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Abstract

With the rapid growth of wind energy usage, the complexity of control systems

used in the wind energy conversion systems (WECS) is also growing. As the nature

of the wind is indeterminate, control systems must be able to deal with the stochastic

nature of the wind and must be able to give the desired results. Thus, consideration

of different types of advanced controllers for the WECS becomes important. One of

the promising divide (decouple) and conquer (control) strategy using singular pertur-

bations and time scales (SPaTS) for WECS has been used earlier for variable speed

and constant pitch (VS-CP) wind model and using the linearization of the nonlinear

model.

In this project, the model of the variable speed and variable pitch (VS-VP) tur-

bine wind energy system is considered for study. The designing and integrating the

model of the VS-VP system is a bit more complicated and challenging than that of the

VS-CP model. Further, the VS-VP system contains both mechanical and electrical

components giving rise to the slow and fast dynamics, respectively and hence exhibit-

ing the time scales. Briefly, the SPaTS technique helps in expressing the system with

low-order, outer (slow) dynamics and inner (fast) dynamics. The inner dynamics

is also called boundary layer correction. In this project we consider VS-VP WECS

model for the decoupling process to obtain low-order slow and fast subsystems. Next,

using the advanced optimal control methods, two low-order, closed-loop, optimal, slow

and fast sub-controllers are obtained. A composite optimal controller is constructed

using the two slow and fast sub-controllers and applied to the original nonlinear wind

energy system. Comparisons are made between the results of the system using the

full-order, optimal controller and the low-order, optimal sub-controllers to validate

the SPaTS strategy.Finally, some conclusions and future work are included.
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1 Introduction

This chapter discusses and gives an outline about the importance about wind en-

ergy and a general overview of the WECS. It explains about different types of WECS,

the issues with WECS and the recent developments related to the WECS, followed

by the literature survey of advanced control strategies for the WECS. Towards the

end of chapter, a control problem for VSVP WECS are addressed and the objectives

of this research project are sorted out.

1.1 Wind Energy

The wind energy is one of the sustainable sources of energy and is considered clean

as there is no air, water or land pollution that is created to produce wind energy.

Humans have been using the wind energy from a very long time, ancient mariners

used sails to capture the wind and explore the world. Farmers once used windmills

to grind their grains and pump water. Today, more and more people are using wind

turbines to wring electricity from the breeze. Over the past decade, wind turbine

use has increased at more than 25 percent a year [8]. Still, it only provides a small

fraction of the world’s energy. With the rising issue of climate change which is a global

problem, the need to change the energy sources from Conventional energy sources

(Coal, Natural gas etc.) to Sustainable energy sources is more imminent. Though

there are many Sustainable energy sources like Solar, Hydro-Electric, Geothermal,

Bio-fuel etc. solar and wind energy is more preferred over other options because these

1



are more affordable than others and can be scaled up as needed very easily. Wind

energy is the fastest growing energy resource in the world. This research focuses on

wind energy, so we will see more in depth study about wind energy.

1.1.1 Wind Behavior

We need to know how the wind varies at a site before installing a wind turbine

which helps in estimating the power generated at that site also, turbine designers need

the information to optimize the design of their turbines, so as to minimize generating

costs. Turbine investors need the information to estimate their income from electricity

generation. The wind velocity variations can be studied using three different time

scales: large time scale, mean time scale and short time scale [5]. The large time

scale wind study explains the wind variations from year to year, even decades. The

mean time scale winds studies show the variations that occur seasonally so, it can be

predicted accurately by using statistical data based on long observations of wind speed

data at the required sites. Short time scale wind is called turbulence it represents the

variations of wind from minutes to seconds.

Figure 1.1: Wind Spectrum [12]
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Above graph shows the wind spectrum, high value in the graph indicates high

variations in the wind velocity corresponding to that time period. Though this graph

is site specific it resembles few similarities. The different peaks in the above graph

represent the annual, seasonal and daily turbulence in the wind. The 3 peaks in

the macro meteorological range indicate the turbulence in Large time scale the main

reason for these peaks are:

• Annual pattern: Which is due to the varying radiations of the sun due to

revolution of earth around the sun. These patterns change with degrees of

latitude and vanishes in close proximity of the earth.

• Depressions and Anti-Cyclones: This is due to changes in the pressures in at-

mosphere and it is more distinctive in Oceania than the continental regions. It

usually occurs with a period of about 4 days.

• Diurnal Pattern: It is caused by variation in the temperatures at day and night.

This effect is more distinct at the coastal region than the off-shores.

The peaks in the Micro meteorological range are due to the short time-scale,

sometimes the wind velocity might double or triple in seconds, which in turn makes

the power generated by wind turbine 8 times or 27 times (Power is proportional

to cube of wind velocity) in matter of seconds. The turbulence scales up with the

presence of obstacles like buildings, trees etc.

The spectral gap can be seen between 2 hours to 10 minutes region because there

is not much turbulence in wind happening for every 2 hours or 1 hour periodically.

The distribution of hourly average wind speeds can be represented by a Weibull dis-

tribution which is considered as mean time scale wind distribution. This distribution

3



is given by:

p(Vm) =
k

c
(
Vm
c

)k−1e(−Vm
C

)k (1.1.1)

Figure 1.2: Weibull Probability Distribution of Wind Speed [14]

Figure 1.3: Power Density vs average Wind Speed [14]

Vm in the equation is mean wind speed and p(Vm) is the probability distribution.

k and c are the shape and scaling coefficients of the curve respectively, and these

coefficients are adjusted to represent the wind data of that specific site. The graph

from Fig 1.2 explains that the probability of high wind velocity and very low wind

velocity is low as that occurs very rarely most probable wind speed is 5.5 m/sec

which has occurred most frequently based on the statistical data and has the highest
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probability to occur again at the site which the graph corresponds to. More important

conclusion can be drawn from second graph in Fig 1.3 demonstrating power density

versus speed, that there is higher power density at the wind velocities between 10

m/sec to 13 m/sec this is a very important fact to be noted which might help in

deciding the placement of the WECS.

1.1.2 Advantages and Disadvantages of Wind Energy

Wind energy has many advantages to offer which explains why wind energy has

the fastest growth of all the energy sources. Though there are many advantages there

are also lot of challenges that it has to overcome. The advantages of wind energy are

as follows [10, 48]:

• Renewable and sustainable: The wind itself is renewable and we never run out

of wind unlike fossil fuel so the price of wind energy does not fluctuate as much

as the fossil fuels making it an ideal sustainable power source.

• Eco-friendly: Wind energy is considered one of the most environmental friendly

energy source. There is very little to no emission of harmful substances or

greenhouse gases into atmosphere or the surrounding environment after the

manufacturing and installation of the wind turbines. Though, there is noise

pollution but it considered as environmental effect but there is no negative

effect to earth, water or the air we breathe.

• Wind Energy is cheap: We can never run out of wind so there is an uninterrupted

supply of wind of wind and it only costs us for the wind turbine, the site for

the turbine and maintenance which is very less compared to the uninterrupted

supply of the power we can tap from the wind energy. At times Wind energy

was sold at price as low as 2.5 cents/KWh.
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• Reduces Fossil fuel Consumption: Generating electricity from wind energy re-

duces the usage of fossils. This can help to conserve dwindling supplies of the

earths natural resources, allowing them to last longer and help to support future

generations.

• Remote power Solution: For the remote areas we do not need to generate energy

elsewhere and transmit energy to remote areas from there through the lines.

• Increases energy security: By using wind energy we are reducing the dependency

of power generation from the fossil fuels which are often sourced from other

countries, due to which there are fluctuations of pricing in power generation.

War, politics and overall demand often dictate the price for natural resources,

which can fluctuate and cause serious economic problems or supply shortages

for some countries. By using renewable energy sources a country can help to

reduce its dependency on global markets and thus increase its energy security.

• Job creation: Wind energy industry has boomed ever since the wind turbines

are available on the market. This has helped create jobs all over the world.

There are many job created for manufacturing, maintain and installing the

wind turbines and also in wind energy consulting, where specialist consultant

will help in determining a wind turbine installment will generate a return on

investment.

The challenges that the wind energy is facing are clearly outweighed by the ad-

vantages but lets just have a look at the challenges:

• Wind is intermittent: The wind does not always blow in the same way at

any location. This is a serious problem for wind turbine developers who often

invest a lot of time and money investigating whether a site is suitable for wind
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generation. Thats is why we often see wind turbines built on top of hills or at

the sea where there is no obstruction by land masses.

• Manufacturing and Installation is very expensive: Although costs are reducing,

designing and installation of a turbine is costing a lot, site survey needs to be

conducted at multiple locations for a significant amount of time and if deemed

adequate the cost of laying foundation, transporting a huge turbine and erecting

it at the site the overall cost is huge. If it is an off-shore wind turbine the cost

for installing it is even higher.

• Threat to Wild Life: There have been many cases in Europe where a lot of

birds and bats die. However, the threat due to the wind turbines is much less

compared to the cell towers and radio towers. Nevertheless, wind turbines are

contributing to the mortality rate of birds and bats population.

• Noise and Visual Pollution: There is a loud noise when the wind turbine is

operating which is around 45 dB if the turbine is a mile away then the noise

effect is negligible. Also the wind turbines when erected upon a hill the scenery

might not always look nice.

• Radar Noise: When the wind turbine is installed near an air force or military

base, the noise due to the turbine creates an interference due to which radar

tracking becomes less efficient.

1.1.3 Wind Energy Developments

The wind energy is fastest growing in the energy sources because a lot of nations

are their governments are investing in the wind energy a lot each and every year. It

is understandable why wind energy is growing at an enormous rate looking at the
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advantages stated earlier in this chapter. The recent statistics of new installations

and the cumulative wind energy after Dec 2015 installed across the world can be seen

in the graphs and charts [8] below:

Figure 1.4: Global Annual Installed Wind Capacity 2000-2015 [8]

Figure 1.5: Global Cumulative Installed Wind Capacity 2000-2015 [8]

The above graph only shows the cumulative wind energy generated across the

world and the country wise share of the wind energy production can be seen in the

pie chart below by the end of the year 2015.

In the pie chart below, from the overall wind energy of 432,883 MW each country

share is as follows: PR China with 33.6%, USA 17.2%, Germany 10.4%, India 5.8%,

Spain 5.3%, United Kingdom 3.1%, Canada 2.6%, France 2.4%, Italy 2.1%, Brazil

2%, and the Rest of the World with 15.5%. In the recent years since 2010 a lot

of money has been invested in wind by China where the wind energy is booming.
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Figure 1.6: Cumulative capacity by Country 2015 [8]

The growth in United States has been steady and USA aims at reaching a target of

20% wind energy of total power needs by the end of 2025 which is currently 3.6%

of the total power requirements. There has also been a lot of developments in the

design of Wind Turbine, there are so many new models of wind turbines that have

been invented to improve the efficiency of the wind turbines and there is still a lot of

research still going on.

1.2 Wind Energy Conversion Systems

A Wind Energy Conversion System converts wind energy into electrical energy, to

do that a wind turbine is used and there are many different devices used in the wind
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turbine which are generally sub-divided into subsystems. To improve the efficiency

of the WECS the design of each and every subsystem can be improved. There have

been a lot of improvements in many subsystems due to the research being done on

WECS from a very long time. In this section, we will discuss in brief about the

different subsystems of WECS, different types of WECS and the most remarkable

improvements in the WECS.

1.2.1 Composition of Different Parts of WECS

The basic parts of the wind turbine are the tower, blades, rotor shaft, gear-box,

generator and regulator, additional parts can be added to improve the efficiency of

the wind-turbines. The fundamental parts of a wind-turbine can be seen in the image

Fig1.7 below. Generally, the dimensions of a wind-turbine vary with the purpose for

which they have been installed [47]. Industrial wind turbines are lot bigger than the

ones that you might find in the school back yard or behind someones house. Widely

used GE 1.5MW model Wind Turbine consists of 116-ft blade atop a 212-ft tower for

a total height of 328 feet. The blades sweep a vertical airspace of just under an acre.

