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ABSTRACT

In this report, five high-order continuum traffic flow models are compared: Payne's model;

Papageorgiou's model; the semi-viscous model and the viscous model as well as a proposed

high-order model, and the simple continuum model. The stability of the high-order models is

analyzed and the shock structure investigated in all models. In addition, the importance of the

proper choice of finite-difference method is addressed. For this reason, three explicit

finite-difference methods for numerical implementation, namely, the Lax method, the explicit

Euler method and the upwind scheme with flux vector splitting, are discussed. The test with

hypothetical data and the comparison of numerical results with field data suggest that high-order

models implemented through the upwind method are better than the simple continuum model. The

proposed high-order model appears to be more accurate than the other high-order models.



1. INTRODUCTION

Since Lighthill and Whitham first applied a simple continuum model to describe the

characteristics of traffic flow in 1955 (Lighthill and Whitham, 1955), much progress has been

made in the development and application of macroscopic continuum traffic flow models,

especially with the introduction of the high-order continuum models. For example, since 1985,

Michalopoulos et al. have developed a microcomputer simulation program, KRONOS, based on

the simple continuum model (Michalopoulos et al., 1985, 1991a, 1992). KRONOS has been used

by the Minnesota Department of Transportation for simulating freeway traffic. In 1971 Payne

developed a high-order continuum model that includes the effects of the drivers' reaction and

acceleration (Payne, 1971). Later he applied this high-order model to the computer simulation

program, FREFLO (Payne, 1979). Since then, a few new high-order continuum models have been

developed by several researchers in traffic flow theory. Some examples are Papageorgiou's

improved high-order model (Papageorgiou, 1983; Papageorgiou et al., 1989), the semi-viscous

and viscous high-order models (Michalopoulos et al., 1991, 1993) and others (Phillips, 1979;

Kiihne, 1984; Ross, 1988).

As is well known, high-order continuum models are more sophisticated than the simple

continuum model. This is because the simple continuum model is based only on the conservation

equation, while high-order models include not only the conservation but also the momentum

equation which takes into account the dynamic effects of inertia and acceleration of traffic mass.

However, it is unknown whether in practice high-order continuum models produce results that are

close to those of the simple continuum model.



Although it is well understood that a finite-difference method can affect the

computational accuracy of continuum traffic flow models, the importance of the proper choice

of finite-difference method has not been properly addressed in the past and some improper

finite-difference methods were applied to the continuum models. Only recently, other

finite-difference methods have been applied to the continuum models. For example, some

implicit methods for the simple continuum model and the semi-viscous model are discussed by

Chronopoulos et al (1992, 1993). Leo and Pretty (1992) used an upwind method for the simple

continuum model and the original high-order model. In addition, a survey of the application of

upwind methods including TVD (Total Variation Diminishing) method to the simple continuum

model was given by Lyrintzis et al. (1992). Although the implicit first-order upwind scheme is

strongly recommended for the simple continuum model, it is not clear which finite-difference

method should be used with the high-order continuum models to achieve a higher computational

accuracy. The purpose of this article is to address these questions.

We have investigated five high-order continuum models and compared them to the

simple continuum model. These five high-order models are Payne's original high-order model

(Payne, 1971, 1979), Papageorgiou's improved high-order model (Papageorgiou, 1983, 1989),

the semi-viscous model and the viscous model (Michalopoulos et al., 1991, 1993) as well as a

new high-order model developed here. The stability of the high-order models is analyzed and the

shock structure investigated in all models. Three explicit finite-difference methods, the Lax

method, the explicit Euler method and the upwind scheme with flux vector splitting, are

discussed. Through the mathematical analysis, testing with hypothetical data, and comparison of

numerical results with field data, we demonstrate that high-order models implemented through

the upwind scheme with flux vector splitting can perform better than the simple continuum
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model. Furthermore, the proposed high-order model appears to be more accurate than the other

high-order models.

In Section 2 of this report, we review the five existing continuum traffic flow models. In

Section 3, we propose a new high-order model that we called the proposed high-order model. In

Section 4, we investigate the six continuum models based on a hypothetical pipeline case and

three sets of field data. Finally, the conclusions are presented in Section 5. These results were

also presented at the 73rd TRB conference (Lyrintzis et al, 1994).

2. CONTINUUM TRAFFIC FLOW MODELS: AN OVERVIEW

2.1 Simple Continuum Model

The simple continuum model proposed by Lighthill and Whitham (1955) consists

essentially of a conservation equation

+  = g(x, t) (1)

supplemented by the definition of the flow rate

q =ku (2)

and a speed-density (u-k) relationship

u = u,(k) (3)

where k is the traffic density (veh per mile), q is the flow rate of the traffic stream (veh per

hour), u is the space mean speed (mile per hour). I and x represent time and space, respectively.

u,(k) is a equilibrium relationship between the speed and the traffic density. Finally, g(x,t)

represents the generation of flow.
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Substituting (2) and (3) into (1) and assuming no generation terms, we obtain the

equation for density

+ c(k) = 0 (4)
where

c(k) = = u,(k) + k(5)

Thus, Eq (4) is a nonlinear wave equation because the wave speed c(k) is not a constant.

It is well known that the general solution of Eq (4) can be obtained by the method of

characteristics. If the initial condition is

k(x, 0) =fix) (6)
then the general solution of Eq (4) is

k(x, t) =A x - c(k)t) (7)
Differentiating Eq (7) partially with respect to x gives

(8)A 1±Qt(x-c(k)t)c'(k)

thus becomes infinite whenever

1 + tf(x - c(k)t)c'(k) = 0, (9)
where symbol (') denotes differentiation of a function w.r.t. the argument. If traffic flow is

considered as a compressible fluid, we have

c(k) = < 0. (10)

Hence, it is possible for Eq (9) to hold. Thus, Eq (1) or (4) always leads to discontinuous

solutions so that a smooth solution can exist only for a finite time, even when the initial

condition is arbitrarily smooth. However, actual traffic flow almost changes smoothly. This

means that, from theoretical point of view, the simple continuum model does not accurately

describe the traffic dynamics.

