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Abstract 

Pitch and timbre are integral components of auditory perception, yet our understanding of how 

they interact with one another and how they are processed cortically is enigmatic. Through a 

series of behavioral studies, neuroimaging, and computational modeling, we investigated these 

attributes. First, we looked at how variations in one dimension affect our perception of the other. 

Next, we explored how pitch and timbre are processed in the human cortex, in both a passive 

listening context and in the presence of attention, using univariate and multivariate analyses. 

Lastly, we used encoding models to predict cortical responses to timbre using natural orchestral 

sounds. We found that pitch and timbre interact with each other perceptually, and that musicians 

and non-musicians are similarly affected by these interactions. Our fMRI studies revealed that, in 

both passive and active listening conditions, pitch and timbre are processed in largely overlapping 

regions. However, their patterns of activation are separable, suggesting their underlying circuitry 

within these regions is unique. Finally, we found that a five-feature, subjectively derived 

encoding model could predict a significant portion of the variance in the cortical responses to 

timbre, suggesting our processing of timbral dimensions may align with our perceptual 

categorizations of them. Taken together, these findings help clarify aspects of both our perception 

and processing of pitch and timbre. 
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Pitch and timbre play central roles in both speech and music. Pitch allows us to hear intonation in 

a language, and notes in a melody. Timbre allows us to distinguish the vowels and consonants 

that make up words, and the unique sound qualities of different musical instruments. The 

combination of pitch and timbre enables us to identify a speaker’s voice, as well as a particular 

piece of music.  

Though cochlear implant technology has come a long way over the past several decades, 

pitch and timbre perception remain quite poor in cochlear implant users (e.g., Gfeller et al., 2002; 

Leal et al., 2003). Before we can perfect such auditory prostheses, we must first understand how 

sound is processed in a fully functioning auditory system, from the ear all the way up to the 

cortex. A good understanding of a healthy system will better enable us to aid those with various 

types of auditory disorders and hearing losses. David Poeppel and Tobias Overath, in the 

introduction of their book, The Human Auditory Cortex (2012), succinctly stated that, “…it is 

cortical structures that lie at the basis of auditory perception and cognition,” (pp. 2). We cannot 

fully understand how sounds are perceived and brought into cognition without understanding how 

they are processed in the cortex. 

Unfortunately, we still have some way to go. As Plack et al. (2014), wrote in their review: 

Although we know a great deal about the psychophysics of pitch (for reviews see de 

Cheveigné, 2010; Plack & Oxenham, 2005) we still do not have a clear answer to some 

of the most basic questions regarding the underlying physiological mechanisms. First, 

we do not have a definitive account of how pitch is encoded in the auditory system. 

Second, we do not know how the pitch code is processed by the brain to produce a 

unified sensation. Finally, we do not know where in the auditory pathway this 

processing occurs, and which populations of neurons are involved. 
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It is fair to say that this statement applies to timbre as well. However, thanks to advances in 

neuroimaging methods, progress in these areas is becoming more likely. 

This introductory chapter will provide a review of the literature on pitch and timbre 

perception and processing, starting with a general overview of these two psychoacoustic 

attributes, and will focus primarily on psychophysical and neuroimaging research. 

 

Physical Correlates of Pitch and Timbre 

Pitch and timbre are not new to scientific study. A notable controversy between Georg Simon 

Ohm and August Seebeck about precisely what aspects of a physical sound determine the pitch of 

a complex tone dates back to the mid-1800s (Turner, 2009). Also around this time Seebeck 

correctly postulated that the strengths of the upper harmonics of a complex sound influence its 

timbre. This relationship between timbre and spectrum was then popularized and universally 

attributed to Herman von Helmholtz (Turner, 2009).  

The perceptual relationship between pitch and timbre, however, is still somewhat of a 

mystery. It is not fully understood how these two dimensions interact or influence one another. 

This is largely due to the challenges that lie in determining appropriate definitions for each 

(Houtsma, 1997). Pitch can be defined several different ways, and timbre is defined by what it is 

not. Subsequently, these attributes can be operationally defined and measured in a multitude of 

ways, making it difficult to pool the results of various experiments in order to develop coherent 

conclusions.  

 

Pitch 

American National Standard Acoustical Terminology previously defined pitch as a perceptual 

attribute of sound that can be ordered on a scale from low to high (ANSI, 1994). This definition 
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felt incomplete, however, as there are other attributes that can also be ordered on a scale from 

low to high–loudness and vertical location in space, for example. In recent years, this definition 

has been updated to, “That attribute of auditory sensation by which sounds are ordered on 

the scale used for melody in music,” (ANSI, 2013). This aligns with the more functional 

definition used in earlier studies that suggests that if a sequence of stimuli can carry a melody 

then the stimuli have a pitch (e.g., Burns & Viemeister, 1981), although even in this definition 

there lies some ambiguity, as it has been shown that manipulations in other perceptual 

dimensions, such as brightness and loudness, can be used by listeners to recognize well-known 

melodies (McDermott, Lehr, & Oxenham, 2008). 

The pitch percept is most closely associated with the repetition rate, or fundamental 

frequency (F0) of an acoustic waveform, and humans have been shown to be sensitive to pitch (as 

defined by the ability to recognize melodies and discriminate small differences in F0) in a range 

of periodicities from about 30 Hz to 5000 Hz (Attneave & Olson, 1971; Krumbholz, Patterson, & 

Pressnitzer, 2000; Oxenham, Micheyl, Keebler, Loper, & Santurette, 2011; Pressnitzer, Patterson, 

& Krumbholz, 2001). The pitch produced by sounds other than pure tones has taken on various 

monikers including “residue pitch,” “virtual pitch,” “low pitch,” “periodicity pitch,” “pitch-

frequency,” “repetition pitch,” “synthetic pitch,” “musical pitch,” “the pitch of a complex tone,” 

and “the pitch of the missing fundamental” (e.g., Cariani & Delgutte, 1996). Further, pitch has 

been categorized into different dimensions, such as pitch chroma, and pitch height (e.g., Warren, 

Uppenkamp, Patterson, & Griffiths, 2003). Pitch height relates most closely to the repetition rate 

or fundamental frequency (F0) of a sound (e.g., a sound with a higher F0 tends to have a higher 

perceived pitch), whereas pitch chroma is a circular scale based upon a pitch’s location within an 

octave (e.g., the musical note “C”). 

A pitch percept can be generated by a number of different stimulus types, including pure 

tones, wideband and narrowband harmonic complexes (e.g., Bendor & Wang, 2005; Micheyl, 
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Delhommeau, Perrot, & Oxenham, 2006), and even via certain manipulations of noise (e.g., 

Bilsen, 1966; Burns & Viemeister, 2014; Yost, 1996).  

 

Timbre 

Timbre, commonly referred to as the quality or color of a sound, was previously defined as 

everything by which a listener can distinguish between sounds with the same loudness and pitch 

(ANSI, 1994). In other words, it is anything that sets two sounds apart other than loudness or 

pitch and, arguably, other attributes often left out of definitions, such as duration, spatial location, 

and possibly even the reverberant qualities of an environment. Fortunately, ANSI’s revised 

definition covers some of this: “That multidimensional attribute of auditory sensation which 

enables a listener to judge that two non-identical sounds, similarly presented and having the same 

loudness, pitch, spatial location, and duration, are dissimilar,” (ANSI, 2013). Timbre has been 

eloquently referred to as a “waste-basket” category for anything that cannot be labeled pitch or 

loudness (McAdams & Bregman, 1979). Licklider (1951) aptly called timbre a 

“‘multidimensional’ dimension.” Varying some of these dimensions can affect a sound’s 

perceived “brightness”, “clarity”, “harshness”, “fullness”, and “noisiness”, to name just a few 

(Stepanek, 2006). Unfortunately, as with most perceptual properties, timbral dimensions are 

difficult to quantify (Elliott, Hamilton, & Theunissen, 2013), much less label (Grey, 1977). With 

the vast array of dimensions that fall under the blanket definition of “timbre,” it is no surprise that 

there are countless ways to manipulate and measure this attribute. As Grey states, “…a most 

important evaluation of any particular geometric mapping of similarities is its usefulness in 

interpreting the bases for the perceptual judgments.” (pp. 2170). Put another way, the dimensions 

of timbre can be divided in many ways–the challenge lies in pairing these dimensions with 

unique, separable, percepts. 
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Multi-dimensional scaling 

In order to measure and quantify timbral percepts, we must link these perceptual 

attributes to physical variables that can be manipulated when generating sounds. Given timbre’s 

highly complex nature, or more specifically, its multidimensionality, there have been attempts to 

identify the perceptually salient aspects using multidimensional scaling (e.g., Grey, 1977). This 

approach utilizes subjective measures to determine how perceptually similar various timbral 

dimensions are, thus creating a geometric map that plots the subjective distances between a 

diverse set of stimuli as points in a space (Grey, 1977). Grey used digital additive synthesis 

(adding together partials controlled through time, amplitude, and frequency) to generate 16 

realistic musical tones. He concluded that three dimensions best represented the perceptual 

relationships of his stimuli: one was related to the spectral energy distribution of the tone, and the 

other two were related to temporal patterns. One temporal pattern of importance was the presence 

of low-amplitude, high-frequency energy in the attack portion of a sound, while the other pattern 

was related to the synchronicity of higher harmonic transients and related spectral fluctuation 

through time (Grey, 1977). 

 

Analysis of timbre by synthesis 

Helmholtz, while correct about spectral content influencing timbre, believed it was 

specifically the steady-state portion of a sound that determined a tone’s musical quality (Risset & 

Wessel, 1999). However, this can easily be disproven by taking sounds like piano notes, which 

have a sharp attack and long decay, and reversing them to have a long attack and sharp decay, 

significantly altering their timbres. In fact, as we now know, there is much more that contributes 

to the timbre of a sound than its spectrum. Although the three dimensions mentioned previously 

captured much of the variance between different instruments, the attempted recreation of natural 
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instrumental sounds via analysis through synthesis has led to the realization that more subtle 

aspects, such as the time course of individual harmonics, play an important role in our perception 

and recognition of different instruments. Conversely, some dimensions have been found to be 

“aurally irrelevant” and deemed unnecessary for a realistic synthesis, such as short-term 

amplitude fluctuations (Risset & Wessel, 1999).  

 

Interactions 

Given the previously mentioned concerns about different operational definitions for pitch and 

timbre, it is not surprising that the literature is mixed when it comes to how these perceptual 

dimensions interact. Although Marozeau et al. (2003) found pitch and timbre to be perceived 

independently, a later study by Marozeau and de Cheveigné (2007), acknowledging concerns 

about their previous study, revealed an influence of F0 on the perception of brightness (varied by 

altering spectral centroid). A general consensus seems to be that these two dimensions can 

influence each other (e.g., Krumhansl & Iverson, 1992; Russo & Thompson, 2005; Warrier & 

Zatorre, 2002). Silbert, Townsend, and Lentz (2009) explored a general framework for 

understanding interactions between perceptual dimensions based on signal detection theory 

(Green & Swets, 1966). They used concurrent changes in spectral centroid and F0 as an example 

of dimensional interactions and concluded that, for most of their seven listeners, the two 

dimensions were not processed independently. However, because they did not test identification 

performance for either dimension in isolation and only tested two values of each dimension, it is 

not clear how much interference each dimension produced on the other, or whether the effects 

were symmetric. It is also not clear what accounted for the relatively large individual differences 

observed in that study. 
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With some exceptions, such as the study by Silbert et al. (2009), the literature has 

tended to concentrate on how timbre influences pitch perception rather than the reverse. There are 

different hypotheses about how timbre influences pitch (e.g., Faulkner, 1985; Moore & Glasberg, 

1990), but a dominating view is that changes in spectral timbre (on the dull-bright continuum) 

either produce a general distraction effect or are confused with changes in pitch height, based on 

F0 (e.g., Borchert et al., 2011; Moore & Glasberg, 1990; Singh & Hirsh, 1992; Warrier & 

Zatorre, 2002). 

 

Congruence 

Congruence of pitch and timbre is often related to the frequency content that is 

represented. If a complex tone has a high F0, and also has more energy devoted to its higher 

frequencies, making its timbre “brighter”, “tinnier”, or “sharper” (e.g., Fastl & Zwicker, 2007), 

for example, this would be considered a congruent pairing. If, however, a tone with a high F0 has 

more energy in the lower frequencies, leading to a “duller” or more “hollow” timbre, for example, 

this would be considered an incongruent pairing.  

 Melara and Marks (1990) reported the unexpected finding that subjects were significantly 

slower to respond in discrimination tasks, by about 15 ms, when the two dimensions were 

congruent (e.g, higher pitch was paired with a “twangy” timbre) than when they were incongruent 

(e.g., higher pitch was paired with a “hollow” timbre), and they found timbre judgments to be 

more strongly affected by pitch than the reverse. The delay in the congruent condition could 

indicate that the higher pitch and twangier timbre in this experiment were actually perceived as 

less congruent by subjects than higher pitch and hollower timbre. Moreover, the way in which 

timbre was manipulated was by varying the duty cycle, with lower duty cycles categorized as 

“hollow” timbres and higher duty cycles categorized as “twangy” timbres. It is possible that the 

duty cycles chosen for the experiment were not the best examples of “hollow” and “twangy”, or 
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that this manipulation of timbre is not ideal for making congruence pairings with pitch. A final 

concern, which is shared by many studies (e.g., Beal, 1985; Pitt, 1994) is the limited number of 

stimuli  used: a combination of two different duty cycles of square waves (0.1878 and 0.3128, 

labeled “twangy” and “hollow,” respectively) were combined with two different F0s (900 Hz and 

920 Hz), which, once again, limits the conclusions that can be drawn.  

 

Equating for perceptual salience 

 Krumhansl and Iverson (1992) also found interactions between pitch and timbre for 

individual tones on speeded classification tasks, but used more musical sounds (notes F4 and C5 

for the pitches, and a synthesized trumpet and piano for the timbres). They found that variation in 

the non-target dimension interfered with classification for both pitch and timbre, symmetrically. 

Again, however, a limitation of the study lies in the small number of stimuli used, and the fact 

that the differences in pitch and timbre were not equated for discriminability or perceptual 

salience. The importance of equating the dimensions of interest in terms of perceptual salience 

has been noted in both auditory and visual research by Melara and Mounts (1993, 1994).  

 

Influence of Training and Musicianship 

A study by Micheyl et al. (2006) found professional musicians to have much better difference 

limens (DLs) for pitch discrimination than non-musicians. However, it only took about four to 

eight hours of psychoacoustic training for the non-musicians to achieve performance comparable 

to that of the professional musicians. Musicians, however, showed little improvement with 

additional training, suggesting they were already at or near asymptotic performance prior to 

training. Little is known about differences between musicians and non-musicians in their ability 

to discriminate spectral shape (timbre), with or without the presence of F0 (pitch) changes. On 
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one hand, some benefit of musicianship in attending selectively to separate auditory 

dimensions beyond pitch might be expected; on the other hand, timbre discrimination may not be 

as highly trained in musicians as pitch discrimination because discriminating between very subtle 

spectral differences is not part of a typical ear-training program.  

 

Musicians have also been found to have better performance in analytical listening in an 

informational masking context (Oxenham, Fligor, Mason, & Kidd, 2003). Attending to one 

dimension and ignoring another could be considered a form of analytic listening, so it may be that 

musicians are less susceptible to interference effects. In addition, reports of musicians 

understanding speech better in noise than non-musicians (Parbery-Clark, Skoe, & Kraus, 2009) 

suggest relatively generalized benefits in auditory perception, although more recent studies have 

failed to replicate these findings (Ruggles, Freyman, & Oxenham, 2014).  

In a musical context, Beal (1985) found that musicians were better at recognizing when 

the same chord was played on two different instruments compared to non-musicians. However, 

this benefit of musicianship was only found when the chords were diatonic, suggesting that the 

successful referencing of familiar musical structures was the defining difference between 

musicians and non-musicians. In the absence of familiar musical structures and instruments, 

Borchert et al. (2011) found no significant benefit of musical training in a task that involved pitch 

discrimination between two sounds that varied widely in spectral shape. 

 

Neural Correlates of Pitch and Timbre 

Auditory Cortex 

The auditory cortex is located in the superior temporal plane, which can be found within the 

Sylvian fissure of the temporal lobe. The three main parts of the auditory cortex are the core (i.e., 
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primary auditory cortex), belt, and parabelt regions. Most projections from lower (brainstem 

and midbrain) auditory nuclei project to the core area, and processing seems to begin there before 

moving to the belt and parabelt regions. It is believed that the further out a region is from the core 

area, the more holistically sound is being processed (Plack, 2005, pp. 84), although our 

understanding of cortical auditory processing remains surprisingly limited. The primary auditory 

cortex (A1) is located on a convolution called the Heschl’s gyrus, also known as the transverse 

temporal gyrus. Heschl’s gyrus (HG) is named after Richard Ladislaus Heschl, an Austrian 

anatomist, who was the first person to describe this brain region. This area is difficult to study, 

partly due to the large variability in anatomical structure between subjects (e.g., Rademacher et 

al., 2001; Warrier et al., 2009). Humans can have between one and three HG within each 

hemisphere (Plack, Oxenham, & Fay, 2006, pp.153). Additionally, the location of A1 within the 

HG can be highly variable. Anterior to HG lies the planum polare (PP) while in the posterior 

direction lies the planum temporale (PT). There is some debate about which regions are 

considered core regions versus non-core regions in humans (Moerel, De Martino, & Formisano, 

2014). Part of the issue rests on the fact that, for some people, A1 extends beyond HG, and is 

partially represented on PP and PT as well, while for others, non-primary areas can extend back 

onto HG (Clarke & Morosan, 2012). 

 

Single-Unit Recordings 

In awake, behaving macaque monkeys, single cortical neurons show a robust, systematic, spatial 

organization in A1 for characteristic frequencies (Recanzone, Guard, & Phan, 2000). Similar 

tonotopic organization can be found sub-cortically in the brainstem, midbrain, and thalamus 

(Saenz & Langers, 2014), reflecting the tonotopic organization established along the basilar 

membrane in the cochlea. Such robust tonotopic organization has not been found in belt or 
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parabelt areas, suggesting hierarchical processing and the extraction of features beyond the 

simple spectrum of the sound in these secondary cortical areas. 

Bendor and Wang (2005) identified a cluster of pitch-selective neurons in the marmoset 

located in a region near the anterolateral border of A1 and the rostral field, and anterolateal and 

middle lateral nonprimary belt areas. The criteria they used to classify neurons as pitch-selective 

included significantly tuned responses to both pure tones and harmonic complex tones with a 

missing fundamental corresponding to the pure-tone frequency, but with components all outside 

the neuron’s excitatory frequency response area. In this way, the pure tones and harmonic 

complexes were spectrally dissimilar (i.e., they had different timbres), but shared a common 

pitch. According to these findings, there exist neurons that respond to both individual frequencies 

and complex tones, suggesting that the processing of these sounds occurs in overlapping regions 

of the auditory cortices (Bendor & Wang, 2005). However, they also found neurons in this region 

that responded to narrowband or wideband complexes, but not to pure tones, suggesting some of 

these neurons are dedicated specifically to the integration of information from multiple 

components. 

Taking a different approach, Bizley et al. (2009) used stimuli that varied in F0, spectral 

distribution and spatial location to identify neurons that were selective for one or more of those 

dimensions. Rather than finding neurons that were selective to only one of the features tested, 

they found instead a more distributed population code in the auditory cortices of ferrets. Over 

two-thirds of the units responded to at least two dimensions, most commonly pitch and timbre. In 

other words, there were more interactions for the two stimuli within the “what” domain than there 

were between the “what” and “where” domains. Additionally, azimuth (“where”) sensitivity was 

found in deeper cortical layers, while pitch and timbre sensitivity were greater in more superficial 

layers. These findings suggest that pitch, location, and timbre sensitivity are interwoven and 

distributed across the core and belt areas of the auditory cortices (Bizley et al., 2009). A lack of 
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neurons responding selectively to single dimensions might predict the potential for more 

perceptual interference across these dimensions. 

Although the auditory cortices of primates and other mammals are often researched in 

vivo, in hopes of drawing connections to human brains, many differences exist between them. 

One major difference is that, since Heschl’s gyrus is relatively new, evolutionarily, monkeys such 

as macaques do not have them, and only a subset of chimpanzees do (Moerel et al., 2014). This, 

alone, is a strong argument for studying human brains, whenever possible, in order to understand 

how the human auditory cortex functions. 

 

Neuroimaging 

One obvious tool for attempting to identify the representations of pitch and timbre within the 

human auditory cortex, given its superior spatial resolution, is functional magnetic resonance 

imaging (fMRI). A great advantage of this tool is that it is non-invasive, and, thus, an ethically 

sound means for studying the human brain. fMRI has been successful for various perceptual 

studies, most notably in vision research, for identifying brain regions that seem to selectively 

process certain visual features and properties (e.g., Engel, Glover, & Wandell, 1997; Kanwisher, 

McDermott, & Chun, 1997). However, additional challenges arise when attempting to utilize this 

tool for auditory research. One of its greatest drawbacks is the sound generated by the scanner. 

MRI scanners are acoustically noisy devices, mainly due to the “ping” sound produced by large 

gradients switching rapidly during image readout (Blackman, Hall, & Kingdom, 2014), with 

much of the energy falling somewhere between 0.5 and 2 kHz. Additionally, the liquid helium 

pump, ventilation fan, and air-handling equipment all generate noise (Ravicz & Melcher, 2000).  

Acoustic noise is an obvious concern when it comes to contamination of auditory stimuli. 

Therefore, cautionary steps must be taken, such as (1) providing the subjects with attenuating ear 
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buds, circumaural ear protectors, and/or noise cancelling headphones, (2) presenting stimuli at 

higher sound levels, (3) developing quieter pulse sequences (e.g., Idiyatullin, Corum, Park, & 

Garwood, 2006) and/or (4) adding silent gaps to pulse sequences, during which the auditory 

stimuli can be played with the least amount of acoustic interference from the scanner (Hall et al., 

1999; Zaehle, Wüstenberg, Meyer, & Jäncke, 2004). 

 

Tonotopy 

Before delving into the more complex aspects of pitch and timbre, it is important to first 

address the more basic functional organization of human auditory cortex, starting at the level of 

frequency representation. 

Given the relatively small size of A1, mapping its representation of frequency has been a 

challenge at the spatial resolution of standard neuroimaging techniques, in which a single voxel is 

measuring the response of hundreds of thousands of neurons (Saenz & Langers, 2014). As such, 

there have been debates about the precise orientation and number of the tonotopic gradients that 

exist in human auditory cortex. There is, however, a general agreement about a high-to-low-to-

high frequency mapping spanning A1. This mirror-symmetric mapping aligns with non-human 

primate research and has been supported by ultra-high field strength (7T) imaging in humans 

(Formisano et al., 2003). This symmetric mapping also appears to be angulated or V-shaped in 

formation (e.g., Langers & van Dijk, 2012). However, in order to gauge the sharpness of this 

frequency tuning, pure tones and narrowband stimuli are most frequently used. A concern here is 

that studies limiting their stimuli to pure tones or narrowband stimuli cannot tell us whether it is 

pitch, or merely spectral content (possibly related to timbre) that drives the tonotopy observed in 

A1. In other words, is the tonotopy in A1 simply a reflection of the tonotopic organization found 

in the cochlea and auditory nerve, or have some features (such as pitch) already been extracted at 
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that level? With conflicting studies and inconclusive results, this remains an open question 

(Saenz & Langers, 2014). 

“Pitch center”? 

Though pitch processing has been researched more thoroughly than timbre processing, 

even the basic claim of there being a “pitch center” in the cortex is hotly debated (Bendor, 2012). 

