefranc et al., 

2009), there are 56 V (variable), 23 D (diversity), and 6 J (junction) segments for the VH 

domain, 38 V and 5 J for Vκ domain, and 35 V and 7 J for Vλ domain in the human 

genome. These genes are located on chromosomes 14 (14q32.33), 2 (2p11.2), and 22 

(22q11.2), respectively. During the development of B cells, these genes need to be joined 

together to form productive VH and VL domains. 

The unique developmental process of B cells provides the foundation for the 

generation of a diverse repertoire of antibodies (Dudley et al., 2005; Li et al., 2004; Nadel 
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and Feeney, 1997; Tonegawa, 1983). There are two different sequence diversification 

mechanisms, somatic recombination and somatic hypermutation. 

The first stage of B cell development occurs in the bone marrow and ends with 

the formation of IgM+ IgD+ naïve B cells. First, pro-B cells are derived from common 

lymphoid progenitors (CLP). During this process D and J genes are recombined first, 

followed by V genes recombining with DJ segments. After VDJ recombination, pre-B 

cell receptors (BCR) composed with rearranged productive heavy chain paired with a 

surrogate light chain consisting of VpreB and λ5 will be expressed on the surface of large 

pre-B cells. As a result of errors in gene rearrangement, cells with an unproductive pre-

BCR will become apoptotic and be eliminated. Hence, this serves as the first checkpoint 

for B cell development. 

After the large pre-B cell stage, V and J alleles for the light chain are recombined 

at the small pre-B cell stage. Productive VJ rearrangement results in the successful 

generation of a BCR , which replaces the pre-BCR on the surface. At this stage, only IgM 

is expressed on immature B cell surface. These IgM+ immature B cells are tested for auto-

reactivity, which serves as the second checkpoint for B cell development. Auto-reactive 

B cells can undergo either receptor editing (further gene rearrangement of light chain in a 

B cell that already has a productive light chain gene rearrangement) to have another 

chance to generate another BCR that is not auto-reactive, or become apoptotic and are 

eliminated. After this, the immature B cells start to express IgD on the surface and 

migrate to secondary lymphoid organs (lymph nodes, spleen). The IgM+IgD+ cells are 

now mature naïve B cells. 

Somatic recombination of V(D)J alleles is catalyzed by the recombination-

activating gene (RAG) complex composed of RAG-1 and RAG-2, the Ku70:80 complex, 

DNA-dependent protein kinase (DNA-PK), the Artemis complex, DNA ligase IV, and 
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terminal deoxynucleotidyl transferase (TdT). The RAG complex first recognizes the 

recombination signal sequences (RSS) that flank V(D)J alleles and brings them in 

proximity to excise parts of the chromosome. The to-be-joined segments with 

palindromic overhangs (P nucleotides) are then brought together, where TdT may then 

introduce non-templated nucleotides (N nucleotides). After that, the other complexes 

correct and complete the complementary strand, which leaves behind palindromic 

sequences. As a result of N/P nucleotide addition, the theoretical diversity of an antibody 

repertoire is estimated to be more than 1012. However, some studies using next-generation 

sequencing (NGS) showed that the actual diversity is only about 107 (Arnaout et al., 

2011; Boyd et al., 2009; Glanville et al., 2009). N/P nucleotides addition results in higher 

diversity in the CDRH3 and CDRL3 than that expected from V(D)J recombination only. 

Recent studies have shown that V(D)J recombination can also occur with other 

genes (Tan et al., 2016).  Tan et al. isolated broadly reactive malaria antibodies from two 

P. falciparum-negative donors, and found these antibodies have unusually long CDRH3s 

that are recombined not only from V(D)J alleles on chromosome 14, but also with 

LAIR1, an IgSF inhibitory receptor on chromosome 19 (Tan et al., 2016). The 

mechanism for this rare recombination event is still under investigation, but the genome 

instability of B cells after malaria infection may contribute to recombination of V(D)J 

and LAIR1 on different chromosomes (Robbiani et al., 2015). 

Before migration to secondary lymphoid organs, some mature naïve B cells 

develop into B-1 cells, which reside in pleural cavities and the peritoneum. B-1 cells 

produce natural antibodies, which usually do not undergo somatic hypermutation, and 

unlike B-2 cells that further develop in secondary lymphoid organs, they don’t need T 

cell help. Natural antibodies can usually only protect from pathogens with repeated 

molecular patterns (for example, phospholipids and carbohydrates). In contrast, B-2 cells 
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need T cell help for activation. In secondary lymphoid organs, these B cells reside in the 

follicles, and once activated through the binding to cognate antigens by their BCRs, they 

rapidly proliferate and differentiate into plasmablasts, and eventually short-lived plasma 

cells, both of which can secrete antibodies. A portion of activated B cells undergo 

germinal center reactions, during which they affinity mature their BCR for cognate 

antigens. In germinal centers, B cells travel back and forth between a light zone and dark 

zone. In the light zone, B cells with distinct BCRs that have different affinities to cognate 

antigens compete for the antigens, as well as for follicular dendritic cell and follicular T 

cell help. Those B cells with high affinities to antigens are then selected and stimulated. 

These stimulated B cells travel to dark zone and proliferate there. During proliferation, 

activation-induced cytidine deaminase introduces random mutations into the VH and VL 

domains. These B cells with mutated BCR sequences then travel back to the light zone, 

where a small portion of them that have beneficial affinity-improving mutations can get 

further help. Then they travel back again to dark zone to proliferate. The repeated cycling 

of B cells between the light zone and dark zone leads to BCR affinity maturation. 

Somatic hypermutation is not only the basis for the secondary diversification of antibody 

repertoires, but also controls antibody isotype switching (class-switch recombination). 

Perhaps the most significant example of somatic hypermutation is the 

identification of heavily mutated HIV-1 bnAbs (Corti and Lanzavecchia, 2013). The 

selection pressure that the constantly mutating HIV-1 virus exerts on the immune system, 

especially on B cells, forces them to constantly refine their BCR affinity and specificity. 

Different lineages of bnAbs that target different vulnerable sites on HIV-1 envelopes 

have been isolated after a long period of infection (usually several years) but not after a 

short time (Corti and Lanzavecchia, 2013; Doria-Rose et al., 2014; Liao et al., 2013). A 

large number of these HIV-1 bnAbs have more than 20% amino acid divergence from the 
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germline sequence. Specifically, the CD4 binding site targeting bnAb VRC01 has more 

than a 35% amino acid divergence (Wu et al., 2010). The long period of time required for 

bnAb generation and the high levels of somatic hypermutation indicate the importance of 

a high mutation load in the generation of bnAbs. 

Affinity-matured B cells can differentiate into either memory B cells, or 

plasmablasts. Memory B cells are usually long lived, and upon subsequent cognate 

antigen stimulation, they can either differentiate into plasmablasts and rapidly start 

antibody secretion, or undergo further affinity maturation in germinal centers. However, 

plasmablasts are short lived, but a fraction of them can home to specific niches in the 

bone marrow, where they become long-lived plasma cells, and can persist for up to 

several decades (Amanna et al., 2007; Höfer et al., 2006; Slifka et al., 1998). 

A detailed understanding of B cell development and adaptive immune responses 

constitutes the foundation of antibody repertoire characterization and antibody discovery. 

CHARACTERIZATION OF ANTIBODY REPERTOIRES 

As a result of somatic recombination and hypermutation, a diverse antibody 

repertoire is produced after antigenic challenge, thus making characterization of such a 

diverse repertoire a formidable task. Much effort has been made to advance techniques 

for antibody repertoire characterization, both at the cellular (antibody transcripts) level 

and at the serological (antibody proteins) level (Calis and Rosenberg, 2014; Corti et al., 

2011; Huang et al., 2012, 2014; Lavinder et al., 2014; Liao et al., 2013; Scheid et al., 

2009, 2011; Walker et al., 2009, 2011; Wine et al., 2013; Wrammert et al., 2008; Wu et 

al., 2010; Zhu et al., 2013a, 2013b). 
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Cellular antibody repertoire analysis 

Single-cell RT-PCR 

For the analysis of antibody transcripts, the single-cell reverse transcription 

polymerase chain reaction (RT-PCR) has been most widely used since its development 

(Wardemann et al., 2003). B cells from different sources (for example, from peripheral 

blood mononuclear cells (PBMCs) when analyzing human antibody repertoires, or from 

secondary lymphoid organs (lymph nodes and spleens) when analyzing mouse antibody 

repertoires) are first isolated using fluorescence activated cell sorting (FACS) and sorted 

into multi-well plates, with one cell in each well. Isolated single cells are lysed in situ, 

and RT-PCR is performed to amplify the VH and VL from single cells separately. The 

cognate VH:VL pairs from single B cells are sequenced, cloned, expressed and assayed. 

Wardemann et al. first used single-cell RT-PCR to investigate the origin of auto-

reactive B cells in human bone marrow and the mechanism for their elimination 

(Wardemann et al., 2003). Since cloning, expressing, and testing many native VH:VL pairs 

from a large number of B cells is a laborious and expensive task, different modifications 

have been made at the B cell isolation step to minimize the numbers of B cells that need 

to be analyzed.  

As a result of the ease for B cell sorting using FACS, antigen-specific sorting 

technologies have been developed to isolate B cells of interest. Wu et al. demonstrated 

the isolation of B cells that target CD4 binding site in HIV-1 virus (Wu et al., 2010). 

They computationally designed an HIV-1 envelope probe that has all other epitopes 

substituted with those from SIV but an intact CD4 binding site, and a CD4 binding site 

knockout HIV-1 envelope probe, then fished out B cells that showed binding to the 

former but not the latter probe. From these B cells, they isolated the most potent HIV-1 

bnAbs to date by singe-cell RT-PCR. Similar antigen-specific sorting (with single-cell 
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RT-PCR) approaches have been used to isolate antibodies targeting rotavirus (Di Niro et 

al., 2010), transglutaminase-2 (Di Niro et al., 2012), and influenza virus (Whittle et al., 

2014).  

Alternatively, Epstein-Barr Virus (EBV) mediated B cell immortalization has 

been used to interrogate a large number of B cells to identify those secreting antigen-

specific antibodies (Traggiai et al., 2004). Compared to antigen-specific B cell sorting, B 

cell immortalization enables the functional characterization of antibodies (for example, 

neutralization) rather than just binding. Traggiai et al. first reported the improvement of 

EBV immortalization by Toll-like receptor 9 (TLR9) stimulation with CpG DNA or other 

polyclonal stimulants and the subsequent isolation of neutralizing antibodies against 

SARS coronavirus (Traggiai et al., 2004). Antibodies against influenza virus (Corti et al., 

2011), HIV-1 (Corti et al., 2010), dengue virus (de Alwis et al., 2012; Dejnirattisai et al., 

2010), malaria (Tan et al., 2016), Ebola virus (Corti et al., 2016), and Zika virus (Stettler 

et al., 2016) have all been isolated with similar approaches.  

Although there has been much success with this technique, a major limitation of B 

cell immortalization is the restriction to memory B cells, due to the resistance of 

plasmablasts/plasma cells to EBV immortalization. The same limitation also restricts the 

use of antigen-specific B cell sorting, as plasmablasts/plasma cells have very low (none) 

surface BCR expression. The use of plasmablasts/plasma cells for antigen-specific 

antibody isolation was first demonstrated by Wrammert et al., who isolated influenza 

virus specific antibodies from day 7 plasma cells after booster vaccination (Wrammert et 

al., 2008). The success of isolating antigen-specific antibodies from plasmablasts/plasma 

cells heavily depends on the quality of immune response and the time 

plasmablasts/plasma cells are collected. 
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In general, single-cell RT-PCR is a very powerful technique, but it is severely 

limited by being low-throughput, with usually less than 100,000 cells processed per 

experiment, along with the heavy workload and cost with antibody cloning and 

expression. On the other hand, NGS provides a much higher throughput, which enables 

the processing of more than 1,000,000 cells in a single experiment. This allows much 

deeper analysis of antibody repertoires than with single-cell RT-PCR. 

Next-generation Sequencing 

Since its release in 2005, NGS has been used more and more for cellular antibody 

repertoire analysis, as a result of the rapidly increasing throughput and decreasing cost. 

The inherent complexity of antibody repertoires also makes NGS a superior tool for 

interrogation. 

NGS for antibody repertoires usually uses antibody mRNA as templates. From 

isolated B cells, mRNA is extracted after cell lysis, and the VH and VL are amplified 

separately. This pool of VH and VL sequences encoded by different B cells can be 

sequenced on various platforms (the most popular is Illumina). Bioinformatic analysis is 

performed to obtain the antibody sequences in the repertoire (Fig. 1-4). Important 

features of the antibody repertoire, including unique clonotypes, CDR3 length 

distribution, and somatic hypermutation rates can also be obtained. NGS has been used 

for in-depth analysis of antibody repertoires after vaccination (Jiang et al., 2013) and 

natural infection (Doria-Rose et al., 2014; Liao et al., 2013), which provides important 

insights into how B cells respond to pathogens longitudinally (Doria-Rose et al., 2014; 

Liao et al., 2013). It has also been used to interrogate antibody repertoires in neonatals 

and the elderly (Rechavi et al., 2015), which helps to better understand the development 

of B cells. Moreover, the comparison of antibody repertoires in twins by NGS enables the 
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investigation of genetic and environmental effects on antibody repertoire development 

(Wang et al., 2015b). 

The selection of promising high-affinity, antigen-specific antibodies from 

millions of sequences requires special consideration. The most common way is to select 

antibodies within the same lineages as known functional antibodies (for example, HIV-1 

bnAbs) (Zhu et al., 2013a, 2013b). If CDRH3 sequences are available from proteomic 

analysis, they can be used to select antibodies with the same CDRH3 (Lavinder et al., 

2014). However, of millions of sequences obtained from NGS, only a very minor portion 

of them, namely, tens or hundreds can be reconstructed, expressed, and characterized due 

to laborious and expensive gene synthesis and cloning. Likewise, the intrinsically higher 

error rate of NGS compared to that of Sanger sequencing used in single-cell RT-PCR 

makes antibody repertoire analysis nontrivial (Georgiou et al., 2014a). In order to 

distinguish between sequencing errors and true sequence variations, careful experimental 

design and bioinformatic analysis to minimize sequencing errors are critical. Several 

techniques are used to improve NGS accuracy, with barcoding being the most widely 

used (Georgiou et al., 2014b). For sequence analysis and annotation, IMGT (the 

International Immunogenetics Information System) is the most commonly used tool 

(Lefranc et al., 2009). 

The major limitation of NGS is the bulky processing of B cells makes native 

VH:VL pairing lost. Furthermore, only up to hundreds of antibodies can be made with as a 

result of the cost for gene synthesis. In general, these repertoire analysis methods have 

been widely used and shown to identify potent antibodies against complex human 

pathogens, such as HIV-1, Ebola and influenza virus, malaria, and Zika virus (Corti et al., 

2011, 2016; Huang et al., 2012, 2014; Stettler et al., 2016; Tan et al., 2016). 
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Serological antibody repertoire analysis 

Antibodies in the serum are those that protect from pathogens, hence, the 

characterization of serological repertoires is of great importance. Recent advances in 

mass spectrometry have enabled detailed than ever, and accurate deconvolution of 

serological antibody repertoires (Cheung et al., 2012; Wine et al., 2013). Wine et al. and 

Cheung et al. first reported the characterization of rabbit/mouse antibody repertoires with 

liquid chromatography-tandem mass spectrometry after immunization (Cheung et al., 

2012; Wine et al., 2013). Lavinder et al. and Sato et al. then reported the characterization 

of human antibody repertoires after tetanus toxoid and hepatitis B virus vaccination and 

human cytomegalovirus infection (Lavinder et al., 2014; Sato et al., 2012). 

In these cases, antigen-specific antibodies in the serum are enriched by antigen-

affinity capture and digested with pepsin to remove Fc fragments. The Fab fragments are 

then digested with trypsin to produce CDRH3 containing peptides (most informational 

peptides) (Fig. 1-5). These peptides are analyzed by mass spectrometry and mapped back 

to a database of antibody sequences (usually generated by NGS of antibodies isolated 

from B cells collected at the same time with the serum) to retrieve the full-length 

sequences. Promising antibodies are then selected, reconstructed, and assayed. Although 

proteomic analysis of serological antibody repertoires is very powerful, it has to rely on 

the full-length antibody sequence database generated by NGS to predict and infer the 

fragmented peptides. 

ADVANCING HIGH-THROUGHPUT CHARACTERIZATION OF NATIVE ANTIBODY VH:VL 
PAIRS 

As a result of the importance of antibody VH:VL chain pairing, and the major 

limitations of single-cell RT-PCR (low throughput) and NGS (loss of native VH:VL 

pairing), DeKosky et al. developed a high-throughput pairing and sequencing method for 
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native VH:VL pairs, that combines the advantages of single-cell RT-PCR (preservation of 

native VH:VL pairing) and next-generation sequencing (high-throughput) (DeKosky et al., 

2013, 2015) (Fig. 1-6). By sequestering single B cells in micro emulsion droplets, lysing 

the cells and capturing mRNA using oligo(dT) beads, and linking and amplifying 

captured antibody coding sequences in single bead emulsion through RT-PCR, amplicons 

composed of native VH: VL pairs are obtained. Illumina paired end sequencing is used to 

determine antibody sequences in the amplicons. 

Alternatively, Busse et al. used a two-dimensional, bar-coded primer matrix to 

integrate single-cell RT-PCR of VH:VL pairs with NGS  (Busse et al., 2014). After next-

generation sequencing, they were able to recover pairs from up to 50,000 cells. Although 

it can process a lot more B cells than single-cell RT-PCR, the throughput is still low 

compared to that of emulsion based pairing and sequencing. 

