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Optical Coherence Tomography (OCT) is an optical tomography technique which 

provides high resolution non-invasive three-dimensional (3D) structural images of the 

sample based on coherent properties of light.  The dissertation focuses on the use of OCT 

systems for detecting glaucoma, which is the second leading cause of blindness 

worldwide.  First, as a prerequisite of analyzing ophthalmologic OCT images, a retinal 

sublayer segmentation algorithm is presented and implemented with GPU assisted 

computation.  Then, a polarization-sensitive optical coherence tomography (PS-OCT) 

system was constructed for the study of glaucoma.  Three closely related clinical and 

animal studies on early-stage glaucoma detection using either OCT or PS-OCT were 

performed.  Statistical analysis of the study results indicates that the scattering property 

of retinal nerve fiber layer (RNFL) is the earliest indicator for glaucoma.  Finally, to 

investigate the scattering properties of RNFL, a pathlength-multiplexed scattering-angle-

diverse optical coherence tomography (PM-SAD-OCT) system was designed and built.  

PM-SAD-OCT images were collected from human and rodent retina as well as 

earthworm nerve cord.  PM-SAD-OCT system shows promising potentials to detect 

neurodegenerative diseases including glaucoma.   
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 1 

Chapter 1:  Introduction 

1.1. ORGANIZATION OF DISSERTATION 

The dissertation focuses on the use of Optical Coherence Tomography (OCT) 

systems for glaucoma detection.  It includes 5 chapters.  Chapter 1 briefly introduces the 

physiology of human eyes and pathophysiology of glaucoma.  Then, history and 

principles of optical coherence tomography (OCT) and its application in ophthalmology, 

especially glaucoma diagnostics, are reviewed.   

Chapter 2 focuses on image processing of OCT retinal images.  Segmentation of 

retinal sublayers is a prerequisite to analyze any ophthalmologic OCT images.  A fully 

automatic three-dimensional (3D) multiphase active contour segmentation algorithm 

implemented with GPU assisted computation is presented in Chapter 2.  The algorithm 

simultaneously detects all retinal sublayers in noisy environments with high accuracy.  

The proposed algorithm shows promising clinical value in segmenting and analyzing 

noisy ophthalmologic OCT images. 

Chapter 3 describes polarization-sensitive optical coherence tomography (PS-

OCT).  PS-OCT extends the functionality of standard intensity OCT with measuring the 

polarimetric properties of the sample.  The PS-OCT system and polarimetric processing 

algorithm are briefly described.  PS-OCT has many potential advantages over standard 

OCT in glaucoma diagnostics by providing additional diagnostic information about the 

retinal nerve fiber layer (RNFL) birefringence and phase retardation. 

Chapter 4 summarizes the results of three closely related clinical and animal 

studies related to early-stage glaucoma detection using either OCT or PS-OCT.  The 

common objective of the three studies is to find the best parameter to detect early-stage 

glaucoma.  According to the study results, a new measurement – RNFL reflectance – 
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outperforms any other glaucoma indicator including RNFL thickness, birefringence, and 

phase retardation.  Although the underlying mechanism between RNFL reflectance 

changes and glaucoma progression remains unclear, a possible hypothesis is proposed. 

Chapter 5 introduces another functional OCT methodology called pathlength-

multiplexed scattering-angle-diverse optical coherence tomography (PM-SAD-OCT).  A 

PM-SAD-OCT system is constructed to investigate the scattering properties of the 

sample and shows promising potential to detect neurodegenerative diseases including 

glaucoma.  PM-SAD-OCT images are acquired from a) in vivo retina of healthy human 

subjects, b) ex vivo retina of rodents during retina degeneration, and c) in vitro nerve cord 

of earthworms during neurodegeneration.  Application of PM-SAD-OCT may provide 

potentially valuable diagnostic information for clinical glaucoma diagnostics.  

1.2. HUMAN EYE AND GLAUCOMA 

1.2.1. Anatomy of Human Eye 

As one of the most remarkable optical systems in the universe, the human eye 

reacts to light and produces vision.  The eye is structurally and functionally viewed as 

having two principal anatomical segments: the anterior and posterior segments.  If the 

whole eye is viewed as analogous to a camera, then the anterior segment functions as the 

camera lens which focuses the light onto the retina, while the posterior segment functions 

as the film which senses the light image, intensity and color. 

Principal structures in the anterior segment include the cornea, iris, and lens 

(Figure 1).  The region bounded between cornea and iris forms anterior chamber which is 

filled with aqueous humor.  The region between iris and lens forms the posterior chamber 

which is filled with vitreous humor.  Due to their relatively higher refractive indices, the 
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cornea and lens form a positive optical lens which refracts the light incident through the 

iris, and focuses the image onto the retina.   

 

Figure 1:  Anatomy of human eye [1].   

The posterior segment includes vitreous humor, retina, optic nerve, and choroid 

(Figure 1).  The retina is the anatomical element that senses the light and consists of 

multiple sublayers (Figure 2), including retinal nerve fiber layer (RNFL), inner plexiform 

layer (IPL), inner nuclear layer (INL), outer plexiform/nuclear layer (OPL/ONL), 

inner/outer segment photoreceptor layer (IS/OS), and retinal pigment epithelium (RPE).  

Among these retinal sublayers, RNFL, which is the most anterior sublayer, has a 

significant clinical diagnostic importance, because RNFL morphology is associated with 

various neurodegenerative diseases including glaucoma.  RNFL is mainly composed of 

axon bundles of retinal ganglion cells (RGCs) as well as blood vessels which supply the 
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inner retina.  The RGC axons in RNFL contain high density of microtubules and 

mitochondria, both of which are essential to maintain the functionality of RGC axons 

(Figure 3) [2].  RGC axons exit the eye through the optic nerve head (ONH), which forms 

a blind spot in the visual field.  

 

Figure 2:  Anatomy of human retina [3].  
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Figure 3:  Transmission electron microscopy (TEM) histologic images of non-human 

primate retina at increasing zoom level [2]. 

1.2.2. Glaucoma 

As a common group of ocular disorders, glaucoma is characterized by a 

progressive and irreversible loss of retinal ganglion cells (RGCs) and their axons in the 

retinal nerve fiber layer (RNFL).  The axons are responsible for transmitting information 

from photoreceptor cells into the brain.  The loss of these important signal transmitters 
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causes progressive loss of the visual field and eventually blindness if not arrested [4].  

Glaucoma is considered to be the second leading cause of blindness worldwide after 

cataract [5, 6].  The mechanism of glaucomatous progression and damage is not yet fully 

understood.  Traditionally glaucoma was considered to be caused by elevated intraocular 

pressure (IOP) [7].  Although elevated IOP is the most important and only modifiable 

risk factor for glaucoma, elevated IOP is neither sufficient nor necessary for clinical 

glaucoma diagnostics: some subjects may have high IOP but never develop glaucomatous 

damage, while others may develop glaucomatous damage at a relatively low IOP.  

Recently, numerous glaucomatous damage mechanisms have been proposed including 

ischemic changes [8], astrocytic reaction [9-11], autoimmune attack [12], and reactive ion 

species and nitric oxide metabolism [13, 14]. 

Although the mechanism of glaucomatous progression remains unclear, effective 

pharmacological interventions, e.g. Combigan, and surgical procedures, e.g. 

trabeculectomy for glaucoma are available to arrest the axonal degeneration in glaucoma.  

So, early treatment preventing irreversible vision loss is possible if objective and 

sensitive diagnostic techniques become available to assess the RNFL.   

Currently, multiple techniques including tonometry, visual field testing, optic 

nerve evaluation, and optic nerve imaging have been applied in order to detect glaucoma 

before vision loss is noticed subjectively by the patient.  However, due to the limited 

sensitivity and specificity of the current diagnostic techniques, an estimated 50% of 

glaucoma cases in the USA are undiagnosed [15].   

The goal of the dissertation is to explore new diagnostic tools for early stage 

glaucoma detection.  Two promising diagnostic techniques are proposed based on 

measuring the birefringence and scattering properties of RNFL.  Besides the techniques 
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proposed in the dissertation, another promising glaucoma diagnosis has been proposed 

recently based on characterizing ONH blood flow [16, 17].   

1.3. OPTICAL COHERENCE TOMOGRAPHY (OCT) 

Optical Coherence Tomography (OCT) is an optical tomography technique which 

provides high resolution non-invasive three-dimensional (3D) structural images of the 

sample based on coherent properties of light.  Because of its capability of 3D non-

invasive imaging and resolution advantages over competing approaches, OCT has 

quickly gained wide application in medical diagnostics, especially in ophthalmic and 

cardiovascular imaging. 

1.3.1. Time Domain OCT 

OCT was first demonstrated in 1991 as a time domain approach [18] and 

transformed to the Fourier domain later [19, 20].  Time domain OCT (Figure 4) is 

typically based on a two-beam interferometer (e.g., Michelson interfereometer) with a 

low coherence laser or superluminescent diode light source.  Light from the source is 

divided into two paths by a beam splitter.  Sample is fixed in the sample arm, while a 

reflective mirror on a translational stage is found in the reference arm.  Light 

backscattered from the sample and reference is combined again at the beam splitter and 

interferes with each other.  Interference signal is acquired by a photodetector in the 

detection arm.  The reference mirror translates along beam axis in reference arm to vary 

the optical pathlength and form a depth scan or A-scan that contains information on 

depth-resolved reflected signal strength from the sample.  A two-dimensional scan or B-

scan is acquired by scanning the beam laterally on the sample, usually with a 

galvanometer scanner.  The acquisition speed of time domain OCT is constrained by the 

moving mirror in the reference arm, which needs to be mechanically scanned.   
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Figure 4:  Schematic of a basic time domain OCT [21].  

1.3.2. Fourier Domain OCT 

Fourier domain OCT has a similar basic structure as time domain OCT, except 

that Fourier domain OCT records the spectrum of the backscattered and interfering light.  

According to the Wiener-Khinchin theorem, the depth-resolved information of the 

sample is coded into the spectrum of the interference signal via an inverse Fourier 

Transform.  Fourier domain OCT shows significant advantages over time domain OCT in 

terms of acquisition speed, because Fourier domain OCT does not require a moving 

reference mirror which limits the acquisition speed in time domain OCT.  Two types of 

Fourier domain OCT have been proposed, corresponding to two instrumentation 

approaches to obtain the spectrum of the interference signal: spectral domain OCT (SD-

OCT) uses a spectrometer to record the spectrum (Figure 5), while swept source OCT 

(SS-OCT) uses a wavelength tunable laser source to encode the spectrum in time by 
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rapidly tuning the wavelength of laser light (Figure 6).  SS-OCT is usually equipped with 

balanced photodetector, therefore has sensitivity advantages over SD-OCT.  As a point 

detector, the balanced photodetector in an SS-OCT also provides a higher acquisition rate 

compared with SD-OCT using a relatively slower spectrometer.  Recently, using a 

Fourier domain mode locked (FDML) laser, a SS-OCT with A-scan rate up to 5 MHZ has 

been reported [22].  Another advantage of SS-OCT is the broader bandwidth over SD-

OCT, which is limited by the resolution of the spectrometer.  As a result, SS-OCT is 

capable of providing a longer imaging range.   

For ophthalmologic imaging, SD-OCT was introduced earlier than SS-OCT due 

to its lower cost, and to date SD-OCT has gained a dominant market share in clinical 

diagnostics [19].  However, with the advance of laser technology, SS-OCT starts to show 

advantages over SD-OCT in terms of sensitivity, imaging depth, and imaging speed.   

 

Figure 5:  Schematic of a basic SD-OCT [21].  
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Figure 6:  Schematic of a basic SS-OCT [21].  

1.3.3. OCT for Ophthalmology 

The most successful commercialized application of OCT in medical imaging is 

found in ophthalmology.  OCT provides visualization of both anterior and posterior 

segment pathology with unrivaled resolution and depth penetration.  Ophthalmologic 

OCT is used for diagnosis of various ocular diseases such as glaucoma, retinal 

detachment, retinal vascular occlusion, age-related macular degeneration, etc.  Figure 7 

shows an example of an OCT retinal image with ultrahigh resolution.   
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Figure 7:  Normal foveal scan recorded with OCT with ultrahigh resolution (3 μm 

resolution) [21]. 

Light absorption by vitreous fluid, mostly water, determines wavelength selection 

for ophthalmic OCT.  According to the absorption spectrum of water (Figure 8), most 

ophthalmic OCT systems use light sources centered at 830 nm spectral range where water 

absorption is minimal.  However, at 830 nm light penetration into the retina is limited by 

high absorption and scattering by the retinal pigment epithelium (RPE) which prevents 

choroidal imaging.  Recently, despite slightly decreased lateral resolution, OCT sources 

centered at 1060 nm wavelength are becoming more popular for retinal imaging for 

several reasons.  First of all, maximum permissible exposure (MPE) at 1060 nm 

wavelength (3mW incident power on the cornea) is much higher than at 830 nm [23], so 

higher source power is allowed, providing improved signal-to-noise ratio (SNR) and 

better image quality.  In addition, retinal scattering strength is lower at 1060 nm, so 

deeper choroidal penetration is possible with 1060 nm OCT systems. 
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Figure 8:  Water absorption spectrum.  

From OCT retinal images, multiple retinal sublayers can be identified (Figure 7).  

Retinal sublayer segmentation, i.e. determining the boundaries of each sublayer, is the 

prerequisite of performing any further OCT image analysis or feature extraction, for 

example, calculating RNFL thickness and reflectance which are important glaucoma 

indicators.  However, the segmentation of retinal sublayers is a challenging image 

processing problem because of the strong speckle noise presented in OCT retinal images.  

A possible solution to the retinal sublayer segmentation problem is proposed in Chapter 

2. 

Challenges in early glaucoma detection requires functional extension of 

traditional intensity OCT.  Two functional OCT systems are discussed in this 
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dissertation: polarization-sensitive OCT (PS-OCT) and scattering-angle-diverse OCT 

(SAD-OCT). 

PS-OCT is able to measure the birefringence of the sample.  As mentioned 

previously, RGC axons located in RNFL are rich in microtubules, and microtubule 

density is expected to be a candidate indicator of retinal diseases like glaucoma.  Because 

of the oriented cylindrical structure of RGC axons as well as the microtubules in RGC 

axons, RNFL is weakly birefringent [24], and its birefringence has been found to 

correlate with damage in glaucoma in previous clinical studies [25-27].  If PS-OCT 

instrumentation with sufficient polarimetric sensitivity is available, early detection of 

glaucoma may be possible by measuring RNFL birefringence, which is an indication of 

structural change in the cytoskeleton of RGC axons. 

SAD-OCT is constructed to investigate the scattering properties of the sample.  

According to recent clinical and animal studies, the scattering properties of RNFL may 

change during RGC apoptosis, possibly due to the morphological changes in the 

mitochondrial networks in RGC axons [28, 29].  If a SAD-OCT is sufficiently sensitive, 

it may provide potentially valuable diagnostic information for certain retinal diseases by 

measuring the RNFL scattering properties. 
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Chapter 2:  3D Active Contour Segmentation for Retinal Sublayers 

from OCT Images 

2.1. INTRODUCTION AND MOTIVATION 

Optical coherence tomography (OCT) provides real time non-invasive cross-

sectional images of tissue and is widely used in clinical ophthalmologic diagnosis.  As 

visualized in OCT retinal images, the human retina consists of a series of stacked 

sublayers (Figure 9).  Segmentation of retinal sublayers is a basic component in image 

analysis software required to analyze ophthalmologic OCT images.   

 

Figure 9:  Human retina consists of a series of stacked sublayers as visualized in OCT 

retinal images. 

High speckle noise and the presence of artifacts in OCT images make 

segmentation of retinal sublayers difficult.  As a result, most commercial OCT systems 

provide a semi-automatic program to segment one or two specific retinal sublayers, 

usually including the RNFL, or only provide interactive software to allow operators to 

manually select the boundaries of retinal sublayers.  A fully automatic program which 

segments all retinal sublayers is not yet available on commercial OCT systems.   

Various sophisticated RNFL segmentation approaches have been reported [30-

35].  Mujat et al. used a deformable spline algorithm to determine RNFL thickness [30].  
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Garvin et al. presented a 3-D graph search approach for OCT retinal layer segmentation 

[31].  Paranjape et al. introduced a simple and fast segmentation method based on a Sobel 

filter for automated RNFL boundary detection [32].  Mishra et al. developed a two-step 

scheme which first identifies the approximate locations of the RNFL and then performs a 

local kernel-based optimization to refine segmentation results [33].  The algorithm was 

successfully applied on OCT scans of rodent eyes.  Kajić et al. utilized texture and shape 

features of OCT images to detect RNFL boundary [34].  This approach was proven to be 

insensitive to noise in OCT human retinal images.  Mayer et al. designed a segmentation 

approach based on the minimization of an active contour energy function consisting of 

gradient and local smoothing terms, and evaluated the algorithm on both normal and 

glaucoma eyes [35].  Among all reported studies, active contour is a particularly 

promising approach for its robustness to noise and capability to incorporate prior 

knowledge of the structural shape.  Application of active contour algorithm for retinal 

sublayer segmentation in OCT images has been demonstrated by Fernández et al. [36], 

Mishra et al. [33], and Yazdanpanah et al. [37].   

However, all the cited work was performed on two-dimensional OCT images.  

Since the structure of retinal sublayers is physiologically continuous and smooth in all 

directions, the boundaries of retinal sublayers are expected to be consistent across B-

scans.  The across-B-scan consistency of retinal sublayer boundaries in previous 

approaches is inherently neglected because they are based on isolated B-scan image 

analysis.  In addition, due to the lack of a reasonably good initial estimate of sublayer 

boundary locations, some of the cited work requires user input to initialize the 

segmentation algorithm and these approaches are not suitable for real-time clinical use.  

Another challenge with the application of active contour approaches is the relatively high 

computational requirements which have resulted in slow processing speeds. 
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In this chapter, a fully automatic three-dimensional (3D) multiphase active 

contours segmentation algorithm implemented with GPU assisted computation is 

presented [38].  This is the first report that demonstrates the application of a 3D active 

contour algorithm operating on OCT retinal image stacks with GPU implementation to 

improve computational speed by orders of magnitude over CPU implementation.   

