
Copyright

by

Jinru Hua

2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/211357252?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The Thesis Committee for Jinru Hua
certifies that this is the approved version of the following thesis:

A Case Study of Cross-Branch Porting in Linux Kernel

APPROVED BY

SUPERVISING COMMITTEE:

Miryung Kim, Supervisor

Herb Krasner



A Case Study of Cross-Branch Porting in Linux Kernel

by

Jinru Hua, B.E.

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2014



A Case Study of Cross-Branch Porting in Linux Kernel

Jinru Hua, M.S.E

The University of Texas at Austin, 2014

Supervisor: Miryung Kim

To meet different requirements for different stakeholders, branches are

widely used to maintain multiple product variants simultaneously. For exam-

ple, Linux Kernel has a main development branch, known as the mainline; 35

branches to maintain older product versions which are called stable branches;

and hundreds of branches for experimental features. To maintain multiple

branch-based product variants in parallel, developers often port new features

or bug-fixes from one branch to another. In particular, the process of prop-

agating bug-fixes or feature additions to an older version is commonly called

backporting.

Prior to our study, backporting practices in large scale projects have not

been systematically studied. This lack of empirical knowledge makes it difficult

to improve the current backporting process in the industry. We hypothesize

that cross-branch porting practice is frequent, repetitive, and error-prone. It
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requires significant effort for developers to select patches that need to be back-

ported and then apply them to the target implementation. We carried out two

complementary studies to examine this hypothesis.

To investigate the extent and effort of porting practice, this thesis first

describes a quantitative study of backporting activities in Linux Kernel with

a total of 8 years version history using the data of the main branch and the

35 stable branches. Our study shows that backporting happenes at a rate of

149 changes per month, and it takes 51 days to propagate patches on average.

40% of changes in the stable branches are ported from the mainline and 64%

of ported patches propagate to more than one branch. Out of all backporting

changes from the mainline to stable branches, 97.5% are applied without any

manual modifications. To understand how Linux Kernel developers keep up

to date with development activities across different branches, we carried out

an online survey with engineers who may have ported code from the mainline

to stable branches based on our prior analysis of Linux Kernel version history.

We received 14 complete responses. The participants have 12.6 years of Linux

development experience on average and are either maintainers or experts of

Linux Kernel.

The survey showes that most backporting work is done by the main-

tainers who know the program quite well. Those experienced maintainers can

easily identify the edits that need to be ported and propagate them with all

relevant changes to ensure consistency in multiple branches. Inexperience de-

velopers are seldom given an opportunity to backport features or bug-fixes to
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stable branches.

In summary, based on the version history study and the online survey,

we conclude that cross-branch porting is frequent, periodic, and repetitive. It

requires a manual effort to selectively identify the changes that need to be

ported, to analyze the dependency of the selected changes, and to apply all

required changes to ensure consistency. To eliminate human’s omission mis-

takes, most backporting work is done only by experienced maintainers who can

identify all relevant changes along with the change that needed to be back-

ported. Currently inexperienced developers are excluded from cross-branch

porting activities from the mainline to stable branches in Linux Kernel.

Our results call for an automated approach to identify the patches that

require to be ported, to collect context information to help developers become

aware of relevant changes, and to notify pertinent developers who may be

responsible for the corresponding porting events.
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Chapter 1

Introduction

1.1 Motivation

Large systems often use multiple development branches to maintain

multiple product variants for different stakeholders. Linux Kernel is a promi-

nent example of large open source software that has hundreds of branches

evolving simultaneously, thousands of developers collaborating together, and

millions of end users using the Linux operating system and its derived prod-

ucts. The main development branch in Linux Kernel is called the mainline.

The mainline incorporates all kinds of changes, both the latest features and

bug fixes. Not all of these changes are fully tested before the new version is

released. Therefore, Linux Kernel maintains a separate set of stable branches

for users who simply want the security and bug fixes, but not a whole new ver-

sion. To maintain these stable branches, developers often need to propagate

bug fixes and features from one version to another, and this process is known

as backporting. Here backporting means applying software modifications made

in new versions to older versions [34] or to merge a commit from the mainline

to maintenance branches [37]. Apart from Linux Kernel, backporting is also

commonly used in a number of product versions, such as Red Hat, Fedora,

and FreeMind [34]. For another example, many features of Windows Vista
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were backported to Windows XP when the Service Pack 3 was released for

Windows XP to facilitate compatibility of applications [43].

However, there has been a lack of study on the advantages and dis-

advantages of the backporting process. We hypothesize that backporting is

error-prone and time-consuming for the following reasons. First, a backport-

ing practice requires manual effort to identify the patches that need to be

ported and apply similar changes to peer contexts. Second, porting changes

across branches can be error-prone when developers do not consider the de-

pendencies and constraints in the target branch carefully. Lastly, after Linux

developers locate all patches that need to be ported, they are required to take

the responsibility to make sure that the ported change is consistent across all

stable branches.

To investigate the extent and repetitive effort of backporting practice

in Linux Kernel, we conducted a version history study followed by a survey.

We describe our approach and study results in this thesis.

1.2 Background

Many companies maintained collections of similar products as software

product lines by cloning and adapting artifacts of existing product variants.

Transforming such cloned product variants into a “single copy” software prod-

uct line representation was considered an important software re-engineering

activity with numerous tools and methodologies [17, 8, 4]. However, to save

time and reduce cost, the common practice in industry was not to migrate
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similar products into a software product line, but to maintain multiple cloned

products and modified them to fit new requirements [3, 32, 11].

Different from these approaches that modified the cloned product vari-

ants in software product lines, we considered each branch as an individual

version of the same product and investigated a common porting practice in

software maintenance—backporting, to understand the change propagation

from the mainline to multiple maintenance versions. In particular, we tar-

geted a large scale open source project with around 16 million lines of code

in a low level language C, which was not supported by any of the approaches

above.

Other studies in branching investigated how branches supported col-

laborative development [2, 24, 1] and how to eliminate conflicts for potential

integration failures [10, 5]. Rather than regarding branches as subsystems or

subsets of the product, we considered the mainline and stable branches as

a complete product in different versions. Instead of focusing on eliminating

conflicts in collaborative development, we investigated similar cross-branch

modifications and porting features in the git version control system.

Current similar changes identification studies [25, 19, 21] focused on

general software modifications. On the other hand, we studied a typical port-

ing practice in software maintenance—backporting, which was mainly for bug-

fixes, not feature additions. The study of recurring bug-fixes [23] was similar

to our work. However, our study investigated cross-branch patch applications

and analyzed porting practice from developers’ perspectives. We also inves-
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tigated how developers identified the patches that should be backported and

which information was useful for making the decision to backport. None of

these questions has been answered by preceding research.

Compared to the studies on clone detection in large scale projects [20,

22, 31], which mainly focused on the porting from one project to another at a

release level, we performed a more fine-grained analysis at a commit level to

investigate backporting practice from the main development branch to multiple

maintenance branches. Apart from considering similar code segments, we also

identified similar edit operations (insert and delete) when studying backporting

activities using REPERTOIRE [25]. We identified 11774 backporting patch

pairs out of 390,581 patches in 8 years’ development of Linux Kernel and

evaluated the precision and recall of this backporting dataset against a ground

truth dataset from bugzilla.