Zhu et al. developed a ‘pseudo’ VH:VL pairing method which relies on 

phylogenetic reconstruction for antibody lineage characterization (Zhu et al., 2013a, 

2013b). They first observed the matching patterns of VH and VL phylogenetic trees during 

the co-evolution of HIV-1 virus and bnAbs, then paired VH and VL from the matching 

branches of the phylogenetic trees based on this observation to obtain new bnAbs. This 

phylogenetics based VH:VL pairing is useful for the analysis of antibody repertoires with 

high somatic hypermutation levels. However, unlike the physical linkages between VH 

and VL generated in emulsions, and barcoded PCRs used to retain pairing information, 

there are no real physical linkages produced in phylogenetic pairing, so the VH:VL pairs 

obtained may not exist. 

These high-throughput VH:VL pairing methods greatly expanded the number of 

native antibody pairs that can be obtained in one experiment, but the number of 

antibodies that can be functionally characterized is still very limited. 
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ANTIBODY DISCOVERY AND ENGINEERING 

B cell immortalization 

The most commonly used method for antibody discovery is B cell 

immortalization. Depending on origins of B cells, two different methods can be used.  

Köhler and Milstein first demonstrated B cell immortalization by fusing mouse spleen 

cells with myeloma cells (Kohler and Milstein, 1975). The fused hybridomas can secrete 

antibodies in in vitro culture. Hybridoma fusion has been widely used for antibody 

discovery. In many cases, after immunization of mice with the target antigen, isolation of 

antibody-producing cells, and fusion with myeloma cells, immortalized antibody-

producing cells can be generated and screened to identify those that secrete antigen-

specific antibodies. However, as a result of the low cell viability after fusion, a large 

number of fused cells have to be made to select antigen-specific antibodies. Moreover, as 

a result of the general difficulty of and regulations for human immunization and 

antibody-producing cell isolation, hybridomas are often produced using mouse cells.  

The success for mouse antibody discovery using hybridomas inspired efforts to 

adapt the hybridoma approach for human antibody discovery. However, human B cells 

were found to be more resistant to myeloma fusion than mouse B cells (Traggiai et al., 

2004). As a result, EBV mediated immortalization has been developed (Traggiai et al., 

2004). As discussed for single-cell RT-PCR, EBV mediated human B cell 

immortalization has enabled the isolation of antibodies against many human pathogens 

(Corti et al., 2010, 2011, 2016; Stettler et al., 2016; Tan et al., 2016). 

The development of humanized mouse strains provided easy-to-fuse mouse B 

cells that can produce human antibodies. A few previously developed humanized mouse 

strains had mouse Ig loci replaced with only part of the human Ig loci (Fishwild et al., 

1996; Green et al., 1994; Lonberg et al., 1994; Taylor et al., 1992). Thanks to the 
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development of mouse genetics, transgenic mouse strains with the complete human Ig 

loci integrated into the genome have been reported (Lee et al., 2014; Macdonald et al., 

2014; Murphy et al., 2014). In both reports, bacterial artificial chromosomes that have 

different parts of human IgH, Igκ, and Igλ loci respectively were used to target mouse 

embryonic stem cells iteratively to insert the complete human Ig loci in multiple steps. 

These modified embryonic stem cells were then injected into blastocysts to generate 

transgenic mouse.  

The use of human antibodies identified from humanized mouse strains for 

therapeutics also minimizes the immunogenicity problem. As a result of sequence 

differences between mouse and human antibodies, mouse antibodies could elicit strong 

immune responses in humans (for example, human-anti-mouse antibodies). The 

immunogenicity greatly reduces the efficacy of mouse antibodies for therapeutics. On the 

other hand, human antibodies recovered from humanized mouse strains do not have this 

problem and can thus have maximal efficacy. 

In vitro display technologies 

In addition to B cell immortalization, in vitro selection and screening of antibody 

libraries is also widely used for antibody discovery and engineering (Bradbury et al., 

2011). Among the various techniques for antibody library selection, phage display 

(Winter et al., 1994), E. coli surface display (Mazor et al., 2007), and yeast surface 

display (Chao et al., 2006) are the three most widely used. All three techniques share the 

commonality that they link the antibody genotype to phenotype (binding) by expressing 

and displaying vector encoded antibody variants on the cell surface. 

The antibody libraries used in these selection methods are usually combinatorially 

assembled from naïve, immunized, or synthetic VH and VL. These combinatorial libraries 
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provide rich pools of antibodies to select from to identify high-affinity, antigen-specific 

hits. The selected antibodies can be further optimized for functions. 

With recent advance for protein sequence space sampling algorithms (Kaufmann 

et al., 2010), loop modeling algorithms (Mandell et al., 2009), and the improvement of 

energy functions (Kaufmann et al., 2010), computational protein design is used more and 

more to guide antibody library construction. A commonly used approach for 

computation-guided library design and selection is to first identify promising antibodies 

by computational design and assemble them into an antibody library, then select the best 

hits. The designed antibody usually needs further optimization, which includes 

constructing and selecting error-prone or site-directed libraries (Lapidoth et al., 2015). 

In phage display, antibody fragments (usually scFv is used) are fused with phage 

coat proteins (for example, pIII of M13 phage), and displayed on the surface of phages. 

By panning these antibody-displaying phages toward target antigens, antigen-specific 

antibodies can be selected. Phage display has played an important role in mouse antibody 

humanization. 

Similarly, in E. coli display, antibody fragments are covalently anchored on the 

inner membrane. After spheroplasting, these antibody fragments can be screened with 

desired antigens. 

In yeast display, scFv variants are displayed on the cell surface as fusion proteins 

with Aga2, which is covalently linked to Aga1 (Boder and Wittrup, 1997; Chao et al., 

2006). After staining with fluorescently labeled antigens, cells carrying variants that 

possess better binding properties will have higher fluorescence, and can then be sorted 

using FACS. The use of FACS permits high-throughput screening of very large antibody 

libraries. 
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Compared to phage and E. coli display, yeast surface display is a eukaryotic 

system that better mimics the native mammalian conditions under which the antibodies 

express, fold, and exert their functions. Moreover, by using 2-color FACS, it allows 

normalization of binding signal with antibody display levels (Boder and Wittrup, 1997). 

This prevents the recovery of antibodies that bind tighter as a result of higher expression 

level instead of improved affinity. 

A major limitation of in vitro antibody library screening is the non-cognate (non-

native) pairing of VH and VL in the combinatorial libraries may result in many problems 

for downstream development (Liu et al., 2014; Ponsel et al., 2011; Tiller et al., 2013; 

Wang et al., 2014; Wörn and Plückthun, 2001; Xu et al., 2013). Biophysical properties of 

these non-natively paired antibodies are sometimes mediocre (Liu et al., 2014; Ponsel et 

al., 2011; Tiller et al., 2013; Wang et al., 2014; Wörn and Plückthun, 2001; Xu et al., 

2013), which requires extensive improvement for use as drugs. Moreover, an scFv cannot 

be used directly under most circumstances and would need to be reformatted to a Fab 

format for structural stability (Quintero-Hernández et al., 2007).  

Another limitation of in vitro antibody library screening is it only selects for  

binding capacity. After high-affinity antibodies are obtained, functional assays such as 

neutralization still need to be performed to identify those that not only bind, but also exert 

desired functions. In contrast, in B cell immortalization, functional assays can be 

performed with secreted antibodies, which allows direct identification of antibodies that 

both bind and function as expected. 

The recent report of function-based selection for combinatorial libraries using a 

mammalian autocrine system by Lerner and colleagues demonstrates the progress toward  

(Xie et al., 2013). The combinatorial antibody libraries were first polished by phage 

display to enrich target binders, then the enriched libraries were transfected into 
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mammalian cells, which expressed antibodies either in the cytoplasm or on the surface. 

By carefully designing and performing selection (for example, cell proliferation or cell 

death), antibodies with rare functions (for example, cell death prevention, stem cell 

transdifferentiation, tumor cell reprogramming) were selected. This is the first 

demonstration of functional selection of antibody libraries rather than just binding. 

SIGNIFICANCE OF HIGH-THROUGHPUT ANTIBODY REPERTOIRE ANALYSIS AND 
ANTIBODY DISCOVERY 

As a result of their unique features, including high specificity, affinity, stability, 

and their ability to link adaptive immunity to innate immunity, antibodies have been used 

extensively in clinics. For example, monoclonal antibodies (mAbs) based treatment has 

been successfully developed for cancers (including leukemia, lymphoma, and breast 

cancer), graft-versus-host diseases, autoimmune diseases (including systemic lupus 

erythematosus and rheumatoid arthritis), and infectious diseases (RSV and Ebola) (Chan 

and Carter, 2010; Topalian et al., 2016). The year-by-year increasing sale of antibody 

drugs highlights the need of more antibodies for disease treatment and novel techniques 

for rapid high-throughput identification of promising antibodies. 

Antibodies are also widely used in research. Western blots, flow cytometry, and 

chromatin immunoprecipitation are just three of many techniques where antibodies are 

essential. The variable performance of different antibodies and lack of antibodies for 

some targets highlight the need for facile discovery of more antibodies for research use. 

Both traditional antibody discovery and engineering methods and antibody 

repertoire characterization techniques are widely used for novel antibody identification. 

Trastuzumab (HER2 targeting), Rituximab (CD20 targeting), Cetuximab (EGFR 

targeting), Ipilimumab (CTLA-4 targeting) and Nivilomab (PD-1 targeting) are a few 

examples of FDA approved antibodies identified by traditional antibody discovery and 
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engineering, while VRC01 and 3BNC117 (HIV-1 CD4 binding site targeting) are two 

examples of repertoire analysis identified antibodies that are in clinical trials (Scheid et 

al., 2011; Wu et al., 2010). 

Furthermore, antibody repertoire analysis can help vaccine design to elicit more 

robust immune responses. By analyzing a large number of antibodies generated after 

infection or vaccination, the dominant and protective (sub)-dominant epitopes that are 

recognized by these antibodies can be identified. Then stable, immunogenic antigens can 

be rationally designed and engineered to display protective (sub)-dominant epitopes only 

on the protein surface. For some chronic, highly mutating virus infections, the 

longitudinal analysis of antibody repertoires together with analysis of the co-evolving 

virus at different times after infection can provide clues about how a virus can evade 

antibody recognition, and how antibodies go through germinal center reactions to 

recognize constantly mutating viral variants (Doria-Rose et al., 2014; Liao et al., 2013). 

With this longitudinal information, Jardine et al. developed stepwise vaccines to mimic 

the mutating HIV-1 virus for the priming naïve B cells that express predicted germline 

BCRs and the boosting of these selected B cells for affinity maturation to recognize the 

native virus (Briney et al., 2016; Escolano et al., 2016). 

Although many technologies have been developed for antibody discovery and 

repertoire analysis, and a lot of success has been achieved, a high-throughput technology 

that enables native antibody repertoire analysis and antibody discovery at single cell level 

has yet to be fully realized. Moreover, the development of protein therapeutics other than 

antibodies has yet to be shown. 
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Figure 1-1: Schematic diagrams of IgM, IgD, IgG, IgA, and IgE antibodies. 
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Figure 1-2: Structure of a typical human IgG showing different features in the molecule 
(PDB code 1HZH). 
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Figure 1-3: Schematic diagrams of Fab, scAb, and scFv. 
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Figure 1-4: NGS workflow for antibody repertoire analysis. 

(a) Isolation of B cell populations of interest. (b) Cell lysis and bulk amplification of VH 
and VL transcripts. (c) Next-generation sequencing of the VH and VL fragments. 
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Figure 1-5: Proteomic workflow for serum antibody repertoire analysis. 

(a) Serum antibodies are pooled by protein A purification. (b) Antigen-specific antibodies 
are purified by antigen-affinity chromatography. (c) After protease digestion, peptides are 
resolved by high-resolution LC-MS/MS.  
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Figure 1-6: High-throughput VH:VL pairing workflow.  

(a) Isolated B cells are deposited into 125 pL wells on PDMS slides that also contain 
poly(dT) beads. Cells are lysed in situ and mRNA is captured on the poly(dT) beads. (b) 
The poly(dT) beads are emulsified and VH:VL amplicons are generated following reverse 
transcription and overlap extension PCR. (c) VH:VL amplicons are sequenced using 
Illumina 2x250 MiSeq and the VH:VL pairs are identified via bioinformatics analysis. 
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Chapter 2: Facile Discovery of a Diverse Panel of Anti-Ebola Virus 
Antibodies by Immune Repertoire Mining1 

The ongoing evolution of Ebolaviruses poses significant challenges to the 

development of immunodiagnostics for detecting emergent viral variants. There is a 

critical need for the discovery of monoclonal antibodies with distinct affinities and 

specificities for different Ebolaviruses. We developed an efficient technology for the 

rapid discovery of a plethora of antigen-specific monoclonal antibodies from immunized 

animals by mining the VH:VL paired antibody repertoire encoded by highly expanded B 

cells in the draining popliteal lymph node (PLN). This approach requires neither 

screening nor selection for antigen-binding. Specifically we show that mouse 

immunization with Ebola VLPs gives rise to a highly polarized antibody repertoire in 

CD138+ antibody-secreting cells within the PLN. All highly expanded antibody clones 

(7/7 distinct clones/animal) were expressed recombinantly, and shown to recognize the 

VLPs used for immunization. Using this approach we obtained diverse panels of 

antibodies including: (i) antibodies with high affinity towards GP; (ii) antibodies which 

bound Ebola VLP Kissidougou-C15, the strain circulating in the recent West African 

outbreak; (iii) non-GP binding antibodies that recognize wild type Sudan or Bundibugyo 

viruses that have 39% and 37% sequence divergence from Ebola virus, respectively and 

(iv) antibodies to the Reston virus GP for which no antibodies have been reported. 

                                                
1This chapter is reproduced with minor modifications from its initial publication: 
Wang, B., Kluwe, C.A., Lungu, O.I., DeKosky, B.J., Kerr, S.A., Johnson, E.L., Jung, J., Rezigh, A.B., 
Carroll, S.M., Reyes, A.N., Bentz, J.R., Villanueva, I., Altman, A.L., Davey, R.A., Ellington, A.D., 
Georgiou, G. (2015). Facile Discovery of a Diverse Panel of Anti-Ebola Virus Antibodies by Immune 
Repertoire Mining. Sci. Rep. 5, 13926. Wang, B. designed and performed the experiments, and analyzed 
the data. 
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INTRODUCTION 

Ebolaviruses are negative-sense RNA filamentous viruses that cause very high 

morbidity and mortality (Bowen et al., 1977). Host cell entry is mediated first by the 

attachment of the heavily glycosylated glycoprotein (GP) on the viral envelope to the 

host cell encoded T-cell immunoglobulin and mucin domain 1 (TIM-1) (Kondratowicz et 

al., 2011). Following cathepsin cleavage in the lysosome, GP mediates cellular entry by 

binding the host cell encoded Niemann-Pick C1 (NPC1) (Carette et al., 2011). Five 

antigenically distinct ebolaviruses exhibiting 35-45% genome sequence divergence have 

been discovered (Towner et al., 2008): Ebola virus (abbreviated as EBOV, formerly 

designated as Zaire ebolavirus); Sudan virus (SUDV); Bundibugyo virus (BDBV); 

Reston virus (RESTV, for which no zoonotic infections have been reported to date) 

(Miranda and Miranda, 2011); and Taï Forest virus (TAFV, one incident of human 

infection) (Le Guenno et al., 1995). The recent EBOV outbreak in West Africa, centered 

in Guinea, Sierra Leone, and Liberia with isolated outbreaks in Nigeria and Mali, was the 

largest ever with a mortality rate estimated at 70% of recorded definitive clinical 

outcomes (http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/index.html) (Team, 

2014). Phylogenetic comparison of isolates from the recent outbreak (Baize et al., 2014) 

with 20 Ebolavirus genomes from earlier outbreaks suggested that the 2014 West African 

virus likely spread from central Africa within the past decade, having diverged from a 

common ancestor around 2004 (Gire et al., 2014). The five Ebolavirus species have 

varying rates of molecular evolution, with the highest of 8.21x10-4 nucleotide 

substitutions/site/year for Reston virus (Carroll et al., 2013). The ongoing evolution of 

Ebolaviruses poses significant challenges to the development of immunodiagnostics. 

Specifically, there is a critical need for the discovery of panels of monoclonal antibodies 

with distinct affinities and specificities for different Ebolaviruses. 
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Antibodies to EBOV and SUDV have been produced from hybridomas (Dias et 

al., 2011; Qiu et al., 2011);  by in vitro screening of synthetic scFv libraries (Chen et al., 

2014; Koellhoffer et al., 2012), and from human immune antibody libraries constructed 

from infected individuals (Maruyama et al., 1999). However additional monoclonal 

antibodies to Ebolaviruses are urgently needed both for diagnostic purposes and as 

therapeutics (Parren et al., 2002; Qiu et al., 2014). Specifically, the generation of 

diagnostic antibodies to Ebolaviruses is complicated by the structural complexity of the 

GP, which is heavily glycosylated in a host cell-specific manner (Heinz Feldmann, Stuart 

T. Nichol, Hans-Dieter Klenk, Clarence J. Peters, 1994; Lin et al., 2003) and subjected to 

proteolytic cleavage during entry (Hood et al., 2010), as well as by the sequence diversity 

of the Ebolaviruses. Finally, characterization of useful antibodies to Ebolaviruses is 

limited by the safety concerns associated with handling the live virus. 