Whereas, the 1.8-megawatt Vestas V90 from Denmark has 148-ft blades (sweeping

more than 1.5 acres) on a 262-ft tower, totaling 410 feet. Another model being seen

more in the U.S. is the 2-megawatt Gamesa G87 from Spain, with 143-ft blades (just

under 1.5 acres) on a 256-ft tower, totaling 399 feet. The huge turbines require a

correspondingly large area around them clear of trees and other turbines to maximize

the effect of the wind and avoid interference. They should have 10 rotor diameters of

clearance in the direction of the wind and 3 rotor diameters in every other direction.
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Figure 1.7: Different Parts of a Wind Turbine [11]

1.2.2 Different Subsystems of WECS

There are many different physical parts in the wind turbines, they are organized as

different sub-systems which are inter-connected to each other to complete the WECS.

They are divided into sub-systems with respect to energy conversion flow [11]. The

different sub-systems in the WECS are as follows as shown in the fig 1.7:

1. Aerodynamic sub-system: It is used to convert the kinetic energy of the wind

into Mechanical energy. This sub-system consists of Blades, Hub, and pitching

devices used to change the alignment of the blades. When the wind cuts through

the blades surface of the turbine it creates a lift force, due to which the blades

connected to the hub start rotating the rotor in the hub. The pitching devices

are used to adjust the amount of lift force that acts upon the blades, so that

the speed of rotor can be varied, in this manner the rotor speed is controlled
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through the pitching system. The rotor in the hub is connected to the drive

train sub-system delivering the mechanical torque generated from the kinetic

energy of the wind.

2. Drive-Train Sub-system: Drive-train sub-system is like a transmission system

which takes the energy provided by the aerodynamic system and modifies it per

the needs of the generator. The drive train sub-system has a gear mechanism

which converts the high torque low speed provided by the aerodynamic sub-

system into low torque high speed to the generator which is required by the

generator.

3. Generator: Generator is an electro-mechanical transducer which converts the

mechanical energy into electric energy. The power output from the wind-turbine

mainly depends on the generator. So, Generator is one of the most important

components of the wind turbine. There are many different types of Generators

like Squirrel Cage Induction Generator (SCIG), Doubly Fed Induction Gener-

ator (DFIG), and Permanent Magnet Induction Generator(PMIG). Depending

on the design the power generated by generators can be fed to the grid di-

rectly to the power-electronic convert which can control the power flow to the

consumers directly.

4. Other subsystems: Other than the above mentioned three sub-systems there

might be many other important sub-systems like the control-system block (which

guide how to change the settings of the pitch system and direction of the facing

of turbine etc.), yaw (used to change the direction of the rotor), brakes, wind

vane (to know the direction of the wind), tower etc.
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1.2.3 Different Types of WECS

WECS have been improved a lot from the past century and now there are many

different types of WECS that exist today. A lot of advancements have been made

in the design and performance of the WECS, starting from the small and simple to

large and complex with respect to the size, efficiency, power generated and Control

System. There are many different classifications of WECS [11] that exist today. The

classifications can be made based on the wind rotor axis, based on the controls used

on the turbine, based on the location of the turbine, based on the connectivity and

many more types of classifications.

1. Depending on wind rotor axis [41] there are two different types of Wind Turbines

as shown in Figure 1.8:

• Horizontal Axis Wind Turbines (HAWT): The axis of rotation of the rotor

is horizontal with respect to the ground and are the common style that

most of us think of when we think of a wind turbine. Horizontal axis wind

turbines have the main rotor shaft and electrical generator at the top of a

tower, and they must be pointed into the wind. Small turbines are pointed

by a simple wind vane placed square with the rotor (blades), while large

turbines generally use a wind sensor coupled with a servo motor to turn

the turbine into the wind. Since a tower produces turbulence behind it,

the turbine is usually pointed upwind of the tower.

• Vertical Axis Wind Turbines (VAWT): VAWTs, have the main rotor shaft

arranged vertically. The main advantage of this arrangement is that the

wind turbine does not need to be pointed into the wind. This is an advan-

tage on sites where the wind direction is highly variable or has turbulent

winds. With a vertical axis, the generator and other primary components
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Figure 1.8: HAWT and VAWT [11]

can be placed near the ground, so the tower does not need to support it,

also makes maintenance easier. It is difficult to mount vertical-axis tur-

bines on towers, meaning they are often installed nearer to the base on

which they rest, such as the ground or a building rooftop. The wind speed

is slower at a lower altitude, so less wind energy is available for a given size

turbine. Air flow near the ground and other objects can create turbulent

flow, which can introduce issues of vibration, including noise and bear-

ing wear which may increase the maintenance or shorten its service life.

However, when a turbine is mounted on a rooftop, the building generally

redirects wind over the roof and this can double the wind speed at the tur-
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bine. If the height of the rooftop mounted turbine tower is approximately

50% of the building height, this is near the optimum for maximum wind

energy and minimum wind turbulence.

2. Depending on the location there are two different types of the Wind Turbines.

• On-shore Wind Turbines: On-shore Wind Turbines are land based wind

turbines which are set up on land, which consume a huge land area and

generate a lot of noise pollution, visual pollution and harm to birds [11].

However, there are also many cost benefits to onshore wind power that by

extension impact the environment. Onshore wind often has the benefit of

being close to existing electrical grids, reducing the environmental impacts

associated with building new electrical grids.

• Off-shore wind turbines: Off-shore wind turbines are installed right off

the coasts or little further away from the coasts in sea. The advantages

are huge as it does not require any land resources and there will be no

noise pollution or environmental effect to the birds. Wind turbines are

placed on concrete platforms that extend to the bottom of the sea, and

further out in the sea using floating platforms, increasing costs through

additional materials and for installing the dedicated power grid. One of

the most important environmental aspects of wind power is the low pay-

back time. For a 40.5m Wind Turbine, based on a 40% estimated efficiency,

the payback time becomes 0.39 years, less than 2% of the 20-year life span

of an offshore wind farm [11].

3. There are two types of wind farms with respect to their connectivity

• Stand Alone Wind farms: Power through the power grid is not available in
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some rural and isolated regions, in such cases the power to places like those

are provided by Wind Turbines, farms or Hybrid System. Their power is

only limited to the local grid.

• Grid Connected Wind Farms: To diversify the power sources and to get

cheaper electric power Wind Farms are integrated to the existing power

grids. This kind of installation is more dominant these days.

4. There are four different types of wind Turbines depending on the control point

of View:

Using the fundamental Control Techniques either the Speed can be controlled or

the output power generated by the turbine can be controlled. Depending on the

design of the generator and wind turbine the speed can either be controlled or

nor controlled, resulting in two variations of speed control namely, Fixed-speed

and Variable-speed, respectively. Speed Control can be used to maximize the

power conversion as by controlling the speed of generator the turbine can be

maintained at optimal conditions. Power control refers to how to control the

aerodynamic efficiency to control the converted power when the wind speeds

are large and above the rated capacity of the Wind Turbines. Controlling the

aerodynamic efficiency can be achieved by controlling the orientation of the

pitch angle of the blades of turbine so that the effect of the wind on the blades

can vary, this type of control is called active power control or variable-pitch

power control. There is also a simpler way called passive or fixed-pitch power

control, which is implemented by special design of blades such that they can

be stalled at high wind speeds to reduce the aerodynamic effect. However, the

fixed-pitch technique has a drawback that it produces an immense stress on the

wind turbine which might reduce the life time of a turbine and increasing the
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maintenance costs of turbine. Now by combining both the control technologies

together four different types of types of win turbines can be designed:

• Fixed-speed Fixed-pitch (FSFP) wind turbines.

• Fixed-speed Variable-pitch (FSVP) wind turbines.

• Variable-speed Fixed-pitch (VSFP) wind turbines.

• Variable-speed Variable-pitch (VSVP) wind turbines.

1.3 Literature Survey

It is important to get an overview of State-of-the-art study of WECS for this

research project, as there have been many recent literature reviews concerning the

topics related to this research project on many different aspects of the WECS. Like

the publication [13] deals with the Low-voltage ride through problem which is one

of the biggest challenges faced by massive deployment of wind farms especially when

they are grid-connected, which are becoming more popular these days. The report in

[39] gives a study to determine the placement of the off-shore wind turbines using a

new search algorithm. In [7] authors review many recent advancements and existing

concepts, state of the art and theories in the power-electronic systems related to the

wind turbine. The study to monitor the condition and health of the WECS using the

different sensors connected to the turbine is summarized in [20]. Optimal Voltage

control of the instabilities in uncertain voltage output is presented in detail in [50].

An overview of WECS developments, technologies and power electronics research

trends is demonstrated in [43]. In a study [4] different types of generators for

WECS topology was reported. In [36] the author gives an overview and emphasizes

on hard and soft computing techniques for control design purpose, as well as eects
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of hybrid techniques. The details of the overview on different control techniques are

presented in this section. The different types of control techniques and a brief insight

about each type of control technique will be given in this section.

1.3.1 Hard Control

Hard control techniques use Hard computing, (i.e., conventional computing), which

requires a precisely stated analytic model and often a lot of computation time. It

cannot deal with imprecision and approximation. Most widely used Hard control

techniques in control theory are PID control, Optimal Control, Adaptive Control,

Sliding mode control and Predictive control.

PID Control:

The study of using PID control in WECS has been done by many people and

is being done from a very long time. Either the pitch control or the Speed control

of the WECS can be performed using the PID technique. Power control or Speed

control of WECS using PID and using PID along with other control in hybrid controls

techniques was proposed in [28], [15], [3] . In [3] an expert PID controller is designed

for variable speed and variable pitch wind turbine, which is based on the tracking-

differentiator. The tracking-differentiator is used to arrange transitions of the control

variables, such as the rotor speed, and reasonably extract the one-order differential

signal from the speed deviation. The inputs of the expert PID controller are the speed

deviation and its one-order differential signal. The proposed method is compared with

the conventional PI control strategy. It is shown that the performance of the expert

PID controller is satisfactory and the proposed method is feasible also, it can cope

with the nonlinear characteristics of wind turbines. In [28], an intelligent PID(iPID)
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technique was used to improve the efficiency for tracking of the Maximum Power

Point(MPP). The principle of iPID control strategy for power utilizes an observer

to estimate disturbance including the internal and external factors online. The core

issue of this method is to obtain disturbance effectively. However, the iPID technique

cannot deal with the errors and disturbances very well, the approximated error is

treated same as the last two sampling time error. When reference is a high-frequency

signal, the equivalence relationship will be not satisfied. The noise of sensors also will

increase the error and worsen the performance of the control technique. Considering

the estimated error of disturbance, an additional sliding model controller is proposed.

The extra controller compensates for estimated error. And according to Lyapunov

stability theory, this sliding model controller ensures the closed-loop stability in wind

turbine system. In depth study about iPID control is done in [15].

Optimal Control:

Optimal control is generally used for optimizing a cost function, Energy function

or an efficiency function which is generally power (i.e.; energy function) in the case

of WECS, as concerned to this research. In WECS optimal control is usually used

for pitch control to improve the conversion efficiency of WECS, sometimes it is used

in combination with other control techniques as per the requirements [9].

Optimal control techniques used in this dissertation are from [22] which are used

for Linearizing a Non-linear WECS model and the MPPT technique. In [30], optimal

control technique was applied on variable speed wind turbine under dynamic wind

conditions to increase the energy efficiency. The results are verified both by simulation

and laboratory experiments using a model turbine systems, and show that a 9 to 15%

improvement in net energy extraction from the wind is achievable. Authors explains

how a squirrel cage induction generator can be controlled using a PWM voltage source
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inverter and a simple speed controller to maintain optimum power transfer conditions

for the wind turbine in varying wind speed conditions. The main limit to the ability

of the system to follow the changes in wind speed is the large rotor inertia preventing

the rapid acceleration of the rotor. Much greater efficiency have also been shown

to be obtainable by optimizing the generator excitation for operating conditions.

