
a2) United States Patent
Lin et al.

US009529614B2

US 9,529,614 B2
Dec. 27, 2016

(0) Patent No.:

(45) Date of Patent:

(54)

(71)

(72)

(73)

(*)

(21)

(22)

(86)

(87)

(65)

(60)

(51)

(52)

AUTOMATICALLY BRIDGING THE

SEMANTIC GAP IN MACHINE

INTROSPECTION

Applicant: The Board of Regents, The University
of Texas System, Austin, TX (US)

Inventors: Zhiqiang Lin, Dallas, TX (US);

Yangchun Fu, Dallas, TX (US)

Assignee: Board of Regents The University of
Texas Systems, Austin, TX (US)

Notice: Subject to any disclaimer, the term ofthis

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 14/382,259

PCT Filed: Mar.5, 2013

PCT No.: PCT/US2013/029021

§ 371 (€)(),
(2) Date: Aug. 29, 2014

PCT Pub. No.: WO2013/134206

PCT Pub. Date: Sep. 12, 2013

Prior Publication Data

US 2015/0033227 Al Jan. 29, 2015

Related U.S. Application Data

Provisional application No. 61/606,849,filed on Mar.

5, 2012.

Int. Cl.
GO6F 9/455 (2006.01)

GO6F 21/55 (2013.01)

(Continued)

USS. Cl.

CPC GO6F 9/45533 (2013.01); GO06F 9/3004

(2013.01); GO6F 9/45558 (2013.01);

(Continued)

A Trusted OS os 1

(58) Field of Classification Search
CPC wee GO6F 2009/45595; GO6F 2009/45583;

GO6F 9/45533; GO6F 9/45558; GO6F
9/3004; GO6F 21/55; GO6F

11/3466; GO6F 2201/815; GO6F
2009/45587

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,380,039 B2* 5/2008 Miloushev............ GO6F 9/5016

710/244
7,984,304 Bl 7/2011 Waldspurger

(Continued)

FOREIGN PATENT DOCUMENTS

WO 2013134206 9/2013

OTHER PUBLICATIONS

B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee.

Virtuoso: Narrowing the semantic gap in virtual machineintrospec-

tion. In IEEE Symposium on Security and Privacy, 2011.

(Continued)

Primary Examiner — Lewis A Bullock, Jr.

Assistant Examiner — Jacob Dascomb

(74) Attorney, Agent, or Firm — Thomas | Horstemeyer,
LLP

(57) ABSTRACT

Disclosed are various embodiments that facilitate automati-

cally bridging the semantic gap in machine introspection.It

may be determinedthat a program executed bya first virtual
machine is requested to introspect a second virtual machine.

A system call execution context of the program may be
determined in response to determining that the program is

requested to introspect the second virtual machine. Redi-
rectable data in a memory ofthe second virtual machine may

be identified based at least in part on the system call

execution context of the program. The program may be

(Continued)

O
Og

 Secure VM

102
Introspect

O
OO

 Product VM

104a Product VM Product VM

104b 104e

iii iL

Virtualization Layer 106 |

100

Hardware Layer 108 |

US 9,529,614 B2
Page 2

configured to access the redirectable data. In various
embodiments, the program may be able to modify the

redirectable data, thereby facilitating configuration, recon-
figuration, and recovery operations to be performed on the

second virtual machine from withinthe first virtual machine.

20 Claims, 13 Drawing Sheets

(51) Int. Cl.
G06F 9/30 (2006.01)
GOOF 11/34 (2006.01)

(52) U.S. Cl
CPC veces GO6F 21/55 (2013.01); GO6F 11/3466

(2013.01); GO6F 2009/45587 (2013.01); GO6F

2201/8135 (2013.01)

(56) References Cited

U.S. PATENT DOCUMENTS

8,195,980 B2 6/2012 Schubaetal.
8,261,029 BL* 9/2012 Marshak GO6F 3/0613

370/444
8,356,285 B2* 1/2013 Schuba GO6F 9/45558

TATN27
2004/0078547 Al* 4/2004 David ce. GO6F 9/4843

TA2/1
2007/0168565 Al* 7/2007 Yuhara............0.. GO6F 12/0871

T10/1
2008/0320594 Al 12/2008 Jiang
2009/0089879 Al 4/2009 Wang
2009/0254724 Al* 10/2009 Vertes oo... GO6F 9/526

711/162

2010/0251004 Al 9/2010 Schuba
2011/0167422 Al* 7/2011 Eom uw. GO6F 9/45558

T18/1
2011/0265076 Al* 10/2011 Thorat ou... GO6F 8/65

TATNT2
2012/0054744 Al* 3/2012 Singh oe GO6F 21/53

T18/1
2012/0233614 Al* 9/2012 Adler ou. GO6F 11/3676

718/100
2013/0029021 Al 1/2013 Ketter, Jr. et al.
2013/0091568 Al* 4/2013 Sharif ou... GO6F 21/50

726/22

OTHER PUBLICATIONS

X. Jiang, X. Wang, and D. Xu. Stealthy malware detection through

vmm-based. out-of-the-box Semantic view reconstruction. In 14th

ACM CCS, 2007.

B. D. Payne, M. Carbone, and W. Lee. Secure and flexible moni-

toring of virtual machines. In 23rd ACSAC, 2007.

B. D. Payne, M. Carbone, M. I. Sharif, and W Lee. Lares: An

architecture for secure active monitoring using virtualization. In

IEEE Symposium on Security and Privacy, 2008.

B. Hay and K.Nance. Forensics examination ofvolatile system data

using virtual introspection. SIGOPS Operating System Review,

2008.

P. M. Chen and B. D. Noble. When virtual is better than real. In 8th

HotOS, 2001.

M.Rosenblum and T. Garfinkel. Virtual machine monitors: Current

technology and future trends. IEEE Computer, 2005.

T. Garfinkel and M. Rosenblum. A virtual machine introspection

based architecture for intrusion detection. In 10th NDSS, 2003.

International Search Report and Written Opinion, mailed May 22,

2013.

* cited by examiner

U.S. Patent

A Trusted OS

O
OQ

 Secure VM

102

Dec. 27, 2016

introspect

OS 1

Sheet 1 of 13

OS 2

US 9,529,614 B2

O ” wo

O
OO 05

 Product VM

104a Product VM

104b
nl

 i

Virtualization Layer 106

 Hardware Layer 108

100

FIG. 1

U.S. Patent Dec. 27, 2016 Sheet 2 of 13 US 9,529,614 B2

poenaped £0 <4 00 fo 8G OG ab Gt Gh CH YG fh fb CY EG OE Gl ce ee i

oucogo:0 £0 c4 00 £0 24 FF GC FO GO 61 Ch FG FQ 24 £0 FG | 0, & |

o0cecgazp aS fe 90 26 #7 €% 06 £0 FO 74 00 FO FO c4 CH FO fo... eee j

OococosG FO c4 90 70 Fe c4 00 FO FF ef CO fl F6 c4 CO FE |. Woe eee dl

Oc040 £5 0S 00 co 4d 28 20 FO 41 fA CO FL 4z 6E 8G FE ie Moa 2e

i 050 359 e7 28 37 £5 2 8 00 de ef 0h fe ifs Ts 1

ecoag06eo Fa db co £0 2 SA ff OO f0 jz VRS

oococu7o 53 FEF oc £o 7 ef fe BO CO ol FR. ee L

opo0coeG f0 x4 ao Fo £0 ¢4 CG EM FH c4 CO FO flow. eee ae, ;
&

GOccsi ao DR ce O00 FQ ar 63 Oc £0 68 FH to fe wt fovea. oe, Ge]

pacccLIO FO «4 80 FO Fl c4 OF FH FH c4 CO FO FH Po ee es |
*

Buece1seo Ch uf Go 02 of 09 Ge GG Co Ok CO te Cf Ch CO oh fll j
*

Gocgglad fO0 24 00 £0 fe 24 OC £0 EG c4 CO FO FS 4 CO FO Lei ene i

Boucoclho fO 4 OO £0 FE OR OO of FO cA CO FC FO ra OO FO Fe. . w. es i

G0b001e00 60 ef 80 £0 of om OC £0 £0 74 CO FO be GA CD FO | o.e. ew... sod

eocdpidd ad co BO FO db ed OG fG FO of CH FO FH cH OO FR fee le eee |

OOoURle0 80 90 00 08 60 09 06 FO 26 Gh Cl 60 oo Ck CO CO i... !
+

¥

COO0LBOO eb 40 ib G2 63 74 Of fo OG CO bo CGO 0G fe GA fe J. s.r |

OOG01RIG BO OG 80 Gc Bo 05 OG 00 Of B82 G0 88 FO OD PO CE Eleee i

C00gta2z0 890 OD 60 OS 8e 0N Ge 6b GO ce ce fb Ce be fo Co fl eee, j

SO001030 O00 00 90 0° Gr 06 80 OG LO 76 16 com OG CO CN CH fl. ll, Wave i

GO00T840 G0 19 6§ Bo dO 52 5S Of fC GO CO GS 84 a6 53 Sh |..f..F,,,.. Doh. |

O0n0185OQ as ff 2d 19 82 06 OY GCF 208 of CE ba £O LF CL 22 Jove... Vea {

QOCd28én e0 €b OO BS #0 00 OC cb Cf B22 CF ba FO OA CE BO 1... Z 0]

Gdecia70 GF 20 20 OF ka 20 05 Of 22 e080 6D Go Bh AS OL EA GF. oo. ee ee i

OooC18BO 64 84 a3 7h G2 OG 06 CF CL BB 60 C2 Co CG CE CL flier. eee, !

O00Di890 $b AE 3c 60D Of LO oh oo 74 12 bh | Soe. tld

O000i8a0 b3 38 Si oF OY 30 C9 CO gh 29 Fa |. 20,04

GOc01sbO0 a4 OF 81 Gh 80 G2 50 C0 GF G1 9S 88 Oe CO CN Be |... ee bh ri

BOCOLBeO Ge 12 G0 €8 fe AR 66 Be co Sé Be GO 66 fe 20 BH | o£..2,.f.,.8..5)

‘

ec1cgofHo O06 09 90 OG of a9 30 80 8G FG FE fa 76 |€3 £0 2f

GGLGDETO 33 c4 a4 1a £9 46 be FR fo oF ld $2 40 le fe 3S

O0IDdfeO 4 £6 ib ae 6 69 28 of Bb? 34 74 al 4@ 5a a? 43

G0100f90 37 2F £2 47 cf AV 16 af £0 db 63 Sh Fh cf aG 23

ediagofad mi oF B87 4f S37 PE te Fi Fe do Vd bo 29 Fa Th ef

SO100rhO cf $5 bF 94 3f 84 63 Ya co Ba 36 Fh 56 Fk de 76

S0100feO be do ad e& 61 £6 9D ad @co 2b 54 86 37 de SA ad

O0L0CfdO by d¥ G7 37 le Ta bo ce ef Go FB ee 43 30 do ob

S01roofeOQ coc se bo €7 3a £2 27 40 Ga br ad BP Le 27 Gc FL

GOLUGSfO db 6 Zh dh 32 ch fa G1 84 ade Fad Se Ge Ca ef db

U.S. Patent Dec. 27, 2016 Sheet 3 of 13 US 9,529,614 B2

Device
Files E-Mail :

Drivers

Uniform
Registry Executables Resource

Locators

Viruses Networking Processes

FIG. 3

1 exervec". fyetpid’, ['. fgetmidvi, [/* 48 vars *f]} =

2 rei oj = OxaShSCoO

3 access ("/etofid.sc noahweap’. Fok) = -] ENOERT

4 mmap2 (NLL, 8192, PROT_READ{PROT_WRITE, ..., -1, @) = Ox4oCidtoo

5 access ("/erc/id, su, preload", ROO} = ~1 EBROENT

6 openi' ferafld.so.mache", ©RDONLY) = 3

7 Qferated(s, {(st_mode=5S_IFREG|U644, st_size=50255. ...}) = 6

SB mmapz (NULL, 39208, PROT READ, MAP PRIVATE, 8, ©) = Ox4fcifcad

% close !3} ~ ~ =
10 acoess (/eto/ld, go, nchweap", POR) = -1 ENOENT

li open(“/lik/tls /2686/omov/1ibe. 82, oe", ORDONLY} = 3

12 read(a, "SIVPELE\AVLTALAC\OSONDOVGRCUOC SVG) R40g41"..., S22) = 512

13 fararé4(3, (st_mede=S_IFREGI(O755, st_sare=1425800, i} = 6

14 mmap2 (NULL. 1441152, PROT AD | PROTEYEC. ..., O) = Gx4Goze0er

15 mmape2 (0x40184000, 12228. PROTREAD| PROTWRITE, ..., 0xi55} = Gxdd1edcus

16 mmapz(0x40197000, 93840, PROTREAD | PROTWRITE. ..., -1. 0) = Oxd0i37000

1? close(3} = 0

16 mmapZz (NULL. 4956, PROTBRADIPROTWRITE, -1, @) = Oxa218acog

19 set_threadareatjentrymmber:-1 -> G...,}) = 6

20 mprotect(0x40184000, 8192, PROT_READ) = fi

Zl merotect (Oxe4001b0C0, 409¢, BROT READ) = O

22 monmap (fxd clrcoc, ao2Da) ~ = ¢

23 getpidagr: = L384%

24 Fstaté4ii. {st mode=S IPUHR|O820, st rdevemakedev(13f, 1) ose) = OD

25 mmapy (NULL. 4066, PROT|READ (PRUTWRITE, cooe TL, OF & Ox4OCLCOONO

26 write (1, “pid=13849yn", 103 = if

27 exit_group(C} = %

FIG. 4

U.S. Patent Dec. 27, 2016 Sheet 4 of 13 US 9,529,614 B2

CommonUtilities

Syscall :

Execution > Redteciabie

Context : .

identification Identification

Kernel Data
 Redirection }€Vv

.