2.2. ACTIVE CONTOUR MODEL 

The active contour model, sometimes also called “snakes,” is a framework for 

segmenting an object from a noisy 2D or 3D image.  The basic idea of an active contour 

model is to define a contour from an initial estimate, for instance, a contour around the 

object to be segmented, and evolve the contour towards the boundary of the object, so 

that the contour eventually coincides with the boundary of an object in the image.  Some 

important basic concepts in an active contour model include: 

Image: A 2D or 3D matrix of values, usually 8-bit numbers ranging from 0 to 

255.  Each element in an image is called pixel for 2D images and voxel for 3D images. 

Contour (sometimes called curve): For 2D images, a contour is a piece of a 1D 

curve.  For 3D images, a contour is a 2D surface.  As discussed later in Section 2.3.1, for 

an N-dimensional image, a contour is a N-1 dimensional surface, and can be represented 

with the level set of a N-dimensional function. 

Boundary (sometimes called edge): A set of connected pixels or voxels on an 

2D or 3D image, representing the physical boundary of a certain object.  Usually, the 

pixel or voxel values inside and outside the boundary are different, and the pixel or voxel 

value difference enables human observers to distinguish an object.   

Energy function: A function associated with a contour.  The energy function 

evaluates how “good” a contour is, compared with the actual boundary of the object in 
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the image.  The energy function is designed so that its value is minimized when the 

contour coincides with the boundary.  The energy function is the key element in 

designing an effective active contour model.   

In order to evolve a contour towards the boundary of an object in an image, the 

evolution of the contour is guided by the energy function.  Under the influence of the 

energy function, the boundary curve evolves with successive iterations and finally 

terminates at a location with minimum energy.   

2.3. FRAMEWORK 

2.3.1. Level Set Representation of a Contour 

How to describe a contour?  The natural approach is to provide a set of key 

coordinates that are located on the contour, so that the contour is described by connecting 

the key coordinates.  Another way to describe a contour is to use the level set method 

[39].  Mathematically, describing a contour using the level set method has certain 

advantages which are discussed below.  The basic idea of the level set method is briefly 

reviewed here. 

The level set of a function   is a set of coordinates on which the function has a 

specified constant value.  The function   is called level set function.  If the specified 

constant value is zero, the level set is called zero level set.  If the level set function is 

two-dimensional ( , )x y , the zero level set of   is a closed contour C by 

   C (x, y) | , 0x y   (1) 

Figure 10 shows an example of the level set representation of a contour in 2D. 
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Figure 10:  An example of level set representation of a contour in 2D circumstance.  Left: 

the level set function with a zero level set.  Right: The corresponding 

contour is determined by the zero level set.  

An important concept associated with the level set representation of a contour is 

the signed distance function (SDF).  A level set function   is called a signed distance 

function (SDF) if   has a unity gradient magnitude at all ( , )x y  coordinates [40].  For 

example, in 2D case, ( , )x y  is an SDF if  

 1   for all ( , )x y  (2) 

Because of the unity gradient property, SDF gives the shortest distance from any 

coordinate to the zero level set.  In practice, the SDF is constructed from a given contour.  

Given any contour C, a SDF ( , )x y  is constructed by assigning negative values to the 

region inside of C, positive values to the region outside of C, and values of zero along the 

contour C itself [41].  Of course, the construction needs to satisfy the unity gradient 

requirement in (2).  As a result, it is possible to define the coordinate region inside and 

outside of a contour C:  

 

{( , ) | ( , ) 0}

( ) {( , ) | ( , ) 0}

( ) {( , ) | ( , ) 0}

C x y x y

in C x y x y

out C x y x y







 

 

 

 (3) 

Define a Heaviside step function: 
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So that 
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Also define a Dirac function: 
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So that 

  
 1 ,

( , )
0

if x y is o

otherw

n C

ise
x y 


 


 (7) 

As to be shown in Section 2.5, (5) and (7) are frequently used as region selector 

functions which select the coordinate region inside, outside or on a contour. 

Similarly, the above properties of level set can be extended to 3D case.  In 3D 

case, ( , , )x y z  is an SDF if  

 1   for all ( , , )x y z  (8) 

The contour C associated with ( , , )x y z , and the coordinate region inside and 

outside of C are defined as:  

 

{( , , ) | ( , , ) 0}

( ) {( , , ) | ( , , ) 0}

( ) {( , , ) | ( , , ) 0}

C x y z x y z

in C x y z x y z

out C x y z x y z







 

 

 

 (9) 

And the region selector functions: 
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
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
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 (10) 
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The level set description of a contour has several advantages over the direct 

approach using key coordinates.  A contour defined by the zero level set of a continuous 

SDF ensures the contour is always continuous and closed [39].  Also, the level set 

method provides an easy way of describing the inside and outside regions of the contour 

with a Heaviside step function.  This allows for simple selection of all the points outside 

or inside the contour for further processing.  In addition, the shape, even topology of a 

contour can be conveniently deformed by modifying the SDF associated with the 

contour, making contour evolution possible (Figure 11). 

 

Figure 11:  An example of contour evolution using the level set method [42].  The top 

plots depict the SDF ( , )x y  while the bottom images show the contour 

described as the zero level set of ( , )x y  overlaid on the segmentation target 

image.   

2.3.2. Structural Assumption for Retinal Sublayers 

For an OCT image volume acquired by either a raster scan or ring scan, the image 

volume is 3D matrix ( , , )I x y z .  Since the human retina is a layered structure consisting 
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of a number of retinal sublayers, the boundaries between retinal sublayers are considered 

as 2D surfaces floating in the 3D OCT image stack ( , , )I x y z .   

A total of eight boundaries between sublayers are recognized in a 3D retinal OCT 

image stack, dividing the image stack into nine layered regions: (1) vitreous, (2) retinal 

nerve fiber layer (RNFL), (3) inner plexiform layer (IPL), (4) inner nuclear layer (INL), 

(5) outer plexiform/nuclear layer (OPL/ONL), (6) inner/outer segment photoreceptor 

layer (IS/OS), (7) retinal pigment epithelium (RPE), (8) choroid, and (9) the sub-

choroidal space.  The i-th boundary is defined by a 2D boundary function ( , )iz C x y , 

i=1, 2,…, 8.  The sublayer segmentation problem is mathematically equivalent to finding 

a set of 
iC  that best segments the 3D image stack.   

 

Figure 12:  An example OCT image stack of the retina, visualized with three boundaries 

overlaid on the 3D image.  The boundaries between retinal sublayers are 

considered as 2D surfaces floating in the 3D OCT image stack 
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Each contour 
iC  is uniquely associated with a signed distance function (SDF) 

( , , )i x y z , with the fact that 
iC  is the zero level set of ( , , )i x y z .  The contour 

iC  is 

deformed through the evolution of its corresponding SDF ( , , )i x y z . 

2.4. INITIAL ESTIMATES OF BOUNDARY LOCATIONS 

The initial locations of each boundary 
iC  are automatically estimated in a 

preprocessing step.  To mitigate the effect of speckle, the 3D image stack is 

downsampled and blurred with a 3D Gaussian filter.  Rough RNFL and RPE initial 

locations are determined by selecting the two brightest layers in the blurred image stack.  

Initial estimates of the other six boundaries are interpolated between the RNFL and RPE, 

making up a total of eight boundaries. 

2.5. ENERGY FUNCTIONS 

Evolution of the initial contour 
iC  is guided by an energy function ( )iE C .  For 

the contour 
iC  associated with an SDF ( , , )i x y z , the energy function is expressed as: 

 
Image Image Shape Shape Regularization Regularization SDF SDF

( ) ( ( , , ))

( ) ( ) ( ) ( )

i i

i i i i

E C E x y z

w E w E w E w E



   



   
 (12) 

where Imagew , Shapew , Regularizationw , and 
SDFw  are real-valued positive constant weighting 

factors.  The image term ImageE  attracts the contour towards the object boundary.  The 

shape term ShapeE  attracts the contour to move towards an “expected boundary location” 

( , , , )iB x y z t , which is dynamically calculated during the evolution of contours.  The 

regularization term RegularizationE  encourages creation of a minimal area and smooth 

boundary.  The SDF term 
SDFE  keeps ( , , )i x y z  to be an SDF with unity gradient.  The 

image term ImageE  and regularization term RegularizationE  here are similar but with slight 

modifications based on the work of Chan [43] and Yazdanpanah [37].  The SDF term 
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SDFE  was proposed by Li [42].  The shape term ShapeE  is novel and originally introduced 

here.  All energy terms are expressed in level set form and described in detail below: 

2.5.1. Image Term 

Image term Image( )iE   is minimized, when the i-th contour 
iC  which is also the 

zero level set of 
i  coincides with a retinal sublayer boundary.  The image term is 

designed to be region-based following the work of Chan and Vese [43].  The region-

based image term encourages each region of segmentation (i.e. the region between 

1 1: ( , , ) 0i iC x y z    and : ( , , ) 0i iC x y z   for i=2, 3, …, 8) to have an approximately 

constant intensity.  The intensity of the i-th segmentation region is approximated by a 

constant 
iM , which is the mean intensity of the image subset formed between 

1 1: ( , , ) 0i iC x y z    and : ( , , ) 0i iC x y z  : 

 
    

    
1

1
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( , , ) 1 ( , , )

i i

i

i i
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In the above equation, the term     1( , , ) 1 ( , , )i iH x y z H x y z    functions as a 

region selector function for the region between the (i-1)-th contour 
1iC 
 and the i-th 

contour 
iC  for the following reason.   1( , , )iH x y z   is evaluated to be 1 outside (i.e. 

below) 
1iC 
 and 0 inside (i.e. above) 

1iC 
, while   1 ( , , )iH x y z  is evaluated to be 0 

outside (i.e. below) 
iC  and 1 inside (i.e. above) 

iC .  So the product of  1( , , )iH x y z   

and   1 ( , , )iH x y z  provides a binary mask which returns 1 for ( , , )x y z  located 

between 
1 1: ( , , ) 0i iC x y z    and : ( , , ) 0i iC x y z  , and 0 for ( , , )x y z  located in 

anywhere else.   

The mathematical form of the image term is: 
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  (14) 

Similar as the previous discussion, the term     1( , , ) 1 ( , , )i iH x y z H x y z    

functions as a region selector for the region between the i-th contour 
iC  and the (i+1)-th 

contour 
1iC 
.   

The assumption behind the image term Image( )iE   is that the intensity within each 

retinal sublayer is approximately constant at 
iM , i.e. the OCT image is piecewise 

constant.  If the assumption holds, then Image( )iE   is minimized when each contour 

: ( , , ) 0i iC x y z   matches to the corresponding sublayer boundary.   

Figure 13 shows an example of the effect of contour evolution using only the 

image term and SDF term.  Under the influence of the image term, the contours correctly 

move toward image boundaries, but are not smooth or regularly shaped due to the lack of 

shape and regularization terms.  Note that the mathematical details about contour 

evolution will be discussed in Section 2.5.5.  Also, SDF term is included in Figure 13 

because the SDF term is required for the active contour model to behave correctly, which 

will be discussed in detail in Section 2.5.4. 
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Figure 13:  An example of the initial contour (top) and evolution using only the image 

term and SDF term (bottom) on a human retinal image.  The contours move 

toward image boundaries but are not smooth or regularly shaped.  

2.5.2. Shape Term 

The assumption behind the image term Image( )iE   that the OCT image is 

piecewise constant may not be always true.  There may be intensity inhomogeneity 

within a retinal sublayer due to shadow artifacts introduced by retinal blood vessels 

which strongly absorb and scatter light.  Another possible problem with the image term 

Image( )iE   is that when the noise level is high, there may not be enough image 

information to correctly deform the contour.  Based on prior knowledge of retinal 
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anatomy, a shape term is introduced to attract the contour towards an expected boundary 

location.  The shape term is mathematically expressed as: 

  
2

Shape( ( , , )) ( , ) ( ( , , )) | ( , , ) |i i i iE x y z z B x y x y z x y z dxdydz       (15) 

where ( , )iB x y  is the expected boundary location for the i-th boundary, which is 

determined by the weighted sum of 
1( , )iC x y

 and 
1( , )iC x y

: 
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 
 (16) 

Based on the prior knowledge that retinal sublayers are generally parallel to each 

other, 
iB  is usually a good estimate of the expected boundary location because it uses the 

information of the (i-1)-th contour 
1( , )iC x y

 and the (i+1)-th contour 
1( , )iC x y

.   

  in (15) is Dirac function.  ( ( , , ))i x y z   functions as an contour selector.  

( ( , , ))i x y z   is evaluated to be 1 only when ( , , ) 0i x y z  , i.e. (x,y,z) is located on the 

zero level set of 
i , in other word, when (x,y,z) is located on 

iC .   

The shape term Shape( )iE   is minimized when each contour : ( , , ) 0i iC x y z   is 

close to its corresponding expected boundary location 
iB .  Since 

iB  is calculated based 

on the weighted sum of 
1iC 
 and 

1iC 
, the final effect is to make the retinal sublayers 

generally parallel to each other.  Figure 14 shows an example of the effect of contour 

evolution using only the shape term and SDF term.  Under the influence of the shape 

term, the contours become parallel to each other as expected.  Since the image term is not 

included in the result presented in Figure 14, image information is never used, so the 

contours do not move towards image boundary.  Obviously, the shape term must work 

together with image term in order to utilize the image information. 
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Figure 14:  An example of three contours with a bad initialization (top) and upon 

convergence (bottom) on a human retinal image.  The second contour 

evolves with only the shape term and SDF term.  The shape term encourages 

retinal sublayers to be generally parallel to each other.  Since image term is 

not included here, using just the shape term does not correctly identify the 

boundaries of the retinal layers. 

2.5.3. Regularization Term 

Regularization term is introduced to maintain the boundaries of the segmented 

retinal sublayer smooth.  Smooth boundaries are encouraged by adding a contour length 

term [37, 43].   

 Regularization ( ( , , )) ( ( , , )) | ( , , ) |i i iE x y z x y z x y z dxdydz      (17) 

Figure 15 shows an example of the effect of contour evolution using only the 

regularization term and SDF term.  The initial contours are added with noise in order to 
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demonstrate the effect of the regularization term.  Under the influence of the 

regularization term, the contours become smooth.  Since image information is not used in 

this example, the contours do not move towards image boundary.   

 

Figure 15:  An example of two contours with a noisy initialization (top) and upon 

convergence (bottom) on a human retinal image.  Both contours evolve with 

only the regularization term and SDF term.  The regularization term keeps 

the contours smooth.  Since image term is not included here, using just the 

regularization term does not correctly identify the boundaries of the retinal 

layers. 

2.5.4. SDF Term 

The shapes of the contours 
iC  are deformed by modifying their corresponding 

SDFs 
i .  However, after several iterations of modifying 

i , as a consequence, the 

gradient of 
i  may no longer have a unity magnitude throughout the whole image.  If 
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more iterations are allowed to proceed, 
i  no longer fulfills the SDF criteria which 

requires a unity gradient magnitude.  Since unity gradient of 
i  is a necessary 

prerequisite to ensure the active contour model’s correct behavior, the SDF term is 

introduced in the energy function to maintain 
i  close to a valid SDF [42].   

  
2

SDF

1
( ( , , )) | ( , , ) | 1

2
i iE x y z x y z dxdydz     (18) 

2.5.5. Minimization of Energy Function 

Based on the combination of the above energy terms, the total energy 

( )iE C  or ( ( , , ))iE x y z  is minimized through the evolution of ( , , )i x y z .  In order to 

perform the evolution, an artificial time-step parameter t is introduced so that 
i  becomes 

( , , , )i x y z t .  The evolution equation is conducted by applying the Euler-Lagrange 

Equation: 
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 (19) 

After simplification, the evolution equation (15) is reduced to: 
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  (20) 

where ( )i   is the curvature operator:   
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(21) 

After calculating 
i t   from (14), the evolution of ( , , , )i x y z t  is implemented 

by: 
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i i

x y z t
x y z t dt x y z t dt
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
 


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
 (22) 

where dt is an artificial time step size.   

The contour evolution equation (16) is expressed in continuous form.  However, 

in actual numerical implementation, the evolution is computed with discrete 

approximation. 

2.5.6. Adaptive Weighting Factors 

The performance of the 3D active contour algorithm is greatly affected by the 

value selections of the weighting factors Imagew , Shapew , Regularizationw , and 
SDFw .  How to 

choose the best combination of weighting factors is an open problem and is often treated 

empirically.  Here, following the work of Yazdanpanah [37], the idea of adaptive 

weighting factor is introduced.  The weighting factors change with iteration number, as 

shown in Figure 16.  Intuitively, in early iterations, the influence from the image term 

Imagew  should be larger so that the contours quickly evolve towards the boundary of each 

sublayer and the coarse structure of the sublayer is found.  Later as the iteration number 

progresses, the shape term Shapew  and the regularization term Regularizationw  should become 

more important to refine the contour and assist the algorithm when image information is 

insufficient to segment the image.  Since the SDF term is a necessary component to 

ensure the behavior of contour evolution, 
SDFw  is kept constant throughout the iteration.   
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Figure 16:  The weighting factors change with iteration number.  In early iterations, the 

influence from the image term Imagew  should be larger so that the contours 

quickly evolve towards the boundary of each sublayer and the coarse 

structure of the sublayer is found.  Later as the iteration number progresses, 

the shape term Shapew  and the regularization term Regularizationw  should become 

more important to refine the contour and assist the algorithm when image 

information is insufficient to segment the image.   

2.5.6. Implementation on a CPU-GPU Hybrid Computing Architecture 

The contour evolution process is time consuming when segmenting a 3D image, 

because the contour evolution in (21) includes a curvature calculation on a 3D image.  

The curvature calculation is a computationally demanding operation in 3D.  The 

curvature computation requires gradient and Laplacian operation on a 3D matrix as well 

as 3D matrix arithmetic operations.  However, all these operations can be significantly 

accelerated with a graphics processing unit (GPU) implementation.  To improve 
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computational speed, OpenCL is introduced to implement the curvature calculation on 

the GPU, while other steps are currently implemented on the CPU using MATLAB. 

2.6. SEGMENTATION RESULTS 

Retinal OCT imaging was performed on a healthy subject using a commercial 

ophthalmologic OCT instrument (Spectralis Spectral Domain OCT, Heidelberg 

Engineering).  A set of 3D OCT image volume (1024×100×496 voxels) were acquired 

near the fovea.  For faster processing speed, the image volume was downsampled to 

205×100×496 before the segmentation. 

