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A Conservative Discontinuous Galerkin Scheme with O(N2)
Operations in Computing Boltzmann Collision Weight

Matrix
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Abstract. In the present work, we propose a deterministic numerical solver for the homogeneous Boltzmann equation based
on Discontinuous Galerkin (DG) methods. The weak form of the collision operator is approximated by a quadratic form
in linear algebra setting. We employ the property of “shifting symmetry” in the weight matrix to reduce the computing
complexity from theoretical O(N3) down to O(N2), with N the total number of freedom for d-dimensional velocity space. In
addition, the sparsity is also explored to further reduce the storage complexity. To apply lower order polynomials and resolve
loss of conserved quantities, we invoke the conservation routine at every time step to enforce the conservation of desired
moments (mass, momentum and/or energy), with only linear complexity. Due to the locality of the DG schemes, the whole
computing process is well parallelized using hybrid OpenMP and MPI. The current work only considers integrable angular
cross-sections under elastic and/or inelastic interaction laws. Numerical results on 2-D and 3-D problems are shown.

Keywords: Boltzmann equation, discontinuous Galerkin method, conservative method, parallel computing
PACS: 51.10.+y, 02.70.Dh, 47.11.Fg

INTRODUCTION

The Boltzmann transport equation (BTE) is of primary importance in rarefied gas dynamics. The numerical
approximation to solutions has been a very challenging problem. The main challenges include, but not limited to,
the high dimensionality, conservations and complicated collision mechanism.

In history, one category of computational schemes is the well-known Direct Simulation Monte Carlo (DSMC)
method [1, 2, 3]. DSMC developed to calculate statistical moments under near stationary regimes, but are not efficient
to capture details of the solution and will inherit statistical fluctuations. Parallel to the development of DSMC,
deterministic methods, such as discrete velocity [4, 5, 6, 7, 8] or spectral methods [9, 10, 11, 12, 13, 14, 15, 16],
have been also attracting attentions. For other deterministic schemes, we suggest refer to [17].

The DG [18] method is capable of capturing more irregular features and thus promising to be more powerful in
many cases. For problems of charge transport in semiconductor devices, DG methods are very promising and have
provided accurate results at a comparable computational cost [19, 20]. It seems, DG could be a potential method for
kinetic equations. However, there are very rare work on full nonlinear Boltzmann model [21, 22]. Our scheme was
developed independently and is different than any work mentioned ahead, in the way of constructing basis functions,
evaluating angular cross-section integrals and the enforcing of conservation routines.

The remaining paper is organized as follows. The homogeneous Boltzmann equation is introduced. After that, we
introduce the numerical projection of the collision operator onto the DG mesh. Then, techniques on reducing the
complexity are explained. Before showing numerical results, the conservation routine is described. The summary and
future work are outlined in the last section.

THE SPACE HOMOGENEOUS BOLTZMANN EQUATION

The Boltzmann equation is an integro-differential equation, with the solution a phase probability density distribu-
tion. Since most technical challenges come from the treatment of the collision operator, our current work only focuses
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on the homogeneous equation, which is given by

∂ f (v, t)
∂ t

= Q( f , f )(v, t) (1)

with initial f (v,0) = f0(v. Here the bilinear integral collision operator, can be defined weakly or strongly. The strong
form goes

Q( f , f ) =
∫

v∗∈Rd ,σ∈Sd−1

[ f ′ f ′∗ − f f∗]B(|v− v∗|,σ)dσdv∗ , (2)

where f = f (v), f∗ = f (v∗) and f ′ = f (v′), f ′∗ = f (v′∗), v′,v′∗ are pre-collisional velocities, following the elastic
collision law (though this solver can be easily extended to inelastic cases)

u = v− v∗, v′ = v+
1

2
(|u|σ −u), v′∗ = v∗ − 1

2
(|u|σ −u) . (3)

The collision kernel
B(|u|,σ) = |u|γ b(cos(θ)), γ ∈ (−d,+∞) , (4)

models the intermolecular potentials and the angular cross-sections

cos(θ) =
u ·σ
|u| , b(cos(θ))∼ sin−(d−1)−α(

θ
2
) as θ ∼ 0 , α ∈ (−∞,2). (5)

The weak form for (2), or called Maxwell form, after a change of variable u = v− v∗ is given by

∫
Rd

Q( f , f )(v)φ(v)dv =
∫

v,u∈Rd
f (v) f (v−u)

∫
σ∈Sd−1

[φ(v′)−φ(v)]B(|u|,σ)dσdudv , (6)

which is a double mixing convolution. Also see spectral methods [14, 15] .