Kernel

Applications

Introspection

Riw| ol} R/O

|

Kernel Data

|

Kernel Code

a W

Secure VM 102

FIG. 5

sysenter/int

Ox80

 Vv.

 Interrupt Handler

Product VM 104

130

132

N
4

y

Exception Handler |_ |:

Syscall Service

Context Switch

134 Routine 138 140

| kd

136 oe
__| sysexit/iretd

FIG. 6

U.S. Patent Dec. 27, 2016 Sheet 5 of 13 US 9,529,614 B2

Case VI: Syscall
Blocked

Case V:

Exception Handler

CaseIV: Other
Places in Syscall

—_——
CaseIll: Syscall

Return

Case|: Arbitrary

Places
CaseII:

Voluntarily

Relinquishing

FIG. 7

U.S. Patent Dec. 27, 2016 Sheet 6 of 13 US 9,529,614 B2

Lo obedit:. Rilo 24 30 U7 21 mi LECLIT ILS TERK

2 chl Gi ise:

4 cil Oiart: 2k om

Bo ocbioai: 77

€ ei€Silat ee 32 TS Le
oy

St

a cd tt ef ff ff

4 21 ef

2h ah 4a 35

13 ¢f1%3a43- 3

14 clisgasé fi Ff ff Ff

LEB cilsdass. ae

Leé 3 42 16

17 44 %¢

La

24 45° 06

22 ch fe ££ ££ ute

L

22 ciiastif. 5

23 ctiearre: So

ae

23 Bb 4d 06 cg

Lit

cet hops

eet hot eax GRE

ce RICE eb ebx

cet hI? C3c SOK ee

cTHeE87 O08 ecg edly

gee G7 GC4 esp 227

ceés ebig: aby

Shadow

ax EBX

abx eke

eoK

ey

eEL

arn

 ate at <a>Wr r a a ‘i £ ta c
t

U.S. Patent Dec. 27, 2016 Sheet 7 of 13

Category System Calls

State

Query

get (p | t | ulgJ|eutleg iti pp! pg!
resu | resg)id, getrusage, getrlimit,

sgetmask, capget, gettimeofday,

getgroups, getpriority, getitimer,

get_kernel_syms, getdents, getcwd,

ugetrlimit, timer_gettime,

timergetoverrun, clock_gettime,

clock_getres, get_mempolicy, getcpu

File System fstat, stat, lstat, statfs,

oldlstat, ustat, lseek, _llseek,

readlink, readv, readdir

open,

fstatfs,

read,

FIG. 9

US 9,529,614 B2

U.S. Patent Dec. 27, 2016 Sheet 8 of 13 US 9,529,614 B2

Kernel Data Redirection Algorithm

1: Require: SysExecContext(s) returns true if syscall s is executed in a system call

execution context; SysRedirect(s) returns true if data access in s needsto be

redirected; RedirectableDataTracking(i) performs our redirectable data

identification and flow tracking forinstruction i; MemoryAddress(i) returns a set of

memory addresses that need to be accessedbyinstruction i. Not Dirt y(a) queries

STLB, or SCR3 and the page table to checkif the physical page located bya is dirty.

V2P(q) will translate the virtual address of a and getits physical address by querying

STLB, or SCR3 and the page tables and updating STLB if necessary.

2: DynamicInstInstrument(i):

3 if SysExecContext(s):

4 if SysRedirect(s):

5: RedirectableDataTracking(i):

6: for ain MemoryAddress(i):

7: if DataRead(q):

8 PA(a) <- V2P(a)

9 : Load(PA(a))

10: else:

11: if NotDirty(a):

12: CopyOnWritePage(a)

13: UpdatePageEntryInSTLB(a)

14: PA(a) <- V2P(a)

15: Store(PA(a))
FIG. 10

US 9,529,614 B2Sheet 9 of 13Dec. 27, 2016U.S. Patent

LL
‘Sla

007

8
0
2
W
A

1898ND

x
9
0
2
W
A
2
n
s
e
8
g

c
b
c
JeAe]

U
O
H
e
Z
I
e
N
L
I
A

8
L
¢
u
o
n
n
j
o
s
a
y
s
s
a
u
i
p
p
y

Oleg
s0Ae7

uoReZYeNLIA
p
u
e
B
u
i
d
d
e
w
A
i
o
w
a
y
!
W
A
S

p
a
s
e
g
uojejsues)

A
e
u
g

y

t
p
i

9
1
Z
U
o
p
e
u
p
a
y
p
u
e

‘
p
l
]
v
o
l
e
s
huAap]

u
o
H
e
o
y
u
a
p
]
e
y
e
g
j
e
w
e
y

}X9]UOZ
[JeosAs

jewiey

A
r
y

A
qT

T
T

l
i

I

S
J
B
A
L
I
Q

S
I
Z
A
U
G

p
u
e
s
j
u
a
u
o
d
w
o
y

@
L

L
p
u
e
s
j
u
s
u
o
d
w
o
4

&
L

L
W
a
y
s
k
S
JeUIO

g
2

g
Wwa3shks

JIUIO
Rg

g
8

>
>

o
D>

»
>

J
a
j
p
u
e
y

b
e

@
ND

a
J
a
|
p
u
e
y

>
wo

No
a

u
o
n
d
e
s
x
3
j
d
n
u
a
y
u
]

u
o
n
d
a
c
o
x
a
j
d
n
u
e
y
z
u
y

wiByy
Awunsag

N
e
e
q

|
|

z
ele

|]
1
Blea

w
y

A
u
n
s
a
s

N
e
e
q

|
|

z
B
e
d

|
|

b
e
e
d

/AIOWOW/OL/SS300id
yoeisg
|
}

y
e
s
|
|

y
e
s

{MOWSIA/OV/SS29014
yoris
|
|

yoRBIS
|
|

R
I
S
T
h

Ke
0zz

t
y

022
t

t
(
‘
y
o
o
_ulds

‘xajnw)
F
Z
?
eyeg

d
e
s
H

jeawey
(

‘yooy_ulds
‘xejnw)

F
z

ejeq
d
e
e
p
j
a
w
a
y

(
S
O
A
U
O
E
Z
I
U
O
I
Y
O
U
A
S
)
Z
Z
?
B
j
e
q

|
e
q
o
|
s

jausaye
fetI

L
y
}

(
s
e
a
n
n
u
u
d
u
o
j
e
z
i
u
o
l
y
o
u
A
S
)
Z
z
e
G

1
e
q
o
|
g
j
o
u
s
a
y

a
o
e
d
s
j
a
u
a
y

a
d
e
d
s
j
a
w
e
y

e
o
e
d
s

Jessy
a
d
e
d
s
J
a
s
n

e
j
e
q
d
e
a
y

7
0
2

w
e
l
6
o
l
d

Byej
e
q
a
i
g

=
C
O
¢

Il@YS
J
9
}
N
O

=
a
p
o
9

@
@

3
3

ejeq
yOeIS
||

Jesh
5

Wy
=

yeysjau
sd

5
X
O
j
O
I

josAus
e
y
o
e
d
e

O
o

2

U.S. Patent Dec. 27, 2016 Sheet 10 of 13 US 9,529,614 B2

1 execve("/sbin/sysctl",["sysctl", "-w","kernel..=1"],...) = 0
2 brk (0) = 0x604000

3 access ("/etc/ld.so,nohwcap",FOK) = -1 ENOENT

4 mmap(NULL, 8192, PROT_READ|.., -1,0) = 0x7£07b1749000

5 access ("/etc/ld.so.preload",R_OK) = -1 ENOENT

6 open("/etc/ld.so.cache", O_RDONLY) = 3

47 open("/proc/sys/kernel/randomizeva_space",OWRONLY|...) = 3
48 fstat(3, {st_mode=S_IFREG|/0644, st_size=0, ...}) = 0

49 mmap(NULL, 4096, PROT READ|].., ~1, 0) = 0x7£07b1748000

50 write(3, "1\n", 2) = 2

51 close (3) = 0

57 exit_group (0) =?

FIG. 12

<spin_ lock> in 2.6.34
0xc0129950: 55 push ebp
0xc0129951: ba 00 01 00 00 mov edx, 0x100
0xc0129956: 89 e5 mov ebp, esp

0xc0129958: 3e 66 Of cl 10 xadd word ptr ds[eax], dx

0xc012995d: 38 £2 cmp dl, dh
Oxc012995f: 74 06 Jz 0xc0129967
0xc0129961: £3 90 pause
0xc0129963: 8a 10 mov dl, byte ptr ds[eax]
0xc0129965: eb f6 jmp 0xc012995d

0xc0129967: 5d pop ebp

0xc0129968: c3 ret

<spin_lock> in 3.0.4
Oxcl1026a70: 55 push ebp
Oxcl1026a71: ba 00 01 00 00 mov edx, 0x100

Oxcl026a76: 89 e5 mov ebp, esp

Oxc1026a78: 3e 66 Of cl 10 xadd word ptr ds[eax], dx

Oxcl026a7d: 38 £2 emp dl, dh
Oxcl026a7£: 74 06 jz 0xc1026a87
Oxcl1026a81: £3 90 pause

0xc1026a83: 8a 10 mov dl, byte ptr ds[eax]

Oxcl1026a85: eb £6 jmp 0xcl026a7d

Oxc1026a87: 5d pop ebp
Oxcl1l026a88: c3 ret

FIG. 13

U.S. Patent Dec. 27, 2016 Sheet 11 of 13 US 9,529,614 B2

Page 0

Page 1

y TLB 249 « MMU 247 >

Page M

PM 242

CPU 24 Redirectable?j
o

Page 0

 Page 1

AG-TLB 2 o
n3 v. G-MMU 251Vv

 Page N

G-PM 240

FIG. 14

U.S. Patent Dec. 27, 2016 Sheet 12 of 13 US 9,529,614 B2

605 607 609

----8) 22aon
PROCESSOR PERSISTENT

UNIT MEMORY STORAGE 603

0 8 E EY
i 3 i

COMMUNICATIONS] [INPUT/OUTPUT ;
UNIT UNIT DISPLAY

V

 COMPUTER
READABLE MEDIA

621

PROGRAM
CODE

617

FIG. 15

U.S. Patent Dec. 27, 2016 Sheet 13 of 13 US 9,529,614 B2

700

Sat i
703)
\ Determine that Program Executedin First VM Will

Be Used to Access Data in Memory of Second VM

706 ‘

\ Determine System Call Execution Context of
Program

709 ‘

Identify Portion of Kernel Data in Memory of
Second VM Basedat Least in Part on System Call

Execution Context

712 |
Dynamically Instrument Program to Perform Data
Operation Upon Identified Portion of Kernel Data in

Memory of Second VM

y

End

FIG. 16

US 9,529,614 B2

1
AUTOMATICALLY BRIDGING THE

SEMANTIC GAP IN MACHINE

INTROSPECTION

CROSS-REFERENCE TO RELATED

APPLICATION

This application is the 35 U.S.C. §371 national stage of,

and claims priority to and the benefit of, PCT application
PCT/US2013/029021, filed Mar. 5, 2013, which claims

priority to and the benefit of U.S. Provisional Application

No. 61/606,849, filed on Mar. 5, 2012, herein incorporated
by reference in its entirety.

STATEMENT REGARDING FEDERALLY

SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under
grant FA9550-12-1-0077 awarded by the U.S. Air Force

Office of Scientific Research. The government has certain

rights in the invention.

BACKGROUND

A virtual machine (VM)is a software implementation of
a computing environmentthat can execute its own operating

systems and programsas if it were a physical computer.
Virtual machines are created within a virtualization layer

that can be used to create many individual virtual machine

environments. While virtual machines can share the physical
resources of a single computer, they can remain completely

isolated from each other as if they were separate physical
machines. Consequently, if, for example, a virtual machine

in a physical server crashes or is compromised, the other

virtual machines on that physical server remain available.
Isolation is one reason whythe availability and security of

applications running in a virtual environment can be supe-
rior to applications running in a traditional, non-virtualized

system.

BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the present disclosure can be better

understood with reference to the following drawings. The
components in the drawings are not necessarily to scale,

with emphasis instead being placed uponclearly illustrating
the principles of the disclosure. Moreover, in the drawings,

like reference numerals designate corresponding parts
throughout the several views.

FIG. 1 is a schematic, pictorial representation of a

machine introspection system according to an illustrative
embodiment;

FIG.2 illustrates example raw data (bits and bytes) that is
often obtained in machine introspection according to an

illustrative embodiment;
FIG.3 illustrates examples of high level semantic infor-

mation that is desired in machine introspection according to

an illustrative embodiment;
FIG.4 illustrates an example utility program for inspect-

ing an operating system state according to an illustrative
embodiment;

FIG. 5 is a schematic, pictorial representation of an
exemplary overview architecture of the machine introspec-

tion system according to an illustrative embodiment;

FIG.6 is a schematic, pictorial representation of a typical
kernel control flow when serving a system call according to

an illustrative embodiment;

10

15

20

25

30

35

40

45

50

55

60

65

2
FIG. 7 is a chart illustrating statistics of context switch

when running a program according to an illustrative embodi-

ment;

FIG. 8 is an example of shadow memory state and taint

propagation of machine introspection system code accord-

ing to an illustrative embodiment;

FIG. 9 is a table illustrating an example introspected
system call according to an illustrative embodiment;

FIG. 10 illustrates example program code for redirecting
kernel data according to an illustrative embodiment;

FIG. 11 is a schematic, pictorial representation of a
machine introspection, reconfiguration, and recovery system

according to an illustrative embodiment;

FIG. 12 illustrates an exemplary system call trace for a
program according to an illustrative embodiment.

