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EXECUTIVE SUMMARY 

Approximately 49,000 bicyclist-motorist crashes and over 700 bicyclist fatalities occur each year in the 

US.  This project focuses on development of a sensing and estimation system for a bicycle to accurately 

detect and track vehicles for two types of car-bicycle collisions.  The two types of collisions considered 

are collisions from rear vehicles and collisions from right-turning vehicles at a traffic intersection.  While 

approximately 40% of bicycle-car collisions are estimated to be from rear vehicles, one study estimates 

right-turning vehicles to be involved in 16% of motorist-bicyclist collisions.  Thus, both the types of 

collisions studied in this project are of significant importance.  When a potential collision is predicted by 

the vehicle tracking system on the bicycle, a loud horn is used to alert the motorist to the presence of 

the bicycle. 

The collision avoidance system and vehicle tracking sensors used on cars cannot directly be re-utilized 

on bicycles.  A typical radar used on a car can cost several thousand dollars and would be too large for 

use as a bicycle accessory.  This project requires the total retail cost of all components used by the 

collision detection system on the bicycle to be less than $500.  While the collision detection system on a 

bicycle is required to be inexpensive, small and lightweight, it must track a different and larger set of 

vehicle maneuvers compared to a forward collision avoidance system on a car.  For example, a bicycle 

must account for side and rear collisions.   

To monitor side vehicles and detect danger from a right-turning car, a custom sonar sensor is developed.  

It consists of one ultrasonic transmitter and two receivers (with a total cost below $20) from which both 

the lateral distance and the orientation of the car can be obtained.  A Kalman Filter based vehicle 

tracking system that utilizes this custom sonar sensor is developed and implemented on the bicycle.  

Experimental results show that it can reliably differentiate between straight driving and right turning 

cars, so that a potential collision can be differentiated from a passing vehicle.  A warning can be 

provided in time to prevent a collision. 

For tracking rear vehicles, an inexpensive single-beam laser sensor is mounted on a rotationally 

controlled platform. While the laser sensor is inexpensive (cost $89), it has a single thin beam that 

provides only one distance measurement in the direction where it is oriented.  Rotational scanning of 

the rear with the laser sensor is too slow for reliable collision prevention, since it provides only 

occasional distance updates on the rear vehicle.  The rotational orientation of the laser sensor therefore 

needs to be actively controlled in real-time in order to continue to focus on a rear vehicle, once the 

presence of a rear vehicle has been detected.  As the vehicle’s lateral and longitudinal distances change, 

the orientation of the laser sensor needs to change. This tracking problem requires controlling the real-

time angular position of the laser sensor without knowing the future trajectory of the vehicle. The 

challenge is addressed using a novel receding horizon framework for active control and an interacting 

multiple model framework for estimation of the vehicle’s trajectory. The features and benefits of this 

active sensing system are illustrated first using simulation results. Then, extensive experimental results 



 

 

are presented using an instrumented bicycle to show the performance of the system in detecting and 

tracking rear vehicles during both straight and turning maneuvers of the rear vehicle.  

Finally, data on real-world performance of the rear collision prevention system is obtained by 

conducting tests on a regular urban road near the University of Minnesota.  The developed system is 

found to work reliably and to track all rear vehicles within the designed domain of interest. 

Future work that would enhance the collision detection system and enable implementation of this 

research are identified.   These include the development of a sensor fusion system that combines the 

use of the side sonar and the rear collision laser sensor, the conducting of a rigorous field operational 

test, the development of visual and audio warning systems that are human-centered and effective, and 

the development of a vehicle tracking system for addressing collisions from cross-traffic and left turning 

vehicles at a traffic intersection.  These tasks are planned to be taken up in a new research project for 

which the PI (together with other collaborators) has received NSF funding.   

A number of videos that show the performance of the developed collision prevention system during 

scenarios involving various rear vehicle maneuvers and various right-turning vehicle maneuvers have 

been made available on the internet for public viewing.  These videos can be found at the following web 

site: http://www.me.umn.edu/~rajamani/download/BicycleVideos/ 
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CHAPTER 1:  INTRODUCTION  

Over 49,000 bicyclist-motorist crashes were reported to police and resulted in 726 bicyclist fatalities in 

the US in 2012 [1]. Likewise, a recent report from the Insurance Institute for Highway Safety (IIHS) finds 

that more than 3,300 bicyclist fatalities occurred in a five-year period from 2008 to 2012 [2]. In the IIHS 

study, 45% of the fatalities involved a vehicle traveling in the same direction as a bicyclist [2]. This 

implies that the most common fatal bicyclist-motorist crash is likely by a vehicle approaching from 

behind the bicycle. Another report from the League of American Bicyclists [3] also finds that the most 

common bicyclist-motorist collision type is a rear end collision (40%) which is “a hit from behind”. 

Additionally, a sideswipe collision (4%) is also caused by a vehicle initially approaching from the rear [3]. 

A report on bicycle accidents that occurred between 2001 to 2010 in Minneapolis [4] documented that 

the most common pre-crash maneuvers for motorists are vehicle following roadway (42%), vehicle 

making left turn (18%) and vehicle making right turn (16.4%). 

This project addressed collisions due to rear vehicles and right-turning vehicles at a traffic intersection. 

The collision prevention system can be used to predict impending collisions and provide warnings to 

both the bicyclist and the involved motorist. Since a majority of these crashes are due to motorist being 

inattentive or careless [3, 4], the collision warning system will focus on warning the motorist. If a danger 

of collision is detected, the bicycle could provide a visual alert, followed by a more intrusive increasingly 

intensive audio signal if the visual alert is inadequete. Having a sensor system entirely on a bicycle 

provides safety enhancement without a requirement for all the vehicles on the road to be instrumented 

with bicycle detection sensors. 

Automotive companies have developed a number of forward collision avoidance systems. Many of these 

systems utilize LIDAR or radar sensors or a combination of these [5-9]. However, these sensors are too 

big and too expensive (typically costing thousands of dollars) for a bicycle.  

Aftermarket camera-based collision avoidance systems such as Mobileye [12] have also been 

commercially developed for cars. However, a continuous camera-based system is difficult to power 

using batteries on a bicycle. Further, such a camera-based system has a hardware cost of over $850 and 

additionally requires professional installation ($150) [12].  

Another avenue of research has been the use of aftermarket camera systems on cars and buses to 

detect bicycles and pedestrians [10, 11]. Bicyclists cannot depend on all the cars on the road being 

instrumented with such bicycle detection systems for their safety. It is likely to take decades before such 

systems can achieve adequate penetration among all vehicles on the road to make bicycling safer. 

As opposed to automotive research, very little research resources are currently spent on improving 

technology for bicycle safety. To the best of this research team’s knowledge, sensor systems for bicycles 

have been explored only by a few research teams [13 - 16] and just two companies [17, 18]. The sensor 

systems currently explored for bicycles are limited in that the sensor systems are unable to provide 
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vehicle maneuver information to bicyclists and do not provide real-time warnings to the involved 

motorists. The current sensor systems that have been explored in literature for a bicycle are 

summarized in Table I. 

Table 1. Current Sensor Systems Explored for a Bicycle 

Sensor Type Specific Sensor Description 

Sonar [13], 

[18] 

MaxBotix 

MB120

2 

• Low cost and low power consumption 

• Limited sensing range (less than 10m) 

• Does not provide target vehicle maneuver 

(passing versus right behind) 

Radar [17] Garmin Varia • Long sensing range (up to 140m) 

• Dose not provide target vehicle maneuver 

(passing versus right behind) 

Magnetome

ter 

[14]

, 

[15] 

Honeywell 

HMC10

52L 

• Good performance for close proximity and for 

most environmental conditions 

• Limited sensing range (2m) 

• Does not provide target vehicle maneuver 

(passing versus right behind) 

Optical 

(ca

mer

a) 

[16] 

Sony Handicam 

DCR-

SX40 

• Very detailed information 

• Limits in weather and lighting conditions 

• Computationally expensive 

Figure 1 shows the two types of car-bicycle crashes that will be addressed in this project, namely 

collisions from rear vehicles and collisions from right turning vehicles at a traffic intersection. 

 
 

Figure 1. Two types of crashes at intersection addressed in this project 
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CHAPTER 2:  SIDE COLLISION WARNING SYSTEM 

When a bicycle is in the blind spot of a driver, the bicyclist could be in danger due to a right turning car, 

as shown in Figure 2. In order to prevent a collision, a sensor system that can detect and track the car 

during this maneuver is needed. A custom-designed sonar sensor system is developed on the left side of 

the bicycle to address this scenario.  

2.1 CHALLENGES WITH SIDE COLLISION WARNING SYSTEM 

Bicyclist-motorist crashes in which the bicycle is riding through the intersection while the motorist is 

making a right turn have relatively small pre-collision space and occur very quickly. Thus, a rapid warning 

decision is necessary. Also, the warning system needs to provide an alert to the motorist in order to make 

the motorist aware of the bicyclist’s presence. Typically the motorist fails to see the bicyclist in this type 

of collision although the motorist has more control to avoid or mitigate damage from the collision. 

Another challenge in this collision warning scenario is that the warning system needs to predict the right 

turning car maneuver in sufficient time for the warning to be effective.  Since response time is estimated 

to be 0.8 seconds for a human driver, the warning needs to be provided more than 1 second before 

predicted collision for it to be useful.  Further, unnecessary loud warnings will cause sound pollution on 

the roads and unnecessary distraction to motorists.  Hence, the collision prediction system needs to 

perform accurately with low false alarm rates. Thus, the warning system needs to detect the right turning 

car both accurately and promptly. 

 

Figure 2. Side collision by a right turning vehicle. 

Sonar sensors are considered for this system since they have suitable price, weight and size for a bicycle 

application. However, there is a difficulty in early prediction of the side car’s maneuvers and in 

differentiating between a straight driving and turning car. Figure 3 shows that early sensor measurements 

are similar in both of these cases. Due to sonar sensor characteristics and common car shapes, the range 

measurement from the sensor decreases when the side car is entering the sensing region of the sonar. 

After the car fully enters in the sensing region, the two maneuver cases then provide different trends of 

the range measurement. However, it is too difficult to predict the turning maneuver early using only range 

measurement information. Consequentially, more information is needed and a custom sonar sensor that 
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can measure both range and vehicle orientation is developed in section B. More details will also be 

provided using experimental data in section C, on distinguishing between the two maneuvers.  

 

 

Figure 3. Similar measurement pattern (Red dot) from two different maneuvers when a car enters the sensing 

region (Blue region). 

2.2 CUSTOM-DESIGNED SONAR SENSOR SYSTEM 

 

Figure 4. Instrumented bicycle. 

Figure 4 shows the proposed sonar sensor system on a bicycle. The sensor system is composed of one 

transmitter and two receivers so that it can measure not only the distance to the object, but also the 

angular orientation of the object’s side surface. This system can be operated with a 50Hz sampling rate 

and provides up to a 6m range measurement. 
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Figure 5. Sonar system with one transmitter and two receivers [26]. 

The schematic in Figure 5 describes the construction and operation of the custom sonar system. A sound 

wave is initiated from the transmitter 𝑇 and the echoes are detected by the two receivers 𝑅1 and 𝑅2 

located at longitudinal distances 𝑑1 and 𝑑2 from the transmitter as shown in Figure 5. Measuring the time 

that sound takes to travel from the transmitter to the receivers, the travel distance 𝑙1 and 𝑙2 in Figure 5 

can be calculated. From the two measurements 𝑙1 and 𝑙2, the angle 𝜃2 can be calculated using the cosine 

rule as 
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where 𝑑𝑠 is 𝑑1+𝑑2. Then, the distance 𝑙𝑠 can be calculated using the cosine rule and 𝑥𝑠 can be obtained 

from 𝑙𝑠 as 
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Using the cosine rule one more time, the estimated angle of object’s surface can be calculated as 
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It is worth mentioning that this system can provide not only angular information but also more robust 

performance. Since this system has two receivers, abnormal range measurement data can be detected by 

comparing the two measurements.  
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2.3 RIGHT TURNING CAR DETECTION AND WARNING DECISION 

In addition to the relative lateral distance and relative angle, relative lateral velocity and relative angular 

velocity between the car and bicycle can be considered since the velocities involve not only present but 

also future information. A Kalman filter is used to estimate the relative lateral and angular velocity. The 

state vector to be estimated is 

 '

sssss
xxX                (6) 

where 𝑥𝑠 is relative lateral distance, 𝑥̇𝑠 is relative lateral velocity, 𝜃𝑠 is relative angle, and 𝜃𝑠̇ is relative 

angular velocity. The discrete-time model can be modeled as 

)()()1( kwkFXkX
sss

 , )()()( knkHXkZ
s

                (7) 


































0100

0001
,

1000

100

0010

001

H
t

t

F               (8) 

where 𝑤𝑠(𝑘) and 𝑛(𝑘) are process and measurement noises. While a Kalman filter is used as the 

estimator, the Mahalanobis distance is also used to reject outliers. 

Figure 6 and 7 show experimental data for the two cases, one in which the car is just passing by the bicycle 

and one in which the car makes a right turn towards the bicycle. As discussed earlier, initial behavior of 

the lateral distance and velocity of the car are similar in the two cases. Also, the evolution of the relative 

angle and velocity for the passing car case can be seen in Figure 6. Even though there is ambiguity, the 

magnitude of velocities from the car passing by the bicycle will be smaller than the other case if the car is 

passing by the bicycle slowly. Most importantly, if the relative angular velocity compared to relative lateral 

velocity is checked, we can clearly see the different behavior of the velocities. When the car is turning 

towards the bicycle, both the angular and lateral velocity change rapidly as the car gets closer. When the 

car is passing by the bicycle, the change of the angular velocity is initially similar to when the car is turning. 

However, since the car becomes far from the bicycle, the lateral velocity evolves in the opposite direction, 

in contrast to the velocity from the turning car. From this physical evidence, two thresholds can be simply 

and reliably setup for the velocities. If the velocities satisfy both conditions, the turning maneuver can be 

confirmed properly within a short time. 
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Figure 6. Experimental result when the car is passing by the bicycle. 

 

Figure 7. Experimental result when the car is turning into the bicycle. 

 



8 

 

2.4 REAR COLLISION PREVENTION 

In order to address rear collisions, we aim to develop a general target detection and tracking system 

which can track a rear vehicle that might be right behind the bicycle, or in an adjacent lane next to a 

bicycle lane, and might be traveling straight or turning in either direction. Figure 8 shows four types of 

scenarios that are commonly encountered with respect to rear vehicles and bicycles. Due to high cost, 

size and weight constraints on a bicycle, a low cost laser sensor and a rotating platform are proposed as 

shown in Figure 9. The laser sensor has a long range (35 meters), small size, weight and low cost ($89, 

single unit retail) [19]. However, the sensor has only a single laser beam and low sampling frequency 

(50Hz). This poses the following challenges: First, since the target (vehicle) size is much larger than the 

spread of the laser beam (~8 milli-radians), the measurement of the laser sensor will not provide 

adequate spatial information of the target such as lateral and longitudinal position and orientation. For 

example, unless the measurement is obtained exactly from a corner of the vehicle, either longitudinal or 

lateral distance between the vehicle and sensor is uncertain. Second, many researchers estimate the 

target kinematics such as position, orientation and velocity based on measurements from a full scan set 

(or multiple scans) of an area of interest on the vehicle using expensive LIDARs [5]. However, a complete 

scan over the full area of interest takes too much time using the proposed laser sensor system due to its 

low sampling frequency. Due to the above reasons, active sensing which uses an intelligent algorithm for 

determining real-time laser sensor orientation is necessary to track the target effectively. Here it should 

be noted that as the rear vehicle’s lateral and longitudinal positions change, a varying laser sensor 

orientation is required in real-time to track the vehicle, as shown in Figure 10.  

 

 

 

Figure 8. Four types of scenarios of rear approaching vehicle. (a) Approaching right behind, (b) Changing lane to 

the right, (c) Passing by and (d) Changing lane to the left. 
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Figure 9. Laser sensor system on bicycle. (a) Rear-facing sensor. (b) Zoomed in. 

 

 

Figure 10. Necessity of changing sensor orientation for tracking. 