It should be noted that the numerical solution of the simple continuum model introduces

numerical dissipation that creates smooth solution. For example, we can use the Lax method
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(Lax, 1954) because this method introduces a strong numerical dissipation effect to the simple

continuum model (Anderson et al, 1984; Hirsch, 1990; Michalopoulos, 1985), thus smoothing

the discontinuity. In order to see this, we investigate the modified form of Eq (1). Implementing

the Lax method to Eq (1) yields

k' = (k + )- (q} - q 1) (11)
where superscripts denote time step and subscripts denote space step. Modes j+1 and j-I

represent the downstream and upstream of node j, respectively. Let us substitute Taylor-series

expansions into Eq (ll) for k' 1  ,1, k" %,ql, and qL 1. The following modified equation is then

obtained

+ = -(1- () )2c2)+ ( ) 1(}( + O[At, Ax 2]. (12)

Since the first term on the right-hand side of Eq (12) is an even derivative, the resulting

truncation error will be predominantly dissipative.

However, when we implemented the discretized form, Eq (11), of the simple continuum

model, we found that the results in volume produced by Eq (11) sometimes have small

overshoots at the region in which traffic conditions changed from uncongested to congested or

from congested to uncongested (Lyrintzis et al., 1992). In other words, the Lax discretized form

of the simple continuum model can produce additional errors in volume under those conditions.

Although we might introduce the dissipation effect to the simple continuum model by

using the other finite-difference methods, we still face another drawback in the simple

continuum model. That is, changes in speed in the simple continuum model occur

instantaneously and fluctuations of speed around equilibrium values are not allowed. For this

kind of drawback, we cannot use a finite-difference method to overcome it. An additional

equation - momentum equation - is needed. Nevertheless, the simple continuum model usually
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captures the basic shock wave structure and gives reliable results for various test cases and

geometries (Michalopoulos et al., 1992).

2.2 The Original High-Order Model (Payne, 1971, 1979)

Payne (1971) proposed a more attractive high-order continuum traffic flow model in

which a momentum equation is included. We call this model the original high-order model. The

momentum equation in this model was derived from car-following theory. The state equations of

the original high-order model are

a+ = g(x, t) (13a)

u 1 v l(1)+ ua = ({u,(k)- u - ' } (13b)

q = uk (13c)

where, in addition to the previous notation, T is the constant reaction time and v is an

anticipation coefficient which is the function of the density with the following form

=- i-. (14)

It should be noted that a constant anticipation coefficient was later suggested by Payne (1979).

Since the momentum equation is included in the original high-order model, some new

features emerge. First, an equilibrium state may exist in the original high-order model. To see

this, we investigate the original high-order model by using the linearized theory.

Suppose there are small perturbations around an equilibrium state (k, u;=u,(k0)), i.e.,

k=ko +k , u= uo +u. (15)
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Substituting (15) into Eq (13), and retaining only first powers of k and u, for the pipeline case

we have

+ u + k = 0 (16a)

7 + UO = T{ ) -u- . (16b)

Since the kinematic wave speed corresponding to ko is

co = uo + ko( )4, (17)

manipulating the above linear equations, we obtain

~ +c = v - T(at +uo )2k. (18)

The same equation holds for u.

It has been proven that the exponential solutions of the linear equation (18) are stable if

and only if the following condition holds (Whitham, 1974):

UO + > co > UO- J. (19)

Similarly, the exponential solutions for i are also stable under the above condition (Eq. (19)).

Therefore, the state (ko, uou,(ko)) is an equilibrium state.

Another new feature is that there is a smooth shock. To see this, we search the solution

of Eq (13)

k(x, t) = k(4), u(x, t) = u(4) (20)

where = x - Ut . (21)

If there exists such a real value U, then Eq (20) represents the smooth shock of the system

described by Eq (13), and U is the constant speed of the smooth shock.

Suppose there exists a smooth shock so that we can write

and substituting the above relationships into Eq (13) (for the pipeline case) to have

-U+ u + k = 0 (22a)Sd



Tk(u - U)- +ve +uk-kue(k) = 0 (22b)

which in turn yields a single equation for the density

(V - T(u - U) 2 ) = k(ue(k)- u) . (23)

It has been proven (Whitham, 1974) that Eq (23) has a unique solution if and only if

v> T(u- U)2, i.e., u-r < U<u+T. (24)

If the pair values of the density and speed before and after the shock are (k1, u,) and (k2, u,), then

we have the speed of the smooth shock

U= (25)
ks-kg

Consequently, there exists a smooth shock for the original high-order model if the condition (Eq

(24)) holds. Moreover, the coefficient (v-T(u-U)2 ) determines the shock thickness that represents

the space containing the shock. The larger the value of the coefficient, the thicker the shock, and

vice versa. It should be pointed out that, if the condition (Eq (24)) does not hold, the smooth

shock does not exist but a discontinuity occurs.

From the above discussion, we can see that the original high-order model is superior to the

simple continuum model conceptually. Unfortunately, because the explicit Euler-like

finite-difference method was applied to the original high-order model (Payne, 1971), application

of this model does not show the superiority. Indeed, applying the explicit Euler-like method to the

original high-order model (Eq (13)) (for the pipeline case) yields

. = 1 [ _ q+ ] (26a)

u1= u - u[uj -u" ]+ {ue(k)-U>"f - [k -k]} (26b)

q"'= '[k7 1 + k][u- 1 + uj'] (26c)
where the notation is the same as before. From this discretized form, it is evident that the original

high-order model cannot work at the smaller values of the density because of the term

[k~y, - k]. Since this discretized form does not come from the conservation form of the
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system, it cannot produce the correct shock intensities (Hirsch, 1988). Moreover, this discretized

form is unstable from the computational point of view. To see this, we investigate the truncation

error associated with Eq (26a). Here only those terms that involve a second space derivative of

the density k are needed, since they are the only ones that contribute to a diffusion. The effective

diffusion coefficient for Eq (26a), through terms of order At2 and Ax2, is
t2 t tv ..)+ (92 7v Ax2 du At2 u k 3u)

-A1-2( 1 1)-91 - ) + {(9U +-)- - -- + 3u,).27
2 T 2T 3T 6 T 4 x 6 T k(27)

It has been proven that instabilities can occur wherever a diffusion coefficient is negative (Hirt,

1968). From Eq (27), it is easy to see that the first two terms are always negative; the third term

will be negative when traffic becomes congested. Thus, under congested flow, the computed

solutions provided by this discretized form of the original high-order model become unstable.

