
Copyright

by

Sujatha Kashyap

2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/211356975?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Dissertation Committee for Sujatha Kashyap

certifies that this is the approved version of the following dissertation:

Applications of Lattice Theory to Model Checking

Committee:

Vijay K. Garg, Supervisor

Jacob A. Abraham

Adnan Aziz

Craig M. Chase

E. Allen Emerson

Applications of Lattice Theory to Model Checking

by

Sujatha Kashyap, B. Tech., M.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2008

To my parents

Acknowledgments

My advisor, Dr. Vijay K. Garg, has been a wise and patient teacher, and an inspiring

and unassuming role model. I owe him a tremendous debt of gratitude for teaching

me how to be a researcher, for giving me interesting problems to work on and the

confidence to explore new areas, and for his enthusiastic guidance throughout my

Ph.D. journey.

I’d like to thank Dr. Jacob Abraham, Dr. Adnan Aziz, Dr. Craig Chase and

Dr. Allen Emerson for graciously serving on my committee. I have been extremely

fortunate to have had access to their insights, and have enormously enjoyed my

interactions with them.

I am truly grateful to my employer, IBM Corp., for giving me the flexibility,

support and resources required to successfully pursue this Ph.D. There are many

people at IBM who put an extraordinary amount of effort into enabling this endeavor

for me. I owe special thanks to Ms. Sandra Ellett-Salmoran, Mr. Bill Maron, Mr.

John Makis, and Mr. Ray Young, among many others, for enrolling me into IBM’s

generous Academic Learning Assistance Program. I must thank my management

and co-workers for being so accomodating of my schedule over all these years. They

showed me that large corporations do have a heart.

My dear friend, Ruslan Bartsits, has been my anchor through this long jour-

ney. I am also thankful to my fellow students, Vinit Ogale and Selma Ikiz, for their

camaraderie over these years.

v

And, of course, I must thank my parents for instilling dreams in me and

shaping who I am, and my brother for unwittingly inspiring me to pursue a Ph.D.

Their unwavering support and belief in me is what kept me going all along.

Sujatha Kashyap

The University of Texas at Austin

August 2008

vi

Applications of Lattice Theory to Model Checking

Publication No.

Sujatha Kashyap, Ph.D.

The University of Texas at Austin, 2008

Supervisor: Vijay K. Garg

Society is increasingly dependent on the correct operation of concurrent and dis-

tributed software systems. Examples of such systems include computer networks,

operating systems, telephone switches and flight control systems. Model checking

is a useful tool for ensuring the correctness of such systems, because it is a fully

automatic technique whose use does not require expert knowledge. Additionally,

model checking allows for the production of error trails when a violation of a de-

sired property is detected. Error trails are an invaluable debugging aid, because

they provide the programmer with the sequence of events that lead to an error.

Model checking typically operates by performing an exhaustive exploration

of the state space of the program. Exhaustive state space exploration is not practical

for industrial use in the verification of concurrent systems because of the well-known

vii

phenomenon of state space explosion caused by the exploration of all possible inter-

leavings of concurrent events. However, the exploration of all possible interleavings

is not always necessary for verification.

In this dissertation, we show that results from lattice theory can be applied

to ameliorate state space explosion due to concurrency, and to produce short error

trails when an error is detected.

We show that many CTL formulae exhibit lattice-theoretic structure that can

be exploited to avoid exploring multiple interleavings of a set of concurrent events.

We use this structural information to develop efficient model checking techniques for

both implicit (partial order) and explicit (interleaving) models of the state space.

For formulae that do not exhibit the required structure, we present a technique

called predicate filtering, which uses a weaker property with the desired structural

characteristics to obtain a reduced state space which can then be exhaustively ex-

plored. We also show that lattice theory can be used to obtain a path of shortest

length to an error state, thereby producing short error trails that greatly ease the

task of debugging.

We provide experimental results from a wide range of examples, showing the

effectiveness of our techniques at improving the efficiency of verifying and debugging

concurrent and distributed systems. Our implementation is based on the popular

model checker SPIN, and we compare our performance against the state-of-the-art

state space reduction strategies implemented in SPIN.

viii

Contents

Acknowledgments v

Abstract vii

Contents ix

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Contributions of This Dissertation 5

1.3 Related Work . 7

1.3.1 Lattice-Theoretic Approaches 7

1.3.2 Concurrency in Interleaving Models 9

1.3.3 Verifying Partial Order Models 10

1.4 Organization of this Dissertation . 11

I Preliminaries 13

Chapter 2 System Model 14

2.1 Introduction . 14

2.2 Programs . 14

2.3 Traces . 16

ix

2.3.1 Traces and Posets . 18

2.3.2 Traces and Lattices . 21

2.4 Processes . 23

2.4.1 The Dependency Relation . 25

2.5 Bibliographic Notes . 26

2.6 Summary . 27

Chapter 3 Predicates 28

3.1 Introduction . 28

3.2 Computation Tree Logic . 29

3.3 Predicate Structure . 34

3.4 Meet-Closed Predicates . 35

3.4.1 Crucial Events . 36

3.4.2 Exploiting Meet-Closure . 38

3.5 Regular Predicates . 40

3.6 Bibliographic Notes . 41

3.7 Summary . 43

II Predicate Structure 44

Chapter 4 Predicate Recognition 45

4.1 Introduction . 45

4.1.1 Problem Statement . 46

4.1.2 Our Contribution . 46

4.2 Recognizing Meet-Closure . 46

4.3 Recognizing Regularity . 49

4.4 Other Recognition Problems . 51

4.5 Bibliographic Notes . 53

x

4.6 Summary . 53

Chapter 5 Regular CTL Operators 54

5.1 Introduction . 54

5.1.1 Our Contribution . 55

5.2 Preserving Biregularity . 56

5.3 Preserving Regularity . 62

5.4 Bibliographic Notes . 66

5.5 Summary . 67

III Partial Order Semantics 68

Chapter 6 Trace Covers 69

6.1 Introduction . 69

6.1.1 Our Contribution . 71

6.2 Trace Covers . 72

6.3 Representative Transition Sequences 72

6.4 Obtaining Posets From Sequences . 75

6.5 Finite Trace Covers . 78

6.6 Model Checking on Finite Trace Covers 83

6.6.1 Meet-closed predicates . 83

6.6.2 0-1 sum predicates . 85

6.7 Comparison to POR Techniques . 87

6.8 Implementation and Experimental results 89

6.9 Bibliographic Notes . 93

6.10 Summary . 94

Chapter 7 Predicate Filtering 95

7.1 Introduction . 95

xi

7.1.1 Our Contribution . 96

7.2 Background . 96

7.3 Filtering a Trace . 99

7.3.1 Constructing the Filtrate . 102

7.4 Filtering for State Space Reduction 105

7.4.1 Case Study: Leader Election Protocol 106

7.5 Bibliographic Notes . 107

7.6 Summary . 108

IV Interleaving Semantics 109

Chapter 8 Producing Short Counterexamples 110

8.1 Introduction . 110

8.1.1 Our Contribution . 112

8.2 Crucial Event Temporal Logic (CETL) 115

8.3 Baseline Algorithm . 116

8.4 Model Checking CETL in a Trace 120

8.4.1 Existential Until Operator (EU) 120

8.4.2 Existential Release Operator (ER) 123

8.5 Model Checking CETL in a Program 124

8.6 Finding Universally Crucial events 127

8.7 Experimental Results . 130

8.7.1 Length of Error Trails . 132

8.7.2 State Space Reduction . 132

8.7.3 Complete List of Results . 134

8.8 Bibliographic Notes . 140

8.9 Summary . 141

xii

V Conclusion 142

Chapter 9 Conclusion and Future Work 143

9.1 Conclusion . 143

9.2 Future Work . 146

Bibliography 149

Vita 167

xiii

Chapter 1

Introduction

1.1 Motivation

Commercial software typically has 20 to 30 bugs for every 1,000 lines of code, ac-

cording to Carnegie Mellon University’s CyLab Sustainable Computing Consortium.

Another commonly cited metric is that there are 1 to 10 residual defects per 1,000

lines of code. Residual defects are those that are found after the software has been

released. To put this in perspective, consider that according to published sources,

Windows Vista has 50,000,000 lines of code.

Testing, by its very nature, is more likely to find errors that occur with high

probability, typically in frequently-used code paths. Once these frequently-used code

paths have been adequately tested, the rate at which errors are found drops off with

time, giving rise to the characteristic “S-curve” of software testing [KPM01] shown

in Figure 1.1. Testing is typically halted once the rate at which errors are found

falls below a certain threshold.

Tales abound of catastrophic software failures resulting in loss of life or for-

tune (cf. [KT07]). In [Wes89], errors are classified into levels, based on the number

of independent factors that must occur in combination to cause the error. A level

1

Economics of Software Verification
Gerard J. Holzmann

Bell Laboratories MH 2C-521
600 Mountain Avenue
Murray Hill, NJ 07974

gerard@research.bell-labs.com

ABSTRACT
How can we determine the added value of software verification
techniques over the more readily available conventional testing
techniques? Formal verification techniques introduce both added
costs and potential benefits. Can we show objectively when the
benefits will outweigh the cost?

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Formal methods,
validation F.3.1 [Specifying, Verifying, and Reasoning about
Programs]: Mechanical verification.

General Terms
Algorithms, Measurement, Design, Reliability, Verification.

Keywords
Model checking, software verification, testing, Spin.

1. INTRODUCTION
No single system of metrics for measuring software quality is
universally accepted [4,5]. Intuitively, software quality is related
to the ratio of the perceived usefulness of a product and its
perceived buggyness. The usefulness of a product is related to its
functionality, which is in turn related to code size. More
functionality often implies more code. As a metric for buggyness
one often uses the elusive standard of ‘residual defect density.’
The residual defect density is meant to measure the number of
defects that remain in a software artifact after delivery to the end-
user (the customer), weighted by code size. A typical target in
software development is to achieve a residual defect density of
less than one defect per one thousand lines of non-comment
source code [4,10].

Though most programming teams strive for zero residual defect
density, it would be unrealistic to assume that product testing can
proceed until this goal is fully reached. It can already be very hard
to determine if the goal is ever reached. As Edsger Dijkstra noted,
the inability to locate further defects does not necessarily imply
the absence of defects. Residual defects almost always exist, even
for the most vigorously tested code [1,9,10,12].

The residual defect density of a software product can often only
be estimated, based on the number of user complaints. The
number of complaints does not just depend on the residual defect
density, it also depends on the number of users, and the amount
and duration of actual usage.

Different metrics can be used to determine when a product is
ready to ship. Not surprisingly, the most commonly used metric is
not related to zero defect density but to the cost that is associated
with the search for residual defects, and the relative effectiveness
of that search.

Finding bugs can be likened to finding randomly distributed
Easter eggs in a large meadow. Figure 1 can be interpreted as a
plot of the cumulative number of eggs found, as a function of
time. After an initial orientation phase, the rate at which eggs are
found will tend to be a linear function of the amount of time spent
searching. The area that can be searched per unit of time will
roughly be constant, and if eggs are distributed uniformly, the rate
at which they are found will also be constant. But the search
process is not perfect, and some areas may need to be searched
again, presumably more carefully than at first. As the number of
residual eggs drops, the amount of time that has to be spent to
locate them increases. The search becomes less effective and at
some point it will have to be called off, even if it is known that
not all eggs were found. Due to its characteristic shape, this curve
is often referred to as the S-curve of software testing, cf. [11].

time spent testing

cumulative
number of
defects found

cutoff
point

Figure 1. The characteristic S-curve for defect removal.

To measure the effectiveness of the search process, let us assume
a fixed search cost of n dollars per minute. Let us further assume
that there is a fixed reward of m dollars for each egg found. If we
are finding r eggs per minute, it will pay to continue searching

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PASTE’01, June 18-19, 2001, Snowbird, Utah, USA.

Copyright 2001 ACM 1-58113-413-4/01/0006…$5.00.

Figure 1.1: The S-curve of software testing.

one error has a single cause, a level two errors occurs when two or more independent

causes occur in a certain combination, and so on. Holzmann [Hol01] hypothesizes

that the level number of catastrophic errors, such as complete system failure, is

usually high and requires multiple things to fail in combination. Thus, high impact

failures have a lower probability of occurrence, and are therefore more likely to be

missed in testing.

The term formal verification techniques, or formal methods, encom-

passes techniques that use mathematically rigorous reasoning to prove that an im-

plementation satisfies all or part of its specifications. Formal verification techniques

have a better chance of finding catastrophic errors, because they are not sensitive

to the probability of an error, only its possibility. Unlike testing, formal methods

can guarantee that a particular behavior never occurs in the system, because they

examine all possible behaviors of the system.

Concurrent and distributed systems are, in particular, notoriously difficult to

test adequately, because they exhibit a very large range of possible behaviors due to

the different interactions possible between independently operating agents. Errors

in such systems, such as race conditions, tend to have a higher level number, and

are therefore prone to escape traditional testing. Consequently, formal methods are

2

particularly useful in the verification of concurrent and distributed systems.

Formal verification techniques are broadly divided into two categories: the-

orem proving and model checking. In theorem proving, axioms and inference

rules are used to construct proofs showing the correctness of the system. While

parts of the theorem proving process are automated, it still usually requires signif-

icant human intervention by expert users to guide the proof-finding process. As a

result, it is not well-suited for widespread industrial use. An advantage of theorem

proving is that it can handle both finite and infinite-state systems.

Model checking [CE82, QS82], by contrast, is a completely automated tech-

nique for verifying finite-state systems through an exhaustive exploration of the

state space of the system. Also, its use does not require expert knowledge on the

part of the programmer. These qualities make it especially suitable for widespread

industrial use. Another advantage of model checking is its ability to produce coun-

terexamples when an error is detected. A counterexample is an execution path that

leads to the error state. Counterexamples are invaluable in locating the source

of subtle design errors whose cause would otherwise be difficult to pinpoint. For

these reasons, the work in this dissertation focuses on model checking. While the

restriction to finite-state systems may seem like a limiting factor, many real-world

applications can be modeled as finite-state systems.

The primary obstacle to the widespread use of model checking in software

verification is the well-known state space explosion problem, where the number of

unique system states of most real-world systems is far too large to be exhaustively

explored. Concurrency is a significant contributor to state space explosion, due to

the large number of unique ways in which concurrent events can be interleaved. For

example, the execution of n concurrent events requires the exploration of n! different

interleavings of these events in a brute force approach.

Concurrency contributes to state space explosion only if there is a need to

3

explore all possible interleavings of concurrent events. The reason such a need exists

is because the property being verified may hold true in one interleaving of concurrent

events, but not in a different interleaving of the same events. For example, CTL and

LTL formulae can distinguish between different interleavings of concurrent events.

Therefore, to ensure that the entire state space has been adequately explored, tra-

ditional model checking algorithms explore all possible interleavings of concurrent

events.

State space explosion due to concurrency can be due to one of two reasons.

First, if an explicit state space representation is used, the size of the state space

itself can be exponential in the number of concurrent events. An explicit state space

representation is one in which all the reachable states of the program are explicitly

constructed. The use of an implicit state space representation, such as partial order

models, avoids this cause of state space explosion due to concurrency. However,

implicit representations run into the second cause of combinatorial explosion due to

concurrency - the verification algorithms can take time and space that is exponential

in the size of the representation. For example, in [CG95, Hel99], it was shown that

deciding reachability for a boolean formula on a partial order representation is NP-

complete in the size of the representation. The problem of model checking a general

CTL formula (containing nested temporal modalities) on a partial order state space

representation is known to be PSPACE-complete in the size of the representation

[Hel00, MMB08].

This dissertation shows how lattice theory [DP90] can be applied to improve

the efficiency of verifying and debugging concurrent and distributed systems using

model checking.

4

1.2 Contributions of This Dissertation

As noted above, partial order semantics can be used to obtain a compact represen-

tation of the state space. In this dissertation, we present a mechanism to represent

a program by a set of finite partial orders, which covers the entire reachable state

space of the program. We call this partial order representation of the program a

finite trace cover. Our method uses Mazurkiewicz trace semantics, which is also

the basis of the popular state space reduction mechanism known as partial order

reduction (POR) [Val91b, Pel93, GW94b], which is implemented in the widely-used

software model checker SPIN [Hol03]. This allows us to provide direct theoretical

and experimental comparisons between our method and POR techniques.

While the finite trace cover allows for a compact (implicit) representation of

the state space, in order to avoid state space explosion during the verification step,

we also need efficient search algorithms that can operate on this representation.

Here, we leverage a body of research done in the area of runtime verification, specif-

ically, predicate detection. In [CG95], it was shown that for some restricted classes of

predicates, reachability can be decided in polynomial time in the size of the partial

order representation. We apply these polynomial-time algorithms to decide reacha-

bility of such predicates on the finite trace cover representation. This allows us to

avoid state space explosion for state space representation and state space traversal.

In this dissertation, we focus on predicate classes for which the set of satis-

fying states exhibit a lattice structure. The search algorithms for these classes use

sophisticated results from lattice theory to improve the efficiency of verification.

We explore the complexity of deciding whether a given predicate exhibits

any structure. The ability to recognize structure in a given formula would make

it possible to use the most efficient verification procedure for that formula. In

particular, we explore the complexity of deciding whether a given formula belongs

to an “efficient” predicate class, that is, a predicate class for which polynomial-time

5

verification algorithms exist for partial order representations.

Computation Tree Logic (CTL) is one of the most popular logics used for

specifying the properties to be verified on a program. We explore the structural

characteristics exhibited by various CTL temporal and logical operators. We show

that it is possible to build a logic containing several CTL temporal and logical

operators, such that every formula yielded by the logic exhibits a certain lattice-

theoretic structure. This structure can then be exploited to efficiently verify these

formulae.

For improving the efficiency of verifying formulae that do not exhibit the

required structural characteristics, we present the technique of predicate filtering.

Predicate filtering uses a weaker property that exhibits exploitable structural char-

acteristics, and produces a reduced state space which contains only those states of

the original program that satisfy this weaker property. Clearly, the reduced state

space also contains all the states that satisfy the original property. This reduced

state space can then be explored exhaustively to verify the original property. Typ-

ically, only a fraction of the states of a program satisfy the weaker property, so

predicate filtering is a useful state space reduction tool. Combinatorial explosion is

avoided during generation of the reduced state space by exploiting the structural

characteristics of the weaker predicate.

The verification algorithms used on the finite trace cover, and for predicate

filtering, are limited to reachability detection for formulae that do not contain nested

temporal modalities.

We also use lattice theory to develop model checking algorithms on an in-

terleaving representation of the state space. These algorithms can verify formulae

from a subset of CTL, which we call Crucial Event Temporal Logic (CETL). CETL

contains the existential until and release operators of CTL, and the conjunction op-

erator. The CETL model checking algorithm does encompass formulae containing

6

nested temporal operators. We show that lattice theory can be used to achieve state

space reduction and produce short counterexamples while model checking CETL

formulae. The production of short counterexamples is of high practical relevance

because it contains less extraneous information, making it easier for the programmer

to pinpoint the source of the error.

Overall, this dissertation presents techniques that use principles from lattice

theory to efficiently parse the concurrency information in a program, with the twin

aims of ameliorating state space explosion during program verification and easing

the task of debugging concurrent and distributed programs.

1.3 Related Work

1.3.1 Lattice-Theoretic Approaches

Lattice theory has previously been used in the area of runtime verification for the ef-

ficient verification of finite execution traces of distributed and concurrent programs.

Unlike conventional testing strategies, which view an execution of a program as a

single total ordering of events, runtime verification techniques treat the set of events

that occur during an execution as a partial order, as proposed by Lamport [Lam78].

Formal methods are then applied to decide whether any interleaving consistent with

this partial order can lead to a violation of the specified property. Thus, runtime ver-

ification sits at the crossroads between testing and formal verification. It increases

the coverage of testing, but does not account for all behaviors of the program. The

work presented in this dissertation does.

In [CG95], Chase and Garg introduced the concept of a meet-closed formula,

and showed how the lattice-theoretic characteristics of such formulae could be ex-

ploited for reachability detection. They proposed an algorithm that could decide

reachability for a meet-closed formula in a finite (partial order) trace in time that

7

is polynomial in the number of events in the trace. In this dissertation, we apply

their techniques to decide reachability in a program.

Computation Tree Logic (CTL) [CE82, EC82] is commonly used to specify

the properties to be verified in a program. In [SG03a], Sen and Garg studied the

lattice-theoretic characteristics exhibited by some CTL temporal and logical oper-

ators. They showed that the CTL operators of EG, EF and AG preserved meet-

closure. In [GM01], it was shown that the logical operation of conjunction also

preserved meet-closure. In this dissertation, we extend the work in [SG03a, GM01]

to study all the temporal and logical CTL operators and provide a complete taxon-

omy of the CTL logical and temporal operators that do, and do not, preserve meet-

and join-closure.

In [SG02], a polynomial-time algorithm was presented for verifying CTL

formulae of the form EG(p) or AG(p) on a finite trace, when p is a meet-closed

formula containing no temporal operators.

In [GM01], the technique of computation slicing was introduced as a way

of applying lattice-theoretic principles to achieve state space reduction in runtime

verification. Computation slicing was shown [MG01, MG03] to be a useful tool for

state space reduction for deciding reachability for formulae that are not otherwise

amenable to efficient verification algorithms. In this technique, a trace is sliced

w.r.t. a given predicate φ, yielding a smaller trace (that is, one with fewer reachable

states) containing all the states that satisfy φ, while eliminating most of the states

that do not satisfy φ. In this dissertation, we apply the same techniques (which we

call predicate filtering) for state space reduction in model checking.

The computation slicing algorithms in [MG01, MG03] were limited to formu-

lae containing no nested temporal operators. In [SG03a], Sen and Garg presented

computation slicing algorithms for a logic called RCTL (Regular CTL), which con-

sists of the CTL temporal operators EF , EG, AG and the logical operation of

8

conjunction. in [MSGA04], it was shown that a partial order trace can be sliced

w.r.t. a predicate φ in polynomial time iff reachability for φ can be detected in

polynomial time.

If φ belongs to a special class of predicates called regular predicates [GM01],

then (and only then) the slice of a trace w.r.t. φ contains exactly all the states that

satisfy φ. Thus, a slice for a regular predicate is a compact representation of exactly

the set of all φ-satisfying states. We say “compact representation” because the slice

is a partial order trace, not an explicit-state representation.

In [OG07], a method was presented to derive a compact representation of

exactly the set of φ-satisfying states of a trace, when φ belonged to a logic called

BTL, which contains the temporal CTL operator EF and the logical operations of

negation, disjunction and conjunction. This compact representation, called a basis,

has a size that is polynomial in the number of events in the trace. BTL formulae

include predicates that are not regular. The algorithm presented in [OG07] to

compute the basis of a predicate is polynomial in the number of events in the trace,

although it is exponential in the length of the formula.

In the related work discussed so far, lattice-theoretic approaches were only

applied to finite execution traces of a program. Further, these methods were only

applied to a partial order representation of a trace. In this dissertation, we apply

lattice-theoretic methods to complete programs, which can consist of both finite

and infinite-length traces. Furthermore, we show that lattice theory can be used

to improve the efficiency of model checking in both partial order and interleaving

representations of the state space.

1.3.2 Concurrency in Interleaving Models

In an interleaving representation of the state space, the lattice-theoretic methods

presented in this dissertation combat state space explosion due to concurrency by

9

avoiding the exploration of multiple interleavings of concurrent events. In fact, the

techniques we present explore only a single interleaving per set of concurrent events.

A class of techniques called partial order reduction (POR) [Val91b, Pel93, GW94b]

also combats state space explosion in an interleaving representation by avoiding the

exploration of all interleavings of concurrent events.

POR techniques are altogether distinct from the techniques presented in

this dissertation. POR techniques rely on the observation that when the property

being verified cannot distinguish between different interleavings of a set of events,

it is sufficient to explore a single one of these interleavings. However, when the

property being verified does distinguish between two interleavings, both have to

be explored. Our approach does not depend on the ability of the property being

verified to distinguish between different interleavings. Instead, we use structural

information about the property to pick a path that will lead to an error state iff

an error state exists. A detailed comparison between our techniques and POR is

presented in Chapter 6 (Section 6.7). The main drawback of POR techniques is

that the amount of reduction achieved is highly dependent on the property being

verified. In our approach, the amount of reduction achieved is not sensitive to the

property being verified. Another drawback of POR techniques is that it tends to

produce lengthy counterexamples. Our lattice-theoretic approach produces short

counterexamples, as is discussed in Chapter 8.

1.3.3 Verifying Partial Order Models

Partial order models for representing the state space, such as Mazurkiewicz traces

[Maz89] and Petri net unfoldings [McM92, ERV96], do not directly represent the

global states of the system. This information is embedded or encoded in the repre-

sentation, and must be retrieved by the verification algorithm. For most commonly-

used temporal logics, verification algorithms for partial order models take exponen-

10

tial time in the size of the model. In [MMB08], Massart et al. show that for partial

order traces, CTL model checking is PSPACE-complete, and LTL model checking

is co-NP-complete. In [CG95], reachability checking was shown to be NP-complete

for partial order traces. Similar results have been shown for Petri net unfoldings -

Heljanko showed that CTL model checking is PSPACE-complete [Hel00] and reach-

ability checking is NP-complete [Hel99] in the size of the finite complete prefix of a

Petri net unfolding.

In this dissertation, we show that lattice theory can be exploited to derive

polynomial-time model checking algorithms for reachability checking of some limited

logics, on partial order models. The closest related work is by Esparza [Esp94],

who presented an algorithm for reachability checking of properties expressible in

a certain limited logic. This algorithm had polynomial running time for the class

of 1-safe conflict-free nets. However, Esparza’s algorithm applies to low-level Petri

nets (Place/Transition nets), which are inherently unscalable. Low-level nets tend

to be quite large even for very simple high level programs, making them impractical

for use in the verification of real-world programs.

1.4 Organization of this Dissertation

This dissertation consists of the following five parts:

• Part I: Preliminaries

In the next chapter (Chapter 2), we present the system model used in this

dissertation, including trace semantics. We also present relevant background

concepts about partial orders and lattices. In Chapter 3, we discuss prop-

erty specification logics such as CTL, and identify some predicate classes that

exhibit exploitable structure. In particular, we define meet- and join-closed

predicates, and discuss how structure is exploited in these predicate classes to

improve the efficiency of verification.

11

• Part II: Predicate Structure

In Chapter 4, we explore the complexity of deciding whether a given formula

belongs to an efficient predicate class. In Chapter 5, we explore the lattice-

theoretic characteristics exhibited by various CTL temporal and logical oper-

ators. In particular, we show that several CTL operators preserve meet- and

join-closure, which can be exploited to design efficient verification algorithms.

• Part III: Partial Order Semantics

In this part, we present applications of lattice theory to model checking partial

order (implicit) representations of the state space. In Chapter 6, we introduce

a partial order state space representation called the finite trace cover. We

present a mechanism to convert a program into its finite trace cover repre-

sentation, and show how efficient verification algorithms from the realm of

predicate detection can be used to check reachability properties on this rep-

resentation. In Chapter 7, we present the technique of predicate filtering, and

show how it can be used to obtain state space reduction for checking reacha-

bility for formulae that do not belong to an efficient predicate class.

• Part IV: Interleaving Semantics

In this part, we present applications of lattice theory to an interleaving (ex-

plicit) representation of the state space. In Chapter 8, we apply lattice-

theoretic techniques to obtain a model checking technique that ameliorates

state space explosion due to concurrency, while also producing short coun-

terexamples when the property being verified is violated in the program.

• Part V: Conclusion

We present concluding remarks and directions for future work in Chapter 9.

All chapters with technical content contain a section with bibliographic notes per-

tinent to the concepts presented in that chapter.

12

Part I

Preliminaries

13

Chapter 2

System Model

2.1 Introduction

In this chapter, we present the system model and notational conventions used in

this dissertation. We also present some background information, such as relevant

concepts from the theory of partial orders and from lattice theory. Most of the

notation used here is standard. A summary of the notation introduced is presented

at the end of this chapter, in Table 2.1.

2.2 Programs

A finite-state program P is a triple (S, T, s0), where:

• S is a finite set of states,

• T is a finite set of transitions,

• s0 ∈ S is the initial state of the program.

In real implementations, a program contains a countable set of variables of two

kinds - data variables and control variables. A data variable can take on

14

any value from a data domain, which is typically specified by the programming

language. Examples of data variables include integers, pointers, lists and arrays.

Message channels in concurrent and distributed programs are also considered data

variables. A control variable assumes values corresponding to locations in the

program. The program counter is an example of a control variable.

A state of a program is fully characterized by giving values to all of its (data

and control) variables. The set of transitions that are executable from a given state

s ∈ S is denoted by enabled(s). A transition α ∈ enabled(s) transforms the state s

into a unique state s′, denoted by s′ = α(s).

A state s is said to be reachable in a program P iff it can be reached from

s0 by executing only enabled transitions at each state. The full state space graph

of P is a directed, edge-labeled graph 〈V, E〉, such that:

• V ⊆ S is the minimal set of states of P satisfying:

– s0 ∈ V, and

– if s ∈ V, α ∈ enabled(s), and t = α(s), then t ∈ V.

• E = {(s, t)|∃α ∈ enabled(s) : t = α(s)}. In this case, the edge (s, t) is labeled

with α.

In simple terms, the vertex set of the full state space graph of P is exactly

the set of reachable states of P . An edge exists from vertex s to t iff ∃α ∈ enabled(s)

such that t = α(s).

A path through the full state space graph consists of a (finite or infinite)

sequence of states. Each path has a corresponding transition sequence, consisting

of the edge labels along the path. Each occurrence of a transition in a transition

sequence is called an event. For example, the transition sequence αβαβ consists of

four events.

15

Figure 2.1: (α, β) ∈ I.

Definition 2.1. [Maz89, Pel94] An independence relation I ⊆ T × T is an

irreflexive, symmetric relation such that (α, β) ∈ I iff ∀s ∈ S:

• Enabledness: If α ∈ enabled(s), then β ∈ enabled(s) if and only if β ∈

enabled(α(s)), and

• Commutativity: If α, β ∈ enabled(s), then (α(β(s)) = β(α(s))).

The enabledness condition states that the execution of α from any state

does not affect the enabledness of β, and the commutativity condition states that

executing α and β in either order results in the same state. Figure 2.1 illustrates

these conditions.

The dependency relation D is the reflexive, symmetric relation given by

D = (T × T) \ I. We say that two events are dependent (correspondingly, indepen-

dent) iff their corresponding transitions are dependent (independent).

2.3 Traces

Mazurkiewicz [Maz89] defined an equivalence relation on finite transition sequences,

called trace equivalence and denoted by ≡. The equivalence relation ≡ is the

smallest transitive relation that satisfies the following conditions, for all u, v, w ∈ T ∗:

1. v ≡ v.

16

2. If v = u1αβu2 and w = u1βαu2 for some u1, u2 ∈ T ∗ and α, β ∈ T , such that

(α, β) ∈ I, then v ≡ w.

Informally, v ≡ w iff v can be transformed into w by repeatedly commuting adjacent

independent operations.

Example 2.1. Let α1α2α3β1β2 be a transition sequence. Let the independence

relation be given by I = {(αi, βj)}. Then, α1α2α3β1β2 ≡ α1β1α2β2α3, from the

following sequence of commuting independent events:

α1α2α3β1β2

≡ α1α2β1α3β2 {Commuting α3 and β1}

≡ α1α2β1β2α3 {Commuting α3 and β2}

≡ α1β1α2β2α3 {Commuting α2 and β1}

Trace equivalence for infinite transition sequences was first defined in [Kwi89],

with the help of the relation �. Let u, v be two finite or infinite transition sequences.

That is, u, v ∈ T ∗ ∪ Tω. We say that u � v iff for each finite prefix u′ of u, there

exists a prefix v′ of v, and some w such that v′ ≡ w, and u′ is a prefix of w. We

now extend the definition of ≡ to infinite transition sequences as follows. For any

u, v ∈ T ∗ ∪ Tω, u ≡ v if and only if u � v and v � u.

Example 2.2. Let I = {(b, c)}. We can show that b(abc)ω � (bac)ω. Consider any

prefix of b(abc)ω, such as u′ = babca. The sequence v′ = bacbac is a prefix of (bac)ω.

Now, bacbac ≡ babcac, since (b, c) ∈ I. Let w = babcac. Now, u′ is a prefix of

w. Similarly, we can show that (bac)ω � b(abc)ω. For example, consider the prefix

u′ = bacba of (bac)ω. We can pick the prefix v′ = babca of b(abc)ω. Now, v′ can

be transformed into w = bacba by commuting the independent transitions b and c,

an u′ is a prefix of w. Thus, b(abc)ω � (bac)ω and (bac)ω � b(abc)ω. Which means

b(abc)ω ≡ (bac)ω.

17

The equivalence relation ≡ partitions the set of all transition sequences (cor-

respondingly, paths) of a program P into equivalence classes called traces [Maz89].

Definition 2.2. A trace is an equivalence class induced by the relation ≡ over the

set of all transition sequences of a program. We use the notation σ = [s, v] to denote

a trace σ with starting state s, and a representative transition sequence v. Clearly,

σ = {u|u ≡ v}.

Every transition sequence in a trace consists of the same set of events. By

the commutativity property of independent events, it is easily shown [Pel94] that

the same final state is reached upon executing any transition sequence of a trace.

That is, each trace has a unique final state. We define the following operations on

traces.

• The concatenation of a finite trace σ1 = [s, v] with a finite or infinite trace

σ2 = [t, w] is defined when t is also the final state of σ1, and is given by

σ1.σ2 = [s, v.w].

• We say that σ2 = [s, v] subsumes σ1 = [s, u], denoted σ1 v σ2, iff u � v. If

σ1 is finite, then σ1 v σ3 iff there exists σ2 such that σ3 = σ1.σ2.

We say that a trace of a program is maximal iff no other trace subsumes it. In the

following section, we discuss a correspondence between traces and partially ordered

sets.

2.3.1 Traces and Posets

Definition 2.3. A partially ordered set or poset is a set X together with a

reflexive, antisymmetric and transitive binary relation ≤ on the elements of X. We

use the notation (X,≤) to denote such a poset.

If every pair of elements in X is comparable under the binary relation ≤, then

(X,≤) is called a totally-ordered set. The notation x < y is used when x ≤ y and

18

x 6= y. Finite posets can be represented diagrammatically using a directed acyclic

graph called a Hasse diagram [DP90]. In the Hasse diagram representation of a

finite poset (X,≤), the vertices are the elements of X, and an edge exists from a

vertex x ∈ X to a vertex y ∈ X iff:

• x < y, and

• there is no z ∈ X such that x < z < y (i.e., there are no in-between elements).

Further, when the Hasse diagram is drawn on the Euclidean plane, the vertex for x

is drawn at a lower y-coordinate than the vertex for y if x < y.

Example 2.3. Let X = {a, b, c, d}, in which a < c, a < d, b < c and b < d.

No other pairs of distinct elements are comparable. A Hasse diagram for (X,≤) is

shown in Figure 2.2.

a b

c d

Figure 2.2: A Hasse diagram representing the poset in Example 2.3.

It is not possible to represent the whole of an infinite poset by a diagram, but

if its structure is sufficiently regular, it can be suggested diagrammatically, as shown

in Figure 2.3. In [AG07], Agarwal and Garg introduced the notion of p-diagrams to

diagrammatically represent a class of infinite posets.

It is well-known [Win87, Maz89, Pra86] that a 1-1 correspondence exists

between traces and posets. Let σ = [s, v] be a trace, and E be the set of events

in v. We can define a poset (E,→), where ∀e, f ∈ E : e → f iff (e, f) ∈ D and

either e occurs before f in v, or e = f . The relation → is the same as Lamport’s

19

Figure 2.3: Diagram of an infinite poset with repeatable structure.

“happened-before” relation [Lam78], and expresses causal dependence. For instance,

if an event e denotes the sending of a message, and f the corresponding receive event,

then e→ f .

Definition 2.4. A linear extension of a poset (X,≤) is any totally-ordered set

(X,≤1) such that for every x, y ∈ X, if x ≤ y then x ≤1 y.

A linear extension of a poset (X,≤) is often represented by a string (sequence)

consisting of the elements of X, where an element x appears before y in the sequence

if x < y. For example, the string badc is a linear extension of the poset in Figure

2.2.

Every transition sequence of σ is a linear extension of (E,→), and conversely

every linear extension of this poset is a valid transition sequence of σ. We will use

the notation σ = (E,→) to represent the poset corresponding to a trace σ.

The same state can be visited multiple times during the execution of a transi-

tion sequence, for example, in the case of a cycle in the state space graph. However,

each occurrence of the state corresponds to a unique prefix of the transition se-

quence. If an event e is executed as part of a transition sequence, then the events

that causally precede e must have been executed before e.

Definition 2.5. A down-set of a poset (X,≤) is any subset Y ⊆ X such that

whenever y ∈ Y , x ∈ X and x ≤ y, we have x ∈ Y .

Example 2.4. The down-sets of the poset in Figure 2.2 are: ∅, {a}, {b}, {a, b},

{a, b, c}, {a, b, d} and {a, b, c, d}.

20

In a trace σ = (E,→), there exists a correspondence between occurrences of

states, and down-sets. Each occurrence of a state in σ corresponds to the execution

of the set of events from some down-set of (E,→). Conversely, every state in σ can

be reached by executing the events in some down-set of (E,→). For simplicity of

presentation, in this dissertation we overload the term “down-set” to mean both a

set of events, and an occurrence of a state.

Progress in a computation is measured by the execution of additional events

from the current state. For down-sets G and H of a trace (E,→), G ⊆ H iff H is

reachable from G in the full state space graph. In the following section, we discuss

the relationship between down-sets of a trace and lattices.

2.3.2 Traces and Lattices

Let (X,≤) be a poset, and S ⊆ X. An element x ∈ X is an upper bound of S if

for each s ∈ S, s ≤ x. Dually, an element y ∈ X is a lower bound of S if for each

s ∈ S, y ≤ s. An element x ∈ X is the least upper bound of S if:

• x is an upper bound of S, and

• x ≤ x′ for all upper bounds x′ of S.

The least upper bound is also called the supremum or join. Dually, an element

y ∈ X is the greatest lower bound of S if:

• y is a lower bound of S, and

• y′ ≤ y for all lower bounds y′ of S.

The greatest lower bound is also called the infimum or meet.

Definition 2.6. A poset (X,≤) is called a lattice if every pair of elements in X

has a meet and a join that are also contained in X.

21

The poset in Figure 2.2 is not a lattice, for the following reasons:

• c and d have no common upper bound,

• a and b have no common lower bound,

• a and b have no least upper bound, although c and d are both upper bounds,

• c and d have no greatest lower bound, although a and b are both lower bounds.

The poset in Figure 2.4 is a lattice.

a

b c

d e

f

Figure 2.4: A lattice.

Let P = (X,≤) be a poset, and O(P) be the set of all down-sets of P. A

well-known result in lattice theory [DP90] states that (O(P),⊆) is a lattice. That

is, the set of all down-sets of a poset forms a lattice under the subset relation. In

particular, such a lattice is called a down-set lattice, and is actually a special kind

of lattice, called a distributive lattice. Distributive lattices will be defined and

further explored in Chapter 7. The meet and join operations on a down-set lattice

are given by set intersection and set union, respectively. Figure 2.5 shows a poset

and its corresponding down-set lattice.

Given a trace σ = (E,→), we use the notation L(σ) to denote its down-set

lattice. It follows that, if G and H are down-sets of (E,→), then so are G ∩H and

G ∪H. Recall that down-sets of σ correspond to occurrences of states along some

22

a b

c d

(a)

∅

{b}{a}

{a, b}

{a, b, d}{a, b, c}

{a, b, c, d}

(b)

Figure 2.5: (a) A poset, and (b) its down-set lattice.

path in the full state space graph. This view of occurrences of states as elements of

a lattice was previously explored in [Win87, Mat89, GM01], among others. Figure

2.6 shows an example that illustrates the relationship between the full state space

graph, maximal program traces, and down-set lattices.

2.4 Processes

This dissertation focuses on the verification of concurrent and distributed programs,

where the system is modeled as a set of processes, {P1, ..., Pn}. Each process Pi has

a finite set of transitions Ti, and a set of local variables Vi. The value of a local

variable in Vi can only be changed by transitions in Ti. Additionally, a transition in

Ti may also change the values of shared (global) variables in the program. Processes

communicate with each other through shared variables, or by synchronous or asyn-

chronous message passing. Synchronous message passing can be achieved through

a handshake mechanism. Asynchronous message passing uses message channels or

queues. A message channel can be shared among multiple processes, or can be

point-to-point with a single sender and a single receiver.

23

α1

α1

α1

α1

α2

α2

α2

α2

α3

α3

α3

α3

β1

β1 β1

β2 β2

β2

β3

β3

β3

S0

t

(a)

α1

α2

α3

α1

α2

β1

β2

α1

α2

α3

α1

α2

β3

(b)

α1

α2

α3

α1

α2

β1

β2

α1

α2

α3

α1

α2

β3

(c)

α1

α2

α3β1

β2
α1

α1
α2

α2
α3

α3

β1

α1

α2

α1

α2

β1

α1

α2

β1

β1

β1

β2

β2

β2

β2

β2

S0

t

t

(d)

Figure 2.6: (a) The full state space graph of a program P . The independence
relation I = {(αi, βj)|1 ≤ i ≤ 3, 1 ≤ j ≤ 3}. P has two maximal traces: (b)
σ1 = [s0, β1β2(α1α2α3)ω], and (c) σ2 = [s0, β3(α1α2α3)ω]. (d) The down-set lattice
L(σ1). The dark circles show two separate occurrences of the state t, corresponding
to distinct down-sets of L(σ1) but the same state in the full state space graph.

24

2.4.1 The Dependency Relation

In such a model of computation, dependency between transitions may arise either

because of control flow (e.g., updating the program counter for a process), or because

of data (accessing common variables or message queues). In [KP92, God96], it was

shown that a sufficient syntactic condition for two transitions α, β to be independent

is that:

• α and β belong to different processes, and

• the set of objects (variables, message queues) accessed by α is disjoint from

the set of objects accessed by β.

For our model of computation, we use the following dependency relation:

• Pairs of transitions that belong to the same process are dependent. That is,

if α, β ∈ Ti, then (α, β) ∈ D.

• Pairs of transitions that access the same variable, which is changed by at least

one of them, are dependent.

• Two send transitions that use the same message queue are dependent. This

is because executing one may cause the message queue to fill, disabling the

other. Also, the contents of the queue depends on their order of execution.

• Similarly, two receive transitions that use the same message queue are depen-

dent.

• A send and receive transition on the same message queue are dependent. This

is because execution of the send could enable the receive.

Table 2.1 summarizes the notations introduced in this chapter.

25

Notation Description
P A program.
S The finite set of states of P .
T The finite set of transitions of P .

enabled(s) The set of all transitions that are executable from the state s.
α(s) The state reached by executing the transition α from the state s.

(α, β) ∈ I α and β are independent transitions.
(α, β) ∈ D α and β are dependent transitions.
u ≡ v Transition sequences u and v belong to the same trace.
σ A trace.

σ = [s, v] A trace σ with starting state s, and representative transition se-
quence v.

σ = (E,→) The poset corresponding to a trace σ that has E as its set of
events.

σ1.σ2 The concatenation of traces σ1 and σ2.
σ1 v σ2 σ2 subsumes σ1.
L(σ) The down-set lattice of the trace σ.
Pi A process.
Vi The local variables of process Pi.
Ti The set of transitions of process Pi.

Table 2.1: A summary of notation.

2.5 Bibliographic Notes

The definition of a program used here is the same as that used by Peled in his work

on partial order reduction techniques, for example, [Pel93, Pel94]. Mazurkiewicz first

proposed the theory of traces in 1977 [Maz77] as a tool for analyzing the behavior

of Petri nets, and subsequently refined it in [Maz84, Maz85, Maz87, Maz89]. The

terminology and notation for traces and the dependence and independence relation

used in this dissertation is the same as that used in [Maz89], and was also used in

[Pel93, Pel94].

The equivalence between traces and partial orders has been noted by various

researchers, including [Lam78, Maz84, Win87, Pra86]. The correspondence between

traces and lattices was also observed by Winskel in [Win87], and by Mattern in

26

[Mat89]. The notation (→) we use for the partial order relation between events of

a trace is based on Lamport’s “happened-before” relation [Lam78]. The notation

used for concepts from the theory of partial orders and lattice theory is standard,

and follows the conventions in [DP90].

The syntactic conditions for deciding whether a pair of transitions is depen-

dent is based on the chapter on partial order reductions in [CGP99]. These condi-

tions are also implemented in the SPIN model checker [Hol03] in order to determine

when two transitions are dependent. The advantage of using syntactic conditions

for determining dependence is that they can be analyzed statically, at compile time,

resulting in significant computational savings compared to detecting dependence

between transitions during run-time. A further discussion on these issues can be

found in [HP95].

2.6 Summary

In this chapter, we introduced our system model. We defined programs and traces,

and discussed how the set of runs of a program is partitioned into traces by the

independence relation. We also discussed the correspondence between traces, partial

orders, and lattices. Finally, we presented some syntactic conditions for pairs of

transitions to be considered independent, and showed how the dependency relation

can be syntactically derived for a given program.

27

Chapter 3

Predicates

3.1 Introduction

In order to verify a program, it is first necessary to state the properties, called

predicates, that the program must satisfy. For example, consider a program that

implements mutual exclusion between two processes, P1 and P2. The following are

some properties we would expect such a program to satisfy:

• P1 and P2 are never in the critical section at the same time.

• If P1 wants to enter the critical section, it is guaranteed to eventually be able

to do so. That is, P1 is never starved.

• Similarly, P2 is never starved.

The properties to be verified on a program are typically expressed as temporal

logic formulae. Temporal logic allows us to reason about changes in the behavior of

a system over time, without explicitly mentioning specific instances of time. Instead,

a formula may specify that some property eventually turns true, or always holds, or

never turns true.

28

There are two prevalent types of temporal logic that are used in model check-

ing: linear time logic, and branching time logic. Linear time logic (LTL) assumes

that, at any given instant, there is only one possible future. LTL was first proposed

by Manna and Pnueli in [MP79]. Branching time logic assumes that, at each

instant, there are different possible futures, depending on the occurrence of (non-

deterministic) events. The most prevalent branching time logic used in program

verification is called Computation Tree Logic (CTL), which was first proposed

by Emerson and Clarke in [CE82, EC82]. The lattice-theoretic principles we apply

to program verification are more suited to a branching time logic. Therefore, we

focus on CTL operators in this dissertation.

In this chapter, we discuss the syntax and semantics of CTL. We also discuss

some predicate classes identified by other researchers, for which the set of satis-

fying states exhibit a certain structure which can be exploited to derive efficient

verification algorithms. In particular, we focus on predicate classes where the set

of satisfying states exhibit certain lattice-theoretic properties. We also discuss how

predicate structure has been exploited in previous work by other researchers, to

alleviate state space explosion during verification.

3.2 Computation Tree Logic

In Computation Tree Logic (CTL), time is assumed to have a tree-like structure.

When applied to program verification, this is interpreted to mean that each state in

the full state space graph can have several possible successor states. Thus, the com-

putation can “branch” out in a tree-like structure from the current state. Different

computational paths can arise from the current state, either due to non-deterministic

choice in the program, or due to multiple ways of interleaving concurrent (indepen-

dent) events. Figure 3.1 shows a program and its corresponding computation tree

rooted at s0.

29

S0

S1

S2

(a)

S0

S2S1

S2 S0

S0 S2S1

S0

S1 S2

S2

S0

S2S1

S0S2

(b)

Figure 3.1: (a) The full state space graph of a program P , and (b) its computation
tree, from the initial state s0.

30

The formal syntax of CTL is defined as follows. Let AP be the set of atomic

propositions in a program.

1. Every atomic proposition p ∈ AP is a CTL formula.

2. If p and q are CTL formulae, then so are ¬p, (p∧ q), AX(p), EX(p), A[p U q]

and E[p U q].

The operator X stands for the next time operator. The operator A serves as a

universal quantifier, and E as an existential quantifier. Intuitively, AX(p) means

that p holds in all immediate successors of the current state, and EX(p) means that

p holds at some immediate successor of the current state. A[p U q] intuitively means

that along every path starting from the current state, p holds continuously on the

path until a state is reached at which q holds. E[p U q] means that there is some

path from the current state at which p holds continuously until a state is reached

where q holds.

The semantics of CTL formulae are defined with respect to states in the full

state space graph. A full path starting from a state s is a maximal (finite or infinite)

path starting from s in the full state space graph. By maximal, we mean that the

path is either infinite (contains a cycle), or terminates in a vertex with no outgoing

edges. Let πi denote the ith state on the path π. That is, π = π0π1π2.... We use

the notation s |= p to indicate that the formula p holds at state s. The semantics

of the temporal CTL operators are defined below:

• s |= EX(p) iff there exists some full path π starting from s, such that π1 |= p.

• s |= AX(p) iff for every full path π starting from s, π1 |= p.

• s |= E[p U q] iff for some full path π starting from s, there exists a j ≥ 0 such

that πj |= q and for every i such that 0 ≤ i < j, πi |= p.

31

• s |= A[p U q] iff for every full path π starting from s, there exists a j ≥ 0 such

that πj |= q and for every i such that 0 ≤ i < j, πi |= p.

In addition to the syntax above, the following derived operators are used:

• EF (p) = E[true U p].

s |= EF (p) iff there exists some full path π starting from s and some j ≥ 0

such that πj |= p.

• AF (p) = A[true U p].

s |= AF (p) iff for every full path π starting from s, there exists some j ≥ 0

such that πj |= p.

• EG(p) = ¬AF (¬p).

s |= EG(p) iff for there is some full path π starting from s, such that ∀i ≥ 0 :

πi |= p.

• AG(p) = ¬EF (¬p).

s |= EG(p) iff for every full path π starting from s, ∀i ≥ 0 : πi |= p.

• E[p R q] = ¬A[¬p U ¬q].

s |= E[p R q] iff there exists some full path π starting from s, such that for all

j ≥ 0 and i < j, if πi 6|= p then πj |= q. In simple terms, q must hold along

the path π up to and including the first state at which p holds.

• A[p R q] = ¬E[¬p U ¬q].

s |= E[p R q] iff for every full path π starting from s, for all j ≥ 0 and i < j,

if πi 6|= p then πj |= q. In simple terms, along every full path π, q must hold

on the path up to and including the first state at which p holds.

32

S0

(a)

S0

(b)

S0

(c)

S0

(d)

² q² p

Figure 3.2: Basic CTL operators (a) s0 |= EX(p), (b) s0 |= AX(p), (c) s0 |=
E[p U q], and (d) s0 |= A[p U q].

33

3.3 Predicate Structure

Several researchers have suggested exploiting specific characteristics of the property

being verified as a means of reducing state space explosion during verification. In

essence, these approaches identify certain classes of predicates for which the state

space search can be specialized, usually by eliminating the need to explore multi-

ple interleavings of concurrent events. For example, Chandy and Lamport [CL85]

introduced the notion of a stable predicate: once the predicate turns true during

the execution of a program, it stays true for the remaining duration of execution.

Examples of stable predicates include termination (“the computation has termi-

nated”) and deadlock (“the system is deadlocked”). In order to decide whether a

stable property ever turns true during the execution of a program, we simply need

to check the final state of the execution.

Charron-Bost et al. [CBDGF95] introduced observer-independent predi-

cates. An observer-independent predicate is one that holds in some maximal path in

a trace iff it holds in every maximal path in the trace. This same class of predicates

was termed equivalence-robust by Katz and Peled [KP87]. In order to decide

whether an observer-independent (equivalence-robust) predicate ever turns true in

a trace, it suffices to examine any one path in the trace. It was shown in [CBDGF95]

that the class of stable predicates is a subset of the class of observer-independent

predicates.

Distributed programs often suffer from errors due to insufficient synchroniza-

tion, which leads to race conditions. Race conditions are usually transient errors -

they do not fall under the class of observer-independent (equivalence-robust) pred-

icates. For example, consider the improbably naive implementation of a mutual

exclusion algorithm shown in Figure 3.3. A correct implementation of mutual ex-

clusion requires synchronization between the two processes. The program shown in

Figure 3.3 has only one maximal trace. Figure 3.3(b) shows an execution (path) that

34

incsi := true;
[critical sectioni];
 incsi := false;

incsj := true;
[critical sectionj];
 incsj := false;

Pi Pj

(a)

Pi: incsi := true;
Pi: [critical sectioni];
Pi: incsi := false;
Pj: incsj := true;
Pj: [critical sectionj];
Pj: incsj := false;

(b)

Pi: incsi := true;
Pi: [critical sectioni];
Pj: incsj := true;
Pj: [critical sectionj];
Pi: incsi := false;
Pj: incsj := false;

(c)

Figure 3.3: A naive distributed mutual exclusion implementation. (a) Concurrent
processes Pi and Pj , (b) an execution satisfying mutual exclusion, and (c) an exe-
cution that violates mutual exclusion.

does not cause mutual exclusion violation, while Figure 3.3(c) shows an execution

(path) that does.

For program verification, safety properties are usually expressed as a pred-

icate that must never hold in a program. That is, no reachable state of the pro-

gram must satisfy the predicate. Mutual exclusion violation, and most race condi-

tions, are examples of safety properties. Safety properties are usually not observer-

independent (equivalence-robust).

In [CG95], Chase and Garg introduced the class of meet-closed predicates,

which can be used to express many safety requirements. Meet-closed predicates ex-

hibit lattice-theoretic properties that make them amenable to state space reduction

strategies, as is explained in the following section.

3.4 Meet-Closed Predicates

We first formally define meet-closed predicates.

Definition 3.1. A formula p is said to be meet-closed in a program P iff in every

35

trace σ of P :

∀G,H ∈ L(σ) : [(G |= p) ∧ (H |= p) ⇒ (G ∩H) |= p]

Informally, a formula p is meet-closed if, whenever any two states of a trace

σ satisfy p, the state given by their meet in the down-set lattice also satisfies p.

That is, in the down-set lattice L(σ), the set of all down-sets satisfying σ forms an

inf-semilattice. Figure 3.4(a) shows an example of a meet-closed predicate. Meet-

closed predicates imply the existence of certain “crucial” events, which can be used

to prune the state space search. This concept of “crucial” events is explained in the

following section.

3.4.1 Crucial Events

Let G be any down-set of a trace σ = (E,→). Let p be some meet-closed formula,

and G 6|= p. Let G be the set of all p-satisfying states that are reachable from G in

σ. That is:

G = {H ∈ L(σ)|G ⊆ H ∧H |= p} (3.1)

Now, G can be an infinite set. Let H be the set of elements of G that are minimal

under ⊆:

H = {H ∈ G|∀H ′ : H ⊂ H ′ ⇒ H ′ 6∈ H} (3.2)

H is necessarily finite for finite-state programs. We now define:

K =
⋂

H∈H
H (3.3)

By the meet-closure of p, K |= p. Also, G ⊆ K. The following lemma is straight-

forward, from the properties of set intersection, and the fact that p is meet-closed.

Lemma 3.1. If H 6= ∅, then H = {K}.

36

That is, K is the unique and well-defined p-satisfying state that is reachable

from G by executing the fewest events. In particular, K \G is the minimum set of

events that must be executed along any path starting from G, in order to reach a

p-satisfying state in σ. The events in K \G are called crucial events [CG95].

Note that if H = ∅, then by the properties of nullary intersection we have

K = E (E is the set of all events in the trace). That is, if there is no p-satisfying

state in σ, then every event in E \ G is considered a crucial event. An alternative

definition of crucial events follows.

Definition 3.2. Crucial event: In a trace σ, an event e is said to be crucial

from a state G with respect to a meet-closed formula p, denoted e ∈ crucial(G, p, σ)

iff:

∀H ∈ L(σ) : (G ⊆ H) ∧ (G 6|= p) ∧ (H |= p) ⇒ (e ∈ H \G)

In simple terms, a crucial event is one whose execution is necessary in order

to reach a p-satisfying state from G in σ.

A transition sequence starting from G and comprising exactly of the events

in crucial(G, p, σ) gives us a path of shortest length from G to a p-satisfying state

in σ. Such a path is called a crucial path. When H = ∅, we have K = E (the set

of all events), and any maximal path starting from G in L(σ) constitutes a crucial

path. A crucial path is of particular interest in model checking, because it gives us

a witness path of the shortest length to a p-satisfying state. The following theorem

is a direct consequence of the fact that a crucial path is a witness path of shortest

length.

Theorem 3.2. Let H be as defined in Equation (3.2). If H 6= ∅, then a crucial path

for p starting from G cannot contain a cycle.

Recall that a down-set is an occurrence of a state. Suppose the down-set

G is an occurrence of the state s. Executing the events in crucial(G, p, σ) from s

37

will lead to a p-satisfying state in the full state space graph. The state s can have

multiple occurrences in σ (for example, in Figure 2.6(c), the state t occurs multiple

times in σ2). Let G′ be another down-set of σ that is also an occurrence of s. It is

easy to see that crucial(G, p, σ) = crucial(G′, p, σ). Thus, every occurrence of s in

σ has the same set of crucial events w.r.t. p. Based on this observation, we define:

crucial(s, p, σ)
def
≡ crucial(G, p, σ) (3.4)

where G is any down-set of σ that is an occurrence of s.

Researchers have previously exploited meet-closure of formulae to derive ef-

ficient verification algorithms, as is discussed in the next section.

3.4.2 Exploiting Meet-Closure

Chase and Garg [CG95] used the notion of crucial events to derive an efficient

algorithm for determining, for a given finite trace σ = [s, v] and a meet-closed

formula p, whether s |= EF (p) in σ, that is, whether any reachable state of a finite

trace σ satisfies p. Algorithm 3.1 shows the pseudocode for their approach. If p

is a state formula involving no temporal operators, it takes O(1) time to evaluate

whether a given state t satisfies p. In line 4, a crucial event needs to be identified.

If a crucial event for a formula can be identified in O(|E|k) time, where E is the

event set of the given finite trace and k ≥ 0 is some constant, the formula is said to

satisfy the efficient advancement property[CG95]. Chase and Garg’s algorithm

requires traversing only a single crucial path through the trace. If p satisfies the

efficient advancement property, Chase and Garg’s algorithm can decide whether

s |= EF (p) in O(|E|k+1) time [CG95].

In [SG02], Sen and Garg exploited the properties of meet-closure to come up

with an efficient verification algorithm for determining, given a finite trace σ = [s, v]

and meet-closed formula p, whether s |= AG(p). Their algorithm identifies the

38

Algorithm 3.1: EF meet closed

input : A finite trace σ = [s, v], and a meet-closed predicate p.
output: true if s |= EF (p), false otherwise.
begin1

t := s2

while t 6|= p and enabled(t) 6= ∅ do3

let α ∈ crucial(t, p, σ)4

t := α(t)5

endw6

if t |= p then7

return true8

endif9

else10

return false11

endif12

end13

set of meet-irreducible elements of the lattice L(σ). The concept of meet-

irreducibility is analogous to that of prime numbers in arithmetic. Recall that

every natural number can be expressed as the product of some prime numbers.

Similarly, every element of the (finite) lattice L(σ) can be expressed as the meet

of some meet-irreducible elements. Meet-irreducible events are discussed further in

Chapter 7. As p is meet-closed, if every meet-irreducible element of L(σ) satisfies

p, then s |= AG(p). A famous result in lattice theory, known as Birkhoff’s repre-

sentation theorem [DP90], proves that the number of meet-irreducible elements

of L(σ) is equal to the number of events in σ. In [GM01], Garg and Mittal presented

an algorithm for identifying the set of meet-irreducible elements in O(n2.|E|) time,

where n is the number of processes in the trace, and E is the event set of the trace.

Assuming it takes constant time to decide if a given state satisfies p, Sen and Garg’s

algorithm runs in O(n2.|E|) time.

In addition to meet-closure, the property of join-closure has also been ex-

ploited for the development of efficient verification algorithms, as is discussed in the

39

I J

H = I Å JG

F = G Å H

(a)

I J

K = I ∪ J

G

F

H

(b)

I J

H = I Å JG

F = G Å H

K= I ∪ J

: ² p

(c)

I J

H = I Å JG

F = G Å H

K= I ∪ J

: ² p

Figure 3.4: (a) p is meet-closed (b) p is join-closed and (c) p is regular.

next section.

3.5 Regular Predicates

Analogous to the concept of meet-closure, a formula may also exhibit join-closure

in a program, as defined below.

Definition 3.3. A formula p is said to be join-closed in a program P iff in every

trace σ of P :

∀G,H ∈ L(σ) : [(G |= p) ∧ (H |= p) ⇒ (G ∪H) |= p]

Informally, a formula p is join-closed if, whenever any two states of a trace

σ satisfy p, the state given by their join in the down-set lattice also satisfies p.

That is, in the down-set lattice L(σ), the set of all down-sets satisfying σ forms an

sup-semilattice.

40

Join-closure was exploited by Sen and Garg in [SG02] to develop an efficient

algorithm for deciding whether s |= EG(p), for a finite trace σ = [s, v] and join-

closed formula p. Their algorithm shows that, as a consequence of the join-closure of

p, it is possible to decide whether s |= EG(p) by exploring a single path through the

trace σ. Their algorithm runs in O(n.|E|) time, where n is the number of processes

in the trace, and E is the event set of the trace.

A formula that exhibits both meet- and join-closure is said to be regular

[GM01].

Definition 3.4. A formula p is said to be regular in a program P iff it is meet-

and join-closed in P .

Regular predicates were first introduced by Garg and Mittal in [GM01],

where it was shown that, given a trace σ and regular predicate p, the set of down-sets

of σ that satisfy p forms a sublattice of L(σ). This property of regular predicates was

exploited for state space reduction through the concept of slicing in, for example,

[GM01, MG01, SG03a]. It has been shown by Sen and Garg [SG03a] that several

temporal CTL operators preserve regularity. In particular, if p is regular, so are

EG(p), AG(p), and EF (p). A further discussion on how regularity can be used

for state space reduction is deferred until Chapter 7. For now, it suffices to say

that regular predicates constitute another predicate class whose structure has been

exploited for the development of efficient verification algorithms.

3.6 Bibliographic Notes

The use of temporal logic for specifying properties of concurrent programs was

first proposed by Pnueli in [Pnu77]. Pnueli also proposed a temporal semantics for

reasoning about concurrent programs in [Pnu81]. Some notable surveys about the

role of temporal logic in computer science include those by Pnueli [Pnu86], Goldblatt

41

[Gol87], and Emerson [Eme90].

There has been much debate in the literature about the relative merits of

linear versus branching time logics, going back to 1980. Vardi presents a discussion

of these issues, together with an extensive list of references, in [Var01]. In practice,

CTL tends to be more favored in industrial (hardware) verification, mainly because

most of the early model checkers were CTL-based. Examples of these early CTL

model checking tools include SMV [McM92] and its follower, VIS [BHSV+96]. LTL

has recently gained greater prevalence in software verification, largely due to the

popularity of the LTL-based software model checker, SPIN [Hol03].

The logics and predicate classes discussed in this chapter all express proper-

ties on “global states” of the system. That is, the properties specify behaviors of

states and paths in the full state space graph. The approaches that try to exploit

predicate structure aim at reducing state space explosion by avoiding the explo-

ration of multiple paths per trace. Another approach aimed at taming state space

explosion due to concurrency involves defining logics that directly reason about the

underlying partial order of events. An example is Pinter and Wolper’s Partial Order

Temporal Logic (POTL) [PW84]. However, these logics suffer from a complemen-

tary problem - in a pure partial order approach, there is no concept of a global state.

Consequently, many interesting properties of systems, which tend to be global in

nature, cannot be expressed in these logics, and as a result, they failed to catch on

in the verification community.

A survey of the many applications of lattice theory to the verification of

distributed systems appears in [GMS03]. However, the applications surveyed are

limited to performing verification on finite program traces. Most of the previous

work on applying lattice theory to distributed computing, such as [CG95, GM01,

MG01, SG02, SG03a] etc., is also limited to finite program traces. In this disserta-

tion, we extend these concepts beyond finite program traces, to the verification of

42

complete programs (albeit, finite-state programs).

3.7 Summary

In this chapter, we discussed the specification of properties to be verified on pro-

grams. We introduced the syntax and semantics of CTL. We also discussed how

predicate structure can be a useful tool for alleviating state space explosion during

verification. We discussed examples of predicate classes that have been exploited by

previous researchers to reduce the state space searched during verification. In par-

ticular, we focussed on the classes of meet-closed, join-closed, and regular predicates.

We showed that meet-closure implies the existence of certain crucial events in each

program trace, whose execution is both necessary and sufficient for the predicate to

turn true in that trace. We briefly discussed how meet- and join-closure has been

exploited by other researchers to develop efficient verification algorithms.

43

Part II

Predicate Structure

44

Chapter 4

Predicate Recognition

4.1 Introduction

In Chapter 3, we mentioned that predicate structure has been exploited by vari-

ous researchers to tame state space explosion during verification. These approaches

typically reduce state space explosion by avoiding the exploration all possible in-

terleavings of concurrent events. For example, for observer-independent predicates

[CBDGF95], if the predicate turns true in any one maximal path of a trace, then

it turns true in all maximal paths of the trace. Therefore, it suffices to explore any

one maximal path in the trace. For meet-closed predicates, as discussed in Section

3.4.1, it suffices to explore any one crucial path in the trace. For a trace consisting

of n events, these techniques have a worst-case time complexity of O(nk), for some

constant k ≥ 0.

Because these techniques do not perform an exhaustive exploration of the

state space, they require the predicate being verified to adhere to a certain struc-

ture. If it is not known beforehand that the predicate exhibits the assumed struc-

ture, then the decision procedures in these algorithms are sound but not complete.

Therefore, a problem of interest is whether we can determine if a given predicate

45

exhibits a certain structure. Further, we must be able to make this determination

without running into the same state space explosion problem that these special-

ized verification techniques are trying to avoid. In particular, given a trace with n

events, we would like to determine in time that is polynomial in n, whether a given

predicate belongs to a certain “efficient” predicate class. We call this the predicate

recognition problem. This chapter addresses this problem.

4.1.1 Problem Statement

A predicate class is a set of predicates in which each member formula exhibits some

common behavior. Meet-closed predicates, regular predicates and stable predicates

are each examples of a predicate class. Let σ = (E,→) be a trace of a program, and

C be a predicate class.

The Predicate Recognition Problem: Given a predicate p, can we decide

if p ∈ C in O(|E|k) time, for some constant k ≥ 0?

4.1.2 Our Contribution

In this chapter, we answer the predicate recognition problem for various predicate

classes. We show that the problem is co-NP-complete for the classes of meet-closed,

join-closed and regular predicates. We also show that it is NP-hard for any predicate

class for which EF (p) can be decided in time that is polynomial in |E|, and co-

NP-hard for any predicate class for which AG(p) can be decided in time that is

polynomial in |E|.

4.2 Recognizing Meet-Closure

As the focus of this dissertation is on exploiting lattice-theoretic properties exhibited

by programs and predicates, we start by considering the problem of deciding whether

46

a given predicate is meet-closed. In particular, we will focus on boolean predicates,

that is, a predicate which is a boolean formula over the variables of a program.

Let σ = (E,→) be a trace of a program P , such that |E| = n. Let p be a

boolean formula defined over the variables of P . We define the following decision

problem:

MEET-CLOSURE: Is p meet-closed in σ?

A decision problem is said to be in co-NP [GJ90] if a counterexample for the

decision problem exists, which can be verified in polynomial time. In other words,

an efficiently verifiable proof of a “no” instance exists. A decision problem is said to

be co-NP-hard if every problem in co-NP is polynomial-time reducible to it. That

is, a decision problem C is co-NP-hard if there exists a deterministic Turing machine

that can convert any other problem in co-NP into an instance of C, in polynomial

time. A decision problem is said to be co-NP-complete iff it is in co-NP, and is

co-NP-hard. A well-known co-NP-complete problem is TAUTOLOGY [Coo71], the

problem of deciding whether a given boolean formula is a tautology, that is, whether

the formula is always true for every possible valuation of its variables.

Theorem 4.1. MEET-CLOSURE is co-NP-complete.

Proof. • MEET-CLOSURE is in co-NP.

If the given predicate p is not meet-closed, then there exist down-sets G,H ∈

L(σ) such that G |= p and H |= p, but (G ∩ H) 6|= p. Since p is a boolean

expression, its truth value at a state can be evaluated in polynomial time. So,

we can verify in polynomial time that G |= p and H |= p, but (G ∩H) 6|= p,

and the down-sets G and H form the required counterexample for MEET-

CLOSURE to be in co-NP.

• MEET-CLOSURE is co-NP-hard.

We can transform an arbitrary instance of TAUTOLOGY into an instance

of MEET-CLOSURE, as follows. Let f be a boolean expression involving

47

variables x1, x2, ..., xn. We construct a program P consisting of n+2 processes,

{P1, P2, ..., Pn, Pn+1, Pn+2}. Each process Pi contains a single local variable,

xi. In the initial program state, x1, x2, ..., xn, xn+1 are all set to false, and

xn+2 is set to true. The program consists of a single maximal trace σ, with

n+ 2 independent (concurrent) events, as follows.

– ∀i : 1 ≤ i ≤ n+ 1, there is an event αi that changes the value of xi from

false to true, and

– an event αn+2 that changes the value of xi+2 from true to false, and

Figure 4.1 shows the process transition graphs for the program described. It is

evident that the transformation above can be performed in polynomial time.

Note that any subset of {α1, α2, ..., αn + 2} is a valid down-set of the trace σ,

because for all i 6= j : (αi, αj) are independent.

We define a boolean formula p as follows:

p = f ∨ xn+1xn+2 ∨ xn+1xn+2 (4.1)

We claim that p is meet-closed if and only if f is a tautology. If f is a tautology,

then p is trivially meet-closed, because every down-set of σ corresponds to a

satisfying assignment for f , and consequently, a satisfying assignment for p.

Conversely, if f is not a tautology, then there exists some assignment for

x1, ..., xn for which f is false. This assignment corresponds to some sub-

set, say G, of {α1, ...αn}. Clearly, G is also a subset of {α1, ..., αn+2}, and

hence is a down-set of σ. Consider the following two subsets, G1 and G2, of

{α1, ..., αn+2}:

G1 = G ∪ {αn+1} (4.2)

48

G2 = G ∪ {αn+2} (4.3)

The events in G1 turn the clause xn+1xn+2 true, while the events in G2 turns

the clause xn+1xn+2 true. However, G1 ∩ G2 = G, and p is false in G.

Therefore, p is not meet-closed if f is not a tautology.

x2 = false xn = false xn+1 = false xn+2 = truex1 = false

x2 = true xn = true xn+1 = true xn+2 = falsex1 =true

α1 α2 αn αn+1 αn+2

P1 P2 Pn Pn+1 Pn+2

Figure 4.1: Process transition graphs for the transformation showing that MEET-
CLOSURE is co-NP-hard.

4.3 Recognizing Regularity

Analogous to the decision problem MEET-CLOSURE, we define a similar decision

problem for determining whether a given boolean formula p is regular (meet- and

join-closed) in a trace σ:

REGULARITY: Is p regular in σ?

Again, we can show that REGULARITY is co-NP-complete in the number of events

in the trace.

Theorem 4.2. REGULARITY is co-NP-complete.

49

Proof. • REGULARITY is in co-NP.

If the given boolean predicate p is not regular, then there exist down-sets

G,H ∈ L(σ) such that G |= p and H |= p, but either (G ∩ H) 6|= p, or

(G∪H) 6|= p. Since p is a boolean expression, its truth value at a state can be

evaluated in polynomial time. So, the down-sets G and H form the required

counterexample for REGULARITY to be in co-NP.

• REGULARITY is co-NP-hard.

The polynomial-time transformation from TAUTOLOGY to MEET-CLOSURE

in Theorem 4.1 also serves as a transformation from TAUTOLOGY to REG-

ULARITY. That is, as defined in Equation (4.1), p is regular iff f is a tautol-

ogy. If f is a tautology, then p is trivially regular, because every down-set of

σ corresponds to a satisfying assignment for f , and consequently, a satisfying

assignment for p.

If f is not a tautology then, as discussed in the proof of Theorem 4.1, both G1

and G2, from Equations (4.2) and (4.3) respectively, satisfy p, but (G1 ∩G2)

does not satisfy p, implying that p is not regular.

It is also worth noting that (G1 ∪ G2) also does not satisfy p. This implies

that p is join-closed iff f is a tautology, which leads to the following corollary.

Corollary 4.3. Given a trace σ and a boolean formula p, deciding whether p is

join-closed in σ is co-NP-complete.

So far, we have shown that there is no efficient algorithm for determining if a

given predicate is meet- and/or join-closed. In the next section, we show that if the

reachability problem can be solved for a predicate class in time that is polynomial in

the number of events in a trace, then deciding membership for that predicate class

is NP-hard.

50

4.4 Other Recognition Problems

Consider a boolean formula that is known to be non-satisfiable. Let us denote the

class of all non-satisfiable boolean formulae by Cfalse. Then, no program can assign

any formula pfalse ∈ Cfalse a satisfying assignment of values to its variables. That

is, each pfalse ∈ Cfalse is meet-closed, join-closed, regular, stable, and observer-

independent in any trace of a program.

x2 = false xn = falsex1 = false

x2 = true xn = truex1 =true

α1 α2 αn

P1 P2 Pn

Figure 4.2: Process transition graphs for Theorem 4.4.

Theorem 4.4. Given a predicate class C such that:

• Cfalse ⊆ C, and

• ∀p′ ∈ C : s |= EF (p′) can be decided in O(nk) time for any trace [s, v], where

|v| = n and k ≥ 0 is some constant.

It is NP-hard to determine whether a given boolean formula p is a member of the

class C, i.e., p ∈ C.

Proof. We show that if a polynomial-time algorithm exists for deciding member-

ship in C, then there exists a polynomial time algorithm for deciding the boolean

satisfiability problem, SAT. Recall that SAT is a well-known NP-complete problem.

51

The SAT decision problem asks whether, given a boolean formula, there is any as-

signment of values to its variables that turn the formula true. SAT was the first

problem shown to be NP-complete, by Cook in [Coo71].

Let p be a boolean formula for which we wish to solve SAT. Let p involve

the variables x1, x2, ..., xn. We can create a program P consisting of n processes,

where each process has a single local variable, xi. In the initial program state, each

xi is set to false. The program contains n independent transitions, α1, α2, ..., αn,

where each αi changes the value of xi from false to true. The process transition

graphs are shown in Figure 4.4. This program contains exactly one maximal trace,

σ = [s, α1α2...αn], where for each i and j such that i 6= j, (αi, αj) are indepenent.

Assume there exists an algorithm which can determine whether p is a member

of the class C, in time that is polynomial in n. If p 6∈ C, then p has a satisfying

truth assignment, because every non-satisfiable boolean formula p′ is a member of

C. On the other hand, if p ∈ C, then we can use the O(nk) algorithm for deciding

whether s |= EF (p) in σ. Clearly, p is satisfiable iff s |= EF (p). Thus, if p ∈ C can

be decided in polynomial time, then SAT can be solved in polynomial time.

Dually, let us denote the class of all non-falsifiable (tautological) boolean for-

mulae by Ctrue. Then, no program can assign any formula ptrue ∈ Ctrue an assign-

ment of values to its variables that leads to the formula turning false. Again, each

ptrue ∈ Ctrue is meet-closed, join-closed, regular, stable, and observer-independent

for any trace of a program. The following theorem is the dual of Theorem 4.4.

Theorem 4.5. Given a predicate class C such that:

• Ctrue ⊆ C, and

• ∀p′ ∈ C : s |= AG(p′) can be decided in O(nk) time for any trace [s, v], where

|v| = n and k ≥ 0 is some constant.

52

It is co-NP-hard to determine whether a given boolean formula p is a member of the

class C, i.e., p ∈ C.

Proof. We show that if a polynomial-time algorithm exists for deciding membership

in C, then there exists a polynomial time algorithm for deciding TAUTOLOGY. Let

p be a boolean formula for which we wish to solve TAUTOLOGY. Let p involve

the variables x1, x2, ..., xn. We create a program identical to the one in the proof of

Theorem 4.4.

Assume there exists an algorithm which can determine whether p is a member

of the class C, in time that is polynomial in n. If p 6∈ C, then p is not a tautology,

because every tautology is a member of C. On the other hand, if p ∈ C, then we

can use the O(nk) algorithm for deciding whether s |= AG(p) in σ. Clearly, p is a

tautology iff s |= AG(p). Thus, if p ∈ C can be decided in polynomial time, then

TAUTOLOGY can be solved in polynomial time.

4.5 Bibliographic Notes

The results presented in this chapter were published in [KG05b]. To the best of our

knowledge, the predicate recognition problem has not been previously addressed by

other researchers.

4.6 Summary

In this section, we presented some results on the predicate recognition problem. We

showed that predicate recognition is co-NP-complete for meet-closed, join-closed,

and regular predicates, is NP-hard for any predicate class for which EF (p) can be

decided efficiently, and is co-NP-hard for any predicate class for which AG(p) can

be decided efficiently.

53

Chapter 5

Regular CTL Operators

5.1 Introduction

In Chapter 4, we showed that, given an arbitrary boolean formula, the problem of

deciding whether it is regular is co-NP-complete. In this chapter, we show that we

can construct a grammar (i.e., a set of syntactic rules) for a logic such that each

formula yielded by the grammar is regular. This provides a mechanism by which

we can specify properties for verification, while still taking advantage of efficient

verification algorithms that can exploit the structure of regular predicates, such as

the algorithms in [CG95, MG01, GM01, SG02].

In most logics used for property specification, including propositional and

temporal logics, the simplest well-formed formulae of the logic are called atomic

propositions. An atomic proposition is one that cannot be divided into smaller

propositions, and its truth or falsity does not depend on any other proposition. In

program verification, atomic propositions typically correspond to statements about

valuations of program variables. For example, if p is a local variable on process Pi,

then p ≥ 2 is an atomic proposition. Logical or temporal operators are then applied

recursively to build more complex formulae. In order to build a grammar for a logic

54

that yields only regular formulae, we start with atomic propositions that exhibit

regularity, and then add regularity-preserving logical and temporal operators to the

grammar.

5.1.1 Our Contribution

This chapter addresses the question of what kinds of atomic propositions exhibit

regularity, and which temporal and logical operators preserve it. Mittal and Garg

[MG01] and Sen and Garg [SG03a] have also previously explored regularity-preserving

operators. We summarize the results known so far in Table 5.1, which also lists the

new results proved by us in this dissertation.

In some cases, an operator does not preserve regularity, but preserves a

stronger property, called biregularity. A formula p is said to be biregular iff both

p and ¬p are regular. Figure 5.1 shows the relationship between the classes of meet-

closed, join-closed, regular and biregular predicates. We also explore biregularity-

preserving operators in this chapter.

Formula
Preserves regularity Preserves biregularity
(p, q regular) (p, q biregular)

¬p No, [GM01] Yes, by definition
p ∧ q Yes, [GM01] No, example in Section 5.2
p ∨ q No, [GM01] No, example in Section 5.2
EF (p) Yes, [SG03a] Yes, Theorem 5.2
EG(p) Yes, [SG03a] Yes, Theorem 5.4
AF (p) No, [Sen04] Yes, Theorem 5.4
AG(p) Yes, [SG03a] Yes, Theorem 5.2
E[p U q] No, [Sen04] No, example in Section 5.2
E[p R q] Yes, Theorem 5.5 No, example in Section 5.2
A[p U q] No, [Sen04] No, example in Section 5.2
A[p R q] No, example in Section 5.3 No, example in Section 5.2

Table 5.1: Closure properties preserved by the various CTL operators.

55

Meet-closed Join-closed

Regular

Biregular

Predicates

Figure 5.1: Relationship between predicate classes

5.2 Preserving Biregularity

A formula φ is called a process-local state formula iff its truth value is purely deter-

mined by the current values of the local variables Vi of some process Pi. Recall that

the value of any local variable in Vi can only be changed by some transition from

Ti. Thus, the truth or falsity process-local state formula can only be changed by

transitions from Ti.

An example of a process-local state formula is “process i is in the critical

section”. In particular, this is a process-local state formula because the program

counter is a local variable on process Pi, and can only be changed by a transition

from Ti.

Theorem 5.1. Process-local state formulae are biregular.

Proof. Let σ be a trace, and p a process-local state formula defined on the local

variables of process Pj . Since no two transitions from Pj are independent, no two

transitions from Pj can commute with each other. So, the events from Pj must

occur in the same sequence in every path of σ.

Let s be the starting state of σ, and v be a maximal path of L(σ). Let vj

56

be the restriction of v to events from Pj , i.e., vj is obtained from v by deleting all

events from processes other than Pj . Let G and H be any two down-sets of σ such

that G |= p and H |= p. Let u and w be any two paths in L(σ), leading, respectively,

from s to G and s to H. Then, both uj and wj (derived in a similar fashion as vj

from v) are prefixes of vj . Thus, either uj is a prefix of wj , or wj is a prefix of uj .

WLOG, say uj is a prefix of wj .

Now, let u′ be any path from s to (G ∩ H) in L(σ). Then, u′j = uj . Since

the truth value of p is determined purely by events from process Pj , and G |= p, we

have (G∩H) |= p. Similarly, let w′ be some path from s to (G∪H) in L(σ). Then,

w′
j = wj , hence (G ∪H) |= p.

Finally, the negation of a process-local state formula is also a process-local

state formula. Thus, ¬p is also regular, which implies that p is biregular.

Process-local state formulae will constitute the set of atomic propositions of

our “regular” logic. We now consider some temporal CTL operators. In [SG03a], it

was shown that if p is regular, then so are EF (p) and AG(p). The following theorem

shows that the EF and AG operators preserve biregularity.

Theorem 5.2. If p is biregular, then EF (p) and AG(p) are biregular.

Proof. Since p is (bi)regular, from [SG03a], we know that EF (p) and AG(p) are

57

regular. Now, we need to show that ¬EF (p) and ¬AG(p) are regular.

G |= ¬EF (p) and H |= ¬EF (p)

≡ {Since ¬EF (p) = AG(¬p)}

G |= AG(¬p) and H |= AG(¬p)

⇒ {¬p is regular, so AG(¬p) is regular}

(G ∩H) |= AG(¬p) and (G ∪H) |= AG(¬p)

≡ {Since AG(¬p) = ¬EF (p)}

(G ∩H) |= ¬EF (p) and (G ∪H) |= ¬EF (p)

Similarly:

G |= ¬AG(p) and H |= ¬AG(p)

≡ {Since ¬AG(p) = EF (¬p)}

G |= EF (¬p) and H |= EF (¬p)

⇒ {¬p is regular, so EF (¬p) is regular}

(G ∩H) |= EF (¬p) and (G ∪H) |= EF (¬p)

≡ {Since EF (¬p) = ¬AG(p)}

(G ∩H) |= ¬AG(p) and (G ∪H) |= ¬AG(p)

In [SG03a], it was also shown that EG(p) is regular when p is regular. In

[Sen04], it was shown that AF (p) is join-closed for regular p, but is not meet-closed

for regular p. Here, we show that AF (p) is meet-closed when p is biregular.

Lemma 5.3. AF (p) is meet-closed for biregular p.

Proof. Assume, for contradiction, that G |= AF (p) and H |= AF (p), but (G∩H) |=

58

¬AF (p).

(G ∩H) |= ¬AF (p)

≡ {Since ¬AF (p) = EG(¬p)}

(G ∩H) |= EG(¬p)

⇒ {Definition of EG }

(G ∩H) |= ¬p

⇒ {p is biregular, so ¬p is meet-closed }

(G |= ¬p) ∨ (H |= ¬p)

WLOG, let G |= ¬p. Since (G ∩ H) |= EG(¬p), there exists a maximal path π

starting from (G∩H) such that ∀i : πi |= ¬p. Then, we can construct the following

path ρ, starting from G, as follows:

ρ = G ∪ π0, G ∪ π1, G ∪ π2,

Recall that π0 = G∩H, so the path ρ starts from G , since G∪ (G∩H) = G. From

the properties of set union, and because π is a valid path, for each i ≥ 0, ρi+1 is either

the same as ρi, or contains one additional event. Eliminating consecutive identical

down-sets (states), we obtain a valid maximal path starting from G, such that no

state along the path satisfies p. That is, ρ gives us a witness for G |= EG(¬p),

which implies that G |= ¬AF (p), which contradicts our initial assumption that

G |= AF (p).

Theorem 5.4. If p is biregular, then AF (p) and EG(p) are biregular.

Proof. Given p is biregular. Then, from [SG03a], EG(p) is regular. Also, from

[Sen04], AF (p) is join-closed. From Lemma 5.3, AF (p) is meet-closed. Hence,

59

AF (p) is regular. Now, we need to show that ¬AF (p) and ¬EG(p) are regular.

G |= ¬AF (p) and H |= ¬AF (p)

≡ Since ¬AF (p) = EG(¬p)}

G |= EG(¬p) and H |= EG(¬p)

⇒ {¬p is regular, so EG(¬p) is regular}

(G ∩H) |= EG(¬p) and (G ∪H) |= EG(¬p)

≡ Since EG(¬p) = ¬AF (p)}

(G ∩H) |= ¬AF (p) and (G ∪H) |= ¬AF (p)

Similarly:

G |= ¬EG(p) and H |= ¬EG(p)

≡ Since ¬EG(p) = AF (¬p)}

G |= AF (¬p) and H |= AF (¬p)

⇒ {¬p is regular, so AF (¬p) is regular}

(G ∩H) |= AF (¬p) and (G ∪H) |= AF (¬p)

≡ {Since AF (¬p) = ¬EG(p)}

(G ∩H) |= ¬EG(p) and (G ∪H) |= ¬EG(p)

We now consider operators that do not preserve biregularity. In Figure 5.2,

p, q, r and s are each process-local state formulae, and hence biregular. Recall that,

in order to be biregular, both the formula and its negation must be regular. The

following counterexamples, based on the program trace in Figure 5.2, show that the

remaining CTL logical and temporal operators do not preserve biregularity.

60

• Conjunction.

I |= ¬(q∧r) and J |= ¬(q∧r), but (I ∪J) does not. That is, (I ∪J) |= (q∧r).

So, ¬(q ∧ r) is not regular.

• Disjunction.

G |= (p∨ q) and H |= (p∨ q), but (G∩H) 6|= (p∨ q). So, (p∨ q) is not regular.

• EX.

I |= EX(¬s) and J |= EX(¬s), but (I ∪ J) 6|= EX(¬s) . So, EX(¬s) is not

regular.

• AX.

I |= AX(q) and J |= AX(q), but G = (I ∩ J) does not. In particular, I is a

successor of G that does not satisfy q.

• EU .

G |= E[p U q], and H |= E[p U q], but (G ∩H) does not.

• AU .

G |= A[p U q], and H |= A[p U q], but (G ∩H) does not.

• ER.

As shown above, A[p U q] is not meet-closed. Therefore, ¬E[¬p R ¬q] is not

meet-closed, so ER is also not biregular.

• AR.

Similarly, as shown above, E[p U q] is not meet-closed, so ¬A[¬p R ¬q] is not

meet-closed, hence AR is not biregular.

We next consider the question of which operators preserve regularity.

61

p = false,
r = false

p = true,
r = false

p = true,
r = true

α1

α2

q = false,
s = false

q = true,
s = false

q = true,
s = true

β1

β2

P1 P2

(a)

G Å H

I

H

I ∪ J

G

J

∅

{q}{p}

{q, s}{p, r}

{p, q, s}

{p, q, r, s}

{p, q, r}

{p, q}

Conjunction not biregular
H, I ² ¬ (q Æ r), G ∪ H does not

(b)

Figure 5.2: (a) Process transition graphs (b) the corresponding down-set lattice.

5.3 Preserving Regularity

Garg and Mittal [GM01] showed that the conjunction preserves regularity. That is,

if p and q are regular, so is p ∧ q. They also showed that disjunction and negation

do not preserve regularity. Sen and Garg [SG03a, Sen04] explored the question of

which temporal CTL operators preserve regularity. In particular, they showed that

the EF , EG and AF operators preserve regularity, while AF , AU , EU , EX and

AX do not.

In this section, we show that the operator ER preserves regularity. Also,

while the EU operator does not preserve regularity, we show that a variation of

it does. In particular, we show that E[p U (p ∧ q)] is regular when p and q are

regular. In most cases, the system specification makes it equally valid to check for

E[p U (p ∧ q)] instead of E[p U q].

Theorem 5.5. The following temporal formulae are regular, if p and q are regular:

• E[q R p]

• E[p U (p ∧ q)]

62

G Å H

G Å ρend

G = π0

π1

π2

πend

H = ρ0

ρ1

ρ2

ρend

πend Å ρend

G ∪ H

G ∪ ρ1

G ∪ ρend

π1 ∪ ρend

πend ∪ ρend

(a)

G Å H

G = π0

π1

π2

π3

H = ρ0
ρ1

ρ2

ρend

G ∪ H

G ∪ π1

π6

π5

π4

π3 Å H

(b)

: p and q are both false: p and q are both true: only q is true: only p is true

Figure 5.3: Illustrating the construction of λ and ν in Theorem 5.5. (a) Case 1:
G,H |= E[p U (p ∧ q)] (b) Case 2: G |= EG(p)

63

Proof. We show that E[q R p] is regular, for regular p and q. Let G,H ∈ L(σ)

be two down-sets such that G |= E[q R p] and H |= E[q R p]. Then, both G and

H must satisfy p. Then, by the meet-closure of p, (G ∩ H) |= p. Also, by the

join-closure of p, (G ∪H) |= p.

Recall that E[q R p] = E[p U (p ∧ q)] ∨ EG(p).

• Case 1: Both G and H satisfy E[p U (p ∧ q)].

In the lattice L(σ), there exist finite paths π and ρ, starting from G and H

respectively, such that πend |= q and ρend |= q, where πend and ρend are the

final states on π and ρ, respectively. From the meet- and join-closure of q,

(πend ∩ ρend) |= q, and (πend ∪ ρend) |= q. We can construct a path λ starting

from (G ∩H) as follows:

λ = G ∩H,G ∩ ρ1, G ∩ ρ2, ..., G ∩ ρend, π1 ∩ ρend, π2 ∩ ρend, ..., πend ∩ ρend

From the properties of set intersection, for each i, λi can either be the same as

λi−1 or contain one additional event. Eliminating consecutive identical down-

sets, we get a valid path in which for each i, λi contains one event more than

λi−1. From the meet-closure of p, it follows that λ is a witness for E[p U (p∧q)].

Similarly, we can construct ν starting from (G ∪H):

ν = G ∪H,G ∪ ρ1, G ∪ ρ2, ..., G ∪ ρend, π1 ∪ ρend, π2 ∪ ρend, ..., πend ∪ ρend

From the properties of set union, for each i, either νi can be the same as νi−1,

or contain one additional event. Eliminating consecutive identical down-sets,

one obtains a valid path. From the join-closure of p, it follows that ν is a

witness for E[p U (p ∧ q)].

• Case 2: Either G or H satisfies EG(p).

64

WLOG, let G |= EG(p). Let π be a witness path starting from G, and v be

its corresponding transition sequence. We first show that there exists a finite

k ≥ 0 such that H ⊆ πk. Let s be the starting state of σ. Let u and w be

transition sequences leading, respectively, from s to G and s to H in L(σ).

Since G |= EG(p), u.v is a maximal transition sequence of σ, i.e., σ = [s, u.v].

Therefore, w � u.v. By the definition of �, there exists a finite prefix u′ of

u.v such that u′ ≡ w′ and w is a prefix of w′. Let K be the final state of

the transition sequence u′. Recall that H is the final state of the sequence w.

Then, we have H ⊆ K. Now, K can occur either before or after G in the path

corresponding to u.v. In either case, K ⊆ πk for some finite k ≥ 0.

We use the above property to construct a path λ starting from (G ∩H):

λ = G ∩H,π1 ∩H,π2 ∩H,, (πk ∩H = H)

Eliminating consecutive identical down-sets, λ becomes a valid path. Since

π is a witness for G |= EG(p), every state along π satisfies p. Also, H |= p.

Thus, by the meet-closure of p, every state on ρ satisfies p. Let ρ be the

witness path for E[q R p] starting from H. Then, the required witness path

for E[q R p] from (G ∩H) is given by λ.ρ.

To demonstrate join-closure, we construct the following path ν starting from

(G ∪H):

ν = G ∪H,π1 ∪H,π2 ∪H,

Removing consecutive identical down-sets, ν becomes a valid path. From the

join-closure of p, it follows that ν is a witness path for (G ