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Coupling photovoltaics and grid-scale energy storage:

performance and sitability

Brady Leigh Stoll, Ph.D.

The University of Texas at Austin, 2015

Supervisor: Mark Deinert

The Fifth Assessment of the International Panel on Climate Change has called

for a four fold increase in the use of low-carbon sources of electricity to help stabilize

climate change by mid century. Many people look to solar power systems to help

reduce carbon intensity, but cost and variability have been significant obstacles to their

widespread deployment. However, the cost of photovoltaics has dropped significantly

in recent years, and grid-scale energy storage technologies are available to allow for

production of dispatchable electricity from photovoltaics. In particular, compressed-air

energy storage is both low-cost and can be built in a wide variety of geologies as well

as above ground. I show that coupling large-scale photovoltaic arrays and grid-scale

storage allows for dispatchable electricity production at costs that are comparable to

other low carbon electricity sources. I examine four load curves: base-load generation,

on-peak generation, and averaged load curves for the Electric Reliability Council of

Texas (ERCOT) and PJM Independent System Operators. I found that on-peak and

ERCOT loads typically required the lowest amount of storage, up to 2000 MWhe less

than that for base-load generation. However, in some regions, and for some storage

amounts, baseload output actually provided the lowest cost of electricity. I also

show that such coupled systems could provide base-load electricity for ≤ 0.08/kWhe
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on more than 40% of global land surface, with a capacity factor equivalent to that

of the US nuclear fleet. Importantly, this is below the projected cost of electricity

from new nuclear power systems. While cost is a major factor, also of importance

is where systems of photovoltaics and grid-scale storage would provide the most

benefit. Locations expected to provide energy at the lowest cost do not necessarily

correspond to load and population centers, where the electricity is most needed. I use

multi-criteria decision analysis techniques to perform a global study of the optimal

locations for siting these coupled systems to maximize their social benefit. I found

that the most ideal locations are generally located in Africa, Iraq, and southeast Asia,

as these locations have both high irradiance levels as well as expanding populations

and low grid connectivity.
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Chapter 1

Introduction

1.1 Motivation

Rising population and improving quality of life, particularly in developing

countries and China, are contributing to a large growth in electricity usage [1]. Global

electricity generation is expected to grow by 93% by the year 2040 to 39 trillion

kWhe per year [1]. The electric power sector is currently the largest carbon producing

sector, accounting for over 25% of global emissions [2, 3]. As electricity production

continues to rise, carbon emissions will increase if the current dominant technologies,

coal and natural gas, continue to be used to a high degree [4].The Intergovernmental

Panel on Climate Change has called for a drastic increase in the use of low-carbon

sources of electricity to help reduce carbon emissions and stabilize climate change by

mid-century [2, 5].

While low-carbon technologies exist in the energy sector, [6–9], none of them are

currently ideal. While nuclear power is capable of providing dependable, low-carbon

base-load capacity [9, 10], its use evokes geopolitical concerns including storage of

nuclear waste and proliferation of nuclear technologies [11]. Further, systems with

carbon capture and storage are another option, but these technologies are predicted

to be more expensive than nuclear power, and are still largely in development [5].

Solar and wind generation could satisfy the entire worlds electricity demand several

times over [7], however, their cost and variability have traditionally posed significant

obstacles to their widespread use [12,13].
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Photovoltaics are able to contribute to energy demand, especially in sunny

locations with high afternoon energy demand [12–14]. Their use is becoming increas-

ingly widespread in the industrialized world, and they are well suited to regions with

little or no grid connectivity [15]. An increase in incentive programs has contributed

to the drastic rise in photovoltaic installations, particularly in California [16] and

Germany [17]. These incentive programs include feed in tariffs, direct subsidies or

tax credits [18–21]. Many countries have also set renewable energy standards, some

particularly for solar power [20–25]. Many developing countries are also looking

to incorporate renewable energy policies in their future plans for electricity market

development and growth [18, 26, 27]. As more policy initiatives are put in place to

encourage clean energy installations and as costs of photovoltaic modules drop [28–30],

an even further increase in photovoltaic installations can be expected [20].

As the amount of solar power on the electric grid increases, so do concerns

about grid reliability [31–33]. Higher percentages of renewable sources, which can be

highly volatile and difficult to predict, may potentially lead to grid stability issues or

flexibility concerns for traditional generators [34–37]. Because of this, dispatchable

energy provision from renewable sources would provide a premium for grid operators.

Dispatchable energy would also provide a large benefit for developing countries, where

electrification and lighting are known to increase the quality of life.

Large-scale energy storage systems would be one option for smoothing diurnal,

seasonal, and weather-based fluctuations [13,38–41]. Coupling photovoltaics to large-

scale storage technologies could allow solar power to provide dependable, low-carbon,

base-load electricity to the grid [42]. Pumped hydroelectric storage and compressed

air energy storage have both been demonstrated at grid scale, and have been shown to

be cost effective [40, 41,43–45]. As such, they are prime candidates for coupling with
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photovoltaics to provide base-load power [38, 46, 47]. In particular, compressed air

energy storage has a high potential for world-wide use due to its siting flexibility [48,49].

Batteries could also be used for grid-scale storage, however they are currently either

not commercially feasible, or are very expensive [22,38,45,50].

The ability of a storage facility to smooth variability in solar resources, and

the storage capacity required, is highly dependent on the local solar resources. Loca-

tions with high seasonal variations, such as northern Europe, have different storage

requirements than locations with high hourly variation, such as the equatorial tropics.

In order to accurately model the ability of a coupled photovoltaic array and grid-scale

storage facility to provide base-load electricity, it is necessary to understand the

variability of solar irradiance itself. High-resolution satellite data can be used to

do this, which is particularly useful for the analysis of solar resources in developing

countries, where long histories of weather data collection are rare.

The International Satellite Cloud Climatology Project (ISCCP) provides an

ideal data set with 25-years of satellite-based atmospheric data at a 0.5◦ x 0.5◦ spatial

resolution and 3-hr temporal resolution [51–53]. I have processed these data using a

critically evaluated algorithm to obtain surface solar irradiance measurements from

July 1983 through June 2008 [54, 55]. The resulting global horizontal irradiances

encompassed seasonal and diurnal variations, as well as the effects of clouds, surface

reflection, ozone, and aerosols, providing unprecedented information about the solar

resources available across the planet.

These data are then utilized to perform an analysis of the ability for locations

across the planet to provide dispatchable solar energy when coupled to compressed

air energy storage facilities. In addition I analyze the use of battery storage as costs

are expected to drop and these technologies become more feasible. Understanding
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the abilities and limitations of coupling solar power and storage facilities will be key

as renewable energy is used to a higher degree worldwide. In addition, I present

an analysis of the ideal locations to site these facilities such that they are optimally

located in regions with low-cost, high population, and high need for energy generation.

1.2 Renewable Energy

Renewable energy technologies are growing rapidly in response to both price

drops and governmental mandates on their installation. In particular, the International

Panel on Climate Change (IPCC) has indicated that green-house gas emissions are

a global challenge, likely leading to a changing climate with potentially dramatic

consequences for humanity [2]. The IPCC recommends an increase in low-carbon

resources to be used for power generation. Currently the most commonly used energy

sources include coal and natural gas, followed by hydroelectric and nuclear power.

Together, coal and natural gas made up 62.9% of global electricity production in

2012 [4]. Hydroelectric provided 16.2%, and nuclear 10.9% of global electricity in the

same year. Oil provided 5% of electricity, as did the “other” energy category, which

includes all renewables [4].

In addition to contributing to global warming, traditional fossil fuel energy

sources also have negative environmental impacts such as air and water pollution,

mining and the land-use impacts associated with it, as well as potential impacts from

leaking pipelines and other transportation of fuel issues [3]. While green-house gas

emissions are a large global focus, these impacts have strong local impacts which are

also avoided with renewable energy use.

The combined emissions from coal and natural gas contribute significantly

total global emissions. Petroleum based generators, while a smaller fraction of total
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electricity production, also have a high emission rate. Table 1.1 lists greenhouse gas

emissions and costs of several energy technologies, including both traditional and

renewable sources. Carbon is the most common green-house gas, however emissions of

methane, nitrous oxide, and particulate matter also have implications for both climate

change and health. Emissions of these gases have been combined in the table based

on their carbon equivalent emission rate for simplicity [9].

Energy Technology Emissions (gCO2eq/kWhe) Avg. Cost
($/kWh)

Coal, present day 950-1250 0.078
Natural Gas 440-780 0.079
CCS

Pulverized Coal 92-145 0.13
IGCC 65-152 0.12

Nuclear 2.8-24 0.099
Photovoltaic 43-73 0.16
Wind

On-shore 8-30 0.084
Off-shore 9-19 0.17

Hydro 1-34 0.035
Compressed Air Energy Storage 19 (gCO2eq/kWhe,storage)
Pumped Hydro Storage 36 (gCO2eq/kWhe,storage)
Battery Storage 125-161

(gCO2eq/kWhe,storage)

Table 1.1: Includes all lifecycle emissions, including upstream, downstream, and operation. All
emissions values from review article [9], all cost values from [5]. The emissions from storage facilities
are based on the storage capacity of the facilities.

In order to reduce the emissions from traditional sources, technologies such as

carbon capture and sequestration (CCS) have been suggested as mitigation strategies [5,

56]. These technologies collect the carbon emitted from combustion of fossil fuels and

store it in a location, such as an underground cavern or the deep ocean, so it does

not reach the atmosphere [57,58]. It has been estimated that CCS could reduce the

emissions from energy production by 20% [57]. However, this technology is still in the

demonstration phase and while costs are expected to drop, they remain high with a
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wide band of uncertainty [58].

Renewable energy sources could provide an alternative low-carbon energy

source. While these sources typically are not-dispatchable and are more expensive

to build, their energy has no fuel costs and low operation and maintenance costs.

Historically, high capital costs prevented these technologies from being installed in

large quantities. However, photovoltaics also have seen a high increase in global

installations, Fig. 1.1, as their costs have dropped and policies have been implemented

to support their growth.

Figure 1.1: The photovoltaic industry has experienced rapid growth in recent years, particularly in
Europe. Data from [15].

1.2.1 Capacity Growth

Solar energy has seen a high growth rate in the recent past, with the global

installed capacity growing an average of nearly 55%/year annually between 2007 and

2013 [18]. In 2013 56% of all global power capacity installations came from renewable

sources, with solar power exceeding the yearly installed capacity of wind power for

the first time [18]. The cumulative installed capacity of photovoltaics across the globe
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was 139 GW at the end of 2013, up from 100GW in 2012 [18].

At a country level, Germany has the highest installed capacity of photovoltaics,

with nearly 36 GW [18]. It is followed by China, Italy, Japan and the United States

for the top five countries with the most installed capacity as of 2013 [18]. China

installed the most capacity of any country in 2013, with a total of 12.9 GW just in

that year [18]. Also of note, Italy was able to meet 7.8% of electricity demand with

solar power in 2013 [18].

In the manufacturing sector, China leads the world in most produced photo-

voltaic modules [59]. China produced two-thirds of all modules in 2013 [18]. Other

Asian countries provided 20% of panels, European countries 9%, and the United States

2.6% [18]. While oversupply led to a brief drop in prices and market consolidation,

the photovoltaic market began to pick up in 2013 [18].

1.2.2 Policy

In order to encourage the expansion of renewable energy, particularly solar

power, many governments world-wide have implemented policies or set specific goals to

encourage constituents to install photovoltaics. The most common methods utilized are

feed-in tariffs, renewable portfolio standards, direct subsidies, and tax credits [18–21,60].

Stable policies in support of solar energy have contributed globally to the rapid growth

of photovoltaic installations in recent years [21,61,62].

1.2.2.1 Policy Measures

Subsidies are one of the most widely utilized mechanism to support solar

growth globally [61]. These policies include direct grants or rebates for installation

costs or low-interest loans for particular technologies [21, 61, 62]. They have been

effectively used in several states, notably California [16], and many countries, notably
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Australia [62] and developing countries.

Feed in tariffs (FITs) have been very effective at increasing renewable energy

installations currently in use [61, 63–65]. Feed-in tariffs most basically provide a form

of payment for each kWh of electricity produced during a set time period. This

provides a dependable revenue stream to help offset the high installation costs of

solar power [18, 63]. Many countries world-wide, over 75 jurisdictions as of 2010, have

utilized feed-in tariffs with a high degree of success [18,19,61,63].

Many different implementations are possible, including flat rates, front-loaded

rates to encourage initial growth, or market-driven measures. Whichever rate struc-

ture is utilized, a key factor for feed-in tariffs is stability and predictability of the

program [63]. A downside of FITs is that they have the potential to support un-

economical technologies or pose a high cost to consumers if implemented poorly [60,64].

Additionally, while the FIT provides a stable expected payout over the system lifetime,

it does not affect the high up-front costs of installation, which can still be a barrier [61].

Net metering policies are similar to FITs in that they involve selling electricity

by customers who have installed PV arrays, however they only account for the net

difference in generation and consumption [60,61]. These policies calculate the total

difference in energy produced and consumed at the end of a billing cycle, and either

pay the consumer or charge the consumer for the difference at a standard rate. Net-

metering policies have been used by several states in the U.S. [66, 67], as well as in

several countries [61], as a means to encourage renewable growth.

Renewable Portfolio Standards (RPSs) encourage renewable energy generation

without directly subsidizing the energy or capacity. These policies require that a

country, state, or other administrative unit produce or purchase at least a given

percentage of electricity from renewable sources [3, 20, 61]. Similar policies are also
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referred to as tradable green certificate (TGC) programs in Europe, which can be

traded between entities to reach the required goal renewable generation [3, 65]. These

policies are more common in developed countries [61].

Some RPSs require specific technologies to provide a portion of the required

fraction whereas others allow any within the “renewable energy” category to be counted.

This has lead to concerns that RPS policies disincentivize diversity of technologies in

favor of the current lowest cost technologies [20]. In order to combat this, many states

have implemented modified RPS policies to specifically require or incentivize higher

cost technologies, such as solar power, to meet the RPS requirements [20]. Renewable

portfolio standards are common at the state-level in the United States, but are also

used by several countries including Italy and the United Kingdom [20,65,67].

Tax credits are a means by which a government can provide an incentive based

on either installation costs or produced energy. One of the issues with tax credits is

the lack of stability in these directives and ease with which the program amounts or

time-lines can be changed on political whims [3]. They also can have a high impact

on governmental income, potentially reducing the tax revenue for governments by

hundreds of millions of dollars [61].

1.2.2.2 Policy of selected countries

European countries have implemented a wide variety of policies to encourage

renewable growth in general, as well as solar power specifically. These policies

include feed in tariffs, tradable green certificates, subsidies, tax credits, as well as

net metering [68]. The European Union collectively has implemented the Europe

2020 initiative, a set of five goals for the EU to reach by the year 2020, including to

provide 20% of energy from renewable sources [25]. In addition to this EU wide goal,

individual countries have utilized a wide variety of policies to encourage renewable
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and specifically solar growth.

Germany has by far the most installed capacity of photovoltaics, with 36

GW [18]. By the end of 2007, the country generated 4% of electricity from photo-

voltaics [3], and 5% of electricity in 2013 [18]. Germany implemented a feed-in tariff

in 1990 with the Electricity Feed Act which was later replaced with the Renewable

Energy Sources Act [17,68]. These policies provided the framework for a stable market

for solar power, which has been vastly effective [17,68]. The FITs used in Germany

have a fixed duration of 20 years, providing stability for investors. There are different

levels of FIT payments based on the size and type of a particular PV system [3,61]. In

2008, the FIT was amended to reduce the FIT rate in accordance with the reduction

in photovoltaic prices seen [3, 59]. Other policies utilized in Germany at by national

or local governments include grants and tax incentives [3, 59].

Spain also instituted feed-in tariffs under Royal Decrees in both 2004 and

2008 [21]. These policies initially targeted large scale solar power facilities and were

later amended to improve incentives for rooftop PV [3]. A cap on the size of systems

was introduced in 2007, leading to nearly 5 times as much capacity installed in 2008

than 2007 before this went into effect [21]. Subsequent Royal Decrees limited the

amount of installed capacity each year under the feed-in tariff. This change reduced

the growth Spain had seen in previous years [21].

France provided subsidies for photovoltaics beginning in the 1990’s, and tax

incentives in 2005 [21]. France later began a feed-in tariff in 2002, which was modified

in 2006 and 2009 [3, 21]. These policies lead to a total installed capacity of 2500 MW

in 2011 [21].

In Asia, Japan and China are leaders in the photovoltaic industry. Japan has

a long history of supporting solar power, beginning with research and development
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support in the 1970’s [21] and a residential subsidy program in 1994 to cover the

cost of modules, equipment, and installation costs [24]. The Japanese government

invested over 125 billion Yen in research and development between 1999 and 2002

to further develop photovoltaic technologies and to field test PV units [24]. Zhang

et. al. [69] found that the regional subsidy policies in Japan had a significant impact

on PV system diffusion. In 2004, Japan developed the PV Roadmap Towards 2030

(PV2030) with a goal of improving the efficiency of solar panels as well as lowering

their cost [23]. More recently, the Ministry of Economy, Trade and Industry (METI)

approved the Japan Photovoltaic Energy Association in 2008 to provide subsidies for

residential PV installations, and a feed-in-tariff was established in 2012 to help reduce

carbon emissions by 2020 [18, 19]. The FIT has contributed significantly to a large

increase in installations, including 6.9 GW installed in 2013 [18].

China’s history of strong support of solar power is more recent. The Renewable

Energy Law was passed in 2005 encouraging support of renewable technologies and set

up grants and subsidized loans for renewable projects [3]. The Golden Sun program

began in 2009, which subsidizes the installation cost for photovoltaic units with the

goal of reaching 500 MW of PV modules installed [59]. Feed-in tariffs were also

instituted for large-scale projects in 2007 [59].

The United States has a high variety of policies in support of solar power [61].

U.S. support of solar power began with an incentives program in 1978, the Public Utility

Regulatory Policies Act, which provided payments based on the cost of traditional

generation avoided. However, this was not extremely effective at encouraging solar

installations [3]. Federally, tax credits have been used since 1978 to offset high

installation costs. Initially investment tax credits of up to 30% of installation costs

were used, and in 1992 a production tax credit (PTC) was started [3, 61]. The
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investment tax credit (ITC) for residential and businesses was raised in 2005, leading

to a large increase of PV units in the U.S. [3].

Many states have independent renewable portfolio standards (RPSs) to require

certain percentages of renewable energy. These include renewable portfolio standards

(RPSs) in 29 states of up to 40% renewables, energy efficiency measures in 20 states,

and net metering policies in 43 states [67]. It is estimated that 23 GW of renewable

power installed in the U.S. between 1998 and 2009 was due to RPS requirements [20].

In addition, the U.S. solar installations increased 41% from 2012 to 2013, installing

4.75 GW in 2013 to bring the total U.S. PV capacity to 12.1 GW [28].

California has proposed several incentive programs for solar power, and currently

has the highest installed capacity of solar power in the United States [28] with 8,544

MW installed [70]. California’s California Solar Initiative (CSI) has lead to the

installation of over 1900 MW of rooftop solar panels since its inception [71]. CSI

is a rebate program which subsidizes system costs based on several levels of system

performance [61]. These rebates decrease with time under distinct levels [16]. Net

metering policies were also effective at reducing consumers’ electricity rates and

encouraging installations [66].

New Jersey has also seen a high growth in solar power, motivated by a range of

policies including state-level RPS, tax credits and subsidies [61]. Its RPS, which went

into effect in 2001, had a specific solar energy provision which was later combined with

rebates and net metering programs [72]. It had the second most installed capacity of

photovoltaics in 2010, however funding issues lead to the close of the rebate program

in 2007 and subsequent policy were less effective at encouraging growth [72]. The

market as begun to recover and grow, however New Jersey has dropped in rank for

total installed capacity in the U.S. [28].
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Developing countries, including India, Brazil, Kenya and many others, are also

incorporating renewable energy policies in their future plans for electricity market

development and growth [18,26,27,73]. These countries tend to favor subsidies and

feed-in tariffs over RPS’s or TGC’s [26]. Of the 31 developing countries with renewable

energy policies, 28 have some form of FIT [26]. These developing markets also have a

higher percentage of off-grid PV installations, which allow electricity to be provided to

locations not served by traditional power facilities [61, 73]. Another policy utilized by

developing countries is micro-financing of solar installations, allowing for low interest

loans for small PV systems [61].