The rest of this report is organized as follows. In the next section, a clustering based detection algorithm 

for identifying a target as an on-road vehicle and its experimental performance are presented. Then in 

Section V, a 1-D vehicle motion tracking system is provided and its experimental performance is 

discussed. In Section VI, a receding horizon optimization technique for active control and an Interacting 

Multiple Model (IMM) framework for estimation used for 2-D vehicle motion tracking is discussed and 

its performance studied in simulations and experiments. Conclusions are presented in Section VIII.  
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CHAPTER 3:  DETECTION OF A REAR APPROACHING VEHICLE 

 

 

Figure 11. Flowchart of the proposed target detection algorithm with computing the initial conditions of target 

position and velocity 

Detection of a target as a rear approaching vehicle is non-trivial since not only the target vehicle but also 

the ground and any other objects in the area of interest can be detected by the laser sensor and can 

initiate tracking. A clustering-based target detection algorithm which also computes the initial 

conditions of the target’s position and velocity is proposed. The flowchart of the proposed algorithm 

procedure is shown in Figure 11. The Density Based Spatial Clustering of Application with Noise 

(DBSCAN) [20] is utilized in this algorithm and customized for the bicycle application. The DBSCAN 

requires two parameters: a minimum radius Eps and a minimum number of points within the radius 

minPts. Using these parameters, the DBSCAN can identify clusters by examining the local density of data 

in spatial data sets. The laser sensor system initially keeps scanning over a pre-determined range and 

stores measurements to an array. Once a number of stored measurement data exceeds minPts, the 
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DBSCAN examines the data to decide whether it constitutes a cluster or not. By setting proper Eps and 

minPts, measurements from small objects or outliers cannot contribute to the cluster. This procedure is 

iterated until a cluster is discovered and then a certain number of iterations until other points do not 

contribute to the cluster. After the isolated cluster is found, the cluster is examined by its lateral size. If 

the size is within thresholds, the cluster is confirmed as a target vehicle. Otherwise, stored data are 

deleted and this procedure is repeated.  

Figure 12 (a) shows the raw experimental data for a rear passing vehicle. The laser sensor system is fixed 

on a tripod and initially scans open-loop with a 30 degrees fixed range. A vehicle approaches in a 

straight motion and passes by the sensor system. The measurements are represented on a 2-D map 

(longitudinal versus lateral distance) using range and orientation of the sensor measurements. Figure 12 

(b) shows the result using the proposed clustering method. The outliers (small number of data in 

isolation) and ground detection points (sparse data) are eliminated. 

After the cluster is confirmed as a target, initial conditions of the target kinematics are computed for 

better tracking performance. An initial relative velocity is calculated using stored data on the center of 

the vehicle. For instance, most recent data are used when the sensor system detects a target with 

clockwise direction scan. To the next step, the scan direction is reversed to find initial relative position 

(right front corner position) of the vehicle. If the reversed scan direction is counter-clockwise (CCW), the 

sensor system scans over the target until the sensor misses the target. Then, the last measurement 

before the sensor misses the target is used as initial relative position of the target. If the reversed scan 

direction is clockwise (CW), the sensor system scans until the sensor obtains first measurement from the 

target and the measurement is used as the initial relative position of the target. Finally, the target 

detection is completed, and target motion tracking and estimation start using the calculated initial 

conditions.  
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(a) 

 

 

 

(b) 

Figure 12. Results of real laser scans using 30 degrees fixed range. (a) Raw data.  

(b) Result using the clustering method (colors present each scans). The Eps and minPts are used as 0.5 m and 4 

respectively. 
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CHAPTER 4:  TRACKING OF ONE-DIMENSIONAL VEHICLE 

MOTION 

To begin with, we assume that the vehicle has only 1-D motion. The vehicle could be in the same lane as 

the bicycle, or in the adjacent lane to the left, if the bicycle is driving in a bicycle lane or a shoulder as 

shown in Figure 8 (a) and (c). A complete scan over the full area of interest takes too much time for even 

1-D vehicle motion tracking using the proposed laser sensor system due to its low sampling frequency. 

Thus, an efficient control algorithm is needed to control and focus the orientation of the laser sensor in 

real-time. In this paper, we approximate the geometric shape of the vehicle by a rectangular shape and 

all variables are defined based on a 2-D coordinate frame attached to the bicycle as illustrated in Figure 

13, where ϕ and d are the sensor orientation and range measurement, and x and y are relative 

longitudinal and lateral distances.  

 

 

Figure 13. Illustration of 2-D coordinates relative to the bicycle and associated variables. 

 

4.1 RECEDING HORIZON CONTROL FOR 1-D MOTION TRACKING 

We first consider the case where the vehicle behind the bicycle is traveling straight without turns. In this 

case, once the target vehicle is detected, the system focuses on estimation of longitudinal distance 

between the vehicle and the bicycle. Thus, the sensor system needs to aim at the front of the vehicle 

continuously to estimate the longitudinal distance. We address this problem using the Model Predictive 

Control (MPC) approach so as to control the laser sensor to track a reference point on the front of the 

target vehicle using limited rotational angle changes. The sensor system dynamics are 

 kkk u  1
 (9) 

where uk is sensor orientation control input at time k. It is too difficult to predict the motion of the 

target vehicle accurately over multiple time steps due to unknown desired acceleration actions. 

Therefore, we focus on one step prediction of the motion of the target vehicle to examine sensor 
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orientation control. During 1-D motion, the lateral distance between a point at the front of a target 

vehicle and bicycle is not changing. Therefore, we can calculate the reference point for sensor tracking 

using a point at the front of the target vehicle and predicted longitudinal vehicle motion during each 

time sample. The following optimization problem can be considered:  
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where yref can be obtained by calculating the center location of the cluster obtained at the time of the 

target vehicle detection, X is state vector for the target motion, f1(∙) is the target motion model which 

corresponds to x, and U is a finite set of feasible control inputs. The control input for the sensor 

orientation can be obtained by solving the above optimization problem. Practically, the sensor 

orientation will be less than 90 degrees and larger than -90 degrees in order to scan the area of interest. 

First, the optimal solution of the optimization problem without control input constraints is found where 

the derivative is zero. Then, the control input which is closest in value is selected from within the finite 

set of feasible control inputs. 

Preliminary results were presented earlier by us for just the 1-D case in a conference publication [21]. 