Antibody discovery has relied either on the immortalization (Kohler and Milstein, 

1975) or cloning of antibodies isolated from individual B cells obtained from an antigen-

challenged host (Corti et al., 2011; Ghosh and Campbell, 1986; Lane and Koprowski, 

1982; Reddy et al., 2010; Saggy et al., 2012; Wu et al., 2010) or, alternatively, on the in 

vitro isolation from combinatorial libraries using a variety of screening techniques 

(Bradbury et al., 2011). The current collection of antibody technologies is predicated on 

the isolation of clones that display high antigen binding. However, animal immunization 

induces the stimulation and expansion of a highly diverse population of B cells encoding 

an antibody repertoire with a wide range of antibody affinities (Reddy et al., 2010; Saggy 

et al., 2012). Antibodies with low affinity nonetheless may exhibit other highly desirable 

properties, including broad cross-reactivity or heteroclitic specificity, i.e. stronger 

binding reaction to a different antigen other than the one used for immunization (Ghosh 

and Campbell, 1986; Lane and Koprowski, 1982; Van Regenmortel, 2014). 
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Unfortunately, there is no straightforward way to identify such interesting antibodies. For 

example, while the isolation of antibodies that bind to multiple antigens (e.g. to different 

flu hemagglutinins) or that neutralize rapidly evolving pathogens such as HIV-1 or flu 

has been accomplished by B cell cloning, the process typically requires the screening of 

many thousands of B cells and therefore is very laborious and expensive (Corti et al., 

2011; Walker et al., 2009, 2011; Wu et al., 2010). 

In order to satisfy the need for a wider variety of antibodies to Ebolaviruses, we 

developed a novel approach to comprehensively mine the full suite of antibody diversity, 

shaped by in vivo selective mechanisms and generated within the boundary of reactive 

secondary lymphoid tissues in immunized animals. We reasoned that antibodies encoded 

by antigen-stimulated B cells that had undergone the greatest degree of expansion within 

the confinement of a secondary lymphoid organ are most likely to display desirable 

antigen recognition properties including heteroclite recognition of diverse Ebolaviruses. 

Briefly, mice were first immunized in the footpad with Ebola virus-like particles (VLPs).  

Footpad immunization triggers a strong and highly-focused immune reaction in the PLN, 

especially for particles <40 nm such as VLPs32. Antigen experienced, CD138+ B cells 

(plasmablasts) from the PLN were isolated and the natively paired VH:VL repertoire 

encoded by these cells was determined by NextGen sequencing33. Antibodies 

corresponding to the highest frequency VH:VL pairs, and thus likely arising from the most 

clonally expanded and highly-transcribing CD138+ B cells within the PLN, were 

expressed recombinantly and their binding properties were characterized in detail. In each 

of two mice tested, 7/7 antibodies encoded by the highest frequency antigen-draining 

PLN plasmablast sequences recognized the antigen (Ebola VLPs) with several binding to 

recombinant GPs with up to nM affinities. Interestingly, even though animals had been 

immunized with EBOV VLPs, mining of the expanded native B cell repertoire within the 
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PLN resulted in antibodies that also recognized SUDV and BDBV. In a separate 

experiment we also employed this technique to generate the first RESTV GP-specific 

antibodies. Thus, the antibodies reported here collectively constitute a panel of reagents 

for the detection of most Ebolaviruses. 

RESULTS 

Immunization of the PLN yields antigen-specific antibodies 

Fig. 2-1 summarizes our approach for mining the antibody repertoire encoded by 

the most highly expanded, antigen-experienced B cells following antigen stimulation. 

Footpad immunization leads to a strong inflammatory response in the draining popliteal 

lymph node (Fig. 2-1a). Unlike lymph nodes that drain sites of frequent extracorporeal 

interaction (e.g. the oral cavity or lungs), the germinal centers of the popliteal lymph 

node are normally relatively unstimulated (Kamala, 2007). Footpad immunization results 

in a marked increase in cellularity in the ipsilateral popliteal lymph node relative to the 

unstimulated contralateral lymph node (Gleichmann, 1981; Ravel and Descotes, 2005), 

and a large fraction of the constituent antibody-secreting B cells were expected to be 

antigen-specific. 

Ebola VLPs were produced by co-transfection of HEK293FT cells with plasmids 

encoding the three major virus structural proteins: nucleoprotein (NP), VP40 and GP of 

the EBOV Mayinga strain and were purified by sucrose density centrifugation. Electron 

microscopy and gel staining confirmed that the VLPs displayed a morphology and 

consistency characteristic of EBOV virions. Three mice were immunized with Ebola 

VLPs in emulsified adjuvant in the left hind footpad, followed by boost immunization in 

the lateral hock to minimize pain and discomfort. An anti-VLP titer of >1:104 was 

observed after the second boost (Fig. 2-2a) in all three mice, and two mice (denoted as 
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ZM1 and ZM2) were chosen for further analysis. A final boost was administered and 6 

days later the popliteal lymph nodes were extracted. As expected, the ispilateral PLN was 

observed to be hypertrophic (Fig. 2-2b). 

CD45R-CD19-CD138+ antibody secreting B cells were enriched by magnetic 

sorting and the paired VH:VL repertoire from single cells was determined following 

sequestration of the cells into 125 pL wells on PDMS slides (DeKosky et al., 2013) (Fig. 

2-1b). Approximately 1x105 CD45R-CD19-CD138+ plasmablasts were isolated by 

magnetic sorting, of which 2.5-3.5x104 cells were processed to create natively paired 

VH:VL amplicons. Linked VH:VL amplicons of approximately 850 bp were generated and 

then sequenced using Illumina MiSeq technology (Fig. 2-1c). High quality reads were 

clustered based on the CDRH3:CDRL3 sequences (Fig. 2-1d). 

The PLN plasmablast IgG repertoire elicited by immunization with EBOV 

283 and 333 unique VH:VL pairs (represented by ≥2 sequence reads per pair each), 

comprising the PLN plasmablast repertoires were identified in mouse ZM1 and mouse 

ZM2,  respectively. The repertoires from both Ebola VLPs immunized mice investigated 

were heavily skewed, with the top ten most abundant VH:VL pairs representing 53.9% and 

48.4% of the total sequence counts in each mouse, respectively (Fig. 2-3a). We observed 

a strong bias in germline V-gene usage in immunized mice (Fig. 2-3b,c). Biased usage of 

IGHV subgroups 1–3 and 5 (Kaushik and Lim, 1996; Lu et al., 2014), as well as IGKV1, 

3, 4 and 6 have been previously observed in the repertoires of unimmunized mice (Lu et 

al., 2014). Likewise, in Ebola VLPs immunized mice, IGHV1, IGHV5, as well as 

IGKV1, IGKV3, IGKV4, and IGKV6 heavy and light V genes were most strongly 

represented. Importantly, however, the IGHV8, IGHV14, and IGKV5 families were also 

strongly overrepresented in both mice immunized with EBOV VLPs. The enrichment of 
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IGHV8 in the plasmablast repertoire from PLN of Ebola VLPs immunized animals is 

particularly noteworthy as this germline family is expressed at a very low level in mice 

(Kaushik and Lim, 1996; Lu et al., 2014) and additionally it was shown to be utilized at 

very low frequencies in CD138+ lymphocytes from animals immunized with various 

other antigens (Reddy et al., 2010). 

The repertoire of Ebola VLPs immunized mice displayed an average CDRH3 

length distribution similar to that observed in CD138+ repertoires previously reported 

(Reddy et al., 2010), although there was a slight skewing toward shorter CDRH3 lengths. 

Shorter CDRH3s are commonly found among antibodies that bind carbohydrates and 

thus the skewing observed here likewise may have reflected the elicitation of antibodies 

to the glycan component of the heavily glycosylated GP (Schoonbroodt et al., 2008). The 

plasmablast repertoire from EBOV VLPs immunized mice displayed a higher level of 

somatic hypermutation level in the framework 3 (FR3) heavy chain region compared to 

plasmablast repertoires reported for mice hyperimmunized with various other protein 

antigens (Reddy et al., 2010). 

Construction and characterization of anti-EBOV VLP antibodies 

The CDRH3 and CDRL3 amino acid sequences of the 7 highest frequency VH:VL 

clonotypes from each mouse, together with the respective V(D)J gene segments are listed 

in Table 2-1. Antibody genes for these 14 most prevalent VH:VL antibody clonotypes 

were synthesized and cloned as mouse V region-human constant domain chimeric 

antibodies, expressed in HEK293 cells, and characterized for antigen binding (Fig. 2-

1e,f). KZ52, a very well characterized Ebola virus recognizing antibody isolated from a 

survivor of the 1995 Kikwit outbreak (Lee et al., 2008; Maruyama et al., 1999), was 

expressed as a positive control. All 14 antibodies gave an ELISA signal above 



 35 

background on plates coated with the immunizing antigen, i.e. EBOV (Mayinga strain) 

VLPs (Fig. 2-4a). ELISA titer analysis revealed that the majority of the antibodies bound 

VLPs at a titer >1:1,000. Interestingly, the ELISA signals did not correlate with the 

frequency of the respective antibodies in the PLN CD138+ repertoire. 

5/14 antibodies recognized the recombinant uncleaved form of the EBOV 

Mayinga strain GP (Fig. 2-4b). One antibody bound to GP with a single-digit nM 

equilibrium dissociation constant (ZM1.3, KD=7.7 nM), as determined by SPR analysis 

(Table 2-2, Fig. 2-5), while two others (ZM1.1 and ZM2.1) exhibited KD values in the 10 

nM range. Finally, 2/5 GP specific IgGs, ZM1.2 and ZM1.6, exhibited lower affinities 

(KD =156 and 635 nM, respectively (Table 2-2, Fig. 2-5)), consistent with the lower titer 

of those antibodies for Ebola VLPs. 

The three highest affinity, EBOV GP-specific antibodies (ZM1.1, ZM1.3 and 

ZM2.1) were tested for binding to VLPs encoding GPs from Ebola strains isolated from 

two different outbreaks: 034-KS (Democratic Republic of Congo, 2008, NCBI Accession 

number HQ613402) and Kissidougou-C15 (Kissidougou, Guinea, 2014, NCBI Accession 

number KJ660346). Both ZM1.3 and ZM2.1 showed higher binding to Ebola 034-KS and 

Kissidougou-C15 VLPs than the well-studied KZ52 antibody (KD for purified Mayinga 

GP=1.55 nM). We observed that KZ52 failed to recognize VLPs containing a Mayinga 

GP N550K variant in which Arg 550 residue was replaced with Lys, a mutation observed 

in Marburg GP (Manicassamy et al., 2007), while ZM1.1, ZM1.3 and ZM2.1 were still 

able to bind the Mayinga GP N550K variant.  This finding indicates that ZM1.1, ZM1.3 

and ZM2.1 likely recognize a different epitope than KZ52. Interestingly, ZM1.3 

displayed heteroclitic specificity in that it bound better to EBOV 034-KS and 

Kissidougou-C15 VLPs than to the immunization Mayinga strain VLPs (EC50 of 0.334 

nM and 0.39 nM, respectively compared to 1.7 nM for Mayinga VLPs).  These antibodies 
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also bound to live wild type Ebola virus, indicating that they should be useful for 

developing diagnostic assays against primary biological samples. 

Finally, encouraged by the results detailed above, we used the strategy described 

in Fig. 2-1 to develop antibodies that recognized Reston Ebola virus (RESTV, Reston, 

1996, NCBI Accession number AB050936), an Ebolavirus for which no anti-GP 

monoclonal antibodies are available. RESTV VLPs were generated, mice were 

immunized as above, and the repertoire encoded by PLN plasmablasts was determined. 

We identified three antibodies designated RM2.4, RM3.2, and RM3.3 that bound to both 

RESTV VLPs as well as to RESTV recombinant GP (Fig. 2-6). 

Diagnostic utility of non-GP binding antibodies 

While 9/14 anti-EBOV VLP antibodies did not show binding to the GP and thus 

presumably recognized other VLP proteins (NP, VP40) they nonetheless are of diagnostic 

utility. Specifically, in addition to binding to EBOV Mayinga VLPs, antibodies ZM1.4, 

ZM1.7, ZM2.2, ZM2.3, ZM2.5, and ZM2.6 displayed measurable binding to Bundibugyo 

Virus (BDBV, Bundibugyo, 2007, NCBI Accession number FJ217161), while ZM1.7, 

ZM2.2, ZM2.5, and ZM2.6 also showed binding activity to Sudan Virus (SUDV, Gulu, 

2000, NCBI Accession number AY729654) (Representative ELISA data is shown in Fig. 

2-7a-c). Thus, antibodies elicited by immunization with EBOV VLPs bound differentially 

to phylogenetically diverse variants. 

DISCUSSION 

Here we report a facile and rapid approach for generating large panels of distinct 

monoclonal antibodies that, unlike existing antibody discovery platforms, does not rely 

on screening for antigen binding; and further describe application of this approach by 

developing panels of diagnostic antibodies for Ebola virus strains. We found that in 
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multiple animals immunized with EBOV or RESTV VLPs, the repertoire of CD138+ 

plasmablasts in the draining PLN was dominated by highly expanded, antigen-specific, 

antibody sequences. We find that these highly expanded sequences include antibodies 

that display high affinity to GP, bind to live, wild-type virus and, somewhat surprisingly, 

display diverse specificities to VLPs from different Ebolaviruses. Among the antibodies 

isolated, six recognized live Bundibugyo or both Bundibugyo and Sudan viruses in 

addition to EBOV. These results demonstrate the power of mining the antibody repertoire 

of highly expanded B cells after immunization for discovery of antibodies with 

interesting properties. 

The ability to isolate 7 (and possibly more) distinct antibodies with very different 

CDR3 sequences per animal as well as a much larger number of somatic variants whose 

sequences are also available in the VH:VL sequence database provides a rich source of 

antibodies for practical purposes. Undoubtedly, many PLN B cells encoding antigen-

specific antibodies are likely to have been subject to more limited expansion and thus are 

present at a lower abundance within the repertoire. However, such medium or low 

abundance antibody sequences within the repertoire are present at comparable levels to 

those elicited by environmental stimuli and thus recognizing unrelated antigens.  

Therefore the low abundance antigen-specific antibody sequences in the repertoire cannot 

be identified directly without significant additional effort. 

The method we have pioneered should prove particularly useful for the facile 

development of diagnostic (and possibly therapeutic) antibodies. Starting from antibody-

secreting B cells, it took us only 3 weeks to produce and characterize a diverse set of 

antigen-specific antibodies with a variety of useful specificities. This method should be 

particularly valuable for assessing and combating fast spreading pandemics. 
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In case of rapidly spreading emerging diseases such as Ebola, rapid and robust 

diagnostics are critical for treatment and disease control. For Ebola in particular, 

validated PCR based assays suitable for field work in third world countries are not 

available. Highly sensitive antibody based immunodiagnostics are extremely important 

and easy to implement (Towner et al., 2004). However, a dearth of monoclonal 

antibodies for emergent Ebolaviruses limits the ability to use antigen-capture 

technologies for viral identification of early-stage infections. The panel of antibodies 

identified and characterized here should be useful for diagnostic applications including 

discriminating SUDV, BDBV, and EBOV. By using multiplex immunoassay platforms 

such as the Luminex MagPlex® technology, it should be possible to multiplex up to 50 

different antibodies with varying specificities for a broad range of epitopes, thus ensuring 

wide coverage of Ebolaviruses variants. Studies to incorporate the antibodies we have 

described here onto the Luminex MagPlex® diagnostic platform for field applications are 

on-going. 

METHODS 

VLP Production and Characterization 

VLPs were produced by co-transfection of HEK293FT (Invitrogen) cells with 

plasmids encoding the three major virus structural proteins, NP, VP40 and GP. All open 

reading frames for virus structural proteins were obtained from NCBI and were codon 

optimized for mammalian cell expression using Gene Designer (DNA 2.0), synthesized 

(Epoch Life Science) and inserted into either pcDNA3 (for Ebola GP) or pCAGGS (all 

other genes) mammalian expression plasmids. Sequences of the structural protein ORFs 

were verified and are available upon request to R. A. D. Cells were transfected with each 

of 5 mg NP, 5 mg VP40 and 1 mg GP encoding plasmids by the calcium chloride/BES 
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transfection method. After 24 h cells were washed with DMEM, which was replaced with 

DMEM containing 10% (v/v) FBS. After an additional 24 h, the culture supernatant was 

collected and clarified by centrifugation at 3750 rpm for 30 min at 4oC to remove cell 

debris. The supernatants were then overlaid onto a 5 mL 20% (w/v) sucrose cushion in 20 

mM NaCl, 20 mM HEPES, pH 7.4 in an SW28 ultracentrifuge tube (Beckman). The 

VLPs were then pelleted by centrifugation at 28,000 rpm for 2 h at 4oC in an SW28 rotor. 

To further purify VLPs, the pellet was resuspended in PBS and overlaid onto a 20 to 60% 

sucrose step gradient (5% increments) in 20 mM NaCl, 20 mM HEPES, pH 7.4 in a 

SW55 rotor tube (Beckman). The gradient was centrifuged at 38,000 rpm for 2 h at 4oC 

after which an opaque band corresponding to VLPs was visible. Fractions were collected 

corresponding to the band as well as directly above and below it and analyzed by SDS-

PAGE, staining for total protein with Krypton stain (Thermo Scientific) as well as 

immunoblotting. The middle fraction containing the peak of the VLPs was stored at -

80°C until required. For immunoblotting, proteins were transferred to nitrocellulose 

membranes and stained using broadly reactive polyclonal antibodies against GP (gift 

from Dr. Andrew Hayhurst, Texas Biomedical Research Inst.), VP40 (gift from Dr. 

Ricardo Carrion, Texas Biomedical Research Inst.) or NP (IBT Bioservices). A specific 

monoclonal antibody against Zaire Ebolavirus GP was also used (4F3, IBT Bioservices). 