1.2.3 Grid Integration

As the fraction of renewable energy sources incorporated in the electric grid

increases, so do concerns about reliability [31–33]. Wind and solar energy in particular

are not dispatchable resources and can vary on time scales as small as minutes

to seconds. Particularly if a balancing area has limited flexibility this can present

problems for grid reliability operators, who must provide an adequate supply of energy

to meet demand even as renewable sources vary [34,35]. If traditional generators, such

as coal and natural gas plants, cannot meet rapidly changing net loads, significant

curtailment of renewable generation could occur [36, 37]. Grid operators are also

interested in whether the variability of renewable sources may lead to different use

patterns for traditional power sources, and whether these use patterns negatively

impact the efficiencies and maintenance costs of traditional facilities [37].

Many studies have been performed to analyze the operational challenges of

renewable integration in order to determine the potential impacts on existing or

future electric grids, as well as to identify potential benefits of such integration [74].

Challenges can include grid stability, lack of reserves, high cycling of traditional power
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plants, and curtailment of renewable energy. These challenges are balanced by benefits

which may include reducing the production costs for the overall system due to lower

fuel and operational costs, as well as reduction in greenhouse gas emissions. Integration

studies have been done for a range of system sizes, including all of Europe [75], the

U.S. interconnections [37, 76–78] and local areas [36, 79–81]. While many of these

studies focus more specifically on wind power, solar integration faces similar challenges

due to its variable nature. In some cases the challenges of generator ramping are more

extreme due to a reduction in solar panel output as the typical evening peak load

increases [36].

While suggestions for addressing this issue have been raised [82, 83], the

integration of renewable energy is an ongoing question. Particularly as the amount of

renewable generation increases, the ability to provide dispatchable energy from these

sources will become more valuable.

1.3 Photovoltaic Market

Cost has historically been a strongly limiting factor for solar power installations,

which were considered to be cost prohibitive except in very specific applications.

However, current technologies have improved and costs dropped such that photovoltaics

are becoming more affordable. Since their initial use in the 1950’s, module costs have

dropped from over $100/Wp to less than $1/Wp [29], and between 2010 and 2013 costs

dropped by over 50% [30]. Large, sudden increases in demand fueled by governmental

policies exceeded production briefly in the early 2000’s, leading to a small increase in

price [59]. However, the overall trend has been a steady decrease in price. In addition,

while module costs increased slightly in 2013, the total system costs decreased 9%

for residential and 14% for utility-scale installations, in large part due to dropping
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inverter and balance of system costs [28].

The PV market is largely dominated by crystalline silicon, accounting for

80-85% of the global market in recent years [61,84], followed by thin-film technologies.

Crystalline silicon has the advantage of being more efficient, typically 12-15%, and has

a lower degradation rate [84,85]. However, these technologies also requires more silicon

than other photovoltaic types [59]. Thin-film on the other hand requires less silicon

or other conducting materials, but currently have efficiencies less than 10% [59,86].

The costs of crystalline silicon modules are expected to be cost competitive without

subsidies at a manufacturing cost of $0.75− 0.50/Wp, which could feasibly be reached

by 2030 based on improvements in manufacturing and module efficiency [84]. Thin

film presents a promising alternative, however is currently at a more developmental

stage [87]. For this analysis, crystalline silicon modules will be considered as the

dominant technology.

1.3.1 Historical Costs

The cost of photovoltaic modules have dropped drastically in the past several

years. In 2010, the cost of a PV module was 1.85 $/Wp, whereas in 2013 it had fallen

to 0.72 $/Wp [30]. Figure 1.2 shows the module price from 1975 through 2013. In

addition to dropping module costs, installation and balance of system costs are also

dropping as experience increases [88].

Some of the cost decrease in recent years was due to over-supply in an expanding

market, however much of the decrease is due to falling material costs, improvements

in efficiency, advances in manufacturing processes, and reaching economies of scale [18,

88, 90, 91]. There is also speculation that Chinese manufacturers are dumping PV

modules into the market, further contributing to the drop in prices [88].
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Figure 1.2: The price of photovoltaic modules has been dropping since the 1970’s, showing significant
cost reduction in the technology. The data is shown on a log scale for clarity. Data from [29,89]

The cost of photovoltaics has dropped such that PV systems may be cost

competitive without subsidies in 15 countries [18]. System costs are expected to

continue dropping in cost, potentially reaching $1/Wp by 2022 [92, 93]. This price

is widely seen as the installed system price at which solar power would reach grid

parity [22, 88, 94, 95]. Many countries also have set goals to encourage continued

reduction in cost of PV modules and total system costs [22].

1.3.2 Learning Curves

Part of the recent drop in module prices may be attributable to the concurrent

rise in photovoltaic installations [88]. The price of photovoltaics has been found to

follow a learning curve, which describes a drop in price that scales with the number of

units produced [29,89,90,94,96–98]. Specifically, the learning curve relationship is a

power-law relating the cumulative number of units produced to the cost of producing
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those units, Eq. (1.1).

c = c0

(
n

n0

)α
(1.1)

where c is the cost at a particular time t, c0 is the initial cost, n is the cumulative

production also at time t, n0 is the initial produced capacity, and α is related to the

learning rate, LR, of the technology as

LR = (1− 2α) (1.2)

Figure 1.3 shows the price of photovoltaic modules as a function of cumulative

production, including a line of best fit. This figure clearly shows the log-linear

relationship between price and cumulative production of photovoltaic modules. The

module price is frequently used as a proxy for manufacturing cost due to the difficulty

in acquiring proprietary manufacturing cost data, however likely introduces some error

into the analysis due to non-constant margins [29].

Figure 1.3: The price of photovoltaic modules has been dropping as production of modules increases,
in a power law trend. Data from [29,89]
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Photovoltaics have the highest learning rate of any energy technology, approxi-

mately 0.20, indicating that photovoltaics show a higher cost response to production

increases than other technologies. Table 1.2 shows learning rates for PV, wind and

nuclear power [96, 99]. In particular, the learning rate for PV is nearly twice that

for wind, indicating a higher rate of cost reduction. Experience curves and pro-

jected learning rates have been used to predict the total investment required to bring

photovoltaic costs to grid competitive levels, and to estimate the effectiveness of dif-

ferent policies [98, 100,101]. Because of the learning relationship, policies encouraging

installations of photovoltaics also tend to drive reductions in cost.

Technology Average Learning Rate Learning Rate Range

Photovoltaic 0.20 0.10 – 0.47
Wind 0.11 0 – 0.17
Nuclear 0.0 <0 – 0.0

Table 1.2: The learning rate indicates the cost reduction expected with a doubling of cumulative
production of that technology. Data from [99].

This has important implications, particularly for developing countries, as

photovoltaics are now reaching much lower costs than considered in previous analyses

and are likely to continue dropping [73, 102]. At current prices, photovoltaics are cost

effective in many regions of the world, including developing regions such as Africa and

southeast Asia [42]. As additional policies are put in place encouraging installations of

photovoltaics, the rise in production is likely to lead to further drops in cost, making

photovoltaics more advantageous for developing countries with high irradiance levels.

1.4 Grid-scale Storage

Storage facilities are greatly important for renewable technologies such as solar

power to be able to provide dispatchable power. These resources are not inherently

dispatchable, and so must be able to store excess energy from times when it is plentiful
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for use when it is not. For solar power, this is predominantly a diurnal cycle between

day and night. Additionally, seasonal variability exists with more solar energy available

in the summer than the winter. This variability is more difficult to account for with

storage due to the long storage times required.

There are currently several technologies available for grid scale storage: pumped

hydroelectric storage (PHS), compressed air energy storage (CAES), and grid-scale

batteries. Other storage technologies exist, such as flywheels, capacitors, supercon-

ducting magnetic storage and others, however these technologies are limited by the

storage capacity required for grid-scale operation, by the storage time to meet the

needs of a diurnal cycle, or by cost [38, 41].

1.4.1 Pumped Hydro Storage

Pumped hydroelectric storage (PHS) is a large-scale storage medium with

a high round-trip efficiency, 65 - 85% [38, 41, 44]. It is well suited for use with

intermittent renewable sources such as solar power due to long storage times and high

efficiencies [38]. Water is stored in the lower reservoir, and when energy is available

this water is pumped to the upper reservoir where it is stored until energy is needed.

It then flows back to the lower reservoir, producing energy in the process.

This storage medium can have capacities of 100s to 1000s MW, with storage

times up to months (or even years) [38] and is capable of discharging energy on hourly

or daily time scales [38, 41]. Such long-term, large-scale storage capability allows

for daily and even seasonal variations to be accounted for via storage. It has also

been shown specifically that solar power is capable of providing a reliable stream of

electricity when an appropriately sized array and storage facility are coupled [103].

This is a mature technology, with plants installed as early as the 1940’s [43].
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As of 2010 there was a global installed capacity of pumped hydro storage of over 95

GW. Japan and the United States lead the world in PHS, with 24.6 GW and 21.9

GW, respectively [43].

The downsides of pumped hydro storage are the requirements for siting such

a facility. Large amounts of water are required to provide sufficient energy from the

facility. The these systems have reservoirs potentially in excess of 10,000,000 m3 for a

large facility [104]. In addition, a height differential is required between two separate

reservoirs. This height differential allows for the storage of energy, rather than just

production as in a traditional dam. New pumped hydro facilities have been found to

be difficult to site or expensive to build in available locations [43].

1.4.2 Compressed Air Energy Storage

Compressed air energy storage (CAES) is a large-scale storage medium with the

capability of storing energy for 10’s of hours and up to 100’s or even 1000’s of MW [49].

It operates by decoupling the compressor and turbine in a traditional natural gas

plant, Fig. 1.4. The compressor is run at times of low energy prices, compressing air

into a reservoir until it is needed to drive the turbine. When energy is required or

electricity prices are high, the compressed air is preheated then used to drive a turbine

providing energy. The use of fuel, typically natural gas, for preheating leads to a

energy ratio of (electricity in):(electricity out) less than 1. The energy ratio is typically

between 0.56 and 0.84 [47–49]. In addition, the turbine of a CAES facility is able to

provide more energy than a comparable single-cycle combustion turbine, as much as

2-3 times more power, as the full output is directed towards energy production and

not compression [48,49].

The compressed air can be stored in underground caverns, most feasibly in salt

domes but also potentially in aquifers and other porous rock, or excavated hard rock
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15  
COMPRESSED AIR ENERGY STORAGE 

Introduction 

Compressed air energy storage (CAES) offers a method to store low-cost off-peak energy in the 
form of stored compressed air (in an underground reservoir or an aboveground piping or vessel 
system) and to generate on-peak electricity by:  

• Releasing the compressed air from the storage reservoir 

• Preheating the cool, high-pressure air 

• Directing the preheated air into an expansion turbine driving an electric generator 

Figure 15-1 shows a large CAES plant design concept.  Since the compressor and expander 
operate independently and at different times, CAES offers significant advantages over a 
conventional simple-cycle combustion turbine system, where approximately 55-70% of the 
expander power is used to drive the compressor.   

 
Figure 15-1 
Typical Compressed Air Energy Storage Plant (The Plant Shown is the One Planned by 
Norton Energy Storage LLC) 

Figure 1.4: Graphical representation of a CAES facility operating in a limestone cavern. This
image was taken from [48], showing the proposed plant in Norton, Ohio.

caverns. Salt domes present the most likely candidates for CAES siting; currently

the only two operating CAES facilities use salt domes for their storage [49]. These

geologies are beneficial because they are easy and cheap to excavate, and also are not

likely to leak air [49]. Hard rock caverns would prove to be a much more expensive

option for CAES facilities due to the additional excavation costs. However, it has

been proposed that existing mines could potentially be used, reducing some of this

cost [48,49]. Porous rock, most notably aquifers, provide another solution for CAES

reservoirs. These storage facilities could potentially be even cheaper to build than

cavities in salt domes, however their costs are largely unknown until a detailed analysis

is performed [49,105].

CAES is considered to be a mature technology, however only two facilities have

been built. The first CAES facility was built in Huntorf, Germany in 1978 [41, 49].

Its capacity is 290 MW, and while it was built with 2 hours of storage, it has since
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been expanded to 3 hours of storage [49]. It was built in two salt caverns with a total

volume of 310,000 m3 [49]. It is still operational today, providing both black start

capabilities as well as smoothing output from wind farms in the North Sea.

The second CAES facility was built in MacIntosh, Alabama in 1991 [41, 49].

Its capacity is 110 MW and includes 25 hours of storage [49]. It is located in a single

salt cavern with a total volume of 560,000 m3. It is also still operational, providing

load management, peak power, ramping capability, and reserves for the local electric

grid [48]. Several other CAES facilities have been proposed in locations such as in

Norton, Ohio [49] and Des Moines, Iowa [105], or have been investigated in states such

as Texas and New Mexico [106]. However none of these projects have yet been built.

Similar technologies as below-ground CAES can be used for above-ground, or

small-scale, CAES. Instead of utilizing underground caverns for storage, high-pressure

tanks or gas pipes are used [48]. These facilities have lower potential storage capacities

than underground CAES, however operate on the same principles. They typically

have capacity for roughly 5 hours of storage, and capacities of approximately 10

MWe [48, 107]. Above-ground CAES could be ideal for smaller-scale operations, or

several facilities could be coupled to provide energy on a similar scale to below-ground

CAES.

The main challenge for compressed air energy storage facilities is siting, due

to the need for a large underground storage facility. Unlike pumped hydroelectric

storage however, these required geologies are more widely available. While salt domes

provide the most ideal and tested geology, there are many other potential geologies

available. It is estimated that over 75% of the United States has geology that would be

acceptable for CAES facilities [108]. This makes CAES a much more widely site-able

technology. It also has a much smaller surface foot-print, impacting a smaller portion
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of the above-ground area than PHS [49]. Another challenge for CAES is the lack of

experience, with only two facilities currently in operation.

1.4.3 Batteries

There are several means by which energy can be stored electrochemically,

including batteries, which store energy based on charge transfer reactions between

an anode and cathode, and redox-flow batteries, which store energy in an external

electrolyte that flows through the cell [38, 45]. There are many different battery

technologies for a variety of different applications, including power quality regulation,

load shifting, and back up power provision [45, 50, 109]. These range from time scales

of seconds to hours and capacities of kilowatts to 10’s of megawatts [45, 109]. For

this analysis, I will focus on the large-scale systems for use with load-shifting and

renewable integration.

Battery types vary based on the materials and chemicals used for the electrode

and electrolyte [109]. Common types of batteries include lead-acid, lithium-ion, sodium-

sulfur (NaS), Nickel-metal hydride, and vanadium redox flow batteries. Sodium-sulfur

and lead-acid batteries are both mature technologies, whereas large-scale lithium-ion

and vanadium redox batteries are in demonstration phases [38,109]. There are also

many other battery varieties currently being investigated for improvements in life

cycle, efficiency, or cost.

The efficiencies of batteries vary widely by type of battery, and also among

the same battery chemistries. The lowest reported efficiencies are seen for vanadium

redox flow batteries, 70%, while lithium ion batteries claim the highest efficiencies of

up to 95% [109].

Batteries have been used for grid-scale applications, particularly lead-acid
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batteries of up to 10 MW systems in California [50] and sodium-sulfur systems in

Japan [45]. Flow batteries are beginning to be demonstrated at large scale, and

lithium-ion batteries are being used at scales of a few MW [110]. Redox flow batteries

are currently in demonstration with capacities up to a few MW, and have the benefit

of decoupling the power and energy storage aspects of the battery to allow for variable

storage capacities [45, 50].

Cost is the most common concern for all types of batteries. Most battery tech-

nologies are still too costly to be widely deployed [38, 50]. In addition, environmental

concerns exist for some battery types, such as nickel-metal hydride batteries [50,109].

However, batteries have very limited siting concerns, with no geographical require-

ments such as CAES and PHS, and could be ideal in the future as the technologies

continue to improve.
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Chapter 2

Irradiance Calculation

2.1 Algorithm

Creation of a global solar irradiance dataset was of foremost importance for

the research in this dissertation. I utilized a standard algorithm [54] to create surface

solar irradiance values using satellite data from the International Satellite Cloud

and Climatology Project (ISCCP) [51]. This data set will be discussed in detail in

Section 2.2, I here discuss the methodology of creating the irradiance values.

The total surface irradiance was computed by first determining the total

irradiance transmitted through just the atmosphere. This value is then used to

compute clear sky and cloudy sky components. The total transmitted irradiance, Qdir,

is computed as

Qdir = f(I0, d, µ0, O3, H2O, V, Ps) (2.1)

where I0 is the solar constant [W/m2], f is clear sky transmission, Eq. (2.2), d is

the earth-sun distance [km], µ0 is the cosine of the solar zenith angle [dimensionless],

O3 is the ozone content [Dobson Units], H2O is the amount of water vapor in the

atmosphere [gcm−2], Rs is the surface reflectance [dimensionless], V is the visibility

[km], and Ps is the surface pressure [millibars].

The function f used in Eq. (2.1) represents the formula provided in [55]:

f(Io, d,µ0, O3, H2O,Rs, V, Ps) =

I0 ∗
(
d0
d

)2

∗ µ0 ∗
e
− (a+b/V )∗Ps

µ0

(1−Rs ∗ a
′+b′

V
)
∗ e−av

(
H2O
µ0

)bv
∗ e−ao

(
O3
µ0

)bo
(2.2)
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Here d0 is the mean earth-sun distance, and a, b, a, b, av, bv, ao, and bo are regression

coefficients given in Frouin et. al. (1987) [55] for land and water at different wavelength

intervals. For the present study I use the coefficients for the full range of solar radiation,

250-4000 nm, Table 2.1.

a b a b av bv ao bo

unit millibar−1 km
millibar - km ( cm

2

g )−bv - DU−bo -

Maritime 0.059 0.359 0.089 0.503 0.102 0.29 0.041 0.57

Continental 0.066 0.704 0.088 0.456 0.102 0.29 0.041 0.57

Table 2.1: Coefficients used in Eq. (2.2), given in Frouin et al. (1989) [55]. DU denotes Dobson
units.

Once the transmitted irradiance is computed, Equation (2.1) is used to compute

the clear sky irradiance, Qclr, and cloudy sky irradiance, Qcld:

Qclr = (1− CF ) ∗Qdir (2.3)

Qcld = (CF ∗Qdir) ∗ (1− Az) ∗ (1 + AsRs + (AsRs)
2) (2.4)

where CF is the cloud fraction [dimensionless], Az is the cloud albedo [dimensionless]

and As is the spherical albedo [dimensionless]. The terms in Qcld represent transmission

through the atmosphere to the top of a could, transmission through the cloud, and

reflection between the Earth’s surface and the bottom of the cloud, respectively.

Figure 2.1 shows the relationship between Qdir, Qclr, Qcld, As, Az, potential cloud

layers, and the Earth’s surface. The total irradiance is then computed as:

Qtot = Qclr +Qcld (2.5)

2.2 ISCCP Data

The data used to compute these irradiance values were taken from the Interna-

tional Satellite Cloud Climatology Project (ISCCP). The ISCCP has been recording
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Figure 2.1: The figure shows visually how surface solar irradiance is calculated as a sum of clear
sky solar radiation and the fraction of radiation transmitted through a cloud and then reflected from
the Earths surface.

weather data from geostationary and polar orbiting satellites since 1983. These data

were gathered from 46 different satellites throughout this time span, the details of which

are available at http://isccp.giss.nasa.gov/docs/sathist.html\#default [111].

An extensive calibration effort was undertaken to put these data on an even foot-

ing [112] and they are available in 3-hr time steps from July 1983 through June 2008

via ftp at ftp://eclipse.ncdc.noaa.gov/pub/isccp/dx. The ISCCP data consists

of two data sets, DX and D1, both of which were used in this study. The DX data

have a 3-hour temporal and 0.5◦ x 0.5◦ angular resolution. These data were processed

and combined to create a lower resolution product, the D1 data set, which consists

of a 280-km equal-angle grid and also a 3-hour temporal resolution. The D1 data

include spatial averages of the DX data set as well as statistical summaries of the

variables [51].
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Data for O3, H2O, and Ps were taken from the ISCCP D1 data set [53] as

these variables were not available in the DX data. Data for Rs, CF , and cloud

optical thickness, τ , are taken from the ISCCP DX data set [52]. DX data were

preferred due to the higher resolution of this data. I used a fully benchmarked in-

house implementation, [113], of the doubling method to compute Az and As using

the cloud optical thickness values from the ISCCP DX data set. Surface visibility, V ,

was assumed to be 25 km [55], and the mean earth-sun distance, d/d0, was computed

using:

d

d0
=

1− E2

1 + E ∗ cos(θ)
(2.6)

θ =
2πx

Y
(2.7)

where E is the earths eccentricity, 0.01671, Y is the length of a year, 365.25 days, and

x is the number of days since the perihelion. The solar zenith angle, µ0, was computed

using the formulas given in the National Ocean and Atmospheric Administrations

Solar Calculator [114].

