
Copyright

by

Muhammad Zubair Malik

2014

The Dissertation Committee for Muhammad Zubair Malik
certifies that this is the approved version of the following dissertation:

Combining Data Structure Repair and Program Repair

Committee:

Sarfraz Khurshid, Supervisor

Dewayne Perry

Craig Chase

Christine Julien

Daniel Miranker

Combining Data Structure Repair and Program Repair

by

Muhammad Zubair Malik, B.S.; M.S.; M.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2014

Dedicated to my family

&

Melanie Gulick

(for going beyond the call of duty)

Acknowledgments

This thesis has been made possible by the help of many people. I do not

think I will be able to thank them all of them but I am truly grateful to everyone

who helped.

First of all my heartfelt gratitude goes to my adviser Dr. Sarfraz Khurshid

for helping in all aspects of this work. He is an excellent teacher, prolific in pro-

viding research ideas and involved in guiding the research process. He is a sound

adviser and helped me achieve my objectives.

Dr. Craig Chase has been a constant source of inspiration, knowledge and

guidance over the years. I cannot express my gratitude towards him in words. I

have spent more time in his company than any other professor at UT and enjoyed

every second of it.

I am deeply indebted to Prof. Dewayne Perry for his kindness and guidance

throughout my stay at UT. He always has an interesting story to instruct as well as

lighten up the mood. I find his empirical style of research fascinating but had no idea

how hard it is to find support for projects in empirical setting until I collaborated on

Megan’s course project with him.

Dr. Christine Julien is always cheerful and welcoming. I really enjoyed

attending her courses and discussions in the hallway.

I am thankful to Prof. Daniel Miranker for being gracious and accepting

v

to be the external member in on my PhD committee. His questions and comments

helped me improve this work considerably.

My special thanks goes to Dr. Suzanne Barber for mentoring me and allow-

ing me to apply my research to novel applications.

I have been proud to be a part of SVVAT research group. I was fortunate to

work with brilliant researchers including: Daryl Shannon, Danhua Shao, Bassem

Elkrablieh, Engin Uzuncaova, Shadi Abdul Khalek, Junaid Siddquie, Peter Kim,

Divya Gopinath, Razieh Zaeem, Guowei Yang, Sam Harwell, Shiyu Dong, Ling-

ming Zhang, and Khalid Ghori. The idea of using data structure repair for program

repair was first introduced in Khalid Ghoris Masters thesis.

I must give the strongest acknowledgement to Melanie Gulick and the rest

of ECE staff who made my life easier and provided outstanding help in completing

my work.

I have had many roommates and friends over the years who made my stay

at UT a fun experience. Thank you for being there guys: Khubaib, Owais Khan,

Amber Hassan, Umar Farooq, Rashid Kaleem, Faisal Iqbal, Megan Ruthven, Junaid

Siddique, Tauseef Rab, Ahmad Sheikh, Ansab Ali, Muqeet Ali, Younas Sajjad,

Aman Pervaiz, Malik Saleh and Omar Shakeel.

Finally, I am thankful to my family for their unconditional love and support.

The work presented in this dissertation is partially supported by the Na-

tional Science Foundation under Grant Nos. CCF-0845628, IIS-0438967, and CCF-

0702680, and AFOSR grant FA9550-09-1-0351.

vi

Combining Data Structure Repair and Program Repair

Publication No.

Muhammad Zubair Malik, Ph.D.

The University of Texas at Austin, 2014

Supervisor: Sarfraz Khurshid

Bugs in code continue to pose a fundamental problem for software reliabil-

ity and cause expensive failures. The process of removing known bugs is termed

debugging, which is a classic methodology commonly performed before code is de-

ployed. Traditionally, debugging is tedious, often requiring much manual effort. A

more recent technique that complements debugging is data structure repair, which

handles bugs that make it to deployed systems and lead to erroneous behavior at

runtime by modifying erroneous program states to recover from errors. While data

structure repair presents a promising basis for dealing with bugs at runtime, it re-

mains computationally expensive.

Our thesis is that debugging and data structure repair can be integrated to

provide the basis of an effective approach for removing bugs before code is de-

ployed and handling them after it is deployed. We present a bi-directional integra-

tion where ideas at the basis of data structure repair assist in automating debugging

vii

and vice versa. Our key insight is two-fold: (1) a repair action performed to mutate

an erroneous object field value to repair it can be abstracted into a program state-

ment that performs that update correctly; and (2) repair actions that are performed

repeatedly to fix the same error can be memoized and re-used.

We design, develop, and evaluate two techniques that embody our insight.

One, we present an automated debugging technique that leverages a systematic

constraint-based data structure repair technique developed in previous work and

provides suggestions on how to fix a faulty program. Two, we present repair ab-

stractions that are based on the same central ideas as in our automated debugging

technique and memoize how an erroneous state was repaired, which enables priori-

tizing and re-using repair actions when the same error occurs again.

The focus of our work is programs that operate on structurally complex

data, e.g., heap-allocated data structures that have complex structural integrity con-

straints, such as acyclicity. Checking such constraints plays a central role in the

techniques that lay at the foundation of our work. These techniques require the

user to provide the constraints, which poses a burden on the user. To facilitate the

use of constraint-based techniques, we present a third technique to check constraint

violations at runtime using graph spectra, which have been studied extensively by

mathematicians to capture properties of graphs. We view the heap of an object-

oriented program as an edge-labeled graph, which allows us to apply results from

graph spectra theory. Experimental results show the effectiveness of using graph

spectra as a basis of capturing structural properties of a class of commonly used

data structures.

viii

Table of Contents

Acknowledgments v

Abstract vii

List of Tables xiii

List of Figures xiv

Chapter 1. Introduction 1
1.1 Our thesis . 1
1.2 This dissertation . 2

1.2.1 Debugging . 3
1.2.2 Data structure repair . 4
1.2.3 Structural constraints . 4

1.3 Illustration . 5
1.3.1 Program Repair . 7
1.3.2 Data Structure Repair . 9
1.3.3 Graph Spectra . 10

1.4 Contributions . 10
1.5 Organization . 12

Chapter 2. Program Repair Using Data Structure Repair 13
2.1 Debugging Using Data Structure Repair Overview 15
2.2 Motivating Example . 16
2.3 Background: Data Structure Repair using Juzi 19
2.4 Program Repair . 21

2.4.1 Repair Abstraction Algorithm 22
2.4.2 Debugging Advisor Algorithm 26

ix

2.4.3 Possible Integration with Bounded Exhaustive Testing 30
2.5 Evaluation . 30

2.5.1 Success Rate . 31
2.5.2 Applicability and Effectiveness 32

2.5.2.1 Experiment Design 33
2.5.2.2 ANTLR . 35
2.5.2.3 RayTrace . 38

2.6 Limitations . 41
2.7 Discussion . 42

2.7.1 Efficient Data Structure Repair 42
2.7.2 Programming by Sketching 43

2.8 Summary . 43

Chapter 3. Representing Data Structure Properties using Graph Spectra 44
3.1 Overview . 45
3.2 Illustrative Example . 47
3.3 Technique . 52

3.3.1 Program Heap as an Edge-Labeled Graph 53
3.3.2 Core and Derived Fields . 54
3.3.3 Matrix Representation of Heap 55
3.3.4 Properties of Interest . 56
3.3.5 Algorithm . 58

3.3.5.1 Learning new Properties 58
3.4 Application: Dynamic Shape Analysis using Graph Spectra 60
3.5 Evaluation . 60

3.5.1 Comparing deteced properties with those written manually
as predicates . 61

3.5.2 Is it a tree, DAG or a cycle? 63
3.5.3 Error detection . 64

3.5.3.1 ANTLR . 65
3.5.3.2 RayTrace . 66

3.6 Discussion . 66
3.6.1 Basis of our approach . 66

x

3.6.2 Fast Computation of Matrix Operations 67
3.6.3 Uses . 67
3.6.4 Limitations . 68
3.6.5 Comparison with previous work on dynamic analysis for in-

variant detection . 69
3.7 Summary . 70

Chapter 4. Repair Abstractions 71
4.1 Overview . 71
4.2 Motivating Example . 73
4.3 Framework . 75
4.4 Evaluation . 79

4.4.1 Single error . 80
4.4.2 Multiple errors . 81

4.5 Summary . 83

Chapter 5. Related Work 84
5.1 Program Repair . 84

5.1.1 Genetic Programming . 84
5.1.2 Enforcing Contracts . 85
5.1.3 Specification Based Repair 86
5.1.4 Repairing Boolean Programs 87
5.1.5 Repair as a game . 87
5.1.6 Programming by Sketching 88

5.2 Invariant Generation . 89
5.2.1 Daikon . 89
5.2.2 DIDUCE . 89
5.2.3 Deryaft . 90
5.2.4 Dynamic Shape Analysis 91

5.3 Data Structure Repair . 91
5.3.1 Constraint-based Repair . 91
5.3.2 Contract-based Repair . 93

5.4 Repair abstraction using Alloy . 93

xi

Chapter 6. Conclusion 94
6.1 Summary . 94

Bibliography 96

Vita 110

xii

List of Tables

2.1 Success Rate Evaluation . 30

3.1 Spectral properties considered for data structures 57
3.2 Success rate of Spectral repOk . 60

4.1 Effectiveness of AbstractJuzi vs Juzi for single error 80
4.2 Effectiveness of AbstractJuzi vs Juzi for multiple errors 82

xiii

List of Figures

1.1 Thesis overview . 2
1.2 Repairing output of faulty remove method 6

2.1 A bug in Doubly-linked circular list and its fix 19
2.2 Architecture of Automated Program Repair 21
2.3 Repair abstraction algorithm. 23
2.4 Debugging advisor algorithm. 27
2.5 ANTLR: A bug in CommonTree and its fix 34
2.6 RayTrace: The bug in OctNode and its fix 39

3.1 Graph Spectra of valid and erroneous Binary Trees 47
3.2 Illustration of Graph Spectra computation for Binary Trees 48
3.3 Illustration of Graph Spectra for faulty Binary Tree 50
3.4 Error in Binary Tree that Graph Spectra detects but Degree Metric

cannot . 69

4.1 Abstract repair of Doubly-linked circular list 74
4.2 The AbstractJuzi repair framework. 76
4.3 Repair abstraction algorithms. 77

xiv

Chapter 1

Introduction

Traditional methodologies for increasing software reliability using analysis

fall in two basic categories: checking before code is deployed [1, 10, 17, 81, 115],

e.g., using software testing and debugging, model checking, or static analysis; and

runtime monitoring or error recovery after code is deployed [14, 18, 26, 30], e.g.,

using data structure repair. We introduce a novel methodology that integrates ideas

from a pre-deployment technique — debugging — and a post-deployment tech-

nique — data structure repair — to enable a synergy that holds potential to signifi-

cantly increase software reliability.

1.1 Our thesis

Our thesis is that debugging and data structure repair can be integrated to

provide the basis of an effective specification-based approach for removing bugs at

compile-time and handling them at runtime. We propose a bi-directional integration

where ideas at the basis of data structure repair assist in automating debugging and

vice versa. Our key insight is two-fold: (1) a repair action performed to mutate an

erroneous object field value to repair it can be abstracted into a program statement

that performs that update correctly; and (2) abstract repairs can capture the essence

1

of how to fix specific kinds of errors in concrete data structures and help optimize

fixing the same error in future through memoization and re-use. Moreover, to ease

the burden on the user to write specifications, we propose a technique based on

graph theoretic foundations to detect and check invariants of data structures.

1.2 This dissertation

This dissertation presents the design, implementation and evaluation of three

techniques for program repair, data structure repair and structural invariant detec-

tion, which embody our thesis (Figure 1.1). We next describe the background for

each technique and summarize its key ideas.

[ICSE NIER’11, ICST’12]

Data Structure Repair
Invariant Detection using

Graph Spectra
Program Repair

Repair Abstractions

Repair Actions

[ASE’09, ICST’11] [RV’13]

Figure 1.1: Dissertation overview. Data structure repair provides the basis of pro-
gram repair [67]. Repair actions are concrete mutations to fix errors in program
state and provide hints for likely fault location and repair. We implemented [72]
a program repair framework that abstracts repair actions using heuristics, dataflow
and control-flow analysis and presented experimental evaluation. The idea of ab-
stracting repair actions enables more efficient data structure repair [113]. Both our
approaches for program repair and data structure repair require the user to provide
a given specification of data structure properties. We introduced the idea of us-
ing graph spectra to capture structural constraints of data structures using dynamic
analysis [68].

2

1.2.1 Debugging

Debugging faults in code is tedious and can itself be error-prone. Using a

traditional debugging environment, a programmer has to manually trace the execu-

tion of the program. On finding a corrupted program state the programmer has to

make assumptions about fault location(s) and create possible fix(es). This can be

quite time-intensive; moreover the fix may introduce some new bugs. Sometimes

it is hard to trace the root fault as the fault may seem to propagate from one place

to another. A variety of tools and techniques have been developed to help with

localizing bugs in programs [43, 115]. Sometimes localizing bugs and fixing code

manually can create more bugs or different types of bugs that might not have been

present earlier.

A key element of debugging is program repair, which is the problem of

transforming faulty lines of code into correct code. We present a novel technique

for automated repair of buggy programs, which eases the burden of debugging by

suggesting likely fixes to faulty code [67, 72]. Our technique first uses the buggy

program to generate corrupt program states, next it repairs these states by invoking

an off-the-shelf data structure repair tool [32, 60], and then it abstracts the repair

actions and synthesizes code that represents a likely fix. Our technique performs

specification-based repair using given data structure invariants. Such invariants

have been used in previous work on systematic testing [13], which can be applied

in conjunction with our program repair approach.

3

1.2.2 Data structure repair

A variety of techniques [26,27] have been developed during the last decade

to repair structurally complex data that do not satisfy the desired structural integrity

constraints at run-time. Conventional use of these techniques has been to enable

continued execution of programs in case of otherwise fatal data structure corrup-

tion. One such technique is Juzi, which provides an enabling technology for our

work [30,32,33,60]. To fix corrupt data structures, Juzi generates and applies repair

actions that represent mutations to the structures so that the transformed structures

satisfy the desired constraints.

While data structure repair presents a promising basis for dealing with bugs

at runtime, scaling it remains a key challenge. We introduce repair abstractions for

more efficient data structure repair. Our key insight is that if an error in the program

state is due to a bug in code (or a fault in hardware), a similar error may occur again,

say when the same buggy code segment is executed again (or when the same faulty

memory location is accessed again). Conceptually, repair abstractions capture how

erroneous program executions are repaired using concrete repair actions to allow

faster repair of similar errors in future executions.

1.2.3 Structural constraints

The focus of our work is programs that operate on structurally complex

data, e.g., heap-allocated data structures that have complex structural integrity con-

straints, such as acyclicity. Checking such constraints plays a central role in the

techniques that lay at the foundation of our work. These techniques typically re-

4

quire the user to provide the constraints. Writing complex constraints manually

poses a burden on the user. To facilitate the use of constraint-based techniques, we

present a novel technique to check constraint violations at runtime using graph spec-

tra, which have been studied extensively by mathematicians to capture properties of

graphs [68,69]. Viewing the heap of an object-oriented program as an edge-labeled

graph allows us to apply results from graph spectra theory [22] to perform dynamic

program analysis.

1.3 Illustration

This section gives an illustrative overview of our techniques using a faulty

implementation of a doubly-linked list data structure. Consider the following dec-

laration of a class List:

1 class List{
2 static class Node{
3 int data;
4 Node next;
5 Node prev;
6 }
7 Node head, last;

The class Node implements the list nodes. Each node has an integer data,

as well as next and prev pointers to other nodes. Figure 1.2(a) illustrates a linked

list with four nodes.

The structural invariants (called class invariants in object oriented programs)

of doubly-linked lists in this example are acyclicity along next fields as well as

along prev fields, and transpose relation between next and prev fields. Any

5

(c)

N1 9

head

next

prev
N0 −1

next

prev
N2 1

next

prev
N3 8

last

head

N2 1
next

prev
N3 8

last

N0 −1 N1 9
prev

next

next

prev

head

N2 1
next

prev
N3 8

last

N0 −1 N1 9
prev

next

next

prev

(a)

(b)

Figure 1.2: (a) A doubly linked list with four nodes. (b) Erroneous output (post-
state) of the remove method where the value 9 is removed from the list in part a (c)
Correct output of the repaired remove method.

valid list must satisfy these invariants (in all publicly visible states). These invari-

ants can be represented using a repOk [66] method that traverses its input structure

and returns true if and only if the input satisfies all the invariants:

33 public boolean repOK() {
34 if (head == null || last == null)
35 return head == last;
36 if (head.prev != null)
37 return false;

6

38 if (last.next != null)
39 return false;
40 HashSet<Node> hs = new HashSet<Node>();
41 Node curr = head;
42 while (curr != null) {
43 if (!hs.add(curr))
44 return false;
45 if (curr.next != null && curr.next.prev != curr)
46 return false;
47 curr = curr.next;
48 }
49 return true;
50 }

Class invariants implicitly form a part of the preconditions and postcondi-

tions of public methods. Thus, all executions of a public method are expected to

terminate in a state where the class invariants hold.