1.3 Research Questions

The purpose of this thesis is to investigate the cross-branch porting

activities in Linux Kernel. We selected Linux Kernel because it was one of the

most typical open source projects with multiple branches in parallel. Due to

its fast updating process, not all new features can be fully tested, which leads

to frequent porting practices of bug-fixes across branches. Its large developer

community which consists of 5,000 to 6,000 developers also provides a great

resource for our user study via online survey.

Most development activities in Linux Kernel happen in the main branch,
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which is known as the mainline. Apart from it, Linux Kernel also maintains

a set of “stable” branches for people who simply prefer bug fixes, but not a

whole new version. Bug-fixes are frequently ported from the mainline to stable

branches, and this process is known as backporting.

In this thesis, we focus on the following questions:

RQ 1 What percentage of patches in stable branches are coming from the main-

line?

RQ 2 How long does it take for a patch to propagate from the mainline to

stable branches in Linux Kernel?

RQ 3 What percentage of backporting patches are directly applied without

any manual adaptation?

RQ 4 How much repetitive effort is involved in porting a patch from the main-

line to multiple stable branches?

RQ 5 What risks and challenges are associated with backporting changes from

the main branch to other branches?

RQ 6 How do developers currently determine a patch that must be ported from

the mainline to other branches?

We investigated the version history of Linux Kernel to understand the

extent and repetitive effort of backporting, and answer the questions from RQ

1 to RQ4 in Section 3. In order to answer RQ 5 and 6, we conducted a survey

5



with the developers who might have ported code across branches based on our

backporting analysis of the version history.

1.4 A Version History Analysis of Backporting in Linux
Kernel

In order to comprehensively characterize backporting practices in Linux

Kernel, we investigated a total of 8 years version history data of the main

branch and 35 maintenance branches using REPERTOIRE [25]. First, by

adapting REPERTOIRE from CVS to git version control system, we refined

REPERTOIRE from release-level to commit-level for a more fine-grained simi-

lar change identification. We identified 369 similar patch pairs using REPER-

TOIRE by comparing both the content and edit operations in the patches.

Next, we traced special git porting-support commands—cherry-pick and

rebase. cherry-pick command simply applies a patch from one branch to

another; while rebase takes all the changes committed on one branch and

replays them on another branch. We located 11448 backporting patch pairs

with this method. Our accuracy evaluation on 347 resolved bug reports from

the Linux Kernel bug repository bugzilla indicated that our prototype de-

tected cross-branch backporting events with the precision of 89.1% and recall

of 75.2%.

The following paragraphs summarize our results of the version history

study of backporting in Linux Kernel.

• Approximately 40% of all patches in 35 stable branches came from the
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mainline. The average porting time from the mainline to stable branches

was 51 days. Manually applied backporting patches took longer, 74 days

on average.

• While most patches were ported to stable maintenance branches with-

out any adaptation, some were manually edited to fit the target branch

context. These manually applied backporting patches had contents that

were about 60% similar to the corresponding reference patches.

• 64% of ported patches were propagated to more than one branch, in-

dicating that there was a significant redundancy of backporting effort.

In an extreme case, a single patch from the mainline was ported to 14

stable branches at maximum.

These results indicate that backporting is frequent, periodic, and repet-

itive. We hypothesize that backporting requires a manual effort of selecting

and adapting patches to the target implementation, which we investigate fur-

ther in the next section.

1.5 A Survey on Cross-Branch Porting Practice in Linux
Kernel

To examine the challenges, risks, and repetitive effort of backporting

practices in Linux Kernel, we conducted an online survey with engineers who

might have ported code from the mainline to stable branches based on our

prior analysis of Linux Kernel version history. The survey consisted of three
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parts, (1) how developers identify a patch that should be backported, (2) how

developers adapt the backporting patch to the target context with all relevant

changes and (3) how the existing tools support backporting activities.

We received 22 responses out of 228 developers of Linux Kernel, 14 of

them completed all 15 questions. Our participants had more than 20 years

software development experience with 12.6 years experience on Linux develop-

ment on average. Most of them were subsystem maintainers or Linux Kernel

experts. We summarize our results of the survey below:

• Following the development process of Linux Kernel, only serious bug-

fixes were backported to stable branches. Developers made the decision

of backporting intuitively based on their experience and understanding

of the mainline and stable branches.

• Experienced developers held diverging perspectives on the difficulties

of backporting practice. One third regarded identifying backporting

patches as hard, while one third believed it was easy. The rest held

a neutral opinion on the backporting patch identification. We received

almost the same diverging result when we asked whether they regarded

backporting as risky and error-prone.

• Aligned with our quantitative analysis, 85% of developers reported that

during the process of applying mainline patches to stable branches, most

modifications were trivial, such as renaming and simple rewriting of the

functions which could be done within one hour or so.
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• All participants strongly believed that change descriptions played an

important role to identify the patches that must be backported. 63.64%

of participants believed that the diff content of the patch was also useful

to decide whether a patch was relevant to other branches and should be

ported.

• Almost all participants subscribed to the mailing lists to receive develop-

ment activities in the mainline. Some of them also discussed personally

with fellow developers to know about mainline development activities.

1.6 Summary

This thesis presents two complementary studies to examine whether

cross-branch porting practice is frequent, repetitive, and error-prone which

requires manual effort to select and adopt the changes that need to be ported.

We first conducted a quantitative study using the version history data of

Linux Kernel, and found that the maintenance effort of cross-branch porting

was significant. Though most changes could propagate to the maintenance

branches with little effort, we found it was time-consuming to identify all

relevant changes that needed to be ported along with the backported patches

to ensure the change consistency across branches.

To examine whether our version history study matched developers’ per-

ception about cross-branch porting in practice, we performed a follow-up sur-

vey with Linux Kernel developers and found that non-experts were excluded
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from the backporting tasks due to a lack of fully comprehension of the depen-

dency and constraints in target branches.

In order to reduce repetitive effort and allow non-experienced develop-

ers to take the responsibility of backporting, we believe that automated tool

support for the backporting can be useful to identify the changes that need

to be ported and apply the changes from the master branch to maintenance

branches.

1.7 Thesis Outline

Chapter 2 presents related work on software product lines, branch-

based collaboration, similar changes identification and clone detection. Chap-

ter 3 describes our version history analysis of backporting in Linux Kernel and

Chapter 4 presents the follow-up survey with the developers that may have

ported code from the mainline to stable branches based on the version history

study. We conclude our thesis with Chapter 5 along with the discussion of

threats to validity and future work.
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Chapter 2

Related Work

2.1 Cloned Variant Management in Software Product
Line Development

It is common to maintain multiple product variants as a software prod-

uct line to meet different requirements from different users. Developers adopt a

clone-and-own approach to clone and modify the existing product to fit for the

requirements. To understand cloning activities in collections of similar prod-

ucts in industrial product lines, Dubinsky et al. [7] conducted an exploratory

study and found that it was difficult to make sure that changes and bug-fixes in

one product were propagated to all required products correctly, and developers

must perform repetitive tasks for each product variant. Other works in soft-

ware product line attempted to identify common variants or similar functions

which could be moved to the core [17, 11, 32]. They refined cloned software

products and migrated multiple product instances to a principled product line

[3, 8, 4].