[27], [45], [29] give an overview of the new developments in optimal control. [27] is

a recent study of optimal control of variable speed wind turbine based on extreme

learning machine and adaptive particle swarm optimization, where a machine learning

algorithm is used to optimize the control algorithm according to the non-linearities.

Main objectives of the study are to maximize the energy conversion and to maintain

the safety of Wind Turbines by reducing the stress on drive train shafts. Extreme

Learning Machine algorithm with high learning speed is used to approximate the

error in case of unmodeled non-linear dynamics, while the Sliding Mode Control is

used to compensate for the external disturbances and modelled errors. Adaptive

Particle Swarm Optimization algorithm is introduced to adapt and optimize the gain

of the Sliding Mode Control as per the information learned by the Extreme Learning

Machine. The proposed method in the study is illustrated in simulations by comparing

it with the traditional Sliding Mode Control. Optimal multivariable individual pitch

control for load reduction of large wind turbines is another optimal control technique

presented in [45]. An individual pitch controller is designed as a multivariable system

to reject the periodic load disturbances optimally. By studying the frequency response

of the system rotational speed variations effect the flexible modes of blades. The

obtained Multiple Input Multiple Output (MIMO) system is compared with PI-based

Individual Pitch Control system using a H-infinity optimization problem. Finally, the

dynamic load mitigation of the developed controller is studied through the fatigue load

analysis with a high-fidelity aero-elastic simulator. Results show a significant amount
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of load alleviation in return for an even lower level of the pitch activity, with respect

to the PI-based IPC. IEEE transaction [29] uses an optimal power sharing control

of a wind farm where so many Wind Turbines are connected to generate electricity

especially in stand-alone farms. There might be lot of supply-demand disturbances

when the wind penetration is high, with a proper control design, the power output of a

DFIG wind turbine (WT) can be regulated in accordance with the dispatch demand.

Specifically, WT can withhold the output power through accelerating its rotor, when

there is over-generation. This is often referred to as the deloading control of WT.

Similarly, the overloading control can be applied to WT through decelerating its rotor,

when there is over-consumption. To implement the overloading and deloading control,

the simplest approach is to share the power reference to all he WT in the farm equally.

Since, the overloading and deloading capacities of each WT is not equal as they do

not have similar wind conditions, a tailor-made control strategy is proposed in this

study where power reference of each DFIG WT is obtained through a tailor-made

optimization, aiming at maximizing the rotor kinetic energy stored in all WTs within

a farm.The above mentioned optimal control methods are the few recent publications

and there are many more control techniques combined with optimal control to improve

the efficiency which will be discussed later on in this study with more detail.

Robust Control

Robust controller deals with uncertainties and fluctuations in the input to guar-

antee robust performance of controller under uncertain conditions. The controllers

robustness may be designed for frequent fluctuations in the wind speed, to maintain

a stable output power from the wind turbine, to maintain the fluctuations in the

current or to maintain whatever parameter that needs to put under constant check

for the rapid disturbances. The research studies in [17], [19], [40] proposed Robust
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control for WECS. Researcher in [17] studied a robust controller for controlling the

Pitch angle of the blades of Wind turbine to adapt to the frequent changes in wind

speeds for levelling out the converted wind energy into mechanical energy, which

is very useful in areas where there is lot of fluctuating wind energy available with

wide wind speed region even subject to large parametric or non-parametric distur-

bances.The study in [19] deals with design of a H robust controller which deals with

the selective harmonic filtering in an offshore transmission network subject to param-

eter perturbations. The authors in [40] evaluated robust control of Variable-speed

fixed pitch WECS to evaluate the MPTT with higher precision. [24] deals with a

Non-linear robust control to maximize the energy capture in an induction generator

based WECS by controlling the tip speed ratio, via the rotor angular speed, to an

optimum point at which the efficiency constant (or power coefficient) is maximal for

a particular blade pitch angle and wind speed. Even though, the WECS system is

a Non-linear model, instead of building a Linear Parameter Varying (LPV) model

the authors in [46] considered many operating points and the non-linear model is

linearized around these operating points and a robust controller is built for each and

every one of these linearized operating points to maximize the energy capture under

different wind speeds. Switching among the different H controllers is done by gain-

scheduling mechanism using Lagrange interpolation, this method was able to extract

maximum energy at the specific speeds of the operating points but, lacked the smooth

transition between the discrete bands of speeds of the operating points.

Adaptive Control

Adaptive control is more useful when there is difficulty in constructing the precise

model of a Non-linear system which is influenced by the unknown parameters. To

cope with the highly nonlinear characteristics of WECS, adaptive control strategies
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are very much needed for the complex control systems of WECS. In adaptive control

techniques two or more parameters are controlled in a different manner for different

situations to optimize the energy conversion.

The different Adaptive control techniques for WECS in [25], [44], [21] are used to

achieve different goals for the non-linear WECS. In [25] a Neural-Network (NN) is

proposed different operation modes for a VSVP WECS the Torque control at lower

speeds, Pitch control at higher speeds and the smooth transition between both the

modes of operation The adaptive NN control approximates the nonlinear dynamics of

the wind turbine based on input/output measurements and ensures smooth tracking of

the optimal tip-speed-ratio at different wind speeds. The robust NN weight updating

rules are obtained using Lyapunov stability analysis. The proposed control algorithm

is first tested with a simplified mathematical model of a wind turbine, and then the

validity of results is verified by simulation studies on a 5 MW wind turbine simulator.

[44] illustrates an Adaptive fractional sliding mode control for Double-Fed Induction

Generator (DFIG) based WECS,this paper proposes a novel fractional order adaptive

terminal sliding mode control system for both the rotor and grid side converters of

the DFIG system and stability of the system is of closed-loop system is ensured by

the fractional order Lyapunov theorem. The study in [21] presents a Maximum

Power Point Tracking (MPPT) using adaptive control for a small scale WECSs to

maximize the energy conversion efficiency in a turbulent wind environment. The

proposed algorithm uses computational behavior of hill climb search, feedback of tip-

speed ratio and power signal for the adaptability over the wind speed range of the

WECS and MPPT, the control technique was tested on a WECS emulator to show

the improvement in efficiency of this MPPT technique in a gradually fluctuating wind

conditions.
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Model Predictive Control

Model Predictive Control (MPC) is an appealing control Technique which is of

great use in dealing with Non-linear systems with constraints.MPC models predict

the change in the dependent variables of the modeled system that will be caused by

changes in the independent variables. Model predictive controllers rely on dynamic

models of the process, most often linear models obtained by system identification.

MPC is universally used as a digital control technique, although there is research

into achieving faster response using analog circuitry. It is ,more sensible to use MPC

for WECS, if the behaviour of wind has many different particular patterns but not

occurring in a specific sequence of patterns, then Model Predictive Controller detects

these patterns and matches the model to act accordingly.

The researchers in [52] presented an MPC technique for power tracking and mini-

mizing the mechanical load on wind turbines for the optimal active power control of a

wind farm. Instead of linearizing the model at few operating points, the nonlinearities

of the wind turbine model are represented by a piece-wise static function based on

the wind turbine system inputs and state variables. The nonlinearity identification is

based on the clustering-based algorithm, which combines the clustering, linear iden-

tification, and pattern recognition techniques. The model used in the study consisted

of 47 affine dynamics , is verified by the comparison with a widely used nonlinear wind

turbine model. This technique could be used in model prediction of Model Predictive

controller or other advanced Optimal control techniques used for the wind farms.

Research in [49] uses a two step MPC strategy for improving the power conversion.

The proposed configuration uses boost converters and diode inverters as intermediate

stages for predict a shift in the model of the system. This technique is aimed at

PMSG wind turbines rated in Megawatt ranges.
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1.4 Problem Statement

The main goals while designing a WECS is to build a Wind Turbine which is

capable of converting wind energy into electric energy with no side effects to the

environment and the wildlife surrounding it, we must also consider the feasibility,

affordability and, maintenance cost along with profitability. Though all of these are

important aspects to be considered while installing WECSs but, this research concerns

with the Control issues related to the WECS. The above discussion indicates that

there are many different varieties of control techniques. The most important aspect

that associated with the control techniques of WECS are as follows:

1. Conversion Efficiency: The efficiency of power is improved in the partial load

conditions when the wind speeds are below the rated speeds of the WECSs

using MPPT, which calculates and controls the generator speed according to

the variations in Wind speed. But in full load condition or at wind speeds

higher than the rated speeds, the generator rotates at its top rated speed but,

not above that to protect the generator power electronic system.

2. Power Regulation: The electricity generated by the wind turbine is generated to

be used by other electrical devices which have limitations and requirements on

power that they can operate under. So, the power that is generated by WECS

must be regulated to some standards depending on the requirements, especially

when the wind speeds are higher the power generated must be clipped to the

rated value of the WECS. To achieve this the common strategy is to change the

Pitch angle of the blades to reduce the aerodynamic power captured, which in

turn reduces the output power.

3. Power Quality Control: To ensure the proper operation and longevity of the

25



devices that are using the power generated by WECS, good quality of power is

needed with limited number of fluctuations within the limits and in some cases

must satisfy the standards, of active and reactive power, frequency fluctuation

standards, Harmonic noise intensity etc. This issue is handled by the controllers

in Power electronic conversion systems.

4. Robustness: The performance of the WECS must not deteriorate in case of

frequent changes in the wind speeds and it must be able to withstand extreme

weather conditions for the feasibility purposes. Robustness is achieved alto-

gether by pitch control, power conversion control techniques and by classifying

different operating regions and methods to operate in those regions.

5. Fatigue Load Reduction: The fatigue load must always be monitored and con-

trolled in all the kinds of loads. Power maximization is not the goal in all the

case which might also maximize the fatigue load and constant presence of such

load is very bad for the health and presence of key and costly components which

might increase the maintenance cost. Therefore, the trade-off between maxi-

mizing captured power and minimizing fatigue loads must necessarily be taken

into account by the control system.

1.5 Research Objectives

From the discussion made in Section 1.3 we can deduce some conclusions. Though

there have been so many research studies in WECS, there is still a lot of room for

improvement as all the different possibilities of control strategies have not been ex-

plored. Firstly, most of the reports and studies have considered the mechanical and

electrical dynamics separately while modelling the WECS which does not consider
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the effect of interaction between the dynamics and specifically using of Time Scales

makes it easier to solve such problems and also there have not been many research

studies conducted on the usage of time-scales on WECS. Secondly, there have been

a lot of studies on linear control of WECS but, non-linear control methods have not

been addressed significantly, finally and most importantly there have been very few

studies which comprehensively explain the Variable Speed Variable Pitch (VSVP)

WECS. From the discussions research objectives have been proposed as follows:

1. Modelling : In this research, unlike most works reviewed in Section 1.3, an

attempt is made to integrate both mechanical and electrical dynamics in mod-

eling. The developed models represent variable-speed variable pitch WECS with

PMSG. The research focuses on both grid-connected and standalone WECS.

2. Singular perturbation and time scale analysis and synthesis: Based on the na-

ture of the WECS which contains both slow and fast dynamics, the singular

perturbation method is utilized to decouple the overall WECS into slow and

fast subsystems. Optimal control techniques Linear Quadratic Regulator (LQR)

and Linear Quadratic Gaussian (LQG) are employed to synthesize controllers

for both original or decomposed subsystems. Control performances of both orig-

inal (high-order) and reduced-order controllers are also compared to show the

effectiveness of the singular perturbation and time scale methods.

3. Modelling and Controller design for a VSVP WECS : Ability to control the

pitch angle for WECS gives another degree of freedom which helps in maintain-

ing the output power quality over wide range of wind speeds with little to no

Fatigue load on the wind turbine as the force exerted by wind on the turbine can

be changed easily by changing the pitch angle of the blades. So the modelling

and LQG and LQR controller synthesis are done for the VSVP WECS.
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1.6 Overview

This research projects includes 6 chapters and the details of each chapter are as

follows:

Chapter 1 begins with some background about wind energy and WECS. The

main objective of this chapter is to familiarize readers with WECS by reviewing

fundamental knowledge of wind energy developments and wind turbines. The chapter

also includes a comprehensive overview of advanced control approaches for WECS,

which helps identify control problems of WECS. Specific research directions of the

project are discussed in the end of this chapter.