There is growing evidence suggesting that this “center” may be located in the lateral portion of 

Heshl’s gyrus (e.g., De Angelis et al., 2017; Norman-Haignere, Kanwisher, & McDermott, 2013; 

Patterson, Uppenkamp, Johnsrude, & Griffiths, 2002). One such fMRI study in search of this 

“center”, looked for neural representations of pitch in the auditory cortex as a function of pitch 

salience, by manipulating the resolvability of complex tones (Penagos, Melcher, & Oxenham, 

2004). Harmonics below about the 10th are generally resolved, meaning they are individually 

represented along the basilar membrane. Conversely, those beyond the 10th harmonic are 

unresolved, in that they are no longer individually represented, making the resulting pitch at the 

F0 less salient. Thus, Penagos et al. (2004) used lower spectral regions (340-1100 Hz) to produce 

more salient pitch percepts, and higher spectral regions (1200-2000 Hz) to produce weaker pitch 

percepts. The first two conditions, which contained a range of complex tones with low F0s (80-95 

Hz), filtered into lower and higher spectral regions, respectively, were contrasted with conditions 

containing a higher F0 range (240-285 Hz). This was done so that resolved harmonics were 

present in both the lower and higher spectral regions, providing both conditions with relatively 

high pitch salience. Results revealed stronger activity during high-salience conditions relative to 

low-salience conditions, independent of spectral region or F0 range. Pitch salience corresponded 

to bilateral activation of the anterolateral end of HG, as well as some spread across the superior 

temporal gyrus (STG) of the left hemisphere, supporting the claim that anterior nonprimary 

auditory areas are important for pitch processing. 
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Imaging studies using iterated rippled noise 

Studies have often used iterated rippled noise (IRN), due to the ease of manipulating the 

saliency of the pitch percept (e.g., Bilsen, 1966; Griffiths et al., 2010; Patterson et al., 2002). IRN 

is random noise (aperiodic) with a continuous spectrum. The noise is delayed and added back to 

itself in ‘iterations.’ This ‘comb-filtered’ ripple noise technique results in peaks that occur at F0 

and corresponding harmonics, creating a pitch percept. If the iterations are attenuated, or the 

number of iterations is reduced, the pitch percept weakens (Shofner & Yost, 1997; Yost, 1996). 

Such manipulations provide well-controlled stimulus-versus-noise contrasts for neuroimaging 

purposes. However, it has been suggested that, since IRNs are frequently used as stimuli, perhaps 

the anatomical “center” being pinpointed in the brain is actually a region sensitive to qualities 

inherent to IRN itself, such as its varying spectro-temporal features, more so than pitch (Hall & 

Plack, 2009). In fact, Hall and Plack (2009) found a positive correlation between the strength of 

the spectro-temporal features of IRN and pitch saliency. Increasing the number of iterations 

increased both the strength of the spectro-temporal features and the pitch percept. This makes it is 

difficult to parse whether the lateral Heschl’s gyrus is responding to pitch strength, spectro-

temporal strength, or both. Barker, Plack, and Hall (2012), followed up on this, looking 

specifically at the spectro-temporal modulations found in IRN, by developing a “no-pitch IRN” 

stimulus. This stimulus contained only the modulations, and the temporal fine structure that 

provided the pitch-like percept was removed. As was suspected, the regions believed to be 

sensitive to pitch were also sensitive to these modulations, thus indicating that this putative 

“pitch” center may not be specific to pitch after all. Thus, the conclusions drawn from the many 

previous studies using IRN may warrant re-evaluation.  
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Multiple pitch regions? 

Hall and Plack (2009) utilized a wide range of stimulus types to induce the percept of 

pitch, arguing, “…for a brain region to be confirmed as a general pitch center, it should respond 

to all pitch-evoking stimuli,” (pp. 2). Their stimuli included a single frequency, a wideband 

complex, a resolved complex, an unresolved complex, a Huggins pitch, and iterated-ripple noise 

(IRN). IRN activated the lateral HG, as expected, but the other five stimulus types produced a 

wide range of activity throughout the auditory cortex. Though the lateral HG was not reliably 

activated by these stimuli, the PT was often active, suggesting that, if there is something similar 

to a general pitch center, it may occur later in the auditory processing stream than previously 

believed. Hall and Plack (2009) also point out that the multiple distinct regions found to be active 

for these stimuli may be regions involved in different levels of pitch processing. For example, it 

can be difficult to parse whether the regions being excited are responding to the frequency 

content of the sound, indicating lower-level processing, or pitch perception, which would be 

considered higher-level sound processing. What has been established is that wideband complexes, 

which contain a wide range of frequencies, are good for eliciting strong activation throughout a 

large portion of auditory cortex. Conversely, narrowband complexes and sweeps are suitable for 

finer brain mapping, such as tonotopy (Langers, Krumbholz, Bowtell, & Hall, 2014). 

Lesion studies, PET, and fMRI 

A lesion study was conducted by Samson and Zatorre (1994), in which 15 subjects had 

their left temporal lobes removed and another 15 had their right temporal lobes removed. In both 

cases the procedure was done in order to relieve medically intractable partial complex seizures. 

These 30 participants were compared to 15 normal controls. Two different timbre manipulations 

were used: varying the number of harmonics, a spectral manipulation of timbre, and varying the 

duration of the attack, a temporal manipulation. Based on their results, the right temporal lobe 
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was deemed necessary for both spectral and temporal timbre perception, as subjects with 

lesions in their right temporal lobes (RT group) performed worse on both tasks than the normal 

controls (NC group), as well as the subjects with left temporal lobe lesions (LT group). However, 

the authors did not report whether the LT group also performed significantly worse than the NC 

group. Their bar graph suggests that the control group performed best on both tasks, followed by 

the LT group, and finally the RT group. Based on this, it seems plausible that, in fact, both lobes 

may contribute to the processing of timbre.  

Several years later, another lesion study was conducted, looking at pitch perception 

(Johnsrude, Penhune, & Zatorre, 2000). Thirty-one subjects who had undergone surgical 

resectioning for relief of medically intractable seizures were compared to 14 controls. There were 

two pitch discrimination tasks: same-different (i.e., detection a change in frequency), and up-

down (i.e., labeling the direction of the change). What they found was that for same-different 

tasks, the patient and control groups did not differ. However, when subjects had to determine 

whether a tone pair was rising or falling (a more challenging discrimination task) patients who 

had temporal lobe excisions that encroached upon the Heschl’s gyrus in the right hemisphere 

performed significantly worse than controls. Interestingly, this was not the case for patients who 

had temporal lobe excisions that encroached upon the Heschl’s gyrus in the left hemisphere, 

suggesting the right hemisphere is important for processing pitch direction. This also suggests 

that hemispheric differences may emerge as tasks become more difficult (i.e., more challenging 

analytical listening). However, only pure tones were used for this study, making it difficult to 

determine whether these same results would have occurred with the use of more complex or 

natural stimuli.   

It is important to note that such lesion studies are imprecise and difficult to control. 

Moreover, lesioned brains are not “normal” brains, so it is difficult to draw conclusions about 
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how a fully-functioning auditory system works when studying patients with brain lesions. 

Therefore, we will now focus on neuroimaging studies of “normal” subjects.  

A PET study by Zatorre and Belin (2001) in which variations in the temporal domain, in 

the form of fluctuating duty cycles, were found to be processed more in the left hemisphere. 

Conversely, fluctuations in the spectral domain, in the form of frequency density, were found to 

be more right hemisphere lateralized. Schönwiesner et al. (2005), using fMRI, found bilateral 

activation, but with an asymmetry in the nonprimary auditory cortex for spectral and temporal 

modulation. Specifically, the left superior temporal gyrus was found to be more sensitive to 

temporal modulation, and the right superior temporal gyrus was found to be more sensitive to 

spectral modulation. Santoro et al. (2014), however, found the differences between the spatial 

patterns for spectral and temporal processing, at a much higher spatial resolution, to be a bit more 

complex than this. The general consensus, however, is that there exist differences in how spectral 

and temporal information are processed at the cortical level.  

An fMRI study by Warren et al. (2005) presented sequences of sound (7.5-8s in duration) 

that varied either the F0 (pitch) or spectral envelope (timbre) of harmonic complexes. This was 

contrasted with sequences varying the spectral envelope of noise. In order to maintain the 

subjects’ attention, they were instructed to press a button at the end of each sequence. Both 

variation in F0 and spectral shape showed bilateral activation spanning superior temporal regions, 

including A1 in the medial Heschl’s gyrus (HG), the lateral HG, and anterolateral planum 

temporale (PT). For alternating conditions, during which the spectro-temporal structure was 

constantly varying, Warren et al. (2005), argued that the computation of the spectral envelope 

requires the abstraction of spectral shape, which is a more abstract level of analysis. Such abstract 

levels of processing activated temporal lobe areas beyond those that were active for detailed 

spectro-temporal structure. These areas seem to be rightward-lateralized (from superior temporal 

plane lateral to PAC, inferiorly and anteriorly along STS). The findings suggest that, although 
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processing of both pitch and timbre is bilateral, there may be some differences between 

hemispheres at higher levels of processing. This evidence is consistent with the previously found 

left-hemisphere dominance for speech processing and right-hemisphere dominance for music 

processing (Zatorre, Belin, & Penhune, 2002). A potential weakness of the Warren et al. (2005) 

study is that the data were collected at a 1.5 T scanner, which has lower resolution than the 

currently standard 3 and 7 T scanners, making it more difficult to identify fine-grained 

differences in processing. Additionally, the stimuli varied in discrete ways (e.g., large variability 

in spectral shape), instead of varying along a continuum. Finally, the dimensions were not 

equated for perceptual salience.   

Plasticity and Musicianship 

Given that musicianship and training can improve one’s pitch discrimination, a logical next step 

is to question how this ties in with brain plasticity, structure, and function. Differences between 

musicians and non-musicians have been identified, in terms of differences in gray matter volume 

in certain regions. Specifically, musicians have been shown to have 130% larger Heschl’s gyri 

compared to non-musicians (Schneider et al., 2002). Additionally, Schneider et al. (2002) found 

the activity evoked by auditory stimuli, as measured by early-latency cortical response via MEG, 

to be 102% larger in musicians compared to non-musicians. What this study does not tell us, 

however, is whether musicians are born with these structural and functional differences, or if they 

develop as a consequence of musical training.  

A study by Hyde et al., (2009) delves into this “nature versus nurture” debate in a 

longitudinal study. They looked at the brain structures of young children, around six years old, 

and compared those who had 15 months of musical training (weekly 30-minute private keyboard 

lessons) to controls (who still had a weekly 40-minute group music class). Even over this brief, 

relatively infrequent training period they found the private lessons to result in structural changes, 
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in the form of voxel expansion, in both motor and anatomical areas. These anatomical changes 

correlated with behavioral improvements in fine finger motor skills and auditory musical 

discrimination tests (Hyde et al., 2009). These anatomical and behavioral differences were not 

seen in the instrumental or control groups prior to the private lessons and no anatomical or 

behavioral changes were found in the controls at the end of the 15 months. Additionally, far-

transfer measures (e.g., object assembly, block design, vocabulary subtests, and even phonemic 

awareness tests) showed no improvement after this training, suggesting that musical training may 

not always be generalizable to other skills, even if auditory.  

A larger, longer-term longitudinal study supports this claim of non-generalizability. Yang 

et al. (2014) looked at 250 Chinese students, also around six years of age. The musician group 

received 3.5 hours of weekly musical training for around 43 months. Upon completion of this 

training, musicians were significantly better than non-musicians on musical achievement, as well 

as development of a second language. However, the academic benefits of the musical training 

ended there. The improvement in a second language is intriguing, however, as it suggests that, 

while Hyde et al. (2009) did not find a benefit of musical training on the phonemic awareness 

task, musical training may, in fact, be generalizable to other language-related auditory domains. 

Thus, the link between musicianship and language remains fuzzy.   

 

Summary 

Based on the research discussed, psychophysical studies of pitch and timbre, which will be 

explored further in the following chapter, suggest that these dimensions may not be perceptually 

independent. Exactly how pitch and timbre interact (e.g., in the form of distraction or confusion), 

and how similar these interference effects are across the two dimensions, has not been sufficiently 

addressed in the literature. Further, while there is some evidence suggesting that musical training 
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may lead to brain plasticity, revealed in the form of structural, functional, and/or behavioral 

changes, it is unclear whether musicianship reduces interference between pitch and timbre. 

Moreover, how these dimensions are processed at the level of the cortex is an even bigger 

mystery. The question of whether there is one “center” in the auditory cortex devoted to pitch 

processing continues to be explored. The goal of this dissertation work is to better understand 

how pitch and timbre interact, perceptually, as well as how they are processed, cortically. We will 

use a combination of psychophysics and fMRI techniques to address these questions. 
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Chapter 2   
 

Symmetric interactions and interference between 

pitch and timbre 
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Abstract 

Variations in the spectral shape of harmonic tone complexes are perceived as timbre changes and 

can lead to poorer fundamental frequency (F0) or pitch discrimination. Less is known about the 

effects of F0 variations on spectral shape discrimination. The aims of the study were to determine 

whether the interactions between pitch and timbre are symmetric, and to test whether musical 

training affects listeners’ ability to ignore variations in irrelevant perceptual dimensions. 

Difference limens (DLs) for F0 were measured with and without random, concurrent, variations 

in spectral centroid, and vice versa. Additionally, sensitivity was measured as the target parameter 

and the interfering parameter varied by the same amount, in terms of individual DLs. Results 

showed significant and similar interference between pitch (F0) and timbre (spectral centroid) 

dimensions, with upward spectral motion often confused for upward F0 motion, and vice versa. 

Musicians had better F0DLs than non-musicians on average, but similar spectral centroid DLs. 

Both groups showed similar interference effects, in terms of decreased sensitivity, in both 

dimensions. Results reveal symmetry in the interference effects between pitch and timbre, once 

differences in sensitivity between dimensions and subjects are controlled. Musical training does 

not reliably help to overcome these effects.  
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Introduction 

The sounds we hear can be described in terms of multiple perceptual attributes, including pitch, 

timbre, and loudness. The present study focuses on pitch and timbre. Pitch has been defined as 

that perceptual attribute of sound that can be ordered on a scale from low to high (ANSI, 1994), 

although several researchers have suggested that it is multi-dimensional (e.g., Shepard, 1982), 

with the two most commonly cited dimensions being pitch height and pitch chroma, 

corresponding roughly to the physical attributes of fundamental frequency (F0) and position 

within an octave, respectively. The present study focuses on the dimension of pitch height. 

Timbre is associated with multiple acoustical and perceptual attributes (Grey, 1977). Its technical 

definition includes everything by which a listener can distinguish between sounds with the same 

loudness and pitch (ANSI, 1994), although duration (Plomp, 1970) and spatial location are also 

attributes that are not normally considered part of timbre. A primary determinant of timbre is the 

spectral centroid of a sound (Caclin, McAdams, Smith, & Winsberg, 2005). In general, a low-

frequency emphasis in the spectral envelope leads to a “duller” sound, whereas more high-

frequency emphasis leads to a “brighter”, “tinnier”, or “sharper” sound (e.g., Fastl and Zwicker, 

2007). 

Although some previous studies have shown pitch and timbre to be perceived 

independently (e.g., Marozeau et al., 2003) there are several examples of interference between 

them (Melara and Marks, 1990; Marozeau and de Cheveigné, 2007). Notably, variations in timbre 

are known to interfere with subjects’ ability to discriminate small changes in pitch. There are 

different hypotheses regarding how this interference occurs (e.g., Faulkner, 1985; Moore and 

Glasberg, 1990), but a prevailing view is that changes in spectral timbre (on the dull-bright 

continuum) either produce a general distraction effect or are confused with changes in pitch 
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height, based on F0 (e.g., Borchert et al., 2011; Moore and Glasberg, 1990; Singh and Hirsh, 

1992; Warrier and Zatorre, 2002). 

Although many studies have examined the effect of spectral changes on F0 perception 

and discrimination, fewer have investigated the effects of F0 variation on spectral-shape 

discrimination. Beal (1985) conducted a study in which both the effect of timbre variation on 

discriminating between pitches and the effect of pitch variation on discriminating between 

timbres was observed. When listening to chord changes on different musical instruments, subjects 

found it challenging to ignore changes in timbre, i.e. switching between instruments, when 

attempting to focus exclusively on the pitches in musical chords. They had less difficulty ignoring 

chord changes when attempting to judge whether the two timbres were the same, suggesting an 

asymmetry between the dimensions of pitch and timbre. However, the salience or discriminability 

of the changes in the different dimensions was not controlled, and the timbres were limited to 

three distinctly different instruments (acoustic guitar, piano, and harpsichord). Beal (1985) also 

found differences in performance between musicians and non-musicians. Musicians were better at 

recognizing when the same chord was played on two different instruments, although the benefit 

of musicianship was only found when the chords were diatonic, suggesting that the successful 

referencing of familiar musical structures was the defining difference between musicians and 

non-musicians. 

Pitt (1994) also compared musicians and non-musicians on pitch and timbre 

discrimination. In a categorization task, as subjects listened to different tones, they were to 

determine whether there was a pitch change, an instrument change (timbre change), both 

changed, or neither changed. Subjects were not required to report direction of change, however. 

Non-musicians were more strongly affected than musicians by variations in timbre when 

discriminating pitch, suggesting that non-musicians experienced greater difficulty processing the 

two dimensions independently. However, the number of stimuli used was again limited (two 
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different timbres: recordings of a trumpet and a piano, and two different pitches: 294 Hz and 

417 Hz), and no attempt was made to equate the perceptual salience across the two dimensions, 

making direct comparisons difficult. 

Melara and Marks (1990) found interactions between pitch and timbre for individual 

tones on speeded classification tasks. They attributed these interactions to failure in selective 

attention, or Garner interference. In one experiment, subjects were instructed to attend to either 

timbre changes or pitch changes, while both dimensions varied. Like Beal (1985) and Pitt (1994), 

however, a limited number of stimuli were used: a combination of two different duty cycles of 

square waves (0.1878 and 0.3128, labeled: “twangy” and “hollow”, respectively) were combined 

with two different F0s (900 and 920 Hz). Krumhansl and Iverson (1992) also found interactions 

between pitch and timbre for individual tones on speeded classification tasks, but used more 

musical sounds (notes F4 and C5 for the pitches, and a synthesized trumpet and piano for the 

timbres). They found that variation in the non-target dimension interfered with classification for 

both pitch and timbre symmetrically. Again, however, a limitation of the study lies in the small 

number of stimuli used, and the fact that the differences in pitch and timbre were not equated for 

discriminability or perceptual salience. The importance of equating the dimensions of interest in 

terms of perceptual salience has been noted in both auditory and visual research by Melara and 

Mounts (1993, 1994). 

More recently, Silbert et al. (2009) explored a general framework for understanding 

interactions between perceptual dimensions, based on signal detection theory (Green & Swets, 

1966). They used concurrent changes in spectral centroid and F0 as an example of dimensional 

interactions and concluded that for most of their seven listeners the two dimensions were not 

processed independently. However, because they did not test identification performance for either 

dimension in isolation, and because they only tested two values of each dimension, it is not clear 

how much interference each dimension produced on the other, or whether the effects were 
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symmetric. It is also not clear what accounted for the relatively large individual differences 

observed in that study. 

The present study explored the effects of spectral shape variation on F0 discrimination 

and vice versa. The two aims of the study were 1) to determine whether the interference and 

interactions between pitch and timbre were symmetric, and 2) to assess the effects of musical 

training on subjects’ ability to ignore variations in irrelevant perceptual dimensions when 

performing a discrimination task. The first aim addresses the more general question of whether 

pitch has a privileged role in auditory perception. For instance, it is known that sensitivity to 

small changes in pitch is generally much greater than to changes in other dimensions 

(McDermott, Keebler, Micheyl, & Oxenham, 2010), and pitch has been cited as an exception to 

Miller’s “seven plus-or-minus two” rule, in that musicians are able to perfectly identify more than 

just 9 pitch intervals (E.M. Burns, 1999). On the other hand, more recent work has suggested that 

some of the properties that were thought to make pitch “special” can also be found in other 

dimensions (such as timbre and loudness), when differences in basic sensitivity are equated (e.g., 

McDermott et al., 2008, 2010). 

The second aim tackles the question of differences in basic perceptual skills between 

musicians and non-musicians. As mentioned above, Silbert et al. (2009) observed relatively large 

individual differences that were not accounted for. One factor may be the amount of prior musical 

training. There are some studies that have found better performance in musicians than non-

musicians in tasks involving both pitch perception (e.g., (Micheyl et al., 2006) and analytic 

listening in an informational masking context  (Oxenham et al., 2003).  Attending to one 

dimension and ignoring another could be considered a form of analytic listening, so it may be that 

musicians are less susceptible to interference effects. In contrast to this expectation, Borchert et 

al. (2011) found no significant benefit of musical training in a task that involved pitch 

discrimination between two sounds that varied widely in spectral shape. Little is known about 
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differences between musicians and non-musicians in their ability to discriminate spectral 

shape, with or without the presence of F0 changes. On one hand, some benefit of musicianship in 

attending selectively to separate auditory dimensions beyond pitch might be expected; on the 

other hand, timbre discrimination may not be as highly trained in musicians as pitch 

discrimination, because discriminating between very subtle spectral differences is not part of a 

typical ear-training program.  

Experiment 1 measured basic sensitivity to small changes in either F0 or spectral 

centroid, in the absence of variation in the non-target dimension. Experiment 2 used the 

individual difference limens (DLs) from Experiment 1 to examine the effects of random 

variations in either F0 or spectral centroid on listeners’ ability to discriminate small changes in 

the other dimension. Finally, Experiment 3 provided a direct test of perceptual symmetry of the 

two dimensions by measuring performance in both dimensions using stimuli that varied by the 

same amount in terms of DLs measured in the individual subjects. 

 

Experiment 1: Basic Pitch and Timbre Discrimination 

Rationale 

The goal of Experiment 1 was to find thresholds for each subject on basic pitch and 

timbre discrimination tasks. We did this by separately measuring DLs for F0 and spectral centroid 

of a bandpass-filtered harmonic tone complex. These DLs were then used in subsequent 

experiments to equate changes in F0 and spectral centroid in terms of basic sensitivity for each 

subject individually.  
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Methods 

Stimuli. The stimuli were harmonic complex tones, 500 ms in duration with 20-ms raised-

cosine onset and offset ramps and an overall level of 70 dB SPL. The components were added in 

sine phase. All harmonics of the complex tone up to 10,000 Hz were generated and then 

individually scaled to produce slopes of 24 dB/octave around the center frequency (CF), or 

spectral centroid, with no flat bandpass region. Thus, the 3-dB bandwidth of the filter was 1/8 

octave. MATLAB (Mathworks, Natick, MA) was used to generate the stimuli and control the 

experimental procedures. All stimuli were generated via an L22 soundcard (LynxStudio, Costa 

Mesa, CA) with 24-bit resolution at a sampling rate of 44100 Hz, and were presented diotically 

through HD580 headphones (Sennheiser, Old Lyme, CT). 

In the pitch-discrimination task, the CF of the filter was held constant at 1200 Hz.  The 

nominal F0 value of 200 Hz was roved across trials by ±10% with uniform distribution. Each trial 

consisted of two presentation intervals, each containing a complex harmonic tone with the F0s 

differing by ΔF0, expressed as a percentage of the F0 of the lower tone. The F0s of the two tones 

in each trial were geometrically centered around the nominal F0 value after roving. 

In the timbre-discrimination task, the F0 of the complex tone was held constant at 200 

Hz, and the nominal CF of the bandpass filter was roved between trials by ±10% around 1200 Hz, 

with uniform distribution. Within each trial, the CF of the filter differed across the two 

presentation intervals by ΔCF, again expressed as a percentage of the lower CF, and the two CFs 

were geometrically centered around the nominal CF after roving. See Fig. 2.1 for a schematic 

diagram of changes in stimuli. 
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Fig. 1. Schematic diagram of the stimuli used in this study (plotted on log–log axes). Changing 

the F0 results in changes in the frequencies of the harmonics (represented by the vertical lines). 

Changing the center frequency of the filter results in changes in the spectral envelope of the 

sound and hence changes in the amplitudes (but not frequencies) of the harmonics. 

 

Procedure  

Prior to running the experiment, subjects were given basic definitions of pitch and timbre: 

pitch was related to notes on a musical scale, and timbre was related to sound quality differences 

between different musical instruments, using adjectives such as bright or dull. For comparison, 

they were told that a saxophone has a brighter timbre than a grand piano. Not surprisingly, 

subjects often had more difficulty grasping the concept of timbre, but were encouraged to use the 

practice runs and feedback to get a sense for what a brighter timbre sounded like, relative to a 

duller timbre. Subjects were tested individually in double-walled sound-attenuating chambers. 

The subjects’ preliminary tasks were to compare tone pairs differing in either F0 or spectral 

centroid (i.e., “pitch” or “timbre”). In each trial, subjects were played two complex harmonic 

tones, separated by a silent interstimulus interval (ISI) of 300 ms. The task was to determine 

which of the two tones had the higher pitch or brighter timbre. The order of the tone presentations 
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was random, with the higher pitch (or timbre) being equally likely to be presented in the first 

or second interval. Two virtual boxes were displayed on a computer screen, which lit up with 

each corresponding tone. Subjects could select a box with the computer mouse or by pressing “1” 

or “2” on the keyboard, corresponding to the “1” and “2” displayed on the virtual boxes. 

