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Abstract 

In separation processes, desirable products with high purity are acquired at the expense of 

high energy cost procedures such as distillation. Alternative separation processes, such as 

zeolite membrane separation and adsorption processes,   are promising to reduce the 

energy cost of production since zeolites can discriminate molecules on the basis of 

size/shape and functionality. Indeed, the high cost of zeolite membranes can be reduced 

by fabricating thin membranes with high throughput. High aspect ratio zeolite nanosheets 

can be used to fabricate zeolite membranes with high throughput on porous supports. To 

date, however, there is no published evidence that scientists have successfully achieved 

nanosheet synthesis under the direct hydrothermal treatment route. This dissertation 

documents a successful direct hydrothermal synthesis of zeolite nanosheets via seeded-

growth—a process that leads to zeolite membranes that exhibit high performance on 

xylene isomer and butane isomer permeation. To the best knowledge, this is the first 

achievement to prepare zeolite nanosheets without complicated post treatment such as 

exfoliation and purification process (density gradient centrifugation).  Extensive 

parametric studies are conducted in order to establish the optimal synthesis condition for 

high quality zeolite nanosheets. Additionally, in an effort to understand the mechanism of 

nanosheet formation, the sequential evolution of seed crystals into zeolite nanosheets is 

observed by time-resolved TEM imaging analysis. Keeping in mind that in the future 

polymers could be used to reduce the costs of membrane manufacture, the de-templation 

of MFI nanosheets without formation of aggregates is discussed in this dissertation.  

In addition to membrane applications, this dissertation probes the roles of hydrophobicity 

in ethanol adsorption when hydrophobic siliceous zeolites, and defective siliceous zeolite 

nanosheets with house-of-card architecture are provided as adsorbents. Vapor phase 

ethanol adsorption and aqueous phase ethanol adsorption are compared to investigate 

how water molecules affect ethanol adsorption onto siliceous zeolites in the aqueous 

phase.  
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Chapter 1: Introduction 

Zeolites are crystalline aluminosilicate materials composed of regular connections of Si 

or Al atoms (T atoms) in oxide forms. These are backbone structures of molecular-sized 

pores that range in size from 0.3 to 2 nm, and they have applications in catalysis, 

separation, and ion exchange1. The neutrality of the zeolite frameworks, which is 

associated with applications, can be tuned via the Si/Al ratio in the frameworks. For 

example, the charged aluminosilicate zeolites have been employed as catalysts and ion-

exchangers.2-5 In contrast, hydrophobicity and adsorption affinity play important roles in 

applications of neutrally charged siliceous zeolite. For instance, siliceous zeolites can 

separate ethanol from water in the aqueous phase due to higher adsorption affinity to 

relative hydrophobic molecules—ethanol.6-11   

During the late 1940s, Richard Barrer and Robert Milton12 of Imperial College, London, 

were the first to artificially synthesize a zeolite (the KFI type zeolite). Since then, many 

scientists have tried to synthesize other types of zeolite12-17 and elucidate the mechanism 

of zeolite formation.12,18-33 These studies reveal that zeolite crystal structure can be 

manipulated by changing such variables as temperature, composition, and structure-

directing agent (SDA). To date, the International Zeolite Association (IZA) has 

recognized 231 zeolite topologies,34 and in each case the framework type is designated by 

three letters—for example, LTA, FAU, BEA, and MFI.    

The MFI type zeolite has been the focus of many investigations of the separation of 

organic molecules since its pore dimensions are similar to those of many organic 

molecules.35  The siliceous MFI zeolite framework (Figure 1-1A)36 consists of ten 
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interconnected SiO4 tetrahedral (10MR) with straight pore channels (5.2 Å  × 5.8 Å ) along 

the crystallographic b-axis. Additionally, the siliceous MFI zeolite framework forms 

sinusoidal pore channels with 10MR along a-axis (5.5 Å  × 5.1 Å ) (Figure 1-1B).37 In this 

dissertation, the MFI zeolite framework is employed in separation applications.  

 

 
Figure 1-1. Schematic representation of the MFI framework along the [010] 

direction (A). Each node represents a SiO4 tetrahedral and each stick denotes the 

oxygen bridge. This image is reproduced from reference 36. The cartoon of MFI 

pore channels exhibits straight pores along b-axis and sinusoidal pores along a-axis 

(B). The image is adapted from reference 37.   

 

Applications of zeolites in membranes and adsorption processes have been of interest as 

alternatives to energy-intensive industrial separation processes such as distillation and 

crystallization since zeolites discriminate chemical species on the basis of size/shape.38-45 

Compared to membrane technologies such as polymeric membranes, zeolite membranes 

have a far superior separation performance (permeance and separation factor) due to their 

precisely defined micropore structure. Moreover, zeolite membranes are stable when 

exposed to high temperature, organic molecules, and oxidizing agents.38 

In spite of intensive attempts to fabricate free-standing zeolite films, they have not been 

employed as membranes due to the low mechanical strength (i.e., the high brittleness) of 

a

cA B
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the films.38 To overcome the fragility, researchers have fabricated supported zeolite films. 

There are two methods for fabricating zeolite membranes on porous supports: the in-situ 

method and the secondary growth method. In the case of the-situ method, bare supports 

are dipped into an appropriate zeolite precursor sol and then heated for nucleation and 

crystal growth of zeolites.42,46-49 Although the process is simple, the in-situ zeolite 

membrane preparation does not control the orientation of the zeolite crystals in the 

membranes.49 Also in-situ membrane preparation leads to thick membranes that have 

high resistance to molecular transport.49  

In the alternative method, the secondary growth strategy, zeolite seed layers are prepared 

on porous supports that then are dipped into a zeolite precursor sol. The orientation, size, 

and shape of the zeolite crystals are manipulated by deposition methods such as dip 

coating,44 manual rubbing,7,50,51 sonication,52 and vacuum assisted coating.53-55 The 

secondary growth approach produces zeolite membranes that are thin and oriented.50-52,56-

58 

The zeolite membrane cost is typically $5,000 ~ $10,000 per unit area of membranes.59 If 

the cost does not decreases, a ten fold increase in flux (high throughput) is the way 

forward. The high throughput can be achieved via thin membranes, which can be attained 

by reducing the size of zeolite crystals.4,57,60 By disassembling large crystals57,61 through 

sonication researchers can reduce the size of zeolite crystals, but in this method it is 

difficult to control the orientation of zeolite nano-crystals due to their isotropic 

morphology. Moreover, the method produces low yields and so it is not useful for large-

scale applications.   
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Another means of obtaining thin zeolite membranes is to prepare anisotropic zeolite 

crystals, which are thin (a couple of unit cell dimensions) along a certain crystallographic 

axis leading to a high aspect ratio. The resulting morphology appeared to be a sheet with 

a few nanometer thickness, and so it is called as “zeolite nanosheets.” Zeolite nanosheets 

can be used to control the orientation of the zeolite membranes due to anisotropic 

morphology. For a couple of decades researchers have tried to prepare zeolite nanosheets 

through direct hydrothermal treatment, but no successful results have been reported. In a 

more successful approach nanosheets have been produced by exfoliating layered 

precursor zeolites (hereafter called “the top-down approach”).3,53-55,62-66 However, this 

strategy has drawbacks as well. For example, certain exfoliation methods, including the 

high base treatment, destroy nanosheet crystallinity.3,62. Further complicating matters, a 

purification step is required to collect the exfoliated zeolite nanosheets, and this 

purification step leads to low yields. Thus, this method, too, is not appropriate for large 

scale processes.  

A possible solution to these problems might be to produce zeolite nanosheets through 

direct hydrothermal synthesis, hereafter called “the bottom-up synthesis.” This 

dissertation describes the first successful bottom-up synthesis of MFI zeolite nanosheets.  

There are two mechanism of separating zeolite membranes; size/shape discrimination and 

sorption-diffusion. Under the first model, which is the simpler of the two, molecules 

smaller than the pore size of the zeolite framework can diffuse through micropores while 

bigger ones cannot. For example, a molecule, p-xylene (5.8 Å ), that is smaller than o-

xylene (6.8 Å ) can pass through the micropore channels of the MFI zeolite framework. 
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Similarly, n-butane (4.3 Å , a linear molecule) can be separated from i-butane (4.9 Å , a 

branched molecule) since the linear molecule, n-butane, preferentially diffuses into the 

micropores of the MFI zeolite while the branched molecule, i-butane, does not.  

The second mechanism, sorption/diffusion, is facilitated by adsorption affinity of zeolite 

framework to chemical species. For instance, through the sorption-diffusion mechanism 

ethanol (4.3 Å ) is separated from water (2.7 Å ). Water molecules can predominantly 

diffuse into the micropore channels of the MFI zeolite framework due to their small 

molecular size. In contrast, in the case of siliceous MFI zeolites, hydrophobicity leads to 

the preferential adsorption of ethanol rather than water molecules owing to relatively high 

hydrophobicity of ethanol. Thus, ethanol can be separated through siliceous MFI zeolites.  

Usually organic SDA molecules occluded in zeolite pore channels should be removed 

through thermal treatment (hereafter called “calcination”). Upon calcination, the zeolite 

nanosheets form aggregates, and this renders them not appropriate for thin membrane 

applications. SDA elimination should not cause aggregates to form for thin membrane 

applications. Inexpensive polymeric supports can replace expensive inorganic supports if 

SDA-free zeolite nanosheets are prepared prior to depositing the zeolite nanosheets onto 

the polymeric supports. To prepare SDA-free zeolite nanosheets without formation of 

aggregates, the SDA molecules should be eliminated using a method other than thermal 

treatment. A potentially viable approach, the oxidation of SDA molecules via Fenton 

chemistry, has been developed for aluminosilicate BEA nano-crystals.67,68 This 

dissertation evaluates the usefulness of applying Fenton chemistry to MFI zeolite 

nanosheets. 
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Adsorption, too, is a relatively low energy-intensive separation technology that purifies 

chemicals and fuels.69 Its efficiency depends on how chemicals are adsorbed onto the 

zeolite framework. To understand zeolite membrane systems under the sorption-diffusion 

model (e.g., ethanol separation from aqueous phase by the siliceous MFI zeolites), the 

adsorption affinity between adsorbates and the zeolite framework must be demonstrated. 

In this dissertation ethanol adsorption onto pure silica MFI zeolites is demonstrated. 

This dissertation, which consists of 4 chapters plus an appendix, examines three topics: 1) 

the synthesis of zeolite nanosheets; 2) applications in membranes; and 3) adsorption 

separation processes. The first three chapters examine the synthesis of zeolite nanosheets 

and the membrane preparation method. The fourth chapter discusses adsorption 

processes. 

This dissertation is organized as follows. 

Chapter 2 illustrates the first successful direct hydrothermal treatment, or the bottom-up 

synthesis, of MFI zeolite nanosheets that serve as building units of zeolite membranes. In 

a discussion of how to optimize the synthesis condition zeolite nanosheets produced from 

parametric studies are characterized by SEM and TEM. To understand the synthesis 

process the time-resolved evolution of the MFI nanosheets is observed.  

Chapter 3 describes the preparation of zeolite membranes from MFI nanosheets 

synthesized using the bottom-up strategy is described. Different types of inorganic 

supports, coating sol of nanosheets, and secondary growth are introduced to control the 

microstructure of the MFI nanosheet membranes. The resulting membranes are tested for 

xylene isomer permeation and butane isomer separation. 
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Chapter 4 describes research on SDA removal. In the attempt to remove SDA out of 

zeolite framework, formation of few or no aggregates of the MFI nanosheets is desirable 

for future applications that combine with polymeric supports. The methods are divided 

into thermal treatment and chemical treatment types. To examine the viability of these 

types the micropore openings and the morphologies of nanosheets produced under each 

type of treatment are characterized. 

Chapter 5 examines ethanol and water adsorption behavior onto siliceous MFI crystals in 

nanosheet morphology and the conventional coffin shape. Influences of hydrophobicity 

of the siliceous MFI crystals on ethanol adsorption are probed in vapor phase. This work 

was undertaken in collaboration with Dr. Matthias Thommes (Quantachrome) and Dr. 

John Bullis (Hiden Isochema). Roles of water in ethanol adsorption onto the siliceous MFI 

crystals are probed by comparison of vapor phase and aqueous phase adsorption.  

The appendix describes the preparation of MFI zeolite nanosheets under the top-down 

approach. Prior to undertaking the bottom-up synthesis the multilamellar MFI nanosheets 

were exfoliated and they underwent simple purification. The exfoliated nanosheets are 

exploited to fabricate zeolite membranes and ethanol pervaporation performance of the 

membranes is investigated. 
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Chapter 2: Preparation of bottom-up synthesis of MFI nanosheets for 

membranes 

2.1 Introduction 

Several attempts have been made to decrease the diffusion path length for high 

throughput membranes59 and catalysts through the direct hydrothermal synthesis of 

zeolite nanosheets. However, to date none have produced a direct synthesis of zeolite 

nanosheets due to the difficulty of rationally designing structure-directing agents and a 

synthesis methodology. Instead of directly synthesizing zeolite nanosheets, researchers 

have employed a wide range of indirect top-down strategies that involve parent materials 

that are layered structure zeolites. To delaminate the layered structure of zeolites, 

researchers have employed the high base treatment, ultrasonication, fluoride/chloride 

anion promoted exfoliation, and melt extrusion with a polymer.3,53,54,62-65 The 

delamination method most amenable to preserving pristine zeolite crystallinity is melt 

extrusion with a polymer. For the last seven years, Tsapatsis’ group has exfoliated zeolite 

nanosheets through melt extrusion with a polymer. Hereafter, the term “top-down 

method” refers to melt extrusion with the polymer polystyrene. 

The melt extrusion with polystyrene is attractive because it preserves the pristine 

crystallinity of the zeolite nanosheets, but there are drawbacks to this method. During the 

exfoliation process of the top-down strategy, the resulting MFI zeolite nanosheets were 

broken down into small pieces owing to the high shear forces produced by the  high 

viscosity of polystyrene. As a result, the maximum lateral size of the exfoliated MFI 

nanosheets is 200 nm × 200 nm. The reduced lateral size is likely to create an increased 
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number of grain boundaries, which are potential defects. Therefore, this breakage of MFI 

nanosheet crystals is not desirable for membrane fabrication.  

After exfoliation, unexfoliated MFI particles and polystyrene co-existed with the 

exfoliated MFI nanosheets. To purify the exfoliated MFI nanosheets, multiple steps of 

centrifugation must be carried out combined with density gradient centrifugation 

(DGC).54 This time-consuming process generates plenty of organic solvent waste, which 

is not environmentally-friendly. The resulting yield of the exfoliation is so low, i.e., 10%, 

that the majority of the starting material, i.e., layered MFI zeolites, is wasted. 

Additionally, the strategy is not suitable for commercialization; instead, it is appropriate 

for a small batch process in lab-scale. 

Some suggest that the direct synthesis of zeolite nanosheets (i.e., the bottom-up 

approach) will provide a solution to the shortcomings mentioned above. Inspired by a 

previous report by Tsapatsis’ group,70 which concluded that MFI zeolite crystal 

morphologies are controlled by different types of structure-directing agents—suggesting 

that a bottom-up synthesis of MFI nanosheets might be possible—in this chapter a 

bottom-up synthesis is developed. In the previous work conducted by Tsapatsis’ group, 

MFI zeolite plates co-existed with peculiar MFI zeolite crystals. These crystals had a b-

elongated cylindrical shape that resulted from seeded-growth produced by the structure-

directing agent bis-1,5 (tripropyl ammonium) pentamethylene diiodide (hereafter dC5). 

However, in the work of the Tsapatsis’ group, the major components of the resulting 

crystals were peculiarly b-elongated cylindrical MFI crystals. Moreover, the b-elongated 

MFI crystals were of interest since they were experimentally demonstrated for the first 
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time. Based on the previously reported results, bottom-up synthesis of MFI zeolite 

nanosheets is carried out in this chapter.   

 This chapter describes the development of bottom-up synthesis of MFI zeolite 

nanosheets with dC5 via seeded-growth. To identify the optimal condition for acquiring 

high quality MFI nanosheets parametric studies are described in this chapter. The last 

section of this chapter describes a time-resolved TEM study that examines how MFI seed 

crystals evolve into MFI nanosheets during synthesis. 

 

2.2 Experimental 

Synthesis of dC5 

dC5 was synthesized through an exhaustive alkylation of 1,5-diaminopentane with 1-

iodopropane.70,71 The corresponding chemical reaction was as follows: 

C5H14N2 + 6C3H7I+2K2CO3  C23H52N22I + 4KI + 2H2O + 2CO2 

18.90 g of 1,5-diaminopentatne (> 97 %, Sigma-Aldrich) was added to a dry three neck 1 

L round bottom flask that contained 450 mL of 2-butanone (99.5 %, Sigma-Aldrich). An 

excessive amount (82.35 g) of anhydrous potassium carbonate (Sigma-Aldrich) was 

mixed as a water scavenger. The mixture was purged by an argon flow and then loaded in 

an oil bath heated to 80 °C. When the oil bath temperature reached 80 °C, the argon flow 

was stopped and 108 mL of 1-iodopropane (99 %, Sigma-Aldrich) was slowly added with 

a glass syringe through a rubber septum. When the addition of the 1-iodoproane was 

finished, the reactor was wrapped with aluminum foil to prevent light decomposition and 

it was connected to a condenser. The argon flow was turned on again. The reaction was 
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allowed to proceed for 10 h under an argon environment followed by a cooling down to 

60 °C. The resulting product was filtered and solids (solid 1) and filtrate were collected 

for further purification. The solid 1 was composed of dC5 and impurities.  

2-butanone in the filtrate (yellow solution) was removed by rotary evaporation at 60 °C, 

which led to an off-white solid. 250 mL of 2-butanone was added into the solid and then 

stirred for 30 min. After dissolving the solid, ethyl acetate (99.9 %, Fisher Scientific) was 

added in order to precipitate out an off-white solid (solid 2). After stirring for 6 h, the 

solid was recovered by filtration.  

The solids, solid 1 and solid 2, were not pure and contained potassium carbonate and 

potassium iodide, which is a byproduct of reaction. Since dC5 is highly soluble in 

ethanol, the solids were dissolved in ethanol. The ethanol solution was filtered and the 

filtrate was collected. Since potassium carbonate is not soluble in ethanol and potassium 

iodide is slightly soluble, in the filtrate, the major component is dC5. To remove the trace 

amount of potassium iodide, the ethanol in the filtrate was evaporated at 60 °C by rotary 

evaporation, and then the purification steps (dissolving in ethanol, filtration and 

evaporation in sequence) were repeated 3~4 times. The resulting solid was dissolved into 

250 mL of 2-butanone and stirred for 30 min. Then 250 mL of ethyl acetate was added to 

precipitate out the solids. After 6 h of stirring, the solids were recovered by filtration. To 

acquire high purity dC5, the solids were extracted with ethanol once again and that was 

followed by recrystallization by using 2-butanone and ethyl acetate.  

The final product was analyzed by 13C NMR and 2H NMR to confirm that the structure of 

the product corresponds to dC5.   
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Synthesis of TPA primary seeds 

The nano-crystals of silicalite-1, primary seeds were prepared from a molar composition 

of 10SiO2: 2.12TPAOH: 0.76NaOH: 97.27H2O. Every chemical was used without further 

purification. 8.93 g of tetrapropyl ammonium hydroxide solution (TPAOH, 1.0 M, 

Sigma-Aldrich) was mixed with 0.16 g of deionized (DI) water, and then 0.127 g of 

sodium hydroxide (NaOH, 97 %, Sigma-Aldrich) was added. After completely dissolving 

the sodium hydroxide, 2.5 g of silicic acid (99.9 %, 20 μm, Sigma-Aldrich) was added as 

a silica source. The mixture was stirred overnight at room temperature and then heated at 

50 ºC for 6 days. The solution was filtered with a 12 mL syringe that was connected to a 

0.45 µm GHP (polypropylene) syringe filter, and then the filtrate was heated at 100 ºC 

for 3 days. The primary seed particles were recovered by centrifugation at 14,500 RCF 

(Relative Centrifugal Force) three times for 1 h. 

Synthesis of dC5 secondary seeds 

Following centrifugation the recovered primary seeds were re-dispersed in DI water and 

then an aliquot was taken for evaluating the silica molar concentration of the suspension. 

The rest of the primary seed suspension was mixed with a dC5 precursor sol composed of 

dC5, hydrolyzed TEOS, water and potassium hydroxide (KOH) that had the following 

molar composition: 120SiO2: 7.5dC5: 25KOH: 9500H2O: 480EtOH. When the primary 

seed suspension was mixed with the dC5 precursor sol, the silica molar concentration of 

the dC5 precursor sol was four times higher than that of the primary seed suspension. The 

mixture was transferred into a Teflon-lined stainless-steel autoclave and heated at 150 °C 
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for 3 days under rotation. The secondary seed particles were recovered by centrifuging 

three times at 14,500 RCF for 5 min. 