The segmentation algorithm was successfully applied on the image stack.  Figure 

17 only shows the 3D segmentation results on a certain B-scan cross-section, while the 

algorithm actually detects the retinal sublayer boundaries on all the 496 B-scans.   
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Figure 17:  3D active contour segmentation results on a B-scan cross-section.  Top: The 

initial estimates of the 8 sublayer boundaries.  Middle: Segmentation results 

after 2 evolution iterations.  Bottom: Final segmentation results after 10 

evolution iterations. 
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2.6.1. Accuracy Test 

To study the accuracy of the 3D active contour segmentation algorithm, the 

segmentation results were compared with ground truth of retinal sublayer boundaries 

which are manually selected by an OCT expert [38].  According to the comparison, 

averaged error rate of the segmentation (misdetection tolerance is set to be 2 pixels) is 

below 5% for all retinal sublayers (Table 1).  In other words, more than 95% of the 

retinal sublayer boundaries are correctly determined.   

However, the error rates of segmentation listed in Table 1 were determined based 

on a small sample size (only 3 frames were manually inspected).  In addition, the initial 

estimates of the boundary location were manually selected and fairly close to the actual 

retinal sublayer boundaries.  Thus the error rates in Table 1 may be underestimated and a 

more thorough test is required to evaluate the accuracy of the algorithm.   

 

Layer Error Rate (%) 
Standard Deviation 

(%) 

NFL 2.42 0.97 

GCL 4.14 1.49 

INL 3.44 1.40 

OPL 4.18 1.66 

ONL 3.71 0.85 

IS 1.60 1.07 

OS 3.13 1.48 

RPE 2.46 0.92 

Average 3.14 1.23 

Table 1:  Mean and standard deviation of segmentation error rate for each retinal 

sublayer, calculated from 3 frames of an OCT image volume. 

2.6.2. 3D Active Contour Model vs. 2D Active Contour Model 

The proposed 3D active contour segmentation algorithm is inherently more noise 

resistant than 2D active contour methods.  To demonstrate this, the OCT images were 
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added with random noise for a noise tolerance test.  The whole 3D image stack was 

processed with the proposed 3D active contour algorithm, while a 2D frame from the 

stack was processed with a 2D version of the active contour algorithm.  The 2D algorithm 

failed to detect some boundaries corrupted with high speckle noise, while the proposed 

3D algorithm successfully detected all boundaries at the same noise level (Figure 18). 

 

Figure 18:  Segmentation results on artificial OCT images using (a) 2D active contour 

and (b) 3D active contour.  Arrows show the boundaries misdetected in 2D 

algorithm while successfully detected in 3D algorithm. 
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2.6.3. Speed Test 

According to experiments, the curvature operation in (21) takes 94% of 

computation time during contour evolution with simple MATLAB implementation.  The 

algorithm can be much faster if the computation speed of curvature operation is 

improved. 

GPU implementation significantly improves the computation speed of the 

curvature operation.  To demonstrate this, the algorithm was deployed on a computer 

equipped with an Intel Core i5-2400 CPU and an ATI 7970 GPU.  A benchmark test was 

performed to compare the computation time of the curvature calculation using (1) regular 

CPU implementation using MATLAB, (2) parallelized CPU implementation using 

OpenCL; (3) parallelized GPU implementation using OpenCL.  The test data is a 

205×100×496 random matrix, which has the same size as the 3D OCT volume used in 

previous demonstration.  The GPU implementation improves the computation speed by 

an impressive 54× compared with a regular CPU implementation using MATLAB or 

1.7× compared with a parallelized CPU implementation using OpenCLV (Table 2). 

 

Implementation Processor 

Time for one 

curvature 

operation (ms) 

GPU improves by 

Regular CPU using 

MATLAB 

Intel Core i5-2400 

@ 3.1GHz 
8806 54× 

Parallelized CPU 

using OpenCL 

Intel Core i5-2400 

@ 3.1GHz 
280 1.7× 

Parallelized GPU 

using OpenCL 
AMD 7970 163 -- 

Table 2:  Computation time required to complete one curvature operation. 
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2.7. DISCUSSION 

Although active contour has been previously demonstrated for segmenting retinal 

sublayers, the proposed algorithm has a number of important novelties: (1) First 

demonstration of a 3D active contour for OCT retinal image segmentation.  (2) First 

demonstration of an active contour model with GPU implementation for OCT retinal 

image segmentation.  (3) A novel shape term designed and implemented for retinal 

segmentation.   

The algorithm is 3D and region based.  The 3D approach has an inherent 

advantage in accuracy and noise tolerance over previous 2D methods because more 

image information is used.  As a result, unlike 2D methods, no filtering or noise reduction 

is required.  One potential issue with the 3D based algorithm is eye movement, which 

may affect the image continuity between frames.  Eye movement is usually not a problem 

with modern high-speed OCT systems, and can be easily fixed with an extra frame-by-

frame registration step. 

While the segmentation algorithm performed well, improvements can be made, 

especially on the shape term.  The shape term attracts the contour towards an expected 

boundary location ( , )iB x y .  Currently, the expected boundary location ( , )iB x y  is 

estimated from the weighted sum of the previous contour 
1iC 
 and the next contour 

1iC 
.  

This method usually makes a reasonable estimate of the expected boundary location, but 

may make mistakes upon bad initialization of the contours.  A more reasonable estimate 

of the expected boundary location can be achieved from a statistical learning from a 

retinal image database.  The database learning provides an averaged shape model of 

human retina which gives a better estimate of the expected boundary location. 

Another possible improvement could be made with the implementation of the 

algorithm.  Currently, the contour evolution is implemented on a CPU-GPU hybrid 



 38 

computing architecture.  GPU processes only the curvature calculation, which is a series 

of basic image operations with Laplacian, gradient calculation, while all other operations 

like the calculation of Heaviside step function are performed on CPU.  The hybrid 

architecture requires additional processing time to transfer data between main memory 

and GPU memory.  If the whole algorithm is implemented on GPU, the performance of 

the algorithm will be further improved. 

2.8. CONCLUSION OF THIS CHAPTER 

Speckle noise in OCT images makes the segmentation of retinal sublayer a 

challenging problem.  Traditional gradient-based segmentation methods that rely on 

sharp image edges fail in such a high noise environment.  Here, the fully-automatic 

segmentation algorithm based on 3D active contour model successfully detects all the 9 

retinal sublayers on 3D OCT images.  The algorithm includes a region-based image term 

to eliminate the dependency on shape image edges with high gradient, thus shows better 

noise tolerance than traditional gradient-based methods.  With a novel shape term, 

segmentation results on human retinal images using the proposed algorithm show 96.8% 

agreement with manual segmentation during an initial accuracy test.  GPU acceleration of 

the algorithm achieves a 54× speed-up of the curvature computation compared with 

regular CPU implementation.  A noise tolerance test suggests the algorithm has a clear 

advantage over previously reported 2D active contour models.  Application of the high-

speed three-dimensional active contour algorithm shows promising clinical value to 

analyze retinal OCT images. 
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Chapter 3:  Polarization-Sensitive Optical Coherence Tomography (PS-

OCT) for Human Retinal Imaging 

3.1. INTRODUCTION AND MOTIVATION 

Optical coherence tomography (OCT) provides real time non-invasive cross-

sectional images by measuring backscattered light [18].  As a functional extension of 

OCT, polarization-sensitive OCT (PS-OCT) is capable of characterizing the polarimetric 

properties of a birefringent sample including form-birefringence, phase retardation and 

optical-axis orientation, by measuring the interference fringe intensity and relative phase 

delay of two orthogonal polarization states [44-46].   

PS-OCT systems were first implemented with bulk optics [44, 45, 47].  With the 

development of high speed spectral and Fourier domain OCT, fiber-based PS-OCT 

systems were developed later [46, 48, 49].  Fiber-based systems have advantages in 

compact size and easy alignment, but at the cost of polarization mode dispersion, more 

complicated hardware, and more difficulties in signal processing.   

Fiber-based PS-OCT sytems have been built with both polarization-maintaining 

fiber (PMF) and single mode fiber (SMF) [50-60].  PMF acts as a birefringent waveguide 

and decorrelates orthogonal polarization states of light propagating in the fiber.  The 

disadvantage of a PMF implementation of PS-OCT is that the propagation velocity of the 

light in the two orthogonal states is different in PMF, so additional hardware or software 

is required to compensate the length mismatch of sample and reference arms [50-52].  

SMF randomly transforms the polarization state of transmitted light with a unitary 

transformation, so the SMF-based PS-OCT requires additional optical signal processing 

to account for the transformation in polarization states [53-60].   

Multiple PS-OCT hardware and signal processing designs have been reported.  

Using TD-PS-OCT Saxer et al used a Stokes formalism to determine the rotation axis of 
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Stokes vectors on the Poincare sphere [46].  Roth et al used an algebraic method and 

polarization sensitive free space components in the sample arm to measure birefringence 

[61].  Park et al developed a Jones matrix approach with sequential polarization 

modulation to measure the four elements of the Jones matrix representing the 

polarimetric properties of the sample [62].  Jiao et al used two superposed light sources 

[63], and later demonstrated continuous polarization modulation [64].  Davé et al used 

polarization maintaining (PM) fiber to characterize retardance and axis orientation of a 

birefringent plate with a single A-scan [50].  Oh et al was able to measure sample 

birefringence with only one wavelength scan without depth limitation but using 

additional frequency shifters [65].  Yamanari et al used a modulated input polarization 

state, requiring only one A-scan to calculate sample retardation at the expense of a 

reduction in measurement depth by a factor of three [66].  Al-Qaisi et al was able to 

record an image of biological tissue free of ghost lines using PM fiber [52]. 

In recent years, PS-OCT has been investigated for promising applications in 

detecting early stage glaucoma by measuring the thickness and birefringence of the 

retinal nerve fiber layer (RNFL) [58, 67-70].  Compared with normal eyes, RNFL 

thickness and birefringence both decrease in glaucoma eyes [68, 71].  According to 

previous studies, RNFL is a birefringent layer, and its form birefringence is mostly 

contributed by the microtubules within retinal ganglion cells (RGCs) [72].  In 

glaucomatous retinas, RGC microtubules depolymerize and eventually degrade, because 

of the reduced number of microtubule associated proteins (MAPs) which promote the 

oriented polymerization and assembly of microtubules [73-75].  As a result, in 

glaucomatous retinas, degenerate RGC axons are replaced by non-birefringent glial cells, 

so RNFL birefringence is expected to decline earlier and at a faster rate than RNFL 

thickness [76].   
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With appropriate polarimetric models [57, 77] and carefully defined RNFL 

boundaries, RNFL birefringence which provides functional information of microtubule 

density can be recovered from PS-OCT data [58, 78], and therefore one might expect that 

glaucoma can be detected at an earlier stage.   

In this chapter, a single-mode-fiber based swept-source polarization-sensitive 

OCT system was constructed for imaging human retina [58, 79].  Peri-papillary RNFL 

thickness, birefringence, and phase retardation maps are constructed from healthy eyes.  

As an example PS-OCT application, a RNFL segmentation algorithm using RNFL’s 

polarimetric information is described at the end of this chapter. 

Imaging protocols utilized to record data described hereafter have been approved 

by the Institutional Review Board of the University of Texas at Austin (IRB protocol # 

2007040101) and are registered (NCT # 01222065).  

3.2. POLARIZATION-SENSITIVE OPTICAL COHERENCE TOMOGRAPHY (PS-OCT) 

SYSTEM 

A fiber-based swept-source PS-OCT system for human retinal imaging is 

constructed (schematics shown in Figure 19) [58, 79].  The PS-OCT is assembled in a 

mobile cart to be ready for clinical use (Figure 20).  The PS-OCT system utilized a 

swept-source laser (HSL-1000 by Santec Corp., Komaki, Aichi, Japan) with a sweep rate 

of 28 kHz, 1064 nm center wavelength and a spectral scan range of 80 nm, providing an 

axial resolution of 12 μm in tissue.  
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Figure 19:  Schematic of fiber-based swept-source polarization-sensitive OCT system 

[79]. 

Slit lamp Fiber based SS-PS-OCT system

 

Figure 20:  PS-OCT clinical system setup [79].  Slit lamp is on the left.  Fiber-basd 

swept-source PS-OCT system is on the right. 
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The incident polarization state input into the PS-OCT system is adjustable with a 

polarization controller consisting of a linear polarizer and an electro-optic phase 

modulator.  The phase modulator is composed of two lithium niobate crystals with equal 

length and oriented at 90 degrees, in order to cancel intrinsic dispersion of their native 

birefringence.  When the phase modulator is electrically controlled with a high-voltage 

amplifier, the light exiting the polarization controller is polarized in three polarization 

states at 0 degree, 120 degrees and -120 degrees on the QV plane of the Poincaré sphere. 

The PS-OCT system requires a polarization-sensitive balanced detection module 

with two detection channels recording interference fringe signals in orthogonal 

polarization directions.  The detection module was firstly built with a fiber-based 

implementation [58], but later switched to a bulk-optics [79] because of unmatched 

polarization state changes in the optical fiber.  In the detection module (Figure 21), a non-

polarization crystal beam splitter is used for balanced detection, and two polarization 

beam splitters separate interference signals into balanced vertical and horizontal 

channels.  
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Figure 21:  Schematic of Polarization-sensitive balanced detection module.  BS: beam 

splitter.  PBS: polarizing beam splitter. 

The PS-OCT sample arm is composed of a patient interface which delivers the 

light onto the cornea as well as a line scanning laser ophthalmoscope (LSLO).  A glass 

rod is used as the dispersion compensator in the reference arm.  A Mach-Zehnder 

interferometer (MZI) is used as the sampling clock to ensure sampling of the signal in 

linear wavenumber space.  The clocking MZI is connected to an external circuit board to 

quadruple the sampling rate. 

3.3. FINDING TISSUE BIREFRINGENCE 

3.3.1. Stokes Vector Based Polarimetric Analysis 

The interference fringe signals collected with PS-OCT requires a polarimetric 

model in order to determine the sample’s birefringence.  The polarimetric processing 
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procedure was described previously [58].  Briefly, the horizontal and vertical component 

of interference fringe signals (Eh(z), Ev(z)) and the relative phase retardation between the 

two orthogonal polarization states (φdiff(z)) are first cropped to the anterior and posterior 

RNFL boundaries.  The normalized Stokes vectors S(z) which represents the polarization 

states at each depth-resolved pixel are then calculated from Eh(z), Ev(z) and φdiff(z).  

RNFL phase retardation, birefringence and optical-axis orientation are estimated from a 

multiple-state Levenberg-Marquardt nonlinear fitting algorithm.  The polarimetric 

processing procedure is described in more details below: 

In the current PS-OCT system, the complex depth-resolved electric field 

amplitudes for horizontal EH(z) and vertical EV(z) axes are acquired with two digitizer 

channels.  The phase difference φdiff(z) between the two channels is computed.  To 

analyze the change in polarization state of light as a function of depth, the normalized 

Stokes vector 
zS , which describes the polarization state of light at a given depth, is 

computed at each depth from EH(z), EV(z) and φdiff(z) by: 
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If 
zS  is plotted in a three dimensional coordinate system of Q U V  , it always 

falls on the surface of a unit radius sphere called the Poincaré sphere [53, 54].  RNFL is 

considered as a birefringent sample without biattenuation.  In this case, the trajectory of 

depth-resolved normalized Stokes vector 
zS  in RNFL depth traces a circular polarization 

arc with depth z around the optic axis  ̂ on Poincaré Sphere (Figure 22).  The central 

angle of the polarization arc corresponds to double pass phase retardation (DPPR) due to 

the sample birefringence.  
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Figure 22:  Depth-resolved normalized Stokes vector 
zS  in RNFL depth traces a 

polarization arc with depth z around the optic axis ̂  on Poincaré sphere.  

The central angle of the polarization arc is determined by the double pass 

phase retardation (DPPR) caused by sample birefringence. 

In order to better estimate RNFL birefringence from PS-OCT data, a longer 

polarization arc on Poincaré sphere is desired.  The length of the polarization arc is 

dependent on the separate angle between optic axis and the initial Stokes vector.  To 

increase the probability of having a long polarization arc, three incident polarization 

states (pairs separated by 120°) are used in the current PS-OCT system, as discussed 

above.  The three polarization arcs are constrained to rotate about the same optic axis by 

the same phase delay.   

A mathematical model describing the circular trajectory of depth-resolved Stokes 

vector on Poincaré Sphere is detailed discussed in previous publications [53, 54, 58].  

When biattenuation is negligible, the model contains a total of 9 unknown parameters: 

Stokes vector of sample optical axis with azimuthal and polar angle (φ0, θ0), the 

azimuthal and polar angles for the Stokes vectors of three incident states (φ1, θ1), (φ2, θ2), 

(φ3, θ3), and double pass phase retardation per unit depth (DPPR/UD)  .  The model 

function describing the trajectory of arcs can be constructed based on Euler rotation 
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matrix and these 9 parameters.  The physical description of the model is skipped here 

(with details in previous publications [53, 54, 58]); only its mathematical conclusion is 

summarized below: 

First, two axis systems are defined.  Lab frame is denoted as Q U V   as 

mentioned above, while a sample frame Q U V     is transformed from the lab frame 

with a Euler rotation matrix: 
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Assuming the cone angle between optic axis and the 1
st
 incident polarization state 

is  , then 
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Define another angle parameter  , which is the angle between the projection of 

the 1
st
 incident polarization state on ' 'U V  plane, while 'U  and 'V  axes are respectively 

 0 0sin ,cos ,0   and  0 0 0 0 0cos cos , cos sin ,sin       in lab frame ( Q U V   

axes). 
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In the Q U V     coordinate system, the Stokes vector for light backscattered 

from depth z is written as 
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where   is double pass phase retardation per unit depth (DPPR/UD) as mentioned above.   

Converting the above Stokes vector from Q U V     to Q U V   lab 

coordinate system with the Euler rotation matrix gives: 
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The depth-resolved normalized Stokes vector 
zS  is calculated from acquired OCT 

signal using (17).  So (22) completes an equation set with 9 unknown parameters.   

Based on the Stokes vector based polarimetric model, with the measured and 

cropped-to-RNFL Eh(z), Ev(z) and φdiff(z), the double pass phase retardation (DPPR) and 

DPPR per unit depth (DPPR/UD)   of RNFL are estimated using a multiple-state 

Levenberg-Marquardt nonlinear fitting algorithm, which is a standard algorithm to 

estimate a set of parameters that best correlates experimentally observed data to a 

theoretical model in terms of least square error [80].  The asymptotic standard error, or 

uncertainty of birefringence, is calculated from the nonlinear fitting algorithm as an error 

measure for the estimated birefringence with a 95% confidence interval [80]. 