Immediate feedback was provided after each trial, stating if the selection was “correct” or 

“wrong.” 

Each participant’s DLs for F0 and spectral centroid were obtained using a standard two-

alternative forced-choice procedure with a two-down one-up adaptive tracking rule that tracks the 

70.7% correct point on the psychometric function (Levitt, 1971). The starting value of ΔF0 or ΔCF 

was 200%. Initially, ΔF0 or ΔCF was increased or decreased by a factor of 2. After the first reversal 

in the direction of the change in the tracking variable from “up” to “down”, the factor was 

decreased to 1.26. After two more reversals, the factor was decreased to 1.12, which was the final 

step size. The run was terminated after six reversals at the final step size, and the DL in each run 

was the geometric mean of the value of Δ at those last six reversal points. 

The first six runs performed by each subject in each condition were treated as practice. 

The next six runs in each condition were geometrically averaged to obtain the estimated DL for 

each subject. Each subject completed all testing in one dimension before proceeding to the other 

dimension, and the F0 and spectral centroid conditions were completed in counterbalanced order 

across subjects. Subjects were able to complete Experiment 1 in about 45 minutes on average, but 

the time varied for each participant, depending on the number and duration of breaks taken and 

the amount of time subjects took to make their responses. 

 

Subjects  

To avoid including subjects with severe F0 discrimination difficulties (Peretz, et al., 

2009; Semal & Demany, 2006), only subjects whose F0DLs were 6% (about 1 semitone) or better 
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were included in the study. Since we have no estimate of an appropriate cutoff for “poor” 

spectral centroid discrimination, we did not exclude subjects based on exceeding a specific 

spectral centroid difference limen. After several subjects failed to reach the F0DL cutoff in the 

initial training phase, an additional training protocol was added, in which the between-trial roving 

of F0 or spectral centroid was eliminated. A total of 25 of the 57 subjects tested were given the 

non-roving practice trials. This appeared to make the task easier, and helped some subjects to 

subsequently improve their performance in the tasks with between-trial roving. Nevertheless a 

total of 12 subjects (7 of whom were given the non-roving practice) failed to achieve DLs of 6% 

or less. Eleven of the 12 disqualified subjects were non-musicians. The remaining 45 subjects (21 

musicians and 24 non-musicians) took part in the experiment. 

All 45 subjects had normal hearing, defined as audiometric pure-tone thresholds of 20 dB 

HL or better at octave frequencies between 500 Hz and 8 kHz, and were recruited from the 

University of Minnesota community. Ages ranged from 19 to 59 years (mean: 25.3 years). 

Twenty-one subjects were categorized as musicians (12 females, nine males, age range: 19-59, 

mean: 26.3 years) with at least eight years of formal musical training, and 24 were categorized as 

non-musicians (13 females, 11 males, age range: 19-34, mean: 24.4 years), with two or less years 

of formal musical training. All protocols were approved by the University of Minnesota 

Institutional Review Board, and all subjects provided written informed consent. 

 

Results 

The results for musicians and non-musicians are shown in Figure 2. The average F0DL for 

musicians was 0.8%, whereas the non-musicians had an average F0DL of 1.9%. Musicians had an 

average spectral-centroid DL of 4.0%, while the non-musicians had an average DL of 5.0%. 

Mixed-model ANOVAs on the log-transformed DLs were used here and throughout this study, 
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with a Greenhouse-Geisser correction for lack of sphericity included where appropriate. A 

mixed-model ANOVA with a within-subject factor of dimension (F0 vs. spectral centroid) and a 

between-subject factor of musicianship showed a main effect of dimension [F(1,43) = 226.72, p < 

0.0001, partial η2 = 0.84],  a main effect of musicianship [F(1,43) = 10.91, p = 0.002, partial η2 = 

0.20] and an interaction between dimension and musicianship [F(1,43) = 0.87, p < 0.0001, partial 

η2 = 0.26]. 

A planned comparison revealed that musicians had significantly better F0DLs compared 

to non-musicians, [t(43) = 4.05, p < 0.0001, r = 0.53], but no significant difference was found 

between the groups’ spectral centroid DLs [t(33.7) = 1.36, p = 0.183, r = 0.23]. Levene’s test 

indicated unequal variances for the timbre condition [F = 4.47, p = 0.04], so degrees of freedom 

were adjusted from 43 to 33.7. 
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Fig. 2. Results from Experiment 1. Average DLs of musicians and non-musicians on basic 

pitch and timbre discrimination tasks. Error bars represent +/- one standard error of the mean. 

 

Discussion 

Musicians and non-musicians differed in their F0DLs, but had similar spectral centroid DLs. The 

differences in basic F0 discrimination with musical training are consistent with previous research 

that also used subjects with no extensive training (Micheyl et al., 2006). Based on earlier studies, 

however, we would expect the F0DLs from the non-musicians to converge with those of the 

musicians after more extensive practice. For instance, Micheyl et al. (2006) found that F0DLs 

from non-musicians reached the levels obtained by professional musicians after about 6 to 8 

hours of practice, whereas our subjects typically had only around 20 minutes of practice before 

data were collected. 

The lack of difference between musicians and non-musicians in sensitivity to spectral 

centroid is also consistent with previous research involving dissimilarity ratings (Caclin et al., 

2005; McAdams, Winsberg, Donnadieu, De Soete, & Krimphoff, 1995). The effect of 

musicianship on F0, but not spectral centroid, may be due to the fact that musicians regularly 

make fine judgments of pitch differences, for instance when tuning instruments, whereas fine 

timbre judgments tend to be less critical, since different musical instruments have rather distinct 

timbres. In addition, pitch changes define melodies, whereas the timbre of a particular instrument 

generally remains relatively constant. On the other hand, it could be argued that fine timbre 

discrimination is required when assessing the musical “color” of particular notes or a particular 

performance. 

An alternative explanation as to why musicians did not have better spectral centroid DLs 

is that the stimuli in this experiment do not sound like musical instruments. These stimuli are 
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synthesized, and controlled exclusively by varying the location of the single spectral peak in 

the stimulus. Thus, it remains possible that musicians are more skilled at discriminating fine 

timbre differences in more natural musical sounds, perhaps even related to their own instrument. 

This idea is supported by previous research (Crummer, Walton, Wayman, Hantz, & Frisina, 1994; 

Pantev et al., 1998). 

Finally, a potential limitation of excluding subjects with very poor F0 discrimination is 

that our population sample may be skewed towards better performance. Had we not excluded 

these subjects, based on the 6% F0DL cutoff, we would have likely seen a larger difference in 

F0DLs between the musician and non-musician groups, since 11 of the 12 subjects who were 

excluded were non-musicians. 

 

Experiment 2: Thresholds as a Function of Amount of Interference 

Rationale 

The aim of Experiment 2 was to investigate the effects of variations in a non-target 

dimension on discrimination performance in the target dimension. This experiment involved 

similar stimuli and tasks to those used in Experiment 1, with the addition of random variation in 

the non-target dimension. Subjects were asked to attend to one dimension while ignoring the 

other. Shifts in F0 were paired with shifts in spectral centroid, in order to determine the effect of 

variations in one dimension on subjects’ ability to discriminate changes in the other. 

 

Methods  

Stimuli. The stimuli were generated and presented in the same way as in Experiment 1. A 

standard adaptive two-alternative forced-choice procedure was again used. For this experiment, 

however, variations in the non-target dimension were introduced in each trial. The amount of 
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variation in the non-target dimension was based on multiples of the DL with no non-target 

variations, as measured in Experiment 1 for each subject individually (DL0). Values tested were 

0, 2, 5, 10, 25, 50, and 100DL0, where zero indicates a lack of variation (i.e., a repeat of the 

conditions tested in Experiment 1). As in Experiment 1, the nominal F0 of the harmonic complex 

was 200 Hz, and the nominal CF (spectral centroid) was 1200 Hz. In each trial, both the nominal 

F0 and the nominal spectral centroid were roved independently by ±10%. 

 

Procedure 

In runs where the F0DL was adaptively tracked, the spectral centroid in each trial 

differed between the two intervals by a multiple of the centroid DL, as measured individually for 

each subject in Experiment 1, geometrically centered around the nominal centroid. The interval 

containing the higher centroid was selected randomly and independently from the F0 in each trial. 

In runs where the spectral centroid DL was adaptively tracked, the F0 between the two intervals 

also varied independently in multiples of the individual F0DL around the nominal F0 of 200 Hz, 

as described above for the spectral centroid variations. Thus the random variation in the non-

target dimension was uninformative for the subjects’ task.  

The two parts of the experiment (the F0 task and the spectral centroid task) each 

contained seven conditions repeated three times, totaling 21 runs. The pitch and timbre tasks were 

performed in counterbalanced order across subjects, and all measurements of one dimension were 

completed before beginning measurements in the other dimension. No practice was given beyond 

the practice in basic discrimination received in Experiment 1. The basic discrimination tasks in 

Experiment 1 were performed just prior to starting Experiment 2. Completion of both 

experiments generally required two sessions, with the first session lasting two hours and the 

second session (which generally took place within a week of the first session) lasting between one 

and two hours. Participants were encouraged to take breaks when needed, to avoid fatigue effects. 
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Subjects 

Thirty listeners took part in this experiment, all of whom had also participated in 

Experiment 1. Ages ranged from 19 to 59 years (mean: 27.95 years). Fifteen subjects were 

categorized as musicians (eight females, seven males, age range: 19-59, mean: 28.5 years) with at 

least eight years of formal musical training, and 15 were non-musicians (nine females, six males, 

age range: 19-34, mean: 24.3 years), with two or less years of formal musical training. 

 

Results 

The results of Experiment 2 are shown in Fig. 3. A mixed-model repeated-measures ANOVA on 

the log-transformed DLs was used to analyze the data. Within-subject factors were target 

dimension (F0 vs. spectral centroid) and amount of variation in the non-target dimension. The 

between-subjects factor was musicianship (musician vs. non-musician). Results showed a main 

effect of target dimension [F(1,27) = 13.4, p = 0.001, partial η2 = 0.33], a main effect of variation 

in the non-target dimension [F(6,22) = 18.5, p < 0.0001, partial η2 = 0.39], and a main effect of 

musicianship [F(1,27) = 5.17, p = 0.031, partial η2 = 0.16]. The interaction between musicianship 

and dimension just failed to reach significance [F(1,27) = 4.07, p = 0.054, partial η2 = 0.13], 

presumably reflecting the trend for musicians to perform better than non-musicians in the F0 

dimension but not in the spectral centroid dimension.  Indeed, separate ANOVAs revealed that 

musicians were significantly better than non-musicians on the F0 dimension [F(1,27) = 6.41, p = 

0.017,  partial η2 = 0.19], while they were not significantly better than non-musicians on the 

spectral centroid dimension [F(1,27) = 1.82, p = 0.188,  partial η2 = 0.06]. No other interactions 

reached significance. 
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Fig. 3. Results from Experiment 2. Average DLs for musicians and non-musicians on pitch- and 

timbre- discrimination tasks are shown as a function of variation in the non-target dimension (in 

multiples of DL). Error bars represent +/- one standard error of the mean. 

 

The amount of interference was assessed using the ratio of the DLs between the 

conditions with variation and the conditions with no variation in the non-target dimension; this 

measure is referred to as the “interference ratio.” The interference ratio at the largest variation 

level (100DL0) was 2.8 (i.e., 2.1% divided by 0.76%) and 4.1 (i.e., 14.7% divided by 3.6%) for 

the musicians and non-musicians, respectively, in the pitch target dimension. The same 

interference ratios in the timbre target dimension were 3.8 and 3.5 for the musicians and non-

musicians, respectively. All four of these represented highly significant increases in DLs, based 

on paired-samples t-tests for F0 [t(14) = 7.41, p < 0.0001, r = 0.89] and spectral centroid [t(14) = 
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5.96, p < 0.0001, r = 0.85] for musicians, and for F0 [t(14)= 5.04, p < 0.0001, r = 0.80] and 

spectral centroid [t(14) = 10.8, p < 0.0001, r = 0.95] for non-musicians. 

The fact that the original ANOVA found no significant interaction between musicianship 

and amount of variation in the non-target dimension suggests that the effect of interference was 

similar for both groups. This was confirmed in a new mixed-model ANOVA with the interference 

ratio as the dependent variable, target dimension and amount of non-target variation as the 

within-subject factors, and musicianship as the between-subjects factor. The results showed a 

significant main effect of non-target variation [F(5,92.3) = 39.8, p < 0.0001, partial η2 = 0.59], but 

no main effect of the target dimension [F(1,28) = 0.63, p = 0.434, partial η2 = 0.02], no main 

effect of musicianship [F(1,28) = 1.24, p = 0.274, partial η2 = 0.04], and no significant 

interactions (p > 0.24 in all cases). This outcome confirms that the interference was similar for 

both pitch and timbre target dimensions, and that both musicians and non-musicians experienced 

similar amounts of interference in both dimensions. 

 

Discussion 

Variations in the non-target dimension led to increased (poorer) DLs in the target dimension for 

both F0 and spectral centroid, and for both musicians and non-musicians. The amount of 

interference (defined as the ratio between DLs with and without non-target variation) increased 

with increasing amount of variation, up to the maximum tested (100DL0), although the greatest 

effect was observed between 0 and 10DL0. 

Although musicians had generally lower F0DLs, their spectral-centroid DLs were similar 

to those of non-musicians, as found in Experiment 1. The effect of variations in both non-target 

dimensions was not significantly different for musicians and non-musicians, suggesting that 

musicians are as susceptible to interference due to random stimulus variations as non-musicians. 
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For both groups, when the variations were equated in terms of DL0, the effects of F0 variation 

on spectral centroid discrimination and the effects of spectral centroid variation on F0 

discrimination were symmetric – random variations in both dimensions produced substantial and 

similar interference. Thus, our results provide further support for the idea that pitch does not 

occupy a privileged position in auditory perception once differences in basic discrimination are 

equated (McDermott et al., 2010; McDermott & Oxenham, 2008). 

 

Experiment 3: Congruent and Incongruent Interference 

Rationale 

In experiment 2, the direction of the variation in the non-target dimension was randomly 

selected on each trial and was independent of the direction of the change in the target dimension. 

Thresholds were determined using an adaptive procedure, and no attempt was made to separate 

trials with “congruent” motion (i.e., F0 and spectral centroid changed in the same direction) from 

trials with “incongruent” motion (i.e., F0 and spectral centroid changed in opposite directions).  

The interference produced by changes in the non-target dimension may reflect a “distraction” 

effect (Moore & Glasberg, 1990), produced by any task-irrelevant change, or it may reflect a 

partial inability on the part of subjects to distinguish between a change in timbre (i.e., higher 

brightness with increasing spectral centroid) from a change in pitch (i.e., higher pitch with 

increasing F0) (e.g., Russo and Thompson, 2005). It is also possible, in instances with large 

timbre variation, that an upward shift in spectral centroid induces an “octave error” (e.g., 

Robinson, 1993), causing subjects perceive the pitches an octave higher than the stimulus F0.  

For this experiment, a method of constant stimuli was used. Congruent trials were 

randomly interleaved with incongruent trials, but the two categories were analyzed separately to 

determine whether changes in the non-target dimension produced systematic biases in responses 
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to the target dimension. Only relatively small variations in the dimensions were tested, making 

octave errors due to large spectral shifts less likely. 

 

A second open question from Experiment 2 is whether multiples of DL0 provide an appropriate 

scale along which to equate the perceptual salience of larger changes. If equal changes in terms of 

DL0 result in equal salience, then presenting changes in both dimensions that are equal in terms of 

DL0 should result in equal performance in both dimensions. The current experiment tested this 

hypothesis by presenting pairs of tones that varied in F0 and spectral centroid by the same 

amount, in terms of the individual DL0s; the task varied (subjects were asked to judge either the 

pitch or timbre) but the stimuli were identical in the two conditions.  

 

Methods 

Stimuli and procedure. The method in which the stimuli were generated and presented 

was the same as that used in Experiments 1 and 2. However, this experiment used a method of 

constant stimuli, rather than an adaptive procedure. The subjects were presented with pairs of 

tones that varied in both F0 and spectral centroid by the same amount, in terms of the individual 

DL0s, which had been determined in Experiment 1. The following five multiples of DL0 were 

tested: 0.5, 1, 2, 3, and 5. Each trial had a pair of stimuli, as described in Experiment 2, in which 

both the F0 and the spectral centroid varied by one of the multiples of DL0. In each block of 50 

trials, half the trials had congruent pairings (F0 and spectral centroid changed in the same 

direction) and the other half had incongruent pairings (F0 and spectral centroid varied in opposite 

directions). Thus, each block included five repetitions of each condition and pairing type. The 

trials were evenly divided into separate blocks in which either pitch or timbre discrimination was 

measured. As in the previous two experiments, subjects were instructed to select which pitch was 

higher or which timbre was brighter in the tone pair, depending on which task they were 



     

  

43 
performing, and were instructed to ignore the other dimension. A total of ten blocks were run 

for each dimension, meaning the estimate of performance for each subject on each dimension was 

based on a total of 500 trials (100 trials per DL0 multiple). Feedback was provided after each trial. 

Each subject completed all the measurements in one dimension before the other dimension was 

tested, and the order of presentation was counter-balanced across subjects. The experiment took 

around an hour to complete, but the time varied for each participant, depending on the number 

and duration of breaks taken and the amount of time subjects took to make their responses.  

 

Subjects  

A total of 20 subjects participated, all of whom also took part in Experiment 1. Five of 

these 20 subjects (four musicians, one non-musician) also participated in Experiment 2. The ages 

of the subjects ranged from 20 to 59 years (mean: 25.9 years). Ten subjects were categorized as 

musicians (6 females, 4 males, age range: 20-59, mean: 27.2 years) with at least eight years of 

formal musical training, and 10 were non-musicians (4 females, 6 males, age range: 21-34, mean: 

24.6 years), with two or less years of formal musical training.  

 

Results  

The mean results in the different conditions for congruent and incongruent trials are shown in 

terms of proportion correct for musicians and non-musicians in the right and left panels of Fig. 4, 

respectively. Statistical analysis was performed on values of d' , converted from proportion 

correct by assuming unbiased responding to first and second intervals in each trial (Hacker, 

Ratcliff, Tables, & Ed, 1979). To avoid infinite values of d' when 100%-correct performance was 

achieved, a small correction factor was included, which effectively limited the maximum value of 

d' to 4.65, corresponding to a proportion correct of about 99.95%. 
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Fig. 4. Experiment 3: Values of d' are shown for congruent and incongruent stimuli pairings for 

pitch and timbre tasks, as a function of amount of variation in target and non-target dimensions 

(in multiples of DL). Musicians’ scores are shown in the left panel, and non-musicians’ scores are 

shown in the right panel. The asterisk in each panel is shown at the point corresponding to the DL 

in Experiment 1. Error bars represent +/- one standard error of the mean. 

 

A mixed-model ANOVA was performed on the d' values with within-subject factors of 

target dimension (F0 or spectral centroid), congruence (congruent or incongruent changes 

between intervals), and amount of variation (0.5 through 5DL0), and a between-subjects factor of 

musicianship. A significant main effect of congruence was found [F(1,18) = 66.9,  p < 0.0001, 

partial η2 = 0.79, reflecting the observation that performance was generally better in congruent 

than in incongruent trials. The main effect of amount of variation was also significant 

[F(2.23,40.2) = 108, p < 0.0001, partial η2 = 0.86, ε = 0.56], reflecting the observation that 

performance improved as the size of the F0 or spectral-centroid difference increased. Finally, the 
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main effect of target dimension (F0 or spectral centroid) was not significant [F(1,18) = 0.04, p 

= 0.847, partial η2 = 0.002], showing that overall levels of performance were similar in the two 

dimensions.  

A significant interaction between the amount of variation and congruence was also found 

[F(2.35,42.3) = 7.78,  p < 0.0001, partial η2 = 0.302, ε = 0.59], possibly reflecting the widening 

gap between the congruent and incongruent performance with increasing amount of variation. 

Additionally, a significant interaction was found between dimension and congruence [F(1, 18) = 

6.77,  p = 0.018, partial η2 = 0.273], indicating that congruence differentially affected F0 and 

spectral centroid, with the congruence effect being larger when the target dimension was pitch 

than when it was timbre. However, performance in congruent trials was significantly higher than 

performance in incongruent trials for both F0 [F(1,18) = 43.7, p < 0.0001, partial η2 = 0.71], and 

spectral centroid [F(1,18) = 49.8, p < 0.0001, partial η2 = 0.73]. 

There was a significant effect of musicianship [F(1,18) = 8.03, p = 0.011, partial η2 = 

0.309], and a significant interaction between amount of variation and musicianship 

[F(4,72)=4.44, p = 0.003, partial η2 = 0.198]. These effects seem to reflect the somewhat worse 

performance of non-musicians, particularly at larger levels of variation. No significant interaction 

was found between dimension and musicianship [F(1,18) = 2.28, p = 0.148, partial η2 = 0.112], 

indicating that the two groups performed similarly across the F0 and spectral centroid conditions. 

Additionally, no significant interaction was found between congruence and musicianship [F(1,18) 

= 0.30, p = 0.591, partial η2 = 0.016], suggesting that these groups were similarly affected by 

whether the dimensions were congruent or incongruent. There was one significant 3-way 

interaction for dimension, variation, and musicianship [F(1,18) = 0.30, p = 0.024, partial η2 = 

0.143], suggesting that the groups may be differentially affected by the amount of variation across 

dimensions. However, the 3-way interaction for congruence, dimension, and musicianship was 
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not significant (p = 0.167), suggesting the two groups were similarly affected by congruence 

across the dimensions. There was no significant 4-way interaction. 

An asterisk in each panel of Fig. 4 is shown at the point corresponding to the DL in 

Experiment 1. By definition, based on our tracking procedure, the DL was 70.7%, which in a 2-

interval 2-alternative forced-choice task corresponds to a d' of about 0.77 (Hacker et al., 1979). 

The asterisks fall closer to the downward than to the upward triangles, suggesting at face value 

that performance was enhanced in the congruent trials, but not degraded in the incongruent trials, 

relative to no variation. However, this outcome may be related to improvements with practice, as 

all the subjects through necessity participated in Experiment 1 (asterisks) before embarking on 

Experiment 3. Thus, without this potential confound, it may be expected that congruence would 

lead to improved performance, whereas incongruence would lead to poorer performance, relative 

to no irrelevant changes. 

 

Discussion 

The first important finding from this experiment is that performance in the congruent trials 

(where the variation in the non-target dimension was in the same direction as that in the target 

dimension) was better than performance in incongruent trials. This outcome suggests that 

variations in the non-target dimension did not just provide a distraction, but were confused to 

some extent with changes in the target dimension. This confusion could be of at least two types: 

the first possibility is that the two dimensions are not perceptually separable, and that a change in 

spectral centroid may induce a change in the pitch percept (and vice versa). This seems unlikely, 

as pitch-matching experiments using harmonic stimuli with widely different spectral content have 

not shown large or systematic biases in pitch away from the underlying F0 (Oxenham et al., 2011; 

Walliser, 1969). The second, and more plausible, possibility is that changes in F0 and spectral 
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centroid elicit changes in pitch and timbre, respectively, but that subjects sometimes confuse 

the two, and therefore respond to the inappropriate dimension. When the dimensions change in a 

congruent manner, an inappropriate response will still be correct, thereby leading to higher 

performance in the congruent than in the incongruent trials. This would suggest the confusion is 

more post-sensory, which aligns with the conclusions of Silbert et al. (2009). Nevertheless, as 

variations in both F0 and spectral centroid elicit changes along the tonotopic dimension in the 

auditory periphery, there remains a possible basis for sensory confusion.   

The second important finding is that overall performance in the F0- and spectral-centroid-

discrimination tasks (averaged across congruent and incongruent conditions) was similar when 

variations in the two dimensions were equated in terms of multiples of DL0 for each dimension 

separately. This finding suggests that salience (and coding accuracy) in the two dimensions may 

be equated using basic discrimination thresholds, at least for differences up to multiples of 5DL0. 

