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Abstract

High-dimensional signal estimation plays a fundamental role in various science and engineer-

ing applications, including optical and medical imaging, wireless communications, and power

system monitoring. The ability to devise solution procedures that maintain high computational

and statistical efficiency will facilitate increasing the resolution and speed of lensless imaging,

identifying artifacts in products intended for military or national security, as well as protecting

critical infrastructure including the smart power grid. This thesis contributes in both theory and

methods to the fundamental problem of phase retrieval of high-dimensional (sparse) signals

from magnitude-only measurements. Our vision is to leverage exciting advances in non-convex

optimization and statistical learning to devise algorithmic tools that are simple, scalable, and

easy-to-implement, while being computationally and statistically (near-)optimal.

Phase retrieval is approached from a non-convex optimization perspective. To gain statistical

and computational efficiency, the magnitude data (instead of the intensities) are fitted based

on the least-squares or maximum likelihood criterion, which leads to optimization models that

trade off smoothness for ‘low-order’ non-convexity. To solve the resultant challenging non-

convex and non-smooth optimization, the present thesis introduces a two-stage algorithmic

framework, that is termed amplitude flow. The amplitude flows start with a careful initialization,

which is subsequently refined by a sequence of regularized gradient-type iterations. Both stages

are lightweight, and they scale well with problem dimensions. Due to the highly non-convex

landscape, judicious gradient regularization techniques such as trimming (i.e., truncation) and

iterative reweighting are devised to boost the exact phase recovery performance. It is shown that

successive iterates of the amplitude flows provably converge to the global optimum at a geometric

rate, corroborating their efficiency in terms of computational, storage, and data resources. The

amplitude flows are also demonstrated to be stable vis-à-vis additive noise.

Sparsity plays a critical role in many fields - what has led to the upsurge of research referred

to as compressive sampling. In diverse applications, the signal is naturally sparse or admits a

sparse representation after some known and deterministic linear transformation. This thesis also

accounts for phase retrieval of sparse signals, by putting forth sparsity-cognizant amplitude flow

variants. Although analysis, comparisons, and corroborating tests focus on non-convex phase

retrieval in this thesis, a succinct overview of other areas is provided to highlight the universality

of the novel algorithmic framework to a number of intriguing future research directions.
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Chapter 1

Introduction

1.1 The Phase Retrieval Problem

Detecting visible light and radiation of high frequencies relies on energy intensity measurements

of the sought radiating field. The field on the other hand is can be characterized by a complex

function, comprising its modulus and phase parameters. The intensity is proportional to the

square of the modulus, but the phase information is lost at the energy detector [16].

Consider for example an image formation experiment. Suppose that the field in the object

(primary) space is denoted by E(p). If an image indexed by i is formed, the field in the image

space is given by Ei(p′). In addition, at a large enough distance from the imaging plane, the

complex functions E(p), and Ei(p′) are known to be related through Fourier transform relations,

determination of one of which provides the other. In physical scattering experiments however,

one can only measure |Ei(p′)|. In general, the modulus data |Ei(p′)| provides only geometrical

information concerning the object of interest. To recover the image, namely to determine the

structure of the object, one has to recover the missing phases of Ei(p′) first, which is known as

the phase retrieval problem [55].

To set up the phase retrieval problem mathematically, this thesis focuses on the discretized

one-dimensional (1D) setting. Suppose we have an object of interest described by x ∈ Cn, and

that we would like to measure 〈ai,x〉 for some known sampling vectors ai ∈ Cn, but only have

access to the modulus of the linear transformations, namely

yi = |〈ai,x〉|2 , i = 1, 2, . . . , m. (1.1)

1
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The goal here is to recover the missing phase of the linear transformations 〈ai,x〉, which is

known as the (generalized) phase retrieval problem. In the original phase retrieval problem,

the sampling vectors ai correspond to rows of the discrete Fourier transform (DFT) matrix

of suitable dimensions, in which case one is tasked with recovering a signal vector from the

modulus of its Fourier transform. It is clear that once the phase becomes available, one can easily

find the object x by solving linear equations. Succinctly stated, we are interested in solving

systems of quadratic equations of the form

find z ∈ Cn (1.2a)

subject to yi = |〈ai, z〉|2 , i = 1, 2, . . . , m (1.2b)

where z ∈ Cn is the decision vector, {ai ∈ Cn} are the known sampling vectors, and {yi ∈ R}
are the observed data.

1.2 Motivation and Context

The phase problem appears in many fields of science and engineering [47]. X-ray crystallography

is one such field which, as is well known, led to the discovery of the double helix structure of

DNA [55]. Besides X-ray crystallography, other relevant application domains include optics [86],

array and high-power coherent diffractive imaging [25], astronomical imaging [46], ptychography

[144], and microscopy [85]. Similar problems are also encountered in areas such as acoustics

[7], channel estimation in wireless communications [2, 96], computational biology [114], speech

processing [1], quantum mechanics [98], and quantum information [38].

It has been shown that reconstructing a discrete, finite-duration signal from its Fourier

transform magnitude is generally NP-complete [102]. Even checking quadratic feasibility (i.e.,

whether a solution to a given quadratic system of the form (1.2) exists or not) is itself an NP-hard

problem [57, Thm. 2.6]. Therefore, despite its simple form and practical relevance across various

fields, tackling the quadratic system in (1.2) is challenging and NP-hard in general.

The problem in (1.2) constitutes an instance of non-convex quadratic programming. Specifi-

cally for real ai and x, problem (1.2) can be understood as a combinatorial optimization since

one seeks a series of signs {si = ±1}mi=1, such that the solution to the system of linear equations

〈ai,x〉 = siψi, where ψi :=
√
yi, obeys the given quadratic system. Evidently, there are a total
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of 2m different combinations of {si}mi=1, among which only two lead to x up to a global sign.

The complex case becomes even more complicated, where instead of a set of signs {si}mi=1, one

must determine a collection of unimodular complex scalars {σi ∈ C}mi=1. Special cases with

ai > 0 (entry-wise inequality), x2
i = 1, and yi = 0, 1 ≤ i ≤ m, correspond to the so-called

stone problem [10, Sec. 3.4.1].

1.2.1 Uniqueness of the phase retrieval problem

We first review some results from the literature that give conditions under which the phase

retrieval problem (1.2) has a unique solution (up to a global unimodular constant). In this process,

the different models for the sampling vectors ai that have been commonly used will also become

clear. To that end, collect all sampling vectors ai in the m× n matrixA := [a1 · · · am]H, and

concatenate all modulus squares yi to form the data vector y := [y1 · · · ym]T , which collectively

lead to the more compact matrix-vector representation y = |Ax|2, where the modulus operator

| · | should be understood entry-wise.

Let us start with the uniqueness of Fourier phase retrieval, in which one takes measurements

of the form

y = |Fx|2 (1.3)

where F ∈ Cn×n corresponds to the DFT matrix. It is clear from signal processing that there are

trivial ambiguities in the Fourier phase retrieval problem due to e.g.,

i. phase shift (x[i]→ x[i] · ejθ);

ii. spatial shift (x[i]→ x[i+ i0]); and

iii. conjugate inversion (x[i]→ x[−i])

each or any combination of which conserves Fourier magnitude, namely yields the same modulus

data y. Beyond trivial ambiguities, it has been shown that unique reconstruction of signals

is impossible using Fourier modulus measurements [58]. To see this, assign each magnitude

measurement yi an arbitrary phase θi, and a direct inverse Fourier transform would yield a

solution that also adheres to the data (1.3). For the Fourier phase retrieval problem to be uniquely

solvable (up to trivial ambiguities), a number of approaches have been suggested, a sample of

which are outlined next [108, 61].
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• Additional constraints on the signal vector. One common assumption is that the signal

vector x has bounded support. However, this assumption does not overcome the ill-

poseness of the 1D Fourier phase retrieval, but it is helpful when it comes to retrieving

the phase of 2D or 3D signals. Another structural assumption is that x is sparse in the

sense that only a small fraction of entries are nonzero. In this case one may also be able to

recover x using only a few Fourier measurements, namely a number m < n of equations

as in (1.3) [56]. Another possibility is when nonnegative entries of the signal vector are

constrained to be nonnegative, which clearly holds true in imaging applications [47, 107].

• Oversampled DFT. An alternative is to have additional redundant measurements. A

common strategy is to sample the signal in the continuous domain at a finer scale. That is,

instead of using frequencies ωi = 2πi/n, one can use ω′i = 2πi/m for i = 1, 2, . . . , m,

and m ≥ n. Using the argument that the autocorrelation function of any signal is twice

the size of the signal itself, it has been proved that phases of real signals can be uniquely

retrieved from the Fourier measurements if and only if one oversamples by a factor of two

[85].

Let us now turn our attention to the generalized phase retrieval, where one considers general

measurement vectors ai that do not necessarily correspond to rows of DFT matrices. To this

end, let us first introduce the notion of generic measurements. IfA corresponds to a point in a

non-empty Zariski open subset of Cm×n/Rm×n, the measurements y = |Ax|2 are said to be

generic [37]. When both x and ai are real, it has been shown in [8] that m = 2n− 1 generic

measurements are necessary for ensuring injectivity of the mapping z → |Az|2, andm ≥ 2n−1

generic measurements are also sufficient for injectivity. For example, m ≥ 2n − 1 Gaussian

random measurements are injective with probability one. In the complex case, a line of research

has established that the minimum number of generic measurements required for injectivity is

smaller than 4n− 4, and likewise, when m ≥ 4n− 4 generic measurements are available, the

mapping is injective with probability one [37].

1.2.2 Algorithmic developments

Adopting the maximum likelihood criterion, the task of recovering x from data yi observed in

additive white Gaussian noise (AWGN) can be recast as that of minimizing the intensity-based
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empirical loss [22, 44]

minimize
z∈Cn

f(z) :=
1

2m

m∑
i=1

(
yi − |〈ai, z〉|2

)2
. (1.4)

An alternative is to consider the Poisson likelihood [32]

minimize
z∈Cn

h(z) := − 1

2m

m∑
i=1

yi log(|〈ai, z〉|2) + |〈ai, z〉|2. (1.5)

Unfortunately, both (1.4) and (1.5) are non-convex. Minimizing non-convex cost functions,

which may exhibit many stationary points, is in general NP-hard [89]. In fact, even checking

whether a given point is a local minimum or establishing convergence to a local minimum turns

out to be NP-complete [89].

Previous approaches to solving (1.4) or (1.5) fall under two categories: non-convex and

convex ones. Popular non-convex solvers include alternating projection such as Gerchberg-

Saxton [48] and Fineup [47], AltMinPhase [91], (Truncated) Wirtinger flow (WF/TWF) [22,

32, 111], and trust-region methods [117]. Convex counterparts, on the other hand, rely on

the so-called matrix-lifting technique or Shor’s semidefinite relaxation to obtain the solvers

abbreviated as PhaseLift [20], PhaseCut [121], and CoRK [59].

Another line of convex relaxation [51, 49, 6, 54, 41] reformulates phase retrieval as a sparse

signal recovery problem, and solves a linear program in the natural parameter vector domain.

Although exact signal recovery can be established assuming an accurate enough anchor vector, its

empirical performance is often not competitive with state-of-the-art phase retrieval approaches.

Additional related approaches can be found in [59, 34, 146, 27, 11, 77, 5, 43, 141, 83, 33,

95, 63, 120, 40, 82, 118, 11, 31, 150, 103, 78, 87]. Interested readers can also access Matlab

implementations in [26] for a sample of the aforementioned as well as our proposed phase

retrieval solvers.

In terms of sample complexity, it has been proven that1 O(n) noise-free measurements

suffice for uniquely determining a general signal [44]. It is also self-evident that recovering

a general n-dimensional x requires at least O(n) measurements. Convex approaches enable

exact recovery from the optimal bound O(n) of noiseless measurements [20]; they are based

1The notation φ(n) = O(g(n)) or φ(n) & g(n) (respectively, φ(n) . g(n)) means there exists a numerical
constant c > 0 such that φ(n) ≤ cg(n), while φ(n) � g(n) means φ(n) and g(n) are orderwise equivalent.



6

on solving a semidefinite program with a matrix variable of size n × n, thus incurring worst-

case computational complexity on the order of O(n4.5) [121] that does not scale well with

n. Upon exploiting the problem structure, O(n4.5) can be reduced to O(n3) [121]. Solving

for vector variables, non-convex approaches on the other hand, enjoy significantly improved

computational performance. Adopting a spectral initialization commonly employed in matrix

completion [69], AltMinPhase establishes exact recovery with sample complexity O(n log3 n)

with resampling [91].

The WF iteratively refines the spectral initial estimate by means of gradient-type updates,

which can be approximately interpreted as a variant of stochastic gradient descent [22], [111].

The follow-up TWF improves upon WF through a truncation procedure to separate gradient

components of excessively extreme (large or small) sizes. Likewise, due to the heavy tails present

in the initialization stage, data {yi}mi=1 are pre-screened to yield improved initial estimates in

the so-termed truncated spectral initialization method [32]. The WF allows exact recovery from

O(n log n) measurements in O(mn2 log(1/ε)) time/flops to yield an ε-accurate solution for

any given ε > 0 [22], while TWF advances these to O(n) measurements and O(mn log(1/ε))

time [32]. It is also worth mentioning that when m ≥ Cn log3 n for some sufficiently large

positive constant C, the objective function in (1.4) has been shown to admit benign geometric

structure that allows certain iterative algorithms (e.g., trust-region methods) to efficiently find a

global minimizer with random initializations [117].

1.2.3 Applications of phase retrieval

In this subsection, we discuss two applications of phase retrieval. The goal here is to demonstrate

how the Fourier phase retrieval emerges naturally in diverse imaging applications, and how

the generalized phase retrieval (with general measurements) can be instrumental to real-world

applications.

Optical imaging

In optical imaging, researchers constantly wish to increase resolution so that details can be

imaged at a finer scale. Eventually, successful imaging of large protein complexes and biological

specimens would further advance the understanding of bio-chemical activities at the molecular

level. Phaseless imaging has also become critical in emerging national security applications
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Figure 1.1: Schematic diagram of the experimental setup for coherent diffraction imaging: A
coherent wave diffracts from a sample of Fe/Fe2O3, and generates a far-field diffraction pattern
which corresponds to the modulus of the Fourier transform of the sample.

such as monitoring electronic products intended for military or infrastructure use, where the

goal is to ensure such products are clear of secret backdoors granting foreign governments cyber

access to vital US infrastructure. The limitation of lens-type imaging devices is that the required

optical components such as mirrors and lenses are in general very difficult to construct at short

wavelengths, so increasing resolution becomes rather difficult for lens-type imaging devices. On

the other hand, phaseless imaging that is based on the Fourier phase retrieval offers a promising

alternative for recovery of phase structure because it does not require such optical components.

Below, we briefly overview the history of algorithmic phase retrieval in optical imaging.

The use of algorithmic phase retrieval was first suggested in X-ray diffraction microscopy

by Sayre in a seminal contribution back in 1952 [104]. Later in 1978, Fienup developed an

approach to empirically recover the phase information of 2D images from the modulus of their

Fourier transform leveraging prior knowledge such as non-negativity and known support of

signal values [47]. The revival of algorithmic phase retrieval around 2000 was due mainly to the

successful experimental recording and reconstruction of a diffraction pattern of a non-crystalline

object using the so-called coherent diffraction imaging [84]. Figure 1.1 depicts an illustrative

experimental setup2, where the diffraction patterns are (proportional to) the intensities of the

Fourier transform of the object [108]. There techniques have recently been employed to image
2This figure is adapted from https://www6.slac.stanford.edu/.

https://www6.slac.stanford.edu/
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Figure 1.2: The time-slotted frame diagram of the RSS/CQI feedback system adapted from [96].

small particles in diverse applications, including nano-particles, biomaterials, specimen, and

electronic circuits [108, 112].

Wireless channel estimation

Another interesting application of algorithmic phase retrieval lies in the estimation of a commu-

nication channel. Channel estimation is a critical task in any wireless communication system,

and 5G massive multiple-input multiple-output (MIMO) systems, in particular [72] - because the

receiver must estimate and feed back to the transmitter a high-dimensional multiple-input single-

output (MISO) channel vector for each receiving antenna element, posing critical challenges in

terms of mobile computation and power resources, as well as communication overhead [96, 143].

To compensate for temporal channel variations, existing and emerging wireless communication

systems provide access to basic received signal strength (RSS)/channel quality indicator (CQI)

feedback, which has prompted recent works to address the channel estimation problem using

RSS/CQI feedback only [96].

Such a channel estimation setup is depicted in Fig. 1.2 for a time-slotted frame structure of

the RSS/CQI feedback system. Per time slot k, the transmitter sends a constant-modulus symbol

s(k) ∈ C to the receiver with beamforming vector w(k) ∈ Cn, and subsequently transmits

data symbols using different beamforming vectors. The MISO channel vector between the n

transmitting antennas and the single receiving antenna at time slot k is denoted by the vector
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h(k) ∈ Cn. Although time-varying in general, for ease of exposition we shall consider static

channels over several slots, which means h(k) = h for k = 1, 2, . . . , m. Therefore, the

received signal corresponding to s(k) in the presence of noise, is given by

z(k) = wH(k)hs(k) + η(k) (1.6)

where η(k) ∈ C models the additive Gaussian white noise. The goal of channel estimation is to

estimate (track in the case of time-varying channels) the channel vector h from a collection of

RSS measurements {|z(k)|2}mk=1. Again, we arrive at an instance of the phase retrieval problem

stated as follows [96]

minimize
h∈Cn

1

2m

m∑
k=1

(
ψ(k)−

∣∣wH(k)h
∣∣)2 (1.7)

with ψ(k) := |z(k)| for all k.

Interestingly, in wireless communications, the choice of transmit beamforming vectors

{w(k)} is completely up to the communication system designer. In other words, the transmitter

has the freedom of designing the beamforming vectors to suit its own purposes [96]. One choice

is the random Gaussian design, in which {w(k)} are (pseudo)-random Gaussian vectors that are

i.i.d. across time and space.

1.3 Thesis Outline and Contributions

The research in this thesis contributes to the advancement of phase retrieval theory and methods,

by putting forth a comprehensive algorithmic framework of amplitude flows. The amplitude data

are leveraged to form non-convex optimization models, which are different from the intensity-

based ones in the existing literature. Our models trade off smoothness for ‘low-order’ non-

convexity, but also smoothness for for (near-)optimal computational and statistical efficiency. To

solve the resultant non-convex and non-smooth optimization, the present thesis develops a number

of algorithms that provably reconstruct the signal vector using an optimal-order number of

Gaussian random measurements, and incur also minimal computational complexity. Algorithms

of lower per-iteration complexity are realized based on stochastic non-convex optimization

techniques. Phase retrieval theory and methods for sparse signals are also presented. The major

difference between the work in this thesis and related non-convex phase retrieval approaches
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[91, 22, 32] is the use of the amplitude based least-squares cost function as well as novel gradient

regularization techniques. Beyond phase retrieval, the amplitude flow algorithms have potential

to tackle tasks such as matrix sensing, blind deconvolution, noncoherent channel estimation,

power system state estimation, and deep learning.

Chapter 2 starts with the amplitude-based least-squares formulation, for which the amplitude

flows are introduced. Specifically, a novel initialization procedure that is termed orthogonality-

promoting initialization is first presented, followed by the truncated amplitude flow iterations for

refining the initialization. The developed gradient regularization (truncation or trimming) helps

improve the exact recovery performance considerably, which may be of independent interest to

related non-convex optimization tasks. On the theoretical side, we establish that for Gaussian

random designs, the proposed (truncated) amplitude flow algorithms recover the true signals

exactly with high probability. This holds true with no assumption on the signal, and as soon

as the number of measurements is larger than some constant times the number of unknowns,

namely m ≥ c0n for some large enough constant c0 > 0.

Relative to existing non-convex phase retrieval approaches [91, 22, 32], leveraging the

amplitude data for loss minimization and carefully designed gradient regularization is among

the main contributions of this present thesis, and Chapter 2 in particular. Extensive numerical

experiments using computer generated data and real images are presented to corroborate the

merits of the proposed amplitude flow approaches and validate the associated theoretical claims.

The material of Chapter 2 has been reported in [124, 129, 130, 131].

In the amplitude flow algorithm in Chapter 2, all data samples are retained after regularization,

and treated equivalently in terms of how they affect initialization and the corresponding search

direction. This may lead to suboptimal performance since data samples in the context of non-

convex optimization may behave differently. Building on this observation, a novel iterative

reweighting technique is invoked in the amplitude flow algorithm, which leads to our so-called

reweighted amplitude flow algorithm in Chapter 3. Substantial tests are presented to corroborate

the merits of the reweighted amplitude flow algorithm.

To improve the scalability of phase retrieval approaches, Chapter 4 contributes computation-

ally efficient phase retrieval solvers, that are well suited for large-scale imaging tasks typically in

the order of millions. Instead of resorting to the gradient-type approaches in Chapters 2 and 3,

Chapter 4 advocates inexpensive stochastic iterations based on non-convex schemes for phase

retrieval of high-dimensional signals. Specifically, scalable solvers are put forth for carrying out



11

both the initialization and the refinement stages, each of which only incurs near optimal-order

per-iteration complexity. Furthermore, Kaczmarz variants that have been studied in the context

of phase retrieval [140] turn out to be special cases of our stochastic amplitude flow algorithms.

We also prove that the stochastic non-convex optimization schemes also reconstruct the true

signals exactly, and exponentially fast when m ≥ c0n. Our theory also establishes the exact

recovery of Kaczmarz variants. Simulated tests using synthetic data and real images corroborate

the scalability and effectiveness of the proposed stochastic non-convex optimization procedures

in phase retrieval of signals of millions of unknowns relative to competing approaches. The

results of Chapter 4 have been reported in [126, 127].

In real-world applications, especially those related to imaging, the signals are naturally

sparse or admit a sparse representation after some known and deterministic linear transformation.

Chapter 5 deals with phase retrieval of such sparse signals. To generalize the orthogonality-

promoting initialization of Chapter 2 to phase retrieval of sparse signals, a novel method is

developed first for estimating the support of the sparse signal, and it is followed by power

iterations solving an eigenvalue problem over the dimensionality-reduced data. To enable sparse

recovery, hard-thresholding based gradient iterations are invoked for the amplitude based least-

squares formulation. We demonstrate that when the number of measurements becomes large

enough, the support of the underlying signal can be estimated exactly, relying on which exact

reconstruction of the underlying sparse signal is also guaranteed with high probability. The

results of Chapter 5 are included in [135, 128, 149, 136].

The thesis is summarized, and interesting open problems are included in Chapter 6.

1.4 Notational Conventions

The following notation will be used throughout the subsequent chapters. Lower- (upper-) case

boldface letters denote vectors (matrices). Calligraphic letters are reserved for sets, e.g., S.

Symbol T (H) as superscript stands for matrix/vector transposition (conjugate transposition).

For vectors, ‖·‖2 or ‖·‖ represents the Euclidean norm, while ‖·‖0 denotes the `0 pseudo-norm

counting the number of nonzero entries. The floor (ceiling) operation bcc (dce) denotes the

largest integer no greater (the smallest integer but no smaller) than the given number c > 0;

|S| counts the number of entries in S. Let N (µ,Σ) be the vector Gaussian distribution with

mean µ and covariance matrix Σ; and the Gauss error function erf(x) is defined as erf(x) :=
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(1/
√
π)
∫ x
−x e

−x̃2dx̃. For any integer m > 0, we use [m] to denote the set {1, 2, . . . , m}.
Finally, the symbol � means the positive semi-definiteness of matrices, while the ordered

eigenvalues of matrixX ∈ Rn×n are given as λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X).



Chapter 2

Phase Retrieval via Amplitude Flow

Consider a system of m quadratic equations

yi = |〈ai,x〉|2 , i = 1, 2, . . . , m (2.1)

where the data vector y := [y1 · · · ym]T and feature vectors ai ∈ Rn or Cn are known, whereas

the vector x ∈ Rn or Cn is the wanted unknown. When ai and/or x are complex-valued, the

magnitudes of their inner-products 〈ai,x〉 are given but phase information is lacking; in the real

case, only the signs of 〈ai,x〉 are unknown. Assuming that the system of quadratic equations in

(2.1) admits a unique solution x (up to a global unimodular constant), our goal here is to recover

x from m quadratic equations, or equivalently, to recover the missing phases of 〈ai,x〉.

2.1 Non-convex Optimization Models

Different than existing models in (1.4) and (1.5) that are based on the intensity data, this thesis

considers directly the following amplitude data-based empirical loss minimization

minimize
z∈Cn

`(z) :=
1

2m

m∑
i=1

(
ψi − |aHi z|

)2
(2.2)

which is not only non-convex, but also non-smooth due to the modulus terms.

Along the lines of suitably initialized non-convex procedures [22, 32], the present chapter

develops a linear-time (i.e., the computational time linearly in both dimensions m and n)

13
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algorithm, referred to as truncated amplitude flow (TAF). Our approach provably recovers an

n-dimensional unknown signal x exactly from a near-optimal number of noiseless random

measurements, while also featuring near-perfect statistical performance in the noisy setting. TAF

operates in two stages: In the first stage, we introduce an orthogonality-promoting initialization

that is computable with a few power iterations. Stage two refines the initial estimate by successive

updates of truncated generalized gradient iterations.

Our initialization is built upon the hidden orthogonality characteristics of high-dimensional

random vectors [17], which is in contrast to spectral alternatives originating from the strong

law of large numbers (SLLN) [91, 22, 32]. Furthermore, one challenge of phase retrieval lies in

reconstructing the signs/phases of 〈ai,x〉 in the real/complex settings. Our TAF’s refinement

stage leverages a simple yet effective regularization rule to eliminate the erroneously estimated

phases in the generalized gradient components with high probability. Numerical experiments

corroborate that the proposed initialization returns more accurate and robust initial estimates than

its spectral counterparts in the noiseless and noisy settings. In addition, our TAF (with gradient

truncation) markedly improves upon its “plain-vanilla” version AF.

2.2 Truncated Amplitude Flow

In this section, the two stages of TAF are presented. First, the challenge of handling the non-

convex and non-smooth amplitude-based cost function is analyzed, and it is addressed by a

carefully designed gradient regularization rule. Limitations of (truncated) spectral initializations

are then pointed out, followed by a simple motivating example to inspire our orthogonality-

promoting initialization method. For concreteness, the analysis will focus on the real Gaussian

model with x ∈ Rn, and independent and identically distributed (i.i.d.) sampling vectors

ai ∈ Rn ∼ N (0, In). Numerical experiments using the complex Gaussian model with x ∈ Cn,

and i.i.d. ai ∼ CN (0, In) := N (0, In/2) + jN (0, In/2) will be discussed briefly.

To start, let us define the Euclidean distance of any estimate z to the solution set: dist(z, x) :=

min {‖z + x‖ , ‖z − x‖} for real signals, and dist(z, x) := minφ∈[0,2π) ‖z − xeiφ‖ for com-

plex ones [22]. Define also the indistinguishable global phase constant in the real setting as

φ(z) :=

{
0, ‖z − x‖ ≤ ‖z + x‖,
π, otherwise.

(2.3)
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Henceforth, fixing x to be any solution of the quadratic system (2.1), we always assume that

φ (z) = 0; otherwise, z is replaced by e−jφ(z)z, but for simplicity of presentation, the constant

phase adaptation term e−jφ(z) will be dropped whenever it is clear from the context.

2.2.1 Truncated gradient iterations

For brevity, collect all amplitudes {ψi}mi=1 to form the data vector ψ := [ψ1 · · · ψm]T . One can

rewrite the amplitude-based cost function in matrix-vector representation as

minimize
z∈Rn

`(z) :=
1

m

m∑
i=1

`i(z) =
1

2m

∥∥ψ − |Az| ∥∥2 (2.4)

where `i(z) := 1
2(ψi−|aTi z|)2, and with a slight abuse of notation, |Az| := [|aT1 z| · · · |aTmz|]T .

Apart from being non-convex, another challenging aspect of the amplitude-based loss function

`(z) is that it is non-differentiable, and that it is not clear how to run gradient-type algorithms.

In the presence of smoothness or convexity, convergence analysis of iterative algorithms relies

either on continuity of the gradient (ordinary gradient methods) [109], or, on the convexity of

the objective functional (subgradient methods) [99]. Although subgradient methods have found

widespread applicability in non-smooth optimization, they are limited to the class of convex

functions [110, Page 4]. Nevertheless, as the loss function is differentiable except for at isolated

points rendering each or some of the least-squares zero; and one can use the notion of generalized

gradients in such non-convex and non-smooth optimization settings, which define the gradient at

a non-differentiable point as one of the limit points of the gradient in a local neighborhood of the

non-differentiable point, and considerably broadens the scope of the (sub)gradient to the class of

almost everywhere differentiable functions [36].

Formally, consider a continuous but not necessarily differentiable function h(z) ∈ R defined

over an open region S ⊆ Rn. We then have the following definition.

Definition 1. [35, Def. 1.1] The generalized gradient of a function h at z, denoted by ∂h, is the

convex hull of the set of limits of the form lim∇h(zk), where zk → z as k → +∞, i.e.,

∂h(z) := conv
{

lim
k→+∞

∇h(zk) : zk → z, zk /∈ G`
}

where the symbol ‘conv’ signifies the convex hull of a set, and G` denotes the set of points in S at

which h fails to be differentiable.
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Having introduced the notion of a generalized gradient, and with t denoting the iteration

count, our approach to solving (2.4) amounts to iteratively refining the initial guess z0 (returned

by the orthogonality-promoting initialization method to be detailed shortly) by means of the

ensuing truncated generalized gradient iterations

zt+1 = zt − µt ∂`tr(zt). (2.5)

Here, µt > 0 is the step size, and the (truncated) generalized gradient ∂`tr(zt) is given by

∂`tr(z
t) :=

1

m

∑
i∈It+1

(
aTi z

t − ψi
aTi z

t

|aTi zt|

)
ai (2.6)

for some index set It+1 ⊆ {1, 2, . . . ,m} to be designed next. The convention aTi z
t

|aTi zt|
:= 0 is

adopted, if aTi z
t = 0. It is easy to verify that the update in (2.5) with a full generalized gradient

in (2.6) monotonically decreases the objective function value in (2.4).

Any stationary point z∗ of `(z) can be characterized by the following fixed-point equation

AT
(
Az∗ −ψ � Az∗

|Az∗|

)
= 0 (2.7)

for entry-wise product �, which may have many solutions. Clearly, if z∗ is a solution, then so is

−z∗. Furthermore, both solutions/global minimizers x and −x satisfy (2.7) due to the fact that

Ax−ψ � Ax

|Ax|
= 0.

Considering any stationary point z∗ 6= ±x that has been adapted such that φ(z∗) = 0, write

z∗ = x+ (ATA)−1AT
[
ψ �

(
Az∗

|Az∗| −
Ax
|Ax|

)]
. (2.8)

Thus, a necessary condition for z∗ 6= x in (2.8) is Az∗

|Az∗| 6=
Ax
|Ax| . Expressed differently, there

must be sign differences between Az∗ and Ax whenever one gets stuck with an undesirable

stationary point z∗. Inspired by this observation, it is reasonable to devise solvers that can detect

and separate out the generalized gradient components corresponding to mistakenly estimated

signs
{
aTi z

t

|aTi zt|

}
along the iterates {zt}.

Precisely, if zt and x lie at different sides of the hyperplane aTi z = 0, then the sign of aTi z
t
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Figure 2.1: Geometric description of the proposed truncation rule on the i-th gradient component
involving aTi x = ψi, where the red dot denotes the solution x and the black one is the origin.
Hyperplanes aTi z = ψi and aTi z = 0 (of z ∈ Rn) passing through points z = x and z = 0,
respectively, are shown.

will be different than that of aTi x; that is, aTi x

|aTi x|
6= aTi z

|aTi z|
. Specifically, one can re-write the i-th

generalized gradient component as

∂`i(z) =
(
aTi z − ψi

aTi z

|aTi z|

)
ai

=
(
aTi z − |aTi x|

aTi x

|aTi x|

)
ai +

( aTi x
|aTi x|

− aTi z

|aTi z|

)
ψiai

= aia
T
i (z − x) +

( aTi x
|aTi x|

− aTi z

|aTi z|

)
ψiai

= aia
T
i h+

( aTi x
|aTi x|

− aTi z

|aTi z|

)
ψiai︸ ︷︷ ︸

4
= ri

, (2.9)

where h := z − x. Intuitively, the SLLN asserts that averaging the first term aia
T
i h over m

instances approaches h, which qualifies it as a desirable search direction. However, certain

generalized gradient entries involve erroneously estimated signs of aTi x; hence, nonzero ri
terms exert a negative influence on the search direction h by dragging the iterate away from x,

and they typically have sizable magnitudes as will be further elaborated in Rmk. 2 shortly.