The ISCCP uses two types of satellites: polar orbiting and geostationary. The

geostationary satellites collect data for particular regions of the planet while the polar

orbiting satellites encircle the globe throughout a day and are generally used to acquire

data over the polar regions, as well as to supplement the geostationary satellites when

they are unavailable or record faulty data.

The data from all of these satellites must be combined in order to create a

world-wide data set. To accomplish this, I followed the algorithm of Bishop et al

1997 [54]. A minimal filling scheme was used to account for locations for which data

are missing, either because they were not observed by satellites at a particular time of

day, or because available data for that location has an error flag. For a particular 3

hour period, the worldwide filled data set was generated as follows:
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1) Data for O3, H2O, Rs, Ps, optical thickness and cloud faction from each

satellite are put into a 0.5◦ x 0.5◦ equal angle grid, mapped according to latitude and

longitude.

2) If multiple satellites report data for the same location, data was taken from

the satellite with the solar zenith angle closest to normal incidence, with a preference

for geostationary satellites over polar orbiting satellites.

3) If data for a particular location was missing, it was filled in the following

order:

i) at the equator it was assumed to have the same value as a directly adjacent

location. The filling was done longitudinally where the location directly to the East

was used to fill the missing data, if this too was absent, the location directly to the

West was used. Away from the equator the number of bins, East and West, used

for filling was increased to account for the fact that 0.5◦ of longitude corresponds

to a shorter distance as one moves toward the poles. The number of bins, East and

West, from which data was taken for filling was increased by one as 1/cos(latitude)

incrementally increased from 1 to 57. If the East-West neighbors were absent, the

location directly to the north was used, and if that was absent, the location directly

to the south.

ii) If data for a particular location was still missing, it was assumed to have

the average value over all daylight hours for that particular day. Several variables,

solar zenith angle, cloud optical thickness, and surface reflectance, are reported only

during the daylight hours, and so only can be filled from these hours of the day.

iii) If data was still missing, and for variables that are recorded during both

day and night, the 24-hr average is used to fill.

iv) If any of the variables for a particular location was still missing, the 24
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hour average irradiance for a particular day was filled in a post processing step with

the historical average irradiance for that day.

Equations (2.1)-(2.7) were used to determine the surface solar irradiance for

each 3 hour time stamp and location for all 25 years. I use a Riemann sum to integrate

over µ0 to compute the average irradiance within each 3 hour period. All ISCCP

variables are given a single value for each period, whereas the solar angle µ0 was

calculated at 12 minute intervals. Twenty-four hour irradiances were computed by a

Riemann sum of all 12-minute intervals within the 24-hour period.

Irradiances were also computed at sub steps of 1-hour to allow for finer resolution

analysis. These irradiances were computed by holding all variables fixed over each

three-hour time step except for the solar zenith angle µ0. This was computed again

at every 12-minute interval within the 1-hr period and averaged to determine 1-hour

temporal resolution irradiance values. Figures 2.2 and 2.3 show the hourly irradiance

for the whole globe for two days in January and June, respectively.
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Figure 2.2: Example map of irradiance values for one time stamp of the analysis. This example is
for Jan 1, 1700 GMT, 2007.
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Figure 2.3: Example map of irradiance values for one time stamp of the analysis. This example is
for June 1, 300 GMT, 2007.

2.3 Comparison to Ground-based Data

In order to validate the computed irradiance values, I identified four databases

containing ground-based irradiance measurements overlapping in time with the ISCCP

data for specific locations. I assume that the comparisons at these locations are similar

to all other global locations and provide sufficient validation of the above algorithm

for the entire data set. I computed 24-hour averages for each of these data sets and

compared these values with the corresponding 24-hour averages of the computed

irradiance values from the ISCCP data. The data sets used for comparison include the

Biowatt [115], Marine Light Mixed-Layer (MLML) [116] and First ISCCP Regional

Experiment and Cirrus 1 Surface Radiation Budget (FIRE/SRB) [117] experiments

as well as data from the Baseline Surface Radiation Network (BSRN) [118].

31



2.3.1 Biowatt II

The Biowatt II experiment consists of three separate deployments of instruments

in 1987 to measure oceanic and meteorological data in the Sargasso Sea. A buoy was

attached to the ocean floor at 34◦N, 70◦W. Data were collected from February 28 to

May 11 for the first experiment, May 13 to August 30 for the second experiment, and

August 31 to November 23 for the final experiment [115].

Figure 2.4 shows the 24-hour averaged irradiance values for both the Biowatt

experiment data and the computed irradiance values from the ISCCP data set. The

values show good agreement for all three experiments, though not an exact match.
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Figure 2.4: The Biowatt dataset consists of data from the same location at three different time
periods within 1987.

In order to determine the degree to which the computed irradiance values

correspond to the measured irradiance values, I computed correlation coefficients

between the two measurements for each Biowatt experiment. The correlation values
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can be seen in Table 2.2, and are shown graphically in Fig. 2.5. Table 2.2 also shows

the mean error and standard deviation in error for each of the experiments. This error

represents 1.5%, 1.3%, and 2.0% of the Biowatt irradiance values for experiments 1, 2,

and 3 respectively.

Correlation Coefficient Mean Error σerror
Set 1 0.93 -3.0 27.6
Set 2 0.93 -3.4 28.7
Set 3 0.94 2.9 23.5

Table 2.2: Correlation and error measurements for the Biowatt data set compared to computed
ISCCP values. Error was computed as IRBiowatt − IRISCCP .
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Figure 2.5: The Biowatt dataset consists of data from similar locations at two different years.

2.3.2 MLML

The Marine Light Mixed-Layer (MLML) experiment consists of data from a

buoy anchored in the subarctic North Atlantic Ocean. Two separate experiments were

performed at the same site. The first experiment was from April 14 through June 10,

1989 and the second from April 30 through September 6, 1991 [116]. While the intent

of these experiments was to examine the mixing of ocean layers, irradiance values

were collected and made available for download. The buoy used to collect data was

anchored at 59◦35.61’N, 20◦57.85’W, approximately 275 miles south of Iceland.
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Figure 2.6: The MLML dataset consists of data from similar locations at two different years.

Figure 2.6 shows the irradiance data for each of the two experiments compared

to the computed values using the ISCCP data. The data can be seen to follow the

same general trends of high and low irradiance in both cases.

In order to directly compare the two data sets, I computed correlations between

the paired measurements, Fig. 2.7. The correlation and mean error values can be seen

in Table 2.3. The error in irradiance represents 15.4% and 2.6% of the MLML average

irradiance values for the 1989 and 1991 data sets, respectively.

Correlation Coefficient Mean Error σerror
Set 1, 1989 0.91 26.9 31.9
Set 2, 1991 0.95 4.4 26.4

Table 2.3: Correlation and error measurements for the MLML data set compared to computed
ISCCP values. Error was computed as IRMLML − IRISCCP .

The first data set has a skewness value of 1.1, indicating a positive skewness in

error, computed as IRMLML − IRISCCP . This shows that the ISCCP data tends to

under-predict rather than over-predict the irradiance values. The error values are also

significantly leptokurtotic, showing a higher peak around 0 and larger tails than a
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Figure 2.7: The MLML dataset consists of data from similar locations at two different years.

normal distribution. This indicates that the error is more likely to congregate around

zero, but also has a higher probability of being large. As such, my algorithm tends to

generally provide a good approximation but will at times have a large error. This can

be seen in the behavior of Fig. 2.6.

2.3.3 FIRE/SRB

The First ISCCP Regional Experiment (FIRE) and Cirrus 1 Surface Radiation

Budget (SRB) projects were two experiments performed simultaneously at several

locations. They will be referred to together as the FIRE/SRB data set. The experi-

ments were performed in Wisconsin from October 12 through November 2, 1986 in

order to determine cirrus cloud measurements and to validate the SRB algorithm [117].

Seventeen site were identified in Wisconsin; their locations are given in Table 2.4.

These seventeen data collection sites fall within the boundaries of only 9 pixels

of the ISCCP data set, such that several of the ground-based locations are compared to

the same computed irradiance values. Figure 2.8 shows the locations of all FIRE/SRB
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Location Latitude (deg N) Longitude (deg W)

Plain 43.28 90.04
Portage 43.56 89.48

Tri-County 43.21 90.19
Reedsburg 43.53 89.97
Dodgeville 42.99 90.15
Mt. Horeb 43.00 89.74

Arena 43.16 89.91
Sauk City 43.30 89.74
Middleton 43.11 89.53
Ft. McCoy 43.96 90.76

Stevens Point 44.55 89.53
Baraboo 43.52 89.77

Adams County 43.97 89.80
Wautoma 44.04 89.30
Wausau 44.92 89.62

Arlington 43.33 89.37

Table 2.4: FIRE/SRB Locations. List of seventeen site locations for data collection during the
FIRE/SRB experiment
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Figure 2.8: The FIRE/SRB dataset contains data from 17 sites. For some of the ISCCP pixel
locations, multiple sites of the FIRE/SRB dataset fell within that pixel. The ISCCP pixels are
outlined in black, with each site of the FIRE/SRB experiment marked with a *.
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locations and the ISCCP pixel boundaries. Five of the FIRE/SRB locations correspond

to unique ISCCP pixels, and the remaining 12 locations are clustered within four

ISCCP pixels. Comparisons of the computed irradiance values for each pixel and the

corresponding measured values for all FIRE/SRB locations within that pixel can be

seen in Fig. 2.9. Missing data values are omitted from the figure.
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Figure 2.9: The FIRE/SRB dataset consists of data from similar locations at two different years.
For some of the ISCCP pixel locations, multiple sites of the FIRE/SRB dataset fell within that pixel.
As such, four of the 9 ISCCP pixels are compared to multiple FIRE/SRB locations

I determined the correlation between each location and its corresponding ISCCP

irradiance values. These correlations can be seen by pixel number in Figure 2.10, and

are listed in Table 2.5. The correlation values range from 0.69 to 0.96. The mean

error, also shown in Table 2.5, is between 0.8% and 15.0% of the average irradiance at

each FIRE/SRB site.
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Figure 2.10: The FIRE/SRB data set is plotted against the ISCCP data at each corresponding
location to show the correlation between the data sets.
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Location Correlation Coefficient Mean Error σerror
Plain 0.92 0.9 20.5

Portage 0.69 -12.2 36.9
Tri-County 0.95 -1.7 17.4
Reedsburg 0.77 -6.6 28.9
Dodgeville 0.93 0.9 21.9
Mt. Horeb 0.87 -12.1 21.7

Arena 0.96 -0.2 15.6
Sauk City 0.91 3.0 21.3
Middleton 0.94 -0.8 19.5

Madison (Truax) 0.91 -3.0 20.9
Ft. McCoy 0.92 1.3 19.7

Stevens Point 0.91 0.9 22.5
Baraboo 0.95 1.5 17.5

Adams County 0.96 -3.4 16.1
Wautoma 0.88 -13.1 23.8
Wausau 0.89 -13.5 20.5

Arlington 0.91 -3.6 22.5

Table 2.5: FIRE/SRB Locations. List of seventeen site locations for data collection during the
FIRE/SRB experiment

The FIRE/SRB data set provides a unique opportunity to compare multiple

ground-based locations against a single ISCCP computed irradiance set, allowing

us to determine if locational effects are important in correlating the computed and

ground-based data. Ground-based values are collected from a single point location,

whereas the satellite values are sub-sampled from a data set of finer resolution. The

satellite instruments have a resolution greater than the 0.5◦ resolution of the DX data,

however the data from each satellite has been randomly sub-sampled to provide the

DX data [51]. As such, the exact location that is being reported may change with

time.

The four pixels containing multiple FIRE/SRB locations are further examined

to analyze potential differences in the correlation of all data within a pixel compared to

correlations for each individual FIRE/SRB location. Table 2.6 shows for each ISCCP

pixel the correlations between individual FIRE/SRB data sets and the corresponding
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ISCCP irradiance values, as well as the correlation of all data within a single pixel.

Pixel Individual Correlation Pixel Correlation

Plain 0.92
Stevens Point 0.91 0.91

Arlington 0.91

Sauk City 0.91
Madison (Truax) 0.91 0.91

Ft. McCoy 0.92

Tri-County 0.95
Dodgeville 0.93 0.94
Middleton 0.94

Arena 0.96
Baraboo 0.95 0.96

Adams County 0.96

Table 2.6: Correlation of FIRE/SRB data compared to each location and the correlation of all
data within each ISCCP pixel area.

For each pixel, one of the FIRE/SRB locations has a higher correlation than

the other locations, and also higher than the overall correlation. However, according

to a paired t-test there was no statistically significant difference between any of the

individual FIRE/SRB locations and the ISCCP data for any of the pixels containing

multiple FIRE/SRB locations. This is consistent with random sub-sampling of the

data from a higher resolution dataset. The overall correlation is approximately an

average of the correlations of each individual data set, as might be expected.

2.3.4 BSRN

The Base-line Surface Radiation Network (BSRN) is part of the World Radiation

Monitoring Center, which has been archiving solar radiation values beginning in

1992 and continuing through today. It is a part of the Data Assimilation Panel

from the Global Energy and Water Cycle Experiment, with a goal of monitoring

changes in surface radiation and potential effects of climate change. Stations are

distributed throughout the globe collecting data, the earliest began in 1992 with
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stations entering or leaving the database each year. There are 46 stations that overlap

in time with the ISCCP DX data set [118]. These data provide continuous, long

time series measurements covering a wide range of geographical areas and surface

types. Collectively this data set provides an ideal long-term comparison for the global

irradiance values as computed from the ISCCP data.

The locations used for comparison can be seen in Fig. 2.11. The exact latitude

and longitude of each location as well as the dates for which that location reported

data can be seen in Table 2.7

For each location I compared the twenty-four hour averaged surface irradiance

values between the BSRN and computed data from the ISCCP to validate the com-

putational methods used. The correlation between the measured and the computed

irradiance values was computed for each BSRN location. Due to the long time series

Figure 2.11: Each location is labeled with their 3-letter code assigned by the BSRN [118]. These
locations were used for comparison with the ISCCP derived values. As can be seen the locations
represent a wide variety of environments and locations across the planet.
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Table 2.7: BSRN location information, including latitude and longitude of the collection site, dates
for the beginning and ending of the overlap between the BSRN collection and ISCCP DX data set,
as well as the number of days in the time series. The locations are ordered by latitude.

BSRN Latitude Longitude Start Date End Date Number
Code of Points
ale 82.49 -62.42 2004-08-17 2008-06-29 1373
eur 79.98 -85.93 2007-09-02 2008-06-29 302
nya 78.93 11.95 1992-08-02 2008-06-29 5703
bar 71.32 -156.61 1992-01-01 1994-12-31 1056
ler 60.13 -1.18 2001-01-01 2007-04-30 2240
tor 58.25 26.46 1999-04-06 2008-06-29 3364
lin 52.21 14.12 1994-10-01 2007-02-28 4484
cab 51.97 4.93 2005-02-01 2008-06-29 1192
cam 50.22 -5.32 2001-01-01 2007-06-30 2338
reg 50.21 -104.71 1995-01-01 2008-06-29 4746
pal 48.71 2.21 2005-10-01 2007-08-31 673
fpe 48.31 -105.10 1995-01-28 2008-06-29 4402
pay 46.82 6.94 1992-10-01 2008-06-29 5615
car 44.08 5.06 1996-09-01 2008-06-29 4188
sxf 43.73 -96.62 2003-06-16 2008-06-29 1630
psu 40.72 -77.93 1998-06-29 2008-06-29 3353
bos 40.13 -105.24 1995-08-01 2008-06-29 4418
bon 40.06 -88.37 1995-01-01 2008-06-29 4472
bou 40.05 -105.01 1992-01-07 2008-06-29 5653
xia 39.75 116.96 2005-01-01 2008-06-29 1265
clh 36.91 -75.71 2000-05-01 2008-06-29 2578
dra 36.63 -116.02 1998-03-17 2008-06-17 3377
e13 36.61 -97.49 1994-01-12 2008-06-29 4773
bil 36.61 -97.52 1993-09-01 2008-06-29 5073
tat 36.05 140.13 1997-07-02 2008-06-29 3881
gcr 34.25 -80.87 1995-01-01 2008-06-29 4724
ber 32.27 -64.67 1992-01-11 2008-06-29 5703
sbo 30.91 34.78 2003-01-01 2008-06-29 1791
sov 24.91 46.41 1998-09-14 2002-12-31 1491
tam 22.78 5.51 2000-03-08 2008-06-29 2942
kwa 8.72 167.73 1992-04-23 2008-06-29 5691
ilo 8.53 4.57 1992-09-01 2005-07-12 3708

nau -0.52 166.92 1998-11-01 2008-06-29 3407
man -2.06 147.43 1996-10-10 2008-06-29 4132
coc -12.19 96.84 2004-10-04 2008-06-29 983

Continued on next page
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Table 2.7 – continued from previous page
BSRN Latitude Longitude Start Date End Date Number
Code of Points
dwn -12.42 130.89 2008-01-03 2008-06-29 179
dar -12.43 130.89 2002-03-15 2008-06-29 2281
asp -23.80 133.89 1995-01-01 2008-06-29 4667
flo -27.53 -48.52 1994-07-01 1999-08-31 1552

sms -29.42 -53.82 2006-04-01 2008-03-31 731
daa -30.67 23.99 2000-06-01 2005-01-31 1476
lau -45.04 169.69 1999-08-11 2008-06-28 3140
syo -69.01 39.59 1994-01-01 2008-06-29 4887
gvn -70.65 -8.25 1992-04-01 2008-06-29 5609
dom -75.10 -56.62 2006-01-11 2008-06-29 773
spo -89.98 -24.80 1992-01-01 2008-06-29 5702

provided by the BSRN data set, I was able to compare both 24-hour averages as well

as monthly averages. Monthly averages help to show whether or not the computed

irradiance values tend to compare well over longer time periods and if they follow the

same trends as the ground-based sources. Figures 2.12 and 2.13 show the BSRN data

plotted against the ISCCP irradiances for 24 and 672 hour averages (i.e. day and

month), respectively.

As can be seen, when averages are taken over longer time periods the derived

and ground-based data converge, showing much closer correlation at monthly averages

than at daily averages. Table 2.8 shows the correlations for each location for daily,

weekly, and monthly averages. Daily correlations range from 0.66 to 0.97, with only 4

locations lower than 0.80. For monthly averages range from 0.62 to 1.00, with only a

single location with a correlation less than 0.90.
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Figure 2.12: Reconstructed values on the vertical axis against ground level measurements from the
Baseline Radiation Network. The locations are ordered, and color coded, according to their latitude
with dark red being the North pole and dark blue the South pole. The results compare well except
over locations with ice cover. This phenomena has previously been observed and results from satellite
measurements making inaccurate measurements of cloud cover over ice [112].
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Figure 2.13: Reconstructed values on the vertical axis against ground level measurements from the
Baseline Radiation Network. The locations are ordered, and color coded, according to their latitude
with dark red being the North pole and dark blue the South pole. As with the 24 hour average, the
results here compare well except over locations with ice cover.
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Table 2.8: Correlations for each BSRN location compared to the ISCCP computed irradiance.
Correlations were performed for daily, weekly, and monthly averages of irradiance values.