However, performance was not identical, as indicated by the significant interaction of dimension 

and congruence, suggesting that equivalence only holds when both congruent and incongruent 

trials are employed in roughly equal measure. In addition, we cannot rule out the possibility that 

more differences might be revealed through the use of other measures, such as reaction time. 

The third important finding is that musicians and non-musicians showed similarities in 

terms of overall performance on the pitch and timbre tasks, as well as similarities in how they 

were affected by congruence. The main effect of musicianship and the interaction with amount of 

variation reflect some differences between the groups, but the general pattern of results was quite 

similar. Taken together with the results from Experiment 2, where no significant effect of 

musicianship was found on the amount of interference, the outcome suggests that musicians’ 

superior analytic listening ability, as demonstrated in an informational masking task that involves 

attending to one frequency while ignoring others (Oxenham et al., 2003), does not extend to 

attending to one perceptual dimension while ignoring another. 
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Finally, it is worth noting that any differences observed between groups may depend to 

some extent on how the groups are defined. Although many studies have compared the 

performance of musicians and non-musicians, there are no uniform criteria that are used to 

distinguish between the two groups. We defined musicians as those with at least 8 years of formal 

musical training; however, no ear-training test was used to verify musical ability (e.g., Oxenham 

et al., 2003), no requirement was made that they were currently active musicians, and there was 

no maximum age allowed by which musical training should have commenced. Similarly, 

although non-musicians were defined as those with 2 years or less of formal training, it is 

possible that at least some members of this had informal experience with listening or performing 

music. Thus, as with any study comparing these two groups, the conclusions are qualified by the 

specific definitions of musical training used here. 

 

Conclusions 

Difference limens for F0 and spectral centroid (perceptually, pitch and timbre) were measured in 

groups of listeners with and without musical training in a two-alternative forced-choice paradigm. 

The following results were obtained: 

1) In line with earlier studies, F0DLs were better in musicians than in untrained listeners 

without musical training. However, DLs for spectral centroid were not significantly 

different between the two groups. 

2) Discrimination thresholds in either F0 or spectral centroid were impaired by random 

variations in the non-target dimension. The amount of interference was similar for the 

two dimensions, and was similar for both musicians and non-musicians. 



     

  

49 
3) Performance was better when the interference varied coherently with the target (i.e., 

both F0 and spectral centroid increased from the first to the second interval) than when 

the varied in opposite dimensions. This outcome suggests that listeners sometimes 

confused changes across the two dimensions. Musicians were no less susceptible to this 

“confusion” than non-musicians. 

 

Overall the results provide evidence that judgments in pitch and timbre (in terms of F0 and 

spectral centroid, respectively) are similarly affected by random variations in the other dimension, 

suggesting relatively symmetric processes. In addition, musical training does not appear to 

provide strong immunity from interference effects in either dimension. 
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Chapter 3   
 

Representations of Pitch and Timbre Variation in 

Human Auditory Cortex 
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Abstract  

Pitch and timbre are two primary dimensions of auditory perception, but how they are represented 

in the human brain remains a matter of contention. Some animal studies of auditory cortical 

processing have suggested modular processing, with different brain regions preferentially coding 

for pitch or timbre, whereas other studies have suggested a distributed code for different attributes 

across the same population of neurons. This study tested whether variations in pitch and timbre 

elicit activity in distinct regions of the human temporal lobes. Listeners were presented with 

sequences of sounds that varied in either fundamental frequency (eliciting changes in pitch) or 

spectral centroid (eliciting changes in brightness, an important attribute of timbre), with the 

degree of pitch or timbre variation in each sequence parametrically manipulated. The BOLD 

responses from auditory cortex increased with increasing sequence variance along each 

perceptual dimension. The spatial extent, region, and laterality of the cortical regions most 

responsive to variations in pitch or timbre at the univariate level of analysis were largely 

overlapping. However, patterns of activation in response to pitch or timbre variations were 

discriminable in most subjects at an individual level using multi-voxel pattern analysis, 

suggesting a distributed coding of the two dimensions bilaterally in human auditory cortex. 

Key words: auditory cortex; fMRI; Heschl’s gyrus; perception; pitch; timbre  
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Significance Statement 

Pitch and timbre are two crucial aspects of auditory perception. Pitch governs our perception of 

musical melodies and harmonies, and conveys both prosodic and (in tone languages) lexical 

information in speech. Brightness – an aspect of timbre or sound quality – allows us to 

distinguish different musical instruments and speech sounds. Frequency-mapping studies have 

revealed tonotopic organization in primary auditory cortex, but the use of pure tones or noise 

bands has precluded the possibility of dissociating pitch from brightness. Our results suggest a 

distributed code, with no clear anatomical distinctions between auditory cortical regions 

responsive to changes in either pitch or timbre, but also reveal a population code that can 

differentiate between changes in either dimension within the same cortical regions. 
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Introduction  

Pitch and timbre play central roles in both speech and music. Pitch allows us to hear intonation in 

a language, and notes in a melody. Timbre allows us to distinguish the vowels and consonants 

that make up words, as well as the unique sound qualities of different musical instruments. 

Combinations of pitch and timbre enable us to identify a speaker’s voice, as well as a particular 

piece of music. 

Several studies have been devoted to elucidating the cortical code for pitch; less attention 

has been paid to timbre. Bendor and Wang (2005) identified pitch-selective neurons in the 

marmoset cortex, located in a region near the anterolateral border of primary auditory cortex (A1) 

and the rostral field, and anterolateral and middle lateral non-primary belt areas. These neurons 

responded selectively to a specific fundamental frequency (F0 – the physical correlate of pitch), 

independent of the sound’s overall spectral content. Several fMRI studies in humans have 

identified an anatomically analogous region in anterolateral Heschl’s Gyrus (HG) that also seems 

particularly responsive to pitch (Gutschalk et al., 2002; Patterson et al., 2002; Penagos et al., 

2004; Norman-Haignere et al., 2013), while posterior regions of HG, superior temporal sulci 

(STS), and insula have been found to be active in timbre processing (Menon et al., 2002). A PET 

study by Platel et al. (1997) examining pitch, timbre, and rhythm responses during active tasks, 

found hemispheric differences between pitch and timbre. However, only two different timbres 

were used (an oboe that was either “bright” or “dull”), and the differences were found outside of 

the auditory cortex in the right frontal lobe. Other studies have failed to observe distinct, or 

modular, processing of pitch (e.g., Bizley et al., 2009; Hall and Plack, 2009). A combined 

MEG/EEG study by Gutschalk and Uppenkamp ( 2011), looking at cortical processing of pitch 

and vowels (which have different timbres due to variation in spectral shape) found overlapping 

responses in the anterolateral HG, suggesting a lack of spatial distinction across these dimensions. 
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However, conclusions regarding spatial location using MEG or EEG are necessarily limited, 

given their generally poor spatial resolution.  In a single-unit physiology study, Bizley et al. 

(2009) used stimuli that varied in F0 (corresponding to pitch), spectral envelope peak 

(corresponding to brightness, an important dimension of timbre), and spatial location, in order to 

identify neurons in the ferret auditory cortex that were selective for one or more of these 

dimensions. They found a distributed population code in the auditory cortices of ferrets with over 

two-thirds of the units responding to at least two dimensions. Most often, those dimensions were 

pitch and brightness. Further, a study by Hall et al. (2005) suggested lateral HG may be more of a 

perceptual processing site than a region that encodes temporal acoustic structure (an underlying 

structure inherent to both pitch and spatial location). In summary, the degree to which 

representations of pitch and timbre are spatially separated in the auditory cortex remains unclear. 

Here we investigated whether variations in pitch and brightness elicit activity in distinct 

regions of the temporal lobes during a passive listening task, using functional magnetic resonance 

imaging (fMRI). A similar question was posed by Warren et al. (2005). They found overlapping 

bilateral regions of activation in the temporal lobes to sounds that varied in either F0 or spectral 

envelope shape, but found additional activation when spectral envelope shape was varied along 

with alternations between harmonic and noise stimuli. Based on their results, Warren et al., 

(2005) suggested that the mid portion of the right STS contains a specific mechanism for 

processing spectral envelopes, the acoustic correlate of brightness, which extended beyond the 

regions responsive to pitch or spectro-temporal fine structure. However, Warren et al. (2005) did 

not attempt to equate their changes in pitch or spectral shape in terms of perceptual salience, 

making the direct comparisons difficult to interpret. In our paradigm, inspired by the 

experimental design of Zatorre and Belin (2001), we generated sound sequences that varied in 

either F0 (pitch) or spectral peak position (brightness), where the changes in either dimension 

were equated for perceptual salience. The variance of the sequence in the dimension of interest 
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(pitch or brightness) was parametrically varied and the BOLD responses were measured.  Our 

hypothesis was that regions selective for pitch or brightness should show increases in activation 

with increases in the variance or range of pitch or timbre within each sequence, and that modular 

processing of the two dimensions would be reflected by spatially distinct regions of the temporal 

lobe being selectively responsive to changes in the two dimensions. 

 

Materials and Methods 

Participants  

Ten right-handed subjects (mean age of 23.8 years, standard deviation 2.0; five females 

and five males) were included in the analysis. An eleventh subject was discovered to have been 

left-handed and his data were subsequently excluded from analysis. All subjects had normal 

hearing, defined as audiometric pure-tone thresholds of 20 dB hearing level (HL) or better at 

octave frequencies between 250 Hz and 8 kHz, and were recruited from the University of 

Minnesota community. Musical experience of the subjects ranged between 0 and 23 years. Three 

subjects had musical experience of two years or less, while seven had at least nine years of 

experience. 

 

Stimuli and procedure  

Tone sequences were 30 s in duration, containing 60 notes each. Each tone had a total 

duration of 300 ms, including 10-ms raised-cosine onset and offset ramps and consecutive tones 

were separated by 200-ms silent gaps. Stimuli were presented binaurally (diotically) at 85 dB 

SPL. The 30-s tone sequences were interspersed with 15 s silence to provide a baseline condition. 

Sequences were generated from scales created with steps that were multiples of the average F0 

difference limen (DL) of 1.3% for pitch or the average spectral centroid DL of 4.5% for timbre, 
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as established in an earlier study (Allen and Oxenham, 2014). This approach was used to 

equate for perceptual salience across the two dimensions. All harmonics of the complex tone up 

to 10,000 Hz were generated and scaled to produce slopes of 24 dB/octave around the center 

frequency (CF), or spectral centroid, with no flat bandpass region. The F0s and spectral centroids 

in each sequence were geometrically centered around 200 and 900 Hz, respectively (Fig. 1A). In 

each sequence the scale stepsize was selected to be 1, 2, 5, or 10 times the average DL. Each 

scale consisted of 5 notes spaced apart by one scale step. The note sequence on each trial was 

created by randomly selecting notes (with replacement) from the 5-note scale, with the constraint 

that consecutive repeated notes were not permitted. Each level of variation (i.e., stepsize) was 

presented once per scan in random order (Fig. 1B). Each scan contained all stepsizes across both 

dimensions. The presentation order of the dimensions and stepsizes was generated randomly for 

each scan and for each subject separately. The scans were 6 minutes in duration, and a total of 6 

scans were run consecutively for each subject (See Fig. 1C). 

Subjects listened passively to the stimuli while watching a silent video. MATLAB 

(Mathworks, Natick, MA) and the Psychophysics Toolbox (www.psychtoolbox.org) were used to 

generate the stimuli and control the experimental procedures. Sounds were presented via MRI-

compatible Sensimetrics (Malden, MA) S14 model earphones with custom filters. 
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Fig. 1.  Schematic diagrams of the stimuli. A. Spectral representation of the stimuli used in this 

study (plotted on log–log axes). Changing the F0 results in changes in the frequencies of the 

harmonics (represented by the vertical lines). Changing the center frequency of the filter results in 

changes in the spectral centroid of the sound and hence changes in the amplitudes (but not 

frequencies) of the harmonics. Lighter-colored arrows indicate that shifting in the rightward 

direction results in a sound with a higher pitch (increase in F0) or a brighter timbre (increase in 

spectral centroid). B. Tone sequences with small and large stepsizes. For the pitch sequences, the 

y-axis is F0, centered around 200 Hz; for the timbre sequences, the y-axis is spectral centroid, 

centered around 900 Hz. C. Experimental block design layout. Thirty-second pitch- and timbre-

varying sequences are indicated in blue and green, respectively. Fifteen-second silent gaps for a 

baseline measure are indicated in grey. The presentation order of stepsizes, indicated in white 

text, was randomized. All possible stepsizes across both dimensions were included in each scan. 

 

Data acquisition 

 The data were acquired at a 3T scanner (Siemens Prisma) at the Center for Magnetic 

Resonance Research (CMRR, University of Minnesota). Anatomical T1-weighted images and 

field maps were acquired. The MPRAGE T1-weighted anatomical image parameters were: TR = 
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2600 ms; TE = 3.02 ms; matrix size = 256 x 256; 1 mm isotropic voxels. The pulse sequence 

for the functional scans used slice-accelerated multiband echo planar imaging (EPI) (Xu et al., 

2013), and sparse temporal acquisition (Hall et al., 1999). The acquisition parameters for the 

functional scans were: TR = 6000 ms; time of acquisition (TA) = 2000 ms; silent gap = TR – TA 

= 4000 ms; TE = 30 ms; multiband factor = 2; number of slices = 48; partial Fourier 6/8; matrix 

size = 96 × 96; 2 mm isotropic voxels. A total of 60 volumes were collected in each of the six 

scans. Slices were angled in effort to avoid some of the motion from eye movement, and covered 

the majority of the brain. However, for most subjects the top of the parietal and part of the frontal 

cortices were excluded. 

 

Data analysis 

Data were preprocessed using the Analysis of Functional NeuroImages (AFNI) software 

package (Cox, 1996) and FSL 5.0.4 (http://fsl.fmrib.ox.ac.uk/). Statistical analyses and 

visualization were performed with AFNI and SPSS (IBM, New York, NY). Preprocessing 

included distortion correction using FSL’s FUGUE, six-parameter motion correction, spatial 

smoothing (3 mm FWHM Gaussian blur), and pre-whitening.  

For each subject, a general linear model (GLM) analysis was performed that included 

regressors for each experimental condition (i.e., each of the four stepsizes for pitch and timbre), 

six motion parameters, and Legendre polynomials up to the fourth order to account for baseline 

drift (modeled separately for each run). Each subject’s brain was transformed into Montreal 

Neurological Institute (MNI) space (Mazziotta et al., 1995). Beta weights (regression 

coefficients) for individual voxels were estimated by the GLM for each condition for each 

subject, as were contrasts comparing pitch, timbre, and stepsize conditions, and a contrast 

comparing all sounds to baseline.  

Group level analyses with subject as a random effect included a one-sample t-test 

http://fsl.fmrib.ox.ac.uk/
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performed on the unmasked, unthresholded beta weights for each dimension (i.e., separately 

for pitch and timbre, averaged across all stepsizes) using the AFNI function 3dttest++. A paired t-

test was performed in the same manner, comparing the pitch condition to the timbre condition. 

 To determine whether BOLD response increased linearly with increasing stepsize, the 

Pearson product-moment correlation between BOLD response to stepsize and a linear trend were 

computed in each voxel for each subject, separately for pitch and timbre. These correlation 

coefficients were then Fisher z-transformed and submitted to a one-sample t-test compared to 

zero, within a mask created by the union of all subjects’ individual regions of interest (iROIs), to 

test the average correlation for significance across subjects.   

For all analyses in AFNI, in light of the inflated false-positive findings by Eklund et al. 

(2016), smoothness values were obtained using AFNI’s 3dFWHMx spherical autocorrelation 

function (acf) parameters at the individual level, and then averaged for the group level. These acf 

values were then used in AFNI’s 3dClustSim function (AFNI 16.1.27) to obtain nearest-neighbor, 

faces touching, two-sided cluster thresholds via a Monte Carlo simulation with 10,000 iterations. 

This determined the probability of clusters of a given size occurring by chance if each voxel has a 

1% chance displaying a false positive. Based on these probabilities, clusters smaller than those 

that would occur by chance more than 5% of the time were filtered out of the results to achieve a 

cluster-level alpha = .05.  

 Multi-voxel pattern analysis (MVPA) was performed using Princeton’s MVPA toolbox 

for MATLAB with the backpropagation classifier algorithm for analysis 

(http://code.google.com/p/princeton-mvpa-toolbox/). In order to restrict the number of voxels in 

our analyses, we added a functionally defined mask, based on our univariate analysis results, 

containing voxels that were active for a particular subject during the sound conditions (pitch or 

timbre). We then thresholded this starting voxel set to contain only the 2,000 most responsive 

voxels across both hemispheres for each subject, making the number of voxels in each mask 

http://code.google.com/p/princeton-mvpa-toolbox/
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consistent across subjects as well as reducing the number of voxels used for classification, in 

an attempt to improve classifier performance (e.g., De Martino et al., 2008; Schindler et al., 

2013). Functional volumes sampled within 5 seconds of a transition between conditions were 

eliminated, to account for the lag in the hemodynamic response. Functional volumes during rest 

conditions were also eliminated in order for the classifier to be trained exclusively on the pitch 

and timbre conditions. Data were z-scored, and each run was treated as a separate time course in 

order to eliminate any between-run differences caused by baseline shifts. An n-minus-one (leave-

one-out) cross-validation scheme was used, with six iterations, accounting for the six runs. Each 

iteration trained a new classifier on five of the six runs and tested it on the remaining run. A 

feature selection function was used to discard uninformative voxels, with a separate ANOVA run 

for each iteration. 

 

Results 

Whole-brain analyses of pitch and timbre 

 Figure 2 shows BOLD activity at the group level separately for pitch- and timbre-

variation conditions contrasted with silence with single-sample t-tests. Similar bilateral activation 

can be seen, with the strongest activation occurring in and around HG for both dimensions. A 

paired t-test revealed no significant differences (no surviving voxels) between the pitch and 

timbre conditions at the group level, with a cluster threshold of 1072 microliters (134 voxels). At 

the individual level, only two of the ten subjects showed any significant differences between the 

pitch and timbre conditions (pitch-timbre), and neither of them had any significant clusters within 

the auditory cortex. There was no connection between these two subjects in terms of 

musicianship, as one had two years of musical training, while the other had 16. 
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ROI analysis 

Two auditory ROIs in the temporal lobes were functionally defined in individual subjects 

(iROIs) based on the contrast of all sound conditions vs. baseline (silence), one in each 

hemisphere. The average (± SEM) cluster size of these iROIs was 2507 voxels  ± 135.4 [left 

hemisphere (LH): 2451 ± 171.1; right hemisphere (RH): 2564 ± 217.7]. A two-tailed paired t-test 

revealed no significant difference in cluster size between hemispheres (t(9) = 0.60, p = 0.565).  

 Within each iROI, the subject’ beta weights for acoustical dimension (pitch and timbre) 

at each stepsize were averaged across voxels. A repeated-measures 2x2x4 ANOVA with average 

BOLD response within each subject’s iROIs as the dependent variable and factors of acoustical 

dimension (pitch and timbre), hemisphere (right and left) and stepsize (1, 2, 5, and 10 times the 

DL) showed no main effect of hemisphere (F(1,9) = 1.2, p = 0.3) or dimension (F(1,9) = 2.2, p = 

0.172), indicating that the overall level of activation in the ROIs was similar across hemispheres 

and across the pitch and timbre conditions. There was, however, a main effect of stepsize (F(3,27) = 

14.7, p = 0.0001), as well as a significant linear trend (F(1,9) = 31. 5, p = 0.0001), indicating 

increasing activity with increasing stepsize. No significant interactions were observed, indicating 

that the effect of stepsize was similar in both hemispheres (F(3,27) = 1.3, p = 0.302) and for both 

dimensions (F(3,27) = 1.2, p = 0.346). Figure 3 depicts the mean beta weight for each stepsize for 

pitch and timbre within each of the left and right hemisphere ROIs.  
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Fig. 2. Group-level statistical maps of pitch (top) and timbre (bottom), pooled across all stepsizes, 

both contrasted with silence. A cluster in each of right and left superior temporal gyri for pitch 

(center of mass: R: 56, -16, 8; L: -53, -22, 9) and timbre (center of mass: R: 56, -18, 9; L: -53, -

24, 9) conditions, respectively. Color scale values range from -1 to 1, in units of percentage 

change relative to baseline.  No voxels survive the contrast of pitch and timbre (pitch-timbre). 
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Fig. 3. Bar graphs showing mean beta weights in percentage change across all subjects’ iROIs at 

each stepsize (1, 2, 5, and 10 DL) for pitch (top row) and timbre (bottom row) in each hemisphere 

(left and right). Error bars indicate +/- one standard error of the mean across subjects. 

 

Correlations between BOLD and stepsize in pitch and timbre  

The main purpose of the experiment was to identify regions that were selectively 

sensitive to either pitch or timbre variations. We reasoned that such regions would show 

increased activation with increasing stepsize (and hence sequence range and variance) in the 

relevant dimension. Results of the single-sample t-test of Fisher z-transformed r coefficients 

compared to 0 within the union of iROI masks, with a cluster threshold of 464 microliters (58 

voxels), are shown in Fig. 4A. Results are limited to voxels within the MNI template. In line with 

the linear trends in activation with increasing stepsize observed in the analysis of iROI means, the 

heatmap shows that voxels within the union mask were positively correlated with stepsize in both 
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the pitch and timbre dimensions. In addition, there was no clear spatial separation between the 

regions most sensitive to pitch changes and those most sensitive to timbre changes, either within 

or between hemispheres. This point is illustrated further with binary versions of each map in Fig. 

4A overlaid to show which voxels the two maps have in common (Fig. 4B). Previous studies 

found pitch to be represented in the anterior-lateral portion of Heschl's Gyrus (Patterson et al., 

2002; Penagos et al., 2004; Norman-Haignere et al., 2013); however, the large degree of spatial 

overlap we found across these dimensions does not support strongly modular processing of pitch 

or timbre within this region. 
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Fig. 4. Group-level correlation coefficient maps A. & B.  A. Heat maps of positive mean Fisher’s 

z-transformed correlation coefficients (ZCOR) for pitch (top) and timbre (bottom), limited to 
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voxels within a union of all subjects’ iROI masks. No significant negative correlations were 

found. A cluster is shown in each hemisphere for pitch (peak: R: 52, -10, 6; L: -46, -24, 10) and 

timbre (peak: R: 48, -20, 12; L: -52, -18, 6) conditions, respectively. B. Maps indicating which 

voxels the maps in A. have in common. The significant correlation coefficients within the pitch 

map (blue), the significant correlation coefficients within the timbre map (green), and the voxels 

these two maps have in common (red). 

 

Surface-based analyses 

In order to determine whether there were any significant differences between the spatial 

distributions of these correlation coefficients, we identified the anterior-lateral and posterior-

medial coordinates of HG on a flattened patch of auditory cortex in each hemisphere for each 

subject (Fig. 5). Right hemisphere coordinate systems were mirrored in the medial-lateral 

dimension to align with the left hemisphere. Fisher z-transformed correlations coefficients and 

iROI masks were transformed to the cortical surface (using AFNI’s 3dVol2Surf), using the 

“median” sampling option to assign the median of the volume values found along the surface 

normal to each surface vertex, and aligned for each subject to this new coordinate system.  

Surface maps of the contrast between pitch and timbre illustrate that there was no 

systematic difference between representations of the two dimensions in the left (Fig. 6A) or right 

(Fig. 6B) hemisphere. Contrast was computed as (r2
pitch-r

2
timbre)/(r

2
pitch+r2

timbre), where each r 

represents the average (across subjects) correlation between the BOLD signal and stepsize. 

Projections of the data onto axes parallel to and orthogonal to HG also reveal nearly complete 

overlap of pitch and timbre correlations. 

Histograms of pitch/timbre contrast for left (Fig. 6C) and right (Fig. 6D) hemispheres 

show that strong correlations with timbre were more common than strong correlations with pitch. 

This finding is also reflected in the steeper slopes for timbre relative to pitch in Fig. 3. Therefore, 
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while the spatial distribution of pitch and timbre responses is largely overlapping, the BOLD 

response shows stronger correlation with timbre scales, in spite of the fact that the stepsizes were 

perceptually matched to the pitch stepsizes. 