Appropriate secondary antibodies were purchased from LiCor Biosciences. Blots were 

imaged using a LiCor Odyssey SA imager. Electron microscopy of VLPs was performed 

at the University of Texas Health Sciences Center, San Antionio, Department of 

Pathology electron microscopy facility. VLPs were adhered to copper grids. The samples 

were fixed in glutaraldehyde and osmium tetroxide was used as contrast agent. Images 

were captured on a Philips 208S digital imaging electron transmission microscope. 
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Immunizations and Serum Titer Determination 

The study was approved by the University of Texas Institutional Animal Care and 

Use Committee (AUP-2013-00015). All animal experiments were carried out in 

accordance with the approved protocol. VLPs in PBS pH 7.4 were emulsified in a 1:1 

ratio with TiterMax Gold adjuvant (Sigma). For footpad immunizations, 20 µL 

(containing a total of 5 mg VLPs) antigen/adjuvant mixture was injected into the 

subcutaneous space of three BALB/c mice; for lateral hock injections, up to 50 µL was 

injected into the subcutaneous space just proximal to the lateral aspect of the ankle. Mice 

were immunized at footpad on day 0 for primary immunizations, and in the lateral hock 

on days 21, 35, and 77 for secondary immunizations. At days 10, 28, and 42 mice were 

bled for titration of the antigen-specific response. In order to determine serum antibody 

titer, mice were restrained in a tube restrainer, the tail wiped with isopropyl alcohol, and 

small incisions made with a fresh scalpel blade to nick the tail vein.  20-50 µL blood was 

obtained and allowed to coagulate at room temperature (RT) for 30 min, followed by 

centrifugation at 13,000 g for 15 min to pellet the clot.  The serum was then used for 

ELISA assays. High binding ELISA plates (Corning) were coated overnight (O/N) at 4°C 

with 50 µL of 4 µg/mL Zaire Ebolavirus VLPs in PBS pH 7.4.  Antigen solution was 

decanted and plates were then blocked at RT for 2 h in 2% milk (w/v) in PBS.  Blocking 

solution was then decanted and plates were then incubated with 50 µL of serum diluted 

three-fold from 1:100 to 1:218,700 in 2% milk (w/v) in PBS for 1 h.  Plates were then 

aspirated and washed 3 times with PBS containing 0.05% tween-20 (PBST), then 

incubated with 50 µL of 1:5000 diluted goat anti-mouse HRP secondary antibody 

(Jackson ImmunoResearch) for 1 h.  Plates were washed 3 times with PBST, and 

incubated with 50 µL TMB-Ultra (Thermo Scientific) for 15 min.  The reaction was 
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quenched with 50 µL 2 M H2SO4 and absorbance was read at 450 nm on a Tecan M200 

plate reader. 

Tissue Collection, Cell Isolation, and Subtype Purification 

After determination of significant titer for Ebolavirus VLPs (signal evident above 

background at dilution > 1:10,000), mice were administered a final boost at day 77, and 

lymph nodes were collected 6 days later. For lymph nodes collection, mice were injected 

with 5-10 µL of 2% Evans Blue (Sigma) in PBS into the footpad.  30 min post-injection, 

mice were sacrificed by carbon dioxide asphyxiation followed by cervical dislocation.  

The skin and fur around the leg was removed to reveal the blue-stained popliteal lymph 

node (Fig. 2-1a), located just behind the knee. The lymph node was isolated and and 

stored in PBS pH 7.4 supplemented with 0.1% (w/v) BSA, 2 mM EDTA in a 6-well plate 

(Corning). Lymph node was homogenized by mechanical disruption using two 18G 

needles. The cells were then passed through a 70 μm cell strainer (Corning), with 

additional disruption using the plunger from a 3 mL syringe to aid passage of single cells. 

Cells were then spun down at 500 g for 10 min in a swinging bucket rotor. The cell 

pellets were then resuspended in 2 mL red blood cell lysis buffer (155 mM NH4Cl, 12 

mM NaHCO3, 0.1 mM EDTA) and incubated at room temperature for 3.5 min.  The lysis 

reaction was quenched by adding 20 mL PBS buffer followed by centrifugation at 500 g 

for 10 min at RT. Cells were washed again with 5 mL PBS buffer and resuspended in a 

final volume of 1 mL buffer. Plasma cells were then isolated using the Miltenyi Plasma 

Cell Isolation kit (Miltenyi Biotec). Briefly, non-plasma cells were depleted by magnetic 

labeling of CD49b and CD45R followed by enrichment of magnetically-labeled CD138+ 

cells.  CD45R is a pan-B cell marker expressed on naïve and activated B lymphocytes, 

but not on antibody-secreting cells. Conversely, CD138 is expressed on pre-B and 
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immature B-lymphocytes in the bone marrow, lost upon emigration into secondary 

lymphoid tissues, and re-expressed upon differentiation into plasma cells. 

Single Cell VH:VL Sequencing 

Sorted cells were analyzed by single B cell VH:VL sequencing as previously 

described33.  Briefly, single cells were isolated into 125 pL wells printed in PDMS along 

with poly(dT) conjugated magnetic beads.  Cell lysis and capture of mRNA was 

performed in situ, and beads were collected and emulsified to serve as template for 

emulsion overlap extension RT-PCR. A follow-up nested PCR resulted in 850 bp 

amplicons containing linked genetic information for VH and VL genes.  850 bp amplicons 

were analyzed using the Illumina MiSeq 2x250 platform.  VH and VL genes were 

amplified separately for full-length VH and VL analysis using the Illumina MiSeq 

platform as previously described (DeKosky et al., 2013). 

Sequence Analysis 

Raw MiSeq data was analyzed as previously described (DeKosky et al., 2013).  

Briefly, raw data were filtered for a minimum Phred quality score of 20 over 50% of 

nucleotides to ensure high read quality in the CDR3 regions of heavy and light genes.  

Sequence data were submitted to the IMGT information system for V-D-J germline gene 

mapping.  Sequences were filtered for in-frame V-D-J junctions and VH:VL pairs were 

compiled by exact CDRH3:CDRL3 nucleotide match. CDRH3 junction nucleotide 

sequences were clustered to 96% identity and resulting clusters with >=2 VH:VL reads 

were ranked by MiSeq read counts (DeKosky et al., 2013). Due to read length limitations 

of current next-generation sequencing technology, the complete VH and VL genes were 

also sequenced and analyzed separately.  Full-length VH and VL genes were filtered for a 

minimum Phred quality score of 20 over 50% of nucleotides and were compiled by 



 43 

CDRH3 and CDRL3 exact nucleotide match.  Consensus sequences of VH and VL genes 

(i.e. from all reads passing quality filters and that contained exact matches to the 

CDRH3:CDRL3 pair of interest) were used for antibody gene synthesis, expression, and 

in vitro analysis (DeKosky et al., 2013). 

IgG Synthesis, Expression, and Purification 

Consensus VH and VL genes were designed and purchased as gBlocks (Integrated 

DNA Technologies) and cloned into the pcDNA3.4 vector (Invitrogen) containing 

Oryctolagus cuniculus IgG leader peptide as fusions to human IgG1 and kappa constant 

regions, respectively. Sequences of both the heavy and the light chain for each antibody 

variant were confirmed by Sanger sequencing. Plasmids for each antibody variant were 

transfected into Expi293 cells (Invitrogen) at a 1:3 heavy:light ratio.  After incubating at 

37°C with 8% CO2 at 125 rpm for 6 days, the supernatant containing secreted antibodies 

was collected by centrifugation at 500 g for 15 min at 25°C. Supernatant was passed over 

a column of 0.5 mL Protein A agarose resin (Thermo Scientific) three times to ensure 

efficient binding. After washing with 20 column volumes of PBS, antibodies were eluted 

with 3 mL 100 mM citric acid pH 3.0 and immediately neutralized with 500 µL 1M Tris 

pH 8.0. Antibodies were buffer exchanged into PBS, pH 7.4 utilizing Amicon Ultra-30 

centrifugal spin columns (Millipore) for storage and subsequent use. 

ELISA 

Costar 96-well ELISA plates (Corning) were coated with 50 µL of 4 µg/mL 

recombinant Ebola Glycoprotein (a gift from Dr. Erica O. Saphire, The Scripps Research 

Institute) or Ebola virus VLPs. The coated plates were incubated at 4°C O/N, after which 

they were decanted and blocked with 2% milk in PBS for 2 h at RT.  After blocking, 1:5 

serially diluted antibodies were applied to the plates for 1h, after which 1:5000 diluted 
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donkey anti-human IgG HRP-conjuated secondary antibodies were applied (Jackson 

ImmunoResearch) for 1 h.  For detection, 50 µL TMB-Ultra substrate was applied for 15 

min before quenching with 50 µL 2 M H2SO4. Absorbance was measured at 450 nm 

using a Tecan M200 plate reader. Data were analyzed and fitted for EC50 using a 4-

parameter logistic nonlinear regression model in the Prism software. 

Surface Plasmon Resonance 

Antibody affinity to recombinant Ebola GP protein was measured by surface 

plasmon resonance using a BIAcore 3000 biosenor (Biacore). In order to fit the responses 

to 1:1 Langmuir binding model for more accurate affinity determination, antibodies were 

immobilized on the CM5 sensor chip (GE Healthcare) using the amine coupling 

chemistry. All binding experiments were done in HBS-EP buffer (10 mM HEPES pH 7.4, 

150 mM NaCl, 3.4 mM EDTA, and 0.005% P20 surfactant) (GE Healthcare). GP was 

injected in triplicates at concentrations 80, 100, 200, 300, 400, 500, and 600 nM with a 

flow rate of 60 μL/min for 2 min and a dissociation time of 10 min. Regeneration of the 

antibody was performed by a single injection of 100 mM citric acid, pH 3.0. The 

response generated by flowing GP over a bovine serum albumin (BSA) coupled surface 

was used as control and was consequently subtracted. All kinetic parameters were 

determined in BIAevaluation 3.0 software and were reported as the average of three 

technical replicates. 

Wild type virus ELISA assays 

All work with wild type virus was performed at BSL4 at Texas Biomedical 

Research Institute. All virus stocks were cultivated on Vero-E6 cells in DMEM with 2% 

FBS and antibiotics. When 80% of cells began showing a cytopathic effect, the culture 

supernatant containing virus was collected. Virus was purified as for VLPs by pelleting 



 45 

cell debris and then pelleting virus from the culture supernatants through 20% sucrose in 

20 mM NaCl and 20 mM HEPES, pH 7.4. The virus pellets were resuspended in PBS and 

stored in aliquots at -80°C until needed. Virus titers were determined by conventional 

plaque assay using Vero-E6 cells. For ELISA assays, an aliquot of virus was thawed and 

the equivalent of 106 PFU of virus was diluted 1:3 into RIPA buffer. This was then 

diluted 1:100 into 10 mM sodium phosphate buffer, pH 7.4. After coating O/N, plates 

were washed with PBS containing 0.1% Tween-20 and incubated with each antibody 

starting at 1:100 of a 1 mg/mL stock and then over serial 4-fold dilutions on the plates. 

The secondary antibody was anti-human IgG HRP conjugate from Pierce. TMB Ultra 

substrate (Life Technologies) was used to detect antibody binding on plates. All assays 

were performed at least in duplicate and repeated 3 times. ELISAs were analyzed and 

fitted for EC50 using a 4-parameter logistic nonlinear regression model in the Prism 

software. 
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Figure 2-1: Isolation of antibodies by mining the paired VH:VL repertoire of  draining 
popliteal lymph node (PLN) antibody-secreting B cells. 

(a) Footpad immunization leads to a marked increase in cellularity within the ipsilateral 
popliteal lymph node relative to the contralateral lymph node (red and black arrows 
respectively). (b) PLN CD138+ cells isolated by magnetic sorting are deposited into 125 
pL wells on PDMS slides that also contain poly(dT) beads.  Cells are lysed in situ and 
mRNA is captured on the poly(dT) beads. (c) The poly(dT) beads are emulsified and 
VH:VL amplicons are generated following reverse transcription and overlap extension 
PCR. (d) VH:VL amplicons are sequenced using Illumina 2x250 MiSeq and the highest 
frequency VH:VL pairs are identified via bioinformatics analysis. (e) Highest frequency 
VH (orange) and VL (green) genes are synthesized and cloned into IgH and IgL expression 
vectors containing human IgG1 (blue) and human kappa (yellow) constant regions, 
respectively. (f) Following co-transfection into Expi293 cells, recombinant IgG 
antibodies are expressed and purified. 
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Figure 2-2: Footpad immunization with EBOV VLPs. 

BALB/c mice were immunized with 5 µg Ebola VLPs in 10 µL PBS pH 7.4 emulsified in 
a 1:1 ratio with TiterMax Gold adjuvant with boosts on days 21 and 35. (a) Tail-vein 
bleeds were performed 7 days post day 35 boost, and antibody titers against VLPs 
measured in Mouse 1 (blue) and Mouse 2 (green). (b) Size comparison of the dissected 
ipsilateral (red arrow) and contralateral (black arrow) LNs. Ipsilateral LN: ~5mm in 
diameter; contralateral LN: ~2mm in diameter. 
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Figure 2-3: Characteristics of the PLN VH:VL repertoire in CD138+ antibody secreting 
cells.  

(a) Polarization of VH:VL repertoire after immunization with EBOV VLPs. The frequency 
of each unique CDRH3:CDRL3 antibody clonotype is shown as a percentage of total 
sequencing read counts. CDRH3 sequencing reads having at least 96% identity at the 
nucleotide level were clustered and compiled, then analyzed for corresponding CDRL3 
per pair. Sequences identified in <2 reads were excluded to minimize sequencing error. 
Inset: frequency of the ten most frequently observed CDRH3:CDRL3 antibody 
clonotypes from each mouse. (b, c) VH:VL gene family usage of unique CDRH3:CDRL3 
clonotypes in mouse ZM1 and ZM2, respectively. 
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Figure 2-4: Functional characterization of IgG antibodies isolated via mining of the 
PLN CD138+ B cell repertoire.  

(a) Binding to EBOV VLPs for antibodies encoded by the seven most frequently 
observed CDRH3:CDRL3 clonotypes from the sequenced PLN CD138+ B cell repertoires 
of each mouse. (b) Binding to purified EBOV recombinant GP for select antibodies as 
determined by ELISA. Binding to BSA as a control is shown in correspondingly colored 
dashed lines. Error bars represent the standard error of the mean for three technical 
replicates. 
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Figure 2-5: BIACore sensorgrams for selected antibodies binding to recombinant EBOV 
GP. 

(a) ZM1.1, (b) ZM1.2, (c) ZM1.3, (d) ZM1.6, (e) ZM2.1.  Antibodies were immobilized 
on CM5 sensor chips and varying concentrations of GP were injected using a flow rate of 
60 µL/min for 2 min. Experiments were performed in three technical replicates, and all 
curves were fit to a 1:1 Langmuir binding model using BIAevaluation software. 
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Figure 2-6: Functional characterization of IgG antibodies isolated via mining of RESTV 
immunized PLN CD138+ B cell repertoire.  

Binding to RESTV recombinant GP for select antibodies as determined by ELISA. 
Curves were fitted using 4-parameter logistic non-linear regression. Error bars represent 
the standard error of the mean for three technical replicates. 
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Figure 2-7: Binding of cross-reactive antibodies isolated via mining of the PLN CD138+ 
B cell repertoire to wild type EBOV, BDBV and SUDV viruses.  

ELISA assays using antibodies ZM1.7, ZM2.5, ZM2.6, and KZ52 for the detection of (a) 
wild type Ebola virus; (b) wild type Bundibugyo virus; and (c) wild type Sudan virus. 
Assays were performed in two technical replicates. Lines represent measurements fitted 
via 4-parameter logistic nonlinear regression for EC50. 
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Mouse Rank (Name) 

CDRH3 
Sequence 

CDRL3 
Sequence Gene Usage 

1 1 (ZM1.1) ARSFAY QQSNEDPYTF IGHV1-IGHJ3:IGKV3-IGKJ2 

 2 (ZM1.2) TGDGYYGFAY FQGSHVPFT IGHV6-IGHD2-IGHJ3:IGKV1-IGKJ4 

 3 (ZM1.3) ARGIGY WQGTHFPFT IGHV3-IGHJ3:IGKV1-IGKJ4 

 4 (ZM1.4) ARSTTATLDC QQSDSWPTLT IGHV14-IGHD1-IGHJ2:IGKV5-IGKJ5 

 5 (ZM1.5) ATISTATFPY QQSDSWPTLT IGHV1-IGHD1-IGHJ3:IGKV5-IGKJ5 

 6 (ZM1.6) ARRAMITTEGVDFDY QQSRKVPWT IGHV3-IGHD2-IGHJ2:IGKV3-IGKJ1 

 7 (ZM1.7) AREGYRYDWYFDV QQRSSYPLT IGHV1-IGHD2-IGHJ1:IGKV4-IGKJ5 

2 1 (ZM2.1) TRSVSDY WQGTHFPHT IGHV1-IGHD2-IGHJ2:IGKV1-IGKJ5 

 2 (ZM2.2) ARRTYRYDRFDY QQWSSDPLT IGHV1-IGHD2-IGHJ2:IGKV4-IGKJ5 

 3 (ZM2.3) TRRSNFPYYFDF QQSIEDPFT IGHV1-IGHD2-IGHJ2:IGKV3-IGKJ4 

 4 (ZM2.4) ARSELGATGFAY QQGQSYPIFT IGHV5-IGHD3-IGHJ3:IGKV15-IGKJ4 

 5 (ZM2.5) ARQKYGNYVLYWYFDV QQWNSNPPT IGHV5-IGHD2-IGHJ1:IGKV4-IGKJ4 

 6 (ZM2.6) TGMVTSY LQHWNYPYT IGHV6-IGHD2-IGHJ3:IGKV6-IGKJ2 

 7 (ZM2.7) VREGLGSYFDY QQYYNYPRT IGHV10-IGHD5-IGHJ2:IGKV8-IGKJ1 

 

Table 2-1: List of characterized EBOV antibodies sequenced from PLN CD138+ cells.  