Figure 2.1 demonstrates this from a geometric perspective, where the black dot is the origin,
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and the red dot the solution x; here, −x is omitted for ease of exposition. Assume without loss

of generality that the i-th missing sign is positive, i.e., aTi x = ψi. As will be demonstrated

in Thm. 2, with high probability, the initial estimate returned by our orthogonality-promoting

method obeys ‖h‖ ≤ ρ‖x‖ for some sufficiently small constant ρ > 0. Therefore, all points lying

on or within the circle (or sphere in high-dimensional spaces) in Fig. 2.1 satisfy ‖h‖ ≤ ρ‖x‖. If

aTi z = 0 does not intersect with the circle, then all points within the circle satisfy aTi z

|aTi z|
=

aTi x

|aTi x|
qualifying the i-th generalized gradient as a desirable search (descent) direction in (2.9). If, on

the other hand, aTi z = 0 intersects the circle, then points lying on the same side of aTi z = 0

with x in Fig. 2.1 admit correctly estimated signs, while points lying on different sides of

aTi z = 0 with x would have aTi z

|aTi z|
6= aTi x

|aTi x|
. This gives rise to a corrupted search direction

in (2.9), implying that the corresponding generalized gradient component should be eliminated.

However, it is difficult or even impossible to check whether the sign of aTi z
t equals that of

aTi x. Fortunately, as demonstrated in Fig. 2.1, most spurious generalized gradient components

(those corrupted by nonzero ri terms) hover around the watershed hyperplane aTi z
t = 0. For

this reason, TAF includes only components having zt sufficiently away from its watershed, i.e.,

It+1 :=

{
1 ≤ i ≤ m

∣∣∣∣ |aTi zt||aTi x|
≥ 1

1 + γ

}
, t ≥ 0 (2.10)

for an appropriately selected threshold γ > 0. To be specific, the light yellow color-coded

area denoted by ξ1
i in Fig. 2.1 signifies the truncation region of z: if z ∈ ξ1

i satisfies the

condition in (2.10), then the corresponding generalized gradient component ∂`i(z;ψi) will be

thrown out. However, the truncation rule may mis-reject certain ‘good’ gradients if zt lies

in the upper part of ξ1
i ; ‘bad’ gradients may be missed as well if zt belongs to the spherical

cap ξ2
i . Fortunately, as we will show in Lemmas 5 and 6, the probabilities of misses and

mis-rejections are provably very small, hence precluding a noticeable influence on the descent

direction. Although not perfect, it turns out that such a regularization rule succeeds in detecting

and eliminating most corrupted generalized gradient components with high probability, therefore

maintaining a well-behaved search direction. Further from our numerical experiments, the

developed truncation procedure turns out to be useful in avoiding spurious stationary points in the

context of nonconvex optimization, as will be justified in Sec. 2.4 by the numerical comparison

between our amplitude flow (AF) algorithms with or without the judiciously designed truncation

rule. Interestingly, similar ideas including censoring have been developed for large-scale linear
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regressions [123, 14, 137, 13, 30].

Regarding our gradient regularization rule in (2.10), two observations come in order.

Remark 1. The truncation rule in (2.10) includes only relatively sizable aTi z
t’s, hence enforcing

the smoothness of the (truncated) objective function `tr(zt) at zt. Therefore, the truncated gener-

alized gradient ∂`tr(z) employed in (2.5) and (2.6) boils down to the ordinary gradient/Wirtinger

derivative ∇`tr(zt) in the real/complex case.

Remark 2. As will be elaborated in (A.20) and (A.22), the quantities (1/m)
∑m

i=1 ψi and

maxi∈[m] ψi in (2.9) have magnitudes on the order of
√
π/2‖x‖ and

√
m‖x‖, respectively.

In contrast, Prop. 1 asserts that the first term in (2.9) obeys ‖aiaTi h‖ ≈ ‖h‖ ≤ ρ‖x‖ for a

sufficiently small ρ�
√
π/2. Thus, spurious generalized gradient components typically have

large magnitudes. It turns out that our gradient regularization rule in (2.10) also throws out

gradient components of large sizes. To see this, for all z ∈ Rn such that ‖h‖ ≤ ρ‖x‖ in (2.27),

one can re-express
m∑
i=1

∂`i(z) =
m∑
i=1

(
1− |a

T
i x|
|aTi z|

)
︸ ︷︷ ︸

4
=βi

aia
T
i z (2.11)

for some weight βi ∈ [−∞, 1) assigned to the direction aiaTi z ≈ z due to E[aia
T
i ] = In. Then

∂`i(z) of an excessively large size corresponds to a large |aTi x|/|aTi z| in (2.11), or equivalently

a small |aTi z|/|aTi x| in (2.10), thus causing the corresponding ∂`i(z) to be eliminated according

to the truncation rule in (2.10).

Our truncation rule deviates from the intuition behind TWF, which throws away gradient

components corresponding to large-size {|aTi zt|/|aTi x|} in (2.10). As demonstrated by our

analysis in Appendix A.5, it rarely happens that a gradient component having large |aTi zt|/|aTi x|
yields an incorrect sign of aTi x under a sufficiently accurate initialization. Moreover, discarding

too many samples (those for which i /∈ T t+1 in TWF [32, Sec. 2.1]) introduces large bias into

(1/m)
∑m

i∈T t+1 aia
T
i h, so that TWF does not work well when m/n is close to the information-

limit of m/n ≈ 2. In sharp contrast, the motivation and objective of our truncation rule in (2.10)

is to directly sense and eliminate gradient components that involve mistakenly estimated signs

with high probability.

To demonstrate the power of TAF, numerical tests comparing all stages of (T)AF and (T)WF

will be presented throughout our analysis. The basic test settings used are described next. For
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fairness, all pertinent parameters involved in all compared schemes were set to their default

values. Simulated estimates are averaged over 100 independent Monte Carlo (MC) realizations

without mentioning this explicitly each time. Performance of different schemes is evaluated in

terms of the relative root mean-square error (MSE), i.e.,

Relative error :=
dist(z, x)

‖x‖
(2.12)

and the success rate among 100 trials, where a success is claimed for a trial if the returned

estimate incurs a relative error less than 10−5 [32]. Simulated tests under both noiseless and

noisy Gaussian models are performed, corresponding to

ψi = |aHi x|+ ηi

with ηi = 0 and ηi ∼ N (0, σ2), respectively, with i.i.d. ai ∼ N (0, In) or ai ∼ CN (0, In).

Numerical comparison depicted in Fig. 2.2 using the noiseless real Gaussian model suggests

that even when starting with the same truncated spectral initialization, TAF’s refinement outper-

forms those of TWF and WF, demonstrating the merits of our gradient update rule over TWF/WF.

Furthermore, comparing TAF (gradient iterations in (2.5)-(2.6) with truncation in (2.10) initial-

ized by the truncated spectral estimate) and AF (gradient iterations in (2.5)-(2.6) initialized by

the truncated spectral estimate) corroborates the power of the truncation rule in (2.10).

2.2.2 Orthogonality-promoting initialization

Leveraging the SLLN, spectral initialization methods estimate x/‖x‖ as the leading eigenvector

of Y := 1
m

∑
i∈T 0 yiaia

T
i , where T 0 is an index set accounting for possible data truncation. As

asserted in [32], each summand (aTi x)2aia
T
i follows a heavy-tail probability density function

lacking a moment generating function. This causes major performance degradation especially

when the number of measurements is small. Instead of spectral initializations, we shall take

another route to bypass this hurdle. To gain intuition into our approach, a motivating example is

presented first that reveals fundamental characteristics of high-dimensional vectors.

Fixing any nonzero vector x ∈ Rn, generate data ψi = |〈ai,x〉| using i.i.d. ai ∼ N (0, In)
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Figure 2.2: Empirical success rate from the same truncated spectral initialization under the real
Gaussian model.

for 1 ≤ i ≤ m. Evaluate the following squared normalized inner-product

cos2 θi :=
|〈ai,x〉|2

‖ai‖2‖x‖2
=

ψ2
i

‖ai‖2‖x‖2
, 1 ≤ i ≤ m (2.13)

where θi is the angle between vectors ai and x. Consider ordering all {cos2 θi} in an ascending

fashion, and collectively denote them as ξ := [cos2 θ[m] · · · cos2 θ[1]]
T with cos2 θ[1] ≥ · · · ≥

cos2 θ[m]. Figure 2.3 plots the ordered entries in ξ for m/n varying by 2 from 2 to 10 with

n = 1, 000. Observe that almost all {ai} vectors have a squared normalized inner-product with

x smaller than 10−2, while half of the inner-products are less than 10−3, which implies that x is

nearly orthogonal to a large number of ai’s.

This example corroborates the folklore that random vectors in high-dimensional spaces are

almost always nearly orthogonal to each other [17]. This inspired us to pursue an orthogonality-

promoting initialization method. Our key idea is to approximate x by a vector that is most

orthogonal to a subset of vectors {ai}i∈I0 , where I0 is an index set with cardinality |I0| < m

that includes indices of the smallest squared normalized inner-products cos2 θi. Since ‖x‖
appears in all inner-products, its exact value does not influence their ordering. Henceforth, we

assume with no loss of generality that ‖x‖ = 1.
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Figure 2.3: Ordered squared normalized inner-product for pairs x and ai.

Using data {(ai; ψi)}, evaluate cos2 θi according to (2.13) for each pair x and ai. Instru-

mental for the ensuing derivations is noticing from the inherent near-orthogonal property of

high-dimensional random vectors that the summation of cos2 θi over all indices i ∈ I0 should

be very small; rigorous justification is deferred to Sec. 2.5. Therefore, the sum
∑

i∈I0 cos2 θi is

also small, or according to (2.13), equivalently,

∑
i∈I0

|〈ai,x〉|2

‖ai‖2‖x‖2
=

x

‖x‖

(∑
i∈I0

aia
T
i

‖ai‖2
) x

‖x‖
(2.14)

is small. Therefore, a meaningful approximation of x can be obtained by minimizing the former

with x replaced by the optimization variable z, namely

minimize
‖z‖=1

zT

 1

|I0|
∑
i∈I0

aia
T
i

‖ai‖2

 z. (2.15)

This amounts to finding the smallest eigenvalue and the associated eigenvector of Y0 :=
1
|I0|
∑

i∈I0
aia
T
i

‖ai‖2 � 0. Finding the smallest eigenvalue calls for eigen-decomposition or matrix

inversion, each typically requiring computational complexity on the order of O(n3). Such a

computational burden may be intractable when n grows large. Applying a standard concentration

result, we show how the computation can be significantly reduced.
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Since ai/‖ai‖ has unit norm and is uniformly distributed on the unit sphere, it is uniformly

spherically distributed.1 Spherical symmetry implies that ai/‖ai‖ has zero mean and covariance

matrix In/n [119]. Appealing again to the SLLN, the sample covariance matrix 1
m

∑m
i=1

aia
T
i

‖ai‖2

approaches In/n as m grows. Simple derivations lead to

∑
i∈I0

aia
T
i

‖ai‖2
=

m∑
i=1

aia
T
i

‖ai‖2
−
∑
i∈I0

aia
T
i

‖ai‖2
u
m

n
In −

∑
i∈I0

aia
T
i

‖ai‖2
(2.16)

where I0 is the complement of I0 in the set [m]. Define S := [a1/‖a1‖ · · · am/‖am‖]T ∈
Rm×n, and form S0 by removing the rows of S whose indices belong to I0. Seeking the smallest

eigenvalue of Y0 = 1
|I0|S

T
0 S0 then reduces to computing the largest eigenvalue of the matrix

Y0 :=
1

|I0|
ST0 S0, (2.17)

namely,

z̃0 := arg max
‖z‖=1

zT Y0z (2.18)

which can be efficiently solved via simple power iterations.

When ‖x‖ 6= 1, the estimate z̃0 from (2.18) is scaled so that its norm matches approximately

that of x, which is estimated as
√

1
m

∑m
i=1 yi, or more accurately

√
n
∑m
i=1 yi∑m

i=1 ‖ai‖2
. To motivate

these estimates, using the rotational invariance property of normal distributions, it suffices to

consider the case where x = ‖x‖e1, with e1 denoting the first canonical vector of Rn. Indeed,∣∣∣〈ai, x‖x‖〉∣∣∣2 = |〈ai,Ue1〉|2 =
∣∣〈UT ai, e1

〉∣∣2 d
= |〈ai, e1〉|2 (2.19)

where U ∈ Rn×n is some unitary matrix, and d
= means that terms on both sides of the equality

have the same distribution. It is then easily verified that

1

m

m∑
i=1

yi =
1

m

m∑
i=1

a2
i,1‖x‖2 ≈ ‖x‖2 (2.20)

1A random vector z ∈ Rn is said to be spherical (or spherically symmetric) if its distribution does not change
under rotations of the coordinate system; that is, the distribution of Pz coincides with that of z for any given
orthogonal n× n matrix P .
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where the last approximation arises from the following concentration result (1/m)
∑m

i=1 a
2
i,1 ≈

E[a2
i,1] = 1 using again the SLLN. Regarding the second estimate, one can rewrite its square as

n
∑m

i=1 yi∑m
i=1 ‖ai‖2

=
1

m

m∑
i=1

yi ·
n

(1/m)
∑m

i=1 ‖ai‖2
. (2.21)

It is clear from (2.20) that the first term on the right hand side of (2.21) approximates ‖x‖2. The

second term approaches 1 because the denominator (1/m)
∑m

i=1 ‖ai‖2 ≈ n appealing to the

SLLN again and the fact that ai ∼ N (0, In). For brevity, we work with the first norm estimate

z0 =

√∑m
i=1 yi
m

z̃0. (2.22)

It is worth highlighting that, compared to Y := 1
m

∑
i∈T 0 yiaia

T
i used in spectral methods,

our constructed matrix Y0 in (2.17) does not depend on the observed data yi explicitly; the

dependence is only through the choice of the index set I0. The novel orthogonality-promoting

initialization thus enjoys two advantages over its spectral alternatives: a1) it does not suffer from

heavy-tails of the fourth-order moments of Gaussian ai vectors common in spectral initialization

schemes; and, a2) it is less sensitive to noisy data.
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Figure 2.4: Relative initialization error versus m/n. Left: Noiseless real Gaussian model; Right:
Noisy real Gaussian model with σ2 = 0.22‖x‖2.

Figure 2.4 compares three different initialization schemes including spectral initialization [91,

22], truncated spectral initialization [32], and the proposed orthogonality-promoting initialization.
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The relative error of their returned initial estimates versus the measurement/unknown ratio m/n

is depicted under the noiseless and noisy real Gaussian models, where x ∈ R1,000 was randomly

generated andm/n increases by 2 from 2 to 20. Clearly, all schemes enjoy improved performance

as m/n increases in both noiseless and noisy settings. The orthogonality-promoting initialization

achieves consistently superior performance over its competing spectral alternatives under both

noiseless and noisy Gaussian data. Interestingly, the spectral and truncated spectral schemes

exhibit similar performance when m/n becomes sufficiently large (e.g., m/n ≥ 14 in the

noiseless setup or m/n ≥ 16 in the noisy one). This confirms that the truncation helps only if

m/n is relatively small. Indeed, the truncation discards measurements of excessively large or

small sizes emerging from the heavy tails of the data distribution. Hence, its advantage over the

non-truncated spectral initialization diminishes as the number of measurements increases, which

gradually straightens out the heavy tails.

Algorithm 1 Truncated amplitude flow (TAF)

1: Input: Amplitude data {ψi := |〈ai,x〉|}mi=1 and design vectors {ai}mi=1; maximum number
of iterations T ; by default, take constant step sizes µ = 0.6/1 for the real/complex models,
thresholds |I0| = d1

6me, and γ = 0.7.
2: Set I0 as the set of indices corresponding to the |I0| largest values of {ψi/‖ai‖}.

3: Initialize z0 to
√∑m

i=1 ψ
2
i

m z̃0, where z̃0 is the normalized leading eigenvector of

Y0 :=
1

|I0|

∑
i∈I0

aia
T
i

‖ai‖2
.

4: Loop: for t = 0 to T − 1

zt+1 = zt − µ

m

∑
i∈It+1

(
aTi z

t − ψi
aTi z

t

|aTi zt|

)
ai

where It+1 :=
{

1 ≤ i ≤ m
∣∣∣|aTi zt| ≥ 1

1+γψi

}
.

5: Output: zT .



26

2.3 Main Results

The TAF algorithm is summarized in Alg. 1. Default values are set for pertinent algorithmic

parameters. Assuming independent data samples (ai;ψi) drawn from the noiseless real Gaussian

model, the following result establishes the theoretical performance of TAF.

Theorem 1 (Exact recovery). Let x ∈ Rn be an arbitrary signal vector, and consider (noise-free)

measurements ψi = |aTi x|, in which ai
i.i.d.∼ N (0, In), 1 ≤ i ≤ m. Then with probability at

least 1− (m+ 5)e−n/2 − e−c0m − 1/n2 for some universal constant c0 > 0, the initialization

z0 returned by the orthogonality-promoting method in Alg. 1 satisfies

dist(z0, x) ≤ ρ ‖x‖ (2.23)

with ρ = 1/10 (or any sufficiently small positive constant), provided that m ≥ c1|I0| ≥ c2n for

some numerical constants c1, c2 > 0, and sufficiently large n. Furthermore, choosing a constant

step size µ ≤ µ0 along with a truncation level γ ≥ 1/2, and starting from any initial guess z0

satisfying (2.23), successive estimates of the TAF solver (tabulated in Alg. 1) obey

dist
(
zt,x

)
≤ ρ (1− ν)t ‖x‖ , t = 0, 1, 2, . . . (2.24)

for some constant 0 < ν < 1, which holds with probability exceeding 1 − (m + 5)e−n/2 −
8e−c0m − 1/n2.

Typical parameter values for TAF in Alg. 1 are µ = 0.6, and γ = 0.7. The proof of Thm. 2

is relegated to Sec. 2.5. Theorem 2 asserts that: i) TAF reconstructs the solution x exactly as

soon as the number of equations is about the number of unknowns, which is theoretically order

optimal. Our numerical tests demonstrate that for the real Gaussian model, TAF achieves a

success rate of 100% when m/n is as small as 3, which is slightly larger than the information

limit of m/n = 2. This is a significant reduction in the sample complexity ratio, which is 5

for TWF and 7 for WF. Surprisingly, TAF also enjoys a success rate of over 50% when m/n

is the information limit 2, which has not yet been presented for any existing algorithms. See

further discussion in Sec. 2.4; and, ii) TAF converges exponentially fast with convergence rate

independent of n. Specifically, TAF requires at most O(log(1/ε)) iterations to achieve any given

solution accuracy ε > 0 (a.k.a., dist(zt, x) ≤ ε ‖x‖), with iteration cost O(mn). Since the

truncation takes time on the order of O(m), the computational burden of TAF per iteration is
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dominated by the evaluation of the gradient components. The latter involves two matrix-vector

multiplications that are computable in O(mn) flops, namely, Azt yields ut, and AT vt the

gradient, where vt := ut −ψ � ut

|ut| . Hence, the total running time of TAF is O(mn log(1/ε)),

which is proportional to the time taken to read the data O(mn).
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Figure 2.5: Relative initialization error using noise-free (solid) and noisy (dotted) data. Left: Real
Gaussian model with σ2 = 0.22 ‖x‖2; Right: Complex Gaussian model with σ2 = 0.22 ‖x‖2.

In the noisy setting, TAF is stable under additive noise. Consider the amplitude-based noisy

data model ψi = |aTi x|+ ηi. It can be shown that the TAF estimates in Alg. 1 satisfy

dist(zt, x) . (1− ν)t ‖x‖+
1√
m
‖η‖ , t = 0, 1, . . . (2.25)

with high probability for all x ∈ Rn, provided that m ≥ c1|I0| ≥ c2n for sufficiently large

n and the noise is bounded ‖η‖∞ ≤ c3 ‖x‖ with η := [η1 · · · ηn]T , where 0 < ν < 1, and

c1, c2, c3 > 0 are some universal constants. The proof can be adapted from those of Thm. 2

above and Thm. 2 in [32].

2.4 Numerical Experiments

In this section, we provide additional numerical tests evaluating performance of the proposed

schemes relative to (T)WF 2. The initial estimate was found using 50 power iterations, and
2Matlab codes directly downloaded from the authors’ websites: http://statweb.stanford.edu/

˜candes/TWF/algorithm.html; and http://www-bcf.usc.edu/˜soltanol/WFcode.html.

http://statweb.stanford.edu/~candes/TWF/algorithm.html
http://statweb.stanford.edu/~candes/TWF/algorithm.html
http://www-bcf.usc.edu/~soltanol/WFcode.html
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was subsequently refined by T = 1, 000 gradient-type iterations in each scheme. The Matlab

implementations of TAF are available at https://gangwg.github.io/TAF/ for repro-

ducibility.
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Figure 2.6: Relative initialization errors of solving (2.15) via the Lanczos method and solving
(2.18) via the power method.

Top panel in Fig. 2.5 presents the average relative error of three initialization methods on a

series of noiseless/noisy real Gaussian problems with m/n = 6 fixed, and n varying from 500

to 104, while those for the corresponding complex Gaussian instances are shown in the bottom

panel. Clearly, the proposed initialization method returns more accurate and robust estimates

than the spectral ones. Under the same condition for the real Gaussian model, Fig. 2.6 compares

the initialization implemented in Alg. 1 obtained by solving the maximum eigenvalue problem

in (2.18) with the one obtained by tackling the minimum eigenvalue problem in (2.15) via the

Lanczos method [100]. When the number of equations is relatively small (less than about 3n),

the former performs better than the latter. Interestingly though, the latter works remarkably well

and almost halves the error incurred by the implemented initialization of Alg. 1 as soon as the

number of equations becomes larger than 4.

To demonstrate the power of TAF, Fig. 2.8 plots the relative error of recovering a real signal in

logarithmic scale versus the iteration count under the information-limit of m = 2n− 1 noiseless

i.i.d. Gaussian measurements [8]. In this case, since the returned initial estimate is relatively

far from the optimal solution (see Fig. 2.4), TAF converges slowly for the first 200 iterations

https://gangwg.github.io/TAF/
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Figure 2.7: Empirical success rate. Left: Real Gaussian model; Right: Complex Gaussian model.

or so due to elimination of a significant amount of ‘bad’ generalized gradient components. As

the iterate gets more accurate and lands within a small-size neighborhood of x, TAF converges

exponentially fast to the globally optimal solution. It is worth emphasizing that no existing

method succeeds in this case. Figure 2.7 compares the empirical success rate of three schemes

under both real and complex Gaussian models with n = 103 and m/n varying by 0.1 from 1 to

7, where a success is claimed if the estimate has a relative error less than 10−5. For real vectors,

TAF achieves a success rate of over 50% when m/n = 2, and guarantees perfect recovery

from about 3n measurements; while for complex ones, TAF enjoys a success rate of 95% when

m/n = 3.4, and ensures perfect recovery from about 4.5n measurements.

To demonstrate the stability of TAF, the relative MSE

Relative MSE :=
dist2(zT , x)

‖x‖2

as a function of the signal-to-noise ratio (SNR) is plotted for different m/n values. We consider

the noisy model ψi = |〈ai,x〉| + ηi with x ∼ N (0, I1,000) and real independent Gaussian

sensing vectors ai ∼ N (0, I1,000), in which m/n takes values {6, 8, 10}, and the SNR in dB,

given by

SNR := 10 log10

∑m
i=1 |〈ai,x〉|2∑m

i=1 η
2
i

is varied from 10 dB to 50 dB. Averaging over 100 independent trials, Fig. 2.9 demonstrates that

the relative MSE for all m/n values scales inversely proportional to SNR, hence justifying the
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Figure 2.8: Relative error versus iteration for TAF with m = 2n− 1.

stability of TAF under bounded additive noise.

The next experiment evaluates the efficacy of the proposed initialization method, simulating

all schemes initialized by the truncated spectral estimate [32] and the orthogonality-promoting

estimate. Evidently, all solvers except for WF admit a significant performance improvement when

initialized by the proposed orthogonality-promoting initialization relative to the truncated spectral

initialization. Nonetheless, TAF with our developed orthogonality-promoting initialization enjoys

superior performance over all simulated approaches.

Finally, to examine the effectiveness and scalability of TAF in real-world conditions, we

simulate recovery of the Milky Way Galaxy image 3 X ∈ R1080×1920×3 shown in Fig. 2.11. The

first two indices encode the pixel locations, and the third the RGB (red, green, blue) color bands.

Consider the coded diffraction pattern (CDP) measurements with random masks [21, 22, 32].

Letting x ∈ Rn be a vectorization of a certain band ofX and postulating a number K of random

masks, one can further write

ψ(k) =
∣∣FD(k)x

∣∣, k = 1, 2, . . . , K (2.26)

where F denotes the n × n discrete Fourier transform matrix, and D(k) is a diagonal matrix

holding entries sampled uniformly at random from {1, −1, j, −j} (also known as phase delays)

3Downloaded from http://pics-about-space.com/milky-way-galaxy.

http://pics-about-space.com/milky-way-galaxy
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Figure 2.9: Relative MSE versus SNR for TAF under the amplitude-based noisy data model.
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Figure 2.10: Empirical success rate using the truncated spectral and the orthogonality-promoting
initializations.

on its diagonal, with j denoting the imaginary unit. EachD(k) represents a random mask placed

after the object [21]. With K = 6 masks implemented in our experiment, the total number

of quadratic measurements is m = 6n. Per algorithm was run independently on each of the

three bands. A number 100 of power iterations were used to obtain an initialization, which was

refined by 100 gradient-type iterations. The relative errors after our orthogonality-promoting
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initialization and after 100 TAF iterations are 0.6807 and 9.8631 × 10−5, respectively, and

the recovered images are displayed in Fig. 2.11. In sharp contrast, TWF returns images of

corresponding relative errors 1.3801 and 1.3409, which are far away from the ground truth.

Regarding runtimes in our reported experiments, TAF converges slightly faster than TWF,

while both are markedly faster than WF. All experiments in this chapter and subsequent chapters

were implemented using MATLAB on an Intel CPU @ 3.4 GHz (32 GB RAM) desktop computer.

2.5 Proofs

This section presents the main ideas behind the proof of Thm. 2, and establishes a few necessary

lemmas. Technical details are deferred to the Appendix. Relative to WF and TWF, our objective

function involves non-smoothness and non-convexity, rendering the proof of exact recovery of

TAF nontrivial. In addition, our initialization method starts from a rather different perspective

than spectral alternatives, so that the tools involved in proving performance of our initialization

deviate from those of spectral methods [91, 22, 32].

The proof of Thm. 2 consists of two parts: Sec. 2.5.1 justifies the performance of the

proposed orthogonality-promoting initialization, which essentially achieves any given constant

relative error as soon as the number of equations is on the order of the number of unknowns,

namely, m � n. Section 2.5.2 demonstrates theoretical convergence of TAF to the solution of the

quadratic system in (2.1) at a geometric rate, provided that the initial estimate has a sufficiently

small constant relative error.

2.5.1 Constant relative error by initialization

This section concentrates on proving guaranteed performance of the proposed orthogonality-

promoting initialization method, as asserted in the following proposition. An alternative approach

may be found in [43].

Proposition 1. Fix x ∈ Rn arbitrarily, and consider the noiseless case ψi = |aTi x|, where

ai
i.i.d.∼ N (0, In) for i = 1, 2, . . . , m. With probability at least 1−(m+5)e−n/2−e−c0m−1/n2

for some universal constant c0 > 0, the initialization z0 returned by the orthogonality-promoting

method satisfies

dist(z0, x) ≤ ρ ‖x‖ (2.27)
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for ρ = 1/10 or any positive constant, with the proviso that m ≥ c1|I0| ≥ c2n for some

numerical constants c1, c2 > 0 and sufficiently large n.

Due to homogeneity in (2.27), it suffices to consider the case ‖x‖ = 1. Assume for the

moment that ‖x‖ = 1 is known and z0 has been scaled such that ‖z0‖ = 1 in (2.22). The error

between the employed x’s norm estimate
√

1
m

∑m
i=1 yi and the unknown norm ‖x‖ = 1 will be

accounted for at the end of this section. Instrumental in proving Prop. 1 is the following result,

whose proof is provided in Appendix A.1.

Lemma 1. Consider the noiseless data ψi = |aTi x|, where ai
i.i.d.∼ N (0, In) for i =

1, 2, . . . , m. For any unit vector x ∈ Rn, there exists a vector u ∈ Rn with uT x = 0

and ‖u‖ = 1 such that
1

2

∥∥xxT − z0(z0)T
∥∥2

F
≤ ‖S0u‖2

‖S0x‖2
(2.28)

for z0 = z̃0, where the unit vector z̃0 is given in (2.18), and S0 is formed by removing the

rows of S := [a1/‖a1‖ · · · am/‖am‖]T ∈ Rm×n if their indices do not belong to the set I0

specified in Alg. 1.

We now turn to prove Prop. 1. The first step consists in upper-bounding the term on the right-

hand-side of (2.28). Specifically, its numerator is upper bounded, and the denominator lower

bounded, as summarized in Lemmas 2 and 3 next; their proofs are provided in Appendix A.2

and Appendix A.3, respectively.

Lemma 2. In the setup of Lemma 1, if |I0| ≥ c′1n, then

∥∥S0u
∥∥2 ≤ 1.01|I0|/n (2.29)

holds with probability at least 1− 2e−cKn, where c′2 and cK are some universal constants.

Lemma 3. In the setup of Lemma 1, the following holds with probability at least 1 − (m +

1)e−n/2 − e−c0m − 1/n2:

∥∥S0x
∥∥2 ≥ 0.99|I0|

2.3n

[
1 + log(m

/
|I0|)

]
(2.30)

provided that |I0| ≥ c′1n, m ≥ c′2|I0|, and m ≥ c′3n for some absolute constants c′1, c
′
2, c
′
3 > 0,

and sufficiently large n.
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Leveraging the upper and lower bounds in (2.29) and (2.30), one arrives at∥∥S0u
∥∥2∥∥S0x
∥∥2 ≤

2.4

1 + log(m/|I0|)
4
= κ (2.31)

which holds with probability at least 1−(m+3)e−n/2−e−c0m−1/n2, assuming thatm ≥ c′1|I0|,
and m ≥ c′2n, |I0| ≥ c′3n for some absolute constants c′1, c

′
2, c
′
3 > 0, and sufficiently large n.

The bound κ in (2.31) is meaningful only when the ratio log(m/|I0|) > 1.4, i.e., m/|I0| >
4, because the left hand side is expressible in terms of sin2 θ, and therefore, enjoys a trivial

upper bound of 1. Henceforth, we will assume m/|I0| > 4. Empirically, bm/|I0|c = 6 or

equivalently |I0| = d1
6me in Alg. 1 works well when m/n is relatively small. Note further

that the bound κ can be made arbitrarily small by letting m/|I0| be large enough. Without any

loss of generality, let us take κ := 0.001. An additional step leads to the wanted bound on the

distance between z̃0 and x; similar arguments are found in [22, Sec. 7.8]. Recall that

|xT z̃0|2 = cos2 θ = 1− sin2 θ ≥ 1− κ. (2.32)

Therefore,

dist2(z̃0, x) ≤ ‖z̃0‖2 + ‖x‖2 − 2|xT z̃0|

≤
(
2− 2

√
1− κ

)
‖x‖2

≈ κ‖x‖2. (2.33)

Coming back to the case in which ‖x‖ is unknown stated prior to Lemma 1, the unit

eigenvector z̃0 is scaled by an estimate of ‖x‖ to yield the initial guess z0 =
√

1
m

∑m
i=1 yiz̃

0.

Using the results in Lemma 7.8 in [22], the following holds with high probability

‖z0 − z̃0‖ = |‖z0‖ − 1| ≤ (1/20)‖x‖. (2.34)

Summarizing the two inequalities, we conclude that

dist(z0, x) ≤ ‖z0 − z̃0‖+ dist(z̃0, x) ≤ (1/10)‖x‖. (2.35)

The initialization thus obeys dist(z0, x)/‖x‖ ≤ 1/10 for any x ∈ Rn with high probability
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provided that m ≥ c1|I0| ≥ c2n holds for some universal constants c1, c2 > 0 and sufficiently

large n.