Figure 23 shows two sample PS-OCT data recorded from a healthy volunteer’s 

right eye on the Poincaré sphere.  The polarimetric speckle noise corrupted data appear as 

arcs on the Poincaré sphere and can be inversed to estimate the optic axis  ̂ and RNFL 

birefringence Δn according to the polarimetric model described above [77].  Figure 23(a) 

shows a 46 μm thick RNFL location with measured DPPR of 9.68°, equivalent to 

DPPR/UD of 21.05°/100 μm, with 0.36°/100 μm (1.71%) DPPR/UD uncertainty.  Figure 

23(b) shows a 158 μm thick location with measured DPPR of 54.02°, equivalent to 

DPPR/UD of 34.14°/100 μm, with 0.24°/100 μm (0.70%) DPPR/UD uncertainty.  

The main challenge of Stokes vector based polarimetric analysis is the high 

computational requirement.  The Levenberg-Marquardt non-linear fitting algorithm 

requires the inversion of a 9 × 9 matrix which is computationally intensive.  The 

computational speed can be dramatically improved with implementation in a field 
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programmable gate array (FPGA) based computational system which executes parallel 

tasks at the hardware level.  The FPGA implementation of Levenberg-Marquardt 

algorithm is estimated to be 300-600 fold faster than the current MATLAB 

implementation on a personal computer [79]. 

 

Figure 23:  Polarimetric noise corrupted arcs for the three polarization states and their 

noise free fits about the optic axis on the Poincaré Sphere.  (a) A 46 μm 

thick RNFL location with measured DPPR of 9.68°, equivalent to 

DPPR/UD of 21.05°/100 μm, with 0.36°/100 μm (1.71%) DPPR/UD 

uncertainty.  (b) A 158 μm thick location with measured DPPR of 54.02°, 

equivalent to DPPR/UD of 34.14°/100 μm, with 0.24°/100 μm (0.70%) 

DPPR/UD uncertainty. 

3.3.2. Scan Pattern Considerations for PS-OCT 

3.3.2.1. Clustered Ring Scan 

Polarization data acquisition is sensitive to speckle noise which is present in all 

interferometric imaging techniques.  In order to reduce speckle noise, we designed a 

clustered ring scan pattern (Figure 24).  The clustered ring scan pattern consists of 10 

concentric rings around the optic nerve head with 2-5 mm diameters, and each ring 

contains 36 clusters of 100 A-lines.  In each cluster the 100 A-lines are acquired by 

sampling a sinusoidal pattern of 5 periods.  For each A-line, depth-resolved data are 
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recorded with three input polarization states as described above.  The 100 A-lines in each 

cluster are assumed to be uncorrelated and sample identical polarimetric properties since 

they are acquired over a relatively small spatial region.  Averaging 
AN =100 uncorrelated 

A-lines increases polarization signal-to-noise ratio (PSNR) by approximately AN =10 

times [81].  

 

Figure 24:  A line-scanning laser ophthalmoscope (LSLO) image showing clustered ring 

scan pattern around ONH. A clustered ring scan is composed of 10 rings. 

Each ring contains 36 clusters, and each cluster contains 100 A-lines. 

The clustered ring scan produces clustered maps of RNFL thickness, 

birefringence and phase retardation.  RNFL thickness map (Figure 25(a)) is obtained 

using a simple RNFL segmentation algorithm from OCT B-scan images.  Birefringence 

(DPPR/UD) map (Figure 25(b)) and its uncertainty map (Figure 25(c)) are calculated 

from the multiple-state Levenberg-Marquardt nonlinear fitting algorithm.  Phase 
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retardation map (Figure 25(d)) is obtained by multiplying thickness by birefringence.  

Blood vessels acquired from the raster scan taken immediately before acquisition of the 

clustered data are superimposed on the clustered RNFL thickness, birefringence, and 

phase retardation maps for registration. 

 

Figure 25:  Clustered maps from the same clustered ring scan. Blood vessels are detected 

from a separate raster scan taken immediately before acquisition of the 

clustered data. (a) Thickness map; (b) Birefringence (DPPR/UD) map; (c) 

Uncertainty of birefringence map; (d) Phase retardation (PR) map. 

The scan pattern of clustered ring scan exhibits some clear disadvantages.  

Although it is capable of reducing polarimetric speckle noise by averaging within each 

cluster, the number of measurement spots is significantly limited.  It provides only 360 
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measurement spots with 108000 A-scans (3 polarization states/A-line × 100 A-

lines/cluster × 36 clusters/ring × 10 rings).  Comparing with conventional intensity OCT 

which provides continuous fundus images with similar number of A-scans, the 

birefringence information provided by PS-OCT with clustered ring scan is clearly 

undersampled. 

3.3.2.2. Adaptive Cluster Forming Scan 

As discussed above, the reason of using clustered ring scan is to reduce 

polarimetric speckle noise which corrupts the calculation of intensity-normalized Stokes 

vectors.  By averaging 
AN  uncorrelated A-scans over a small lateral area, the 

polarimetric speckle noise is reduced by AN  times.  However, clustered ring provides 

coarse and undersampled sampling locations on fundus therefore its clinical utility is 

limited.  Although it is possible to increase the number of sampling locations in clustered 

ring scan by arranging more rings and/or more clusters per ring on fundus at the expense 

of recording more A-scans, the improvement is constrained by the limited acquisition 

time which must be shorter than 5 s due to patients’ eye movement in practice. 

The cost performance of clustered ring scan can be dramatically improved by 

adaptively including and reusing A-scans in multiple clusters.  Based on a continuous 

ring scan or raster scan, a moving window is defined and scan over the sampling area.  

The A-scans in the moving window are considered uncorrelated thus provide a cluster for 

polarimetric processing.  As an example, the relative size of the moving window 

comparing with the scan area of a continuous ring scan is shown in Figure 26.  By 

specifying the step size of the moving window, continuous maps of RNFL birefringence 

and phase retardation can be generated.  The continuous ring scan pattern shown in 

Figure 26 contains 100 rings and 360 A-scans per ring.  The total number of A-scans is 
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108000 (3 polarization states/A-line × 360 A-lines/ring × 100 rings), same as the number 

of A-scans in the current clustered ring scan pattern.  But the proposed strategy provides 

2500 (50×50) sampling locations – almost 7 times improvement comparing with the 360 

sampling locations in the current clustered scan. 

 

Figure 26:  Relative size of the moving window comparing with the scan area of a 

continuous ring scan. 

Example continuous maps generated from this cluster forming scan pattern are 

shown in Figure 27(d-f).  Comparing with the discrete maps created from clustered ring 

scan from the same subject Figure 27(a-c), the continuous maps generated from the 

proposed scan pattern clearly conveys more details about RNFL birefringence and phase 

retardation.   

An important advantage of the proposed adaptive cluster forming scan pattern is 

the ease of applying image processing techniques on continuous maps.  RNFL 

birefringence and phase retardation is physiologically continuous.  However, large local 

variation of RNFL birefringence and phase retardation presents on both discrete maps 

and continuous maps.  The local variation is usually caused by inaccurate or even failed 

Levenberg-Marquardt fitting of the polarimetric model on Poincaré sphere.  In clustered 



 54 

ring scan, those problematic clusters make it difficult to make diagnostic decision with 

discrete RNFL birefringence and phase retardation maps.  With the adaptive cluster 

forming scan pattern, the local variation can be significantly reduced with a median filter 

on the noisy continuous maps (Figure 27(h,i)).   

As mentioned above, the performance of polarimetric speckle noise reduction is 

dependent on the number of A-scans included in a cluster.  In continuous ring scan, the 

density of A-scans is higher in inner rings than in outer rings because of the identical 

number of A-scans per ring.  As a result, clusters in inner rings have a higher number of 

A-scans (Figure 27(g)).  The non-uniform reduction of polarimetric speckle noise is 

sometimes unwanted.  A raster scan based adaptive cluster scan is also developed with 

uniform A-scan density (Figure 28).   
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Figure 27:  Comparison of discrete maps created from clustered ring scan and continuous 

maps created from the proposed adaptive cluster forming scan pattern.  (a) 

Discrete RNFL thickness map; (b) Discrete RNFL birefringence map; (c) 

Discrete RNFL phase retardation map; (d) Continuous RNFL thickness 

map; (e) Continuous RNFL birefringence map; (f) Continuous RNFL phase 

retardation map; (g) Number of A-scans in each cluster in the adaptive 

cluster forming scan pattern; (h) Continuous RNFL birefringence map 

filtered by a median filter; (i) Continuous RNFL phase retardation map 

filtered by a median filter. 
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Figure 28:  Continuous maps created from the raster scan using the proposed adaptive 

cluster forming strategy.  (a) Continuous RNFL thickness map; (b) 

Continuous RNFL birefringence map; (c) Continuous RNFL phase 

retardation map; (d) Number of A-scans in each cluster in the adaptive 

cluster forming scan pattern; (e) Continuous RNFL birefringence map 

filtered by a median filter; (f) Continuous RNFL phase retardation map 

filtered by a median filter. 
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3.4. APPLICATION OF PS-OCT: OPTIMIZED RNFL BOUNDARY DETECTION USING 

POLARIMETRIC MEASUREMENT 

3.4.1. Motivation 

Segmentation of the RNFL from PS-OCT images is fundamental to determine 

RNFL thickness and birefringence.  PS-OCT polarimetric processing algorithms are 

sensitive to even slight misdetection of RNFL boundaries.  Many RNFL segmentation 

methods based on image processing and boundary detection algorithms have been 

reported and are summarized in Chapter 2.  Most of the previous RNFL segmentation 

algorithms provide promising RNFL segmentation results.  However, none of them are 

optimized for estimation of RNFL birefringence using PS-OCT for several reasons.  First, 

the previous algorithms are designed for continuous ring scan or raster scanning patterns, 

rather than a discrete clustered ring scanning pattern currently employed in PS-OCT 

systems required to minimize degrading effects of speckle noise in polarimetric signals.  

Second, all of the previous methods utilize only OCT intensity information of 

backscattered light, which is strongly corrupted by speckle noise.  No reported method 

takes advantage of functional birefringence information provided by PS-OCT.  Third, 

unlike the anterior RNFL boundary where change of refractive index from vitreous to the 

inner limiting membrane is abrupt, the posterior RNFL boundary is a transition zone from 

the birefringent RGC axons to their cell bodies; thus, a physiologically well-defined 

posterior RNFL boundary does not exist in OCT intensity images.  The polarimetric 

measurement capability of PS-OCT provides additional information to potentially 

overcome the limitations of current RNFL segmentation approaches for birefringence 

measurement. 

Utilizing both RNFL intensity and polarimetric information, a two-step RNFL 

segmentation method is proposed here for data recorded from swept source PS-OCT to 
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achieve optimized RNFL segmentation for birefringence estimation.  RNFL boundaries 

are first estimated from the intensity images using a simple filter followed by 

thresholding approach.  Optimized RNFL segmentation is then achieved by locally 

moving the estimated RNFL posterior boundary and minimizing uncertainty of estimated 

RNFL birefringence determined by the Levenberg-Marquadt algorithm.  This method 

segments the RNFL with optimized RNFL birefringence estimation.  Performance of the 

segmentation approach is evaluated using clinical data from a healthy volunteer (NCT# 

01222065). 

3.4.2. Methods 

RNFL anterior and posterior boundaries are first estimated from the recorded 

OCT intensity image.  Figure 29(a) shows an example of a B-scan intensity image 

derived from a clustered ring scan.  For each cluster, the intensity profiles of 100 A-lines 

are averaged to suppress speckle noise and improve signal-to-noise ratio (SNR), forming 

a cluster-averaged intensity image as shown in Figure 29(b).  Each averaged A-line of the 

cluster-averaged image is then processed with a smoothing filter to further reduce speckle 

noise.  A threshold is applied to the averaged and filtered A-line to estimate locations of 

anterior and posterior RNFL boundaries.  Finally, the RNFL segmentation is visually 

inspected and any misdetected boundaries are manually corrected.  The results of 

intensity-based RNFL segmentation are shown in Figure 29(c).   
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Figure 29:  A clustered ring scan acquired about the optic nerve head.  Acquired image 

diameter is 2.3 mm and consists of 36 clusters of 100 A-lines/cluster.  

Cluster numbers are marked at the top of the image.  (a) Original B-scan 

intensity image from clustered ring scan.  (b) Cluster-averaged intensity 

image provides improved SNR.  (c) B-scan intensity image with intensity-

based RNFL boundaries. 

The anterior RNFL boundary is an interface between the vitreous and inner 

limiting membrane with strong intensity contrast since the refractive index gradient is 

large.  As a result, the RNFL anterior boundary is relatively easy to detect using the 

intensity image, and in most cases the RNFL anterior boundary is correctly detected 

using intensity-based segmentation.  However the intensity contrast at the RNFL 
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posterior boundary is relatively low because the refractive index gradient from the 

birefringent RGC axons to their cell bodies is small.  To achieve the best estimate of 

RNFL birefringence, posterior RNFL boundary estimates are refined anatomically with 

polarimetric information by locally adjusting the RNFL posterior boundary and 

minimizing the uncertainty of the birefringence estimate.  A flow chart of this process is 

shown in Figure 30. 

To maintain the RNFL posterior boundary in the transition zone of RGC axons 

and their cell bodies, the search range of the RNFL posterior boundary is constrained to a 

relatively small depth.  In this study, the search range was constrained to 3 pixels above 

and below (i.e., ±14.07 μm) the intensity-based RNFL posterior boundary, corresponding 

to the diameter of two RGC cell bodies (around 14 μm) [82].   

Figure 31 shows an example of the effects of the RNFL posterior boundary 

optimization on the Poincaré Sphere.  The intensity-based segmentation misdetects the 

RNFL posterior boundary by overestimating three pixels.  As a result, the Stokes vector 

trajectory cropped from the misdetected boundary forms arcs with outlier points near the 

posterior boundaries.  These outliers reduce the fitting quality and increase the 

uncertainty of estimated birefringence (1.09°/100 μm).  The optimized RNFL boundary 

detection successfully removes outliers near the posterior boundary and thus provides 

better estimates of RNFL birefringence with much lower uncertainty (0.47°/100 μm). 
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Figure 30:  Flow chart of the RNFL boundary optimization algorithm. 

 

Figure 31:  RNFL posterior boundary optimization on the Poincaré Sphere.  (a) Intensity-

based boundary: RNFL thickness = 36 pixels, uncertainty of birefringence = 

1.09°/100 μm.  (b) Optimized boundary: RNFL thickness = 33 pixels, 

uncertainty of birefringence = 0.47°/100 μm. 

(b) (a) 
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3.4.3. Results 

Discrete clustered maps of uncertainty, thickness, birefringence (double pass 

phase retardation per unit depth) and phase retardation created with both intensity-based 

and optimized RNFL boundaries are shown in Figure 32.  Blood vessel patterns 

segmented from a raster scan recorded immediately before acquisition of the clustered 

data are superimposed on the clustered maps. 

As shown in Figure 32(a), the optimized boundary minimizes the uncertainty of 

the RNFL birefringence estimate compared with the intensity-based RNFL boundary.  

Although the optimized boundary is confined within a relatively small transition zone 

near the intensity-based boundary, RNFL thickness calculated from the intensity-based 

boundary (average thickness 107.60 μm) is generally greater than the optimized boundary 

results (average thickness 98.77 μm), as shown in Figure 32(b).  This result suggests that 

an intensity-based RNFL boundary detection tends to overestimate RNFL thickness, 

possibly due to a limitation of simple thresholding.   
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Figure 32:  Clustered maps created with intensity-based (left column) and optimized 

RNFL (right column) boundaries.  Unprocessable clusters due to 

inappropriate operator settings during image acquisition are marked in 

black.  (a) Uncertainty of birefringence.  (b) Thickness.  (c) Birefringence 

(double pass phase retardation per unit depth).  (d) Phase retardation.  Green 

circles in (c) and (d) mark outlier clusters removed by RNFL boundary 

optimization, while red circles mark the few new outliers produced by 

optimized RNFL segmentation. 
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We evaluate the improvement of RNFL birefringence estimate with the proposed 

RNFL segmentation by assessing the spatial smoothness of RNFL birefringence and 

phase retardation.  Due to the spatial continuity of RNFL physiology, change of RNFL 

birefringence and phase retardation on different RNFL locations are expected to be 

gradual and smooth.  Although the sampling pattern of the clustered ring scan is discrete, 

the local variation in RNFL birefringence and phase retardation maps should be 

reasonably small.  In the RNFL birefringence (Figure 32(c)) and phase retardation 

(Figure 32(d)) maps values of discontinuous outlier clusters (marked with green circles in 

Figure 32(c) and (d)) are suspected to be inaccurate.  Many of these outliers show less 

variation after the uncertainty-based RNFL boundary optimization.  Although the 

optimized boundary also produces a few new discontinuous clusters (marked with red 

circles in Figure 32(c) and (d)) in birefringence and phase retardation maps, the 

optimized boundary generally provides smoother RNFL birefringence and phase 

retardation maps.   

To evaluate smoothness of RNFL birefringence and phase retardation maps 

quantitatively, we utilize the local standard deviation of birefringence and phase 

retardation as a measure for their smoothness.  In RNFL birefringence and phase 

retardation maps, the standard deviation among each cluster and its four neighbors is 

calculated and plotted in the local standard deviation maps in Figure 33.  For clusters in 

the innermost and outermost rings, the local standard deviation is calculated with respect 

to the cluster of interest and its three available neighbors.  From Figure 33 it is clear that 

the local standard deviation of both RNFL birefringence and phase retardation decrease 

after the proposed RNFL boundary optimization.  The average local standard deviations 

of RNFL birefringence and phase retardation calculated from intensity-based and 

optimized RNFL segmentation are given in Table 3.  A paired t-test is computed for 
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pairwise comparing the local standard deviation of intensity-based and optimized 

segmentation results quantitatively.  The null hypothesis of the paired t-test is that the 

mean of the paired differences in the local standard deviation calculated from intensity-

based and optimized RNFL segmentation is zero.  The paired t-test shows that the 

decrease of local standard deviation of birefringence and phase retardation are both 

statistically significant (p = 0.0040 for birefringence and p =3.48 × 10
-7

 for phase 

retardation).  The results suggest that RNFL birefringence and phase retardation 

calculated from the optimized RNFL boundary are spatially smoother than those 

calculated from the intensity-based boundary.  Thus, we conclude that the proposed 

RNFL segmentation approach provides a better estimate of RNFL birefringence and 

phase retardation than traditional intensity-based segmentation results. 
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Figure 33:  Local standard deviation maps created with intensity-based (left column) and 

optimized (right column) RNFL boundaries.  Unprocessable clusters due to 

inappropriate operator settings during image acquisition are marked in 

black.  (a) Birefringence.  (b) Phase retardation.   
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Average local standard 

deviation of birefringence 

(°/100 μm) 

Average local standard 

deviation of phase retardation 

(°) 

Intensity-based 

segmentation 
7.54 8.37 

Optimized 

segmentation 
7.05 7.76 

Paired t-test p-

value 
0.0040 3.48 × 10

-7
 

Table 3:  Comparison of average local standard deviations of birefringence and phase 

retardation calculated from intensity-based and optimized RNFL 

segmentation. 