For each antibody, CDRH3:CDRL3 clonotypes and their V(D)J gene assignment are 
provided. 

 

 

 

 

 

 

 

 

 

 



 54 

 

 

 

 

 

 

Table 2-2: SPR Binding kinetics and equilibrium dissociation constants (KD) towards 
uncleaved EBOV GP.  

Experiments were performed in three technical replicates and data were fit to a 1:1 
Langmuir binding model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Antibody ID kon (M-1s-1) koff (s-1) KD (nM) 

ZM1.1 (3.12 ± 0.55) x104 (1.16 ± 0.07) x10-3 37.7 ± 0.55 

ZM1.2 (1.17 ± 0.41) x104 (1.71 ± 0.12) x10-3 156 ± 47.4 

ZM1.3 (3.12 ± 0.53) x104 (2.39 ± 0.62) x10-4 7.71 ± 1.77 

ZM1.6 (3.95 ± 0.7) x103 (2.46 ± 0.12) x10-3 635 ± 93.8 

ZM2.1 (1.47 ± 0.23) x104 (2.97 ± 0.07) x10-4 20.5 ± 3.44 
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Chapter 3:  Discovery of high affinity anti-ricin antibodies by B cell 
receptor sequencing and by yeast display of combinatorial VH:VL 

libraries from immunized animals2 

Ricin is a toxin that could potentially be used as a bioweapon. We identified anti-

ricin A chain antibodies by sequencing the antibody repertoire from immunized mice and 

by selecting high affinity antibodies using yeast surface display. These methods led to the 

isolation of multiple antibodies with high (sub-nanomolar) affinity. Interestingly, the 

antibodies identified by the two independent approaches are from the same clonal 

lineages, indicating for the first time that yeast surface display can identify native 

antibodies. The new antibodies represent well-characterized reagents for biodefense 

diagnostics and therapeutics development. 

INTRODUCTION 

Ricin is a toxin derived from the castor bean Ricinus communis, and it is 

classified as a Category B Agent by the Centers for Disease Control and Prevention in 

part because of its high lethality (LD50 about 22 μg/kg body weight for human) and ease 

of production (Lord et al., 1994). Ricin is composed of an enzymatic A chain, which 

deactivates eukaryotic ribosomes by depurinating adenine 4324 in the 28S rRNA of the 

60S ribosomal subunit, and a lectin B chain, which binds carbohydrates on the cell 

surface (Audi et al., 2005; Lord et al., 1994). As a result, ricin is a potent biological 

weapon, and past cases of malicious exposure to ricin highlight the need for both an 

increase in the sensitivity of diagnostics and for treatment after poisoning (Knight, 1979; 

Mayor, 2003). Antibodies to both the A chain and B chain of ricin have been produced 
                                                
2This chapter is reproduced with minor modifications from its initial publication: 
Wang, B., Lee, C.H., Johnson, E.L., Kluwe, C.A., Cunningham, J.C., Tanno, H., Crooks, R.M., Georgiou, 
G., and Ellington, A.D. (2016). Discovery of high affinity anti-ricin antibodies by B cell receptor 
sequencing and by yeast display of combinatorial VH:VL libraries from immunized animals. MAbs 8, 
1035–1044. Wang, B. designed and performed the experiments, and analyzed the data. 
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using hybridoma-based technology (Maddaloni et al., 2004; Mantis et al., 2006; Neal et 

al., 2010; Prigent et al., 2011), and by phage display screening of immune libraries 

reconstituted from the bone marrow of immunized cynomolgus macaques (Pelat et al., 

2009), resulting in antibodies with affinities ranging from 40 pM to 5 nM. However, 

there are currently no U.S. Food and Drug Administration-approved treatments for ricin 

poisoning, and the diagnostic potential of these reported antibodies has yet to be tested. 

In vitro screening of large combinatorial libraries using display technologies that 

rely on phage, bacteria, yeast, mammalian cells or even in vitro transcription/translation 

systems are widely employed for antibody discovery (Bradbury et al., 2011; Georgiou et 

al., 2014a; Hoogenboom, 2005). Combinatorial antibody libraries are constructed either 

by mining the natural diversity of immunoglobulin genes in immunized or antigen-naïve 

animals (Feldhaus et al., 2003; Hayhurst et al., 2003; Sheets et al., 1998), or by 

diversifying the complementarity-determining regions (CDRs) within one or more 

“scaffold” antibodies (Knappik et al., 2000). Variable heavy (VH) and variable light (VL) 

chain genes are then joined combinatorially, yielding, at least in theory, libraries that 

contain combinations of heavy chains joined with all possible light chains (Feldhaus et 

al., 2003; Hayhurst et al., 2003; Knappik et al., 2000; Sheets et al., 1998). Typically, 

immune libraries constructed from mRNA obtained from the spleen, bone marrow or 

from peripheral blood mononuclear cells (PBMCs, primarily in the case of human 

donors) are more likely to encode a significant fraction of antigen-specific antibodies and 

thus represent the most reliable route to high affinity antibodies (provided that the antigen 

is immunogenic) (Hayhurst et al., 2003; Maruyama et al., 1999). Isolation of high affinity 

antibodies from immune and other libraries is most readily accomplished by taking 

advantage of the quantitative nature of fluorescence-activated cell sorting (FACS)-based 
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library screening methods, and yeast display has been established as the dominant 

technology for screening libraries by FACS (Angelini et al., 2015). 

The power of combinatorial library screening has been validated by the 

identification and development of therapeutic antibodies that are now entering clinical 

trials (Brekke and Sandlie, 2003). However, certain antibodies isolated from 

combinatorial libraries may express at low yields in mammalian cells and display poor 

biophysical properties in vitro (Liu et al., 2014; Ponsel et al., 2011; Wang et al., 2014; 

Wörn and Plückthun, 2001; Xu et al., 2013), which can hamper their development into 

therapeutics. The random pairing of heavy and light chains in combinatorial libraries 

results in antibodies with non-natively paired VH and VL genes, and this is potentially one 

cause of poor antibody expression and stability (Tiller et al., 2013). Moreover, a recent 

report has suggested that several mouse and human VH germ-line genes exhibit strong 

preferential pairing with specific VL chains (Jayaram et al., 2012), and the random pairing 

of non-preferential VH and VL chains could lead to conformational incompatibilities, 

again affecting expression and stability. Enormous efforts have been made to advance 

screening techniques to remove antibodies with mediocre biophysical properties and on 

investigating methods to improve them in the past decade (Liu et al., 2014; Mcconnell et 

al., 2014; Rouet et al., 2014; Wang et al., 2014; Xu et al., 2013). 

Our lab has pioneered methods for the discovery of high affinity antigen-specific 

antibodies directly via mining of the immunoglobulin repertoire by capitalizing on next-

generation sequencing technologies without the need for screening (DeKosky et al., 2013, 

2015; Reddy et al., 2010; Wang et al., 2015a). Specifically, we developed methods for 

high-throughput determination of the natively paired VH:VL repertoire from single B cells 

(DeKosky et al., 2013, 2015). More recently, we have shown that antibody secreting B 

cells (CD138+ plasmablasts) within the draining lymph node are overwhelmingly antigen-
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specific, and that antibodies derived from these cells exhibit high binding affinity (Wang 

et al., 2015a). 

In this report, we sought to compare the isolation of high-affinity anti-ricin 

antibodies via mining of the draining lymph node repertoire and via yeast display of 

immune combinatorial libraries constructed from antibody mRNAs obtained from spleen 

or bone marrow cells. Overall, both approaches yielded strong ricin A chain binders (the 

lowest Kd values were 0.97 and 0.58 nM, respectively, for these two methods). 

Interestingly, we found that antibodies isolated by yeast display from combinatorial 

libraries in which the VH and VL from spleen or bone marrow had been randomly paired 

were clonal relatives of antibodies identified via mining of the draining lymph node 

repertoire, and comprised authentic, natively paired, VH and VL sequences. Thus, in 

hyperimmune animals where antigen-specific antibodies comprise a significant portion of 

the repertoire (Becker et al., 2010; Kuroiwa et al., 2009; Kurosawa et al., 2012; Reddy et 

al., 2010; Wang et al., 2015a), flow cytometric screening of libraries constructed via the 

random pairing of VH and VL genes can nonetheless result in the isolation of native 

antibodies. 

RESULTS 

Overview of the experimental approach 

As we have previously shown, mouse footpad immunization results in a strong 

immune response in the popliteal draining lymph node (DLN), characterized by the 

robust expansion of antibody secreting B cells (CD138+ plasmablasts) (Wang et al., 

2015a). Analysis of the DLN CD138+ B cell antibody repertoire overwhelmingly 

revealed that the most highly represented sequences, i.e., those present in the largest 

number of reads, are antigen-specific (Wang et al., 2015a). Therefore, we sought to 
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explore the antibody repertoire in DLN antibody-secreting B cells, and to compare 

antigen-specific antibodies with those selected from bone marrow and spleen 

combinatorial libraries, which are commonly used in antibody discovery efforts 

following intraperitoneal or subcutaneous immunization (Hayhurst et al., 2003; Pelat et 

al., 2009; Saggy et al., 2012). In contrast, samples from the DLN could only support 

high-throughput VH:VL sequencing and repertoire analysis, as we were limited by the 

number of cells. Four mice were immunized by footpad injection with ricin A chain in 

TiterMax Gold adjuvant (Fig. 3-1A), followed by two booster immunizations after 14 and 

28 days, after which all four mice generated significant titers (>1:10,000) against ricin A 

chain (Fig. 3-2A). One more booster immunization was performed, after which even 

higher titers were reached (Fig. 3-2B). Mice were sacrificed six days after the final 

booster immunization, at which point the draining lymph node was observed to be 

enlarged compared to the contralateral lymph node. Spleen and bone marrow were 

collected to screen for antigen-specific antibodies (Fig. 3-1B), and the draining lymph 

node was collected as well for VH:VL mining (Fig. 3-1C). 

Isolation of high affinity ricin A chain antibodies by yeast display of combinatorial 
libraries 

Single-chain variable fragment (scFv) libraries were constructed using mRNA 

from ~ 5 x 106 total splenocytes, and separately from femur bone marrow cells (Fig. 3-

1B). Briefly, VH and VL genes were amplified separately, paired combinatorially by 

overlap extension-polymerase chain reaction that also introduced a (Gly4Ser)3 linker 

(Hayhurst et al., 2003), and then subcloned into the yeast display vector pCTCON2 via 

homologous recombination (Chao et al., 2006). 

Two libraries of ~ 2 x 106 transformants each (bone marrow-derived and 

splenocyte-derived) were obtained. Screening was performed by carrying out one round 
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of magnetic-activated cell sorting (MACS), and then three rounds of FACS with 

progressively more stringent gates that collected cells positive both for expression (using 

Alexa Fluor 488-labeled anti-c-Myc) and for ricin A chain binding (using Alexa Fluor 

633-labeled ricin A chain) (Fig. 3-3). For the first two rounds of selection, ricin A chain 

was used at a 1 μM concentration. Prior to selection, both libraries showed little binding 

to ricin A chain (Fig. 3-3A and B, before selection). Significant enrichment of cells that 

stained positively both with fluorescent anti-c-Myc antibody and ricin A chain was 

observed from both libraries after the second round (Fig. 3-3A and B, after 1st FACS). 

Subsequently, ricin A chain concentrations of 200 nM and 40 nM were used for the third 

and fourth rounds of sorting, respectively. After the fourth round, almost all of the cells 

that expressed scFv also showed binding to ricin A chain (Fig. 3-3A and B, after 3rd 

FACS). 

Twenty colonies from each library were sequenced, yielding a total of 5 unique 

clones (3 from the bone marrow-derived library and 2 from the splenocyte-derived 

library), indicating that screening had led to convergence of the libraries to a small 

number of scFv sequences (Table 3-1). Apparent equilibrium binding constants (Kd) for 

these 5 clones were estimated by incubating yeast cells displaying the respective 

antibodies with different concentrations of ricin A chain, ranging from 0.09 to 600 nM, 

and then measuring the mean fluorescence intensity of binding at each concentration by 

FACS.  Binding constants were calculated using a Langmuir 1:1 binding model (Chao et 

al., 2006). All 5 antibodies demonstrated low nanomolar affinities binding to ricin A 

chain (Table 3-2). These 5 antibodies were then expressed in E. coli as single-chain 

antibodies (scAbs, scFv fused with human kappa light chain at the C-terminus (Hayhurst 

et al., 2003)), and purified to >95% homogeneity by Ni-NTA chromatography (as 

determined by SDS-PAGE). The antibodies were further purified by size-exclusion 
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chromatography, which also revealed that all antibodies were monomeric. Surface 

plasmon resonance (SPR) analyses indicated that, consistent with the flow cytometric 

analyses (Chao et al., 2006), all 5 antibodies displayed high affinity binding to ricin A 

chain (Table 3-2, Fig. 3-4). 

The question of whether in vitro screening technologies can identify native 

antibodies in a repertoire has generally not been addressed; the two methods often return 

different antigen-specific antibodies. Different screening platforms lead to the 

identification of different antibodies, but some platforms seem to return antibodies that 

are of low abundance or apparently not present at all (Bowley et al., 2007; Saggy et al., 

2012). The identification of antibodies via yeast display presented an opportunity to 

compare the results with the natural repertoire, and thus we sequenced both the bone 

marrow and spleen VH and VL repertoires using an Illumina 2 x 250 Miseq platform. 

From the same 5 x 106 cells of bone marrow and spleen from a given mouse that were 

used for yeast library construction, about 106 and 7 x 105 reads, respectively, were 

obtained for VH repertoires, from which 8735 and 7057 unique clonotypes (defined as the 

group of VH sequences that share the same germ-line V and J segments, and have >90% 

amino acid identity in their CDRH3s (Lavinder et al., 2014) were identified (Table 3-3). 

Similar to previous reports (Lu et al., 2014; Reddy et al., 2010), both repertoires were 

observed to have skewed germ-line V gene usage. For example, both repertoires showed 

biases for IGHV1, 5, 14, and IGKV1, 4, 6 families (Fig. 3-5A, B), with IGKV4 as the 

most commonly used light chain family in the bone marrow, and IGKV6 as the most 

commonly used light chain in the spleen. We noticed the preferential usage of the IGKV1 

family in bone marrow relative to spleen, and of the IGKV6 family in spleen relative to 

bone marrow. It will be interesting to determine if similar repertoire biases towards 

specific germline light chain families are observed with other antigens and adjuvant 
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combinations. Both repertoires showed a CDRH3 length distribution comparable to those 

previously reported from animals immunized with different antigens (Reddy et al., 2010), 

with a median CDRH3 length of 13 amino acids in the bone marrow repertoire and 11 

amino acids in the spleen repertoire (Fig. 3-5C). 

Importantly, we now find that the antibodies identified by yeast surface display 

are amongst the most abundant antibodies in the sequenced repertoire (Table 3-1). This 

indicates for the first time that yeast surface display of combinatorial libraries can 

identify native antibodies in the repertoire. 

Isolation of high affinity anti-ricin A chain antibodies by next-generation sequencing 
of DLN B cells 

CD138+ antibody secreting B cells were isolated from the draining lymph node 

and the paired VH:VL repertoire was determined, as previously described (Wang et al., 

2015a). Briefly, a total of 90,000 CD138+ antibody secreting cells were isolated by 

magnetic sorting by first depleting CD45R+, CD49b+, and CD19+ cells, and then 

enriching for CD138+ cells. Approximately 40,000 antibody secreting cells were 

deposited into microfabricated nanowell plates such that >98% of wells contained a 

single cell, after which poly(dT) magnetic beads were added to capture mRNAs, the cells 

were lysed, and the poly(dT) beads were collected. The beads were emulsified, and 

overlap extension RT-PCR was performed to synthesize linked VH:VL amplicons (Fig. 3-

1C) (DeKosky et al., 2013). The region of the linked amplicons comprising CDRH3 and 

CDRL3 was then sequenced in an Illumina MiSeq 2 x 250 run. Full-length VH and VL 

sequences were identified in separate MiSeq 2 x 250 runs. After bioinformatics analysis 

(DeKosky et al., 2013), 212 unique VH:VL pairs were identified in the draining lymph 

node repertoire, and these showed great polarization, indicative of clonal expansion. 

Specifically, the top 10 most abundant VH:VL pairs constituted 65.8% of the total reads 



 63 

(Fig. 3-6A). The virtual absence of antibodies using IGLV families in the repertoire was 

expected, as only 5% of all mouse antibodies use the lambda light chain (Lu et al., 2014). 

Comparisons with mouse antibody repertoires generated by immunization with 

other antigens showed similar germ-line gene usage between the anti-ricin A chain 

antibody repertoire and other repertoires (Fig. 3-6B) (Reddy et al., 2010; Wang et al., 

2015a). The CDRH3 length distribution in CD138+ antibody secreting cells from the 

draining lymph node showed three peaks at 12, 13, and 15 amino acids (Fig. 3-6C). 

Synthetic genes for the top 10 highest frequency paired VH:VL sequences from the 

DLN repertoire were constructed and the respective mouse-human chimeric antibodies 

(mouse VH fused with the human IgG1 constant domain, and mouse VL fused with the 

human kappa constant domain) were expressed in Expi293 cells and purified. 4/10 

recombinant antibodies displayed binding by ELISA (Table 3-4, Fig. 3-7). SPR analysis 

was used to obtain antigen-binding kinetics for these 4 clones (Table 3-5, Fig. 3-4). All 

but one antibody showed high affinity binding to the ricin A chain. Interestingly, the 

affinities of the antibodies that bound ricin A chain correlated with their abundance in the 

VH:VL repertoire, with the antibody displaying the lowest Kd (RAM1.2) being the most 

abundant. 