1.3.1 Program Repair

Consider the following implementation of the method remove:

8 public void remove(int n) {
9 Node curr = head;

10 while (curr != null && curr.data != n) {
11 curr = curr.next;
12 }
13 if (curr == null) //Data not found, nothing to delete
14 return;
15 if(curr.next == null && curr.prev == null){
16 head = last = null;
17 return;
18 }
19 if (curr.next == null){ //last element in the list
20 last = curr.prev;
21 last.next = null;
22 return;

7

23 }
24 if (curr.prev == null){
25 head = curr.next;
26 head.prev = null;
27 return;
28 }
29 curr.prev.next = curr.next;
30 //curr.next.prev = curr.next; // Error
31 curr.next.prev = curr.prev; // Fix
32 }

The method has a fault at the assignment statement on line 30. The line

erroneously sets the prev pointer of the next of curr to point back to itself, thus

violating the transpose relationship. Figure 1.2(b) illustrates the state of the list once

the method is executed on the input list from Figure 1.2(a). Figure 1.2(c) shows the

repaired output.

A faulty assignment of curr.next.prev to curr.next breaks the trans-

pose relationship between next and prev and violates the structural integrity of the

list. A data structure repair routine such as Juzi [32] is able to restore the structural

integrity by repairing this data structure corruption. Juzi uses the repOk method

to check the structural constraints and when it detects a violation it systematically

mutates the structure by performing repair actions to transform it into one that does

not violate the constraints. A Juzi repair action is a triple < s, f, d > where s is the

source node, f is the field mutated and d is the destination node. In this example,

Juzi first attempts < N2, prev, null > which fails to fix the structure, followed by

< N2, prev,N0 > which brings the list to a valid structural state.

8

Our program repair approach translates the concrete repair action performed

by Juzi into a Java statement, i.e., curr.next.prev = curr.prev;, using pro-

gram variables visible in the scope, e.g., head, last, curr and this, which hold

references to objects on the heap. Our approach records the heap locations refer-

enced by each of these variable and uses bounded path expressions over recursive

fields to determine statements that capture the state modifications suggested by Juzi.

1.3.2 Data Structure Repair

To illustrate our approach to data structure repair, consider a scenario where

the remove method is executed periodically and it continually produces incorrect

outputs, which are repaired using a data structure repair routine, such as Juzi. Each

invocation of Juzi requires a systematic exploration of a space of candidate struc-

tures. However, it is the same fault in remove that is the cause of data structure

corruption.

Our data structure repair approach creates a repair abstraction for a concrete

repair action to memoize how the corruption was fixed. When a similar corruption

is encountered during a future run, the abstract repair action is first performed as

a heuristic; if the heuristic leads to a successful repair, data structure repair com-

pletes, and otherwise, the default Juzi algorithm applies. For this example, the Juzi

repair action < N2, prev,N0 > is abtracted to < prev,Neighbor >, where the

keyword Neighbor indicates that a mutation of the prev field should be (heuris-

tically) prioritized to first point to a neighboring node, i.e., a node that is directly

connected to the source node along one field access. Thus, the value null has a

9

lower priority among the set of possible repairs.

1.3.3 Graph Spectra

Data structure repair routines, such as Juzi, that provide the foundation of

our work use given structural invariants as a basis of performing repair. While

user-provided repOk methods enable such routines to apply, we envision new ap-

proaches that do not require the users to provide detailed invariants. Specifically,

here we illustrate our approach for capturing structural invariants using graph spec-

tra [22].

Recall that our example lists are acyclic along prev fields. Note also that

the faulty remove method violates this property. Our technique represents object

graphs using adjacency matrices and uses their spectra, i.e., eigenvalues, to classify

them. The eigenvalues for lists in Figure 1.2 (a) and (c) are (0, 0, 0, 0) and (0, 0, 0)

respectively, i.e., they are all zeroes. However, the eigenvalues for the list in Fig-

ure 1.2(b) are (0, 0, 0, 1), i.e., they contain a non-zero element. Since all eigenvalues

of an acyclic structure are zero [22], the list in part (b) violates the acyclicity invari-

ant. Thus, this violation is detected by using results from graph spectra, without

using a user-provided repOk method.

1.4 Contributions

The results in this thesis are based on work published at: ASE 2009 [67],

ICST 2011 [72], ICSE NIER 2011 [68], ICST 2012 [69] and RV 2013 [113]. We

make the following contributions:

10

1. Program Repair using Data Structure Repair

We present an approach to repair programs using data structure specifications

with the following key contributions:

• Algorithms. We present two algorithms that form the basis of our ap-

proach: one algorithm performs the abstraction of concrete repair ac-

tions and the other algorithm uses abstract repair to generate debugging

suggestions. We argue the correctness of our approach.

• Evaluation. We evaluate our approach for its success rate on faulty mu-

tants of a suite of programs, including some benchmark data structures

as well as parts of the ANTLR and RayTrace applications. Experimental

results show our approach generates accurate debugging suggestions.

2. Dynamic Analysis using Graph Spectra

We present an approach for dynamic analysis of data structure implementa-

tions with the following key contributions:

• Graph spectra in dynamic analysis. We introduce the use of graph

spectra in dynamic analysis of programs that manipulate structurally

complex data.

• Technique. We present a technique for detecting likely properties of

object graphs in Java programs.

• Evaluation. We use a suite of subject programs that implement com-

plex data structures to evaluate our technique. Experimental results

11

show that our technique holds much promise in accurately identifying

structural properties as well as detecting likely erroneous executions.

3. Prioritizing Data Structure Repair using Repair Abstractions

We present a technique to prioritize repairs based on previously known errors

and repairs.

• Memoizing repair actions. We introduce the idea of memoizing re-

pair actions from previous runs of a data structure routine in order to

prioritize future repairs and optimize performance.

• Repair abstractions. We define repair abstractions that generalize con-

crete data structure repair actions into concepts based on rooted, edge-

labeled graphs, which capture the essence of concrete repair actions and

enable their re-use in future.

• Evaluation. We experimentally evaluate our technique and compare it

with previous work on invariant-based repair.

1.5 Organization

The rest of this document is organized as follows. Chapter 2 presents our

work on program repair. Chapter 3 describes our technique to capture data structure

invariants using graph spectra. Chapter 4 describes our technique to optimize data

structure repair using repair abstractions. Chapter 5 presents the related work and

Chapter 6 concludes the thesis.

12

Chapter 2

Program Repair Using Data Structure Repair

This chapter describes our approach to program repair using data struc-

ture repair. The basic problem our approach addresses is to modify a given faulty

program p into another program p′ such that p′ is correct with respect to a given

bounded correctness criteria. We support two forms of criteria: (1) a given test

suite where each test case consists of an input and the corresponding expected out-

put; and (2) a given specification, which allows enumerating test inputs and pro-

vides the correctness properties of p, as well as a bound on the input size to check

p. Thus, the transformed program p′ is correct with respect to a bounded number of

possible program behaviors, which are either presented explicitly in the form of the

given test suite or implicitly in the form of the specification and the bound on input

size. This chapter is based on our work presented in ASE 2009 [67]1 that makes a

case for state repair for program repair, and our ICST 2011 [72]2 paper that presents

the details and evaluation of the work.

1Muhammad Zubair Malik, Khalid Ghori, Bassem Elkarablieh, Sarfraz Khurshid. A Case for
Automated Debugging Using Data Structure Repair. ASE 2009. (Ghori and Elkarablieh are former
UT students supervised by Khurshid.)

2Muhammad Zubair Malik, Junaid Haroon Siddiqui, Sarfraz Khurshid. Constraint-Based Pro-
gram Debugging Using Data Structure Repair. ICST 2011. (Siddiqui is a former UT student super-
vised by Khurshid.)

13

The key insight of the work presented in this chapter is to leverage the in-

formation available in program state to repair the program code. We show that for

a large class of programs that operate over complex data structures using the data

structure repair is efficient and effective for program repair. Traditional approaches

of automated debugging such as delta debugging [114], statistical debugging [15],

and spectral techniques [56] focus on isolating cause of failure in code but do not

provide repair suggestions on how to modify code. More recent work addresses

automated program repair [40], which we discuss in detail in Chapter 5. To our

knowledge, our work is the first to introduce the idea of modifying program states

as a basis of synthesizing code that repairs a faulty program.

We present a novel methodology for developing reliable software: data

structure repair for automated debugging. A technique embodying the methodol-

ogy is developed based on two algorithms: (1) repair abstraction algorithm, which

translates concrete repair actions of a data structure repair tool into Java code that

represents the actions using variables visible in the scope of the faulty code; and

(2) debugging advisor algorithm, which (heuristically) computes where to apply the

fix. Demonstration of the technique using the Juzi repair tool as an enabling tech-

nology on subject programs from standard benchmarks and Java libraries shows the

effectiveness and versatility of the technique.

The idea of using data structure repair for program repair was first intro-

duced in Ghori’s Masters thesis [39]. This chapter refines the original ideas into

two core algorithms, argues the correctness of the approach, and presents a rigor-

ous experimental evaluation using textbook data structure implementations as well

14

as structures derived from parts of the ANTLR [84] and RayTrace [11] applications.

2.1 Debugging Using Data Structure Repair Overview

Systems with high reliability and availability requirements have used data

structure repair over the last few decades as an effective means to recover on-the-fly

from errors in program state [26,32]. Our insight is that since the goal of repair is to

transform an erroneous state into an acceptable state, the state mutations performed

by repair provide a basis of debugging faults in code (assuming the erroneous states

are due to bugs and not external events, say cosmic radiation). A key challenge to

embodying our insight into a mechanical technique arises due to the difference in

the concrete level where the program states exist and the abstract level where the

program code exists: repair actions apply to concrete data structures that exist at

runtime and have a dynamic structure (i.e., may get mutated), whereas debugging

applies to code that has a static structure.

Given a Java method that takes as input structurally complex data, the struc-

tural invariants that the method must preserve, and an input that leads to an invariant

violation by the method, our technique performs three basic steps. (1) It uses data

structure repair to transform the erroneous output into a program state that satisfies

the structural invariants. (2) It abstracts the set of concrete repair actions by gen-

erating a sequence of Java statements using variables visible within the scope of

the method. (3) It determines, using dataflow and heuristics, the place to put the

generated sequence in the method.

15

2.2 Motivating Example

Consider the following declaration of a class implementing doubly-linked

circular lists based on the java.util.LinkedList class from Java libraries:

1 public class LinkedList {
2 private Entry header=new Entry(null, null, null);
3 private int size = 0;
4
5 public LinkedList() {
6 header.next = header.previous = header;
7 }
8
9 private static class Entry {

10 Object element;
11 Entry next;
12 Entry previous;
13
14 Entry(Object element, Entry next,
15 Entry previous) {
16 this.element = element;
17 this.next = next;
18 this.previous = previous;
19 }
20 }

Each list object has a sentinel header node and caches the number of nodes

in the field size. The class Entry implements the list nodes. Each node has

an element, and next and previous pointers to other nodes. Figure 2.1 (a)

illustrates an empty list.

The structural invariants (called class invariants in object-oriented programs)

of doubly-linked lists are sentinel header nodes, circularity along next fields,

transpose relation between next and previous fields, and correct value for size.

Any valid list must satisfy these invariants (in all publicly visible states). These

16

invariants can be represented using a repOk [66] method that traverses its input

structure and returns true if and only if the input satisfies all the invariants:

21 public boolean repOk() {
22 if (header == null) return false;
23 if (header.element != null) return false;
24 Set visited = new HashSet();
25 visited.add(header);
26 Entry current = header;
27 while (true) {
28 Entry next = current.next;
29 if (next == null) return false;
30 if (next.previous!=current) return false;
31 current = next;
32 if (!visited.add(next)) break;
33 }
34 if (current != header) return false;
35 if (visited.size() - 1 != size) return false;
36 return true;
37 }

Class invariants implicitly form a part of the preconditions and postcondi-

tions of public methods. Thus, all executions of a public method are expected to

terminate in a state where the class invariants hold.

Consider the following implementation of the method addFirst, which

has been modified from its original implementation:

38 public void addFirst(Object e) {
39
40 Entry entry = header.next;
41 Entry newEntry =
42 new Entry(e, entry, entry.previous);
43 newEntry.previous.next = newEntry;
44 newEntry.next.previous = entry; // fault
45 size++;
46 return newEntry;
47 }

17

This method has an injected fault in its third assignment statement (Line

44), which erroneously sets a previous field to entry instead of newEntry3. To

illustrate the effect of this fault, consider the following code snippet:

50 LinkedList l = new LinkedList();
51 assert l.repOk(); // pass
52 l.addFirst(0);
53 assert l.repOk(); // fail

The second assertion (Line 53) fails. Figure 2.1 (b) illustrates the erroneous

list in the post-state of addFirst. The previous field of the header node (E0)

is erroneously set to the node itself (instead of E1).

Given the erroneous list and the repOk method, Juzi — a data structure

repair tool discussed in Section 2.3 — repairs the list by performing the following

repair action: ⟨E0, previous, E1⟩, i.e., by setting the previous field of E0 to E1,

thereby generating a valid list of size 1 containing the element 0—the list a correct

implementation of addFirst would generate.

At every control point in the program we record all objects that are reachable

from any reference field. Based on Juzi’s concrete repair action, our repair abstrac-

tion algorithm using semantics of Java reference fields finds the correct mapping

from E0 to newEntry.next and E1 to newEntry that enables it to generate the

following Java code:

newEntry.next.previous = newEntry;

3The addFirst method is correctly implemented in java.util.LinkedList and
uses the helper method addBefore, which we inline here to make it accessible for our tool

18

L 0

header
0

E0

next
previous

null

(a)

1
next

previous

obj1E0
next

previous

null

L

header

10

E

(b)

Figure 2.1: Doubly-linked circular list with sentinel header. (a) An empty list
(size 0). (b) An erroneous list of size 1 containing element 0. A small box-pair
represents a list object and is labeled with the object’s identity and the value of its
size. Large box-pairs represent entry objects and are labeled with object identity
and value of element.

Our debugging advisor algorithm based on the dataflow suggests this fix for

Line 46, which corrects the fault.

2.3 Background: Data Structure Repair using Juzi

Juzi is an automated framework for on-the-fly repair of data structures [30,

32,33,60]. Given a corrupt data structure, as well as a repOk method that describes

the structural integrity constraints, Juzi systematically mutates the fields of the cor-

rupt data structure so that it satisfies the given constraints. In addition to repairing

19

the given structure, Juzi reports the repair actions it performed on the corrupt struc-

ture in a log-file that holds a sequence of tuples ⟨o, f, o′⟩, i.e., an assignment to field

f of object o the value o′—each tuple represents a repair action.

To illustrate Juzi and its repair mechanism, consider the example of repair-

ing corrupt doubly linked lists. Consider the list in Figure 2.1 (b). The list has one

corruption in the previous field on node E0. Given the corrupt structure and the

repOk method, Juzi first invokes repOk on the corrupt structure and monitors the

fields accessed by repOk during its execution. When repOk returns false due to

a constraint violation, Juzi systematically mutates the last field accessed by repOk

by non-deterministically setting it to : (1) null, (2) nodes that have already been

visited during repOk’s execution, and (3) one node that has not yet been visited.

To illustrate, monitoring the execution of repOk, Juzi detects the fault in

the previous field of node E0, and mutates its value first to null, which does not

repair the fault, and then to node(s) that have been previously encountered during

the execution of repOk. Since E0 is the original value of the field, Juzi does not

need to try it again (unless some other fields are modified first). Therefore, Juzi

tries node E1 next, which repairs the fault in the structure.

In addition to repairing the corrupt structure, Juzi reports the tuple ⟨E0,

previous, E1⟩ to indicate the repair action that fixed the corruption. Note that

although Juzi tries several mutations on corrupt fields, only the repair actions that

result in repairing the fields are reported.

To provide more effective repair, Juzi tries to preserve the reachability of the

20

candidate

Repair Abstraction Debugging AdvisorData Structure Repair
Juzi

concrete
repair actions abstract

repair code

erroneous
output

valid
input faulty

methodrepOk
method

Verifier

yes

repaired
method

Done?
no

method

Figure 2.2: Automated program repair using data structure repair. Solid boxes
represent computation modules, the ovals represent data, and the arrows show the
flow of information. The dashed box represents the two algorithms that embody
our technique. The arrows reaching only the dashed box imply that the information
is available to both the algorithms.

data in the given structure. In particular, if a sequence of repair actions generates a

valid structure that has fewer data than the original structure, Juzi performs further

repair actions to preserve the reachability if possible.

The next section describes how to translate these repair actions into code

statements that can be used as effective suggestions for debugging faulty code.

2.4 Program Repair

Figure 2.2 illustrates key components of our technique. Given an erroneous

output of a faulty method and the structural invariants (repOk) expected of a cor-

rect output, data structure repair generates concrete repair actions, i.e., a sequence

of field mutations, that repair the corrupt structure. The repair abstraction algorithm

takes as input the faulty method, the valid input for which the method gives the er-

21

roneous output, and the concrete repair actions of the data structure repair routine,

and generates abstract repair code that represents the concrete actions using a se-

quence of Java statements. The debugging advisor determines (heuristically) where

the abstract repair code provides a bug fix in the faulty method and generates a

repaired method, which is validated over the test cases that represent the bounded

correctness criteria.