THE DISCONTINUOUS GALERKIN PROJECTIONS

We are working in the velocity domain v∈Ωv = [−L,L]d . A regular mesh is applied, that is, we divide each direction
into n disjoint elements uniformly, such that [−L,L] =

⋃
k Ik, where interval Ik = [wk− 1

2
,wk+ 1

2
), wk =−L+(k+ 1

2 )Δv,

Δv = 2L
n , k = 0 . . .n − 1 and thus there is a Cartesian partitioning Th =

⋃
k Ek, with uniform cubic element Ek =

Ik1
⊗ Ik2

...⊗ Ikd , k = (k1,k2, ...,kd).
Discontinuous Galerkin methods assume piecewisely defined basis functions, that is

f (v, t) = ∑
k

uk(t) ·Φ(v)χk(v), (7)

where multi-index k =(k1,k2, ...,kd), 0≤ |k|< (n−1)3; χk(v) is the characteristic function over element Ek; coefficient
vector uk = (u0

k , ...,u
p
k ), where p is the total number of basis functions locally defined on Ek; basis vector Φ(v) =

(φ0(v), ...,φp(v)). Usually, we choose element of basis vector Φ(v) as local polynomial in Pp(Ek), which is the set of
polynomials of total degree at most p on Ek. For sake of convenience, we select the basis such that {φi(v) : i = 0, ..., p}
are orthogonal.

Apply the i-th basis function on element Em, φi(v)χk(v), to Eq. (6) and operate a change of variables (v,u)← (v,v∗),
where u = v− v∗ is the relative velocity,

∫
v∈Em

Q( f , f )φi(v)dv

=
∫

v∈Em,v∗∈Rd
f (v) f (v−u)

∫
σ∈Sd−1

[φi(v′)χm(v′)−φi(v)χm(v)]|u|γ b(
u ·σ
|u| )dσdudv

= ∑
k

∑̄
k

uT
k Gm,i(k, k̄)uk̄ .

(8)
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Matrix G0 Matrix G1 Matrix G2

FIGURE 1. Dots (entries) of the same color are shifted to the neighboring matrices, showing illustratively for 1-D.

Here, for fixed k, k̄,m, i, the entry Gm,i(k, k̄) is actually a (p+1)× (p+1) matrix, defined as

Gm,i(k, k̄) =∫
v∈Ek

∫
v−u∈Ek̄

Φ(v)⊗Φ(v−u)χk(v)χk̄(v−u)|u|γ ∫
Sd−1 [φi(v′)χm(v′)−φi(v)χm(v)]b( u·σ

|u| )dσdudv .
(9)

The key is to evaluate the block entry Gm,i(k, k̄) in Eq. (9). Due to the convolution formulation, the integrals w.r.t
v,u can be approximated through Triangular quadratures. The integrals on the sphere take the most effort. To save the
tremendous computational work on evaluating the angular integrals, one has to figure out the “effective integration
domains” where the integrand of angular integrals in Eq. (9) is continuous. Finally, over each “effective” domain, the
angular integrations are performed by adaptive quadratures.

REDUCTIONS ON THE COMPUTING AND STORAGE COMPLEXITY OF
COLLISION MATRIX

Theoretically, the computing and storage complexity for the weight matrices Gm,i would be O(N3), with N =
(p+1)n. However, the following features are applied to reduce the cost, i.e temporally independent and precomputed,
shifting symmetric, sparse and parallelizable.

Shifting Symmetry Property for Uniform Meshes

Here we assume a uniform mesh. Recall the post-collisional velocity v′ = v+v∗
2 + |v−v∗|

2 σ . Thus, as long as the
relative positions between Ek (Ek̄) and test element Em keep unchanged, and at the same time, the piecewise basis
functions φ(v) on Em are only valued locally upon the relative position of v inside Em, then Eq. (9) will be unchanged.
This is summarized as the following theorem.

Theorem (Shifting Symmetry). If the basis piecewise polynomials φ(v), defined over element Em, are functions of
v−wm

Δv (where wm is the center of cube Em), then, the family of collision matrix {Gm,i} satisfies the “shifting symmetry"
property

Gm,i(k, k̄) = Gm̃,i(k− (m− m̃), k̄− (m− m̃)), (10)

where m, m̃,k, k̄ are d-dimensional multi-indices; i = 0, . . . , p.