Synthesis of nanosheets: Two-step 

The recovered secondary seeds were re-dispersed in DI water and then the silica molar 

concentration was determined for synthesis of nanosheets. The secondary seed 

suspension was mixed with a dC5 precursor sol comprised of dC5, hydrolyzed TEOS, 

water and KOH that had a molar composition of 80SiO2: 3.75dC5: 25KOH: 9500H2O: 

320EtOH. When the secondary seeds were mixed with the dC5 precursor sol, the silica 

molar ratio of the secondary seed suspension to the dC5 precursor sol was 1:60. The 

hydrothermal treatment conditions varied under static conditions: at 140 °C for 3 days, at 

150 °C for 2 days, and at 160 °C for 2 days. 

Synthesis of nanosheets: One-step 

To shorten the length of time needed for nanosheet preparation, the recovered primary 

seed crystals were used rather than the secondary seeds during the seeded-growth. The 

recovered primary seed suspension was mixed with the dC5 precursor sol where molar 

composition was 80SiO2: 3.75dC5: 25KOH: 9500H2O: 320EtOH. When the primary seed 

suspension was mixed with the dC5 sol, the silica molar ratio of the primary seed 

suspension to the dC5 precursor sol was 1:200. The mixture was hydrothermally treated 

under static conditions at 150 °C for 3 days. 

Parametric studies of one-step synthesis 

To optimize the quality of the nanosheets, parametric studies were conducted using 

variables such as pH, silica molar ratio, cation size of base, temperature, and 
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crystallization time. As described in Table 2-1, the influence of pH adjusted by 

concentration of KOH on synthesis was explored, and the optimized pH condition was 

identified.   

 

Table 2-1. Experimental details of molar composition of dC5 sol with various 

concentrations of potassium hydroxide. The silica molar ratio of the primary seeds 

to the dC5 sol was 1 to 200. *a) the dC5 sol of sample 1 was prepared by ion 

exchange with an ion exchange resin of –OH form (Amberlite IRN-78 ion-exchange 

resin, Acros). 

Sample 

name 

SiO2 dC5 H2O KOH pH 

Temperature 

(°C) 

Time 

(days) 

1 

80 3.75 9500 

0a) 10.36 

150 3 

2 5 10.77 

3 10 11.36 

4 15 11.54 

5 20 11.63 

6 25 11.72 

 

A wide range of silica molar ratios of primary seeds to dC5 sol that had sol composition 

of 80SiO2: 3.75dC5: 15KOH: 9500H2O: 320EtOH was examined: 

1:30/1:60/1:200/1:400/1:600/1:800.  Not only potassium hydroxide but also other bases 

are chosen as mineralizing agents: sodium hydroxide, cesium hydroxide (50 wt%, 99.9 

%, Sigma-Aldrich) and rubidium hydroxide (50 wt%, 99 %, Sigma-Aldrich). The 

objective was to investigate the influence of the size of cations of base on nanosheet 
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synthesis. The molar composition of dC5 sol was 80SiO2: 3.75dC5: 15MOH (M: Na, K, 

Cs, and Rb): 9500H2O: 320EtOH, and the silica molar ratio of primary seeds to the dC5 

sol was fixed to 1:200. The hydrothermal treatment was carried out at 150 °C for 3 days 

under static conditions.  

The effect of hydrothermal treatment temperature on resulting nanosheet quality was 

explored by varying temperatures such as 150, 160, 165, and 170 °C. The silica molar 

ratio of primary seeds to the dC5 sol that had composition of 80SiO2: 3.75dC5: 15KOH: 

9500H2O: 320EtOH, was 1:200. The crystallization time was also varied: shorter 

crystallization time (52 h) and prolonged crystallization time (20 days and 31 days).  

Effects of seeds 

To investigate an impact of primary seeds, crystal growth with no seeds was carried out 

from the only dC5 sol where composition was 80SiO2: 3.75dC5: 15KOH: 9500H2O: 

320EtOH. Seeds of different sizes and morphologies were used to investigate effects of 

size and morphology of seeds. Seeds smaller (ca. 20 nm) than regular primary seeds were 

provided through disassembly of the 3-DOm-i (3 Dimensionally Ordered Mesoporous 

Imprinted) MFI.57 These were provided by Dr. Pyung-Soo Lee at the Korea Research 

Institute of Chemical Technology (KRICT) and Prof. Wei Fan at the University of 

Massachusetts Amherst. Employing the same chemicals used to prepare primary seeds, 

bigger seeds (ca. 120 nm) were prepared from a precursor sol where composition was 

10SiO2: 2.12TPAOH: 0.76 NaOH: 97.27 H2O. The precursor sol was transferred into a 

Teflon-lined stainless-steel autoclave and heated at 120 °C for 3 days under static 

conditions. Intergrown nanosheet seeds were also prepared: SPP (Self Pillared Pentasil)72 
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seeds that consisted of a unit cell thickness (2 nm) of nanosheets arranged along the b-

axis with a house-of-card arrangement.   

Aluminum and tin insertion 

Pure silica zeolites do not have an activity for reaction, and without this activity they 

cannot serve as catalysts. Thus, heteroatoms such as aluminum and tin should be 

incorporated into the zeolite framework for an activity. To ensure that the pure silica 

zeolites could be used as catalysts, aluminum and tin was inserted into the MFI 

framework.  

To this end, aluminum-tri-(sec-butoxide) (Al(sec-BuO)3, 97 %, Sigma Aldrich) was used 

as an aluminum source. 0.55 g of dC5 was dissolved in 41.1 g of DI water and then 0.204 

g of KOH was added. After a clear solution was acquired, 0.0047g of Al(sec-BuO)3 was 

added to the solution and then 4 g of TEOS was added to the solution. The mixture was 

stirred at room temperature overnight to obtain a sol composition of 80SiO2: 3.75dC5: 

15KOH: 0.04Al2O3: 9500H2O: 320EtOH (Si/Al=1000). When the primary seeds were 

mixed with the dC5 sol, the targeted silica molar ratio of the primary seeds to the dC5 sol 

was 1:200. The mixture was hydrothermally treated at 150 °C for 4 days under static 

conditions. 

A tin source was tin (IV) chloride pentahydrate (98 %, Sigma Aldrich). To acquire the 

precursor sol composition of 80SiO2: 3.75dC5: 15KOH: 0.8SnO2: 9500H2O: 320EtOH 

(Si/Sn=100), 0.55 g of dC5 was dissolved in 41.1 g of DI water and then 0.204 g of KOH 

was dissolved. When the dissolution was completed, 0.067 g of tin (IV) chloride 

pentahydrate was added to the solution and then 4 g of TEOS was added to the solution. 
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To hydrolyze the TEOS the mixture was stirred at room temperature overnight. When the 

primary seeds were mixed with the sol, the silica molar ratio of the primary seeds to the 

dC5 sol was 1:200. The mixture was hydrothermally treated at 150 °C for 6 days under 

static conditions. 

Time-resolved evolution 

To understand how the evolution of the primary seeds leads to the formation of 

nanosheets, one composition of the dC5 sol (80SiO2:3.75dC5: 15KOH: 9500H2O: 

320EtOH was prepared and the silica molar ratio of the primary seeds to the dC5 

precursor sol was 1:200. The evolution was observed every 4 h. The evolution was 

undertaken at 150 °C for up to 3 days under static conditions. An aliquot was taken out of 

every sample, diluted with DI water, and mounted on holey carbon film-coated TEM 

grids (01824, Ted Pella, 400 mesh) for TEM analysis. 

Characterization 

The morphology of the primary seeds, the secondary seeds, and nanosheets was checked 

by SEM (Hitachi, S-4700) or TEM (Tecnai, T12). 

 

2.3 Results and discussion 

Preparation of primary and secondary seeds 

The resulting primary seed particles were ca. 50 nm and had irregular shapes, as seen in 

Figure 2-1. In contrast, the secondary seeds had the b-elongated cylindrical shape with a 

base of ac-plane and well-defined facets, as shown in Figure 2-2. As illustrated in Figure 

2-2D, the crystallographic axes were indexed by confirming the corresponding FFT (Fast  
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Figure 2-1. A SEM image of the primary seeds (A) and a TEM image of the primary 

seeds (B). The crystals are approximately 50 nm in size and have irregular shapes. 

 

Fourier Transform). This morphology is consistent with previous studies70 and it is 

possibly attributed to the dC5. In general, a TPA molecule, which is a conventional 

structure-directing agent of MFI, is able to fit into straight b-channels and sinusoidal a-

channels by filling the intersection of the a- and b- pore channels with the nitrogen atom 

of the TPA molecule. In contrast, from the perspective of thermodynamics, the dC5 is 

preferentially fitted into straight b-pore channels rather than into sinusoidal a-pore 

channels.73 The dC5 has only five carbon atoms between the two quaternary ammonium 

ions, which produces shorter carbon chains than the dimer of TPA. (It is called dC6 since 

it has six carbon atoms between the two quaternary ammonium ions). Consequently, 

fitting in the straight b-channel of dC5 is more energetically favorable than the sinusoidal 

a-channel leading to preferential growth along the b-direction.73  

A B

100 nm 100 nm



 

 19 

 

Figure 2-2. A SEM image of the secondary seeds (A) and a TEM image of the 

secondary seeds (B). A HRTEM (High Resolution TEM) image of the secondary 

seeds (C) and a corresponding FFT (Fast Fourier Transform) image (D). The 

HRTEM image, C, and FFT image, D, were obtained by Prashant Kumar. 

 

Nanosheet synthesis from two-step growth 

The secondary seeds were mixed with hydrolyzed dC5 sol and then hydrothermally 

treated. This produced nanosheets that had a thickness of ca. 5 nm (measured by AFM) 

(Figure 2-3C middle) and a lateral size of ca. 2 μm (Figure 2-3A). Scanning through the  
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Figure 2-3. An AFM image of MFI nanosheet (A), height distribution (B), line 

scanning for thickness profiles (C left), thickness of the nanosheet corresponding to 

the line scan 1 (C middle), and thickness of the center of the nanosheet 

corresponding to the line scan 2 (C right). Based on the height distribution (B), the 

nanosheet area is approximately 75 % within the entire sheet area. On the basis of 

the AFM thickness profile, the nanosheet is approximately 5 nm thick (C middle), 

and the thick center produced by the seed is approximately 75 nm thick (C right). 

All images were acquired by Dr. Donghun Kim.  

 

center of the particle (see Figure 2-3C right) determined that its thickness differs from 

that of the nanosheet portion. That is, at its center the secondary seed particle is 

embedded and it is thicker (ca. 75 nm) than the nanosheet area. This thick part at the 

center cannot be avoided since the synthesis is developed from seed crystals. To 

determine the thickness distribution the number of pixels that correspond to the thickness 

of a nanosheet particle was counted. Most of the nanosheet is 5nm thick. As noted in  
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Figure 2-4. A SEM image of MFI nanosheets deposited on a silicon wafer (A), a 

TEM image of a MFI nanosheet (B), a high magnification TEM image of area 

indicated by a circle in B (C), and a corresponding electron diffraction pattern (D). 

The high magnification TEM image (C) indicates crystallinity. The electron 

diffraction pattern D is b-oriented pattern, which reveals that the thin dimension of 

the nanosheet is along b-axis. 

 

Figure 2-3B, approximately 75% of the nanosheet lies within the particle, and this is 

much larger than the maximum nanosheet area produced under the top-down approach. 
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From the electron diffraction pattern of the thin nanosheet area (Figure 2-4D), one can 

determine that the thin dimension is along b-axis. From the indexing of the corresponding 

electron diffraction pattern (Figure 2-4D) it can determine that the long dimension of the 

nanosheets corresponds to the a-axis (Figure 2-4B). In contrast, in conventional MFI 

synthesized from TPA, the fastest crystal growth rate occurs along c-axis, which leads to 

an elongated crystal morphology along the c-axis.74 Figure 2-4A shows the b-oriented 

nanosheet deposition on a silicon wafer.   

Hereafter the nanosheet synthesis from secondary seeds is denoted as “two-step growth.” 

This reflects the fact that from the primary seeds two steps—preparing secondary seeds 

and preparing nanosheets—are employed to acquire the final product, nanosheets. 

Completion of the two-step growth takes 7 days, which does not include preparing the 

primary seeds. To shorten the synthesis time, the secondary seeds were replaced with 

primary seeds, which shortens by three days the hydrothermal treatment of secondary 

seeds. This is called as “one-step growth.”  

Nanosheet synthesis from one-step growth 

In one-step growth, the primary seeds were mixed with the dC5 precursor sol to 

synthesize nanosheets. In the one-step method, the amount of silica source from the dC5 

precursor sol that is exploited to convert most of the primary seeds to nanosheets is 

higher than that used in the two-stop growth. When the same or a lesser amount of this 

silica source was mixed with the primary seeds and subsequently hydrothermally treated, 

most of the seed particles did not grow to nanosheets. As indicated in Figure 2-5A and B, 

they remained ungrown (A; the silica molar ratio of the primary seeds to the dC5  
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Figure 2-5. SEM images of MFI nanosheets grown from the silica molar ratio of the 

primary seeds to the dC5 precursor sol=1:30 (A), 1:60 (B), 1:200 (C), 1:400 (D), 

1:600 (E), and 1:800 (F). Ungrown seed particles appear in the case of the low silica 

molar ratio of the primary seeds to dC5 sol (A and B). Amorphous silica precursor 

particles are observed in the case of the high silica molar ratio of the primary seeds 

to dC5 precursor sol (E and F). 

 

precursor sol=1:30 and B; 1:60). Where nanosheets did grow from the low silica source 

of the dC5 precursor sol, as presented in Figure 2-5A and B, their lateral size was smaller 
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than those grown from the higher silica source of the dC5 precursor sol. Perhaps this 

occurred attributed to the low nutrients for crystal growth provided by the dC5 precursor 

sol, which has a low silica concentration. As silica concentration from the dC5 precursor 

sol increased, most of the seeds were converted to nanosheets, but after critical point (the 

silica molar ratio of the primary seeds to the dC5 precursor sol=1:600), plenty of 

amorphous silica particles were formed (Figure 2-5E and F). Since the induction period 

of MFI crystals from dC5 is longer than that of TPA71, excessive nutrients from the silica 

source might not have time to nucleate during hydrothermal treatment. Consequently, the 

amorphous silica precursor particles can remain without formation of MFI crystals. In 

one-step synthesis, two-step synthesis is not needed for nanosheet synthesis to occur. In 

other words, one-step synthesis is an effective and alternative to two-step synthesis. 

The thickness profiles of the one-step grown nanosheet were determined by AFM 

analysis, as shown in Figure 2-6. Figure 2-6B shows that the thickness of the nanosheet 

is approximately 5 nm. This is identical to the two-step grown nanosheet. Figure 2-6C 

describes thickness profiles with a line scan passing through the central part of the 

nanosheet. The thickness of the central part, including the seed from one-step growth, is 

thicker than that acquired from two-step growth, but the differences are insignificant 

since both are approximately 100 nm. Figure 2-6C shows the bimodal thickness profile 

since a seed crystal was deposited onto the nanosheet. The thickness profiles from AFM 

analysis indicate that during one-step growth, the nanosheet synthesis time can be 

shortened with no compromise in quality. The nanosheets described in this dissertation 
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were grown from primary seeds using the one-step growth method unless it is referred to 

as two-step growth method. 

 

 

Figure 2-6. An AFM image of the MFI nanosheet (A), the thickness profile of the 

nanosheet that corresponds to the line scan 1 (B), and the thickness profile of the 

center of the nanosheet that corresponds to the line scan 2 (C). All images were 

acquired by Dr. Donghun Kim. 

 

 An effect of pH on nanosheet synthesis 

Parametric studies were conducted in order to optimize three parameters of nanosheet 

quality: 1) no or few ungrown seeds remaining; 2) no or few intergrown particles; and 3) 

a high area of thin nanosheet within an entire particle. To achieve this, impacts of pH of 

the dC5 precursor sol were investigated. At low pH (sample 1 in Table 2-1), only 

amorphous silica precursor particles were obtained since the pH value was not high 

enough to facilitate zeolite crystallization (Figure 2-7A). As pH gradually increased, 

zeolite particles crystallized, which led to the co-existence of nanosheets and amorphous 

silica precursor particles (Figure 2-7B and C). At a pH higher than 11.54, nanosheets 

were the major products and no or few amorphous silica precursor particles co-existed  
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Figure 2-7. SEM images of sample 1 (A), sample 2 (B), sample 3 (C), sample 4 (D), 

sample 5 (E) and sample 6 (F) of Table 2-1. At low pH (A and B), major product is 

amorphous silica precursor particles.  

 

(Figure 2-7D, E and F). From the study of pH effects, the optimal dC5 precursor sol 

composition was identified as 80SiO2: 3.75dC5: 15KOH: 9500H2O: 320EtOH.  
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The influence of cations of base on nanosheet synthesis 

In zeolite synthesis, a base is employed as a mineralizing agent and sodium hydroxide 

and potassium hydroxide are the conventional mineralizing agents. The cations of bases 

influence zeolite synthesis since they interact with zeolite frameworks in different ways.75 

To probe the effects of the size of cations on nanosheet synthesis, as mineralizing agents 

four different cations of base that have +1 charge were employed: sodium (Na+), 

potassium (K+), cesium (Cs+) and rubidium (Rb+) ions.  

 

 

Figure 2-8. SEM images of MFI nanosheets that have been synthesized with sodium 

hydroxide (A), potassium hydroxide (B), cesium hydroxide (C) and rubidium 

hydroxide (D). Arrows in A indicate twinning. 
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As is well known, in the presence of sodium ions smaller zeolite crystals are produced 

with twinning.75 In contrast, bigger ions such as potassium, cesium and rubidium ions 

favor the formation of large single crystals.75 Consistent with what has been reported in 

the literature,75 Figure 2-8A shows that nanosheets produced in the presence of the 

sodium ions are relatively small. Moreover, the nanosheets appeared to be twinned (see 

the arrows in Figure 2-8A), which is not desirable for membrane applications. Figure 2-

8C and D show that, compared to potassium hydroxide (Figure 2-8B), increasing cation 

size through the use of mineralizing agents such as cesium and rubidium does not reduce 

seed thickening at the center. Furthermore, the lateral size of the nanosheets in the 

presence of cesium and rubidium ions is as large as nanosheets produced when potassium 

hydroxide is the mineralizing agent. As cation size increases, it is likely to form 

amorphous silica precursor particles (Figure 2-8). The formation of amorphous silica 

precursor particles is pronounced when the biggest cation, rubidium, is present (Figure 2-

8D). Perhaps this occurs since there is less interaction between dC5+ and silicate anions 

when large cations that form competitive interactions with silicate anions are present.75 

The results suggest that when potassium hydroxide is present as a mineralizing agent 

synthesized nanosheets qualify as high quality nanosheets. 

How crystallization temperature affects nanosheet synthesis 

A wide range of synthesis temperatures from 150 °C to 170 °C were probed for 

optimization of nanosheet quality. As synthesis temperature increased, nanosheet particle 

size increased along with pronounced seed thickening at the center as exhibited in Figure 

2-9. With temperature, the crystallization rate increased leading to bigger crystal sizes.  
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Figure 2-9. SEM images of deposited MFI nanosheets on silicon wafers synthesized 

at 150 °C (A), 160 °C (B), 165 °C (C), and 170 °C (D). 

 

Besides the crystal size, the rising temperature promoted mass transfer in the system and 

possibly resulting in significant seed thickening at the center as well. Therefore, 

nanosheets synthesized at 150 °C show the least seed thickening. 

How crystallization time affects nanosheet synthesis 

Crystallization time was manipulated to reduce the seed thickening at the center of the 

nanosheets. The crystallization time was reduced long enough to obtain nanosheet 

crystals, and it was prolonged to verify the impact of crystallization time on seed 

thickening.  
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Figure 2-10. SEM images of deposited MFI nanosheets on a silicon wafer. 

Nanosheets synthesized for 52 h (A), 3 days (B), 20 days (C), and 31 days (D). 

 

The size of resulting nanosheets produced during the short crystallization time (52 h, 

Figure 2-10A) was smaller than obtained during the longer crystallization time, but it 

was micron dimension. Moreover, the seed thickening at the center of nanosheets was 

less pronounced compared to nanosheets produced during the longer crystallization time. 

Interestingly, when the crystallization time was prolonged to 20 days (Figure 2-10C) and 

31 days (Figure 2-10D), the lateral size of the nanosheets produced did not increase 

beyond the size of nanosheets crystallized for 3 days. This suggests that for 3 days 

crystallization is saturated. However, seed thickening appeared to be significant when 

crystallization was prolonged. This result suggests that seed thickening occurs during a 
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late stage of nanosheet synthesis and that when synthesis is shortened seed thickening is 

circumvented.      

Synthesis in the absence of seed crystals 

In the bottom-up synthesis of MFI nanosheets, the SDA, dC5 plays a crucial factor but 

seed crystals can play a critical role, too. Okubo’s group describes a MFI synthesis with 

dC5 wherein a different composition of dC5 precursor sol in the absence of seed crystals 

produced intergrown cystals.71  

 

 

Figure 2-11. SEM images of products from the dC5 precursor sol in the absence of 

seed crystals. For 3 day hydrothermal treatment, only amorphous silica precursor 

particles were observed (A). Intergrown nanosheets were acquired for 12 day 

crystallization (B). 