2.4.1 Repair Abstraction Algorithm

This algorithm abstracts concrete repairs suggested by Juzi into the actual

program code. Figure 2.3 presents our repair abstraction algorithm. Given a faulty

method, an input state of the program, and a list of repair actions along with output

state suggested by Juzi, this algorithms initialize the code handles to correct value.

For all Juzi repair actions it map objects in Juzi repair action to code handles using

conservative reasoning, and translate repair action to build a code statement. The

algorithm updates the code and applies repair actions on the program state. And

finally it updates the handles to reflect the changes in program state.

A key auxiliary data structure the algorithm maintains for every control

point during a method execution is a map, Map<Variable, Object>, from stat-

ically declared variables that are visible at the control point (including the input

parameters, such as this) to their values at that control point for the current exe-

cution.

To illustrate, consider executing the method addFirst on the empty input

list shown in Figure 2.1 (a). The map at Line 46 for this execution is:

22

Vector<AssignmentStatement> repairAbstraction(
Vector<RepairAction> ras, Method faulty,

Object input, Object output) {
Vector<AssignmentStatement> abstractRepair =

new Vector<AssignmentStatement>();
Map<Variable, Object> variableValueMap =

buildVariableValueMap(faulty, input);
for (RepairAction ra: ras) {

Expression source =
abstraction(ra.source(), variableValueMap, output);

Expression target =
abstraction(ra.target(), variableValueMap, output);

abstractRepair.add(new
AssignmentStatement(source, ra.field(), target));

performRepairAction(output, ra);
updateVariableValueMap(variableValueMap, output);

}
return abstractRepair;

}

Figure 2.3: Repair abstraction algorithm.

23

variable value
newEntry E1

this L0

e 0
entry E0

Note the map is with respect to the variables that are visible in the context of the

method that contains the control point. Thus, if a method invokes a helper method,

the map is updated to reflect the invocation.

The method buildVariableValueMap initializes the map with respect to

the last control point that performs a mutation on an object field of the method input

when the faulty method is executed on that input. The state of the map reflects that

last mutation. Therefore, if the input method calls a helper method that performs all

the mutations, the map is built with respect to the variables of the helper method,

and the abstract repair code applies to the helper method.

The method abstraction has the signature:

Expression abstraction(Object o,Map<Variable, Object> v,
Object root){... }

It outputs a path expression that starts traversal at an object pointed to by a variable

in the variable-value map, and terminates at the desired object o, which is reachable

from root along some sequence of field dereferences. The output path expression

is loop-free, i.e., it does not include a sub-sequence of field dereferences starting at

an object and evaluating to the same object. More formally, if for variable v, and

fields f1, . . . , fk (k ≥ 1), v.f1. · · · .fk evaluates to v, the generated expression will

not take the form e.f1. · · · .fk.e′ for any expression e that evaluates to v, rather it

24

will take the form v.e′. This allows abstraction to consider a bounded number of

path expressions. Moreover, an expression that is not loop-free is likely to represent

a programming error.

Among the set of loop-free path expressions that provide the desired handle,

abstraction prioritizes expressions that start with a local variable declared by the

method, since methods that manipulate input object graphs often use local variables

as pointers into the input graphs for traversing them and accessing their desired

components.

To illustrate, consider the repair action ⟨E0, previous, E1⟩ (Section 3.2).

Applying abstraction to the action’s source object E0 using the variable-value

map at the method exit point generates two loop-free expressions “newEntry.next”

and “entry”—both expressions evaluate to E0. Since priority is given to local vari-

ables, abstraction outputs the expression “newEntry.next”.

The method performRepairAction updates the object graph that is reach-

able from a given root object with respect to the given repair action by mutating the

object graph. After that, the method updateVariableValueMap modifies the

map with respect to the updated object graph.

Correctness. We argue that the repair abstraction algorithm generates a sequence

of program statements that represent the given sequence of repair actions. In other

words, appending the generated code at the tail of the current execution path (just

before the return statement) in the control-flow graph results in a modified pro-

gram that (1) compiles and (2) when executed on the original input, generates the

25

repaired output (up to isomorphism [13]).

Central to our correctness argument is a property of the Juzi data structure

repair framework. Juzi performs a systematic search of a neighborhood of the given

corrupt structure using backtracking. The basis of the search is an iterative process

for mutating object fields and re-executing repOk after each mutation to check

the validity of the resulting structure. Juzi keeps no explicit pointers into the given

object graph other than the given root pointer (this of repOk). Therefore, the final

sequence of repair actions, say r1, . . . , rn, where ri = ⟨oi,s, fi, oi,t⟩ for 1 ≤ i ≤ n,

performed by Juzi is such that for any repair action rj (1 ≤ j < n) and for any repair

action rk (j < k ≤ n), the objects ok,s and ok,t are still reachable from the given

root pointer. Thus, the method abstraction can always generate a legal path.

Hence, the generated sequence of assignment statements compiles and each repair

action is abstracted into one assignment statement that represents that action. Thus,

executing the sequence of statements performs the same mutations in the same order

as Juzi. Therefore, the resulting structure is the same (up to isomorphism) as the

repaired structure generated by Juzi.

2.4.2 Debugging Advisor Algorithm

The abstract repair code can directly serve as a debugging suggestion: ap-

pend the sequence at the tail of the execution path (just before the return state-

ment). While this suggestion is likely to fix the specific erroneous execution, it

does so by undoing any erroneous field mutations of the execution—technically,

this may qualify as a bug fix, however, the user may have to go through a tedious

26

Method debuggingAdvisor(Method faulty, Object input,
Object repairedOutput,

Vector<AssignmentStatement> stats,
Vector<RepairAction> ras) {

MethodGen repairedMethod = new MethodGen(faulty);
for (int i = 0; i < stats.size(); i++) {

AssignmentStatement stat = stats.elementAt(i);
ExecutionPath path = tracePath(repairedMethod, input);
AssignmentStatement last =

locateLastRelevantAssignment(path, input,
stat,ras.elementAt(i));

if (last != null &&
checkFixFeasibility(repairedMethod, last,

stat, stats, ras, repairedOutput)){
repairedMethod.replace(last, stat);

} else{
repairedMethod.append(path, stat);

}
}
return repairedMethod.method();

}

Figure 2.4: Debugging advisor algorithm.

27

process of determining what fault each assignment statement is fixing. Ideally, we

would like to mechanically determine where the erroneous mutations are located in

the faulty code and to replace them with repaired mutations. The debugging advisor

algorithm (Figure 2.4) uses a heuristic approach to provide this functionality.

The algorithm takes as inputs the faulty method (faulty), the input (input)

that exhibits an erroneous output, the sequence of assignment statements (stats)

that represent repair actions, termed repair statements, and the corresponding se-

quence of concrete repair actions (ras). Intuitively, the algorithm determines for

each repair statement where to place it in the faulty method. There are two place-

ment possibilities: (1) replace an existing statement with it, or (2) insert it in the

execution path as a new statement. The debugging advisor first tries to find an ex-

isting statement for replacement, but if it fails to find such a statement, it inserts it

as a new statement.

The class MethodGen represents mutable method objects. The method

tracePath builds an explicit representation of the execution path of the faulty

method on the given input.

The method locateLastRelevantAssignment provides the key func-

tionality of suggesting an effective bug fix: it traverses the execution path to find

an assignment statement that assigns the same object field as the repair statement,

heuristically treating the original assignment as erroneous. If it does not find such a

statement, it returns null, and debuggingAdvisor simply appends the repair

statement to the execution path. Otherwise, the function debuggingAdvisor

checks the feasibility of swapping the statements subject to the repair actions that

28

have yet to be integrated into the faulty code.

Recall the faulty method addFirst (Section 2.2). For the repair statement

“newEntry.next.previous=newEntry;” and for the corresponding repair ac-

tion ⟨E0, previous, E1⟩, locateLastRelevantAssignment returns the state-

ment on Line 46, since it assigns to the same object field as the repair action.

The method checkFixFeasibility returns true if swapping the variable

last with stat permits the application of remaining repair actions as a sequence

of operations at the tail of the (modified) execution path to generate the repaired out-

put (up to isomorphism). If the replacement is determined infeasible, the function

debuggingAdvisor appends the repair statement to the path.

Correctness. We argue that the debugging advisor generates a method that, for

the given input, outputs a structure isomorphic to the repaired structure gener-

ated by Juzi. If debuggingAdvisor performs no statement replacements, it sim-

ply appends the repair statements to the execution path, and hence the correct-

ness argument for repairAbstraction establishes the correctness argument for

debuggingAdvisor. Consider next the case when the debuggingAdvisor re-

places an existing statement. By construction, such a replacement is only performed

if there exists an integration of the remaining repair actions such that the repaired

method generates the repaired output. Thus, the replacements are safe with respect

to generating the repaired output by the repaired method.

29

Table 2.1: Success Rate Evaluation

Class Method Method Variants Faulty Repairable Fixed Success Repairable
LOC Rate Succ Rate

Singly Linked List addLast 6 7 7 2 2 28 % 100%

Doubly Linked List addBefore 5 31 30 28 28 90% 100%
remove 9 104 96 70 68 71 % 97%

Disjoint Set insertFirst 17 179 164 79 79 44% 100%
remove 16 23 23 10 9 39% 90%

Binary Search Tree addIterative 27 12 12 5 3 25% 60%
Linked Priority Queue insert 14 6 6 2 2 33% 100%

2.4.3 Possible Integration with Bounded Exhaustive Testing

To increase confidence in the correctness of the repaired method, our tech-

nique allows a direct application of the Korat framework for systematic testing [13,

73] to automatically generate valid inputs and check outputs using repOk when the

correctness criteria includes the repOk method. Moreover, any bugs discovered by

Korat can feedback into our technique to use it to iteratively debug a faulty program

that has multiple faults along different control-flow paths.

The validation by Korat can be implemented within the method checkFixFeasibility,

which allows us to use a counterexample-driven refinement of fixes proposed by our

algorithm. Korat is a structural constraint solver that can be used to generate non-

isomorphic inputs for bounded exhaustive testing. The inputs generated by Korat

can be used to check the proposed fixes.

2.5 Evaluation

We report experiments and case studies designed to evaluate success rate of

our approach and its effectiveness. We use fault injection in sourcecode to create

30

faulty versions of our subject programs. We apply our technique to repair the faulty

versions and compare the repaired code to original correct code. We use five text-

book data structures to compute the success rate of our approach in repairing faults.

Moreover, we evaluate the applicability and effectiveness of our approach by case

studies on programs based on parts of two real-world applications.

Our approach is implemented as a stand-alone command line application,

and uses the AST classes provided by Eclipse JDT library. All experiments were

run on an Intel Dual Core 2.8GHz machine with 2GB of RAM.

2.5.1 Success Rate

We report the overall Success Rate of our approach as the ratio of the num-

ber of correct fixes generated by our approach with respect to the total number of

faulty versions created by our fault injection methodology. Since our approach re-

lies fundamentally on the ability of Juzi to successfully repair program state and

Juzi may or may not be able to repair each erroneous state, we also report Re-

pairable Success Rate, which is the success rate ratio computed only with respect

to errors that actually can be repaired by Juzi.

We consider faults of omission, where the programmer forgets to write the

necessary code, and faults of commission, where the programmer writes incorrect

code. Our focus is on injecting semantic faults, which are not detected in the com-

pilation process. We assume that the starting code is correct. To inject faults that

mimic omission, we remove one or more lines of code; the faults of commission

are mimicked by using standard mutation operators [1].

31

Table 2.1 shows our results on seven mutator methods from five different

classes. All of these classes implement a predicate function repOk which is used

to verify the state of the class objects. The methods chosen for our experiments

vary in size and complexity of control structure. Not all program variants result in

failure. We consider a variant to be Faulty which causes repOk to return false when

applied on a valid structure. Not all failures result in errors that are repairable. We

consider an error Repairable if Juzi can find a fix for the structure produced by the

program variant. An error is Fixed when we can modify the erroneous program

into a new program which when applied to any valid structure (in the bounded

exhaustive sense) results in valid structures output. Rate of Success is the ratio of

Fixed programs to programs resulting in Failure. Repairable Rate of Success is the

ratio of Fixed programs to the programs that caused a Repairable error.

The success rate of our approach is high (97% on average) if we consider the

fixes generated only for the cases that are repairable. The success rate is directly af-

fected by structural redundancy of data (that guards against reachability violations)

and we observe that our approach works best for doubly linked list with the largest

ratio of redundant links among all structures in our experiment.

2.5.2 Applicability and Effectiveness

To evaluate the applicability and effectiveness of our approach, we per-

formed two case studies on code derived from parts of real programs. Our stud-

ies show that program repair approach holds potential to work on real programs

and fix non-trivial bugs. Specifically, we consider (1) ANTLR [84] — a compiler

32

generator, and 2) RayTrace [11] — a program for tracing lights paths through an

image.

2.5.2.1 Experiment Design

Debugging and repairing large scale open source software is as much art as

much it is a systematic processes. The well defined application programming inter-

faces promote component based development and allow unit tests to be performed

using stubs. The stubs present pre-defined correct behaviour of interacting compo-

nents and allow the debugging process to focus on the behavior of the piece of code

under test. This simplifies the test input generation and makes unit testing more

effective. This processes does not exclude the need of system-level testing but does

give confidence on the features tested for the current piece of code.

In the design of this study we have focused our approach only on the relevant

piece of code, assuming that the source of error has already been localized. The tests

used were also generated to specifically reach the faulty method and hit the faulty

code block. The various method calls in these methods were stubbed to return only

the correct and desired output when called with the provided test.Using this setup

we were able to focus our approach on the desired functionality and error. This

behavior is inline with the actual debugging process followed by human developers

and does not undermine the soundness of our approach. It does reflect our belief that

we expect every other part of the code to behave according to their specifications.

33

root

0
parent

Children

token

L2L10L

parent

Children

tokenT1
parent

Children

tokenT3
parent

Children

tokenT2

T

(a)

4
parent

Children

token

L3

parent

Children

tokenT5 T6
parent

Children

token

L4

t

T

(b)

t

parent

Children

tokenT1
parent

Children

tokenT3
parent

Children

tokenT2

parent

Children

tokenT5
parent

Children

tokenT6

T4
parent

Children

token

L3 L4

T0
parent

Children

token

L2L10L

root

(c)

t

parent

Children

tokenT1
parent

Children

tokenT3
parent

Children

tokenT2

parent

Children

tokenT5
parent

Children

tokenT6

L3 L4

L2L10L

T0
parent

Children

token

root

T4
parent

Children

token

(d)

Figure 2.5: CommonTree accessible from root.(a) A bug free tree.(b) Tree T4
that has no payload but has children. (c) Erroneous tree state with two structural
violations resulting from faulty method addChild. (d) Resulting structure after
applying Juzi, this step also generated two repair actions that are translated to valid
working Java statement.

34

2.5.2.2 ANTLR

ANother Tool for Language Recognition (ANTLR) [84] is a language tool

that generates recognizers, compilers, and translators from grammatical descrip-

tions. Using a formal grammar ANTLR automates the construction of language

recognizers and generates a program that determines whether sentences conform to

that language. It is one of the most widely used parser generators, language trans-

lator and interpreter. The heap of ANTLR at run time consists mainly of custom

data structures, errors in which have known to cause major bugs in the program.

This makes ANTLR an excellent case study for verifying the scalability and useful-

ness of our approach. To generate lexical analyzer and parser for a given grammar,

ANTLR represents the grammar internally in an n-ary tree structure. Since this

structure is at the core of ANTLR, any error can have far reaching impact. All bugs

in this structure are considered Major priority bugs in ANTLR (such as bug 15 and

133 in ANTLR version 3 bug repository).

Our proof of concept implementation does not handle all intricacies of class

hierarchy which is fairly complicated in large scale software like ANTLR. We adapt

the ANTLR code by squashing the class hierarchy and bringing all declarations in

the instantiable class CommonTree.

The representation invariants of this structure are acyclicity along Children

and transpose relationship between parent and child. Unlike data structures in JAVA

Collections, (1) the CommonTree in ANTLR does not contain a sentinel root and

(2) information about the size of structure is not kept within the structure. The

repOk for CommonTree is:

35

30 public static boolean repOk (){
31 CommonTree root = this;
32 if (root==null) return true;
33 Set<CommonTree> visited = new HashSet<CommonTree>();
34 visited.add(root);
35 LinkedList<CommonTree> workList =
36 new LinkedList<CommonTree>();
37 workList.add(root);
38 while (!workList.isEmpty()) {
39 CommonTree current = workList.removeFirst();
40 if(!visited.add(current))
41 return false;
42 for(int i= 0;i<current.children.size();i++){
43 if((current.children.get(i)).parent != current)
44 return false;
45 workList.add((Tree)current.children.get(i));
46 }
47 }
48 return true;
49 }

Lets consider a variant of addChildmethod that adds another CommonTree

by adopting all its children:

81 public void addChild(CommonTree childTree) {
82 if (childTree==null) {
83 return;
84 }
85 if (childTree.isNil()) {
86 if (this.children!=null &&
87 this.children == childTree.children) {
88 throw new RuntimeException(
89 "attempt to add child list to itself");
90 }
91 if (childTree.children!=null) {
92 if (this.children!=null) {
93 int n = childTree.children.size();
94 for (int i = 0; i < n; i++) {
95 CommonTree c = childTree.children.get(i);

36

96 this.children.add(c);
97 c.setParent(this);
98 c.setChildIndex(children.size()-1);
99 }

100 } else {
101 this.children = childTree.children;
102 for (int c = 0; c < children.size(); c++) {
103 CommonTree child = getChild(c);
104 child.setChildIndex(c);
105 child.setParent(this);
106 }
107 }
108 }
109 }else {
110 if (children==null) {
111 children = createChildrenList();
112 }
113 children.add(childTree);
114 //childTree.setParent(this); //Injected Error
115 childTree.parent = this; //Fix
116 childTree.setChildIndex(children.size()-1);
117 }
118 }

This method has a bug that it does not update parent relationship of adopted

node. This bug can go undetected during the construction of the tree but can result

in a faulty grammar later.