BSRN Code Daily Weekly Monthly
Correlation Correlation Correlation

ale 0.86 0.92 0.94
eur 0.85 0.94 0.99
nya 0.92 0.96 0.97
bar 0.90 0.94 0.96
ler 0.92 0.98 0.99
tor 0.97 0.99 0.99
lin 0.94 0.99 0.99
cab 0.96 0.99 1.00
cam 0.93 0.98 0.99
reg 0.93 0.97 0.99
pal 0.96 0.99 1.00
fpe 0.94 0.98 0.99
pay 0.95 0.98 0.99
car 0.97 0.99 1.00
sxf 0.94 0.98 0.99
psu 0.95 0.98 0.99
bos 0.89 0.96 0.98
bon 0.95 0.98 0.99
bou 0.90 0.96 0.98
xia 0.90 0.95 0.98
clh 0.96 0.99 1.00
dra 0.97 0.99 1.00
e13 0.96 0.99 0.99
bil 0.96 0.99 0.99
tat 0.93 0.97 0.98
gcr 0.66 0.89 0.97
ber 0.93 0.98 0.99
sbo 0.97 0.99 0.99
sov 0.95 0.97 0.97
tam 0.93 0.97 0.98
kwa 0.77 0.89 0.90
ilo 0.65 0.62 0.62
nau 0.82 0.92 0.95
man 0.81 0.90 0.93
coc 0.92 0.97 0.98
dwn 0.83 0.92 0.99

Continued on next page
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Table 2.8 – continued from previous page
BSRN Code Daily Weekly Monthly

Correlation Correlation Correlation
dar 0.80 0.91 0.95
asp 0.95 0.98 0.99
flo 0.90 0.96 0.99

sms 0.96 0.99 1.00
daa 0.85 0.89 0.96
lau 0.92 0.98 0.99
syo 0.87 0.95 0.96
gvn 0.87 0.94 0.96
dom 0.79 0.93 0.98
spo 0.96 0.97 0.98

As noted above, the ISCCP DX data set is sub-sampled from a finer-resolution

data set and is likely to not be the exact same location as the stationary ground-based

data from BSRN sites. I would expect that over longer time periods the ISCCP data

would provide a closer resemblance to a point location, both due to the random nature

of the location observed by the satellite and also due to the random nature of weather

patterns smoothing out as longer time periods are considered.

Importantly, Figs. 2.12 - 2.13 show that in locations where reconstructed and

ground based measurements do not match well, the reconstructions underestimate

surface irradiance, which results in conservative estimates for the performance of

solar power facilities. The locations with the largest underestimates are all in icy

locations near one of the poles. A known issue with the ISCCP data set includes

polar, icy locations where reflection from the ice leads to overestimation of cloud-cover

values [112], and therefore reduces the irradiance computed through my algorithm.

This is consistent with the poor correlation noted in my analysis for polar locations of

the BSRN data set, as well as the MLML data sets described in sub-section 2.3.2.
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Figures 2.14 and 2.15 show histograms of the difference between computed

and ground based measurements. As can be seen, the distributions are approximately

symmetric about 0, indicating for the majority of locations tested, the derived data are

equally likely to over predict as to under predict the surface irradiance. All non polar

locations except for the location “daa” have a skewness value less than 1, indicating

Figure 2.14: For each BSRN location, the irradiance measured at the surface was compared to
the derived value. These differences were then plotted as a histogram. As can be seen, in almost all
locations the distribution is symmetric about 0, the exceptions being at ice covered locations at or
near the poles.
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Figure 2.15: For each BSRN location, the irradiance measured at the surface was compared to
the derived value. These differences were then plotted as a histogram. As can be seen, in almost all
locations the distribution is symmetric about 0, the exceptions being at ice covered locations at or
near the poles.

no significant skewness. This is important because over and under prediction can be

expected to balance out over the 25 year data set. Again, this is not true for polar

locations, where derived irradiances tend to under-predict measured values. However,

these locations are not ideal for solar power due to extended periods with low or no

irradiance during polar winters, and so are not of concern for subsequent analyses.
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For non polar locations the mean error ranges from -28.2 W/m2 to 29.6 W/m2.

Twenty-nine of the 38 non polar locations have a mean error of less than 10 W/m2,

which is an average percent error of less than 8% of the average irradiance at all

except for two of these locations. For these locations this error is 14% of the average

irradiance.

2.4 Comparison of Transmission Formulation

The ISCCP instruments are calibrated to a specific wavelength, 0.6 µm, and

measurements of cloud optical thickness as well as other measured parameters are for

this specific wavelength. However, surface solar irradiance values actually encompass a

broad range of wavelengths. The analysis of solar irradiance presented in Sections 2.1

- 2.2 was re-performed with three modified wavelengths in order to identify the

most accurate wavelength representation for ground-based measurements. The initial

analysis was performed using a wavelength of 0.78 µm.

The specific wavelength used affects the irradiance value through the trans-

mission through clouds, specifically As and Az in Equation (2.4). Both variables are

functions of wavelength and cloud optical thickness. The details of the computation of

As and Az can be seen in [113]. In particular, the phase function, which determines the

direction light scatters, is affected by the wavelength of incident radiation, Figure 2.16,

which then impacts the total transmission through a cloud.

Three different approaches were investigated to determine the optimal wave-

length to compute As and Az. These included use of a different single wavelength

value, calculating irradiance values using a range of wavelengths and averaging these

values over the solar spectrum, and computing band-averaged transmission values for

use in the irradiance computation. For each approach, I compared the new and original
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Figure 2.16: The phase function is shown here for several incident wavelengths. In particular, the
phase function is computed for the wavelength used in the initial analysis, 0.78 µm, the wavelength
used to calibrate the ISCCP instruments, 0.6 µm, and several additional wavelengths used in the
wavelength averaged irradiance calculation.

irradiance values at the locations of the 46 BSRN sites reported in sub-section 2.3.4

for consistency with previous analysis.

2.4.1 Single value, 0.6 µm

First, a second single value, 0.6 µm, was used to compute the transmission

values. This value was chosen as it is the wavelength used to calibrate the ISCCP

instruments [51]. As such, this wavelength will be the most accurate wavelength for

the reported cloud optical thicknesses measurements.

The results for this wavelength are not statistically different from those of

the 0.78 µm results. I calculated the average difference between irradiance values

computed with 0.6 µm and 0.78 µm wavelengths, as I(0.6µm) − I(0.78µm). The

difference ranged from -3.6 W/m2 to 0.99 W/m2. Figure 2.17 shows a histogram of

the average difference between irradiance values for each compared site.
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Figure 2.17: Difference in irradiance values as measured as 0.6 µm - 0.78 µm, in W/m2.

A paired t-test was performed on the 24-hour average irradiance values com-

puted with 0.6 µm and 0.78 µm wavelengths. This test had a null hypothesis of the

difference in means not being equal, and I was not able to reject this null hypothesis

with a p-value of 0.17.

2.4.2 Integration over Wavelength

The second test to determine an ideal wavelength was to compute an averaged

irradiance, utilizing wavelengths over the entire solar spectrum. Such an analysis

takes into account the impact of all wavelengths reaching the earth’s surface. For this

analysis, As and Az were calculated at 35 wavelengths between 0.3 µm and 2.695 µm,

and were then used to compute 35 separate irradiance data sets. These computed

irradiance values were averaged over the solar spectrum, Fig. 2.18, as

IRavg =

∫ λ2
λ1
IRλSλdλ∫ λ2
λ1
Sλdλ

(2.8)

where IRλ is the irradiance computed at a particular wavelength, Sλ is the fraction

of solar radiation reaching the earth’s surface at that wavelength, and IRavg is the

averaged irradiance value.
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Figure 2.18: Surface solar irradiance values for wavelengths in the range 0.28 µm to 4.0 µm. The
stars indicate wavelengths used to compute the wavelength-averaged irradiance values.

The differences between the wavelength-averaged irradiance values and the

original irradiance values ranged from -3.9 W/m2 to -0.12 W/m2. Figure 2.19 shows

a histogram of the average difference between irradiance data sets for each of the

locations of the BSRN, subsection 2.3.4.
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Figure 2.19: Difference in irradiance values as measured as (irradiance averaged over the solar
spectrum) - (0.78 µm), in W/m2. Differences reported for each of the 46 BSRN locations described
in sub-section 2.3.4
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A paired t-test was performed on the 24-hour averages of the wavelength-

averaged and original data sets. This test had a null hypothesis of the difference in

means not equal to 0. I was able to reject this null hypothesis with a p-value less

than 0.01. I also tested the difference in correlation coefficients between the measured

irradiances at each of the 46 BSRN locations and either the wavelength-averaged or

original ISCCP data with a wilcoxon signed rank test. This test was also significant at

a p-value less than 0.01. However, the irradiance computed with averaged wavelengths

has a lower correlation than the original data. The range of the difference between

the correlations of BSRN data and wavelength averaged data or data computed with

a wavelength of 0.78 µm was -0.01 to 0.003.

2.5 Visibility Correction

I next investigating improving the algorithm presented in [54] by incorporating

ground-based visibility measurements from the Integrated Surface Database produced

by the National Climatic Data Center (NCDC). This data set includes visibility

measurements taken from approximately 10,000 weather stations world-wide [119].

These stations include both land-based data collection stations and also ships collecting

data during their voyages. The stations provide surface visibility measurements at

time intervals ranging from one to twenty-four hours; where multiple stations or time

points exist for each time and pixel location of the ISCCP data, the NCDC data were

averaged. Figure 2.20 shows one time point of visibility data, for December 1, 1986,

0000 GMT. At this time point, there were 6162 locations reporting visibility values.

Where the NCDC values exist, I used the reported values for visibility measure-

ments. Where no NCDC data exists, I continued to assume a constant visibility of 25

km as in [54]. In order to determine the impact of visibility on the computed irradiance
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Figure 2.20: Visibility measurements, in kilometers, from 6179 stations of the National Climatic
Data Center. Using NCDC data, I incorporated visibility at all locations for which there was available
data. This map shows one time point of visibility data, for December 1, 1986 at 0000 GMT.

values, I compared the error with respect to ground-based measurements for locations

with reported visibility measurements and locations without visibility measurements.

This was done for each of the ground-based data sets described in Section 2.3. For

these comparisons, hourly irradiance values were used instead of 24-hour averages to

more directly compare the effect of incorporating visibility measurements.

2.5.1 Biowatt II

The Biowatt experiment had minimal overlap with the NCDC data set, largely

because visibility data were only available if ships traveled near the experiment. There

were 15, 27, and 18 hours that had visibility measurements for the first, second, and

third Biowatt experiments, respectively. These experiments had 1689, 2565, and 1950

hours without visibility measurements, respectively. Table 2.9 shows the correlation

coefficient and mean error for locations with and without visibility measurements for
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each Biowatt experiment.

Set 1
Visibility Correlation Coefficient Mean Error σerror

No 0.94 -3.5 104.2
Yes 0.88 51.2 101.2

Set 2
Visibility Correlation Coefficient Mean Error σerror

No 0.96 -3.0 99.3
Yes 0.99 -30.8 65.9

Set 3
Visibility Correlation Coefficient Mean Error σerror

No 0.94 3.0 78.3
Yes 0.96 -9.8 59.2

Table 2.9: Correlation and error measurements for the Biowatt data set for time points with and
without corresponding visibility measurements from the NCDC data set. There were 15 hours in
which the first data set had visibility measurements, 27 hours in which the second data set had
visibility measurements, and 18 hours in which the third data set had visibility measurements.

The absolute value of the mean error increased in all cases, indicating that

inclusion of the visibility values did not improve the irradiance computation. A

Wilcoxon rank sum test was performed on the error between values with and without

visibility measurements with a null hypothesis that the populations were the same.

This test was used instead of a student’s t-test because the populations are not

normally distributed. The test was found to be significant for only the second Biowatt

experiment, with a p-value of 0.01. The p-value of the test for the first Biowatt data

set was 0.06, and for the third data set was 0.51. Figure 2.21 shows a density plot of

the error values for each of the three experiments.

2.5.2 MLML

The MLML data set also had minimal overlap with the NCDC data set,

for similar reasons. For the first MLML experiment, 24 of the hourly irradiance
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Figure 2.21: Density plot of the error between the Biowatt data set and computed ISCCP values,
comparing hourly time points with and without visibility data in the NCDC data set. There was a
significant difference between these data sets only for the second experiment.

values had a corresponding visibility measurement, compared to 1344 hours without a

visibility measurement. The second MLML experiment had 39 hours with visibility

measurements and 3009 hours without visibility measurements. Table 2.10 shows the

mean error between the MLML and ISCCP hourly data and the correlation between

the MLML and ISCCP data for each of the MLML experiments.

Set 1, 1989

Visibility Correlation Coefficient Mean Error σerror
No 0.89 27.3 98.3
Yes 0.88 28.5 80.9

Set 2, 1991

Visibility Correlation Coefficient Mean Error σerror
No 0.92 4.4 84.4
Yes 0.92 36.2 93.5

Table 2.10: Correlation and error measurements for the MLML data set for time points which did
and did not have corresponding visibility measurements from the NCDC data set. There were 24
hours in which the first data set had visibility measurements and 39 hours in which the second data
set had visibility measurements.

Again a Wilcoxon rank sum test was performed on the error between values

with visibility measurements and values without visibility measurements. The test

showed no significant difference for either data set. The first data set had a p-value of
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0.36 and the second data set had a p-value of 0.66. Figure 2.22 shows a density plot

of the error as MLML-ISCCP irradiance values, colored based on if the data included

or did not include visibility measurements from the NCDC database.
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Figure 2.22: Density plot of the error between the MLML data set and computed ISCCP values,
for hourly time points that do and do not include visibility data as from the NCDC data set. There
was no significant difference between the error for locations that included visibility and those that
did not.

2.5.3 FIRE/SRB

The FIRE/SRB experiment included a larger number of corresponding visibility

data than the Biowatt or MLML data sets. Of the nine pixel locations, four had

corresponding visibility data. Three pixels had visibility measurements for all hours

and one pixel had visibility measurements for approximately half of the hours. Due

to the clustering of FIRE/SRB locations within some pixels, 5 FIRE/SRB locations

had complete visibility data, 3 FIRE/SRB locations had partial visibility data, and 9

FIRE/SRB locations had no visibility data.

A Wilcoxon rank sum test was performed for each of the 3 FIRE/SRB locations

with partial visibility data. The test compared the error with respect to ground-based

data between time points including or not including visibility . The error was computed
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as FIRE/SRB irradiance - ISCCP irradiance. In each of these 3 instances the test

showed a significant difference between the errors, each with a p-value less than 0.01.

Figure 2.23 shows a density plot of the error values for each of the three locations and

time points which do and do not include visibility data.
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Figure 2.23: Density plot of the error between the FIRE/SRB data set and computed ISCCP
values, showing a comparison between hourly time points that do and do not include visibility data
from the NCDC data set. The figure shows three FIRE/SRB locations for which there was both time
points with and without visibility measurements for a direct comparison. There was a significant
difference between the error of time points with and without visibility measurements for all three
locations as tested with a Wilcoxon rank sum test.

I also combined data from all locations of the FIRE/SRB experiment to further

examine the impact of visibility measurements, as several locations either only had

visibility data or only did not have visibility data and therefore could not be compared

within their own data sets. The correlation between all the FIRE/SRB data and

ISCCP data with visibility was 0.92, and the correlation between all data points

without visibility was 0.91, Figure 2.24.

The mean error for all time points including visibility data was 7.6 W/m2 with

a standard deviation of 80.9 W/m2, and for all time points not including visibility

data was -3.5 W/m2 with a standard deviation of 81.8 W/m2. These populations were

found to be statistically different under a students t-test, with a p-value less than

0.01.
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Figure 2.24: Correlation plot for data points including visibility measurements and not including
visibility measurements. Data were combined for all locations in the FIRE/SRB experiment as most
locations either fully included visibility measurements or had no visibility measurements.

The FIRE/SRB data set shows a less skewed error distribution for points that

include measured visibility, with a skewness of 0.50, compared to a skewness of 0.70

for all points not including visibility measurements. The correlation between the data

sets increases when including visibility, however the absolute value of the error also

increases.

2.5.4 BSRN

Thirty-one of the fourty-six BSRN sites include time points with corresponding

visibility data. Here I specifically compared time points during the daytime, as in some

cases visibility was only reported during the day and never at night. This resulted in

a correlation of 1 for time points without visibility, all of which reported an irradiance

of 0. This was not useful for the current comparison.

Figure 2.25 shows density plots for 30 of the 31 locations that included hours

both with and without visibility. This allows for direct comparison of visibility data at
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the same locations. One location which had only 18 points with visibility measurements

was excluded from the figure, however was included is subsequent analyses.

ale nya bar ler tor

lin cab cam pay car

bos bon bou clh dra

tat ber sbo sov tam

kwa ilo nau man coc

dar asp flo daa syo

0.000
0.002
0.004
0.006
0.008

0.00

0.02

0.04

0.0000
0.0025
0.0050
0.0075
0.0100

0.000
0.003
0.006
0.009

0.000
0.005
0.010
0.015

0.00
0.01
0.02
0.03
0.04

0.000
0.002
0.004
0.006

0.000
0.002
0.004
0.006

0.000
0.002
0.004
0.006
0.008

0.000
0.002
0.004
0.006

0.000
0.001
0.002
0.003
0.004

0.000
0.001
0.002
0.003
0.004
0.005

0.000
0.001
0.002
0.003
0.004

0.000

0.005

0.010

0.000
0.002
0.004
0.006

0.000
0.002
0.004
0.006

0.000
0.001
0.002
0.003
0.004
0.005

0.000
0.002
0.004
0.006

0.000
0.001
0.002
0.003
0.004

0.000
0.001
0.002
0.003

0.000
0.001
0.002
0.003

0.000
0.001
0.002
0.003

0.000
0.002
0.004
0.006

0.0000
0.0025
0.0050
0.0075
0.0100
0.0125

0.000

0.002

0.004

0.000
0.001
0.002
0.003
0.004
0.005

0.000
0.002
0.004
0.006

0.000
0.005
0.010
0.015
0.020

0.000
0.003
0.006
0.009

0.000
0.002
0.004
0.006
0.008

-400-200 0 200400600 -300 0 300 600 -600 -300 0 300 600 -500 0 500 -500 0 500

-500 0 500 -500 0 500 -500 0 500 -1000 -500 0 500 -1000 -500 0 500 1000

-1000-500 0 500 1000 -1000-500 0 500 1000 -1000 0 1000 2000 -1000-500 0 500 -1000-500 0 500 1000

-1000-500 0 500 1000 -1000-500 0 500 1000 -1000-500 0 500 1000 -500 0 500 -500 0 500 1000

-1000-500 0 500 1000 -1000 -500 0 500 -1000-500 0 500 1000 -1000-500 0 500 1000 -500 0 500 1000

-1000-500 0 500 -1000 0 1000 2000 -1000-500 0 500 1000 -1000-500 0 5001000 -1000-500 0 5001000
BSRN-ISCCP, W/m^2

D
en
si
ty

Includes
Visibility

no

yes

Figure 2.25: Density plot of the error between the BSRN data set and computed ISCCP values,
showing a comparison between hourly time points that do and do not include visibility data from the
NCDC data set. The figure shows comparisons for 30 locations for which there are time points both
with and without visibility measurements.

The correlations for time points both with and without visibility data are

shown in Table 2.11. A paired t-test was performed on the correlation values with

and without visibility data for each location. There was no significant difference

between these data sets with a p-value of 0.74. Table 2.11 also shows the mean error

between the BSRN irradiance values and the computed irradiance values, both for

time points including and not including visibility data. A Wilcoxon signed rank test

was performed between the mean error with and without visibility measurements for
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Table 2.11: Correlations for each BSRN location which have time points that include visibility
measurements compared to the ISCCP computed irradiance values. Correlations were performed
for both the time points at each location that had visibility measurements, as well as for locations
without visibility measurements.

BSRN Correlation Correlation Mean Error Mean Error
Code w/o Visibility w/ Visibility w/o Visibility w/ Visibility
ale 0.56 0.54 72.7 82.4
nya 0.71 0.68 16.9 22.5
bar 0.73 0.81 17.7 125.8
ler 0.73 0.66 -27.4 -2.3
tor 0.78 0.80 -1.9 14.2
lin 0.82 0.78 2.3 9.8
cab 0.77 0.75 2.9 8.2
cam 0.76 0.72 -20.9 -5.5
pay 0.80 0.75 5.4 14.4
car 0.86 0.85 -25.8 1.4
bos 0.78 0.80 14.3 3.8
bon 0.79 0.78 -5.5 12.9
bou 0.79 0.78 18.5 -6.3
clh 0.85 0.80 -1.9 -22.2
dra 0.91 0.91 32.5 31.4
tat 0.66 0.75 -24.6 6.1
ber 0.81 0.81 -15.3 -4.7
sbo 0.94 0.93 -6.6 16.5
sov 0.94 0.94 13.1 18.6
tam 0.90 0.90 27.7 46.5
kwa 0.77 0.78 -15.6 -4.9
ilo 0.81 0.81 -51.3 11.3

nau 0.86 0.81 -23.4 67.0
man 0.79 0.75 -26.0 -15.2
coc 0.88 0.87 -42.3 7.0
dwn 0.80 0.89 55.9 21.7
dar 0.86 0.88 -8.4 3.9
asp 0.89 0.90 -17.6 35.5
flo 0.69 0.81 6.3 6.9
daa 0.89 0.84 -19.0 6.6
syo 0.76 0.72 94.7 113.9

all locations, and found a significant difference with a p-value less than 0.01.
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The inclusion of visibility data has a limited impact on improving the correlation

between the computed irradiance values when compared to ground-based sources. In

some locations the error between the two measurements improves, however there was

not a consistent statistically significant improvement for including measured visibility

data. There could be several reasons for this, in particular localized visibility effects. It

is not known if the visibility data corresponds to the same location as the ground-based

irradiance source or to the same location reported by the ISCCP satellites. In addition,

the formula assumes the visibility is constant through the atmosphere, while the

visibility values recorded in the NCDC data base are just at the surface and may only

be applicable to the lower atmosphere.
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Chapter 3

Coupling photovoltaics and grid-scale energy

storage

Solar energy is typically used as a non-dispatchable resource, providing energy

only during daylight hours, and even then being affected by cloud cover. There are

only two options for compensating for this inherent variability: additional generating

capacity, or a means by which to store excess capacity for use at times when output is

low.