 

To verify the role of seed crystals, a synthesis from dC5 sol in the absence of seed 

crystals was carried out; the composition was 80SiO2: 3.75 dC5: 25KOH: 9500H2O: 

320EtOH. Since the induction period of dC5 precursor sol is longer than that of the TPA 

precursor sol,71 in the absence of nuclei (seeds), only amorphous silica precursor particles 

were formed for the 3 day seeded-growth crystallization (Figure 2-11A). Due to the 

longer induction period, I chose the prolonged crystallization time (12 days) was chose in 
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order to obtain MFI crystals rather than amorphous silica precursor particles.  

Consequently, intergrown nanosheet crystals rather than single nanosheets were formed 

(Figure 2-11B), which is consistent with trends reported in the previous work.71 This 

may stem from uncontrolled nucleation in the absence of seeds. 

How the size of seed crystals affects nanosheet synthesis 

Smaller MFI seed crystals, ca. 20 nm, were prepared from fragmented 3DOm-i MFI 

crystals (Figure 2-12A and B) with the expectation that smaller seeds would help reduce 

seed thickening of the central part of nanosheets. Unexpectedly, however, nanosheets 

synthesized from the smaller seeds, i.e., the fragmented 3DOm-i MFI, did not show 

improved seed thickening at the center (Figure 2-12C and D). The size of seeds at the 

center of nanosheets grown from 3DOm-i MFI seeds, as shown in Figure 2-12D, was 

comparable to that of nanosheets grown from regular primary seeds. It is concluded that 

starting with even smaller seeds would not eliminate seed thickening at the center of 

nanosheets since prior to nanosheet growth seeds grow to a critical size (~100 nm). This 

process apparently is not affected by the primitive size of seed crystals. The growth of 

seed crystals up to critical size always occurs before nanosheet growth, no matter how 

small the seed crystals. Thus, there is always thick seed and seed thickening at the center. 

In the last section of this chapter the sequence of nanosheet growth is discussed in detail. 

To explore how bigger seed crystals affect nanosheet growth, approximately 120 nm seed 

crystals were prepared (Figure 2-13A). The nanosheets synthesized from bigger seeds 

had pronounced seed thickening at their centers (Figure 2-13B) than nanosheets 

synthesized from regular primary seeds.  
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Figure 2-12. TEM images of 3DOm-i (3 Dimensionally Ordered Mesoporous 

imprinted) MFI seeds as synthesized (A), single crystals from disassembly of 3DOm-

i MFI (B), and MFI nanosheets prepared from the fragmented single 3DOm-i MFI 

crystals (C). A SEM image of nanosheets synthesized from the 3DOm-i MFI seeds 

(D). The 3DOm-i MFI seeds were prepared by Prof. Wei Fan at University of 

Massachusetts Amherst. Disassembly of the 3DOm-i MFI was carried out by Dr. 

Pyung-Soo Lee at Korea Research Institute of Chemical Technology (KRICT). 

 

Within an entire nanosheet particle the portion that was thin was lower than in nanosheets 

grown from regular primary seeds. In the case of seeds smaller than 100 nm (the primary  
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Figure 2-13. SEM images of bigger seed crystals, ca. 120 nm (A) and MFI 

nanosheets synthesized from the bigger seeds (B). 

 

seeds and the fragmented 3DOm-i MFI seeds), the size of seeds at the center of 

nanosheets was not affected by initial seed size. In contrast, seeds larger than 100 nm 

produced larger seeds at the center of the nanosheets and seed thickening. This suggests 

that nanosheets grown from large seeds and nanosheets grown from regular primary 

seeds grow in the same manner. In other words, seeds at the center of nanosheets became 

larger, whatever their initial size. This finding supports the hypothesis that seed crystals 

grow until a critical point is reached, at which point nanosheet growth occurs. 

The influence of the morphology of seed crystals on nanosheet synthesis 

To examine the influence of seed crystal morphology on nanosheet synthesis, SPP 

consisting of 1 unit cell thick (2 nm) MFI nanosheets that have a house-of-card assembly 

was prepared (Figure 2-14A and B). If the morphology of the seed crystal has a 

significant impact on the nanosheet synthesis, the resulting product should reveal a 

morphology similar to that of the seed crystals. The resulting nanosheets, however, did 

not show intergrown structure comparable to the seeds, SPP (Figure 2-14C). Instead, 

they were similar to the nanosheets prepared from primary seeds in the respect that they  
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Figure 2-14. TEM images of SPP at low magnification (A), at high magnification 

(B), and a SEM image of MFI nanosheets synthesized from the SPP (C). 

 

showed no significant intergrowth. The result indicates that SDA, dC5, is the key factor 

that determines crystal morphology, and this leads to nanosheets from seeded-growth. 

Although the morphology of the seed crystals did not play a critical role in nanosheet 

synthesis, the size of seed crystals affected synthesis in the manner discussed above. The 

seeds embedded at the center of nanosheets synthesized from the SPP (Figure 2-14C) 

appears to be larger than those found in nanosheets synthesized from primary seeds. 
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Perhaps this is attributed to that the particle size of the SPP (approximately 100 nm) is 

greater than that of primary seeds.   

Heteroatom insertion into the MFI framework 

The synthesized MFI nanosheets described above are all pure silica type crystals for 

membrane applications. Now the results of heteroatom insertion are described. When 

heteroatoms are incorporated into the zeolite framework, catalytic activity occurs.4,72 In 

the case of both membranes and catalysts, nanosheets can shorten molecular diffusion 

length along the thin dimension, and this overcomes diffusion limitations.4,72,76,77 

Figure 2-15A shows aluminosilicate MFI nanosheets with a ratio of Si/Al=1000. Since 

the aluminum atom reduces the crystallization rate, crystallization time to pure silica 

nanosheets (3 days) resulted in amorphous silica precursor particles. When the 

crystallization time was prolonged to 4 days, aluminosilicate MFI nanosheets were 

obtained that had a similar morphology. That is, seed crystals were embedded at the 

center of nanosheets and seed thickening occurred. 

Figure 2-15B exhibits tin-inserted MFI nanosheets that have a ratio of Si/Sn=100 and 

whose nanosheet morphology resembles that of pure silica MFI nanosheets. Since the 

crystallization rate of the tin-inserted MFI was slower than that of pure-silica MFI, plenty 

of amorphous silica precursor particles were observed even after 6 day crystallization. 

Compared to pure-silica nanosheets, tin-inserted nanosheets had pronounced seed 

thickening at their centers associated with the extended crystallization time.  
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In the case of catalyst applications, researchers should carry out parametric studies of 

silicon to heteroatom ratios, and they should optimize synthesis conditions. This work is 

beyond the scope of this dissertation. 

 

 

Figure 2-15. SEM images of aluminum-inserted (Si/Al=1000) MFI nanosheets (A) 

and tin-inserted (Si/Sn=100) MFI nanosheets (B). 

 

The time-resolved sequence of the evolution of primary seeds  

To understand the growth of the nanosheets, the time-resolved sequence of the evolution 

of primary seeds upon hydrothermal treatment with dC5 precursor sol was observed by 

TEM. At the initial stage (Figure 2-16A), the primary seeds and the small amorphous 

silica particles (from the dC5 sol), which generally form during the hydrolysis of TEOS 

as part of zeolite synthesis,21,22,25,30-33 co-existed. As the primary seeds underwent 

hydrothermal treatment, they grew into bigger seeds that in size and morphology 

resemble secondary seeds (Figure 2-16B). In contrast to the primary seeds, the facets of 

the grown seed were well-defined and sharpened. After the longer hydrothermal 

treatment primary seeds grew to a size larger than that of secondary seeds (Figure 2-
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16C). Figure 2-16C illustrates a core-shell structure of the grown seed. The size of the 

core is comparable to that of primary seeds. At the middle stage of evolution, further 

hydrothermal treatment led to the emergence of a branch on a facet of the grown seeds 

rather than to the further growth of the seeds (Figure 2-16D). The branch (Figure 2-16D) 

is approximately 5 nm thick, which is the thickness of the nanosheets. Moreover, the 

branch revealed pentasil chains that are building units of the MFI framework, suggesting 

that the branch marks the onset of nanosheet growth. 

At the late phase of the evolution, and following the emergence of the branch, the 

nanosheet surrounded the grown seed and grew in a circular way (Figure 2-17). 

Eventually the nanosheets completely surrounded the grown seed (Figure 2-17D). 

Immediately after the nanosheets enveloped the grown seed, it remained relatively small 

and displayed no seed thickening at its center (Figure 2-17D). This suggests that the seed 

thickening occurs after the completion of nanosheet growth. While crystallization 

occurred continuously after the grown seed was enveloped, nanosheets were then 

continuously exposed to the dC5 precursor sol, which contains abundant nutrients for 

crystallization, which led to secondary nucleation and crystallization on the top surface of 

the nanosheets.  

The arrows in Figure 2-18 indicate that island formation on the top of the completed 

nanosheet due to secondary nucleation and crystallization leading to variations in the 

thickness of the nanosheet. Since the secondary nucleation takes place at a late stage of 

nanosheet formation, island formation perhaps can be suppressed by manipulating 

crystallization time. 
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Figure 2-16. TEM images of the sequential evolution of primary seeds. At the initial 

stage of evolution, amorphous silica precursor particles exist with the primary seed 

(A). The primary seed grows to the secondary seed (B). The primary seed grows 

even bigger than the secondary seed and reveals its core-shell structure (C). At the 

middle stage of the evolution, a branch emerges out of a facet of the grown seed (D). 
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Figure 2-17. TEM images of the late stage of the evolution. At the beginning of 

emergence of the nanosheet out of the seed (A), gradual growth of the nanosheet 

around the seed in a circular way (B and C), and completion of the growth of the 

nanosheet around the seed (D).  
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Figure 2-18. A high resolution SEM image of nanosheets. Arrows indicate island 

formation atop nanosheets upon the secondary nucleation. The image was obtained 

by Dr. Donghun Kim.  

 

2.4 Conclusion 

This chapter describes the successful bottom-up synthesis of MFI nanosheets through 

seeded-growth. The yield from synthesis is higher than that of nanosheets produced using 

the top-down approach. Nanosheet thickness along the b-axis is approximately 5 nm, 

which is thicker than the thickness of nanosheets produced using the top-down strategy (3 

nm). The lateral size is larger, too. The procedure is environmentally-friendly and easy to 

process since nanosheets are suspended in water as synthesized forms.  

The primary seeds are prepared from conventional SDA, TPA, and are treated with dC5 

precursor sol in order to prepare the secondary seeds. From both primary seeds and 

500 nm
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secondary seeds, MFI nanosheets are synthesized after the hydrothermal treatment of the 

mixture of seeds and the dC5 precursor sol. To shorten synthesis time, the one-step 

synthesis route from the primary seeds is employed.    

It is inevitable that thicker seed crystals will co-exist at the center of nanosheets since 

synthesis requires seed crystals. However, a viable thin nanosheet portion within a 

nanosheet particle is larger than nanosheets produced through the top-down method. 

To determine how to optimize the quality of nanosheets in terms of 1) few remaining 

ungrown seeds, 2) few intergrown particles, and 3) a high portion of thin nanosheet area 

within an entire particle, parametric studies that investigated the effects on nanosheets of 

several variables are conducted: variation in the silica molar ratio of seeds to dC5 

precursor sol; pH; the size of the cation of the base; temperature; crystallization time; 

seed crystal size, and seed crystal morphology. When the silica molar ratio of seeds to the 

dC5 precursor sol is low, ungrown seed crystals co-exist with- nanosheets. In contrast, 

when the silica molar ratio of seeds to the dC5 precursor sol is too high, amorphous silica 

precursor particles remain. When the pH is too low, zeolite crystal is not acquired. On the 

other hand, pH higher than a critical value results in MFI nanosheets. To avoid highly 

basic condition, the minimum pH to acquire MFI nanosheets is chosen for the optimal 

condition. Different cations of base are also investigated, and potassium is the best means 

of reducing seed thickening at the center. As temperature increases, nanosheet size 

increases but seed thickening increases simultaneously.  

Under assumption that smaller seed crystals lead to smaller seeds embedded at the center 

of nanosheets and to reduced seed thickening, and so smaller seed crystals are exploited 
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for nanosheet synthesis. When seeds smaller than 100 nm are used, there is no 

improvement in seed thickening or the size of embedded seeds at the center of 

nanosheets. To determine the effect of the size of primitive seed crystals, larger seed 

crystals are used for nanosheet synthesis. The use of large seed crystals led to significant 

seed thickening at the center of the nanosheets. To investigate how seed crystal 

morphology affects nanosheet synthesis SPP, which consists of 2 nm thick intergrown 

nanosheets with a house-of-card structure, is used as seeds. The resulting nanosheets 

seem to resemble nanosheets synthesized from primary seeds and do not display a SPP-

like, intergrown morphology. This finding suggests that seed crystal morphology has 

little effect on nanosheet synthesis.  

For the purposes of comparison, non-seeded growth from the dC5 precursor sol is carried 

out. The produced crystal has an intergrown structure like that described in the literature. 

This result suggests that seed crystals play a critical role in nanosheet synthesis since they 

control nucleation. 

When heteroatoms such as aluminum and tin are inserted into the MFI framework, the 

crystallization rate becomes slower than that of pure silica nanosheets, although the 

morphology of the two is similar. Note that the results heteroatom insertion described in 

this chapter occurred during pilot experiments, and thus, the synthesis condition is not yet 

optimized. However, the parametric studies on pure silica MFI nanosheets suggest that 

optimal conditions for aluminum and tin incorporation into MFI framework should be 

achievable. Furthermore, because heteroatoms produce a catalytic activity in zeolites, the 
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insertion of aluminum and tin into MFI nanosheets can be investigated for catalytic 

applications. This topic, however, is beyond scope of this dissertation.    

The sequential evolution of primary seeds observed over time suggests that primary seed 

growth occurs before nanosheet growth. At the initial stage of the growth, the primary 

seeds grow to the critical size of ~100 nm, at which point the crystals have well-defined 

facets and a core-shell structure. The core consists of primitive seeds and the shell is 

composed of crystals grown from the dC5 precursor sol. At the next evolutionary 

phase—the onset of nanosheet growth—a branch emerged out of a facet of the grown 

seed and seed growth was stopped. At the late evolutionary phase, the nanosheet 

gradually grew around the grown seed in a circular motion and assumed a uniform 

thickness. At the moment that nanosheet growth around the seed was completed, the 

nanosheets were continuously exposed to the dC5 precursor sol, where abundant nutrients 

for crystallization were still present. This led, first, to secondary nucleation on the surface 

of the nanosheets and, second, to crystal growth. As part of the process of secondary 

nucleation and crystal growth, seed thickening at the center of the nanosheets was 

accompanied by island formation that resulted in thickness variations in the nanosheets. 

Although the study revealed the time-resolved sequence of the evolution of primary 

seeds, it is not clear why the nanosheet emerged out of a facet of the grown seeds. This is 

a topic for future research. 

A massive number of MFI nanosheets can be simply produced from a batch of bottom-up 

synthesis in a manner that does not require complicated post-synthesis purification. This 

approach is promising to industrial applications. Moreover, by avoiding the breakage of 
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crystals due to mechanical forces during exfoliation—a characteristic result of the top-

down approach—the well-defined facets of the nanosheet crystals are preserved. In the 

future it would be useful to investigate the influence of surface structures on adsorption 

properties. The crystallographic axes of the nanosheets are well-defined, and thus it 

would be useful to the explore growth rates of crystals along these axes during secondary 

growth.  
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Chapter 3: Preparation of high performance membranes from MFI 

nanosheets 

3.1 Introduction 

Thin zeolite membranes are of interest since they can be used in separation technologies 

that are less energy-intensive than currently-used energy-intensive technologies such as 

distillation, crystallization and pressure-swing adsorption.38-45 Over the last two decades, 

researchers have examined alternative methods of organic vapor separation, including 

xylene isomers,50,51,53-55,57,78-80 gas separation like butane isomers,55,78,81,82 and alcohol 

separation.7,78,83,84 These methods employ zeolite membranes since they reduce the 

energy cost of purification.  

P-xylene is a raw material used in the production of terephthalic acid, which in turn is a 

monomer of poly(ethylene terephthalate) (PET) used in the manufacture of water bottles 

and clothes. According to an analysis in “Global Paraxylene Market by Application”, the 

global market for p-xylene is expected to reach 67 million dollars by 2022.85 In most 

cases, p-xylene is produced in the presence of its isomer, o-xylene, which imposes the 

imperative separation process.86 The current separation technology for p-xylene is 

distillation, which is an energy-intensive process due to the close boiling points of p-

xylene (138 °C) and o-xylene (144 °C). As an alternative, MFI zeolite membranes can 

purify p-xylene owing to the size/shape discrimination ability of the zeolite framework. A 

smaller molecule, p-xylene (5.8 Å ), can diffuse into the micropore channels of the MFI 

framework while a bigger molecule, o-xylene (6.8 Å ), cannot. As a result, p-xylene 

enriched permeate can be collected on the permeate side of MFI membranes.  
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N-butane is a feedstock for the production of ethylene and butadiene and a fuel in the 

form of the liquefied petroleum gas (LPG). In contrast, i-butane is exploited as a blending 

agent in gasoline. According to a report by “Transparency Market Research”, the global 

market for butanes is expected to reach 282 billion dollars by 2018.87 The current 

purification technology for butane isomers is energy-intensive distillation. That less 

energy-intensive separations of butane isomers can be achieved through using zeolite 

membranes has been extensively demonstrated.46,55,78,88-90 N-butane generally can pass 

through the micropores of the MFI zeolite membranes due to its linear configuration. In 

contrast, the branched molecule, i-butane, cannot. 

The microstructure of membranes critically affects membrane performance, and many 

researchers have sought to understand how the orientation of zeolite membranes might be 

controlled.52,58,79,91 While in-situ growth of zeolite membranes (wherein bare porous 

supports are dipped into zeolite precursor sol in order to lead the nucleation and 

crystallization of zeolites onto the porous supports) cannot easily manipulate the 

orientation of the zeolite membranes, secondary growth (wherein zeolite-seeded porous 

supports are dipped into zeolite precursor sol) can be used to tune the orientation of the 

zeolite membranes.52,79,91  

Recently Yoon’s group has developed a gel-free secondary growth method to attain b-

oriented MFI membranes.51,55 They were inspired by earlier work wherein MFI crystals 

grew on TPA-impregnated silicon wafers by consuming the substrate as silica sources.92 

In the gel-free secondary growth method, the zeolite seeded supports are not dipped into 

the zeolite precursor sol during secondary growth. Thus, this method is more 
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environmentally-friendly, economically efficient, and appropriate for industrial 

applications than conventional secondary growth. 

This chapter describes preparation of the MFI membranes of the MFI nanosheets that, as 

noted in Chapter 2, were synthesized using the bottom-up strategy. The membranes were 

grown through conventional sol growth and gel-free secondary growth. Subsequently, 

xylene and butane isomer permeation tests are carried out.   

 

3.2 Experimental 

Preparation of the MFI nanosheet coating sol 

2 mL of the nanosheet suspension from the two-step growth was transferred into a 

centrifuge tube and then centrifuged at 1,700 RCF for 30 s. After centrifugation, 

relatively big intergrown particles settled down to form a cake. The top 1 mL of the 

supernatant, where relatively light nanosheets were suspended, was collected and then 

diluted with 1 mL of DI water. Three times the diluted supernatant was centrifuged at 

14,500 RCF for 1 min. The resulting nanosheets were dispersed in 45 mL of DI water and 

then the mixture was used as a coating sol (hereafter called the “coating sol A”). 

2 mL of the nanosheet suspension grown from two-step was transferred into a centrifuge 

tube and centrifuged at 10,000 RCF for 30 s. After centrifugation, relatively large 

intergrown particles were collected at the bottom of the centrifuge tube in the form of a 

cake. The top 1 mL of the supernatant was pipetted out for further purification. 1 mL of 

DI water was added to the supernatant and three times it was centrifuged at 14,500 RCF 

for 1 min. The purified nanosheets were suspended with 45 mL of DI water and then 
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exploited as a coating sol (hereafter called “coating sol B”). 

1 mL of the nanosheet suspension grown from one-step was transferred into a centrifuge 

tube and diluted with 1 mL of DI water, then it was centrifuged at 10,000 RCF for 30 s. 

After centrifugation, relatively large nanosheet particles settled to the bottom to form a 

cake. The top 0.75 mL of the supernatant was removed for the further purification. 1.25 

mL of DI water was added to the aliquot, which was then centrifuged three times for 1 

min at 14,500 RCF. The purified nanosheets were suspended with 45 mL of DI water and 

then employed as a coating sol (hereafter “coating sol C”). 