Figure 2.5 (a) shows a valid tree accessible from root and Figure 2.5 (b)

shows another tree accessible from t. The addChild method is called on T1 and

Figure 2.5 (c) shows the resulting erroneous structure with multiple missing parent

assignments. Juzi returns ⟨T5, parent, T1⟩ and ⟨T6, parent, T1⟩ and repairAb-

straction and debugAdviser suggest adding childTree.parent = this; at line

115 to fix the problem. The fix is verified by bounded exhaustive testing.

37

2.5.2.3 RayTrace

Ray tracing is a technique to produce images with realistic graphics by trac-

ing paths of light through pixels in an image. RayTrace maintains the 3D model of

the image in a structure OctNode. This structure divides the 3D space into eight

subspaces hierarchically. Since most of the space is empty, OctNode avoids divid-

ing empty subspaces. It maintains an object-list ObjList of type ObjNode and

only constructs deeper tree in subspaces that contain objects. This design saves

both memory and search time in the tree.

We inject a bug in the construction of ObjList and show how our approach

can detect and fix it. We simplified the original code for our study to enable our tool

to handle it; specifically, we remove the abstract classes and interfaces in the class

hierarchy and focus on the concrete class ObjNode:
1 public class ObjNode{
2 private Object theObject;
3 private ObjNode NextLink;
4 public ObjNode(Object newObj) {
5 theObject=newObj;
6 }

The workhorse class of RayTrace is OctNode that operates on these struc-

tures to maintain the space of the image it is representing. Each OctNode object has

a sentinel header ObjList pointing to a list of objects contained in the OctNode

space, it caches the size of this list in the field NumObj. Figure 2.6a illustrates an

empty OctNode.

The structural invariants of OctNode, which are relevant to its list nodes,

are acyclicity along NextLink fields and correct value for NumObj:

38

OctNode1

Adjacent

OctFaces

Child

ObjList

NumObj=0

(a)

NextLinkObjList

OctNode1

Adjacent

OctFaces

Child

NumObj=3

Objects

NextLink NextLink

ObjNode2 ObjNode1 ObjNode0

(b)

ObjList

OctNode1

Adjacent

OctFaces

Child

NumObj=3

Objects

NextLink NextLink NextLink

ObjNode2 ObjNode1 ObjNode0

(c)

Figure 2.6: OctNode structure in RayTrace. (a) An empty ObjList (ObjNum
0).(b) An erroneous list of size 3 containing a cycle introduced by faulty code.
(c) Fixed structure after applying Juzi.

39

30 boolean repOk(){
31 if (ObjList == null) return NumObj==0;
32 java.util.Set<ObjNode> visited =
33 new java.util.HashSet<ObjNode>();
34 ObjNode current = ObjList;
35 while (current != null) {
36 if(!visited.add(current)){
37 return false;
38 }
39 current = current.Next();
40 }
41 return visited.size()== NumObj;
42 }

Consider the implementation of the method CreateTree below, that adds

objects to ObjList when the objects are not null and less than maximum number

of objects allowed for this OctNode:

66 void CreateTree(ObjNode objects, int numObjects) {
67 ObjNode newnode = new ObjNode();
68
69 if (objects != null) {
70 if (numObjects > MaxObj) CreateChildren(objects, 1);
71 else {
72 ObjNode currentObj = objects;
73 ObjNode last = ObjList;
74 while (currentObj != null) {
75 newnode = new ObjNode(currentObj.GetObj());
76 if(ObjList == null){
77 ObjList = newnode;
78 last = ObjList;
79 }else{
80 last.SetNext(newnode);
81 last = newnode;
82 }
83 currentObj = currentObj.Next();
84 }
85 //newnode.SetNext(ObjList); //injected error

40

86 newnode.NextLink = null; //Fix
87 NumObj = numObjects;
88
89 }
90 }
91 }

The method CreateTree has a fault in its line 85 that erroneously sets the

last ObjNode is NextLink to the ObjNode pointed to by ObjList. Figure 2.6(b)

demonstrate one such fault.
Based on Juzi’s concrete repair action, our repair abstraction algorithm gen-

erates the following Java code, which results in correct ObjList in Figure 2.6(c).

newnode.NextLink = null; //Fix

2.6 Limitations

The current embodiment of our approach does not fix faults that alter reach-

ability in a data structure since we use Juzi, which only repairs data structures with

respect structural invariants that specify properties of the structure reachable from

the given root of the erroneous structure. We believe our technique can use spec-

ifications richer than structural invariants to generate debugging suggestions for a

larger class of faults. For example, in more recent joint-work, we investigated the

use of postconditions that relate method pre-state with post-state to correct erro-

neous implementations [40]; this work leverages a SAT backend. Moreover, if the

underlying data structure repair routine (Juzi) can be modified to generate the re-

pair actions to correct other classes of functional errors, our technique will be able

to handle more complex program bugs.

41

In general, programs can have several different kinds of faults, e.g., a fault

in a loop condition that performs an incorrect check or an incorrect overriding

of equals method. Our technique addresses faults along one execution path. A

method that has multiple independent faults along different execution paths can be

handled by an iterative application of our technique using inputs that execute the

different paths and augmenting bug fixes generated by the debugging advisor.

2.7 Discussion

We believe our methodology holds much promise, and is likely to provide

a basis for developing new techniques that systematically test and debug erroneous

programs and result in a synergy that significantly enhances software reliability and

reduces the cost of software development.

2.7.1 Efficient Data Structure Repair

The technique developed in this chapter focuses on automated debugging,

but the algorithms that embody the technique have other novel applications, e.g., for

highly optimized data structure repair. Abstract repair code could be injected into

the faulty method to allow it to repair its own output on-the-fly without having to

repeatedly run Juzi to repair the output. This approach has the potential of providing

a substantial speed-up since Juzi performs a systematic search and requires repeated

executions of repOk on each candidate repair action. Injecting abstract repair code

would replace the search and perform repair in a negligible amount of time. This

insight forms the basis of Chapter 4.

42

2.7.2 Programming by Sketching

Another application is for programming by sketching [96]. The user could

annotate the right-hand-side of a field assignment statement as unspecified, which

can be treated initially as null and then repaired using our technique. We plan to

build on our core technique to handle a larger class of faults and explore various

novel applications in future work.

2.8 Summary

This chapter introduced a novel methodology for developing reliable soft-

ware: data structure repair for automated debugging. A technique embodying the

methodology was developed based on two algorithms: (1) repair abstraction al-

gorithm, which translates concrete repair actions of a data structure repair tool into

Java code that represents the actions using variables visible in the scope of the faulty

code; and (2) debugging advisor algorithm, which (heuristically) computes where

to apply the fix. Demonstration of the technique using the Juzi repair tool as an en-

abling technology on subject programs from standard benchmarks show the effec-

tiveness and versatility of the technique. We believe our methodology holds much

promise, and is likely to provide a basis for developing new techniques that system-

atically test and debug erroneous programs and result in a synergy that significantly

enhances software reliability and reduces the cost of software development.

43

Chapter 3

Representing Data Structure Properties using Graph
Spectra

This chapter introduces a novel dynamic technique for identifying proper-

ties of the program’s key data structures. This work addresses a main hindrance in

our goal to automate the debugging process: programs do not always provide spec-

ifications like repOk methods to describe the key structural properties, which are

required by both program repair and data structure repair (Figure 2.2); moreover,

writing these properties by hand poses a challenge in itself. We borrow classical

results from graph theory [22] to characterize the shape of the program’s dynamic

data structures. Specifically, spectral graph theory, a field that studies the properties

of a graph in relation to the properties of matrices based on the graph provides the

foundational ideas. The work presented here is based on our ICSE NIER 2011 [68]1

paper, which introduces the idea of using graph spectra for representing data struc-

ture properties, and our ICST 2012 [69]2 paper that presents the detailed results.

This chapter first gives an overview, which is followed by an illustrative

example to describe the basic idea of our approach. Then, we describe its details as

1Muhammad Zubair Malik. Dynamic shape analysis of program heap using graph spectra. ICSE
2011.

2Muhammad Zubair Malik, Sarfraz Khurshid. Dynamic Shape Analysis Using Spectral Graph
Properties. ICST 2012.

44

well as its application to finding bugs using runtime checking. Finally we describe

our experimental evaluation.

3.1 Overview

Automated analysis and testing of programs with dynamic data structures

requires reasoning about these structures that may have complex structural prop-

erties (as discussed before). A number of existing tools can systematically check

such programs for given structural properties. Shape analysis [77, 89] is a class of

techniques that address reasoning about such programs. Traditionally, shape analy-

sis is performed using static analysis of the program code. A key motivation behind

the use of static analysis is to determine the properties at desired control points for

all program executions, say for program verification. Shape analysis techniques

and other specification-based techniques, e.g., our program repair technique from

Chapter 2, require the user to provide structural properties. Recent work introduced

dynamic techniques for shape analysis, which inspect actual program states to iden-

tify key data structure properties without requiring the user to provide them [58,70].

While these techniques do not enable verification for all executions, they enable de-

tecting likely erroneous executions at runtime and promise to be more scalable for

finding bugs than techniques based on static analysis.

This chapter introduces a novel dynamic technique, which adapts well-

studied results from graph theory to determine the shape of the program’s key data

structures. We view the object graph that represents a program heap as a mathe-

matical object – an edge-labeled graph, where graph vertices correspond to objects

45

allocated on the heap and graph edges correspond to fields of these objects [51]. We

leverage results from spectral graph theory [22] – a field that studies the properties

of a graph in relation to the properties of matrices based on it, such as its adjacency

matrix or its Laplacian matrix. Specifically, we define properties of recursive data

structures using properties of eigenvalues of the associated matrices as well as other

graph properties, such as in-degree of a vertex.

Our technique builds on our previous work on the Deryaft framework [61,

70] for generating likely representation invariants. Deryaft takes its inspiration from

the Daikon invariant detector [35]. In contrast to Daikon, which is a general pur-

pose invariant detection engine, Deryaft focuses on structural properties and as such

generates more accurate structural invariants. We follow the general approach in-

troduced by Deryaft for structural invariants: first, identify core and derived fields

of a data structure; and then, check which properties from a pre-defined collection

of properties hold for the field values for a given set of program states. The prop-

erties that hold for a given set of states are used in two ways: (1) to directly check

if a new program state satisfies them; and (2) to generate a representation of the

properties as an executable Java predicate, which can be used in a number of ways,

e.g., as a runtime assertion or to perform data structure repair [31].

A key advantage of using graph spectra over Deryaft’s approach is that, in

principle, they allow checking for (violation of) properties that may not be pre-

defined and computed only based on the program states once they are encountered.

Thus, graph spectra not only introduce a novel abstraction for properties of program

state, but they also enhance our ability to dynamically detect a larger class of errors

46

(d)

4 1

root
size=3

N3 −5

3N5

parentleft

parent right
N2 1

root
size=2

N1 0

parentleft

size=1
root

N0 0
N4 1

root
size=3

N3 −5

3N5

(a) (c)(b)

parentleft

parent right

N

Figure 3.1: This example shows four binary trees with parent pointers. The first
three trees (parts (a), (b) and (c)) are valid but the fourth tree (part (d)) has a cycle
along the right field which breaks the representation invariant.

without requiring the user to provide detailed specifications. As a first step to enable

detecting properties that are not directly characterized in spectral graph theory, we

conjecture that an invariant learning mechanism using support vector machines [76]

may provide a viable solution.

Experimental results using a suite of data structures demonstrate the poten-

tial the technique holds in identifying data structure properties and detecting likely

erroneous program states.

3.2 Illustrative Example

This section illustrates the working of our invariant generation technique

using an example binary tree data structure that additionally maintains min-heap

property [20]. We use this example as our running example for the rest of the

47

(a) (b) (c)
left:

(N0
N0 0

) N1 N2
N1 0 1
N2 0 0

N3 N4 N5
N3 0 1 0
N4 0 0 0
N5 0 0 0

right:

(N0
N0 0

) N1 N2
N1 0 0
N2 0 0

N3 N4 N5
N3 0 0 0
N4 0 0 1
N5 0 0 0

parent:

(N0
N0 0

) N1 N2
N1 0 0
N2 1 0

N3 N4 N5
N3 0 0 0
N4 1 0 0
N5 0 1 0

left+right:

(N0
N0 0

) N1 N2
N1 0 1
N2 0 0

N3 N4 N5
N3 0 1 0
N4 0 0 1
N5 0 0 0

parent+left+right:

(N0
N0 0

) N1 N2
N1 0 1
N2 1 0

N3 N4 N5
N3 0 1 0
N4 1 0 1
N5 0 1 0

‘<’ along left+right:

(N0
N0 0

) N1 N2
N1 0 1
N2 0 0

N3 N4 N5
N3 0 1 0
N4 0 0 1
N5 0 0 0

Spectra of left+right directed adjacency matrix:

(N0

λ1 0

) N1

λ1 0
λ2 0

N3

λ1 0
λ2 0
λ3 0

Figure 3.2: The matrix representations computed along various fields for the three
valid trees from Figure 3.1 (a),(b) and (c). The matrix along left and right

is the one that ensures reachability and is used for detecting most of the global
properties. The matrices computed along derived fields are used primarily to check
local properties of the structures. Spectrum for acyclic trees is a zero vector –
however, this property more generally holds for directed acyclic graphs, not just
trees. To identify the sub-class of trees, we additionally use the property that in-
degree of any vertex is ≤ 1.

48

chapter. Consider the following class declaration:

1 class BinaryTree {
2 Node root;
3 int size; // number of nodes in the tree
4
5 static class Node {
6 int key;
7 Node left;
8 Node right;
9 Node parent;

10 }

A binary tree object has a root node; each node has a left and a right

child node, a parent node, and an integer key. The structural integrity constraints,

which are also termed representation invariants, are: acyclicity along left and

right, and correctness of parent-child relationship and of the size value, as well

as the min-heap property, i.e., the key in a node is smaller than those in its children3.

The rooted binary tree has three recursively declared fields. However, in all

positive instances of the tree, i.e., valid trees, we can reach all connected parts of the

structure from the root using only the two fields left and right. These are called

the core-fields [70]; they are useful in detecting various global and local properties.

For each reachable node, the algorithm builds a directed adjacency matrix along

each reference field. The matrices formed using the core-fields are the basis of the

structure, and the structure core is computed using matrix summation. This basic

representation is used to derive other matrix representations (such as Laplacian) that

are used in spectral graph theory to detect a number of properties.

3Our example structure is different from the binary heap data structure, which additionally main-
tains a complete binary tree

49

left+ right :

N6 N7 N8

N6 0 1 0
N7 0 0 1
N8 1 0 0

 spectra :

N6

λ1 1
λ2 −0.5
λ3 −0.5

Figure 3.3: This example shows the matrix representation of the invalid tree from
Figure 3.1(d) that has a cycle. The spectra of this tree form a non-zero vector.

The input to our technique is concrete structures, such as the valid binary

trees as shown in Figure 3.1 (a),(b) and (c). The technique takes a graph view

of the heap, identifies the core-fields and abstracts the heap-state to matrix form.

Figure 3.2 gives a traditional |V |2 representation of the matrices, where V is the set

of nodes in the structure. Each entry that is 1 in the matrix corresponds to an edge

in the corresponding structure, while a 0 entry represents lack of an edge.

For each of the given structures, the property detection algorithm first checks

top-level properties in the dictionary hierarchy, which narrows the search to rele-

vant properties. For example, in this case, the algorithm will not check for girth,

which requires circularity, since it is determined that the structure is acyclic. Fig-

ure 3.2 (bottom row) demonstrates that all acyclic structures (Figure 3.1 (a), (b)

and (c)) along core fields have similar spectra – all their eigenvalues are zero when

represented as directed adjacency matrices. When a cycle is introduced in one of

the trees (Figure 3.1 (d)) the spectra form a non-zero vector, a property that is used

to detect a cyclic structure. The other relevant tree-properties in the dictionary of

rules include cardinality constraints for which integer values in the object holding

root pointer are compared with cardinality of the set of nodes in the tree.

50

The algorithm next checks local properties. First, it checks for symmetry

along various fields. The directed adjacency matrix along parent+left is not

symmetric; other field combinations also fail except parent+right+left, which

is symmetric. Note that this property is implied by the correctness of parent

pointers, i.e., parent is transpose of left+ right for structures that are trees along

left and right fields.