FIG.13 illustrates an exemplary disassembled instruction
sequence for a synchronization primitive in different oper-

ating system kernels according to an illustrative embodi-
ment;

FIG. 14 depicts an exemplary virtual memory manage-

ment extension of a secure virtual machine to map and
resolve a physical memory address of a guest virtual

machine according to an illustrative embodiment; and
FIG.15 is a schematic, block diagram ofa data processing

system in whichthe illustrative embodiments may be imple-
mented.

FIG. 16 is a flowchart illustrating one example of func-

tionality implementedas portions of an introspection system
of FIG. 1 or 11 according to various embodiments of the

present disclosure.

DETAILED DESCRIPTION

In the following detailed description of the illustrative

embodiments, reference is made to the accompanying draw-
ings that form a part hereof. These embodiments are

described in sufficient detail to enable those skilled in the art
to practice the invention, and it is understood that other

embodiments may be utilized and that logical structural,
mechanical, electrical, and chemical changes may be made

without departing from the spirit or scope of the invention.

To avoid detail not necessary to enable those skilled in the
art to practice the embodiments described herein, the

description may omit certain information known to those
skilled in the art. The following detailed description is,

therefore, not to be taken in a limiting sense.

I. INTRODUCTION

FIG. 1 is a schematic, pictorial representation of a

machine introspection system 100 according to an illustra-
tive embodiment. In cloud computing, secure virtual

machines (secure-VMs 102) may be used to supervise, or
introspect, the activity of the other virtual machines (prod-

uct-VMs 104a, 1044, 104c) as shown in the machineintro-
spection system 100 in FIG. 1. The machine introspection

system 100 further comprises a virtualization layer 106 and

a hardware layer 108. Introspection offers an isolated and
secure method of supervising the activity of virtual

machines. For example, the secured and monitoring virtual
machine 102 may not be connected to the Internet, and as

such it is very difficult for hackers to compromise this
machine. Whenthe secured, monitoring virtual machine 102

performsintrospection of another virtual machine 104, how-

ever, it is often necessary for the secured, monitoring virtual
machine 102 to interpret the hardware-level state of the

inspected, untrusted virtual machine 104. These hardware-

US 9,529,614 B2

3
level states may comprise low-level bits and bytes from the
physical memory of the inspected virtual machine.

FIG.2 illustrates an example of raw data (bits and bytes)

that may be obtained in machine introspection. FIG. 3
illustrates examples of high level semantic information that

is desired in machine introspection by the monitoring virtual
machine. Such examples may include files, email, device

drivers, registry information, executable information, uni-
form resource locators (URLs), viruses, networking infor-

mation, executing processes, among others. The difficulty in

interpreting the low level bits and bytes as represented in
FIG. 2 into the high level semantic state that the secured,

monitoring virtual machine 102 can understand as repre-
sented in FIG. 3 is commonly referred to as the semantic

gap.
Virtual machine introspection (VMI) may pull the in-

guest (inspected VM) operating system (OS) state to the

outside virtual machine monitor (VMM), thereby offering an
additional layer of isolation and opening new opportunities

for security, reliability, and administration. VMI may be
employed for intrusion detection, malware analysis, process

monitoring, network firewalls, and memory forensics,
among other applications. However, when performing the

introspection, the in-guest hardware-level state, such as

processors, physical memory and devices, may be inter-
preted at the outside VMM layerin order to obtain the high

level semantic information. The introspection routine may
reconstruct the high level information by interpreting the

low level data. Such interpretation may involve building an
introspection routine that has a detailed, up-to-date knowl-

edge of the internal OS kernel structures running in the

inspected virtual machine. For example, to introspect the
process ID (pid) of a running process in a Linux kernel, one

has to traverse the corresponding task_struct to fetch its pid
field. Acquiring such knowledge can be tedious and time-

consuming, even for an OS whose source codeis available.

For a closed source OS, one may have to manually reverse
engineer the internal kernel workings and determine how to

introspect, which maybe error-prone.
As previously mentioned, the semantic gap refers to the

difficulty in interpreting the low level bits and bytes from the
virtual machine being monitored into a high level semantic

state that the secured, monitoring virtual machine can under-

stand. It is generally believed to be a tedious, time-consum-
ing, and error-prone process to develop a virtual machine

introspection tool manually because of the semantic gap.
One technique to bridge the semantic gap may involve the

Linux crash dump analysis tool. However, this technique
employs a kernel that is specially recompiled with the

debugging symbols.

Another technique to bridge the semantic gap involves
locating knownstructures of the in-guest memory, travers-

ing and interpreting them. However, this techniquerelies on
a manualeffort to locate the in-guest kernel data structures

(by following the exported symboltable or searching some
magic numbers) and develop the in-guest equivalent kernel

code to traverse and inspect. In addition, such a manual

process has to be repeated for different kernels, which may
suffer from frequent changes due to the new releases or

patches. Furthermore, it may also introduce opportunities for
attackers to evade these hand-built introspection toolsifthey

are not carefully written.
Another approach may involve automatically generating

introspection programs by reusing the code logics of an

in-guest trusted OS kernel, and allowing an expert to create
introspection programs from the traces of the in-guest pro-

grams. More specifically, given an introspection function-

10

15

20

25

30

35

40

45

50

55

60

65

4
ality (e.g., list all processes), such an approach maytrain and
trace the system wide execution of the in-guest programs

(e.g., ps) by an expert, automatically identify the instructions

necessary in accomplishing this functionality, and finally
generate the corresponding introspection code that repro-

duces the same behaviorofthe in-guest programs. However,
due to the nature of dynamic analysis, such an approach is

limited to reproducing introspection code that has been
executed andtrained. Thus, these approachesfail to provide

a mechanism for bridging the semantic gap in machine

introspection that is automatic and transparent to end users,
native developers, and the operating system.

The illustrative embodiments provide an Introspection
System that automatically bridges the semantic gap in

machine introspection and automatically generates a large
volume of machine introspection tools. Through system

wide instruction monitoring, the Introspection System can

automatically identify the introspection related data and
redirect these data accesses to the in-guest kernel memory,

which could be mapped on-line or from a snapshot. Two
insights may be employedbythe Introspection System. The

first insight is that introspection code already exists in the
trusted version of the in-guest OS. Therefore, instead of

extracting this code from execution traces, the Introspection

System may retain the OS kernel code and wrap it into a
virtual machine monitor. The second insight is that machine

introspection may perform read (i.e., inspect) operations of
the in-guest memory. Thus, the Introspection System may

redirect the memory read of these kernel instructions, which
are responsible for the introspection, including when the

instructions can be automatically identified.

In various embodiments, the Introspection System does
not simply redirect all kernel memory access, because kernel

code may be redirected as well (in-guest kernel code is
untrusted and can be tampered by attackers). Meanwhile, it

maybethat notall kernel data access can be redirected. For

example, an interrupt handler expects to read some hardware
states, but after the redirection, the interrupt handler may

receive an inconsistent state leading to kernel panics. Also,
data in the kernel stack cannot be redirected; otherwise

kernel control flow will be disrupted. As such, the Intro-
spection System may needto identify where the redirectable

data is and only redirect the introspection related data. To

this end, a number of OS-agnostic (or OS-independent)
enabling techniques may be provided by the Introspection

System, including system call execution context identifica-
tion, introspection data identification, and kernel data redi-

rection at the VMMlayer.
The Introspection System also keeps transparency to the

guest OS in mind (being OS-agnostic as muchas possible),

and the system mayachieve nearly full transparency against
an in-guest OS kernel. For example, without any modifica-

tion, the Introspection System may directly support a num-
ber of the most recent released Linux kernels. When using

the Introspection System, for a particular OS, end users may
only needto install the corresponding trusted version of the

guest OS in the virtual machine provided with the Intro-

spection System, and attach or mountthe in-guest memory.
The in-guest memory may be a live memory for virtual

machine introspection or an off-line snapshot for memory
forensics. Subsequently, end users may use a variety of OS

utilities (e.g., ps, Ismod) to inspect the state of the in-guest

The Introspection System in the illustrative embodiments

provides several features and capabilities, usable in any
combination. For example, the Introspection System enables

the automatic creation of secure introspection tools. Such

US 9,529,614 B2

5
security is achieved by the nature of virtual machine intro-

spection and the technique of the automatic tool generation.

The VMI-tools provided by the Introspection System are

generated from trusted OS code and the widely used and
tested utilities without any modification; hence, these intro-

spection tools may be more secure than many other manu-
ally created ones. In addition, the VMI-tools provided by the

Introspection System may also be morereliable than tools

generated through approachesthat cannot guarantee the path
coverage in their training; yet the Introspection System in

the illustrative embodiments may retain all the code. Fur-
thermore, the Introspection System may directly generate a

large volume of introspection without having to train each
program one by oneto get the new VMItools. Also, the

Introspection System may allow the user-level programmers

to develop new user-level programs natively to monitor
system status (by invoking native system calls) for the

introspection. Moreover, the Introspection System also
allows the kemel-level programmers to develop native

device drivers for inspecting the kernel states for the intro-
spection. In short, the Introspection System disclosed in the

illustrative embodiments automatically enables an in-guest

legacy inspection program to becomean introspection pro-
gram, without requiring any involvement from end-users

and developers.
The Introspection System disclosed in the illustrative

embodiments may also introduce a new binary code reuse
technique. Unlike existing techniques which extract the code

outside, the Introspection System may retain the code in

original form but dynamically instrument the code to
achieve the desired goals. This code reuse techniqueis truly

feasible in the VMI domain and demonstrates that end-users
can automatically obtain a variety ofVMItools without any

knowledge of the OS kemel internals. A set of novel

OS-agnostic enabling techniques, including system call
execution context identification, automatic introspection

data tracking, and kernel data redirection, may be included
in the Introspection System which achieves full or almost

full transparency of these techniques against an OS kernel.
Although the embodiments of the Introspection System

described herein mainly focus on introspection techniques

performed in virtual machine environments, it should be
noted that the illustrative embodiments are also equally

applicable to implementation in physical machine, or other
machine, environments and providing techniques to bridge

the semantic gap in physical machine introspection.

II. SYSTEM OVERVIEW

A. Observations and Challenges

The Introspection System in the illustrative embodiments
functions to bridge the semantic-gap and enable automated

VMItool generation. A basic observation is made that many
introspection tools are mainly used to query the OSstate,

e.g., listing all the running processes, openedfiles, installed
drivers, and connected sockets. These logics may be shipped

in an OS kernel with the corresponding user level utilities.

Thus, instead of building the introspection tools from
scratch, the Introspection System may almost fully reuse the

user level as well as OS kernel code to automatically
implement them.

More formally, as a program P(x) is often composed of
code P and data x. For the same program, P is usually

identical across different machines, and the only difference

is the run-time consumed data x. In normal scenario, for a
machine A, its P always consumes the x in A. Thus, the

Introspection System functions to make P (an inspection

25

30

40

45

50

55

6
program such as an anti-virus software) in machine A
transparently consumethe data y in machine B (i.e., without

the awareness that y comes from B), thereby automatically

generating an introspection program P" such that P'(x)=P(y).
FIG.4 illustrates an example utility program for inspect-

ing an OSstate according to an illustrative embodiment. In
particular, FIG. 4 shows system level behavior (in terms of

system call trace) of a typical user level getpid program.
Consider the following example to assist in understanding

the basic observation made above.

Without introspection, normally whena utility program is
run to inspect an OSstate (e.g., get a current process ID

(getpid) from a Linux kernel), first the OS kernel may, as
shown in FIG.4, create a new process (execve), set the end

of the data segment (brk), check (access) any libraries
compiled for different hardware capabilities (HWCAP,

Id.so.nohweap), check any library for pre-loaded (Id.so.pre-

load), open the /etc/Id.so.cache which contains a compiled
list of candidate libraries, map them to the memory, map the

standard sharedlibrary (open, fstat, map, map2), execute the
getpid system call, output the result (write), and exit the

process (exit group).
With introspection, in order to fully reuse the OS as well

as user level program code, the data read which is only

related to the desired introspection functionality should be
redirected. In the getpid example, the data redirect should be

within the getpid system call. For data in user space and
other irrelevant kernel space, there may be noredirection

and both kernel and other user processes may be kept
running correctly.

Thus, the Introspection System in theillustrative embodi-

ments may function to (1) automatically identify the intro-
spection execution context, (2) automatically identify the

data which is related to the introspection, (3) automatically
redirect the data access in kernel code which is responsible

for the introspection, and (4) keep all the processes running,

at the VMM layer. Providing a solution to these problems
can be a challenge since as the OS kernel may be designed

to manage computer hardware resources (e.g., memory,
disk, I/O, network) and provide common services (i.e.,

system calls) for application software, it has a very compli-
cated control flow and data access. In particular, the kernel

typically may contain many resource (e.g., page tables, slab

objects, device drivers) managementroutines, interrupt and
exception handling routines (e.g., tinier, keyboard, page

fault handler), context switch routines, and system call
service routines. As such, when serving a system call, an

interrupt, a page fault (an exception), or a context switch
could occur. It may be adverse to redirect the kernel data

access in context switches, page fault handlers, or interrupt

service routines, or redirect the data access in the execution
context of any other processes.