However, our research differs from the preceding research on the soft-

ware product line in the following two aspects. First, instead of focusing on

industrial application product lines, we focused on a single large scale open

source project—Linux Kernel to study the porting activities written in a low-
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level language C. Second, instead of analyzing all cloning activities between

similar product variants, we investigated the porting activities only from the

main development branch to multiple maintenance branches.

Considering that developers prefer to clone the existing products and

modify them to fit new requirements, Rubin et.al [28] took a systematic top-

down approach to identify a set of clone operators. They broke the activities

down into individual clone management operators and showed that these op-

erators supported the case when existing clone variants were maintained as is

[29, 27].

Yet their approach could only cover a subset of activities related to

the development, which could hardly fit into large scale systems with various

modification activities. Our work used a token-based clone detection tool

for large scale systems—CCFinder [14]. We successfully investigated porting

activities with a data set of 390,581 patches and identified 11,774 patch pairs

for a large scale open source project with 15.8 millions lines of code in C.

2.2 Branch-Based Collaboration

Software development for large projects is often a collaborative and

team-based enterprise. To isolate changes and manage the complexity of co-

ordination work in parallel, large software projects use branches to decompose

the teams and the tasks [24]. Bird et al. [2] claimed that the files in a single

branch were evolved cohesively and developers who worked on the same branch

represented a virtual team in both technical and organizational prospectives.
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They further assessed the usefulness of individual branches using a what-if

analysis and identified high-cost-low-benefit branches in Windows for a possi-

ble branch removal [1].

Our research differs from their analysis, since we consider each branch

as a version of the system as a whole rather than a subset of the system with

different modules. We analyzed porting activities based on the idea that the

mainline and stable branches were different versions of Linux Kernel, and each

branch individually represented all required modules.

Other studies on branching argued that branches might introduce ad-

ditional overhead to move code across branches. Shihab et al. [30] mentioned

that this overhead could lead to unexpected dependencies and conflicts which

resulted in potential integration failures. Brun et al. [5] found that conflicts

were frequent and persistent in branch-based collaborative development, as

developers had inconsistent copies of a shared project. To avoid textual, build,

and testing conflicts, they implemented the tool Crystal to proactively detect

pending conflicts and provide concrete advice. Aligned with Crystal, WeCode

[10] continuously merged committed and uncommitted changes to detect con-

flicts and notified developers for the potential resolution of conflicts.

Rather than eliminating conflicts in collaborative development, our

study identified similar modifications across different branches, and investi-

gated porting features in a git version control system, such as cherry-pick

and rebase, which we describe in Section 2.5.

13



2.3 Similar Changes Identification

Developers often make similar changes to multiple places. Ray et al. [25]

that 14% of the edits were ported across forked projects—FreeBSD, OpenBSD,

and NetBSD; 40% of active developers were involved in porting patches, and

more than 50% of ported edits propagated within one year. By investigating

the time required for porting changes from one project to another, their study

result showed that porting practice seemed to heavily depend on developer

doing their porting job on time, which required an automated approach of

applying similar program transformations to peer contexts.

Apart from investigating the extent and developers who involved them-

selves in the porting, we investigated the repetitive effort involved in porting

changes from the mainline to multiple stable branches and conducted a com-

plementary survey with Linux developers to understand porting practices from

developers’ perspectives.

Other systematic editing tools automatically made similar changes across

different locations. SYDIT [18] generated an edit script from a single system-

atic edit example and required developers to specify the target locations before

applying the transformation. LASE [19] was able to identify all edit locations

and transform the code based on the edit script. Yet both approaches require

developers to demonstrate one or more examples to generate scripts.

Negara et al. [21] mined fine-grained code transformation sequences at

an AST level to understand repetitive code change patterns. Nguyen et al. [23]
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considered the repetitive bug-fixes with slight modifications on multiple code

fragments to one or more revisions, which was known as recurring bug-fixes.

Using a graph-based representation of object usages, they identified code peers,

recognized recurring bug-fixes, and recommended changes for code units from

the bug fixes of their peers.

In contrast to their approaches that compared AST nodes and corre-

sponding edit operations in a high-level language Java, we used a token-based

clone detection tool—CCFinder [14] to extend the scalability of similar change

identifications in large scale systems written in a low-level language C.

2.4 Clone Detection in Large Scale Projects

Prior research showed that many large scale systems had a large amount

of common code. For example, Gabel et al. [20] investigated 6000 software

projects with over 420 million lines of code and found a common syntactic

redundancy at the level of one to seven lines, Livieri [31] studied 136 versions

of the Linux Kernel and found a coarse-grain backporting trends from parallel

development branches while Cordy [6] found evidence of ported code in device

driver modules between Linux and FreeBSD. Nguyen et al. [22] also showed

that cross-project porting was more repetitive and stable than within-project

code clone and MCIDiff [16] compared multiple clone instances simultaneously

which aimed to summarize syntactic, semantic, and differential patterns in

code clone.

We analyzed not only similar code but also similar changes. We con-
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ducted a more fine-grained analysis to identify porting in the patch level and

investigated the porting-support features provided by the git version control

system.

Other analyses of clone detection concentrated on the consequence of

faulty adaptation process and inconsistent updates. CP-Miner [15] was one of

the first tools in detecting porting errors. With CP-Miner, Li et al. found that

developers often adapted ported code in the target implementation—at least

one identifier was renamed in 65% of the ported code, and in 27% cases at least

one statement was inserted, modified, or deleted. Jiang et al. [12] presented

evidence of porting errors when similar code appeared in different contexts.

Juergens et. al [13] created a tool to identify inconsistent clone with context

awareness. DejaVu [9] was another scalable system for detecting these general

syntactic inconsistency bugs based on the assumption that duplicated code was

generally intended to remain identical. Detecting and characterizing porting

inconsistencies with a state-control and data-dependence analysis technique,

SPA [26] outperformed Dejavu and the tool made by Juergens et.al with 14%

to 17% better precision.

In contrast to current porting error detection analyses, our survey found

some practical issues on porting activities in large scale project development.

For example, one participant mentioned that original techniques for regression

testing did not fit for backporting activities because of the large number of

stable branches with different contexts. We believe that these issues from in-

dustry can greatly benefit further studies on clone detection and collaborative
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development.

2.5 Linux Kernel Development Process

The community of Linux Kernel developers consists of approximately

5000 or 6000 members [35]. As of 2013, the 3.10 release of the Linux kernel

had 15,803,499 lines of code. The main development branch in Linux Ker-

nel (known as the mainline) is not a traditional“stable” branch. Instead, it

incorporates all kinds of changes, both the latest features as well as security

and bug fixes. The main branch is officially released as a new version approxi-

mately every three months, after several rounds of bug-fix pre-releases. At the

beginning of each development cycle, which is around eight to twelve weeks,

a two-week “merge window” is said to open and the changes will be merged

into the mainline during this time, at a rate of approximate 1,000 changes per

day. At the end of the “merge window”, Linus Torvalds will declare that the

window is closed and the first “-rc” kernels is released. Only bug-fixes will be

accepted for the next six to ten weeks and Linus releases new “-rc” kernels

around once a week till the series get up to between “-rc6” and “-rc9” and the

kernel is considered sufficiently stable before the final “stable” release is made.