This chapter addresses the ability of a coupled utility scale photovoltaic array

and energy storage facility to provide dispatchable power in the form of either constant

base-load energy or output following a specific load curve. Primarily compressed air

energy storage (CAES) is used for the storage facility, however above ground CAES

and batteries are also considered.

3.1 Base-load Energy flow model

The energy flow model follows the energy provided by a solar photovoltaic

array and a grid-scale energy storage facility. A schematic of the model components

is shown in Fig. 3.1. This model, which operates on an hourly basis for the entire

globe, follows basic flows of energy through the coupled system. For each location and

hour, the model first determines the total output from the photovoltaic array, then

determines how the energy will be used. Energy is first used to meet a predetermined

baseload output with any additional energy stored up to the point at which the storage
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facility is full. Energy unable to be stored is counted as excess. If there is not enough

energy provided by the array to meet the baseload requirement, energy is taken out of

the storage facility up to the point at which the storage facility is empty.

CAES 

Figure 3.1: Energy is produced by the array, and sent either directly to the grid or to the storage
facility depending on the energy requirements at a particular time and the charge level of the storage
facility.

The coupled system is assumed to have a capacity of 100 MWe as a base-load

system. Because this is a combined system with a battery requiring charging, the

array must be sized such that the rated capacity of the array is greater than 100 MWe.

However, in this report where the “system capacity” is referenced, capacity refers to

the capacity of the coupled system, not the rated array capacity, which will be larger

than 100 MWe.
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The total output from the photovoltaic array is computed for each hour, i, as:

Ei =
I(i) ∗ (1−R(t))

1000 Wp/m2
WA (3.1)

where Ei [J] is the energy produced in that hour, I(i) [W] is the surface solar irradiation

at hour i, WA [Wp] is the rated capacity of the array, and the factor of 1000 Wp/m
2 is a

factor for determining the rated capacity for photovoltaic modules, used to standardize

their ratings [120]. Equation. (3.1) is computed for the start of each hour of analysis,

determining the energy available for that time step.

This analysis determines the array output using the rated array capacity, WA

instead of a specific array area. However, the size of the array may be calculated as

A =
WA

η 1000Wp/m2
(3.2)

where A is the array size [m2], η is the array efficiency, assumed to be 14% for this

analysis as a conservative value for panels available to consumers [13]. This will be

used to provide a general idea of the size required for the proposed systems, however

the specific area would change if a different efficiency were used.

The energy produced by the array is partitioned into three components:

Ei = Eg + Es + Ee (3.3)

where Eg [J] is the energy sent directly to the local grid to meet base-load electricity

needs and Es [J] is the energy directed into storage. When the storage is full and the

array is producing more than 100MWe, the excess electricity Ee [J] is available for

broader use. Additionally, energy taken from the storage facility is accounted for as
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Efs [J]. I calculate Eg, Es, Efs and Ee in each hour according to Ei as:

Eg =

{
100 MWhe

Ei

Ei ≥ 100 MWhe
Ei < 100 MWhe

Efs =

{
0 MWhe
100− Ei

Ei ≥ 100 MWhe
Ei < 100 MWhe

Es = Ei − 100 MWhe Ei ≥ 100 MWhe, storage not full

Ee = Ei − 100 MWhe Ei ≥ 100 MWhe, storage full

(3.4)

The total energy in the storage facility is updated after every hour. Night-time

hours are accounted for automatically because Ei is always zeros at these times. In

such cases, all energy is taken from the storage facility. During daylight hours energy

may be provided from both the array and storage facility or just from the array. If the

storage facility does not have enough energy to provide Efs, the total energy provided

that hour will be less than 100 MWhe. The amount of energy in the storage facility

is noted at the end of each simulated hour, as are Eg, Es, Ee, and Efs.

For all energy put into the storage facility, losses are accounted for through the

energy ratio, ER. This quantity accounts for both the efficiency of the compressor

and turbine and system losses as well as the fact that energy is added to preheat the

air before it passes through the turbine. The addition of energy in the form of natural

gas leads to the energy ratio being less than 1. Specifically, an ER of 0.73 is used for

this analysis [47–49].

The total natural gas used per year is calculated from the total energy provided

from the storage facility during its lifetime, Estorage, and the heat ratio, HRCAES

[MJ/MWhe], as

fuel use = HRCAES ∗ EStorage/TL (3.5)

where Estorage [MWhe] is the sum of Efs/ER for all hours of operation, and TL is the

lifetime of the system. This gives us an average amount of natural gas used by the
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system each year, in MJ .

The model also computes a capacity factor for the coupled system for each year

of operation. Given the definition of the system capacity as 100MWe of base-load

capacity, the capacity factor is computed assuming 100 MWe output. The system is

capable of providing more than 100 MWe due to the oversized array, however I assume

that Eg + Efs ≤ 100MWhe in each hour, as per Eq. 3.4, ignoring excess energy. The

capacity factor is then defined as:

CF =
Σyear(Eg + Efs)

876, 000 MWhe
(3.6)

Any excess energy produced, Ee, would assumedly be used on the grid as

traditional non-dispatchable solar power is used. During peak hours it would go

towards meeting the peak demand, and during non-peak hours it would be used on the

grid if traditional generators had sufficient flexibility to allow its use. If it were unable

to be utilized by the grid this excess would be curtailed. If it is entirely curtailed due

to lack of grid flexibility or other reasons, the operation of the coupled PV-CAES

system would not be affected.

Providing energy with a capacity factor of 100% is unrealistic, as systems

have unexpected failures and require maintenance. Nuclear power is a true base-load

resource, as it does not load follow and is used at a constant output level. The U.S.

nuclear fleet has a 5-year average capacity factor of 90.7% [121]. This value is used

as a reference capacity factor for base-load sources, and sized the coupled system

such that this capacity factor could be met in each year of the analysis. It should be

noted that in traditional base-load generators, maintenance can be scheduled during

off-peak times whereas with the current method maintenance would be required to

be done during the winter time when solar irradiance is low. This may coincide to
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periods of higher demand than would be seen during maintenance periods of traditional

generators.

For the energy flow analysis, the size of the array and storage facility had to

be determined. I determined the size of the array and storage facility such that the

system had a capacity factor of 0.907 ± 0.001. I simplified the problem by fixing the

storage capacity to 24 different values, and determined the array size required to reach

the desired capacity factor for each of these storage sizes.

The storage sizes were determined based on the longest night at any particular

location. There is no output from the array during the night-time, requiring all energy

to come from storage during this time period. Therefore, the storage facility must

be able to hold at least enough energy for the longest night of the year in order to

provide base-load energy. I then multiplied the amount of storage required for this

minimum amount by multiples of 0.5 from 1.0 to 12.5 for the analysis.

For each of these 24 storage capacity values I performed a midpoint search

to identify the array size that gave CF = 0.907± 0.001. The search began with an

array area of 1 km2, the lower bound array size, and 900 km2, the upper bound array

size. As most locations not in the poles only required an array size of less than 20

km2, I performed an initial parameter sweep of 2, 5, and 10 km2, replacing the upper

and lower bounds on the array size as necessary. From this initial parameter sweep,

I proceeded with the mid-point search to determine the capacity factor for an array

sized according to the midpoint of the current upper and lower bound array sizes. I

then replaced either the upper or lower bound based on the capacity factor of this

analysis. The search stopped once the capacity factor was within the acceptable range

of 0.907 ± 0.001.

While I have assumed base-load generation only from these facilities in the
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current analysis, CAES facilities may actually be able to provide a higher revenue

stream for themselves by providing ancillary services in addition to direct energy

provision. Due to the decoupling of the compressor and turbine, both of these systems

can provide ancillary services. Provision of non-spinning reserves has been determined

to potentially increase the over 30%, and provision of non-spinning, spinning, and

regulation up and down reserves can potentially increase profits 40-60% [122]. A direct

analysis of providing ancillary services with these facilities was not performed in this

dissertation, however should be noted as a potential additional revenue stream for

the coupled facilities. Use of CAES facilities to provide ancillary services has been

discussed in more detail for the Electric Reliability Council of Texas [122] and for use

in high wind penetrations specifically [123].

While CAES is the preferred storage medium, in many locations the geology

is either not suitable for CAES, or would be too expensive [105]. Figure 3.2 shows

a general map of rock types throughout the globe. Salt domes are preferable for

CAES facilities, but aquifers, sedimentary basins and hard rock can all be used [49].

While geology feasible for CAES exists in 68.5% of all land not including Antarctica,

locations labeled as “Folded or Fractured” rock in Figure 3.2, would be unsuitable for

this technology. As such, I also examined the use of above-ground CAES and batteries

in the energy flow model.

Above-ground CAES utilizes the same technology as below-ground CAES,

however the compressed air is stored in tanks as opposed to underground caverns.

Because of this, above-ground CAES is typically envisioned to have a capacity no larger

than 10 MW. However, for this analysis I assumed that multiple above-ground units

would be installed to provide the required storage. The energy ratio for above-ground

CAES was assumed to be 1 [107].
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No Data

Salt Formation

Sedimentary Reservoir

Hard Rock

Folded, Fractured

Figure 3.2: Compressed Air Energy Storage (CAES) can likely be sited in many rock types and
geological structures, including salt domes, sedimentary basins, and hard rock. This figure shows
globally where these formations exist and as such might be able to site a CAES facility. This map
was prepared by Ian Duncan and Cari Breton at the University of Texas at Austin Jackson School of
Geology, using the Geologic Province Map from US Geological Survey and [124].

Batteries are very easy to site, and so remove the locational limitations of

below-ground CAES. They also do not utilize natural gas in their operation. However,

because natural gas is not used as an additional energy source, the total energy

batteries are able to provide are lower than that of CAES. For this model I assumed

a round-trip battery efficiency of 75% [109]. The energy flow model for batteries

operates qualitatively similar to the energy flow model for CAES, however does not

include injection of natural gas and so Eq. 3.5 is not utilized. In addition, the battery

efficiency is used instead of the energy ratio when accounting for system losses and

inefficiencies. For this analysis I have assumed the batteries would not degrade over

their life cycles. Including this degradation would impact the ability to store energy

in these facilities, however I assume this degradation would be minimal over the rated

cycle life of the facility.
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3.2 Levelized Cost of Electricity

An important question for solar powered systems is what the total cost will

be. Until recently, solar photovoltaics were prohibitively expensive for large-scale

development. However, with the recently dropping costs of PV panels, such systems

are becoming increasingly cost competitive. In order to quantify where such systems

would be feasible, I computed the levelized cost of electricity for a coupled photovoltaic

and and grid-scale energy storage facility operating as described in Section 3.1.

3.2.1 Cost Model

I computed the total levelized system cost as the sum of the individual compo-

nent costs:

Ctotal = CArray + CStorage + CFuel + CReplacement + CO&M (3.7)

Here CArray is the cost of the module and balance of system components for the array,

including inverters, mounting, wiring and other components [$], CStorage is the cost

of the compressed air energy storage system (CAES) [$], CFuel is the cost of fuel [$],

CO&M is the cost the operations and maintenance costs [$], and CReplacement is the

total cost of replacing the photovoltaic modules and inverter [$]. All of the component

costs are levelized over the lifetime of the coupled system using continuous discounting.

Figure 3.3 shows the timing of the cash flows that go into the respective costs.

The capital costs of the storage facility are assumed to be a single up-front cost. The

array capital costs are assumed to be distributed throughout the construction period,

due to the modular nature of photovoltaic array construction. Balance of system

components are replaced twice during the system lifetime, these costs largely consist

of replacing the inverter for the array. In order to compensate for degradation of the

photovoltaic array I assume that solar panels are added each year in an amount equal
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to the degradation as a continuous replacement cost. Other continuous costs include

operations and maintenance costs and fuel costs. All point costs are discounted as

single costs and all distributed costs are discounted using continuous discounting. The

discount rate used was 7%.

Cstorage

Carray

T0

CBOSCBOS

TL

Cmod, CO&M, Cfuel

TCAES TArray

    

Figure 3.3: Cstorage, CBOS are paid as lump sums while CArray, Cmod, CO&M , and Cfuel
are distributed costs. Depending on the array size, Tarray may begin before TCAES.

The levelized component costs are determined by Equations (3.8) - (3.12).

Carray = WA ∗ (Cmod + CBOS)
e−ρTArray − e−ρT0
−ρ TArray

(3.8)

CStorage = (S ∗ Cres + C ∗ CBOP ) e−ρ TCAES (3.9)

CO&M = [CAO&M ∗WA + CV O&M
EStorage
TL

+ CFO&M ∗ C]
e−ρT0 − e−ρTL

ρ
(3.10)

Cfuel = (CfuelPrice ∗HRCAES
EStorage
TL

)(e−ρT0 − e−ρTL)/ρ (3.11)

Creplacement = WA ∗ Cmod ∗ δ ∗
e−ρT0 − e−ρTL

ρ

+WA ∗ CBOS ∗ fBOS (e−ρTBOS + e−2ρTBOS) (3.12)

Here WA is the array size [MWe], EStorage is the total energy placed in storage over

the lifetime of the facility [MWhe], S is the storage capacity [MWhe], and C is the

desired output of the combined system, 100 MWe.
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When battery storage is used instead of compressed air energy storage, Eqs. (3.9)-

(3.10) become

CStorage = (S ∗ CB)e−ρTB (3.13)

CO&M = [CAO&M ∗WA + CBO&M ∗ C](e−ρT0 − e−ρTL)/ρ (3.14)

and Eq. (3.11) no longer applies. The discount equations need to reflect that battery

systems must be replaced after 15 years, Fig. 3.4, and that there is no use of natural

gas.

Figure 3.4: Cstorage, CBOS are paid as lump sums while CArray, Cmod, and CO&M are
distributed costs. Depending on the array size, Tarray may begin before TB.

The unit costs for components, the operations and maintenance costs, and the

lead/lag times are drawn from the literature and summarized in Tables 3.1-3.3. All

other terms in Equations (3.8) - (3.12) are also defined in Tables 3.1-3.3.

Above-ground CAES facility use the same equations as below-ground CAES.

It should be noted that above-ground compressed air energy storage typically has

capacities on the order of 10s MWe rather than 100s of MWe. However, I assume

that above ground compressed air system would be scalable, or would be used in a

distributed manner throughout the 0.5◦x0.5◦ area with a total capacity of 100 MWe.

The following sub-sections provide further detail on the costs and other variables

utilized in the cost model.
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Quantity Variable Cost Cost Range Reference
Module Cmodule 0.79x106

$/MWp

0.72-0.85x106

$/MWp

[30, 88,125]

BOS Costs CBOS 1.13x106

$/MWp

0.83-1.43x106

$/MWp

[30, 88,125]

Array O&M CAO&M 21.3x106

$/MWp-yr
8-40x106

$/MWp-yr
[88,91,126,127]

Efficiency, Array η 14 % [13,128]
Degradation, Array δ 0.513 %/yr 0.2 – 1 %/yr [93,129]
BOS Replacement, Array fBOS 27.8% 13.3% – 70% [30,93,125]
BOS Replacement interval TBOS 10.4 years 7 15 yrs [128,129]
Array Construction TArray variable Table 3.15
System Lifetime TL 30 years 25 - 40 yrs [88,129]
Discount Rate ρ 7 %/yr 5 – 10 % /yr [129,130]

Table 3.1: Discount model input parameters for photovoltaic array.

Quantity Variable Value Value Range Reference
Reservoir Cost Cres

Salt Dome 2,000 $/MWhe [47–49]
Other formations 30,000 $/MWhe [48, 49]
Above ground 193,271 $/MWhe 173,271 – 203,471

$/MWhe

[48, 107,131]

Turbine/Compressor
(below ground)

CBOP 635,750 $/MWe 440,000–989,000
$/MWe

[47–49]

Turbine/Compressor
(above ground)

CBOP 1,179,600 $/MWe 430,000–2,000,000
$/MWe

[48, 107,131,132]

O&M, below ground
variable CV O&M 6.65 $/MWhe 3–10.3 $/MWhe [47–49,133]
fixed CFO&M 6.86x103 $/MWp-yr 2.5–14.07x103

$/MWp-yr
O&M, above ground

variable CV O&M 4x103 $/MWp-yr 3–5 $/MWhe [107]
fixed CFO&M 11.9x103 $/MWp-yr 8–15.86 $/MWhe [48, 107]

Fuel Cost CfuelPrice By country <1 – 30.1x10−3

$/MJ
[134–136]

Energy ER 0.73 0.56 – 0.84 [47–49]
Ratio MWhe,in/MWhe,out MWhe,in/MWhe,out

Heat Rate, HRCAES 4.462x103 4.2 – 4.819 x103 [47–49]
below ground MJ/MWhe MJ/MWhe

Heat Rate, HRCAES 4.51x103 3.9 – 6.2 x103 [107,132]
above ground MJ/MWhe MJ/MWhe

CAES Construction TCAES -3 years -2.5 – -4 yrs [47–49]

Table 3.2: Unit costs for compressed air energy storage. Data on unit costs for both above ground
and below ground systems are shown. Here CAES stands for ‘compressed air energy storage’. It is
assumed that the CAES construction time is the same for both above and below ground systems.
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Quantity Variable Value Value Range Reference
Battery Capital CB 342,000 $/MWhe 238,000-535,000 $/MWhe [107,109]
Costs (NaS)
Battery Capital CB 150,000 $/MWhe [107]
Costs (DOE Goal) [137]
Battery O&M

fixed CBFO&M 4,300 $/MWe-yr 4,300-4,500 $/MWe-yr [107]
variable CBV O&M 0.5 $/MWhe 0.4 – 0.5 $/MWe-yr [107]

Battery efficiency η 75% 71-90% [107,109]
Battery lifetime TBR 15 years [45,107]
Battery
Construction

TB -1 year [107]

Table 3.3: Battery unit costs, lead lag times, and efficiencies.

3.2.1.1 Battery Costs

The battery costs were determined for two different technologies, sodium

sulfur and DOE’s goal for batteries by 2050. Sodium sulfur batteries are currently

commercially available and have been installed in several locations, including Japan

and Texas [45,50]. The costs for these batteries vary widely, so for my cost estimate

I utilized the mode values presented in a review article [109], which accounted for

differences in efficiency, assumed lifetime, and use profiles. These costs were given in

2011 EUR, so the costs were converted to USD using the IRS yearly average conversion

rate value of 0.748 EUR/USD for 2011 [138]. The costs for the DOEs goal technology

were taken from [137], indicating the technology costs deemed feasible by the DOE by

the year 2050.

I assumed both technologies had a lifetime of 15 years, and an efficiency of

75% as a low-end estimate [109]. Operation and maintenance costs were accounted for

and were taken from the DOE/EPRI 2013 Electricity Storage Handbook [107]. These

values were held constant for both battery technologies.

I accounted for replacement costs by assuming a 15-year lifetime for the batteries,

and that they would be completely replaced at this time, leading to one replacement
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during the system lifetime. This was discounted according to the replacement time of

the battery system. All variables specifically associated with battery storage are given

in Table 3.3.

3.2.1.2 CAES Geology

Salt domes are ideal for below-ground CAES, and Fig. 3.5 shows their geo-

graphical distribution [124]. For all other locations I assume the storage cavern would

be built into rock formations, which is significantly more expensive, Table 3.2. While

some locations would be able to build storage caverns at a cost between these extremes,

I assumed the upper bound on storage costs as a conservative estimate.

Figure 3.5: The geographical distribution of salt deposits is shown [124]. These locations are
particularly good for compressed air energy storage and are the cheapest locations for building
reservoirs.