Data access may include codereads or data reads. One of
the advantages of virtual machine introspection is that

attackers usually cannot modify the introspection code.
Thus, the Introspection System may not want to load any

code from an untrusted guest, and the system may have to

differentiate kernel code and data. Also, data may be in
kernel global variable regions, heap regions, or stack

regions. It may be adverse to redirect the kernel stack read,
as such action maylead to a kernel crash (because of control

data such as return addresses in the stack). Moreover, when
redirecting the data, the Introspection System in the illus-

trative embodiments may need to perform the virtual to

physical address translation. Otherwise the system may not
be ableto find the correct in-guest memory data. Further, the

Introspection System in the illustrative embodiments may

US 9,529,614 B2

7
need to perform a copy on write (COW) ofthe redirected
data to ensure there is no side effect of the in-guest memory.

The Introspection System in the illustrative embodiments

may employ the corresponding techniques to solve these
issues.

B. Scope and Assumptions
An example design aspect of the Introspection System in

the illustrative embodiments is that it is transparent (OS-
agnostic) to a variety of OS kernels. The Introspection

System may rely on some OS knowledge. For example, the

Introspection System may need to understand what kind of
system calls are related to the introspection. In this disclo-

sure, focus is primarily on the Linux/UNIX OS,on top of the
widely used x86 architecture; however, it should be noted

that the aspects of the illustrative embodiments are equally
applicable to other systems and other architectures, such as,

for example, Microsoft® Windows® and SPARC.

For transparency, when designing the Introspection Sys-
tem, it may be advantageous to avoid hard coding of any

specific kernel addresses. Otherwise, the coding may be too
specific to a particular kernel (OS-gnostic), and instead it

may be preferred to use the knowledge from the general
Linux/UNIX design principles. In addition, it is assumed

that the secured VMM can intercept the system-wide

instructions, because the Introspection System dynamically
instruments the instructions and redirects the data access if

instructions are introspection related.
Tt is also assumed that end-users may have a trusted

in-guest OS copy. The trusted copy of an OS kernel may be
installed in the Introspection System, and executed along

with the utilities to provide the introspection. One reason

why it may be desirable to have a corresponding trusted
copy of the in-guest OS is that without the copy, when the

Introspection System redirects the introspection data, it may
lead to a wrong in-guest memory address.

C. Architecture

FIG. 5 provides an architectural overview of the Intro-
spection System according to an illustrative embodiment.

For any untrusted OS running ontop ofthe productVM 104,
suppose an end-user wants to perform the introspection. The

end-user may only needto install the corresponding trusted
version of the in-guest OS on top of the secure VM 102

(shipped in the Introspection system) and invoke the com-

monly used standard utility programs without any modifi-
cation. Thus, the end-user may not have to perform any

manual effort to understand (or reverse engineer) the OS
kernel and write the introspection program. Meanwhile, if

the end-user wants to customize an introspection program,
the end-user may develop these programs natively (e.g.,

invoking native APIs/system calls) without concern for any

OS kernel internal workings. Note that the product VM 104
and the secure VM 102 in FIG. 5 can be entirely different,

and the Introspection System in the illustrative embodiments
may be bounded with its own virtual machine monitor, the

secure VM 102 and may be transparent to the guest virtual
machine monitor, the product VM 104 which can be a virtual

machine running on top of XEN®@/KVM/VMWare®/Virtu-

alBoxNirtualPC/QEMU,or even be a physical machine as
long as its memory is accessible.

The following example may assist in understanding the
techniques of the Introspection System. Again, software is

composed of code and data, and the data may be consumed
by software as the data travels from machine A to machine

B. Machine B maythen read the data from machine A in a

normal way, and this may be achieved by the processes in
the Introspection System. For instance, consider anti-virus

software as an example. Users who need to scan for com-

20

25

30

35

40

45

50

8
puter viruses may buy anti-virus software from a company,

and this is the software code. The anti-virus software is

installed in computer A, and reads the data in computer A.

This is the normalcase. The Introspection System allows for
transparently replacing the original data for the anti-virus

software in machine A, with the data from machine B. To the
anti-virus software, everything is normal, and this software

does not know the data it consumeshas been replaced by the

Introspection System techniques.
In one embodiment, the Introspection System may

employ three main techniques: (1) system call execution
context identification, (2) redirectable data identification,

and (3) kernel data redirection. System call execution con-
text identification may be used to identify only the system

call execution context relevant to the introspection, and

ensure the kernel data redirection only redirects the data in
the context of interest. Redirectable data identification may

pinpoint and track only the data which is redirected under
the context identified by the system call execution context

identification. Kernel data redirection may perform the final
redirection at the instruction level. Copy-on-write (COW)

may be performedifthere is any data write on the redirected

data.

Ill. SYSTEM CALL EXECUTION CONTEXT
IDENTIFICATION

Because of the complicated kernel control flow, the Intro-

spection System may first identify the exact system call
execution context, in which the redirection for the necessary

system call is performed. When an introspection program is

running, there may be two address spaces: user space and
kernel space. In the x86 architecture, each process (and

kernel thread, which essentially is a process) may have a
unique CR3 value for locating the page directory. The

Introspection System may thus isolate the corresponding

kernel space as well as user space for the introspection
process by inspecting the CR3 value.

Then, the question is how to acquire the right CR3 value
of the monitored process, given only the introspected pro-

cess name. Note that the secure-VM 102 in the Introspection
System is transparent to the in-guest OS, and the system

should not traverse any specific task_struct to obtain the

process namefield, even though it could. This turns out to
be a challenging task, but before describing the solution to

the task, first consider what could be done at the VMMlayer.
Consider identification of the system call entry point. In

Linux, user level programs invoke int Ox80 or sysenter
instructions to enter the kernel space. Therefore, by inter-

cepting these two instructions at the VMM layer, it may be

sufficient to identify the beginning of a system call execution
context. However, consider identifying the exit point of a

system call. A naive approach may directly intercept the
sysexit or iret instruction to determine the exit point. How-

ever, this approach may not work because of interrupt and
exception handling, as well as the possibility of a context

switch happening during the execution of a system call.

FIG. 6 illustrates a typical kernel control flow when
serving a system call according to an illustrative embodi-

ment. As shownin FIG. 6, at a high level, when serving a
system call, an interrupt 130 may occur and kernel control

flow may goto the interrupt handler 132. An exception such
as a page fault (when a system call routine accesses some

unmapped memory region of the process) may also occur

and may be handled by an exception handler 134. Also, at
the system call exit point 136 or during the service of a

system call by a system call service routine 138, a context

US 9,529,614 B2

9
switch 140 mayoccur (e.g., a process has completedits time
slice). A context switch 140 may also occur in the interrupt

handler 132 and exception handler 134.

Fortunately, since the secure-VM 102 virtualizesall hard-
ware resources (e.g., through emulation), these hardware

resources may easily be observed and controlled, including
the interrupt and timer at the VMM layer, as long as the

introspection process and kernel are kept running correctly.
Morespecifically, the following approaches may be used to

handle interrupt, exception, and context switch in one

embodiment of the Introspection System.
Interrupt and Exception Handling—Generally, there may

be two kinds of interrupts: synchronousinterrupts generated
by the central processing unit (CPU) while executing

instructions, and asynchronousinterrupts generated by the
other hardware devices at arbitrary times. In the x86 archi-

tecture, synchronousinterrupts are designated as exceptions,

and asynchronousinterrupts as interrupts.
Whenan interrupt occurs (if interrupts are not disabled),

whether it is an exception or a hardware interrupt the
processor will first issue an interrupt vector number to the

hardware interrupt controller. This controller will pick up the
corresponding interrupt handler, to which the kernel control

flow will transfer. By monitoring this controller and tracking

the interrupt number, the Introspection System may differ-
entiate system calls (int 0x80) and other interrupt or excep-

tion handlers, and the system can track the beginning of an
interrupt service.

In one embodiment of the Introspection System, before
the interrupt handler gets executed (but not before the

system call is executed), a global flag may beset to indicate

data in the current execution context is not redirectable (as
the kernel control path will be in the interrupt context). Also,

as an interrupt may or will end with an iret instruction, the
Introspection System is able to track the end of an interrupt.

However, the interrupt could be nested. That is, when

serving an interrupt, the kernel could suspend the execution
of the current interrupt in response to a higher priority

interrupt.
Therefore, the Introspection System mayuse a stack data

structure to track the execution status of the interrupt han-
dler. In particular, a counter may be used to simulate the

stack. Whenever an interrupt other than a system call

happens, the counter may be increased; whenan iret instruc-
tion executes, the counter may be decreased. If the counter

becomes zero, it means the interrupt service has finished.
Note that the counter may only be updated when the

execution context is within the introspection process, and
initially the counter is zero.

In another embodimentof the Introspection System, the

next program counter (PC) in the system call routine may be
tracked to determine the end of an interrupt, since after an

interrupt handler finishes, it may transfer the kernel control
flow back to the system call routine (the next PC). In one

example of a Linux kernel, the system call routine maycall
the cond_reschedule function to determine whether a con-

text switch is needed (in particular checking the _TIF_NEE-

D_RESCHEDflag in the kernel stack), and the system call
routine may also be called in the interrupt and exception

handler routine. If an interrupt occurs during the execution
of cond_schedule in the system call context, this approach

may mistakenly identify the end of an interrupt handler.
Note that cond_reschedule execution does not disable the

preemption, but another schedule function does.

The stack-based approach above is able to determine the
interrupt handler context, or more specifically, the top half of

an interrupt. However, one may be concerned with how to

10

15

20

25

30

35

40

45

50

55

60

65

10
identify the bottom half of an interrupt as most UNIX
systems, including Linux, divide the work of processing

interrupts into twoparts or halves. Fortunately, the execution

of the bottom half of an interrupt is usually bounded with a
working queue and will be scheduled by a context switch,

which is discussed below.
Context Switch Controlling—Context switches provide

techniques that allow multiple processes to share a single
CPU.Basically, a context switch is a procedure of storing

and restoring the context state (including CPU registers,

CR3, etc.) of a process (or a kernel thread) such that
execution can be resumed from the same point at a later

time. A context switch could occur in a variety of cases in
Linux/UNIX including:

(i) arbitrary places, when an interrupt happens (could be
timer) and the process has used its CPU timeslice (pre-

empted);

(11) when a process voluntarily relinquishes their time in
the CPU (e.g., invoking sleep, waitpid or exit system call);

(111) when a system call is about to return;
(iv) other system call subroutine places (besides system

call return point), in which the kernel pro-actively checks
whether a context switch is needed;

(v) in exception (e.g., page fault) handler; or

(vi) when a system call gets blocked.
In the design of the Introspection System, an execution of

the ps commandwasprofiled, and the statistics of where a
context switch happens is reported in the chart shown in

FIG. 7. Among these six cases, three (Case-I, Case-III, and
Case-IV which account for 99.3% in the profile) are trig-

gered dueto the time slice. Case-II (0.7%) is not of concern

because the entry of the sleep or waitpid system call can be
detected and the redirection in these system calls execution

context, including any other possible context switches, can
be disabled. After context switching to other processes, the

processor may switch back to these system calls execution

context and the Introspection System may be able to detect
it by just looking at the CR3. Also, an introspection program

typically will not invoke the blocking-mode system calls
(Case-VI). Meanwhile, Case-V can be detected by the

exception hander discussed above.
Therefore, a view is that as long as the running introspec-

tion process is kept always owning the CPU, the context

switch can be prevented from occurring until the monitored
process exits, or the context switch may be allowedas long

as the Introspection System can proactively detect it (such as
the case of sleep system call). It turns out that such an

approach may function by disabling the timer ticks during
the introspection process context, because at the VMM layer

the Introspection System may own the hardware and can

modify the timer such that the process will not feel it has
gone beyondits timeslice.

Next, the mannerin which the right CR3 may be acquired
when only given a to-be-executed process name is

described. Notice in FIG. 4, when the process is executed,it
mayfirst call the execve system call. By inspecting the value

in ebx at the moment when this system call gets executed,

the Introspection System may determine the process name.
However, the value of CR3 when executing this system call

may belong to its parent process. During the execution of
this system call, it may release almost all resources belong-

ing to the old process (flush_old_exec) and update the CR3,
which is the right moment to acquire the CR3 for the

monitored process. Therefore, by monitoring the update of

CR3 (a movinstruction), the Introspection System may be
able to obtain the desired value because there is no other

CR3 update since context switching was disabled.

US 9,529,614 B2

11
There is also an alternative approach to monitor all CR3

(essentially the page directory, pgd) values from the boot of

the secure-VM and detect the newly used CR3 since a new

CR3 belongsto a new process. This approach tracks thelife
time of a pgd. The instrumentation is to maintain a map

between the CR3 and the process. Whenevera process dies
(detected through such as exit_group system call), its CR3

is removed from the map. As such, it is able to determine

whether a given CR3 belongs to a new process. By tracking
the interrupt service routine and disabling the timer for

context switches, the system call context identification may
be able to largely identify the system call execution context

of the monitored process.
However, the system call context identification still may

not fully isolate all the system call service routines. For

example, the cond_schedule function may be called in many
places to determine whether a context switch is needed,

including all ofthe system call exit points. The Introspection
System may redirect the data access of this function if there

are no other techniques to remedy this. One may not white
list this specific function (though that is a viable option);

otherwise, the Introspection System design may be too

kernel specific (OS-gnostic). Fortunately, the previously
mentioned second technique, redirectable data tracking,

solves this problem and may automatically tell the data in
such a function is not redirectable.