We compared the native antibodies recovered from the DLN to yeast display-

selected antibodies from the bone marrow and spleen combinatorial libraries. 

Interestingly, BM1, BM3, BM17 and SP19 were found to share germ-line V and J 

segments with RAM1.5, and SP1 had the same germ-line V and J segments as RAM1.4. 

The two groups of antibodies also had the same VH:VL pairing. Furthermore, antibodies 

recovered from the DLN without selection had very similar CDRH3s with those isolated 

by yeast display from bone marrow and spleen (Table 3-1, 3-4), as well as additional 
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amino acid substitutions, indicating that they correspond to somatic variants derived from 

the same antibody lineage during clonal expansion (Fig. 3-8). 

DISCUSSION 

In vitro screening of antibody libraries constructed from different sources 

(synthetic, naïve, or immune) is one of the most commonly used techniques for antibody 

discovery (Bradbury et al., 2011; Hoogenboom, 2005). In this work, we identified anti-

ricin A chain antibodies by eliciting an immune response in mice and then exploring the 

resultant antibody repertoires via both yeast display of combinatorial libraries from the 

bone marrow and spleen and paired VH:VL sequencing from the draining lymph node. 

While both approaches generated high affinity clones (Kd ranging from 0.55 nM 

to 6.12 nM), as has previously been observed (Bowley et al., 2007), unexpectedly the 

antibodies generated by these two very different approaches were found to be clonal 

relatives. Different amino acids encoded by different nucleotides in the isolated 

antibodies from different lymphoid organs indicated that BM1, BM3, BM17 (derived 

from bone marrow using yeast display), SP19 (derived from the spleen using yeast 

display) and RAM1.5 (derived from the draining lymph node using paired VH:VL 

sequencing), and separately SP1 and RAM1.4 were clonal variants (Fig. 3-8). A previous 

report has shown that while naïve mouse spleen and lymph node repertoires share some 

common CDRH3s, the scFvs isolated from these lymphoid organs following 

intraperitoneal and subcutaneous immunization were unique (Venet et al., 2013). In 

contrast, when we probed different lymphoid organs, clonal variants were obtained. 

These differing conclusions may reflect differences in the immunization routes used, the 

numbers of boost immunizations, and significant differences introduced by the 

expression biases in phage compared to yeast display. The clonal variants we isolated 
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from different lymphoid organs indicate that these antibodies were likely encoded by the 

same ancestral B cells that homed to different lymphoid organs and experienced clonal 

expansion there. 

We have previously shown that by dissecting the draining lymph node antibody 

repertoire with paired VH:VL sequencing, the highly abundant clones were usually antigen 

specific as a result of clonal expansion (Wang et al., 2015a). Here, we again showed that 

the highly abundant clones in the draining lymph node probed with paired VH:VL 

sequencing encoded high-affinity, antigen-specific antibodies. Comparison of the 

antibodies isolated using these two approaches supports our hypothesis that yeast display 

can recover native antibodies in a repertoire, as antibodies isolated by yeast display are 

clonal variants of those isolated by paired VH:VL sequencing, which identifies native 

VH:VL pairings. Given the relative abundance of the VH and VL sequences of antibodies in 

the bone marrow and spleen repertoires, the calculated probability of obtaining these 

native antibodies by combinatorially random pairing would be about 0.2%. Thus, in 

hyperimmunized animals the proportion of randomly paired VH and VL genes is 

sufficiently high that natively paired heavy and light chains occur. Moreover, high 

affinity native pairs can be isolated following yeast surface expression and FACS. To our 

knowledge this is the first report that yeast display selections can identify native 

antibodies from the immune repertoire. 

The fact that an in vitro combinatorial library screening method can identify 

native V gene pairs is relevant for antibody discovery. Numerous successes in developing 

antibody drugs from combinatorial libraries generally validate this approach (Brekke and 

Sandlie, 2003). However, some high-affinity antibodies identified by library screening 

have mediocre biophysical properties, such as low yield and poor stability (Liu et al., 

2014; Ponsel et al., 2011; Wang et al., 2014; Wörn and Plückthun, 2001; Xu et al., 2013). 
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Such deficiencies are thought to emanate from random or non-native pairings of VH and 

VL that lead to unfavorable conformations that in turn promote poor biophysical 

properties (Jayaram et al., 2012; Tiller et al., 2013). Another contributor may be that 

expression in a non-native host (i.e., mouse antibody libraries screened by phage display) 

leads to selection at the expression level against certain clones (Bowley et al., 2007). In 

contrast, antibodies with natively paired heavy and light chains, such as those isolated 

from hybridomas, express better, and in general show much better stability (Dessain et 

al., 2008; Jayaram et al., 2012; Tiller et al., 2013). Our methods can therefore potentially 

streamline the huge amount of effort put into the discovery process (Liu et al., 2014; 

Mcconnell et al., 2014; Rouet et al., 2014; Wörn and Plückthun, 2001; Xu et al., 2013). 

Our results support the utility of next-generation sequencing in combinatorial 

library screening (Georgiou et al., 2014a; Reddy et al., 2010; Wang et al., 2015a). 

Hyperimmunization leads to a high degree of polarization of the B-cell repertoire in a 

particular compartment, such that the dominant antibodies are highly represented and 

combinatorial screening by a technique with low expression bias, such as yeast display, 

can further yield high-affinity native antibodies. The high-affinity anti-ricin A chain 

antibodies we identified may provide a greater diversity of reagents for both diagnostics 

and therapeutics. 

MATERIALS AND METHODS 

Cell line and media 

The yeast strain EBY100 (MATa AGA1::GAL1-AGA1::URA3 ura3-52 trp1 

leu2Δ200 his3Δ200 pep4::HIS3 prb11.6R can1 GAL) was used for library construction 

and screening. Yeast cells were maintained in YPD medium (20 g/l dextrose, 20 g/l 

peptone, and 10 g/l yeast extract); after library transformation, they were maintained in 
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SDCAA medium (20 g/l dextrose, 6.7 g/l yeast nitrogen base, 5 g/l casamino acids, 8.56 

g/l NaH2PO4.H2O, and 10.2 g/l Na2HPO4.7H2O). SGCAA medium (identical to SDCAA 

except 20 g/l galactose is used instead of dextrose) was used for library induction. E. coli 

strain DH10β was used for subcloning, and E.coli strain Jude-1 was used for soluble 

scAb expression. Expi293 cells (Invitrogen) were used for IgG expression, and were 

maintained in Expi293 expression medium (Invitrogen). 

Antigen and antibodies  

Ricin A chain was purchased from Sigma-Aldrich (cat# L9514). It was 

biotinylated using an EZ-Link Sulfo-NHS-LC-Biotin kit (Thermo Scientific). Chicken 

anti-c-Myc IgY, Alexa Fluor 488-goat anti-chicken IgG (GaC-488), and streptavidin-

Alexa Fluor 633 (SA-633) were obtained from Invitrogen (cat# A-21281, A-11039, and 

S21375, respectively). Anti-biotin microbeads were purchased from Miltenyi Biotec 

(cat# 130-090-485). 

Mouse immunizations 

This study was approved by the University of Texas Institutional Animal Care 

and Use Committee under protocol# AUP-2013-00009. Ricin A chain was mixed with 

TiterMax Gold adjuvant (Sigma-Aldrich, cat# T2684) at a 1:1 ratio and pipetted several 

times to obtain stable emulsions for immunization. On day 1, 4 female BALB/c mice at 6 

weeks of age (Jackson Laboratory) were injected subcutaneously at the left hind footpad 

with 5 μg of ricin A chain in 25 μl antigen adjuvant mixture. A booster immunization 

was performed on day 14. 7 days after the booster immunization, the serum antibody 

titers against ricin A chain were determined. About 30 μl of blood was collected from 

each mouse at a small tail vein incision made with a scalpel blade, and coagulated at 

room temperature (RT) for 30 min. Following centrifugation at 13000 rpm for 15 min, 
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the supernatant (serum) was used for ELISAs. The serum was first serially diluted with 

phosphate-buffered saline (PBS) +2% milk (PBSB) at a 1:3 ratio from 1:100 to 

1:218,700. The diluted serum was applied in triplicate onto ELISA plates (Corning) that 

had been coated with 50 μl of 4 μg/ml of ricin A chain overnight (O/N) at 4oC and then 

blocked with PBSB at RT for 2 hours. After incubation at RT for 1 hour, plates were 

washed with PBS+0.05% Tween-20 (PBST), followed by adding 50 μl of a 1:5000 

diluted horseradish peroxidase (HRP)-conjugated goat anti-mouse antibody (Jackson 

ImmunoResearch, cat# 115-035-166). After 1 hr incubation, plates were washed again 

with PBST, after which 50 μl of TMB Ultra ELISA substrate (Thermo Scientific, cat# 

34028) was added. The reaction was quenched after 10 min with 50 μl of 2 M H2SO4. 

Absorbance at 450 nm was determined using a Tecan M200 plate reader, and the serum 

titer was calculated as the dilution at which the absorbance was 3 times higher than 

background. The second booster was performed on day 28, after which significant titers 

(>1:10,000) were generated in all mice. The final booster was performed on day 42, and 6 

d later, mice were sacrificed for lymphoid organ collection. 

Lymphoid organ collection 

Bone marrow, spleen, and draining lymph node tissues were collected separately. 

30 min before sacrifice, 10 μl 2% Evans Blue in PBS (Sigma-Aldirch, w/v, cat# E2129) 

was injected into the left hind footpad. After CO2 asphyxiation and cervical dislocation, 

the blue-stained popliteal lymph node behind the knee was collected. The spleen was also 

collected. For bone marrow collection, after clipping the ends of the tibias and femurs, 

bone marrow was flushed out with PBS+0.1% bovine serum albumin (BSA)+2 mM 

EDTA (PBSM) using a syringe. Each lymphoid organ tissue sample was first 

mechanically disrupted using a needle, then passed through a 70 μm cell strainer 
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(Corning) to collect single cells. The single cell suspension of each lymphoid organ was 

washed with 20 ml of PBSM buffer and resuspended in 2 ml red blood cell lysis buffer 

(155 mM NH4Cl, 12 mM NaHCO3, and 0.1 mM EDTA). After incubation at RT for 5 

min, cells were diluted with 20 ml of PBS and then spun down. Cells were washed twice 

more with PBSM buffer, then cells from the bone marrow and spleen were used for yeast 

library construction, and cells from draining lymph node were used for high-throughput 

VH:VL pairing. 

Yeast library construction for bone marrow and spleen repertoires 

Cells from the bone marrow and spleen were resuspended in TRI Reagent 

(Invitrogen), and RNA was extracted from each sample. cDNA was generated using 200 

ng of RNA as a template with the SuperScript III First-Strand synthesis kit (Invitrogen). 

VH and VL sequences were amplified using mouse V gene specific primers. For scFv 

library construction, 50 ng of VH and VL DNA were used as templates for overlap 

extension PCR, and amplified with primers that contained 50 nucleotides at each end that 

were in common with the display vector, which should be sufficient to promote 

homologous recombination upon yeast transformation. The display vector pCTCON2 

was linearized by NheI and BamHI digestion (Chao et al., 2006) and the digested 

backbone was purified and co-transformed with 5-fold mass excess of scFv fragments 

into electrocompetent yeast cells (Benatuil et al., 2010). The libraries were cultured in 

SDCAA medium at 30oC for 2 d. 

Yeast library screening 

Cells were induced in SGCAA medium at 20oC for 2 d. For the 1st round of 

selection, 2 x 107 cells (10-fold coverage relative to the number of transformants) were 

incubated with 1 μM biotinylated ricin A chain at RT for 1 hr and washed thoroughly 
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with PBS+0.5% BSA+2 mM EDTA (PBSA) to remove any unbound ricin A chain 

protein. Cells were then mixed with 400 μl of anti-biotin microbeads and incubated at 

4oC for 30 min, and washed again. Cells that bound ricin A chain were selected using 

MidiMACS system (Miltenyi Biotec), and recovered in SDCAA medium at 30oC. For the 

2nd round of selection, 107 cells in 200 μl PBS+0.1% BSA (PBSF) were labeled with 1 

μM biotinylated ricin A chain and 4 μg/ml chicken anti-c-Myc IgY at RT for 1hr. After 

washing with PBSF, cells were incubated with 5 μg/ml SA-633 and 5 μg/ml GaC-488 at 

4oC for 30 min. After washing, cells were resuspended in PBSF buffer and sorted using 

FACS Aria (BD Bioscience). Gated cells were collected from the double positive 

quadrant as shown in Fig. 3-3. The subsequent 2 rounds of selection were performed in a 

similar way, except that the concentration of ricin A chain used was decreased to 200 nM 

and 40 nM, respectively. After 4 rounds of selection, 20 random colonies from each 

library were picked, and plasmids were isolated using Zymoprep Yeast Plasmid Miniprep 

II kit (Zymo Research). Plasmids were amplified in E. coli DH10β and sequenced. Three 

and two unique clones were thus isolated from the bone marrow and spleen libraries, 

respectively. 

Plasmids encoding the 5 unique antibody clones above were re-transformed into 

strain EBY100. Cells were cultured and induced for scFv expression as described above. 

106 cells were labeled with 1:3 serially diluted ricin A chain, ranging from 0.09 nM to 

600 nM. The labeling process was the same as that used for library sorting. After 

labeling, cells were analyzed on BD FACS Aria and the mean fluorescence intensity 

(MFI) values were used to calculate apparent equilibrium binding constant (Kd), as 

described (Chao et al., 2006). 
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scAb expression and characterization 

For soluble antibody purification, antibody genes were subcloned into pMopac16 

vector and expressed as scAb fragments in E.coli Jude-1 cells (Hayhurst et al., 2003) and 

then purified by Ni-NTA chromatography according to the manufacturer’s instructions 

(Thermo Scientific). After elution, proteins were dialyzed in PBS, then loaded onto a 

Hiload 16/600 Superdex 75 pg column (GE Healthcare) and antibody-containing 

fractions were pooled and concentrated to 2 mg/ml. 

For affinity validation, SPR was performed for each antibody clone using a 

BIAcore 3000 biosenor (Biacore). About 400 RU (response units) of scAbs were 

immobilized on the CM5 sensor chip (GE Healthcare) using amine coupling chemistry. 

All binding experiments were done in HBS-EP buffer (10 mM HEPES pH 7.4, 150 mM 

NaCl, 3.4 mM EDTA, and 0.005% P20 surfactant) (GE Healthcare). Ricin A chain was 

injected at concentrations of 25, 50, 100, 200, and 400 nM with a flow rate of 30 μL/min 

for 2 min and a dissociation time of 10 min. The chip was regenerated after each injection 

by 100 mM citric acid, pH 3.0. The response generated by flowing ricin A chain over a 

BSA-coupled surface was used as control and consequently subtracted. Experiments were 

carried out in triplicates. All kinetic parameters were determined in BIAevaluation 3.0 

software using a 1:1 Langmuir model and were reported as the average of the three 

technical replicates. 

V gene repertoire sequencing and analysis 

VH and VL cDNA for bone marrow and spleen samples (the same cDNAs used for 

yeast library construction) were prepared and sequenced using the Illumina 2 x 250 

paired end Miseq platform as described previously (DeKosky et al., 2013). Briefly, raw 

sequences were first filtered for sequences containing at least half of the nucleotides at a 

minimum Phred quality score of 20 to obtain high quality sequences, then assembled to 
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obtain full length VH and VL sequences, respectively. Sequences represented by at least 2 

reads were submitted to IMGT (the international immunogenetics information system, 

www.imgt.org) High V-Quest analysis (Lefranc et al., 2009) and those with productive 

VH or VL, and in-frame V(D)J junctions (CDRH3 or CDRL3) were analyzed further. 

Paired VH:VL sequencing of antibody secreting cells from the draining lymph node 

From single cell suspension of the draining lymph node, CD138+ antibody 

secreting B cells were isolated using a mouse CD138+ Plasma Cell Isolation kit (Miltenyi 

Biotec) (Wang et al., 2015a). The paired VH:VL gene repertoire was determined as 

described (DeKosky et al., 2013). Briefly, isolated single cells were deposited into 125 

pL wells in PDMS slides together with poly(dT) magnetic beads (Invitrogen). After cell 

lysis in situ, beads with captured mRNA from the same cell were collected, washed, and 

emulsified. Mouse V gene specific primers were used to link endogenous VH and VL in 

the subsequent emulsion overlap extension RT-PCR. A second nested PCR was used to 

amplify the linked VH:VL pairs. Sequencing was performed by Illumina 2 x 250 paired 

end Miseq. The raw Miseq reads were filtered for reads where at least half of the 

nucleotides had a minimum Phred quality score of 20 to remove low-quality reads, and 

were then submitted to IMGT for V(D)J germ-line alignment (Lefranc et al., 2009). 

Sequence data were again filtered for productive VH or VL, and for in-frame V(D)J 

junctions (CDRH3 or CDRL3), and were then matched using their Illumina read IDs. 

CDRH3 nucleotide sequences were clustered to 96% identity, and CDRH3:CDRL3 pairs 

represented by 2 or more reads were rank-ordered. In two separate sequencing runs the 

complete VH and VL sequences encoded within the linked VH:VL amplicons were 

determined. The sequences for the VH:VL junction and the separate VH and VL sequences 
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were assembled to yield natively paired full length VH and VL sequences, as described 

(DeKosky et al., 2013). 

Antibody expression and characterization 

Consensus VH and VL sequences of the top 10 most abundant antibodies from the 

draining lymph node were synthesized using gblocks (IDT) and subcloned into 

pcDNA3.4 vectors (Invitrogen) as fusions with human IgG1 and kappa constant domains, 

respectively. After sequence verification, the heavy and light chain plasmids were mixed 

at 1:3 ratio, and transfected into Expi293 cells for antibody expression. Six days after 

transfection, the supernatant was collected and antibodies were purified using protein A 

chromatography (Thermo Scientific). 