Therefore, in order to effectively implement the original high-order model, a new finite-difference

method is needed.

Although we can apply another finite-difference method to the original high-order model

to improve its performance, there is still a problem in the model -- the reaction time problem. As

car-following theory suggests, the reaction time is the time measured from the time at which the

lead driver initiates his stop, until the second driver initiates his own stopping maneuver. After

such a time, the velocities of the two vehicles are assumed equal (Gerlouph and Huber, 1975).

This would mean that the second vehicle has a jump in speed, but this not the case. In fact, after

the reaction time, there is still a process of adjusting speed for the second vehicle, which we call

the relaxation process. Such a relaxation process is not included in the original high-order model

because only the reaction time is taken into account. For this reason, we propose the new

high-order continuum model presented in Section 3.
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2.3 The Improved High-Order Model (Papageorgiou, 1983, 1989)

Based on the original high-order model, Papageorgiou (1983, 1989) proposed an

improved high-order continuum model. The equations for this high-order model are

S+ = g(x, t) (28a)

+ u  ={[u(k) -u] - ak }(28b)S+ U= l[er )I vtk } (28b)

q = uk (28c)

where, in addition to the previous notation, x and C are constants. The improved high-order

model was developed based on the Euler-like discretized form of the original high-order model.

So to improve the computational effect of the original high-order model, K was added in order to

keep the third term on the right-hand side of Eq (26b) limited when the density k becomes small;

was added only for the numerical computation of the model.

In order to see the difference between the improved high-order model and the original

high-order model, we linearize the improved high-order model for small perturbations around the

state (ko, uo-=u,(ko)). Thus, using the same method as in section 2.2, for the pipeline case we have

a + uo + ko = 0 (29a)

a+ Uo = {k+)ko - u(- -- } (29b)

Manipulating the above linear equations and using

co = uo +ko(-)ko , (30)

we have

+co a _ =v To[ a2+ a2i u2 a2i
a+Co- +, - To - + uo( +.I -- +u- -

"  (31)Sax-O a d x2
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It can be proven that the exponential solutions of the linear equation (31) are stable if and

only if the following condition holds:

uo + ( u ()T+UO -)2 - 2uo(1- CO> u - (+o+)T + uo(1 C2 -uo(1- ), (32)

where the notation is the same as before. Comparing with the stable condition (Eq (19)) of the

original high-order model, we can see that, when C = 1 and K 0, the range of stability of Eq

(32) is less than that of Eq (19); when ( >1 or ; <1, the range of stability of Eq (32) shifts right

or left relatively to the range of stability of Eq (19).

Now let us investigate the shock structure of the improved high-order model. Using the

same method as in the original high-order model, we have

[- T(u - U)(u - U)]vJ = k[u,(k) - u] (33)

Thus, the smooth shock exists if and only if

k> T(u( - U)(u - U) .(34)

Moreover, Comparing Eq (33) with Eq (23), we can see that the shock thickness of the improved

high-order model is less than or equal to that of the original high-order model because the

coefficient of the left-hand side term of Eq (33) is less than or equal to that of the left-hand side

term of Eq (23).

From the above discussion, we can see that the improved high-order model might have

more accurate computational results than the original high-order model. However, this

conclusion depends on the choice of the parameters x and . Since the improved high-order

model was developed based on the Euler-like discretized form of the original high-order model,

the discretized form of the improved high-order model still suffers the same instability problem.

Moreover, we cannot use the upwind scheme with flux vector splitting (see next section) to

overcome the instability problem of this model because the Jacobian is not homogenous.
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2.4 The Semi-Viscous Model (Michalopoulos, 1991, 1993)

Michalopoulos et al. (1991) proposed two high-order continuum models. The first is the

semi-viscous model. The second is the viscous model which is presented in the next subsection.

The equations for the semi-viscous model are

+ = g(x, t) (35a)

= ) - - ak (35b)

q =uk (35c)

where, in addition to the previous notation, u1(x) is a free flow speed, a is the positive constant

and 4J has the dimension of velocity. 0t is a parameter and usually chosen as -1. Note that the

first term on the right side of Eq (35b) represents relaxation, which is the process whereby

drivers adjust their speed to the free flow speed. Thus T(k) is the relaxation time, which is a

function of density, and is given as

T(k) = To[l + _] (36)

in which To > 0 and 0< Y < 1 are constants and Ka, is the jam density. It should be noted that

this relaxation term can contribute to Eq (35b) only when u,(x) is changed from one section of

the roadway to another. The second term on the right side of Eq (35b) addresses the traffic

friction at freeway ramp junctions due to ramp flows. G is the friction parameter. It is a function

of both roadway conditions and the ramp volume entering or leaving the freeway and is derived

experimentally as

G = eg (37)

where is a geometry parameter depending on the type of road geometry, e is a dimensionless

constant, and g is the generation term.
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In comparison to the previous models, we can see that the main feature of the semi-viscous

model is that the model does not require an explicit equilibrium speed-density relationship. The

semi-viscous model seems to be more appealing for field applications, but, because of the

simplification, new problems occur. Let us first consider a pipeline case with a fixed free flow

speed where the relaxation term has disappeared. The semi-viscous model is reduced to the

perfect gas dynamic model:

k+ =0 (3Sa)

u+ uu = ak (38b)

where the value of i is chosen as -1. It has been shown that, for an originally continuous

compression wave, the system described by Eq (38) always yields a discontinuity (Becker,

1968). In fact, Eq (38b) is Greenberg's one-dimensional fluid state equation (Greenberg, 1959).