Secondary growth based on zeolite precursor sol 

Prior to membrane fabrication, porous α-Al2O3 supports were prepared using the slip 

casting method developed by the Tsapatsis’ group.54 1 g of the nanosheet coating sol A 

was deposited on the prepared porous α-Al2O3 supports twice through vacuum filtration. 

Following the first coating and prior to the second, the nanosheet-seeded α-Al2O3 

supports were placed in a tubular furnace and calcined at 400 °C for 6 h at a ramp/cooling 

rate of 1 °C/min under a dry air flow of 100 mL/min. 

The calcined nanosheet layers on the α-Al2O3 supports underwent secondary growth in 

the presence of sol, which contains SDA, hydrolyzed TEOS, and water. This was done to 

close unselective gaps between the nanosheets in the coating layer so that the MFI films 

would become continuous. 

1.52 g of TPAOH (tetrapropyl ammonium hydroxide, 1.0 M, Sigma-Aldrich) was added 

to 23.09 g of DI water and stirred. To hydrolyze the TEOS, 2.08 g of TEOS (tetraethyl 

orthosilicate, 98 %, Sigma-Aldrich) was added to the mixture of TPAOH and DI water 
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and stirred overnight at the room temperature. The hydrolyzed TPA sol was pre-heated in 

a Teflon-lined stainless-steel autoclave at 150 °C for 1 h, cooled down, and filtered by a 

syringe filter (GHP, 0.2 μm). The filtered precursor sol was transferred to a Teflon-lined 

stainless-steel autoclave. The resulting composition of the TPA precursor sol was 60SiO2: 

9TPAOH: 8100H2O: 240EOH. The MFI nanosheet seeded α-Al2O3 supports were dipped 

into the TPA precursor sol and hydrothermally treated at 100 °C for different 

hydrothermal treatment times (7 h, 12 h, and 24 h) in order to obtain defect-free 

continuous MFI films. The grown films were washed with DI water overnight and then 

dried at 70 °C overnight. To remove the SDA, TPA, from the zeolite framework the films 

were then calcined in a tubular furnace at 400 °C for 6 h at a ramp/cooling rate of 

1°C/min under a dry air flow of 100 mL/min.  

1.1 g of TEAOH (tetraethyl ammonium hydroxide, 20 wt %, Sigma-Aldrich) was added 

to 23.2 g of DI water and stirred. Then 2.08 g of TEOS was added. To hydrolyze the 

TEOS the mixture was stirred overnight at room temperature. The resulting composition 

of TEA sol was 60SiO2: 9TEAOH: 8100H2O: 240EOH. The non-pre-heated TEA 

precursor sol was directly transferred to a Teflon-lined stainless-steel autoclave. The MFI 

nanosheet seeded α-Al2O3 supports were dipped into the TEA sol and heated at 180 °C 

for different hydrothermal treatment times (6 h, 12 h, 18 h, and 24 h). The resulting 

membranes were washed with DI water overnight and then dried at 70 °C overnight. The 

dried membranes were calcined in a tubular furnace at 400 °C for 6 h at a ramp/cooling 

rate of 1 °C/min under a dry air flow of 100 mL/min.  
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Gel-free secondary growth 

To carry out the gel-free secondary growth, porous silica supports were prepared using 

the recipe recently developed by the Tsapatsis’ group55. The recipe involves pressing 

silica fiber powder and then sintering it55. The sintered silica supports were polished to 

reduce the roughness of the surface. 500 nm Stӧber silica particles prepared by the well-

established Stӧber method55 were deposited by manual rubbing on the polished surface of 

the silica supports, which further smoothened the support surface. On top of the 500 nm 

silica particle layer, 50 nm Stӧber silica particles synthesized through the Stӧber method 

55 were rubbed so that they could serve as silica sources during secondary growth. In this 

way, two intermediate layers of 500 nm and 50 nm Stӧber silica particles were deposited 

onto the porous silica supports in sequence. In the case of the nanosheets synthesized 

from the two-step growth (i.e., coating sol A and B), 1 g of the coating sol was twice 

deposited by vacuum filtration, and in between the deposited layers it was calcined in a 

tubular furnace at 400 °C for 6 h at a ramp/cooling rate of 1 °C/min under a dry air flow 

of 100 mL/min. 0.5 g of coating sol C, which was prepared from nanosheets synthesized 

during one-step growth, was deposited by vacuum filtration for four times, and in 

between the coating layer it was calcined in a tubular furnace at 400 °C for 6 h at a 

ramp/cooling rate of 1 °C/min under a dry air flow of 100 mL/min.  

Following calcination, the MFI nanosheet deposited silica supports were soaked in a 

SDA solution that contained 0.075 M TPABr (tetrapropyl ammonium bromide, 98 %, 

Sigma-Aldrich) and 0.075 M KOH (potassium hydroxide, 85 %, Sigma-Aldrich). The 

excess TPABr/KOH solution was wiped up with kimwipes. After being transferred into 
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Teflon-lined stainless-steel autoclaves, the supports underwent thermal treatment at 190 

°C for 24 h in order to acquire defect-free continuous films. This secondary growth is 

called “gel-free growth” since it occurs in the absence of gel or sol.  

The grown films were soaked in DI water overnight to remove KOH, and then they were 

dried overnight at 70 °C. The dried films were calcined at 400 °C for 6 h at a 

ramp/cooling rate of 1 °C/min under a dry air flow of 100 mL/min in a tubular furnace. 

Permeation test of membranes 

The membrane was loaded in a stainless-steel membrane module and connected to the 

permeation test set-up. The module was placed in an oven to control temperature during 

the measurement. The membrane performance was tested in the Wicke–Kallenbach 

mode, under which concentration gradients are driving forces of permeation with feed 

and permeate in-flows of carrier gases.38,55,57 During the xylene isomer permeation test, 

equimolar p-xylene/o-xylene vapor feed flow in a carrier gas, helium, was applied to the 

membrane surface. The helium flowed as a sweep gas that collected permeate. Next the 

permeate was mixed with methane, an internal standard, and then, in order to analyze 

composition, it was injected into a gas chromatography (GC, Agilent, 7890B) that was 

equipped with a flame ionization detector (FID). Feed composition was also analyzed by 

GC to evaluate permeance and the separation factor. The temperature during the 

permeation test ranged from 50 °C to 200 °C. 

The separation factor (S.F.) was evaluated as follows: 

S. F. =

𝑥𝑝,𝑃−𝑋
𝑥𝑝,𝑂−𝑋⁄

𝑥𝑓,𝑃−𝑋
𝑥𝑓,𝑂−𝑋⁄
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where xf,i and xp,i are mole fractions of the component i (P-X: p-xylene and O-X: o-

xylene) in the feed and permeate, respectively. 

When the membrane exhibited high separation performance for xylene isomers, it was 

tested for butane isomer separation. To remove the residue of the xylenes that had been 

adsorbed onto the zeolite framework during the xylene vapor permeation test, helium was 

flowed overnight as a sweep gas on both the feed and the permeate side at 180 °C 

(hereafter called the “purging process”). After purging, the flows of helium on the feed 

and the permeate side were stopped simultaneously and the membrane was cooled to 

room temperature. As part of the butane isomer permeation test, equimolar n-butane/i-

butane stream was fed to the membrane on its feed side. Helium flowed as a sweep gas to 

collect permeate, and the permeate was then mixed with an internal standard, methane, 

and this was injected into a gas chromatography (GC, Agilent, 7890B) equipped with a 

thermal conductivity detector (TCD) to determine composition. Feed composition was 

also determined by GC to evaluate permeance and the separation factor. The permeation 

test was conducted at temperatures that ranged from room temperature to 120 °C.  

The separation factor (S.F.) was evaluated as follows: 

S. F. =

𝑥𝑝,𝑛−𝐶4
𝑥𝑝,𝑖−𝐶4⁄

𝑥𝑓,𝑛−𝐶4
𝑥𝑓,𝑖−𝐶4⁄

 

where xf,i and xp,i are mole fractions of the component i (n-C4: n-butane and i-C4: i-

butane) in the feed and the permeate, respectively. 

Characterization 

The morphology of the coating and the membrane was analyzed with an SEM. The 
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orientation of the nanosheet layer deposited on the porous support and the membranes 

was analyzed using XRD. 

 

3.3 Results and discussion 

TPA sol growth  

The purified nanosheet coating sol A was deposited on porous α-Al2O3 disks via vacuum 

assisted filtration. As shown in Figure 3-1A, the zeolite nanosheet layers wholly covered 

surfaces of porous α-Al2O3 disks. However, the films could not be employed as selective 

membranes since unselective gaps were present between the zeolite nanosheet particles. 

To eliminate the gaps, a secondary growth of the films with TPA sol was carried out. 

After secondary growth (heated at 100 °C for 7 h ) the film,  exhibited nanosheet-shaped 

grain boundaries, which indicate that there was little intergrowth of zeolite nanosheets 

(Figure 3-1B). The partially grown membrane was tested for xylene isomer permeation. 

As expected, the membrane exhibited a separation factor of 1, which indicates that no 

separation took place. This suggests that 7 h secondary growth is not long enough for a 

continous MFI film to develop, and as a consequence, interparticlular non-selective gaps 

remain. To close the non-selective gaps between the MFI nanosheet particles in the 

deposited layer, the secondary growth period was prolonged. After hydrothermal 

treatment for 12 h, the intergrowth of the zeolite nanosheets was more developed (Figure 

3-1C). However, the membrane did not show any separation factor of p-xylene over o-

xylene. Perhaps this stems from that the MFI nanosheets lying on the top surface of the  
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Figure 3-1. SEM images of nanosheet deposition from the coating sol A on a porous 

α-Al2O3 support (A) and after secondary growth from the TPA sol at 100 °C for 7 h 

(B), 12 h (C), and 24 h (D). 

 

porous α-Al2O3 support did not develop sufficiently. Unlike the top surface of the 

coating, which is directly exposed to the TPA sol, the bottom part of the coating (lying on 

the top surface of the porous α-Al2O3 support) is not directly exposed to the TPA sol, 

which is where the nutrients that facilitate growth are present. 

Not surprisingly, the growth rate of the top surface appears to be higher than that of the 

bottom part. This asymmetric structure might cause poor separation performance in the 

the membrane. Hoping to provide enough time for the bottom portion of the seeded layer 

to grow, the secondary growth period was lengthened to 24 h (Figure 3-1D), but the 

orientation of the film was lost and the result was a randomly orientied film. Perhaps this 

A B

C D

1 μm 1 μm

1 μm1 μm
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results is associated with the growth of MFI crystals from nuclei present in the TPA sol. 

These randomly oriented crystals were precipitated onto the top surface of the MFI 

nanosheet layer, and this may have led to the random orientation of the surface of the 

MFI film. The calcined film was tested for xylene isomer permeation, but no separation 

factor was attained. The longer secondary growth resulted in an overgrowth of randomly 

oriented zeolite crystals, and this may have led to the  formation of invisible internal 

cracks. These cracks, caused by aniostropic strains generated upon calciantion, reduce 

separation performance of the membrane.93  

TEA sol growth 

Addressing the problem of the random orientation of zeolite nanosheet films that can 

occur during secondary growth, Yoon’s group demonstrated that secondary growth from 

a sol/gel of TEA can preserve the orientation of seed layers.50 Inspired by this study, TPA 

was replaced with TEA and secondary growth from TEA sol at 180 °C was carried out 

for various periods of time. The film grown for 6 h underwent partial intergrowth (Figure 

3-2A) in a manner that recalls film grown from TPA sol at 100 °C for 7 h. The xylene 

permeation performance of the activated film grown from TEA sol at 180 °C for 6 h was 

poor. It suggests that 6 h of growth is not enough to allow the non-selective gaps to close. 

In an attempt to increase the intergrowth of the film, secondary growth was prolonged to 

12, 18, and then 24 h. When the period of secondary growth was increased from 6 h to 12 

h, intergrowth was improved (Figure 3-2B). The xylene permeation test, undertaken after 

activation, did not exhibit any separation factor. The low separation factor indicates that  
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Figure 3-2. SEM images of nanosheet films from coating sol A on porous α-Al2O3 

supports after secondary growth from TEA sol at 180 °C for 6 h (A), 12 h (B), 18 h 

(C) and 24 h (D). 

 

non-selective gaps exist in the film even after the  longer secondary growth is conducted. 

In an attempt to obtain a defect-free continous film consisting of MFI nanosheets, then 

secondary growth at 180 °C was extended to18 h and 24 h. The randomly oriented MFI 

crystals deposited on the films for 18 h and 24 h are illustrated in Figure 3-2C and D, 

resepectively.Neither led to high xylene isomer permselectivity. When TEA was 

exploited as an SDA for secondary growth, the films resembled those grown from TPA. 

That is, the non-selective inter-particle gaps did not close during short hydrothermal 

treatment. After long hydrothermal treatment, randomly oriented MFI crystals 

A B

C D

1 μm1 μm

1 μm1 μm
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precipitated on the top of the seed layer.  

Gel-free secondary growth 

To preserve the initial b-orientation of the seed layers (i.e., the MFI zeolite nanosheet 

films on the porous supports), Yoon’s group experimented with gel-free secondary 

growth using TPAOH as SDA.51 Their research was inspired by earlier work92 that 

indicated that when the substrate is a silica source, supported zeolite crystals can be 

grown in the absence of a liquid sol or gel. Yoon’s group demonstrated that b-oriented 

MFI membranes fabricated during gel-free secondary growth significantly enhanced 

xylene isomer permselective performance.51,55 However, the gel-free secondary growth is 

not valid when different supports are used. In particular, the silica supports should have 

50 nm silica layer on the top surfaces in order to provide silica sources for growth. 

During the gel-free secondary growth, the 50 nm silica layer serves as a silica source for 

growth leading to continuous zeolite films. Before beginning gel-free secondary growth, 

the porous silica fiber supports were prepared using the robust  recipe developed by 

Tsapatsis’ group.55 The bare silica fiber supports have a high roughness (Figure 3-3A) 

and pore size is so large that zeolite nanosheets cannot stay on top of surface of the 

support. To smooth the surface and reduce the size of its pores, 500 nm Stӧber silica 

particles were deposited by manual rubbing with gloved hands on the surface of the 

support, then it was sintered (Figure 3-3B). On top of the 500 nm Stӧber silica particle 

layer, 50 nm Stӧber silica particles were manually rubbed and then sintered to provide 

silica sources for gel-free secondary growth (Figure 3-3C) To prevent cracks formation  
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Figure 3-3. SEM images of the bare surface of porous silica supports (A), the 500 

nm Stӧber silica layer on the porous silica supports (B), and the deposited 50 nm 

Stӧber silica layer on top of the 500 nm Stӧber silica layer (C). The inset of B is a 

magnified SEM image of B.  

 

during sintering, the deposited layer of 50 nm Stӧber silica was so thin that the 500 nm 

Stӧber silica particles under it were visible (Figure 3-3C).  

A vacuum assisted coating method was applied to depositing coating sol A onto the 

smoothened porous silica supports. The coating covered the entirety of the porous silica 

supports (Figure 3-4A). However, when the gel-free secondary growth was completed, 

the grown film had a high roughness (Figure 3-4B), which led to low xylene isomer 

permselectivity. Perhaps the roughness stems from twinning or from the large particles in  
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Figure 3-4. SEM images of a nanosheet film produced by coating sol A on the 

smoothened porous silica supports (A) and the film after gel-free secondary growth 

(B). 

 

the coating sol A leading hindered deposition of the nanosheets. To improve the coating 

quality, intergrown particles should be eliminated in the coating sol. To achieve it, 

centrifugation of as-synthesized nanosheet suspension at higher RCF was carried out. 

This leads heavier intergrown nanosheets to settling down at the bottom in a cake form. 

As a result, supernatant is composed of less intergrown particles, light nanosheets. By 

this method, coating sol B was prepared.   

The layer deposited from sol B coating appeared to be more uniform (Figure 3-5A) than 

the layer produced from sol A coating. Gel-free secondary growth produced continuous 

nanosheet films (Figure 3-5B) and calcination activated the films for the permeation test. 

Figure 3-5C presents XRD patterns that reveal the orientation of the seed layer before 

gel-free secondary growth and of the membrane that was generated through gel-free 

secondary growth. The seed layer has a dominantly b-out-of-plane orientation indicated 

by the dominant (020) reflection peak in the XRD pattern (Figure 3-5C). After the gel-

free secondary growth, the orientation of the nanosheet seed layer remained intact  
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Figure 3-5. SEM images of: nanosheet films made by coating sol B on the 

smoothened porous silica support (A); and the film after gel-free secondary growth 

(B). C shows the XRD patterns of the nanosheet film before (seed layer) and after 

gel-free secondary growth. 

  

(Figure 3-5C). However, (h0l) reflections, associated with c-orientation, were 

pronounced simultaneously in the membrane compared to the seed layer which does not 

reveal the (h0l) reflections. This may stem from the fact that seed crystals that do not 

have the b-out-of-plane orientation are embedded at the center of the nanosheets. 

Moreover, perhaps it can be attributed to the co-existence in the seed layer of twinning 

nanosheets. Indeed, the crystal growth rate of MFI along the c-direction is higher than in 

the a- and b-directions.74 Therefore, the (h0l) reflections of XRD, which are related to the 
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c-orientation, become significant.  

 

 

Figure 3-6. The permselectivity of membranes fabricated from the gel-free 

secondary growth of nanosheet seed layer of coating sol B. The permeances of p-

xylene and o-xylene (A) plus separation factors of p-xylene over o-xylene (B). The 

permeances of n-butane and i-butane (C) as well as separation factors of n-butane 

over i-butane (D). 

 

The gel-free grown film was activated through calcination for xylene isomer permeation 

test. As a result, a high permeance of p-xylene (1.8 × 10-7 mol m-2 Pa-1 s-1) was obtained. 

It is comparable to the state-of-the-art, where membranes fabricated through gel-free 

growth of exfoliated MFI nanosheets.55 Additionally, a high separation factor—above 

100—of p-xylene over o-xylene was achieved (Figure 3-6B). Perhaps this highly p-
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xylene permselective property was attained because of the dominant b-orientation of the 

membrane—an orientation that provides a low transport resistance since its straight 

micropore channels run along the b-axis.  

A butane isomer permeation was also carried out after the membrane was purged with 

helium streams to eliminate the xylene that had been adsorbed onto the MFI micropore 

channels. As Figure 3-6C indicates, the lowest permeance of n-butane is 2.1 × 10-7 mol 

m-2 Pa-1 s-1 at room temperature. This is comparable to the counterpart of the membranes 

prepared by gel-free secondary growth from nanosheets that were synthesized using the 

top-down strategy.55 The permeance of n-butane is higher than the values reported in the 

literature based on conventional secondary growth (wherein the zeolite seeded supports 

are dipped into zeolite precursor sol or gel).46,52,78,88-90 The separation factors (Figure 3-

6D) are lower than those of membranes prepared by gel-free secondary growth fabricated 

from nanosheets based on the top-down method55. The fact that seed particles are 

embedded at the central part of the nanosheets, which could hinder the close packing of 

nanosheets, might account for the low separation factors. In other words, thickness 

variations in the nanosheet and the seed portion might lead to loose packing of the 

nanosheets, and loose packing might lead to inter-particle gaps that do not close during 

secondary growth. 

To shorten membrane preparation time, coating sol C consisting of one-step grown 

nanosheets, was deposited onto the smoothened porous silica supports, and this facilitated 

gel-free secondary growth. Figure 3-7A shows improvement in uniformity and a more  
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Figure 3-7. SEM images of a nanosheet film made by coating sol C on the 

smoothened porous silica support (A) and the film following gel-free secondary 

growth (B). XRD patterns of the nanosheet film before (seed layer, blue line) and 

after gel-free secondary growth (black line) (C). 

 

continuous deposition of nanosheet layers on the smoothened porous silica supports than 

is obtained from coating with sol B (Figure 3-5A).  

Compared to coating with sol B, coating with sol C significantly reduces the development 

of twinning nanosheets in the deposited layer. Following gel-free secondary growth, the 

resulting film exhibited well-intergrown b-oriented films (Figure 3-7B). The orientation 

of the film was confirmed by a XRD pattern (Figure 3-7C): it exhibits a mainly b-out-of- 

plane. However, (h0l) reflections co-existed with (0k0) reflections. The (h0l) reflections 
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have two possible sources; growth of seed particles embedded at the center of nanosheets 

and growth of intergrown nanosheets. The (h0l) reflections are more likely to stem from 

growth of seed crystals embedded at the center of nanosheets since most of intergrown 

particles were not frequently observed in the coating layer (Figure 3-7A). Moreover, the 

reduced intensities of (h0l) reflections compared to membranes from coating sol B 

support that the (h0l) reflections in membrane from coating sol C is more likely from 

growth of seed crystals embedded at the center of nanosheets.  

 

 
Figure 3-8. The permselectivity of membranes fabricated from the gel-free 

secondary growth of a nanosheet seed layer made by coating sol C. The permeances 

of p-xylene and o-xylene (A) and the separation factors of p-xylene over o-xylene (B). 