Chapter 2 deals with the dynamic modelling of WECS. In this chapter, system dy-

namics of WECS from the control view point are addressed and described in forms of

mathematical models. Dynamic non-linear model is discussed follwed by linearization

process of the model.

Time scales and singular perturbation methods for WECS are addressed in Chap-

ter 3. The chapter begins with the time scale analysis of the modelled VSVP WECS

to decompose the original system into slow and fast subsystems.

Chapter 4 then deals with optimal LQR and LQG synthesis for decoupled dynam-

ics in WECS. The singular perturbation method is then proposed for separate slow

and fast dynamics existing in WECS to compare the results and, to design optimal

LQG controller and filters corresponding to each of the dynamics with the presence

of noise and uncertainties.

Chapter 5 explains the results of simulations which implement the theory that

has been mentioned in chapters 3 and 4 that have been implemented in MAtlab and

Simulink. And finally, chapter 6 concludes the study suggesting some future works.
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2 Dynamic modeling of Wind En-

ergy Conversion System

2.1 Introduction

This chapter presents the dynamic modeling of the WECS based upon their phys-

ical dynamics. First mathematical representation of WECS derived for different sub-

systems and then all the subsystems are integrated to obtain the complete nonlinear

model for individual representation of complete WECS. The nonlinear model lin-

earization process has also been presented. Part of this chapter is based on the work

of [38].

Figure 2.1: WECS Subsystems Modelling and Classification
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A model for an entire WECS can be detailed into several interconnected subsys-

tems where as shown in Figure 2.1. WECS consists of different number of devices

which are been divided into two groups in terms of dynamics (mechanical and elec-

trical groups) or groups in terms of dynamically represented (drive train dynamics,

generator dynamics, aerodynamics, structural dynamics). The model of WECS rep-

resent all different types of dynamics. But, for control purposes only, aerodynamics,

drive train dynamics and generator dynamics are considered for modelling.

2.2 Aerodynamic Subsystem Modelling

Figure 2.2: Aerodynamic Subsystem

The primary application of wind turbines is to generate energy using the wind.

Hence, the aerodynamics is a very important aspect of wind turbines. As wind flows

through the wind turbine it exerts force on the blades of the turbine and the force

depends on the shape, pitch angle and size of the blades due to which they start
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rotating creating aerodynamic torque. There is also force exerted on the tower due to

which there is displacement of the tower due to the force (Tower Bending) and also to

control the amount of this wind thrust on the blades some of it has to be obstructed

by the blades by controlling the pitch angle which causes some undesirable force on

the blade leading to blade flapping and bending. The only desirable outcome of this is

generation of aerodynamic torque, which ratates the shaft and which in turn rotates

the generator to generate the power. To represent the aerodynamic system the Thrust

force, Aerodynamic Torque and Mechanical power can be represented as follows:

FT =
1

2
ρπR3CT (λ, β)V 2 (2.2.1)

Tr =
1

2
ρπR3CQ(λ, β)V 2 (2.2.2)

Pm =
1

2
ρπR3CP (λ, β)V 3 (2.2.3)

where ρ is the air density; V is the wind speed; R is the radius of the wind rotor

plane; CT , CQ, and CP are thrust force, torque, and power coefficients, respectively;

β is the pitch angle of blades; and λ is the tip-speed ratio which is defined as the ratio

between the speed at the tip of blades and the wind speed and can be mathematically

expressed as:

λ =
ωrR

V
(2.2.4)

The relationship between the torque coefficient and the power coefficient is defined
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as:

CQ =
CP
λ

(2.2.5)

The power coefficient has been approximated from [32, 31] as:

CP (λ, β) = C1(
C2

λi
− C3β − C4)exp(

−C5

λi
) + C6λ (2.2.6)

where:

λi =
1

1
λ+C7β

− C8

1+β3

(2.2.7)

or from [1, 2, 33] as:

CP (λ, β) = (C9 − C10β)sin(
π(λ+ C11)

C12 − C13β
)− C14(λ− 3)β (2.2.8)

The aerodynamic subsystem block as shown in Figure 2.2 takes the wind speed

V and the wind rotor rotational speed ωr as the inputs and gives the aerodynamic

torque Tr as the output.

2.3 Drive Train Subsystem Modelling

The Drive train Subsystem transmits and increases the rotational speed from the

turbine rotor to generator of the turbine, it is also used for braking the speed of the

wind turbine rotor to keep it in the limits of generator rotational speeds. Breaking

mechanism is more related to mechanical engineering perspective than the control

perspective so in this section modelling of drive train mechanism is taken care of. The

drive train subsystem takes aerodynamic torque τr and generator torque as inputs
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and the angular velocity of rotor ωr and angular velocity of generator ωg as outputs

as shown in Figure 2.3. The drive train connects the wind rotor shaft (low speed

shaft) to the generator shaft (high speed shaft) through a gear box, which can be

represented by a speed multiplier 1/i with an efficiency η.

Figure 2.3: Drive Train Subsystem

2.3.1 Drive Train Dynamics

The dynamics for drive train deals with transmission of torque from low speed

shaft to high speed shaft connected to generator rotor. The derivation of dynamics

of the drive train are as follows:

Differential equation of low speed shaft is

Jrω̇r = Tr −
i

η
TH (2.3.1)

Where Jr is the wind rotor inertia, ωr is the wind rotor angular velocity,and Tr is the

aerodynamic torque and TH is the internal torque.

As the torque is not transmitted completely as there will be losses and also there

is some energy stored in form of momentum of the shaft to compensate for all the
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measures high speed shaft is considered as a flexible and that is represented by adding

a spring to the high speed shaft. So the derivations of the high speed shaft side are

Jgω̇g = TH − Tg, (2.3.2)

˙TH = Kg(ωH − ωg) +Bg(ω̇H − ω̇g). (2.3.3)

where Jg is the generator inertia, Tg is the generator electromagnetic torque, ωH is

the smaller gear speed, ωg is the generator speed, Kg and Bg are the stiffness and

damping coefficients of the high-speed shaft, respectively. Replacing ωH = iωr into

(2.3.3) gives

˙TH = Kg(iωr − ωg) +Bg(iω̇r − ω̇g). (2.3.4)

Figure 2.4: Drive Train Diagram
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Combining (2.3.1), (2.3.2) and (2.3.4) gives the drive train model as:

ω̇r = − i

ηJr
TH +

1

Jr
Tr, (2.3.5)

ω̇g =
1

Jg
TH −

1

Jg
Tg, (2.3.6)

˙TH = iKgωr −Kgωg −Bg(
1

Jg
+

i2

ηJr
)TH +

iBg

Jr
Tr +

Bg

Jg
Tg (2.3.7)

2.4 Generator Modelling

Permanent Magnet Synchronous Generator (PMSG) is the most widely used gen-

erator in WECS. So in this section dynamics of a Grid connected PMSG are modelled.

PMSG is an electrical component so, it can be represented by an electrical circuit di-

agram which is shown in the diagram below.

Figure 2.5: PMSG equivalent circuit diagram. (a) d-axis equivalent (b) q-axis equiv-
alent

The circuit diagram representation of the Grid connected PMSG is shown in the

diagram Fig 2.5 above and the mathematical representation can be derived for the
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(d,q) axes from these circuit diagrams as follows:

ud = −Rsid + Lqiqωs − Ldi̇d, (2.4.1)

uq = −Rsiq − Lq i̇q − (Ldid − φm)ωs (2.4.2)

where Rs is the stator winding resistance and Ld and Lq are d and q components

of the stator inductance, respectively; ud and id are the d component voltage and

current of the stator, uq and iq are the q component voltage and current of the stator

respectively; and φm is the flux linkage of the stator winding and ωs = pωs is the

stator angular frequency (where p is the number of poles pairs used in the PMSG).

The generator electromagnetic torque can be derived as:

Tg = pφmiq (2.4.3)

By rearranging the equations (2.4.1) and (2.4.2) the dynamic equations of the grid

connected PMSG are as follows:

i̇d = −Rs

Ld
id +

pLq
Ld

iqωg −
1

Ld
ud, (2.4.4)

i̇q = −Rs

Lq
iq +

p

Lq
(Ldid − φm)ωg −

1

Lq
uq (2.4.5)
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2.5 Pitch Subsystem Modelling

The actuator consisted of counter weights that enable the rotation of the blades

around their longitudinal axes. As turbine size increased, these rudimentary mecha-

nisms were replaced by hydraulic or electro mechanical devices. The higher exibility

of these devices permitted the implementation of ecient and reliable control strate-

gies for power or speed limitation. The pitch actuator is a nonlinear servo motor that

generally rotates all the blades or part of them in unison.

The pitch subsystem takes the input from the control system which decides the

angle of the blades (desired pitch angle) βd at different wind speed and at different

power requirements to optimize the output power and the output is the final pitch

angle of the blades β.

Figure 2.6: Pitch System

The pitch actuator system can be modelled as a first-order system with saturation

in the amplitude and derivative β as [42, 14]

β̇ = −1

τ
β +

1

τ
βd (2.5.1)
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where,

βmin ≤ β ≤ βmax, (2.5.2)

β̇min ≤ β̇ ≤ β̇max (2.5.3)

Here τ is the time constant of the pitch system and variables with min and max

suffixes are the respective minimum and maximum values for that corresponding

variable.

2.6 Non-linear Model of the Entire WECS

Whole WECS can be represented different subsystems interacting together to

convert the wind energy into electrical energy and these non-linear dynamic model

can be explained by the equations which show the way in which the conversion is

done and control that conversion in a desired manner to get the required output.

The Grid-connected flexible drive train PMSG WECS can be represented by com-

bining (2.2.2), (2.3.5), (2.3.6), (2.3.7),(2.4.3), (2.4.4), (2.4.5) and (2.5.1) which gives:

ω̇r = − i

ηJr
TH +

1

2Jr
ρπR3CQ(λ, β)V 2, (2.6.1)

ω̇g =
1

Jg
TH −

1

Jg
pφmiq, (2.6.2)

˙TH = iKgωr −Kgωg −Bg(
1

Jg
+

i2

ηJr
)TH +

iBg

2Jr
ρπR3CQ(λ, β)V 2 +

Bg

Jg
pφmiq, (2.6.3)
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i̇d = −Rs

Ld
id +

pLq
Ld

iqωg −
1

Ld
ud, (2.6.4)

i̇q = −Rs

Lq
iq +

p

Lq
(Ldid − φm)ωg −

1

Lq
uq (2.6.5)

β̇ = −1

τ
β +

1

τ
βd (2.6.6)

Where λ and CQ(λ, β) are defined by (2.2.4), (2.2.5) and (2.2.6).