3.2.1.3 Array Construction Time

The time to built an array, TArray, was computed using data from utility scale

photovoltaic installations, Table 3.4. I assumed a linear relationship between array
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size and construction time, and computed a linear least squares curve fit with the data

from 11 operational or partially operational utility-scale photovoltaic arrays. From

this data, I determined a curve fit for the construction time for an array based on its

size as:

TArray = 0.0054WA + 0.59 (3.15)

which has an R2 value of 0.97, Fig. 3.6. I used Eq. (3.15) to determine the approximate

construction time of each array determined in the energy flow model. In practice, I

multiply TArray by -1 before substituting it in Eq. (3.8) as it represents a lead time.

Photovoltaic
Array

Capacity
[MW]

Construction
Time [years]

Notes Reference

Mohammed bin
Rashid Al Maktoum
Solar Park

13 0.58 Operational
Oct. 2013

[139]

Blythe, CA 21 0.33 Operational
Dec. 2009

[140]

Cimarron, NM 30 0.67 Operational
Dec. 2010

[141]

Copper Mountain
Solar 1

48 1 Operational
Dec. 2010

[142]

Copper Mountain
Solar 2

92 1 Operational
Dec. 2012

[143]

Antelope Valley
Solar Ranch 1

100 1.5 Partial
Deployment

[144]

Mesquite Solar 1 150 1.5 Operational
Dec. 2012

[145]

California Valley
Solar Ranch

250 2 Operational
Oct. 2013

[146]

Agua Caliente 250 2 Partial
Deployment

[147]

Topaz Solar Farm 550 3.5 Expected
Completion
2015

[148]

Desert Sunlight
Solar Farm

550 3.5 Expected
Completion
2015

[149]

Table 3.4: Construction times for currently operational utility scale solar power facilities. Used to
calculate an approximate linear relationship between array capacity and construction time for use in
the cost model given above.
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Figure 3.6: Data are from the construction times for grid scale facilities built, Table 3.15. Two 550
MWe facilities are currently under construction, however are on schedule for their projected 2015
completion, so were included as representative of large scale arrays. I used a linear least squares curve
fit to approximate these times to a linear function and used this to estimate the array construction
times in the model.

3.2.1.4 Natural Gas Prices

Natural gas prices can vary considerably from year to year, and also by re-

gion, from a 2013 low of < $1x10−3/MJ in Turkmenistan to over $30x10−3/MJ in

Denmark [135,136]. In particular, the retail price of industrial natural gas in Japan,

South Korea, and Brazil is $16x10−3/MJ, and it has recently jumped to $8x10−3/MJ

in India [48, 107]. At $16x10−3/MJ, the land fraction that can produce baseload

electricity ≤ $0.08/kWhe falls to 15%, assuming all other costs as in Tables 3.1-3.3.

At $8x10−3/MJ it is 31%. The dependence on natural gas price is shown in Fig. 3.7.

Natural gas markets are in a period of considerable change, and the country specific

data used in this study are very likely to evolve.
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Figure 3.7: The retail price of natural gas around the world, as described in Table 3.2.

3.2.2 Life-cycle Electricity Cost

The model described in Section 3.2 can be used to determine the total system

cost for any particularly sized array and storage facility. This can be used in conjunction

with the energy flow model from Section 3.1 to identify the life-cycle cost of energy

from a particular system. This energy cost is computed as the total levelized cost

divided by the energy provided by the system over its lifetime:

Cenergy =
Ctotal

Σlifetime(Eg + Efs)
(3.16)

where Cenergy is the life-cycle cost of energy in $/kWhe.

I was most interested in determining the system which would provide the

lowest levelized electricity cost at each location. To do this, I optimized the array

size and storage capacity for the minimum cost configuration based on the 24 system

sizes determined by in the energy flow model. For each of 24 separate storage sizes
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the array size, WA, which provided a capacity factor greater than or equal to 0.907

was determined. Storage facilities as large 13500 MWhe have been proposed and

studied [106], so this was used as an upper bound and capped the total storage size at

this amount. Many polar regions were unable to provide 100 MW of energy with a

90.7% capacity factor and 13500 MWhe storage due to long lasting polar nights.

For each combination of storage and array size, the life-cycle cost was determined

using Equations (3.7)-(3.12) and (3.16). The costs of these 24 configurations were

compared and the minimum cost solution was then identified at each location. The

array size and storage capacity of this minimum cost solution were then utilized to

determine the overall costs of the coupled facility.

Figures 3.8 - 3.9 show the array size and storage capacity respectively for

the minimum cost configurations out of the 24 systems analyzed, specifically for
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Figure 3.8: Array rated capacity in MWe for the minimum cost configuration of the system. The
minimum cost was determined by comparing 24 configurations of array and storage capacities.
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Figure 3.9: Total storage capacity in MWhe for the minimum cost configuration of the system.
The minimum cost was determined by comparing 24 configurations of array and storage capacities.
The cost-optimized storage configuration was influenced by the location of salt domes, which are
much cheaper for building CAES plants than other geologies.

below-ground CAES. Many of the non-polar locations with high storage capacities are

locations with salt domes. Given the low cost to build below-ground CAES facilities

here, the cost-optimized configurations include higher storage capacity than locations

at similar latitudes without salt domes.

I performed the above cost analysis assuming the storage capacity was below-

ground CAES, above-ground CAES, or battery storage independently. Figures 3.10 -

3.12 show the life-cycle energy costs for each of these technologies, as computed using

Equations 3.7 - 3.16 and the costs provided in Tables 3.1-3.3. However, when using

battery storage facilities, array costs of $0.43/Wp for the module and $0.57/Wp for

the balance of system components were used to simulate $1/Wp projected array costs.

Battery storage facilities were not cost competitive with current average prices as

presented in Table 3.1.
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Figure 3.10: The life-cycle electricity cost for a coupled photovoltaic array and below-ground
compressed air energy storage facility. The array and storage capacity were sized to provide the
least-cost energy.

Figure 3.11: The life-cycle electricity cost for a coupled photovoltaic array and above-ground
compressed air energy storage facility. The array and storage capacity were sized to provide the
least-cost energy.
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Figure 3.12: The life-cycle electricity cost for a coupled photovoltaic array and battery storage.
The array and storage capacity were sized to provide the least-cost energy.

3.2.2.1 Cost Comparison

Extensive studies for the cost of building new nuclear capacity were done in

2003 and 2009. The estimates took into consideration recent experience in Japan and

Korea as well as projections for the cost of new capacity in the US [10,150]. The 2003

study put the levelized cost of electricity at $0.067/kWhe in 2002 US dollars, and the

2009 study put it at $0.084/kWhe in 2007 dollars. The biggest contributor to the

difference was the cost of capacity, which was $2000/kWe and $4000/kWe respectively.

When adjusted to 2010 US dollars the levelized cost estimates for the 2003 and 2009

studies are $0.08/kWhe and $0.09/kWhe, respectively. The low end of estimates

for the cost of nuclear capacity in developing countries is consistent with the value

assumed in the 2003 study. In order to be consistent with these estimates for nuclear

power, I utilize $0.08/kWhe as a benchmark for low-cost energy from a base-load

system.
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The Fifth Assessment by the International Panel on Climate Change analyzed

levelized cost of electricity from three different forms of coal fired power with carbon

capture and storage as well as a combined cycle natural gas option. The later was

estimated to be the least expensive, with a mean cost of $0.086/kWhe in 2010 US

dollars [5], which is higher than the estimate of nuclear energy. To be conservative, I

utilized the lowest cost estimate of these two estimates for low-carbon technologies

when analyzing the potential feasibility of a coupled photovoltaic and energy storage

system.

3.2.3 Variance in the levelized cost of electricity.

For each variable in the cost calculation, I computed the cost distribution and

found a standard deviation. I assumed triangular distributions for the cost components

with end points at the low and high values given in the literature and the peak at

either the mean value, or the mode if there was a commonly cited value. Triangular

distributions were used because typically only 2-4 data points were available for each

variable. The peak value used in the cost analysis along with the range of cost values

is given in Tables 3.1-3.3.

Mean values were assumed for the peak of the triangular distribution for the

variables Cmod, CBOS, CCAES, CAO&M , CV O&M , CFO&M , Cfuel, HRCAES, d, fBOS, and

TBOP . When ranges for a variable were given by a source, the min, mean, and max

values of that range were used in computing the overall average value. This provided

full representation of the data in each range given.

Mode values were used for the peak of the triangular distribution for the

variables ρ, TCAES, TL, and TBOS. Mode values were used for these variables because

most or all sources listed a common value as either the only value, or gave a range of

possible values but cited the most expected value as this common value. In this case
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the full range of given values was used to compute the standard deviation, but this

common value was used in computation of the cost itself.

The reservoir cost per MWhe was assumed to be a constant for below-ground

CAES, and based on the geology of each location. Only two CAES facilities have been

constructed, and the range of costs is not well known. Sources typically give the same

expected cost for cavern construction, Table 3.2. Because of this I assume Cres has

no variance for below-ground CAES. Above-ground CAES reservoir costs did show a

range in the literature, and so the variance of Cres for above-ground CAES was not

assumed to be 0.

The variance of each variable, except for TArray, was computed separately for

each of the i unit costs:

σi = 1/18(a2 + b2 + c2 − ab− ac− bc) (3.17)

where a is the min value, b the peak, and c is the maximum value of the triangle.

The exception to this was the array construction time, TArray. For this variable, the

variance was computed from the linear least squares fit of the data in Table 3.4.

Once the σi were computed for each variable, the standard deviation for the

total cost was computed using the error propagation formula, and assuming that the

unit costs were uncorrelated:

σ2 = Σi

(
σi
δC

δxi

)2

(3.18)

where xi represents the unit costs. The standard deviation of the cost of electricity is

shown in Figures 3.13 - 3.14.
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Figure 3.13: World map of standard deviation in electricity cost for the minimum cost system of
coupled photovoltaic array and below-ground CAES.

Figure 3.14: World map of standard deviation in electricity cost for the minimum cost system of
coupled photovoltaic array and above-ground CAES.
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3.2.4 Sensitivity Analysis

The sensitivity of the total cost to each of the variables used in the cost

calculation can be seen in Fig. 3.15. The figures were generated by systematically

varying a single variable while holding all other parameters in the cost model fixed.

The variables were varied over the full ranges given in the literature for each value. In

some cases these values were extended to show a wider range of potential values.

Two particular locations were used for this analysis, one with a low total system

cost and one with a high total system cost. The size of the array and storage facility

as well as the total energy provided from the system were used for each location. This

was done in order to show any differences due to array size or storage capacity. The

lower cost system had a 2.1 km2 array and 2600 MWhe of storage. The higher cost

system has an 11.2 km2 array and 12700 MWhe of storage.

This analysis shows the effect that increases or decreases in particular variables

will have on the cost, in particular which variables have the largest impact on cost

and which variables do not influence cost to a high degree. I found that variations in

the discount rate, as well as array and balance of system costs have the biggest effect

on the levelized system, in large part due to the fact that these variables provide the

largest fraction of the total cost. The construction time for the array is also important.

In addition, locations with high overall costs were more sensitive to changing

module, balance of system and reservoir costs. These costs comprised a higher

percentage of the total cost, so small changes in any of the variables led to a greater

change in overall system costs. For the lower cost system, the fuel price had a much

higher impact. With lower array and storage costs, fuel was a much more significant

fraction of the system cost.
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Figure 3.15: The sensitivity of the levelized system cost to changes in the unit costs. The costs
were weighted according to the total system cost for two different locations, one with a lower total
system cost and one with a higher one. The lower cost system had a 2.1 km2 array and 2600 MWhe
of storage. The higher cost system has an 11.2 km2 array and 12700 MWhe of storage. Baseline
unit costs and lad/lag times are from Tables 3.1-3.3. The initial cost and parameter value is shown
with a dot in each figure.
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3.3 Carbon intensity of the coupled system.

Lowering carbon emissions is a large draw for installing renewable energy

systems. Solar power itself has very low life-cycle carbon emissions, the majority of

which comes from manufacturing the photovoltaic panels. However, when coupled to

CAES storage facilities, the use of natural gas contributes additional carbon emissions.

Quantifying these emissions is important to determine the degree to which the coupled

system could reduce carbon emissions compared to traditional generators such as coal

or natural gas.

I calculated the emission rate for the combined system of photovoltaics and

CAES using life-cycle emissions from the manufacturing, construction, and operation

of the photovoltaic modules and the storage system. The emissions from the storage

facility include construction of the facility, 19.4 x106 g CO2 -eq/MWh capacity, the

delivery systems for the natural gas, 11.1 g CO2-eq/MJ natural gas delivered, and

the burning of natural gas, 50.3 g CO2-eq/MJ natural gas consumed [44]. The total

green-house gas emissions were computed as the sum of these contributions:

GHGCAES = S ∗
(

19.4x106 g − eqCO2

MWhe

)
+ Es ∗HR ∗

(
1000

kWhe
MWhe

)
∗
(

61.4
g − eqCO2

MJ

)
(3.19)

where Es HRCAES (1000 kWhe/MWhe) is the total natural gas used in MJ. The

largest contributor of emissions was the natural gas consumption.

I computed the emissions from the photovoltaic system using mean values

presented by Hsu et al. (2012) [8], who calculated the emissions rate for a photovoltaic

module assuming an efficiency of 14%, performance ratio of 0.8, average irradiance of

1700 kWh/m2/yr and a 30-year lifetime. I multiplied their result of 52 g-eq CO2/kWhe

by their assumed efficiency, performance ratio (ratio of AC to DC electricity), average
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irradiance and system lifetime to calculate the green-house gas emissions per m2 of

array, which yielded 2.97x105 g-eq CO2/m2. I then calculated the emissions from the

photovoltaic system as:

GHGPV = A ∗ 2.97 ∗ 105g − eqCO2/m
2 (3.20)

where A was the array size in m2 as calculated from the cost optimization and Eq. (3.2).

The emissions from the two systems were summed and then divided by the total

energy provided by the PV-CAES system over its lifetime to calculate the emissions

per unit of energy provided:

Emissions =
GHGCAES +GHGPV

Σlifetime(Eg + Efs) ∗ (1000 kWhe
MWhe

)
(3.21)

Figure 3.16 shows the carbon intensity for the coupled system in the regions

for which the cost of baseload electricity was found to be ≤ $0.08/kWhe.
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Figure 3.16: Green-house gas emissions of coupled PV-CAES system, colored for all locations with
a leveled cost of ≤ 0.08 $/kWhe.
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3.4 Global Analysis

As described in sub-section 3.2.2.1, the cost of energy from a nuclear power

facility is projected to be $0.08/kWhe [10], and estimates of electricity costs for carbon

capture systems are expected to be higher [5]. I use this as a reference cost below which

the coupled photovoltaic-CAES facility would be cost competitive as a low-carbon

base-load energy source. Of particular importance are locations globally for which

such a low-cost system could be sited.

3.4.1 Feasible land fraction

The global land area for which the system described in Section 3.1 and 3.2 is

capable of providing low-cost base-load energy has dropped dramatically given falling

solar prices. Figure 3.17 shows the global land area for which the energy cost of a

coupled PV-CAES facility is less than $0.08/kWhe for several different PV module

and balance of system costs. All other costs are held fixed.

The costs of photovoltaic modules and balance of system components dropped

significantly since 2010, from 1.85 $/Wp for modules and 1.39 $/Wp for balance of

system components to 0.72 $/Wp for modules and 0.83 $/Wp for balance of system

components in 2013 [30]. Costs are expected to continue dropping to a combined

$1/Wp for both module and balance of system components within a decade [92,93].

For $1/Wp combined costs, I assumed costs of $0.43/Wp for the module and $0.57/Wp

for the balance of system components.

Above-ground CAES is a more expensive alternative to traditional CAES, and

as such has an energy cost of less than $0.08/kWhe for a much smaller faction of the

earth’s surface. However, if PV costs drop below $1/Wp it becomes a much more cost

effective option.
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Figure 3.17: Fraction of global land for which the life-cycle electricity cost is less than $0.08/kWhe.
The dropping costs of photovoltaic modules has greatly improved the ability of photovoltaic systems
to provide low cost power globally
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Batteries are the most costly storage option I investigated. They are not

currently cost effective with today’s photovoltaic and storage costs. However, assuming

that the cost of photovoltaics will drop to $1/Wp within the next 10-15 years, this

could be an option for large-scale storage coupled to solar power facilities. Additionally,

the U.S. Department of Energy has set a goal for battery prices to drop to $150/kWhe.

Such a cost reduction would also improve the economic feasibility of a coupled PV-

battery base-load system.

Figure 3.18 shows for a coupled PV-battery system the percentage of global

land with a life-cycle energy cost less than or equal to a particular value. This is

shown for both current technologies, assumed to be sodium-sulfur (NaS) batteries,

and for the Department of Energy goal battery. While there is only a small land area

with an energy cost less than $0.08/kWhe, a coupled PV-battery facility would be

more cost-competitive in locations with high costs of electricity.
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Figure 3.18: The percentage of land area with less than a particular energy cost is shown for two
battery systems, currently available sodium-sulfur batteries and the Department of Energy (DOE)
goal for battery costs.
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The percent of land with energy cost less than $0.08/kWhe for each of the

three storage technologies are shown in Table 3.5. The percentages are shown for both

the average array costs from Table 3.1 used in this analysis and for $1/Wp array costs.

Land Percentage with cost < $0.08/kWhe

Array Cost

Storage Technology Average $1/Wp

Below-Ground CAES 43.1% 56.1%
Above-Ground CAES 17.5% 43.0%

NaS Battery 0 % 6.5%
DOE Goal Battery 3.1 % 26.5%

Table 3.5: The percentage of land area across the globe for which the life-cycle cost of energy is
less than $0.08/kWhe, for each of the potentially storage technologies investigated. Both types of
batteries are shown. The percentages are shown for both the average array cost assumed in this
analysis as well as if the array cost were to drop to $1/Wp.

It should be noted that there is a percentage of land area for which this

system is not technically feasible with current technologies. Polar latitudes which have

extremely long nights, particularly those more extreme the polar circle, would not be

able to store enough energy for this entire night given current storage technologies.

While other considerations such as technology performance at low temperatures would

also be a concern for these locations, the length of the night currently provides a hard

cap based on latitude for which the above analysis would be technically feasible.

3.4.2 Population with access to feasible land

More important than land fraction is the fraction of the population within

regions with low-cost photovoltaics. Many regions with high irradiance values are

also desert regions with low population densities. These locations may provide lower
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cost energy due to higher output, however they would need expensive long-distance

transmission lines to connect to load centers.

I identified the fraction of the world’s population which would have access to

low-cost energy from the coupled photovoltaic-storage facilities identified in Section 3.2.

Figure 3.19 shows the locations which would be able to provide energy at a cost less

than $0.08/kWhe for below-ground CAES storage facilities and varying array costs.
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Figure 3.19: Areas with a cost < $0.08/kWhe, colored by the log of the population in that area

This is particularly illustrative as with the 2010 array costs a very small

percentage of the world’s population is able to provide low-cost PV-CAES energy.

The locations with such low-cost energy are largely in Saharan Africa and Saudi

Arabia. By 2013 however, the cost had dropped enough that India, south-east Asia,

and the southern United States all show an energy cost of less than $0.08/kWhe from

a coupled PV-CAES system.
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Above-ground storage and batteries are not yet at a cost point where a majority

of the world’s population would have access to low-cost energy from a coupled PV-

storage facility. However, as the costs of these technologies drop it will become more

feasible to use either of these technologies. Figure 3.20 shows the fraction of the

world’s population that can provide energy at less than or equal to a particular cost for

both the sodium-sulfur batteries and the U.S. Department of Energy goal technology.
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Figure 3.20: The percentage of the world’s population with access to energy from a PV-battery
system at a cost less than a particular energy cost. This is shown for two battery systems, currently
available sodium-sulfur batteries and the U.S. Department of Energy goal for battery costs.

The percentage of population with access to a particular energy cost is not

linear, due to the nature of where global populations are situated. As can be seen in

Fig. 3.20, a large portion of the population is on the cusp of having access to such

low-cost energy, particularly if improvements in technologies allow for either increases

in efficiency of batteries or reductions in cost of the system components.

Table 3.6 shows the percentages of the global population with access to energy

from a coupled photovoltaic-storage facility at a cost less than $0.08/kWhe for each of
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the storage technologies examined, at both the average array cost utilized in Section 3.2

and at $1/Wp.

Population Percentage with access to
energy costs < $0.08/kWhe

Array Cost

Storage Technology Average $1/Wp

Below-Ground CAES 47.1% 71.0%
Above-Ground CAES 8.4% 47.4%

NaS Battery 0 % 2.5%
DOE Goal Battery 0.5% 22.6%

Table 3.6: The percentage of global population for which the life-cycle cost of energy is less than
$0.08/kWhe, for each of the potentially storage technologies investigated. Both types of batteries
are shown. The percentages are shown for both the average array cost assumed in this analysis as
well as if the array cost were to drop to $1/Wp.