Next, it checks for arithmetic relations among values in nodes: if a ma-

trix generated by applying comparison relationships <,≤,=,≥, > along a set of

fields is equal to the directed adjacency matrix along the same set of fields then the

comparison relationship holds along that fields. For the binary trees in Figure 3.2

‘<’ holds along left and right, because positive instances maintain a min-heap

property.

We write the properties that hold for all positive instances as a Java predicate

function, named repOk, which can, in principle, be used in a number of analyses

(e.g., runtime checking using assertions and test input generation [13]). The fol-

lowing code shows parts of the repOk method for the binary tree example, which

uses the matrix library JAMA [82] for basic matrix operations:

1 boolean repOk() {
2 Matrix m = Matrix.buildDirectedAdjacency (
3 this,new String[]{"left","right"});
4 if (!acyclicCore(m))
5 return false;
6 if (!sizeOk(m,size))
7 return false;
8 if(!symmetric(root,
9 new String[] {"parent","left","right"}))

10 return false;

51

11 if(!lessAlong(root,
12 new String[] {"left","right"},"key"))
13 return false;
14 return true;
15 }
16 //Graph spectral rule for acyclicity
17 boolean acyclicCore(Matrix m){
18 return m.spectra().equals(Matrix.zeros(m.dim)) &&
19 maxInDegree(m) <= 1;
20 }
21 //Graph matrix property for size
22 boolean sizeOk(Matrix m,int cardinality){
23 return m.dim==cardinality;
24 }
25 //Graph matrix property for symmetry
26 boolean symmetric(
27 Object root,String fields[]){
28 Matrix m = Matrix.buildDirectedAdjacency(
29 root,fields);
30 //check m[i][j] == m[j][i] for all i,j
31 return m.symmetric();
32 }
33 //Less than along a set of fields
34 boolean lessAlong(
35 Object root, String[] f,String val){
36 Matrix m1 = Matrix.buildAdjacencyAlongFields(root,f);
37 Matrix m2 = Matrix.buildLessThanAlong(root,f,val);
38 return m1.equals(m2);
39 }

3.3 Technique

This section describes our spectra-based technique for detecting structural

invariants. We take an abstract view of the program heap as an edge-labeled graph [51,

52, 59, 74]. Our technique uses a partitioning of the set of object fields into core

52

fields and derived fields [70]. Given a set of positive instances (i.e., structures

whose properties are to be detected), our technique constructs the relevant matrices

based on these structures to enable property detection based on graph spectra [22]

using an iterative algorithm. To enable detecting properties that are not captured by

spectra, we conjecture that an invariant learning mechanism using support vector

machines [76] may provide a viable solution.

3.3.1 Program Heap as an Edge-Labeled Graph

We take a relational view of the program heap and view the heap of a

Java program as an edge-labeled directed graph whose nodes represent objects and

whose edges represent fields. For languages, such as C and C++, that allow pointer

arithmetic and arbitrary conversions between integer values and memory addresses,

a different view would be needed. However, for type-safe subsets of such lan-

guages, the relational view applies. The presence of an edge labeled f from node

o to v says that the field f of the object o points to the object v or has the primitive

value v. Mathematically, we treat this graph as a set of vertices and a collection of

edges, one for each field. We partition the set of vertices according to the declared

classes and partition the set of edges according to the declared fields. We represent

null by the absence of the edge. A particular program state is represented by an

assignment of values to these sets and relations. Since we model the heap at the

concrete level, there is an isomorphism between program states and assignments of

values to the corresponding sets and relations. The model for our BinaryTree ex-

ample consists of three sets, each corresponding to a declared class or primitive type

53

BinaryTree, Node, int and six relations corresponding to a declared field:

root:BinaryTree x Node
size: BinaryTree x int
key : Node x int
left: Node x Node
right: Node x Node
parent: Node x Node

We assume (without the loss of generality) that each structure in the given

set has a unique root pointer. Thus, the abstract view of a structure is a rooted edge-

labeled directed graph, whose properties are detected based on its reachability.

3.3.2 Core and Derived Fields

Following our previous work on structural invariant generation [70], we par-

tition the set of reference fields declared in the classes of objects in the given struc-

tures (i.e., positive instances) into two sets: core and derived. For a given set, S, of

structures, let F be the set of all reference fields.

Definition 1. A subset C ⊆ F is a core set with respect to S if for all structures

s ∈ S, the set of nodes reachable from the root r of s along the fields in C is the

same as the set of nodes reachable from r along the fields in F .

In other words, core set preserves reachability in terms of the set of reachable nodes.

Indeed, the set of all fields is itself a core set. We aim to identify a minimal core set,

i.e., a core set with the least number of fields.

To illustrate, the set containing both the reference fields left and right in

54

the example from Section 3.2 is a minimal core set with respect to the given set of

trees.

Definition 2. For a core set C the set of fields F − C is the derived set.

Our partitioning of the reference fields is inspired by the notion of back-bone in

certain data structures.

3.3.3 Matrix Representation of Heap

Spectral graph theory [22] characterizes properties of graphs in terms of

their spectra: the spectrum of a graph is based on the eigenvalues of its adjacency

matrix. The properties are largely defined in terms of directed adjacency matrix,

undirected adjacency matrix, and Laplacian matrix representations. Our technique

primarily uses directed adjacency matrix representation.

In the following discussion, we denote a graph by G = (V,E) where V is

the set of nodes and E ⊆ V × V is the set of edges. The degree of a vertex u is the

number of edges connected to u and is denoted by du. The in-degree of a vertex is

the number of edges incident on the vertex.

The directed adjacency matrix representation of a graph is given by:

B(u, v) =

{
1 (u, v) ∈ E,
0 otherwise

Since we view the program heap as a directed graph, the adjacency matrix may not

be symmetric.

55

The undirected adjacency matrix A, which is always symmetric, can be de-

rived from the directed adjacency matrix representation:

A(u, v) =

{
1 B(u, v) = 1 or B(v, u) = 1,
0 otherwise

Note that adjacency matrices on recursive fields are always square, i.e., have

the same number of rows and columns.

For a square matrix A, a non-zero vector v is an eigenvector if Av = λv

for some scalar λ. The scalar λ is termed the eigenvalue corresponding to v. The

eigenvalues are solutions to the equation |A− λI| = 0, where I is identity matrix.

3.3.4 Properties of Interest

Following our previous work on structural invariant generation [70], we

consider global as well as local properties of rooted edge-labeled directed graphs

as likely representation invariants structurally complex data. The properties are

divided into the following categories:

• Global reference field properties, which include properties on the shape of

the structure reachable from the root along some set of reference fields.

• Global primitive field properties. In reasoning about graphs, the notion of a

cardinality of a set of nodes occurs naturally, e.g., to cache the number of

nodes reachable from a root pointer. We consider properties relating values

of integer fields and cardinalities of sets of reachable objects.

56

Table 3.1: Properties identified using directed adjacency matrix representation. Let
A = (ai,j) for 1 ≤ i, j ≤ n be an n × n adjacency matrix. Let λ be an eigenvalue
of A.

Property Rule
Directed acyclic (DAG) ∀λ , λ = 0
Tree DAG ∧ ∀j

∑
i ai,j ≤ 1

Circular girth = n
Symmetric ∀i, j ai,j = aj,i
Min-heap less-than = A
SizeOk size = n

• Local reference field properties. We consider local properties that relate dif-

ferent types of edges, e.g., the transpose relationship.

• Local primitive field properties. We check for order (e.g, less than) rules for

values in nodes connected by an edge. To enable the use of matrix algebra,

we define a relative ordering matrix where an entry mi,j = 1 iff there is an

edge from node i to node j and the integer values in nodes i and j satisfy the

corresponding ordering relation (e.g., value(i) < value(j)).

Table 3.1 presents a list of rules that we apply to detect properties of graphs

using directed adjacency matrices that are built using our abstract view of the pro-

gram heap. A directed acyclic graph (DAG) has all eigenvalues of its directed

adjacency matrix equal to zero. A tree is a DAG where the in-degree of each vertex

≤ 1. For a circular structure (along one field), the girth of its graph, i.e., the length

of the shortest cycle in the graph, equals the number of vertices in the graph. The

transpose relationship between certain data structure fields, such as previous and

57

next for doubly-linked lists, or parent and left + right for binary trees, is

detected based on symmetry of corresponding directed adjacency matrices. For a

min-heap, the less-than matrix H = (hi,j), which is defined as hi,j = 1 iff there is

an edge from node i to node j and the integer value in node i is less than the integer

value in node j, equals the directed adjacency matrix. A max-heap can similarly be

characterized. Structures with a top-level integer field, such as size in binary tree

are checked to see if the value of that field equals the number of reachable nodes.

3.3.5 Algorithm

Algorithm 1 gives the pseudo-code of our approach. It first computes the

data structure backbone through core-field analysis. In the beginning it assumes that

all properties are valid but gradually keeps narrowing its search to only properties

of interest that hold on given structures. Once the algorithm has identified all valid

properties, a repOk, which only checks for these properties is created.

Our dictionary is organized to minimize checks. We use a hierarchical de-

sign and utilize order between various properties to reduce checks. For example,

it is wasteful to check girth of an acyclic structure. Similarly, there is no need to

check for treeness in a structure that violates the DAG property.

3.3.5.1 Learning new Properties

To enable new properties to be detected and checked using graph spectra,

we envision the use of machine learning techniques. We conducted an initial in-

vestigation into learning the height balance property in trees by training a support

58

input : C – Data structure declaration
input : T – Valid Structures
input : D – Dictionary of p, where p ∈ graph properties
output: repOk, a Java predicate representing invariant properties

F ← coreF ields(C ,T);
V ← D .getAllProperties();
for ∀t ∈ T do

for ∀p ∈ V do
Fields f []← p.getRequiredF ields(F);
matrix←Matrix.build(t.root, f);
if !matrix.statifies(p) then

if p.hasChildren() then
V .removeSubHeirarchy(p);

end
V .remove(p);

end
end

end
V .minimizeRules();
repOk← ∅;
for ∀p ∈ V do

code← p.synthesize();
repOk.append(code);

end
Algorithm 1: Invariant generation

59

Table 3.2: Results for subject data structures (of size ≤ 5)

Benchmark Structures TP TN FP FN repOk Time (ms)
Generated Manual Spectral

Singly-linked acyclic list 7776 24 7752 0 0 0.02 0.11
Singly-linked circular list 7776 24 7752 0 0 0.01 0.01
Doubly-linked circular list 60466176 24 60466152 0 0 0.01 0.01

Binary tree 60466176 1008 60462888 2280 0 0.01 0.02
DAG (binary) 60466176 32712 60433464 0 0 0.01 0.01

vector machine [76] using positive and negative instances. The accuracy of the rule

learnt was better than a chance classifier, which is an encouraging result. We believe

the numeric encoding of graph properties using spectra will enable future work to

develop novel applications of machine learning techniques in more accurately de-

tecting erroneous program executions.

3.4 Application: Dynamic Shape Analysis using Graph Spectra

Our work on using graph spectra to represent properties of dynamic data

structures provides a new approach for dynamic shape analysis [58]: record the

spectra at control points of interest for representative executions and then verify the

spectra for future executions to check their validity.

3.5 Evaluation

In this section we present our experiments designed to address the following

research questions:

1. Are the properties detected by our approach comparable to those written man-

ually as predicates?

60

2. How well does our approach disambiguate Trees, DAGs and Cycles ?

3. Are the properties detected useful in finding bugs in software?

3.5.1 Comparing deteced properties with those written manually as predi-
cates

We conduct this experiment as a basic sanity check and to investigate the

sources of error in the properties that are detected using graph spectra. We compare

properties generated by our approach with manually written predicates based on

previous work [13]. Graph spectra are computed using operations on real numbers;

to allow for errors in representing reals using oatingpoint number, we check values

to lie within a small threshold (105) of the expected value.

Our experimental setup uses an exhaustive generator, which enumerates all

(valid and invalid) structures of a class within a given size. Given the declaration of

a recursive data structure consisting of nodes, our structure generator enumerates

for a set of all recursive fields F , all possible field assignments for each field for

a given set of node objects O to the same set of nodes O and the literal null. We

fix the value of the size field to the number of nodes; thus, a correct repOk will

only accept structures with exactly n nodes. For this implementation all objects

are uniquely labeled, which allows us to sequentially permute all possible field

assignments.

We evaluate the validity of each of these structures against two repOk func-

tions, one based on the properties detected by our approach using graph spectra and

the other written manually (oracle). We define true positive (TP) to mean that if

61

oracle accepts a structure and so does the spectral repOk. Similarly, true negative

(TN) means that when oracle rejects a structure and so does the spectral repOk. We

define false positive (FP) when the oracle rejects a structure but the spectral repOk

admits it. We define false negative (TN) when oracle accepts a structure but the

spectral repOk rejects it. The accuracy of the approach is the proportion of true

results in the population: accuracy = TP+TN
TP+FP+FN+TN

.

A possible source of errors in the result of spectral repOk is lack of preci-

sion due to finite representation of numbers. For example, on a 32-bit machines

addition rule valid for all x ∈ Z: x+1 > x, does not hold for integers; similarly the

addition rule for all x ∈ R: x+1 ̸= x, breaks down for IEEE 754 oating point num-

ber representation. In general, limited precision binary machines cannot precisely

represent fractions if 2 is not a prime factor of the number. Spectral rules require

many oating point computations and suffer from lack of precision in computation.

In these experiments we have used an error bound of 105 for comparing equality of

numbers.

Another source of possible errors in detecting properties using graph spec-

tra is the encoding of data structures that reside on the program heap using adja-

cency matrices that may represent connectivity along a set of fields (e.g., left and

right) and hence lose the distinction between left pointers and right pointers.

Table 3.2 tabulates the experimental results for five subject data structures:

singly-linked acyclic lists, singly-linked circular lists, doubly-linked circular lists,

binary trees, and directed acyclic graphs where each node has a left and a right

child. We use our exhaustive structure generator to generate all possible structures

62

with up to 5 nodes.

For all chosen subjects except binary tree, the result of spectral repOk

matches exactly the result of the oracle. For binary tree, we observe 2280 false pos-

itives. These are all due to the imprecision in the adjacency matrix representation

where the distinction between left and right fields is lost. More specifically, if a

node i points to another node j along left as well as along right, the adjacency

matrix A will represent the two edges with a single edge: ai,j = 1.

The running time of repOk using graph rules is comparable with the oracle

for these structures with up to 5 nodes in majority of the cases. However, for larger

structures, we expect the oracle to run substantially faster than spectral repOk due

to the complexity of the underlying matrix operations. We expect an incremen-

tal approach for updating spectra to provide a practical basis for the use of graph

spectra in real applications.

3.5.2 Is it a tree, DAG or a cycle?

A key question in traditional shape analysis is to see if the shape of heap-

allocated data structure is a tree, DAG, or a cyclic graph [38]? While such analysis

is traditionally done statically and is required to be safe, our approach provides an

(unsafe) way to detect the shape dynamically based on the observed executions of

the program.

The last two rows of Table 3.2 show how our approach performs empirically

in correctly identifying trees, DAGs, and cyclic structures, where each node has two

labeled children (left and right). If such a structure has a directed cycle, it is

63

always correctly identified (FP=0 for DAG). If the structure has an undirected cycle,

it may not be correctly identified, and instead may be classified as a tree (FP>0 for

binary tree) – thus a DAG, which is not a tree, may be classified as a tree. If the

structure is a tree, it is always classified correctly.

3.5.3 Error detection

While many programming errors are discovered before deployment, some

may only be encountered after deployment. These errors can cause run-time fail-

ures, resulting in security violations and increased down time. Many systems that

have high security and availability requirements may need to perform run-time

checking for timely detection of errors and applying possible corrective actions. We

evaluate our approach for capturing run-time errors in code adapted from two case

studies: RayTrace which is part of SPECjvm [21] and ANTLR which is taken from

DaCapo [11] benchmark. In the setup of this experiment, first we detect properties

of the valid heap structures generated by the selected code from each benchmark

program. Then, we execute a faulty version of the code to generate invalid struc-

tures and check if spectral repOk identifies it. These errors in the code are manually

injected based on our understanding of how the code works.

The errors detected and properties observed clearly depend on the capabili-

ties of our approach to observe them and the fault injection model. For example if

the fault injection model only mutates object reference fields it is less likely for our

approach to detect error in object keys.

64

3.5.3.1 ANTLR

ANTLR [84] is a language tool that generates recognizers, compilers, and

translators from grammatical descriptions. We used it for our case study in Chap-

ter 2 and provided a detailed description of its key data structure CommonTree in

Section 2.5.2.2. We use the same example to test the error detection ability of spec-

tral repOk.

Recall that the relevant representation invariants of CommonTree are acyclic-

ity along children and transpose relationship between parent and children. While

these are standard properties of trees with parent pointers, an adjacency matrix rep-

resentation cannot be built directly based on the given data declarations because

children is a field of declared type java.util.List. Our implementation only

considered recursively declared fields during matrix translation, it required us to

write a dedicated matrix translator for the given non-parameterized lists. However,

now with parameterized lists List<CommonTree> we allow adjacency lists of re-

cursively declared data types as general graph representation.