To verify the specificity of these antibodies, ELISAs were carried out with both 

ricin A chain and BSA as a control. ELISA plates were coated with 50 μl of 4 μg/ml ricin 

A chain or BSA at 4oC O/N. On the next day, plates were blocked with PBSB at RT for 2 

hr. After that, 1:5 serially diluted antibodies with concentrations ranging from 300 nM to 

3.84 pM were added to the plates and the plates were incubated at RT for 1 hr. After 

washing with PBST, 50 μl of 1:5000 diluted HRP-conjugated donkey anti-human 

antibody (Jackson ImmunoResearch, cat# 709-035-149) was added and the plates were 

again incubated at RT for 1hr. After washing with PBST, 50 μl of TMB substrate was 

added and the reaction was stopped after 10 min by adding 50 μl of 2 M H2SO4. The 

absorbance at 450 nm was read and EC50 was calculated. For each antibody that showed 

binding to ricin A chain, affinity determinations were carried out via SPR analyses, as 

described above for scAbs. 
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Figure 3-1: Overview of the experimental approach.  

(A) Mouse is immunized at footpad with ricin A chain, and peripheral lymphoid organs, 
including bone marrow, spleen, and draining lymph node are isolated after three booster 
immunizations. (B) Total cells in bone marrow and spleen are collected, and VH and VL 
mRNA are reverse transcribed and amplified, which are used to construct scFv libraries, 
respectively. These are selected against ricin A chain using yeast surface display to 
isolate high-affinity binders. VH and VL cDNAs are also sequenced on an Illumina 
platfrom. (C) CD138+ antibody secreting cells are isolated from draining lymph node, and 
processed through our high-throughput VH:VL pairing platform. 
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Figure 3-2: Serum titers of mice immunized with ricin A chain.  

Titers after the 2nd booster immunization (A) and after the 3rd booster immunization (B) 
are shown. (mouse 1 (used for antibody discovery): red circle; mouse 2: green star; 
mouse 3: blue squaure; mouse 4: magenta diamond). 
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Figure 3-3: Selection of libraries constructed from bone marrow and spleen antibody 
repertoires.  

Cells are doubly stained with chicken anti-c-Myc IgY/GaC-488 for scFv surface 
expression and biotinylated ricin A chain/SA-633 for antigen binding. (A) Bivariate plots 
are shown for bone marrow antibody library stained with 100 nM ricin A chain before 
selection, after MACS, after 1st FACS, after 2nd FACS, and after 3rd FACS, with x axis 
being surface expression, and y axis being antigen binding. (B) Bivariate plots are shown 
for spleen antibody library stained with 100 nM ricin A chain before and after each round 
of selection. For both libraries, cells in the upper-right quadrant (both express scFv on the 
surface and bind ricin A chain) are sought. Cells falling within strict FACS sort gates 
designed to ensure enrichment of clones showing increased binding to ricin A chain are 
collected for the next round of selection. 
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Figure 3-4: SPR sensorgrams for BM1(A), BM3(B), BM17(C), SP1(D), and SP19(E) 
scAbs and RAM1.2(F), RAM1.4(G), RAM1.5(H), and RAM1.10(I) IgGs.  

One representative binding curve with soluble ricin A chain from three replicates is 
shown. 
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Figure 3-5: Characteristics of bone marrow and spleen antibody repertoires from the 
same mouse immunized with ricin A chain.  

(A) Germ-line VH gene usage in bone marrow and spleen repertoires. (B) Germ-line VL 
gene usage in the two repertoires. (C) CDRH3 length distribution in the two repertoires. 
Green denotes bone marrow repertoire, and blue denotes spleen repertoire. 
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Figure 3-6: Characteristics of CD138+ antibody-secreting cells repertoire in draining 
lymph node from mouse immunized with ricin A chain.  

(A) The frequency of each unique antibody clone in the repertoire, which is calculated as 
the percentage of its read counts in the read counts of all clones, is shown with its rank, 
which is ordered by the number of read counts of each unique clone. Clones with only 1 
read are removed, and CDRH3 nucleotide sequences are clustered to 96% identity. Inset 
shows the distribution of the top 10 most abundant clones in the repertoire. (B) Germ-line 
V gene family usage in the same repertoire is shown. (C) CDRH3 length (calculated as 
amino acid length) distribution of antibodies in the repertoire is shown as the percentage 
of antibodies that have the denoted CDRH3 length in the whole repertoire. 
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Figure 3-7: Characterization of the 4 antibodies isolated from CD138+ antibody 
secreting cells in the draining lymph node.  

Reactivity of the antibodies to ricin A chain is determined by ELISA. EC50 for the 4 
antibodies are shown in Table 3-5. Error bar represents standard error mean of three 
technical replicates. 
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Figure 3-8: Sequence comparison between yeast surface display and next-generation 
sequencing discovered antibodies.  

(A), (B) VH alignments of BM1, BM3, BM17, SP19 and RAM1.5 and of SP1 and 
RAM1.4 showed mutations through the complete VH sequences, indicating they are 
somatic variants. (C), (D) VL alignments of BM1/BM3/BM17, SP19 and RAM1.5 and of 
SP1 and RAM1.4 also showed mutations. Mutations are indicated by different colors. 
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Table 3-1: List of the antibodies isolated from the bone marrow and spleen 
combinatorial libraries by yeast display and abundance of their VH and VL 
sequences in the corresponding repertoires assessed by next-generation 
sequencing.  

Note that BM3 and BM17 have the same CDRH3 sequences, but differ in sequence 
outside of CDRH3 (Fig. 3-8). 

 

 

 

 

 

 

 

 

 

 

 

Antibody Source CDRH3: CDRL3 Gene usage VH:VL 
abundance (percentage and rank) 

 

BM1 bone marrow CTRSEFVNFGWFAYW: 
CQQYHNFPRTF 

IGHV1-IGHD2-IGHJ3: 
IGKV4-IGKJ1 

2.6%, 3rd: 
3.1%, 3rd 

 

 

BM3 bone marrow CTRSEYVNFGWFAYW: 
CQQYHNFPRTF 

IGHV1-IGHD2-IGHJ3: 
IGKV4-IGKJ1 

5.1%, 2nd: 
3.1%, 3rd 

 

 

BM17 bone marrow CTRSEYVNFGWFAYW: 
CQQYHNFPRTF 

IGHV1-IGHD2-IGHJ3: 
IGKV4-IGKJ1 

1.2%, 5th: 
3.1%, 3rd 

 

 

SP1 spleen CSRDRTWYGTFYAMDYW: 
CHQYHRSPYTF 

IGHV1-IGHD2-IGHJ4: 
IGKV4-IGKJ2 

0.9%,5th: 
2.8%,3rd 

 
 

 

 

SP19 spleen CTRSEFVNFGWFAYW: 
CHQYHNYPRTF 

IGHV1-IGHD2-IGHJ3: 
IGKV4-IGKJ1 

5.3%,2nd: 
1.2%,4th 
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Table 3-2: The binding kinetics of the antibodies isolated from bone marrow and spleen 
as measured by yeast surface titration and surface plasmon resonance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Antibody  Kd 
(nM, determined by yeast display titration) 

Binding kinetics determined by SPR 

kon (M-1s-1) koff (s-1) Kd (nM) 

BM1  10.3 (2.09±0.04)x 105 (9.7±0.52)x10-4 4.64±0.33 
BM3  2.76 (1.13±0.03)x105 (3.41±0.23)x10-4 3.03±0.12 

BM17  2.96 (2.5±0.13)x105 (1.36±0.006)x10-3 5.44±0.27 
SP1  4.25 (2.28±0.07)x105 (3.72±0.06)x10-4 1.64±0.08 

SP19  8.22 (3.91±0.32)x105 (2.25±0.04)x10-4 0.58±0.05 
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Tissue Region Total sequence reads unique productive gene unique clonotypes 

bone marrow VH 1078639 849735 8735  

 VL 542905 385398  

spleen VH 690554 370357 7057 

 VL 696061 410954  

 

Table 3-3: Next-generation sequencing statistics of bone marrow and spleen 
repertoires. 
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Table 3-4: List of the antibodies isolated from CD138+ antibody-secreting cells in the 
draining lymph node. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Antibody Rank in the repertoire CDRH3:CDRL3 Gene usage 

RAM1.2 2 CARPTLLYGSSPCFDYW: 
CQQWSSSPTF 

IGHV1-IGHJ2:IGKV4-IGKJ4 

RAM1.4 4 CTRERTWYGTFYAMDYW: 
CHQYHRSPYTF 

IGHV1-IGHD2-IGHJ4:IGKV4-IGKJ2 

RAM1.5 5 CTRSEYVDFGWFAYW: 
CQQYHSYPRTF 

IGHV1-IGHD2-IGHJ3:IGKV4-IGKJ1 

RAM1.10 10 CARSRDYDGYGDYW: 
CQQSNRWPLTF 

IGHV1-IGHD2-IGHJ2:IGKV5-IGKJ5 
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Antibody EC50  

(nM,determined 
by ELISA) 

SPR binding kinetics 

kon (M-1s-1) koff (s-1) Kd (nM) 

RAM1.2 0.186 (3.88±0.36)x105 (3.73±0.13)x10-4 0.97±0.11 

RAM1.4 0.284 (1.28±0.12)x105 (4.93±0.11)x10-4 3.89±0.35 

RAM1.5 3.21 (9.84±0.51)x104 (6.01±0.12)x10-4 6.12±0.19 

RAM1.10 20.9 (5.46±2.4)x104 0.149±0.01 (3.12±1.36)x103 

 

Table 3-5: The binding kinetics of the antibodies isolated from the draining lymph node 
as measured by ELISA and surface plasmon resonance. 
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Chapter 4: High-throughput mining of native antibody repertoires  

In chapters 2 and 3, I have described the development and adaptation of high-

throughput VH:VL pairing and sequencing technology for antibody discovery without 

screening, and then compared the antibodies obtained from mining the VH:VL paired 

repertoire  with those obtained by yeast surface display. Here, I describe a novel antibody 

repertoire analysis and antibody discovery platform that is based on screening libraries of 

natively paired VH:VL sequences coupled with yeast display. This technology holds 

promise for interrogating the antibody specificity of the human repertoire isolated from 

peripheral B cells and is being used for the isolation of antibodies to influenza, Ebola 

(following vaccination) and to HIV-1 infection. This platform also enables epitope-

specific antibody discovery and affinity binning of the whole repertoire. The platform 

should be widely applicable for antibody repertoire analysis and antibody discovery for 

other pathogens. 

INTRODUCTION 

The high-throughput analysis and “mining” of the native antibody repertoires for 

isolation of antibodies that bind to desired antigens are yet to be demonstrated. Existing 

technologies for sequencing and expressing antibodies from B cells all have major 

limitations:  single B cell cloning suffers from very low throughput (usually at most a few 

hundred antibodies are expressed and characterized) (Georgiou et al., 2014b; Wilson and 

Andrews, 2012), while existing combinatorial library screening technologies rely on the 

screening of VH or VL libraries, and thus the native VH:VL pairing information found in B 

cells is not maintained (Bradbury et al., 2011). On the other hand, although high-

throughput VH:VL pairing and sequencing can generate sequence information about most 

native antibodies in the repertoire, only a very small number (< 100) of those antibodies 
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can be produced and assayed as a result of the cost for gene synthesis, and the extensive 

workload for cloning and expression (DeKosky et al., 2013; Georgiou et al., 2014b; 

Wang et al., 2015a, 2016). Furthermore, it is not a trivial task to select which antibodies 

to make (DeKosky et al., 2013; Wang et al., 2015a, 2016). So far, the three 

demonstrations that use high-throughput VH:VL paring for antibody discovery have relied 

on proteomic identification of the antibodies in the serum (DeKosky et al., 2013), or 

direct selection of highly expanded antibodies after immunization without screening 

(Wang et al., 2015a, 2016). Hence, a technology that enables high-throughput screening 

of native antibody repertoires without any special requirements is highly desirable. 

Furthermore, such a technology should enable linkage of antibody sequence-function 

relationships at the single clone level. 

RESULTS 

Implementation of novel yeast display platform for native antibody repertoire 
exploration 

In order to rapidly screen large antibody repertoires (libraries), one of the in vitro 

display methods has to be used, as recombinant expression of all antibodies in the 

repertoire in a soluble format with concomitant characterization is unrealistic. In contrast, 

after library transformation, every cell in the antibody display library expresses a single 

antibody from the repertoire, and this therefore allows detailed examination of every 

antibody. 

The first consideration for selection of a screening technology is the host for 

antibody library construction. Of all the display technologies, phage and E. coli display 

use E. coli as the host for antibody expression; yeast display uses yeast; while 

mammalian display uses mammalian cells (for example, HEK293). However, as antibody 
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library size is usually very small in mammalian cells (less than 105), I chose yeast 

display, as antibody library size can be as large as 1010 (similar to in E. coli).  

Furthermore, the similar protein production, folding, and secretion apparatus, and quality 

control mechanisms of yeast compared to those of mammalian cells make yeast a better 

host than E. coli. The use of FACS in yeast display also enables quantitative control of 

screening and normalization of affinity by surface expression level. Previous studies have 

also shown that yeast display, but not phage display, can recover native antibodies in the 

repertoire (Saggy et al., 2012; Wang et al., 2016), and compared to phage display, yeast 

display can identify more antibodies (Bowley et al., 2007). 

However, as high-throughput VH:VL pairing produces physically linked amplicons 

in which the 5’ end of VH is adjacent to the 5’ end to VL, the VH:VL paired repertoire can 

not be simply transferred into the display vector, in which the 3’ end of VH is adjacent to 

the 5’ end of VL (scFv). Hence, a new yeast display platform was designed. 

Design of the new platform 

In order to express the VH:VL pairs together, a galactose inducible bidirectional 

promoter was used to drive expression of both chains. CH1 (IgG1 isotype) and CL were 

fused at the C-terminus of VH and VL, respectively. To facilitate library construction, 4 

restriction enzyme sites that are very rarely found in immunoglobulin variable sequences 

were used (Fig. 4-1). As shown in Fig. 4-1, upon induction, the light chain was covalently 

linked to the heavy chain through a C-terminal disulfide bond, and the Fab fragment was 

displayed on the yeast cell surface as a N-terminal fusion of Aga2, which was linked to 

Aga1 by 2 disulfide bonds. C-terminal c-Myc and Flag tags were used to monitor 

expression of heavy and light chains, respectively. As antibodies have two different kinds 



 91 

of light chains (κ and λ), whole repertoires were separated into two parts, and cloned into 

the κ and λ platforms (which used Cκ and Cλ2 domains), respectively. 

Compared to the scFv used in the original yeast display, the Fab fragment, which 

only requires fusion with the Fc domain, is much closer to a native IgG. Once desired 

clones are identified, they can be expressed as IgGs very easily without reformatting. 

In order to clone intact VH:VL pairs into the platform, NotI (which cuts at the C-

terminus of VL) and AscI (which cuts at the C-terminus of VH) were used first to digest 

the pairs, which were then ligated into similarly digested vectors. This ligation produces 

vectors with intact VH:VL pairs inserted. These vectors were then digested with NcoI 

(which cuts at the N-terminus of VL) and NheI (which cuts at the N-terminus of VH), and 

ligated with a similarly digested bidirectional promoter fragment. The vectors with intact 

VH:VL pairs were eventually transformed into yeast, and could be screened by FACS after 

induction. 

Verification of the new platform 

Initially, 13 anti-influzenza hemagglutinin antibodies (Lee, et al. in press) were 

tested in the new platform. Only 7 of them expressed well on the surface and showed 

binding to hemagglutinin. We hypothesized that inferior protein folding and secretion in 

yeast compared to human cells accounted for the poor expression of some antibodies. 

Moreover, the single disulfide bond between heavy and light chains may make Fab 

assembly inefficient in yeast compared to humans, and the lack of light chain expression 

for several antibodies on the yeast cell surface further suggested this. Thus, two methods 

were used to improve folding and assembly of the Fab. 

First, instead of EBY100, the strain that is commonly used for yeast display, we 

used the yeast strain AWY101 that overexpresses protein disulfide-isomerase (PDI) 
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(Wentz and Shusta, 2007). PDI is a protein folding chaperone that plays a critical role in 

antibody expression and folding (Feige et al., 2010). In AWY101, the overexpression of 

PDI is driven by the GPD promoter (a very strong constitutive promoter in yeast), and the 

whole cassette is integrated into the genome. We found that this innovation improved 

expression and binding of 3 antibodies that didn’t express well initially. 

Second, we fused a pair of leucine-zipper dimerization tags at the C-terminus of 

the heavy and light chains, respectively. At the C-terminus of the heavy chain, we put a 

basic leucine-zipper tag, and at the C-terminus of the light chain, we put an acidic 

leucine-zipper tag. The use of leucine-zipper tags should force better assembly of the 

heavy and light chains, and the strong interaction of basic and acidic leucine-zipper tags 

should promote heterodimerization of the heavy and light chains instead of 

homodimerization of heavy chains or light chains. The use of leucine-zipper tags 

improved expression and binding of the other 3 antibodies. 

We then combined the two methods. As shown in Fig. 4-2a, all of the tested 

antibodies, including 13 anti-influenza hemagglutinin antibodies (2 shown), 3 anti-Ebola 

GP antibodies (1 shown) (Corti et al., 2016; Lee et al., 2008), and 3 anti-HIV-1 bnAbs (1 

shown) (Doria-Rose et al., 2014; Kong et al., 2016; Wu et al., 2010), showed good 

surface expression and binding to their cognate proteins hemagglutinin, GP, and fusion 

peptide probes, respectively. The antibodies VRC01 and VRC26 were not tested for 

antigen binding due to the unavailability of the HIV-1 envelope trimer. 