While the concerns with technical feasibility at pole-ward latitudes discussed in

sub-section 3.4.1 are also an issue for the population analysis, this is less of a concern

when considering population as much of the world’s population do not live in these

extreme latitudes.

3.5 Excess Energy

The model presented in Section 3.1 only accounts for energy provided directly

to the grid via the coupled PV-CAES system. It does not utilize any energy in excess

of 100 MWh in any hour, marking this energy instead as “excess”, and assuming that

it would be utilized by other sources or directly sold on the grid. In some cases, this

excess energy can be more than double the total energy provided directly from the

array and storage facility, Figure 3.21

In the previous analysis, I assumed that this excess energy would be utilized in
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Figure 3.21: The total excess energy produced from the coupled system can in some cases be a
large amount. This figure shows the ratio of excess energy to energy provided directly from the array
and storage facility. Northern latitudes have higher excess due to the need to over-build for longer
winter nights.

some manner, however did not perform an analysis of how it would be used. In reality,

this energy would likely be sold to the electric grid on the real-time market, similarly

to the current manner in which solar power is sold. If the electric grid operators

were unable to utilize this energy, it would be curtailed. However, if it were sold on

the electricity market it would generate revenue for the system owners. As noted

in [151], solar power typically is high during on-peak times, providing a much higher

compensation than wind power.

I have performed an analysis of a simple model for selling this excess energy

on a typical electric grid and the potential additional revenue that could be acquired

by doing so. I assumed that the energy provided would be a price taker, meaning its

bid into the market would not influence the prices given at that time. This is likely a

good assumption for locations with little excess, as the amount of energy sold would
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not be a large percentage of the total energy on the grid and therefore would it would

be unlikely to affect the price. In more northern locations where particularly in the

summer time there would be large amounts of excess, as much as 500 or more MWh,

this assumption is potentially less reasonable. The large influx of low-cost PV energy

into the market could be of a high enough level to impact the electricity price at some

times, resulting in lower energy prices overall [152]. While a possibility, I have however

assumed that this would not be the case for this analysis.

I also assumed that the electric grid had enough flexibility in each hour to

accept the energy and did not account for possible curtailment. This assumption,

similarly to the previous assumption, is less likely to hold true at northern latitudes

and also in locations without a stable electric grid. However, determining the degree

to which the solar energy would be curtailed would require a much more extensive

analysis concerning the energy and transmission resources at every location on the

planet. Such an analysis was beyond the scope of this study.

Given these two assumptions, this analysis presents a high-end boundary on

the additional revenue that could be expected to be gained by selling the excess energy

provided from the coupled PV-CAES system described in Section 3.1.

I utilized real-time prices for U.S. independent system operators (ISO’s), Fig. 4.2,

for the pricing data of this analysis. For each U.S. ISO except for the California

ISO historical real-time price data for the aggregated ISO were collected. Data for

ERCOT were available from 2010-2014 [153], for MISO from October 2011 through

June 2014 [154], for NYISO from January 2011 through March 2014 [155], for ISO-NE

from 2008-2013 [156], for SPP from April 2008 through February 2014 [157], and for

PJM from 2009 through 2014 [158].

I averaged these price data by hour and month for each ISO, creating an
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average daily price profile for each month of the year for each ISO. This allowed for

smoothing some of the daily volatility in prices while retaining the general trends seen

throughout the year in each region. Figure 3.22 shows the monthly electricity price

averages for ERCOT and PJM for two months of the year.
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Figure 3.22: Daily average real-time electricity prices from two ISO’s used in the analysis of excess
energy revenue, ERCOT and PJM. The average price was determined hourly for each month of the
year.
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I modified the energy flow model presented in Section 3.1 such that at each

hour, the excess energy Ee was multiplied by the price at that hour for each of the

ISOs. The cumulative revenue from selling this excess energy at the averaged real-time

price was tracked for each location.

In order to account for the effect of time and seasonality of energy pricing,

the pricing data were shifted according to the approximate local solar time at each

location. This was done by approximating the 24 time zones according to longitude. I

also accounted for the difference in season by shifting the data by 6 months, such that

the data utilized for January in the northern hemisphere were used for July in the

southern hemisphere.

This approach assumes that electricity use patterns are based more on local

daylight conditions and seasons than on political time zones. Behaviors are influenced

by a complicated combination of political and geographical times, which is difficult

to separate in a meaningful way. Realistically each location would have a different

use and price pattern that would shift more gradually than the distinct hourly bands.

However, as this analysis uses two representative price curves to identify possible

outcomes rather than specific local data, this method was deemed acceptable. It

should be noted that this approach does lead to artifacts at the boundaries due to

hard cut-offs between each hour and the hemispheres.

I utilized the average prices from two ISOs in order to analyze the potential

differences varying price curves would have on the data. Specifically data for PJM and

ERCOT were used for this analysis. These regions represent areas with different pricing

characteristics in the summer versus winter, and also variable structures throughout

the day, Fig. 3.22. Together they present a set of representative price data for use in

this analysis.
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The total additional revenue computed was potentially up to $10 billion for

locations with significant excess energy, however most locations have additional revenue

of less than $2 billion. Africa, which has very little excess energy, has the lowest overall

excess, typically less than $0.5 billion. This revenue represents nominal revenue, as the

revenue was not discounted. ERCOT price curves lead to larger additional revenue

than PJM price curves, likely due to the high summer peak of the ERCOT system.

Figure 3.23 shows the global map of the additional revenue that could be expected

over the lifetime of the system.

It should be noted that these prices are not representative of current markets

across the world, specifically regions such as Africa do not have markets at this scale.

However, this analysis looks forward to a future in which these facilities might exist

inside of a larger grid system with electricity markets instead of stand-alone facilities

operating independently.
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Figure 3.23: Additional revenue that could be expected from a base-load generating PV-CAES
facility. The revenue was calculated for two different pricing data sets to show potential differences
in prices used. Slight differences in total revenue can be seen, however both prices lead to potentially
large additional revenue streams for these facilities.
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Chapter 4

Load Following with Photovoltaics

The energy flow model discussed in Section 3.1 was assumed to provide constant

base-load output from the coupled photovoltaic array and storage facility. However,

the output of solar power systems rises and falls during the day with peak output

often only slightly out of phase with peak load requirements. As a result, coupling

solar power systems with grid-scale energy storage could more beneficially provide a

dispatchable source of electricity for load following.

Solar irradiance peaks in the mid afternoon and falls to zero overnight, requiring

the use of stored energy, which is also needed at dawn, dusk, and during cloudy time

periods. Typical demand curves, e.g. Figure 4.1, also tend to peak during the day and

drop overnight. Following these profiles will typically require less energy storage to

provide the same yearly capacity factor than would be required with systems providing

baseload electricity due to lower night-time requirements.

As a result, using photovoltaics and compressed air energy storage to match

specific load profiles could have lower capital costs, potentially providing a lower

electricity costs. In addition, compressed air energy storage systems typically burn

natural gas to preheat the air before it passes through turbines that recover the stored

energy. As a result, systems designed to load follow can have lower carbon signatures

than systems optimized for baseload electricity production.

Providing dispatchable power from a photovoltaic array would help alleviate

concerns about grid stability. While I previously investigated the ability to provide
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Figure 4.1: Typical load curve for two days for the Electric Reliability Council of Texas, which
provides electricity to most of Texas. Two curves are shown, representing example days from both
the winter and summer months. The load was scaled to provide 876,000 MWhe per year.

dispatchable power in the form of base-load energy, dispatchable power can also be

provided to match demand, or according to the requirements of the electric grid. Solar

power could achieve a large benefit from providing dispatchable power in a manner

which more closely matched the output from the solar array, therefore requiring smaller

storage facilities and potentially having a lower cost of energy.

I here analyze the total energy that could be provided from the same system

following each of four load curves. These load curves include baseload output, on-peak

output, and following either an average summer peaking load, or an average load that

peaks in both the winter and summer. The total energy provided for each load curve

is analyzed and compared. This is done for 8 different storage amounts to examine

how energy provided by each load profile changes with increasing storage.
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4.1 Load Data

To generate representative load profiles I aggregated historical load data from

the independent system operators (ISOs) across the United States. Specifically, I

was able to obtain data from California ISO (CAISO), Electric Reliability Council of

Texas (ERCOT), Midwest ISO (MISO), New York ISO (NYISO), ISO New England

(ISO-NE), Southwest Power Pool (SPP), and PJM Interconnection (PJM). Figure 4.2

shows the regional coverage of the different ISO’s in the U.S. [159]. Data were not

available for regions not covered by ISO’s.

Figure 4.2: There are seven different independent system operators (ISOs) in the United States.
This map shows their coverage [159].

For each of these ISO’s I collected historical real-time load data for the ag-

gregated ISO area. Data for CAISO were available from January 2, 2011 through

December 31, 2014 [160], for ERCOT from April 16, 2003 through December 31,
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2013 [161], for ISO-NE from January 9, 2008 through December 31, 2014 [162], for

MISO from January 1, 2007 through December 31, 2012 [163], for NYISO from January

1, 2008 through December 31, 2013 [164], for PJM from January 1, 2000 through

December 31, 2013 [165], and for SPP from January 1, 2010 through December 31,

2013 [166].

For each ISO the data were averaged for each hour of the year to create an

average year’s hourly demand profile. The data were then scaled such that over

the course of the year each ISO provides the same total energy. This was done to

highlight the different shapes of the load profiles, rather than the sizes of each ISO.

Figure 4.3 shows the yearly cycles of these values by aggregating hourly values to

24-hour averages.
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Figure 4.3: Variation in daily demand profiles for the seven ISOs serving the United States. I
aggregated the load for the 7 ISO’s in the U.S. and then averaged this value for each day of the year.
In order to more clearly show the yearly changes, this figure shows the 24-hour average load instead
of the hourly load for each region.

Load profiles from ERCOT and PJM were used to examine the ability of the

coupled systems to load-follow. These systems were chosen because they are both

larger systems that showed different yearly demand cycles, and so represent two
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disparate examples of when power might be required from this system. ERCOT has a

high summer peak and low winter demand. PJM shows a double peak in both the

winter and summer time due to increased heating and lighting loads in the winter.

Figure. 4.4 show the variation in the average daily electricity demand specifically for

ERCOT and PJM during the year.

Due to higher demand during the day, many load following plants will operate

only for specific hours of the day. Here I assume an on-peak load profile with a fixed

output of 150 MWhe for each hour between 6 am and 10 pm, and zero otherwise.

Representative ERCOT and PJM load curves for winter and summer days are shown

in Fig. 4.5, along with on-peak and baseload profiles, with each scaled to provide

876,000 MWhe of energy in one non-leap year.
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Figure 4.4: Twenty-four hour average load profile for ERCOT and PJM, the regions focused on in
this analysis. The data were scaled such that each curve provides the same energy over the course of
a year.
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Figure 4.5: Daily load profiles for each of the four dispatchable loads utilized in this analysis. Both
a summer and winter day are shown. All loads are scaled such that the yearly output is the same for
all profiles.
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4.2 Methods

The energy flow model used as in Section 3.1 was modified to allow a variable

output depending on which load curve was being followed. Similarly to Section 3.1,

the total output from the photovoltaic array is computed for each hour, i, as:

Ei =
I(i) ∗ (1−R(t))

1000 Wp/m2
WA (4.1)

where Ei [J] is the energy produced in that hour, I(i) [W] is the surface solar irradiation

at hour i, WA [Wp] is the rated capacity of the array, and the factor of 1000 Wp/m
2 is a

factor for determining the rated capacity for photovoltaic modules, used to standardize

their ratings [120]. Equation. (4.1) is computed for the start of each hour of analysis,

determining the energy available for that time step.

In each hour the energy required by the grid is a variable amount determined by

the load curve being followed, represented as Ed(i) for each hour i. Each load profile

was scaled such that each provides the same amount of energy over the course of a

year, specifically 876,000 MWhe in a non-leap year. The system did not provide more

energy than was required by the particular load profile being followed; any additional

energy produced by the array that could not be stored was counted as excess energy

as in the baseload analysis.

The energy produced by the array is again partitioned into three components:

Ei = Eg + Es + Ee (4.2)

where Eg [J] is the energy sent directly to the local grid to meet base-load electricity

needs and Es [J] is the energy directed into storage. When the storage is full and the

array is producing more than the required demand Ed(i), the excess electricity Ee [J]

is available for broader use. I calculate Eg, Es, Efs and Ee in each hour according to
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Ei and Ed(i) as:

Eg =

{
Ed(i)
Ei

Ei ≥ Ed(i)
Ei < Ed(i)

Efs =

{
0 MWhe
Ed(i)− Ei

Ei ≥ Ed(i)
Ei < Ed(i)

Es = Ei − Ed(i) Ei ≥ Ed(i), storage not full

Ee = Ei − Ed(i) Ei ≥ Ed(i), storage full

(4.3)

The load-following model utilizes the array and storage sizes that were de-

termined in Section 3.1, which provides 100 MWe base-load output with a capacity

factor ≥ 90.7%. The array size was then held fixed and the storage capacity at

each location was varied between 10-200% of the storage capacity for the previously

analyzed baseload system to identify how the ability to meet a particular load varied

with storage capacity. The storage capacity producing the lowest cost electricity was

identified for each load profile.

In order to account for hourly differences in energy use, the demand data were

shifted according to the approximate local solar time at each location. This was done

by approximating the 24 time zones according to longitude. I also accounted for the

difference in season by shifting the data for the southern hemisphere by 6 months, so

that the data utilized for January in the northern hemisphere were used for July in

the southern hemisphere.

For each load profile the coupled systems are scaled to provide 876,000

MWhe/year and I assume for each hour Eg + Efs ≤ Ed. The capacity factor is

then defined as:

CF =
Σyear(Eg + Efs)

876, 000 MWhe
(4.4)

Excess energy, Ee, is assumed to go to peak power demand, or out onto a

broader grid, and does not contribute to the capacity factor.
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I computed the energy provided throughout the year by each load profile, in

addition to the lifecycle energy cost. This was done for eight different storage amounts

in order to compare the effect of increasing or decreasing the storage capacity. The

base level storage amount was determined according to the analysis of Section 3.1 as

a reference point. This capacity was then multiplied by different factors in order to

increase or decrease the total storage amount.

The cost of each of the eight facilities was calculated according to the cost

equations, Eq. (3.8) – (3.12) presented in Section 3.2, and the energy cost computed

in Eq. (3.16).

The carbon emissions for each system and load profile were also computed.

This was done using Eqs. (3.19) – (3.21) from Section 3.3.

4.3 Results

For the time dependent load profiles, optimization of the coupled systems of

energy storage and photovoltaics assumed that the loads shift with local daylight

conditions, which is an idealization. In reality, load profiles are also affected by season,

weather, social and industrial patterns. Each location would have a different use

pattern as a result. However, the on-peak profile would be encountered even with such

region to region variations, as would the baseload profile. The ERCOT and PJM load

profiles are representative of a western economy in temperate and subtropical regions.

Figure 4.6 shows the geographical distribution in which each load profile

produces the lowest levelized cost of electricity. The distribution is shown at six

different levels of storage capacity, relative to the optimum for baseload electricity

production. On-peak and ERCOT load profiles produced the lowest cost of electricity

across a wide range of storage sizes, with on-peak dominating at low storage levels
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Figure 4.6: The energy cost from each of four load profiles was determined for eight different
storage amounts, all multiples of a base-level storage capacity. This figure shows for four of these
storage capacities, which load profile provided the lowest cost energy.

and ERCOT at higher levels. However, we also found that as the storage capacity

increased, there were regions in which the base-load load profile was actually the

cheapest, particularly in Africa.

Figure 4.7 shows the storage capacities required to produce the minimum

levelized cost of electricity for each load profile. I found that the on-peak load profile

required the lowest of storage, up to 2000 MWe less than the lowest cost base-load

configuration.
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Figure 4.7: The minimum energy cost from each of four load profiles was determined. The storage
amount for this minimum cost is shown here for each load profile. The On-Peak load profile tends to
have the lowest storage requirement.

A major motivation for the adoption of renewable energy systems, photovoltaics

included, is their ability to provide low-carbon electricity. The compressed air energy

storage systems considered here were assumed to burn natural gas to preheat air

before it was decompressed through turbines to recover stored energy. Because the

on-peak load profile required the least storage to produce a minimum in the levelized

cost of electricity, it also gave the smallest carbon intensity. This has a benefit of

reducing the green-house gas emissions from the coupled system. The on-peak load

profile showed the greatest reduction in carbon emissions, up to 30% from base-load

generation. The load curves from PJM and ERCOT both saw up to 17% reduction in

carbon emissions. Figure 4.8 shows the percent reduction in carbon emissions between

base-load use and each of the other three load curves analyzed.
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Figure 4.8: The total carbon emissions from load following show a reduction over base-load use
due to a reduction in use of energy from storage. The percent reduction in carbon emissions for each
load profile compared to the base-load use is shown.
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Chapter 5

GIS Multi-criteria Decision Analysis

Solar power, a low-carbon fuel source, has seen a large increase in installed

capacity, partly due to to rapidly dropping costs. An important question for govern-

ments and aid organizations interested in solar power is where to install these facilities.

While cost is a strong concern, also of importance is where the facility will provide the

most benefit to the population. Locations expected to provide energy at the lowest

cost do not necessarily correspond to load and population centers, where the energy is

most useful. In order to garner the greatest social benefit from a solar power facility,

the cost in addition to need for low-carbon energy sources must be evaluated.

I here perform an analysis of the optimal locations for solar power facilities

on a global scale, accounting for the full system cost, siting capability, as well as

socio-political factors that indicate a need for low-cost energy. While studies have

examined the feasibility of siting these facilities, none have looked globally at locations

that could provide a large benefit to society in the form of low-cost electricity. I

utilize the multi-criteria decision analysis framework to identify key locations where

low cost base-load solar power facilities correspond with high population areas and

with socio-political factors indicating a need for low-cost energy. This is done for

two separate characteristics of social benefit, including locations with high growth in

electricity use and secondly locations with low grid connectivity levels.

I found that the most ideal locations for the first definition of social benefit

are generally located in Africa, followed by Iraq, India and South America, as these
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locations have both high irradiance levels as well as expanding electricity needs. The

second analysis is dominated by most of Africa, which has a very low fraction of the

population with access to electricity. I present maps showing the ideal locations for

both of these analyses.

5.1 Background

As the costs of solar photovoltaics continue to drop [30,88], it will become more

economical to utilize solar power as a low-carbon source. The expansion of renewable

energy technologies is being promoted as a means to limit carbon emissions, with

dramatic effect [2, 21, 25, 61]. Between 2007 and 2013 the global installed capacity

of solar power facilities grew an average of 55% annually, to a total of 139 GW [18].

An increasingly important question is where to build future facilities. Many studies

have investigated the siting of solar power facilities [167, 168]. However, they have

typically looked only at the feasibility of building in particular locations, and the

studies have tended to be localized to particular geographical regions. To date, none

have performed an analysis of socially beneficial locations, particularly on a global

scale. Doing this is complicated by the many factors that must be considered when

choosing site locations.

Multi-criteria decision analysis (MCDA) has been widely utilized since the late

1990’s to analyze complex questions involving many variables [169,170]. When coupled

with geographic information systems (GIS), it provides a framework for analyzing

spatially dependent problems, such as identifying ideal desalination sites [171], potential

nuclear waste facility locations [169], forest conservation planning [172], power plant

siting [167, 168], as well as investigating many other environmental and locational

questions [170,173–175]. Analyses such as these typically have several, often competing,
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requirements and identifying what is optimal is rarely straightforward. Multi-criteria

decision analysis can be used in combination with geographical information systems

to comprehensively assess how diverse sets of decision variables affect siting decisions

for things such as power facilities [170,173,174].

Due to high insolation levels, solar power tends to have the lowest cost in desert

locations [42]. However, these locations are typically far from population centers and

transmission lines are often missing. Identifying the most advantageous location for a

solar power facility therefore should include considerations beyond a simple cost or

siting analysis. Geographical information systems data provide a means with which

to identify feasible locations with an optimal combination of low-cost energy and high

social benefit. Here I define social benefit as the provision of low-cost, low-carbon

energy to populations with a high need for electricity. These populations consist of

two separate groups with differing needs for electricity, the first with a high-expected

expansion, and the second with no current access.