The mainline moves so fast that not all features are well tested before

they get released [41]. For users who do not want to risk updating to new

versions which may contain code that is not well tested, a separate set of stable

branches exist, which are meant for people who simply want the security and

bug fixes, but not a whole new version.
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Once a “stable” release is made in the mainline, a corresponding sta-

ble branch is created under the -stable tree at git://git.kernel.org/cgit/

linux/kernel/git/stable/linux-stable.git/. This stable branch will re-

ceive bug-fixes on “as-needed” basis for two to three months until the next

mainline kernel becomes available [40]. Some versions of Linux Kernel are

designated to be long term kernels which will receive support for a longer

period. As mentioned in the development process guidance of Linux Kernel

[41], “the selection of a kernel for long-term support is purely a matter of a

maintainer having the need and the time to maintain that release”. Gener-

ally, the maintainers of Linux Kernel select only one long term kernel per year

“as-needed” [41].

The online guidance of stable branch development of Linux Kernel [42]

describes how to submit backporting patches to stable branches. Developers

are not allowed to add the patches they want to port to the -stable tree by

themselves. Instead, they should include a tag—stable@vger.kernel.org,

in the sign-off area. All required patches that are related to the selected

patch should be included in the sign-off area, following the format below:

Cc: <stable@vger.kernel.org> # 3.3.x: a1f84a3: sched: Check

for idle

Cc: <stable@vger.kernel.org> # 3.3.x

The tag sequence is equal to applying commands

git cherry-pick a1f84a3
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git cherry-pick <this commit>

Cherry-pick is a git command that simply applies a patch from one

branch to another. Rebase is another git command which supports port-

ing changes between branches. Different from cherry-pick, it takes all the

changes committed on one branch and replay them on another one [33]. These

two commands are widely used for backporting.

The submitted patch is first posted to a relevant mailing list and re-

viewed by the developers in that list. After the patch is accepted by the

corresponding subsystem maintainer who subscribes the mailing list, it will go

into the -next tree of the subsystem. After the patch is merged to the -next

tree of the subsystem, it receives more extensive reviews with integration tests.

These -next tree of the subsystems will not be merged to the mainline until

the “merge window” is open. After confirmed by subsystem maintainers, a

successful patch are then merged into the mainline repository eventually.

After a new “stable” version of the mainline is released, the main-

tainer of -stable tree (currently Greg Kroah-Hartman) will find all patches

with the tag stable@vger.kernel.org in the sign-off area, and all related

patches mentioned in the sign-off area. He applies these patches to the sta-

ble branches and tests whether there are compilation errors after adopting the

changes. If there is no compilation error, he adds these patches to the stable

branches he maintains, and this process is a current recommended backporting

process.
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To further understand how developers actually backport patches, we

designed a survey and asked developers how they decided which patches should

be backported to stable branches and which information would be helpful to

make this decision.
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Chapter 3

A Version History Analysis of Backporting in

Linux Kernel

To meet requirements from users who mainly concern the reliance

rather than new features, Linux Kernel developers maintain multiple stable

branches and frequently backport bug-fixes from the main development branch

to stable branches. To understand the extent and manual effort involved in

porting changes from the main development branch to maintenance branches,

we studied 8 years (from 6/17/2005 to 10/31/2012) backporting activities in

Linux Kernel. We analyzed the mainline and 35 stable branches from the ver-

sion 2.6.12 to 3.6 during this time frame. Table 3.1 shows the details of the

branches, active periods, and the total number of patches in our study.

Section 3.1 describes our approach to probe backporting events across

the mainline and stable branches. We evaluate our approach in Section 3.2

with a ground truth dataset generated from the Linux bug repository bugzilla.

Finally, we describe our study results in Section 3.3.
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Branch First Commit Last Commit Active Days # of Patches
Mainline 2005-04-16 2012-10-31 2755 361311
Stable 2.6.12 2005-06-17 2005-08-29 73 54
Stable 2.6.13 2005-08-27 2005-12-15 109 47
Stable 2.6.14 2005-10-27 2006-01-30 95 97
Stable 2.6.15 2005-12-30 2006-03-27 84 116
Stable 2.6.16 2006-03-19 2008-07-21 854 1055
Stable 2.6.17 2006-06-11 2006-10-13 118 215
Stable 2.6.18 2006-09-19 2007-02-23 157 241
Stable 2.6.19 2006-11-29 2007-03-02 93 192
Stable 2.6.20 2007-02-03 2007-10-17 255 456
Stable 2.6.21 2007-04-23 2007-08-04 101 200
Stable 2.6.22 2007-07-08 2008-02-25 232 380
Stable 2.6.23 2007-10-09 2008-02-25 139 313
Stable 2.6.24 2008-01-23 2008-05-06 103 253
Stable 2.6.25 2008-04-17 2008-11-10 208 496
Stable 2.6.26 2008-07-10 2008-11-10 120 360
Stable 2.6.27 2008-10-09 2012-03-17 1255 1940
Stable 2.6.28 2008-12-23 2009-05-02 129 622
Stable 2.6.29 2009-03-22 2009-07-02 101 388
Stable 2.6.30 2009-06-09 2009-12-03 177 445
Stable 2.6.31 2009-09-05 2010-07-05 299 833
Stable 2.6.32 2009-12-02 2012-10-07 1040 3583
Stable 2.6.33 2010-02-24 2011-11-07 621 1880
Stable 2.6.34 2010-05-16 2012-08-20 827 1877
Stable 2.6.35 2010-07-30 2011-08-01 365 1615
Stable 2.6.36 2010-10-20 2011-02-17 120 685
Stable 2.6.37 2011-01-04 2011-03-27 82 594
Stable 2.6.38 2011-03-14 2011-06-03 80 667
Stable 2.6.39 2011-05-18 2011-08-03 76 448
Stable 3.0 2011-07-21 2012-10-31 468 2749
Stable 3.1 2011-10-19 2012-01-18 86 709
Stable 3.2 2012-01-04 2012-10-30 299 2381
Stable 3.3 2012-03-17 2012-06-01 74 700
Stable 3.4 2012-05-16 2012-10-31 164 1410
Stable 3.5 2012-07-21 2012-10-13 83 821
Stable 3.6 2012-09-28 2012-10-31 31 448

Table 3.1: Life span and the number of patches of each branch
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Figure 3.1: Backporting schematic diagram

The red arrows represent patch flows between the mainline and stable branches.

Patch1 and Patch2 are considered as backported patches. Patch3 indicates upstream

porting from stable branches to the mainline and is not considered in our backporting

study.

3.1 Approach

Figure 3.1 illustrates the backporting activities in Linux Kernel. Once

a version v is released in the mainline, a stable branch S is forked from the

mainline branch according to the development process model described in Sec-

tion 2.5. The stable branch S continues evolving from time Sstart to time

Sdeactivated when the branch S stops accepting changes.

We consider the time period from Sstart to Sdeactivated as the active

period of S. The vertical arrow lines indicate the timeline of the mainline

and the stable branch S correspondingly. M1, M2, and M3 represent the time

when three mainline patches are created correspondingly, while S1, S2, and S3

imply the time when three patches are created from the stable branch S. In
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git patches, the time when the patch is generated is called the “author date”,

and the time when the patch is actually applied to the branch is called the

“commit date”.