This shifting procedure can be illustratively shown in Fig. 1. Figure 1 shows that the lower-right (n− 1)× (n− 1)
submatrix of Matrix G1 is equivalent to the upper-left submatrix of Maxtrix G0, while only leaving the first row and
column of G1 to be determined. This rule applies again to Matrix G2.

This implies the existence of a basis set of matrices, which can be defined in the following theorem.

Theorem (Minimal Basis Set). There exists a minimal basis set of matrices

B= {Gm,i(k, k̄) : For j = 1..d, if m j 	= 0,k j × k̄ j = 0; if m j = 0,k j, k̄ j = 0,1, . . . ,n−1},
which can exactly reconstruct the complete family {Gm,i}, through shifting.

Therefore, along each dimension, we only need to compute and store the full matrix for m = 0, and the first rows
and columns for all other m’s. This requires a computing complexity of only O(N2).
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TABLE 1. The computing and storage complexity of “basis” B.

n wall clock time (s) order number of nonzeros order

8 3.14899 \ 812884 \
12 39.3773 6.2301 6826904 5.2484
16 228.197 6.1075 30225476 5.1717
20 893.646 6.1176 94978535 5.1311
24 2686.72 6.0375 241054134 5.1054

FIGURE 2. The strong scalability of computing collision matrix (n=18).

Sparsity

The sparsity of B, again, comes from v′ = v− u
2 +

|u|
2 σ . The post-collisional velocity v′ is on the sphere with center

and radius given by v,u. Thus, not all binary particles, with velocity v ∈ Ek and v∗ ∈ Ek̄, could collide ending up with
a post-collisional velocity v′ lying in a given element Em. It counts only when the sphere intersects with element Em,
resulting in only O(n2d−1) nonzeros in the set B.

Therefore, in practice, we obtain computing complexity O(n2d) and storage complexity O(n2d−1). Table 1 are test
runs for d = 3 on a single core of Xeon E5-2680 2.7GHz processor (on cluster Stampede-TACC [23]), which verify
our observations.

Parallelization

Due to the locality of DG basis functions, the whole process of computing B can be well performed using hybrid
MPI [24] and OpenMP [25]. Figure 2 shows the parallel efficiency of strong scaling for computing some sets of “basis
matrix".

CONSERVATION ROUTINES

The above approximate collision operator Q doesn’t preserve the moments as needed, mainly due to the DG
approximation and domain truncation. Following the ideas in [14], we introduce a L2-distance minimization problem
with the constraints the preservation of desired moments, as follows,
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Conservation Routine [Discrete Level]: Find Qc, the minimizer of the problem

min
1

2
(Qc −Q)T D(Qc −Q)

s.t. CQc = 0.

where the (d +2)×N dimensional constraint matrix writes

C:, j =

⎛
⎝

∫
Ek

φl(v)dv∫
Ek

φl(v)vdv∫
Ek

φl(v)|v|2dv

⎞
⎠ , (11)

with φl the l-th basis function on element Ek and the column index j = (p + 1)k + l = 0, . . . ,N − 1. Due to the
orthogonality of the local basis, D is a positive definite diagonal matrix with its j-th entry 1

|Ek|
∫

Ek
(φl(v))2dv, j =

(p+1)k+ l.
We employ the Lagrange multiplier method and obtain the minimizer Qc

Qc = [I−D−1CT (CD−1CT )−1C]Q, (12)

where I is an identity matrix of size N ×N. Hence, Qc is a perturbation of Q.
Therefore, the final conservative semi-discrete DG formulation for the homogeneous equation writes

dU
dt

= Qc . (13)

The solution (13) approaches a stationary state, guaranteed by analyzing the convergence behavior.

TEMPORAL EVOLUTION

Since there is no CFL condition imposed, the first order Euler scheme is sufficient. At each time step, the
conservation routine, denoted by CONSERVE, will be called. Suppose Un is the coefficient vector (thus the solution)
computed at the current time tn, then the solution for the next time step is obtained through the following routines

Qn = COMPUTE(Un) ,

Qc,n = CONSERVE(Qn) ,

Un+1 = Un +
tQc,n .

For higher order accuracy, a higher order Runge Kutta scheme can be used whenever necessary. The conservation
routine has to be invoked at every intermediate step of the Runge Kutta scheme.

At each time step, the actual order of number of operations for each time step is O(n8). Fortunately, the reconstruc-
tions of collision matrices and computing of quadratic form Eq. (8) are well parallelizable for each Euler step.