4.2 1-D VEHICLE MOTION ESTIMATION 

A Kalman filter is used to estimate the longitudinal vehicle motion. The state vector to be estimated is 

  Txx avxX   (11) 

where x, vx, and ax are relative longitudinal distance, velocity and acceleration. The longitudinal vehicle 

motion dynamics can be defined as 
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where T is the sampling interval and w is process noise. Since the range and sensor orientation 

measurements from the laser sensor system have relatively small noise, we compute an equivalent 

measurement in Cartesian coordinates from the true laser sensor measurement in polar coordinates: 

 kkk dz cos  (13) 

This sensor measurement is examined by comparing recent longitudinal distance estimates of the target 

vehicle. If the measurement is verified to come from the target vehicle, the states are estimated using the 

Kalman filter with the measurement. Otherwise, the states are estimated by only time updates. After the 

estimation, the time update using (12) without considering process noise is conducted to predict the 

longitudinal vehicle motion xk̂+1. The predicted longitudinal distance will be used in (10) to obtain the 

control input. 
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4.3 SIMULATION RESULTS OF 1-D VEHICLE MOTION 

We first implemented the detection algorithm and the 1-D motion tracking algorithm into Matlab so 

that our algorithm could be verified under various simulated vehicle velocities and accelerations. The 

simulation environment is constructed using the dimensions of a bicycle and a vehicle based on a 28″ 

wheel bicycle and a midsize sedan. Then, the motion of the bicycle and the vehicle can be expressed by 

using a linear motion model [22]. It is worth mentioning that the simulation takes into account the 

incidence angle of a laser beam to objects. The 70 degrees maximum which is obtained from 

experiments is used as a threshold for maximum incidence angle. Random measurement noise 

~N(0,22[cm]) is added to this simulation. 

A typical situation is simulated in which the bicycle is riding straight and the vehicle is going on the 

adjacent lane next to the bicycle lane as described in Fig 8 (c). The bicycle is moving with a constant 

speed of 4.5m/s. The detection is conducted when the target vehicle is within 25m from the sensor. Two 

parameters Eps and minPts of DBSCAN set as 0.5m and 4. The finite set of control inputs is {-1, 0, 1} in 

degrees, and ϕmin and ϕmax are -5 and 90 in degrees respectively. 

Figure 14 shows the simulation results using an open-loop fixed scan range (30 degrees). The location of 

the sensor is marked with a red triangle on the plot. It is clear that the measurements are not available 

most of the time and estimate updates are slow. Due to the sparse measurement data, the tracking 

performance is poor. The results of the laser sensor motion control using the receding horizon control 

method are shown in Figure 15. The tracking performance is significantly better and the estimates are 

updated very fast by obtaining measurements almost continuously.  

 

Figure 14. Simulation results using fixed range scans. 
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Figure 15. Simulation results using the proposed 1-D motion tracking method. 

 

4.4 EXPERIMENTAL RESULTS OF 1-D VEHICLE MOTION 

 

Figure 16. Experimental results using the proposed 1-D motion tracking method. 
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We conduct experiments involving 1-D vehicle motion in which a vehicle is passing by a bicycle without 

turns. In order to verify the proposed control and estimation method, a tripod is used to station the 

laser sensor system on a rotating platform and the lateral distance between the sensor system and the 

passing vehicle is approximately 2m. An Arduino Mega microcontroller is utilized to implement the 

proposed detection algorithm and the 1-D vehicle motion tracking methods. The results are well-

matched with simulation results and show that the sensor system can track the vehicle position very 

well as shown in Figure 16.  
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CHAPTER 5:  TRACKING OF TWO-DIMENSIONAL VEHICLE MOTION 

In this section, we aim to develop and demonstrate a more general target tracking system which can 

track both a rear approaching vehicle that might be right behind the bicycle, or a rear vehicle in an 

adjacent lane next to a bicycle lane, and might be either traveling straight or turning in either direction. 

Figure 8 shows four types of scenarios that are commonly encountered with respect to rear vehicles and 

bicycles. We expand the idea of 1-D motion tracking to 2-D motion tracking to track the right front 

corner of a target vehicle. Like 1-D motion tracking, a desired orientation for the laser sensor system is 

determined at every sampling time instead of waiting for the end of an open-loop scan range. From this 

data, despite using a single beam laser sensor with low sampling frequency, not only acquisition of both 

lateral and longitudinal information but also more robust tracking rather than using small area scanning 

can be accomplished. We develop a receding horizon controller with an interacting multiple model 

estimation framework. 

Preliminary results of 2-D case were presented earlier by us in a conference publication [23]. 

5.1 RECEDING HORIZON CONTROL FOR 2-D MOTION TRACKING 

For 2-D vehicle motion tracking, we aim to track the right front corner of a target vehicle by measuring 

alternately distances to the front and side of the vehicle at points close to the right front corner, since 

tracking this corner provides both lateral and longitudinal distance information. Therefore, the 

reference point for orientation control needs to be changed depending on the corresponding selection 

of which information (longitudinal or lateral) is needed. The following optimization problem is therefore 

constructed for orientation control: 
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 (14) 

where f2(∙) is the target motion model which corresponds to y, and δx and δy are certain distance 

margins which are used to construct reference points on the target vehicle. The margins need to be 

small enough for fast measurement updates and to be large enough for robustness to deal with vehicle 

maneuver changes. Once the vehicle is passing next to the bicycle (i.e., xk̂+1 ≤ 0), the sensor system 

focuses on measuring the lateral distance since it is not possible and not useful to obtain the 

longitudinal distance.  



19 

 

 

Figure 17. State diagram for determination of reflection location on a vehicle. 

It is ideal to obtain the longitudinal distance and lateral distance alternately to deal with vehicle 

maneuver changes. As soon as obtained information is verified (determination of whether the reflected 

beam is from the front or side of the vehicle), the reference point needs to be switched to seek the 

other information. However, it is difficult to determine the location (front or side) of the reflection using 

only one measurement. Also, every reflection from side or front of the vehicle is not always detectable. 