We identifed patch propagation from the mainline to stable branches

in the following three steps.

3.1.1 Step 1. Identify the Active Period of Each Stable Branch

We used a set of git commands to detect the active period of each

stable branch. For a stable branch S, its start time Sstart is identified using

the git command: git rev-list --merges --boundary --format="%cd"

S. This command lists all the merged commits in a reverse chronological order.

We then grabbed the first merge commit as it indicated the forking point of the

stable branch S. We marked its commit date as Sstart. To identify Sdeactivated,

we used git log -1 --format="%cd" S to obtain all logs and then select the

commit date of the last committed patch. Our results of active periods are

consistent with the ones in Wikipedia as well [36]. The active period of each

branch is listed in the Table 3.1.

3.1.2 Step 2. Collect Patches from the Mainline and Stable Branches
within Active Periods

We retrieved patches from the mainline and the stable branch S that

are committed within the active period of S.We excluded the commits of merge

operations in git repository as these commits did not have any change dif-

ference (diff content) in the patch. We finally retrieved 29,270 patches from
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35 stable branches and 361,311 patches from the mainline. The number of

patches for each branch is also listed in Table 3.1.

3.1.3 Step 3. Identify Backporting Patch Pairs

Figure 3.2: Data aquisition process for our empirical study

If a patch in stable branches has a similar change with a mainline patch

[25], we consider these two patches as a backporting pair if the mainline patch

appears before the other patch in stable branches or both patches appear at

the same time (Ma <= Sa, where Ma and Sa represent the author dates of

the patches in mainline and stable branches respectively). Patch1 and Patch2

represent backported patches in Figure 3.1. With the patches acquired in Step

2, we identified backporting patch pairs from the mainline and stable branches

in the following two approaches summarized in Figure 3.2. With 29,270 patches

from 35 stable branches and 361,311 patches from the mainline, we found a

total of 11,774 backporting patch pairs.
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(a) Ma = Sa: Compare author dates of the patches from the mainline

and stable branches. Based on the assumption that the patches generated

by the same author at the same time are the same, we matched the patches in

stable branches with the ones in the mainline by their author dates and authors

(see Patch2 in Figure 3.1). According to the development process of Linux Ker-

nel described in Section 2.5, we believed that most mainline patches in these

patch pairs are ported to stable branches with git command cherry-pick

and rebase. While cherry-pick applies a single patch from one branch to

another, rebase takes all the changes that were committed on one branch and

replay them on another one [34]. Backporting patch pairs identified in this

approach are identical with their original ones in the mainline. This heuristic

approach found 11,448 patch pairs in the case of Ma = Sa.

(b) Ma < Sa: Use a clone detection tool to identify backporting

events We made use of REPERTOIRE [25], a cross system porting analy-

sis tool to help us search for the backporting patch pairs in which the mainline

patch is created before the patch in stable branches Ma < Sa. In this case (see

Patch1 in Figure 3.1), the stable patches are more likely to be edited manually

before adapted to stable branches. The content, author, and author date of

the patch from stable branches can all be different from the original mainline

patch.

Considering that patches can only be backported to S from the main-

line after S has been forked at time Sstart (see Figure 3.1), we extracted the

patches from stable branches that were generated within the active period of
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S (i.e., Sa > Sstart and Sa < Sdeactivated), then compared these patches with

the mainline patches that appear in the same active period and prior to the

stable patch (i.e., Ma < Sa and Ma > Sstart).

By setting a small similar token threshold, REPERTOIRE may over-

estimate backporting changes though there is no semantic similarity in context

between the two patches. When we select a higher token threshold, we may

miss some small pieces of porting edits. Based on the accuracy evaluation of

the prior work [25], we selected the token size 40 and find 369 backporting

patch pairs in Linux Kernel when Ma < Sa.

REPERTOIRE regards similar code edits as cross-branch backported

changes. However, similar code changes might not always be backporting

events. There may exist multiple mainline patches that are found to be similar

to another patch in stable branches, while only the latest one should be the

porting source of the backported patch in stable branches. For instance, five

mainline patches are detected to be similar with commit e3a5cb6 in Linux

2.6.32 by REPERTOIRE and all five patches meet the criteria mentioned

above, yet only the last patch should be the reference implementation for the

stable change and should be regarded as the propagation source of commit

e3a5cb6.

We filtered out some false positive backporting patch pairs based on this

analysis and identified 11774 backporting patches pairs with 11774 backported

patches in stable branches.
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3.2 Accuracy Evaluation

A segment of mainline patch A segment of stable patch linux-
2.6.32.y

Loc: drivers/staging/hv/channel.c Loc: drivers/staging/hv/channel.c
AuthorDate: Nov 8 14:04:38 2010 AuthorDate: Mar 21 14:41:37 2011
Author: Haiyang Zhang Author: Olaf Hering
Commit: Greg Kroah-Hartman Commit: Greg Kroah-Hartman
CommitDate: Nov 9 16:42:09 2010 CommitDate: Apr 14 16:53:23 2011
Summary: staging: hv: Convert camel
cased struct fields in channel mgmt.h
to lower cases

staging: hv: use sync bitops when in-
teracting with the hypervisor. [Back-
ported to 2.6.32 stable kernel by
Haiyang Zhang]

- if (channel->OfferMsg.) if (channel->OfferMsg.

MonitorAllocated { MonitorAllocated) {
+ if (channel->offermsg.

monitor allocated) {
- set bit(channel->OfferMsg. - set bit(Channel->OfferMsg.

ChildRelId & 31, ChildRelId & 31,

+ set bit(channel->offermsg. + sync set bit(Channel->

child relid & 31, OfferMsg.ChildRelId & 31,

(unsigned long *) (unsigned long *)

Table 3.2: A porting example from the mainline to linux 2.6.32.y stable branch

To assess the accuracy of our approach, we manually constructed a

ground truth of backporting patch pairs by checking the Linux Kernel bug

repository bugzilla. We manually investigated 347 resolved bug reports in

the mainline to detect backported patch pairs using the keywords of which

module the bug locates, the author name or the resolved date from the bug

description. Apart from reviewing the patch description, we manually checked

the edited lines of the patch pairs and decided whether they were backporting

patch pairs or not. If a patch pair had more than 10 lines similar in both
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content and edit operations, we regarded this pair as a backporting pair. For

example, there is a bug reported in the bug repository on 08/21/2010 which

entitles “Hyper-V (hv) staging drivers fail with ‘scheduling while atomic’ bug”,

and resolved at 12/16/2010, we investigated all patches in the mainline with

keywords “staging” and “scheduling” from 08/21/2010 to 12/16/2010, and

found the patch shown in Table 3.2 on the left, which was written on 11/8/2010

by Haiyang Zhang and committed on 11/9/2010 by Greg Hartman. We then

identified the backporting patch in stable branches with the keywords and

found the patch shown in Table 3.2 on the right, which was generated by Olaf

Hering on 3/21/2011, and committed on 4/14/2011 by Greg Hartman. In

particular, the stable patch specified that this patch was backported to 2.6.32

stable kernel by Haiyang Zhang, who was the author of the mainline patch. We

confirmed this backporting pair by investigating the edit lines on both syntax

and edit operations.