2.5.2 Exact recovery from noiseless data

We now prove that with accurate enough initial estimates, TAF converges at a geometric rate

to x with high probability (i.e., the second part of Thm. 2). To be specific, with initialization

obeying (2.27) in Prop. 1, TAF reconstructs the solution x exactly in linear time. To start, it

suffices to demonstrate that the TAF’s update rule (i.e., Step 4 in Alg. 1) is locally contractive

within a sufficiently small neighborhood of x, as asserted in the following proposition.

Proposition 2 (Local error contraction). Consider the noise-free measurements ψi =
∣∣aTi x∣∣

with i.i.d. Gaussian design vectors ai ∼ N (0, In), 1 ≤ i ≤ m, and fix any γ ≥ 1/2. There exist

universal constants c0, c1 > 0 and 0 < ν < 1 such that with probability at least 1 − 7e−c0m,

the following holds

dist2
(
z − µ

m
∇`tr(z), x

)
≤ (1− ν)dist2 (z, x) (2.36)

for all x, z ∈ Rn obeying (2.27) with the proviso that m ≥ c1n and that the constant step size µ

satisfies 0 < µ ≤ µ0 for some µ0 > 0.

Proposition 8 asserts that the distance of TAF’s successive iterates to x is monotonically

decreasing once the algorithm enters a small-size neighborhood around x. This neighborhood is

commonly referred to as the basin of attraction; see related discussions in [22, 111, 32]. In other

words, as soon as one lands within the basin of attraction, TAF’s iterates remain in this region

and will be attracted to x exponentially fast. To substantiate Prop. 8, recall the local regularity

condition, which plays a fundamental role in establishing linear convergence to global optimum

of non-convex optimization approaches such as WF/TWF [22, 111, 32].

Consider the update rule of TAF

zt+1 = zt − µ

m
∇`tr(zt), t = 0, 1, 2, . . . (2.37)

where the truncated gradient∇`tr(zt) (as elaborated in Rmk. 1) evaluated at some point zt ∈ Rn
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is given by
1

m
∇`tr(zt)

4
=

1

m

∑
i∈It+1

(
aTi z

t − ψi
aTi z

t

|aTi zt|

)
ai.

The truncated gradient ∇`tr(z) is said to satisfy the local regularity condition, or LRC(µ, λ, ε)

for some constant λ > 0, provided that〈
1

m
∇`tr(z), h

〉
≥ µ

2

∥∥∥∥ 1

m
∇`tr(z)

∥∥∥∥2

+
λ

2
‖h‖2 (2.38)

holds for all z ∈ Rn such that ‖h‖ = ‖z − x‖ ≤ ε ‖x‖ for some constant 0 < ε < 1, where the

ball ‖z − x‖ ≤ ε ‖x‖ is the basin of attraction. Simple linear algebra along with the regularity

condition in (2.38) leads to

dist2
(
z − µ

m
∇`tr(z),x

)
=
∥∥∥z − µ

m
∇`tr(z)− x

∥∥∥2

= ‖h‖2 − 2µ

〈
h,

1

m
∇`tr(z)

〉
+
∥∥∥ µ
m
∇`tr(z)

∥∥∥2
(2.39)

≤ ‖h‖2 − 2µ

(
µ

2

∥∥∥∥ 1

m
∇`tr(z)

∥∥∥∥2

+
λ

2
‖h‖2

)
+
∥∥∥ µ
m
∇`tr(z)

∥∥∥2

= (1− λµ) ‖h‖2

= (1− λµ) dist2(z, x) (2.40)

for all z obeying ‖h‖ ≤ ε ‖x‖. Evidently, if the LRC(µ, λ, ε) is proved for TAF, then (2.36)

follows upon letting ν := λµ.

Proof of the local regularity condition in (2.38)

By definition, justifying the local regularity condition in (2.38) entails controlling the norm of

the truncated gradient 1
m∇`tr(z), i.e., bounding the last term in (2.39). Recall that

1

m
∇`tr(z) =

1

m

∑
i∈I

(
aTi z − ψi

aTi z∣∣aTi z∣∣
)
ai
4
=

1

m
Av (2.41)
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where I := {1 ≤ i ≤ m||aTi z| ≥ |aTi x|/(1 + γ)}, and v := [v1 · · · vm]T ∈ Rm with

vi :=
aTi z

|aTi z|
(
|aTi z| − ψi

)
1{|aTi z|≥|aTi x|/(1+γ)}. Now, consider

|vi|2 =
∣∣∣(|aTi z| − |aTi x|)1{|aTi z|≥|aTi x|/(1+γ)}

∣∣∣2
≤
∣∣|aTi z| − |aTi x|∣∣2

≤ |aTi h|2 (2.42)

where h = z − x. Appealing to [23, Lemma 3.1], fixing any δ′ > 0, the following holds for any

h ∈ Rn with probability at least 1− e−mδ
′2/2:

‖v‖2 =
m∑
i=1

v2
i ≤

m∑
i=1

|aTi h|2 ≤ (1 + δ′)m‖h‖2. (2.43)

On the other hand, standard matrix concentration results confirm that the largest singular

value ofA = [a1 · · · am]T with i.i.d. Gaussian {ai} satisfies σ1 := ‖A‖ ≤ (1 + δ′′)
√
m for

some δ′′ > 0 with probability exceeding 1− 2e−c0m as soon as m ≥ c1n for sufficiently large

c1 > 0, where c1 > 0 is a universal constant depending on δ′′ [119, Rmk. 5.25]. Combining

(2.41), (2.42), and (2.43) yields∥∥∥∥ 1

m
∇`tr(z)

∥∥∥∥ ≤ 1

m
‖A‖ ‖v‖

≤ (1 + δ′)(1 + δ′′)‖h‖

≤ (1 + δ)2 ‖h‖ , δ := max{δ′, δ′′} (2.44)

which holds with high probability. This condition essentially asserts that the truncated gradient

of the objective function `(z) or the search direction is well behaved (the function value does

not vary too much).

We have related ‖∇`tr(z)‖2 to ‖h‖2 through (2.44). Therefore, a more conservative lower

bound for 〈 1
m∇`tr(z), h〉 in LRC can be given in terms of ‖h‖2. It is equivalent to show that

the truncated gradient 1
m∇`tr(z) ensures sufficient descent, i.e., it obeys a uniform lower bound

along the search direction h taking the form〈
1

m
∇`tr(z), h

〉
& ‖h‖2 (2.45)
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which occupies the remaining of this section. Formally, this can be stated as follows.

Proposition 3. Consider the noiseless measurements ψi = |aTi x|, and fix any sufficiently small

constant ε > 0. There exist universal constants c0, c1 > 0 such that if m > c1n, then the

following holds with probability exceeding 1− 4e−c0m:〈
1

m
∇`tr(z),h

〉
≥ 2 (1− ζ1 − ζ2 − 2ε) ‖h‖2 (2.46)

for all x, z ∈ Rn such that ‖h‖ / ‖x‖ ≤ ρ for 0 < ρ ≤ 1/10 and any fixed γ ≥ 1/2, where the

estimates ζ1 ≈ 0.0782, and ζ2 ≈ 0.3894.

Before justifying Prop. 3, we introduce the following events.

Lemma 4. Fix any γ > 0. For each i ∈ [m], define

Ei :=

{
|aTi z|
|aTi x|

≥ 1

1 + γ

}
, (2.47)

Di :=

{∣∣aTi h∣∣∣∣aTi x∣∣ ≥ 2 + γ

1 + γ

}
, (2.48)

and Ki :=

{
aTi z

|aTi z|
6= aTi x

|aTi x|

}
(2.49)

where h = z − x. Under the condition ‖h‖ / ‖x‖ ≤ ρ, the following inclusion holds for all

nonzero z, h ∈ Rn

Ei ∩ Ki ⊆ Di ∩ Ki. (2.50)

Proof. From Fig. 2.1, it is clear that if z ∈ ξ2
i , then the sign of aTi z will be different than that of

aTi x. The region ξ2
i can be readily specified by the conditions that

aTi z

|aTi z|
6= aTi x

|aTi x|

and
|aTi h|
|aTi x|

≥ 1 +
1

1 + γ
=

2 + γ

1 + γ
.

Under our initialization condition ‖h‖/‖x‖ ≤ ρ, it is self-evident that Di describes two sym-

metric spherical caps over aTi x = ψi with one being ξ2
i . Hence, it holds that Ei ∩ Ki = ξ2

i ⊆
Di ∩ Ki.
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To prove (2.46), consider rewriting the truncated gradient in terms of the events defined in

Lemma 4:

1

m
∇`tr(z) =

1

m

m∑
i=1

(
aTi z − |aTi x|

aTi z

|aTi z|

)
ai1Ei

=
1

m

m∑
i=1

aia
T
i h1Ei −

1

m

m∑
i=1

(
aTi z

|aTi z|
− aTi x

|aTi x|

)
|aTi x|ai1Ei . (2.51)

Using the definitions and properties in Lemma 4, one further arrives at

〈
1

m
∇`tr(z), h

〉
≥ 1

m

m∑
i=1

(aTi h)21Ei −
1

m

m∑
i=1

|aTi x||aTi h|1Ei∩Ki

≥ 1

m

m∑
i=1

(aTi h)21Ei −
2

m

m∑
i=1

|aTi x||aTi h|1Di∩Ki

≥ 1

m

m∑
i=1

(aTi h)21Ei −
1 + γ

2 + γ
· 2

m

m∑
i=1

(aTi h)21Di∩Ki (2.52)

where the last inequality arises from the property |aTi x| ≤
1+γ
2+γ |a

T
i h| by the definition of Di.

Establishing the regularity condition or Prop. 3, boils down to lower bounding the right-hand

side of (2.52), namely, to lower bounding the first term and to upper bounding the second

one. By the SLLN, the first term in (2.52) approximately gives ‖h‖2 as long as our truncation

procedure does not eliminate too many generalized gradient components (i.e., summands in

the first term). Regarding the second, one would expect its contribution to be small under our

initialization condition in (2.27) and as the relative error ‖h‖/‖x‖ decreases. Specifically, under

our initialization, Di is provably a rare event, thus eliminating the possibility of the second term

exerting a noticeable influence on the first term. Rigorous analyses concerning the two terms

are elaborated in Lemma 5 and Lemma 6, whose proofs are provided in Appendix A.4 and

Appendix A.5, respectively.

Lemma 5. Fix γ ≥ 1/2 and ρ ≤ 1/10, and let Ei be defined in (2.47). For independent random

variables W ∼ N (0, 1) and Z ∼ N (0, 1), set

ζ1 := 1−min

{
E

[
1{∣∣∣ 1−ρρ +W

Z

∣∣∣≥ √1.01
ρ(1+γ)

}] , E

[
Z21{∣∣∣ 1−ρρ +W

Z

∣∣∣≥ √1.01
ρ(1+γ)

}]}. (2.53)
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Then for any ε > 0 and any vector h obeying ‖h‖/‖x‖ ≤ ρ, the following holds with probability

exceeding 1− 2e−c5ε
2m:

1

m

m∑
i=1

(aTi h)21Ei ≥ (1− ζ1 − ε) ‖h‖2 (2.54)

provided that m > (c6 · ε−2 log ε−1)n for some universal constants c5, c6 > 0.

To have a sense of how large the quantities involved in Lemma 5 are, when γ = 0.7 and

ρ = 1/10, it holds that

E
[
1{∣∣∣ 1−ρρ +W

Z

∣∣∣≥ √1.01
ρ(1+γ)

}] ≈ 0.92

and

E
[
Z21{∣∣∣ 1−ρρ +W

Z

∣∣∣≥ √1.01
ρ(1+γ)

}] ≈ 0.99

hence leading to ζ1 ≈ 0.08.

Having derived a lower bound for the first term in the right-hand side of (2.52), it remains to

deal with the second one.

Lemma 6. Fix γ > 0 and ρ ≤ 1/10, and let Di, Ki be defined in (2.48), (2.49), respectively.

For any constant ε > 0, there exists some universal constants c5, c6 > 0 such that

1

m

m∑
i=1

(aTi h)21Di∩Ki ≤ (ζ ′2 + ε)‖h‖2 (2.55)

holds with probability at least 1− 2e−c5ε
2m provided that m/n > c6 · ε−2 log ε−1 for universal

constants c5, c6 > 0, where ζ ′2 = 0.9748
√
ρτ/(0.99τ2 − ρ2) with τ = (2 + γ)/(1 + γ).

With our TAF default parameters ρ = 1/10 and γ = 0.7, we have ζ ′2 ≈ 0.2463. Using

(2.52), (2.54), and (2.55), choosing m/n exceeding some sufficiently large constant such that

c0 ≤ c5ε
2, and denoting ζ2 := 2ζ ′2(1+γ)/(2+γ), the following holds with probability exceeding

1− 4e−c0m 〈
h,

1

m
∇`tr(z)

〉
≥ (1− ζ1 − ζ2 − 2ε)‖h‖2 (2.56)

for all x and z such that ‖h‖/‖x‖ ≤ ρ for 0 < ρ ≤ 1/10 and any fixed γ ≥ 1/2. This combined

with (2.38) and (2.40) proves Prop. 8 for appropriately chosen µ > 0 and λ > 0.



41

To conclude this section, an estimate for the working step size is provided next. Plugging the

results of (2.44) and (2.46) into (2.39) suggests that

dist2
(
z − µ

m
∇`tr(z),x

)
= ‖h‖2 − 2µ

〈
h,

1

m
∇`tr(z)

〉
+
∥∥∥ µ
m
∇`tr(z)

∥∥∥2
(2.57)

≤
{

1− µ
[
2 (1− ζ1 − ζ2 − 2ε)− µ(1 + δ)4

]}
‖h‖2

4
= (1− ν)‖h‖2, (2.58)

and also that

λ = 2 (1− ζ1 − ζ2 − 2ε)− µ(1 + δ)4 4= λ0

in the local regularity condition in (2.38). Clearly, it holds that 0 < λ < 2(1− ζ1 − ζ2). Taking

ε and δ to be sufficiently small, one obtains the feasible range of the step size for TAF

µ ≤ 2 (0.99− ζ1 − ζ2)

1.054

4
= µ0. (2.59)

In particular, under default parameters in Alg. 1, µ0 = 0.8388 and λ0 = 1.22, thus concluding

the proof of Thm. 2.
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Figure 2.11: The recovered Milky Way Galaxy images after i) truncated spectral initialization
(top); ii) orthogonality-promoting initialization (middle); and iii) 100 TAF gradient iterations
refining the orthogonality-promoting initialization (bottom).



Chapter 3

Phase Retrieval via Iteratively
Reweighted Algorithms

Building upon but going well beyond the scope of previous non-convex paradigms, the present

chapter puts forth a novel iterative linear-time procedure, that we term (iteratively) reweighted

amplitude flow (RAF) here. Our methodology is capable of solving noiseless random quadratic

equations exactly, and constructing an estimate of (near)-optimal statistical accuracy from

noisy modulus observations. Exactness and accuracy hold with high probability and without

any extra assumption on the signal x to be recovered, provided that the ratio m/n of the

number of measurements to that of the unknowns exceeds some large constant. The new

twist here is to leverage judiciously designed yet conceptually simple (iterative) (re)weighting

regularization techniques to enhance existing initializations and also gradient refinements. An

informal depiction of our RAF methodology is given in two stages below, with rigorous details

deferred to Sec. 3.2.

S1) Weighted maximal correlation initialization: Obtain an initialization z0 maximally

correlated with a carefully selected subset S $M := {1, 2, . . . ,m} of feature vectors

ai, whose contributions toward constructing z0 are judiciously weighted by suitable

parameters {w0
i > 0}i∈S ; and

43
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S2) Iteratively reweighted “gradient-like” iterations: Loop over 0 ≤ t ≤ T :

zt+1 = zt − µt

m

m∑
i=1

wti ∇`(zt;ψi) (3.1)

for some time-varying weights wti ≥ 0 that are adapted in time, each depending on the

current iterate zt and the datum (ai;ψi).

Two attributes of our novel methodology are worth highlighting. First, albeit being a variant

of the orthogonality-promoting initialization [129], the initialization here [cf. S1)] is distinct in

the sense that different importance is attached to each selected datum (ai;ψi), or more precisely,

to each selected directional vector ai. Likewise, the gradient flow [cf. S2)] weighs judiciously

the search direction suggested by each datum (ai;ψi). In this manner, more accurate and robust

initializations as well as more stable overall search directions in the gradient flow stage can

be obtained even based only on a relatively limited number of data samples. Moreover, with

particular choices of weights wti’s (for example, when they take 0 or 1 values), our methodology

subsumes as special cases TAF [129], and RWF [147].

3.1 Reweighted Amplitude Flow

This section explains the intuition and the basic principles behind each stage of RAF.

3.1.1 Weighted maximal correlation initialization

For general non-convex iterative heuristics to succeed in finding the global optimum is to seed

them with an excellent starting point [69]. In fact, several smart initialization strategies have

been advocated for iterative phase retrieval algorithms; see e.g., the spectral [91], [22], truncated

spectral [32], and orthogonality-promoting [129] initializations. One promising approach among

them is the one proposed in [129], which is robust to outliers [43], and also enjoys better phase

transitions than the spectral procedures [81]. To hopefully achieve perfect signal recovery

at the information-theoretic limit however, its numerical performance may still need further

enhancement. On the other hand, it is intuitive that improving the initialization performance

(over state-of-the-art schemes) becomes increasingly challenging as the number of acquired data

samples approaches the information-theoretic limit of m = 2n− 1.
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In this context, we develop a more flexible initialization scheme based on the correlation

property (as opposed to orthogonality), in which the added benefit relative to the initialization

procedure in [129] is the inclusion of a flexible weighting regularization technique to better

balance the useful information exploited in all selected data. In words, we introduce carefully

designed weights to the initialization procedure developed in [129]. Similar to other approaches,

our strategy entails estimating both the norm ‖x‖ and the direction x/‖x‖. Leveraging the

SLLN and the rotational invariance of Gaussian ai sampling vectors (the latter suffices to assume

x = ‖x‖e1, with e1 being the first canonical vector in Rn), it is clear that

m∑
i=1

ψ2
i =

m∑
i=1

∣∣〈ai, ‖x‖e1〉
∣∣2 =

m∑
i=1

a2
i,1‖x‖2 ≈ m‖x‖2 (3.2)

whereby ‖x‖ can be estimated as
∑m

i=1 ψ
2
i /m. This estimate proves very accurate even with a

very limited number of data samples, because it is unbiased and tightly concentrated.

The challenge thus lies in accurately estimating the direction of x, or seeking a unit vector

maximally aligned with x, which is a bit tricky. To gain intuition for our initialization strategy,

let us first present a variant of the initialization in [129], whose robust counterpart to outlying

measurements has been recently discussed in [43]. Note that the larger the modulus ψi of the

inner-product between ai and x is, the known design vector ai is deemed more correlated to the

unknown solution x, hence bearing useful directional information of x. Inspired by this fact and

based on available data {(ai;ψi)}mi=1, one can sort all (absolute) correlation coefficients {ψi}mi=1

in an ascending order, to yield ordered coefficients denoted by 0 < ψ[m] ≤ · · · ≤ ψ[2] ≤ ψ[1].

Sorting m records takes time proportional to O(m logm). Let S $ M represent the set of

selected feature vectors ai to be used for computing the initialization, which is to be designed

next. Fix a priori the cardinality |S| to some integer on the order of m, say |S| := b3m/13c.
It is then natural to define S to collect the ai vectors that correspond to one of the largest |S|
correlation coefficients {ψ[i]}1≤i≤|S|, each of which can be thought of as pointing to (roughly)

the direction of x. Approximating the direction of x thus boils down to finding a vector to

maximize its correlation with the subset S of selected directional vectors ai. Succinctly, the

wanted approximation vector can be efficiently found as the solution of

maximize
‖z‖=1

1

|S|
∑
i∈S

∣∣〈ai, z〉∣∣2 = zT
( 1

|S|
∑
i∈S

aia
T
i

)
z (3.3)
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Upon scaling the solution of (3.3) by the norm estimate
∑m

i=1 ψ
2
i /m in (3.2) to match the size

of x, we obtain what we will henceforth refer to as maximal correlation initialization.

As long as |S| is chosen on the order of m, the maximal correlation method outperforms the

spectral ones in [22, 91, 32], and has comparable performance to the orthogonality-promoting

method [129]. Its empirical performance around the information-theoretic limit however, is still

not the best that we can hope for. Observe that all directional vectors {ai}i∈S selected for forming

the matrix Y := (1/|S|)
∑

i∈S aia
T
i in (3.3) are treated the same in terms of their contributions

to constructing the (direction of the) initialization. Nevertheless, according to our starting

principle, this ordering information carried by the selected ai vectors has not been exploited by

the initialization scheme in (3.3) (see also [129], [43]). In words, if for selected data i, j ∈ S,

the correlation coefficient of ψi with ai is larger than that of ψj with aj , then ai is deemed more

correlated (with x) than aj is, hence bearing more useful information about the wanted direction

of x. This prompts one to weight more (i.e., attach more importance to) the selected ai vectors

corresponding to larger ψi values. Given the ordering information ψ[|S|] ≤ · · · ≤ ψ[2] ≤ ψ[1]

available from the sorting procedure, a natural way to achieve this goal is by weighting each

ai vector with simple functions of ψi, say e.g., taking the weights w0
i := ψγi , ∀i ∈ S, with the

parameter γ ≥ 0 chosen to maintain the wanted ordering w0
|S| ≤ · · · ≤ w

0
[2] ≤ w

0
[1]. In a nutshell,

a more flexible initialization scheme, that we refer to as weighted maximal correlation, can be

summarized as follows

z̃0 := arg max
‖z‖=1

zT
( 1

|S|
∑
i∈S

ψγi aia
T
i

)
z. (3.4)

The upshot of (3.4) is that the objective can be efficiently minimized in time proportional to

O(n|S|) by means of the power method or the Lanczos algorithm [101]. The new initialization

can be obtained after scaling z̃0 from (3.4) with the estimate of its norm, to obtain z0 :=

(
∑m

i=1 ψ
2
i /m)z̃0. By default, we take γ := 1/2 in all reported numerical implementations,

yielding w0
i :=

√
|〈ai,x〉| for all i ∈ S.

Regarding the initialization procedure in (3.4), we next highlight two features, while details

and theoretical performance guarantees are provided in Sec. 3.2:

F1) The weights {w0
i } in the maximal correlation scheme enable leveraging useful information

that each feature vector ai may bear regarding the direction of x.
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Figure 3.1: Relative initialization error for the real Gaussian model.

F2) Taking w0
i := ψγi for all i ∈ S and 0 otherwise, (3.4) can be equivalently rewritten as

z̃0 := arg max
‖z‖=1

zT
( 1

m

m∑
i=1

w0
i aia

T
i

)
z (3.5)

which subsumes existing initialization schemes with particular weight selections; e.g., the

“plain-vanilla” spectral initialization in [91, 22] is recovered by choosing S :=M, and

w0
i := ψ2

i , for i = 1, . . . , m.

Figure 3.1 depicts the performance of the proposed initialization relative to several state-of-

the-art strategies. It is clear that our initialization is: i) consistently better than the state-of-the-art;

and, ii) stable as the signal dimension n grows, which is in sharp contrast to the instability

encountered by the spectral ones [91, 22, 32]. It is also worth stressing that about 5% empirical

advantage is shown over the best in [129] at the challenging information-theoretic benchmark,

which is nontrivial, and constitutes one of the main advantages of RAF. This numerical advantage

becomes increasingly pronounced as m/n of the number of equations to the unknowns grows.

This suggests that our proposed initialization procedure may be combined with other iterative

phase retrieval approaches to improve their numerical performance.
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3.1.2 Adaptively reweighted gradient flow

For independent data adhering to the real Gaussian model, the direction that TAF moves along in

stage S2) presented earlier is given by the following (generalized) gradient [129], [35]

1

m

∑
i∈T
∇`(z;ψi) =

1

m

∑
i∈T

(
aTi z − ψi

aTi z

|aTi z|

)
ai (3.6)

where the dependence on the iterate count t is neglected for notational brevity.

Unfortunately, the (negative) gradient of the average in (3.6) may not point towards the

true x, unless the current iterate z is already very close to x. As a consequence, moving along

such a descent direction may not drag z closer to x. To see this, consider an initial guess z0

that has already been in a basin of attraction (i.e., a region within which there is only a unique

stationary point) of x. Certainly, there are summands (aTi z − ψiaTi z/|aTi z|)ai in (3.6), that

could give rise to “bad/misleading” search directions due to the erroneously estimated signs

aTi z/|aTi z| 6= aTi x/|aTi x| in (3.6) [129]. Those gradients as a whole may drag z away from

x, and hence out of the basin of attraction. Such an effect becomes increasingly severe as the

number m of acquired examples approaches the information-theoretic limit of 2n − 1, thus

rendering past approaches less effective in this case. Although this issue is somewhat remedied

by TAF with a truncation procedure, its efficacy is limited due to misses of bad gradients and

mis-rejections of meaningful ones at the information-theoretic limit.

To address this challenge, our reweighted gradient flow effecting suitable search directions

from almost all acquired data samples {(ai;ψi)}mi=1 will be adopted in a (timely) adaptive

fashion; that is,

zt+1 = zt − µt∇`rw(zt;ψi), t = 0, 1, . . . (3.7)

The reweighted gradient∇`rw(z) evaluated at the current point zt is given as

∇`rw(z) :=
1

m

m∑
i=1

wi∇`(z;ψi) (3.8)

for suitable weights {wi}mi=1 to be designed shortly.

To that end, we observe that the truncation criterion T :={1 ≤ i ≤ m : |aTi z|/|aTi x| ≥ α}
with some given parameter α > 0 suggests to include only gradients associated with |aTi z|
of relatively large sizes. This is because gradients of sizable |aTi z|/|aTi x| offer reliable and
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meaningful directions pointing to the true x with large probability [129]. As such, the ratio

|aTi z|/|aTi x| can be viewed as a confidence score on the reliability or meaningfulness of

the corresponding gradient ∇`(z;ψi). Recognizing that confidence can vary, it is natural to

distinguish the contributions that different gradients make to the overall search direction. An

easy way is to attach large weights to the reliable gradients, and small weights to the spurious

ones. Assume without loss of generality that 0 ≤ wi ≤ 1 for all 1 ≤ i ≤ m; otherwise, lump

the normalization factor achieving this into the learning rate µt. Building upon this observation

and leveraging the gradient reliability confidence score |aTi z|/|aTi x|, the weight per gradient

∇`(z;ψi) in our proposed RAF algorithm is

wi :=
1

1 + βi/(|aTi z|/|aTi x|)
, i = 1, 2, . . . , m (3.9)

where {βi > 0}mi=1 are some pre-selected parameters.

Regarding the weighting criterion in (3.9), three remarks are in order.

Remark 3. The weights {wti}mi=1 are time adapted to the iterate zt. One can also interpret the

reweighted gradient flow zt+1 in (3.7) as performing a single gradient step to minimize the

smooth reweighted loss (1/m)
∑m

i=1w
t
i`(z;ψi) with starting point zt; see also [29] for related

ideas successfully exploited in the iteratively reweighted least-squares approach to compressive

sampling.

Remark 4. The larger the confidence score |aTi z|/|aTi x| is, the larger the corresponding weight

wi will be. More importance will be then attached to reliable gradients than to spurious ones.

Gradients from almost all data are accounted for, which is in contrast to [129], where withdrawn

gradients do not contribute the information they carry.

Remark 5. At the points {z} where aTi z = 0 for some datum i ∈ M, the i-th weight will be

wi = 0. In other words, the squared losses `(z;ψi) in (2.2) that are non-smooth at points z

will be eliminated, to prevent their contribution to the reweighted gradient update in (3.7). This

simplifies the convergence analysis of RAF considerably because it does not have to cope with

the non-smoothness of the objective function in (2.2).

Having elaborated on the two stages, RAF can be readily summarized in Alg. 2.
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Algorithm 2 Reweighted Amplitude Flow (RAF)

1: Input: Data {(ai;ψi}mi=1; maximum number of iterations T ; step sizes µt = 2/6 and
weighting parameters βi = 10/5 for real/complex Gaussian models; subset cardinality
|S| = b3m/13c, and exponent γ = 0.5.

2: Construct S to include indices associated with the |S| largest entries among {ψi}mi=1.

3: Initialize z0 :=
√∑m

i=1 ψ
2
i /m z̃

0 with z̃0 being the unit-norm principal eigenvector of

1

m

m∑
i=1

w0
i aia

T
i , where w0

i :=

{
ψγi , i ∈ S⊆M
0, otherwise.

4: Loop: for t = 0 to T − 1

zt+1 = zt − µt

m

m∑
i=1

wti

(
aTi z

t − ψi
aTi z

t

|aTi zt|

)
ai (3.10)

where wti :=
|aTi zt|/ψi
|aTi zt|/ψi+βi

for all 1 ≤ i ≤ m.

5: Output: zT .

3.1.3 Parameters of the algorithm

To optimize the empirical performance and facilitate numerical implementations, the choice

of pertinent RAF parameters is outlined here. For the four RAF parameters, our theory and

experiments are based on: i) |S|/m ≤ 0.25; ii) 0 ≤ βi ≤ 10 for all 1 ≤ i ≤ m; and, iii)

0 ≤ γ ≤ 1. For convenience, a constant step size µt ≡ µ > 0 is suggested, but other step size

rules such as backtracking line search with the reweighted objective would work as well. As will

be formalized in Sec. 3.2, RAF converges if the constant µ is not too large, with the upper bound

depending in part on the selection of {βi}mi=1.

In the numerical tests presented in Secs. 3.1 and 3.3, we take |S| := b3m/13c, βi ≡ β := 10,

γ := 0.5, and µ := 2 (larger step sizes can be afforded for larger m/n values).

3.2 Main Results

Our main results stated next establish exact recovery under the real Gaussian model, whose proof

is postponed to Sec. 3.4 for readability. Our RAF methodology however, can be generalized

readily to the complex Gaussian and CDP models.
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Figure 3.2: Relative error versus γ for the proposed initialization and m = 2n− 1 fixed using
the real Gaussian model.

Theorem 2 (Exact recovery). Consider m noiseless measurements ψ = |Ax| for an arbitrary

signal x ∈ Rn. If m ≥ c0|S| ≥ c1n with |S| being the pre-selected subset cardinality in the

initialization step and the learning rate µ ≤ µ0, then with probability at least 1− c3e−c2m, the

RAF estimates zt in Alg. 2 obey

dist(zt, x) ≤ 1

10
(1− ν)t‖x‖, t = 0, 1, . . . (3.11)

where c0, c1, c2, c3 > 0, 0 < ν < 1, and µ0 > 0 are certain numerical constants depending on

the choice of algorithmic parameters |S|, β, γ, and µ.

According to Thm. 2, a few interesting properties of RAF are worth highlighting. To start,

RAF recovers the true solution exactly with high probability whenever the ratio m/n of the

number of equations to the unknowns exceeds some numerical constant. Expressed differently,

RAF achieves the information-theoretic optimal order of sample complexity, which is consistent

with the state-of-the-art including TWF [32], TAF [129], and RWF [147]. Notice that the error

contraction in (3.11) also holds at t = 0, namely dist(z0, x) ≤ ‖x‖/10, therefore providing

theoretical performance guarantees for the proposed initialization strategy (cf. Step 3 of Alg.

2). Moreover, starting from this initial estimate, RAF converges exponentially fast to the true

solution x. In other words, to reach any ε-relative solution accuracy (i.e., dist(zT , x) ≤ ε‖x‖),
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Figure 3.3: Function value L(zT ) evaluated at the returned RAF estimate zT for 200 trials with
n = 2, 000 and m = 2n− 1 = 3, 999.

it suffices to run at most T = O(log 1/ε) RAF iterations in Step 4 of Alg. 2. This in conjunction

with the per-iteration complexity O(mn) (namely, the complexity of one reweighted gradient

update in (B.26)) confirms that RAF solves exactly a quadratic system in time O(mn log 1/ε),

which is linear inO(mn), the time required by the processor to read the entire data {(ai;ψi)}mi=1.

Given the fact that the initialization stage can be performed in time O(n|S|) and |S| < m, the

overall linear-time complexity of RAF is order-optimal.

3.3 Numerical Experiments

Our theoretical findings about RAF have been corroborated with comprehensive numerical

experiments, a sample of which are presented next. Performance of RAF is evaluated relative

to (T)WF [22, 32], RWF [147], and TAF [129]. Each scheme obtained its initial guess based

on 200 power or Lanczos iterations, followed by a sequence of T = 2, 000 (which can be set

smaller as m/n grows away from the limit of 2) gradient-type iterations. For reproducibility, the

Matlab code of RAF is publicly available at https://gangwg.github.io/RAF/.