3.4.4. Discussion 

The purpose of the optimized RNFL boundary detection using polarimetric 

measurement is to demonstrate the usage of polarimetric information provided by PS-

OCT.  It is the first published study of segmenting RNFL from PS-OCT images utilizing 

both intensity and polarimetric information [83].  Many aspects in the current procedure 

can be improved to achieve better segmentation results and higher performance.  For 

example, currently we adopt a simple approach of estimating RNFL boundary from OCT 

intensity images with image thresholding.  Although the thresholding approach is 

computationally efficient, it tends to overestimate RNFL thickness as mentioned above 

and sometimes it misdetects RNFL boundary (especially on low quality images).  The 

thresholding-based RNFL boundary detection algorithm should be replaced by the 3D 

active contour based retinal sublayer segmentation algorithm described in Chapter 2 

should be introduced. 

In this study, we evaluate the improvement of RNFL birefringence and phase 

retardation estimation by assessing their local smoothness.  Although we argued this is a 

valid criteria with a reasonable physical assumption that RNFL birefringence and phase 
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retardation is spatially continuous, better approaches of assessing how the proposed 

algorithm improves birefringence and phase retardation estimation may be applied.  For 

example, a low-birefringent material with known birefringence could serve as gold 

standard.  More studies are required to further evaluate the performance of the proposed 

RNFL segmentation strategy. 

As a conclusion, we propose a two-step RNFL segmentation method for clustered 

ring scan images acquired with a PS-OCT system.  The RNFL segmentation method 

utilizes both intensity and polarimetric information to achieve optimized RNFL boundary 

detection for estimation of birefringence.  RNFL anterior and posterior boundaries are 

first detected from the intensity image.  RNFL birefringence is estimated from the 

intensity-based RNFL segmentation with a multiple-state Levenberg-Marquardt 

nonlinear fitting algorithm.  Optimized RNFL segmentation is achieved by minimizing 

the Levenberg-Marquardt uncertainty of RNFL birefringence while locally adjusting the 

posterior RNFL boundary.  The proposed RNFL segmentation approach provides an 

optimized RNFL segmentation with lowest achievable birefringence uncertainty, and 

optimizes birefringence and phase retardation measurement.  Clinical results from a 

healthy volunteer suggest that the proposed segmentation method estimates phase 

retardation in the RNFL with lower uncertainty and higher continuity than traditional 

intensity-based approaches. 

3.5. CONCLUSION OF THIS CHAPTER 

In this chapter, a single-mode-fiber based swept-source polarization-sensitive 

OCT system for human retinal imaging is presented.  A Stokes vector based polarimetric 

model is reviewed for estimating sample’s birefringence from PS-OCT measurement.  

Two different scan patterns are designed for PS-OCT to overcome the effects of high 
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polarimetric noise.  Peri-papillary RNFL thickness, birefringence, and phase retardation 

maps are collected from healthy eyes.  Finally, as an example of PS-OCT application, a 

RNFL posterior boundary detection method is presented based on optimizing PS-OCT 

polarimetric measurements. 
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Chapter 4:  Clinical and Animal Studies Using OCT and PS-OCT 

4.1. INTRODUCTION AND MOTIVATION 

Optical coherence tomography (OCT) is routinely used by ophthalmologists to 

record diagnostic retinal images.  From OCT retinal images, a number of candidate 

markers for early glaucoma diagnosis have been proposed.  Retinal nerve fiber layer 

thickness (RNFLT) has become a routine component of glaucoma screening, diagnosis 

and monitoring protocols as decreased RNFLT is correlated with glaucoma [84, 85].  

RNFL birefringence (Δn) and phase retardation (PR) are also candidate markers for early 

glaucoma diagnosis, since previous studies have demonstrated the link between retinal 

birefringence and RNFL microtubule density [86, 87].  In addition, RNFL reflectance, 

which may indicate mitochondrial dysfunction [88-90] and cytoskeletal changes [91], 

emerges as a promising candidate marker for early-stage glaucoma diagnosis.  All the 

above markers including RNFLT, Δn, PR, and reflectance, can be characterized using 

PS-OCT.  A natural and important question is, what is the earliest indicator that performs 

best in detecting glaucoma? 

To answer this question, we first introduced two parameters which represent the 

reflectance of RNFL: reflectance index (RI) and normalized reflectance index (NRI).  

Then, three linked clinical or animal studies were performed in order to compare the 

performance of all glaucoma indicators (Table 4).  The first study was performed on non-

human primates using lab-built PS-OCT [29].  The second study was performed on 

human at Eye Institute of Austin (EIA) and the Duke Eye Center(DEC) using both lab-

built PS-OCT and commercial intensity OCT [28].  The third study was performed on 

human at multiple clinical centers using commercial intensity OCT as a part of Advanced 

Imaging for Glaucoma Study (AIGS).  Multiple glaucoma indicators are recorded and 

compared in the three linked studies including RNFLT, Δn, PR, RI, and NRI.   
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  Study 1 Study 2 Study 3 

Model 

Non-human primates: 

control eyes and 

glaucomatous eyes 

Human: normal, 

glaucoma-suspect, 

and glaucomatous 

groups 

Human: normal and 

glaucoma-suspect 

groups 

Location 
University of Texas at 

Austin 

Eye Institute of 

Austin (EIA) and 

Duke Eye Center 

(DEC) 

Advanced Imaging 

for Glaucoma Study 

(AIGS) 

Instruments 

used 
Lab-built PS-OCT 

Lab-built PS-OCT 

and commercial OCT 
Commercial OCT 

Glaucoma 

indicators 

RNFLT, Δn, PR, and 

RI 

RNFLT, Δn, PR, and 

NRI 
RNFLT and NRI 

Comparison 

made 

Changes over time, 

and differences 

among groups 

Differences among 

groups 

Differences among 

groups 

Table 4:  Summary of the three studies presented in this chapter.  RNFLT: retinal nerve 

fiber layer (RNFL) thickness.  Δn: RNFL birefringence.  PR: RNFL phase 

retardation.  RI: RNFL reflectance index.  NRI: RNFL normalized 

reflectance index. 

Results of our studies involving primates and human subjects suggest that RNFL 

reflectance, measured by either RI or NRI, is the earliest, most sensitive and robust early 

diagnostic glaucoma indicator compared with RNFLT, Δn, and PR.  A possible 

mechanism of reduced RNFL reflectance in glaucomatous retina is proposed at the end of 

this chapter. 

4.2. RNFL REFLECTANCE MEASUREMENT 

Intuitively, the term “RNFL reflectance” means the brightness or pixel intensity 

of RNFL that appears on an OCT retinal image.  However, due to the variations in signal 

scaling and corneal transmission among difference OCT measurements, the brightness of 

RNFL must be normalized with the brightness of a common structure.  Here, we propose 
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the average brightness of a retinal sublayer near retinal pigment epithelium (RPE) as the 

normalization standard.   

Two retinal sublayers can be identified with either automatic or manual boundary 

detection techniques: RNFL, and RPEIOS, which a thin layer about the retinal pigment 

epithelium (RPE) and containing small volumes of the photoreceptor outer segment and 

superficial choroid, as shown in Figure 34.  RNFL reflectance index (RI) is defined as the 

ratio of OCT intensities between the two detected retinal layers: 

 RNFL

RPEIOS

I
RI

I
  (29) 

where RNFLI  is RNFL brightness per unit depth, and 
RPEIOSI  is the averaged brightness in 

the RPEIOS region.   

In practice, the reference layer was taken to be 10 pixels (~75 μm) below the 

anterior boundary of RPE.  This segmented RPE region is larger than necessary to fully 

capture the brightest reflecting region that is not in the RNFL in the retina.  Although 

segmenting the anterior boundary at the Bruch’s membrane is preferred, the limited axial 

resolution in this PS-OCT system and reliance on automated edge detection did not allow 

Bruch’s membrane to be consistently segmented.  As a compromise, a fixed thickness for 

the RPE region was taken.   

 

Figure 34:  PS-OCT retinal B-scan image of a non-human primate retina, plotted with 

segmented layers to determine RI and NRI: RNFL (yellow) and RPEIOS 

(blue, including small volumes of inner and outer segment and superficial 

choroid) 
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Another measurement of RNFL reflectance is normalized reflectance index 

(NRI).  NRI is defined as: 

 RNFL

RPEIOS

I
NRI

I
  (30) 

where 
RNFLI  is the total light intensity reflected from the RNFL layer, i.e. a summation of 

the OCT image pixel intensity in the RNFL layer. 

The difference between RI and NRI is that NRI includes information from both 

thickness and reflectance of RNFL, while RI includes information from RNFL 

reflectance only.  As a result, NRI can be considered as a combination feature of RNFL 

thickness and reflectance.  

4.3. STUDY 1: NON-HUMAN PRIMATE STUDY WITH PS-OCT 

Three non-human primates were included in the study.  For each non-human 

primate subject, one eye was laser treated to increase intraocular pressure (IOP) with an 

established protocol [92-94], while the other eye was left untreated and served as a 

control.  Each primate subject was followed over a period of 30 weeks and PS-OCT 

measurements were recorded at weekly intervals to assess RNFL changes associated with 

elevated IOP.  Under elevated IOP, the time variation and IOP association of RNFL 

thickness, phase retardation, birefringence, and RI were measured and analyzed for the 

three non-human primates.  

In the study, two scanning patterns were used during PS-OCT measurement: 

continuous ring scans and clustered ring scans.  RNFL thickness and reflectance index 

(RI) are calculated from both continuous and clustered ring scans, while phase retardation 

and birefringence are calculated from clustered ring scans only.  Figure 34 shows a 

typical continuous ring scan retinal image acquired by the lab-built PS-OCT. 
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A full presentation of the results from the non-human primate study is reported in 

reference [29].  Briefly, the data from three non-human primates show that RI outplays 

RNFL thickness, birefringence and phase retardation in detecting elevated IOP induced 

glaucoma.  A linear mixed effects model shows that RI, calculated from both clustered 

and continuous ring scans, drops significantly with elevated IOP over time (p<0.05 for 

both), while the other three parameters (RNFL thickness, birefringence and phase 

retardation) do not exhibit significant change (p>0.05).  An example set of retinal maps 

showing the values of RI in both control and treated eyes are generated for beginning 

(day 27), middle (day 81), and end (day 174) time points (Figure 35).   

To evaluate change of RNFL parameters (thickness, phase retardation, 

birefringence, and RI) with respect to IOP exposure, we fit the difference between control 

and the treated eyes of RNFL parameters as a function of IOP damage integral using a 

linear mixed effects model.  From the linear mixed effects model, we observed no 

significant trend (p>0.05) in the difference of RNFL thickness, phase retardation and 

birefringence between control and treated eyes vs. IOP damage integral.  For both 

clustered and continuous ring scan data, difference between RI of control and treated eyes 

increases significantly when IOP damage integral increases (p<0.05 for both). 
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Figure 35:  RNFL reflectance index (RI) maps for continuous ring scans for primate 2.  

Top is OD (treated eye) and bottom is OS (control eye).  Time points 

correspond to beginning (left, day 27), middle (center, day 81), and end 

(right, day 174) of the study.  Blood vessels indicated by black lines. 

As a conclusion, with elevated IOP, a significant decrease in RNFL reflectance 

was observed in eyes of each of the three primate eyes induced with glaucoma, while no 

significant change was observed in RNFL thickness, phase retardation, or birefringence 

in any of the three primates.  The results from the non-human primate study suggest that 

decreased RNFL reflectance is the earliest correlate with glaucomatous damage.  RNFL 

thickness changes at a later time in glaucoma progression compared to RNFL reflectance.  

This finding is consistent with previous studies that observed a decreased RNFL 

thickness in glaucoma eyes [84, 95]. 

4.4. STUDY 2: HUMAN STUDY WITH PS-OCT AND OCT 

In addition to the above study on non-human primate, a clinical study has also 

been performed at Eye Institute of Austin (EIA) and Duke Eye Center (DEC) to identify 
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the best indicator to detect early glaucoma for human.  71 human subjects presenting 75 

eyes comprised of 33 controls, 24 glaucomatous, and 18 glaucoma-suspects were 

included in the clinical study.  The definition of each group is listed in Table 5.  Three 

glaucoma diagnosis devices are employed in the study including RTVue OCT (Optovue, 

CA), and two PS-OCT systems developed in our lab, respectively denoted as PS-OCT-

EIA and PS-OCT-DEC.  RNFL thickness (RNFLT) and normalized reflectance index 

(NRI) maps were measured using both PS-OCT and RTVue OCT (Optovue, CA).  PR 

and Δn were measured using PS-OCT.   

 

Control Glaucoma-Suspect Glaucoma 

Has an intraocular pressure 

(IOP) <21mm Hg with no 

history of elevated IOP, 

normal visual fields [mean 

deviation and pattern SD 

(PSD) within 95% 

confidence limits and 

Glaucoma Hemifield Test 

(GHT) within normal 

limits], and no optic disc 

abnormalities judged by a 

glaucoma specialist 

(H.G.R. at Eye Institute of 

Austin and S.J.M. at Duke 

Eye Center) 

Ocular hypertension: has 

an IOP>21mm Hg but 

<30mm Hg measured in at 

least 3 separate office visits 

and have normal optic 

nerve head appearance.  

Preperimetric glaucoma: 

has an asymmetric cup-to-

disc ratio and show early 

glaucomatous optic disc 

abnormality, including 

thinning of the neuroretinal 

rim and notching 

Has history of elevated 

IOP, 2 consecutive 

abnormal visual fields 

(PSD outside the 95% 

confidence limits, 

abnormal GHT, or any 

typical visual field defect), 

and an abnormal optic disc 

Table 5:  Definitions of control, glaucoma-suspect, and glaucoma groups in Study 2. 

For each glaucoma indicator, average values in 7 RNFL locations (all rings, inner 

rings, outer rings, superior, inferior, nasal, and temporal) were calculated for further 

statistical comparisons (Figure 36).   
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Figure 36:  Definitions of analyzed retinal nerve fiber layer (RNFL) locations of Eye 

Institute of Austin and Duke Eye Center optical coherence tomography data 

sets illustrated on a clustered RNFL thickness map of a human eye (OD).  

Average computed across all-rings (left panel).  Averages computed over 5 

inner-rings (inner) and 5 outer-rings (outer) (middle panel).  Averages 

computed over the temporal (T), superior (S), nasal (N), and inferior (I) 

quadrants (right panel). 

The area under the Receiver Operating Characteristic (ROC) curve (AUC) was 

used to compare the performance of RNFLT, PR, Δn, and NRI, measured in seven retinal 

locations, in distinguishing between control, glaucomatous, and glaucoma-suspect eyes 

(Figure 37 and Figure 38).  The complete statistical results have been published [28].  

Briefly, for all the three devices included in the study (PS-OCT-EIA, PS-OCT-DEC, and 

RTVue OCT), NRI provides a larger ROC-AUC than any other glaucoma indicators, 

either statistically significant or not (Table 6).  According to PS-OCT data, NRI works 

significantly better than PR and Δn to distinguish between glaucomatous and control 

eyes, and between glaucoma-suspect and control eyes.  For RTVue OCT data, NRI 

performs significantly better than RNFLT to distinguish between glaucoma-suspect and 

control eyes.  However, the performances of NRI and RNFLT for classifying 

glaucomatous vs. control eyes were statistically indistinguishable for all the three 

devices, possibly due to the limited sample size.   
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Figure 37:  Receiver operating characteristics (ROC) curves suggest NRI outperforms 

RNFLT for distinguishing glaucomatous versus control eyes for all the three 

devices included in the study.   

Left: ROC of all-rings average of NRI (NRIALL) and inner-rings average of 

RNFLT (RNFLTINNER) for PS-OCT-EIA data set.   

Middle: ROC of NRIOUTER and RNFLTOUTER for PS-OCT-DEC data set.   

Right: ROC curves of NRIALL and RNFLTALL for RTVue OCT data set. 

 

Figure 38:  Receiver operating characteristics (ROC) curves suggest NRI outperforms 

RNFLT for distinguishing glaucoma-suspect versus control eyes for all the 

three devices included in the study.   

Left: ROC of NRIINNER and RNFLTs for PS-OCT-EIA data set.   

Middle: ROC of NRIALL and RNFLTI for PS-OCT-DEC data set.   

Right: ROC curves of NRII and RNFLTI for RTVue OCT data set. 
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Glaucoma 

Indicators 
Instruments 

Distinguishing between 

glaucomatous and 

control eyes 

Distinguishing between 

glaucoma-suspect and 

control eyes 

NRI vs. PR 
PS-OCT-EIA and 

PS-OCT-DEC 

NRI has higher AUC 

than PR, statistically 

significant 

NRI has higher AUC 

than PR, statistically 

significant 

NRI vs. Δn 
PS-OCT-EIA and 

PS-OCT-DEC 

NRI has higher AUC 

than Δn, statistically 

significant 

NRI has higher AUC 

than Δn, statistically 

significant 

NRI vs. 

RNFLT 

PS-OCT-EIA and 

PS-OCT-DEC 

NRI has higher AUC 

than RNFLT, statistically 

insignificant 

NRI has higher AUC 

than RNFLT, statistically 

insignificant 

NRI vs. 

RNFLT 
RTVue OCT 

NRI has higher AUC 

than RNFLT, statistically 

insignificant 

NRI has higher AUC 

than RNFLT, statistically 

significant 

Table 6:  Performance comparison of glaucoma indicators in Study 2.  Performance is 

measured by receiver operating characteristics (ROC) area under curve 

(AUC).  NRI: normalized reflectance index.  PR: phase retardation.  Δn: 

birefringence.  RNFLT: retinal nerve fiber layer thickness. 

As a conclusion, RNFL reflectance, measured by NRI, may outperform RNFL 

thickness, phase retardation, and birefringence for distinguishing between glaucoma-

suspect vs. control eyes.  Although more clinical data are required to draw a conclusion, 

results of this pilot clinical study suggest that RNFL reflectance is a promising new 

quantitative measure to detect glaucoma. 

4.5. STUDY 3: HUMAN STUDY WITH COMMERCIAL OCT 

4.5.1. Background and Motivation 

RNFL reflectance was found as a useful glaucoma indicator from both non-

human primate and human studies.  An attractive characteristic of RNFL reflectance 

measurement is that its computation is purely done on OCT images without any 

requirement of modifying OCT hardware.  As a result, RNFL reflectance can be 
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computed on previously collected clinical data even before the introduction of RNFL 

reflectance.  As a retrospective confirmation of using RNFL reflectance to detect 

glaucoma-suspects, another clinical study was performed as part of Advanced Imaging 

for Glaucoma Study (AIGS). 

Advanced Imaging for Glaucoma (AIG) is a multi-center bioengineering 

partnership sponsored by the National Eye Institute.  Current AIG clinical centers include 

University of Southern California, University of Miami, and University of Pittsburgh 

Medical Center, and Oregon Health & Science University.  Advanced Imaging for 

Glaucoma Study (AIGS) performed in the above clinical centers utilized standardized 

instruments and procedures across all clinical centers.  AIGS was conducted in 

accordance with the Declaration of Helsinki.  Informed consent was obtained from all 

participants after discussing the goals of the study and consequences of participation.  

Each institutional review board approved the research protocol.  Data was handled in 

compliance with the US Health Insurance Portability and Accountability Act (HIPAA). 

4.5.2. Methods 

According to AIGS protocol, paticipants are categorized into three groups: a) 

normal group, b) perimetric glaucoma (PG) group, and c) glaucoma suspect and pre-

perimetric glaucoma (GSPPG) group.  The definitions of each group are listed in Table 7.  

In this study, we only included data from normal and GSPPG groups.  PG eyes are not 

included in this study. 
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All of the following inclusion criteria must be satisfied completely with both eyes 

for normal subjects: 

No history or evidence of retinal pathology or glaucoma. 

No history of keratorefractive surgery. 

Normal Humphrey SITA 24-2 visual field: a mean deviation (MD) and corrected 

pattern standard deviation (CPSD) within 95% confidential limits of normal 

reference, and glaucoma hemifield test (GHT) within normal limits (97%). 

Intraocular pressure (IOP) < 21 mm Hg. 

Central corneal pachymetry > 500 μm. 

No chronic ocular or systemic corticosteroid use. 

Open anterior chamber angle: gonioscopy must show 75% or more of the angle to 

be Grade 2 or wider by Shaffer’s grading system. 

Normal-appearing optic nerve head (ONH) and nerve fiber layer (NFL): intact 

neuroretinal rim without splinter hemorrhages, notches, localized pallor or NFL 

defect. 

Symmetric ONH between left and right eyes: CDR difference < 0.2 in both vertical 

and horizontal dimensions. 
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Inclusion Criteria: 

At least one eye must fulfill the following criteria for perimetric glaucoma (PG) 

subjects: 

Glaucomatous (abnormal) visual field (VF) loss defined as a CPSD (p < 0.05), or 

GHT (p < 1%) outside normal limits, in a consistent pattern on both qualifying 

Humphrey SITA 24-2 VF, and 

ONH or NFL defect visible on slit-lamp biomicroscopy or stereo color fundus 

photography defined as one of following: 

diffuse or localized thinning of the rim 

disc (splinter) hemorrhage 

notch in the rim 

vertical cup/disc ratio greater than the fellow eye by > 0.2 

Mixed Enrollment: 

If the subject has only one eye that fulfills the eligibility criteria, that eye will be 

followed in the PG group and the other eye will be followed in the GSPPG group. 
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Inclusion Criteria: 

Glaucoma-suspect eyes must have one or more of the following risk factors or 

abnormalities in both eyes: 

Ocular hypertension is defined as any eye that has pre-treamtment IOP >22 OR has 

a baseline average IOP >= 22 May record pre-medication IOP. 

ONH or NFL defect visible on slit-lamp biomicroscopy or stereo color fundus 

photography as defined for the PG group. 

The fellow eye meeting the eligibility criteria for the PG group 

Exclusion Criteria: 

Glaucomatous (abnormal) VF loss as defined for the PG group. 

Table 7:  Definitions of normal, perimetric glaucoma (PG), and glaucoma suspect and 

pre-perimetric glaucoma (GSPPG) groups in Study 3. 
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RTVue SD-OCT (Optovue, CA) with 840 nm wavelength was used as the 

standard OCT instrument in AIGS.  In this study, RTVue OCT images of 35 normal and 

34 GSPPG eyes were randomly selected from AIGS database.  For each eye, three OCT 

ring scans centered about the optic nerve head were collected from the left eye, but only 

one ring scan with highest signal strength index (SSI, which is an image quality 

measurement provided by RTVue OCT) is used in the statistical study.  Each OCT ring 

scan contains 10 rings with outer diameter of 4.9 mm and inner diameter of 2.2 mm.   

RNFL and RPEIOS boundaries were manually determined by four OCT experts 

as shown in Figure 39.  Based on RNFL and RPEIOS segmentation, two glaucoma 

indicators – normalized reflectance index (NRI) and RNFL thickness (RNFLT) – were 

calculated for each patient from seven RNFL locations (all rings, inner rings, outer rings, 

superior, inferior, nasal, and temporal) for statistical comparison.  The definitions of the 

seven RNFL locations are similar as those in Study 2 (Figure 36). 

 

Figure 39:  RTVue OCT retinal ring scan image from a normal subject.  RNFL and 

RPEIOS layers are segmented and plotted on the OCT image. 

4.5.3. Results and Discussion 

4.5.3.1 Detecting Glaucoma using Single Parameter 

The statistical analysis approach was similar with Study 2.  First, the average and 

standard deviation of NRI and RNFLT in the seven RNFL locations of normal and 
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GSPPG groups are computed and shown in Table 8 and Table 9.  Both RNFL and NRI of 

the normal group are significantly larger than those of the GSPPG in most RNFL 

locations.  This result is consistent with our previous observation in Study 2 [28]. 

 

RNFL location 

Average NRI of 

normal group 

Average NRI of 

GSPPG group P-value 

All-rings 38.830±6.471 34.765±6.851 0.0136* 

Inner-rings 45.674±8.439 39.899±7.623 0.004* 

Outer-rings 31.995±5.477 29.621±6.608 0.1085 

Superior 47.765±9.780 41.483±10.681 0.0131* 

Inferior 50.772±11.450 44.056±11.187 0.0163* 

Nasal 30.281±7.220 30.191±7.436 0.9594 

Temporal 26.308±5.346 22.952±7.383 0.0337* 

Table 8:  The average and standard deviation of NRI in seven RNFL locations of normal 

and GSPPG groups.  *p<0.05 

RNFL location 

Average RNFLT of 

normal group 

Average RNFLT of 

GSPPG group P-value 

All-rings 32.653±3.2 28.911±3.863 4.16×10
-5

* 

Inner-rings 39.431±4.666 34.232±4.362 1.01×10
-5

* 

Outer-rings 25.874±3.035 23.589±3.993 0.0092* 

Superior 39.917±5.347 34.664±6.295 0.0004* 

Inferior 41.662±5.614 34.923±5.788 6.18×10
-6

* 

Nasal 24.448±3.744 24.463±4.976 0.9889 

Temporal 24.482±3.827 21.536±5.070 0.0081* 

Table 9:  The average and standard deviation of RNFLT in seven RNFL locations of 

normal and GSPPG groups.  *p<0.05 

The receiver operating characteristic (ROC) curves were processed using pROC 

package in R statistical programming language (v2.15.10, R Foundation for Statistical 

Computing, Vienna, Austria) and R Studio (v0.94, RStudio Inc.) with 2000 resamples 

using bootstrap sampling.  The area under the ROC curve (AUC) was used to pairwise 

compare the performance of RNFLT and NRI, measured in seven retinal locations, in 
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distinguishing between normal and GSPPG eyes (Figure 40).  For the RTVue OCT data 

included in this retrospective study, the ROC-AUC provided by RNFLT and NRI are 

statistically indistinguishable in most RNFL locations (Table 10).   

 

Figure 40:  Receiver operating characteristics (ROC) curves of NRI and RNFLT 

calculated from all rings.   

 

RNFL location RNFLT ROC AUC NRI ROC AUC P-value 

All-rings 0.7622 (0.6403-0.8605) 0.7059 (0.579-0.8252) 0.4054 

Inner-rings 0.8193 (0.7168-0.9126) 0.7202 (0.5932-0.837) 0.1189 

Outer-rings 0.6319 (0.4908-0.7538) 0.6613 (0.5227-0.7857) 0.685 

Superior 0.7336 (0.6058-0.8353) 0.6933 (0.5596-0.8135) 0.343 

Inferior 0.7899 (0.6773-0.8832) 0.6639 (0.5261-0.7908) 0.01632 

Nasal 0.5126 (0.368-0.6513) 0.5277 (0.379-0.6613) 0.8445 

Temporal 0.6664 (0.5361-0.7958) 0.6655 (0.5252-0.795) 0.9857 

Table 10:  Performance comparison of NRI and RNFLT in Study 3.  Performance is 

measured by receiver operating characteristics (ROC) area under curve 

(AUC).  The 95% confidence intervals of the AUC are listed in the 

parenthesis.  RNFLT: retinal nerve fiber layer thickness.  NRI: normalized 

reflectance index.   
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The results of this retrospective study are not fully consistent with the findings in 

Study 2 that NRI outperforms RNFLT.  There are several possible reasons.  First, the 

sample sizes in Study 2 and Study 3 are both small, which make it difficult to draw any 

conclusions from the studies.  Second, the definitions of glaucoma-suspect in Study 2 and 

GSPPG group in Study 3 are slightly different (Table 5 and Table 7), which may 

introduce inconsistency in the study results.  Another possible reason is that the RTVue 

OCT images included in Study 2 had a much lower resolution than those in Study 3 

which may reduce the performance of RNFLT.   

4.5.3.1 Detecting Glaucoma using Two Parameters 

Although the results from this retrospective study does not confirm that RNFL 

reflectance performs better than RNFL thickness or not, RNFL reflectance clearly 

contains additional information independent from RNFL thickness.  RNFL thickness and 

NRI are not totally correlated (correlation coefficient is 0.62).  As a result, it is possible 

to construct a new classifier using both RNFLT and NRI and performing better than 

either RNFLT or NRI alone.  To demonstrate this, a new classifier was trained from the 

AIGS data using the following logistic regression model: 

 

2 2

0 1 2 3 4 5

( , )

( )

ALL ALL

ALL ALL ALL ALL ALL ALL

h RNFLT NRI

g RNFLT NRI RNFLT NRI RNFLT NRI



           
 (31) 

where g is the logistic function: 

 
1

( )
1 z

g z
e




 (32) 

The logistic classifier uses two parameters: RNFLTAll and NRIAll.  Comparing 

with the corresponding single-parameter classifiers using either RNFLTAll or NRIAll, the 

ROC AUC is much improved (Figure 41 and Table 11). 
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Figure 41:  Receiver operating characteristics (ROC) curves of NRIALL, RNFLTALL, and 

the new classifier ( , )ALL ALLh RNFLT NRI
 calculated from all rings.   

 

RNFLTAll ROC AUC NRIAll ROC AUC ( , )ALL ALLh RNFLT NRI
 ROC AUC 

0.7622 (0.6403-0.8605) 0.7059 (0.579-0.8252) 0.8034 (0.6975-0.8975) 

Table 11:  Performance comparison of NRI, RNFLT, and the new classifier 

( , )ALL ALLh RNFLT NRI
 in Study 3.  Performance is measured by receiver 

operating characteristics (ROC) area under curve (AUC).  The 95% 

confidence intervals of the AUC are listed in the parenthesis.  RNFLTAll: 

retinal nerve fiber layer thickness calculated from all rings.  NRIAll: 

normalized reflectance index calculated from all rings.   

4.5.4. Summary 

As a conclusion, RNFL reflectance, measured by NRI, did not show statistically 

significant advantage over RNFL thickness for distinguishing between glaucoma-suspect 

vs. normal eyes, according to the data included in this study.  However, RNFL 
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reflectance measured by NRI contains additional information besides RNFL thickness for 

detecting glaucoma-suspects.  The results of this pilot clinical study suggest that RNFL 

reflectance is a useful quantitative measure which introduces additional diagnostic power 

for detecting glaucoma. 

4.6. POSSIBLE MECHANISM OF REDUCED NRI IN GLAUCOMATOUS EYES 

The previous clinical and animal studies suggest that RNFL reflectance decreases 

during the early stage glaucoma progression.  Although additional investigation is 

necessary to test candidate mechanisms for RNFL reflectance decrease, changes in the 

mitochondrial networks and axonal cytoskeleton changes are hypothetical mechanisms.   

Previous studies have demonstrated that changes in mitochondrial membrane 

permeability in response to elevated IOP precede retinal ganglion cell loss in 

glaucomatous eyes [90, 96].  Mitochondrial dysfunction is recognized as an important 

component in the etiology of many neurodegenerative pathologies including amyotrophic 

lateral sclerosis, Alzheimer’s, and Parkinson’s disease.  Mitochondria are recognized as 

dynamic organelles that constantly undergo fusion and fission processes that are required 

to maintain normal function of the host cell.  Fusion of mitochondria to form 

interconnected intracellular networks is believed to be a necessary component to maintain 

a mitochondrial population with a full complement of gene products that can mitigate 

age-related degeneration.  In fact, autosomal dominant optic atrophy, the leading cause of 

childhood blindness, is caused by a mutation in the mitochondrial fusion gene OPA1 

[97].  Recently, Ju et al. demonstrated that mitochondria fission in differentiated retinal 

ganglion cell cultures is induced in response to elevated hydrostatic pressures [98].   

Inasmuch as mitochondrial changes are an important component of 

neurodegenerative diseases, their potential contribution to RNFL reflectance changes is 
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of interest.  Mitochondria have long been recognized as an important structural 

component impacting the light scattering properties of tissues and cells [99, 100].  Tissue 

scattering is greatest in structures with cells containing dense mitochondrial populations 

[101].  Because of the disruption of the mitochondrial fusion/fission cycle, cells 

undergoing apoptosis triggers changes in optical scattering properties.  A number of 

recent studies have observed optical scattering changes in cells undergoing apoptosis that 

originate at least in part to the mitochondria.  Pasternack et al. used a Fourier microscopy 

approach to demonstrate that early cell apoptosis is accompanied by mitochondrial 

fission and fragmentation that results in more isotropic or large-angle light scattering 

[102].  Chalut et al. utilized angle-resolved optical coherence tomography (OCT) to 

document similar scattering changes that the authors suggested may involve 

mitochondrial fission [103].  A number of investigators have recently applied OCT to 

document light scattering changes in cells undergoing apoptosis or necrosis [104, 105].   

As mentioned in Section 1.2.1, RNFL is composed of RGC axons, which are rich 

in mitochondrial population.  In normal RGC axons, mitochondria form networks in a 

fusion state to maintain their functionality (Figure 42(a)).  In RGC axons undergoing 

apoptosis, mitochondria cannot maintain mitochondrial network and breaks apart into the 

fission state (Figure 42(b)).  Due to the change of mitochondrial network morphology, 

RNFL backscatters incident OCT light at a wider backscattering angle in glaucomatous 

RNFL.  As a result, less light is collected within the OCT collecting aperture, and 

glaucomatous RNFL appears less bright in OCT images. 
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Figure 42:  RGC axons containing mitochondria (ellipsoids) and microtubules (small 

cylinders) interact with incident light with different scattering properties.  

(a) In normal RGC axons, mitochondria stay in fusion state and scatter light 

in a narrow backscattering angle.  (b) In RGC axons undergoing apoptosis, 

mitochondria switch to fission state and scatter light in a wider 

backscattering angle.   
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Although the decrease in reflectance in glaucomatous primate eyes reported here 

is consistent with reduced collected backscatter due to intensified mitochondrial fission 

resulting in increased large angle scattering, other mechanisms such as changes in the 

axonal membrane or microtubules may also contribute to the observed decrease in RNFL 

reflectance.  Additional studies are required to isolate and better characterize the various 

candidate cellular processes that may contribute to decreased RNFL reflectance observed 

in animal and human studies. 

4.7. CONCLUSION OF THIS CHAPTER 

In this chapter, the results of three linked clinical and animal studies are briefly 

overviewed.  The purpose of the three studies is to search for the earliest, most sensitive 

and robust glaucoma indicator, among a group of candidate glaucoma indicators 

including RNFL thickness, birefringence, phase retardation, and reflectance.  In the first 

study involving non-human primates, decreased RNFL reflectance was found the earliest 

change associated with elevated intraocular pressure (IOP) in glaucomatous eyes.  In the 

second study with human eyes, the performances of multiple glaucoma diagnostic 

indicators were compared and RNFL reflectance was identified as the best indicator to 

distinguish between control and glaucoma eyes, and control and glaucoma-suspect eyes.  

The observation that RNFL reflectance is the best glaucoma indicator is further supported 

in the third study with human eyes.   

As a conclusion, RNFL reflectance, measured by either RI or NRI, performs 

better than RNFLT, Δn, and PR in terms of detecting early-stage glaucoma.  The fission-

fusion change of mitochondrial network morphology in RGC axons is considered as a 

hypothesis mechanism of RNFL reflectance change in associate with glaucomatous 

damage. 
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Although the birefringence and phase retardation information provided by PS-

OCT turns out to be less effective than RNFL reflectance in glaucoma detection, PS-OCT 

still provide useful diagnostic values.  A recent PS-OCT study utilized the degradation in 

the degree of polarization (DOP) of light backscattered from human RNFL with 

increasing depth, and showed that DOP degradation measured by PS-OCT may be 

another useful diagnostic tool for various eye diseases including glaucoma [106].  

Additional investigates are needed on how to make the best use of PS-OCT in retinal 

diagnosis. 
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Chapter 5:  Pathlength-Multiplexed Scattering-Angle-Diverse Optical 

Coherence Tomography (PM-SAD-OCT) 

5.1. INTRODUCTION AND MOTIVATION 

The clinical and animal studies in Chapter 4 have discovered the decreased RNFL 

reflectance to be a sensitive, robust and early diagnostic for glaucoma.  The decreased 

RNFL reflectance prior to decreased thickness in glaucomatous retinas have been 

independently observed by another group as well [107].  The decreased RNFL 

reflectance in glaucomatous eyes suggests that certain changes of RNFL optical 

scattering properties happen during glaucoma progression.   

As mentioned in Section 4.6, changes of optical scattering properties in cells 

undergoing apoptosis, largely due to intensified mitochondrial fission, have been 

observed in a number of studies [98, 102, 103].  The observed structural changes in 

mitochondrial networks associated with some neurological diseases suggest that angular 

scattering properties of RNFL may provide diagnostic information for retinal diseases 

like glaucoma.   