For instance, when the target vehicle is far from the sensor, the sensor cannot obtain reflections from 

the side due to the geometry, i.e., the incidence angle is too large to reflect enough intensity of the 

beam to the sensor. Similarly, when the target vehicle is very close to the sensor with significant lateral 

distance (passing vehicle), the sensor cannot obtain reflections from the front. In order to account for 

these different situations, a finite state machine is utilized with two states: a Front state and a Side state 

as shown in Figure 17. The state transitions occur based on the examination of current and previous 

range measurements dk and dk-1. For notational simplicity, we define hitk as an indicator on whether the 

measurement is from the target vehicle or not at time k in Figure 17.  

 





                                                otherwise,0

hicle target ve thefrom is measurment if,1
khit  (15) 

As discussed before, the initial state starts from the Front. In case of not having any measurements from 

the target vehicle at both current and previous time, we assume that the state remains the same. When 

the measurement can be obtained at only one of either current or previous samples, a transition from 

the current state to the other state occurs. If the sensor system acquires two measurements in a row, 

the decision differs based on the value of the current state. A transition from Front to Side occurs when 

the subtraction between the projections of the range measurement to longitudinal axis 𝑥𝑘
𝑚 at previous 

and current time is negative, i.e., 𝑥𝑘−1
𝑚 − 𝑥𝑘

𝑚 < 0. Otherwise, the state machine remains at the current 

state, Front. When the current state is Side, it remains same if the slope from two measurements 

corresponds with the orientation of the vehicle. Otherwise, a transition from Side to Front occurs. 

Practically, the measurements contain noise and the orientation of the car is hard to estimate accurately 
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using the single beam laser sensor system. Instead of using the strict rule above, we use upper bound 

for the orientation of the vehicle. The revised condition for the transition from Side to Front is the 

following:  
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where 𝑦𝑘
𝑚 is the projection of the range measurement to lateral axis at time k. The upper bound 

threshold θub,k that accounts for passing and left turning car maneuvers is obtained using the estimate of 

the vehicle orientation and an error margin. 

 ekkub   ˆ
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5.2 2-D VEHICLE MOTION ESTIMATION 

The 2-D motion of a vehicle is very difficult to be described by only one model since it has basically two 

distinct maneuvers: straight motion and turning motion. Hence, we present the motion of the vehicle 

using two models (straight motion and turning motion models) rather than using just one model. There 

are practical algorithms to estimate target kinematics using this multiple model approach such as 

generalized pseudo-Bayesian approaches and an interacting multiple model estimation algorithm [24]. In 

this paper, the Interacting Multiple Model (IMM) algorithm is utilized because the IMM algorithm is 

considered to be the best compromise between complexity and performance [24]. 

The IMM system operates multiple filters using the different models in parallel, and computes state 

estimates using suitable mixing of the estimates and covariance from the two models. The IMM consists 

of three steps: mixing, mode-matched filtering and combination steps. In the mixing step, the estimates 
j
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 and covariance j
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from each of the filters ),,1( rj  at the previous iteration are mixed to 

provide the inputs to each filter. r is the number of models utilized. The algorithm of the mixing step is 

the following: 
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where μi|j is called mixing probabilities and pij is mode transition probabilities which containing the 

probability of transitioning from mode i to j. Then initial inputs are 
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Each of the filters with the inputs are executed in the mode matched filtering step. Also, the likelihood 

and mode probability update are computed as 
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where j

k
S  is the measurement covariance from each filter. Lastly, the estimates from each filter are 

combined and finalized in the combination step. The procedure is the following: 
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More details for the theory behind the IMM can be found in [24]. Future vehicle motion can be predicted 

and computed in the IMM framework. After the estimates are obtained, the mixing step is conducted to 

calculate the mixed initial conditions for the next iteration using (18) and (19). Then, predictions for each 

mode are computed using its models as 
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The predictions of vehicle motion in (14) can be obtained from 
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The Constant Velocity model with Polar velocity (CVP) and the nearly Coordinated Turn model with Polar 

velocity (CTP) [25] are used in the IMM framework. The state vector is 

  TvyxX   (24) 

where v is the polar velocity and ω is the angular velocity in the sensor body frame. The discrete-time 

state space equation for the CVP model [25] is given by 
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where wv,k is zero mean with covariance as 
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The discrete-time state space equation for the CTP model [25] and its process noise covariance matrix are 

given by 
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Since the state space models above are nonlinear, linearized models are used for the Extended Kalman 

filter combined with the IMM (IMM-EKF).  

As discussed earlier, the measurement often contains only partial information about the corner position. 

Therefore, a validation step for the measurement is needed to utilize only information which 

corresponds to the corner position of the vehicle. When the measurement is obtained from the front of 

the vehicle, the projection of the measurement to longitudinal axis provides correct longitudinal 

distance. However, the projection to lateral axis does not provide correct lateral distance. In order to 

keep the correct lateral distance, prediction and modified projection are compared and the minimum 

value is taken as the correct lateral distance. Then the measurement set can be represented as 
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When the measurement is obtained from the side of the vehicle, the projections of the measurement 

provide correct lateral distance but not longitudinal distance. Similarly, the measurement set can be 

expressed in this case as 
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This approach is based on the assumption that the true value is the minimum between the projection 

and prediction of the measurement. It is possible that this assumption gives rise to a wrong result. For 

example, when the target vehicle is changing lane to the left and the measurement is obtained only 

from the front of the vehicle, the assumption is no longer valid and provides wrong vehicle maneuver. In 

order to overcome this problem, virtual measurements xvir and yvir are introduced as 
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When measurements cannot be obtained, we know that there is no target vehicle along the line of the 

sensor orientation. Meanwhile, the target vehicle is located near the line of the sensor orientation since 

the sensor scans near the corner position. Using this information, measurement validation can be 

conducted based on the determination of the reflection location using the finite state machine as shown 

in Figure 17. If the reflection location is Front, the measurement set can be determined as 
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Similarly, if the reflection location is Side, the measurement set can be defined as 
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Then, a measurement model and its noise covariance matrix are 
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This method prevents estimates from getting stuck at wrong predictions, allows utilizing a simple linear 

measurement model and enhances the estimation performance by capturing the vehicle maneuver more 

quickly.  