To show the power of RAF in the high-dimensional regime, the function value L(z) in

(2.2) evaluated at the returned estimate zT (cf. Step 5 of Alg. 2) after 200 MC realizations is

plotted (in negative logarithmic scale) in Fig. 3.3, where the number of simulated noiseless

https://gangwg.github.io/RAF/
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Figure 3.4: Real Gaussian model. Left: Empirical success rate; Right: NMSE vs. SNR.

measurements was set to be the information-theoretic limit, namely m = 2n − 1 = 3, 999

for n = 2, 000. It is evident that our proposed RAF approach returns a solution of function

value L(zT ) smaller than 10−25 in all 200 independent realizations even at this challenging

information-theoretic limit condition. To the best of our knowledge, RAF is the first algorithm

that empirically reconstructs any high-dimensional (say e.g., n ≥ 1, 500) signals exactly from an

optimal number of random quadratic equations.

The left panel in Fig. 3.4 further compares the empirical success rate of five schemes with the

signal dimension being fixed at n = 1, 000 while m/n increasing by 0.1 from 1 to 5. As clearly

depicted by the plots, our RAF (color coded red) enjoys markedly improved performance over its

competing alternatives. Moreover, it also achieves 100% signal recovery as soon as m is about

2n, where the others do not show perfect recovery. To numerically demonstrate the stability

and robustness of RAF in the presence of additive noise, the right panel in Fig. 3.4 examines

NMSE := dist2(zT , x)/‖x‖2 as a function of the SNR for m/n taking values {3, 4, 5}. The

noise model ψi = |〈ai,x〉|+ ηi with η := [ηi]
m
i=1 ∼ N (0, σ2Im) was simulated, where σ2 was

set such that certain SNR := 10 log10(‖Ax‖2/mσ2) values were achieved. For all choices of

m (as small as 3n which is nearly minimal), the numerical experiments illustrate that the NMSE

scales inversely proportional to the SNR, which corroborates the stability of our RAF approach.
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3.4 Proofs

To prove Thm. 2, this section establishes a few lemmas and the main ideas, whereas technical

details are postponed to the Appendix to facilitate readability. It is clear from Alg. 2 that the

weighted maximal correlation initialization (cf. Step 3) and the reweighted gradient flow (cf.

Step 4) distinguish themselves from those procedures in (T)WF [22, 32], TAF [129], and RWF

[147]. Hence, new proof techniques to cope with the weighting in both the initialization and

the gradient flow, as well as the non-smoothness and non-convexity of the amplitude-based

least-squares functional are required.

The proof of Thm. 2 consists of two parts: Sec. 3.4.1 below asserts guaranteed theoretical

performance of the proposed initialization, which essentially achieves any given constant relative

error as soon as m ≥ c1n for some constant c1 > 0. It is worth mentioning that we reserve

c and its subscripted versions for absolute constants, even though their values may vary with

the context. Under the sample complexity of order O(n), Sec. 3.4.2 further shows that RAF

converges to the true signal x exponentially fast whenever the initial estimate lands within a

relatively small-size neighborhood of x defined by dist(z0, x) ≤ (1/10)‖x‖.

3.4.1 Initialization performance

This section is devoted to establishing analytical guarantees for the novel initialization procedure,

which is summarized in the following proposition.

Proposition 4. For an arbitrary x ∈ Rn, consider the noiseless measurements ψi = |aTi x|,
1 ≤ i ≤ m. If m ≥ c0|S| ≥ c1n, then with probability exceeding 1− c3e−c2m, the initial guess

z0 obtained by the weighted maximal correlation method in Step 3 of Alg. 2 satisfies

dist(z0, x) ≤ ρ‖x‖ (3.12)

for ρ = 1/10 (or any sufficiently small positive number). Here, c0, c1, c2, c3 > 0 are some

absolute constants.

Since the norm ‖x‖ = 1 is assumed known, the weighted maximal correlation initialization

in Step 3 finds the initial estimate z0 = z̃0 (the scaling factor is the exactly known norm 1 in
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this case) as the principal eigenvector of

Y :=
1

|S|
BTB =

1

|S|
∑
i∈S

ψγi aia
T
i (3.13)

where B :=
[
ψ
γ/2
i ai

]
i∈S is an |S| × n matrix, and S $ {1, 2, . . . ,m} includes the indices of

the |S| largest entities among all modulus data {ψi}mi=1. The following result is a modification

of [129, Lemma 1], which is key to proving Prop. 4.

Lemma 7. Consider m noiseless measurements ψi = |aTi x|, 1 ≤ i ≤ m. For an arbitrary

x ∈ Rn of unit norm, the next result holds for all unit-norm vectors u ∈ Rn perpendicular to x;

that is, for all u ∈ Rn satisfying uT x = 0 and ‖u‖ = 1, we have

1

2
‖xxT − z0(z0)T ‖2F ≤

‖Bu‖2

‖Bx‖2
(3.14)

where z0 = z̃0 is given by

z̃0 := arg max
‖z‖=1

1

|S|
zTBTBz. (3.15)

Let us start with the proof of Prop. 4. The first step consists in upper-bounding the quantity on

the right-hand-side of (3.14). This involves upper bounding its numerator, and lower bounding its

denominator, tasks summarized in Lemmas 8 and 9, whose proofs are deferred to Appendices B.1

and B.2, accordingly.

Lemma 8. In the setting of Lemma 7, if |S|/n ≥ c4, then the inequality

‖Bu‖2 ≤ 1.01
√

2γ/πΓ(γ+1/2)|S| (3.16)

holds with probability at least 1 − 2e−c5n, where Γ(·) is the Gamma function, and c4, c5 are

certain universal constants.

Lemma 9. In the setting of Lemma 7, the following holds with probability exceeding 1− e−c6m

‖Bx‖2 ≥ 0.99|S|
[
1 + log(m/|S|)

]
≥ 0.99× 1.14γ |S|

[
1 + log(m/|S|)

]
(3.17)

provided that m ≥ c0|S| ≥ c1n for some absolute constants c0, c1, c6 > 0.



56

Taking together, the upper bound in (3.16) and the lower bound in (3.17), one arrives at

‖Bu‖2

‖Bx‖2
≤ C

1 + log(m/|S|)
4
= κ (3.18)

where C := 1.02 × 1.14−γ
√

2γ/πΓ(γ+1/2), and (3.18) holds with probability at least 1 −
2e−c5n − e−c6m, with the proviso that m ≥ c0|S| ≥ c1n. Since m = O(n), one can rewrite the

probability as 1 − c3e−c2m for certain constants c2, c3 > 0. To have a sense of the size of C,

taking our default value γ = 0.5 for instance gives rise to C = 0.7854.

3.4.2 Exact Phase Retrieval from Noiseless Data

It has been demonstrated that the initial estimate z0 obtained by means of the weighted maximal

correlation initialization strategy has at most a constant relative error to x, i.e., dist(z0, x) ≤
(1/10)‖x‖. We demonstrate in the following that starting from such an initial estimate, the RAF

iterates (in Step 4 of Alg. 2) converge at a linear rate to x; that is, dist(zt, x) ≤ (1/10)ct‖x‖
for some constant 0 < c < 1 depending on the step size µ > 0, the weighting parameter β, and

the data {(ai;ψi)}mi=1. This constitutes the second part of the proof of Thm. 2. Toward this end,

it suffices to show that the iterative update of RAF is locally contractive within a relatively small

neighboring region of the true x. Instead of directly coping with the moments in the weights, we

establish a conservative result based on [129] and [147]. Recall first that our gradient flow uses

the reweighted gradient

∇`rw(z) :=
1

m

m∑
i=1

wi

(
aTi z − |aTi x|

aTi z

|aTi z|

)
ai (3.19)

with

wi =
1

1 + β/(|aTi z|/|aTi x|)
, 1 ≤ i ≤ m

in which the dependence on the iterate index t is ignored for notational brevity.

Proposition 5 (Local error contraction). For an arbitrary x ∈ Rn, consider m noise-free

measurements ψi = |aTi x|, 1 ≤ i ≤ m. There exist some numerical constants c1, c2, c3 > 0,

and 0 < ν < 1 such that the following holds with probability exceeding 1− c3e−c2m:

dist2(z − µ∇`rw(z), x) ≤ (1− ν)dist2(z, x) (3.20)
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for all x, z ∈ Rn obeying dist(z, x) ≤ (1/10)‖x‖, provided that m ≥ c1n and the constant

step size µ ≤ µ0, where the numerical constant µ0 depends on the parameter β > 0 and data

{(ai;ψi)}mi=1.

Proposition 5 suggests that the distance of RAF’s successive iterates to the global optimum

x decreases monotonically once the algorithm’s iterate zt enters a small neighboring region

around x. Expressed differently, RAF’s iterates will stay within the region and will be attracted

towards x exponentially fast as soon as they land within the basin of attraction. To substantiate

Prop. 5, recall the useful analytical tool of the local regularity condition [22], which plays a key

role in establishing linear convergence of iterative procedures to the global optimum in [22],

[32], [129].

For RAF, the reweighted gradient ∇`rw(z) in (3.19) is said to obey the local regularity

condition (LRC), denoted as LRC(µ, λ, ε) for some constant λ > 0, if the next inequality

〈∇`rw(z), h〉 ≥ µ

2
‖∇`rw(z)‖2 +

λ

2
‖h‖2 (3.21)

holds for all z ∈ Rn such that ‖h‖ = ‖z − x‖ ≤ ε ‖x‖ for some constant 0 < ε < 1.

Letting h := z − x, manipulations in conjunction with (3.21) confirms that

dist2(z − µ∇`rw(z), x) = ‖z − µ∇`rw(z)− x‖2

= ‖h‖2 − 2µ 〈h,∇`rw(z)〉+ ‖µ∇`rw(z)‖2 (3.22)

≤ ‖h‖2 − 2µ

(
µ

2
‖∇`rw(z)‖2 +

λ

2
‖h‖2

)
+ ‖µ∇`rw(z)‖2

= (1− λµ) ‖h‖2

= (1− λµ) dist2(z, x) (3.23)

for all points z adhering to ‖h‖ ≤ ε ‖x‖. It is evident that if LRC(µ, λ, ε) can be established for

RAF, our goal of proving the local error contraction in (3.20) follows straightforwardly upon

setting ν := λµ.

Proof of the local regularity condition in (3.21)

The first step to proving the local regularity condition in (3.21) is to control the size of the

reweighted gradient∇`rw(z); that is, to upper bound the last term in (3.22). To start, rewrite the
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reweighted gradient in a compact matrix-vector representation

∇`rw(z) =
1

m

m∑
i=1

wi

(
aTi z − |aTi x|

aTi z

|aTi z|

)
ai
4
=

1

m
dg(w)Av (3.24)

where dg(w) ∈ Rn×n is a diagonal matrix holding entries of w := [w1 · · · wm]T ∈ Rm on

its main diagonal, and v := [v1 · · · vm]T ∈ Rm with vi := aTi z − |aTi x|
aTi z

|aTi z|
. Based on the

definition of the induced matrix 2-norm (namely, the spectral norm), it is easy to check that

‖∇`rw(z)‖ =

∥∥∥∥ 1

m
dg(w)Av

∥∥∥∥ ≤ 1

m
‖dg(w)‖ · ‖A‖ · ‖v‖ ≤ 1 + δ′√

m
‖v‖ (3.25)

where we have used the inequalities ‖dg(w)‖ ≤ 1 due to wi ≤ 1 for all 1 ≤ i ≤ m, and

‖A‖ ≤ (1 + δ′)
√
m for some constant δ′ > 0 according to [119, Thm. 5.32], provided that m/n

is sufficiently large.

The task therefore remains to bound ‖v‖ in (3.25), which is addressed next. To this end,

notice that

‖v‖2 ≤
m∑
i=1

(
|aTi z| − |aTi x|

)2 ≤ m∑
i=1

(
aTi z − aTi x

)2 ≤ (1 + δ′′)2m‖h‖2 (3.26)

for some numerical constant δ′′ > 0, where the last can be obtained using [23, Lemma 3.1], and

which holds with probability at least 1− e−c2m as long as m > c1n holds true.

Combing (3.25) with (3.26) and taking δ > 0 larger than the constant (1 + δ′)(1 + δ′′)− 1,

the size of∇`rw(z) can be bounded as

‖∇`rw(z)‖ ≤ (1 + δ)‖h‖ (3.27)

which holds with probability 1 − e−c2m, with a proviso that m/n exceeds some numerical

constant c7 > 0. This result indeed asserts that the reweighted gradient of L(z) or the search

direction employed in our RAF algorithm is well behaved, implying that the function value along

the iterates does not change too much.

In order to prove the LRC, it suffices to show that ∇`rw(z) ensures sufficient descent, that

is, there exists a numerical constant c > 0 such that along the search direction ∇`rw(z) the
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following uniform lower bound holds

〈∇`rw(z), h〉 ≥ c‖h‖2 (3.28)

which will be addressed next. Formally, this can be summarized in the following proposition,

whose proof is deferred to Appendix B.3.

Proposition 6. For the noise-free measurements ψi = |aTi x|, 1 ≤ i ≤ m, and any fixed

sufficiently small constant ε > 0. There exist some numerical constants c1, c2, c3 > 0 such that

the following holds with probability at least 1− c3e−c2m

〈h,∇`rw(z)〉 ≥ ζ3‖h‖2 (3.29)

for all x, z ∈ Rn obeying ‖h‖ ≤ (1/10)‖x‖, provided that m/n > c1, and that β ≥ 0 is small

enough. Here, ζ3 := 1−ζ1−ε
1+β(1+η) − 2(ζ2 + ε)− 2(0.1271−ζ2+ε)

1+β/k .

Taking the results in (3.29) and (3.27) together back to (3.21), we deduce that the LRC holds

for µ and λ obeying the inequality

ζ3 ≥
µ

2
(1 + δ)2 +

λ

2
. (3.30)

For instance, taking β = 2, k = 5, η = 0.5, and ε = 0.001, we have ζ1 = 0.8897 and

ζ2 = 0.0213, which confirms 〈`rw(z),h〉 ≥ 0.1065‖h‖2. Setting further δ = 0.001 leads to

0.1065 ≥ 0.501µ+ 0.5λ (3.31)

which concludes the proof of the LRC in (3.21). The local error contraction in (3.20) follows

directly after substituting the LRC into (3.23), hence validating Prop. 5.



Chapter 4

Phase Retrieval via Stochastic
Optimization

Based on the amplitude-based formulation (2.2) again, this chapter puts forth a lightweight

algorithm, referred to as stochastic truncated amplitude flow (STAF). STAF offers an iterative

algorithm that builds upon but considerably broadens the scope of TAF [129]. Specifically, it

operates in two stages: Stage one employs a stochastic variance reduced gradient algorithm to

obtain an orthogonality-promoting initialization, whereas the second stage applies stochastic

truncated amplitude-based iterations to refine the initial estimate. Our approach is shown

able to recover any n-dimensional signal x from a nearly minimal number of magnitude-only

measurements in linear time. Relative to TAF, STAF is well suited for large-scale applications.

Besides achieving order-optimal sample and computational complexities, STAF enjoysO(n) per-

iteration complexity in both initialization and refinement stages, which not only improves upon

state-of-the-art alternatives that can afford O(n2), but it is also order optimal. This makes STAF

applicable and appealing to common large-scale imaging phase retrieval settings. Comparisons

between convex and non-convex solvers in terms of sample complexity and computational

complexity to acquire an ε-accurate solution are presented in Table 4.1.

4.1 Stochastic Truncated Amplitude Flow

In this section, TAF is first reviewed, and its limitations for large-scale applications are high-

lighted. To cope with these limitations, simple, scalable, and fast stochastic gradient descent

60
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Table 4.1: Computational Complexity of Different Algorithms

Algorithm Sample complexity m Computational complexity
PhaseLift [23] O(n) O

(
n3/ε

)
PhaseCut [121] O(n) O

(
n3/ε

)
AltMinPhase [91] O

(
n log n(log2 n+ log(1/ε)

)
O
(
n2 log n(log2 n+ log2(1/ε)

)
WF [22] O(n log n) O

(
n3 log n log(1/ε)

)
TAF [129], TWF [32] O(n) O

(
n2 log(1/ε)

)
This chapter O(n) O

(
n2 log(1/ε)

)

(SGD)-type algorithms for both the initialization and gradient refinement stages are developed in

this chapter.

The orthogonality-promoting initialization in Chapter 2 amounts to the following principal

component analysis (PCA) problem

z̃0 := arg max
‖z‖=1

zT Y0z (4.1)

where

Y0 :=
1

|I0|
DDT =

1

|I0|

∑
i∈I0

aia
T
i

‖ai‖2

for some index subset I0 ⊂ [m]. When the signal dimension n is modest, problem (4.1) can be

solved exactly by a full singular value decomposition (SVD) ofD [52]. Yet it has running time

of O(min{n2|I0|, n|I0|2}) (or simply O(n3) because |I0| is required to be on the order of n),

which grows prohibitively in large-scale applications. A common alternative is the power method

that is tabulated in Alg. 3, and was also employed by [129, 22, 32] to find an initialization [52].

Power method, on the other hand, involves a matrix-vector multiplication Y0u
t per iteration,

thus incurring per-iteration complexity of O(n|I0|) or O(n2) by passing through the selected

data {ai}i∈I0 . Furthermore, to produce an ε-accurate solution, it incurs runtime of [100]:

O
(

1

δ
n|I0| log(1/ε)

)
(4.2)

depending on the eigengap δ > 0, which is defined as the gap between the largest and the second

largest eigenvalues of Y0 normalized by the largest one [52]. It is clear that when the eigengap δ
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is small, the runtime ofO
(
n|I0| log(1/ε)/δ

)
required by the power method would be equivalent

to many passes over the entire data, and this could be prohibitively for large datasets [106].

Hence, the power method may not be appropriate for computing the initialization in large-scale

applications, particularly those involving small eigengaps.

Algorithm 3 Power method

1: Input: Matrix Y0 = 1

|I0|
DDT .

2: Initialize a unit vector u0 ∈ Rn randomly.
3: For t = 0 to T − 1 do

ut+1 = Y0ut

‖Y0ut‖
.

4: End for
5: Output: z̃0 = uT .
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Figure 4.1: Rigengaps δ of Ȳ0 ∈ Rn×n. Left: Real Gaussian model; Right: Complex Gaussian
model.

4.1.1 Variance-reducing orthogonality-promoting initialization

This section first presents some empirical evidence showing that small eigengaps appear com-

monly in the orthogonality-promoting initialization approach. Figure 4.1 plots empirical eigen-

gaps of Y0 ∈ Rn×n under the real and complex Gaussian models over 100 Monte Carlo

realizations under default parameters of TAF, where n = 10, 000 is fixed, and m/n the number

of equations and unknowns increases by 0.2 from 1 to 6. As shown in Fig. 4.1, the eigengaps

of Y0 resulting from the orthogonality-promoting initialization in [129, Alg. 1] are rather small
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particularly for small m/n close to the information limit 2. Using power iterations in Alg. 3

of runtime O
(
n|I0| log(1/ε)/δ

)
in (4.2) thus entails many passes over the entire data due to a

small eigengap factor of 1/δ, which may not perform well in the presence of large dimensions

that are common to imaging applications [106]. On the other hand, instead of using the deter-

ministic power method, stochastic and incremental algorithms have been advocated in [93, 106].

These algorithms perform a much cheaper update per iteration by choosing some it ∈ I0 either

uniformly at random or in a cyclic manner, and update the current iterate using only ait . They

are shown to have per-iteration complexity of O(n), which is very appealing to large-scale

applications. Building on recent advances in accelerating stochastic optimization schemes [64],

a variance-reducing principal component analysis (VR-PCA) algorithm can be found in [106].

VR-PCA performs cheap stochastic iterations, yet its total runtime isO
(
n(I0 + 1/δ2) log(1/ε)

)
which depends only logarithmically on the solution accuracy ε > 0. This is in sharp contrast to

the standard SGD variant, whose runtime depends on 1/ε due to the large variance of stochastic

gradients [93].

For the considered large-scale phase retrieval in most imaging applications, this chapter

advocates using VR-PCA to solve the orthogonality-promoting initialization problem in (4.1). We

refer to the resulting algorithm as the variance-reducing orthogonality-promoting initialization

(VR-OPI), which is summarized in Alg. 4 next. Specifically, VR-OPI is a double-loop algorithm

with a single execution of the inner loop referred to as an iteration and one execution of the outer

loop referred to as an epoch. In practice, the algorithm consists of S epochs, while each epoch

runs T (typically taken to be the data size |I0|) iterations. Note that the full gradient evaluated

per execution of the outer loop combined with the stochastic gradients inside the inner loop can

be shown capable of reducing the variance of stochastic gradients [64].

The following results adapted from [106, Thm. 1] establish linear convergence rate of

VR-OPI.

Proposition 7 ([106]). Let v1 ∈ Rn be an eigenvector of Y0 associated with the largest eigen-

value λ1. Assume that maxi∈[m] ‖ai‖2 ≤ r := 2.3n (which holds with probability at least

1−me−n/2), the two largest eigenvalues of Y0 are λ1 > λ2 > 0 with eigengap δ = (λ1−λ2)/λ1,

and that 〈ũ0,v1〉 ≥ 1/
√

2. With any 0 < ε, ξ < 1, constant step size η > 0, and epoch length

T chosen such that

η ≤ c0ξ
2

r2
δ, T ≥ c1 log(2/ξ)

ηδ
, Tη2r2 + rη

√
T log(2/ξ) ≤ c2 (4.3)
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Algorithm 4 Variance-reduced orthogonality-promoting initialization (VR-OPI)

1: Input: Data matrix D = {ai}i∈I0 , step size η = 20/m, as well as the number of epochs

S = 100, and the epoch length T = |I0| (by default).
2: Initialize a unit vector ũ0 ∈ Rn randomly.
3: For s = 0 to S − 1 do

w = 1

|I0|

∑
i∈I0 ai(a

T
i ũ

s)

u1 = ũs.
4: For t = 0 to T − 1 do

Pick it ∈ I0 uniformly at random
νt+1 = ut + η

[
ait
(
aTitu

t − aTit ũ
s
)

+w
]

ut+1 = νt+1

‖νt+1‖ .
5: End For

ũs+1 = uT .
6: End For
7: Output: z̃0 = uS .

for certain universal constants c0, c1, c2 > 0, successive estimates of VR-OPI (summarized in

Alg. 4) after S = dlog(1/ε)/log(2/ξ)e epochs satisfy

|〈ũS ,v1〉|2 ≥ 1− ε (4.4)

with probability exceeding 1− dlog εeξ. Typical parameter values are η = 20/m, S = 100, and

T = |I0|.

The proof of Prop. 7 can be found in [106]. Even though PCA in (4.1) is non-convex, the SGD

based VR-OPI algorithm converges to the globally optimal solution under mild conditions [106].

Moreover, fixing any ξ ∈ (0, 1), conditions in (4.3) hold true when T is chosen to be on the

order of 1/(ηδ), and η to be sufficiently smaller than δ/r2. Expressed differently, if VR-OPI

runs T = Θ(r2/δ2) iterations per epoch for a total number S = Θ
(

log(1/ε)
)

of epochs, then

the returned VR-OPI estimate is ε-accurate with probability at least 1 − dlog2(1/ε)eξ. Since

each epoch takes O
(
n(T + |I0|)

)
time to implement, the total runtime is of

O
(
n
(
|I0|+ r2

δ2

)
log(1/ε)

)
(4.5)

which validates the exponential convergence of VR-OPI. Additionally, when δ/r ≥ Ω
(
1
/√
|I0|

)
,
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the total runtime reduces toO
(
n|I0| log(1/ε)

)
up to log-factors. It is worth emphasizing that the

required runtime is proportional to the time required to scan the selected data once, which is in

stark contrast to the runtime of O
(
n|I0| log(1/ε)/δ

)
when using power method [52]. Simulated

tests in Sec. 4.3 corroborate the effectiveness of VR-OPI over the popular power method in

processing data involving large dimensions m and/or n.

4.1.2 Stochastic truncated gradient iterations

Driven by the need of efficiently processing large-scale phaseless data in imaging applications,

a stochastic solution algorithm is put forth for minimizing the amplitude-based cost function

in (2.2). To ensure good performance, the gradient regularization rule in (2.10) is also accounted

for to lead to our truncated stochastic gradient iterations. It is worth mentioning that the

Kaczmarz method [65] was also used for solving a system of phaseless quadratic equations

in [140]. However, Kaczmarz variants of block or randomized updates converge to at most a

neighborhood of the optimal solution x. Distance between the Kaczmarz estimates and x is

bounded in terms of the dimension m and the size of the amplitude data vector ψ measured

by the `1- or `∞-norm. Nevertheless, the obtained bounds of the form m‖ψ‖1 or m‖ψ‖∞ are

rather loose (m typically very large), and less attractive than the geometric convergence to the

global solution x to be established for also stochastic iterations based STAF.

Adopting the intensity-based Poisson likelihood function (1.4), an incremental version of

TWF was developed in [71], which provably converges to x in linear time. Albeit achieving

improved empirical performance and faster convergence over TWF in terms of the number of

passes over the entire data to produce an ε-accurate solution [32], the number of measurements it

requires for exact recovery is still relatively far from the information-theoretic limits. Specifically

for the real Gaussian ai designs, ITWF requires about m ≥ 3.2n noiseless measurements to

guarantee exact recovery relative to 4.5n for TWF [32]. Recall that TAF achieves exact recovery

from about 3n measurements [129]. Furthermore, gradient iterations can be trapped in saddle

points when dealing with non-convex optimization. In contrast, stochastic or perturbed gradient

iterations are able to escape saddle points, and converge globally to at least a local minimum [80,

79]. Hence, besides the appealing computational advantage, stochastic counterparts of TAF may

further improve the performance over TAF, as also asserted by the comparison between ITWF

and TWF. In the following, we present two STAF variants: Starting with an initial estimate z0

found using VR-OPI in Alg. 4, the first variant successively updates z0 through amplitude-based
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stochastic gradient iterations with a constant step size µ > 0 chosen on the order of 1/n, while

the second operates much like the Kaczmarz method, yet both suitably account for the truncation

rule in (2.10).

Recalling the amplitude-based cost function

minimize
z∈Rn

`(z) =
m∑
i=1

`i(z) :=
1

2

m∑
i=1

(
ψi − |aTi z|

)2
(4.6)

our approach to solving (4.6) amounts to iteratively refining the initial estimate z0 by means

of truncated stochastic gradient iterations. This is in contrast to (T)WF and TAF, which rely

on (truncated) gradient-type iterations [22, 32, 129]. STAF processes one datum at a time

and evaluates the generalized gradient of one component function `it(z) for some index it ∈
{1, 2, . . . , m} per iteration t ≥ 0. Specifically, STAF successively updates z0 using the

following truncated stochastic gradient iterations for all t ≥ 0:

zt+1 = zt − µt∇`it(zt)1{|aTitzt|/|aTitx|≥1/(1+γ)} (4.7)

with

∇`it(zt) =
(
aTitz

t − ψit
aTitz

t

|aTitzt|

)
ait (4.8)

where µt is either set to be a constant µ > 0 on the order of 1/n, or taken as the time-varying

one as in Kaczmarz’s iteration, namely, µt = 1/‖ait‖2 [65]. The index it is sampled uniformly

at random or with given probabilities from {1, 2, . . . ,m}, or it simply cycles through the

entire set [m]. In addition, fixing the truncation threshold to γ = 0.7, the indicator function

1{|aTitz
t|/|aTitx|≥1/(1+γ)} in (4.7) takes the value 1, if |aTitz

t|/|aTitx| ≥ 1/(1 + γ) holds true; and

0 otherwise. It is worth stressing that this truncation rule provably rejects ‘bad’ search directions

with high probability. Moreover, this regularization maintains only gradient components of large

enough |aTi zt| values, hence saving the objective function (2.2) from being non-differentiable

at zt and simplifying the theoretical analysis. Numerical tests demonstrating the performance

improvement using the stochastic truncated iterations will be presented in Sec. 4.3.
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Algorithm 5 Stochastic truncated amplitude flow (STAF)

1: Input: Data {(ai, ψi)}mi=1; maximum number of iterations T = 500m; by default, step
sizes µ = 0.8/n or µ = 1.2/n in the real/complex models, truncation thresholds |I0| =
d1

6me, and γ = 0.7.
2: Evaluate I0 to consist of indices associated with the |I0| largest values among {ψi/‖ai‖}.
3: Initialize z0 as

√
1
m

∑m
i=1 ψ

2
i z̃

0, where z̃0 is obtained via Alg. 4 with

Y0 :=
1

|I0|

∑
i∈I0

aia
T
i

‖ai‖2
.

4: For t = 0 to T − 1 do

zt+1 = zt − µait
(
aTitz

t − ψit
aTitz

t

|aTitzt|

)
1{
|aTitz

t|≥
ψit
1+γ

} (4.9)

where it is sampled uniformly at random from {1, 2, . . . ,m}, or,

zt+1 = zt − ait
‖ait‖2

(
aTitz

t − ψit
aTitz

t

|aTitzt|

)
1{
|aTitz

t|≥
ψit
1+γ

} (4.10)

where it is sampled at random from {1, 2, . . . , m} with probability proportional to ‖ait‖2.

5: End for
6: Output: zT .

4.2 Main Results

The proposed STAF scheme is summarized as Alg. 5, with either constant step size µ > 0 in the

truncated stochastic gradient iterations in (4.9), or with time-varying step size µt = 1/‖ait‖2

in the truncated Kaczmarz iterations in (4.10). Equipped with an initialization obtained using

VR-OPI, both STAF variants will be shown to converge at an exponential rate to the globally

optimal solution with high probability, as soon as m/n the number of equations and unknowns

exceeds some numerical constant.

Assuming m independent data samples {(ai;ψi)} drawn from the real Gaussian model, the

following establishes theoretical performance of STAF in the absence of noise.

Theorem 3 (Exact recovery). Consider the noiseless measurements ψi = |aTi x| with an
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arbitrary signal x ∈ Rn, and i.i.d. {ai ∼ N (0, In)}mi=1. If µt is either set to be a constant

µ > 0 as per (4.9), or it is time-varying µt = 1/‖ait‖2 as per (4.10) with the corresponding

index sampling scheme, and also

m ≥ c0n and µ ≤ µ0/n (4.11)

then with probability at least 1−c1m exp(−c2n), the stochastic truncated amplitude flow (STAF)

estimates (tabulated in Alg. 5 with default parameters) satisfy

EPt
[
dist2(zt,x)

]
≤ ρ

(
1− ν

n

)t
‖x‖2, t = 0, 1, . . . (4.12)

for ρ = 1/10 and some numerical constant ν > 0, where the expectation is taken over the path

sequence Pt := {i0, i1, . . . , it−1}, and c0, c1, c2, µ0 > 0 are certain universal constants.

The mean-square distance between the iterate and the global solution is reduced by a factor

of (1−ν/n)m after one pass through the entire data. Heed that the expectation EPt [·] in (4.12) is

taken over the algorithmic randomness Pt rather than the data. This is important since in general

the data may be modeled as deterministic. Although only performing stochastic iterations in

(4.9) and (4.10), STAF still enjoys linear convergence rate. This is in sharp contrast to typical

SGD methods, where variance reduction techniques controlling the variance of the stochastic

gradients are required to achieve linear convergence rate [64, 106], as in Alg. 4. Moreover,

the largest constant step size that STAF can afford is estimated to be µ0 = 0.8469, giving rise

to a convergence factor of ν0 = 0.0696 in (4.12). When truncated Kaczmarz iterations are

implemented, ν is estimated to be 1.0091 much larger than the one in the constant step size

case. Our experience with numerical experiments also confirm that the Kaczmarz-based STAF

in (4.10) converges faster than the constant step-size based one in (4.9), yet it is slightly more

sensitive when additive noise is present in the data.

4.3 Numerical Experiments

This section presents extensive numerical experiments evaluating performance of STAF using

synthetic data and real images. STAF was thoroughly compared with existing alternatives

including TAF [129], (T)WF [22, 32], and ITWF [71]. The initialization in each scheme

was found based on a number of (power/stochastic) iterations equivalent to 100 passes over
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the entire data, which was subsequently refined by a number of iterations corresponding to

1, 000 passes; unless otherwise stated. Two performance evaluation metrics were used: the

relative root MSE and the empirical successful recovery rate among 100 independent runs. The

Matlab implementations of STAF can be downloaded from https://gangwg.github.io/

STAF/.
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Figure 4.2: Error evolution of the iterates for solving problem (4.1) with step size η = 1. Left:
Noiseless real Gaussian model with m = 2n − 1; Right: Noiseless complex Gaussian model
with and m = 4n− 4.
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Figure 4.3: Empirical success rate under the same orthogonality-promoting initialization. Left:
Noiseless real Gaussian model; Right: Noiseless complex Gaussian model.