We use the method addChild from Section2.5.2.2 with the same injected

error. The erroneous example we consider adds another CommonTree that has its

own children but has no payload to the given CommonTree instance by adopting all

its children. The injected fault omits the update of parent pointers in the adopted

nodes thus violating parent-child transpose relationship. The spectral repOk cor-

rectly detects this error.

65

3.5.3.2 RayTrace

RayTrace [21] is a Java program that produces realistic graphics by trac-

ing path of light through pixels in an image. We introduced it in Section 2.5.2.3

of Chapter 2. As discussed earlier, RayTrace maintains the 3D world model of

the image in a structure OctNode. The OctNode maintains object list ObjList

composed of object nodes ObjNode to record the objects inside the space.

The ObjList implements an acyclic list whose cardinality is cached in

NumObj field of OctNode. We revisit the CreateTree example from Section 2.5.2.3

where a cycle was introduced in the list by erroneous code. The spectral repOk suc-

cessfully detects the bug in the state of RayTrace like the manual repOk.

3.6 Discussion

This section discusses the mathematical basis, possible implementation op-

timizations, as well as uses and limitations of our approach. We also briefly com-

pare our approach to previous work on using dynamic analysis for detecting prop-

erties of recursive data structures.

3.6.1 Basis of our approach

We view the heap of recursively declared data structures as edge-labeled

graphs represented using matrices. Our basic observation is that invariants of the

heap that a program updates are related to the properties of matrices. We have used

this simple yet elegant observation to build an invariant detector for programs that

66

operate on structurally complex data.

3.6.2 Fast Computation of Matrix Operations

Matrix operations required for computation of graph spectra can be rela-

tively expensive for non-small data structures. For example, a traditional repOk

might only perform one traversal of the structure to check for acyclicity whereas a

spectral repOk may have to perform an operation of polynomial complexity in the

size of structure. This problem can be addressed in two ways: 1) by using opti-

mized libraries Basic Linear Algebra Subprograms (BLAS) [83] for various matrix

computations; 2) many matrix operations that we perform are repeated over the

same set of values, therefore we can also exploit memoization strategies to imple-

ment an incremental technique for computing spectra – one such possibility is to

use Cuppen’s divide-and-conquer algorithm for calculating eigenvalues [87].

3.6.3 Uses

Two software checking techniques enabled by our approach in addition to

runtime checking are test input generation [13] and error recovery using data struc-

ture repair [31]. The spectral repOk could be produced using a small number of

manually created structures that satisfy desired properties. The repOk could then

be used by a test generation tool, such as Korat [13] to enumerate desired test in-

puts. It could also be used by a data structure tool, such as Juzi [32], to mutate

erroneous program states to satisfy structural constraints. How tools such as Korat

and Juzi perform using spectral repOk’s requires further investigation.

67

We conjecture it may even be possible to apply our dynamic analysis in

the context of parallelizing compilers where traditional shape analysis has been

used [38]. Traditionally, the goal of shape analysis has been to statically determine

the shape of data structures using formal reasoning by relating locally visible vari-

ables on the stack to dynamically allocated variables on the heap. An optimizing

and parallelizing compiler can use this information to apply optimizing transforma-

tions such as loop unrolling, null pointer dereference detection, improved pipelin-

ing or dead code elimination. Basic structural information such as the knowledge

that a local variable points to a tree-like structure can give compiler the clue that

memory regions accessed through different fields of the variables are disjoint and

may be processed in parallel. Similarly, for a DAG like structure traversing along

different fields does not guarantee disjointness, however, such guarantees may be

given for subsequences of the accessible links. Finally, for cyclic structures disjoint

substructures are not possible. We conjecture that in contrast to the traditional use

of static analysis, compilers may be able to use the statistics from the profile runs

of a program to perform optimized recompilation of the program, which may allow

shape information collected using our dynamic shape analysis technique to improve

efficiency of compiled code.

3.6.4 Limitations

Detecting invariants dynamically has two inherent limitations [35]: not all

invariants of observed structures can be detected; and invariants that are detected

may be violated by a valid structure not observed thus far. However, from a practical

68

(b)

root

right

right

parent

parent

root

right

right

parent

parent

(a)

Figure 3.4: (a) A valid tree and (b) an invalid tree (invalid parent pointers). The use
of degree metrics alone [58] is unable to distinguish between the two structures.

perspective, the approach can lay the foundation of a useful tool that assists in

writing correct programs.

3.6.5 Comparison with previous work on dynamic analysis for invariant de-
tection

Our previous work on Deryaft [70] introduces a dynamic approach for de-

tecting structural invariants by checking a (fixed but extensible) collection of invari-

ants for a given set of program states. Similar to our approach in this paper, Deryaft

enables runtime checking, test input generation, and runtime error recovery using

data structure repair. The key novelty of our approach in this paper is the use of

graph spectra to abstract data structure properties. Moreover, the use of spectra is

more general than checking a fixed set of properties, since the values of eigenvalues

could themselves be used as a check.

69

The ShapeUp framework [58] presents a dynamic approach to shape analy-

sis using degree metrics, which summarize the in-degrees and out-degrees of nodes

in recursive structures. While degree metrics provide a lighter-weight mechanism

than graph spectra for dynamic shape analysis, degree metrics are not sufficient to

identify certain errors, such as certain incorrect parent pointers in a binary tree. Fig-

ure 3.4 illustrates such an error. Each node has the same in-degree and out-degree

in both the structures. Therefore, using degree metrics, the two structures have the

same abstract representation and are indistinguishable. In contrast, our approach

detects such errors in binary trees with parent pointers.

3.7 Summary

Spectral graph theory explores the properties of a graph in relation to the

properties of the matrices representing the graph, e.g., eigenvalues of its adjacency

matrix. In this chapter we viewed the program heap as an edge-labeled graph and

defined the rules based on graph spectra to characterize data structure properties.

Our experiments on a suite of text book data structures showed that graph spectra

can characterize these data structures correctly and can detect violations of struc-

tural properties.

70

Chapter 4

Repair Abstractions

Systematic data structure repair techniques [32, 112] allow programs to re-

pair from erroneous state by performing a bounded exhaustive search to find the

correct structure. Our basic observation is that many program errors do not happen

purely at random, rather they are caused by a specific source in the system, such as

a faulty method, and in cases where such errors recur we can have more efficient

techniques that re-use work performed during repair.

This chapter is based on our work published at RV 2013 [113]1.

4.1 Overview

We introduce repair abstractions, which capture the essence of how certain

data structure corruptions are repaired by specific actions of a data structure repair

routine, such as Juzi [32], and allow more efficient repair of errors that recur. Recall

the data structure repair problem: given a structure s and a method repOk that

represents desired structural integrity constraints of the structure s such that s does

not satisfy repOk, perform repair actions on s to transform it into a structure s

1Razieh Nokhbeh Zaeem, Muhammad Zubair Malik, Sarfraz Khurshid. Repair Abstractions for
More Efficient Data Structure Repair. RV 2013. (Zaeem is a former UT student supervised by
Khurshid.)

71

such that it satisfies repOk [32]. Juzi performs repair actions to mutate a corrupt

data structure into a valid one; each repair action is a triple < o, f, v > that sets

a field f of a object o to value v. Juzi performs a systematic search to compute

repair actions. The goal of abstract repair is to avoid this search by abstracting and

memoizing repair actions for future use. Conceptually, a repair abstraction is a tuple

(field, action) where action is an abstract repair action performed when field (of

some object) in the program state needs repair.

Our approach to repair abstractions consists of two key steps: (1) building

a repair abstraction based on a concrete repair action; and (2) applying the repair

abstraction when the same error is encountered again. We describe the central idea

of our approach by relating it to the search-based repair performed by Juzi. The

basic Juzi algorithm [60] repeatedly invokes repOk on structures that are candidates

for the output (i.e., repaired) structure. During each invocation of repOk the repair

algorithm performs two key steps: (1) it monitors the order of field accesses, (2)

and if repOk returns false, non-deterministically updates the value of the last field

accessed — if all values have been checked, it systematically backtracks to update

the value of the second last field accessed and so forth. The algorithm terminates

when the structure is fixed or the (bounded) search space is exhausted.

Our approach using repair abstractions integrates with the basic Juzi algo-

rithm as follows. Every time Juzi finds a correct fix for a constraint violation, our

approach computes an abstraction for the repair based on simple rules, for example,

if Juzi repaired the structure by assigning a field f to null then repair abstrac-

tion records (f,Null) (i.e., if f needs to be mutated, set it to null) as an abstract

72

repair action, thereby prioritizing it when a future execution encounters the same

error – even if the underlying repair routine would have first tried a non-null value

according to its default search.

Repair abstractions offer two key advantages. One, they allow summariz-

ing concrete repair actions into intuitive descriptions of how certain errors in data

structures were fixed, which helps developers understand and debug faulty program

behaviors (when the errors in state were due to bugs in code). Two, they allow

a direct re-use of repair actions without the need for a systematic exploration of

a large number of candidate structures (as is performed by Juzi) when the same

error appears in a future program execution, e.g, due to the execution of a faulty

statement in code. We have implemented this approach in a tool that we call Ab-

stractJuzi. Experimental results using a suite of complex data structures show that

repair abstractions allow more efficient repair than previous techniques.

4.2 Motivating Example

Recall the doubly-linked list example from Chapter 1 with the faulty addFirst

method. Consider the following code segment which shows two invocations of the

faulty method such that after each invocation the structural constraints are checked

and repair is performed using the Repair.assertrepair method, which checks

the list class invariant (by invoking repOk) and repairs the list if the invariant is

violated:

LinkedList l = new LinkedList();
l.addFirst(0); Repair.assertrepair(l);
l.addFirst(1); Repair.assertrepair(l);

73

head

E1

next

prev

E0 E1

next

prev

L0

next

prev

E0 E1

next

prev

L0

E0

next

prev

next

prev

next

prev

E2

L0

next

prev

E0

next

prev

E2

next

prev

E1

L0

next

prev

E0

L0 1

1

2

2

(b)

(c)

(d)

(e)

(a)

0

head head

head

head

Figure 4.1: Doubly-linked circular list with sentinel head. (a) An empty list
(size 0). (b) An erroneous list of size 1 containing element E1. (c) List in part-
b is repaired by Juzi and the rule (prev,Neighbor) is learnt (d) An erroneous
list of size 2 containing elements E1 and E2.(e) List after applying repair action
< E1, prev, E2 > that is obtained directly from the rule (prev,Neighbor).

74

Figure 4.1 shows the pre-state and post-state for each of the two invocations

of addFirst as well as the repaired state after the final invocation. Note that

the post-state for the each invocation is repaired to form the pre-state for the next

invocation.

If we apply the standard Juzi algorithm [31] to repair the list after the first

addition, it has two iterations to fix the value of E0.prev: null and E1. To repair

the list again after the second addition, the standard Juzi algorithm would again

systematically search for a valid value for the corrupt prev field.

Our approach captures the essence of successful repair action after the first

addition using the repair abstraction (prev,Neighbor), which indicates that if prev

of a node n is mutated, try first as the destination a neighbor, i.e., a node that is

connected along one edge to n. By building this abstraction after Juzi first performs

its default search-based repair, we re-use the abstraction by prioritizing the repair

actions to check setting prev to a neighbor. This significantly reduces the repair

cost when similar errors are encountered in the data structure again.

4.3 Framework

Figure 4.2 gives an overview of AbstractJuzi, our repair abstraction frame-

work, which leverages Juzi’s systematic search together with repair abstractions.

Given a corrupt data structure and a corresponding repOk method, AbstractJuzi

performs repair using Juzi’s core functionality modified in three key ways:

• Repository of repair abstractions. AbstractJuzi creates and maintains a repos-

75

Repository

 structructure
Repaired data

repOk structructure
Corrupt data

Juzi

createRepairAbstraction

applyRepairAbstraction

Abstract Juzi

RepariAbstraction

Figure 4.2: The AbstractJuzi repair framework.

itory of abstract repair actions, which are applied when needed. The reposi-

tory grows as more concrete repairs are abstracted.

• Creation of repair abstractions. When Juzi performs a concrete repair that

is not based on an existing repair abstraction, AbstractJuzi creates a new re-

pair abstraction (if possible) and adds it to the repository. The algorithm

createRepairAbstraction describes this process (Figure 4.3). Abstrac-

tJuzi supports the following kinds of abstractions:

– Self : set the relevant object field to point to the object itself, e.g., next

of node n is set to n;

– First: set the relevant object field to point to the first object of the same

type reachable from the given root pointer;

– Leaf : set the relevant object field to point to the furthest object of the

same type reachable from the given root pointer;

76

AbstractRepair createRepairAbstraction(Object root,
Object source, Field f, Object target) {

AbstractPosition ap = AbstractPosition.UNDEFINED;
if (target == null)

ap = AbstractPosition.NULL;
else if (source == target)

ap = AbstractPosition.SELF;
else if (target == getFirst(root))

ap = AbstractPosition.FIRST;
else if (isLeaf(target))

ap = AbstractPosition.LEAF;
else if (isNeighbor(source, target))

ap = AbstractPosition.NEIGHBOR;
return new AbstractRepair(f, ap);

}

List<RepairAction> applyRepairAbstraction(Object root,
Object source, Field f){

List<RepairAction> ras = new ArrayList<RepairAction>();
Iterator<AbstractRepairActions> itr =

AbstractRepairActions.getIterator();
while(itr.hasNext()){

AbstractRepair ar = itr.getNext();
if (!ar.field().equals(f)) continue;
Object target = ar.concretize(input, source);
ras.add(new RepairAction(source, f, target));

}
return ras; // if ras is empty, apply default repair

}

Figure 4.3: Repair abstraction algorithms.

77

– Neighbor: set the relevant object field to point to a neighboring object,

where two object o and o′ are neighbors if a field of o points to o′;

– Null: set the relevant object field to the value null; and

The default kind Undefined is used to indicate that the relevant object field

needs to be set using the default Juzi algorithm. The predicate isLeaf checks

that target has no non-null fields. The predicate isNeighbor checks

whether any field of source points to target and vice versa.

• Application of repair abstractions. When Juzi identifies an object field to mu-

tate, AbstractJuzi first checks if an existing repair abstraction can help with

the repair. The algorithm applyRepairAbstraction describes this pro-

cess (Figure 4.3). Given the root object that represents the corrupt structure,

the source object (reachable from root) that will have a field mutation (for

repair), and the field f (of source) that will be mutated, the algorithm iter-

ates over existing repair abstractions to find the ones that are applicable, i.e.,

apply to the field f, concretizes them into the corresponding concrete repair

actions with respect to root, and returns them in a list. Finding the target

is straightforward for the cases self, first, and null. To find a leaf, we use a

breadth-first search (BFS) from the root and terminate the search when the

first leaf node is found. To find a neighbor, we again use a BFS until we find

the first object that has some field that points to source.

78

4.4 Evaluation

This section presents the experimental evaluation. We compare AbstractJuzi

with the original Juzi repair algorithm using the following data structure subjects:

• Singly-linked, circular list. The errors injected in this structure violated the

circularity constraint.

• Doubly linked list. The errors injected violate the constraint that next is the

transpose of prev.

• Binary tree. The errors injected in violates the acyclicity constraint.

• Binary tree with parent pointers. The errors injected violate the constraint

that child (along left or right) is the transpose of parent.

Recall both Juzi and AbstractJuzi check the structure for validity by call-

ing repOk after every object field mutation. Therefore, the number of calls made

to repOk counts the number of candidate structures explored before repair com-

pletes. We report this number to compare the efficiency of the two algorithms. To

demonstrate the potential repair abstractions hold in optimizing repair in cases when

an error recurs, the tabulated number of repOk calls for AbstractJuzi excludes the

number of calls to create the particular abstraction (when no applicable abstraction

was found earlier during repair since it was the first occurrence of the particular

error).

We report results for two error scenarios: (1) the corrupt data structure has

exactly one erroneous object field (Section 4.4.1); and (2) the corrupt data structure

79

Table 4.1: The number of repOk calls made by AbstractJuzi vs Juzi for fixing the
errors.

Structure size = 10 size = 500
Juzi AbstractJuzi Juzi AbstractJuzi

Circular List 3 2 3 2
Doubly Linked List 6 2 251 2
Binary Tree 2 2 2 2
Binary Tree with Parent Pointers 8 2 263 2

has a small number (> 1) of erroneous object fields and each field is the same (e.g.,

parent) (Section 4.4.2).

All the experiments used a 2.50GHz Core 2 Duo processor with 4.00GB

RAM running 64 bit Windows 7 and Sun’s Java SDK 1.7.0 JVM.

4.4.1 Single error

We compare Juzi and AbstractJuzi for repairing a single error in small struc-

tures (with 10 nodes) and medium structures (with 500 nodes). Table 4.1 summa-

rizes the results of our experiments with the subject structures with one erroneous

object field in each subject.

Overall, Juzi’s number of repOk calls is linear in the size of the structure,

which is as expected (since there is exactly one error). However, in two case Juzi

makes a constant number of calls to repOk to complete the repair. To fix the cir-

cularity violation of circular lists, Juzi first tries null and then the first node of

the list, which works. To fix the acyclicity violation in binary trees, Juzi first tries

80

null, which works.