NUMERICAL RESULTS

Test 1 is a 2-d Maxwell model (α =−1, γ = 0) with elastic collisions, benchmarked by Bobylev-Krook-Wu (BKW)
exact solutions. The initial density distribution is

f (v,0) =
v2

πσ 2
exp(−v2/σ2) , (14)

with σ = π/6. This problem has an exact solution [26]

f (v, t) =
1

2πs2

(
2s−1+

1− s
2s

v2

σ2

)
exp

(
− v2

2sσ2

)
. (15)
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FIGURE 3. Test 1: Left: solutions at time t = 0,1,5,10,15 s. n=44. solid line: exact solution, stars: DG solution; Right: relative
entropy for different n.

FIGURE 4. Test 2: Evolution of pdf without (left) and with (right) conservation routines.

We select truncated domain Ωv = [−π,π]. Figure 3 shows the DG solutions agree very well with the exact ones and
the convergence of relative entropy. The relative entropy is given by

Hrel(t) =
∫

Ωv

f (v, t) log f (v, t)− fM(v) log fM(v)dv =
∫

Ωv

f (v, t) log
f (v, t)
fM(v)

dv , (16)

where fM(v) is the true equilibria. The convergence to zero implies the solution converges to the true equilibria in the
sense of L1.

Test 2 is also 2-d Maxwell model with elastic collisions. This example is to justify the conservation routines. The
initial density function is a convex combination of two Maxwellians

f0(v) = λM1(v)+(1−λ )M2(v) , (17)

with Mi(v) = (2πTi)
−d/2e−

|v−Vi |2
2Ti , T1 = T2 = 0.16, V1 = [−1,0], V2 = [1,0] and λ = 0.5.

Truncate the velocity domain Ω= [−4.5,4.5]2. We test for n= 32 and n= 40 with piecewise constant test functions.
The probability density distribution functions are reconstructed with splines.

80 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.83.205.78 On: Fri, 06 Mar 2015 20:51:11



FIGURE 5. Test 2: Evolution of mass (left) and kinetic energy (right).

FIGURE 6. Test 3: The DG solutions (left) and entropy decay (right).

Figure 4 shows, after long time, with no conservation routine, the density distribution collapses. While with
conservation routines, the density function stays stable after equilibrium. Figure 5 shows the evolution of moments up
to the second order with and without conservation routines.

Test 3 is initialized by a sudden jump on temperatures, given by

f0(v) =

⎧⎪⎪⎨
⎪⎪⎩

1

2πT1
exp(−|v|2

2T1
) , v1 ≤ 0

1

2πT2
exp(−|v|2

2T2
) , v1 > 0

in case of d = 2, α =−1, γ = 1. Here, We select T1 = 0.3 and T2 = 0.6, domain Ωv = [−5,5], n = 44 in each direction.
Figure 6 indicates that the DG solution well captures the discontinuity and converges to equilibrium.

Test 4 is testing on the 3D homogeneous Boltzmann equation with Maxwell molecular potential (α = −2, γ = 0),
with initial

f0(v) =
1

2(2πσ 2)3/2

[
exp

(
−|v−2σe|2

2σ2

)
+ exp

(
−|v+2σe|2

2σ2

)]
,

where parameters σ = π/10 and e = (1,0,0). We select Ωv = [−3.4,3.4]3, n = 30.
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FIGURE 7. Test 4: Evolution of marginal distributions at t = 0,1,2.5,5s; dots are the piecewise constant value on each element;
solid lines are spline reconstructions.

FIGURE 8. Test 4: Entropy decay (left) and temperature relaxations along x and y directions (right).

Figure 7 shows the evolution of the marginal density distributions. Figure 8 shows the entroy decay and relaxations
of directional temperature, which as expected converge to the averaged temperature.

SUMMARY AND FUTURE WORK

We proposed a deterministic numerical solver for the homogeneous Boltzmann equation, based on DG method. The
shifting symmetry property and sparsity are employed to reduce the computing complexity for the collision weight
matrix down to O(n2d) from O(n3d) and the storage complexity down to O(n2d−1). The conservation routine is also
designed to enforce the inclusion of the collision invariants in the null space of the approximated collision operator.
Thanks to the locality of DG meshes, the whole computing process is parallelized with hybrid OpenMP and MPI.
In future, we hope to speedup the numerical temporal evolution, to increase the accuracy of approximating collision
integrals and also to incorporate with the advection term to study space inhomogeneous Boltzmann problems.
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