The permeances of n-butane and i-butane (C) and the separation factors of n-

butane over i-butane (D). 
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 The grown films were calcined for the xylene isomer and the butane isomer permeation 

test. In the case of xylene isomer permeation (Figure 3-8A), the p-xylene permeances 

were as high as those of membranes fabricated by coating sol B and membranes prepared 

from nanosheets synthesized under the top-down strategy55. The separation factor 

reached approximately 400 (Figure 3-8B), which is as high as values reported for 

membranes prepared via gel-free secondary growth of the nanosheet films that were 

fabricated using the top-down method55. When the butane isomer permeation test was 

conducted at room temperature, as shown in Figure 3-8C, the permeance of n-butane 

was lower than it is in membranes prepared with coating sol B, but over the measured 

temperature range separation factors in the former were superior to those in the latter 

(Figure 3-8D). This may be associated with the membrane from coating sol C is more 

preferentially b-oriented than from coating sol B. Additionally, the seed layer deposited 

from coating sol C ( Figure 3-7A) appears to be more uniform and flatter than the seed 

layer prepared from coating B (Figure 3-5A). This may indicate that in the coating layer 

from coating sol C the nanosheets are closely packed. Perhaps as the area of the 

nanosheet that are closed packing grows, the degree of intergrowth of the films increases. 

Thus, it is possible that membrane performance could be controlled by manipulating the 

quality of the seed layer. 

 

3.4 Conclusion 

Membranes prepared via sol growth (in the presence of TPA and TEA as SDAs) from 

films deposited on porous α-Al2O3 supports are not permselective to p-xylene. The 
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nanosheet layers deposited through vacuum-assisted coating do not appear to be uniform. 

The deposited films composed of two-step grown nanosheets (coating sol A) show 

twinning particles, and these hinder the uniform orientation of the deposited nanosheet 

layer. Perhaps during the calcination step this leads to crack formation, which in turn is 

caused by anisotropic thermal expansions of the crystallographic axes.93 In the case of the 

short hydrothermal treatment, the inter-particle gaps do not close during secondary 

growth, and this results in non-permselective membranes. In contrast, in the case of the 

long hydrothermal treatment, randomly oriented zeolite crystals are precipitated onto the 

seed layers, and this disturbs the pristine orientation of the seed layer. The randomly 

oriented zeolite crystals that exist on the top of the seed layers perhaps result in cracks 

that form during calcination in response to the mismatching of internal strains generated 

in the zeolite framework.93 Hence, the membranes produced are not permselective to p-

xylene.  

Gel-free secondary growth is introduced in order to preserve the orientation of the seed 

layers. In attempt to remove twinning particles from the nanosheet coating sol, and thus 

improve seed layer uniformity, the method of preparing the coating sol was revised. The 

higher RCF helps large particles, which are twinning nanosheets in the as-synthesized 

two-step grown nanosheet suspension, to settle after centrifugation into a cake-like form. 

To prepare the porous silica supports for the gel-free secondary growth the surface of the 

porous silica supports was smoothened, first, with a 500 nm and, then, with a 50 nm of 

Stӧber silica layer deposition.  
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The membranes prepared via gel-free secondary growth from new seed layers that have 

enhanced uniformity (coating sol B) have a dominant b-orientation. In the XRD pattern, 

c-orientation related reflection peaks such as (h0l) were observed. These may be 

attributed to the growth of seed particles embedded at the center of the nanosheets and to 

twinning nanosheet particles. The membranes, which achieve a high permeance of p-

xylene, might have industrial applications. Furthermore, the high separation factors of p-

xylene over o-xylene―above 100―are achieved. The permeances of p-xylene of the 

membranes are as high as those of membranes fabricated from nanosheets as part of the 

top-down approach. In the case of the butane isomer permeation, the membranes attain 

high n-butane permeances comparable to those of membranes that as part of the top-

down strategy are fabricated from nanosheets. Over the entire temperature range of the 

measurement the separation factors are moderate. In the case of the xylene isomer and 

butane isomer permeation, the separation factors are comparable to high values of 

conventional sol-based secondary growth,46,53,54,78,88-90 but they are lower than values 

obtained from membranes fabricated from nanosheets under the top-down method.55 This 

may indicate that the seeds embedded at the center of nanosheets inhibit the closed 

packing of nanosheet particles. The thickness of nanosheets and central seeds can vary, 

and these variations can stop uniform, closely packed films from forming.   

To shorten the time of membrane preparation and at the same time enhance the 

uniformity of the seed layer, one-step grown nanosheets with coating sol C was prepared. 

When vacuum assisted coating is used to coat sol C onto porous silica supports, twinning 

nanosheets are reduced and nanosheet films become highly flat and uniform. Continuous 
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films produced through gel-free secondary growth exhibited highly permselective p-

xylene and n-butane. The membranes have mainly b-orientation, and a minor (h0l) 

orientation is revealed in the XRD pattern. The (h0l) reflections in the XRD perhaps stem 

from the growth of seed particles embedded at the center of the nanosheets.  

In terms of preparation time and cost, membranes fabricated from bottom-up synthesized 

nanosheets can be produced most efficiently. As discussed in Chapter 2, the bottom-up 

synthesized nanosheets have thickness variations in central seed part and the nanosheet 

part. Thus, the bottom-up synthesized nanosheets are not closely packed in a coating 

layer leading to lowering separation performance. Although membranes fabricated from 

bottom-up synthesized nanosheets have slightly lower separation factor than those 

fabricated from top-down approach, the bottom-up synthesized nanosheet membranes are 

attractive to industrial applications of the zeolite membranes.  
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Chapter 4: Preparation of de-templated nanosheets for processes with 

polymers 

4.1 Introduction 

SDAs play a critical role in the synthesis of zeolites to template the pore structures of the 

zeolite framework. For this reason some call SDAs a template. However, to open the 

micropores of the zeolite framework after synthesis SDAs must be eliminated since they 

are occluded in pore channels in the zeolite framework. In general, SDAs are organic 

molecules that tend to decompose at high temperatures, which is when Hoffman 

degradation occurs.94,95 Thermal treatment at high temperatures is energy-intensive, and 

in the presence of moisture, the steaming process that takes place causes zeolites to lose 

crystallinity.96 Furthermore, the condensation of hydroxyl groups on the external surfaces 

of zeolite causes nano-sized zeolites to form aggregates that reduce surface area. For 

example, upon calcination the layered zeolite nanosheets are condense one another, and 

hence the layered structure collapsed.  To prevent the condensation of nanosheets, 

Tsapatsis’ group63 developed a pillaring treatment in the interlayer spaces. They swelled 

the interlayer space of a layered precursor of MCM-22 (i.e., MCM-22 (P)) with a 

surfactant (CTAB, cetyl trimethyl ammonium bromide) under a basic condition and then 

introduced a silica source, TEOS, into the swollen interlayer space. The TEOS in the 

swollen interlayer space was hydrolyzed and subsequently condensed to form silica 

particles. Upon calcination, the layered structure was preserved with the support of silica 

particles, which are pillaring materials. 

To preserve the layered structure of layered MFI nanosheets Ryoo’s group94 developed 
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pillaring with silica particles in interlayer space. They diffused TEOS, a silica source, 

into the interlayer space and then hydrolyzed and subsequently condensed to form silica 

particles.  

The silica particles served as pillars that supported the layered structure during 

calcination. Although the layered structure can be preserved through pillaring, in practice, 

single zeolite nanosheets should be exfoliated to fabricate thin zeolite membranes. 

Moreover, treating silica particles for pillaring is challenging. One approach is to 

selectively dissolve the silica particles under either basic or acidic conditions. Zeolite 

layers can be condensed under acidic conditions since the isoelectric point of silica 

materials is around 2.95 In contrast, under a basic condition, the crystallinity of the zeolite 

layers can be easily destroyed since the nanosheet crystal is thin.  

In another extreme attempt to preserve nanosheet morphologies, Tsapatsis’ group 

developed a procedure to self-pillared nanosheet structures such as the SPP.72 After 

calcination, the parent structure of the SPP did not collapse since its layers were 

supported. However, in practice it is difficult to delaminate into single nanosheets since 

structure of the SPP is highly-intergrown. Even under successful exfoliation, the yield 

would be very low and the lateral size of the individual nanosheets produced would be 

tiny due to the extensive intergrowth of the SPP—the result is not desirable for 

membrane applications.  

Another designated approach is to prepare SDA-free (de-templated) MFI nanosheets that 

have no aggregates. Van Bekkum’s group reported that 300 °C is the lowest possible 

temperature for the SDA removal of a single MFI crystal.96 Under a mild condition of 
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calcination at 300 °C fewer and less extensive aggregates would form than do under a 

high temperature of 550 °C. MFI nanosheets are more likely to separate from each other 

since, unlike layered structures, they are not closely packed to form entirely condensed 

structures. Upon calcination, the interaction between the MFI nanosheets would be lower 

than in the layered structure possibly, and this might facilitate easier exfoliation after 

calcination. 

Yan’s group prepared a colloidal suspension of SDA-free MFI nano-crystals by calcining 

MFI nano-crystals in the presence of carbonized polymer networks. This prevented 

aggregates of the MFI nano-crystals from forming upon calcination.97 Co-polymerization 

of the water soluble organic monomers acrylamide and N,N’-methylenebisacrylamide 

took place in the colloidal suspension of MFI nano-crystals, which contained SDAs in the 

zeolite framework. The resulting polymer provided a network barrier between MFI 

crystals during carbonization and calcination, which prevented MFI crystals from closed-

packing. As a result, Yan’s group produced a colloidal suspension of SDA-free MFI 

nano-crystals. This methodology can be used to acquire de-templated MFI nanosheets 

that have no aggregates.   

Another strategy is to chemically decompose the SDA molecules without calcination. 

This approach is promising because aggregates do not form as a result of thermal 

treatment. Thermal treatment is not appropriate for processes combining polymers—for 

example, zeolite/polymer mixed matrix membranes or polymeric supports—that tend to 

degrade with thermal treatment.  

Zeolite membranes have an attractive separation performance, but they are not widely 
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used in industrial separation processes since their cost efficiency is low compared to that 

of polymeric membranes.36,59,98 That said, polymeric membranes are simple and 

inexpensive to produce, while the permeability and selectivity are lower than zeolite 

membranes. To obtain the synergic effects of zeolites and polymers, researchers have 

added highly selective zeolite materials as fillers in polymer matrix to form 

zeolite/polymer mixed matrix membranes.99-109 To obtain effective zeolite/polymer 

mixed matrix membranes, zeolites with pore opening (i.e., de-templated zeolites) should 

be uniformly dispersed in polymer matrix. This process cannot be achieved through 

calcination since polymers have a low thermal stability.  

Polymeric supports can replace expensive inorganic porous supports. Once zeolites are 

deposited on the polymeric supports, thermal treatment should be avoided due to the low 

thermal stability of the polymers. In other words, zeolites should be de-templated prior to 

being deposited on the polymeric supports. Yan’s group demonstrates that zeolite NaA 

membranes on polymer/zeolite composite hollow fiber supports 

(PES(polyethersulfone)/zeolite NaA) lead to a high water/ethanol separation factor.110 

Their findings raise the possibility that zeolite membranes can be fabricated on polymeric 

supports. To achieve this, the de-templation strategy should not include thermal 

treatment.   

Melián-Cabrera’s group has developed a chemically assisted de-templation method called 

Fenton Chemistry that has been used in waste water treatment. The Fenton Chemistry 

was applied in the removal of SDAs from zeolite BEA (beta, pore size ca. 7 Å ) in 2005 

by Melián-Cabrera’s group.67  As presented in equation (1), they generated hydroxyl 
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radicals (·OH) from hydrogen peroxide (H2O2) in the presence of Fe2+/Fe3+, which 

oxidized the SDA molecules into small molecules. 

Fe2+ + H2O2  Fe3+ + ·OH + OH-                                (1) 

Fe3+ + H2O2  Fe2+ + ·OOH + H+ 

Their demonstration of the micropore opening of aluminosilicate BEA (using the Fenton 

Chemistry) is supported by argon adsorption/desorption and TGA (Thermogravimetric 

analysis) analysis. The Fenton Chemistry may be applied to MFI nanosheet in order to 

prepare de-templated MFI nanosheets that do not form aggregates.    

In this chapter, various attempts to prepare de-templated MFI nanosheets that are 

discussed in chapter 2 are illustrated. The objective of attempts to de-templation has been 

to prevent MFI nanosheets from forming condensation and aggregates.  

 

4.2 Experimental 

Calcination of nanosheets under mild conditions 

As mentioned in the introduction, 300 °C is the mildest condition to eliminate SDAs from 

the MFI zeolite framework. To demonstrate the mild calcination of the MFI nanosheets, 

calcination was carried out at 300 °C for 6 h at a ramp/cooling rate of 1 °C/min under a 

dry air flow of 100 mL/min in a tubular furnace. The thermally treated MFI nanosheets 

were analyzed by argon adsorption/desorption isotherm to check the degree of the 

micropore opening. As a reference, complete elimination of the SDA out of the zeolite 

framework was carried out by calcination of the MFI nanosheets at 550 °C for 6 h at a 

ramp/cooling rate of 1 °C/min under a dry air flow of 100 mL/min in a tubular furnace. 
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The resulting nanosheets were analyzed by argon adsorption/desorption isotherm.     

Centrifugation of the calcined nanosheets 

To acquire the SDA-free MFI nanosheets, a simple centrifugation of the calcined MFI 

nanosheets was carried out. The calcined MFI nanosheet powder was re-dispersed into DI 

water and then centrifuged at 1,700 RCF for 30 s in order to precipitate big aggregated 

particles at the bottom of the centrifuge tube. To collect light, less or not aggregated 

calcined MFI nanosheets, the top of the supernatant was pipetted out.  

Disaggregation of the calcined nanosheets at mild temperature 

The MFI nanosheets calcined at the mildest temperature, 300 °C, underwent the 

exfoliation process with polystyrene (hereafter called the “disaggregation process”) to 

disaggregate the calcined nanosheets inspired by exfoliation of multilamellar MFI 

nanosheets. 0.1 g of the calcined MFI nanosheets under the mild condition was injected 

into the DSM melt compounder at 120 °C followed by the injection of 11.9 g of 

polystyrene (MW 1,500) at 120 °C. After injection of the calcined MFI nanosheets and 

polystyrene, the mixture was blended under a nitrogen environment at a screw speed of 

500 rpm. The temperature was elevated to 150 °C for 30 min for mixing. Subsequently, 

the temperature was reduced to 60 °C for 30 min to attain a high degree of 

disaggregation. The final product was extruded in nanocomposite solid form at 60 °C.  

The resulting nanocomposite, consisting of polystyrene, disaggregated SDA-free MFI 

nanosheets, and aggregated SDA-free MFI nanosheets, was examined by TEM analysis 

to confirm the degree of disaggregation. For the TEM analysis, the nanocomposite was 

microtomed by a diamond knife to prepare a 100~200 nm thin film mounted on a TEM 
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grid.  

To purify the disaggregated SDA-free MFI nanosheets, the entire nanocomposite was 

dissolved into toluene, which is a good solvent for the polystyrene. The solution was 

centrifuged at 40,000 RCF for 3 h at 4 °C for polystyrene removal. The calcined MFI 

nanosheet particles were precipitated at the bottom of the centrifuge tube in a cake form 

and; the supernatant was composed of polystyrene. The supernatant was discarded and 

the cake was re-dispersed in toluene and re-centrifuged at 40,000 RCF for 3 h at 4 °C. 

The cake was re-dispersed in toluene and then placed on top of a chlorobenzene layer on 

the basis of density differences. Chlorobenzene was chosen as a bottom layer since it is 

not a good solvent for polystyrene and is heavier than toluene. The two layers were 

centrifuged at 40,000 RCF for 3 h at 4 °C to cause the calcined MFI nanosheets to settle 

down. The polystyrene was floated in supernatant due to its low density compared to the 

MFI nanosheets and the low solubility in the chlorobenzene. Polystyrene elimination was 

examined through TEM analysis after re-dispersion of the MFI nanosheet cake in 

octanol.  

Since the density of the aggregates is higher than that of the disaggregated MFI 

nanosheets, density gradient centrifugation (DGC)—inspired by the purification step of 

exfoliated MFI nanosheet—was applied in order to purify the disaggregated SDA-free 

MFI nanosheets. A chloroform layer (ρ=1.48 cc/g) was placed at the bottom and atop the 

chloroform layer, a dichloromethane layer (ρ=1.33 cc/g) was formed. Atop the 

dichloromethane layer, a chlorobenzene layer (ρ=1.10 cc/g) was created, while atop the 

chlorobenzene layer, a thin buffer layer of octanol (ρ=0.82 cc/g) formed. Then the 
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octanol suspension of SDA-free MFI nanosheet was placed on top of that the octanol 

buffer layer. The whole layers were centrifuged at 12,000 RCF for 30 min at room 

temperature. After the DGC, the top octanol layer was collected and analyzed by TEM. 

The octanol suspension was deposited on a porous α-Al2O3 support by vacuum-assisted 

coating and the morphology of the deposited layer was analyzed by SEM.  

Carbonization and calcination in the presence of polymer networks 

To collect light nanosheets and remove unreacted silica, the as-synthesized MFI 

nanosheets were centrifuged. 2 mL of as-synthesized MFI nanosheet suspension was 

centrifuged at 1,700 RCF for 30 s leading to precipitation of intergrown nanosheets and 

nanosheets with significant seed thickening. The top 1 mL of the supernatant was 

transferred to another centrifuge tube and diluted with 1 mL of DI water. The diluted 

supernatant was centrifuged three times at 14,500 RCF for 1 min to eliminate unreacted 

silica. The purified MFI nanosheets were re-dispersed in DI water to form 5 wt% 

suspension by weight. 0.614 g of acrylamide (AM,  ≥ 99 %, Sigma-Aldrich) and 0.61 mg 

of N,N’-methylenebisacrylamide (MBAM, 99 %, Sigma-Aldrich), which are water 

soluble monomers, were added to 6.14 g of the 5 wt% purified MFI nanosheets 

suspension. Then 15.4 mg of ammonium persulfate ((NH4)2S2O8, ≥ 99 %, Sigma-

Aldrich), an initiator of polymerization, was added. After the monomers were dissolved, 

the mixture was ultrasonicated for 15 min to ensure complete dispersion of the as-

synthesized MFI nanosheets. The aqueous solution was heated at 50 °C for 5.5 h to 

polymerize the organic monomers. The solid polymer/as-synthesized MFI nanosheet 

composite was dried overnight at 70 °C. The dried nanocomposite was heated at 550 °C 
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for 2 h at a ramp rate of 1 °C/min under a nitrogen flow of 100 mL/min to carbonize the 

polymer, and then it was calcined at 550 °C for 3 h at a ramp rate of 1 °C/min under a dry 

air flow of 100 mL/min. The resulting MFI nanosheets were re-dispersed in DI-water for 

further analysis by SEM.   

Applications of Fenton chemistry 

To validate SDA elimination as reported in the literature, aluminosilicate (Si/Al=16) 

BEA nano-crystals, which in the literature were employed for the Fenton treatment, was 

synthesized by a well-established recipe.111 0.272 g of anhydrous sodium aluminate 

(NaAlO2, Sigma-Aldrich) was dissolved in 1.145 g of DI water as an aluminum source, 

and then 0.16 g of NaOH (97 %, Sigma-Aldrich) was added. After stirring for 10~15 

min, 29.855 g of TEAOH (20 %, Sigma-Aldrich) was added and then stirred for 30 min. 

During stirring 4.8 g of fumed silica (Cabosil M5, Riedel de Haën) was added to the 

solution as a silica source. The gel was stirred for 6 h at room temperature and then 

transferred to a Teflon-lined stainless-steel autoclave. The gel was heated at 140 °C for 5 

days under a static condition. The synthesized aluminosilicate BEA was recovered by 

centrifugation at 20,000 RCF for 20 min at room temperature until the pH of the 

supernatant appeared to be below 9. The nano-crystal aluminosilicate BEA (Si/Al=16) 

was acquired after drying at 70 °C overnight. 

The 0.3 g of the BEA (Si/Al=16) was dispersed in 50 g of hydrogen peroxide (H2O2, 30 

%, Fischer Scientific), and then it was transferred into an oil bath at 80 °C connected with 

a condenser (solution A). 0.013 g of iron (III) nitrate (Fe(NO3)3,  ≥ 98 %, Sigma-Aldrich) 

was dissolved into 50 g of H2O2 while the H2O2 was dipped into an ice bath (solution B). 
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The ice bath cooled down the solution while the hydroxyl radicals were generated. After 

the complete dissolution of the Fe(NO3)3, solution B was added to solution A dropwise. 

After the addition of solution B into A was completed, oxidation of the SDA molecules 

took place at 80 °C for 2 h. The resulting aluminosilicate BEA nano-crystals were 

recovered by centrifugation at 20,000 RCF for 10 min. The supernatant was discarded 

and DI water was added to re-disperse the BEA nano-crystals in a cake form. The re-

dispersed BEA nano-crystals were centrifuged three times at 2,000 RCF for 10 mins. An 

aliquot of the collected BEA nano-crystals were dried for argon adsorption/desorption 

analysis and the rest were re-dispersed in DI water. 