For all cases, AbstractJuzi performs the repair using a constant number of

repOk calls – independent of the size of the structure. AbstractJuzi uses the fol-

lowing abstraction kinds for the four subjects:

• Circularity violation in circular lists: First;

• Violation of the transpose relation (between next and prev) in doubly linked

lists: Neighbor;

• Acyclicity constraint in binary tree: Null; and

• Violation of the transpose relation (between left/right and parent) in

binary trees with parent pointers: Neighbor.

Thus, for the chosen subjects with single error, AbstractJuzi explores a much

smaller space of candidate repaired structures than Juzi.

4.4.2 Multiple errors

For two of the subjects, namely doubly linked lists and binary trees with

parent pointers, we compare Juzi with AbstractJuzi on repairing multiple errors.

We do not consider singly-linked lists here since by construction only one next

pointer can violate acyclicity (we do not consider nodes unreachable from the given

root since we do not have a handle to them). We do not consider binary trees with

acyclicity violation since AbstractJuzi reduces to Juzi for repairing cycles – both

algorithms use null as the first choice.

81

Table 4.2: The number of repOk calls made by AbstractJuzi vs Juzi for multiple
errors in Doubly Linked List (DLL) and Binary Tree with Parent Pointers (BTPP)
structures of size 500 nodes.

Erros doubly linked lists binary trees with parent pointers
AbstractJuzi Juzi AbstractJuzi Juzi

2 3 319 3 231
3 4 576 4 378
4 5 680 5 567
5 6 769 6 743

Table 4.2 tabulates the results. We fixed the structure size to 500 nodes for

both the structures and injected 2,3,4 and 5 random errors – for doubly linked lists,

the errors were injected in the prev fields; and for binary trees with parent pointers,

the errors were injected in the parent fields. As before, we use the number of calls

made to repOk as our metric for comparison.

For all cases, Juzi’s number of repOk calls is proportional to the product of

the number of faults and the size of the structure, which is as expected (since these

faults can be fixed independently by Juzi).

For all cases, AbstractJuzi’s number of repOk calls is proportional to the

number of faults – independent of the size of the structure. AbstractJuzi uses the

same abstraction kinds for the two subjects as described in Section 4.4.1.

Thus, for the chosen subjects with multiple errors, AbstractJuzi explores a

much smaller space of candidate repaired structures than Juzi.

82

4.5 Summary

This chapter presented repair abstractions to enhance the efficiency and scal-

ability of data structure repair. Our insight is that if an error is due to a fault in soft-

ware or hardware, it is likely to recur. Therefore, we can abstract the concrete repair

actions taken to fix a particular erroneous state and reuse them when a similar error

is detected in future. Our embodiment of repair abstractions piggybacks on the ex-

isting repair framework Juzi and enables data structure repair using abstractions for

Java programs. Experimental results show that repair abstractions can substantially

reduce the space of candidate structures to explore in systematic techniques for data

structure repair.

83

Chapter 5

Related Work

This chapter describes the projects most closely related to our work.

5.1 Program Repair

A number of program repair techniques have been introduced in the recent

years to repair real-world programs. This sections gives an overview of these tech-

niques. The key difference between our work and these techniques is our use of

systematic data structure repair for program repair, which is not the basis of these

techniques.

5.1.1 Genetic Programming

Genetic programming (GP) is a variant of genetic algorithms with variable-

length string encoding [64]. Arcuri et al. [4] used GP to automate the task of fixing

bugs. Their approach is based on co-evolution, in which programs and test cases

co-evolve, influencing each other with the aim of fixing the bugs of the programs.

Their approach requires formal specification along with the buggy program and

tests to work.

Weimer et al. [106] also use genetic programming for program repair; they

84

generate program variants until one is found that both retains required functionality

and also avoids the defects found in the original program. Their technique takes as

input a program, a set of successful positive test cases that encode required program

behavior, and a failing negative test case that demonstrates a defect. They use GP

to maintain a population of variants of that program. Each variant is represented as

an abstract syntax tree (AST) paired with a weighted program path. They modify

program variants using two genetic algorithm operations, crossover and mutation.

Each modification produces a new abstract syntax tree and weighted program path.

The fitness of each variant is evaluated by running it on the test cases, and it is

assigned a value based on a weighted sum of the positive and negative test cases it

passes. The approach stops when it has evolved a program variant that passes all

of the test cases. To restrict the search space for the GP authors use two insights:

first, they limit the possible variations in the program to changes based on code

existing in program elsewhere; and second, the mutation and cross-over work only

over faulty part of the code.

5.1.2 Enforcing Contracts

Perkins et al. [85] developed a system for automatically patching errors in

deployed software called ClearView. It works on stripped Windows x86 binaries

without any need for source code, debugging information, or other external infor-

mation, and without human intervention. ClearView (1) observes normal executions

to learn invariants that characterize the applications normal behavior, (2) uses error

detectors to distinguish normal executions from erroneous executions, (3) identifies

85

violations of learned invariants that occur during erroneous executions, (4) gener-

ates candidate repair patches that enforce selected invariants by changing the state

or flow of control to make the invariant true, and (5) observes the continued execu-

tion of patched applications to select the most successful patch.

Wei et al. [103] developed Auto-FixE. Their tool takes an Eiffel class and,

using their earlier work, generates test cases with AutoTest. From the execution

runs, they extract object states using boolean queries (similar to repOk). By com-

paring the states of passing and failing runs, they generate a fault profile which is

an indication of what went wrong in terms of abstract object state. From the state

transitions in passing runs, they generate a finite-state behavioral model, capturing

the normal behavior in terms of control. Both control and state guide the generation

of fix candidates. Only those fixes passing the regression test suite remain.

5.1.3 Specification Based Repair

Gopinath’s on-going dissertation work explores the problem of repairing

programs using more general forms of specifications, such as rich behavioral spec-

ifications given in the form of preconditions and postconditions. In a recent paper,

we collaborated on a SAT-based approach to generating likely bug fixes [40]. The

key insight was to replace a faulty statement that has deterministic behavior with

one that has nondeterministic behavior, and to use the specification constraints to

prune the ensuing nondeterminism and repair the faulty statement. The SAT-based

Alloy tool-set provided the enabling technology for writing specification constraints

as well as for solving them. While this approach supports richer forms of specifi-

86

cations than the repOk methods, it also requires the use of SAT technology, which

has not yet been shown to scale to real applications for data structure repair.

5.1.4 Repairing Boolean Programs

Boolean programs are similar to a high-level imperative language programs

except that the only variables permissible are boolean variables. Roopsha et al. [90]

present an approach based on local Hoare-triple to fix boolean programs. Their

algorithm has two main steps. In the first step, they annotate the program by propa-

gating pre and post conditions through the program statements. In the second step,

they choose specified order to target statements for repair. For every chosen state-

ment, they synthesize a local repair using the propagated pre and post conditions.

Once a synthesis establishes the post condition for the entire function, a repair is

extracted and the algorithm halts. If all fix suggestions fail, the algorithm reports

that the program is irreparable within the constraints imposed by the repair model.

Their approach is promising but cannot be used for data manipulating programs.

5.1.5 Repair as a game

Jobstmann et al. [55] presented a technique that automatically fixes bugs

in finite state programs by considering repair as a game. Their approach requires

specifications in linear time logic (LTL) against which a program is verified. They

limit the faults they can handle to an incorrect left-hand side value of an assignment

statement, which they transform to an “unknown” variable. The winning strategy

for the system is able to replace the “unknown” variable with one that satisfies the

87

specifications. The game is played between the LTL model which generates accept-

able inputs and the repair tool which provides values for the “unknown” variable.

They prove that the problem of program repair as a game is NP-complete but their

heuristic behaves well. The approach by Gopinath et al. [40] uses a similar insight

for heap manipulating programs with specifications.

5.1.6 Programming by Sketching

Solar-lezama et al. introduced the concept of programming by sketching [97].

Their goal is not program repair but rather code synthesis from a reference program

which is very similar to repair. The application of their technique is limited to

programs that deal with manipulating streams of data at the bit level. Such manipu-

lations have several properties that make them a hard domain for program developer

to produce error free code. The approach requires the programmer to first write a

full behavioral specification of a particular bit manipulation task, called as refer-

ence program. The reference program is written in a specialized dataflow language,

and represents an un-optimized version describing the task at bit level. Having

a reference program, the programmer sketches an efficient implementation. The

sketching provides only a loosely constrained template of the implementation, with

the compiler filling in the remaining details. The details are obtained by ensuring

that the resolved sketch is behaviorally equivalent to the reference program. Again

the application of this tool is limited to programs that deal with bit manipulation.

However, an extension to heap-manipulating programs was recently presented [94].

88

5.2 Invariant Generation

Invariant generation is a classic research topic with a number of different

approaches. Our work is most closely related to dynamic invariant generation [35].

The key difference between our work and previous work is our support for structural

invariants of dynamic data structures as well as our idea of using graph spectra as

representing structural invariants, which has not been used in previous work.

5.2.1 Daikon

Daikon [35] pioneered dynamic invariant detection. Daikon demonstrated

how invariants can be dynamically detected from program traces that capture vari-

able values at program points of interest. The user runs the target program over a

test suite to create the traces, and an invariant detector determines which properties

and relationships hold over both explicit variables and other expressions. Properties

that hold over the traces and also satisfy other tests, such as being statistically jus-

tified, not being over unrelated variables, and not being implied by other reported

invariants, are reported as likely invariants. Like other dynamic techniques such as

testing, the quality of the output depends in part on the comprehensiveness of the

test suite. Daikon does not detect high-level data structure properties.

5.2.2 DIDUCE

Like Daikon, DIDUCE (Dynamic Invariant Detection N Checking Engine)

[43] tries to extract invariants dynamically from program executions. However,

instead of presenting the user with numerous invariants found after a programs ex-

89

ecution, DIDUCE continually checks the programs behavior against the invariants

hypothesized up to that point in the programs run(s) and reports all detected vio-

lations. When a dynamic invariant violation is detected, the invariant is relaxed to

allow for the new behavior and program execution is resumed. This results in a fully

automatic tool that checks a program against a model it creates without requiring

any human intervention. However, similar to Daikon, DIDUCE does not detect data

structure properties.

5.2.3 Deryaft

We previously implemented Deryaft [70, 71] algorithm for dynamic invari-

ant detection, which is the closest approach to spectral invariant learning. Given a

small set of structure representations in heap as examples, Deryaft analyzes them to

formulate local and global properties that the structures exhibit. Deryaft focuses on

graph properties for effective formulation of structural invariants, including reacha-

bility, and views the program heap as an edge-labeled graph. Given a set of concrete

structures Deryaft inspects them to formulate a set of hypotheses on the underly-

ing structural as well as data constraints that are likely to hold. Next, it checks

which hypotheses actually hold for the structures. Finally, it translates the valid hy-

potheses into a Java predicate that represents the structural invariants of the given

structures. The resulting predicate takes an input structure, traverses it, and returns

true if and only if the input satisfies the invariants. We also adapted Deryaft for

declarative language Alloy in a tool aDeryaft [61].

90

5.2.4 Dynamic Shape Analysis

Dynamic shape analysis, as described in ShapeUp [58], dynamically checks

recursive data structure invariants by summarizing data structures based on their in-

degrees and out-degrees. ShapeUp computes a class-field summary graph (CFSG)

which summarizes the dynamic object graph based on class definitions. The CFSG

records the number of objects and their recursive degree metrics as in- and out-

degree invariants. When a specific number of nodes of a data structure exhibit a

particular degree, they start using it as a stable matric to detect the shape. HeapMD

[16] is forerunner of ShapeUp and examines simple heap properties in C programs.

5.3 Data Structure Repair

Dynamic repair techniques that aim to counteract the effects of faults at run-

time and prolong the uptime of a system have been in existence for a long time. File

system utilities such as fsck and chkdsk, database check-pointing, and rollback

techniques are standard repair routines used to monitor and correct the state of sys-

tem at runtime. More recent techniques have used various forms of specifications

for data structure repair. The key difference between our work and previous work is

our idea to introduce repair abstractions to memoize and reuse repair actions, which

has not been performed in previous work.

5.3.1 Constraint-based Repair

Demsky and Rinard [26] pioneered the idea of constraint-based repair of

data structures. Constraints are written in a declarative language similar to Alloy

91

and repair is performed by translating the constraints to disjunctive normal form

and solving them using an ad hoc search.

The Juzi framework [32, 60] that provides the basis of our work on pro-

gram repair presents an assertion-based technique for data structure repair, where

assertion violations as indicated by invocations of repOk methods that return false

are used to mutate and repair erroneous program states. Symbolic execution of the

repOK method combined with systematic search of the object space based on last

field access aids in efficiently restoring the data structure to a state satisfying the

invariants.

Dynamic Symbolic Data Structure Repair [49] (DSDR) extends Juzi’s tech-

nique by producing a symbolic representation of fields and objects along the path

executed in repOK. DSDR builds the path constraint required to take the current

path in repOK. When repOK returns false, DSDR uses the conjunction of the nega-

tion of the path constraint with the other path conditions and solves them, directly

generating a fix irrespective of the exact location of the corrupted object references

or fields in the repOK method.

A limitation of constraint-based techniques is that class invariants hold at

the entry and exit points of all public methods. These techniques alter the faulty

data structure to produce an arbitrary state which satisfies the integrity constraints

but can, in the worst case, be very different from the intended output of the method.

92

5.3.2 Contract-based Repair

Tarmeem [112], Plan B [91], and Cobbler [111] are more recent frame-

works that support contract-based repair, where corrupt data structures can be re-

paired with respect to rich contracts that include method pre-conditions and post-

conditions. These frameworks are based on Alloy toolset [50] and use its SAT-based

backend for data structure repair. While contract-based repair allows handling a

wider class of errors than constraint-based repair, the cost of repair for using rich

contracts at runtime and repairing with respect to them is higher. Nonetheless, our

approach to repair abstractions is equally applicable to both constraint-based repair

(as we show in this dissertation) and contract-based repair (Section 5.4).

5.4 Repair abstraction using Alloy

The idea of abstracting concrete repair actions is orthogonal to the underly-

ing repair framework used. We can plug in a different backend repair framework

(instead of Juzi) and benefit from repair abstractions. Our joint work recently inte-

grated repair abstractions with Cobbler [111] (which uses the Alloy language [50]

for writing specifications and its SAT based backend for data structure repair). Ex-

perimental results show repair abstractions offer performance benefits in the context

of Cobbler similar to those in the context of Juzi.

93

Chapter 6

Conclusion

We conclude this dissertation by providing a summary of our work on auto-

mated debugging, dynamic invariant generation, and efficient run time error recov-

ery.

6.1 Summary

Automated debugging is becoming increasingly important as the size and

complexity of software increases. We make a case for using constraint-based data

structure repair, a recently developed technique for fault recovery, as a basis for au-

tomated debugging. Data structure repair uses given structural integrity constraints

for key data structures to monitor their correctness during the execution of a pro-

gram. If a constraint violation is detected, repair performs mutations on the data

structures, i.e., corrupt program state, and transforms it into another state, which

satises the desired constraints.

The primary goal of data structure repair is to transform an erroneous state

into an acceptable state. The key insight of this thesis is that the mutations per-

formed by repair actions provide a basis of debugging faults in code (assuming the

errors are due to bugs). A key challenge to embodying this insight into a mechanical

94

technique arises due to the difference in the concrete level of the program states and

the abstract level of the program code: repair actions apply to concrete data struc-

tures that exist at runtime, whereas debugging applies to code. This thesis addresses

this challenge by relating static structures (program variables) that hold handles to

dynamic structures (heap-allocated data), and performing a guided search.

This thesis focuses on programs that operate on structurally complex data,

e.g., heap-allocated data structures that have complex structural integrity constraints,

such as acyclicity. Checking such constraints is critical for our techniques and the

user must provide them. However, writing the constraints poses a burden on the

users. To facilitate the use of constraint-based techniques, we presented a tech-

nique to check constraint violations at runtime using graph spectra, which have

been studied extensively by mathematicians to capture properties of graphs. We

view the heap of an object-oriented program as an edge-labeled graph, which al-

lows us to apply results from graph spectra theory. Experimental results show the

effectiveness of using graph spectra as a basis of capturing structural properties of

a class of commonly used data structures.

Finally, the thesis presents abstractions for more efficient data structure re-

pair. When an error in the program state is due to a fault in software or hardware,

a similar error may occur again. This thesis presents a set of graph-based abstrac-

tions that capture how erroneous program executions are repaired using concrete

mutations to enable faster repair of similar errors in the future.

95

Bibliography

[1] Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cambridge

University Press, 2007.

[2] A. Andoni, D. Daniliuc, S. Khurshid, and D. Marinov. Evaluating the ”Small

Scope Hypothesis”. Technical report, MIT CSAIL, 2003.

[3] John Anvik, Lyndon Hiew, and Gail C. Murphy. Who should fix this bug?

In ICSE, 2006.

[4] Andrea Arcuri and Xin Yao. A novel co-evolutionary approach to automatic

software bug fixing. In IEEE Congress on Evolutionary Computation, 2008.