Using this method, we generated a ground truth dataset with 135 back-

porting patch pairs. Based on this backporting patch pair dataset, we then

measured the precision and recall of our patch pair identification method de-

scribed in the previous section. Suppose G represents the ground truth and

R is the result from REPERTOIRE. The precision and recall are defined as

follows:

Precision. The percentage of porting patches found by the backport-

ing identification approach that is also presented in the ground truth, i.e.,

G
⋂

R
R

.
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Recall. The percentage of ground truth found by the backporting

identification approach that is also presented in the ground truth, i.e., R
⋂

G
G

.

Our approach had the precision of 89.1% and recall of 75.2% in identi-

fying backporting events from the mainline to stable branches in Linux Kernel.

3.3 Study Result

In order to understand the characteristics of backporting process in

Linux Kernel, we analyzed backporting lag times from the mainline to stable

branches (Section 3.3.1), the percentage of ported changes out of all changes

(Section 3.3.2), the percentage of backported patches that are applied without

any modifications (Section 3.3.3), and repetitive effort to port a mainline patch

to multiple stable branches (Section 3.3.4).

Figure 3.3: Life span and the number of patches of each branch

Figure 3.3 illustrates the life span for each branch based on Table 3.1.

In this graph, the left Y-axis with the blue bars indicates the active periods of

stable branches and the right Y-axis with red lines indicates the total number
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of patches of each branch. The graph shows that long term branches tend to

receive more changes.

Figure 3.4: Patch distribution of stable branches

Figure 3.4 shows the patch distribution of all stable branches. The red

line describes the backported patch distribution out of all backported patches,

and the blue line graph shows the total patch distribution out of all patches.

The graph illustrates a relatively consistent distribution of ported patches and

all patches in each stable branch.

These two graphs mentioned above are further analyzed below.

3.3.1 How Long Does It Take for a Change to Get Propagated from
the Mainline to Stable Branches?

It takes time to propagate patches from the mainline to stable branches.

We defined porting time as the difference between the commit dates of the

source patch in the mainline and the time the propagated patch is applied to

stable branches. We then measured the average porting time for all propagated
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patches for each branch. We also investigated the cumulative distribution of

porting time for all ported patches in stable branches.

Figure 3.5: Porting time distribution of stable branches

Figure 3.5 describes the average porting time for all patches in each

stable branch. The left Y-axis shows the average porting time and the right

Y-axis represents the active period of each branch. The bar graph shows

that the average porting time varies from 7 days to 141 days in 35 stable

branches, with a median of 31 days and an average of 51 days. The green

line graph describes the life span across all stable branches as a reference. The

graph demonstrates that the average porting time is proportional to the active

period of each branch in general.

Figure 3.6 shows the cumulative distribution of propagation time. The

X-axis represents the porting time while the Y-axis illustrates the cumulative

ratio of backported patches in all stable branches. In 11,774 patch pairs we

identified, 60% of backported patches got distributed in 30 days, while at the

end of 2 months, 80% of backported patches got propagated. We also noticed
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Figure 3.6: Cumulative distribution of porting time

that the maximum propagation time of porting events was more than 2 years

and 2% patches were ported after 1 year. This result indicates that though

most changes can be propagated quickly, some changes that need to ported

are not propagated till very late.

3.3.2 What Percentage of Patches in Stable Branches Are Coming
from the Mainline?

After investigating the propagation time of the backporting practice,

we looked into the extent of ported changes out of all edits in stable branches.

Figure 3.7 displays the distribution of backported patches in 35 stable

branches. The left Y-axis shows the number of patches, the blue bars indicate

the number of propagated patches and the red bars illustrate the total number

of patches in each stable branch. The right Y-axis with the green line graph

shows the average backporting rate across branches. We defined the average
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Figure 3.7: Porting rate distribution of stable branches

porting rate as the percentage of clone patches out of all patches in a stable

branch. We found that the porting rate varied from 10% to 90%, with a median

of 29% and an average of 41%, which indicated that a significant portion of

changes in stable branches originate from the mainline.

We also noticed that, since the stable branch 2.6.27, the number of

backporting patches for each branch remained relatively stable, while the total

number of patches for each branch changed from time to time across branches.

Thus the more changes a branch received, the lower its backporting rate was.

3.3.3 What Percentage of Backporting Patches Are Applied With-
out Any Code Adaptation?

When developers port changes from the mainline to stable branches,

they must make sure that the change can be transformed consistently from the

source to the target. We measured the adaptation degree during the process

of change propagation by assessing the similarity between a reference patch
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and a target patch.

We defined change similarity as the percentage of backported lines out

of all revised lines in one patch, i.e.

Change Similarity =
∑

portedLines∑
editedLines

× 100%

If the ported patch is exactly the same as the source patch, the simi-

larity should be 100%. However, when the patch is revised to fit to the target

branch, the change similarity is less than 100%.

We found that out of all backported patches in stable branches, 97.5%

were propagated to stable branches without any modifications. The rest of

backported patches which were manually modified also showed a change simi-

larity of 60% on average. This result indicated that a large number of patches

were applied to the target with little modification.

3.3.4 How Much Repetitive Effort Involve in Porting a Mainline
Patch to Multiple Stable Branches?

A mainline patch might be ported to more than one branch, and in our

study, we investigated how many branches a mainline change got propagated

to and how many mainline patches were ported to more than one stable branch.

As shown in Figure 3.8, the Y-axis illustrates the number of patches

while the X-axis is the number of branches the mainline patches get propagated

to. The result showed that mainline patches were ported to 2.25 branches on

average. In an extreme case, the changes were ported to 14 stable branches

at most. Our result indicated that there was a significant repetitive effort on
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Figure 3.8: Distribution of backporting repetitive effort

cross-branch porting from the mainline to stable branches in Linux Kernel.

3.4 Summary

This section presents a version history study on cross-branch backport-

ing from the mainline to stable branches based on the source code repository

of Linux Kernel.

Our study found that a number of changes in the mainline got propa-

gated to more than one maintenance branch repetitively with very little mod-

ification to fit for the target context. However, the maximum lag time for

porting events was more than 2 years, indicating that some patches required

non-trivial effort to propagate to the target branches.
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The results we obtain call for an automated approach of applying sim-

ilar program transformation to forked branches and notify developers of po-

tential porting events.
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Chapter 4

A Survey on Cross-Branch Backporting

Practice in Linux Kernel

While our version history study quantified the extent and frequency of

the cross-branch backporting practice in Linux Kernel, the analysis did not

present how developers perceived the challenges of backporting and how they

actually performed backporting across branches.

We carried out a follow-up survey to understand how developers de-

termined a patch that should be ported, and how they modified the patches

and apply them to the target branches. We purposely targeted 228 Linux

Kernel engineers who might have ported code from the mainline to stable

branches based on our analysis of the Linux Kernel repository described in

Chapter 3. We sent an online survey entitled “A Survey on Cross-Branch

Change Awareness in Linux Kernel” at https://www.surveymonkey.com/s/

seal_awarenessSurvey to these developers. We received 22 responses and 14

of them completed all the questions.