IV. REDIRECTABLE DATA IDENTIFICATION

The redirectable data identification in the Introspection

System tracks the kernel data which can be redirected to the

in-guest memory. Thus, in one embodiment, it mayfirst be
determined what kind of data should be redirected. When

writing an introspection program manually, the kernel
memory maybetraversed starting from the global memory

location (exported in the system map file) to reach other

memory locations including the kernel heap by following
pointers.

As such, one of the basic approaches would be to track
and redirect the data which is from global variables or

derived from global variables through pointer dereference
and pointer arithmetic instructions. Note that at the instruc-

tion level, the Introspection System can easily identify the

kernel global variables, which are usuallyliteral values after
the kernel is compiled and identical for the same OSversion

for a given global address. By dynamically instrumenting
each kernel instruction and checking whether there is any

data transitively derived from global variables (a variant of
widely used taint analysis), the Introspection System may

identify them. The Introspection System may save shadow

memory space for data flow tracking.
Since it is a boolean function to determine whether some

data is redirectable, instead of tracking all the redirectable
data, the Introspection System may track which data is

unredirectable. It may be the data dereferenced from stack
variables or derived from them because some kernel stack

variables manage the kernel control path. They may vary

from machine to machine even for an identical OS at a
different time. Though the redirectable data tracking is a

variantoftaint analysis, there are still significant differences.
A. Shadow Memory

Similar to taint analysis, a shadow memory maybe used
to store the taint bits for memory and all CPU registers. As

a non-limiting example, taint information may be kept for

memory andregisters at byte granularity by using onebit to
indicate whether they are redirectable (with value 1) or not

(with value 0). However, three pieces of shadow memory

40

45

50

12
may be used—ShadowSand ShadowVfor the memory data
and ShadowR for registers. ShadowS maybe usedto track

the unredirectable stack address, and ShadowV and Shad-

owR may be used to track whether the value stored in the
stack address or register when used as a memory address

needs to be redirected.
Considering the working example illustrated in FIG.8,

which shows shadow memory state and taint propagation of
a working machine introspection system code. S, V, and R

represent ShadowS, ShadowV, and ShadowRrespectively. If

only ShadowS is used, for the instruction at line 17
c1188a4e: mov Oxc(% ebp), % ecx, the taint bit 0 is moved

to ecx. Then, when the kernel dereferences the memory
address pointed to by ecx, it may not be redirected because

oftaint bit 0. However, this address maybe redirected as this
address may actually be a global memory address. In other

words, because of pointers, the taint information may be

kept for both the stack address andits value.
B. Taint Source

Before the introspection process enters the first monitored
system call, the Introspection System may initialize the taint

bits for the shadow register and shadow memory. For
shadow registers, all may be initialized with 0 (unredirect-

able), as the parameters passed from the user space are local

to the secure-VM 102. For shadow memory, the taint bits
may be allocated on demand when the kernel uses the

corresponding memory address.
The taint bit for the esp register may be 0. When loading

a global memory address (a literal value which falls into
kernel memory address space), the taint information for the

corresponding register or memory maybe set to 1. Some

special instructions (e.g., xor eax, eax, sub eax, eax) may
reset register value, and consequently their taint bits may be

set with 0.
C. Propagation Policy

The propagation policy may determine how the Introspec-

tion System may update the shadow state. Similar to other
taint analyses, based at least in part on the instruction

semantics, the shadow state may be updated. However, if
there are two pieces of shadow memory for a given memory

address, and the involved stack address and the value are
stored in these addresses, there may besignificantly different

policies.

In one embodiment, for ShadowS,its shadow bit may be
updated with 0 whenever a stack address is encountered.

ShadowS may be regarded as a book keeping ofall the
exercised stack address. Later on, when dereferencing a

memory address, ShadowS may be queried about whether
such an address has been seen before. The taint-bit value in

ShadowS (which is 0) may not be involved in any data

propagation.
Some embodiments may not use ShadowS because, in

practice, nearly all the stack addresses (involved in an x86
instruction) may be computed (directly or indirectly) from

esp. For example, as showing in the last two instructions
(line 23-25) of the example of FIG. 8, one can infer 0x8(%

ebp) is a stack address without querying any ShadowS. One

reason ShadowS is kept is to make sure that the stack
address will not be redirected. For example, it may have an

instruction which actually has a stack address but does not
use esp (or its derivation such as ebp) in certain context for

address computation.
For ShadowV and ShadowR, in one embodiment, the

Introspection System may use the following policies.

(1) Data MovementInstruction—Forone-directional data
movement AB, such as mov/movsb/movsd, push, and

pop, ShadowR(B)or ShadowV(B) may be updated, with the

US 9,529,614 B2

13
taint bit in ShadowR(A) or ShadowV(A). For data exchange

instructions A<>B, such as xchg, xadd (ADD and

Exchange), shadow state for both operand may be updated.

Note lea may be a special case of “data movement”. It may
not load data from memory, but it may load a memory

address. Therefore, a check to determine if the source
operand generates a stack address may be performed, and if

so, the ShadowV or ShadowR of the destination operand

may be updated with 0. For example, at line 16 of FIG.8,
a stack address is loaded to eax, and ShadowR(eax) may be

updated with 0.
(ii) Data Arithmetic Instruction—Asusual, for data arith-

metic instructions such as add, sub, xor, shadow state may
be updated by ORing the taint bit of the two operands.

However, this may only be true for operands which are both

global and heap addresses as well as their propagations (to
registers and other memory). Note thatifone ofthe operands

in these instructions is a literal value but not within kernel
address space, there may be no need to update any shadow

state. If either of the operands is stack address related, the
taint bit may be updated with 0. Considering the instructions

in line 8-11 of FIG. 8, ebp maybefirst tainted with 1 as

Oxffffe000 is a literal and within kernel address space; at line
9 when executing and % esp,% ebp, because the taint bit for

esp is 0, a new taint bit may be obtained for ebp as 1; next
at line 11 of FIG. 8 when dereferencing memory 0x8(%

ebp), it will be redirected, which is wrong. Therefore, the
stack address may override the normal propagation policy

and clear the operandtaint.

(iii) Other Instructions—A large body ofinstructions do
not contribute to any taint propagation, such as nop, jmp,jcc,

test, etc. For them, only a check whether any memory
address involvedin these instructions needsto be redirected

maybe performed.Aredirection process ofthe Introspection

System in the illustrative embodiments is presented below.

V. KERNEL DATA REDIRECTION

Having been able to identify the system call execution
context and pinpoint the data that needsto be redirected, this

section describes non-limiting examples of how the kernel
memory access may be redirected. As not all system calls

needto be redirected,first, the system call redirection policy

is described. Then, a discussion of how the virtual to
physical address translation including COW handling is

performed is presented. Finally, the redirection process of
the Introspection System is disclosed.

A. System Call Redirection Policy
Back in the system call trace of the getpid process (FIG.

4), it was noticed that the system call redirection policy may

be fine-grained. That is, based on the semantics of each
system call, the Introspection System may determine

whether the data access is redirected during the execution.
Assuch,the Introspection System may systematically exam-

ine all the system calls.
System calls in general maybeclassified into the follow-

ing categories: file access (e.g., open, read, write), network

access (e.g., send/recv), message queues (e.g., msgctl),
shared memory (e.g., shmat), file descriptor operations(e.g.,

dup, fentl), time-related (e.g., getitimer/setitimer), process
control related (e.g., execve, brk, getpid), and other system-

wide functionality related including accounting and quota
(e.g., acct).

Asit may be desired to pull the in-guest OSstate outside

to the VMM,in one embodiment, the following introspec-
tion settings are of particular interest: (1) system calls

dealing with retrieving (1.e., get) the status of the system and

10

15

20

25

30

35

40

45

50

55

60

65

14
(2) system calls related to file access. Example introspected
system calls are summarized in FIG.9.

The file access related system calls may be of interest

because of the procfiles in Linux/UNIX.Note that the proc
file system is a special file system which provides a more

standardized way for dynamically accessing kernel state, as
opposed to tracing methods or direct access of kernel

memory. Utility programs such as ps, Ismod, and netstat
mayreadprocfiles to inspect the kernel status. Therefore, it

may be desirable to support file read on the procfiles. Also,

for disk files, there may be no redirection (because virtual
machine introspection (VMI) largely deals with memory),

and they may be differentiated by tracking the file descrip-
tors. To this end, the Introspection System may maintain a

file descriptor mapping wheneverthe introspected process
opens a file, and by checking the parameters it can be

differentiated whether the openedfile is a procfile.

It is noted that many of the techniquesin the Introspection
System are OS-agnostic. However, the system call redirec-

tion policy, as described, may be OS-gnostic. Thatis, it uses
the specific knowledge of each system call conversion and

the semantics for a particular OS. As such, to support other
systems such as Microsoft® Windows®, one may scrutinize

each Windows® system call to determine whether they are

redirectable. Once having this knowledge, it may betrivial
to introspect them. For instance, a Windows-XP® (SP2)

process ID was successfully introspected by enabling the
System redirecting the Windows system call NtQueryInfor-

mationProcess (system call number 0x9a) and disabling the
stack redirection, while using the alternative approach to

track the new CR3 value for the introspection process.

B. Virtual to Physical Address Translation
When dynamically instrumenting each kernel instruction,

the Introspection System may only be able to observe the
virtual address (or logical address). If a given address is

redirectable, the Introspection System may identify its

physical address and load the data. Thatis, the Introspection
System may perform the memory management unit (MMU)

level virtual to physical address translation.
To this end, in one embodiment, a shadow translation

lookaside buffer (TLB) (STLB) and shadow CR3 (SCR3)
maybe provided in the Introspection System’s VMM(_e.,

the secure-VM 102), which will be used in the introspection

process during address translation if a given address should
be redirected. SCR3is initialized with the guest CR3 value

at the momentof introspection. Note, if a snapshot is taken
of the guest memory (e.g., for forensics), the Introspection

System may log its CR3 and this value will be loaded into
the SCR3. Meanwhile, at any moment when the value of

CR3(after the OS has booted) is obtained, all the page table

entries of the kernel space in a page directory (pgd) pointed
to by any CR3 maybeidentical, because all processes share

the same kernel space. SCR3 may be used for kernel
memory address if and only if this address needs to be

redirected, and similarly for STLB.
In particular, before the start of an introspection process,

STLB maybeinitialized with zero. When a kernel address

a needsto be redirected, the Introspection System mayfirst
check whether the STLB misses; if not, the Introspection

System may directly obtain the physical address P(a)
derived from STLB. Otherwise, the Introspection System

may get its P(a) in the guest physical memory by querying
SCR3 and performing the three-layer address translation. At

the same time, the Introspection System mayfill the STLB

for address a with the physical address of P(a) such that
future reference for the address sharing the same page of a

can be quickly located. Also, the STLB entry may be flushed

US 9,529,614 B2

15
if its entries are full and it may be replaced becausethere is
one SCR3 value. Unlike a regular TLB, all of the STLB

entries have to be flushed whenever there is a context switch.

If there is a data write on the redirected data, the Intro-
spection System may perform COWatpagelevel, as it may

be desirable to avoid any side effect of the in-guest OSstate.
This time, the Introspection System may extend one of the

reserved bits in page table entries to indicate whether this
page is dirty (has been copied) and add one bit to the

software STLBentry. Note thatthis is one of the advantages

of instrumenting the VMM because the Introspection Sys-
tem may add whatever it wants in the emulated software,

such as the STLB, even though the original hardware may
not contain such an extension. Meanwhile,for the page table

entry, the Introspection System may extend one of the
reserved bits to achieve its goal. The Introspection System

mayalso make a shadow pagetable and extendit with a dirty

bit for page entry if there does not exist any reserved bit.
If there is a memory write on a, the Introspection System

mayfirst check whether STLBhits. If so, the Introspection
System may check whether the target page is dirty by

querying the dirty bit in the STLBentry.If it is, then the
Introspection System may directly derive its physical

address from the STLB. Otherwise, if the page is not dirty

(marked in the STLB entry) or STLB misses, the Introspec-
tion System may perform the three-layer address translation

by querying SCR3 andthe pagetables. Next, the Introspec-
tion System may checkifthe target page is not dirty (the first

time data write on this page). The Introspection System may
perform a target page copy andredirect the future access of

this page to the new page.In the meantime,the Introspection

System maysetthe dirty bit ofthe target page table entry and
the STLBentry as well. If it is already dirty, the Introspec-

tion System does not copy the target pages and sets the
STLBentry and the dirty bit. This is because next time any

data write to this page will not have a problem as the whole

page has already been copied.
C. Directing the Access

For the details ofthe final data redirection procedure, FIG.
10 illustrates example program code for redirecting kernel

data according to an illustrative embodiment. As shown in
this embodiment, for each kernel instruction i, the Intro-

spection System may check whether its execution is in a

system call context (line 3). If so, the Introspection System
may check whether the current system call data access needs

to be redirected (line 4). If not, there will be no instrumen-
tation for 1.

Next, the Introspection System may perform the redirect-
able data tracking for i (line 5). That is, check each operand,

and update the shadowstate. After that, for each memory

address access (other than the instruction address) involved
in i (line 6), if it is a data read (line 7), the Introspection

System may invoke the virtual to physical address transla-
tion function to get the corresponding address (line 8), and

load the data (line 9). Otherwise (line 10), the Introspection
System may check whether the target page is dirty or not

(line 11). If not, the Introspection System may perform the

COWoperation (line 12) and update the page entry dirty bit,
copying the page if necessary (line 13). After that, the

Introspection System may obtain its physical address (line
14) and perform the write operation (line 15).