2.7 Linearized Model

For linearizing the above non-linear model at an operating point, the non-linearity

is because of the turbine torque (Tr) which is an element of few equations, so lineariza-

tion of turbine torque at an operating point can be done as follows:

δTr = Lω(ω̄r, v̄, β̄)δωr + Lv(ω̄r, v̄, β̄)δv + Lβ(ω̄r, v̄, β̄)δβ (2.7.1)

Lω(ω̄r, v̄, β̄) =
∂Tr
∂ωr
|(ω̄r,v̄,β̄) (2.7.2)

Lv(ω̄r, v̄, β̄) =
∂Tr
∂v
|(ω̄r,v̄,β̄) (2.7.3)

Lβ(ω̄r, v̄, β̄) =
∂Tr
∂β
|(ω̄r,v̄,β̄) (2.7.4)

where δ represents the derivative of the variable at the operating point, whereas

over bar of a variable (i.e: ω̄) represents variable value at the operating point.
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The state vectors is X = [x1, x2, x3, x4, x5, x6]T = [ωr, ωg, TH , β, id, iq]
T and the

control vector is u = [u1, u2, u3, u4]T = [ud, uq, V, βd]
T . Choosing the operating point

with X̄ = [ω̄r, ω̄g, T̄H , īd, īq, β̄]T and ū = [ūd, ūq, V̄ , β̄d]
T . So the linearized system and

control matrices at the operating point are given as:

A(x̄, ū) =



Lω
Jr

0 −i
ηJr

Lβ
Jr

0 0

0 0 1
Jg

0 0 −pφm
Jg

iKg + iBg
Jr
Lω −Kg −Bg(

1
Jg

+ i2

ηJg
) iBg

Jr
Lβ 0 Bgpφm

Jg

0 0 0 − 1
τ

0 0

0 pLq
Ld
īq 0 0 −Rs

Ld

pLq
Ld
ω̄g

0 −p
Lq

(Ldīd − φm) 0 0 −pLdω̄g
Lq

−Rs
Ld


(2.7.5)

B(x̄, ū) =



0 0 Lv
Jr

0

0 0 0 0

0 0 iBg
Jr
Lv 0

0 0 0 1
τ

− 1
Ld

0 0 0

0 − 1
Lq

0 0


(2.7.6)
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2.8 Chapter Summary

In this chapter, mathematical representation of all the different subsystems have

been modelled and presented. The modelling of the sub-systems related the control

systems only have been presented in this chapter. The focus was on PMSG based

grid-connected WECS, first the non-linear dynamics have been presented and then a

a procedure to obtain the state-space vectors of the linearized model at a specific op-

erating point has been presented, which is required to apply the singular perturbation

and time-scales method which is presented in Chapter 3.
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3 Singular Perturbation and Time

Scales Analysis and Synthesis

3.1 Introduction

One of the most important objective while designing a controller is to obtain op-

timal energy conversion rate under all the different wind conditions, most commonly

traditional MPPT control strategy is used to achieve this goal but, it generates a

fatigue load on the tower. So, an optimal control strategy which can optimize the

energy conversion efficiency and reduce the fatigue load on the tower has been in-

troduced to WECS. However, such optimal controller design for WECS results in

high-order controllers which are more expensive and complex to implement. Based

on this limitation, authors in [23] have proposed an idea of designing separate con-

trollers for the two time-scales but, it does not provide complete decoupling of the

dynamics of two different time scales leading to reduction of performance of the con-

trollers. This problem has been solved in this research study for the VSVP WECS

by using the singular perturbation and time scale methods, providing an effective

means of decoupling slow and fast dynamics in WECS completely. After the dynam-

ics are decoupled independant optimal controllers are designed for both slow and fast

dynamics separately.

In this chapter application of Singular perturbation and time scales on VSVP
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WECS is explained in detail. By applying time-scales the linearized system is de-

composed into reduced-order independent slow and fast sub-systems. Synthesis and

simulation of different independent optimal-controlers for both slow and fast sub-

systems is done like: Linear Quadratic Guassian (LQG) and Linear Quadratic REg-

ulator (LQR) are investigated combining the techniques used in other systems in [37,

51].

3.2 Time Scales Derivation

To decouple the slow and fast sub-systems from the higher-order system the fol-

lowing procedure is used if is a singularly perturbed system. To know more about

the properties and behaviour of singularly perturbed systems refer to [35, 34].

3.2.1 Block Diagonalization Technique

A linear Singularly perturbed continuos system can be expressed in the form:

Ẋ1 = A1X1 + A2X2 +B1u, (3.2.1)

εẊ2 = A3X1 + A4X2 +B2u (3.2.2)

where X1 and X2 are mandn dimensional slow and fast state-vectors, respectively and

u is an r dimensional control vector andX1−4andB1−2 are time-invariant matrices with

appropriate dimensions and ε is a very small positive parameter which parameterizes

singular pertuburated form.

Chang’s transform [6] is a technique used to decompose the system into slow and

fast subsystems. The transformation has two steps as follows:
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Step I:Choosing a new variable Xf where:

Xf = X2 + LX1 (3.2.3)

or

X2 = Xf − LX1 (3.2.4)

where L is a matrix of appropriate dimensions and multiplying ε on both sides and

differentiating the equation (3.2.3) gives:

εẊf = Ẋ2 + εLẊ1

= (A3 + εLA1)X1 + (A4 + εLA2)X2 + (B2 + εLB1)
(3.2.5)

Substituting (3.2.4) in (3.2.5) gives:

εẊf = (A3 + εLA1 − A4L− εLA2L)X1 + (A4 + εLA2)Xf + (B2 + εLB1)u (3.2.6)

Choosing L such that

A3 + εLA1 − A4L− εLA2L = 0 (3.2.7)

Then equation (3.2.6) becomes:

εẊf = (A4 + εLA2)Xf + (B2 + εLB1)u (3.2.8)

Substituting (3.2.4) into (3.2.1) gives:

Ẋ1 = (A1 − A2L)X1 + A2Xf +B1u (3.2.9)
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Combining equations (3.2.8) and (3.2.9) transforms the system (3.2.1) and (3.2.2)

into:  ẋ1

εẋf

 =

As A2

0 Af


 x1

xf

+

 B1

Bf

u (3.2.10)

where

As = A1 − A2L, (3.2.11)

Af = A4 + εLA2, (3.2.12)

Bf = B2 + εLB1. (3.2.13)

Step II: Choosing another new variable Xs where:

Xs = X1 −HXf (3.2.14)

or

X1 = Xs +HXf (3.2.15)

where H is a a matrix with appropriate dimensions. Differentiating equation (3.2.14)

on both sides gives:

εẊs = Ẋ1 −HẊf

= AsXs + (AsH + A2 −
1

ε
HAf )Xf + (B1 −

1

ε
HBf )u

(3.2.16)

Choosing H such that

AsH + A2 −
1

ε
HAf = 0, (3.2.17)
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or

HA4 − A2 + ε(HLA2 − A1H + A2LH) = 0. (3.2.18)

Equation (3.2.16) becomes:

εẊs = AsXs +Bsu (3.2.19)

where

Bs = B1 −
1

ε
HBf ,

= B1 −
1

ε
HB2 − εHLB1.

(3.2.20)

combining equation (3.2.8) and (3.2.19) gives two decoupled subsystems as follows:

ẊS = AsXs +Bsu

εẊf = AfXf +Bfu,
(3.2.21)

or

ẊS = AsXs +Bsu

Ẋf = ĀfXf + B̄fu
(3.2.22)

where

Āf =
1

ε
Af , (3.2.23)

B̄f =
1

ε
Bf . (3.2.24)
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Figure 3.1: Time Scale LQR control diagram

Once the two time scales have been decoupled from the original system using

the above derivation as shown in (3.2.21), the controller of each sub-system can be

designed individually as shown in Figure 3.1.

The system in equations (3.2.1) and (3.2.2) can be represented in the state space

representation as follows:

 ẋ1

εẋ2

 =

 A1 A2

1
ε
A3

1
ε
A4


 x1

x2

+

 B1

1
ε
B2

u (3.2.25)
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Any linear system can be written in the form of (3.2.25) with parameter ε. In this

case, we need to estimate the value of ε from the system. One way to estimate ε is by

computing the ratio between the largest absolute eigenvalue of the slow subsystem

state space matrix and the smallest absolute eigenvalue of the fast subsystem state

space matrix [35]. In addition, it is required to arrange states as a group of slow states

(xs) and a group of fast states (xf ) by a linear transformation called permutation.

For more details of permutation, readers are referred to [35].

3.2.2 Recursive Algorithms

To get any system into the form shown above in (3.2.25) procedure requires solu-

tions of non-symmetric Riccati-type matrix equations (3.2.7) and (3.2.17). And there

are two algorithms to solve such equations:

1. Fixed Point Algorithm [16, 35, 26]

2. Newton Algorithm [16, 18]

Fixed Point Algorithm

This algoritm converges at the rate of O(ε), under the condition that A4 is non-

singular matrix. The solutions of L and H can be obtained by following method:

A4L(k + 1) = A3 + εL(k)[A1 − A2L(k)], (3.2.26)

H(k + 1)A4 = A2 − ε[H(k)L(k)A2 − A1H(k) + A2L(k)H(k)] (3.2.27)

with k = 1, 2, 3... where,

L(0) = A−1
4 A3, (3.2.28)
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H(0) = A2A
−1
4 (3.2.29)

Fixed point algorithm converges only if the following condition holds:

||A−1
4 || ≤

1

3
(||A0||+ ||A2||||L0||)−1 (3.2.30)

where

A0 = A1 − A2L0 (3.2.31)

Newton Algorithm

Newton algorithm converges at the rate O(ε2
k
) which is faster than fixed point

algorithm with the condition A4 is a nonsingular matrix. And the solution for L can

be obtained by following procedure:

D1(k)L(k + 1) + L(k + 1)D2(k) = Q(k), (3.2.32)

where

D1(k) = A4 + εL(k)A2, (3.2.33)

D2(k) = −ε[A1 − A2L(k)], (3.2.34)

Q(k) = A3 + εL(k)A2L(k) (3.2.35)

where

L(0) = A−1
4 A3 (3.2.36)
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After solving for L, the solution for H can be obtained by solving the Sylvester equa-

tion:

H(k + 1)D1(k + 1) +D2(k + 1)H(k + 1) = A2. (3.2.37)

where:

H(0) = A2A
−1
4 (3.2.38)

The sufficient condition for convergence of the Newton algorithm is:

||∆Lk|| ≤ ||QK || = ||A3 + εLkA2Lk|| (3.2.39)

3.3 Time Scale Analysis of a Grid-Connected PMSG

Based WECS

In this section Grid-connected PMSG is decoupled into slow and fast subsystems,

whose parameters are listed in table 3.1 below,is linearized at an operating point

where the maximum aerodynamic torque (i.e. maximum power) corresponding to

each wind speed and pitch angle is reached; thus a different wind speed and pitch

angle induces different linear model and corresponding controller. In real time the

control system switches among the different pre-designed controllers when ever the

speed and pitch angle change. In this research the interest is of designing a controller

at one speed and pitch angle. For wind speed V = 10m/sec and pitch angle β = 45/π
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, the optimal operating point is:



ω̄r = 24.5416rad/sec,

ω̄g = 147.2436rad/sec,

T̄H = 29.0671N.m,

īd = 4.4533A,

īq = 3.5047A,

β̄0 = 45
π



= Operating Point (3.3.1)

The value of partial derivatives Lω, LvandLβ specified in equations (2.7.2), (2.7.3)

and (2.7.4) at the above mentioned operating point are as follows:

Lω = −4.0757

Lv = 29.0589

Lβ = −5.6658

The table below has all the specifications of the Grid-connected PMSG based

WECS parameters:

Notation Description Values

ρ Air Density 1.25kg/m3

R Blade Length or Wind rotor plane radius 2.5m
i Gear box ratio 6
η Gear box efficiency 1
Jr Wind Rotor Inertia 2.88kg/m2

Jg Generator Inertia 0.22kg/m2

Kg High speed shaft stiffness coefficient 75N.m/Rad
Bg High speed shaft damping coefficient 0.3kg.m2/s
p Number of pole pairs in gennerator 3
Rs PMSG stator Resistance 3.3Ω
φm PMSG flux linkage 0.4382Wb
Ld PMSG stator d-axis inductance 41.56mH
Lq PMSG stator q-axis inductance 41.56mH

Table 3.1: Grid-connected PMSG based WECS
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So the linearized model of Grid-connected PMSG model after substituting all the

values of parameters into the matrices specified in equations (2.7.5) and (2.7.6) and

the partial derivatives needed at the specific operating point is as follows:



˙δωr

˙δωg

˙δTH

δ̇β

˙δid

˙δiq


=



−1.4152 0 −2.0833 −1.9673 0 0

0 0 4.5455 0 0 −5.9755

447.4527 −75 −5.1136 −3.5411 0 1.7926

0 0 0 −10 0 0

0 10.5141 0 0 −79.4032 441.7308

0 18.2714 0 0 −441.7308 −79.4033





δωr

δωg

δTH

δβ

δid

δiq



+



0 0 10.0899 0

0 0 0 0

0 0 18.1618 0

0 0 0 10

−24.0616 0 0 0

0 −24.0616 0 0





δud

δuq

δV

δβd



(3.3.2)

The above equation is of the form:

Ẋ = AX +Bu (3.3.3)

Because wind is considered as an uncontrollable input all the elements associated

with the input variable V in the matrix B are zeroed to isolate the effect of wind
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uncontrollability. So, the above equation becomes:



˙δωr

˙δωg

˙δTH

δ̇β

˙δid

˙δiq


=



−1.4152 0 −2.0833 −1.9673 0 0

0 0 4.5455 0 0 −5.9755

447.4527 −75 −5.1136 −3.5411 0 1.7926

0 0 0 −10 0 0

0 10.5141 0 0 −79.4032 441.7308

0 18.2714 0 0 −441.7308 −79.4033





δωr

δωg

δTH

δβ

δid

δiq



+



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 10

−24.0616 0 0 0

0 −24.0616 0 0





δud

δuq

δV

δβd



(3.3.4)

The representation of the PMSG based WECS in the state space equation above has

6 different state variables with four mechanical state variables (i.e. slow states) wind

rotor rotational speed (ωr), generator rotational speed (ωg), and internal torque (TH)

and pitch angle (β) along with two electrical state variables (i.e. fast states) the d

and q components of the generator current, id and iq. The eigen values of the matrix
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A are as follows:

p1 = −3.58079331042100 + J35.5485392840279,

p2 = −3.58079331042100− j35.5485392840279,

p3 = −0.685511507233029,

p4 = −10,

p5 = −79.4510343491174 + j441.863044182623,

p6 = −79.4510343491174− j441.863044182623



= Eigen Values (3.3.5)

So the poles p1 to p4 have smaller magnitude compared to the value to that of p5 and

p6, so we can divide the sub-systems in the same manner. As shown in the diagram

Figure 3.2: Eigen Values Plot

above the two groups of eigen value are far apart so it can be accepted that the

system (3.3.4) clearly has time-scales property. For a non-linear PMSG WECS, the
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parameter ε is determined by the Lq or Ld, the inductance of d and q components of

the generator.

The Newton’s algorithm and Fixed point algorithm were applied for the system

(3.3.4) with value of ε = 0.04156 to solve the equation (3.2.7) and (3.2.18). The

Newton’s algorithm was convergent and at a faster rate and the solution for the

equations are as follows:

L =

0 −0.044 0 0

0 0.0159 0 0

 , H =



0 0

−13103.95 2355.49

3931.18 −706.65

0 0


(3.3.6)

The subsystem matrices are as follows:

A1 =



−1.41 0 −2.08 −1.97

0 0 4.54 0

447.45 −75 −5.11 −3.54

0 0 0 −10


, A2 =



0 0

0 −5.98

0 1.79

0 0


,

A3 =

0 10.51 0 0

0 18.27 0 0

 , A4 =

 −79.40 441.73

−441.73 −79.40

 ,

B1 =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 10


, B2 =

−24.06 0 0 0

0 −24.06 0 0



(3.3.7)

By using the above results and the value of ε in the chang’s transformation the system

in (3.3.4) can be decomposed into slow and fast sub-systems as follows:
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Slow Sub-system:



˙δωr

˙δωg

˙δTH

δ̇β


=



−1.41 0 −2.08 −1.97

0 0.094 4.54 0

447.45 −75.03 −5.11 −3.54

0 0 0 −10





δωr

δωg

δTH

δβ



+



0 0 0 0

−315302.07 56677.09 0 0

94590.62 −17003.13 0 0

0 0 0 10





δud

δuq

δV

δβd



(3.3.8)

Fast Sub-system:

 ˙δid

˙δiq

 =

 −79.40 441.99

−441.73 −79.50


 δid

δiq



+

−24.06 0 0 0

0 −24.06 0 0




δud

δuq

δV

δβd


(3.3.9)

3.4 Decoupling Results

The only way to verify the results of decoupling process using Chang’s transfor-

mation is to compare the eigen values of the slow and fast sub-systes to those of the

original composite system. Eigen values of the slow sub-system are as follows:

56





ps1 = −3.58103127992448 + j35.5514815027664,

ps2 = −3.58103127992448− j35.5514815027664,

ps3 = −0.685821687637942,

ps4 = −10


(3.4.1)

Eigen values of the fast sub-system are as follows:

 pf1 = −79.4506412894114 + j441.862874989898,

pf2 = −79.4506412894114− j441.862874989898

 (3.4.2)

Now by comparing the eigen values of original system in (3.3.5) with eigen values of

slow and fast sub-systems in (3.4.1) and (3.4.2) we can say that they are almost equal

with more than 99.8% accuracy, so we can say that the decoupling using chang’s

transform is reliable.

Original system

p1 = −3.58 + J35.55, ps1 = −3.58 + J35.55,

Slow Subsystem
p2 = −3.58− j35.55, ps2 = −3.58− j35.55,
p3 = −0.68, ps3 = −0.68,
p4 = −10 ps4 = −10
p5 = −79.45 + j441.86, pf1 = −79.45 + j441.86,

Fast Subsystem
p6 = −79.45− j441.86 pf2 = −79.45− j441.86

Table 3.2: Eigen value comparision of Original system and Decomposed subsystems

3.5 Chapter Summary

In this chapter singular perturbation and time scales is presented and algorithm

of Chang’s transform is explained along with implementation on the selected system,

to decompose a higher order system into two sub-systems based on the time scales

and the process has been verified at the end by comparing the eigen values of the
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original system and decomposed systems. The time scale nature of WECS was fully

exploited by using dynamic decomposition approaches which provide a computation-

ally inexpensive and flexible way to design controllers compared to the traditional

way without decomposition of a higher order system.
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4 Analysis and Design of VS-VP

System

4.1 Introduction

In this chapter we will be discussing the design and analysis of Optimal LQR and

Optimal LQG filters for the system [9]. The controllers are needed to be designed for

each sub-system individually so, the controller is designed using the respective algo-

rithms. The slow and fast subsystems obtained in the previous chapter are considered

to design the filters in each case[35, 34, 37].

4.2 Optimal Linear Quadratic Regulator (LQR)

Control

4.2.1 Optimal LQR Filter Design for the Original System

Considering the original linear system in (3.3.4) along with the cost function:

J =

∞∫
0

(XTQX + uTRu)dt (4.2.1)

where Q is a symmetric positive semi-definite matrix with dimensions (m+n)x(m+n)

m is number of slow satates in the system and n is number of fast states in the system,
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and R is symmetric positive definite matrix with with dimensions rxr. Provided the

system (A,B) is controllable, then according to optimal control theory the optimal

control signal is given by:

u∗ = −R−1BT P̄X (4.2.2)

where R−1BT P̄ represent the optimal LQR filter (i.e. K) and P̄ is the solution of the

algebraic Riccati equation:

AT P̄ + P̄A− P̄BR−1P̄ +Q = 0 (4.2.3)

To Implement above procedure to design an optimal LQR controller for the linear

original (composite) system (3.3.4). Before implementing the procedure verifying, if

the system fulfills the required condition of controllability. The controllability has

been computed by MATLAB for the system which gives a full rank for the controlla-

bility matrix of the system (Rank=6) hence, the original system is controllable. The

weighing matrices used for LQR function in MATLAB are:

Q =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


, R =



0.25 0 0 0

0 0.25 0 0

0 0 0.25 0

0 0 0 0.25


(4.2.4)
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4.2.2 Optimal LQR Filter Design for the Slow Subsystem

Consider the System in (3.3.8) as:

Ẋs = AsXs +Bsus (4.2.5)

with the cost function:

Js =

∞∫
0

(XT
s QsXs + uTs Rsus)dt (4.2.6)

where Qs is a symmetric positive semi-definite matrix with dimensions mxm, and

Rs is symmetric positive definite matrix with with dimensions rxr. Provided the

system (As, Bs) is controllable, then according to optimal control theory the optimal

control signal is given by:

u∗s = −R−1
s BT

s P̄sXs (4.2.7)

where R−1
s BT

s P̄s represent the optimal slow LQR filter (i.e. Ks) and P̄s is the solution

of the algebraic Riccati equation:

ATs P̄s + P̄sAs − P̄sBsR
−1
s P̄s +Qs = 0 (4.2.8)

To implement above procedure to design an optimal LQR controller for the slow

subsystem (3.3.8). Before implementing the procedure verifying, if the system fulfills

the required condition of controllability. The controllability has been computed by

MATLAB for the system which gives a full rank for the controllability matrix of the

system (Rank=4) hence, the slow subsystem is controllable. The weighing matrices
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used for slow LQR function in MATLAB are:

Qs =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, Rs =



0.25 0 0 0

0 0.25 0 0

0 0 0.25 0

0 0 0 0.25


(4.2.9)

4.2.3 Optimal LQR Filter Design for the Fast Subsystem

Consider the System in (3.3.9) as:

Ẋf = AfXf +Bfuf (4.2.10)

with the cost function:

Jf =

∞∫
0

(XT
f QfXf + uTfRfuf )dt (4.2.11)

where Qf is a symmetric positive semi-definite matrix with dimensions nxn, and

Rf is symmetric positive definite matrix with with dimensions rxr. Provided the

system (Af , Bf ) is controllable, then according to optimal control theory the optimal

control signal is given by:

u∗f = −R−1
f BT

f P̄fXf (4.2.12)

where R−1
f BT

f P̄f represent the optimal fast LQR filter (i.e. Kf ) and P̄f is the solution

of the algebraic Riccati equation:

ATf P̄f + P̄fAf − P̄fBfR
−1
f P̄f +Qf = 0 (4.2.13)
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To implement above procedure to design an optimal LQR controller for the fast

subsystem (3.3.9). Before implementing the procedure verifying, if the system fulfills

the required condition of controllability. The controllability has been computed by

MATLAB for the system which gives a full rank for the controllability matrix of the

system (Rank=2) hence, the fast subsystem is controllable. The weighing matrices

used for fast LQR function in MATLAB are:

Qf =

1 0

0 1

 , Rf =



0.25 0 0 0

0 0.25 0 0

0 0 0.25 0

0 0 0 0.25


(4.2.14)

Now, after obtaining slow and fast optimal LQR control signals, composite optimal

control signal can be obtained as shown in the figure below by:

u∗c = u∗f + u∗s (4.2.15)

The implementation diagram of the reduced-order LQR optimal control and orig-

inal LQR optimal control is shown in Fig. 4.1 where two independent, reduced-order

optimal controllers are obtained using the time scale decomposition and optimal con-

trol theory. The overall composite control is a composite of two reduced-order LQR

optimal controls, us and uf , as indicated in (4.2.15). And as we have seen before

that eigen values of original system and the decomposed sub-systems are same so it

is safe to say that:

u∗ ≈ u∗c (4.2.16)
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Figure 4.1: Time Scale LQR control diagram

4.3 Optimal Linear Quadratic Guassian (LQG) Con-

trol

In this section Optimal controller is designed for the PMSG-based WECS using

optimal LQG control theory, which is much suited for stochastic situations, so it will

be best suited for WECS problems as all the WECS are operated in undeterministic

wind conditions which change stochastically all the time along with the environment.