Thus, when the free flow speed is fixed for the pipeline, the semi-viscous model produces the

same results as the simple continuum model.

Next, let us consider a pipeline with two different free flow speeds. In this case, we need to

use the full form of the semi-viscous model to describe traffic flow. If the free flow speeds are

decreasingly distributed on the pipeline, then the contribution of the first term on the right-hand

side of Eq (35b) to the upstream always represents acceleration. Clearly, this is not the case. This

means that the relaxation process in which the free flow speed serves as the desired state for the

adjustment of speed is incorrect. Hence, some modifications to the semi-viscous model are

needed.

Nevertheless, when combined with the upwind scheme with flux vector splitting (Steger and

Warming, 1981; Hirsch, 1990), the semi-viscous model appears to be working more effectively
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than the simple continuum model, the original high-order model and the improved high-order

model. This is because the upwind scheme with flux vector splitting introduces physical

propagation properties in the discretization process of the semi-viscous model. That is, a

forward difference is used for an upstream moving wave and a backward difference for a

downstream moving wave. Indeed, applying the upwind scheme with flux vector splitting (which

is going to be referred as the "upwind method" from here on) to Eq (35) (for the pipeline case)

leads to

For u > f ,

k'=k' - -[q - qj-l ] (39a)

q l= q -=q {[(u) 2 +a]-k .[(u )2 +a]} + )[uf -u] (39b)

u ' = q /k1+l (39c)

For u7. < f ,

k n[ = k - k(u + / -a) - k ,(u1 + f-") - kg (ul, - ,/-) + kf(u - )] (40a)

qn+ q [ kf(uf + F)2 -k i(u_ , + a- ,( 1 - )2 + (u- -)2

Atk M

S[uf.J- uJ] (40b)

+l= q+'1kn+1 ' (40c)

Thus, u7 > fa represents the uncongested flow, whereas u; < /ii represents the congested

flow. Finally, the upwind method still introduces a numerical viscosity into the discretized form

so that shocks can be smeared out. It should be pointed out that the semi-viscous model should

be modified when the free flow speed is not constant.

2.5 The Viscous Model (Michalopoulos et al., 1991)

14



The viscous model discussed here was proposed by Michalopoulos et al. (1991). The

equations for the viscous model are

k+ 8 (x, t) (41a)

u k ka 2  (4 1b)

q = uk (41c)

where, in addition to the previous notation, ,r is the viscous parameter and p is a dimensionless

constant. The first term on the right-hand side of Eq (41b) represents anticipation. The second

term on the right-hand side of Eq (41b) is the viscosity term which is used to address traffic

friction. It should be noted that the viscous term always exists in the model regardless of the

geometry of the freeway. In addition, the viscous model does not use the equilibrium

speed-density relationship.

Comparing the semi-viscous model with the viscous model, we can see that the viscous

model can be derived from the semi-viscous model if the relaxation term is replaced by the

viscous term for the pipeline case. Indeed, both relaxation and viscosity have the same effect -

smearing out of the shock. However, from gas dynamics we know that only when the relaxation

time is small, the effect of the relaxation can be replaced by a corresponding bulk viscosity

(Talbot and Scala, 1961). As we will see in the next section, the relaxation time in the congested

traffic flow is small, whereas the relaxation time in the uncongested traffic flow is large.

Therefore, the relaxation process cannot be totally replaced by viscosity. Hence, the viscous

model could lead to inaccuracies.

Finally, since the Euler method was used with the viscous model, the discretized form

of the viscous model is unstable because this discretized form lacks a positive mass diffusion,

even though there is a viscous term in the momentum equation.
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3. THE PROPOSED HIGH-ORDER MODEL

As mentioned in section 2.2, the original high-order model considers only the reaction time

and ignores the relaxation time. A question that may arise is whether the relaxation property

does in fact exist in a macroscopic sense. Clearly, from the microscopic point of view, there is a

process of adjusting speed for the second vehicle after the reaction time. Moreover, it has been

suggested that drivers have different behavior at different density levels. For example, at low

density level, interaction between drivers becomes negligible, but at high density level, the

interaction becomes strong. Hence, from the macroscopic point of view, the process of adjusting

speed can be considered as the process of relaxation of drivers' speed to the equilibrium speed

and the relaxation time at high density level should be shorter than that at low density level in

order to avoid a collision. Therefore, we propose the following high-order continuum model:

a +  = g(x, t) (42a)

+ u = [u(k)- u] - 2 ak(42b)

q =uk (42c)

where, in addition to the previous notation, a is an anticipation constant and FJ has the

dimension of velocity. T(k) is the relaxation time which should be a function of density k. Since

the relaxation time at high density level is shorter than that at low density level, the following

general function for T(k) is suggested:

7(k) = To[l+ 1 ] (43)
4n )
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where k,, To and 6 are parameters. In fact, k, is the critical density, To is the constant reaction

time and 0 > 0. Thus, when k - 0, T(k) -+ co; when k > k, T(k) -* To. This means that, at high

density levels, the relaxation time is equal to the driver's reaction time. This formula of T(k) is

physically acceptable. Moreover, for simplicity, the following equilibrium speed u,(k) can be

used

u,(k) = uf l- (~L]p (44)

where qa is a positive parameter. Other forms of u-k relationship can also be used with this

model, i.e., the model is independent of the choice of u-k relationship. The above form of Eq

(44) was only selected for easy parameter calibration.

In comparison to the original high-order model, we can see that the proposed high-order

model takes the relaxation process into account and the relaxation time is treated as a function of

the density. In addition, the relaxation time in the new model appears only at the first term of Eq

(42b), making the new model more reasonable from the physical point of view and easier to be

treated by finite-difference methods.