According to the responses, our participants had over 20 years software

development experience and 12.6 years experience on average in Linux devel-

opment with C. As shown in Figure 4.1, 50% of them worked on the storage
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Figure 4.1: Modules that participants work on

module, 43.75% on the network, 37.5% of them on the system drivers, and the

rest focused on processing and memory management.

The survey consisted of 15 questions. Section 4.1 describes develop-

ers’ perception on the risks and effort of backporting practice. Section 4.2

describes how developers collect information, identify the patches that need

to be propagated to other branches, and finally modify the selected patches

before applying them to the target branches. We summarize our survey results

and future work in Section 4.4.

4.1 What Do You Think of Cross-Branch Porting?

To understand how developer perceive the cross-branch porting, we

listed eight statements about the changes and risks about backporting and
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asked participants to rate their agreement on these statements.

Figure 4.2: Developers’ perception on the backporting activities

In Figure 4.2, the statements are listed on the left, while the percentage

distribution for each opinion is shown as a stack bar graph on the right. From

left to right, the parts of the strips in blue, red, yellow, orange, and green

indicate the percentage of participants who strongly agree, agree, neutral,

disagree, and strongly disagree with the statement on the left correspondingly.

We found that developers held diverging opinions with respect to the

risks and difficulties of cross-branch porting. For example, one third of them
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believed that it was hard to identify backporting patches, one third disagreed

with this statement and the rest held a neutral stance on whether it was hard

to perform cross-branch porting from the mainline to stable branches. 17%

participants believed that backporting was risky and error-prone, 42% adopted

a neutral position, and 33% disagreed with the statement.

When we asked “what are the risks or challenges for backporting

changes from the mainline to other branches?”, participants reported

regression bugs, constraints omission and risks of introducing redundant de-

pendency. The following quotes describe the challenges of the cross-branch

porting practice:

“You might miss an important detail and introduce a bug. And it (cross-

branch porting) requires deep understanding of both the code being changed and

the purpose and function of the patch.”

Another participant mentioned that current techniques for regression

testing failed to support the testing of backporting activities due to a large

number of different branches.

“Subtle changes in the surrounding code or the used APIs might in-

validate the assumptions that the original change depended on, without any

compiler error or warning. Ideally, the same tests originally used to validate

the change should be re-run after it is applied to each of the other branches,

but the large number of stable branches can make this impractical.”

In summary, from developers’ perspectives, most backporting can be
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done with minor effort, yet some backporting practices are risky due to a lack

of full understanding of the program. These faulty transformations may break

the program dependency and introduce new bugs to the target branches.

4.2 How Do You Identify the Patches That Should Be
Ported?

To address the risks and challenges of cross-branch porting, we inves-

tigated the process of backporting. We asked questions on how they collected

necessary information about the backporting process, how they identified the

patches that should be ported, and how they modified the patches and applied

them to the target branches.

(1) How do you collect information about the development activities

in the mainline?

As a first step to understand how developers identify patches that

should be ported, we asked them how they collected relevant changes from

the mainline and how they filtered out the irrelevant edits out of all change

events.

As shown in Figure 4.3, we list five methods and we ask developers

to rate how often they use these methods to be aware of the latest change

activities in the mainline. The stack bar graph illustrates the distribution of

the usage frequency with respect to the methods listed on the left. From left

to right, the parts of strips in red, yellow, blue, and orange correspond to the

percentage of participants who always, often, sometimes, and never use the
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Figure 4.3: Methods that are used to know about development activities in
the mainline

method mentioned on the left to know about the development activities in the

mainline.

According to the graph, subscribing to a mailing list was the most

important method to keep track of the latest development activities in the

mainline. Developers also discussed with peer engineers and search for the

bug repository to be aware of the activities. The quotes from participants

reported that LWN.net [38], and the Linux Kernel news websites [44, 39, ?]

were also popular in the Linux Kernel development community.

To investigate which information may be useful to filter out irrelevant
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Figure 4.4: Information that helps developers filter out irrelevant change events

edits out of numerous edits in the mainline, we asked participants to select

the information they prefer to specify for the customized notification of the

relevant changes. Figure 4.4 illustrates that 87.5% of participants concerned

about directory names, and another 62.5% chose to use the files that they were

working with to customize change event notification. The range of commit

dates and the authors who made the change might not be effective enough to

filter out unrelated events.

(2) Which information can be useful to identify the patches that

need to be ported?

After understanding how developers collected information about the
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Figure 4.5: Useful information to identify the patches that should be ported

relevant changes, we investigated how they digested the information about

relevant changes and decided whether to port the patches or not. We gave

participants eight options shown in Figure 4.5 and asked them to select the

kind of information they regarded as useful. The stack bar graph presents

the distribution about the different preferences about the kind of information
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they found useful for determining a patch to be ported. From left to right,

the parts of the strips in red, yellow, blue, and orange indicate the percentage

of participants who regard the information as very useful, useful, neutral, and

useless correspondingly.

Based on the responses, 100% of participants believed that the change

description is particularly useful in determining that a patch should be ported

to stable branches. The diff content of the patch was another important

information to identify the patches. However, the name of the changed file,

the author of the patch, and the commit date might not be very critical for

the decision of backporting a patch.

(3) How do you determine that a patch should be ported?

Figure 4.6: Types of ported changes
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From the development process of Linux Kernel described in Section 2.5,

we hypothesized that most ported changes are serious bug fixes. This assump-

tion was proved by Figure 4.6. As shown in the graph, all participants reported

that they ported bug fixes across branches. We also noticed that more than

half of participants had ported features and refactorings to stable branches, in-

dicating that a small potion of features and refactorings were also propagated

along with serious bug fixes.

Regarding the last question to investigate how to identify the patches

that need to be ported, we asked developers to provide insights on how they

made this backporting decision. We found that apart from considering the

severity of the bug fixes, developers also looked for the bugs introduced by their

own commits and took the responsibility to port the bug fixes to maintenance

branches. Some quotes are as below:

“If the bug is serious (data loss, security vulnerability, crash, important

functional regression), it should be ported. ”

“I check when the bug I’m fixing was introduced, then ask for the fix to

be applied to all active stable branches since that version. ”

In summary, developers subscribed to the mailing list or discussed with

other developers to keep up with the development activities in the mainline. By

investigating the change descriptions and diff content of the patch, developers

judged the edit and relevant changes based on their experience, and decided

whether they needed to backport this change to the target branches along with
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relevant features and refactorings.

4.3 How Do You Modify the Patches to Fit for the Tar-
get Branches?

Patches need to be properly backported to the target branch. Regard-

ing the last step of the backporting process, we investigated the types of mod-

ifications and the time effort to adapt a patch to individual target branches.

Figure 4.7: Adaptation types that are applied to backported patches

Based on the development process of Linux Kernel described in Sec-

tion 2.5, we hypothesized that developers often apply the git commands such

as git-cherry-pick and git-rebase to backport identical patches from the
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Figure 4.8: Time effort to adapt a patch across branches

mainline and replayed them on stable branches. Figure 4.7 illustrates the types

of modification during the process of cross-branch porting. Aligned with our
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hypothesis, around 70% of participants directly propagatee changes without

any modification. For the rest of patches that needed to be occasionally mod-

ified to fit for the target branches, the modifications were simply renaming

and function rewriting that could be done within approximately one hour (see

Figure 4.8).