In this section the methods for designing controllers for both original system and

singularly perturbed linear PMSG-based WECS are presented.
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4.3.1 Decoupling Kalman Filter Design

The study for designing filters for singularly perturbed systems has been studied

[16] and in the study several methods have been proposed to decompose a Kalman

filter for a singularly perturbed system, and decomposing Kalman filter with high

accuracy has only been achieved by two methods. First method is called classic

method but, it does not provide slow and fast decomposed Kalman filters independent

of one another computationally. Second method solves this problem by providing slow

and fast filters of the singularly perturbed system independent of one another. In this

section second method is discussed briefly. For more detail regarding the methods

refer to [16]

A linear singularly perturbed in a stochastic environment with stochastic noise

can be represented by:

Ẋ1 = A1X1 + A2X2 +G1w1, (4.3.1)

εẊ2 = A3X1 + A4X2 +G2w1, (4.3.2)

y = C1X1 + C2X2 + w2 (4.3.3)

where X1, X2 are m and n dimensional state vectors, respectively and w1 w2 are

process and measurement white Guassian noises with intensities W1 and W2, respec-

tively. A1−4, G1−2, B1−2andC1−2 are constant matrices. The slow and fast Kalman

filters are given by:

˙̂
Xs = ÂsX̂s +Ksy, (4.3.4)
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˙̂
Xf = ÂfX̂f +Kfy (4.3.5)

where

Âs = (a1F + a2FPsF )T , (4.3.6)

Âf = (b1F + b2FPfF )T (4.3.7)

Ks and Kf are the slow and fast Kalman filter coefficients, respectively. The com-

putaions of Âs and Âf involve solutions of Chang”s decoupling equation:

T4FM − T3F − εM(T1F − T2FM) = 0, (4.3.8)

T2F −N(T4F + εMT2F ) + ε(T1F − T2FM)N = 0 (4.3.9)

where

T1F =

 AT1 −CT
1 W

−1
2 C1

−G1W1G
T
1 −A1

 (4.3.10)

T2F =

 AT3 −CT
1 W

−1
2 C2

−G1W1G
T
2 −A2

 (4.3.11)

T3F =

 AT2 −CT
2 W

−1
2 C1

−G2W1G
T
1 −A3

 (4.3.12)
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T4F =

 AT4 −CT
2 W

−1
2 C2

−G2W1G
T
2 −A4

 (4.3.13)

These equations can be solved to get the solutions for M and N using recursive

algorithms (Fixed Point Algorithm or Newtons Algorithm) explained in (3.2.2). The

matrices a1F , a2F , b1F , b2F in equations (4.3.6) and (4.3.7) can be calculated by:

a1F a2F

a3F a4F

 = (T1F − T2FM) (4.3.14)

b1F b2F

b3F b4F

 = (T4F + εMT2F ) (4.3.15)

And the matrices PsF and PfF in equations (4.3.6) and (4.3.7) are the slow and fast

filters (i.e. solution) for algebraic Riccati equations:

PsFa1F − a4FPsF − a3F + PsFa2FPsF = 0, (4.3.16)

PfF b1F − b4FPfF − b3F + PfF b2FPfF = 0 (4.3.17)

PsF and PfF are given by the solution of Sylvester Equations:

PsF (k + 1)(a1F + a2FPsF (k))

−(a4F − PsF (k)a2F (k))PsF (k + 1) = a3F + PsF (k)a2FPsF (k),

k = 0, 1, 2, ...

(4.3.18)
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PfF (k + 1)(b1F + b2FPfF (k))

−(b4F − PfF (k)b2F (k))PfF (k + 1) = b3F + PfF (k)b2FPfF (k),

k = 0, 1, 2, ...

(4.3.19)

The initial guess for (4.3.18) is the solution of algebraic Riccati equation:

PsF (0)ATsF + AsFPsF (0) +GsW1sG
T
s − PsF (0)CT

s W
−1
2s CsPsF (0) = 0 (4.3.20)

where AsF , Cs, Gs,W1s,W2s can be computed by:

 ATsF −CT
s W

−1
2s Cs

−GsW
−1
1s G

T
s AsF

 = T1F − T2FT
−1
4F T3F (4.3.21)

And the initial guess for (4.3.19) is the solution of algebraic Riccati equation:

Pf (0)AT4 + A4Pf (0) +G2W1G
T
1 − Pf (0)CT

1 W
−1
2 C2Pf (0) = 0 (4.3.22)

The Kalman filter coefficients Ks and Kf are given by:

 Ks

1
ε
Kf

 = T−T2

 K1

1
ε
K2

 (4.3.23)

where T2 is a linear transformation given by:

[
X̂s X̂f

]
= T−T2

X̂1

X̂2

 (4.3.24)
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And K1 and K2 are optimal Kalman filters given by:

K1 = (P1FC
T
1 + P2FC

T
2 )W−1

2 , (4.3.25)

K2 = (εP T
2FC

T
1 + P3FC

T
2 )W−1

2 (4.3.26)

where P1F , P2FandP3F are obtained from the solution of algebraic Riccati equation:

APF + PFA
T − PFSPF +GW1G

T = 0 (4.3.27)

where

A =

 A1 A2

1
ε
A3

1
ε
A4

 , (4.3.28)

G =

 G1

1
ε
A2

 , (4.3.29)

S = CTW−1
2 C, (4.3.30)

PF =

P1F P2F

P T
2F

1
ε
P3F

 (4.3.31)

The linear transformation T2 is given as:

T2 = (Π1F + Π2FPF ) (4.3.32)
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where

ΠF =

Π1F Π2F

Π3F Π4F

 = ET
2F

I2 − εNM −εN

M I2n

E1F (4.3.33)

M and N are solution of the equations (4.3.8) and (4.3.9), and:

E1F =



Im 0 0 0

0 0 Im 0

0 1
ε
In 0 0

0 0 0 In


, (4.3.34)

E2F =



Im 0 0 0

0 0 Im 0

0 In 0 0

0 0 0 In


, (4.3.35)

4.3.2 Optimal LQG Control Design

In this section LQG filter design for singularly perturbed system in a stochastic

environment (i.e like the one in unpredictable wind) in [16] is explained in detail. The

filter design is based on decomposing the Kalman filter.

Consider a singularly perturbed linear continuous system:

Ẋ1 = A1X1 + A2X2 +G1w1, (4.3.36)

εẊ2 = A3X1 + A4X2 +G2w1, (4.3.37)
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y = C1X1 + C2X2 + w2 (4.3.38)

where X1, X2 are m and n dimensional state vectors, respectively and w1 w2 are

process and measurement white Guassian noises with intensities W1 and W2, respec-

tively. A1−4, G1−2, B1−2andC1−2 are constant matrices. The cost function is given by:

J = lim
tf→∞

1

tf
E

{∫ tf

t0

[ZTZ + uTRu]dt

}
(4.3.39)

where t0 and tf are initial time and final time respectively,z = Q1FX1 + Q2FX2

is a controlled output, where Q1F ≥ 0 and Q2F ≥ 0 are state weighing matrices,

and R > 0 is control weighing matrix. Optimal control law for the system (4.3.36),

(4.3.37) and (4.3.38) is given in terms of slow and fast Kalman Filters as:

u∗ = −FX̂ = −FsX̂s −−FfX̂f = u∗s + u∗f (4.3.40)

where Fs and Ff are slow and fast regulator gains, respectively, and Xs and Xf are

slow and fast states. Slow and fast Kalman filters are give by:

˙̂
Xs = ÂsX̂s +Bsu+Ksy, (4.3.41)

ε
˙̂
Xf = ÂsX̂f +Bfu+Kfy, (4.3.42)

where Âs and Âf are given by (4.3.6) and (4.3.7) respectively, Ks and Kf are given
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by (4.3.23) and Bs and Bf is calculated by:

 Bs

1
ε
Bf

 = T T2

 B1

1
ε
B2

 (4.3.43)

with T2 given by:

[FsFf ] = FT T2 = R−1BTP (Π1F + Π2FPF )T (4.3.44)

where PF is the solution of the Algebraic Riccati Equation (4.3.27) and P is the

solution of Algebaric ricatti equation given by:

PA+ ATP +Q− PBR−1BTP = 0. (4.3.45)

The optimal value of cost function is

J∗ = tr
{
PGW1G

T + PFF
TRF

}
(4.3.46)

The implementation diagrams of the reduced order LQG filtering and control is shown

below in Figure 4.2 where two independent reduced order filters are used to estimate

the slow and fast state vectors based on the system output, y, and control input, u.

The overall control is a composite of two reduced-order LQG optimal controls, us and

uf , as indicated in (4.3.40).
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Figure 4.2: LQG Control Diagram

4.4 Summary

In this chapter two of the most prominent optimal control techniques LQR and

LQG are explained in detail with step by step description to obtain corresponding

optimal control filters for original system and then for singularly perturbed slow and

fast subsystems. In the next chapter, the simulation results of each technique are

presented which have been implemented in MATLAB to compare the results of each

technique original optimal control filter results with the results of two seperate filters

for both slow and fast subsystem.
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5 Results

5.1 Introduction

In this chapter the simulation results of the different optimal control techniques

that have been explained in the previous chapter for both original system and the

singularly perturbed slow and fast sub-systems, both the results are compared in case

of each control technique. An analysis is also done to check if, implementation of time

scales and designing of the individual optimal control filters for the subsystem has

improved the performance by comparing and analyzing the simulation results.

5.2 Optimal LQR Control Simulation Results

The Optimal LQR theory explained in the previous chapter and the filter obtained

for the system in the section 4.2 has been applied to to the original system and singu-

larly perturbed slow and fast subsystems of the Grid connected PMSG-based system

from state-space equations (3.3.4), (3.3.8) and (3.3.9) are simulated in MATLAB and

SIMULINK environment to compare the results. The simlation results are as shown

below in each case
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5.2.1 Optimal LQR Control and Simulation Results for Orig-

inal System

LQR filter is designed for the original system in equation (3.3.4) using the control

theory explained in section 4.2.1 and the optimal gain computed by MATLAB using

lqr function using the weighing matrices from equation (4.2.4) is as follows:

K =



1.2535 −0.5609 0.0087 −0.0267 −0.5657 0.0015

−0.2687 0.1038 −0.0133 0.0019 0.0015 −0.5587

0 0 0 0 0 0

−15.8572 0.9702 0.5783 2.2907 0.0111 −0.0008


(5.2.1)

Simulation Results Graph for Original System using LQR filter

All the states of the system (3.3.4) are fed back through the filter (K) designed in

the equation above (5.2.1) with the initial conditions of all the states as zeroes and

the resulting responses are shown in the Figure 5.1. below:
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Figure 5.1: LQR Original System Results

5.2.2 Optimal LQR Control and Simulation Results for Slow

and Fast Subsystems

LQR filter is designed for the Singularly perturbed slow subsystem in equation

(3.3.8) using the control theory explained in section 4.2.2 and the optimal gain com-

puted by MATLAB using lqr function for the slow subsystem using the weighing
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matrices from equation (4.2.9) is as follows:

Ks =



−0.6810 −1.5031 1.8406 0.3522

0.1224 0.2702 −0.33085 −0.0633

0 0 0 0

−5.1697 0.0172 0.0574 1.6202


(5.2.2)

similarly LQR filter is designed for fast subsystem in equation (3.3.9) using the equa-

tions and control theory in section 4.2.3 and the optimal gain computed by MATLAB

using lqr function for using the weighing matrices from equation (4.2.14) is calculated

as:

Kf =



−0.5583 −0.00009

−0.00009 −0.5583

0 0

0 0


(5.2.3)

Simulation Results Graph for Slow and Fast Subsystem using correspond-

ing LQR filters for each subsystem

All the states of the system (3.3.8) and (3.3.9) are fed back through the slow

subsystem filter (Ks) and fast subsystem filter (Kf ) respectively designed in the

equations (5.2.2) and (5.2.3) with the initial conditions of all the states as zeroes and

the resulting responses are shown in the Figure 5.2. below: In the graphs the responses

of all the slow states ωr, ωg, TH and beta are corresponding to the slow subsystem filter

(i.e. Ks) and responses of fast subsystem states id and iq are corresponding to fast

filter (i.e. Kf ).
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Figure 5.2: LQR Decoupled System Results

5.2.3 Comparision of Responses of Each State

In the following graphs all responses of the states in original system are com-

pared to corresponding responses of the states in singularly perturbed slow and fast

subsystems
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Figure 5.3: Comparision of Angular Velocity of Rotor (ωr)

Figure 5.4: Comparision of Angular Velocity of Generator (ωg)

5.3 Optimal LQG Control Simulation Results

In this section the optimal LQG theory explained in section 4.3 is implemented on

the the original and singularly perturbed systems in (3.3.4), (3.3.8) and (3.3.9) using

MATLAB and SIMULINK and the results calculated With the initial conditions for
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Figure 5.5: Comparision of Internal Torque (TH)

Figure 5.6: Comparision of Pitch Angle (β)

all the states as zero and simulations are explained and compared to one another.