Comparing the proposed high-order model with the semi-viscous model, we can see that

the difference between these two models is that a different relaxation process is adopted by each

model. It can be seen that when traffic becomes congested, the relaxation process adopted by the

proposed high-order model does not produce the incorrect speed change that occurs in the

semi-viscous model.

In order to see a detailed difference between the proposed high-order model and the original

high-order model, we linearize the proposed high-order model for small perturbations around the

state (k0, uo=u,(ko)). Thus, using the same method as in section 2.2, for the pipeline case we have

+ uo+k 0  0 (45a)-S +u0 +o =O
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du du I du, Lk
+l o= --n  k( u] (45b)

Manipulating the above linear equations and using

co = uo + ko(- ) , (46)

we have

r + co = T(ko)[o,- -( +uo)2k]. (47)

It can be shown that the exponential solutions of the linear equation (47) are stable if and

only if the following condition holds:

uo + J > co > uo - f , (48)

where the notation is the same as before. Comparing with the stable condition (Eq (19)) of the

original high-order model, we can see that, if a=v/T, then Eq (48) is equal to Eq (19); if a>v/T,

then the range of stability given by Eq (48) is larger than that given by Eq (19); if o<v/T, then

the range of stability given by Eq (48) is smaller than that given by Eq (19). For the cases tested

in Section 4, we have o>v/T so that the range of stability for the proposed high-order model is

larger than that of the original high-order model.

Now let us investigate the shock structure of the proposed high-order model for the

pipeline case. Using the same method as in section 2.2, we have

T(k)[o - (u - U) 2] = k[ue(k) - u]. (49)

Thus, the smooth shock exists when the following condition holds:

o > (u- U) , (j0)

where the notation is the same as before. In addition, Comparing Eq (49) with Eq (23), we can

see that, when traffic is uncongested, the shock thickness of the proposed high-order model is

larger than that of the original high-order model when the value of T(k) is large; when traffic is

congested, the shock thickness of the proposed high-order model may be equal to that of the

or al -orer mo ecause e value o w approac e cons reacon me.ogmaihgn-oroer wme easem au o ~~~1 approacn meconstant reacton ime.
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In order to implement the proposed high-order model, we apply the powerful upwind

method to the proposed high-order model for the pipeline case. Thus we have the following

discretized form of the proposed high-order model:

For u, > ,

n+1 n+)k(n+i)

u = q /kTy (51c)
For u < i,

ki[ = _ - [(u + ) u- ( + ) U - i ,- ,) + k(uR - /)] (52a)
qj+l .J Jr- J ),

q -'tkUf + )2 - k(upl + )2 -kl(Up, - )2 +k(uf - #)21

[ue(k) -- u ] (52b)

un+ = qj /k' . (52c)

It should be noted that preliminary results show that a high-order TVD method is

computationally very expensive and less accurate than the first-order upwind method used,

because the former results in shock waves sharper than they are in reality. However, implicit

methods have some merits (Chronopoulos et al, 1993) and should be investigated further.

4. TEST RESULTS

4.1 Preliminary Testing
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In this subsection we investigate the continuum models discussed above based on

hypothetical cases in order to find the model that can produce a reasonable description of traffic

when an incident occurs downstream. For this reason, we assume four hypothetical cases

described next. The freeway geometry for these four cases is a three-lane pipeline section with

18000 feet long which is shown in Figure 1. The arrival and departure traffic patterns (flow and

speed) for the four cases are shown in Figures 2, 3, 4 and 5, respectively. The analysis period for

the first three cases is 15 minutes. For case 4 the analysis period is 35 minutes. For cases 1, 2 and

3, traffic flow during the first 5 minutes is assumed to be uncongested. After the first 5 minutes

congestion occurs at the downstream end and continues for 5 minutes. Then the incident is

removed from the downstream end. The differences among these three cases are that they have

the different intensities of congestion. The intensity of congestion for case 1 is light, for case 2

medium, and for case 3 strong. Case 4 is a combination of cases 1, 2 and 3. In order to compare

the results produced by the proposed high-order model, the simple continuum model and the

original high-order model as well as the improved high-order model, the equilibrium

speed-density relationship of KRONOS (Michalopoulos et al., 1992) was used for implementing

these models. This relationship is

65 for k 5 15(veh/mile)
ue(mile/hr) = { - k + 384 + "for 15-k 58

2 k+ 15225 + 1708875 for 58< k < 186
4096 1024 1024k

In this subsection, first a theoretical analysis of shock waves is done. Then the simulation

results are given.
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4.1.1 Theoretical Analysis of Shock waves

In case 1, we assume that the volume at the downstream boundary decreases from 5000

(veh/hr/3-lanes) to 4000 (veh/hr/3-lanes) and the corresponding speed also decreases from

53.226 (mile/hr) to 9.851 (mile/hr). Thus, the speed, u,, of the shock wave is calculated by

us = 000 = -1000 =-3.2(mile/hr) = - 4.7(feet/ sec).
9.151 53.224

Hence, after 5 minutes, the shock wave will propagate backwards 1410(= 4.7 x 300) feet.

For case 2, we assume that the volume at the downstream boundary decreases from 5000

(veh/hr/3-lanes) to 2000 (veh/hr/3-lanes) and the corresponding speed also decreases from

53.226 (mile/hr) to 4.072 (mile/hr). Therefore, the speed, u,, of the shock wave can be given by

2000-5000 -3000us = 200Q-5 = 3.0= -7.55(mile/hr) = -11.08(feet/sec).
2000 so 397.22
4.072 53.226

Thus, after 5 minutes, the shock wave will go backwards 3323(= 11.08 x 300) feet.

In case 3, we assume that the volume at the downstream boundary decreases from 5000

(veh/hr/3-lanes) to 1000 (veh/hr/3-lanes) and the corresponding speed also decreases from

53.226 (mile/hr) to 1.90 (mile/hr). Therefore, the speed, u,, of the shock wave is calculated by

Us =1 oo -000 - -9.25(mile/hr) = -13.57(feet/ sec).
slooo ooo 432.377

1.9 53.226

Thus, the shock wave will spillback 4071(= 13.57 x 300) feet after 5 minutes.