The first experiment compares VR-OPI in Alg. 4 with the power method in Alg. 3 to solve

https://gangwg.github.io/STAF/
https://gangwg.github.io/STAF/
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Figure 4.5: Empirical success rate. Left: Noiseless real Gaussian model; Right: Noiseless
Gaussian model.

the orthogonality-promoting initialization optimization in (4.1). The comparison is carried out

in terms of the number of data passes to achieve the same solution accuracy, in which one

pass through the selected data amounts to a number |I0| of gradient evaluations of component

functions. First, synthetic data based experiments are conducted using the real/complex Gaussian

models with n = 10, 000 under the known sufficient conditions for uniqueness, i.e., m = 2n− 1

in the real case, and m = 4n− 4 in the complex case. Figure 4.2 plots the error evolution of the

iterates ut for the power method and VR-OPI, where the error in logarithmic scale is defined
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as log10(1− ‖DT ut‖2/‖DT v0‖2) with the exact principal eigenvector v0 computed from the

SVD of Y0 = DDT in (4.1). Apparently, the inexpensive stochastic iterations of VR-OPI

achieve certain solution accuracy with considerably fewer gradient evaluations or data passes in

both real and complex settings. This is important for tasks of large |I0|, or equivalently large

dimension m (since |I0| = 5m/6 by default), because one less data pass implies |I0| fewer

gradient evaluations and thus results in considerable savings in computational resources.

The second experiment evaluates the refinement stage of STAF relative to its competing

alternatives including those of (T)WF, TAF, and ITWF in a variety of settings. For fairness,

all schemes were here initialized using the same orthogonality-promoting initialization found

using 100 power iterations, and subsequently applied a number of iterations corresponding

to T = 1, 000 data passes. Figure 4.3 depicts the empirical success rate of all considered

schemes with m/n varying by 0.1 from 1 to 7. Figure 4.4 compares the convergence speed of

various schemes in terms of the number of data passes to produce solutions of a given accuracy.

Starting with the same initialization, STAF outperforms its competing alternatives under both

real/complex Gaussian models. In particular, SGD-based STAF improves in terms of exact

recovery and convergence speed over the state-of-the-art gradient-type TAF, corroborating the

benefit of using SGD-type solvers to cope with saddle points and local minima of non-convex

optimization [71].

The previous experiment showed improved performance of STAF under the same initial-

ization. Now, we present numerical results comparing different schemes equipped with their

own initialization, namely, WF with spectral initialization [22], (I)TWF with truncated spec-

tral initialization [32], as well as TAF with orthogonality-promoting initialization using power

iterations [129], and STAF with VR-OPI. Figure 4.5 demonstrates merits of STAF over its

competing alternatives in exact recovery performance on the noiseless real (left) and complex

(right) Gaussian model. Specifically in the real case, STAF guarantees exact recovery from

about 2.3n magnitude-only measurements, which is close to the information-theoretic limit of

m = 2n − 1. In comparison, existing alternatives require a few times more measurements to

achieve exact recovery. STAF also performs well in the complex case.

To demonstrate the robustness of STAF against additive noise, we perform stable phase

retrieval under the noisy real/complex Gaussian model ψi = |aHi x|+ ηi, with ηi ∼ N (0, σ2I)

i.i.d., and σ2 = 0.12‖x‖2. The noisy data for magnitude-square based algorithms were generated

as yi = ψ2
i . Curves in Fig. 4.6 clearly show near-perfect statistical performance and fast
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convergence of STAF.
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Figure 4.6: Relative error versus iterations with n = 1, 000 and m/n = 5. Left: Noisy real
Gaussian model; Right: Noisy complex Gaussian model.

Finally, to demonstrate the effectiveness and scalability of STAF on real data, the Milky

Way Galaxy image in Fig. 2.11 is considered again. We collected the physically realizable

measurements called coded diffraction patterns (CDP) using random masks [21]. CDP measure-

ments in this experiment were generated using K = 8 random masks for a total of m = nK

measurements. In this part, since the FFT can be implemented in O(n log n) instead of O(n2)

operations, the advantage of using STAF with optimal per-iteration complexity is less pronounced.

Hence, instead of processing one quadratic measurement per iteration, a block STAF version

processes per iteration n2 measurements associated with one random mask. That is, STAF

samples randomly the index k ∈ {1, 2, . . . , K} of masks in (2.26), and updates the iterate using

all diffraction patterns corresponding to the k-th mask. In this case, STAF is able to leverage the

efficient implementation of FFT, and converges fast. Figure 4.7 displays the recovered images,

where the top is obtained after 100 data passes of VR-OPI iterations, and the bottom is produced

by 100 data passes of STAF iterations refining the initialization. Apparently, the recovered

images corroborate the effectiveness of STAF in real-world conditions.

4.4 Proofs

In this section, we provide the proofs for the main theorem and propositions of this chapter.
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Figure 4.7: Recovered images after: the variance-reducing orthogonality-promoting initialization
stage (top panel), and the STAF refinement stage (bottom panel) on the Milky Way Galaxy image
using K = 8 random masks.

Proof for Theorem 3

Recall from [129, Thm.1] that when m/n exceeds some universal constant c0 > 0, the esti-

mate z0 returned by the orthogonality-promoting initialization obeys the following with high

probability

dist(z0, x) ≤ (1/10)‖x‖. (4.13)

Along the lines of (T)WF and TAF, to prove Thm. 3, it suffices to show that successive STAF

iterates zt are on average locally contractive around the planted solution x, as asserted in the

following proposition. See the Appendix for proof details.
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Proposition 8 (Local error contraction). Consider the noiseless measurements ψi = |aTi x|
with an arbitrary signal x ∈ Rn, and i.i.d. ai ∼ N (0, In) for i = 1, 2, . . . , m. Under the

default algorithmic parameters given in Alg. 5, there exist universal constants c′0, c
′
1, c
′
2 > 0, and

ν > 0, such that with probability at least 1−c′2m exp(−c′1n), the following holds simultaneously

for all zt satisfying (4.13)

Eit
[
dist2(zt+1, x)

]
≤
(

1− ν

n

)
dist2(zt, x) (4.14)

provided that m ≥ c′0n.

Proposition 8 demonstrates monotonic decrease of the MSE: Once entering a reasonably

small-size neighborhood of x, successive iterates of STAF will be dragged toward x at a linear

rate. Upon establishing the local error contraction property in (4.14), taking expectation on both

sides of (4.14) over it−1, and applying Prop. 8 again, yields a similar relation for the previous

iteration. Continuing this process to reach the initialization z0 and appealing to the initialization

result in (4.13) collectively, leads to (4.12), hence completes the proof of Thm. 3.

Proof of Proposition 8

To prove Prop. 8, let us first define the truncated gradient of `(z) as follows

∇`tr(z) =
m∑
i=1

(
aTi z − ψi

aTi z

|aTi z|

)
ai1{|aTi zt|≥ 1

1+γ
ψi

} (4.15)

which corresponds to the truncated gradient employed by TAF [129]. Instrumental in proving the

local error contraction in Prop. 8, the following lemma adopts a sufficient decrease result from 3.

The sufficient decrease is a key step in establishing the local regularity condition [22, 32, 129],

which suffices to prove linear convergence of iterative optimization algorithms.

Now let us turn to the term on the left hand side of (4.14), which after plugging in the update

of zt+1 in (4.9) or (4.10), boils down to

dist2(zt+1, x) =
∥∥∥ht − µt(aTitzt − ψit aTitzt|aTitzt|

)
ait1{|aTitzt|≥ ψit

1+γ

}∥∥∥2

= ‖ht‖2 − 2µt

(
aTitz

t − ψit
aTitz

t

|aTitzt|

)
aTith

t1{
|aTitz

t|≥
ψit
1+γ

}
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+ µ2
t

(
aTitz

t − ψit
aTitz

t

|aTitzt|

)2
‖ait‖21{

|aTitz
t|≥

ψit
1+γ

} (4.16)

where µt = µ > 0 with it ∈ [m] sampled uniformly at random in (4.9), or µt = 1/‖ait‖2 with

it ∈ [m] selected with probability proportional to ‖ait‖2 in (4.10).

Consider first the constant step size case in (4.9). Take the expectation of both sides in (4.16)

with respect to the selection of index it (rather than the data randomness) to obtain

Eit
[
dist2(zt+1, x)

]
= ‖ht‖2 − 2µ

m

m∑
it=1

(
aTitz

t − ψit
aTitz

t

|aTitzt|

)
aTith

t1{
|aTitz

t|≥
ψit
1+γ

}
+
µ2

m

m∑
it=1

(
aTitz

t − ψit
aTitz

t

|aTitzt|

)2
‖ait‖

2 1{
|aTitz

t|≥
ψit
1+γ

}. (4.17)

Now the task reduces to upper bounding the terms on the right hand side of (4.17). Note from

(4.15) that by means of∇`tr(zt), the second term in (4.17) can be re-expressed as follows

−2µ

m

m∑
it=1

(
aTitz

t − ψit
aTitz

t

|aTitzt|

)
aTith

t1{
|aTitz

t|≥
ψit
1+γ

} = −2µ

m

〈
∇`tr(zt),ht

〉
≤ −4µ (1− ζ1 − ζ2 − 2ε) ‖h‖2

(4.18)

where the inequality follows from Prop. 3. Regarding the last term in (4.17), since for the i.i.d.

real Gaussian ai’s, maxit∈[m] ‖ait‖ ≤ 2.3n holds with probability at least 1−me−n/2 [129],

and also 1{
|aTitz

t|≥
ψit
1+γ

} ≤ 1, then the next holds with high probability

µ2

m

m∑
it=1

(
aTitz

t − ψit
aTitz

t

|aTitzt|

)2
‖ait‖

2 1{
|aTitz

t|≥
ψit
1+γ

} ≤ 2.3nµ2

m

m∑
it=1

(
|aTitz

t| − |aTitx|
)2

≤ 2.3nµ2

m

m∑
it=1

(
aTitz

t − aTitx
)2

≤ 2.3nµ2

m
(ht)TATAht

≤ 2.3(1 + δ)µ2n‖ht‖2 (4.19)

in which the second inequality comes from (|aTitz
t| − |aTitx|)

2 ≤ (aTitz
t − aTitx)2, and the
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last arises due to the fact that λmax(ATA) ≤ (1 + δ)m holds with probability at least 1 −
c′2 exp(−c′1nδ2), provided that m ≥ c′0nδ

−2 for some universal constant c′0, c
′
1, c
′
2 > 0 [119,

Thm. 5.39].

Substituting (4.18) and (4.19) into (4.17) establishes that

Eit
[
dist2(zt+1, x)

]
≤
[
1− 4µ (1− ζ1 − ζ2 − 2ε) + 2.3(1 + δ)µ2n

]
‖ht‖2 (4.20)

holds with probability exceeding 1−c2m exp(−c1n) provided thatm ≥ c0n, where c0 ≥ c′0δ−2.

To obtain legitimate estimates for the step size, fixing ε, δ > 0 to be sufficiently small constants,

say e.g., 0.01, then using (4.20), µ can be chosen such that

4(0.98− ζ1 − ζ2)− 2.42µn > 0

yielding

0 < µ <
4(0.98− ζ1 − ζ2)

2.42n
≈ 0.8469

n
:=

µ0

n
. (4.21)

Plugging µ = c3/n for some 0 < c3 ≤ µ0 into (4.20), gives rise to

Eit
[
dist2(zt+1, x)

]
≤
(

1− ν

n

)
dist2(zt, x) (4.22)

for

ν := 4c3(1− ζ1 − ζ2 − 2ε)− 2.3c2
3(1 + δ) ≤ ν0 := 0.0697

where the equality holds at the maximum step size µ = µ0, hence concluding the proof of Prop. 8

for the constant step size case.

Now let us turn to the case of a time-varying step size. Specifically, let µt = 1/‖ait‖2,

and it be sampled at random from the set [m] with probability ‖ait‖2/
∑m

it=1 ‖ait‖2 =

‖ait‖2/‖A‖2F [116]. Taking the expectation of both sides in (4.16) over it gives rise to

Eit
[
dist2(zt+1, x)

]
=‖ht‖2 − 2

m∑
it=1

aTith
t

‖A‖2F

(
aTitz

t − ψit
aTitz

t

|aTitzt|

)
1{
|aTitz

t|≥
ψit
1+γ

}
+

m∑
it=1

1

‖A‖2F

(
aTitz

t − ψit
aTitz

t

|aTitzt|

)2
1{
|aTitz

t|≥
ψit
1+γ

}. (4.23)

Consider random A := [a1 · · · am]T with i.i.d. rows ai ∼ N (0, In), and any fixed σ > 0.
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Then, by means of Bernstein-type inequality [119, Prop. 5.16]∣∣∣ 1

mn
‖A‖2F − 1

∣∣∣ =
∣∣∣ 1

mn

∑
i,j

a2
i,j − 1

∣∣∣ ≤ σ
holds with probability at least 1− 2 exp(−mnσ2/8). Therefore, the second term on the right

hand side of (4.23) can be bounded as follows

− 2

‖A‖2F

m∑
it=1

(
aTitz

t − ψit
aTitz

t

|aTitzt|

)
aTith

t1{
|aTitz

t|≥
ψit
1+γ

}
≤ − 2

(1 + σ)mn

m∑
it=1

(
aTitz

t−ψit
aTitz

t

|aTitzt|

)
aTith

t1{
|aTitz

t|≥
ψit
1+γ

}
≤ − 4m

(1 + σ)mn
(1− ζ1 − ζ2 − 2ε) ‖h‖2

≤ − 4

(1 + σ)n
(1− ζ1 − ζ2 − 2ε) ‖h‖2 (4.24)

where the second inequality follows from Prop. 3, and the last inequality from the fact that

m ≥ c0n. Concerning the last term on the right hand side of (4.23), one obtains that

m∑
it=1

‖ait‖2

‖A‖2F
1

‖ait‖2
(
aTitz

t − ψit
aTitz

t

|aTitzt|

)2
1{
|aTitz

t|≥
ψit
1+γ

}
=

1

‖A‖2F

m∑
it=1

(
|aTitz

t| − |aTitx|
)2

1{
|aTitz

t|≥
ψit
1+γ

}
≤ 1

‖A‖2F

m∑
it=1

(
aTitz

t − aTitx
)2

≤ 1

‖A‖2F
(ht)TATAht

≤ (1 + δ)m

(1− σ)mn
‖ht‖2

≤ (1 + δ)

(1− σ)n
‖ht‖2 (4.25)

which holds with high probability as soon as m ≥ c0n ≥ c′0δ−2n.
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Putting results in (4.23), (4.24), and (4.25) together, one establishes that the following holds

Eit
[
dist2(zt+1, x)

]
≤
[
1− 4

(1 + σ)n
(1− ζ1 − ζ2 − 2ε) +

(1 + δ)

(1− σ)n

]
‖ht‖2 (4.26)

with probability at least 1− c2m exp(−c1n) provided that m ≥ c0n. Hence, one can set in this

case

ν :=
4

(1 + σ)n
(1− ζ1 − ζ2 − 2ε)− (1 + δ)

(1− σ)n
.

Taking without loss of generality δ, σ, ε to be 0.01, and substituting the estimates of ζ1, ζ2 into

(4.26), one arrives at ν = 1.0091 to deduce that

Eit
[
dist2(zt+1, x)

]
≤
(

1− 1.0091

n

)
dist2(zt,x) (4.27)

which holds with high probability as soon as m ≥ c0n, establishing the local error contraction

property of the truncated Kaczmarz iterations in (4.10), as claimed in Prop. 8.

Combining the results in (4.22) and (4.27), we proved the local error contraction property in

Prop. 8 of the two STAF variants under both constant and time-varying step sizes.



Chapter 5

Phase Retrieval of Sparse Signals

In diverse applications, especially those related to imaging, the signal of interest is naturally

sparse or admits a sparse representation after some known and deterministic linear transforma-

tion [61]. For example, astronomical imaging centers around sparsely distributed stars, while elec-

tron microscopy deals with sparsely distributed atoms or molecules. As phase retrieval of sparse

signals is of practical relevance, SDP, AltMinPhase, and WF recovery methods have been gener-

alized to sparse phase retrieval producing solvers termed compressive phase retrieval via lifting

(CPRL) [92], sparse AltMinPhase [91], thresholded Wirtinger flow (ThWF) [18], SparsePhase-

Max [53]. CPRL in particular, accounts for the sparsity by adding an `1-regularization term

on the wanted signal to the original PhaseLift formulation. The other two approaches are two-

stage iterative counterparts consisting of a (sparse) initialization, and a series of refinements

of the initialization with gradient-type iterations. The greedy sparse phase retrieval (GESPAR)

algorithm is based on a fast 2-opt local search [107]. A probabilistic approach is developed

based on the generalized approximate message passing (GAMP) algorithm [105]. Assuming

noise-free Gaussian random measurements, CPRL recovers any k-sparse n-dimensional (k � n)

signal exactly from O(k2 log n) measurements at computational complexity O(n3) [76]. Sparse

AltMinPhase and ThWF, on the other hand, require O(k2 log n) measurements [91, 18], and

SparseAltMinPhase incurs complexity O(k2n log n) [91].

In this chapter, we propose here a novel sparse phase retrieval algorithm, which we call

SPARse Truncated Amplitude flow (SPARTA). Adopting an amplitude-based nonconvex formula-

tion of the sparse phase retrieval , SPARTA emerges as a two-stage iterative solver: In stage one,

the support of the underlying signal is estimated first using a well-justified rule, and subsequently

79
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power iterations are employed to obtain an initialization restricted on the recovered support;

while the second stage successively refines the initialization with a series of hard thresholding

based truncated gradient iterations. Both stages are conceptually simple, scalable, and fast.

Moreover, we demonstrate that SPARTA recovers any k-sparse n-dimensional signal x (k � n)

with minimum nonzero entries (in modulus) on the order of (1/
√
k)‖x‖2 from O(k2 log n)

measurements. Further, to reach any given solution accuracy ε > 0, SPARTA incurs total com-

putational cost of O(k2n log n log(1/ε)), which improves upon the state-of-the-art by at least

a factor of k. This computational advantage is paramount in large-scale imaging applications,

where the basis factor n log n is large, typically on the order of millions. In addition, SPARTA

can be shown robust to additive noise of bounded support. Extensive simulated tests demonstrate

markedly improved exact recovery performance (in the absence of noise), robustness to noise,

and runtime speedups relative to the state-of-the-art algorithms.

5.1 Sparse Phase Retrieval

Succinctly stated, the sparse phase retrieval task amounts to reconstructing a sparse x ∈ Rn (or

Cn) given a system of phaseless quadratic equations taking the form [88]

ψi = |〈ai,x〉|, i = 1, 2, . . . , m, subject to ‖x‖0 ≤ k (5.1)

where {ψi}mi=1 are the observed modulus data, and {ai}mi=1 are known sensing (feature) vectors.

The sparsity level k � n is assumed known a priori for theoretical analysis purposes, while

numerical implementations with unknown k values will be tested as well. Alternatively, the

data can be given in modulus squared (i.e., intensity) form as {yi = |〈ai,x〉|2}mi=1. It has been

established that m = 2k generic (e.g., random Gaussian) measurements as in (5.1) are necessary

and sufficient for uniquely determining a k-sparse solution in the real case, and m ≥ 4k − 2

are sufficient in the complex case [3]. In the noisy scenario, stable compressive phase retrieval

requires at least as many measurements as the corresponding compressive sensing problem

since one is tasked with even less (no phase) information. Hence, stable sparse phase retrieval

requires at least O(k log(n/k)) measurements as in compressive sensing [60]. Indeed, it has

been recently demonstrated that O(k log(n/k)) generic measurements also suffice for stable

phase retrieval of a real sparse signal [44].
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Given {(ai, ψi)}mi=1 and assuming also the existence of a unique k-sparse solution (up to a

global sign), our objective is to develop simple yet effective algorithms to provably reconstruct

any k-sparse n-dimensional signal x from a small number (far less than n) of phaseless quadratic

equations as in (5.1).

Similar to the non-convex model (2.2), recovering a k-sparse solution from a set of quadratic

equations can be recast as minimizing the ensuing amplitude-based empirical loss function

minimize
‖z‖0=k

`(z) :=
1

2m

m∑
i=1

(
ψi − |aTi z|

)2
. (5.2)

Clearly, both the objective function and the `0-norm constraint in (5.2) are nonconvex,

which render the optimization problem NP-hard in general [94], and thus computationally

intractable. It is worth emphasizing that (thresholded) Wirtinger alternatives dealt with the smooth

counterpart of (5.2) based on squared magnitudes {yi = |aTi z|2}mi=1, which was numerically

and experimentally shown to be less effective than the amplitude-based one even when no

sparsity is exploited [129, 144]. Although focusing on a formulation similar to (but different

than) (5.2), sparse AltMinPhase first estimates the support of the underlying signal, and performs

standard phase retrieval of signals with dimension k. More importantly, sparse AltMinPhase

relying on alternating minimization with re-sampling entails solving a series of least-squares

problems, and performs matrix inversion at every iteration. Numerical tests suggest that a very

large number of measurements are required to estimate the support exactly. Once wrong, sparse

AltMinPhase confining the phase retrieval task on the estimated support would be impossible

to recover the underlying sparse signal. On the other hand, motivated by the iterative hard

thresholding (IHT) algorithms for compressive sensing [15, 90], an adaptive hard thresholding

procedure that maintains only certain largest entries per iteration during the gradient refinement

stage turns out to be effective [18]. Yet both sparse AltMinPhase and ThWF were based on the

simple spectral initialization, which was recently shown to be less accurate and robust than the

orthogonality-promoting initialization [129].

Broadening the TAF approach and the sparse phase retrieval solver ThWF, the present

chapter puts forth a novel iterative solver for (5.2) that proceeds in two stages: S1) a sparse

orthogonality-promoting initialization is obtained by solving a PCA-type problem with a few

simple power iterations on an estimated support of the underlying sparse signal; and, S2)

successive refinements of the initialization are effected by means of a series of truncated gradient
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iterations along with a hard thresholding per iteration to set all entries to zero, except for the k

ones of largest magnitudes. The two stages are presented in order next.

5.2 Sparse Truncated Amplitude Flow

In this section, the initialization stage and the gradient refinement stage of SPARTA will be

described in detail. Assume also without loss of generality that ‖x‖2 = 1, which will be justified

and generalized shortly.

5.2.1 Sparse orthogonality-promoting initialization

When x is a priori known to be k-sparse with k � n, one may expect to recover x from a

significantly smaller number (� n) of measurements. The orthogonality-promoting initialization

(and spectral based alternatives) requiring m to be on the order of n would fail in the case of

phase retrieval for sparse signals given a small number of measurements [91, 22, 32, 129]. By

accounting for the sparsity prior information with the `0 regularization, the same rationale as the

orthogonality-promoting initialization in (2.15) would lead to

minimize
‖z‖2=1

zT Y z subject to ‖z‖0 = k. (5.3)

The problem at hand is NP-hard due to the combinatorial constraint. Additionally, it can not

be readily converted to a (sparse) PCA problem since the number of data samples available is

much smaller than the signal dimension n, thus hardly validating the non-asymptotic result in

eq:hard. Although at much higher computational complexity than power iterations, semidefinite

relaxation could be applied [39]. Instead of coping with (5.3) directly, we shall take another route

and develop our sparse orthogonality-promoting initialization approach to obtain a meaningful

sparse initialization from the given limited number of measurements.

Exact support recovery

Along the lines of sparse AltMinPhase and sparse PCA [4], our approach is to first estimate the

support of the underlying signal based on a carefully-designed rule; next, we will rely on power

iterations to solve (4.1) restricted on the estimated support, thus ensuring a k-sparse estimate
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z̃0 ∈ Rn; and, subsequently we will scale z̃0 by the x norm estimate
√∑m

i=1 yi/m to yield a

k-sparse orthogonality-promoting initialization z0.

Starting with the support recovery procedure, assume without loss of generality that x is

supported on S ⊆ [n] := {1, . . . , n} with |S| = k � n. Consider the random variables

Zi,j := ψ2
i a

2
i,j , j = 1, . . . , n. Recalling that for standardized Gaussian variables, we have

E[a4
i,j ] = 3, E[a2

i,j ] = 1, the rotational invariance property of Gaussian distributions confirms for

all 1 ≤ j ≤ n that

E[Zi,j ] = E
[
(aTi x)2a2

i,j

]
= E

[
a4
i,jx

2
j + (aTi,/jx/j)

2a2
i,j

]
= 3x2

j + ‖x/j‖22
= 2x2

j + ‖x‖22 (5.4)

where x/j ∈ Rn−1 is obtained by deleting the j-th entry from x ∈ Rn; and likewise for

ai,/j ∈ Rn−1. If j ∈ S , then xj 6= 0 yielding E[Zi,j ] = ‖x‖22 +2x2
j in (5.4). If on the other hand

j /∈ S, it holds that xj = 0, which leads to E[Zi,j ] = ‖x/j‖22 = ‖x‖22. It is now clear that there

is a separation of 2x2
j in the expected values of Zi,j for j ∈ S and j /∈ S . As long as the gap 2x2

j

is sufficiently large, the support set S can be recovered exactly in this way. Specifically, when

all E[Zi,j ] values are available, the set of indices corresponding to the k-largest E[Zi,j ] values

recover exactly the support of x. In practice, {E[Zi,j ]} are not available. One has solely access

to a number of their independent realizations. Appealing to the strong law of large numbers, the

sample average approaches the ensemble one, namely, Ẑi,j := (1/m)
∑m

i=1 Zi,j → E[Zi,j ] as

m increases. Hence, the support can be estimated as

Ŝ :=
{

1 ≤ j ≤ n
∣∣indices of top-k instances in {Ẑi,j}nj=1

}
(5.5)

which will be shown to recover S exactly with high probability provided that O(k2 log n)

measurements are taken and the minimum nonzero entry xmin := minj∈S |xj | is on the order of

(1/
√
k)‖x‖2. The latter is postulated to guarantee such a separation between quantities having

their indices belonging or not belonging to the support set. It is worth stressing that k2 log n� n

when k � n, hence largely reducing the sampling size and also the computational complexity.
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Orthogonality-promoting initialization

When the estimated support in (5.5) turns out to be exact, i.e., Ŝ = S, one can rewrite ψi =

|aTi x| = |aTi,ŜxŜ |, i = 1, . . . , m, where ai,Ŝ ∈ Rk includes the j-th entry ai,j of ai if and only

if j ∈ Ŝ; and likewise for xŜ ∈ Rk. Instead of seeking directly an n-dimensional initialization

as in (5.3), one can apply the orthogonality-promoting initialization steps on the dimensionality

reduced data {(ai,Ŝ , ψi)}
m
i=1 to produce a k-dimensional vector

z̃0
Ŝ := arg max

‖zŜ‖2=1

1

|I0|
zTŜ

(∑
i∈I0

ai,Ŝa
T
i,Ŝ

‖ai,Ŝ‖
2
2

)
zŜ (5.6)

and subsequently reconstruct a k-sparse n-dimensional initialization z̃0 by zero-padding z̃0
Ŝ at

entries with indices not belonging to Ŝ . Similarly, in the case of ‖x‖2 6= 1, z̃0 in (5.6) is rescaled

by the norm estimate of x to obtain z0 =
√∑m

i=1 yi/m z̃
0. We also note that our proposed

algorithm can recover the underlying sparse signal when Ŝ 6= S, as long as z0 is sufficiently

close to x regardless of support mismatch, which is described further in Lemma 12.

5.2.2 Thresholded truncated gradient iterations

Upon obtaining a sparse orthogonality-promoting initialization z0, our approach to solving (5.2)

boils down to iteratively refining z0 by means of a series of k-sparse hard thresholding based

truncated gradient iterations, namely,

zt+1 := Hk
(
zt − µ∇`tr(zt)

)
, t = 0, 1, . . . (5.7)

where t is the iteration index, µ > 0 a constant step size, and Hk(u) : Rn → Rn denotes a

k-sparse hard thresholding operation that sets all entries in u to zero except for the k entries of

largest magnitudes. If there are multiple such sets comprising the k-largest entries, a set can be

chosen either randomly or according to a predefined ordering of the elements. Similar to [129],

the truncated (generalized) gradient∇`tr(zt) is

∇`tr(zt) :=
1

m

∑
i∈It+1

(
aTi z

t − ψi
aTi z

t

|aTi zt|

)
ai (5.8)
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Algorithm 6 SPARse Truncated Amplitude flow (SPARTA)

1: Input: Data {(ai;ψi)}mi=1 and sparsity level k; maximum number of iterations T = 1, 000;
step size µ = 1, truncation thresholds |I0| = d1

6me, and γ = 1.
2: Set Ŝ to include indices corresponding to the k-largest instances in

{∑m
i=1 ψ

2
i |ai,j |2/m

}n
j=1

.

3: Evaluate I0 to consist of indices of the top-|I0| values in {ψi/‖ai,Ŝ‖2}
m
i=1 with ai,Ŝ ∈ Rk

removing entries of ai ∈ Rn not belonging to Ŝ; and compute the principal eigenvector
z̃0
Ŝ ∈ Rk of matrix

Y :=
1

|I0|

∑
i∈I0

ai,Ŝa
T
i,Ŝ

‖ai,Ŝ‖
2
2

based on 100 power iterations.

4: Initialize z0 as
√∑m

i=1 ψ
2
i /m z̃

0, where z̃0 ∈ Rn is obtained by augmenting z̃0
Ŝ in Step 3

with zeros at entries with their indices not in Ŝ .
5: Loop: For t = 0 to T − 1

zt+1 = Hk
(
zt − µ

m

∑
i∈It+1

(
aTi z

t − ψi
aTi z

t

|aTi zt|

)
ai

)
where It+1 =

{
1 ≤ i ≤ m

∣∣|aTi zt| ≥ ψi/(1 + γ)
}

, andHk(u) : Rn → Rn sets all entries
of u to zero except for the k-ones of largest magnitudes.

6: Output: zT .

where the index set is defined to be

It+1 :=
{

1 ≤ i ≤ m
∣∣∣ |aTi zt|
|aTi x|

≥ 1

1 + γ

}
(5.9)

for some γ > 0 to be determined shortly, where {|aTi x| = ψi} are the given modulus data.

It is clear now that the difficulty of minimizing our nonconvex objective function reduces to

that of correctly estimating the signs of aTi x by aTi z
t/|aTi zt| at each iteration. The truncation

rule in (5.9) was shown capable of eliminating most “bad” gradient components involving

erroneously estimated signs, i.e., aTi z
t/|aTi zt| 6= aTi x/|aTi x|. This rule improved performance

of TAF [129] considerably. Recall that our objective function in (5.2) is also non-smooth at

points z ∈ Rn obeying aTi z = 0. Evidently, the gradient regularization rule in (5.9) keeps only

the gradients of component functions (i.e., the summands in (5.2)) that bear large enough |aTi zt|
values; this rule thus maintains aTi z

t away from 0 and protects the cost function in (5.2) from
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being non-smooth at points satisfying aTi z = 0. As a consequence, the (truncated) generalized

gradient employed in (5.8) reduces to the (truncated) gradient at such points, which also simplifies

theoretical convergence analysis.

5.3 Main Results

The proposed sparse phase retrieval solver is summarized in Alg. 6.

Theorem 4 (Exact recovery). Fix x ∈ Rn to be any k-sparse (k � n) vector of the minimum

nonzero entry on the order of (1/
√
k)‖x‖2, namely, x2

min = (C1/k)‖x‖22 for some number

C1 > 0. Consider the m noiseless measurements ψi = |aTi x| from i.i.d. ai ∼ N (0, In),

1 ≤ i ≤ m. If m ≥ C0k
2 log(mn), Step 3 of SPARTA (tabulated in Alg. 6) recovers the support

of x exactly with probability at least 1 − 6/m. Furthermore, there exist numerical constants

µ, µ > 0 such that with a fixed step size µ ∈ [µ, µ], and a truncation threshold γ = +∞,

successive estimates of SPARTA obey

dist(zt, x) ≤ 1

10
(1− ν)t ‖x‖2 , t = 0, 1, . . . (5.10)

which holds with probability exceeding 1 − c1me−c0k − 7/m provided that m ≥ C2|I0| ≥
C0k

2 log(mn). Here, c0, c1, C0, C2, and 0 < ν < 1 are some numerical constants.

Proof of Thm. 4 is deferred to Sec. 5.5 with supporting lemmas presented in the Appendix.