 

Table 2. RMSE of Position Estimation 

Vehicle maneuver 
Longitudinal distance 

error [m] 

Lateral distance error 

[m] 

Approaching right behind 0.018542 0.000001 

Changing lane to the left 0.045486 0.076450 

Passing by 0.036887 0.049382 

Changing lane to the right 0.047562 0.111205 

 

 

5.3 SIMULATION RESULTS OF 2-D VEHICLE MOTION 

In this section, results from simulations using the proposed active sensing algorithm are presented. The 

simulation environment is built using Matlab as described in Section V C. 

The four scenarios as shown in Figure 8 are simulated using the proposed active sensing algorithm. The 

initial velocity of the bicycle and the target vehicle set as 4m/s and 11.2m/s respectively. The detection is 

conducted when the target vehicle is within 30m from the sensor. A pre-determined scan range for the 

detection is from -6 to 15 in degrees. Two parameters Eps and minPts of DBSCAN set as 0.5m and 3. In the 

tracking stage, the finite set of control inputs is {±1, ±1.5, ±2} in degrees based on the reference points at 

the front or side of the target vehicle. We use δy and δx as ±0.1m. The ϕmin and ϕmax are -5 and 90 in degrees 

respectively. For estimation using IMM, the process and measurement noise parameters are σvx= 0, σvy
1
 = 

5, σvy
2
 = 7, σa = 200, σα = 0.8, σx = 5 and σy =15. Also, we use following mode transition matrix: 
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 








99.001.0

01.099.0
 (36) 

Figure 18 and 19 show the simulation results using the proposed active sensing algorithm. Each simulation 

results from (a), (b), (c) and (d) in Figure 18 and 19 correspond with the scenarios of (a), (b), (c) and (d) in 

Figure 8. The location of the sensor is marked with a red triangle on the plots. We can see that the sensor 

system tracks and obtains measurements near the true position of the corner of the target vehicle. Also, 

results show that the IMM-EKF provides good estimation performance for all the four scenarios. The root 

mean squre error (RMSE) of position estimates is shown in Table II. Despite the fact that there are both 

initial position uncertainty and unknown accelerations, the estimation error is small.  

5.4 EXPERIMENTAL RESULTS OF 2-D VEHICLE MOTION 

Experiments are conducted in order to verify the performance of the proposed active sensing algorithm 

in situations corresponding to all the four scenarios of Figure 8, of  

i) a vehicle approaching right behind a bicycle, 

ii) a rear vehicle with a lateral offset initially going straight and then changing lanes to the right, 

iii) a rear vehicle with a lateral offset passing by a bicycle, and  

iv) a vehicle right behind a bicycle which then changes lanes to the left from behind the bicycle. 

In the experiments for scenario i), the vehicle stops quickly before a collision occurs as shown in Figure 21 

(a). The proposed algorithm is implemented on the sensor system shown in Figure 9. A Teensy 3.2 

microcontroller is utilized as the processor for implementation of the proposed algorithm. The same 

parameters and optimization constraints are used as in the simulation. Figure 20 and 21 show the 

experimental results. From the experimental data, it can be seen that the proposed active sensing 

algorithm provides good tracking performance in all four scenarios. It is very difficult to obtain true 

trajectories of the vehicle, so we recorded experimental videos and evaluated the tracking performance 

by comparisons with the video. Also, we can evaluate the performance of experimental results by 

comparing with the simulation results. The time evolutions of the sensor orientation and vehicle position 

estimates are almost identical between the simulation and experimental results for corresponding vehicle 

maneuvers. As the vehicle is approaching right behind the bicycle, the sensor orientation is controlled to 

zero degree to track the target vehicle in both simulation and experimental results, as shown in Figure 18 

(a), (b), and Figure 20 (a), (b). Similarly, the sensor orientation is eventually controlled to 90 degrees to 

track the passing vehicles in both simulation and experimental results, as shown in Figure 18 (c), (d), and 

Figure 20 (c), (d). There are some differences in estimated mode probabilities between the simulation and 

experimental results because it is difficult in practice for the vehicle and bicycle to travel perfectly straight. 

Also, the tilting and yawing of the bicycle affect its estimation. However, the results of the estimated mode 

probabilities show very similar trends at the significant vehicle maneuver changes. The experimental 

results verify that the sensor system using the proposed active sensing algorithm successfully tracks the 

target vehicle for all four vehicle scenarios.  
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Figure 18. Simulation results of sensor orientation, true trajectories, measurements and estimates on 2-D map, 

and estimated mode probabilities for target vehicle maneuver corresponding to (a) Approaching right behind, 

(b) Changing lane to the right, (c) Passing by, and (d) Changing lane to the left. 

 

 

 

Figure 19. Simulation results of relative velocity estimates for target vehicle maneuver corresponding to (a) 

Approaching right behind, (b) Changing lane to the right, (c) Passing by, and (d) Changing lane to the left. 
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In simulations done by this research team, collision from rear vehicles can be prevented safely, even after 

allowing for a 1 second reaction time of the driver (the driver starts braking 1 second after the alert is 

sounded) and requiring a 3m safety distance margin (the vehicle stops 3m before the bicycle). The alert is 

provided to both the driver and bicyclist when the time to collision between the vehicle and bicycle is less 

than 1.85 seconds. As long as the maximum allowable relative velocity is 11.9 m/s and the range of the 

laser sensor is 25m, the rear collision can be prevented. This maximum relative velocity might be adequate 

for an urban road, but higher relative velocities could be encountered on a rural road. Unfortunately, the 

only way to allow for higher relative velocities is to incorporate sensors with larger range measurement.  