[5] Ittai Balaban, Amir Pnueli, and Lenore D. Zuck. Shape analysis by predicate

abstraction. In VMCAI, 2005.

[6] Gogul Balakrishnan and Malay Ganai. Ped: Proof-guided error diagnosis by

triangulation of program error causes. In SEFM, pages 268–278, 2008.

[7] Thomas Ball and James R. Larus. Efficient path profiling. In Proceedings of

the 29th annual ACM/IEEE international symposium on Microarchitecture,

MICRO 29, 1996.

[8] Thomas Ball and Sriram K. Rajamani. The SLAM toolkit. In CAV, pages

260–264, 2001.

96

[9] Kent Beck and Erich Gamma. Test-infected: programmers love writing

tests. 2000.

[10] Boris Beizer. Software Testing Techniques. International Thomson Com-

puter Press, 1990.

[11] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,

R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,

A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović,

T. VanDrunen, D. von Dincklage, and B. Wiedermann. The DaCapo bench-

marks: Java benchmarking development and analysis. In OOPSLA, 2006.

[12] Joshua Bloch. Effective Java: A Programming Language Guide (Java Se-

ries). Addison-Wesley Longman, Amsterdam, 2008.

[13] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat: Au-

tomated testing based on Java predicates. In ISSTA, 2002.

[14] Feng Chen and Grigore Roşu. Java-MOP: A monitoring oriented program-

ming environment for Java. In TACAS, 2005.

[15] Trishul Chilimbi, Ben Liblit, Krishna Mehra, Aditya Nori, and Kapil Vaswani.

Holmes: Effective statistical debugging via efficient path profiling. In ICSE,

2009.

[16] Trishul M. Chilimbi and Vinod Ganapathy. Heapmd: identifying heap-based

bugs using anomaly detection. In ASPLOS, pages 219–228, 2006.

97

[17] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.

MIT, 1999.

[18] Lori A. Clarke and David S. Rosenblum. A historical perspective on runtime

assertion checking in software development. SIGSOFT Software Engineer-

ing Notes, 31(3), 2006.

[19] James S. Collofello and Larry Cousins. Towards automatic software fault

location through decision-to-decision path analysis.

[20] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leis-

erson. Introduction to Algorithms. McGraw-Hill Higher Education, 2nd

edition, 2001.

[21] Standard Performance Evaluation Corporation.

[22] Dragos M. Cvetkovic, Michael Doob, and Horst Sachs. Spectra of Graphs:

Theory and Applications. John Wiley & Sons Inc, 1998.

[23] V. Dallmeier, A. Zeller, and B. Meyer. Generating fixes from object behavior

anomalies. In ASE, 2009.

[24] Valentin Dallmeier. Mining and Checking Object Behavior. PhD thesis,

Department of Computer Science, Saarland University, 2010.

[25] E.R. van Dam and W.H. Haemers. Which graphs are determined by their

spectrum? Technical report, Tilburg University, Center for Economic Re-

search, 2002.

98

[26] Brian Demsky. Data Structure Repair Using Goal-Directed Reasoning.

PhD thesis, Massachusetts Institute of Technology, 2006.

[27] Brian Demsky and Martin C. Rinard. Automatic detection and repair of

errors in data structures. In OOPSLA, pages 78–95, 2003.

[28] Greg Dennis, Felix Sheng-Ho Chang, and Daniel Jackson. Modular verifi-

cation of code with SAT. In ISSTA, 2006.

[29] J. Durães and H. Madeira. Emulation of software faults: A field data study

and a practical approach. IEEE Trans. Software Eng., 32(11):849–867,

2006.

[30] Bassem Elkarablieh. Assertion-based Repair of Complex Data Structures.

PhD thesis, University of Texas at Austin, 2009.

[31] Bassem Elkarablieh, Ivan Garcia, Yuk Lai Suen, and Sarfraz Khurshid. Assertion-

based repair of complex data structures. In ASE, 2007.

[32] Bassem Elkarablieh and Sarfraz Khurshid. Juzi: A tool for repairing com-

plex data structures. In ICSE, 2008.

[33] Bassem Elkarablieh, Yehia Zayour, and Sarfraz Khurshid. Efficiently gen-

erating structurally complex inputs with thousands of objects. In ECOOP,

2007.

[34] Albert Endres. An analysis of errors and their causes in system programs.

SIGPLAN Not., 10:327–336, April 1975.

99

[35] Michael D. Ernst. Dynamically Discovering Likely Program Invariants.

PhD thesis, University of Washington, 2000.

[36] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B.

Saxe, and Raymie Stata. Extended static checking for Java. In PLDI, 2002.

[37] Erich Gamma and Kent Beck. JUnit: A cook’s tour. http://www.

junit.org.

[38] Rakesh Ghiya and Laurie J. Hendren. Is it a tree, a dag, or a cyclic graph? a

shape analysis for heap-directed pointers in C. In POPL, 1996.

[39] Khalid Ghori. Constraint-based program repair. MS Thesis, University of

Texas at Austin, 2006.

[40] Divya Gopinath, Muhammad Zubair Malik, and Sarfraz Khurshid. Specification-

based program repair using sat. In TACAS, pages 173–188, 2011.

[41] Kristen Grauman and Trevor Darrell. Unsupervised learning of categories

from sets of partially matching image features. In CVPR, 2006.

[42] Neelam Gupta, Haifeng He, Xiangyu Zhang, and Rajiv Gupta. Locating

faulty code using failure-inducing chops. In ASE, 2005.

[43] Sudheendra Hangal and Monica S. Lam. Tracking down software bugs using

automatic anomaly detection. In ICSE, pages 291–301, 2002.

[44] G. Haugk, F. Lax, R. Royer, and J. Williams. The 5ESS(TM) switching

system: Maintenance capabilities. AT&T Technical Journal,, 64.

100

[45] C. A. R. Hoare. An axiomatic basis for computer programming. Commun.

ACM, 12(10):576–580, 1969.

[46] Pieter Hooimeijer and Westley Weimer. Modeling bug report quality. In

ASE, 2007.

[47] David Hovemeyer and William Pugh. Finding bugs is easy. In OOPSLA,

2004.

[48] David Hovemeyer and William Pugh. Finding more null pointer bugs, but

not too many. In PASTE, 2007.

[49] Ishtiaque Hussain and Christoph Csallner. Dynamic symbolic data structure

repair. In ICSE, 2010.

[50] Daniel Jackson. Software Abstractions: Logic, Language and Analysis.

MIT-P, 2006.

[51] Daniel Jackson and Alan Fekete. Lightweight analysis of object interactions.

In TACS, 2001.

[52] Daniel Jackson and Mandana Vaziri. Finding bugs with a constraint solver.

In ISSTA, 2000.

[53] Dennis Jeffrey, Min Feng, Neelam Gupta, and Rajiv Gupta. BugFix: A

learning-based tool to assist developers in fixing bugs. In ICPC, 2009.

[54] Dennis Jeffrey, Neelam Gupta, and Rajiv Gupta. Fault localization using

value replacement. In ISSTA, 2008.

101

[55] Barbara Jobstmann, Andreas Griesmayer, and Roderick Bloem. Program

repair as a game. In CAV, 2005.

[56] James A. Jones and Mary Jean Harrold. Empirical evaluation of the tarantula

automatic fault-localization technique. In ASE ’05, pages 273–282, 2005.

[57] James Arthur Jones. Semi-Automatic Fault Localization. PhD thesis, Geor-

gia Institute of Technology, 2008.

[58] Maria Jump and Kathryn S. McKinley. Dynamic shape analysis via degree

metrics. In ISMM, pages 119–128, 2009.

[59] Sarfraz Khurshid. Generating Structurally Complex Tests from Declarative

Constraints. PhD thesis, Massachusetts Institute of Technology, 2003.

[60] Sarfraz Khurshid, Iván Garcı́a, and Yuk Lai Suen. Repairing structurally

complex data. In SPIN, 2005.

[61] Sarfraz Khurshid, Muhammad Zubair Malik, and Engin Uzuncaova. An

automated approach for writing Alloy specifications using instances. In

ISoLA, 2006.

[62] Miryung Kim and David Notkin. Discovering and representing systematic

code changes. In ICSE, pages 309–319, 2009.

[63] Konstantin Knizhnik and Cyrille Artho. Jlint. http://jlint.sourceforge.

net/, 2012.

102

[64] John Koza. Genetic programming: on the programming of computers by

means of natural selection. MIT Press, 1992.

[65] Ben Liblit, Alex Aiken, Alice X. Zheng, and Michael I. Jordan. Bug isola-

tion via remote program sampling. In PLDI, 2003.

[66] Barbara Liskov and John Guttag. Program Development in Java: Abstrac-

tion, Specification, and Object-Oriented Design.

[67] M. Z. Malik, K. Ghori, B. Elkarablieh, and S. Khurshid. A case for auto-

mated debugging using data structure repair. In ASE, November 2009.

[68] Muhammad Zubair Malik. Dynamic shape analysis of program heap using

graph spectra. In ICSE, pages 952–955, 2011.

[69] Muhammad Zubair Malik and Sarfraz Khurshid. Dynamic shape analysis

using spectral graph properties. In ICST, pages 211–220, 2012.

[70] Muhammad Zubair Malik, Aman Pervaiz, and Sarfraz Khurshid. Generating

representation invariants of structurally complex data. In TACAS, 2007.

[71] Muhammad Zubair Malik, Aman Pervaiz, Engin Uzuncaova, and Sarfraz

Khurshid. Deryaft: a tool for generating representation invariants of struc-

turally complex data. In ICSE, 2008.

[72] Muhammad Zubair Malik, Junaid Haroon Siddiqui, and Sarfraz Khurshid.

Constraint-based program debugging using data structure repair. In ICST,

pages 190–199, 2011.

103

[73] Darko Marinov. Automatic Testing of Software with Structurally Complex

Inputs. PhD thesis, Massachusetts Institute of Technology, 2004.

[74] Darko Marinov and Sarfraz Khurshid. TestEra: A novel framework for

automated testing of Java programs. 2001.

[75] David Meyer, Friedrich Leisch, and Kurt Hornik. The libsvm support vec-

tor machine under test. Presented at “Statistical Computing”, Reisensburg,

Germany, June 30 2003.

[76] T. M. Mitchell. Machine learning. McGraw Hill, 1997.

[77] Anders Møller and Michael I. Schwartzbach. The pointer assertion logic

engine. In PLDI, 2001.

[78] Samiha Mourad and Dorothy Andrews. On the reliability of the ibm mvs/xa

operating system. IEEE Trans. Softw. Eng., 13(10):1135–1139, October

1987.

[79] National Institute of Standards and Technology. The economic impacts of

inadequate infrastructure for software testing. Planning report 02-3, May

2002.

[80] A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an

algorithm. Advances in Neural Information Processing Systems 14: Pro-

ceedings of the 2001., 2001.

104

[81] F. Nielson, H. Riis Nielson, and C. L. Hankin. Principles of Program Anal-

ysis. Springer, 1999.

[82] MathWorks Inc.and NIST. Jama–a Java matrix package, 2005.

[83] NSF. Basic linear algebra subprograms. http://netlib.org/blas/.

[84] Terence Parr and Others. Another tool for language recognition. http:

//www.antlr.org/.

[85] Jeff H. Perkins, Sunghun Kim, Samuel Larsen, Saman P. Amarasinghe, Jonathan

Bachrach, Michael Carbin, Carlos Pacheco, Frank Sherwood, Stelios Sidiroglou,

Greg Sullivan, Weng-Fai Wong, Yoav Zibin, Michael D. Ernst, and Martin C.

Rinard. Automatically patching errors in deployed software. In SOSP,

2009.

[86] Manos Renieris and Steven P. Reiss. Fault localization with nearest neighbor

queries. In ASE, 2003.

[87] Jeffery D. Rutter. A serial implementation of cuppen’s divide and conquer

algorithm. Technical report, Berkeley, CA, USA, 1991.

[88] Shmuel Sagiv, Thomas W. Reps, and Reinhard Wilhelm. Solving shape-

analysis problems in languages with destructive updating. TOPLAS, 20(1),

1998.

[89] Shmuel Sagiv, Thomas W. Reps, and Reinhard Wilhelm. Parametric shape

analysis via 3-valued logic. ACM Trans. Program. Lang. Syst., 24(3), 2002.

105

[90] Roopsha Samanta, Jyotirmoy V. Deshmukh, and E. Allen Emerson. Auto-

matic generation of local repairs for boolean programs. In FMCAD, 2008.

[91] H. Samimi, E.D. Aung, and T. Millstein. Falling Back on Executable Speci-

fications. In ECOOP, 2010.

[92] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic unit testing

engine for C. In FSE, 2005.

[93] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 22:888–

905, 2000.

[94] Rishabh Singh and Armando Solar-Lezama. Synthesizing data structure

manipulations from storyboards. In SIGSOFT FSE, 2011.

[95] S. Sinha et al. Fault localization and repair for Java runtime exceptions. In

ISSTA, pages 153–164, 2009.

[96] Armando Solar-Lezama. The sketching approach to program synthesis. In

APLAS, 2009.

[97] Armando Solar-Lezama, Rodric M. Rabbah, Rastislav Bodı́k, and Kemal

Ebcioglu. Programming by sketching for bit-streaming programs. In PLDI,

2005.

[98] SPEC. Standard Performance Evaluation Corporation. http://www.

spec.org.

106

[99] Emina Torlak and Daniel Jackson. Kodkod: A relational model finder. In

TACAS, 2007.

[100] Pieter Vanraemdonck, NoClassAttribute, Raik Schroeder, Steve Hawkins,

et al. Pmd. http://pmd.sourceforge.net/pmd-5.0.0/, 2012.

[101] Iris Vessey and Ron Weber. Some factors affecting program repair mainte-

nance: an empirical study. Commun. ACM, 26:128–134, February 1983.

[102] Srinivas Visvanathan and Neelam Gupta. Generating test data for functions

with pointer inputs. In ASE, 2002.

[103] Yi Wei, Yu Pei, Carlo A. Furia, Lucas S. Silva, Stefan Buchholz, Bertrand

Meyer, and Andreas Zeller. Automated fixing of programs with contracts.

In ISSTA, 2010.

[104] Westley Weimer. Patches as better bug reports. In GPCE, 2006.

[105] Westley Weimer, Stephanie Forrest, Claire Le Goues, and ThanhVu Nguyen.

Automatic program repair with evolutionary computation. Communications

of the ACM, 53(5):109–116, May 2010.

[106] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest.

Automatically finding patches using genetic programming. In ICSE, 2009.

[107] Mark Weiser. Programmers use slices when debugging. Commun. ACM,

1982.

107

[108] R. Clinton Whaley and Jack Dongarra. Automatically tuned linear algebra

software. In PPSC, 1999.

[109] Thomas Wies, Viktor Kuncak, Patrick Lam, Andreas Podelski, and Martin C.

Rinard. Field constraint analysis. In VMCAI, 2006.

[110] Wuu Yang. Identifying syntactic differences between two programs. Softw.

Pract. Exper., 21(7):739–755, 1991.

[111] Razieh Nokhbeh Zaeem, Divya Gopinath, Sarfraz Khurshid, and Kathryn S.

McKinley. History-aware data structure repair using sat. In TACAS, pages

2–17, 2012.

[112] Razieh Nokhbeh Zaeem and Sarfraz Khurshid. Contract-based data struc-

ture repair using Alloy. In ECOOP, 2010.

[113] Razieh Nokhbeh Zaeem, Muhammad Zubair Malik, and Sarfraz Khurshid.

Repair abstractions for more efficient data structure repair. In RV, pages

235–250, 2013.

[114] Andreas Zeller. Isolating cause-effect chains from computer programs. In

FSE, 2002.

[115] Andreas Zeller. Why Programs Fail: A Guide to Systematic Debugging.

Morgan Kaufmann, 2005.

[116] Lihi Zelnik-manor and Pietro Perona. Self-tuning spectral clustering. In

Advances in Neural Information Processing Systems 17. MIT Press, 2004.

108

[117] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. Locating faults through

automated predicate switching. In ICSE, pages 272–281, 2006.

[118] P. Zhu and R. C. Wilson. A study of graph spectra for comparing graphs. In

BMVC, 2005.

109

Vita

Zubair was born in Lahore, Pakistan in 1978. He received his Bachelor of

Engineering in December 1999 from Ghulam Ishaq Khan Institute of Engineering

Sciences and Technology. From 1999 to 2001 Zubair worked as a Software Engi-

neer at IBM and Xavor Pakistan. In 2003 he completed his Masters of Science in

Computer Science from National University of Computer and Emerging Sciences,

during which he was funded by Punjab Information Technology Board’s outstand-

ing talent scholarship. He went back to Xavor and worked for two years as Senior

Software Engineer. He completed his Masters of Engineering in Computer Engi-

neering from University of Texas at Austin in 2007 during which he was funded

by Fulbright Scholarship and Prestigious David Bruton Jr. Fellowship. During the

summer of 2007 he interned at ObjectVideo Inc. His research interests focus on

discovering new techniques to improve program reliability, program analysis and

repair. Zubair enjoys playing tennis, squash, chess and has been a champion star-

craft player.

Email address: zubair.malik@utexas.edu

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version of
Donald Knuth’s TEX Program.

110