In order to make sure that leucine-zipper mediated enhancement of Fab assembly 

didn’t interfere with binding, we made 3 chimeric antibodies that were composed of their 

native heavy chains and non-cognate light chains of other antibodies. As shown in Fig. 4-

2b, although the chimeric antibodies were still expressed on the surface, they didn’t bind 

to cognate antigens. The loss of binding for non-native antibodies, together with binding 
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to cognate but not to non-cogate antigens by native antibodies, indicated that leucine-

zipper mediated enhancement of the Fab assembly didn’t induce nonspecific binding. 

We also dissected the effects of combining chaperone overexpression and leucine-

zipper mediated assembly enhancement. As shown in Fig. 4-2c, both chaperone 

overexpression and leucine-zipper enhanced assembly improved expression and binding, 

and had additive effects in which the largest enhancement was seen when both of them 

were present. 

While this work was going on, Ojima-Kato et al.  also demonstrated the effect of 

leucine-zipper fusion on Fab expression and antigen binding in E. coli (Ojima-Kato et al., 

2016). This work serves as an independent verification of our incorporation of leucine-

zippers into Fab assembly. 

Exploration of native antibody repertoires 

Next, we analyzed 4 native antibody repertoires, including one of total B cells 

from PBMCs isolated 7 days after TIV01 vaccination (Lee et. al, in press), one of 

leukapheresis B cells collected 9 months after TIV01 vaccination, one of plasmablasts 

isolated 6 days after Ebola vaccine boost, and one of memory B cells collected 2 years 

after HIV-1 infection (Kong et al., 2016). The VH:VL paired libraries were separately 

amplified to construct VH:Vκ and VH:Vλ sub-libraries, which were then cloned into the κ 

and λ platforms, respectively. These libraries were then stained with fluorescently-labeled 

hemagglutinin, GP, and fusion peptide probes, and screened by FACS. Screening 

stringency was increased round-by-round by decreasing antigen concentrations: for 

influenza antibody repertoire screening, hemagglutinin was used at 1 μM, 200 nM, and 

then 40 nM concentrations; for the Ebola virus antibody repertoire, GP was used at 1 μM, 
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100 nM, and then 10 nM concentrations; and for the HIV-1 antibody repertoire, the 

fusion peptide probe was used at 1 μM, 100 nM, and then 10 nM concentrations.  

As shown in Fig. 4-3, in the HIV-1 VH:Vκ library, we saw a small population of 

cells that showed binding to the fusion peptide probe after 1 round of screening. After the 

2nd round of screening, significant enrichment of cells showing binding was observed. 

Similar enrichment of binding cells was also seen in the other repertoires after 3 rounds 

of screening.  

Toward functional screening: epitope-specific selection 

Another major limitation for most of the current antibody library 

screening/antibody discovery technologies is no function other than binding can be 

selected (Wilson and Andrews, 2012). The lack of functional selection methods in part 

results from a lack of simple and straightforward ways to link antibody function (for 

example, neutralization) to sequence. We therefore have also worked towards functional 

screening of antibody libraries.  

We have started by performing epitope-specific screening. We hypothesized that 

there is a higher chance to identify antibodies with desired functions (such as 

neutralization) from the pool of antibodies that target specific epitopes. This is supported 

by the fact that a large number of functional antibodies target specific, subdominant 

epitopes, especially for complex pathogens that have many immunodominant epitopes 

(such as Ebola and HIV-1 virus) (Corti and Lanzavecchia, 2013).   

We devised a strategy to fish out antibodies that target specific epitopes. We used 

the cloned anti-Ebola virus GP antibodies in a proof-of-principle study. In this set of 

antibodies, mAb 114, mAb 166, and c13c6 recognize similar epitopes (on the top of GP), 

while KZ52 and mAb 100 recognize similar epitopes (at the base of GP) (Corti et al., 
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2016; Lee et al., 2008). As expected (Fig. 4-4), mAb 114 binding to GP is blocked by 

itself, but not by KZ52, and c13c6 binding to GP is blocked by mAb166 and mAb 114, 

but not by KZ52, while KZ52 binding to GP is blocked by mAb 100 and itself, but not by 

mAb 114. This demonstrated that epitope-specific antibodies could be selected by first 

blocking undesired epitopes on the antigens. 

We screened the Ebola virus antibody repertoire using the epitope-specific 

approach. Fluorescently-labeled GP was blocked with KZ52, and then used for screening. 

We observed enrichment of cells binding to non-KZ52 epitopes after the 2nd round of 

screening. 

DISCUSSION 

Here, we developed a novel platform that enables high-throughput analysis of 

native antibody repertoires, and used it to explore antibody repertoires elicited after 

influenza and Ebola virus vaccination, and after HIV-1 infection. Compared to other 

antibody repertoire characterization and discovery methods, the new platform has several 

advantages: 1) it allows characterization of almost every antibody in the repertoire, and 

these antibodies have preserved their native VH:VL pairings; 2) use of FACS provides a 

high-throughput, quantitative way to characterize antibodies; and 3) NGS can still be 

used for sequence determination.  

Furthermore, we achieved epitope-specific antibody discovery with this platform 

by using antigens that were blocked with antibodies that targeted undesired epitopes. 

Starting from a pool of epitope-specific antibodies, we hypothesize there should be a 

higher chance to identify antibodies with desired functions (such as neutralization).  

Given these advantages, we anticipate the wide application of this new platform 

for antibody repertoire analysis and antibody discovery. 
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MATERIALS AND METHODS 

Cell line and media 

The yeast strain AWY101 (MATα AGA1::GAL1-AGA1::URA3 PDI1::GAPDH-

PDI1::LEU2 ura3-52 trp1 leu2Δ1 his3Δ200 pep4::HIS3 prb1Δ1.6R can1 GAL) was used 

for library construction and screening. Yeast cells were maintained in YPD medium (20 

g/l dextrose, 20 g/l peptone, and 10 g/l yeast extract); after library transformation, they 

were maintained in SDCAA medium (20 g/l dextrose, 6.7 g/l yeast nitrogen base, 5 g/l 

casamino acids, 8.56 g/l NaH2PO4.H2O, and 10.2 g/l Na2HPO4.7H2O). SGDCAA 

(SGCAA with 2 g/l dextrose) medium was used for library induction. 

Antigens and antibodies 

Hemagglutinins (A/California/07/2009, A/Solomon Islands/3/2006, 

A/Wisconsin/67/2005, and B/Malaysia/2508/2004) were provided by Dr. Stephen 

Harrison at Harvard University. Full-length and mucin-like domain deleted Ebola virus 

GP were provided by Dr. Nancy Sullivan at NIH. HIV-1 fusion peptide probe and knock-

out probe were provided by Dr. John Mascola at NIH. Anti-flag FITC antibody was 

purchased from Sigma-Aldrich (cat# F4049). Hemagglutinins were biotinylated using an 

EZ-Link Sulfo-NHS-LC-Biotin kit (Thermo Scientific). Chicken anti-c-Myc IgY, Alexa 

Fluor 633-goat anti-chicken IgG (GaC-633), streptavidin-PE (SA-PE) and streptavidin-

v450 (SA-450) were obtained from Invitrogen and BD Biosciences (cat# A-21281, A-

21103, S866, and 560797, respectively). Anti-biotin and streptavidin microbeads were 

purchased from Miltenyi Biotec (cat# 130-090-485 and 130-048-101). 
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Yeast library construction for influenza and Ebola vaccinees and HIV-1 elite 
controller 

VH:VL pairing was done as previously described (DeKosky et al., 2015). For 

library construction, 10 ng of VH:VL paired DNA was used as template for PCR to 

introduce NotI and AscI sites with primers that primes at 3’ of both chains. The product 

was digested, ligated with similarly digested vector, and transformed into E. coli. The 

libraries were minipreped, digested with NcoI and NheI, and ligated with similarly 

digested PCR product of bidirectional promoter. After transformation into E. coli, the 

libraries were minipreped and transformed into AWY101. The libraries were cultured in 

SDCAA medium at 30oC for 2 d. 

Library screening 

Cells were induced in SGDCAA medium at 20oC for 2 d. For the 1st round of 

selection, 109 cells (10-fold coverage relative to the number of transformants) were 

incubated with 1 µM biotinylated hemagglutinins at RT for 40 min and washed 

thoroughly with PBS+0.5% BSA+2 mM EDTA (PBSA) to remove any unbound 

hemagglutinins. Cells were then mixed with 400 µl of anti-biotin microbeads and 

incubated at 4oC for 15 min, and washed again. Cells that bound hemagglutinins were 

selected using MidiMACS system (Miltenyi Biotec), and recovered in SDCAA medium 

at 30oC. For the 2nd round of selection, 108 cells in 1ml PBSA were labeled with 1 µM 

biotinylated hemagglutinins and 4 µg/ml chicken anti-c-Myc IgY and anti-flag FITC at 

RT for 40 min. After washing with PBSA, cells were incubated with 5 µg/ml SA-450 and 

5 µg/ml GaC-633 at 4oC for 15 min. After washing, cells were resuspended in PBSA 

buffer and sorted using FACS Aria (BD Bioscience). The subsequent rounds of selection 

were performed in a similar way, except that the concentration of hemagglutinins used 

was decreased to 200 nM and 40 nM, respectively. 
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Ebola and HIV-1 antibody libraries were screened similarly. 
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Figure 4-1: Design of the new platform.  

(a) Structure of the new vector. (b) Fab fragments displayed on yeast cell surface. (c) 
Cloning strategy for paired library construction. In the first step, NotI and AscI digested 
VH:VL pairs is ligated with similarly digested vectors. In the second step, NcoI and NheI 
digested promoter is ligated with similarly digested VH:VL vectors. 
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Figure 4-2: Verification of the new platform.  

(a) Binding of hemagglutinin (left two panels), Ebola GP (the third panel), and HIV-1 
fusion peptide (rightmost panel) antibodies to their cognate antigens. In left two panels, 
binding to cognate hemagglutinin (A/California/07/2009 and B/Malaysia/2508/2004, 
respectively) is shown in red, and to noncogate hemagglutinin (B/Malaysia/2508/2004 
and A/California/07/2009, respectively) is shown in blue. In right two panels, binding is 
monitored in APC channel, and light chain expression is monitored in FITC channel. (b) 
Binding of native and chimeric hemagglutinin antibodies to cognate antigens. Native 
antibody is shown in red, and chimeric antibodies are shown in blue and orange. (c) 
Effects of chaperone overexpression and leucine-zipper fusion on binding of a 
hemagglutinin antibody to cognate antigen. Red, blue, orange, and green denotes binding 
with both, with leucin-zipper fusion only, with chaperone overexpression only, and 
without both, respectively.   
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Figure 4-3: HIV-1 elite controller library screening.  

(a) VH:Vκ library after 1st round of screening with fusion peptide probe. (b) VH:Vκ library 
after 2nd round of screening.  
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Figure 4-4: Epitope specific staining of antibodies.  

(a) Ebola GP antibody 114 was stained with 114 blocked GP (red), and KZ52 blocked GP 
(blue). (b) c13c6 was stained with 114 blocked GP (red), 166 blocked GP (blue), and 
KZ52 blocked GP (orange). (c) KZ52 was stained with KZ52 blocked GP (red), 100 
blocked GP (blue), and 114 blocked GP (orange).  
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Chapter 5: Conclusion 

The immune system plays a very important role in human health, as it can not 

only protect from astronomical number of pathogens, but also keep from self-destruction 

(autoimmunity). Adaptive immunity is one of the two branches of the immune system, 

which is the basis of the diversity of recognition and protection. Antibodies are an 

important class of mediators in adaptive immunity, which not only neutralize pathogens, 

but also destroy them by recruiting innate immune effectors (for example, NK cells, 

macrophages, and complement). As a result of their high specificity, affinity, and 

stability, antibodies are widely used in basic research and clinics. Moreover, 

characterization of the antibody repertoires elicited after vaccination or infection is also 

of great importance, which can provide insights about how to design more effective 

vaccines. Thus, antibody discovery and repertoire analysis technologies are critical. 

The work described here presents high-throughput technologies for antibody 

discovery and repertoire analysis, and protein engineering for rationally manipulating 

adaptive immunity. Compared to existing technologies, these novel approaches have 

multiple advantages and shed light on further efforts for improvement, which will be 

detailed below. The applications and implications of these approaches will also be 

discussed. 

ADVANTAGES OF NATIVE ANTIBODY LIBRARY SCREENING COUPLED WITH NGS OVER 
OTHER EXISTING ANTIBODY REPERTOIRE MINING AND DISCOVERY TECHNOLOGIES 

An important consideration in antibody repertoire analysis is throughput, as 

analyzing all sequences in a large repertoire one by one is laborious and expensive. 

Another important consideration is intactness of native repertoire (native VH:VL pairing), 

which is lost in most cases. Single-cell RT-PCR can keep the native repertoire intact, but 
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its throughput is relatively low, which only permits interrogation of a fraction of the 

complete repertoire. On the other hand, NGS has very high throughput, but it disrupts the 

native repertoire during library preparation. Compared to the two technologies, native 

antibody library screening by yeast display coupled with NGS is like an ultra fast single-

cell RT-PCR, which combines the advantages of both methods. First, native pairing of 

VH:VL is achieved in high-throughput emulsion based pairing, and conserved during 

antibody library construction and screening, which outcompetes normal NGS. Second, 

the use of yeast display provides a means to rapidly screen the library quantitatively (with 

FACS). Evolutionarily, yeast is closer to human than E. coli, which serves as a better host 

for antibody expression as a result of its protein folding and secretory, and quality control 

pathways. Previous studies have also shown that yeast display can recover native 

antibodies from the repertoire (Wang et al., 2016), and allow identification of more 

diverse antibodies than phage display (Bowley et al., 2007). Moreover, yeast is more 

manipulative than human cell lines (for example, HEK293), which allows construction of 

large enough library for repertoire analysis (sizes of the libraries described here are 

usually between 108 and 109, which is more than enough for characterization of common 

antibody repertoires, and 1010 is achievable with some efforts). The use of FACS for 

library screening is also advantageous, as FACS is robust and fast, which allows 

screening of 108 library members in several hours. Moreover, multiple compatible colors 

used in FACS nowadays allows fine tune of screening, which is critical for some 

applications. In regards to throughput of screening, the platform also outcompetes both 

methods. Third, both NGS and Sanger sequencing can be used in the platform. When 

antibody repertoire analysis is needed, NGS can be used to probe all the antibodies in the 

library after each round of screening, while when hits are needed (for antibody 

discovery), Sanger sequencing can be used to sequence the highly enriched clones. 
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Compared to existing antibody discovery technologies, the platform is also 

advantageous. The increase in throughput makes the platform superior than B cell 

immortalization, and the use of yeast as antibody expression host makes it better than 

phage display, while Fab used in screening avoids the trouble of reformatting scFv into 

IgG. An even larger improvement is the preservation of native VH:VL pairing in the 

library. Non-cognate VH:VL pairing has been shown to result in unfavorable properties in 

engineered antibodies (for example, instability) (Jayaram et al., 2012; Ponsel et al., 2011; 

Tiller et al., 2013), which requires additional efforts to fix. Thus, the platform should 

allow identification of promising antibodies with superior biophysical properties. 

One limitation of the platform is it doesn’t enable functional selection besides 

binding. Functional selection is highly desirable, as many antibodies do not neutralize or 

protect besides just binding. However, functional selection is very difficult to achieve, as 

there is no simple method to link antibody sequences with their functions. The only 

demonstration of functional selection is B cell immortalization, in which antibodies 

secreted by single B cells can be functionally screened (for example, neutralization). On 

the other hand, functional selection by the platform can be achieved by smart design of 

the selection. For example, when isolating antibodies against HIV-1 or influenza virus, 

specific antigens that only display broadly neutralizing epitopes or intact antigens that are 

blocked with antibodies targeting undesired epitopes can be used, which allows 

identification of broadly neutralizing epitope specific antibodies. There is a higher chance 

that bnAbs can be isolated from these broadly neutralizing epitope specific antibodies. 

FUTURE APPLICATION AND DIVERSIFICATION OF THE PLATFORM 

In the work described here, the platform is used to analyze antibody repertoires 

elicited after Ebola and flu vaccination and HIV-1 infection. I foresee application of the 
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platform for analysis of more antibody repertoires and discovery of promising therapeutic 

antibodies. Specifically, a naïve human VH:VL natively paired antibody library can be 

constructed, which can be used to isolate antibodies against various pathogens. 

Moreover, as a result of the similarity between TCR and antibody, the platform 

can be applied for TCR repertoire analysis and discovery. T cell is indispensible in 

adaptive immunity as it provides help for B cell and executes cytotoxicity. Thus, a high-

throughput technology for analyzing native TCR repertoire is invaluable. Moreover, as 

there are more and more needs for cancer neoantigen specific TCRs to be used in TCR 

transgenic T cells for cancer immunotherapy, the platform can be used to isolate these 

TCRs. Similar to naïve antibody library, a naïve human Vα:Vβ natively paired TCR 

library can be constructed for antigen specific TCR mining, and as T cells don’t undergo 

somatic hypermutation, these isolated TCRs can be directly used without further affinity 

maturation. 

A potential diversification of the platform is making it dual mode: selection and 

secretion. By incorporating an amber codon (TAG) at the end of heavy chain and 

introducing a suppressor tRNA with its cognate aminoacyl-tRNA synthetase, the 

platform can be switched between two modes. In selection mode, a noncanonical amino 

acid is supplied, which will be incorporated at the TAG codon by tRNA and its 

synthetase. This will anchor the Fab on the surface of yeast for selection. In secretion 

mode, without the noncanonical amino acid, translation will stop there, which makes 

soluble Fab for characterization. 
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