We typically take parameters |I0| = d1
6me, and µ = 1, which will also be validated by our

analytical results on the feasible region of the step size. The constant C0 depends on C1, ν on µ

and C1, and µ and µ rely on bothC1 and C0. In the case of phase retrieval of unstructured signals,

existing algorithms such as TAF ensures exact recovery when the number of measurements

m is about the number of unknowns n, i.e., m & n. Hence, it would be more meaningful to

study the sample complexity bound for phase retrieval of sparse signals when m . n. To this

end, the sample complexity bound m ≥ C0k
2 log(mn) in Thm. 4 can often be rewritten as

m ≥ C ′0k
2 log n for some constant C ′0 > C0 and large enough n. Regarding Thm. 4, three

observations are in order.

Remark 6. SPARTA recovers exactly any k-sparse signal x of minimum nonzero entries on

the order of (1/
√
k)‖x‖2 when there are about k2 log n magnitude-only measurements, which
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coincides with the number of measurements required by the state-of-the-art algorithms such as

CPRL [92], sparse AltMinPhase [91], and ThWF [18].

Remark 7. SPARTA converges at a linear rate to the globally optimal solution xwith convergence

rate independent of the signal dimension n. In other words, for any given solution accuracy

ε > 0, after running at most T = log(1/ε) SPARTA iterations (5.7), the returned estimate zT is

at most ε‖x‖2 away from the global solution x.

Remark 8. SPARTA enjoys a low computational complexity of O(k2n log n), and incurs a total

runtime of O(k2n log n log(1/ε)) to produce an ε-accurate solution. The runtime is proportional

to the time O(k2n log n) taken to read the data {(ai, ψi)}mi=1. To see this, recall that the

support recovery incurs computational complexity O(k2n log n + n log n), power iterations

incur complexity O(k2n log n), and thresholded truncated gradient iterations have complexity

O(k2n log n); hence, leading to a total complexity on the order of k2n log n. Given the linear

convergence rate, SPARTA takes a total runtime of O(k2n log n log(1/ε)) to achieve any fixed

solution accuracy ε > 0.

Besides exact recovery guarantees in the case of noiseless measurements, it is worth mention-

ing that SPARTA exhibits robustness to additive noise, especially when the noise has bounded

values. Numerical results using SPARTA for noisy sparse phase retrieval will be presented in the

ensuing section.

5.4 Numerical Experiments

Simulated tests examining performance of SPARTA against truncated amplitude flow (TAF) [129]

(which does not exploit the sparsity) and thresholded Wirtinger flow (ThWF) [18] are presented

in this section. The initialization in each scheme was obtained based upon 100 power iterations,

and was subsequently refined by T = 1, 000 gradient iterations. In all reported experiments, the

true k-sparse signal vector x ∈ Rn or Cn was generated first using x ∼ N (0, In) or CN (0, In),

followed by setting (n − k) of its n entries to zero uniformly at random. For reproducibility,

the Matlab implementation of SPARTA is available at https://gangwg.github.io/

SPARTA/.

The first experiment evaluates the exact recovery performance of various approaches, where

the true signals are real. We fixed the signal dimension to n = 1, 000, and the sparsity level

at k = 10, while m/n increases from 0.1 to 3 by 0.1. Curves in Fig. 5.1 clearly demonstrate

https://gangwg.github.io/SPARTA/
https://gangwg.github.io/SPARTA/
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markedly improved performance of SPARTA over state-of-the-art alternatives. Even when the

exact number of nonzero elements in x, namely, k is unknown, setting k in Alg. 6 as an upper

limit on the theoretically affordable sparsity level (e.g., d
√
n e when m is about n according to

Thm. 4) works well too (see the magenta curve, denoted SPARTA0). Comparison between TAF

and SPARTA shows the advantage of exploiting sparsity in sparse phase retrieval settings.
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Figure 5.1: Empirical success rate versus m/n.

The second experiment examines how SPARTA recovers real signals of various sparsity

levels given a fixed number of measurements. Figure 5.2 depicts the empirical success rate versus

the sparsity level k, where k equals the exact number of nonzero entries in x. The results suggest

that with a total of m = n phaseless quadratic equations, TAF representing the state-of-the-art

for phase retrieval of unstructured signals fails, as shown by the blue curve. Although ThWF

works in some cases, SPARTA significantly outperforms ThWF, and it ensures exact recovery

of sparse signals with up to about 25 <
√
n ≈ 32 nonzero entries (due to existence of polylog

factors in the sample complexity), hence justifying our analytical results.

The next experiment validates the robustness of SPARTA against additive noise present

in the data. Postulating the noisy Gaussian data model ψi = |aTi x| + ηi [91], we generated

i.i.d. Gaussian noise according to ηi ∼ N (0, 0.12), i = 1, . . . , m. From Fig. 5.1, it is clear

that to achieve exact recovery, SPARTA requires about m = 6k2 = 600 measurements, TAF

about 3n = 3, 000 measurements, and ThWF much more than 3, 000. In this case, parameters

were taken as n = 1, 000, m = 3, 000, and k = 10, with the number of measurements large
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Figure 5.2: Empirical success rate versus sparsity level k.
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Figure 5.3: Convergence behavior for noisy data with n = 1, 000, m = 3, 000, and k = 10.

enough to guarantee that ThWF and TAF also work. It is worth mentioning that SPARTA can

work with a far smaller number of measurements than m = 3, 000. As seen from the plots,

SPARTA performs only a few gradient iterations to achieve the most accurate solution among

the three approaches, while its competing TAF and ThWF require nearly an order more number

of iterations to converge to less accurate estimates.

To demonstrate the stability of SPARTA against additive noise, the relative MSE is plotted as
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a function of the SNR values in dB. Our experiments are based on the additive Gaussian noise

model ψi = |aTi x|+ ηi with a 10-sparse signal x ∈ R1,000 and the noise η := [η1 · · · ηm]T ∼
N (0, σ2Im), where σ2 is chosen such that certain SNR := 10 log10

∑m
i=1
|〈ai,x〉|2/σ2 values are

achieved. The ratio m/n takes values {1, 2, 3}, and the SNR in dB is varied from 5 dB to 55

dB. Averaging over 100 Monte Carlo realizations, Fig. 5.4 demonstrates that the relative MSE

for all m/n values scales inversely proportional to SNR, hence corroborating the stability of

SPARTA in the presence of additive noise.
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Figure 5.4: Relative MSE versus SNR for SPARTA with the AWGN model.

The last experiment tested the efficacy of SPARTA in the complex-valued setting, where

the underlying 10-sparse signal x ∈ C20,000 was generated using x ∼ CN (0, I20,000) :=

N (0, I20,000/2) + jN (0, I20,000/2), and ai ∼ CN (0, I20,000) for 1 ≤ i ≤ 1, 000. The

relative MSE versus iteration count was plotted in Fig. 5.5, which validates the scalability and

effectiveness of SPARTA in recovering complex signals. In terms of runtime, SPARTA recovers

exactly a 20, 000-dimensional complex-valued signal from 1, 000 magnitude-only measurements

in a few seconds.

Regarding computation times, SPARTA converges much faster (both in time and in the

number of iterations required to achieve certain solution accuracy) than ThWF and TAF in all

reported experiments.
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Figure 5.5: Relative MSE versus iteration count for SPARTA in the complex setting.

5.5 Proofs

The proof of Thm. 4 will be provided in this section. To that end, we will first evaluate

the performance of our sparse orthogonality-promoting initialization. The following result

demonstrates that if the number of measurements is sufficiently large (on the order of k2 within

polylog factors), Step 3 of Alg. 6 reconstructs the support of x exactly with high probability.

Lemma 10. Consider any k-sparse signal x ∈ Rn with support S and minimum nonzero entries

xmin := minj∈S |xj | on the order of (1/
√
k)‖x‖2. If the sensing vectors {ai}mi=1 are i.i.d

standard Gaussian, i.e., ai ∼ N (0, In), Step 3 in Alg. 6 recovers S exactly with probability at

least 1− 6/m provided m ≥ C0k
2 log(mn) for some absolute constant C0 > 0.

Upon obtaining the support of the underlying sparse signal, SPARTA subsequently employs

the orthogonality-promoting initialization on the reduced-dimension data {(ψi,ai,Ŝ)}. Based on

results in [129, Prop. 1], the estimate

z0
Ŝ

:=

√√√√ m∑
i=1

ψ2
i /mz̃

0
Ŝ

obtained from Step 3 in Alg. 6 satisfies dist(z0
Ŝ
,xŜ) ≤ (1/10)‖xŜ‖2 with high probability

provided that m/k is sufficiently large and k large enough as well. Putting together this result,



92

Lemma 10, and Step 4 in Alg. 6 leads to the following lemma, which formally summarizes the

theoretical performance of our proposed sparse orthogonality-promoting initialization.

Lemma 11. Let z0 =
√∑m

i=1 ψ
2
i /m z̃

0 be given by Step 4, and z̃0 obtained through the sparse

orthogonality-promoting initialization Step 3 in Alg. 6. With probability at least 1 − (m +

6) exp(−k/2)− 7/m, the following holds

dist(z0, x) ≤ (1/10)‖x‖2 (5.11)

provided that m ≥ C ′0k for some absolute constant C ′0 > 0.

The proof can be directly adapted from [129, Prop. 1], and hence it is omitted.

Lemma 12. Take a constant learning parameter µ ∈ (µ, µ). There exists an event of probability

at least 1 − c1m
−c0k, such that on this event, starting from an initial estimate z0 satisfying

dist(z0, x) ≤ (1/10)‖x‖2, successive estimates by Step 5 with γ = +∞ in Alg. 6 obey

dist(zt, x) ≤ (1/10)(1− ν)t‖x‖2, t = 0, 1, . . . (5.12)

if m ≥ C ′′0 (3k) log(n/(3k)). Here, µ, µ0, c0, c1, C
′′
0 > 0 are certain universal constants.

It is worth noting that Step 5 of Alg. 6 guarantees linear convergence to the globally optimal

solution x as long as the initial guess z0 lands within a small neighborhood of x, regardless of

whether z0 estimates exactly the support of x or not.

Proof of Lemma 12. To start, let us establish a bit of notation, which will be used only in this

section. Define for all t ≥ 0:

dt+1 := zt − µ

m

m∑
i=1

(
aTi z

t − ψi
aTi z

t

|aTi zt|

)
ai

which represents the estimate prior to the hard thresholding operation in (5.7). With S and Ŝt

denoting the support set of x and zt, respectively, the reconstruction error x− zt+1 is therefore

supported on the set Θt+1 := S ∪ Ŝt+1; and likewise, x− zt is supported on Θt := S ∪ Ŝt. In

addition, define the difference between sets Θt and Θt+1 as Θt \ Θt+1, which consists of all

elements of Θt that are not elements of Θt+1. It is then clear that |S| = |Ŝt| = k, |Θt| ≤ 2k,
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and |Θt \ Θt+1| ≤ 2k as well as |Θt ∪ Θt+1| ≤ 3k for all t ≥ 0. When using these sets as

subscript, for instance, dΘt , we mean vectors formed by deleting all but those elements from the

vector other than those in the set.

The proof of Lemma 12 will be mainly based on results in [129], and [15], [90]. The former

helps establishing the so-termed local regularity condition that will be key to proving linear

convergence of iterative optimization algorithms to the globally optimal solutions of nonconvex

optimization problems [22], while the latter two offer a standard approach to dealing with the

nonlinear hard thresholding operator involved in our proposed SPARTA algorithm. Specifically,

based on the triangle inequality of the vector 2-norm, one arrives at

∥∥xΘt+1 − zt+1
Θt+1

∥∥
2

=
∥∥xΘt+1 − dt+1

Θt+1 + dt+1
Θt+1 − zt+1

Θt+1

∥∥
2

≤
∥∥xΘt+1 − dt+1

Θt+1

∥∥
2

+
∥∥zt+1

Θt+1 − dt+1
Θt+1

∥∥
2

(5.13)

where in the last inequality the first term denotes the distance of xΘt+1 to the estimate dt+1
Θt+1

before hard thresholding, and the second denotes the distance between dt+1
Θt+1 and its best k-

approximation zt+1
Θt+1 because zt+1

Θt+1 has cardinality equal to k. The optimality of zt+1
Θt+1 implies

‖zt+1
Θt+1 − dt+1

Θt+1‖2 ≤ ‖xΘt+1 − dt+1
Θt+1‖2.

Plugging the latter inequality back into (5.13) yields

∥∥xΘt+1 − zt+1
Θt+1

∥∥
2
≤ 2
∥∥xΘt+1 − dt+1

Θt+1

∥∥
2
. (5.14)

Define the estimation error ht := x− zt. Rewriting and substituting

dt+1 = zt − µ

m

m∑
i=1

(
aTi z

t − aTi x
)
ai +

µ

m

m∑
i=1

( aTi zt
|aTi zt|

− aTi x

|aTi x|

)
|aTi x|ai (5.15)

into (5.14) leads to

1

2
‖ht+1

Θt+1‖2 ≤
∥∥∥htΘt+1 −

µ

m

m∑
i=1

aTi h
tai,Θt+1 −

µ

m

m∑
i=1

( aTi zt
|aTi zt|

− aTi x

|aTi x|

)
|aTi x|ai,Θt+1

∥∥∥
2

=
∥∥∥htΘt+1 −

µ

m

m∑
i=1

ai,Θt+1aTi,Θt+1h
t
Θt+1 −

µ

m

m∑
i=1

ai,Θt+1aTi,Θt\Θt+1h
t
Θt\Θt+1
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− µ

m

m∑
i=1

( aTi zt
|aTi zt|

− aTi x

|aTi x|

)
|aTi x|ai,Θt+1

∥∥∥
2

≤
∥∥∥htΘt+1 −

µ

m

m∑
i=1

ai,Θt+1aTi,Θt+1h
t
Θt+1

∥∥∥
2

+
∥∥∥ µ
m

m∑
i=1

ai,Θt+1aTi,Θt\Θt+1h
t
Θt\Θt+1

∥∥∥
2

+
∥∥∥ µ
m

m∑
i=1

( aTi zt
|aTi zt|

− aTi x

|aTi x|

)
|aTi x|ai,Θt+1

∥∥∥
2

(5.16)

where the equality follows from re-expressing

aTi h
t = aTi,Θth

t
Θt = aTi,Θt+1h

t
Θt+1 + aTi,Θt\Θt+1h

t
Θt\Θt+1

since ht = x − zt is supported on Θt. The last inequality is readily obtained with triangle

inequality of the `2-norm.

The task now remains to establish upper bounds for the three terms appearing on the right

hand side of (5.16), which will be the subject for the rest of this section. Toward this end, let us

recall the concept of the so-called restricted isometry property (RIP) condition in compressive

sampling [24]. For each integer s = 1, 2, . . . , k, define the isometry constant 0 < δs < 1 of a

matrix Φ ∈ Rm×n as the smallest quantity such that the following holds for all k-sparse vectors

v ∈ Rn [24, 90]:

(1− δk)‖v‖22 ≤ ‖Φv‖22 ≤ (1 + δk)‖v‖22. (5.17)

For Gaussian matrix A ∈ Rm×n whose entries are i.i.d. standard normal variables, then
1√
m
A satisfies the RIP with constant δ3k ≤ ε with probability at least 1− e−c

′
0m, provided that

m ≥ C ′1ε
−2(3k) log(n/(3k)) for certain universal constants c′0, C

′
1 > 0 [24], [90, Eq. (1.2)].

Furthermore, if K $ {1, 2, . . . , n} is a set of 3k indices or fewer, the following properties ofA

hold true [90, Prop. 3.1]:

P1) ‖ATKu‖2 ≤
√

(1 + δ3k)m‖u‖2, for all u ∈ Rm;

P2) (1 − δ3k)m‖v‖2 ≤ ‖ATKAKv‖2 ≤ (1 + δ3k)m‖v‖2, for all at most 3k-sparse vectors

v ∈ Rn;

P3) ‖ATBAD‖2 ≤ δ3k, where B and D are disjoint sets of combined cardinality not exceeding
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3k;

P4) ‖ATB∪DAB∪D − I‖2 ≤ δ3k.

Having elaborated on the properties of RIP matrices, we are ready to derive bounds for the

three terms on the right hand side of (5.16). Regarding the first term, it is easy to check that

∥∥∥htΘt+1−
µ

m

m∑
i=1

ai,Θt+1aTi,Θt+1h
t
Θt+1

∥∥∥
2

=
∥∥∥(I − µ

m

m∑
i=1

ai,Θt+1aTi,Θt+1

)
htΘt+1

∥∥∥
2

≤
∥∥∥I − µ

m

m∑
i=1

ai,Θt+1aTi,Θt+1

∥∥∥
2

∥∥htΘt+1

∥∥
2

≤ max
{

1− µλ, µλ− 1
}∥∥htΘt+1

∥∥
2

(5.18)

where λ, λ > 0 are the largest and smallest eigenvalue of (1/m)
∑m

i=1 ai,Θt+1aTi,Θt+1 , respec-

tively. Specifically, the two inequalities in (5.18) are obtained based on the definition of the

induced 2-norm (i.e., the spectral norm) of matrices.

Next, we estimate the eigenvalues λ and λ. Using P2, it clearly holds that

λ = λmax

( 1

m

m∑
i=1

ai,Θt+1aTi,Θt+1

)
≤ 1 + δ2k (5.19)

due to |Θt+1| ≤ 2k. For the same reason, it further holds that

λ = λmin

( 1

m

m∑
i=1

ai,Θt+1aTi,Θt+1

)
≥ 1− δ2k. (5.20)

Taking the results in (5.19) and (5.20) into (5.18) yields

∥∥∥htΘt+1−
µ

m

m∑
i=1

ai,Θt+1aTi,Θt+1h
t
Θt+1

∥∥∥
2

≤ max
{

1− µ(1− δ2k), µ(1 + δ2k)− 1
}∥∥htΘt+1

∥∥
2
. (5.21)

For the second term in (5.16), since |Θt+1 ∪Θt| ≤ 3k, the next holds with high probability

∥∥∥ 1

m

m∑
i=1

ai,Θt+1aTi,Θt\Θt+1h
t
Θt\Θt+1

∥∥∥
2
≤
∥∥∥ 1

m

m∑
i=1

ai,Θt+1aTi,Θt\Θt+1

∥∥∥
2

∥∥htΘt\Θt+1

∥∥
2
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≤
∥∥∥I − 1

m

m∑
i=1

ai,Θt+1∪Θta
T
i,Θt+1∪Θt

∥∥∥
2

∥∥htΘt\Θt+1

∥∥
2

≤ δ3k

∥∥htΘt\Θt+1

∥∥
2

(5.22)

in which the first inequality arises again from the definition of the matrix 2-norm. Deriving the

second inequality involves the approximate orthogonality result in P3, while the last result can

be obtained by appealing to P4.

Consider now the last term in (5.16). For convenience, define

ATΘt+1 := [a1,Θt+1 · · · am,Θt+1 ]

with |Θt+1| ≤ 2k, and also vt := [vt1 · · · vtm]T with vti := (
aTi z

t

|aTi zt|
− aTi x

|aTi x|
)|aTi x| for i =

1, . . . , m. Upon rearranging terms, the induced matrix 2-norm definition implies that

∥∥∥ 1

m

m∑
i=1

( aTi zt
|aTi zt|

− aTi x

|aTi x|

)
|aTi x|ai,Θt+1

∥∥∥
2

=
1

m

∥∥ATΘt+1v
t
∥∥

2

≤
∥∥∥ 1√

m
ATΘt+1

∥∥∥
2

∥∥∥ 1√
m
vt
∥∥∥

2
. (5.23)

Property P1 confirms that the largest singular value ofATΘt+1 ∈ Rm×2k satisfies smax(ATΘt+1) ≤
(1 + δ2k)

√
m with high probability. Therefore, the following holds with high probability

∥∥∥ 1

m

m∑
i=1

( aTi zt
|aTi zt|

− aTi x

|aTi x|

)
|aTi x|ai,Θt+1

∥∥∥
2
≤ (1 + δ2k)

1√
m

∥∥vt∥∥
2
. (5.24)

For convenience, define the event

Ki :=

{
aTi z

|aTi z|
6= aTi x

|aTi x|

}
. (5.25)

Then, it follows that

1

m

∥∥vt∥∥2

2
=

1

m

m∑
i=1

( aTi zt
|aTi zt|

− aTi x

|aTi x|

)2
|aTi x|2

≤ 4 · 1

m

m∑
i=1

|aTi x| · |aTi ht| · 1Ki
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≤ 40

9

√
1 + ε1 ·

(
ε1 +

1

10

√
21

20

)∥∥ht∥∥2

2
(5.26)

where the first inequality follows upon substituting |aTi x| ≤ |aTi ht| on the event Ki, and using( aTi zt
|aTi zt|

− aTi x

|aTi x|
)2 ≤ 4. The last inequality can be obtained by appealing to Lemma 19 in the

Appendix adapted from [112, Lemma 7.17], which holds for all (2k)-sparse vectors h ∈ Rn.

This result has also been employed in the recent sparse phase retrieval approach reported in [62].

Here, we set ε0 = 1/10 in (D.3), and ε1 > 0 can take any sufficiently small values.

Plugging the inequality in (5.26) into (5.24) leads to

∥∥∥ 1

m

m∑
i=1

( aTi zt
|aTi zt|

− aTi x

|aTi x|

)
|aTi x|ai,Θt+1

∥∥∥
2

≤ (1 + δ2k) ·

√
40

9

√
1 + ε1 ·

(
ε1 +

1

10

√
21

20

)∥∥ht∥∥
2

:= (1 + δ2k)ζ
∥∥ht∥∥

2
(5.27)

where the constant is defined as

ζ :=

√
40

9

√
1 + ε1 ·

(
ε1 +

1

10

√
21

20

)
.

Substituting the three bounds in (5.21), (5.22), and (5.27) into (5.16), we obtain

∥∥ht+1
∥∥

2
≤ 2 max{1− µ(1− δ2k), µ(1 + δ2k)−1}

∥∥htΘt+1

∥∥
2

+ 2µδ3k

∥∥htΘt\Θt+1

∥∥
2

+ 2µ(1 + δ2k)ζ
∥∥ht∥∥

2

≤ 2
√

2 max
{

max{1− µ(1− δ2k), µ(1+ δ2k)− 1} ,

µδ3k

}
‖ht‖2 + 2µ(1 + δ2k)ζ

∥∥ht∥∥
2

≤ 2
[√

2 max
{

max{1−µ(1− δ2k), µ(1 +δ2k)−1} ,

µδ3k

}
+ µ(1 + δ2k)ζ

]∥∥ht∥∥
2

:= ρ
∥∥ht∥∥

2
(5.28)
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where the second inequality follows from

∥∥htΘt+1

∥∥
2

+
∥∥htΘt\Θt+1

∥∥
2
≤
√

2
∥∥ht∥∥

2

over disjoint sets Θt+1 and Θt \ Θt+1. To ensure linear convergence, it suffices to choose a

constant step size µ > 0 such that

ρ = 2
[√

2 max
{

max{1− µ(1− δ2k), µ(1 + δ2k)− 1} , µδ3k

}
+ µ(1 + δ2k)ζ

]
< 1.

For sufficiently small δ3k > 0 and ε1 > 0, one has ν := 1− ρ ∈ (0, 1), which justifies the

linear convergence result in (5.10).

Theorem 4 can be directly deduced by combining Lemmas 10, 11, and 12. In fact, Lemma 10

guarantees exact support recovery so that the orthogonality-promoting initialization can be

effectively performed on the equivalent dimension-reduced data samples. Lemma 11, on the

other hand, guarantees that the sparse initialization attained based on the dimensional-reduced

data lands within a small neighborhood of the globally optimal solution with high probability.

Starting from any point within the basin of attraction, Lemma 12 confirms that successive iterates

of SPARTA will be dragged toward the globally optimal solution at a linear rate provided that

the step size and the truncation threshold are appropriately selected.



Chapter 6

Summary and Future Directions

Leveraging recent advances in non-convex optimization and statistical signal processing, this

thesis contributes to phase retrieval performance analysis and methods of high-dimensional

(sparse) signals. In this final chapter, we provide a summary of the main results discussed in this

thesis, and also point out a few possible directions for future research.

6.1 Thesis Summary

Building on a high-dimensional stochastic geometry property, a novel orthogonality-promoting

initialization is developed in Chapter 2 for phase retrieval of unstructured signals, whose intuition

and justification deviates from existing spectral alternatives. To obtain this novel initialization,

the power method is invoked. The initialization is subsequently refined by means of a series

of gradient-type iterations for minimizing the amplitude-based LS cost function. To further

improve the exact recovery performance, a simple yet effective gradient regularization technique

is put forth, which is shown to be capable of rejecting spurious search directions that may drag

the iterates toward bad solutions. In addition, under random Gaussian sampling vectors, the

developed amplitude flow algorithms are proved to converge exponentially fast to the global

optimum as soon as the number of noiseless measurements becomes larger than some constant

times the number of unknowns. This holds true with no assumption on the signal vector to be

recovered. Extensive corroborating numerical tests using both computer generated data and

real-world images validate the exact recovery performance analysis, and also demonstrate the

merits of the novel approaches relative to the prior art.
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In the context of contemporary statistical learning or inference through non-convex opti-

mization, different data examples may contribute differently to the search direction. Building

on Chapter 2, Chapter 3 advocates a time-adaptive reweighting technique to further boost the

performance of the amplitude flow algorithm, which can judiciously exploit all possible use-

ful information from all data samples. Meanwhile, a weighting technique is also combined

with the orthogonality-promoting initialization of Chapter 2. Albeit conceptually simple and

easy-to-implement, this idea of reweighting often leads to considerably improved exact recovery

performance. Theory on exact phase recovery is also established for the reweighted variants,

which is followed by extensive corroborating simulations.

In our era of data deluge, gradient-type amplitude flow algorithms in Chapters 2 and 3

may not scale well to phase retrieval of signals with high dimensionality, due in part to the

matrix-vector multiplication per iteration. To endow the amplitude flow variants with scalability,

stochastic optimization based iterations are pursued in Chapter 4 for tackling the amplitude-based

LS formulation, which incurs per-iteration complexity solely on the order of the number of

unknowns, while still maintaining optimal-order total complexity. Geometric convergence of the

stochastic amplitude flow approach for exact phase recovery is demonstrated as well. Simulated

tests are provided to corroborate the effectiveness and scalability of the stochastic amplitude flow

variants.

In many real-world imaging applications however, the signals to be recovered are often

naturally sparse or admit sparse representations after certain known and deterministic linear

transformations. Leveraging this prior information, both the sample and computational complex-

ity of phase retrieval algorithms can be considerably reduced. Toward this end, the developed

amplitude flow algorithm for phase retrieval of general signals is extended to that of sparse signals

in Chapter 5. We start with a novel technique for estimating the support of the true sparse signal,

which is followed by the proposed initialization on the dimensionality-reduced data samples.

Subsequently, a sequence of hard-thresholded iterations are implemented to refine the sparse

initialization. On the theoretical side, exact recovery of the support as well as the true sparse

signal is established provided that enough measurements are available. Our approach is also

numerically demonstrated to exhibit superior performance relative to competitive approaches,

and also to be robust to additive noise of bounded support.
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6.2 Future Research

The results in this thesis open up interesting directions for a number of future research topics

including phase retrieval against outliers, matrix recovery, non-coherent channel estimation,

power system monitoring, and deep learning. Next, we outline a couple of them that we are

currently pursuing.

6.2.1 Convolutional phase retrieval

In real-world applications, the sampling matrix A ∈ Cm×n is often structured. For example,

in diverse wireless communications applications such as channel estimation [122, 139], and

non-coherent optical and underwater acoustic communication [115], the measurements available

are usually generated through convolving the signal x ∈ Cn with a given filter a ∈ Cm, namely

ψ = |a~ x| (6.1)

where ~ is the cyclic convolution modulo m. If A ∈ Cm×m denotes the circulant matrix

generated by a, the convolutional phase retrieval problem boils down to solving a set of phaseless

linear equations

ψ = |Ax|. (6.2)

Recently, this problem has been investigated using ordinary gradient descent with the plain-

vanilla spectral initialization [97]. It is certainly of interest to address the convolutional phase

retrieval task based on the amplitude flow approaches developed in this thesis together with

additional gradient regularization techniques. We envision application of the novel amplitude

flow approaches in wireless communications as well as in massive MIMO [96].

6.2.2 Learning convolutional neural networks

Deep convolutional neural network (CNN) architectures have recently emerged as popular and

powerful tools for automatic knowledge extraction from raw data. These learning machines have

led to major breakthroughs in a variety of applications including visual object classification,

speech recognition, and natural language processing [74]. The critical challenge there is that

training neural networks must deal with extremely high-dimensional non-convex optimization

problems, and it is not clear how to guarantee optimality of the learned solutions [113].
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Consider a simple rectified linear unit (ReLU)-based convolutional neural network with one

input layer, one output layer, and a single hidden layer with a single filter. Formally, if the input

sample, e.g., an image, is denoted by x ∈ Rn, the filter by w ∈ Rd, and the output weight vector

by v ∈ Rk, the neural network input-output relationship in this case is a nonlinear function

f : Rn → R given by

fw,v(x) := vT σ(w ~ x) (6.3)

where the ReLU activation σ(t) := max(t, 0) is understood entry-wise when applied to a vector.

Suppose we have access to a training dataset of m feature and label pairs (xi, yi). The goal is

to infer the best weight vectors w and v such that the mapping fw,v best fits the training data.

When using the LS fitting loss, we wish to solve a non-convex optimization problem of the form

[113, 42]

minimize
w∈Rd,v∈Rk

`(w,v) :=
1

2m

m∑
i=1

(yi − fw,v(xi))
2 . (6.4)

Evidently, the optimization (6.4) constitutes a natural generalization of the amplitude-based

LS phase retrieval problem in (2.2), or more precisely, of that corresponding to the convolutional

phase retrieval (6.1). Evidently, the differences are the use of the ReLU activation versus the

absolute-value function as well as an additional weight vector v in (6.4). This suggests possible

extensions of our developed amplitude flow algorithms and performance analysis to provable

training of shallow CNNs.

6.2.3 Exact power system state recovery

The North American electric grid, the largest machine on earth, is recognized as the greatest

engineering achievement of the 20th century [142]. Accurately monitoring the grid’s operating

condition is critical to several control and optimization tasks, including optimal power flow,

reliability analysis, voltage regulation, attack detection, and future network expansion planning

[50, 67, 68, 66, 132, 9, 148, 145].

Compliant with the well-known AC power flow model [50], the measurements available

through the supervision control and data acquisition (SCADA) system are nonlinearly related

with the power system state of interest, namely the complex voltage vector v := [v1 v2 · · · vn]H.

Suppose that a total of m measurements have been acquired for recovering v, what is referred to

as the power system state estimation (PSSE) task, and they are collected in the vector z ∈ Rm.
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Mathematically, the i-th measurement in z obeys the model

zi := v∗Aiv + ηi, i = 1, 2, . . . , m (6.5)

where the terms ηi ∈ R capture the modeling inaccuracies, and the measurement matrices

Ai = AHi ∈ Cn×n are known and deterministic depending on the system topology and grid

parameters. The critical goal of AC power system state estimation is to recover v based on the

available data {(zi;Ai)}mi=1. The task of AC power system state estimation can be formulated as

an empirical loss minimization

minimize
x∈Cn

`(x) :=
1

2m

m∑
i=1

(zi − x∗Aix)2 . (6.6)

Due to the quadratic terms inside the LS however, the quartic objective functional `(x) is non-

convex, whose general instance is NP-hard [94]. Hence, it is computationally intractable to

compute the LS estimate of v in general.

Although several efforts have been devoted to find approximate PSSE solutions [151, 70,

133, 138, 134, 133, 125], they do not come with exact recovery guarantees even in the absence

of noise. The measurement matrices Ai however, are known to be highly sparse (of very few

nonzero entries), and also low rank (of at most 2). Under certain practical assumptions on the

system operating condition as well as on the measurements acquired, we shall target a link

between quadratic data in (6.5) and intensity data in (2.1), such that the developed amplitude

flow algorithms and performance analysis are amenable to PSSE. Our goal is to devise efficient

and scalable PSSE solvers from the vantage point of non-convex optimization that provide exact

recovery guarantees under nominal grid operating conditions.
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Appendix A

Proofs for Chapter 2

A.1 Proof of Lemma 1

By homogeneity of (2.27), it suffices to work with the case where ‖x‖ = 1. It is easy to check

that

1

2

∥∥xxT − z̃0(z̃0)T
∥∥2

F
=

1

2
‖x‖4 +

1

2
‖z̃0‖4 − |xT z̃0|2

= 1− |xT z̃0|2

= 1− cos2 θ (A.1)

where 0 ≤ θ ≤ π/2 is the angle between the spaces spanned by x and z̃0. Then one can write

x = cos θ z̃0 + sin θ(z̃0)⊥, (A.2)

where (z̃0)⊥ ∈ Rn is a unit vector that is orthogonal to z̃0 and has a nonnegative inner product

with x. Likewise,

x⊥ := − sin θ z̃0 + cos θ(z̃0)⊥, (A.3)

in which x⊥ ∈ Rn is a unit vector orthogonal to x.