The oxidation of SDA molecules of MFI nanosheets was prepared in the same manner as 

the aluminosilicate BEA nano-crystals. The solution A contained the MFI nanosheets 

instead of the aluminosilicate BEA (Si/Al=16) nano-crystals. 

Characterization 

The morphology of MFI nanosheets was observed by SEM and TEM. Microporosity was 

determined by argon adsorption/desorption isotherm at 87 K. 

 

4.3 Results and discussion 

De-templation under mild calcination 

To minimize the degree of aggregate formation, the calcination temperature was varied 

from 300 °C to 550 °C under a dry air flow. As expected, with calcination temperature, 

aggregates were significantly formed (Figure 4-1).  Under mild conditions of calcination, 

single nanosheets were observed as indicated by the arrows in Figure 4-1A and B.  
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Figure 4-1. SEM images of the calcined MFI nanosheets at 300 °C (A), 350 °C (B), 

450 °C (C), and 550 °C (D). Each calcination was carried out at a ramp rate of 1 

°C/min for 6 h under a dry air flow of 100 mL/min in a tubular furnace. Arrows 

indicate single MFI nanosheets after calcination.  

 

Perhaps this can be attributed to the relatively low thermal energy provided during the 

mild calcination process. In contrast, calcination at high temperature led to the formation 

of aggregates (Figure 4-1C and D).  

Purification of de-templated nanosheets under mild condition 

To purify the single MFI nanosheets after calcination at 300 °C (indicated by arrows in 

Figure 4-1A), a simple centrifugation of water suspension of the calcined MFI 

nanosheets was applied. The water suspension was centrifuged at 1,700 RCF for 30 s in 

order to precipitate aggregates. To recover light single nanosheets in the supernatant, the  
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Figure 4-2. TEM images of aggregates after collecting the top part of the 

supernatant following centrifugation of the mildly calcined MFI nanosheet 

suspension (A) and a mixture of aggregates and a single nanosheet marked by an 

arrow after collection of the top part of the supernatant (B). An arrow indicates a 

single nanosheet and a circle indicates small aggregates composed of small pieces of 

nanosheets. 

 

top portion of the supernatant was collected and subjected to TEM analysis. TEM 

examination of the morphology of the top part of the supernatant revealed that a major 

part of it was composed of aggregates (Figure 4-2A). However, as indicated by the arrow 

in Figure 4-2B, a small number of single nanosheets was also present, as were aggregates 

of tiny pieces of nanosheets (indicated by the circle in Figure 4-2B). Given how difficult 

it is to separate the small aggregates from the single MFI nanosheets via centrifugation, 

some other strategy should be employed to separate the aggregates of small pieces of the 

nanosheets.  

Disaggregation of calcined nanosheets with a polymer by melt blending 

To increase the yield of SDA-free single nanosheets, a disaggregation process with  

A B

200 nm 200 nm
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Figure 4-3. A TEM image of a microtomed sample of calcined MFI 

nanosheets/polystyrene nanocomposite after a disaggregation step. Arrows indicate 

disaggregated single SDA-free MFI nanosheets. 

 

polystyrene was conducted mimicking melt extrusion to exfoliate the multilamellar MFI 

nanosheets. At 150 °C, the high temperature provides high mobility of the polystyrene melts 

to diffuse into spaces between the calcined MFI nanosheets.. At 60 °C, the polystyrene 

behaves like a solid generating high shear forces that improve the yield of the 

disaggregation. To ensure disaggregation, the resulting calcined MFI 

nanosheets/polystyrene nanocomposite was microtomed with a diamond knife for TEM 

analysis. Figure 4-3 exhibits the dispersion of disaggregated calcined MFI nanosheets, 

indicated by arrows, in the polystyrene matrix.  

To collect the disaggregated MFI nanosheets and eliminate the polystyrene, a post 

treatment DGC was applied. Octanol was chosen as a solvent for the final suspension of 

200 nm
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the disaggregated MFI nanosheets since it was expected that the hydroxyl group in 

octanol can interact with silanol groups at the external surface of the SDA-free MFI 

nanosheets. Simultaneously, relatively long hydrocarbon chains of octanol molecules 

may interact with one another at the external surface of the de-templated MFI nanosheets 

and likely lead to forming barriers preventing the de-templated MFI nanosheets from 

interacting one another to form aggregates. Figure 4-4 shows the schematic of the DGC 

and TEM images of the corresponding layers. The aggregated SDA-free MFI nanosheets 

were presented in three bottom layers: in chloroform (Figure 4-4A), in dichloromethane 

(Figure 4-4B), and in chlorobenzene (Figure 4-4C). In contrast, the top layer of octanol 

(Figure 4-4D) reveals well-dispersed disaggregated SDA-free MFI nanosheets that owe 

their existence to the relatively low density of the disaggregated SDA-free MFI 

nanosheets. The resulting disaggregated SDA-free MFI nanosheets (Figure 4-4D) are 

smaller than the parent MFI nanosheets, perhaps since the high shear forces generated 

during the disaggregation break the MFI nanosheets into small pieces. Nonetheless, as 

shown in high magnification TEM image (Figure 4-4E), the crystallinity of the 

disaggregated MFI nanosheets was preserved, confirmed by a corresponding electron 

diffraction pattern (Figure 4-4F). The electron diffraction pattern (Figure 4-4F) indicates 

a single b-oriented MFI crystal, which implies that the disaggregation process was 

successful.     

The octanol suspension composed of the disaggregated SDA-free MFI nanosheets was 

deposited on a porous α-Al2O3 support by a vacuum-assisted coating (Figure 4-5). 

Figure 4-5A illustrates that the coating layer is not uniform and has roughness. The  
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Figure 4-4. Schematic of DGC (left) and TEM images of the corresponding layers 

(A-D): chloroform (A), dichlorobenzene (B), chlorobenzene (C), and octanol (D). E 

is a high magnification TEM image of a particle marked by a circle in D and F is a 

corresponding electron diffraction pattern. 

 

 

 

Figure 4-5. SEM images of the deposition of the octanol suspension that contains the 

disaggregated SDA-free MFI nanosheets on a porous α-Al2O3 support (A), and a 

cross section view (B).  

 

rough surface of the coating was also examined by cross-section view of the coating 
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(Figure 4-5B). The non-uniformity of the deposited film perhaps stems from a re-

aggregation of the disaggregated SDA-free MFI nanosheets that was caused by the 

instability of the nanosheets in octanol. To examine re-aggregation, the old octanol 

suspension of disaggregated SDA-free MFI nanosheets after it had been stored overnight 

was analyzed by TEM. Re-aggregation of the disaggregated SDA-free MFI nanosheets 

occurred even after 1 h sonication (Figure 4-6). The result suggests that octanol should 

not be used to stabilize the disaggregated SDA-free MFI nanosheets. Perhaps the affinity 

between octanol molecules is higher than it is between octanol and the disaggregated 

SDA-free MFI nanosheets.  

 

 

Figure 4-6. A TEM image of the octanol suspension of the disaggregated SDA-free 

MFI nanosheets following their overnight storage.  

200 nm
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Before exploring other solvents for affinity with the disaggregated SDA-free MFI 

nanosheets, the yield of the disaggregation process was determined on the basis of the 

thickness of the deposited layer (Figure 4-5B). The objective was to determine whether 

further investigation on the disaggregation process was worthwhile. An approximately 

1.3 μm thick coating layer (Figure 4-5B) resulted from deposition of 12.41 g of the 

octanol suspension of the disaggregated SDA-free MFI nanosheets. Under the simplest 

assumption that the coating is a continuous layer without any defects, the volume of the 

film is 2.95 × 10-10 m3. Taking 1.836 g/cm3 as the density of MFI, the total weight of the 

deposition of the disaggregated SDA-free MFI nanosheets was evaluated by dividing the 

volume of the film by the density of MFI. Consequently, the total weight of the 

disaggregated SDA-free MFI in the coating layer is 5.42 ×10-4 g. In the one batch of the 

disaggregation process, the total amount of the octanol suspension of the disaggregated 

SDA-free MFI nanosheets was 34.36 g. This included the deposited amount. Assuming 

that the octanol suspension of the disaggregated SDA-free MFI nanosheet is 

homogeneous, and judging from the back-calculation, the total amount of the 

disaggregated SDA-free MFI nanosheets suspended in octanol is 1.5 × 10-3 g. The 

disaggregated process was started with 0.1 g of the calcined SDA-free MFI nanosheets. 

Consequently, 1.5 × 10-3 g of disaggregated SDA-free MFI nanosheets were acquired 

from 0.1 g of the calcined SDA-free MFI nanosheets. The yield of the disaggregation 

process was 1.5 %. However, the apparent yield must be lower than 1.5 % since the 

deposited film of the disaggregated MFI nanosheets is neither continuous nor defect-free. 

Given that the disaggregation breaks the MFI nanosheets into small pieces, an approach 
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that preserves crystal size of the parent MFI nanosheets with high yield should be sought. 

Carbonization and calcination in the presence of polymer networks 

 Water soluble organic monomers, i.e. AM and MBAM, were polymerized in 5 wt% of 

the as-synthesized MFI nanosheet suspension to create networks between the MFI 

nanosheets. After polymerization (Figure 4-7A), and due to the polymer matrix, the MFI 

nanosheets were not observed. The MFI nanosheet/polymer nanocomposite was 

carbonized under a nitrogen flow. Carbonization resulted in a black powder product. 

SEM images (Figure 4-7B and C) show that the majority of the resulting MFI nanosheets 

are aggregated after carbonization, which suggests that carbonization cannot prevent 

aggregate formation. The carbonized MFI nanosheet/polymer nanocomposite was 

subsequently calcined under an air flow.  

Calcination led to a white powder, which indicates combustion of the carbon networks. 

After calcination (Figure 4-7D) the MFI nanosheets formed aggregates, the majority of 

which appeared to be merged together. The calcined powder was re-dispersed into DI 

water and the morphology was examined by SEM. In the water suspension, the MFI 

nanosheets formed aggregates (Figure 4-7E). Perhaps this is the result of poor mixing 

while polymerization of the organic monomers took place. When the water soluble 

organic monomers are dissolved, the solution with loading of 5 wt % of the as-

synthesized MFI nanosheets became viscous, and it may have disturbed a good and 

homogeneous mixing of the monomers and MFI nanosheets. A possible solution might 

be to reduce the loading of the nanosheets. Before verifying that mixing can be improved 

by decreasing the loading of the MFI nanosheets, other characterization was carried out  
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Figure 4-7. SEM images of MFI nanosheets prepared with a polymer network 

barrier: after drying (A), after carbonization at low magnification (B) and at high 

magnification (C), after calcination (D), and re-dispersion in DI water (E). A SEM 

image C is a magnified image of an area indicated by a rectangle in image B.  

 

such as evaluating the crystallinity of the resulting MFI nanosheets by XRD. Here the 

goal was to determine whether attempting a further investigation of the carbonization of 

the polymer matrix was worthwhile. The crystallinity of the calcined MFI nanosheets was 
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reduced based on a lack of well-defined facets on the MFI, as exhibited in Figure 4-7D 

and E.  

To verify the crystallinity of the calcined MFI nanosheets from the carbon/MFI nanosheet 

composites, the XRD pattern was compared to as-synthesized MFI nanosheets and 

conventionally calcined MFI nanosheets at 550 °C. At 23~25 degrees of two theta range, 

the intensity of the peaks appeared to be lower in the calcined MFI nanosheets from 

carbon/MFI nanosheet composite than in the as-synthesized and the conventionally 

calcined MFI nanosheets (Figure 4-8A). It implies that the treatment destroyed the 

crystallinity of the MFI nanosheets. The argon isotherm was exploited to verify the 

crystallinity of the calcined MFI nanosheets from carbon/MFI nanosheet composites 

(Figure 4-8B). While as-synthesized MFI nanosheets did not reveal microporosity, the 

calcined nanosheets prepared from the carbon/MFI nanosheet composites had micropore 

openings, as indicated by argon adsorption amounts at zero relative pressure (Figure 4-

8B). However, as illustrated in Figure 4-8B, the adsorbed argon amount at zero relative 

pressure is lower in calcined MFI nanosheets made from carbon composite than in 

conventionally calcined MFI nanosheets. This implies a loss of microporosity caused by 

the destruction of crystallinity. The argon isotherm is consistent with XRD, which 

indicates that destruction of crystallinity may result from a rise temperature caused by 

carbon combustion. In general, the combustion process is highly exothermic and this 

leads to non-controllable temperature rising. Moreover, the fact that carbon is a major 

component of carbon/MFI nanosheet composites may cause a higher temperature than the 

set point of the furnace during calcination. When the loading of the MFI nanosheets is  
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Figure 4-8. XRD patterns (A) of (a) as-synthesized MFI nanosheets, (b) MFI 

nanosheets prepared with a polymer network barrier with 5 wt% loading, and (c) 

calcined MFI nanosheets at 550 °C. Argon isotherms (B) of (a) as-synthesized MFI 

nanosheets, (b) MFI nanosheets prepared with a polymer network barrier with 5 

wt% loading, and (c) calcined MFI nanosheets at 550 °C. Inset of B magnifies the 

low relative pressure regime. 

 

decreased for good mixing, increases in the composition of the carbon might lead to even 

higher temperature due to the exothermic combustion. The heat generated during 

calcination may result in destruction of the crystallinity of the MFI nanosheets, which 

suggests that calcining carbon does not contribute usefully to the preparation of de-

templated MFI nanosheets.  

Applications of Fenton chemistry 

To prevent the loss of crystallinity and aggregate formation during SDA removal, non-

thermal treatment should be used. Via Fenton chemistry, the organic molecules are likely 

oxidized by the hydroxyl radicals generated from hydrogen peroxide in the presence of 

iron ions. The first discovery of applicability of the Fenton chemistry in template 

elimination was reported by Melián-Cabrera’s group in the case of aluminosilicate BEA  
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Figure 4-9. TEM images of synthesized aluminosilicate BEA (Si/Al=16) nano-

crystals at low magnification (A) and at high magnification (B). Argon isotherm of 

calcined aluminosilicate BEA at 550 °C and the BEA with Fenton treatment (C). 

 

nano-crystals.67 To validate the Fenton chemistry, ca. 20 nm aluminosilicate BEA nano-

crystals were prepared first from the well-established recipe (Figure 4-9A and B).111  

The aluminosilicate BEA nano-crystals were calcined at 550 °C for 6 h at a ramp rate of 
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1 °C/min under a dry air flow of 100 mL/min and then argon adsorption/desorption 

analysis was conducted for comparison. The adsorbed argon amount at zero relative 

pressure was comparable to the literature value111 (Figure 4-9C).  

The micropore opening of the Fenton treated aluminosilicate BEA was evaluated by 

comparing it with the argon isotherm of the template-free aluminosilicate BEA by 

calcination. As seen in Figure 4-9C, the degree of micropore opening of aluminosilicate 

BEA nano-crystal via the Fenton chemistry was the same as the conventional thermal 

treatment (i.e., calcination).  

After validation of the Fenton chemistry in the case of aluminosilicate BEA nano-

crystals, the MFI nanosheets were treated using Fenton chemistry and then the extent of 

the micropore opening was determined by argon isotherm. In the case of the as-

synthesized MFI nanosheets, SDAs were occluded in the micropores of the zeolite 

framework (Figure 4-10), and hence compared to the calcined MFI nanosheets at 550 °C, 

no micropore opening occurred. Assuming that the adsorbed amount of argon at zero 

relative pressure on the calcined MFI nanosheets at 550 °C indicates the completion of 

micropore opening, the relative micropore opening can be evaluated by comparing the 

adsorbed amounts of argon at zero relative pressure to other samples calcined at 300 °C 

and 250 °C under mild conditions and to Fenton treated MFI nanosheets. Under Fenton 

chemistry, ca. 40 % of SDAs by volume in the micropores of the MFI zeolite framework 

were eliminated (Figure 4-10). Eliminating the SDAs of MFI nanosheets is moderately 

efficient compared to the procedure in the case of nano-crystals of aluminosilicate BEA 

nano-crystals. Perhaps this is associated with smaller micropore size of the MFI zeolite  
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Figure 4-10. Argon adsorption/desorption measurements of (a) as-synthesized MFI 

nanosheets, (b) MFI nanosheets with the Fenton treatment, (c) MFI nanosheets 

calcined at 250 °C, (d) MFI nanosheets calcined at 300 °C, and (e) MFI nanosheets 

calcined at 550 °C. Inset magnifies low relative pressure regime. 

 

framework (ca. 5.6 Å ). The micropore size of BEA framework is approximately 7 Å , 

which is bigger than that of MFI framework. Consequently, it is likely that hydroxyl 

radicals may diffuse into the micropores of the BEA zeolite framework and that the 

products after oxidation may diffuse out of the micropores simultaneously. Crystal 

thickness might also play an important role. The aluminosilicate BEA nano-crystals had a 

narrow thickness (or size) distribution and the size of the nano-crystals was 

approximately 20 nm (Figure 4-9B).  
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However, as discussed in Chapter 2, the thickness of MFI nanosheets varies form thin 

nanosheet areas (ca. 5 nm) to thick seeds at the center (~100 nm). Also, there is 

thickening around the thick seed, and this may cause mass transport limitations. The 40 

% of removal of SDAs by volume might correspond to the average thin part of the 

nanosheets.  

A TEM image of the MFI nanosheets after the Fenton treatment (Figure 4-11A) 

illustrates that there are few changes in crystal morphology and that aggregates are not 

present. The preservation of the crystallinity of the MFI nanosheets after the Fenton 

treatment is confirmed by an electron diffraction pattern (Figure 4-11B).  

 

 
Figure 4-11. A TEM image of MFI nanosheets after the Fenton treatment (A) and 

an electron diffraction pattern (B). The electron diffraction pattern was acquired in 

the area indicated by a circle in A.  

 

The results from argon adsorption/desorption isotherm and TEM analysis indicate that it 

would be difficult to completely eliminate SDA without destroying crystallinity and 

facilitating aggregate formation. However, the Fenton chemistry can be used to replace 
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the conventional calcination step and thus remove SDAs from the zeolite framework 

without destroying crystallinity and forming aggregates, although it might partially open 

micropores in the zeolite framework.  

 

4.4 Conclusion 

This chapter discusses a number of attempts to remove SDAs in order to improve the 

processability of MFI nanosheets with polymers with the objective of reducing 

production costs. First, a simple centrifugation of calcined nanosheets under a mild 

condition (calcination at 300 °C) was carried out with the goal of settling down 

aggregates in a cake form; a small portion of the nanosheets does not aggregate after the 

mild calcination. This attempt to separate individual nanosheets did not proceed as 

efficiently as expected. To enhance the yield of single nanosheets obtained through 

centrifugation after mild calcination, inspired by exfoliation of multilamellar MFI, the 

disaggregation step was carried out followed by DGC. During the initial state of 

disaggregation, individual nanosheets were segregated and well dispersed in octanol, as 

confirmed by TEM imaging. However, in the stored octanol suspension, the 

disaggregated nanosheets again formed aggregates—a development detrimental to the 

uniform deposition of nanosheets on the porous supports. Thus, the coated layer of the 

octanol suspension onto a porous α-Al2O3 support is not uniform, and the yield at best is 

1.5 %. 

To prepare the SDA-free nanosheets, an alternative method designed by Yan’s group that 

uses polymer networks was applied.97 The fact that polymer networks help to create 
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spaces between zeolite nano-crystals may reduce the possibility that zeolite nanocrystals 

approach each other closely, thereby causing condensation during thermal treatment. This 

method is effective in the case of small nano-crystals according to the literature but not 

MFI nanosheets. The polymer network does not prevent MFI nanosheets from forming 

aggregates whose presence can be attributed to poor mixing. Additionally, XRD and 

argon isotherm analysis indicate that zeolite crystallinity is not preserved—it probably 

can be attributed to uncontrolled heat generated from the carbonized polymer networks 

during calcination.  