From the process in FIG. 10, the Introspection System
mayalso notice that the data redirection engine (line 5-15)

may work in any other kernel execution context as long as

it can be informed. For instance, the Introspection System
may inspect and redirect the kernel data access in a particu-

lar kernel function, e.g., in a regular kernel module routine,

10

15

20

25

30

35

40

45

50

55

60

65

16
or a user developed device driver routine. This is another

benefit of the Introspection System. That is, the Introspec-

tion System allows end-users to customarily inspect a spe-

cific chunk of kernel code in a context as long as the

end-user can inform the start and end address or the Secure-

VM can automatically sense them throughparticular instruc-

tions.

VI. IMPLEMENTATION

In this section, example implementation details of interest
are shared, especially how each instruction is dynamically

instrumented in the most recent QEMU,howtheinterrupt
execution context is intercepted at VMM layer, and how the

MMU is managed with respect to the new STLB.

Dynamic Binary Instrumentation—There are quite a few
publicly available dynamic binary instrumentation frame-

works built on top of QEMU (e.g., Argos, TEMU). How-
ever, their implementations are scattered across the entire

QEMU instruction translation, and redirectable data tracking
in the Introspection System can be implemented more

simply. The Introspection System takes a more general and

portable approach. In particular, the Introspection System
may leverage the XEDlibrary for its dynamic instrumenta-

tion. Upon the execution of each instruction, the Introspec-
tion System may invoke XED decoder to disassemble it and

dynamically jump to its specific instrumentation logic for
performingthe redirectable data identification. One example

benefit is such an approach may allow the Introspection

System to largely reuse a prior PIN-based dynamic data flow
analysis code base.

Interrupt Context Interception—The beginning execution
of a hardwarelevel interrupt or software level interrupt(1.e.,

exception) for the x86 architecture in QEMU maybe mainly

processed in the function do_interrupt_all. This function
may be instrumented to acquire the interrupt number, and

determine whether it is a hardware or software interrupt.
After the secure-VM (QEMU in this case) executes this

function, it may pass the control flow to OS kernel. The
kernel may then subsequently invokethe interrupt handler to

process the specific interrupt. A part of an interrupt hander

(top-half) may finish and return with a ret instruction. After
that, the kernel may invoke a context switch, and after it

switches back or no context switch happens, the interrupt
hander may return with an iret. By capturing the beginning

and ending of an interrupt (the pair), the Introspection
System may identify the interrupt execution context.

Memory Management Unit (MMU) Management with

STLB—Emulator-based VMMoften has to emulate the real
hardware MMU.In QEMU,it is handled in 1386-softmmu

module for the x86 architecture. For virtual to physical
addresstranslation, the original TLB handling code and data

structures were largely mirrored and extended(e.g., tlb_fill,
tlb_set_page, tlb_table) in the STLB implementation. For

load and store, QEMU actually differentiates code and data

whentranslating the code(e.g., generating Idub_codeforthe
instruction load). Therefore, the data load and store macro

helper functions may be instrumented in QEMU.

VII. ADDING CONFIGURATION AND
RECOVERY FUNCTIONALITY TO

INTROSPECTION SYSTEM

From a security perspective, the traditional program

execution modelhasatleast the following issues: (1) In-VM
programs(e.g., hostname, rmmod, ps) and kernel states are

directly faced by user level, as well as kernel level malware,

US 9,529,614 B2

17
and they can often be attacked. For instance, malicious
processes and device drivers (or kernel modules) can hide

from in-VM system enumeration tools (e.g., ps, Ismod) and

can be immune to attempts of removal or disabling. (2)
End-users or administrators often have to be authenticated

before running in-VM programsto update the kernel state,
which may not be ideal for a timely response to intrusions

(e.g., kill a rootkit hidden process), especially for cloud
providers who in many cases do not have a user account in

the guest-OS.

FIG. 11 is a schematic, pictorial representation of a
machine introspection, reconfiguration, and recovery system

200 according to an illustrative embodiment. As shown in
FIG.11, the Introspection System 100 (FIG. 1) is extended

to provide a new program execution model in which pro-
grams may be executedin an outer shell 202 for a guest-OS

administration, with the same effect in terms of kernel state

updates akin to running the programs 204 inside the guest-
VM.The in-VM kernel state may be updated entirely from

the outside. The trustworthiness of out-of-VM programsis
thus ensured because they are located out-of-VM andthere

is a world switch (far from reaching) with the in-VM
programs such as the in-VM malware. Also, authentication

may not be required, and the trusted out-of-VM programs

may be executed in an outer-shell which is outside control
of the in-VM software.

A dual-VM architecture may be employed with a secure
VM 206 (SVM) and guest VM 208 (GVM). Specifically, a

trusted, corresponding guest-OS kernel with the same ver-
sion maybeinstalled in a separate SVM 206, over which full

control is retained and on which native administration

utilities may be executed and memory redirection may be
performed. Through running the trusted binary code in the

monitored SVM 206, various embodiments transparently
redirect the memory read and write operations of kernel

memory from SVM 206 to GVM 208, thus modifying the

state of the GVM 208. Therefore, the outer shell 202 for the
GVM 208 is actually located in the SVM 206, and now

trusted, native, widely tested administration utilities may be
executed in the SVM 206 to timely supervise the state of

GVM 208, including introspection and reconfiguration of
guest-OS kernel state as well as recovery and response to

intrusions.

Normally, a given program runs on top of a given OS
within a shell. In various embodiments, the Introspection

System 200 changes this model and supports running pro-
grams completely outside of the OS with the sameeffect as

running the program inside in terms of kernel state update,
thanks to the powerful, programmable VMM. A direct

outcome is that the trusted administration utilities can be

executed to reconfigure the guest-OS and respond quickly to
intrusions such as recovering the system from attacks(e.g.,

kill a rootkit created process, and rmmoda malicious kernel
module) entirely from out of-VM, without any user account

inside the guest-OS. Therefore, the administration of the
guest-OS is made easier. Various embodiments facilitate a

timely response to intrusions detected in the guest-OS.

There are a number of reasons for out-of-VM program
execution to manage the guest-OS. Besides benefits such as

isolation, portability, and reliability while implementing the
service out-of-VM,the following additional benefits may be

obtained.
Trustworthiness—Recent cyber attacks such as kernel

rootkits have pushed defense software into the hypervisor or

even hardware layers (i.e., out-of-VM). It may be much
harder for attackers to tamper with the software running

out-of-VM, because there is a world switch for the attacks

10

20

35

40

45

50

55

18
from in-VM to out-of-VM (unless the VMM has vulner-
abilities). Therefore, a higher trustworthiness of the out-of-

VM software may be gained. For instance, it may be

guaranteed that the administration utilities (e.g., ps) are not
tampered before using them to manage a guest-OS in the

SVM 206 as the SVM 206is not directly faced by attackers.
Higher Privilege and Stealthiness—Traditional security

software (e.g., anti-virus, or host intrusion detection) runs
inside the guest-OS, and in-VM malware can often disable

the execution of these software. By moving the execution of

security software out-of-VM, higher privilege (same as
hypervisor) and stealthiness can be achieved to make the

security software invisible to attackers. For instance, mali-
cious code(e.g., kernel rootkit) may disable the ps command

from showing the running malicious process, and may
disable the rmmod command needed to remove a keel

module. Through enabling the execution of these commands

out-of-VM, higher privilege and stealthiness may be
achieved to prevent the rootkits from tampering with the

security software.
Automation—When an intrusion is detected, an auto-

mated response may be desired. Current practice may be to
notify the administrators or execute some automated

responses inside the guest-OS. Unfortunately, again any

in-VM responsescan be disabled by attackers because they
run at the sameprivilege level. However, in various embodi-

ments ofthe present disclosure, running software out-of-VM
may be supported, and actions may be taken quickly to stop

and preventthe attack without the help from any in-VM root
privileges. Various embodiments may be integrated with

intrusion detection software and provide a timely response

to attacks, such as to kill a rootkit created hidden process or
rmmoda hidden malicious kernel module.

According to various embodiments, the approach outlined
herein uses a dual-VM execution architecture with a kernel

system call context aware scheme that monitors the instruc-

tion execution of the trusted utilities at the SVM 206, and
transparently redirects each individual piece of a memory

update, at binary code instruction level from SVM 206 to
GVM 208 when the system call of interest gets executed, to

achieve state introspection, (re)configuration and recovery
for GVM 208.

For instance, considering running sysctl(8) to configure

the kernel parameters, as shown in FIG.12, there are in total
57 system calls, and only four of them (highlighted in FIG.

12) are ofinterest because these system calls are responsible
to tune the kernel parameters. If the kernel data access of

these four system calls can be redirected, the sameeffect of
configuring the kernel from outside VM can be achieved.

Morespecifically, suppose it is desired to implement a

new out-of-VM program program_out, which could be a
state inspection program (e.g., ps, Ismod, netstat), a con-

figuration or attack recovery program (e.g., kill, rmmod).
The execution context ofthe original in-VM program can be

reused: program_in =code_in (user data, kernel data) with
the same userdata, but with different kernel data. However,

the kernel stack data is not reused because the data in the

stack is transient and mostly related to kernel control flow.
Therefore, in order to implement program_out, the follow-

ing relationships are observed:
Program_out=code_out (user data, kernel data)=code_in

(user data, modified kernel data)=code_in (user data, {kernel
stack data, modified kernel heap data, modified kernel global

data}), where program_out is the new out-of-VM program;

code_out=code_in, the modified kernel heap and global data
are from the GVM 208; and code_in, user data, and the

kernel stack data are from the SVM 206. Interestingly, the

US 9,529,614 B2

19
semantic gap is automatically bridged for the out-of-VM
program program_outthat is running in the SVM 206. This
is because the new program_out satisfies code_out (user
data, kernel data)=code_in (user data, modified kernel data)
by reusing the legacy binary code code_in of program_out.
In other words, program_out can use all the system calls,
APIs invokedbyitself in the SVM 206, andit transparently
updates the state ofthe modified kernel data ofthe GVM 208
and achieves the same effect of running the corresponding
program_in in the GVM 208, but with a higher trustworthi-
ness.

Architecture Overview—An overview of an exemplary
Introspection System supporting updating and reconfigura-
tion is presented in FIG. 11. To monitor the kernel instruc-
tion level memory access, the SVM 206 maybe based on the
instruction translation-based virtualization layer (VMM)
210. As a non-limiting example, the open source QEMU
may be used. The GVM 208 may bebased on any virtual-
ization layer 212, such as XEN®/KVM/VSPHERE/HY-
PERV. In one embodiment, there are three primary compo-
nents configured in the SVM 206 at its binary translation
based VMM-layer 210. Specifically, to precisely isolate the

target process execution context in kernel space, a Kernel
System Call Context Identification 214 component is

employed, which identifies the target process and thread

execution context in the kernel space at the system call
granularity in the SVM 206. During the execution of a

program, it may bethat not all the system call related data
is of interest to a memory access. Kernel System Call

Context Identification 214 may also pinpoint which system
call context needs the kernel global data and kernel heap

redirection. In addition, it may identify interrupt execution

context to filter the redirection of synchronization primi-
tives.

After that, a second component providing Kernel Data
Identification and Redirection 216 may intercept the data

access of in-guest kernel global data and kernel heap data,

whenthe particular system call of interest gets executed. In
the meantime, it sends the GVM 208 data read-and-write

request to a third component, GVM Memory Mapping and
Address Resolution 218. The GVM Memory Mapping and

Address Resolution 218 componentis responsible for map-
ping the physical memory of GVM 208, resolving the

corresponding kernel virtual address, and performing the

read and write operations of the memory access to the GVM
208.

Kernel System Call Context Identification—The Kernel
System Call Context Identification 214 may be configured to

identify the target-process kernel-level execution context,
and pinpoint the exact system call context at the VMM layer.

Identifying Process Kernel Execution Context—Modern

OSes running in the x86 architecture grant each process a
private page directory that is often pointed by a control

register CR3, and the value of the CR3 can hence be used to
differentiate the process execution context. In addition to

using CR3to differentiate the process execution context, the
process name may beretrieved to pin-point the targeted

process (such as ps, kill, rmmod). Kernel data structures

(e.g., task_struct) could be traversed to retrieve such infor-
mation. Alternatively, the system call arguments (e.g., the

argumentofexecve(2)) ofprocess creation may be inspected
to make the system more OS-agnostic.

Aprocess could run with multiple threads. Using CR3 and
process name can pin-point the process execution context

but maynotbe able to precisely isolate the specific system

call context. This is because all of the threads for the same
process can execute system calls. As such, the thread context

may be differentiated for the same process at VMMlayer.

10

15

20

25

30

35

40

45

50

55

60

65

20
However, the Linux kernel may not have any thread specific

support (to the Linux kernel, a thread may be uniformly

treated as a process) and multi-threading may be imple-

mented at user level (e.g., pthread library which takes care

of creating unique stack address for each thread). In fact,

when using pthread_create to create a new thread, this

function may use the system call clone(2) that has a user

specified virtual address for child stack, instead of the

default process fork(2).

While multi-threads for the same process may share the

same CR3(i.e., threads share the samevirtual address), each

process at kernel level may have a unique kernel stack 220

that is dynamically allocated, which can be used to isolate

the thread execution context at kernel level. Therefore, in

various embodiments, CR3, process name, and kernel esp

register (e.g., with a lower 12 bits cleared by mask) may be

used together to uniquely differentiate and isolate the fine-

grained thread execution context.

Identifying Specific System Call Execution Context—

After having been able to identify the fine-grained thread

execution context, the specific system call context may be
further identified under the target process execution. Note

that system calls are the exported OSservices. Asillustrated

in FIG. 12, user level processes may invoke system calls to
request the OSservices, such asfile access.

Since the SVM 206 monitors the instructions executed
inside the computer system, the entry point and exit point of

the system call execution may be intercepted. Specifically, in
the x86 architecture, system call execution may have unique

instruction pairs. In the Linux kernel, they are int Ox80/iret

and sysenter/sysexit (this pair is used since kernel-2.5). The
specific system calls may be indexed by register eax when

invoking a system call. Therefore, by monitoring these
instructions, the entering (int Ox80/sysenter) and exiting

(iret/sysexit) of a system call can be detected.

Unfortunately, the kernel level execution between a sys-
tem call entry point and a system call exit point is not

entirely for the execution of this system call. Other than the
normal control flow such as call/ret/jump, as illustrated in

FIG. 11, kernel control flow may also be driven by asyn-
chronous events: interrupt (e.g., context switch timer) and

exception (e.g., page fault). These events will be responsible

for managing the system resources and executing device
drivers. These execution contexts may be identified, and

their data access of kernel global data 222 and kernel heap
data 224 may be excluded (many of the spin_locks and

mutexes are accessed in these context). Otherwise, when
reading these data from the GVM 208, the SVM kernel may

enter an inconsistent state (such as deadlock) and even crash

during the execution of these execution contexts. For
instance, if the page fault handler of the SVM 206is about

to allocate new pages for a process, but reads a different state
from the GVM 208, it will likely render the page fault

handler unusable.
The kernel has such a very complicated, unpredictable

control flow, but the system call execution context can be

identified. These asynchronous events may be driven by
interrupts and exceptions, and the SVM 206 emulates these

hardware level resources. As such, the beginning execution
of these events is identified because the SVM 206 controls

the hardware. The end of these events has an iret instruction,
which can also be captured. Meanwhile, the bottom up

handlers of an interrupt and exception may be executed

during context switch. The SVM 206 may control the
interrupt and timer, and hence may control the context

switch. Therefore, the SVM 206 may beable to identify the

US 9,529,614 B2

21
system call execution of the target process and keep it

running successfully in the SVM 206.

Eventually, the outputofthe first component may provide

the execution context of the system calls, excluding any

other kernel execution such as context switch and interrupt

(and exception) handler. Next, the second component will

perform the identification of kernel global data 222 and

kernel heap data 224 accessed during the system call execu-

tion of interest (for example, 4 out of 57 system calls may

be of interest when executing sysctl(8)).

Kernel Data Identification and Redirection—This com-

ponent 216 intercepts the data access, pinpoint the kernel

global data 222 and the kernel heap data 224, and reads data

from or writes data to the memory in the GVM 208, while

executing the monitored system call of interest.

Identifying Kernel Global Data and Kernel Heap Data

during a System Call Execution—Similar to user level stack

data, kernel stack data 220 is also transient. While kernel

stack data 220 does contain somelocalized state variables,

it may not contribute to the state of kernel introspection,

configuration, and recovery. Kernel global data 222 and
kernel heap data 224 are the memory regions that store the

persistent kernel state. Therefore, a focus may be to identify

these kernel global data and kernel heap data when the
system call of interest gets executed.

After a kernel is compiled, the addresses of kernel global
data 222 becomeliteral values in kernel instructions. As

such, the kernel global data 222 may be identified by simply
looking at the address ranges of the literal values. Then the

kernel heap data 224 may be identified, for example, by

identifying all the kernel stack data 220 and excluding them,
since a kernel data x either belongs to kernelstack data 220,

kernel global data 222, or kernel heap data 224.
The kernel stack data 220 may be identified by monitoring

all the instructions. It may be determined whether x is in

kernel stack data 220 by looking at the address range.
However, kernel stack data 220 is also dynamically allo-

cated from kernel heap data 224. On the other hand, kernel
stack data 220 often has data dependencies with the kernel

stack pointer (esp). Therefore, in one embodiment, a stack
data dependencetracking approach is leveraged to track the

data directly and indirectly derived from kernel stack pointer

esp. This approach is a variant of taint analysis. In this
scenario, any data derived from stack pointer esp as well as

their propagations will be tainted by instrumenting data
movementand data arithmetic instructions. Then for a given

kernel addressx,if its taint bit is set, then it belongs to kernel
stack data 220; otherwise, it is kernel global data 222, or

kernel heap data 224.

Enumerating System Calls of Interest—Recall as illus-
trated in FIG. 12, not all the system calls contribute to the

kernel state inspection and update, and it is desired to
systematically enumerate the system calls of our interest.

This enumeration is often application-specific and may be
done by kernel experts rather than end users of the system

described herein. In particular, after manually examining all

the system calls, those of interest are classified into the
following three categories:

(1) Inspection—In order to reconfigure the OS or recov-
ery from an attack, the OS is introspected to get its current

status and perform the response. Many user level utilities
such as ps(1), Ismod(8), Isof(8), netstat(8) are designed for

this inspection purpose. Interestingly, these utilities read

proc files to inspect the kernel state. Therefore, file access
related system calls: open(2), read(2), fstat(2), stat(2), Iseek

(2), readv(2), readdir(2), close(2) are of particular interest.

10

15

20

25

30

35

40

45

50

55

60

65

22
Note that Linux kernel leverages proc files to enable user-

level program accessing kernel state.

(2) Configuration—Similar to the inspection, many con-

figuration utilities such as sysctl(8) use write(2) to change

the kernel state through procfile system. Therefore, write(2)

is of interest. In addition, there is also a sysctl(2) system call

for kernel to directly change its parameters. Meanwhile,

other system calls such as socket(2), ioctl(2) (for route(8))

and nice(2) may beof interest because they can also dynami-

cally change the kernelstate.

(3) Recovery—Upon detection of a kernel attack such as

a hidden malicious process or a hidden device driver in the

GVM 208 (using the inspection utility in the SVM 206 to

introspect the GVM 208 for instance), the offending code

needs to be removed from the guest kernel. Therefore,

system calls kill(2) and delete_module(2) are also of inter-

est.

Identifying Synchronization Primitives in System Calls—

While many synchronization primitives are executed in the

interrupt context, some system calls also do contain them.

For instance, delete_module(2) call spin_lock, spin_unlock,
two functions widely used in kernel synchronization, to lock

and unlock the modlist_lock that is a kernel global variable.

Assuch,the data redirection of modlist_lock maybefiltered
in one embodiment. White-listing the program counters

(PCs) of the involvedinstructions may be performed. How-
ever, this may be tedious, challenging, and also kernel-

specific (such analysis is performed for each kernel to filter
these PCs).

After analyzing the instruction sequences of these syn-

chronization primitives, a systematic solution may be
employed to identify their execution contexts by looking for

the particular instruction sequences of the synchronization
primitives. Specifically, as illustrated in FIG. 13, when

executing a function prologue in the SVM 206(say push ebp

or even at xadd instruction in FIG. 13), these instruction
sequences are forward scanned (the scanning window is

determined by each specific primitive), and if they fall into
the sequences of kernel synchronization primitives such as

spin_lock (identified, for example, by the byte sequence “55
ba 00... £6 5d¢3”) and spin_unlock, or __up and _down(for

a semaphore), the data redirection is filtered for these

primitive functions. These instruction sequence patterns
may bestable across different kernels.

Mapping the GVM Memory Address—Havingidentified
a given kernel address x in the system call of interest that

belongs to kernel global data or kernel heap data, the
executing instruction is dynamically instrumented to makeit

fetch the data from, and write the data to, the physical

memory (PM)ofthe GVM 208. This is achieved by the third
component, GVM Memory Mapping and Address Resolu-

tion 218.
GVM Memory Mapping—Various embodiments employ

two approaches to map the PM ofthe GVM 208 to the SVM
206. One is online mapping, which directly maps the pages

that belong to the GVM 208 to the SVM 206 with the

support from theVMM (..e., hypervisor). The otheris offline
mapping, which directly takes the memory snapshot of the

GVM 208 andattaches it to the SVM 206; once the update
is finished in the SVM 206, the updated memory is restored

to the GVM 208.
As the SVM 206 uses binary code translation based

virtualization (or emulation), it may execute in a host OS.

Depending on whether the underneath hypervisor of the
GVM 208is hardware-based or software-based, two differ-

ent strategies may be used.

US 9,529,614 B2

23
Mapping Software Virtualization Based GVM—When a

GVM 208 uses software virtualization (such as QEMU),

there are also two situations. One is if the GVM 208 also

resides in the host OS with the SVM 206, then to the SVM
206, the GVM 208is just another process and inter-process

communication between the two VMMs may be employed
to share the physical memory of the GVM 208. The otheris

that the GVM 208resides in a different host OS, and the

memory snapshot of the GVM 208is transferred to the SVM
206, or just the references and updates to save the network

bandwidth. For both situations, a host or network stub is
developed in the VMMsofthe SVM 206 and the GVM 208

for the communication.
Mapping Hardware Virtualization Based GVM—AGVM

208 could also run on top of hardwarevirtualization such as

XEN®. In this case, the hypervisor underneath is able to
identify the page frames which belong to the GVM 208.

Also, if the host VM of the SVM 206 running in the same
hypervisor with the GVM 208, then the hypervisoris able to

map the memory of the GVM 208 to the SVM 206.
Otherwise, the memory images of the GVM 208 is trans-

ferred to the SVM 206 through network communications.

GVM Memory Address Resolution—Referring to FIG.
14, after having performed the mapping of the GVM 208

physical memory (G-PM) 240 to the SVM 206, the G-PM
240 is just another piece of added physical memory (PM)

242 no matter whether the GVM 208is software or hardware
virtualization based. Note that PM 242 and G-PM 240 could

have different sizes since they may be in two different

machines. Next, the hypervisor of the SVM 206is instru-
mented to transparently access it.

Morespecifically, as illustrated in FIG. 14, a CPU oper-
ates with virtual address(i.e., logic address) 245, and MMU

247 (a hardware component) together with a TLB 249

responsible for translating the virtual address to physical
address (V2P). The TLB 249 is used as a cache to avoid the

expensive page table lookup while performing the V2P. For
a given redirectable kernel address x, the page tables may be

traversed to perform its V2P. However, this may be expen-
sive as each time there may be three memory references.

Therefore, a software-translation based VMM is extended

with a G-MMU 251 (the GVM’s MMU) and G-TLB 253
(the GVM’s TLB) component, which performs virtual-to-

physical address translation in G-PM 240 instead of the
original PM 242, as shownin FIG. 14.

Also, while performing the V2P for a redirectable kernel
address x, the address of the page directory (PGD) of the

GVM208is to be obtained. In x86 architecture, the PGD is

stored in the control register CR3. Therefore, the value of
CR3 mayberetrieved from GVM 208 when the mappingis

performed.
The GVM Status During the SVM Updating—Whenthe

SVM 206 is updating the memory of the GVM 208, there
could be some concurrency issues if the GVM 208 is

executing as well. Therefore, in one embodiment, during the

update, the GVM 208 execution is paused and resumed once
the update finishes.

VII. CONCLUSION

The design, implementation, and evaluation of certain

illustrative embodiments of the Introspection System are
presented. Such embodiments automatically bridge the

semantic gap and generate VMItools. Through system wide

instruction monitoring at VMM layer, the Introspection
System may automatically identify the introspection related

kernel data and redirect their access to the in-guest OS

20

25

40

45

55

60

24
memory (which could be directly attached or from a snap-
shot). The experiments demonstrated that the Introspection

System offers a number of new features and capabilities.

Particularly, it may automatically enable the in-guest inspec-
tion program to become an introspection program and

largely relieve the procedure of developing customized VMI
tools. Finally the Introspection System may significantly

remove the roadblock in VMI-based security including
malware analysis and memory forensics and maylargely

change their future daily practice.

Referring to FIG. 16, a block diagram of a computing
device 602 is shown in whichthe illustrative embodiments

may be implemented. The computing device 602 may be an
example of a computing device used in FIG. 1, or any

computing device for implementing the Introspection Sys-
tem. Computer-usable program code or instructions imple-

menting the processes used in the illustrative embodiments

maybe located on the computing device 602. The comput-
ing device 602 includes a communications fabric 603, which

provides communications between a processor unit 605, a
memory 607, a persistent storage 609, a communications

unit 611, an input/output (I/O) unit 613, and a display 615.
The processor unit 605 serves to execute instructions for

software that may be loaded into the memory 607. The

processor unit 605 may be a set of one or more processors
or may be a multi-processor core, depending onthe particu-

lar implementation. Further, the processor unit 605 may be
implemented using one or more heterogeneous processor

systems in which a main processoris present with secondary
processors on a single chip. As anotherillustrative example,

the processor unit 605 may be a symmetric multi-processor

system containing multiple processors of the same type.
The memory 607, in these examples, may be, for

example, a random access memory or any other suitable
volatile or non-volatile storage device. The persistent stor-

age 609 may take various forms depending onthe particular

implementation. For example, the persistent storage 609
may contain one or more components or devices. For

example, the persistent storage 609 may be a hard drive, a
flash memory, a rewritable optical disk, a rewritable mag-

netic tape, or some combination of the above. The media
used by the persistent storage 609 also may be removable.

For example, a removable hard drive may be used for the

persistent storage 609.
The communications unit 611, in these examples, pro-

vides for communications with other data processing sys-
tems or communication devices. In these examples, the

communications unit 611 may be a network interface card.
The communications unit 611 may provide communications

through the use of either or both physical and wireless

communication links.
The input/output unit 613 allows for the input and output

of data with other devices that may be connected to the
computing device 602. For example, the input/output unit

613 may provide a connection for user input through a
keyboard and mouse.Further, the input/output unit 613 may

send output to a processing device. The display 615 provides

a mechanism to display information to a user, such as a
graphical user interface.

Instructions for the operating system and applications or
programs are located on the persistent storage 609. These

instructions may be loaded into the memory 607 for execu-
tion by the processor unit 605. The processesofthe different

embodiments may be performed by the processor unit 605

using computer-implemented instructions, which may be
located in a memory, such as the memory 607. These

instructions are referred to as program code, computer-

US 9,529,614 B2

25
usable program code, or computer-readable program code
that may be read and executed by a processor in the

processor unit 605. The program code in the different

embodiments may be embodied on different physical or
tangible computer-readable media, such as the memory 607

or the persistent storage 609.
Program code 617 is located in a functional form on a

computer-readable media, or computer-readable storage
media, 619 and may be loaded onto or transferred to the

computing device 602 for execution by the processor unit

605. The program code 617 and the computer-readable
media 619 form computer program product 621 in these

examples.
In one example, the computer-readable media 619 may be

in a tangible form, such as, for example, an optical or
magnetic disc that is inserted or placed into a drive or other

device that is part of the persistent storage 609 for transfer

onto a storage device, such as a hard drive that is part of the
persistent storage 609. In a tangible form, the computer-

readable media 619 also may take the form of a persistent
storage, such as a hard drive or a flash memory that is

connected to the computing device 602. The tangible form
of the computer-readable media 619 is also referred to as

computer recordable storage media.

Alternatively, the program code 617 maybetransferred to
the computing device 602 from the computer-readable

media 619 through a communication link to the communi-
cations unit 611 or through a connection to the input/output

unit 613. The communication link or the connection may be
physical or wireless in the illustrative examples. The com-

puter-readable media 619 also may take the form of non-

tangible media, such as communication links or wireless
transmissions containing the program code 617. In one

embodiment, the program code 617 is delivered to the
computing device 602 over the Internet.

The different components illustrated for the computing

device 602 are not meantto provide architectural limitations
to the manner in which different embodiments may be

implemented. The different illustrative embodiments may be
implemented in a data processing system including compo-

nents in addition to or in place of those illustrated for
computing device 602. Other components shown in FIG. 16

can be varied from the illustrative examples shown.

As one example, a storage device in the computing device
602 is any hardware apparatus that may store data. The

memory 607, the persistent storage 609, and the computer-
readable media 619 are examples of storage devices in a

tangible form.
In another example, a bus system maybe used to imple-

ment the communications fabric 603 and may be comprised

ofone or more buses, such as a system bus or an input/output
bus. Of course, the bus system may be implemented using

any suitable type of architecture that provides for a transfer
of data between different components or devices attached to

the bus system. Additionally, the communications unit 611
may include one or more devices used to transmit and

receive data, such as a modem or a network adapter. Further,

a memory maybe, for example, the memory 607 or a cache
such as foundin an interface and memory controller hub that

maybepresent in the communications fabric 603.
Turning now to FIG. 16, shown is a flowchart 700 that

provides one example of the operation of a portion of the
introspection system 100 (FIG.1) or the machine introspec-

tion, reconfiguration, and recovery system 200 (FIG. 11)

according to various embodiments.It is understood that the
flowchart of FIG. 16 provides merely an example of the

manydifferent types of functional arrangements that may be

10

15

20

25

30

35

40

45

50

55

60

65

26
employed to implement the operation of the portion of the
introspection system 100 or the machine introspection,

reconfiguration, and recovery system 200 as described

herein. As an alternative, the flowchart of FIG. 16 may be
viewed as depicting an example of steps of a method

implementedin the computing device 602 (FIG. 15) accord-
ing to one or more embodiments.

Beginning with box 703, it is determined that a program
executed in a first virtual machine will be used to access data

in a memory ofa second virtual machine. For example, the

first virtual machine may correspond to a trusted virtual
machine, and the second virtual machine may correspondto

an untrusted virtual machine. In box 706, a system call
execution context is determined for the program. For

example, a thread execution context may be isolated based
at least in part on a page directory pointer, a process name,

and a kernel stack pointer.

In box 709, a portion of the kernel data in the memory of
the second virtual machineis identified basedat least in part

on the system call execution context. To this end, redirect-
able data in the kernel data may be identified. In one

embodiment, the portion ofthe kernel data may be identified
by wayofa taint analysis that distinguishes kernel stack data

from other kernel data such as global data and heap data.

In box 712, the program is dynamically instrumented to
perform a data operation upon the identified portion of the

kernel data in the memory of the second virtual machine,
rather than the kernel data in a memory of the first virtual

machine.In other words, the program is configured to access
or modify the redirectable data of the second virtual

machine. In one embodiment, an offline mapping of the

redirectable data may be performed. In another embodiment,
an online mapping of the redirectable data may be per-

formed. Thereafter, the flowchart 700 ends.
It should be emphasizedthat the above-described embodi-

ments of the present disclosure are merely possible

examples of implementations set forth for a clear under-
standing ofthe principles of the disclosure. Many variations

and modifications may be made to the above-described
embodiment(s) without departing substantially from the

spirit and principles ofthe disclosure. All such modifications
and variations are intended to be included herein within the

scope of this disclosure and protected by the following

claims.
Therefore, at least the following is claimed:

1. A system, comprising:
at least one computing device;

a first virtual machine executable by the at least one
computing device;

a second virtual machine executable by the at least one

computing device;
a shadow memory that stores taint bits which represent

memory and all CPU registers at byte granularity level;
an interrupt handler; and

an introspection system executable by the at least one
computing device, the introspection system being con-

figured to:

determine that an introspection program executed by
the first virtual machine is requested to introspect the

second virtual machine;
determine, by the interrupt handler, a start and end ofan

interrupt by using a counter that 1) is initialized to
zero, 2) is incremented when a non-system call

interrupt executes, and 3) is decremented when an

interrupt return instruction executes, wherein 1) the
start of the interrupt occurs whena first non-system

call interrupt executes, 2) the end of the interrupt

US 9,529,614 B2

27
occurs when the counter returns to a valueof zero, 3)

each non-system call interrupt may have one or more

nested non-system call interrupts, and 4) each non-

system call interrupt is returned using a respective

interrupt return instruction; and

determine, using the determined start and end of the

interrupt, a system call execution context of the

introspection program in response to determining

that the introspection program is requested to intro-

spect the second virtual machine, the system call

execution context being determined by isolating a

kernel space of the introspection program from an

inspection of a control register value, the control

register value being acquired basedatleastin part on

an update of the control register value in response to

an execution of a system call for the introspection

program;
initialize all the taint bits to zero;

use the isolated kernel space to assign a plurality of the

taint bits in the shadow memory a value of one,

wherein the value of one indicates the corresponding
byte of memory or CPU register contains redirect-

able data;

identify, using the taint bits in shadow memory, redi-
rectable data in a memory of the second virtual

machine based at least in part on the system call
execution context of the introspection program, the

redirectable data being redirectable to a portion of
the memory ofthe first virtual machine; and

configure the introspection program to access the redi-

rectable data.
2. The system of claim 1, wherein the at least one

computing device correspondsto a single computing device.
3. The system of claim 1, further comprising a virtual-

ization layer executable by the at least one computing

device, the virtualization layer being configured to manage
the first and second virtual machines.

4. The system ofclaim 1, whereinthefirst virtual machine
and the second virtual machine are configured to execute

identical operating system kernels.
5. The system of claim 1, wherein the introspection

system is configured to configure the introspection program

to access the redirectable data by dynamic binary instru-
mentation.

6. The system of claim 1, wherein the introspection
system causes the introspection program to access the redi-

rectable data by mapping a portion of the memory of the
second virtual machine to a portion of the memory of the

first virtual machine.

7. The system of claim 1, wherein the introspection
system is further configured to identify the redirectable data

basedat least in part on interrupt context interception for the
second virtual machine.

8. The system of claim 1, wherein the introspection
system is further configured to identify the redirectable data

based at least in part on a predetermined system call redi-

rection policy.
9. The system of claim 1, wherein the introspection

system is further configured to identify the redirectable data
based at least in part on a taint analysis that tracks unredi-

rectable data in the memory of the second virtual machine.
10. The system of claim 1, wherein the introspection

system is further configured to perform a copy-on-write

operation on a portion of the redirectable data in response to
the introspection program performing a data write on the

portion of the redirectable data.

10

15

20

25

30

35

40

45

50

55

60

65

28
11. A method, comprising:
determining, by a computing device, that an introspection

program executed by a first virtual machine of the

computing device will be used to access data in a
memory of a second virtual machine of the computing

device;
determining, by an interrupt handler, a start and end of an

interrupt by using a counter that 1) is initialized to zero,
2) is incremented when a non-system call interrupt

executes, and 3) is decremented when an interrupt

return instruction executes, wherein 1) the start of the
interrupt occurs whena first non-system call interrupt

executes, 2) the end of the interrupt occurs when the
counter returns to a value of zero, 3) each non-system

call interrupt may have one or more nested non-system
call interrupts, and 4) each non-system call interrupt is

returned using a respective interrupt return instruction;

determining, by the computing device and based on the
determinedstart and end of the interrupt, a system call

execution context of the introspection program, the
system call execution context being determined by

isolating a kernel space of the introspection program
from an inspection of a control register value, the

control register value being acquired based at least in

part on an update of the control register value in
response to an execution of a system call for the

introspection program;
initializing a plurality of taint bits to zero, wherein a

shadow memory stores theplurality oftaint bits and the
plurality of taint bits represent memory and all CPU

registers at byte granularity level;

using the isolated kernel space to assign the plurality of
the taint bits a value of one, wherein the value of one

indicates the corresponding byte of memory or CPU
register contains redirectable data;

identifying, by the computing device and using the plu-

rality of taint bits, a portion of kernel data in the
memory of the second virtual machinebasedat least in

part on the system call execution context, the portion of
kernel data being redirectable to a portion of the

memory ofthe first virtual machine; and
dynamically instrumenting, by the computing device, the

introspection program to perform a data operation upon

the portion of kernel data in the memory of the second
virtual machine.

12. The method of claim 11, wherein the first virtual
machine corresponds to a trusted virtual machine, and the

second virtual machine corresponds to an untrusted virtual
machine.

13. The method of claim 11, wherein the identifying, by

the computing device, the portion of kernel data further
comprises identifying, by the computing device, the portion

of kernel data based at least in part on a taint analysis
distinguishing kernel stack data from other kernel data.

14. The method of claim 11, wherein the data operation
comprises a data write.

15. The method of claim 11, further comprising perform-

ing, by the computing device, an offline mapping of the
portion of kernel data in the memory of the second virtual

machine to the memory ofthe first virtual machine.
16. The method of claim 11, further comprising perform-

ing, by a hypervisor of the computing device, an online
mapping of the portion of kernel data in the memory ofthe

second virtual machine to the memory of the first virtual

machine.
17. The method of claim 11, wherein determining, by the

computing device, the system call execution context further

US 9,529,614 B2

29
comprises isolating, by the computing device, a thread

execution context based at least in part on a page directory

pointer, a process name, and a kernel stack pointer.

18. A non-transitory computer-readable medium having a

plurality of computer instructions, wherein, when executed

by a computing device, the plurality of computer instruc-

tions cause the computing device to perform operations

comprising:

determining that an introspection program executed by a

first virtual machine of the computing device will be
used to access data in a memory of a second virtual

machine of the computing device;
determining, by an interrupt handler, a start and end of an

interrupt by using a counterthat 1) is initialized to zero,
2) is incremented when a non-system call interrupt

executes, and 3) is decremented when an interrupt

return instruction executes, wherein 1) the start of the
interrupt occurs whena first non-system call interrupt

executes, 2) the end of the interrupt occurs when the
counter returns to a value of zero, 3) each non-system

call interrupt may have one or more nested non-system

call interrupts, and 4) each non-system call interrupt is
returned using a respective interrupt return instruction;

determining, based on the determinedstart and endofthe
interrupt, a system call execution context of the intro-

spection program, the system call execution context
being determined by isolating a kernel space of the

introspection program from an inspection of a control

register value, the control register value being acquired

10

15

20

30
basedat least in part on an update ofthe control register
value in response to an execution of a system call for

the introspection program;

initializing a plurality of taint bits to zero, wherein a
shadow memory stores theplurality oftaint bits and the

plurality of taint bits represent memory and all CPU
registers at byte granularity level;

using the isolated kernel space to assign the plurality of
the taint bits a value of one, wherein the value of one

indicates the corresponding byte of memory or CPU

register contains redirectable data;
identifying, using the plurality of taint bits, a portion of

kernel data in the memory of the second virtual
machine based at least in part on the system call

execution context, the portion of kernel data being
redirectable to a portion of the memory of the first

virtual machine; and

dynamically instrumenting, by the computing device, the
introspection program to perform a data operation upon

the portion of kernel data in the memory of the second
virtual machine.

19. The non-transitory computer-readable medium of
claim 18, wherein the data operation comprises a read

operation and a write operation.

20. The non-transitory computer-readable medium of
claim 18, wherein thefirst virtual machine correspondsto a

trusted virtual machine, and the second virtual machine
corresponds to an untrusted virtual machine.

* * * * *