Since z̃0 is the solution to the maximum eigenvalue problem

z̃0 := arg max
‖z‖=1

zT Y0z (A.4)
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for Y0 := 1

|I0|
ST0 S0, it is the leading eigenvector of Y0, i.e., Y0z̃

0 = λ1z̃
0, where λ1 > 0 is the

largest eigenvalue of Y0. Premultiplying (A.2) and (A.3) by S0 yields

S0x = cos θS0z̃
0 + sin θS0(z̃0)⊥, (A.5a)

S0x
⊥ = − sin θS0z̃

0 + cos θS0(z̃0)⊥. (A.5b)

Pythagoras’ relationship now gives

∥∥S0x
∥∥2

= cos2 θ
∥∥S0z̃

0
∥∥2

+ sin2 θ
∥∥S0(z̃0)⊥

∥∥2
, (A.6a)∥∥S0x

⊥∥∥2
= sin2 θ

∥∥S0z̃
0
∥∥2

+ cos2 θ
∥∥S0(z̃0)⊥

∥∥2
, (A.6b)

where the cross-terms vanish because

(z̃0)T ST0 S0(z̃0)⊥ = |I0|(z̃0)T Y0(z̃0)⊥ = λ1|I0|(z̃0)T (z̃0)⊥ = 0

following from the definition of (z̃0)⊥.

We next construct the following expression:

sin2 θ
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= sin2 θ
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cos2 θ
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0
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−
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− cos2 θ
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∥∥2 (A.7)

≤ 0.

Regarding the last inequality, since z̃0 maximizes the term z̃T0 Y0z̃0 = 1

|I0|
z̃T0 S

T
0 S0z̃0 ac-

cording to (A.4), then in (A.7) the first term ‖S0(z̃0)⊥‖2 − ‖S0z̃
0‖2 ≤ 0 holds for any unit

vector (z̃0)⊥ ∈ Rn. In addition, the second term − cos2 θ‖S0(z̃0)⊥‖2 ≤ 0, thus yielding

sin2 θ‖S0x‖2 − ‖S0x
⊥‖2 ≤ 0. For any nonzero x ∈ Rn, it holds that

sin2 θ = 1− cos2 θ ≤
∥∥S0x

⊥∥∥2∥∥S0x
∥∥2 . (A.8)
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Upon letting u = x⊥, the last inequality taken together with (A.1) concludes the proof of (2.28).

A.2 Proof of Lemma 2

Assume ‖x‖ = 1. Let s ∈ Rn be sampled uniformly at random on the unit sphere, which

has zero mean and covariance matrix In/n. Let also U ∈ Rn×n be a unitary matrix such that

Ux = e1, where e1 is the first canonical vector in Rn. It is then easy to verify that the following

holds for any fixed threshold 0 < τ < 1 [43]:

E[ssT |(sT x)2 > τ ] = UE[UT ssTU |(sTUUT x)2 > τ ]UT

(i)
= UE[s̃s̃T |(s̃T e1)2 > τ ]UT

= UE[s̃s̃T |s̃2
1 > τ ]UT

= U

[
E[s̃2

1|s̃2
1 > τ ] E[s̃1s̃

T
\1|s̃

2
1 > τ ]

E[s̃1s̃\1|s̃2
1 > τ ] E[s̃\1s̃

T
\1|s̃

2
1 > τ ]

]
UT

(ii)
= U

[
E[s̃2

1|s̃2
1 > τ ] 0T

0 E[s̃\1s̃
T
\1|s̃

2
1 > τ ]

]
UT

(iii)
= E[s̃2

2|s̃2
1 > τ ]In +

(
E[s̃2

1|s̃2
1 > τ ]− E[s̃2

2|s̃2
1 > τ ]

)
xxT

4
= C1In + C2xx

T (A.9)

with the constants C1 := E[s̃2
2|s̃2

1 > τ ] < 1−τ
n−1 , C2 := E[s̃2

1|s̃2
1 > τ ]− C1 > 0, and s\1 ∈ Rn−1

denoting the subvector of s ∈ Rn after removing the first entry from s. Here, the result (i)

follows upon defining s̃ := UT s, which obeys the uniformly spherical distribution too using the

rotational invariance. The equality (ii) is due to the zero-mean and symmetrical properties of the

uniformly spherical distribution. Finally, to derive (iii), we have used the fact x = Ue1 = u1,

the first column of U , which arises from UT x = e1 and UUT = In.

By the argument above, assume without loss of generality that x = e1. Consider now the

truncated vector s\1|(sT x)2 > τ , or equivalently, s\1|s2
1 > τ . It is then clear that s\1|s2

1 > τ is

bounded, and thus subgaussian; furthermore, the next hold

E[s\1|s2
1 > τ ] = 0 (A.10a)

E
[(
s\1|s2

1 > τ
)(
s\1|s2

1 > τ
)T ]

= C1In−1 (A.10b)
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where (A.10b) is obtained as a submatrix of the first term in (A.9) since the second term C2e1e
T
1

is removed.

Considering a unit vector x⊥ such that xT x⊥ = eT1 x
⊥ = 0, there exists a unit vector

d ∈ Rn−1 such that x⊥ =
[
0 dT

]T . Thus, it holds that

∥∥S0x
⊥∥∥2

=
∥∥∥S0

[
0 dT

]T ∥∥∥2
=
∥∥S0,\1d

∥∥2 (A.11)

where S0,\1 ∈ R|I
0|×(n−1) is obtained through deleting the first column in S0, which is denoted

by S0,1; that is, S0 =
[
S0,1 S0,\1

]
.

The rows of S0,\1 may therefore be viewed as independent realizations of the conditional

random vector sT\1|s
2
1 > τ , with the threshold τ being the |I0|-largest value in {yi/‖ai‖2}mi=1.

Standard concentration inequalities on the sum of random positive semi-definite matrices com-

posed of independent non-isotropic subgaussian rows [119, Rmk. 5.40] confirm that∥∥∥∥ 1

|I0|
ST0,\1S0,\1 − C1In−1

∥∥∥∥ ≤ σC1 ≤
(1− τ)σ

n− 1
(A.12)

holds with probability at least 1− 2e−cKn as long as |I0|/n is sufficiently large, where σ is a

numerical constant that can take arbitrarily small values, and cK > 0 is a universal constant.

Without loss of generality, let us work with σ := 0.005 in (A.12). Then for any unit vector

d ∈ Rn−1, the following inequality holds with probability at least 1− 2e−cKn:∣∣∣∣ 1

|I0|
dT ST0,\1S0,\1d− C1

∣∣∣∣ ≤ 0.01

n
(A.13)

for n ≥ 3. Therefore, one readily concludes that

∥∥S0x
⊥∥∥2

=
∣∣∣(x⊥)T ST Sx⊥

∣∣∣ ≤ 1.01|I0|
/
n (A.14)

holds with probability at least 1− 2e−cKn, provided that |I0|
/
n exceeds some constant. Note

that cK depends on the maximum subgaussian norm of rows of S, and we assume without loss

of generality cK ≥ 1/2. Hence, ‖S0u‖2 in (2.28) is upper bounded simply by letting u = x⊥

in (A.14).
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A.3 Proof of Lemma 3

We next pursue a meaningful lower bound for ‖S0x‖2 in (2.30). When x = e1, one has

‖S0x‖2 = ‖S0e1‖2 =
∑|I0|

i=1 s̄
2
i,1, where {s̄i,1}|I

0|
i=1 are entries of the first column of S0. It

is further worth mentioning that all squared entries of any spherical random vector obey the

Beta distribution with parameters α = 1
2 , and β = n−1

2 , i.e., s̄2
i,j ∼ Beta

(
1
2 ,

n−1
2

)
for all

i, j [19, Lemma 2]. Although they have closed-form probability density functions (pdfs) that

may facilitate deriving a lower bound, we take another route detailed as follows. A simple yet

useful inequality is established first.

Lemma 13. Given m fractions obeying 1 > p1
q1
≥ p2

q2
≥ · · · ≥ pm

qm
> 0, in which pi, qi > 0,

∀i ∈ [m], the following holds for all 1 ≤ k ≤ m

k∑
i=1

pi
qi
≥

k∑
i=1

p[i]

q[1]
(A.15)

where p[i] denotes the i-th largest one among {pi}mi=1, and hence, q[1] is the maximum in {qi}mi=1.

Proof. For any k ∈ [m], according to the definition of q[i], it holds that p[1] ≥ p[2] ≥ · · · ≥ p[k],

so
p[1]
q[1]
≥ p[2]

q[1]
≥ · · · ≥ p[k]

q[1]
. Considering q[1] ≥ qi, ∀i ∈ [m], and letting ji ∈ [m] be

the index such that pji = p[i], then pji
qji

=
p[i]
qji
≥ p[i]

q[1]
holds for any i ∈ [k]. Therefore,∑k

i=1
pji
qji

=
∑k

i=1
p[i]
qji
≥
∑k

i=1
p[i]
q[1]

. Note that
{
p[i]
qji

}k
i=1

comprise a subset of terms in
{
pi
qi

}m
i=1

.

On the other hand, according to our assumption,
∑k

i=1
pi
qi

is the largest among all sums of k

summands; hence,
∑k

i=1
pi
qi
≥
∑k

i=1
p[i]
qji

yields
∑k

i=1
pi
qi
≥
∑k

i=1
p[i]
q[1]

concluding the proof.

Without loss of generality and for simplicity of exposition, let us assume that indices of ai’s

have been re-ordered such that

a2
1,1

‖a1‖2
≥

a2
2,1

‖a2‖2
≥ · · · ≥

a2
m,1

‖am‖2
, (A.16)

where ai,1 denotes the first element of ai. Therefore, writing ‖S0e1‖2 =
∑|I0|

i=1 a
2
i,1/‖ai‖2, the

next task amounts to finding the sum of the |I0| largest out of all m entities in (A.16). Applying
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the result (A.15) in Lemma 13 gives

|I0|∑
i=1

a2
i,1

‖ai‖2
≥
|I0|∑
i=1

a2
[i],1

maxi∈[m] ‖ai‖2
, (A.17)

in which a2
[i],1 stands for the i-th largest entity in

{
a2
i,1

}m
i=1

.

Observe that for i.i.d. random vectors ai ∼ N
(
0, In

)
, the property P(‖ai‖2 ≥ 2.3n) ≤

e−n/2 holds for large enough n (e.g., n ≥ 20), which can be understood upon substituting

ξ := n/2 into the following standard result [73, Lemma 1]

P
(
‖ai‖2 − n ≥ 2

√
ξ + 2ξ

)
≤ e−ξ. (A.18)

In addition, one readily concludes that P
(
maxi∈[m] ‖ai‖ ≤

√
2.3n

)
≥ 1 −me−n/2. We will

henceforth build our subsequent proofs on this event without stating this explicitly each time

encountering it. Therefore, (A.17) can be lower bounded by

∥∥Sx∥∥2
=

|I0|∑
i=1

a2
i,1

‖ai‖2
≥
|I0|∑
i=1

a2
[i],1

maxi∈[m] ‖ai‖2
≥ 1

2.3n

|I0|∑
i=1

∣∣a[i],1

∣∣2 (A.19)

which holds with probability at least 1 − me−n/2. The task left for bounding ‖Sx‖2 is to

derive a meaningful lower bound for
∑|I0|

i=1 a
2
[i],1. Roughly speaking, because the ratio |I0|/m

is small, e.g., |I0|/m ≤ 1/5, a trivial result consists of bounding (1/|I0|)
∑|I0|

i=1 a
2
[i],1 by its

sample average (1/m)
∑m

i=1 a
2
[i],1. The latter can be bounded using its ensemble mean, i.e.,

E[a2
i,1] = 1, ∀i ∈ [I0], to yield (1/m)

∑m
i=1 a

2
[i],1 ≥ (1− ε)E[a2

i,1] = 1− ε, which holds with

high probability for some numerical constant ε > 0 [23, Lemma 3.1]. Therefore, one has a

candidate lower bound
∑|I0|

i=1 a
2
[i],1 ≥ (1− ε)|I0|. Nonetheless, this lower bound is in general

too loose, and it contributes to a relatively large upper bound on the wanted term in (2.28).

To obtain an alternative bound, let us examine first the typical size of the maximum in{
a2
i,1

}m
i=1

. Observe obviously that the modulus |ai,1| follows the half-normal distribution having

the pdf p(r) =
√

2/π · e−r2/2, r > 0, and it is easy to verify that

E[|ai,1|] =
√

2/π. (A.20)
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Then integrating the pdf from 0 to +∞ yields the corresponding accumulative distribution

function (cdf) expressible in terms of the error function P (|ai,1| > ξ) = 1 − erf (ξ/2), i.e.,

erf (ξ) := 2/
√
π ·
∫ ξ

0 e−r
2
dr. Appealing to a lower bound on the complimentary error function

erfc (ξ) := 1− erf (ξ) from [28, Thm. 2], one establishes that P (|ai,1| > ξ) = 1− erf (ξ/2) ≥
(3/5)e−ξ

2/2. Additionally, direct application of probability theory and Taylor expansion confirms

that

P
(

max
i∈[m]

|ai,1| ≥ ξ
)

= 1− [P (|ai,1| ≤ ξ)]m

≥ 1−
(

1− 0.6e−ξ
2/2
)m

≥ 1− e−0.6me−ξ
2/2
. (A.21)

Choosing now ξ :=
√

2 log n leads to

P
(

max
i∈[m]

|ai,1| ≥
√

2 log n
)
≥ 1− e−0.6m/n ≥ 1− o(1) (A.22)

which holds with the proviso that m/n is large enough, and the symbol o(1) represents a

small constant probability. Thus, provided that m/n exceeds some large constant, the event

maxi∈[m] a
2
i,1 ≥ 2 log n occurs with high probability. Hence, one may expect a tighter lower

bound than (1− ε0)|I0|, which is on the same order of m under the assumption that |I0|/m is

about a constant.

Although a2
i,1 obeys the Chi-square distribution with k = 1 degrees of freedom, its cdf is

rather complicated and does not admit a nice closed-form expression. A small trick is hence

taken in the sequel. Assume without loss of generality that both m and |I0| are even. Grouping

two consecutive a2
[i],1’s together, introduce a new variable ϑ[i] := a2

[2k−1],1 +a2
[2k],1, ∀k ∈ [m/2],

hence yielding a sequence of ordered numbers, i.e., ϑ[1] ≥ ϑ[2] ≥ · · · ≥ ϑ[m/2] > 0. Then, one

can equivalently write the wanted sum as

|I0|∑
i=1

a2
[i],1 =

|I0|/2∑
i=1

ϑ[i]. (A.23)

On the other hand, for i.i.d. standard normal random variables {ai,1}mi=1, let us consider

grouping randomly two of them and denote the corresponding sum of their squares by χk :=
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a2
ki,1

+ a2
kj ,1

, where ki 6= kj ∈ [m], and k ∈ [m/2]. It is self-evident that the χk’s are identically

distributed obeying the Chi-square distribution with k = 2 degrees of freedom, having the pdf

p (r) =
1

2
e−

r
2 , r ≥ 0, (A.24)

and the following complementary cdf (ccdf)

P(χk ≥ ξ) :=

∫ ∞
ξ

1

2
e−

r
2 dr = e−

ξ
2 , ∀ξ ≥ 0. (A.25)

Ordering all χk’s, summing the |I0|/2 largest ones, and comparing the resultant sum with the

one in (A.23) confirms that

|I0|/2∑
i=1

χ[i] ≤
|I0|/2∑
i=1

ϑ[i] =

|I0|∑
i=1

a2
[i],1, ∀|I0| ∈ [m]. (A.26)

Upon setting P(χk ≥ ξ) = |I0|/m, one obtains an estimate of χ|I0|/2, the (|I0|/2)-th

largest value in {χk}
m/2
k=1 as follows

χ̂|I0|/2 := 2 log
(
m
/
|I0|

)
. (A.27)

Furthermore, applying the Hoeffding-type inequality [119, Prop. 5.10] and leveraging the

convexity of the ccdf in (A.25), one readily establishes that

P
(
χ̂|I0|/2 − χ|I0|/2 > ξ

)
≤ e−

1
4
mξ2e−ξ(|I0|/m)2 , ∀ξ > 0. (A.28)

Taking without loss of generality ξ := 0.05χ̂|I0|/2 = 0.1 log
(
m
/
|I0|

)
gives

P
(
χ|I0|/2 < 0.95χ̂|I0|/2

)
≤ e−c0m (A.29)

for some universal constants c0, cχ > 0, and sufficiently large n such that |I0|/m & cχ > 0.

The remaining part in this section assumes that this event occurs.

Choosing ξ := 4 log n and substituting this into the ccdf in (A.25) leads to

P (χ ≤ 4 log n) = 1− 1/n2. (A.30)
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Notice that each summand in
∑|I0|/2

i=1 χ[i] ≥
∑m/2

i=1 χi1Ẽi is Chi-square distributed, and hence

could be unbounded, so we choose to work with the truncation
∑m/2

i=1 χi1Ẽi , where the 1Ẽi’s are

independent copies of 1Ẽ , and 1Ẽ denotes the indicator function for the ensuing events

Ẽ :=
{
χ ≥ χ̂|I0|/2

}
∩ {χ ≤ 4 log n} . (A.31)

Apparently, it holds that
∑|I0|/2

i=1 χ[i] ≥
∑m/2

i=1 χi1Ẽi . One further establishes that

E
[
χi1Ẽi

]
:=

∫ 4 logn

χ̂|I0|/2

1

2
re−r/2dr

=
(
χ̂|I0|/2+ 2

)
e
−χ̂|I0|/2/2− (4 log n+ 2) e−2 logn

=
2|I0|
m

[
1 + log

(
m
/
|I0
)]
− (4 log n+ 2)

n2
. (A.32)

The task of bounding
∑|I0|

i=1 a
2
[i],1 in (A.26) now boils down to bounding

∑m/2
i=1 χi1Ẽi from its

expectation in (A.32). A convenient way to accomplish this is using the Bernstein inequality [119,

Prop. 5.16], that deals with bounded random variables. That also justifies introducing the upper-

bound truncation on χ in (A.31). Specifically, define

ϑi := χi1Ẽi − E
[
χi1Ẽi

]
, 1 ≤ i ≤ m/2. (A.33)

Thus, {ϑi}m/2i=1 are i.i.d. centered and bounded random variables following from the mean-

subtraction and the upper-bound truncation. Further, according to the ccdf (A.25) and the

definition of sub-exponential random variables [119, Def. 5.13], the terms {ϑi}m/2i=1 are sub-

exponential. Then, the following ∣∣∣m/2∑
i=1

ϑi

∣∣∣ ≥ τ (A.34)

holds with probability at least 1−2e−cs min(τ/Ks,τ2/K2
s), in which cs > 0 is a universal constant,

and Ks := maxi∈[m/2] ‖ϑi‖ψ1 represents the maximum subexponential norm of the ϑi’s.

Indeed, Ks can be found as follows [119, Def. 5.13]:

Ks := sup
p≥1

p−1 (E [|ϑi|p])1/p
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≤
(

4 log n− 2 log
(
m
/
|I0|

)) [
|I0|

/
m− 1/n2

]
≤ 2|I0|

m
log
(
n2|I0|

/
m
)

≤ 4|I0|
m

log n. (A.35)

Choosing τ := 8|I0|/(csm) · log2 n in (A.34) yields

m/2∑
i=1

χi1Ẽi ≥ |I
0|
[
1 + log

(
m
/
|I0|

)]
− 8|I0|/(csm) · log2 n

−m (2 log n+ 1)/n2

≥ (1− εs)|I0|
[
1 + log

(
m
/
|I0|

)]
(A.36)

for some small constant εs > 0, which holds with probability at least 1−me−n/2−e−c0m−1/n2

as long as m/n exceeds some numerical constant and n is sufficiently large. Therefore, combin-

ing (A.19), (A.26), and (A.36), one concludes that the following holds with high probability

∥∥S0x
∥∥2

=

|I0|∑
i=1

a2
i,1

‖ai‖2
≥ (1− εs)

|I0|
2.3n

[
1 + log

(
m
/
|I0|

)]
. (A.37)

Taking εs := 0.01 without loss of generality concludes the proof of Lemma 3.

A.4 Proof of Lemma 5

Let us first prove the argument for a fixed pair h and x, such that h and z are independent

of {ai}mi=1, and then apply a covering argument. To start, introduce a Lipschitz-continuous

counterpart for the discontinuous indicator function [32, A.2]

χE(θ) :=


1, |θ| ≥

√
1.01

1+γ ,

100(1 + γ)2θ2 − 100, 1
1+γ ≤ |θ| <

√
1.01

1+γ ,

0, |θ| < 1
1+γ

(A.38)
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with Lipschitz constantO(1). Recall Ei =
{∣∣∣aTi z
aTi x

∣∣∣ ≥ 1
1+γ

}
, so it holds that 0 ≤ χE

(∣∣∣aTi z
aTi x

∣∣∣) ≤
1Ei for any x ∈ Rn and h ∈ Rn, thus yielding

1

m

m∑
i=1

(
aTi h

)2
1Ei ≥

1

m

m∑
i=1

(
aTi h

)2
χE

(∣∣∣∣aTi zaTi x

∣∣∣∣)

=
1

m

m∑
i=1

(
aTi h

)2
χE

(∣∣∣∣1 +
aTi h

aTi x

∣∣∣∣) . (A.39)

By homogeneity and rotational invariance of normal distributions, it suffices to prove the case

where x = e1 and ‖h‖/‖x‖ = ‖h‖ ≤ ρ. According to (A.39), lower bounding the first term

in (2.52) can be achieved by lower bounding
∑m

i=1(aTi h)2χE

(∣∣∣1 +
aTi h

aTi x

∣∣∣) instead. To that end,

let us find the mean of
(
aTi h

)2
χE

(∣∣∣1 +
aTi h

aTi x

∣∣∣). Note that
(
aTi h

)2 and χE
(∣∣∣1 +

aTi h

aTi x

∣∣∣) are

dependent. Introduce an orthonormal matrix Uh that contains hT /‖h‖ as its first row, namely,

Uh :=

[
hT /‖h‖
Ũh

]
(A.40)

for some orthogonal matrix Ũh ∈ R(n−1)×n such that Uh is orthonormal. Moreover, define

h̃ := Uhh, and ãi := Uhai; and let ãi,1 and ãi,\1 denote the first entry and the remaining

entries in the vector ãi; likewise for h̃. Then, for any h such that ‖h‖ ≤ ρ, we have

E

[
(aTi h)2χE

(∣∣∣∣1 +
aTi h

aTi x

∣∣∣∣)]
= E

[
(ãi,1h̃1)2χE

(∣∣∣∣1+
aTi h

aTi x

∣∣∣∣)]+E

[
(ãTi,\1h̃\1)2χE

(∣∣∣∣1+
aTi h

aTi x

∣∣∣∣)]
= h̃2

1 E

[
ã2
i,1 χE

(∣∣∣∣1 +
aTi h

ai,1

∣∣∣∣)]+ E
[
(ãTi,\1h̃\1)2

]
E

[
χE

(∣∣∣∣1 +
aTi h

ai,1

∣∣∣∣)]
= h̃2

1E

[
ã2
i,1χE

(∣∣∣∣1 +
aTi h

ai,1

∣∣∣∣)]+
∥∥h̃\1∥∥2

E

[
χE

(∣∣∣∣1+
aTi h

ai,1

∣∣∣∣)]
≥
(
h̃2

1+‖h̃\1‖2
)

min

{
E

[
a2
i,1χE

(∣∣∣∣∣1 + h1 +
aTi,\1h\1

ai,1

∣∣∣∣∣
)]

,

E

[
χE

(∣∣∣∣∣1 + h1 +
aTi,\1h\1

ai,1

∣∣∣∣∣
)]}
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≥ ‖h‖2 min

{
E

[
a2
i,1χE

(∣∣∣∣1− ρ+
ai,2
ai,1

ρ

∣∣∣∣)] , E

[
χE

(
1− ρ+

ai,2
ai,1

ρ

)]}
= (1− ζ1)‖h‖2 (A.41)

where the second equality follows from the independence between ãTi,\1h̃\1 and aTi h, the second

inequality holds for ρ ≤ 1/10 and γ ≥ 1/2, and the last equality comes from the definition of ζ1

in (A.33). Notice that % := (aTi h)2χE

(∣∣∣1 +
aTi h

aTi x

∣∣∣) ≤ (aTi h)2 d
= ‖h‖2a2

i,1 is a subexponential

variable, and thus its subexponential norm ‖%‖ψ1 := supp≥1 [E(|%|p)]1/p is finite.

Direct application of the Berstein-type inequality [119, Prop. 5.16] confirms that for any

ε > 0, the following

1

m

m∑
i=1

(
aTi h

)2
χE

(∣∣∣∣1 +
aTi h

aTi x

∣∣∣∣) ≥ E

[(
aTi h

)2
χE

(∣∣∣∣1 +
aTi h

aTi x

∣∣∣∣)]− ε‖h‖2
≥ (1− ζ1 − ε) ‖h‖2 (A.42)

holds with probability at least 1 − e−c5mε
2

for some numerical constant c5 > 0 provided that

ε ≤ ‖%‖ψ1 by assumption.

To obtain uniform control over all vectors z and x such that ‖z − x‖ ≤ ρ, the net covering

argument is applied [119, Def. 5.1]. Let Sε be an ε-net of the unit sphere, Lε be an ε-net of [0, ρ],

and define

Nε := {(z, h, t) : (z0, h0, t0) ∈ Sε × Sε × Lε} . (A.43)

Since the cardinality |Sε| ≤ (1 + 2/ε)n [119, Lemma 5.2], then

|Nε| ≤ (1 + 2/ε)2n ρ/ε ≤ (1 + 2/ε)2n+1 (A.44)

due to the fact that ρ/ε < 2/ε < 1 + 2/ε for 0 < ρ < 1.

Consider now any (z, h, t) obeying ‖h‖ = t ≤ ρ. There exists a pair (z0, h0, t0) ∈ Nε
such that ‖z − z0‖, ‖h− h0‖, and |t− t0| are each at most ε. Taking the union bound yields

1

m

m∑
i=1

(
aTi h0

)2
χE

(∣∣∣∣1 +
aTi h0

aTi x

∣∣∣∣)

≥ 1

m

m∑
i=1

(
aTi h0

)2
χE

(∣∣∣∣1− t0 +
ai,2
ai,1

t0

∣∣∣∣)
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≥ (1− ζ1 − ε) ‖h0‖2, ∀ (z0, h0, t0) ∈ Nε (A.45)

with probability at least 1− (1 + 2/ε)2n+1 e−c5ε
2m ≥ 1− e−c0m, which follows by choosing m

such that m ≥
(
c6 · ε−2 log ε−1

)
n for some constant c6 > 0.

Recall that χE (τ) is Lipschitz continuous, thus∣∣∣∣ 1

m

m∑
i=1

(
aTi h

)2
χE

(∣∣∣∣1 +
aTi h

aTi x

∣∣∣∣)− (aTi h0

)2
χE

(∣∣∣∣1 +
aT h0

aTi x

∣∣∣∣) ∣∣∣∣
.

1

m

m∑
i=1

∣∣∣(aTi h)2 − (aTi h0

)2∣∣∣
=

1

m

m∑
i=1

∣∣aTi (hhT − h0h
T
0

)
ai
∣∣

. c7

m∑
i=1

∣∣hhT − h0h
T
0

∣∣
≤ 2.5c7 ‖h− h0‖ ‖h‖

≤ 2.5c7ρε (A.46)

for some numerical constant c7 and provided that ε < 1/2 and m ≥
(
c6 · ε−2 log ε−1

)
n, where

the first inequality arises from the Lipschitz property of χE(τ), the second uses the results in

Lemma 1 in [32], and the third from Lemma 2 in [32].

Putting all results together confirms that with probability exceeding 1− 2e−c0m, we have

1

m

m∑
i=1

(
aTi h

)2
χE

(∣∣∣∣1 +
aTi h

aTi x

∣∣∣∣) ≥ [1− ζ1 − (1 + 2.5c7ρ) ε] ‖h‖2 (A.47)

for all vectors ‖h‖ / ‖x‖ ≤ ρ, concluding the proof.
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A.5 Proof of Lemma 6

Similar to the proof in Sec. A.4, it is convenient to work with the following auxiliary function

instead of the discontinuous indicator function

χD(θ) :=


1, |θ| ≥ 2+γ

1+γ

−100
(

1+γ
2+γ

)2
θ2 + 100,

√
0.99 · 2+γ

1+γ ≤|θ| <
2+γ
1+γ

0, |θ| <
√

0.99 · 2+γ
1+γ

(A.48)

which is Lipschitz continuous in θ with Lipschitz constant O(1). For Di =
{∣∣∣aTi h
aTi x

∣∣∣ ≥ 2+γ
1+γ

}
,

it holds that 0 ≤ 1Di ≤ χD

(∣∣∣aTi h
aTi x

∣∣∣) for any x ∈ Rn and h ∈ Rn. Assume without loss of

generality that x = e1. Then for γ > 0 and ρ ≤ 1/10, it holds that

1

m

m∑
i=1

1{ |aT
i

h|

|aT
i

x|
≥ 2+γ

1+γ

} ≤ 1

m

m∑
i=1

χD

(∣∣∣∣aTi haTi x

∣∣∣∣)

=
1

m

m∑
i=1

χD

(∣∣∣∣aTi hai,1

∣∣∣∣)

=
1

m

m∑
i=1

χD

(∣∣∣∣∣h1 +
aTi,\1h\1

ai,1

∣∣∣∣∣
)

=
1

m

m∑
i=1

χD

(∣∣∣∣h1 +
ai,2
ai,1

∥∥h\1∥∥∣∣∣∣)
(i)

≤ 1

m

m∑
i=1

1{∣∣∣∣h1+
ai,2
ai,1
‖h\1‖

∣∣∣∣≥√0.99· 2+γ
1+γ

} (A.49)

where the last inequality arises from the definition of χD. Note that ai,2/ai,1 obeys the standard

Cauchy distribution, i.e., ai,2/ai,1 ∼ Cauchy(0, 1) [45]. Transformation properties of Cauchy

distributions assert that h1 +
ai,2
ai,1
‖h\1‖ ∼ Cauchy(h1, ‖h\1‖) [75]. Recall that the cdf of a

Cauchy distributed random variable w ∼ Cauchy (µ0, α) is given by [45]

F (w;µ0, α) =
1

π
arctan

(
w − µ0

α

)
+

1

2
. (A.50)

It is easy to check that when ‖h\1‖ = 0, the indicator function 1Di = 0 due to |h1| ≤
ρ <

√
0.99(2 + γ)/(1 + γ). Consider only ‖h\1‖ 6= 0 next. Define for notational brevity
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w := ai,2/ai,1, α := ‖h\1‖, as well as µ0 := h1/α and w0 :=
√

0.99 2+γ
α(1+γ) . Then,

E[1{|µ0+w|≥w0}] = 1−
[
F (w0;µ0, 1)− F (−w0;µ0, 1)

]
= 1− 1

π

[
arctan(w0 − µ0)− arctan(−w0 − µ0)

]
(i)
=

1

π
arctan

(
2w0

w2
0 − µ2

0 − 1

)
(ii)

≤ 1

π
· 2w0

w2
0 − µ2

0 − 1

(iii)

≤ 1

π
· 2
√

0.99ρ(2 + γ)/(1 + γ)

0.99(2 + γ)2/(1 + γ)2 − ρ2

≤ 0.0646 (A.51)

for all γ > 0 and ρ ≤ 1/10. In deriving (i), we used the property arctan(u) + arctan(v) =

arctan
(
u+v
1−uv

)
(mod π) for any uv 6= 1. Concerning (ii), the inequality arctan(x) ≤ x for

x ≥ 0 is employed. Plugging given parameter values and using ‖h\1‖ ≤ ‖h‖ ≤ ρ confirms

(iii). Next, 1{|µ0+w|≥w0} is bounded; and it is known that all bounded random variables are

subexponential. Thus, upon applying the Bernstein-type inequality [119, Cor. 5.17], the next

holds with probability at least 1−e−c5mε
2

for some numerical constant c5 > 0 and any sufficiently

small ε > 0:

1

m

m∑
i=1

1{ |aTi h|
|aTi x|≥

2+γ
1+γ

} ≤ 1

m

m∑
i=1

1{∣∣∣∣h1+
ai,2
ai,1
‖h\1‖

∣∣∣∣≥√0.99 2+γ
1+γ

}

≤ (1 + ε)E
[
1{∣∣∣∣h1+

ai,2
ai,1
‖h\1‖

∣∣∣∣≥√0.99 2+γ
1+γ

}]
≤ 1 + ε

π
· 2
√

0.99ρ(2 + γ)/(1 + γ)

0.99(2 + γ)2/(1 + γ)2 − ρ2
. (A.52)

On the other hand, it is easy to establish that the following holds true for any fixed h ∈ Rn:

E
[
(aTi h)4

]
= E

[
a4
i,1

]
‖h‖4 = 3 ‖h‖4 (A.53)

which has also been used in Lemma 1 [32] and Lemma 6.1 [117]. Furthermore, recalling

our working assumption ‖ai‖ ≤
√

2.3n and ‖h‖ ≤ ρ‖x‖, the random variables (aTi h)4

are bounded, and thus they are subexponential [119]. Appealing again to the Bernstein-type
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inequality for subexponential random variables [119, Prop. 5.16] and provided that m/n >

c6 · ε−2 log ε−1 for some numerical constant c6 > 0, we have

1

m

m∑
i=1

(
aTi h

)4 ≤ 3(1 + ε) ‖h‖4 (A.54)

which holds with probability exceeding 1− e−c5mε
2

for some universal constant c5 > 0 and any

sufficiently small ε > 0.