Case 4 is the combination of cases 1, 2 and 3. First, after reducing from 5000

(mile/hr/3-lanes) to 4000 (veh/hr/3-lanes), the volume at the downstream boundary continues to

decrease to 2000 (veh/hr/3-lanes) and the corresponding speed also decreases to 4.072 (mile/hr).

Thus, the speed, u,, of the shock wave is calculated by
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200u = 000-4000- 2000 = -23.5(mile/hr) = -34.47(feet/l sec).
4.851 9.851

Therefore, the shock wave will go backwards 10,341(= 34.47 x 300) feet.

Next, the volume decreases from 2000 (veh/hr/3-lanes) to 1000 (veh/hr/3-lanes) and the

relative speed decreases from 4.072 (mile/hr) to 1.90 (mile/hr). Thus, the speed of the shock

wave is

us= 1000-2000 -1000 = -28.44(mile/hr) = - 41.72(feet/sec).- loon Mo 35.16
1.90 4.O72

Hence, after 5 minutes, the shock wave will propagate backwards 12515(= 41.72 x 300) feet.

4.1.2 Simulation Results

In this subsection, we will show all the simulation results of the hypothetical cases. The

simulation results for the simple continuum model come from KRONOS (version 7.2L). For the

high-order models we have created a versatile code that allows the model and the numerical

method to be chosen by the user. We have also implemented CORFLO (FHWA, 1992) which is

based on the original high-order model with the discretization of the Euler method. Since there

were some difficulties with the implementation of CORFLO for the boundary conditions needed

in the tested cases, results from our own implementation of the Euler discretized form of the

original high-order model will be also shown for cases I and 2.

In case 1, the simulation results of 5-minute average volume produced by KRONOS,

CORFLO, the improved high-order model, the semi-viscous model and the viscous model as

well as the proposed high-order model are shown in Figure 6. The results of 5-minute average

speed are shown in Figure 7. Figure 8 shows the results of 5-minute average density produced by

KRONOS, the improved high-order model, the semi-viscous model and the viscous model as
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well as the proposed high-order model. From Figures 6.2 and 7.2, it is clear that CORFLO cannot

capture the shock wave. However, from Figures 6.3, 7.3 and 8.2, we can see that the results from

the our own implementation of the Euler discretized form of the original high-order model

match the shock wave. We think that the reason for this difference is that CORFLO has some

limitation on the boundary condition.

KRONOS can capture the basic shock wave propagation (see Figures 6.1, 7.1 and 8.1).

However, it is observed that an overshoot of the shock wave is produced by KRONOS. Looking

at the results produced by the improved high-order model (see Figures 6.4, 7.4 and 8.3), we can

see that the improved high-order model can basically capture the shock wave in this case.

Comparing the results produced by the proposed high-order model and the semi-viscous

model (see Figures 6.5, 6.8, 7.5, 7.8, 8.4 and 8.7), we can see that there are some differences

although the differences are small. The first difference is that the proposed high-order model is

more accurate in capturing the shock wave than the semi-viscous model. The shock wave in the

proposed high-order model can propagate backwards between 1400 and 1600 feet which is the

same as the theoretic value. But the shock wave in the semi-viscous model can only go

backwards 1200 feet. The second difference is that the proposed high-order model discharges the

queue more quickly than the semi-viscous model does.

It is surprising that the viscous model cannot capture the shock wave (see Figures 6.6,

6.7, 7.6, 7.7, 8.5 and 8.6). In principle, the viscous model should produce a smooth shock.

Unfortunately, the computational results of the viscous model do not match the theoretical

results. The reason for this is that, we think, the explicit Euler method is applied to the viscous

model. This implies that a finite-difference method seriously affects the computational effects of
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a traffic flow model. Since the Euler discretized form of the viscous model cannot capture the

shock wave in this case, we will no longer investigate the viscous model in the following cases.

In case 2, the simulation results of 5-minute average volume produced by KRONOS,

CORFLO, the improved high-order model and the semi-viscous model as well as the proposed

high-order model are shown in Figure 9. The results of 5-minute average speed are shown in

Figure 10. Figure 11 shows the results of 5-minute average density produced by KRONOS, the

improved high-order model and the semi-viscous model as well as the proposed high-order

model. From Figures 9.2 and 10.2, it is clear that, like case 1, CORFLO cannot capture the shock

wave for this heavy congestion case. Our own implementation of the Euler discretized form of

the original high-order model did not capture the shock wave, either (see Figures 9.3, 9.4, 10/3,

10.4, 11.2 and 11.3). We believe this is because of the Euler method. In order to demonstrate this

assertion, we applied the upwind scheme with flux vector splitting to the original high-order

model. The results shown in Figures 9.5, 10.5 and 11.4 indicate that the upwind discretized form

of the original high-order model can capture the shock wave in this case.

From the results produced by KRONOS in this case (see Figures 9.1, 10.1 and 11.1), we

can still draw the same conclusions as those in case 1. From the results produced by the

improved high-order model in this case (see Figures 9.6, 9.7, 10.6, 10.7, 11.5 and 11.6), we can

see that, unlike case 1, the improved high-order model cannot correctly capture the shock wave

for this heavy congestion case. This is also because of the Euler method.

Comparing the results produced by the proposed high-order model and the semi-viscous

model (see Figures 9.8, 9.9, 10.8, 10.9, 11.7 and 11.8), we can still see that there are those

differences like case 1. It should be pointed out that, in order to match the setting values at the
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downstream boundary for congested traffic in case 2, we adjusted the value of a of the

semi-viscous model.