Lastly, for the developers who regarded it difficult to modify the patches

and apply them on the target branches, we asked them to provide more in-

sights on why it was hard to adapt a change to individual target branches.

Participants reported that though most backporting jobs could be done with

trivial effort, it was rather hard to make sure that every transformation was

done consistently across branches without breaking existing constraints or in-

troducing redundant dependency. This consistency was particularly difficult

when restructuring and refactoring were involved in the backporting. The

following quotes describe the challenges of adapting changes across branches.

“Most cases are relatively obvious. Worst case is when changes in dif-

ferent parts of the kernel cause a run-time failure while the patch backporting

itself required no specific effort.”

“backporting fixes / features across major refactoring / restructuring

can be messy and you gotta judge whether and how much of such intervening

restructuring / refactoring to slurp in together.”
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4.4 Summary

Our survey with the Linux Kernel developers presented that the risks

and challenges were acknowledged by most participants of our survey, such

as introducing redundant code or breaking existing constraints in the target

branches. Most backporting could be done with minor manual effort. Consid-

ering that all of them had more than 10 years of experience on Linux Kernel

development, we argued that the majority of novices or developers in the Linux

Kernel development community were seldom given the responsibility to port a

change from the mainline to stable branches. Due to the risks of missing rele-

vant changes and breaking dependencies, cross-branch backporting was always

done by the trusted and experienced experts such as subsystem maintainers

and the owners of the operating system, who were aware of the change impact

of the selected patch and able to identify all relevant changes that must be

ported along with the selected one.

Our results call for an automate tool support to sift relevant change

events out of a large number of change events, collect enough context about

the patches, and notify pertinent developers who are responsible for the cor-

responding code propagation.
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Chapter 5

Conclusions

This chapter summarizes our contributions, threats to validity, and

future research directions.

In large scale projects, a main development branch moves so fast such

that not all cutting edge features in the master branch are well tested. The

users and vendors, who mainly focus on the stability and reliance rather than

new features, are often skeptical about using the less stable mainline branch.

A common practice to solve this problem is to maintain a main development

branch and multiple maintenance purpose branches that accept serious bug-

fixes simultaneously. Bug-fixes are frequently applied from the development

branch to the maintenance branches and this process is known as backporting.

We performed two complementary studies on the backporting practice

in Linux Kernel. As the first step, we conducted a study investigating 8 years

of version history data from the mainline and 35 stable branches in Linux

Kernel. We identified 11,774 propagated patch pairs from the mainline to

stable branches with the precision of 89.1% and recall of 75.2%. We then

analyzed the extent and propagation effort of the backporting activities and

found that 60% of the patches in stable branches were propagated from the
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mainline, with an average porting time of 51 days. Most propagated changes

were ported with minor modifications to more than two stable branches on

average. However, there also existed around 2% of backported changes which

took more than 1 year to propagate to the target branches.

To further reason about how developers perceive the challenges and

risks of backporting and how much effort they exert for the backporting prac-

tice, we carried out a follow-up online survey with the developers who may

have ported code based on our version history analysis. We received 22 re-

sponses from Linux Kernel experts who had more than 10 years experience in

Linux Kernel development on average. Our results indicated that developers

often subscribed to the mailing lists and communicated with peer program-

mers to identify the patches that should be backported. We also found that

inexperienced developers seldom had an opportunity to port changes from the

mainline to stable branches due to a lack of global understanding of the impact

of the patch to be ported. While most changes could be performed safely with

little effort, some faulty transformation might easily break code dependencies

and introduce new bugs to the target branches.

Based on the results above, we argue that the majority of developers

who do not have enough knowledge to identify the patches that need to be

ported along with all relevant changes, have a need for automated tool support

to identify the patches that should be ported and to become aware of the

relevant changes that need to apply together with the selected patches.
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5.1 Threats to Validity

For our version history analysis, we used the clone detection tool REPER-

TOIRE to help us locate relevant patch pairs. REPERTOIRE uses the widely

used clone detector CCFinderX [14] to identify similar code edits. By set-

ting a lower token threshold of CCFinderX, the tool REPERTOIRE may

over-approximate potential backporting changes. When we select a higher

threshold, we may miss some small pieces of porting edits. Ray et al. [25]

conducted an accuracy evaluation experiment in the BSD family, indicating

that 40 tokens could reach the best F-measure result for both precision and

recall. Considering that the members of the BSD family are also large-scale

operating systems implemented in C, which is similar to Linux Kernel, we

selected the token size 40 in our version history study.

In our version history study, we concentrated on cross-branch porting

effort from the main development branch to multiple maintenance branches in

Linux Kernel. We acknowledge that our version history study on the mainline

and stable branches may not generalize to other cross-branch porting, such as

porting from feature-specific branches to the main branch or upstream porting

from stable branches back to the mainline. Yet the backporting pattern in

Linux Kernel is likely to be found on other open source projects. This pattern

will be valuable for other development process models such as co-evolving

product variants in software product lines.

Regarding our survey on the developer perceptions of backporting, we

notice that all of our participants have more than 10 years experience in Linux
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Kernel and most of them are subsystem maintainers in either Linux Kernel or

related projects such as SUSE and Red Hat. They are not representative of

the majority of Linux Kernel developers who only contribute to Linux Kernel

occasionally. The fact that we only received responses from experienced devel-

opers indicates that the inexperienced developers, who are the majority of the

Linux Kernel development community, seldom perform backporting due to the

risks and difficulties involved, thus the backporting practice is confined to the

experts who have a relatively thorough understanding of the program. This

bias driven by participants’ experience level may impact our results about the

effort of backporting.

Maintenance branches in large scale systems may have some unique

characteristics that are different from other feature-specific branches. Accord-

ing to the development process of Linux Kernel, only serious bug-fixes that

have already been merged to the mainline are included in stable branches.

Another special characteristic of the maintenance branches is their relatively

short active periods. Except four to five long term stable branches, the life

spans of stable branches in Linux Kernel are as short as two to three months

on average. Due to the short evolution period, most stable branches are quite

similar to the mainline and do not have their own particular features but

propagated patches. While we acknowledge that our study on the mainline

and stable branches in Linux Kernel may not generalize to other branches in

different systems, we argue that our results on the cross-branch backporting

are meaningful considering that Linux Kernel is a typical long-surviving large
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scale system and its development process model is adopted by numerous large

scale systems.

5.2 Future Work

Leveraging the study results above, a change awareness and notification

system for cross-branch backporting can be built to locate changes that need

to be propagated and notify relevant developers with appropriate recommen-

dations about relevant changes that should be ported together.

Second, since our study only focuses on the cross-branch backporting

from the mainline to stable branches, some other empirical studies should be

done further to analyze code porting activities from feature-specific branches

to the main development branch or upstream porting from stable branches to

the mainline.

Lastly, the development of open source products currently lacks strict

specifications, urgent bug-fix tasks, and formal development process. It would

be interesting if more cross-branch porting studies can be done in industrial

projects where a strict guideline for the backporting practice exists.
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Appendix 1

Survey Questions

In this appendix, we show the screenshot for the online survey.
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