5.3.1 Optimal LQG Control Simulation Results

All the results obtained for all the matrices and arithematic ricatti equation for

the system in equation (3.3.4) are as follows:
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Figure 5.7: Comparision of d-component of stator current in PMSG (id)

Figure 5.8: Comparision of q-component of stator current in PMSG (iq)

Considering only single state for the output

C = [C1C2] =

[
1 0 0 0 0 0

]
(5.3.1)
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where

C1 =

[
1 0 0 0

]
, C2 =

[
0 0

]
(5.3.2)

Also considering the process and measurement noises as W1 = W2 = 1. The solution

for Chang’s decoupling equations (4.3.8) and (4.3.9) is:

M =



0.0088 −7.6055 1.8566 0 0 0 0 0

0.0072 1.3496 −1.6122 0 0 0 0 0

0 0 −0.0002 0 0.0004 −0.0443 0 0

0 0.0008 −0.002 0 0 0.0158 −0.0004 0


(5.3.3)

and

N =



0.0004 0 0 0

−0.0443 0.0158 0 0

0 −0.0004 0 0

0 0 0 0

0 0 0.0088 0.0072

0 −0.0008 −7.6008 1.3488

0.0002 0.0002 1.8552 −1.6119

0 0 0 0



(5.3.4)

Matrices a1F and a2F from equation (4.3.14) are calculated as:

a1F =



−2.7453 0 445.0584 0

−0.0004 0.0955 −74.9828 0

−2.0833 4.5455 −5.1136 0

−3.3771 0 −6.0788 −10


(5.3.5)
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a2F =



−3.3333 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


(5.3.6)

Matrices b1F and b2F from equation (4.3.14) are calculated as:

b1F =

−0.1374 −0.7634

0.7630 0.1371

 (5.3.7)

b2F = 10−8X

0 −0.1075

0 −0.1045

 (5.3.8)

Solution for Psf and PfF for the slow and fast ricatti equation s in (4.3.16) and

(4.3.17) are computed as:

PsF =



0.5192 0.9596 0.9011 −0.0229

0.9590 10.4436 0.1174 −0.1055

0.9012 0.1194 79.0570 −0.2461

−0.0229 −0.1056 −0.2461 0.2499


, PfF = 10−3

 0.3146 0

−0.0001 0.3146


(5.3.9)

The slow and fast Kalman filter coefficients in equation (4.3.23) are obtained as:

Ks =



1.7308

3.1985

3.0035

−0.0763


, Kf = 1−10

 −1.223

−0.3760

 (5.3.10)
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The slow (Âs) and fast system (Âf ) matrices obtained from equations (4.3.6) and

(4.3.7) of Kalman filtering are :

Âs =



−4.4761 −0.0004 −2.0833 −3.3771

−3.1985 0.0955 4.5455 0

442.0549 −74.9828 −5.1136 −6.0788

0.0763 0 0 −10


(5.3.11)

Âf =

−0.1374 0.7630

−0.7634 −0.1371

 (5.3.12)

Slow and fast input matrices Bs and Bf calculated are as follows:

Bs =



0.0004 0.0003 0 0

−0.3161 0.0561 0 0

0.0772 −0.0670 0 0

0 0 0 10


(5.3.13)

Bf = 10−4

−0.7174 −0.0001 0 0

−0.0002 −0.7178 0 0

 (5.3.14)

And the slow and fast regulator gains Fs and Ff from equation (4.3.44) are computed

as:

Fs =



4.7630 −3.2576 0.0829 −0.1909

−2.0986 1.1896 −0.0945 0.0776

0 0 0 0

−67.4661 6.4325 −1.1252 8.3751


(5.3.15)
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Ff = 10−3



−2.1951 −0.0040

−0.0090 −2.2173

0 0

−0.0516 0.0100


(5.3.16)

Kalman filter has been decomposed into slow and fast Kalman filters and then fed

into slow and fast optimal regulator gains for simulation as shown in the Figure 4.2

and the simulation results for one of the states is as follows:

Figure 5.9 has all the state estimates for the original system when passed through

the LQG filter.

Figure 5.9: State Estimates for LQG Original System (iq)
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Figure 5.10 below has the state estimate for Angular velocity for the rotor ωr

scaled to proper size for the original system. Figure 5.11 shows the state estimate for

Figure 5.10: Response for (ωr) original system

Angular velocity for the rotor ωr scaled to proper size for the decomposed system.

Figure 5.11: Response for (ωr) decomposed system
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Figure 5.12 has both of the above graphs for comparison of response for ωr of

original system to that of reduced order system (i.e. Decomposed system). And

Figure 5.12: Difference between the Responses for (ωr)

Figure 5.13 has the difference between control signals generated by LQG control

loops of original system and decomposed system for ωr. Figure 5.14 shows the state

Figure 5.13: Difference between the Control signals for ωr

estimate for Angular velocity for the PMSG ωg scaled to proper size for the original

87



system. Figure 5.15 shows the state estimate for Angular velocity for the PMSG ωg

Figure 5.14: Response for (ωg) original system

scaled to proper size for the decomposed system. Figure 5.16 has both of the above

graphs for comparison of response for ωg of original system to that of reduced order

system (i.e. Decomposed system). And Figure 5.17 has the difference between control

signals generated by LQG control loops of original system and decomposed system

for ωg.

Figure 5.18 shows the state estimate for Internal Torque (TH) scaled to proper

size for the original system. Figure 5.19 shows the state estimate for Internal Torque

(TH) scaled to proper size for the decomposed system. Figure 5.20 has both of the

above graphs for comparison of response for Internal Torque (TH) of original system

to that of reduced order system (i.e. Decomposed system). And Figure 5.21 has the

difference between control signals generated by LQG control loops of original system

and decomposed system for Internal Torque (TH).

Figure 5.22 shows the state estimate for Pitch Angle (β) scaled to proper size for
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Figure 5.15: Response for (ωg) decomposed system

Figure 5.16: Difference between the Responses for (ωg)

the original system. Figure 5.23 shows the state estimate for Pitch Angle (β) scaled

to proper size for the decomposed system. Figure 5.24 has both of the above graphs

for comparison of response for Pitch Angle (β) of original system to that of reduced

order system (i.e. Decomposed system). And Figure 5.25 has the difference between

control signals generated by LQG control loops of original system and decomposed
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Figure 5.17: Difference between the Control signals for ωg

Figure 5.18: Response for (TH) original system

system for Pitch Angle (β).

Figure 5.26 shows the state estimate for Stator Current (id) scaled to proper size

for the original system. Figure 5.27 shows the state estimate for Stator Current
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Figure 5.19: Response for (TH) decomposed system

Figure 5.20: Difference between the Responses for (TH)

(id) scaled to proper size for the decomposed system. Figure 5.28 has both of the

above graphs for comparison of response for Stator Current (id) of original system

to that of reduced order system (i.e. Decomposed system). And Figure 5.29 has the
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Figure 5.21: Difference between the Control signals for (TH)

Figure 5.22: Response for (β) original system

difference between control signals generated by LQG control loops of original system

and decomposed system for Stator Current (id).

Figure 5.30 shows the state estimate for Stator Current (iq) scaled to proper size

for the original system. Figure 5.31 shows the state estimate for Stator Current

92



Figure 5.23: Response for (β) decomposed system

Figure 5.24: Difference between the Responses for (β)

(iq) scaled to proper size for the decomposed system. Figure 5.32 has both of the

above graphs for comparison of response for Stator Current (iq) of original system

to that of reduced order system (i.e. Decomposed system). And Figure 5.33 has the
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Figure 5.25: Difference between the Control signals for (β)

Figure 5.26: Response for (id) original system

difference between control signals generated by LQG control loops of original system

and decomposed system for Stator Current (iq).
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Figure 5.27: Response for (id) decomposed system

Figure 5.28: Difference between the Responses for (id))
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Figure 5.29: Difference between the Control signals for (id)

Figure 5.30: Response for (iq) original system
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Figure 5.31: Response for (iq) decomposed system

Figure 5.32: Difference between the Responses for (iq))
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Figure 5.33: Difference between the Control signals for (iq)
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6 Conclusions and Future Works

6.1 Conclusion

Wind energy penetration into the electric grid and electric energy generation is

increasing exponentially year after year and control system acts as a brain to WECS

dictating it how to behave in different kinds of environment and different weather

conditions and also how to change behaviour with the changes in weather conditions,

along side of balancing with the noises generated internally and externally and im-

proving the energy conversion efficiency with little to effect to the physical health

conditions of the WECS. So, to manage a WECS system to overcome all the above

mentioned problems and fulfill the requirements, traditional control techniques are

not capable to perform such complex tasks. Therefore, advanced control techniques

are needed for fulfilling the needs and managing all the control problems with proper

trade-offs that are acceptable, reliable and profitable. In this project optimal control

strategies with singular perturbation and time scales methods have been proposed

and the conclusions about those techniques and their implementation is summarized

below:

1. Singular Perturbation and Time Scales: By dividing a single higher order com-

plex system with fast and slow dynamics into two separate subsystems makes the

design less complex with lower effort mathematically with flexible inexpensive

ways for designing controllers. The results have shown that closeness of results

99



of subsystem results to that of results of single higher order complex system

conclude that the behaviour of the systems does not change in any manner by

implementing the time-scales techniques.

2. LQR optimal control: Optimal controllers were designed for the Higher-order

system and then also for the slow and fast subsystems obtained from the Higher-

order system by using singular perturbation and time scales. The performance

of the reduced-order slow and fast LQR controllers were compared with original

higher-order LQR controller using the simulation results which show that the

performance of both are very close to each other.

3. LQG optimal control: LQG control technique used in this project is similar

to that of LQR control but the systems are assumed to be influenced by the

Guassian noises and some system states are unavailable so, Kalman filters are

designed to estimate the unavailable states. The designed Kalman filter is

separated into slow and fast Kalman filters by using Singular perturbation and

time scales technique and combined with slow and fast LQG gains, forming

reduced order LQG optimal controllers. And the both the simulation results

are compared to verify that the performance of the reduced order LQG filters

and higher-order LQG filters are the same. performance.

6.2 Future Works

The responsibility of a control system in WECS has very wide variety of roles

as listed out in the problem statement and the area focused in this project is with

improvement of conversion efficiency for the VSVP-WECS. The remaining problems

have not been addressed in this project so, some of the possible pointers for the future
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works related to WECS are as follows:

1. Evolving the modelling of WECS to include other major impacting factors on

the performance of WECS.The models derived in this project are much sim-

plified by considering only the fundamental dynamics into account. The other

models that could be integrated include much more complex factors like tower

bending, phenomenon of wind shear and tower shadowing which induce negative

compacts on power output which are not investigated. The next step would be

identifying other dynamics that could be integrated into the model to represent

the WECS system in more detail mathematically for further studies, using first

principle or system identification.

2. Applying of singular perturbation to the non-linear models of WECS. Singular

perturbation and time scales have only been implemented on the linear model

in this project. The implementation on non-linear systems model would give

better results with non-linear dynamics being taken into account.

3. Implementation of advanced control techniques on VSVP-WECS. In this project

the implementation of singular perturbation on VSVP-WECS is only done using

the optimal control techniques. Other advanced control techniques like adaptive

control and other hybrid control techniques could be explored to improve the

performance.
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