High-expected expansion is characterized by a high expected growth in elec-

tricity use. Areas with these characteristics will have a growing need for electricity if

their living standards are to remain stable, let alone increase. A lack of current access

to electricity is endemic to much of the developing world, and is widely regarded as

a drag on economic expansion [176]. Increases in electricity access has been linked

to growth in income, productivity, and growth in social services [177]. Access to

electricity can also provide easier access to drinking water and light and can be

particularly beneficial for women, whose daily tasks can be eased with electricity [178].

Additionally, a correlation has been found between literacy rates and electrification of

rural areas [179].

Here I present a global analysis of the optimal locations for solar photovoltaic
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facilities coupled to compressed air energy storage facilities. I account for the feasibility

of siting these facilities by incorporating terrain slope, proximity to wetlands and

100 year flood plains, and geology with potential for compressed air energy storage

facilities. To determine social benefit, I performed two separate analyses, utilizing full

system cost, global population, and either expected growth in population or electricity

demand. These analyses each show high benefit through high need, measured in two

separate ways. I use a multi-criteria decision analysis framework in conjunction with

geographical information systems to determine feasible locations with low cost and

high social benefit.

5.2 Methods

Spatially defined data were used to identify potential siting issues and to

categorize the social benefit of photovoltaic installations collocated with grid-scale

energy storage. Exclusion criteria for these coupled facilities included geology lacking

the potential for below ground energy storage, high terrain slope, high population

density, and co-location in wetlands or 100 year flood plains. Land use was not used

as an exclusion criteria because photovoltaic modules could be placed on rooftops of

buildings [39,180] or collocated with agricultural land. Protected areas are assumed

to already be excluded due to lack of population, which is used in the social benefit

score.

Variables indicating social benefit included the levelized cost of electricity from

the coupled facilities, population per pixel, and either expected growth in electricity

demand or lack of access to electricity. For each location, each variable was scaled to

a value between 0 and 1. The lower the value, the more ideal the location is for that

variable. Table 5.1 summarizes the siting variables and the ideal conditions.
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Data Variable Type Criteria for ideal Reference

CAES Geology Exclusion Salt Dome,
Sedimentary Basin,
or Hard Rock

[42,124]

Land Slope Exclusion Slope < 3% [180,181]
Wetlands Exclusion Not Wetland or

Flood Plain
[182,183]

Population Density Exclusion Density < 500
persons/km2

[167,184]

Population, persons Social Benefit Higher Population [185]
Energy Cost, $/kWhe Social Benefit Lower Cost [42]
Electricity Growth, % Social Benefit Higher Growth [186–188]
Access to Electricity, % Social Benefit Lower Access [189]

Table 5.1: Criteria used for MCDA analysis, distinguished by siting or social benefit criteria.
Variables used as exclusion criteria are not included in the score computed for each location. Regions
with one or more exclusion criteria are assumed to be unable to site these facilities, and are not
included in subsequent analyses.

The data were processed and aggregated into equal-angle pixels of 0.5◦ x 0.5◦

to match the resolution of the energy cost data set. Data on population, population

density, land slope, wetlands and subsurface geology were available either at this

resolution or at a higher resolution, in which case they were aggregate to 0.5◦ x 0.5◦.

The data sets for expected electricity growth and grid connectivity were available at a

country level, and a constant value used for each 0.5◦ x 0.5◦ pixel within the respective

countries.

All analysis was performed in Matlab using an equal angle grid of resolution

0.5◦ x 0.5◦. All data were available in a format read-able by Matlab, except for

Wetlands data. These data were filtered through the geographical information system

GRASS [190] and converted to ascii format, which was then used in Matlab.

For each pixel, a score xi was computed for each variable, ranging from 0 to 1.

The population and growth in electricity usage were scaled from the highest value:

xi =
Vmax − V
Vmax − Vmin

(5.1)
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and energy cost and access to electricity were scaled from the lowest value:

xi =
V − Vmin
Vmax − Vmin

(5.2)

In Eqs. (5.1) and (5.2), xi is the scaled value of the ith variable, V is the variable’s

value at a particular location, and Vmax and Vmin are the maximum and minimum

values of V .

A total score, X, for each pixel was then calculated as:

X =
∑
i=1

wi xi (5.3)

where wi is the weight of each variable. Equal weighting was used for this analysis as

there was no strong motive for ranking of the criteria. Scores were only calculated for

locations not excluded under the exclusion criteria.

Figure 5.1 summarizes the multicriteria decision analysis process used in this

analysis.

Figure 5.1: MCDA process overview

5.3 Data Description

5.3.1 Geology

While above-ground compressed air and battery storage are technically feasible,

they are currently more expensive than would be below ground compressed air energy
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storage, Section 3.2. Site geology is included in the siting variables to capture this.

Grid-scale compressed air storage has been demonstrated in salt formations [49], but

it is also feasible in hard rock and sedimentary basins.

Figure 5.2, reproduced from Section 3.1, shows the distribution of geological

formations where below ground air storage could potentially be sited. The data

are based on an aggregation of the units on the Geologic Province Map (http://

earthquake.usgs.gov/data/crust/maps.php) created by the US Geological Survey,

which was digitized and re-projected onto a 0.5◦ x 0.5◦ grid. The salt distribution

comes from data compiled for Applied Geodynamics Laboratory at the Bureau of

Economic Geology [124]. This higher resolution data was projected onto the 0.5◦ x

0.5◦ grid along with the aggregated US Geologic Survey map data.

No Data

Salt Formation

Sedimentary Reservoir

Hard Rock

Folded, Fractured

Figure 5.2: Distribution of geology with potential for below ground compressed air energy storage.
Salt formations, hard rock, and sedimentary reservoirs have potential for supporting below ground
compressed air energy storage [42,124].
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5.3.2 Land Slope

Large-scale photovoltaic arrays are most easily built in areas with a slope of

less than 3% [180]. I used elevation data from the Shuttle Radar Topography Mission

(SRTM), which provides elevation data at 90 m resolution for all land areas not

including Antarctica and latitudes above 60◦N [181], to determine the land slope in

each pixel. The highest and lowest point within each 0.5◦ x 0.5◦ pixel were identified,

and the difference was divided by the length of the pixel in order to identify a lower

boundary on the slope within that pixel. This is a coarse method for determining the

slope of a region, and locations could exist within a particular pixel that would allow

for siting a solar array, however this method was used as an approximation given the

granularity of other data, Table 5.1. Figure 5.3 shows the global estimated land slope.
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Figure 5.3: Large scale solar arrays require a slope less than 3% for optimal siting. This map shows
the approximate minimum slope globally as computed from the SRTM data set [181]. Data were not
available for Antarctica or latitudes north of 60◦N.
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5.3.3 Population Density

Photovoltaics could potentially be located on rooftops in regions with a high

population density [39]. However, noise and safety requirements make such locations

problematic for below-ground compressed air energy storage [167]. Use of batteries or

transmission lines could relax this requirement, however would require additional siting

analysis. Population density data from the Socio-economic Data and Applications

Center was used to exclude pixels with a population density > 500 people/km2,

Fig. 5.4. The data was collected for sub-national administrative units and computed

as the total population divided by the land area [184].

0

100

200

300

400

500
people/km

2

Figure 5.4: The global population density per 0.5◦ x 0.5◦ pixel is shown, computed as the total
population divided by the land area of a unit [184].

5.3.4 Wetland Areas and Flood Plains

Wetland areas, including marshland, lakes, rivers, swamps and flood plains, are

not suitable for building the facilities required for this coupled system. I utilized the
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Global Lakes and Wetlands Database provided by the World Wildlife Foundation [182,

183] for this analysis. These data have a resolution of 30 arc second x 30 arc second

and provide 12 categories of wetland types. In order to aggregate these data into

0.5◦ x 0.5◦ pixels for the current analysis, I assumed that any pixel was suitable for

building a coupled system of photovoltaics and compressed air energy storage if less

than half of its total area was wetland area. Figure 5.5 shows the aggregated map

of all wetland types. The wetland type shown was determined by the most common

wetland type in each pixel.

Not Wetland

Lake

Reservoir

River

Freshwater Marsh

Swamp Forest

Costal Wetland

Saline Wetland

Peatland

Intermittent Lake

50-100% Wetland

25-50% Wetland

Wetland Compex

Figure 5.5: Global wetlands extent. This map shows all pixels with a majority wetland area, by
wetland type. These areas would not be suitable for siting a PV-CAES facility.

5.3.5 Population

The electricity provided by a coupled system of photovoltaics and compressed

air energy storage is assumed to be directly utilized within each 0.5◦ x 0.5◦ region.

This ensures that the electricity produced is accessible to the local population even in

the absence of a stable distribution grid. Given this assumption, locations with higher
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populations are able to provide electricity to a larger number of people. I assume

a higher social benefit is obtained if a greater number of people are given access to

low-carbon electricity, scaled according to the population of each pixel. Population

data were used for the year 2000 for the local population within each 0.5◦ x 0.5◦ area,

Figure 5.6, also from the SEDAC database [185].
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Figure 5.6: The global population is shown here on a log10 scale [185].

5.3.6 Growth in Electricity Consumption

Providing low-carbon energy to regions with a high-expected growth in electric-

ity consumption will have a higher social benefit than to locations with low expected

growth, particularly as those locations with high growth are expected to require

additional electricity generation to be installed. If such installations were provided by

renewable sources such as solar power, a large amount of carbon emissions could be

avoided. This metric was used in the first analysis performed, identifying locations
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with growing need as ideal for solar power facilities.

The growth rate in electricity consumption was computed for each country

using the Electric Power Consumption data set [186], the Population Total data

set [187] and the Population Estimates and Projections data set [188]. Countries were

converted to pixels using the country boundaries defined in the Socio-economic Data

and Applications Center data-base [191]. In order to compute the growth in electricity

consumption, the per capita electric power consumption was multiplied by population

to approximate the total electricity consumed by country in a particular year. The per

capita electric power consumption data from 2007 through 2012 was used to project

the electric power consumption per capita in 2020 using linear regression. This was

multiplied by the World Bank expected population in 2020 to estimate the total

electricity consumption in 2020. The expected increase in consumption was computed

as the percent increase in electricity use from 2012 to 2020, shown in Figure 5.7.
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Figure 5.7: The expected percent increase in electricity consumption between 2012 and 2020 was
determined by projecting the electricity use per capita growth rate using country level data from
2007-2012 and the World Bank estimated population in 2020 [186–188].
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5.3.7 Access to Electricity

Access to electricity is a marker for economic development and it varies con-

siderably in the developing world. As living standards in these regions rise, so will

consumption of electricity. The lower the access level in a particular region, the higher

the social benefit of providing future capacity through low-carbon generation sources.

Data on country-wide access to electricity were used from the World Bank [189], shown

in Fig. 5.8. These data were also converted to pixels based on the Socio-economic

Data and Applications Center database country boundaries [191].
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Figure 5.8: Percentage of the population with access to electricity, by country.

This metric was used in a second analysis, with need for electricity determined

by current lack of access. The available country-level data is coarse for this metric,

and so is unable to identify local needs. However, countries with the lowest overall

connectivity could benefit the most from additional energy production, and in many

instances data is not available on the extent of local grid connectivity across the world.
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5.3.8 Cost of Electricity

The economic feasibility of coupled systems of photovoltaics and grid-scale

energy storage was determined by the levelized cost of electricity for these systems,

Fig. 5.9. The systems utilized were sized to provide 100MWe output with a capacity

factor equivalent to that of the U.S. nuclear fleet, as was previously computed at 0.5◦

x 0.5◦ resolution in Section 3.2. Economically, locations with lower cost have a higher

benefit than more costly locations.

Figure 5.9: Levelized cost of baseload electricity from the coupled systems. The life-cycle energy
cost for a coupled photovoltaic array and compressed air energy storage facility, as computed in
Section 3.2.

Many locations north of the arctic circle were unable to provide year-round

energy, and as such had unrealistically high energy costs. I therefore introduced a cap

on the cost of 1 $/kWhe, such that all locations with a cost greater than or equal to

this value were given a score of 1.
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5.4 Multi-Criteria Decision Analysis

The exclusion criteria were combined to identify all locations at which a coupled

photovoltaic and compressed air energy storage facility would not be feasible to site.

Figure 5.10 shows the number of criteria, Nexclusion, for which each location is excluded.

The locations with one or more exclusions will be colored black in subsequent figures.
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Figure 5.10: Number of exclusion criteria for each pixel. The straight line at latitude 60◦N is due
to a lack of data for land slope, and so these pixels were all excluded.

The granularity of the data utilized to identify excluded regions could potentially

lead to imprecise results. Particularly for exclusion via slope and wetland area, I have

used an aggregate measure for the entire pixel, which is approximately 30 km x 30 km

in size. Within these pixels, favorable conditions could exist for these facilities that

the granular data is unable to show. In addition, all locations with favorable geology

for compressed air energy storage facilities would require a site-specific analysis to

confirm such a facility could be sited there.

After aggregating all of the data and identifying excluded regions, I determined
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the highest and lowest scores in total for each of the two social benefit analyses.

Locations with lower scores are more ideal and locations with higher scores would be

particularly non-ideal locations.

The first analysis included population, cost, and expected growth in electricity

usage. The location with the lowest score was located near Ho Chi Minh City in

Vietnam, with a score of 0.91. The location with the highest score was located in

northern Scotland, with a score of 2.6. Figure 5.11 shows score, X, from Eq. (5.3) for

each location on the planet for the first analysis.
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Figure 5.11: Score X, determined by criteria of population, cost, and expected growth in electricity
usage, used to identify locations with optimal combinations of all variables. Lower values indicate
more ideal locations. Locations with one or more exclusions are colored black.

While the lowest score is in Vietnam, locations in Iraq and much of Africa also

have low scores, in addition to other locations in southeast Asia. These regions have

high expected increase in electricity consumption, low costs for the coupled facilities,

and high populations, respectively.
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I next analyzed locations that would be ideal for populations that currently

have little access to electricity. This analysis included population, cost, and the

percent of a country’s population with access to electricity. A strong benefit of a

coupled system of photovoltaics and grid-scale energy storage is its ability to provide

stand-alone base-load electricity. Populations with no current access to the grid could

gain a large benefit, both in terms of education and quality of life, from increased

access to electricity. As such, these populations would have a strong benefit from the

proposed solar power facility.

Figure 5.12 shows the score, X, from Eq. (5.3) based on population, electricity

access, and cost. The lowest score, 1.0, was found to be at the northeastern border of

Burundi, a country where only 5.3% of the population has access to electricity. As a
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Figure 5.12: The criteria described in Section 5.3 were used to compute a score X when including
electricity access to identify locations with a high need for stand-alone electricity. This map shows
the value of X for each location across the globe. Locations with one or more exclusions are colored
black.
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whole, Africa had very low scores for this metric due to very low electricity access and

also low electricity costs. The highest score, 3, was seen in many northern locations

which all have access to electricity and high electricity costs from these facilities.

It should be noted that there are likely many rural areas overlooked in this

analysis due to the granularity of the data source. The global electricity access data

I used is only available at a country level. In many countries, particularly Africa

and India, the rural populations have much lower electricity access than large cities

do. Averaging this throughout a country will lead to skewed results, particularly

when coupled with the population metric, which has a lower score for cities with high

population. Future work could look locally at specific countries, such as India, where

grid connectivity varies widely between urban and rural areas. Such granular data

is not available globally, however could potentially be found for specific regions of

interest.
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Chapter 6

Conclusions

6.1 Conclusions from Irradiance Calculations

I have created a 25-year data set of solar irradiance values with 1-hour temporal

resolution and 0.5◦ x 0.5◦ angular resolution utilizing the ISCCP satellite-based data set.

This data set was vetted against four separate data sets of ground-based irradiance

measurements. The mean error was found to be less than 14% in all non-polar

locations, and correlations of 24-hour average irradiance values between the calculated

and measured irradiance were greater than 0.69, with the majority of locations having

a correlation greater than 0.9. This was determined to be an acceptable error for a

rapidly changing, localized resource such as solar irradiance.

I attempted to improve the correlation of the computed irradiance to more

closely match the ground-based measurements by including several correction factors.

First, I utilized the wavelength used to calibrate the ISCCP instruments when comput-

ing the transmission values. Second, I computed a wavelength-averaged irradiance by

integrating irradiance values computed for 35 wavelengths in the solar spectrum over

the solar spectrum. Third, I incorporated visibility measurements from the NCDC

data base at all locations for which they were available. None of these corrections

were found to significantly improve the correlation of computed irradiance values to

ground-based data.

I believe that the lack of improvement of this data set is due to the spatial

resolution of the satellite data. The satellites view a particular solid angle of the
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earth’s surface, which may or may not correspond to the ground-based location at

which the irradiance values were measured. Differences in local weather phenomena

are assumed to have a greater effect on the differences in the computed and measured

data points than the correction factors examined in this analysis.

6.2 Conclusions from PV-CAES Model

I created an energy flow model for a coupled photovoltaic-compressed air

energy storage (PV-CAES) system and calculated the life-cycle costs from utilizing

this system as a base-load resource. I determined that given the recent drop in cost of

photovoltaic modules, such a system would be able to provide energy at a life-cycle

cost less than 0.08 $/kWhe for 42.0% of the global land area, and for 46.2% of the

world’s population.

I also utilized the same model to determine the cost of a system utilizing above-

ground CAES storage or battery storage for locations in which traditional CAES

would not be technically feasible. These systems are more expensive than traditional

CAES, and so while technically feasible are less economically advantageous than the

PV-CAES system. Battery systems in particular are not able to provide low-cost

energy from a coupled PV-battery system until PV modules reach $1/Wp, and do not

become widely site-able until battery costs drop to the DOE goal of $150/kWhe.

Additionally, in all locations some amount of excess energy was produced in

the analysis of a coupled PV-CAES facility. This energy could be sold to the electric

grid on the real-time market to provide additional revenue for the PV-CAES facility.

I computed average hourly real-time prices by month for the U.S. independent system

operators and determined the total revenue that could be expected for two average

price curves. The total revenue was as high as $10 billion for northern locations with
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large arrays. In most locations the revenue was less than $2 billion. This could be

used to offset the costs of the system.

6.3 Conclusions from Load Following Model

I determined the effect of utilizing a coupled photovoltaic and compressed

air energy storage system to provide load-following and on-peak energy production

instead of base-load energy. Solar irradiance patterns are similar to load requirements,

particularly in locations with summer-peaking load. For each of four load profiles

I computed the cost of energy for eight separate storage capacities and identified

the storage capacity which provided the lowest cost energy. I found that on-peak

energy generation operating between 6 am and 10 pm required the least storage

capacity, followed by a summer-peaking load such as the average load of ERCOT. I

also determined that at higher storage capacities, base-load generation was actually

cheaper than load following for some locations. In addition, utilizing these load profiles

reduced carbon emissions from the CAES facility up to 17% for ERCOT and PJM

average load profiles and up to 30% for on-peak generation.

6.4 Conclusions from GIS Analysis

I utilized the multi-criteria decision analysis framework to identify locations

that provide an optimal combination of low cost, high population, and either high

growth in electricity usage or low grid connectivity along with siting limitations. These

variables together indicate a strong need for low-cost dispatchable renewable energy

sources, as measured by a growing need for electricity or a current lack of electricity.

I presented global maps showing the optimal locations, which tended to be in Africa,

the Middle East as well as Southeast Asia. These locations all represent growing areas
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with low expected electricity costs from the proposed PV-CAES facility, and would

be ideal for solar power facilities.

6.5 Suggestions for future work

This analysis could be extended by examining in more detail how the proposed

coupled PV-CAES facility would interact with a traditional electric grid. Such a

system could be operated in different manners depending on the particular capacity

mix and load curve for specific locations. Such an analysis could potentially change

the sizing of either array or storage facility for optimal operation, given the ability of

other energy sources to provide electricity during the night or cloudy days.

Ideal site placement of these systems could be improved by incorporating

additional metrics in the multi-criteria decision analysis, particularly finer resolution

data. More detailed data concerning expected population growth and electricity access

would allowing for a more in-depth, localized analysis. In addition, other land-based

limitations such as current land-use patterns and land-quality could be identified and

incorporated, and the use of above-ground CAES or battery storage facilities could be

investigated, eliminating one of the current geographical exclusion criteria.

Additionally, it should be noted that countries with the largest amount of

installed capacities do not correspond with those locations identified in Chapter 5 as

ideal for solar power. Locations with high installed capacities of photovoltaics tend

to instead be locations with strongly beneficial policies for solar energy technologies.

While many papers have been published analyzing the impact of these policies, these

are typically focused on specific regions and on the traditional use of solar power as a

non-dispatchable resource. It could be of interest to examine ideal policies that would

encourage growth of dispatchable solar power systems as described in Chapter 3.
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