Pyhtila and Wax first reported the application of an angle-resolved spectral 

domain OCT system to characterize the size of Mie scattering centers [108, 109].  Iftimia, 

Bouma and Tearney reported a time-domain OCT system using pathlength-encoded 

angular compounding for speckle reduction [110].  Later, various angle-resolved OCT 

designs have been reported for speckle reduction [111-113], light-scattering spectroscopy 

[114], focus extension [115], and measurement of absolute flow velocities [116-119].  

Especially, Klein et al. acquired angle-resolved OCT images from human retina for 

speckle reduction purpose and mentioned the possibility of using angle-resolved OCT to 

achieve tissue discrimination [113].  However, there is no previous report of using an 

angle-diverse OCT system to measure RNFL angular scattering properties.   
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In this Chapter, a low resolution pathlength-multiplexed scattering-angle-diverse 

OCT (PM-SAD-OCT) is constructed to investigate the scattering properties of retinal 

nerve fiber layer (RNFL).  Three types of PM-SAD-OCT studies are performed to 

demonstrate the application of PM-SAD-OCT (Table 12).  In the first study, PM-SAD-

OCT retinal images are acquired from healthy human subjects, showing the variation of 

RNFL scattering properties at retinal locations around the optic nerve head.  In the 

second study, PM-SAD-OCT images are collected from an ex-vivo rat retina model, 

showing the longitudinal variation of RNFL scattering properties during the death of rat 

retina.   

The third study goes beyond the scope of retinal imaging.  Since the purpose of 

PM-SAD-OCT is to detect cell apoptosis, its application extends beyond glaucoma 

diagnosis.  The optical scattering information provided by PM-SAD-OCT is expected to 

help in the early detection of any neurodegenerative diseases.  In order to explore the 

application of PM-SAD-OCT in general neurodegenerative diseases, in the third study, 

PM-SAD-OCT images were collected from the nerve cord of earthworms during 

neuronal apoptosis. 

 

  Study 1 Study 2 Study 3 

Model 
In vivo healthy human 

retina 
Ex vivo rat retina 

In vitro earthworm 

nerve cord 

Instruments 

used 

Lab-built 1060 nm 

PM-SAD-OCT 

Lab-built 1300 nm 

PM-SAD-OCT 

Lab-built 1300 nm 

PM-SAD-OCT 

Comparison 

made 
Spatial variation Changes over time Changes over time 

Table 12:  Summary of the three studies presented in this chapter.   
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5.2. INSTRUMENTATION 

The PM-SAD-OCT imaging system is based on the swept-source ophthalmologic 

PS-OCT imaging system described in Chapter 3 [58].  However, for the studies in this 

chapter, the polarization controller is removed from the previous PS-OCT in order to 

reduce power loss, so that the OCT system is no longer polarization-sensitive.  Figure 43 

shows the schematics of PM-SAD-OCT. 

 

Figure 43:  PM-SAD-OCT instrumentation. 

PM-SAD-OCT uses pathlength multiplexing to separate incident and 

backscattered light from the retina into discrete angular ranges by placing a pathlength 

multiplexing element (PME) in the sample path of the interferometer between collimating 

lens and scanning mirrors close to the conjugate position of the patient’s pupil.  The PME 

is constructed of a t = 3.0mm thick BK7 glass window with a 2.0mm diameter clear 

aperture in the center (Figure 44).  Light propagating through the central region of the 
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PME (Region-1) has a short path with an optical thickness, nairt = 3.0mm, where nair = 1 

is the refractive index of air.  Light propagating through the outer region (Region-2) has a 

long path and consists of a BK7 glass annular aperture with optical thickness, nglasst = 

4.52mm, where nglass = 1.50669 is the refractive index of BK7 glass at λ = 1060nm.  

The composite optical pathlength of detected light returned from the RNFL is 

dependent on position of incoming or returning light in the patient’s pupil and is 

associated with angle of light incident to or backscattered from the RNFL.  Diameter of 

the central clear aperture (2.0mm) is smaller than the 1/e
2
 diameter (6.0mm) of the 

sample beam.  Optical pathlengths of four incident-backscattered light paths through the 

PME are recognized (Figure 45): 1) short-short – light incident on the patient’s pupil 

propagates through Region-1 (low angle), backscatters from the RNFL at a low angle and 

returns through Region-1 with a relative composite pathlength of 2nairt; 2) short-long – 

light propagates through Region-1 (low angle), backscatters at a high angle from the 

RNFL and returns through Region-2 with a relative composite pathlength of nairt + nglasst; 

3) long-short –light propagates through Region-2 (high angle), backscatters at a low 

angle from the RNFL and returns through Region-1 with a relative composite pathlength 

of nglasst + nairt; 4) long-long – light propagates through Region-2 (high angle), 

backscatters from the RNFL and returns through Region-2 with a relative composite 

pathlength of 2nglasst.  Optical pathlengths of short-long and long-short paths are 

degenerate.  As a result, PM-SAD-OCT data consists of three retinal subimages (Figure 

46, Table 13) separated by (nglass - nair)t = 1.52007mm.  
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Figure 44:  PME constructed of 3.0mm thick BK7 glass window. Region-1 is inner 

2.0mm diameter aperture; Region-2 is outer annulus.  Left: end-on view; 

Right: side view. 

 

Figure 45:  PME is positioned at a plane conjugate to the patient’s pupil. Low-angle 

(short-short, red) and high-angle (long-long, blue) backscattered RNFL light 

paths. 
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Figure 46:  PM-SAD-OCT image of a coronary artery sample.  Three subimages 

correspond to low-angle (upper), high/low angle (middle) and high angle 

(lower) images.   

 

 
Incident-

collected 

path 

Relative 

composite 

pathlength 

Incident-

scattered 

angle 

Possible 

scattering 

angle range 

Averaged 

scattering 

angle 

Upper 

subimage 
Short-short 2nairt Low-low [0, 2θlow] Low 

Middle 

subimage 

Short-long or  

Long-short 
nairt + nglasst 

Low-high or  

High-low 
[0, θlow+θhigh] Higher 

Lower 

subimage 
Long-long 2nglasst High-high [0, 2θhigh] Highest 

Table 13:  Properties of three PM-SAD-OCT subimages  

The amplitude of PM-SAD-OCT signal, or pixel brightness in PM-SAD-OCT 

subimages, is proportional to the square root of scattered light intensity collected from the 

sample ( sI ).  However, pixel brightness in PM-SAD-OCT images is also affected by 

decay of the swept-source coherence function Γ(ngcτ) with increasing scan depth (ngcτ) 

where ng is the group refractive index of the retina, c is the speed of light in vacuum and τ 

is the round-trip time delay between light in sample and reference paths.  As a result, the 
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PM-SAD-OCT subimage with longer optical pathlength has a decreased brightness since 

the amplitude of OCT point spread function decreases with increasing depth.  To 

determine the relative angular distribution of RNFL backscattered light in PM-SAD-OCT 

subimages, PM-SAD-OCT subimages are normalized by the experimentally measured 

depth-dependent amplitude of the OCT autocorrelation function. 

Based on PM-SAD-OCT images, a new parameter, low-to-high angle 

backscattering anisotropy, is defined to examine sample’s scattering properties: 

 low-to-high angle backscattering anisotropy /Low HighI I  (33) 

where ILow and IHigh are respectively the average brightness (i.e. pixel intensity) of the 

sample in the low-angle and high-angle subimages,  For simplicity, low-to-high angle 

backscattering anisotropy is written as ILow/IHigh.  ILow/IHigh measures the intensity ratio of 

low-angle and high-angle backscattering at a particular voxel location and hence gives 

some information about the relative backscattering properties of the sample at that 

location. 

ILow/IHigh measurement is found to be dependent on the relative angle between 

incident light and sample surface normal.  In order to study the effect of sample tilt angle 

on ILow/IHigh value, a RNFL phantom was positioned under the PM-SAD-OCT beam and 

tilted by an angle θ under the PM-SAD-OCT beam from a nearly normal orientation to 23 

degrees.  The RNFL phantom is chosen as a 70μm thick polymer covering a commercial 

infrared viewing card.  It has been proven to be an excellent RNFL phantom because it 

has similar thickness, scattering properties, and birefringence to the RNFL [58, 81].  A 

point measurement of light returning from the phantom without scanning was recorded 

and ILow/IHigh was calculated at each tilt angle (Figure 47(a)).   

The results suggest that the ILow/IHigh ratio varies differently in three distinct 

angular ranges (Figure 47(b)).  In a first angular range (0-3 degrees) the ILow/IHigh ratio 
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decreases.  In a second angular range (3-9 degrees) the ILow/IHigh ratio increases to a 

maximum.  Finally in a third angular range (greater than 9 degrees) the ILow/IHigh ratio 

decreases monotonically.  A possible explanation on sample tilt dependency of ILow/IHigh 

is that the specular reflection from the phantom dominates over the backscattering 

component in the first and second angular range, while backscattering is the only 

component in the third angular range.  In the first angular range, the ILow/IHigh ratio 

decreases as the specular reflection component of low angle incident light is coupled into 

the high angle path.  In the second angular range, the ratio ILow/IHigh starts increasing as 

the specular reflection component from high angle incident light starts being decoupled 

from the high angle path.  In the third angular range, the ratio ILow/IHigh decreases 

monotonically since all collected light is backscattered rather than specularly reflected.  

The results suggest that the ILow/IHigh ratio is impacted in the first and second angular 

regions by specular reflection, and then decrease monotonically with tilt angle in the third 

angular region.  To avoid the impact from specular reflection, sample should be 

sufficiently tilted so that the working angular range of PM-SAD-OCT is within the third 

angular range.  
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Figure 47:  RNFL phantom study to investigate the effect of sample tilt.   

(a) The RNFL phantom is tilted under the PM-SAD-OCT beam.   

(b) ILow/IHigh vs. tilt angle. 

5.3. STUDY 1: IN VIVO PM-SAD-OCT MEASUREMENT ON HEALTHY HUMAN RETINA 

5.3.1. Methods and Results 

To demonstrate feasibility of PM-SAD-OCT to measure spatial variation of the 

RNFL backscattering properties, retinal ring scans were collected in a dimly-lit room 

from five healthy subjects’ right eyes (age between 24-30) without pharmacological 

dilation.  Three PM-SAD-OCT retinal subimages are observed as expected (Figure 48).   
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Figure 48:  PM-SAD-OCT retinal subimages of a healthy human subject correspond to 

low-angle (upper), high/low angle (middle) and high angle (lower) images 

collected from to a 4.4 mm diameter ring scan.  Segmentation of RNFL in 

each subimage is indicated by blue and green lines.   

To study the peri-papillary variation of RNFL scattering properties, a retinal scan 

with ten peri-papillary ring-scans centered on the optic nerve head (ONH) with diameters 

ranging between 1.25–4.44 mm was performed.  After correcting for the depth-dependent 

OCT autocorrelation function and segmenting RNFL from each subimage, ILow/IHigh was 

computed in the RNFL for each of the ten peri-papillary ring scans and plotted over the 

retinal area imaged (Figure 49).   
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Figure 49:  Retinal maps of low-to-high angle RNFL backscattering anisotropy 

(ILow/IHigh) from five healthy subjects by recording ten peri-papillary ring-

scans centered on the ONH with diameters ranging between 1.25–4.44 mm.  

Blood vessels are shown with dark blue lines.   
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ILow/IHigh was averaged over the ten ring scans to give the peri-papillary variation 

around ONH (Figure 50).  For all 5 subjects, ILow/IHigh is smallest (largest) in the temporal 

(nasal) quadrant.  PM-SAD-OCT results suggest that for all the 5 healthy human subjects, 

RGC axonal scattering structures (e.g., microtubules, cell membranes and mitochondria 

networks) in the temporal (nasal) quadrant backscatter incident light at relatively larger 

(smaller) angles compared to those structures in the superior and inferior quadrants.   

 

Figure 50:  Peri-papillary variation of averaged ILow/IHigh of five healthy subjects.   

RGC axons in normal human subjects are known to have smallest diameter in the 

temporal quadrant [120], so that angle of RNFL backscattered light in this region is 

expected to be larger and is consistent with ILow/IHigh determined from PM-SAD-OCT.  

Moreover, ILow/IHigh shows a similar trend with relative axoplasmic area, defined as the 

difference between axon area and the total organelle area for each RGC axon, around 

ONH measured from primate eyes [121] (Figure 51).   
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Figure 51:  Peri-papillary variation of averaged relative axoplasmic mode around ONH 

measured from a non-human primate’s eye. 

5.3.2. Discussion and Summary 

Since the ring scan around ONH is an off-axis measurement (as shown in Figure 

45), for the largest radius (2.22 mm) retinal scan about the ONH, the angle between 

incident light and RNFL normal varies from about 7° (temporal quadrant) to 22° (nasal 

quadrant).  Considering that the numerical aperture angle of the OCT beam incident on 

the RNFL is less than 2.53°, the angle between incident light and RNFL normal in the 

above measurement is more than 3× greater than the numerical aperture angle at all 

retinal positions.  According to results from the RNFL phantom study, variation of the 

angle between incident light and RNFL normal is expected to increase the value of 

ILow/IHigh in the temporal quadrant and decrease ILow/IHigh in the nasal quadrant.  However, 

the measured ILow/IHigh was lowest in the temporal and highest in the nasal quadrant.  

Therefore we think the observed variation in the ratio ILow/IHigh is due at least in part to 

structural variation of the RNFL.  If the angular scattering properties of the RNFL 

phantom are substantially different from those of the nerve fibers, then the angle of the 

nerve fiber layer with respect to the incident light could impact the measurements.   
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ILow/IHigh is calculated based on OCT image intensity, which is affected by speckle 

noise.  Thicker RNFL provides more image pixels to average and calculate ILow and IHigh, 

and as a result gives a more accurate calculation of ILow/IHigh in terms of signal-to-noise-

ratio.  To minimize the accuracy problems from speckle noise, we averaged 40 B-scans at 

the same location at each of the 10 rings around ONH.  By performing sufficient 

averaging, the noise level is fairly low so that RNFL thickness does not affect accuracy of 

ILow/IHigh.  On the other hand, thicker RNFL introduces more scattering events and can 

broaden backscattering angular distribution, potentially making the calculation of 

ILow/IHigh less reliable in terms of representing tissue scattering properties. 

In summary, low resolution PM-SAD-OCT images from healthy human retinas 

suggest that for the recorded scans, RGC axonal structures in the temporal (nasal) 

quadrant backscatter light at larger (smaller) angles compared to superior and inferior 

quadrants.  The results are consistent with known RGC neural anatomy and principles of 

light scattering.  The results suggest that PM-SAD-OCT approaches can provide 

additional information on the scattering properties of the RNFL and may be useful for 

detection of cellular level morphology.   

5.4. STUDY 2: EX VIVO PM-SAD-OCT MEASUREMENT ON RAT RETINA DURING 

RETINAL DEGENERATION 

5.4.1. Introduction 

A longitudinal study on ex vivo rat retina using PM-SAD-OCT is presented in 

this section.  The purpose of this study is to demonstrate the application of scattering 

measurement using PM-SAD-OCT during the apoptosis of retina.  In this study, rat retina 

were dissected and imaged using PM-SAD-OCT over a 150-minute time period.  During 

the measurement period, the retina is considered undergoing retinal degeneration due to 
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the lack of oxygen and blood supply.  From PM-SAD-OCT images, RNFL normalized 

reflectance index (NRI) as well as low-to-high angle backscattering anisotropy (ILow/IHigh) 

were computed at each time point.   

5.4.2. Methods 

15 rat eyes are included in this study.  Rat eyes were dissected immediately after 

the sacrifice of rats.  The dissection of rat eye is explained in Figure 52 and Figure 53.  

Basically, the optic nerve, cornea, iris and lens were removed in the first step.  Then, two 

different protocols were developed for further dissection, respectively named Sandstone 

Protocol and Coverslip Protocol.  Eleven rat eyes were dissected following Sandstone 

Protocol (Figure 52): the remaining choroid with retina was placed in a sample holder 

made with sandstone and immersed in saline, so that the sample inside the sandstone 

holder remained hydrated throughout the 150-minute measurement period.  Four rat eyes 

were dissected following Coverslip Protocol (Figure 53): four incisions were made on the 

remaining choroid with retina, so that the choroid could be laid flat in a plastic Petri dish.  

Then, the sample was covered with a coverslip and immersed in saline throughout the 

measurement.  The Coverslip Protocol was developed first.  The Coverslip Protocol 

keeps the retina hydrated much longer than Sandstone Protocol, but it requires additional 

incisions which may cause retinal detachment, plus the weight of the coverslip may affect 

the physiology of the retina.  Due to the potential problems with the Coverslip Protocol, 

we switched to the Sandstone Protocol for most rat experiments. 
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Figure 52:  Dissection of a rat eye with Sandstone Protocol.  (a) The structure of rat eye 

before dissection.  (b) After dissection, optic nerve, cornea, iris and lens are 

removed, and the remaining choroid with retina is placed in a sandstone 

holder.  The sandstone is immersed in saline to keep the sample hydrated.  
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Figure 53:  Dissection of a rat eye with Coverslip Protocol.  (a) After removing cornea, 

iris, and lens, four incisions are made on the choroid so that the choroid may 

be laid flat.  (b) The remaining choroid with retina is placed in a plastic Petri 

dish and covered with a coverslip.  The sample is immersed in saline to keep 

hydrated.  

PM-SAD-OCT images are acquired from the 15 rat eyes for 150 minutes after 

dissection, using a 1300 nm PM-SAD-OCT system.  Figure 54 shows a PM-SAD-OCT 

B-scan image of a rat eye.  Boundaries of RNFL and RPEIOS are manually determined.  

Three subimages are identified from PM-SAD-OCT images.  As discussed in Section 5.2, 



 109 

the three subimages correspond to different scattering angle ranges.  As a result, the en-

face images reconstructed from the three subimages show dramatic difference in terms of 

resolutions (Figure 55). 

 

Figure 54:  PM-SAD-OCT B-scan image of a rat eye.  The boundaries of RNFL and 

RPEIOS are plotted.  RNFL in the upper and lower subimages are the 

regions of interest. 
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Figure 55:  Three en-face images reconstructed from the same PM-SAD-OCT 

measurement.  Upper: PM-SAD-OCT upper subimage corresponding to 

low-angle scattering.  Middle: PM-SAD-OCT middle subimage 

corresponding to middle-angle scattering.  Lower: PM-SAD-OCT lower 

subimage corresponding to high-angle scattering.  The region of interest is a 

ring region around optic nerve head, and plotted on the en-face images.   
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5.4.3. Results 

5.4.3.1 Time Variation of ILow/IHigh and NRI during Retinal Degeneration 

For each rat eye, ILow/IHigh was calculated from a region of interest.  The region of 

interest was defined as the RNFL layer around optic nerve head (Figure 55).  Both 

ILow/IHigh and normalized reflectance index (NRI) were computed from the PM-SAD-

OCT images and plotted versus time (Figure 56 and Figure 57).  Since two dissection 

protocols were used in this study, the results are presented separately according to 

dissection protocols.   