In case 3, the simulation results of 5-minute average volume produced by KRONOS,

CORFLO, the improved high-order model and the semi-viscous model as well as the proposed

high-order model are shown in Figure 12. The results of 5-minute average speed are shown in

Figure 13. Figure 14 shows the results of 5-minute average density produced by KRONOS, the

improved high-order model and the semi-viscous model as well as the proposed high-order

model. From these figures, we can still get the same conclusions for each model as those in case

2. It is worth noting that, although the parameters v and c were adjusted, the improved

high-order model cannot capture the shock wave. This means that the ability of the improved

high-order model to capture a correct shock wave is limited. The reason for this is that, we still

think, the explicit Euler method is applied to the improved high-order model.

In case 4, the simulation results of 5-minute average volume produced by KRONOS,

CORFLO, the improved high-order model and the semi-viscous model as well as the proposed

high-order model are shown in Figure 15. The results of 5-minute average speed are shown in

Figure 16. Figure 17 shows the results of 5-minute average density produced by KRONOS, the

improved high-order model and the semi-viscous model as well as the proposed high-order

model. From Figures 15.2 and 16.2, it is clear that, like cases 1, 2 and 3, CORFLO cannot

capture the shock wave.

From Figures 15.1 and 16.1, it is interesting to see that the speed of KRONOS seems to

be distributed discontinuously on the freeway and that the overshoot in this case is smaller than

those in the previous cases. From Figures 15.3, 16.3 and 17.2, we can see that the improved
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high-order model cannot correctly capture the shock wave except for the situation in which the

volume decreases from 5000 (veh/hr/3-lanes) to 4000 (veh/hr/3-lanes).

Comparing the results produced by the proposed high-order model and the semi-viscous

model (see Figures 15.4, 15.5, 16.4, 16.5, 17.3 and 17.4), we can still see that there are those

differences like case 1. Moreover, it can be observed that the setting values at the downstream

boundary for congested traffic were not matched by the simulation results produced by the

semi-viscous model. This shows that we need the different value of the anticipation parameter a

for the different case.

Through the hypothetical cases, we can get the following conclusions:

1). CORFLO cannot correctly capture shock waves.

2). The improved high-order model can only capture a weak shock wave.

3). KRONOS produces an overshoot in volume when traffic becomes congestion. In

addition, the speed produced by KRONOS becomes discontinuous when traffic

congestion becomes heavier.

4). Comparing simulation results with the theoretic results, it can be said that the proposed

high-order model is more accurate than the semi-viscous model in capturing the shock

wave. Moreover, the proposed high-order model can discharge the queue more quickly

than the semi-viscous model does.

5). The anticipation parameter a in the semi-viscous model needs to be adjusted case by

case in order to match the setting condition at the downstream boundary for congested

traffic.

6). The Euler discretized form of the viscous model does not make the model work well.
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7). Comparing the Euler method with the upwind scheme with flux vector splitting

regardless of the models, it can be said that the Euler method is not a good

finite-difference method for the numerical simulation of traffic flow models. The

upwind scheme with flux vector splitting should be strongly recommended for

accuracy.

4.2 Parameter Calibration

We have shown that all the high-order continuum models include parameters. So, before

using these models with field data, we need to calibrate these parameters. In the past, the

calibration of parameters was done by a trial-and-error. This kind of calibration process is very

time-consuming and requires a lot of effort. In order to minimize the effort, we have developed a

procedure for parameter calibration which has been incorporated in our simulation program

without user interface beyond the supply of field data.

This parameter calibration is considered as an optimization problem in which the objective

function is defined as follows:
n

min (x I.x2...x,) =1 {C.ZE,(V) +MSE,(S)} (53)
=-l

where x, (j=1, 2, ... p) are parameters to be calibrated. n is the number of check points, and

MSE(y) = - (54)
=1

in which y stands for volume or speed, y° is the observed data and yC is the computed result. N is

the number of observations. The optimization procedure is based on the Fletcher-Reeves

conjugate method (Luenberger, 1973). The gradients in this method are evaluated by a

finite-difference approximation in the procedure. Thus, by using this optimization procedure in
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parameter calibration, the minimization of the objective function, Eq (53), at least local

minimization, yields an optimized set of parameters. Other more sophisticated optimization

strategies (e.g., Monte Carlo methods) will be explored in the future.

4.3 Testing with Field Data

In this subsection, three test cases (5, 6 and 7) with field data are presented. Case 5 is

based on a two-lane freeway of the Minneapolis I-35W between the 76th and 70th streets.

Traffic data used by case 5 were the northbound traffic, which went into the metro area during

the morning peak period from 6:30am to 8:30am on Nov. 7, 1989. The roadway geometry and

arrival and departure traffic patterns for case 5 are shown in Figure 18. Case 6 is based on a

four-lane freeway from the 1-35W close to downtown Minneapolis, starting from 26th street and

ending at 31st street. Traffic data used by case 6 were the southbound traffic, which came out of

Minneapolis during the afternoon peak period from 4:00pm to 6:30pm on Nov. 14, 1989.

Congestion started at 4:05pm at the downstream boundary and lasted two hours and 15 minutes.

The geometry and arrival and departure patterns for case 6 are shown in Figure 19. Case 7 uses

the same geometry as in case 6 but the different traffic data from 3:00pm to 7:00pm on Nov. 20,

1989. Congestion starts at 4:40pm at the downstream boundary and lasts one hour. Figure 20

shows the arrival and departure patterns for case 7.

In order to evaluate each model quantitatively, the following statistics are calculated to get

the error indices based on the deviations of simulation results from the field observations:

Mean Absolute Error (MAE) = k I Obseved- Computedl
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IN jbserveComputedjMean Percentage Error (MPE) = -I Observed
N Osr

Mean Square Error (MSE) = - X (Observed- Computed)2

Std. Deviation = JL (Observed- Computed)2

where N is the number of observations (i.e., the number of time intervals).