Combining results (A.52), (A.54), leveraging the Cauchy-Schwartz inequality, and consid-

ering Di ∩ Ki only consisting of a spherical cap, the following holds for any ρ ≤ 1/10 and

γ > 0:

1

m

m∑
i=1

(
aTi h

)2
1Di∩Ki ≤

√√√√ 1

m

m∑
i=1

(
aTi h

)4√√√√√1

2
· 1

m

m∑
i=1

1{ |aTi h|
|aTi x|≥

2+γ
1+γ

}

≤
√

3(1 + ε) ‖h‖4
√

1 + ε

π
·
√

0.99ρ(2 + γ)/(1 + γ)

0.99(2 + γ)2/(1 + γ)2 − ρ2

∆
= (ζ ′2 + ε′) ‖h‖2 (A.55)

where ζ ′2 := 0.9748
√
ρτ/(0.99τ2 − ρ2) with τ := (2+γ)/(1+γ), which holds with probability

at least 1− 2e−c0m. The latter arises upon choosing c0 ≤ c5ε
2 in 1− 2e−c5mε

2
, which can be

accomplished by taking m/n sufficiently large.



Appendix B

Proofs for Chapter 3

B.1 Proof of Lemma 8

Let {b∗i }
|S|
i=1 denote rows of B ∈ R|S|×n, which are obtained by scaling rows of AS :=

{a∗i }i∈S ∈ R|S|×n by weights {wi = ψ
γ/2
i }i∈S [cf. (3.13)]. Since x = e1, we have ψ =

|Ae1| = |A1|, while the index set S depends solely on the first column ofA, and is independent

of the other columns of A. Using this, partition accordingly AS := [AS1 A
S
r ], where AS1 ∈

R|S|×1 denotes the first column of AS , and ASr ∈ R|S|×(n−1) collects the remaining ones.

Likewise, partition B = [B1 Br] with B1 ∈ R|S|×1 and Br ∈ R|S|×(n−1). By this argument,

rows of AS are mutually independent, and Gaussian distributed with mean 0 and covariance

matrix In−1. Furthermore, the weights ψ
γ/2
i = |a∗i e1|γ/2 = |ai,1|γ/2, ∀i ∈ S are also independent

of the entries in AS . As a consequence, rows of Br are mutually independent, and one can

explicitly write its i-th row as br,i = |a∗[i]e1|γ/2a[i],\1 = |a[i],1|γ/2a[i],\1, where a[i],\1 ∈ Rn−1

is obtained after removing the first entry of a[i]. It is easy to verify that E[br,i] = 0, and

E[br,ib
∗
r,i] = CγIn−1, where the constant Cγ :=

√
2γ/πΓ(γ+1/2)‖x‖γ =

√
2γ/πΓ(γ+1/2), and

Γ(·) is the Gamma function.

Given x∗x⊥ = e∗1x
⊥ = 0, one can write x⊥ = [0 r∗]∗ with any unit vector r ∈ Rn−1;

hence,

‖Bx⊥‖2 = ‖B[0 r∗]∗‖2 = ‖Brr‖2 (B.1)

with independent sub-Gaussian rows br,i = |aj,1|γ/2aj,\1 if 0 ≤ γ ≤ 1. Standard concentration

134
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results on the sum of random positive semi-definite matrices composed of independent non-

isotropic sub-Gaussian rows [119, Rmk. 5.40.1] assert that∥∥∥∥ 1

|S|
B∗rBr − CγIn−1

∥∥∥∥ ≤ δ (B.2)

holds with probability at least 1−2e−c5n provided that |S|/n is larger than some positive constant.

Here, δ > 0 is a numerical constant that can take arbitrarily small values, and c5 > 0 is a constant

depending on δ. With no loss of generality, take δ := 0.01Cγ in (B.2). For any unit vector

r ∈ Rn−1, the following holds with probability at least 1− 2e−c5n∥∥∥∥ 1

|S|
r∗B∗rBrr − Cγr∗r

∥∥∥∥ ≤ δr∗r = δ (B.3)

or

‖Brr‖2 = r∗B∗rBrr ≤ 1.01Cγ |S|. (B.4)

Taking (B.4) back to (B.1) confirms that

‖Bx⊥‖2 ≤ 1.01Cγ |S| (B.5)

holds with probability at least 1−2e−c5n if |S|/n exceeds some constant. Note that c5 depends on

the maximum sub-Gaussian norm of the rows bi inBr, and we assume without loss of generality

c5 ≥ 1/2. Therefore, one confirms that the numerator ‖Bu‖2 in (3.14) is upper bounded after

replacing x⊥ with u in (B.5).

B.2 Proof of Lemma 9

This section is devoted to obtaining a meaningful lower bound for the denominator ‖Bx‖2

in (3.17). Note first that

‖Bx‖2 =

|S|∑
i=1

‖b∗ix‖2 =

|S|∑
i=1

ψγ[i]|a
∗
[i]x|

2 =

|S|∑
i=1

|a∗[i]x|
2+γ .
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Taking without loss of generality x = e1, the term on the right side of the last equality reduces to

‖Bx‖2 =

|S|∑
i=1

|a[i],1|2+γ . (B.6)

Since a[i],1 follows the standardized normal distribution, the probability density function (pdf) of

random variables |a[i],1|2+γ can be given in closed form as

p(t) =

√
2

π
· 1

2 + γ
t
− 1+γ

2+γ e−
1
2
t

2
2+γ

, t > 0 (B.7)

which is rather complicated and whose cumulative density function (cdf) does not come in closed

form in general. Therefore, instead of dealing with the pdf in (B.7) directly, we shall take a

different route by deriving a lower bound that is a bit looser yet suffices for our purpose.

Since |a[|S|],1| ≤ · · · ≤ |a[2],1| ≤ |a[1],1|, then it holds for all 1 ≤ i ≤ |S| that |a[i],1|2+γ ≥
|a[|S|],1|γa2

[i],1, which yields

‖Bx‖2 =

|S|∑
i=1

|a[i],1|2+γ ≥ |a[|S|],1|γ
|S|∑
i=1

a2
[i],1. (B.8)

We will next demonstrate next that deriving a lower bound for ‖Bx‖2 suffices to derive a lower

bound for the summation on the right hand side (B.8). The latter can be achieved by appealing to

a result in [129, Lemma 3], which for completeness is included in the following.

Lemma 14. For an arbitrary unit-norm vector x ∈ Rn, let ψi = |a∗ix|, 1 ≤ i ≤ m be m

noiseless measurements. Then with probability at least 1− e−c2m, the following holds

|S|∑
i=1

a2
[i],1 ≥ 0.99|S|

[
1 + log(m/|S|)

]
(B.9)

provided that m ≥ c0|S| ≥ c1n for some numerical constants c0, c1, c2 > 0.

Combining the results in Lemma 14 and (B.8), one further deduces that

‖Bx‖2 ≥ |a[|S|],1|γ
|S|∑
i=1

a2
[i],1 ≥ |a[|S|],1|γ · 0.99|S|

[
1 + log(m/|S|)

]
. (B.10)
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The task remains to estimate the size of |a[|S|],1|, which we recall is the |S|-th largest among

the m independent realizations {ψi = |ai,1|}mi=1. Taking γ = −1 in (B.7) gives the pdf of the

half-normal distribution

p(t) =

√
2

π
e−

1
2
t2 , t > 0 (B.11)

whose corresponding cdf is

F (τ) = erf(τ/
√

2). (B.12)

Setting F (τ|S|) := 1− |S|/m or using the complementary cdf |S|/m := erfc(τ/
√

2) based

on the complementary error function gives rise to an estimate of the size of the |S|-th largest (or

equivalently, the (m− |S|)-th smallest) entry in the m realizations, namely

τ|S| =
√

2 erfc−1(|S|/m) (B.13)

where erfc−1(·) represents the inverse complementary error function. In the sequel, we show

that the deviation of the |S|-th largest realization ψ|S| from its expected value τ|S| in (B.13) is

bounded with high probability.

For random variable ψ = |a| with a obeying the standard Gaussian distribution, consider

the event ψ ≤ τ|S| − δ for a fixed constant δ > 0. Define the indicator random variable

χ := 1{ψ≤τ|S|−δ}, whose expectation can be obtained by substituting τ = τ|S| − δ into the pdf

in (B.12) as

E[χi] = erf(τ|S|−δ/
√

2). (B.14)

Considering now the m independent copies {χi = 1{ψi≤τ|S|−δ}}
m
i=1 of χ, the following holds

P(ψ|S| ≤ τ|S| − δ) = P
( m∑
i=1

χi ≤ m− |S|
)

= P
( 1

m

m∑
i=1

(χi − E[χi])≤1− |S|
m
−E[χi]

)
Clearly, since random variables χi are bounded, they are subgaussian [119]. For notational

brevity, let t := 1−|S|/m−E[χi] = 1−|S|/m−erf(τ|S|−δ/
√

2). Appealing to a large deviation
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inequality for sums of independent sub-Gaussian random variables, one establishes that

P(ψ|S| ≤ τ|S| − δ) = P
( 1

m

m∑
i=1

(χi−E[χi]) ≤1− |S|
m
− E[χi]

)
≤ e−c5mt

2
(B.15)

where c5 > 0 is some absolute constant. On the other hand, using the definition of the error

function and properties of integration gives rise to

t = 1− |S|/m− erf(τ|S|−δ/
√

2) =
2√
π

∫ τ|S|/
√
2

(τ|S|−δ)/
√
2

e−s
2
ds ≥

√
2

π
δe−

τ2|S|
2 ≥

√
2

π
δ. (B.16)

Taking the results in (B.15) and (B.16) together, one concludes that fixing any constant δ > 0,

the following holds with probability at least 1− e−c2m:

ψ|S| ≥ τ|S| − δ ≥
√

2 erfc−1(|S|/m)− δ

where c2 := 2/π · c5δ
2. Furthermore, choosing without loss of generality δ := 0.01τ|S| above

leads to ψ|S| ≥ 1.4 erfc−1(|S|/m).

Substituting the last inequality into (B.10), and under our working assumption |S|/m ≤ 0.25,

one readily obtains that

‖Bx‖2 ≥ [1.4 erfc−1(|S|/m)]γ · 0.99|S|
[
1 + log(m/|S|)

]
≥ 0.99 · 1.14γ |S|

[
1 + log(m/|S|)

]
which holds with probability exceeding 1− e−c2m for some constant c2 > 0, thus concluding

the proof of Lemma 9.

B.3 Proof of Proposition 9

To proceed, let us introduce the following events for all i = 1, 2, . . . , m:

Di :=
{

(a∗ix)(a∗i z) < 0
}

(B.17)

Ei :=

{
|a∗i z|
|a∗ix|

≥ 1

1 + η

}
(B.18)
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for some fixed constant η > 0, in which the former corresponds to the gradients involving

wrongly estimated signs, namely a∗i z
|a∗i z|

6= a∗ix
|a∗ix|

, and the second will be useful for deriving error

bounds. Based on the definition of Di and with 1Di denoting the indicator function of the event

Di, we have

〈`rw(z),h〉 =
1

m

m∑
i=1

wi

(
a∗i z − |a∗ix|

a∗i z

|a∗i z|

)
(a∗ih)

=
1

m

m∑
i=1

wi

(
a∗ih+ a∗ix− |a∗ix|

a∗i z

|a∗i z|

)
(a∗ih)

=
1

m

m∑
i=1

wi(a
∗
ih)2 +

1

m

m∑
i=1

2wi
(
a∗ix

)
(a∗ih)1Di

≥ 1

m

m∑
i=1

wi(a
∗
ih)2 − 1

m

m∑
i=1

2wi
∣∣a∗ix∣∣∣∣a∗ih∣∣1Di . (B.19)

In the following, we will derive a lower bound for the term on the right hand side of (B.19).

Specifically, a lower bound for the first term (1/m)
∑m

i=1wi(a
∗
ih)2 and an upper bound for

the second term (1/m)
∑m

i=1 2wi|a∗ix
∣∣∣∣a∗ih|1Di will be obtained, based on Lemmas 15 and 16,

with their proofs postponed to Appendix B.4 and Appendix B.5, respectively.

Lemma 15. Fix fixed η, β > 0, and any sufficiently small constant ε > 0, the following holds

with probability at least 1− 2e−c5ε
2m

1

m

m∑
i=1

wi(a
∗
ih)2 ≥ 1− ζ1 − ε

1 + β(1 + η)
‖h‖2 (B.20)

with wi = 1/[1 + β/(|a∗i z|/|a∗ix|)] for all 1 ≤ i ≤ m, provided that m/n > (c6 · ε−2 log ε−1)

for certain numerical constants c5, c6 > 0.

Now we turn to the second term in (B.19). For ease of exposition, let us first introduce the

following events

Bi :=
{
|a∗ix| < |a∗ih| ≤ (k + 1)|a∗ix|

}
(B.21)

Oi :=
{

(k + 1)|a∗ix| < |a∗ih|
}

(B.22)
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for all 1 ≤ i ≤ m and some fixed constant k > 0. The second term can be bounded as follows

1

m

m∑
i=1

2wi
∣∣a∗ix∣∣∣∣a∗ih∣∣1Di ≤ 1

m

m∑
i=1

wi
[
(a∗ix)2 + (a∗ih)2

]
1{(a∗i z)(a∗ix)<0}

=
1

m

m∑
i=1

wi
[
(a∗ix)2 + (a∗ih)2

]
1{(a∗ih)(a∗ix)+(a∗ix)2<0}

≤ 1

m

m∑
i=1

wi
[
(a∗ix)2 + (a∗ih)2

]
1{|a∗ix|<|a∗ih|}

≤ 2

m

m∑
i=1

wi(a
∗
ih)21{|a∗ix|<|a∗ih|}

=
2

m

m∑
i=1

wi(a
∗
ih)21{|a∗ix|<|a∗ih|≤(k+1)|a∗ix|}

+
2

m

m∑
i=1

wi(a
∗
ih)21{(k+1)|a∗ix|<|a∗ih|}

=
2

m

m∑
i=1

wi(a
∗
ih)21Bi +

2

m

m∑
i=1

wi(a
∗
ih)21Oi (B.23)

where the first equality is derived by substituting z = h + x according to the definition of h,

the second event suffices for (a∗ih)(a∗ix) + (a∗ix)2 < 0, and the second equality follows from

writing the indicator function 1{|a∗ix|<|a∗ih|} as the summation of two indicator functions of two

events 1{|a∗ix|<|a∗ih|≤(k+1)|a∗ix|} and 1{|a∗ih|>(k+1)|a∗ix|}.

The task so far remains to derive upper bounds for the two terms on the right hand side of

(B.23), which leads to Lemma 16.

Lemma 16. Fixing a fixed k > 0, define ζ2 to be the maximum of E[wi] in (B.32) for % = 0.01

and ν = 0.1, which depends only on k. For any ε > 0, if m/n > c6ε
−2 log ε−1, the following

hold simultaneously with probability at least 1− c3e−c2ε
2m

1

m

m∑
i=1

wi(a
∗
ih)21Oi ≤ (ζ2 + ε)‖h‖2 (B.24)

and
1

m

m∑
i=1

wi(a
∗
ih)21Bi ≤

0.1271− ζ2 + ε

1 + β/k
‖h‖2 (B.25)
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for all h ∈ Rn obeying ‖h‖/‖x‖ ≤ 1/10, where c1, c2, c3 > 0 are some universal constants.

Substituting (B.20), (B.23), and (B.24)-(B.25) established in Lemmas 15 and 16 back into

(B.19), we conclude that

〈`rw(z),h〉 ≥ 1

m

m∑
i=1

wi(a
∗
ih)21Ei −

1

m

m∑
i=1

2wi
∣∣a∗ix∣∣∣∣a∗ih∣∣1Di

= ζe‖h‖2 (B.26)

which will be rendered positive, provided that β > 0 is small enough, and that parameters

η, k > 0 are suitably chosen.

B.4 Proof of Lemma 15

Plugging in the weighting parameters wi = 1
1+β/(|a∗i z|/|a∗ix|)

and based on the definition of Ei,
the first term in (B.19) can be lower bounded as

1

m

m∑
i=1

wi(a
∗
ih)2 ≥ 1

m

m∑
i=1

(a∗ih)21Ei
1 + β/(|a∗i z|/|a∗ix|)

(B.27)

≥ 1

m

m∑
i=1

1

1 + β(1 + η)
(a∗ih)21{ |a∗

i
z|

|a∗
i
x|≥

1
1+η

}
=

1

1 + β(1 + η)
· 1

m

m∑
i=1

(a∗ih)21Ei (B.28)

where the first inequality arises from dropping some nonnegative terms from the left hand side,

and the second one after replacing the ratio |a∗i z|/|a∗ix| in the weights by its lower bound

1/(1 + η) because the weights are monotonically increasing functions of |a∗i z|/|a∗ix|. Using

[129, Lemma 5], the last term in (B.28) can be further bounded by

1

m

m∑
i=1

wi(a
∗
ih)2 ≥ 1

1 + β(1 + η)
· 1

m

m∑
i=1

(a∗ih)21Ei

≥ 1− ζ1 − ε
1 + β(1 + η)

‖h‖2 (B.29)
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for any fixed sufficiently small constant ε > 0, which holds with probability at least 1−2e−c5ε
2m,

if m > (c6 · ε−2 log ε−1)n.

B.5 Proof of Lemma 16

The proof is adapted from [147, Lemma 9]. We first prove the bound (B.24) for any fixed h

obeying ‖h‖ ≤ ‖x‖/10, and subsequently develop a uniform bound at the end of this section.

The bound (B.25) can be derived directly after subtracting the bound in (B.24) with k from that

bound with k = 0, followed by an application of the Bernstein-type sub-exponential tail bound

[119]. We only discuss the first bound (B.24). Because of the discontinuity hence non-Lipschitz

of the indicator functions, let us approximate them by a sequence of auxiliary Lipschitz functions.

Specifically, with some constant % > 0, define for all 1 ≤ i ≤ m the ensuing continuous

functions

χi(s) :=


s, s > (1 + k)2(a∗ix)2

1
%

[s−(k+1)2(a∗ix)2]

+(k+1)2(a∗ix)2,
(1−%)(k+1)2(a∗ix)2≤s≤(k+1)2(a∗ix)2

0, otherwise.

(B.30)

Clearly, all χi(s)’s are random Lipschitz functions with constant 1/%. Furthermore, it is easy to

verify that

|a∗ih|21{(k+1)|a∗ix|<|a∗ih|} ≤ χi(|a
∗
ih|2) ≤ |a∗ih|21{√1−%(k+1)|a∗ix|<|a∗ih|}. (B.31)

Since the second term involves the addition event Gi in (B.18), define

wi :=
|a∗ih|2

‖h‖2
1{√1−%(k+1)|a∗ix|<|a∗ih|}

for 1 ≤ i ≤ m, and ν := ‖h‖
‖x‖ for convenience. If f(τ1, τ2) denotes the density of two

joint Gaussian random variables with correlation coefficient ρ = h∗x
‖h‖‖x‖ ∈ (−1, 1), then the

expectation of wi can be obtained using the conditional expectation

E[wi] =

∫ ∞
−∞

E[wi|a∗ix = τ1‖x‖,a∗ih = τ1‖h‖]f(τ1,τ2)dτ1dτ2
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=

∫ ∞
−∞

∫ ∞
−∞

τ2
2 1{√1−%(k+1)|τ1|<|τ2|ν}f(τ1, τ2)dτ1dτ2

=
1√
2π

∫ ∞
0

τ2
2 exp(−τ22/2)

[
erf
((ν/[

√
1− %(k + 1)]− ρ)τ2√

2(1− ρ2)

)
+ erf

((ν/[
√

1− %(k + 1)] + ρ)τ2√
2(1− ρ2)

)]
dτ2 (B.32)

:= ζ2. (B.33)

It is not difficult to see that E[wi] = 0 for ρ = ±1, and E[wi] is continuous over ρ ∈ (−1, 1)

due to the integration property of continuous functions over a continuous interval. Although the

last term in (B.32) can not be expressed in closed form, it can be evaluated numerically. Note

first that for fixed parameters % > 0 and ν ≤ 0.1, the integration in (B.32) is monotonically

decreasing in k ≥ 0, and achieves the maximum at k = 0. For parameter values k = 5, ν = 0.1

and % = 0.01, Fig. B.1 plots E[wi] as a function of ρ, whose maximum ζ2 = 0.0213. is achieved

at ρ = 0. Further, from the integration in (B.32) for fixed k ≥ 0, E[wi] is a monotonically

increasing function of both ν and %, and it is therefore safe to conclude that for all 0 < ν ≤ 0.1,

and % = 0.01, we have

E[wi] ≤ ζ2 = 0.0213. (B.34)

Hence, we can infer that E[χi(|a∗ih|2)] ≤ 0.0213‖h‖2 for ν < 0.1, % = 0.01, and k = 5. Since

[χi(|a∗ih|2’s are sub-exponential with sub-exponential norm of the order O(‖h‖2), Bernstein-

type sub-exponential tail bound [119] confirms that

p
( 1

m

m∑
i=1

χi(|a∗ih|2)

‖h‖2
> (ζ2 + ε)

)
< e−c7mε

2
(B.35)

for some numerical constant ε > 0, provided that ‖h‖ ≤ ‖x‖/10. Finally, due to the fact that

wi ≤ 1 for all 1 ≤ i ≤ m, the following holds

1

m

m∑
i=1

wiχi(|a∗ih|2) < (ζ2 + ε)‖h‖2 (B.36)

with probability at least 1− e−c7mε
2
.

We have proved the bound in (B.24) for a fixed vector h, and the uniform bound for all

vectors h obeying ‖h‖ ≤ ‖x‖/10 can be obtained by similar arguments in the proof [147,
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Figure B.1: The expectation E[wi] as a function of ρ over [−1, 1].

Lemma 9] with only minor changes in the constants.

Regarding the second bound (B.25), it is easy to see that

1

m

m∑
i=1

|a∗ih|21{|a∗ix|<|a∗ih|(k+1)|a∗ix|}

=
1

m

m∑
i=1

[
|a∗ih|21{|a∗ix|<|a∗ih|}−|a

∗
ih|21{(k+1)|a∗ix|<|a∗ih|}

]
≤ (0.1271− ζ2 + ε)‖h‖2 (B.37)

where the last inequality follows from subtracting the bound in (B.24) of k from that cor-

responding to k = 0. To account for the weights wi = 1/[1 + β/(|a∗i z|/|a∗ix|)], first no-

tice that a∗ih = a∗i z − a∗ix, and that our second bound works with (a∗i z)(a∗ix) < 0 in

(B.19), hence |a
∗
i z|
|a∗ix|

≤ |a∗ih|
|a∗ix|

− 1. Recall that the second bound (B.25) assumes the event

{|a∗ix| < |a∗ih| ≤ (k + 1)|a∗ix|}, implying |a
∗
i z|
|a∗ix|

≤ |a∗ih|
|a∗ix|

− 1 ≤ k. Further, because wi is

monotonically increasing in |a
∗
i z|
|a∗ix|

, then wi ≤ 1
1+β/k . Taking this result back to (B.37) yields

1

m

m∑
i=1

wi|a∗ih|21{|a∗ix|<|a∗ih|≤(k+1)|a∗ix|}≤
0.1271−ζ2+ε

1 + β/k
‖h‖2 (B.38)

which proves the second bound in (B.25).
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Proofs for Chapter 5

C.1 Proof of Lemma 10

As elaborated in Sec. 5.2.1, there is a clear separation in the expected values E[Zi,j ] = E[ψ2
i a

2
i,j ]

for j ∈ S and j /∈ S; that is,

E[Zi,j ] = E
[
(aTi x)2a2

i,j

]
= E

[
a4
i,jx

2
j + (aTi,/jx/j)

2a2
i,j

]
=

{
‖x‖22, j /∈ S,
‖x‖22 + 2x2

j , j ∈ S.
(C.1)

Consider the case of j ∈ S first. Based on E[a2p
i,j ] = (2p− 1)!! with p being a positive integer

and the symbol !! denoting the double factorial, Zi,j has second-order moment

E[Z2
i,j ] = E

[
(aTi x)4a4

i,j

]
= E

[
a8
i,jx

4
j + a4

i,ja
4
i,` 6=j‖x/j‖42 + 6a6

i,jx
2
ja

2
i,` 6=j‖x/j‖22

]
= 105x4

j + 9‖x/j‖42 + 90x2
j‖x/j‖22

= 9‖x‖42 + 24x4
j + 72x2

j‖x‖22 (C.2)

where ` ∈ {1, 2, . . . , n} is some index from different than j. Letting Z̃j := ‖x‖22 + 2x2
j − Zi,j

for all j ∈ S, it holds that

Z̃j ≤ ‖x‖22 + 2x2
j ≤ 3‖x‖22.
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Furthermore, one has E[Z̃j ] = 0, and

E[Z̃2
j ] =‖x‖42+4x4

j+4x2
j‖x‖22+E[Z2

i,j ]−
(
2‖x‖22+4x2

j

)
E[Zi,j ]

= 8‖x‖42 + 68x2
j‖x‖22 + 20x4

j

≤ 96‖x‖42.

Appealing to Lemma 17, one establishes for all j ∈ S that

Pr
( 1

m

m∑
i=1

ψ2
i a

2
i,j − (‖x‖22 + 2x2

j ) ≤ −ε
)
≤ exp

(
− mε2

192‖x‖42

)
.

Taking ε = x2
min := minj∈S x

2
j ≤ x2

j leads to

Pr
( 1

m

m∑
i=1

ψ2
i a

2
i,j ≤ ‖x‖22 + x2

min

)
≤ exp

(
− mx4

min

192‖x‖42

)
.

Recalling our assumption that x2
min is on the order of (1/k)‖x‖22, i.e.,

x2
min = (C1/k)‖x‖22

for some constant C1 > 0, the following holds with probability at least 1− 1/m for all j ∈ S:

min
j∈S

1

m

m∑
i=1

ψ2
i a

2
i,j ≥ ‖x‖22 + x2

min =
(

1 +
C1

k

)
‖x‖22 (C.3)

provided that m ≥ C0k
2 log(mn) for some absolute constant C0 > 0.

Now let us turn to the case of j /∈ S , in which
∑m

i=1 Zi,j =
∑m

i=1 ψ
2
i a

2
i,j is a weighted sum

of χ2
1 random variables. According to Lemma 18, it holds that

Pr
( m∑
i=1

ψ2
i (a

2
i,j−1)>2

√
ε
( m∑
i=1

ψ4
i

) 1
2 +2εmax

i
ψ2
i

)
≤exp(−ε). (C.4)

In addition, for any constants ε′, ε′′ > 0, Chebyshev’s inequality together with the union bound
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confirms that

Pr
( m∑
i=1

ψ4
i >

(
3m+

√
96mε′

)
‖x‖42

)
≤ 1/(ε′)2 (C.5a)

Pr
(

m
max
i=1

ψ2
i > ε′′‖x‖22

)
≤ 2m exp(−ε′′/2). (C.5b)

Take ε := log(mn) in (C.4), ε′ :=
√
m and ε′′ := 4 log(mn) in (C.5). Then, with probability at

least 1− 4/m, the next holds for all j /∈ S and m > C ′

1

m

m∑
i=1

ψ2
i (a

2
i,j − 1) ≤ 2

m

√
log(mn)

√
3m+

√
96m
√
m‖x‖22

+
8

m

(
log(mn)

)2‖x‖22
≤ 8

√
log(mn)

m
‖x‖22 (C.6)

for some absolute constant C ′ > 0 depending on n.

On the other hand, the rotational invariance property of Gaussian distributions confirms

that [23]

ψ2
i = |aTi x|2 = |aTi,SxS |2

d
= a2

i,j‖x‖22

in which the symbol d
= means that terms involved on both sides of the equality enjoy the same

distribution. Since the χ2 variables a2
i,j are sub-exponential, an application of Bernstein’s

inequality produces the tail bound

Pr
( 1

m

m∑
i=1

a2
i,j − 1 ≥ ε

)
≤ exp(−mε2/8) (C.7)

for any ε ∈ (0, 1), which can also be easily verified with a direct tail probability calculation

from the tail probability of standard Gaussian distribution. Choosing ε :=
√

16 log(m)/m with

m > C ′ gives rise to
1

m

m∑
i=1

ψ2
i,j ≤

(
1 + 4

√
logm

m

)
‖x‖22 (C.8)

which holds true with probability at least 1− 1/m for all j ∈ [m]. Putting results in (C.6) and
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(C.8) together leads to

max
j /∈S⊆[m]

1

m

m∑
i=1

ψ2
i a

2
i,j ≤

(
1 + 12

√
log(mn)

m

)
‖x‖22 (C.9)

which holds with probability exceeding 1− 5/m for large enough m.

The last inequality taken collectively with (C.3) suggests that there exists an event E0 on

which with probability at least 1− 6/m, the following holds

min
j∈S

1

m

m∑
i=1

ψ2
i a

2
i,j ≥

(
1 +

C1

k

)
‖x‖22

>

(
1 + 12

√
log(mn)

m

)
‖x‖22

≥ max
j /∈S

1

m

m∑
i=1

ψ2
i a

2
i,j (C.10)

provided that m ≥ C0k
2 log(mn) such that C0 ≥ 144/C2

1 with x2
min = (C1/k)‖x‖22.



Appendix D

Supporting Lemmas

Lemma 17 ([12]). For i.i.d. zero-mean random variables X1, X2, . . . , Xm, if there exists some

nonrandom constant b > 0 such that Xi ≤ b for 1 ≤ i ≤ m, and E[X2
i ] = v2, then the following

holds

Pr(X1 + · · ·+Xm ≥ y) ≤ min
(

exp
(
− y2

2σ2

)
, c0 − c0Φ

( y
σ

))
(D.1)

for σ2 := mmax(b2, v2), and the cumulative distribution function of the standard normal

distribution Φ(·), where one can take c0 = 25.

Lemma 18 ([73]). Let X1, X2, . . . , Xm be i.i.d. Gaussian random variables with zero mean

and variance 1, and b1, b2, . . . , bm be nonnegative. The following inequality holds for any ε > 0

Pr
( m∑
i=1

bi(X
2
i −1)≥2

( m∑
i=1

b2i

) 1
2√

ε+2
( m
max
i=1

bi
)
ε
)
≤exp(−ε). (D.2)

Lemma 19. [112, Lemma 7.17] For any k-sparse x ∈ Rn supported on S, assume noise-free

measurements ψi = |aTi x| generated from i.i.d. Gaussian sampling vectors ai ∼ N (0, In),

i = 1, 2, . . . , m. Fixing any ε1 > 0, and for all (2k)-sparse h ∈ Rn, the following holds with

probability at least 1− 3e−c5m

1

m

m∑
i=1

( aTi z
|aTi z|

− a
T
i x

|aTi x|

)
|aTi x|(aTi h) ≤ 2

√
1 + ε1

1− ρ0

(
ε1 +

√
21

20
ρ0

)
‖h‖22 (D.3)

for all z ∈ Rn obeying ‖z − x‖2 ≤ ρ0‖x‖2, provided that m > c6(2s) log(n/(2s)) for some

fixed numerical constants c5, c6 > 0. Here, ρ0 = 1/10.
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