Once a vehicle has been detected, the developed vehicle tracking system was found to work successfully 

for continuous tracking of the vehicle’s lateral and longitudinal positions. However, one situation in which 

the tracked vehicle can be lost is during significant yaw and tilt motion of the bicycle. Normal tilt and yaw 

during riding on a straight road was not a concern, except that it could reduce the working range of the 

laser sensor from 35m to 20m.   

 

Figure 20. Experimental results of sensor orientation, measurements and estimates on 2-D map, and estimated 

mode probabilities for target vehicle maneuver   corresponding to (a) Approaching right behind, (b) Changing 

lane to the right, (c) Passing by, and (d) Changing lane to the left. 
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Figure 21. Experimental results of relative velocity estimates for target vehicle maneuver corresponding (a) 

Approaching right behind, (b) Changing lane to the right, (c) Passing by, and (d) Changing lane to the left. 



28 

 

CHAPTER 6:  EVALUATION OF REAR COLLISION PREVENTION 

SYSTEM ON REAL WORLD ROADS 

The rear collision prevention system has been tested multiple times on real world roads.  The tests were 

conducted on urban roads near the University of Minnesota and have involved many miles of riding.  From 

the tests, it has been confirmed that the developed active sensing system shows capability to track 

vehicles, including in situations involving a continuous series of passing cars of different types and sizes. 

The laser sensor mounted on a rotational platform and a camera are equipped on at the rear of the bicycle, 

as shown in Figure 22. 

 

Figure 22. Active sensing system (rotational laser sensor system, micro-controller and battery) and camera on a bicycle 

The camera records experimental video in order to help manually analyze the test data from the active 

sensing system. The most common situation encountered during real world tests is one in which the 

bicycle is riding in a bicycle lane and a series of cars are driving on the adjacent lane next to the bicycle 

lane. Figure 23 shows screen shots extracted from one such experimental video. It can be seen that 

different types of cars are detected and tracked in the test. 

  
(a) Minivan                                                                                              (b) Sedan 

Figure 23. Screen shots of the experimental video on actual road 
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For many different types of cars (sedans and SUVs), the developed active sensing system can track the 

lateral and longitudinal position of the car continuously as the laser sensor automatically controls and 

focuses on the moving car, as shown in Figure 24. 

 

(a) Minivan                                                                                             (b) Sedan 

Figure 24. Experimental results of sensor orientations, measurements and estimated trajectories on 2-D map 

It is also seen that the developed active sensing system can track a series of different cars successfully. 

After the active sensing system confirms that a car being tracked is safely passing by the bicycle, the 

system then quickly searches and detects a new target car for tracking, as shown in Figure 25. 

 

Figure 25. Experimental results (series of two cars) of sensor orientations, measurements and estimated 

trajectories on 2-D map  

Figure 26 shows another experimental result from an actual road test, again in a situation of a series of 

passing cars. Screen shots of the experimental video show each target vehicle in the situation, as seen in 

Figure 27. 
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Figure 26. Experimental results (series of three cars) of sensor orientations, measurements and estimated 

trajectories on 2-D map  

 

   

(a) Car 1                                                                (b) Car 2                                                                (c) Car 3 

Figure 27. Screen shots of the experimental video on actual road 
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CHAPTER 7:  CONCLUSIONS 

Cost, size and power constraints highly limit the type of sensors that can be used on a bicycle for 

tracking distances to other vehicles on the road. This work proposed a highly inexpensive custom triad 

sonar sensing system for tracking side vehicles that could potentially turn right and collide with the 

bicycle.  Also, a single-beam laser sensor mounted on a rotationally controlled platform for detection 

and tracking of rear vehicles was proposed, in order to provide collision warnings to both the motorist 

and bicyclist. Since the laser sensor could only measure one reflection at a time, the rotational 

orientation of the laser sensor needed to be controlled in real-time in order to detect and continue to 

focus on the tracked vehicle, as the vehicle’s lateral and longitudinal distances keep changing. This 

tracking problem requires controlling the real-time angular position of the laser sensor to stay focused 

on the vehicle, even without knowledge of the vehicle’s future trajectory. The challenge is addressed by 

an active sensing algorithm which uses a novel receding horizon framework for active orientation 

control and an interacting multiple model framework for vehicle state estimation. The receding horizon 

controller determines the optimal control input to the sensor based on predicted future vehicle motion 

under control input constraints. The vehicle motion is predicted in the interacting multiple model 

framework. The interacting multiple model allows for different types of vehicle maneuvers. Simulation 

results were presented to show the performance of the developed tracking control system. Extensive 

experimental results were also presented from an instrumented bicycle to show the performance of the 

system in detection and tracking of rear vehicles during both straight and turning maneuvers.  
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CHAPTER 8:  FUTURE WORK 

One major positive outcome of this project has been obtaining of a research grant funded by the National 

Science Foundation to carry out follow-on work on the bicycle collision prevention system.  In particular, 

the following major tasks are planned in the NSF project: 

a) Development of a collision prevention system for traffic intersections that addresses collisions 

with left turning vehicles and with cross-traffic 

b) Conducting of human factors studies that determine the most effective audio and visual alert 

systems for efficient human intervention to prevent collisions 

c) Conducting a large field operational test consisting of a two-stage 6-month real world operational 

use cycle involving 10 bicyclists with significant urban commutes.  Such a field operational test 

will more extensively test scenarios that might be rare and might not yet have been anticipated 

by the authors. 
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