In these three cases, we also investigate six models, namely, the simple continuum model,

the original high-order model (the CORFLO program), the improved high-order model, the

semi-viscous model, the viscous model and the proposed high-order model. Ax=200 ft and At= 1

sec are adopted for each model except the simple continuum model and CORFLO in which

Ax= 100 ft and At-1 sec are adopted. In fact, the step size in space and time (Ax=100 ft and At - 1

sec) are determined internally in CORFLO. The us-k curve wherever it applies was obtained

from data collected from 1-35W. CORFLO has built in three types of u-k curves to choose from,

all the three types have been tried and the best results are presented. Except for the simple

continuum model and CORFLO, the parameters in the other four models were calibrated by

using the optimization procedure mentioned in subsection 4.2.

Results for the three test cases are shown in tables 1, 2 and 3. It can be seen that

a) when there is no downstream congestion (as in case 5), all models including the simple

continuum model performed at about the same error level except CORFLO.

b) when downstream congestion begins, different model produces different results. The

simple continuum model gave very good results that were better than CORFLO.

Comparing the results produced by CORFLO and the improved high-order model,

which are solved with the same numerical method, we can see that the improved

high-order model was more accurate than the original high-order model. It is clear that
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the proposed high-order model was the overall best in terms of accuracy with a MSE

of 290 for case 6 and a MSE of 216 for case 7. The viscous model produces a larger

error in MSE than the other high-order models (except CORFLO).

c) All the high-order models except the proposed high-order model use the different

values of parameters for cases 5, 6 and 7, respectively, in order to get good results.

This means that the proposed high-order model is the easiest one to calibrate.

d). From Tables 2.1, 2.2, 3.1 and 3.2, it can be seen that the results from the simple

continuum model seem to be relatively sensitive to the choice of the speed-density

relationship. The proposed high-order model is less dependent of the choice of the

speed-density relationship.

e). Comparing the results produced by the original high-order model with the Euler method

and the upwind method, it can be seen that the upwind method gives better results.

5. CONCLUSIONS

Five existing continuum models plus a proposed high-order model have been reviewed.

Merits and limitations of the various formulations were identified. Preliminary comparative

testing of the models was also undertaken. From the hypothetical cases which were constructed

with the assumption of a downstream incident, we can see that the simple continuum model, the

semi-viscous model and the proposed high-order model properly capture the shock wave

structure. The ability of CORFLO (the original high-order model), the improved high-order

model and the viscous model to capture accurately shock waves is limited.
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In our preliminary testing with field data, we can see that all models including the simple

continuum model give reliable results. For uncongested cases tested, no apparent merit of

high-order modeling versus simple continuum modeling was found. For congested cases tested

most high-order models show some error reductions. For all the cases we tested, the proposed

high-order model seems to produce a smaller error than the other models. Moreover, the

proposed high-order model has the strong robust property of parameters for various cases, that is,

the parameters are independent of cases. This property is very important for implementing the

proposed high-order model in practice because one can use only a set of precalibrated

parameters.

For finite-difference methods, the Euler method is not a good method for the numerical

implementation of traffic flow models. The upwind scheme with flux vector splitting is

recommended for computational accuracy and efficiency.

Finally, the simple continuum model is more sensitive to the choice of the speed-density

relationship, whereas the proposed high-order model is less sensitive.
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Figure 9.7 5-minute average volume produced by the improved high-order
model (Euler method) for case 2 when v = 50230.0 (feet^2/sec) and
T = 36 (sec).
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Table 1 Error Indices for Case 5

Models Simple Improved CORFLO Original Original Semi- Viscous Proposed
(method) continuum High-order (Euler) high-order high-order Viscous model High-order

model model model model model (Euler) model
(Lax) (Euler) (Euler) (Upwind) (Upwind) (Upwind)

MAE 4 4 8 4 4 4 4 4
MPE 2 2 2 2 2 2 2 2
MSE 27 27 52 27 27 22 27 22

Std.Dev 5 5 7 5 5 5 5 5

(1). MAE and Std.Dev: Veh/5-minutes;
(2). MSE: (Veh/5-minutes) 2 .

Table 2.1 Error Indices for Case 6 (Capacity: 1825 (veh/hr/lane))

Models Simple Improved CORFLO Original Original Semi- Viscous Proposed
(method) continuum High-order (Euler) high-order high-order Viscous model High-order

model model model model model (Euler) model
(Lax) (Euler) (Euler) (Upwind) (Upwind) (Upwind)

MAE 18 15 24 15 16 19 15 15

MPE 4 3 5 3 3 4 3 3

MSE 522 416 999 452 370 508 511 290

Std.Dev 23 21 32 22 20 23 23 17

(1). MAE and Std.Dev: Veh/5-minutes;
(2). MSE: (Veh/5-minutes) 2 .

Table 2.2 Error Indices for Case 6 (Capacity: 1965 (veh/hr/lane))

Models Simple Proposed
(method) continuum High-order

model model
(Lax) (Upwind)

MAE 19 16
MPE 4 3

MSE 670 325

Std.Dev 26 18

(1). MAE and Std.Dev: Veh/5-minutes;
(2). MSE: (Veh/5-minutes)2 .



Table 3.1 Error Indices for Case 7 (Capacity: 1965 (veh/hr/lane))

Models Simple Improved CORFLO Original Original Semi- Viscous Proposed
(method) continuum High-order (Euler) high-order high-order Viscous model High-order

model model model model model (Euler) model
(Lax) (Euler) (Euler) (Upwind) (Upwind) (Upwind)

MAE 13 12 44 13 12 13 13 11

MPE 2 2 9 2 2 3 3 2

MSE 317 324 3328 336 265 360 428 216

Std.Dev 18 18 58 19 17 19 21 15

(1). MAE and Std.Dev: Veh/5-minutes;
(2). MSE: (Veh/5-minutes)2 .

Table 3.2 Error Indices for Case 6 (Capacity: 2100 (vebh/hr/lane))

11).
(2).

Models Simple Proposed
(method) continuum High-order

model model
(Lax) (Upwind)

MAE 13 11
MPE 3 2

MSE 418 237
Std.Dev 21 16

1L A T' _-.1 Th T \... .. I JrL I l
m

' ____j

MAZ anria d.uev: ven/5-minutes;
MSE: (Veh/5-minutes) 2 .
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