 

Figure 56:  ILow/IHigh and NRI vs. time after dissection from four rat eyes using Coverslip 

Protocol.   
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Figure 57:  ILow/IHigh and NRI vs. time after dissection from eleven rat eyes using 

Sandstone Protocol.   
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From the measured ILow/IHigh and NRI, a number of statistical analyses were 

performed and summarized in Table 14.  To quantitatively study the time variation of 

ILow/IHigh and NRI, ILow/IHigh and NRI were fitted with a linear regression model: 

 
, 1, 2, ,i t i i i tP a a t e     (34) 

where 
,i tP  is the value of parameter P (either ILow/IHigh or NRI) of the i-th rat eye on time 

point t, and 
,i te  is a random error component.  The model assumes that for the i-th rat eye, 

ILow/IHigh and NRI changes over time linearly with intercept 
1,ia  and slope 

2,ia , and the 

intercept and slope are independent among each rat.  From the linear regression model, a 

p-value associated with the slope was calculated with the following null hypothesis: the 

slope is equal to zero.  The slopes and associated p-values for ILow/IHigh and NRI are listed 

in Table 14.  According to the sign of the slopes and p-values, the time variations of 

ILow/IHigh and NRI were classified into three categories: increase (positive slope, p<0.05), 

decrease (negative slope, p<0.05), and no significant change (p>0.05).  The observation 

from the time variation of ILow/IHigh and NRI are summarized below: 

In majority of rat eyes, ILow/IHigh generally decreases after dissection (sign test 

p=0.3018).  Among the four rat eyes dissected using Coverslip Protocol (Rat #1-4 in 

Figure 56 and Table 14), three of them decreased and one increased in the value of 

ILow/IHigh.  Among the eleven rat eyes dissected using Sandstone Protocol (Rat #5-15 in 

Figure 57 and Table 14), seven of them decreased and four increased in the value of 

ILow/IHigh. 

In majority of rat eyes, NRI generally increases after dissection (sign test 

p=0.0225).  Among the four rat eyes dissected using Coverslip Protocol (Rat #1-4 in 

Figure 56 and Table 14), three of them increased and one decreased in the value of NRI.  

Among the eleven rat eyes dissected using Sandstone Protocol (Rat #5-15 in Figure 57 
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and Table 14), eight of them increased and two decreased in the value of NRI, while one 

did not show significant change in NRI.   

Table 14:  Statistical analysis of Study 2 results.  

5.4.3.2 Correlation between ILow/IHigh and NRI during Retinal Degeneration 

According to the observations with time variation of ILow/IHigh and NRI, it is 

highly possible that ILow/IHigh and NRI are correlated during retinal degeneration.  The 

correlation between ILow/IHigh and NRI was characterized with a correlation coefficient.   

The correlation coefficient is a value between -1 and 1 calculated from two 

variables.  When correlation coefficient is close to 1, the two variables are strongly 

positively correlated; when correlation coefficient is close to -1, the two variables are 

R
a
t #

 

P
rep

 

ILow/IHigh vs. time 
NRI vs. time 

Correlation between  

ILow/IHigh and NRI 

Slope 

(%/min) 
p 

Slope 

(%/min) 
p 

Correlation 

coefficient 
p 

1 C
o
v
erslip

 

-0.063978 6.73E-41 0.074275 1.09E-46 -0.96168 4.60E-85 

2 0.10506 5.01E-33 -0.18659 1.99E-32 -0.87198 2.41E-24 

3 -0.11996 3.95E-26 0.19054 4.45E-23 -0.66609 5.16E-11 

4 -0.040791 1.20E-07 0.27418 8.92E-29 -0.60974 5.03E-09 

5 

S
an

d
sto

n
e 

-0.048897 7.66E-20 -0.30039 2.64E-36 0.77964 1.07E-16 

6 -0.06112 4.41E-19 0.65129 3.64E-67 -0.76991 4.36E-16 

7 -0.025916 0.001045 0.038919 8.88E-22 -0.65119 2.52E-10 

8 -0.079663 4.10E-08 0.45283 1.30E-22 -0.87095 1.33E-23 

9 -0.022426 1.39E-08 0.045757 0.00026 -0.86039 9.08E-23 

10 -0.057541 4.46E-43 0.18453 1.69E-18 -0.71017 9.69E-13 

11 -0.16473 4.48E-25 0.39654 3.53E-61 -0.85059 3.39E-23 

12 0.2613 2.02E-48 0.055994 4.96E-09 0.65133 3.31E-10 

13 0.49432 2.58E-41 0.037616 0.009016 0.055792 0.63919 

14 0.54477 4.50E-38 -0.04094 0.00185 -0.10041 0.39797 

15 0.3952 1.54E-20 -0.031313 0.50615 -0.207 0.26385 
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strongly negatively correlated; and when correlation coefficient is close to 0, the 

correlation between the two variables is weak.   

The correlation coefficient between ILow/IHigh and NRI was computed for each rat 

eye.  A p-value was also calculated for each rat eye, with the null hypothesis: the 

correlation coefficient is equal to zero.  The correlation coefficients and p-values are 

listed in Table 14.  According to the sign of the correlation coefficients and p-values, the 

correlation relationship between ILow/IHigh and NRI were classified into three categories: 

positively correlated (positive correlation coefficient, p<0.05), negatively correlated 

(negative correlation coefficient, p<0.05), and no significant correlation (p>0.05).  The 

observation from the correlation of ILow/IHigh and NRI are summarized below: 

In majority of rat eyes, ILow/IHigh and NRI are negatively correlated (sign test 

p=0.0386).  Among the four rat eyes dissected using Coverslip Protocol (Rat #1-4 in 

Figure 56 and Table 14), all of them showed negative correlation between ILow/IHigh and 

NRI.  Among the eleven rat eyes dissected using Sandstone Protocol (Rat #5-15 in Figure 

57 and Table 14), six of them showed negative correlation, two showed positive 

correlation, and three did not show significant correlation between ILow/IHigh and NRI.   

5.4.4. Discussion and Summary 

Due to the limited number of rat eyes included in this study, it is difficult to draw 

any further conclusions from this animal study.  However, it is clear that PM-SAD-OCT 

is capable of characterizing scattering changes of rat retinas.  The inconsistency in 

ILow/IHigh and NRI measurements across rats suggest that there may be multiple 

mechanisms affecting the scattering properties of RNFL during retinal degeneration.  

Further studies are required to draw a stronger connection between the scattering property 

and functionality of the retina. 
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ILow/IHigh and NRI has strong correlation.  Since NRI has been proven useful in 

detecting glaucoma, ILow/IHigh determined from PM-SAD-OCT is strongly expected to 

become a powerful glaucoma indicator.   

As a summary, in this preliminary study, retinas from 15 rats were dissected and 

imaged using PM-SAD-OCT for 150 minutes during retinal degeneration.  Time 

variations of ILow/IHigh as well as normalized reflectance index (NRI) have been observed.  

In majority cases, ILow/IHigh tends to decrease while NRI tends to increase during retinal 

degeneration.  The mechanism behind the change of scattering properties of rat retina 

remains unclear and further studies are required to verify the observations in this study. 

5.5. STUDY 3: IN VITRO PM-SAD-OCT MEASUREMENT ON EARTHWORM NERVE 

CORD DURING NEURODEGENERATION 

5.5.1. Introduction 

Neurodegenerative disease is a class of conditions which primarily affect the 

neurons in the brain and spinal cord.  Common neurodegenerative diseases include 

Alzheimer’s disease, Huntington’s disease, and Parkinson’s disease.  Glaucoma is 

sometimes considered as a type of neurodegenerative disease as well.  Most of the 

neurodegenerative diseases are irreversible and can be life-threatening.  Although most 

neurodegenerative diseases have no cures, medications or surgeries are usually available 

to control the progression and symptoms, especially at early stages of the diseases.  So, 

early detection of neuronal apoptosis is crucial for the treatment of neurodegenerative 

diseases.   

If PM-SAD-OCT is sensitive enough to detect the scattering change induced by 

intensified mitochondrial fission during cell apoptosis, its application is not limited in 

glaucoma diagnosis.  Neurodegenerative diseases include the apoptosis of neuron bodies 
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or nerve fibers, which is expected to be accompanied by changes in optical scattering 

properties.  Measurement of neuronal scattering changes associated with apoptosis may 

provide insight into neuronal cytophysiology associated with pathogenesis.  The purpose 

of this study is to demonstrate the application PM-SAD-OCT imaging during the 

degeneration of nerve fibers. 

Earthworm (Lumbricus terrestris) is a common type of animal model in 

neuroscience, toxicology and microsurgical training because of its simple structure, large 

size and low cost [122, 123].  In this study, earthworm nerve cords were dissected and 

imaged using PM-SAD-OCT over a 150-minute time period.  Time variation of intensity 

ratios of low-angle and high-angle backscattering from nerve cords during neuronal 

apoptosis was recorded.  PM-SAD-OCT data indicate that in nerve cords undergoing 

neuronal apoptosis ratio of high to low-angle backscatter changes with time.   

5.5.2. Methods 

The earthworm is anesthetized with 15% alcohol for 2.5 minutes before 

dissection.  The dissection of earthworm is explained in Figure 58.  A cut of ~5 mm long 

is made from dorsal side.  Dorsal blood vessel and intestine are removed, so that the 

ventral nerve cord of the earthworm becomes accessible.  The earthworm usually stays 

alive for ~30 minutes after the dissection, and dies from bleeding later.   

Spontaneous action potentials of the nerve cord are recorded with a pair of 

electrodes and an amplifier in order to understand the time frame that the nerve cord 

maintains functional integrity (Figure 58).  The spontaneous action potentials are 

successfully recorded from 3 earthworms (Figure 59).  The firing rate of spontaneous 

action potential is calculated over time.  The results from the recorded action potentials 
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show that the firing rate of nerve cord drops down to baseline noise at ~150 minutes after 

the dissection, so the nerve cord is considered degenerated after 150 minutes. 

 

Figure 58:  Dissection of earthworm to expose nerve cord.  Action potential is recorded 

from earthworm nerve cord. 
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Figure 59:  Left: Recorded action potential from earthworm nerve cord.  Right: Firing 

rate of action potential decreases over time. 

 

Figure 60:  Left: PM-SAD-OCT B-scan image of earthworm nerve cord.  The region of 

interest is plotted on the upper and lower subimages.  Right: PM-SAD-OCT 

enface image of earthworm nerve cord. 

Then, PM-SAD-OCT images are acquired from 9 earthworm nerve cords for 150 

minutes after dissection using a 1300 nm PM-SAD-OCT system (Figure 60).  The nerve 

cord provides good contrast under PM-SAD-OCT.  For each earthworm, ILow/IHigh is 

calculated from a region of interest, which is manually selected at the center of nerve 

cord, and plotted versus time (Figure 61).   

5.5.3. Results 

Unexpectedly, although ILow/IHigh acquired from the 9 earthworm nerve cords 

exhibits certain changes over time, the changes are not consistent among the 9 
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earthworms.  The results suggest that either there is no consistent scattering change in 

earthworm nerve cord, or current PM-SAD-OCT instrument is not sufficiently sensitive 

to detect the scattering changes associated with the death of nerve cord.  In addition, 

multiple possible problems about the earthworm model are identified. 

 

Figure 61:  ILow/IHigh vs. time after dissection from 9 earthworms.   

5.5.4. Discussion and Summary 

First, the nerve cord of earthworm is composed of three giant fibers with heavy 

myelin-like sheath, and many small-diameter unmyelinated fibers.  The myelinated giant 

fibers cover the small-diameter unmyelinated fibers, and may introduce more scattering 

events and broaden backscattering angular distribution, finally making the calculation of 

ILow/IHigh less reliable in terms of representing tissue scattering properties. 
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Second, it is not clear if axons in earthworm nerve cord contain mitochondrial 

network.  If the mitochondria in earthworm nerve cord axons do not require forming 

network to maintain functionality and always stay in the fission state, then the apoptosis 

of nerve cord will not be associated with optical scattering change.  According to the 

microscope image of earthworm nerve cord (Figure 62), no mitochondrial network has 

been identified.  However, higher resolution microscope images are required to confirm 

the conclusion that earthworm nerve cord do not contain mitochondrial network. 

 

Figure 62:  Cross-sectional view of earthworm nerve cord (dorsal portion of posterior 

ventral nerve cord).  MGF, medial giant fiber; LGF lateral giant fiber.  The 

giant fibers are surrounded by heavy myelin-like sheath, while the small-

diameter fibers in the neuropil region below the giant nerve fibers are 

unmyelinated [124].  Mitochondria density appears to be low in the giant 

fibers. 

Third, as the earthworm dies from bleeding, the underlying neurodegeneration 

mechanism in the nerve cord may not be exactly same as that in neurodegenerative 

diseases.  It is possible that the neuronal apoptosis process in this study is not a good 

model for neurodegenerative disease. 
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As a summary, in this study, 9 earthworm nerve cords were dissected and imaged 

in vitro using PM-SAD-OCT for 150 minutes.  Consistent time variation of ILow/IHigh is 

not yet observed from the 9 earthworm nerve cords undergoing apoptosis.  Several 

possible problems regarding the earthworm model are identified and further studies are 

required to draw any additional conclusion.   

5.6. NEXT GENERATION PM-SAD-OCT 

While the PM-SAD-OCT reported here is promising for characterizing retinal 

scattering properties which may be relevant for early-stage glaucoma diagnosis, a number 

of limitations are recognized.  First, the incident light is not constrained to a single 

incident direction which has the effect of blurring angle resolved data.  As a result, the 

middle subimage is degenerate which does not provide useful information, and the 

angular ranges have certain overlay between the upper and lower subimages (Table 13).  

To constrain the incident light in a single incident direction, a new design of PM-SAD-

OCT is proposed in Figure 63.  The main change is the insertion of a reflective mirror 

with an aperture in the center.  The incident light uses a small diameter collimator to fire 

a narrow beam which travels through the aperture of the mirror, so that light incident on 

the sample with low incident angle only.  However, the scattered light is divided into two 

paths by the mirror: the low scattered angle path is able to pass the aperture of the mirror 

and is coupled by the same collimator for incident light, forming a low-incident low-

scattered path; the high scattered angle path is reflective by the mirror, and is coupled 

into a separate collimator, forming a low-incident high-scattered path.  A PME can be 

inserted into the high scattered angle path to further divide the high scattered angle into 

different smaller angular subgroups.  
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Another problem with the current configuration of PM-SAD-OCT reported here is 

the limited angular resolution with only three discrete subimages.  Higher angular 

resolution may enhance some applications.  A simple solution is to replace the current 

PME with a step-shaped one.  With the step-shaped PME, the number of PM-SAD-OCT 

subimages can be infinitely increased, at the cost of reduced signal strength in each 

subimage and the requirement for a light source with increased coherence length. 

In addition, the angular range (2.53°, Fig. 2) in the current configuration is fairly 

small compared to previous non-ophthalmological studies [108, 109, 111, 112, 114].  The 

small angular range limits the utility of the instrument in terms of detecting scattering 

changes in a sample.  A larger angular range is expected to improve system sensitivity to 

detect variations in sample scattering properties.  This problem is not easily fixed with 

the current design, but with the new design in Figure 63, the angular range can be 

increased by simply using a larger mirror with aperture in the incident path.  If the high 

scattered angle beam is too big to couple into the collimator, a telescope may be placed in 

the high scattered angle path to reduce the beam size before the scattered light is coupled 

into the collimator. 
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Figure 63:  Schematic of a PM-SAD-OCT without degenerate paths. 

Additional improvements with the PME can be made.  For example, an azimuthal 

PME may be able to detect the polarimetric-angular anisotropy of RNFL backscattered 

light (Figure 64).  Similar to the current radial PME, the azimuthal PME gives three 

retinal sub-images when positioned in a PS-OCT: vertical incident/vertical backscattered 

(short-short path); degenerate vertical/horizontal paths (medium length path); and 

horizontal incident/horizontal backscattered (long-long path).  The azimuthal PME will 

allow objective measurement of the RNFL backscattering anisotropy (IH/IV) and will 

provide sensitive detection of differences in polarization-angular anisotropy of 

backscattered light from RGC axons with mitochondria in fission and fusion states. 
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Figure 64:  Design of an azimuthal PME.  The azimuthal PME will be constructed using 

two 3mm thick 90-degree angular sectors constructed from BK7 glass.  

Outer (inner) surfaces of the two glass angular sectors will be fastened with 

epoxy to 25mm (1mm) stainless-steel rings.  Left: end-on view; Right: side 

view. 

With increased number of PMEs with different types and aperture sizes, the 

difficult operation of PM-SAD-OCT may not be suitable for clinical use.  A PME wheel 

is designed in Figure 65 with multiple PMEs different in types and/or sizes.  The PME 

wheel is designed to be motorized, so that the operator of PM-SAD-OCT can switch to a 

certain PME conveniently by rotating the PME wheel via a control software. 

 

Figure 65:  Multiple PMEs on a wheel. 

5.7. CONCLUSION OF THIS CHAPTER 

In this Chapter, a low resolution pathlength-multiplexed scattering-angle-diverse 

OCT (PM-SAD-OCT) is designed and built to measure the scattering properties of the 

sample by providing a new parameter, low-to-high angle backscattering anisotropy 
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(ILow/IHigh).  Two PM-SAD-OCT studies are performed to demonstrate the application of 

PM-SAD-OCT on retinal imaging on either human or rats.  The third study extends PM-

SAD-OCT application to investigate neurodegeneration with an earthworm experiment.  

Although there are certain difficulties with current PM-SAD-OCT like degenerate paths 

and insufficient angular resolution, a design for next-generation PM-SAD-OCT is 

proposed which overcomes many of the current limitations. 

The hypothesis underlying the application of PM-SAD-OCT is that the scattering 

properties of certain tissues (e.g., RNFL) may change in early-stage diseases (e.g. 

glaucoma).  Although scattering changes have been observed in both non-human primate 

and human eyes [28, 29], more studies are necessary to document the origins of the 

change of RNFL scattering properties.   
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