In the three different attempts mentioned above, thermal treatment and aggregate 

formation are inevitable. This suggests that it is not feasible to prepare SDA-free MFI 

nanosheets using approaches that require thermal treatment. Oxidizing SDA molecules 

through Fenton chemistry, during which hydrogen peroxide generates hydroxyl radicals 

in the presence of iron ions, most effectively eliminates SDAs. Melián-Cabrera’s group 

was the first to use Fenton chemistry to successfully eliminate SDA from aluminosilicate 

BEA nano-crystals.67 To demonstrate the feasibility of the Fenton treatment for SDA 

removal, aluminosilicate BEA nano-crystals were prepared for the oxidation. Based on 

the argon isotherm, SDAs from the aluminosilicate BEA nano-crystals were successfully 

eliminated. However, in the case of the MFI nanosheets, the Fenton treatment opened 

only ca. 40 % of the micropores by volume. The partial removal of SDAs may stem from 

the fact that the pore size of the MFI is smaller than that of the BEA.Moreover, the thin 

portion of the nanosheets (ca. 5 nm) has a relatively low mass transport resistance, and 

hence 40 % of the SDA elimination by volume may result from the thin part of the 
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nanosheets. Although complete SDA removal out of zeolite was not achieved, Fenton 

chemistry can be used productively to prepare de-templated MFI nanosheets. In this 

method, aggregates do not form and crystallinity is not lost. Furthermore, if the 

nanosheets have less seed thickneing, Fenton chemistry might eliminate more SDAs from 

the zeolite framework. In that case, the use of SDA-free MFI nanosheets might reduce the 

cost of producing zeolite membranes when they are combined with polymer materials.  
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Chapter 5: Probing effects of silanol groups on adsorption of ethanol 

onto zeolites 

5.1 Introduction 

Zeolites are effective adsorbents that separate organic molecules from water69,112,113 since 

they discriminate molecules on the basis of size/shape and functionality. One of these is 

silicalite-1, which is a pure silica MFI type zeolite. Adsorption occurs due to the 

hydrophobicity and the medium pore size (~ 5.6 Å ), which can accommodate organic 

molecules.114,115 The adsorption properties of ethanol onto the silicalite-1 have been 

intensively examined seeking a less energy-intensive means of separating 

ethanol.6,10,11,116 

In theory, hydrophobic siliceous MFI crystals are supposed to increase ethanol removal 

from aqueous solutions. Under a base medium route synthesis, pure silica MFI crystals 

are presumed to be hydrophobic, but they contain silanol defects that lead to 

hydrophilicity, and this is detrimental to the discrimination of ethanol and water 

molecules. Furthermore, water molecules can form hydrogen bonds with ethanol 

molecules. Computational studies have predicted how water molecules influence ethanol 

adsorption. In a simulation study Krishna’s group demonstrates that alcohol adsorbs onto 

hydrophobic siliceous zeolites when hydrogen bonds are formed between the alcohol and 

water.117 Recently, Tsapatsis’ group has demonstrated computationally that when water is 

present, the co-adsorption of water molecules onto hydrophobic siliceous zeolite pores 

occurs since water molecules form hydrogen bonds with ethanol molecules.6,116    

This chapter probes experimentally for the first time how silanol defects of siliceous MFI 
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crystals affect ethanol adsorption onto siliceous MFI zeolite crystals. Additionally, this 

chapter studies how water molecules affect ethanol adsorption onto the siliceous MFI 

crystals.   

     

5.2 Experimental 

Synthesis of SPP  

Tsapatsis’ group recently developed a synthesis of siliceous SPP composed of 2 nm thick 

nanosheets that had a house-of-card arrangement.72,118,119 7.35 g of tetrabutyl 

phosphonium hydroxide (TBPOH, 40 %, TCI America) was added dropwise to 7.5 g of 

tetraethyl orthosilicate (TEOS, 98 %, Sigma-Aldrich) and this was stirred vigorously 

until a clear solution was obtained. Then 3.23 g of DI water was added to the solution, 

and to hydrolyze the TEOS it was stirred overnight at room temperature. The hydrolyzed 

sol was transferred to a Teflon-lined stainless-steel autoclave and then heated at 115 °C 

for 3 days under a static condition. The SPP crystals were recovered through repeated 

centrifugation at 40,000 RCF (Relative Centrifugal Force) for 30 min until the 

supernatant pH was below 9. The solid from the centrifugation was dried at 70 °C 

overnight and then calcined at 550 °C at a ramp rate of 1 °C/min for 12 h under a dry air 

flow of 100 mL/min. This was subsequently cooled to room temperature. When the 

calcined SPP was dispersed in DI water, the solution seemed to be acidic; indeed, the 

phosphonium cations converted to phosphoric acid upon calcination. To remove the 

phosphoric acid, the calcined SPP was washed with DI water by centrifugation at 40,000 

RCF for 30 min until the supernatant pH was neutral. The washed SPP was dried at 70 °C 
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overnight and calcined again under the same conditions as the first calcination. 

Preparation of silialite-1 

Silicalite-1 (pure silica MFI) was prepared from a starting molar composition of 1SiO2: 

0.08TPABr: 0.4NH4F: 20H2O via a fluoride medium route.6,120 1.66 g of tetrapropyl 

ammonium bromide (TPABr, 98 %, Sigma-Aldrich) was added to 27.62 g of distilled 

water, then 1.15 g of ammonium fluoride (NH4F, 98 %, J.T. Baker) was added. After 

vigorous stirring at room temperature for 15 min, 4.61 g of fumed silica (SiO2, Cabosil 

M5, Riedel de Haën) was added and the whole solution was hand-mixed with a spatula 

until it appeared to be homogeneous. The mixture was then transferred to a Teflon-lined 

stainless-steel autoclave and thermally treated at 175 °C for 7 days in a static condition. 

The resulting silicalite-1 crystals were washed via repeated centrifugation at 20,000 RCF 

for 20 min until the supernatant pH was neutral. The solid from the centrifugation was 

sonicated for 10 min for 7~10 times to eliminate amorphous silica particles. The purified 

particles were dried overnight in a convection oven at 70 °C. The dried silicalite-1 was 

calcined at 550 °C at a ramp rate of 1 °C/min for 20 h under a dry air flow of 100 

mL/min. Then it was cooled to room temperature. 

Aqueous ethanol solution adsorption 

Ethanol (200 proof, Fisher Scientific) was diluted with DI water to prepare 

concentrations ranging from 0.05 wt% to 5 wt% of ethanol solution. 0.4 mL of the 

ethanol solution was transferred to closed glass vials and then between 50 mg and 180 

mg of zeolite adsorbent was added. The zeolite-solution mixtures were stirred in a water 

bath until equilibration, where the temperature was 25±0.5 °C. To remove the zeolite 
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particles, each solution was filtered with a 1 mL Monojet syringe that was connected to a 

0.2 μm GHP (polypropylene) syringe filter, and the filtrated was collected for liquid 

chromatography analysis. 

The filtrated concentrations were analyzed using an Agilent 1200 High Performance 

Liquid Chromatography (HPLC) equipped with a refractive index detector (RID) and an 

autosampler. The autosampler injected a 20 μL sample into a stream of 0.005 M sulfuric 

acid (H2SO4) at a flow rate of 0.5 mL/min. The stream was passed through a Bio-Rad 

Aminex HPX-87H polystyrene packed column that was heated to 60 °C. The outlet 

stream was passed through a RID that was heated to 50 °C. The RID signal was recorded 

and plotted over time. The relative signal intensities of the ethanol and a glycerol (99.5 

%, Sigma-Aldrich) that is an internal standard were employed to determine the final 

concentration of each solution. The difference between the initial and the final 

concentration of ethanol and the total volume of the solution was measured to determine 

how much ethanol had been adsorbed. 

Vapor phase adsorption 

Pure ethanol and water vapor adsorption onto a silicalite-1 that had been prepared via the 

fluoride medium route and SPP was measured in collaboration with Dr. Matthias 

Thommes (Quantachrome) and Dr. John Bullis (Hiden Isochema). The adsorption was 

measured by Vstar vapor sorption analyzer (Quantachrome) and IGA-002 gas and vapor 

sorption analyzer (Hiden Isochema). 

 

 



 

 102 

5.3 Results and discussion 

Preparation and characterization of SPP 

To study ethanol adsorption behavior it is not viable to examine MFI nanosheets since 

when thermal treatment occurs—a procedure carried out to remove SDA molecules from 

the zeolite framework—aggregates form on the nanosheets. For this reason, SPP that is a 

one unit cell thick MFI nanosheet along the crystallographic b-axis and that has a house-

of-cards assembly was prepared. Nanosheet morphology can be preserved by intergrown 

layers after calcination. A low-magnified TEM image (Figure 5-1A) shows ca. 100 nm 

SPP particles that consist of intergrown nanosheets. A magnified TEM image of SPP 

particle (Figure 5-1A) reveals that the SPP particle is composed of crystalline zeolite 

nanosheets. As indicated in Figure 5-1B, the XRD pattern confirms that SPP has MFI 

crystallinity. The argon adsorption/desorption isotherm at 87 K (Figure 5-1C) shows the 

IUPAC isotherm Type IV; the hysteresis loop is evidence of the presence of 

mesoporosity. In a comparison of SPP and silicalite-1 porosity, the blue dashed line in 

Figure 5-1C indicates the argon amount that is adsorbed onto silicalite-1 synthesized in a 

fluoride media. The amount of argon absorbed onto the SPP at a high relative pressure 

regime was higher than the silicalite-1 attributed to the mesoporosity of the SPP (Figure 

5-1C). 29Si MAS NMR was analyzed to determine how much hydrophilicity stems from 

the silanol defects of the SPP (Figure 5-1D). At 103 ppm a Q3 [Si-OH] peak appears that 

is associated with a hydroxyl group, that in turn is bonded to a silicon atom. In contrast to 

the siliclaite-1, the SPP appears to be hydrophilic and defective. The silanol groups give 

hydrophilicity to SPP and this increases the ability of SPP to adsorb water molecules,  
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Figure 5-1. A TEM image of the as-synthesized SPP (A). The inset presents a 

magnified TEM image of a SPP particle. B shows an XRD pattern of the SPP and C 

presents the argon adsorption/desorption isotherm at 87 K of the SPP. The blue 

dashed line indicates the adsorbed argon amount of the silicalite-1 that was 

prepared via a fluoride media. 29Si MAS NMR of the SPP (D). In D, Q4 represents 

SiO2 bonds that lack a silanol group [Si-OH] while Q3 indicates a hydroxyl group 

that is bonded to a silicon atom. 

 

which are hydrophilic. SPP is in pure silica form, which is neutrally charged. (However, 

with the hydrophilicity, the SPP preferentially adsorbs polar molecules such as water.) 

Preparation of silicalite-1 via a fluoride medium route 

In Figure 5-2A, a SEM image describes ca. 50 μm of coffin-shaped silicalite-1 crystals. 

In general, the crystals synthesized under a fluoride media are larger than those of 

siliclaite-1 that has been prepared via a hydroxide medium route.18 The XRD pattern  
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Figure 5-2. A SEM image of silicalite-1 (A) and a XRD pattern of the silicalite-1 (B). 

Argon adsorption/desorption isotherm at 87 K of the silicalite-1 (C). 29Si MAS NMR 

of the silicalite-1 (D). Q4 in D represents SiO2 bonds without any silanol group [Si-

OH] and Q3 in D indicates a hydroxyl group is bonded to a silicon atom. 

 

(Figure 5-2B) confirms that the silicalite-1 has MFI crystallinity. The argon 

adsorption/desorption at 87 K (Figure 5-2C) illustrates IUPAC isotherm Type I where 

the adsorbed amount is saturated. This indicates microporous adsorbents. The saturated 

argon adsorption indicates that the silicalite-1 does not have mesoporosity. Q4 [Si-(OSi)4] 

peaks at ~113 and ~115 ppm in a 29Si MAS NMR spectrum, as shown in Figure 5-2D 

indicate that the synthesized silicalite-1 produced under the fluoride medium route is 

composed of SiO2 tetrahedral bonds when Q3 [Si-OH] peaks at -102 ppm are absent—a 

condition that is associated with hydrophilicity. In other words, the silicalite-1 prepared 
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via a fluoride medium route is hydrophobic/defect-free, and hence it preferentially 

adsorbs ethanol rather than water.  

Comparison of pure ethanol and pure water vapor adsorption 

Figure 5-3A shows pure ethanol vapor and water vapor adsorption onto SPP. The 

measurements, conducted by Dr. Matthias Thommes (Quantachrome) and Dr. John Bullis 

(Hiden Isochema), agree with one another (Figure 5-3A). As expected, water vapor 

adsorption onto SPP was not negligible compared to ethanol vapor adsorption associated 

with less hydrophobicity (Figure 5-3A). At a relative pressure higher than 0.8, where 

adsorption amount indicates mesoporosity, the amount of water adsorption onto SPP 

exceeds ethanol adsorption. This can be attributed to the hydrophilicity of external 

surface of SPP—i.e., the hydroxyl terminal groups at the external surface of SPP, which 

are elements of SPP mesopores. 

 Figure 5-3B shows pure ethanol vapor and water vapor adsorption onto the silicalite-1 

prepared under a fluoride medium route. The adsorption isotherms of each component, 

which were obtained from Dr. Matthias Thommes (Quantachrome) and Dr. John Bullis 

(Hiden Isochema), agree with one another. Moreover, the pure ethanol vapor adsorption 

is consistent with results obtained by the Koros’ group11 and with a simulation study 

carried out by the Tsapatsis’ group.116 In contrast to SPP, the hydrophobicity of the 

silicalite-1 prepared under the fluoride medium route leads to negligible water vapor 

adsorption (compare it to the ethanol adsorption displayed in Figure 5-3B). The tendency 

of ethanol adsorbed onto SPP and silicalite-1 is consistent with the argon 

adsorption/desorption isotherm: the amount of ethanol adsorbed onto silicalite-1 is  
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Figure 5-3. Pure ethanol and water vapor adsorption onto SPP (A) and silicalite-1 

(B). An inset of A is the adsorption isotherm in the low pressure regime. Dashed 

lines guide the eyes. The measurements conducted by Dr. Matthias Thommes 

(Quantachrome) are denoted as Q. The measurements carried out by Dr. John 

Bullis (Hiden Isochema) are referred to as H. Dr. Limin Ren prepared the SPP for 

vapor adsorption. 

 

saturated (Figure 5-3) but the amount of ethanol adsorbed onto SPP is not (Figure 5-

3A). This reveals a higher absorption of ethanol, which in turn indicates SPP 

mesoporosity.  

Figure 5-4A compares ethanol adsorption in the aqueous phase onto the SPP and the 

silicalite-1. The aqueous phase ethanol adsorption behavior resembles vapor phase 

adsorption. The amount of ethanol adsorbed onto the SPP drastically increased at a high 

concentration regime. This increase can be attributed to mesoporosity while the amount 

of ethanol adsorbed onto the silicalite-1 tends to be saturated (Figure 5-4A). A lower 

amount of ethanol was absorbed onto the SPP than onto the silicalite-1 in the low 

concentration regime can be attributed to the lower microporosity per unit volume of the 

SPP, which introduces mesopores to the crystal architecture. Recently Tsapatsis’ group 

computationally identified the sequence of adsorption onto the SPP: the micropores fill 

first and then there is adsorption in the mesopores121. Therefore, an intersecting crossover 
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of an adsorbed amount of ethanol would occur121. Where water is present, and in contrast 

to hydrophobic silicalite-1, the hydrophilicity of the SPP might suppress ethanol 

adsorption. 

 

 
Figure 5-4. Comparison of ethanol adsorption in aqueous phase onto SPP and 

silicatlie-1 (A). Comparison ethanol adsorption onto the SPP in the aqueous phase 

and the vapor phase (B). Comparison of ethanol adsorption onto the silicalite-1 in 

the aqueous phase and the vapor phase (C). Insets in B and C depict adsorption 

isotherm at the low pressure region. Dashed lines guide the eye. The vapor phase 

measurements conducted by Dr. Matthias Thommes (Quantachrome) are denoted 

as Q. The vapor phase measurements carried out by Dr. John Bullis (Hiden 

Isochema) are referred to as H. Dr. Limin Ren prepared the SPP for the vapor 

phase adsorption.  
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adsorption isotherm (Figure 5-4B and C), the ethanol concentration was converted into 

corresponding vapor pressure by assuming an ideal vapor/nonideal solution equilibrium.  

In the case of hydrophilic and defective SPP (in Figure 5-4B), at the very low vapor 

pressure regime—that is, at a relative pressure below 0.01, pure water vapor adsorption 

onto SPP is negligible compared to pure ethanol vapor adsorption, as presented in Figure 

5-3A—ethanol adsorption onto SPP was promoted in the presence of water. The 

postulation of both the promotion of ethanol adsorption in the presence of water and the 

case of the silicalite-1 is discussed in the last section of this chapter. However, at relative 

pressures higher than 0.01, water suppresses ethanol adsorption on SPP by a factor of 2 

(Figure 5-4B). Perhaps ethanol adsorption is constrained in the presence of water since 

preferential water adsorption becomes pronounced on the external surfaces of SPP and 

when it interacts with silanol groups within the zeolite framework. It appears that MFI 

crystals that have the nanosheet morphology cannot be used to separate ethanol 

efficiently from an aqueous ethanol solution due to hydrophilic silanol groups at the 

external surface and in the zeolite framework.   

As Figure 5-4C indicates, defect-free hydrophobic siliclaite-1 shows ethanol adsorption 

that is the opposite of SPP. Ethanol adsorption in the aqueous phase was compared with 

in the vapor phase (Figure 5-4C).  In research that simulates methanol and ethanol 

adsorption on pure silica type zeolites such as DDR,119,124 FAU,119 and MFI125, 

adsorption improves when water is present. Additionally, Tsapatsis’ group122 has 

experimentally demonstrated that the adsorption of propylene glycol onto defect-free and 

hydrophobic silicalite-1 (synthesized using the fluoride medium) is promoted by the 
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presence of water. Using a configurational bias Monte Carlo (CMBC) simulation, 

Krishna’s group found that interactions between water and alcohol molecules that lead to 

the formation of hydrogen bonds play a significant role in adsorption. Ethanol-water 

interactions are the most frequent, ethanol-ethanol interactions are the second most 

frequent, and water-water interactions are the least frequent. 119   These experimental 

results and computational findings suggest that enhanced ethanol absorption in the 

presence of water is associated with an increase in the number of adsorption sites, which 

in turn can be attributed to hydrogen bond formation between ethanol and water within 

the zeolite framework. 

 

5.4 Conclusion 

From a defective and hydrophilic SPP—i.e., intergrown MFI nanosheets having a house-

of-card architecture—it was determined that water vapor adsorption is comparable to 

ethanol vapor adsorption. At a relative pressure higher than 0.8, whereupon adsorbed 

amount indicates filling of the SPP mesoporosity, water vapor adsorption preferentially 

takes place due to the presence of silanol terminal groups on the external surface of the 

SPP. These terminal groups are elements of the SPP mesopores. In contrast, defect-free 

and hydrophobic silicalite-1 synthesized using a fluoride medium facilitates the 

preferential adsorption of ethanol vapor over water vapor.  

To probe how water affects ethanol adsorption onto the defective SPP and the defect-free 

silicalite-1 adsorption in aqueous phase was compared to vapor phase adsorption. 

Compared to pure ethanol vapor adsorption, ethanol adsorption onto defect-free silicalite-
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1 is enhanced at the low relative pressure regime in the presence of water (the aqueous 

phase).  At medium to high relative pressure regimes water suppresses ethanol adsorption 

onto the SPP. The number of adsorption sites decreases because of the competitive 

adsorption of water onto defective and hydrophilic SPP. In contrast, ethanol adsorption 

was promoted onto SPP at low relative pressure regime and onto silicalite-1 in the 

presence water. This may be attributed to increases in number of adsorption sites that 

stem from hydrogen bond formation between ethanol and water molecules within zeolite 

framework. On the basis of the results described in this chapter, fist, defect-free and 

hydrophobic MFI is a better candidate for preferential ethanol selective separation than 

water. Second, defective and hydrophilic MFI crystals that have a nanosheet morphology 

do not effectively separate ethanol from an aqueous ethanol solution.  

  



 

 111 

Chapter 6: Concluding remarks 

This dissertation describes direct hydrothermal synthesis of MFI nanosheets. In this first 

successful bottom-up strategy, MFI nanosheets are developed through seeded-growth. 

Under this methodology, the yield of MFI nanosheets is remarkably higher than the yield 

of the state-of-the-art top-down approach. This simple method, when combined with gel-

free secondary growth, is an attractive alternative to current energy-intensive industrial 

separation processes such as distillation.  

Under bottom-up synthesis MFI nanosheets can be combined with polymers to create 

zeolite/polymer mixed matrix membranes and zeolite membranes on polymeric supports, 

but this would be possible only if the MFI nanosheets are SDA-free and without 

aggregates. This possibility is intriguing. Although the zeolite membranes have a high 

flux and separation factor due to the uniform micropore structure, industry has not 

adopted them at a significant scale due to the high cost. Hoping to reduce the cost of 

zeolite membrane manufacture, researchers for the last three decades have investigated 

processes that involve polymeric materials.  

This dissertation suggests that it should be possible to prepare de-templated MFI 

nanosheets through chemical oxidation. These nanosheets can then be applied as selective 

fillers on zeolite/polymer matrix membranes or membranes on polymeric supports. 

With regards to zeolite/polymer matrix membranes, a number of studies have examined 

conventional MFI crystals. Cussler122 theoretically predicted that plate-like selective 

fillers would enhance membrane performance, but to the best knowledge no one has 

experimentally validated this suggestion. The main challenge has been how to prepare 
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de-templated zeolite nanosheets so that aggregates do not form. To evaluate Cussler’s 

model experimentally the SDA-removed MFI nanosheets can be applied as plate-like 

selective fillers in zeolite/polymer mixed-matrix membranes.  This dissertation poses 

possibility to achieve the evaluation of Cussler’s model with partially de-templated MFI 

nanosheets, which do not form aggregates, via chemical oxidation. 

Time-resolved study of the sequential evolution of seeds improves understanding of the 

zeolite crystallization mechanism. However, further investigations are required to reveal 

why 5 nm nanosheets form. Perhaps the seeded-growth methodology used to prepare 

MFI nanosheets can be applied to acquire nanosheet crystals in other zeolite frameworks. 

The surfaces of the MFI nanosheets discussed in this dissertation have well-defined facets 

that were preserved after synthesis. Studying the influence of surface properties on the 

adsorption behavior of MFI nanosheets is of importance since external surfaces play an 

important role in nano-sized crystals. Moreover, tracking each facet or each 

crystallographic axis during secondary growth in order to probe their crystal growth rates 

is easy. In the case of thin MFI membranes, the crystal growth rate along b-axis should be 

suppressed while the crystal growth rate along a- and c-axis should be promoted. This 

practice should help to find the optimal condition of secondary growth for membranes. 

In addition to their usefulness for separation, the MFI nanosheets prepared under the 

bottom-up strategy can serve as catalysts. It is demonstrated that aluminum and tin atoms 

can be incorporated into the MFI zeolite framework. The pilot experiment raises the 

possibility that the method could have catalysis applications.  
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This dissertation suggests that siliceous zeolites can preferentially adsorb ethanol over 

water due to high affinity to ethanol than water. However, when the siliceous zeolites 

have nanosheet morphology, they cannot preferentially adsorb ethanol over water at the 

same rate as siliceous zeolites synthesized through the fluoride medium route. This is 

attributed to the presence of silanol groups on the external surface of the siliceous zeolite 

nanosheets and on the zeolite framework. Since the external surface significantly affects 

the adsorption properties of the zeolite nanosheets, the silanol groups, which are 

hydrophilic, are detrimental to ethanol adsorption. Moreover, despite neutral charge of 

the framework, silanol defects are created in the zeolite framework when the siliceous 

zeolites are synthesized through the base medium route. In the zeolite framework, 

siliceous zeolites produced via a fluoride medium route do not contain silanol defects 

thus they would preferentially adsorb ethanol over water. Synthesis through the fluoride 

medium route produces zeolite crystals that are larger than those typical of the hydroxide 

medium recipe. In other words, nanosheet morphology is difficult to obtain when fluoride 

is present. However, as mentioned above, zeolite nanosheets are not necessary for ethanol 

adsorption. To produce silanol defect-free zeolites, siliceous zeolites should be produced 

via a fluoride medium route. Not only MFI framework, other zeolite frameworks such as 

FER, DDR, CHA and BEA can be produced via a fluoride medium route. Thus, the 

efficiencies of ethanol adsorption onto different zeolite frameworks in silanol defect-free 

pure silica form can be compared one another.  
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Appendix: Top-down approach for MFI nanosheets and their 

applications as ethanol selective membranes  

*The work was done at the beginning of the Ph.D. degree program before bottom-up 

synthesis of MFI nanosheets were developed yet. In addition, this work was based on 

initial establishment of top-down strategy of MFI nanosheet preparation consisting of 

exfoliation and a simple centrifugation. DGC (Density Gradient Centrifugation) is s not 

introduced in this chapter. 

 

A.1 Introduction 

Significant research efforts have focused on renewable energy due to energy security and 

the environmental impacts of oil.114,123,124 Bioethanol is the most common biofuel in the 

world, which may be obtained through the fermentation of starch-based grains, sucrose, 

and cellulosic materials.123,125 Since 2005, the United States has become the biggest 

producer of bioethanol in the world.126 In 2015, 15 billion gallons of ethanol were made 

by 195 ethanol plants in the United States.127  

The fermentation process results in dilute aqueous solutions consisting of 5 to 15 wt% 

ethanol99,114,128-130 and combination of ethanol pervaporation can lead to higher yield of 

ethanol production.131 The most common strategy for ethanol purification is distillation, 

however, it is far more energy-intensive than pervaporation.132 Additionally, 

pervaporation can separate close-boiling components of liquid mixtures which prove 

difficult for distillation processes.1, 6-9,133 Currently, pervaporation technology is applied 
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to the dehydration of organic solvents, the removal of volatile organic compounds from 

water, and the separation of organic-organic mixtures.134  

Pervaporation processes have been studied utilizing various types of membranes for 

preferential component separation such as zeolitic,8,9,36,48,78,84,115,135-156 

polymeric,36,102,130,157-160 and zeolite/polymer mixed matrix membranes.99-109 Among 

them, the zeolite membranes exhibit uniform pore size, high selectivity, and high 

chemical and thermal stability.36,135,136 

The pervaporation process is illustrated by the sorption-diffusion model as represented in 

Figure A-1.134 Selective sorption of feed components occurs at the membrane surface, 

followed by diffusion of the sorbed component through the membrane and desorption 

into a vapor phase.11, 26-29 The affinity between the membrane surface and the chemical 

species in the feed solution affects selective sorption: a higher affinity indicates 

preferential sorption. Molecular vaporization occurs by means of a pressure drop created 

by establishing a vacuum on the permeate side. 

 

 
Figure A-2. Schematic description of the sorption-diffusion model. ℓ is membrane 

thickness.  
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Hydrophobic zeolites may be exploited for ethanol dehydration since ethanol adsorption 

would be preferential. Additionally, the straight pore channel of the MFI zeolite 

framework is larger than the ethanol molecules (4.3 Å ), allowing for molecular transport. 

Consequently, MFI is a suitable candidate for ethanol dehydration. So far, to the best 

knowledge, ethanol pervaporation through MFI membranes fabricated MFI nanosheet 

crystals has not reported in the literature. In this appendix, efforts to fabricate MFI 

membranes from MFI nanosheets which are prepared from exfoliation and purification. 

This appendix illustrates ethanol pervaporation process to separate ethanol by using the 

MFI nanosheet membranes.  

 

A.2 Experimental 

Synthesis of SDA (C22-6-6Br2) of multilamellar MFI 

138 mL of N,N,N',N'-tetramethyl-1,6-diaminohexane (Sigma-Aldrich, 99 %) was 

dissolved in mixture of 300 mL of toluene (Sigma Aldrich, anhydrous) and 300 mL of 

acetonitrile (Sigma-Aldrich, anhydrous) in an 1 L three neck round bottom flask. 25 g of 

1-bromodocosane (TCI America, 98 %) was added into the flask and heated to 70 °C 

under an argon environment for 10 h with connection of a condenser. After cooling to 

room temperature, the product was precipitated by rotary evaporation at 70 °C. The 

recovered product was washed with diethyl ether (Sigma-Aldrich, 99 %) followed by 

rotary evaporation to eliminate the residue of the diethyl ether. The solid product was 

weighed and corresponding amount of 1-bromohexane (Sigma-Aldrich, 98 %) was added 

into an 1 L three neck round bottom flask. The designated molar ratio of the solid product 
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and the 1-bromohexane was 1:2. 300 mL of the acetonitrile was added into the flask as a 

solvent of the synthesis. The flask was heated at 83 °C with connection of the condenser 

under an argon environment for 10 h. After cooling to room temperature, the final 

product was washed with the diethyl ether followed by rotary evaporation to dry the 

product. 

Synthesis of the multilamellar MFI 

The bromide ions of the synthesized SDA were exchanged to hydroxyl ions by ion-

exchange resin (Amberlite IRN-78, Acros). The SDA was dissolved in DI water and then 

excessive amount of the ion-exchange resin was added. The whole mixture was stirred 

overnight. The solution was recovered by vacuum filtration and underwent ion-exchange 

step again. The concentration of the ion-exchanged SDA solution was determined by 

titration with 0.1 M hydrochloric acid (Sigma-Aldrich) in the presence of an indicator, 

phenolphthalein (Sigma-Aldrich). The color of the SDA solution was purple at the initial 

state of the titration and it became clear at the equivalence point. If the evaluated 

concentration of the SDA solution was lower than 0.207 M, the water was evaporated by 

rotary evaporation and then titrated until the concentration of the SDA solution was equal 

or higher than 0.207 M. Corresponding amount of DI water, tetraethyl orthosilicate 

(TEOS, Sigma-Aldrich, 98 %) were added and stirred overnight at room temperature in 

order to hydrolyzed a silica source, TEOS, leading to gel composition of 100 SiO2: 15 

C22-6-6(OH)2: 4000 H2O: 400 EtOH. The resulting gel was transferred into a Teflon-lined 

stainless-steel autoclave and then heated at 150 °C for 5 days under rotation. The 

synthesized multilamellar MFI was washed with DI water by repeated centrifugation at 
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13,000 RCF (Relative Centrifugal Force) for 30 min until pH reached lower than 9. The 

product was dried at 70 °C. 

Exfoliation of the multilamellar MFI (top-down strategy) 

0.16 g of the as-synthesized multilamellar MFI powder was mixed with 3.84 g of 

polystyrene (PS, Mw 45,000, Sigma-Aldrich) and then injected into a twin-screw 

extruder (DACA mini compounder). The mixture was blended sequentially at 120 °C for 

20 min, 170 °C for 25 min, 150 °C for 30 min, and 200 °C for 20 min under a nitrogen 

environment in order to prevent decomposition of the polystyrene at a screw speed of 300 

rpm. The MFI nanosheet/polystyrene nanocomposites were extruded out at 150 °C. 

Preparation of the MFI nanosheet membranes 

0.1 g of the MFI nanosheet/polystyrene nanocomposite was dissolved in 8 g of toluene, a 

good solvent for polystyrene, followed by application of ultrasonication for 1 h. The 

solution was centrifuged at 12,000 RCF for 10 min leading to precipitation of un-

exfoliated and big MFI particles. 6 mL of the supernatant composed of the exfoliated 

MFI nanosheets was pipetted out for coating.  

3 g of the toluene coating sol was deposited onto a porous α-Al2O3 support, which was 

prepared by pressing, sintering at high temperature, and then polishing, by vacuum-

assisted coating method. The films on the α-Al2O3 supports were underwent secondary 

growth with sol in the presence of TPAOH (tetrapropyl ammonium hydroxide, 1.0 M, 

Sigma-Aldrich) as SDA. 1.52 g of TPAOH was added to 23.09 g of DI water and stirred. 

2.08 g of TEOS was added into the TPAOH solution and stirred overnight at the room 

temperature in order to hydrolyze the TEOS. The TPA sol was pre-heated at 100 °C for 4 
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h and filtered by a syringe filter (GHP 0.2 μm) and transferred into a Teflon-lined 

stainless-steel autoclave.53,91 The resulting sol composition of the TPA sol was 60SiO2: 

9TPAOH: 8100H2O: 240EOH. The MFI nanosheet coating on α-Al2O3 supports were 

dipped into the sol and hydrothermally treated at 100 °C for 4.5 h, 6 h, 7 h, and 10 h. The 

membrane was then calcined at 480 °C for 4 h at a ramp/cooling rate of 0.5°C /min to 

eliminate the TPAOH from the MFI framework. 

Pervaporation of ethanol 

5 wt % of ethanol/water solution by weight was prepared as a feed solution for 

pervaporation test of the membranes. The pervaporation set-up was built as seen in 

Figure A-2. The chamber was put on a stirring plate to mix the feed solution during 

measurement. The chamber was designed with a thermal jacket in order to control the 

pervaporation temperature. The membrane, sealed by two o-rings within the cell, was 

immersed in the feed solution. On the permeate side, a vacuum was pulled to maintain a 

pressure below the vapor pressure. The vapor permeate was condensed and collected in a 

cold trap.  

 

 
Figure A-2.  A schematic diagram of the pervaporation module. 
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The experimental total mass flux is calculated as: 

J =
m

A·t
              (1) 

where m is the permeate weight, A is the available membrane surface area, and t is the 

measurement time. The flux J denotes total flux, which is composed of ethanol and 

water. 

Membrane separation factor, αi/j, is defined as:99,161 

 αi/j =
Ji Jj⁄

[Ci Cj⁄ ]
feed

=
[Ci Cj⁄ ]

permeate

[Ci Cj⁄ ]
feed

=
[wi wj⁄ ]

permeate

[wi wj⁄ ]
feed

=
[wi (1−wi)⁄ ]permeate

[wi (1−wi)⁄ ]feed
    (2) 

where Ci and Cj are feed solution concentrations of component i and j, and wi and wj are 

weight fractions of component i and j, respectively. The compositions of the feed and 

permeate were determined by a gas chromatography (GC 6890, Agilent).  

 

A.3 Results and discussion 

Preparation of multilamellar MFI nanosheets 

The layered assembly of the approximately 3 nm thick MFI nanosheet appeared in TEM 

image as shown in Figure A-3A. As presented in Figure A-3B, the intergrown 

multilamellar MFI nanosheet crystals were produced from interactions between 

hydrophobic tails of the SDA. Although the intergrown crystals play a role in preventing 

the collapse of crystal structure, it hinders thin and oriented membrane applications. 

Therefore, post treatment, exfoliation, is required to prepare single MFI nanosheets. XRD 

measurement confirmed the crystallinity of multilamellar MFI (Figure A-3C). 
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Exfoliation of multilamellar MFI nanosheets 

To delaminate the as-synthesized multilamellar MFI nanosheets, melt extrusion was 

performed with polystyrene (PS) with a molecular weight of 45,000.53,63 Before 

beginning the process, 4 wt % as-synthesized multilamellar MFI was mixed with 96 wt%  

PS. At high temperatures, above the glass transition temperature or melt temperature of 

PS, the PS chains have enough mobility to diffuse into the inter-layer space of the 

multilamellar MFI sheets.162 During the process, due to the high melt viscosity of PS, it 

transfers high energy and shear stress to exfoliate the multilamellar MFI. A TEM image 

of the exfoliated MFI nanosheets/PS nanocomposite, as exhibited in Figure A-4A, 

illustrates dispersion of exfoliated MFI nanosheets in the PS matrix. To employ the 

exfoliated MFI nanosheets, purification is required due to co-existence of un-exfoliated 

particles embedded in the PS matrix, as seen in Figure A-4B. 

 

 
Figure A-3. A TEM image of as-synthesized multilamellar MFI (A), a SEM image of 

as-synthesized multilamellar MFI (B), and a XRD pattern of as-synthesized 

multilamellar MFI (C).  

 

Purification of exfoliated MFI nanosheets  

To make a deposition of exfoliated MFI nanosheets onto porous α-Al2O3 supports, the 

exfoliated MFI nanosheet/PS nanocomposite was dissolve in toluene, which is a good  
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Figure A-4. TEM images of microtomed exfoliated MFI nanosheet/polystyrene (PS) 

nanocomposite. Dispersion of exfoliated single MFI nanosheets in PS matrix (A), un-

exfoliated particle embedded in PS matrix (B). Arrows indicate exfoliated MFI 

nanosheets. 

 

 
Figure A-5. TEM images of nanosheet suspension after dissolving the exfoliated 

nanosheet/PS nanocomposite in toluene without purification (A) and with 

purification (B). 

 

solvent for the PS. A TEM image of the nanosheet suspension in toluene without 

purification, as presented in Figure A-5A, describes the co-existence of the exfoliated 
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nanosheets and un-exfoliated particles. A centrifugation was applied in order to eliminate 

the un-exfoliated particles which inhibit uniform and thin deposition of the exfoliated 

nanosheets on the porous α-Al2O3 supports. As a result, as shown in Figure A-5B, the 

nanosheet suspension for coating was composed of exfoliated nanosheets.  

Preparation of membranes 

For membrane preparation, α-Al2O3 discs, consisting of 100 ~ 200 nm pores (Figure A-

6A), were chosen as a porous support. Due to surface roughness, a polishing process 

preceded membrane fabrication. The coating suspension was deposited onto the 

smoothened α-Al2O3 supports by vacuum-assisted coating method. The exfoliated 

nanosheet coating was calcined to eliminate the PS and SDAs out of the MFI framework. 

A top view SEM image of the exfoliated nanosheet coating (Figure A-6B) indicates 

uniform coverage. However, secondary growth is supposed to be carried out in order to 

close the nonselective inter-particle gaps, i.e., defects, which are detrimental to 

permselectivity of the coating. It is evident in from Figure A-6B. 

 

 
Figure A-6. SEM images of a porous α-Al2O3 support after polishing (A) and an 

exfoliated nanosheet coating on the porous α-Al2O3 support (B). 
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Figure A-7. SEM images of exfoliated nanosheet films followed by hydrothermal 

treatment with sol in the presence of TPAOH at 100 °C for 4.5 h (A), 6 h (B), 7 h (C) 

and 10 h (D). 

 

The film after secondary growth at 100 °C for 4.5 h, as shown in Figure A-7A, appeared 

to be hardly intergrown. The nanosheets did not merged with each other and thus the film 

was not permselective. To enhance quality of the nanosheet films, prolonged secondary 

growth was conducted. A top view SEM, as seen in Figure A-7B, indicates the 

intergrowth between nanosheets is improved with increased secondary growth time, i.e. 

for 5 h. However, the film did not show permselectivity. This may be associated with 

insufficient intergrowth of nanosheets underlying the top surface of the film. For longer 

hydrothermal time, i.e. 7 h, well-intergrown film was acquired with random orientation as 

presented in Figure A-7C. The separation factor of the film was increased to 8, which is 
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moderated but higher compared to other films with no permselectivity. The ethanol 

permselectivity of the membrane was tested from room temperature to 60 °C as exhibited 

in Figure A-8. As temperature increased, the total flux increased attributed to enhanced 

mass transfer rate but the separation factors were decreased.  

Prolonged secondary growth, i.e, 10 h, was conducted in order to consider possibility to 

improve intergrowth of the membrane which lead to higher ethanol permselectivity. 

However, a top view SEM, Figure A-7D, describes a randomly oriented surface with 

bigger grains and crack formation. Overgrowth with prolonged secondary growth may 

lead to crack formation, which is attributed to pronounced mismatch of the thermal 

expansion coefficient between the α-Al2O3 support and the membrane with membrane 

thickness90.  

 

 
Figure A-8. Ethanol pervaporation performance from room temperature to 60 °C of 

the membrane fabricated from the exfoliated MFI nanosheets with secondary 

growth for 7 h at 100 °C. Fluxes of ethanol and water, respectively (A) and 

separation factor (B). 
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A.4 Conclusion 

MFI nanosheets are successfully prepared by top-down strategy, i.e. exfoliation of 

layered precursor MFI crystals in the presence of PS. The viscosity of PS is manipulated 

by controlling the blending temperature leading to from low to high shear forces. The 

parent MFI crystals with layered assembly yield to exfoliated MFI nanosheets by the 

shear forces generated during the exfoliation process. As a result, the exfoliated MFI 

nanosheets are obtained in the exfoliated nanosheets/PS nanocomposite form.  

In the nanocomposite, un-exfoliated particles co-existed since the degree of the 

exfoliation is not 100 %. A centrifugation is sufficient to purify the exfoliated MFI 

nanosheets after dissolution of the nanocomposite into toluene. The purified exfoliated 

MFI nanosheets were deposited on porous α-Al2O3 support discs by vacuum-assisted 

filtration method. The nanosheet films are not permselective due to the inter-particle gaps 

which are detrimental to permselectivity. As a result, the film was hydrothermally treated 

by secondary growth in the presence of precursor sol of TPAOH, the typical SDA of MFI 

zeolites. In the case of short hydrothermal treatment, intergrowth of the film is not well 

developed. In contrast, in the case of prolonged secondary growth, the film is overgrown 

with randomly oriented MFI crystals leading to crack formation.  

The best membrane was obtained after 7 h secondary growth. The ethanol pervaporation 

performance of the membrane was tested at varied temperature range from room 

temperature to 60 °C. At room temperature, the membrane reveals the highest ethanol 

separation factor, 8, which is not as high as counterparts reported in the literature.7,9,78,139-

142,158,163,164 However, this is the first membrane prepared from MFI nanosheets for 
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ethanol separation. The membranes reported in the literature are thicker than 1 μm and 

fabricated from conventional MFI crystals not from the MFI nanosheets. Compared to the 

conventional MFI crystals, the external surface of the MFI nanosheets consisting of 

hydroxyl groups plays a significant role in adsorbing ethanol or water molecules. The 

hydroxyl groups have a negative effect on preferential adsorption of ethanol molecules 

over water molecules. Moreover, during calcination, aluminum atom from the porous 

alumina support may be leached out and incorporated into the zeolite framework leading 

to uncontrolled hydrophilicity.165 In contrast to size/shape discrimination, ethanol 

pervaporation is based on affinity between ethanol and zeolite since ethanol is bulkier 

than water. If the zeolite is hydrophilic, water molecules are preferentially adsorbed onto 

the zeolites. The hydrophobicity is key factor to fabricate efficient membranes for ethanol 

separation. Therefore, MFI nanosheet membranes are not a promising for ethanol 

pervaporation.   

 
  

 