As a final test of the spatial distribution of responses, a weighted center of mass (COM) 

was calculated for each subject, weighting each surface vertex by the square of the correlation 

coefficient (i.e., accounted variance) for either pitch stepsizes or timbre stepsizes (Fig. 6E). After 

Bonferroni correction for multiple comparisons, paired t-tests indicated that the left hemisphere 

showed a significant difference in the direction running along (parallel to) HG, going from 

anterior-lateral to posterior-medial in the cortex (t(9) = -3.9, p = 0.016 (p = 0.004, uncorrected)), 

but no difference in the direction running across (perpendicular to) HG (t(9) = 2.3, p = 0.18 (p = 

0.045, uncorrected)). The right hemisphere showed no significant differences in either direction 

(along HG, t(9) = -1.9, p = 0.36 (p = 0.09, uncorrected); across HG, t(9) = 2.4, p = 0.172 (p = 0.043, 

uncorrected)). The slight divergence between the location of strong pitch and timbre correlations 

is also evident in the projection of the pitch/timbre contrast running parallel to HG (Fig. 6A). The 

weighted COM of timbre responses was more anterior and lateral than pitch responses, but the 

overall spatial similarity of the pitch and timbre responses and the very small difference between 

the COMs suggest caution in interpreting this outcome. Overall, the results do not provide 

support for the idea of a pitch region in the anterior portion of the auditory cortex that is not 

responsive to changes in other dimensions. 
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Fig. 5. Spatial distribution of the iROI masks in the auditory cortex in each hemisphere with 

respect to Heschl’s gyrus. A. Individual subject’s inflated brain (left panel) with iROI mask, and a 

flattened patch (right panel) of the auditory cortex. Heschl’s gyrus (black dashed line) and 

superior temporal gyrus (white dashed line) are labeled for this subject. B. Summation of iROI 

masks across all subjects in the left hemisphere (left panel) and right hemisphere (right panel), 

color-coded to indicate the number of subjects for which each surface vertex was inside their 

iROI. 

 

Fig. 6. Spatial distribution of correlation coefficients for pitch and timbre. A. & B. Left 

hemisphere (blues) and right hemisphere (reds) contrast maps within the sound mask (vertices 

inside the auditory ROI of at least 5 subjects), with darker colors indicating pitch had a higher 

correlation coefficient in a given voxel. To the right and bottom are projections of the mean (SD) 

proportion of variance explained, parallel and perpendicular to Heschl’s gyrus. C & D. 

Distribution of the contrast between variance explained by pitch and timbre stepsize across all 

voxels within the mask in each hemisphere. E. Variance-weighted center of mass (COM) for each 
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subject for each dimension in each hemisphere. Black lines connect the center of mass for each 

condition within a hemisphere for each subject. Inset above demonstrates how small the spatial 

range is for the COMs. 

 

Excitation-pattern analysis  

The general similarity in responses to variations in pitch and timbre suggested the 

possibility of a single representation, perhaps based on the tonotopic organization within the 

auditory pathways that begins in the cochlea. Changes in both the F0 and the spectral centroid 

produce changes in the tonotopic representation of sound. It may be that the activation differences 

measured by our fMRI study reflect tonotopy, rather than the extraction of higher-level features, 

such as pitch or timbre. We tested this hypothesis by deriving the predicted changes in tonotopic 

representation, based on the differences in the auditory excitation pattern between successive 

notes produced by the pitch and timbre sequences. The predicted changes in excitation were 

derived using the recent model of Chen et al. (2011), which itself is based on the earlier model of 

Moore et al. (1997); see Moore (2014) for a review. An example of the excitation patterns 

generated by notes that differ in either F0 or spectral centroid is shown in Fig. 7A.  

 The change in excitation from one note to the next (∆𝐸) was quantified as the sum of the 

absolute differences in specific loudness across frequency. The average change in excitation (∆𝐸̅̅̅̅ ) 

between successive notes in the melody for each stepsize was estimated by running simulations of 

sequences containing 1000 notes per stepsize. This enabled us to predict the average changes in 

excitation at different stepsizes for both dimensions. 

The predictions show that the changes in excitation are larger and vary more with 

stepsize for changes in spectral centroid than for changes in F0 (Fig. 7B). If BOLD responses 

simply reflected average changes in excitation based on tonotopy, rather than a response to the 
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features of pitch and timbre (where stepsizes were equated for perceptual salience across the 

two dimensions), then there should be a monotonic relationship between the BOLD response and 

the predicted excitation change (∆𝐸̅̅̅̅ ). The fact that the data do not fall on a single line, and 

instead separate based on whether pitch or timbre was varying, suggests that the BOLD responses 

are not simply a reflection of the tonotopic changes in activation produced by the stimuli. 

 

Fig. 7. A. Excitation patterns for the highest and lowest steps of the largest stepsize (10xDL) for 

the pitch and timbre conditions, respectively. Lighter colors indicate the higher pitch and brighter 

timbre, respectively.  B. Scatter plot showing mean beta weight across all ten subjects at each 
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stepsize, averaged across hemispheres as a function of ΔE with a linear regression line for each 

dimension. Lighter colors indicate higher stepsizes. Error bars indicate +/- one standard error of 

the mean across subjects. 

 

Multi-voxel pattern analysis 

Although the univariate analyses do not support the existence of anatomically distinct 

pitch and timbre processing within auditory cortex, this finding does not rule out the possibility 

that the patterns of activity across the regions can still code for variations in the two dimensions. 

As suggested in the single-unit study of ferrets by Bizley et al., (2009), the same population of 

neurons could be used to code for both dimensions (or more). To explore this possibility, we 

employed MVPA (see Methods for procedural details).  

 Average classifier performance for predicting pitch versus timbre conditions was 61.6% 

across subjects, which was significantly above chance (50%), based on a two-tailed t-test (p = 

0.015). For eight of the ten subjects, the classifier performed significantly above chance (p < 

0.0001) for accurately discriminating pitch from timbre conditions, with performance from 

individual subject data ranging from 55-86% correct. These results suggest that there is a 

distinguishable difference in activity patterns across voxels for these conditions. 

 In order to determine if our results were strongly affected by the masks used, we 

compared our functionally defined ROI mask, based on our univariate analysis results, which was 

cluster-thresholded and limited to the 2000 most responsive voxels, to results using other masks 

types: (1) an ROI mask not limited to 2,000 voxels, but thresholded at p = 0.01 and cluster 

thresholded (resulting in a greater number of voxels), (2) a mask containing voxels strongly 

correlated with stepsize (created with correlation coefficient data from the Correlations between 

BOLD and stepsize in pitch and timbre section) (p = 0.01, cluster thresholded), and (3) a mask 

containing voxels strongly correlated with stepsize, intersected with the 2,000-voxel mask 
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(further reducing the number of voxels in each subjects’ mask). Classifier performance results 

across masks can be seen in Table 1. Paired t-tests revealed no significant differences across mask 

types, suggesting the differences between voxels included in each mask type did not have a strong 

effect on classifier performance, and that classifier performance remained reasonably consistent 

within subjects.  
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Subject 

ROI mask 

thresholded 

to 2000 vox. 

ROI 

mask 

Step size 

correlated 

vox. mask 

intersected 

with 2000 

vox. mask 

Step size 

correlated 

voxel mask 

Mean 

classifier 

performance 

(%) for each 

subject 

SD 

1 73 70 71 68 70.5 2.08 

2 45 43 47 38 43.25 3.86 

3 49 53 50 47 49.75 2.50 

4 55 52 51 57 53.75 2.75 

5 65 63 66 64 64.5 1.29 

6 69 72 69 63 68.25 3.77 

7 56 56 61 60 58.25 2.63 

8 86 80 70 74 77.5 7.00 

9 56 56 55 56 55.75 0.50 

10 62 66 60 63 62.75 2.50 

Mean 

classifier 

performance 

(%) for each 

mask 

61.6 61.1 60 59 60.4 1.16 

SD 12.17 11.11 8.91 10.34 10.3 
 

 

Table 1. Princeton’s MVPA toolbox classifier performance (in percent) distinguishing pitch from 

timbre conditions using four different masks. Blue fill indicates mask used in our analyses. 

Values in bold indicate best classifier performance for each subject.  

 

Finally, we examined classifier performance when comparing only the largest stepsizes. 

Given that the largest stepsizes produce the most salient perceptual changes, these may be the 

easiest conditions for the classifier to differentiate. A repeated-measures 3x2 ANOVA comparing 

the stepsizes (all, 5 & 10, or 10), and mask type (2000 voxel mask or standard mask) showed no 

main effect of stepsizes or mask type, and no interactions (see Table 2), indicating that including 

only the stepsizes with the greatest perceptual variation did not improve classifier performance, 

perhaps due to the reduced amount of data when only a subset of stepsizes was considered. 
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ALL 

STEP 

SIZES 

ALL 

STEP 

SIZES 

STEP 

SIZES  

5 & 10 

STEP 

SIZES  

5 & 10 

STEP SIZE 

10 

STEP 

SIZE  

10 

Subject 
ROI mask 

thresholded 

to 2000 vox. 

ROI 

mask 

ROI mask 

thresholded  

to 2000 vox. 

ROI 

mask 

ROI mask 

thresholded  

to 2000 vox. 

ROI 

mask 

1 73 70 71 71 71 71 

2 45 43 49 46 50 42 

3 49 53 49 56 53 54 

4 55 52 59 56 56 53 

5 65 63 64 65 66 64 

6 69 72 69 71 70 70 

7 56 56 59 53 55 58 

8 86 80 88 79 88 80 

9 56 56 54 55 56 49 

10 62 66 60 69 61 68 

Mean 

classifier 

performanc

e (%) for 

each mask 

61.6 61.1 62.2 62.1 62.6 60.9 

SD 12.17 11.11 11.71 10.37 11.45 11.68 
 

 

Table 2. Classifier performance comparing all stepsizes to stepsize five and ten only, and ten 

only, across two ROI masks (ROI mask thresholded to 2000 voxels, and the standard functional 

mask). Bold values indicate best performance for a given subject. 

 

Discussion 

In this study, we compared human cortical processing of the auditory dimensions of pitch and 

timbre. Conventional univariate analyses revealed no significant differences in terms of the 

regions dedicated to processing variations in these two dimensions, with the exception of a slight 

difference in the weighted center of mass of the clusters of voxels whose responses were 

correlated with stepsize in the direction parallel to the HG (anterior-lateral to posterior-medial) in 
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the LH. These results provide no evidence for modular and exclusive processing of the two 

dimensions in separate regions of auditory cortex, at least on the coarse level of analysis available 

with fMRI. 

While previous studies of pitch found active regions in the anterior portion of HG, 

bilaterally, providing converging evidence that these regions are important for pitch processing, 

we found broader bilateral regions throughout the auditory cortices that were responsive to pitch 

as well as timbre variation. It is possible, however, that had we contrasted our periodic stimuli 

with aperiodic stimuli, such as noise, we would have found elevated activation in anterior regions 

for pitch and timbre, consistent with dipole locations found by Gutschalk and Uppenkamp (2011) 

using MEG. Instead, our results focus exclusively on the contrast between pitch and timbre, and 

suggest that the pitch-sensitive regions in the aforementioned studies may not be uniquely 

dedicated to pitch processing. 

Although our univariate results indicate that pitch and timbre processing takes place in 

common anatomical regions of the auditory cortices, their decodability using MVPA suggests 

that they may engage distinct circuitries within these regions. In this respect, our results are 

consistent with the conclusions of the single-unit study in the auditory cortex of ferrets, which 

also suggested population-based codes for pitch and timbre, with many neurons showing 

sensitivity to changes in both dimensions (Bizley et al., 2009). 

We found evidence supporting our hypothesis that regions selective for pitch or timbre 

show increases in activation with increases in the size of the range covered within each sequence. 

In other words, larger variations in either pitch or timbre within the sequences led to larger 

changes in BOLD in both dimensions, akin to Zatorre and Belin’s (2001) findings for spectral and 

temporal variations.  

It is worth considering how the use of melodies may have affected our results. Our 

stimulus sets for both pitch and timbre variations were presented in the form of tone sequences 
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that could be perceived as pitch melodies and timbre “melodies.”  It has been found that pitch, 

loudness, and brightness (i.e., timbre) can all be used to identify familiar melodies, which 

suggests a substrate for detecting and recognizing patterns of sound variations that generalizes 

beyond pitch (McDermott et al., 2008; Graves et al., 2014). If the recognition of pitch and timbre 

melodies is subserved by similar cortical circuits, it seems reasonable to expect similar regions of 

activation. Further, melody processing is considered a higher level of auditory processing, which 

may be represented in non-primary auditory cortical regions (e.g., Patterson et al., 2002b). Thus, 

it is possible that the regions active in this study include higher-level processing than basic pitch 

or timbre processing, which might explain the spread of activation along the superior temporal 

gyri. Contrary to expectations based on higher-level processing, the activation we found was 

relatively symmetric across hemispheres and covered large regions of Heschl's gyrus; other 

studies have found limited and more right-lateralized processing of pitch melodies (e.g., Zatorre 

et al., 1994; Griffiths et al., 2001).  

In studies of auditory perception, pitch and timbre are often treated as separable 

dimensions (e.g., Fletcher, 1934; Kraus et al., 2009; McDermott et al., 2010). However, several 

studies have also shown that the two can interact (e.g., Krumhansl and Iverson, 1992; Warrier and 

Zatorre, 2002; Russo and Thompson, 2005; Marozeau and de Cheveigné, 2007). A recent 

psychoacoustic study showed that pitch and brightness variations interfered with the perception of 

the other dimension, and that the interference effects were symmetric; in other words, variations 

in pitch affected the perception of brightness as much as variations in brightness affected pitch 

perception (Allen and Oxenham, 2014). The finding held for both musically trained and 

musically naive subjects. The strong overlap in cortical activation of the two dimensions found in 

the present study may also reflect the perceptual difficulty in separating the two dimensions. 

Although our study was not designed to investigate potential differences between people with and 

without extensive musical training, comparing a subset of subjects with the most training (3 
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subjects with 15, 16, and 23 years of training) with a subset of subjects with the least training 

(3 subjects with 0, 1, and 2 years of training) did not reveal any significant differences or clear 

trends within these groups either in terms of the degree of activation or correlation with melody 

range in either dimension. 

Finally, one potential limitation of the study is that it involved a passive listening task. It 

is possible that the results may have been different if subjects had been engaged in a task that 

involved either pitch or brightness discrimination. Auditory attention has also been found to 

modulate activity in the superior temporal gyrus (e.g., Jäncke et al., 1999). Attention to auditory 

stimuli has been found to produce stronger activity throughout large areas in the superior 

temporal cortex, compared to when attention is directed towards visual stimuli (Degerman et al., 

2006). When subjects were instructed to discriminate between tones and identify the brighter 

timbre, Reiterer et al. (2007) found activity in a bilateral network including cingulate and 

cerebellum, as well as core and belt areas of the auditory cortices. This same network was active 

when subjects were performing loudness discrimination tasks, again highlighting the existence of 

overlapping neural networks for processing sound. However, for timbre, Broca’s area was also 

active, resulting in a left-hemisphere dominance, highlighting the connection between timbre 

discrimination and processing of vowels in language. It may be that similar dissociations between 

pitch and timbre would become apparent in an active version of the task undertaken in this study. 
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Abstract 

Pitch and timbre are two primary features of auditory perception that are generally considered 

independent. However, an increase in pitch (produced by a change in fundamental frequency) can 

be confused with an increase in brightness (an attribute of timbre related to spectral centroid), and 

vice versa. Previous work indicates that pitch and timbre are processed in overlapping regions of 

the auditory cortex, but are separable to some extent via multivoxel pattern analysis (MVPA). 

Here we tested whether attention to one or other feature increases the spatial separation of their 

cortical representations, and whether attention can enhance the cortical representation of these 

features in the absence of any physical change in the stimulus. Participants listened to pairs of 

tones varying in pitch, timbre, or both, and judged which tone had the higher pitch or brighter 

timbre. Variations in each feature engaged common auditory regions with no clear distinctions at 

a univariate level. Attending to one feature in the presence of irrelevant variations in the other led 

to differences in frontal activation, but did not improve the separability of the neural 

representations of pitch and timbre at the univariate level. At the multivariate level, the classifier 

performed above chance in distinguishing between conditions in which pitch or timbre was 

discriminated. The results confirm that the computations underlying pitch and timbre perception 

are subserved by strongly overlapping cortical regions, but reveal that attention to one or other 

feature leads to distinguishable activation patterns, even in the absence of physical differences in 

the stimuli. 

 Keywords: pitch, timbre, auditory cortex, attention, fMRI 
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Significance Statement 

While pitch and timbre are generally thought of as independent auditory features of a sound, pitch 

height and timbral brightness can be confused for one another. This study shows that pitch and 

timbre variations are represented in overlapping regions of auditory cortex, but that they produce 

distinguishable patterns of activation. Most importantly, the patterns of activation can be 

distinguished based on whether participants attended to pitch or timbre, even when the stimuli 

remained physically identical. The results therefore show that variations in pitch and timbre are 

represented by overlapping neural networks, but that attention to different features of the same 

sound can lead to distinguishable patterns of activation.  
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Introduction 

 Pitch and timbre are two fundamental perceptual dimensions of sound. Variations in pitch 

carry information about intonation and melody, whereas timbre is closely related to sound quality 

and identity. Despite the importance of pitch and timbre in auditory and speech perception, it 

remains unclear how they are represented in the cortex. A recent fMRI study found that pitch and 

timbre variations were represented in largely overlapping regions of the auditory cortex, although 

the patterns of activation could be distinguished using multi-voxel pattern analysis (MVPA; Allen 

et al., 2017).  However, this conclusion was based on a passive listening task. It is possible that 

the representations of pitch and timbre become more spatially distinct, and thus more separable, 

when attention is directed to them.  

Auditory attention has been found to modulate activity in wide regions of the superior 

temporal gyrus (STG) (e.g., Degerman et al., 2006; Jäncke et al., 1999). A recent meta-analysis 

by Alho et al. (2014) compared neural representations of several sound dimensions and categories 

(pitch, spatial location, speech, and voice processing) during active and passive fMRI 

measurements. Although speech or voice processing loci were not found to change with attention, 

pitch was found to activate more posterior and lateral areas in STG during active tasks, while the 

passive listening loci were shifted more anteriorly, toward the lateral end of Heschl’s gyrus (HG), 

the macroanatomical landmark that corresponds most closely to primary auditory cortex (PAC). 

Although some studies have examined cortical representations of timbral dimensions (Menon et 

al., 2002; Reiterer et al., 2008; Allen et al., 2018) none has yet examined the effects of 

modulating attention to timbre. It thus remains possible that an attentionally demanding task may 

enhance the spatial separability of the cortical representations of pitch and timbre. 

In addition to possible differences between active and passive listening conditions, 

participants’ attention can be directed to a particular sound feature. Recent studies have shown 
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that attention can enhance the representation of a specific sound within a mixture (e.g., Ding 

and Simon, 2012a, 2012b; Mesgarani and Chang, 2012)  and there is some evidence for neuronal 

modulation in visual cortex, as a function of attention to different features within a visual 

stimulus (Saenz et al., 2002); however, it is unknown whether attention to a specific auditory 

feature selectively enhances the representation of that feature over others, rather than just 

enhancing the representation of the entire object. 

This study examines whether task-based attention enhances the separation of the neural 

correlates of pitch and timbre, relative to that found in a passive-listening task (Allen et al., 2017), 

and asks whether neural correlates of attention to either pitch or timbre emerge even when the 

physical stimulus remains identical. The results suggest that the representations of pitch and 

timbre variation are subserved by strongly overlapping cortical regions, even in the active-task 

conditions, but reveal that attention to one or other dimension can lead to distinguishable 

activation patterns using MVPA, even in the absence of physical differences in the stimuli. 

 

Materials and Methods 

Ethics statement  

The experimental procedures were approved by the Institutional Review Board (IRB) for 

human subject research at the University of Minnesota. Written informed consent was obtained 

from each participant before starting the measurements. 

 

Participants  

Twenty right-handed subjects (mean age: 28.3, standard deviation (SD): 6.5; 10 males, 10 

females) from the University of Minnesota community participated in the experiment. All 

subjects had normal hearing, defined as audiometric pure-tone thresholds of 20 dB hearing level 
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(HL) or better at octave frequencies between 500 Hz and 8 kHz. The musical experience of the 

subjects ranged from 0 to 23 years, with 13 subjects reporting 8 or more years of formal musical 

training, three reporting between 3 and 7 years, and the remaining four reporting 2 years or less. 

 

Pre-scan experimental design  

Prior to being scanned, each subject’s difference limens (DLs) were measured for pitch 

and timbre discrimination. For pitch discrimination, we measured the DL for fundamental 

frequency (F0), i.e., the periodicity of a sound, a physical variable most closely associated with 

pitch. For timbre, we measured the spectral centroid DL, a physical manipulation that leads to 

reported changes in the timbral dimension of “brightness” (e.g., Fastl and Zwicker, 2007). The 

paradigm was similar to that used by Allen and Oxenham (2014) and Allen et al. (2017). Stimuli 

were generated in MATLAB (Mathworks, Natick, MA) and presented using the AFC toolbox for 

auditory psychophysics (Ewert, 2013).  Pairs of successive harmonic complex tones were 

presented diotically through HD 650 headphones (Sennheiser, Old Lyme, CT) at a sampling rate 

of 44,100 Hz. Each tone was 500 ms in duration, with a 300 ms interstimulus interval (ISI). The 

tones had 20 ms raised-cosine onset and offset ramps, and harmonics up to 10,000 Hz were added 

in sine phase and scaled independently, producing 24 dB/octave slopes around the center 

frequency (i.e., the spectral centroid). The 3-dB bandwidth of the filter was ¼ octave, with 

complexes having no flat bandpass region. Sounds were presented at an overall level of 66 dB 

sound pressure level (SPL).  

Participants listened to pairs of tones presented sequentially, and on each trial selected the 

tone with the higher pitch or brighter timbre (i.e., a standard two-alternative forced-choice 

procedure). Stimuli were paired with boxes on the screen that would light up with each tone, with 

the question, “Which pitch was higher?” or “Which timbre was brighter?” depending on the task. 

Feedback was then given, indicating whether the response was correct or incorrect. For the pitch 
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condition, the spectral centroid of the filter remained unchanged at 900 Hz, and the F0 was 

roved +/- 10% uniformly around 200 Hz across trials. For the timbre task, the F0 remained 

unchanged at 200 Hz, and the spectral centroid roved +/- 10% uniformly around 900 Hz across 

trials. A two-down, one-up adaptive tracking rule was used to converge on a DL for both F0 and 

spectral centroid, corresponding to performance of 70.7% correct (Levitt, 1971). The starting 

value of ΔF0 or ΔCF was 200%, which was initially increased or decreased by a factor of 2. 

Following the first staircase reversal (i.e., the first direction change in the tracking variable from 

“up” to “down”) this factor was decreased to 1.26, and then to the final step size of 1.12 after two 

more reversals. After six reversals at this step size, the run was terminated, and the DL in each 

run was calculated as the geometric mean of the Δ value at the last six reversals points. Each 

participant’s final DL for each dimension was based on the geometric mean DL across six task 

blocks. All blocks of one dimension were completed before beginning measurements in the next 

dimension, and this ordering was counterbalanced across subjects. 

After DLs were calculated, discrimination performance was measured using a method of 

constant stimuli with the F0 or spectral centroid difference set to five times the DL measured for 

each individual participant (5DL). The reason for multiplying the DL by 5 was threefold: (1) to 

allow participants to perform near ceiling, confirming that they are attending to the correct 

dimension on each task, (2) to allow for the fact that the task was presented in the acoustically 

noisy MRI scanner environment (as the DLs were originally measured in silence), and (3) to 

ensure that the changes in pitch in timbre remained roughly equally salient (Allen and Oxenham, 

2014). Performance was based on 100 trials of each: pitch alone comparisons (PA; when only F0 

is varying), timbre alone comparisons (TA; when only spectral centroid is varying), both pitch 

and timbre varying, but with subjects attending to only pitch (PwT), and both pitch and timbre 

varying, but with subjects attending only to timbre (TwP). In all cases, the participants were 
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instructed to select the tone with either the higher pitch or brighter timbre in the tone pair (see 

Fig. 1).  

 

 

Fig. 1. Chart showing all combinations of attended dimensions (pitch or timbre) and number of 

varying dimensions (one or two) in the study, totaling four different experimental conditions: 

pitch alone (PA), pitch discrimination with timbre varying (PwT), timbre alone (TA), and timbre 

discrimination with pitch varying (TwP). Note that the stimuli in the PwT and TwP conditions are 

identical; the only difference is the dimension to which subjects were instructed to attend. 

 

Experimental design during scan 

The stimuli were presented at 63 dB SPL via MRI-compatible Sensimetrics S14 

earphones with custom filters, designed to compensate for the frequency response of the 

hardware. Stimulus parameters were the same as those for pre-scanner behavioral testing. During 

each task scan, subjects completed 28 trials of one of the four discrimination tasks shown in Fig. 

1 using differences that were set to be five times the DL for each subject. The direction of change 

for each dimension (up or down) was selected randomly and independently in each trial. These 

trials were evenly divided into 4 blocks, one for each condition, separated by rest periods to 

measure the baseline signal. Trials were presented during interaquisition intervals to reduce 
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acoustic contamination from the scanner. Following each trial, subjects had 2 s to respond. 

Subjects’ responses were collected via a button-box. Stimuli were paired with boxes projected 

onto a screen and viewed through a mirror mounted on top of the head coil. The words “pitch,” 

“timbre,” “rest,” and “end” appeared on the screen as task cues. Feedback for correct and 

incorrect responses appeared in the form of happy and sad emoticons, respectively. Missed 

responses were followed by a presentation of an asterisk symbol on the screen. Due to some 

technical difficulties with the button box, some subject responses were missed despite subjects 

having pressed the button during the allotted response window (mean number of missed 

responses across subjects: 3 out of 224, SD: 4.27). These missed responses were not included in 

the calculation of task performance. 

Each condition was repeated in a pseudo-random counterbalanced order, for a total of 56 

trials per condition. The two Alone conditions in counterbalanced order always preceded the two 

Varying conditions in counterbalanced order. For example, one scan session could be ordered as 

follows: PA, TA, PwT, and TwP, followed by TA, PA, PwT, and TwP (see Fig. 2). This pseudo-

random counterbalancing was intended to remind subjects what pitch and timbre changes 

sounded like in isolation, prior to being tested on the more challenging task of attending to one 

when both dimensions varied. 

 

Magnetic resonance imaging  

The data were acquired at a 3T (Siemens Prisma) MRI scanner. To minimize the 

contamination of the functional data with scanner noise, we used a pulse sequence with sparse 

temporal acquisition (Hall et al., 1999). The pulse sequence used slice accelerated multiband 

(factor 2) echo planar imaging (EPI) (Xu et al., 2013) with a repetition time (TR) of 6 s 

(acquisition time of 2 s, and an inter-acquisition silent interval of 4 s), providing a voxel 

resolution of 2 mm isotropic. Each functional volume had 48 slices, angled upward to avoid the 
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eyes in an effort to reduce eye movement artifacts, while covering most of the brain. However, 

in many subjects, the posterior portion of the parietal cortex was not included. A total of 8 

functional scans were acquired for each participant, each of which took about 4 minutes to 

complete and consisted of 39 volumes. To correct the spatial distortions from inhomogeneity in 

the B0 magnetic field, we also collected each participant’s field map. To localize functional 

activations, we additionally collected anatomical T1-weighted images which were co-registered 

with the EPI data. 

 

 

Fig. 2. Schematic diagram of the pseudo-random counterbalancing of eight functional runs within 

a scanning session for four different subjects. Abbreviations:  r = run, s = subject, PA = pitch 

alone, TA = timbre alone, PwT = pitch with timbre varying, TwP = timbre with pitch varying. 

Note that the stimuli used in the PwT and TwP conditions were identical. 

 

Statistical analysis. Data were preprocessed using the Analysis of Functional NeuroImages 

(AFNI) software package (Cox, 1996) and FSL 5.0.4 (http://fsl.fmrib.ox.ac.uk/). Statistical 

analyses and visualization were performed with AFNI. Preprocessing included distortion 

correction via FSL’s FUGUE, six-parameter motion correction, spatial smoothing (4 mm FWHM 

Gaussian blur), and pre-whitening. 

http://fsl.fmrib.ox.ac.uk/
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 For each subject, an event-related general linear model (GLM) analysis was performed 

that included regressors for each of the four experimental conditions, six motion parameters, and 

Legendre polynomials up to the fourth order to account for baseline drift (modeled separately for 

each run). Each subject’s brain was transformed into Montreal Neurological Institute (MNI) 

space (Mazziotta et al., 1995). Beta weights (regression coefficients) for individual voxels were 

estimated by the GLM for each condition for each subject, as were contrasts comparing 

conditions within pitch, within timbre, between pitch and timbre, and a contrast comparing all 

sounds to baseline. Cortical surface-based visualization was done in AFNI’s SUMA (SUrface 

MApping) https://afni.nimh.nih.gov/Suma using the FreeSurfer brain surface MNI N27. 

Group-level analyses with subject as a random effect included paired-sample t-tests 

performed on the unmasked, unthresholded beta weights for each contrast using the AFNI 

program 3dttest++. Voxels were thresholded at p < 0.01, uncorrected. Correction for multiple 

comparisons was achieved by determining the minimum significant cluster size. Taking into 

account increasing concerns over the risk of inflated false positives with this method, as reported 

by Eklund et al., (2016), a nonparametric permutation test was used. This permutation 

test randomized the signs of the residuals of the model among subjects, and then performed a t-

test, with these steps iterated 10,000 times, to determine nearest-neighbor, faces touching, two-

sided cluster thresholds. This method, implemented within 3dttest++ using the ‘clustsim’ option, 

determined the probability, with each voxel having a 1% chance of displaying a false positive, of 

clusters of a given size occurring by chance. Based on these probabilities, clusters smaller than 

those that would occur by chance more than 5% of the time were filtered out of the results to 

achieve a cluster-level α= 0.05. The t-tests were conducted within a gray matter mask containing 

anatomically defined auditory cortices and frontal lobe regions (see Fig. 3). The mask, which was 

created on the cortical surface, was made up of the following gyri and sulci in the left and right 

hemispheres: superior temporal (including banks), Heschl’s, supramarginal, precentral, superior 

https://afni.nimh.nih.gov/Suma
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frontal, middle frontal (caudate and rostral), inferior frontal (opercularis, triangularis, 

orbitalis), orbitofrontal (lateral and medial), and anterior cingulate (caudal and rostral), as well as 

the insulae, temporal poles, and frontal poles. These regions were defined by the Desikan-

Killiany Atlas (Desikan et al., 2006). 

 

 

Fig. 3. Mask of the auditory cortex and frontal lobe regions. (From left to right) left hemisphere, 

front-facing view, and right hemisphere. 

 

Multivoxel pattern analysis 

In addition to univariate analyses, we employed multivoxel pattern analysis (MVPA) 

which has the advantage of being more sensitive to differences between conditions than the 

univariate approach, as it examines the patterns of activity across several voxels, as opposed to 

averaging across them (Norman et al., 2006) and may reveal differences at the voxel level that are 

not apparent via standard univariate analyses. MVPA was performed using Princeton’s MVPA 

toolbox for MATLAB with a backpropagation classifier algorithm 

(http://code.google.com/p/princeton-mvpa-toolbox/). In order to restrict the number of voxels in 

our analyses, we added a functionally defined mask based on our univariate analysis results. This 

mask contained voxels that were most active during the auditory tasks (all sound conditions 

contrasted with the silence baseline), thresholded to the 2,000 most active (positive) voxels across 

both hemispheres for each subject. This cutoff was chosen so that the number of voxels in each 

http://code.google.com/p/princeton-mvpa-toolbox/
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mask was the same across subjects, and to limit the number of voxels used for classification 

(e.g., De Martino et al., 2008; Schindler et al., 2013).  

For baseline estimation, TRs immediately following a transition from a sound trial to rest 

were eliminated, to account for the lag in the hemodynamic response as it dropped back down to 

baseline during rest (silence). The preprocessed data were then normalized by dividing by the 

mean baseline signal to eliminate any between-run differences caused by baseline shifts and 

multiplied by 100, converting the data into percent signal change. 

Given that each run in our scan sessions consisted entirely of one condition type (and 

silent periods), as shown in Fig. 4A, our experimental design was incompatible with the 

traditional leave-one-run-out cross-validation procedure used in MVPA packages. To rectify this, 

we used our data to create a set of pseudo-runs, each containing an even sampling of all four 

conditions. To do this, we took our preprocessed data, in percent signal change, and divided each 

of our eight runs into four blocks, consisting of seven trials each. These block lengths were 

chosen because each series of seven consecutive trials in a run was followed by 18 seconds of 

silence. The first trial within each block was removed, again to account for the lag in the 

hemodynamic response. We also removed spikes in the timecourse that were more than four 

standard deviations from the mean of the run (excluding silence). The remaining trials within 

each block were then averaged together, resulting in one value per block per voxel. We then 

divided the resulting 32 activation patterns (8 runs x 4 blocks) into 8 pseudo-runs, each 

containing one activation pattern per condition. These pseudo-runs, depicted as columns in Fig. 

4B, were then z-scored and subjected to eight-fold cross-validated MVPA analysis, where each 

training set consisted of 7 pseudo-runs, totaling 28 patterns, while the remaining pseudo-run (4 

patterns) was used as the testing set.  
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Fig. 4. Cross-validation procedure for MVPA. A. The eight functional runs are represented as 

rows, each parsed into four blocks of trials, totaling 32 blocks per subject. B. The pseudo runs are 

represented as columns. In each fold of the cross-validation, 28 of the blocks were used for 

training and four were used for testing, with one block of each condition type represented in the 

testing data. Abbreviation: b = block.  

 

Results 

Pre-scan behavioral task performance  

The geometric mean F0 DL across participants was 1.06%, 95% CI [0.7 1.5], and the 

average spectral-centroid DL was 4.3%, 95% CI [3.5 5.1], in good agreement with earlier studies 
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using similar stimuli (e.g., Allen and Oxenham, 2014). As anticipated, performance on the 

constant-stimuli task utilizing the scaled 5*DL variation was high, with a mean proportion of 

correct responses of 95.6% (SD: 5.7%) across all conditions. Average performance within 

conditions is reported in Table 1A. Due to the near-ceiling performance in these tasks, a non-

parametric Friedman test on the four conditions indicated a significant difference between 

conditions (χ2 = 20.67, p < 0.0001). We then ran Wilcoxon signed ranks tests to compare 

conditions. As reported in Table 1B, after a Bonferroni correction for multiple comparisons, no 

significant difference in performance between the pitch and timbre conditions was found. This 

was true when comparing PA and TA conditions, as well as the PwT and TwP conditions. There 

was, however, a significant difference between both alone (BA) and both varying (BV) 

conditions, and this difference existed between PA and PwT, as well as TA and TwP, indicating 

that, as expected, the conditions in which both dimensions were varying were more challenging 

than the conditions in which only one dimensions was varying. 

 

A. Condition(s) 
Mean % 

(SD) 
B. Rank order 

Z 

statistic 

p-value 

(corrected) 

 
All Pitch 94.6 (6.9) 

 

All pitch <  

All timbre 
-1.24 1.32 

 
All Timbre 96.6 (3.9) 

 
PA < TA -0.21 5.04 

 
PA 97.8 (3.7) 

 
PwT < TwP -1.48 0.84 

 
TA 98.3 (1.5) 

 
BV < BA -4.73 0.0006* 

 
BA 98.0 (2.8) 

 
PwT < PA -3.50 0.0006* 

 
BV 93.2 (6.7) 

 
TwP < TA -3.09 0.012* 

 
PwT 91.5 (7.9) 

    

 
TwP 94.9 (4.8) 

    
 

Table 1. Pre-scan behavioral task performance. A. Mean and standard deviation of all conditions 

and B. Wilcoxon signed ranks test Z statistics and Bonferroni corrected p-values comparing task 

performance between conditions. Asterisks indicate significant differences.  
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Behavioral task performance during scanning  

Similar to performance in the pre-scanner session, performance in the scanner was near 

ceiling (mean: 95%, SD: 4.3). Average performance within conditions is reported in Table 2A. 

Again, a non-parametric Friedman test indicated a significant effect of condition (χ2 = 16.94, p < 

0.001), so Wilcoxon signed ranks tests were used to compare pairs of conditions. As reported in 

Table 1B, after a Bonferroni correction, there were no significant differences between the pitch 

and timbre conditions, neither between the PA and TA conditions, nor between the PwT and TwP 

conditions, suggesting the perceptual salience and subsequent task difficulty remained relatively 

equivalent across dimensions at 5*DL.  However, as in the pre-scanner task performance, the 

performance for BA conditions was significantly better than performance for BV conditions. 

When comparing the PA and PwT conditions, the difference was marginal after correction, but 

remained significant for the TA versus TwP conditions. 

 

A. Condition(s) 
Mean % 

(SD) 
B. Rank order 

Z 

statistic 

p-value 

(corrected) 

 
All Pitch 94.1 (7.4) 

 

All pitch < All 

timbre 
-0.79 2.58 

 
All Timbre 95.8 (5.9) 

 
PA < TA -0.35 4.38 

 
PA 96.8 (5.5) 

 
PwT < TwP -0.77 2.64 

 
TA 98.1 (1.8) 

 
BV < BA -3.73 0.0006* 

 
BA 97.5 (4.1) 

 
PwT < PA -2.48 0.06 

 
BV 92.4 (7.8) 

 
TwP < TA -2.81 0.03* 

 
PwT 91.4 (8.1) 

    

 
TwP 93.4 (7.5) 

    
 

Table 2. Behavioral task performance in the scanner. A. Mean and standard deviation of all 

conditions and B. Wilcoxon signed ranks test Z statistics and Bonferroni corrected p-values 

comparing task performance between conditions. Asterisks indicate significant differences.  
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Group-level analysis  

For all conditions compared to baseline (silence), we found robust activation of the 

auditory cortices (see Fig. 5). Significant clusters were found within the combined auditory cortex 

and frontal lobe mask for the contrast between either dimension varying alone and both 

dimensions varying, while attending to one (BV – BA): BA conditions had significant clusters in 

the right medial orbitofronal gyrus, right cingulate gyrus, and right and left superior frontal gyri 

(SFG); the BV conditions had significant clusters in left inferior frontal gyrus (IFG), left middle 

frontal gyrus (MFG), and right and left anterior insulae (see Fig. 6).  

Considering the same contrast, but for each dimension individually, the TwP – TA 

contrast revealed that TwP had a significant cluster in left IFG, a significant cluster in left medial 

frontal gyrus, and a significant cluster in right anterior insula, whereas no regions showed 

significantly greater activation for TA (see Fig. 7). The PwT – PA contrast showed no significant 

differences. Additionally, when contrasting any pitch condition to any timbre condition (i.e., PA – 

TA, PwT – TwP, or all pitch conditions – all timbre conditions), no significant clusters were 

found. 

 

 

Fig. 5. Group-level statistical map on an inflated brain showing the mean of all sound conditions 

relative to baseline (masked, thresholded at the single voxel level [p < 0.01], and cluster 
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thresholded [p < 0.05]). Color scale values range from -1 to 1 units of percentage change. For 

reference, the grayed out areas, which are the regions not colored blue in Fig. 3, have been added 

to denote regions not included in analysis.    

 

 

Fig. 6. Group-level statistical map for the BV – BA contrast (masked, thresholded at the single 

voxel level [p < 0.01], and cluster significance thresholded [p < 0.05]). Warm colors indicate 

voxels responding more strongly during the BV tasks and cool colors indicate voxels responding 

more strongly during the BA tasks.  Color scale values range from -0.3 to 0.3 in units of 

percentage change. 

 

 

Fig. 7. Group-level statistical map for the TwP – TA contrast (masked, thresholded at the single 

voxel level [p < 0.01], and cluster significance thresholded [p < 0.05]). Warm colors indicate 

voxels responding more strongly during the TwP task and cool colors indicate voxels responding 
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more strongly during the TA task. Color scale values range from -0.3 to 0.3 in units of 

percentage change. 

 

MVPA results  

As shown in Fig. 8, average 4-way classifier performance for distinguishing between 

pitch alone, timbre alone, pitch varying, and timbre varying was 86.6% [SD = 8.0 percentage 

points], which was significantly above chance (25%), based on a one-tailed t-test (t19 = 34.3 p < 

0.0001). Average classifier performance for pitch conditions versus timbre conditions was 88.2% 

[SD = 6.7], which was also significantly above chance (50%) (t19 = 25.6, p < 0.0001). Average 

classifier performance for BA conditions versus BV conditions was 86.6% [SD = 8.1], which was 

also significantly above chance (50%) (t19 = 20.1, p < 0.0001).  

 Additionally, we tested how well the MVPA classifier performed if it was trained on the 

BA conditions but tested on the BV conditions. This test determines whether the cortical 

representations of PA (and TA) can predict the differences in representation under conditions 

where both dimensions are varying (PwT and TwP) but participants are attending to either pitch 

or timbre. Classifier performance for each subject is shown in Fig. 9. While there was variability 

in the performance, average performance across subjects was 61.8% [17.1], which was 

significantly above chance, based on a one-tailed t-test (t19 = 3.08, p < 0.003). This outcome 

shows that attention to each dimension enhances the pattern corresponding to changes in that 

dimension, even when the physical stimulus is identical. 
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Fig. 8. MVPA average classifier performance for each of the 20 subjects (indicated by bar color) 

on three different classifications. Abbreviations: PA = pitch alone, TA = timbre alone, PwT = 

pitch with timbre, TwP = timbre with pitch, BA = both alone, BV = both varying. The horizontal 

red lines denote chance performance. 
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Fig. 9. MVPA average classifier performance for each of the 20 subjects (indicated by bar color) 

when training on alone conditions (PA and TA) and testing on the varying conditions (PwT and 

TwP). The red line denotes chance performance. 

 

Exploratory MVPA and univariate analyses  

In addition to the leave-one-run-out cross-validation using the pseudo runs, some 

additional exploratory MVPA analyses were performed. First, we analyzed the errors in classifier 

performance for the 4-way classifier to determine whether, despite its high performance, there 

were any conditions that were consistently confused with one another (e.g., when the correct 

condition was PA, was it classified more often as PwT than TA or TwP?). Results are shown in 

Fig. 10. While it is difficult to draw any strong conclusions, as there are no obvious indications of 

the classifier consistently confusing one condition for another, these results reveal that the 

classifier performed well across all four conditions.  
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Fig. 10. Classifier confusion patterns for the 4-way classifier. Bar graphs showing average 

classifier guesses for each condition (PA, TA, PwT, and TwP). Individual subject classifier 

guesses are superimposed on the corresponding bars. X-axis labels indicate the correct condition.  

 

 Additionally, we performed MVPA on subset of the conditions, comparing just the PA 

with TA conditions, and comparing just the PwT with TwP conditions. In both cases, classifier 

performance was significantly above chance. We then performed MVPA on half of the 

conditions, comparing just the PA with PwT conditions, and comparing just the TA with TwP 

conditions. In both cases, again, classifier performance was significantly above chance. Results 

are reported in Table 3A. 

Next, in order to ensure that our non-standard approach of extracting the blocks from our 

single-condition scans and arranging them in pseudo runs was not producing inflated results, we 
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randomized the condition labels to see if classifier performance would drop to chance. 

Indeed, with random labels, no classifier performed significantly above chance (Table 3B). Next, 

we trained the classifier on half of the data and tested it on the other half. In our first iteration, we 

split the data by training on the first two blocks of each run, and testing on the second two blocks 

of those runs (and vice versa). As expected, since the classifier had less training data than in the 

leave-one-run-out cross-validation (87.5% training, 12.5% testing), classifier performance was 

worse, but remained significantly above chance (Table 3C). Our second 50-50 split involved 

training on the first four runs and testing on the second four runs (and vice versa). In this case, 

classifier performance dropped further, in some cases no longer reaching significance (Table 3D).  

One potential reason for this performance drop is that during training, the classifier may 

have overfit run-specific signals, leading to poor generalization in the test run. This possibility 

appears particularly likely when considering the sources of information that the classifier can rely 

on. When there is just one run per condition in the training set, classification can rely either on 

run-specific differences that are unrelated to the experimental condition, signals related to the 

experimental condition itself, or some combination of the two. If the former contribution is 

significant, then the performance in the test run should drop significantly, consistent with our 

results above. When, however, trials from multiple runs become intermixed in training, run-

specific signals should become less reliable since they are inconsistent across trials from different 

runs. Consequently, the classifier is more likely to learn the condition-specific signatures of the 

BOLD signal, which are consistent across runs, and should maintain good performance with the 

test data, as we observed in the original analysis. As such, given that our experimental design 

contains only two runs per condition, our original approach to training the classifier with pseudo-

runs containing trials from all runs should have been more sensitive to the condition-specific 

signals that this study is concerned with. 
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A. Subset of conditions Mean % (SD) t19 p-value 

 

PA vs. TA 88.0 (9.4) 18.0 0.0001* 

 

PwT vs. TwP 92.4 (8.9) 21.3 0.0001* 

 

PA vs. PwT  89.1(9.5) 18.4 0.0001* 

 

TA vs. TwP 90.0 (8.2) 21.7 0.0001* 

B. Randomized Labels  Mean % (SD) t19 p-value 

 

4-way (chance: 25%) 28.1 (10.6) 1.31 0.102 

 

pitch vs. timbre 44.8 (11.7) 1.98 0.97 

 

BA vs. BV 47.7 (12.5) 0.84 0.79 

C. 

50% training (1/2 the blocks) 

50% testing (1/2 the blocks) Mean % (SD) t19 p-value 

 

4-way (chance: 25%) 64.4 (12.1) 14.5 0.0001* 

 

pitch vs. timbre 76.3 (12.8) 9.17 0.0001* 

 

BA vs. BV 72.5 (11.5) 8.72 0.0001* 

D. 

50% training (1/2 the runs) 

50% testing (1/2 the runs) Mean % (SD) t19 p-value 

 

4-way (chance: 25%) 30.2 (15.7) 1.47 0.08 

 

pitch vs. timbre 59.2 (14.1) 2.90 0.005* 

 

BA vs. BV 53.3 (20.3) 0.72 0.24 
 

Table 3. Exploratory MVPA. A. Classifier performance on subsets of the conditions. B. 

Classifier performance with randomized labels (should be at chance). C. Classifier performance 

when training on half of the blocks in each run and testing on the other half. D. Classifier 

performance when training on half of the runs and testing on the other half. Asterisks indicate 

significant differences.   

 

In light of the high classifier performance in the leave-one-run-out cross-validation, we 

examined whether masking individual subjects’ results by using their 2,000 most active voxel 

masks would also reveal significant contrasts at the univariate level. At a threshold of p < 0.01, 

and a cluster threshold of 17, based on a Monte Carlo simulation, the majority of subjects did not 

have significant contrasts: 8 of the 20 subjects showed significant clusters for the pitch vs. timbre 

contrast, 7 subjects showed significant clusters for the BA vs. BV contrast, 4 subjects showed 



     

  

102 
significant clusters for the PA vs. TA contrast, and 7 subjects showed significant clusters for 

the PwT vs. TwP contrast. The two-tailed point-biserial correlation between MVPA classifier 

performance and the existence of a significant univariate contrast for the same comparison (i.e., 

pitch vs. timbre, BA vs. BV, PA vs. TA, or PwT vs. TwP) was not significant for pitch vs. timbre, 

BA vs. BV, PA vs. TA, or PwT vs. TwP. Results are reported in Table 4. This suggests the 

MVPA classifier performance was not driven by significant contrasts at the univariate level.   

 

  Rpb p-value 

pitch vs. timbre 0.23 0.34 

BA vs. BV -0.27 0.26 

PA vs. TA 0.21 0.37 

PwT vs. TwP 0.14 0.56 
 

Table 4. Exploratory correlations. A. Point-biserial correlations between MVPA classifier 

performance and univariate results.  

 

Discussion 

The present study aimed to determine whether task-related attention to one dimension when 

listening to sounds varying in pitch height and/or brightness would lead to more spatially distinct 

representations of pitch and timbre. Univariate analyses suggest that, both at the group level and 

for the majority of participants at the individual level, this was not the case. No significant 

differences in activation were observed between the pitch-varying and timbre-varying conditions, 

regardless of whether variations in the other dimension were present or not. Thus, it seems that 

the spatial overlap between representations of pitch and brightness is observed under both passive 

(Allen et al., 2017) and active listening conditions.  

Despite the lack of significant univariate differences between pitch and timbre conditions, 
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differences did emerge in frontal regions as a function of the number of dimensions varying 

(one or two). All frontal regions identified appear to be part of the attentional network (for a 

review, see Petersen and Posner, 2012), and suggest that these regions were being differentially 

recruited for conditions in which only one dimension was varying compared to conditions in 

which both dimensions were varying. Specifically, when only one dimension was varying, it 

elicited a significantly stronger activation in the right and left superior frontal gyri, right medial 

orbitofrontal cortex, and right cingulate gyrus, while the varying conditions had significantly 

stronger activation in the left IFG and the anterior portion of the insulae in both hemispheres. The 

orbitofrontal cortex, known to be involved in decision-making (e.g., Wallis, 2007), has been 

shown to respond to sound, have direct connections to the auditory cortex in animal studies, and 

may be able to modulate sound processing (Romanski et al., 1999; Winkowski et al., 2017).  The 

superior frontal gyrus has been found to be involved in working memory (e.g., Rypma and 

D’Esposito, 1999), and activation of the anterior cingulate has been linked to attentional demand 

in the auditory domain (Benedict et al., 1998). It remains unclear, however, why regions 

associated with decision-making, working memory, and attention would respond more strongly 

during the easier tasks, in which only one dimension is varying. The left IFG is where Broca’s 

area, a language processing region, is known to be located (e.g., Binder et al., 1997). However, 

this region has been shown to respond to non-speech sounds as well (for a review, see Fadiga et 

al., 2009), so it is not surprising that this region would be responsive to variations in pitch and 

timbre. The insula has been shown to be involved in many types of auditory processing (for a 

review, see Bamiou et al., 2003), and may be involved in the integration of bottom-up detection 

of salient stimuli and top-down attentional control (Menon and Uddin, 2010). While no voxels 

survived the contrast between PA and PwT conditions, the TwP – TA contrast did reveal 

differences. Specifically, significant clusters were found in frontal regions left IFG, superior 

frontal gyrus, and anterior insula for the TwP condition, but no clusters were significant for the 
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TA condition, suggesting the more demanding timbre tasks were linked to the recruitment of 

additional frontal lobe resources.  

While the univariate analyses could not differentiate between condition pairs, 

surprisingly high MVPA classification performance was obtained with the four-way classifier 

(PA vs. PwT vs. TA vs. TwP), as well as both two-way classifiers tested (alone vs. BV, pitch vs. 

timbre, PA vs. TA, and PwT vs. TwP). Despite there being no significant overall spatial 

differences between pitch and timbre representation, it is clear that the patterns of activation 

within these regions are distinct. This outcome is consistent with earlier findings obtained under 

passive listening conditions (Allen et al., 2017), and extends them by showing that classification 

remains possible even under conditions where there are no physical differences between the 

stimuli. This distinction suggests that representations within auditory cortex may already reflect 

the perception of features more strongly than they represent the physical stimuli themselves. In 

this way, the outcomes extend earlier work using EEG, MEG, and ECoG, which has shown that 

attention to entire auditory objects or streams (e.g., one voice in the presence of another) can 

profoundly alter cortical activity (Hillyard et al., 1973; Ding and Simon, 2012a; Zion Golumbic et 

al., 2013). The current study suggests that this modulation of attention extends to features within 

auditory objects, and not just entire objects. There is evidence to suggest such feature-based 

attentional modulation also exists in visual cortex for visual objects (Saenz et al., 2002).  

A possible future direction would be to use encoding models to explicitly characterize 

pitch and timbre selectivity throughout the auditory cortex, and explore how these populations are 

modulated by attention. These approaches have been successfully used to characterize 

suppressive stimulus interactions in the visual (Brouwer and Heeger, 2011) and somatosensory 

systems (Brouwer et al., 2015), and could be similarly useful in understanding the interactions 

between representations of pitch and timbre.  

Overall, these results show that actively attending to either dimension does not result in a 
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spatial separation in their representations that is detectable via conventional univariate 

analyses, but that the patterns of activation within these regions appear to be distinct for pitch and 

timbre. In addition, attending to one dimension results in patterns of activation that can be 

predicted by the patterns of activation recorded when just one dimension is varied, suggesting 

that attention to one auditory dimension can enhance that dimension’s cortical representation, in 

the absence of any physical change in sound. 
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Chapter 5   
 

Encoding of Natural Timbre Dimensions in Human 

Auditory Cortex 
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Abstract 

Timbre, or sound quality, is a crucial but poorly understood dimension of auditory perception that 

is important in describing speech, music, and environmental sounds. The present study 

investigates the cortical representation of different timbral dimensions. Encoding models have 

typically incorporated the physical characteristics of sounds as features when attempting to 

understand their neural representation with functional MRI. Here we test an encoding model that 

is based on five subjectively derived dimensions of timbre to predict cortical responses to natural 

orchestral sounds. Results show that this timbre model can outperform other models based on 

spectral characteristics, and can perform as well as a complex joint spectrotemporal modulation 

model. In cortical regions at the medial border of Heschl’s gyrus, bilaterally, and regions at its 

posterior adjacency in the right hemisphere, the timbre model outperforms even the complex joint 

spectrotemporal modulation model. These findings suggest that the responses of cortical neuronal 

populations in auditory cortex may reflect the encoding of perceptual timbre dimensions. 

 Keywords: auditory cortex, encoding models, music, perception, timbre 
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Introduction 

Timbre, the perceptual quality or color of a sound, is defined as everything by which a listener 

can distinguish between two sounds with the same loudness, pitch, spatial location, and duration 

(ANSI, 2013). For instance, it is differences in timbre that allow us to distinguish a violin from a 

guitar, or one vowel sound from another. Among the typical adjectives that fall under the 

category of timbre are “brightness”, “clarity”, “harshness”, “fullness”, and “noisiness” (Stepanek, 

2006). Efforts have been made to identify and quantify the most salient aspects of timbre through 

the use of multidimensional scaling (MDS) techniques (e.g., Grey, 1977; Elliott et al., 2013). 

MDS utilizes subjective measures to determine how perceptually similar a selection of sounds are 

to one another, thereby creating a geometric representation that derives the subjective distances 

between a diverse set of stimuli using as few dimensions as possible (Grey, 1977). After 

collecting similarity ratings for musical instrument sounds with unique timbres, Grey (1977) used 

MDS to identify three dimensions that best represented the distribution of timbres. The first 

dimension was related to the spectral energy distribution of the sounds (ranging from a low to 

high spectral centroid, corresponding to timbral descriptors ranging from dull to bright), and the 

other two related to temporal patterns, such as whether the onset was rapid (like a struck piano 

note or a plucked guitar string) or slow (as is characteristic of many woodwind instruments) and 

the synchronicity of higher harmonic transients. 

Grey’s influential study contained only sixteen instrumental sounds from three instrument 

families, placing some limits on the generalizability of the outcomes, and used sounds that may 

not have all had exactly the same fundamental frequency (F0), which itself may have affected 

some aspects of timbre judgments (e.g., Moore and Glasberg, 1990; Warrier and Zatorre, 2002; 

Allen and Oxenham, 2014). Elliott et al. (2013) extended Grey’s approach by using 42 natural 

orchestral instruments from five instrument families, all with the same F0 (311 Hz, the E♭ above 
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middle C). After collecting similarity and semantic ratings, they performed multiple analyses, 

including MDS. They consistently found five dimensions to be both necessary and sufficient for 

describing the timbre space of these orchestral sounds.  

The aim of the current study was to determine whether similar dimensions can be 

identified in the cortical representations of timbral differences. Although the literature on the 

neural representations of timbre is limited, there is some evidence to suggest it is processed in 

both primary and secondary auditory cortical regions including superior temporal sulcus (STS), 

posterior Heschl’s gyrus (HG), and planum temporale (PT), bilaterally, with possible hemispheric 

asymmetries (Casey, Thompson, Kang, Raizada, & Wheatley, 2012; Halpern, Zatorre, Bouffard, 

& Johnson, 2004; Menon et al., 2002; Staeren, Renvall, De Martino, Goebel, & Formisano, 2009; 

Warren et al., 2005). However, previous studies have not attempted to differentiate the neural 

representations of different timbral dimensions, and have not explored the possibility that a 

subjectively based model of timbre could predict patterns of cortical activation in response to 

sound. In the present study, we use fMRI encoding (Kay, Naselaris, Prenger, & Gallant, 2008; 

Moerel, De Martino, & Formisano, 2012; Santoro et al., 2014) to determine whether neural 

populations in the cortex can represent the timbre dimensions identified by Elliott et al. (2013), 

and compare this model’s performance with that of models based on the spectral and temporal 

characteristics of the sounds.   

 

Materials and Methods 

Ethics statement  

The experimental procedures were approved by the Institutional Review Board (IRB) for 

human subject research at the University of Minnesota. Written informed consent was obtained 

from each participant before starting the measurements. 
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Participants  

Ten right-handed subjects (mean age of 28.6 years, standard deviation [STD] = 8.6 years; 

five females, five males) participated in this study. All subjects had normal hearing, defined as 

audiometric pure-tone thresholds of 20 dB hearing level (HL) or better, at octave frequencies 

between 250 Hz and 8 kHz, and were recruited from the University of Minnesota community. 

Musical experience of subjects ranged from zero to 18 years, with eight of the 10 subjects having 

at least 10 years of musical experience.  

 

Stimuli and procedure  

The stimulus set consisted of 42 professionally recorded natural Western orchestral 

instrument sounds, taken from the study of Elliott et al. (2013). The sounds were originally 

obtained from the McGill University Master Samples collection (Opolko & Wapnick, 2006) and 

were manipulated to all have the same F0 of 311 Hz (E♭), and a subjective duration of one 

second, as described in Elliott et al. (2013). Spectrograms for a subset of these sounds are shown 

in Fig. 1.  Instrument families included strings, flutes, brass, single reeds, and double reeds. When 

the rms of the stimuli was normalized, the perceptual loudness of the sounds at the level of 75 dB 

SPL varied noticeably. In order to equalize the perceived loudness of the stimuli, we processed 

them using a loudness model (Chen et al., 2011; Moore, 2014b), and scaled the sounds to produce 

roughly equal predicted loudness for each sound. This resulted in perceptually equal loudness for 

41 of the 42 sounds. One of the sounds, a muted C trumpet, required manual adjustment to 

subjectively match the perceptual loudness of the other sounds, presumably because certain 

aspects of the sound (e.g., sharp attack and broad spectrum) were not adequately captured by the 
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loudness model. The adjusted level was selected by four raters (inter-rater differences were 

no more than 2 dB).  

After the loudness adjustments, the average level of the sounds was 74 dB SPL and the 

range was 62 to 81 dB SPL (STD  = 3.2 dB). Sounds were presented via MRI-compatible 

Sensimetrics (Malden, MA) S14 earphones with custom filters. 

 

Magnetic resonance imaging  

Images were acquired in a 3T MR scanner (Siemens Prisma) at the Center for Magnetic 

Resonance Research (CMRR, University of Minnesota) using a 32-channel head coil. For each 

subject, we collected anatomical images and a functional dataset. The MPRAGE T1-weighted 

anatomical image parameters were: repetition time (TR) = 2600 ms; echo time (TE) = 3.02 ms; 

matrix size = 256 x 256; 1 mm isotropic voxels. The acquisition parameters for the functional 

scans were: TR = 2400 ms; time of acquisition (TA) = 1000 ms; silent gap = TR – TA = 1400 ms; 

TE = 30 ms; multiband factor = 4; number of slices = 44; matrix size = 672 × 672; 2 mm 

isotropic voxels. Slices were angled to align with the Sylvian Fissure, and covered the majority of 

the brain. However, for most subjects the top of the parietal and frontal lobes were excluded, 

along with the bottom of the occipital lobe.  

The functional dataset followed an event-related design, where the sounds were presented 

in the silent gaps between acquisitions. Six functional runs were collected per subject. In each 

run, a unique subset of seven of the 42 sounds was repeated four times in pseudo-random order. 

The division of sounds into separate sets of seven was important for maintaining independence 

between training and testing datasets in the fMRI encoding analysis (see below). The stimuli 

within each sound set were manually selected to include a variety of instruments across multiple 

instrument families. These sound sets remained consistent across subjects, but the presentation 

order of the stimuli within each set was randomized, and the order of the sets throughout the 
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scanning session was counterbalanced across subjects in a Latin-square design. The 

presentation times of the sound trials were pseudo-randomly jittered with an interstimulus interval 

of 2, 3, 4, or 5 TRs. Three silent trials (with no stimuli present) and three catch trials were also 

included in each run. For the catch trials, intended to keep subjects alert, they were instructed to 

perform a one-back task in which they pressed a button any time a successive repeat of the same 

sound was presented. This one-back task never occurred for the same sound more than once in a 

given run. For the one-back task repeats, the maximum jitter was set to 4 TRs (9.6 s). The one-

back task catch trials were excluded from analysis. With the 28 test sounds (four repetitions of 

seven sounds from the collection) and 3 catch-trial sounds, a total of 31 sounds were presented 

per run, along with 3 silent trials. Including about 10 s of silence preceding each run and about 5 s 

following each run, the total duration of one run was approximately 5 minutes. 

The data were preprocessed in BrainVoyager QX (Brain Innovation, Maastricht, The 

Netherlands). Preprocessing included slice scan time correction (using cubic spline), 3D motion 

correction (using trilinear/sinc interpolation) aligned to the first volume of the first run, and a 

high-pass filter (GLM-Fourier) cutoff of 3 cycles per run. Distortion correction was performed 

using the Correction based on Opposite Phase Encoding (COPE) plugin in BrainVoyager QX, 

which estimated distortions based on volumes from a posterior-anterior (PA) phase-encoding 

(PE) direction and volumes from an AP PE direction (Fritz et al., 2014), and applied corrections 

to the functional data. Functional slices were coregistered to the anatomical data, and then 

normalized to Talairach space (Talairach & Tournoux, 1988). Automatic segmentation with 

manual corrections of the gray matter (GM) - white matter (WM) boundary was performed using 

the anatomical data. Using this boundary, each hemisphere for each subject was then inflated and 

brought to Cortex Based Aligned (CBA) space (Goebel, Esposito, & Formisano, 2006). CBA-

averaged group-level GM-WM meshes were also generated in BrainVoyager QX. 
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Sound representation by the encoding models  

We used fMRI encoding to test several hypotheses for how the brain represents the 

timbre of natural orchestral instruments. Under the fMRI encoding approach, each hypothesis is 

defined as an encoding model. We can distinguish between hypotheses by comparing the 

accuracy with which each of the trained models is able to predict the fMRI response patterns to 

novel testing sounds. We tested the performance of four encoding models, described below.  

First, the subjective timbre model represents the hypothesis that responses to the sounds 

are well described by the five dimensions of timbre identified by Elliott et al. (2013) (see Fig. 1). 

The first dimension, D1, was semantically described as ‘hard, sharp, high-frequency energy 

balance’. The second dimension, D2, was described as ‘varying level, dynamic, vibrato, ringing 

release’. D3 was characterized as ‘noisy, small instrument, unpleasant’. Sounds scoring high on 

D4 were described as ‘compact, steady pitch, pure’. Finally, D5 had no significant correlates 

among semantic descriptor pairs. Figure 2A shows the sounds’ representation in the space of the 

timbre model. The values of each sound on each of the five dimensions were taken from Elliott et 

al. (2013). As they were obtained using MDS, the five timbral dimensions were not correlated 

(Figure 2B).  
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Fig. 1. Spectrograms of the sounds with (columns from left to right) the two most positive, two 

intermediate, and the two most negative values on each of the five timbre dimensions (rows). 

Abbreviations: v = vibrato, m = muted, h = harmonic. 

 

Second, the joint spectrotemporal modulation (STM) model represents the hypothesis that 

cortical sound processing is well represented by the frequency-specific spectrotemporal 

modulation tuning of neuronal populations. Sounds are expressed by their frequency-specific 

spectrotemporal modulation content, obtained as the output of a two-stage biologically inspired 

model of auditory processing (Chi et al., 2005; Santoro et al., 2014; NSL Tools package, 

available at http://www.isr.umn.edu/Labs/NSL/Software.htm). This model is similar to the timbre 

model in that it takes into account both spectral and temporal properties of sound, but relies solely 

on the physical description of sound (transformed via simulated auditory processing), and not on 

any human subjective judgments. The first stage of this model mimics ‘early’ auditory 

processing, and consists of 128 overlapping bandpass filters equally spaced along a logarithmic 
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frequency axis (180-7040 Hz; range of 5.3 octaves). The output of this ‘early’ stage is a 

spectrogram, which serves as input to the second ‘cortical’ stage of the model. This stage uses a 

set of modulation filters (temporal modulation center frequencies, ω) and spectral modulation 

center frequencies (cycles/octave, Ω) to extract the spectrotemporal modulation content from the 

spectrograms. The modulation filters are applied at each time-frequency bin, and the absolute 

value of the complex-valued model output is then averaged over time. The full STM model 

contained ω = 30 features, and Ω = 15 features. We divided the frequency axis into 128 bins with 

equal bandwidth in octaves, and averaged the modulation energy within each frequency bin, 

resulting in 57,600 features (128×30×15). The sounds’ frequency-specific spectrotemporal 

modulation characteristics as represented by this full model are shown in Fig. 2D-F. This full 

model was then reduced to 36 features in order to fit it to the fMRI data. The 36 features were: ω 

= [3, 9, 27] Hz  × Ω = [0.5, 1, 2] cycles/octave, with the frequency axis divided into 4 bins with 

equal bandwidth in octaves. The spectral and temporal modulation filters had Q3dB values of 1.2 

and 1.8, respectively. The 36-feature limit was chosen on account of having 42 unique sounds in 

our stimulus set and wanting to ensure that the number of features in the model was less than the 

number of unique sounds in our stimulus set. Correlations between the model’s 36 features are 

shown in Figure 2C.  
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Fig. 2. Sound representation by the timbre and STM models and frequency-specific 

spectrotemporal modulation content of the sounds. (A) MDS values for all 42 sounds across the 

five dimensions (i.e., features) of the timbre model, taken from Elliott et al. (2013). (B) 

Correlation between each of the five timbre model features. (C) Correlation between each of the 

36 STM model features reflecting a high correlation between spectrotemporal modulation features 

within the same frequency bin. Frequency bins are labeled on the right y-axis. (D) The 

distribution of temporal modulations across frequency, (E) the distribution of spectral modulation 
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across frequency, and (F) spectral modulations as a function of temporal modulations. The 

mean and standard deviation (STD) across sounds are shown in the left and right column, 

respectively.  

 

 Third, the cochlear filter mean model represents the hypothesis that responses to the 

sounds are well described by the spectral content of the sounds and the frequency tuning 

exhibited in the cochlea. This model therefore postulates that the cortical responses reflect 

primarily the long-term spectral profile of sounds, as filtered by the cochlea, without regard to 

their temporal properties. The representation of the sounds in the space of this model was 

obtained based on the output of the first stage of the model underlying the STM model. The 

resulting “cochleograms” were averaged over time, and the frequency axis was divided equally 

into 36 logarithmic frequency bins (resulting in 36 model features). 

Finally, the spectral centroid model represents the hypothesis that cortical coding of 

timbre is dominated by the spectral centroid of a sound, corresponding to the perception of 

“brightness” or “sharpness” (e.g., von Bismarck, 1974), as represented by Grey’s (1977) first 

dimension, and reflected by cortical tuning to the sounds’ spectral centroids. This is essentially a 

simplified version of the cochlear filter mean model, in that it postulates that the spectral centroid 

of the sound dominates the representation over other spectral features. The spectral center of 

gravity c, for each sound was identified by taking the sum of the frequencies fi, weighted by their 

normalized amplitudes ai: 

𝑐 =  
 Σ(𝑓𝑖𝑎𝑖)

Σ𝑎𝑖
 

 

The sounds’ representation in the model space was then obtained by creating a [1 x f] vector of 

zeros for each sound (where f represents the center frequencies of the frequency bins of the 



     

  

118 
cochlear filter mean model), and assigning the frequency bin that contained that sound’s 

spectral centroid with a value of one. Frequency bins that did not contain the centroid for any of 

the 42 sounds were removed. A total of 17 frequency bins remained, resulting in 17 features for 

this model. 

 

Model training and testing  

Model training and testing was done using MATLAB (Mathworks, Natick, MA). We 

performed the analysis independently for the training and testing runs, which contained 

completely distinct sets of sounds. That is, model training and testing were performed with 6-fold 

cross-validation. For each cross-validation, 5 runs (i.e., 35 sounds) served for model training and 

one run (i.e., 7 sounds) was left out for model testing. 

The fMRI responses to the 42 natural orchestral instrument stimuli were estimated as 

follows. For each cross-validation, the training data were used to compute noise regressors using 

the GLMdenoise technique (Kay et al., 2013; GLMdenoise available at: 

http://kendrickkay.net/GLMdenoise/), and to estimate the hemodynamic response function (HRF) 

of each voxel across all sounds. This HRF was fixed, and was used in a regression analysis that 

included the regressors as estimated by GLMdenoise, to estimate the amplitude of the voxel’s 

response (i.e., the beta weight) to each of the training and testing sounds. Next, we identified the 

voxels that responded significantly to the sounds (T > 3.5, p < 0.001, uncorrected). For these 

voxels, regularized linear regression (ridge regression; see Santoro et al., 2014, for details) was 

used to compute the relationship between the measured fMRI responses and the stimulus features 

of each model. This relationship (i.e., the trained model) represented how much each feature 

contributed to a given voxel’s response, referred to as the voxel’s population response function.  

The trained model was evaluated by its ability to predict the fMRI responses to the set of 

testing sounds that were not used for model training. First, to gain insight into overall model 

http://kendrickkay.net/GLMdenoise/
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performance (across all regions with a significant response to the sounds) we computed a 

sound identification prediction accuracy score. Activity patterns for each of the test sounds were 

used to predict the sound identity based on its correlations with the predicted patterns of activity 

for each of the seven test sounds. These correlations were then sorted and assigned a rank score 

between one and seven (seven being the lowest rank). In the case of perfect performance, the 

correlation between the predicted and actual patterns would always be ranked higher for 

comparisons within the same sound than across different sounds, so the correlation rank, 𝑟𝑖, 

would always be 1. In the case of chance performance, the expected correlation rank would be in 

the middle, i.e., 4. Prediction accuracy 𝑃𝑖 was then computed for each sound i using the following 

formula:  

𝑃𝑖 = 1 − (
𝑟𝑖 − 1

𝑁𝑡𝑒𝑠𝑡 − 1
) 

where 𝑟𝑖 is the rank across the Ntest = 7 sounds in the test set. The overall prediction accuracy was 

then computed as the mean of P across all sounds (i.e., averaging across the 6 cross-validation 

folds), yielding a value between zero and one (perfect prediction score = 1; chance = 0.5). This 

method for calculating prediction accuracy, while less common than forced-choice accuracy 

measures that look exclusively at stimuli that are accurately classified (i.e., those that ranked 

first), has the advantage of taking into account the whole distribution of ranks (beyond those 

ranked first) to assess the model performance (see e.g., Kay et al., 2008; Moerel et al., 2012; 

Santoro et al., 2014).  

Second, in order to gain insight into the variations in model performance throughout 

brain areas, we evaluated model accuracy per voxel. For each voxel, we computed the correlation 

between predicted and measured responses to the testing sounds. Resulting correlations were 

Fisher’s z transformed, and averaged across cross-validations to obtain a map of prediction 

accuracy per subject for each encoding model. 
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Group map generation and analysis. Group maps of model prediction accuracy were 

computed by smoothing single subject prediction accuracy maps, with local averaging up to a 

distance of four vertices (repeat value = 4) that were then brought into CBA space. For each 

vertex that was included in at least eight individual subject maps, a one sample t-test was 

performed to test if the observed prediction accuracy (i.e., the correlation between predicted and 

observed responses to testing sounds) was significantly greater than 0. Following the correction 

for multiple comparisons using False Discovery Rate (FDR), resulting maps were thresholded at 

q(FDR) < 0.05.  

 In order to compare the prediction accuracy of two encoding models, single subject 

prediction accuracy maps were smoothed (repeat value = 4) and brought into CBA space. For 

each vertex that was included in at least eight individual maps, a paired samples t-test was 

performed to test if there was a significant difference between the prediction accuracies of the 

two encoding models. If more than eight subjects were available for a given vertex, paired t-tests 

were run on a random selection of eight subjects out of all available subjects (this step was taken 

to ensure equal degrees of freedom and equal number of possible permutations across vertices, 

see below). To correct for multiple comparisons we used a cluster size thresholding method based 

on nonparametric permutations. That is, for each vertex we applied the paired t-test to all possible 

permutations of the eight subjects across the two models (28 = 256 permutations), resulting in 256 

permuted maps. We then generated a null distribution of cluster size, considering a single-voxel 

threshold of t >1.8. Cluster sizes that occurred less frequently than in 5% in the null distribution 

were considered significant.  

 Finally, we created group maps for each dimension of the trained timbre model. This was 

an exploratory analysis, with the aim of gaining insight into the cortical representation of the 

timbre dimensions. For each timbre dimension, we obtained the single subject map as the voxels’ 

weights under the trained timbre model and smoothed the maps with a Gaussian kernel of 2 mm 
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full-width at half-maximum (FWHM). We converted the individual subject maps to binary 

maps, by setting the voxel to -1 or 1 if the weight was smaller or greater than zero, respectively. 

Next, the individual subject binary maps were brought to CBA space. Probability maps were 

created by assigning each voxel with the proportion of subjects that showed the same sign in their 

weight map (chance = 0.5; perfect congruency among subjects = 1; map threshold set to 0.75). 

 

Results 

We observed significant responses to the sounds throughout the superior temporal cortex 

bilaterally (see Fig. 3). The temporal auditory responsive regions included Heschl’s gyrus (HG), 

and adjacent regions on Heschl’s sulcus (HS), planum polare (PP), planum temporale (PT), 

superior temporal gyrus (STG), and superior temporal sulcus (STS). Beyond the auditory 

cortices, we observed responses to the sounds in the inferior frontal gyrus, the inferior frontal 

sulcus, the postcentral gyrus, and the intraparietal sulcus. 
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Figure 3. Brain maps showing average activation across all runs and across all sounds compared 

to baseline. (A) fMRI response of a single subject to sound stimuli. (B) Group-level fixed-effects 

GLM maps. Both the single subject and group maps are thresholded at P < 10-4 (corresponding to 

q(FDR) < 0.001), cluster thresholded (cluster size = 25), with nearest-neighbor interpolation. 

 

 Prediction accuracies for the four encoding models are shown in Figure 4. All models 

except for the spectral centroid model performed significantly above chance (0.5) in a one-tailed 

t-test (mean [SE]; timbre: 63% [0.02], t9 = 5.97, P = 0.0001, d = 1.89; STM: 60% [0.01], t9 = 6.72, 

P < 0.0001, d = 2.12; cochlear filter mean: 56% [0.02], t9 = 3.39, P = 0.004, d = 1.07). The 

timbre model performed significantly better than the cochlear filter mean model (t9 = 2.93, P = 

0.02, d = 0.93), and the spectral centroid model (t9 = 3.89, P = 0.004, d = 1.21). The STM model 

also performed significantly better than the spectral centroid model (t9 = 3.70, P = 0.005, d = 

1.13). There was no significant difference between the timbre model and the STM model (t9 = 
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1.26, P = 0.24, d = 0.40), nor between the cochlear filter mean model and the spectral 

centroid model (T(9) = 0.41, P = 0.69, d = 0.49).  

 To test whether the STM model’s prediction accuracy might improve with the inclusion 

of more features, we also ran a version of the model that contained 576 features (36 frequency 

bins X 4 spectral modulations [0.5 1 2 4] X 4 temporal modulations [1 3 9 27]. The average 

prediction accuracy [SE] in this case was: 59% [0.02], which was not significantly different from 

the 36-feature version (t9 = 0.48, P = 0.64, d = 0.15), nor did it outperform the timbre model (t9 = 

1.59, P = 0.15, d = 0.50).  

 

 

Fig. 4. Mean prediction accuracy across the encoding models. Average model performance across 

ten subjects for the timbre, STM, cochlear filter mean, and spectral centroid models. Error bars 

represent +/- 1 standard error of the mean. Blue lines indicate which models performed 

significantly worse than the timbre model, and red lines indicate which models performed 

significantly worse than the STM model. No other significant differences were found across 

models. 
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Figure 5A shows variations in model performance throughout the cortex. These maps 

indicate how well the measured responses from individual voxels to sounds were represented by 

the different models. Given that the spectral centroid model did not perform significantly above 

chance, we excluded it from further analysis. Although all models displayed the highest 

prediction accuracies around the superior temporal plane (STP) and STG, significantly above-

chance accuracy was also observed in frontal regions. Note that differences in the performance of 

a single model across the brain could result from location-specific differences in noise level (for a 

review, see Schoppe et al., 2016), and therefore the differences within each panel of Fig. 5A 

should be interpreted with caution.  

 

 

Fig. 5. Group-level model performance. (A) The maps show the cortical regions with a 

significant (q[FDR] < 0.05) correlation between measured and predicted responses to sounds. 

From top to bottom, performance of the timbre, STM, cochlear filter mean, and spectral centroid 

model are shown. (B) Group-level differences between models. Positive values (warmer colors) 
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indicate voxels for which the timbre model performed significantly better, and negative 

values (cooler colors) indicate voxels for which the STM or cochlear filter mean (in the top and 

bottom panel, respectively) performed significantly better. White dotted lines indicate HG. 

 

Contrast maps  

In order to compare the models in terms of the significant regional differences in their 

performance, we contrasted each model with the timbre model (see Fig. 5B). Warmer colors 

indicate regions in which the timbre model has significantly better performance compared to the 

other models, and cooler colors indicate regions where the other models have significantly better 

performance than the timbre model. Overall, the maps show more warm colors than cool colors, 

reflecting the overall higher performance of the timbre model (i.e., higher sound identification 

score). The timbre model outperformed all other models in representing processing in right 

hemispheric regions posterior to HG (covering HS and anterior PT). A comparison of the two 

best-performing models, the STM and timbre models, revealed considerable overlap, but also 

some regional differences. Specifically, the timbre model’s representation is superior to that of 

the STM model in regions at the medial end of HG bilaterally, and at the posterior and anterior 

adjacency of HG (i.e., HS and first transverse temporal sulcus (FTS), respectively) in the right 

hemisphere. These areas may reflect either primary or belt regions of auditory cortex (Moerel et 

al., 2014). The timbre model also outperforms the STM model in a small region on the STG of the 

right hemisphere, likely reflecting a belt region of auditory cortex. Conversely, the STM model 

outperforms the timbre model in a small region at the posterior end of the STG in the left 

hemisphere, potentially corresponding to the parabelt region of the auditory cortex (Moerel et al., 

2014). Furthermore, compared to the cochlear filter mean model, the timbre model performs 

better in regions along the HG and STG bilaterally, and HS in the right hemisphere. The superior 

performance seen in lateral HG may correspond to a difference in core auditory regions, while the 
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differences observed in HS of the right hemisphere and the STG bilaterally may correspond 

to belt and parabelt regions, respectively (Moerel et al., 2014).  

 

Analysis of the timbre dimensions  

According to Elliott et al. (2013), around 90% of the perceptual variance in the acoustic 

stimuli is explained by these five dimensions, and the dimensions are ordered by the amount of 

variance explained, with D1-D3 explaining the most variance. In order to explore a possible 

correspondence between this perceptual variance and the neural variance, we tested each 

dimension of the timbre model separately. The mean prediction accuracy results were: D1: 

56%, D2: 60%, D3: 58%, D4: 49%, D5: 52%. In a one-tailed t-test, the first three dimensions 

were significantly above chance (t9 = 4.00, P = 0.003, d = 1.26; t9 = 5.28, P = 0.001, d = 1.67; and 

t9 = 4.21, P = 0.002, d = 1.33, respectively), suggesting the first three dimensions best predict 

responses to novel test sounds. 

We explored the overlap in the sound representations captured by the timbre and STM 

models by using canonical correlation analysis (CCA) (Hotelling, 1936) and linear regression. 

CCA was used to identify two new sets of features that share the largest amount of information 

(i.e., the maximum correlation), and linear regression was used to compute the transformation 

that best describes the features of one model in terms of the features of the other. We describe 

each approach and report the results below. 

CCA and linear regression procedures. CCA was performed in a four-fold cross-

validation loop (where a random 75% of the sounds and their representation in the models' space 

were used for training, and the remaining 25% for testing on an independent data set), repeated 

1000 times, to evaluate the canonical correlation using an independent data set. Overfitting of the 

STM model (36 features, 42 sounds) was prevented by using the first 14 principal components 

(PCs) of the model. These 14 PCs explained 99.8% of the variance in the training data and 98.2% 
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of the variance in the test data. The PC decomposition was performed on the training data and 

the test data was projected on the PC space. Since the timbre model contains only five features, 

dimensionality reduction on the timbre model was not needed. For each cross-validation, the 

CCA was run on the training data. Next, we computed the proportion of variance in the 

original STM model that could be explained by the canonical covariates of the timbre model, and 

likewise, the proportion of variance in the original timbre model that could be explained by the 

canonical covariates of the STM model. For each cross-validation, this was computed by 

projecting the test data of each model to the canonical covariate space obtained on the training 

data. On the test data sets, a linear regression between the full set of canonical covariates of one 

model to the set of original features of the other model was performed. Performing this analysis 

on test data independent from the (training) data used to compute the canonical covariates avoids 

overfitting.  

The linear regression between the two models was also performed in a four-fold cross 

validation loop, repeated 1000 times, and the average values of the explained variance on the test 

data were reported. Each feature of one model was described as a linear function of all of the 

features in the other model. The total variance in one model that could be explained by the 

other was computed as the sum of the explained variances of each feature. When the STM model 

was used as the independent dataset, overfitting was prevented by means of principal components 

regularization. For consistency with CCA analysis, the linear regression was performed on the 

subspace spanned by the first 14 PCs of the STM model. When the timbre model was used as the 

independent variable, no regularization was required and ordinary least squares (OLS) regression 

was used.  

CCA and linear regression results. For the CCA we found, on average, across cross-

validations and 1000 repetitions, that the canonical covariates of the timbre model explained 

34.4% of the variance of the original STM model, while the canonical covariates of the STM 
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model explained 41.6% of the variance of the timbre model. For the linear regression we 

found, on average, across cross-validations and 1000 repetitions, that a linear combination of the 

features of the timbre model explained 37.1% of the variance of the original STM model, while a 

linear combination of the features of the STM model explained 38.2% of the variance of the 

timbre model. The CCA results are in overall accordance with the linear regression results and 

suggest that while there is a clear overlap between the two models, offering the possibility of 

(partially) understanding the timbre model in terms of basic acoustic features, there remains a 

substantial amount of variance in the timbre model that cannot be explained by the STM model 

and vice versa.  

Linking the timbre dimensions to acoustic features. To further explore the acoustic basis 

of each of the timbre dimensions, we display 3D correlation heat maps between the STM model 

features and each of the five timbre model dimensions (Fig. 6A). Additionally, to explore the 

neurobiological correlate of each of the five timbre dimensions and quantify the consistency 

across subjects, we conduct an exploratory analysis of the trained timbre model, displaying those 

voxels for which the sign of the voxel’s weight in the trained timbre model is consistent across 

the majority of subjects (Fig. 6B).  

The first timbre dimension, D1, is semantically associated with “hard, sharp, high-

frequency energy balance” (Elliott et al., 2013), and correlates most strongly with a combination 

of high frequencies and slow temporal modulations (Fig. 6A). The positive weights on medial HG 

suggest that these regions respond more strongly to sounds that score high on D1. In contrast, 

negative weights are distributed along STG, indicating that these cortical locations respond more 

strongly to sounds that score low on D1 (Fig. 6B). This may reflect the tonotopic organization of 

the auditory cortex, with a high frequency preference at the medial border of HG, and a low 

frequency preference along the STG (Langers, Backes, & van Dijk, 2007; Moerel et al., 2012), 

suggesting this dimension, at least in part, reflects the frequency content of sounds. 
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D2 is semantically associated with “varying level, dynamic, vibrato, and ringing 

release”, and is positively correlated with fast temporal modulations, especially in combination 

with intermediate frequency features (Fig. 6A). These characteristics seem appropriate for the 

semantic descriptor “ringing release”. In contrast, negative correlations with low temporal 

modulations are seen at low- to mid-range frequencies and low spectral modulations. D2 weights 

were consistently positive across a large number of voxels on the supratemporal plane (STP), 

indicating that these regions respond more strongly to faster temporal modulations. This is in 

accordance with previous studies that showed a strong bilateral activation of the auditory cortices 

for sounds with fast temporal modulations (e.g., Zatorre and Belin, 2001; Joanisse and DeSouza, 

2014).  

D3, which is semantically associated with “noisy, small instrument, and unpleasant”, 

correlates positively with high frequency features of the STM model especially when combined 

with fast temporal modulations (possibly corresponding to greater spectral irregularity and 

roughness), and negatively to low frequency features (Fig. 6A). In contrast, the strongest negative 

correlations were found for slow temporal modulations at low- to mid-range frequencies. This 

suggests that high frequency sounds with fast modulations may be perceived as more noisy and 

unpleasant. Like D2 weights, D3 weights were consistently positive across the STP. This is in 

accordance with previous work, which found unpleasant sounds to be associated with increased 

bilateral activation throughout auditory cortex (Plichta et al., 2011).  

D4 corresponds to “compact, steady pitch, pure”, and correlates positively with the 

lowest STM frequency features, and negatively with mid-range frequency features. Positive D4 

weights appear on primary auditory cortical regions centered on HG, suggesting that these 

regions respond more strongly to more compact and pure sounds. In contrast, negative weights 

are situated along the STG, which may respond more strongly to broader, more complex sounds. 

This organization is consistent with hierarchical auditory processing, with simple tones being 
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processed in early auditory cortical areas and more complex sounds undergoing greater 

processing in secondary or tertiary auditory regions (Patterson, Uppenkamp, Johnsrude, & 

Griffiths, 2002b; Tian & Rauschecker, 2004).   

D5 is difficult to interpret, as the previous work by Elliott et al. (2013) did not reveal a 

semantic association with this dimension. D5 has strong positive correlations with features that 

combine mid-range frequencies, slow temporal modulations (~3 Hz), and middle spectral 

modulations (~1 cycle/octave; Fig. 6A). Furthermore, the anterolateral portion of HG displays 

positive D5 weights, bilaterally. This may point toward a lower-level dimension in the processing 

hierarchy, potentially associated with pitch strength (Penagos et al., 2004).  
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Fig. 6. Exploratory analyses of the timbre dimensions. (A) Slice plots showing marginal 

correlations between each of the five timbre dimensions and the features in the STM Model at 
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several different frequencies. (B) Group-level maps of the five dimensions of the timbre 

model. For each timbre dimension, warm and cool colors reflect across-subject consistently 

positive and consistently negative scores, respectively. A positive or negative weight reflects that 

as sounds scored higher or lower on that dimension, respectively, the BOLD response in the 

voxel increased. White dotted lines indicate HG. 

 

Discussion 

In this study, we used fMRI encoding to compare a timbre model derived from listeners’ ratings 

of the sounds with acoustic models based on physical sound characteristics. We observed that the 

timbre model was able to predict a significant portion of the variance in the sound-evoked cortical 

activation. Furthermore, it performed significantly better than the other models tested, with the 

exception of a complex joint spectrotemporal modulation model. This finding, along with the 

observation that the two models shared a large part of the variation in the stimulus domain and 

the inferior performance of the uniquely spectral encoding models, supports the idea that joint 

spectrotemporal features are critical for capturing timbre perception (Patil, Pressnitzer, Shamma, 

& Elhilali, 2012).  

However, we observed that the timbre model outperformed the joint STM model in a 

subset of the auditory cortical locations. Specifically, the timbre model performed significantly 

better in regions medial and posterior to HG, particularly in the right hemisphere. This suggests 

that while the timbre model only contains five features, it may be capturing some semantic or 

perceptual tuning properties of the auditory cortex that extend beyond those captured by the 

spectrotemporal model. Specifically, the differences observed in terms of the amount of shared 

variance between the timbre and STM models identified via CCA and linear regression may be a 

result of the timbre model capturing some nonlinear combination of physical features not 
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represented in the STM model. This may be a distinguishing component of higher-level 

semantic processing (Kay & Yeatman, 2017). In light of this, it would be tempting to combine 

these two models in hopes of achieving better model performance. However, concatenation of 

these models is suboptimal as the timbre model is made of features that are orthogonal to each 

other and the STM model has many collinear features. As a result, the regularization to be applied 

to each model separately differs substantially and concatenation would result in over-penalizing 

the timbre model. Therefore, an area that warrants future research is the development of methods 

to optimally combine models that explain different parts of the variance (see e.g., de Heer et al., 

2017). 

In addition to auditory regions, responses to sounds in frontal regions, such as the inferior 

frontal gyrus (IFG), were consistently predicted above chance across models. This may indicate 

that timbre features are also represented in frontal regions, but could also reflect higher-level 

auditory processing that is correlated with the features of the employed encoding models. One 

possible explanation is that model accuracy in frontal regions could be driven by sound 

recognition, since our stimuli were common musical instruments. Maeder et al. (2001) found 

certain regions to be more active for sound recognition compared to sound localization, including 

the left posterior IFG. Further, Broca’s area may be included in the well-predicted cortical 

regions. While Broca’s region is typically thought to be a higher-level language processing area, 

it has been suggested to also play a role in music processing (for a review, see Fadiga et al., 

2009).  

Timbre is a notoriously elusive acoustic feature to define and to investigate 

experimentally. In this study, the use of fMRI encoding (Naselaris & Kay, 2015) allowed us to 

explicitly test the representation of timbre-varying sounds throughout cortical neuronal 

populations. Employing natural sounds, this approach furthermore ensured that timbre varied 

across sounds in an ecologically valid manner. While many earlier studies have used encoding 
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models that represented the physical characteristics of natural images (Kay et al., 2008; 

Naselaris, Prenger, Kay, Oliver, & Gallant, 2009) or sounds (Santoro et al., 2014), our work 

along with more recent studies (Huth, de Heer, Griffiths, Theunissen, & Gallant, 2016; Kay & 

Yeatman, 2017) demonstrates the utility of incorporating higher-level perceptual features into the 

encoding models. This represents a next evolution in fMRI encoding, where the method can be 

used to tackle those aspects of perception and cognition that are extremely challenging to capture 

using classical approaches.  

The timbre model provides an efficient representation of processing in human auditory 

cortex via a compact model whose features are based on subjective ratings of timbre. Our results 

suggest that the distributed neural representation of timbre in the cortex may align with perceptual 

categorizations of timbre. Consequently, it may be possible to assign semantic labels to the 

multidimensional tuning of neuronal populations. Since the employed timbre model was 

customized for this particular set of orchestral instruments, studies that test a broader range of 

stimuli (i.e., more musical instruments, speech, and other natural sounds) are recommended in 

order to determine the extent of this model’s generalizability. 
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Chapter 6   
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This dissertation research was motivated by a drive to better understand how we perceive and 

process two key components of sound – pitch and timbre. We approached this research using a 

combination of behavioral studies, neuroimaging, and computational modeling. Through these 

methods we have made several discoveries.  

 

Our percepts of pitch and timbre can interact 

From our behavioral studies we confirmed that pitch and timbre can interact with each 

other, such that when subjects are instructed to attend to one dimension and ignore the other, 

thresholds increase when both dimensions are varied, relative to when just one dimension is being 

manipulated. The fact that the interference is directional (with increases in pitch confused for 

increases in brightness) suggests that the dimensions of pitch and timbre are not completely 

orthogonal. 

 Moreover, we learned that when variations in these dimensions are equated for perceptual 

salience, their interactions are relatively symmetric. Somewhat surprisingly, we found this 

symmetry in both musicians and non-musicians, despite musicians having better F0 (pitch) 

difference limens than non-musicians, suggesting that, even with their acoustic expertise, 

musicians are susceptible to the interference effects that can occur when both the pitch and timbre 

of sounds are varying. 

 

Cortical representations of pitch and timbre are similar 

 As an extension of our behavioral findings, we aimed to explore the neural substrates of 

the perceptual interaction between pitch and timbre. The debate about whether a “pitch center” 

exists in the auditory cortex is a hot topic that has yet to be fully resolved, and very little research 

has been done on the cortical processing of timbre. Thus, it was unknown whether distinct 
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neuronal populations processed the two dimensions or whether similar or overlapping 

populations in the human brain might be responsive to both. The lack of spatial separation in the 

cortical representations of variation in these two dimensions identified by our studies suggest 

there is cortical real estate in the auditory cortex, bilaterally, that is sensitive to both dimensions. 

However, thanks to the increased sensitivity of MVPA, we discovered that the patterns of 

responses within these shared regions appear to be unique, making it possible for classifiers to 

tease them apart. While the shift from passive listening to active tasks did not affect our 

univariate results, as pitch and timbre remained difficult to parse, spatially, the MVPA classifiers 

were again able to distinguish between the patterns of activation for these dimensions. What was 

particularly compelling was that attention to a given feature within a sound, in the absence of any 

physical differences across conditions, was sufficient for the classifier to successfully distinguish 

pitch from timbre discrimination.  

 

Neuronal populations may be sensitive to the various dimensions of 

timbre 

 Up to this point, the thesis concentrated on a single aspect of timbre – brightness. 

However, the concept of timbre is known as a highly complex and ill-defined “multi-dimensional 

dimension” (Licklider, 1951). Exploring more natural manipulations of timbre (e.g., in the form 

of orchestral instruments), while more ecologically valid, also becomes more challenging in terms 

of teasing apart the multitude of dimensions that may be varying from one sound to the next. This 

was the final piece of the dissertation puzzle. We attempted to model how timbre is encoded in 

the auditory cortex. By using multi-dimensional scaling values of five timbre dimensions 

identified by Elliott, Hamilton, and Theunissen (2013) to develop a perceptually derived encoding 

model, we were able to successfully predict the cortical responses to these orchestral sounds. 
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Moreover, this model performed better than other models based on the spectral characteristics 

of the sounds, and performed as well as a complex joint spectrotemporal modulation model. 

These results suggest there may, in fact, be neuronal populations in the auditory cortex that are 

sensitive to the various perceptual dimensions of timbre.  

 

Future directions 

 As a few questions get answered, many more follow. For example, we are interested in 

exploring the topographic mapping of these dimensions using ultra-high resolution (7T) fMRI.  

Traditionally, the stimuli used for tonotopic mapping of the auditory cortex are narrowband tones 

or noises, which simultaneously increase in pitch and brightness, with no means for dissociating 

these two dimensions. Our aim is to determine whether these cortical maps indeed reflect the 

center frequency of the stimulus (as in traditional tonotopic mapping), other whether they reflect 

pitch, based on the stimulus F0. 

Additionally, while pitch and timbre were shown to have similar cortical representations 

when variations in F0 were being compared to variations in spectral centroid, we once again must 

acknowledge that this is just one manipulation of pitch being compared to one manipulation of 

timbre. Further, we do not know precisely how many dimensions of timbre there are. While we 

were able to use a five-feature encoding model to predict the cortical representations of 42 

orchestral sounds, we have not explored how well this five-feature model generalizes to other 

natural sounds. Can these same five dimensions be used to describe speech, environmental 

sounds, or even other musical instruments that were not tested? Perhaps five dimensions would 

not be sufficient for a broader array of natural sounds, or perhaps the five dimensions deemed 

necessary and sufficient for describing these orchestral sounds are not the same dimensions that 

would be necessary and sufficient to describe the timbre space of a different subset of sounds.   



     

  

139 
 At a more basic level, we are curious whether all audible frequencies get similar 

amounts of cortical real estate, or whether we allocate a larger portion of cortex to certain 

frequencies (e.g., lower, resolved frequencies that are commonly represented in speech compared 

to high, unresolved frequencies) creating a sort of “acoustic fovea”.  Further, it remains unclear 

the best way to distinguish primary auditory regions from secondary and tertiary regions in 

humans. There does not appear to be a one-to-one mapping between the macroanatomical 

structure of the auditory cortex and the functionally-defined regions. Perhaps it would be more 

appropriate to define these regions based on their degree of myelination, as there is evidence to 

suggest that primary regions have a greater myelination density than non-primary regions.  

 Lastly, with more multimodal fMRI research, perhaps we can also discover more 

commonalities that exist between the auditory and visual cortices, and more evidence for a 

general system that modulates both auditory and visual processing. Though our understanding of 

the auditory cortex remains murky relative to our understanding of the visual cortex, we are 

actively working to bring more clarity to this region. It is feasible that, in the not-too-distant 

future, the amount that is known about the auditory cortex will be comparable to that which is 

known about the visual cortex. While there is much left to be learned about the auditory system, 

especially in the human cortex, we are enticingly close to making many significant breakthroughs 

in this area.   
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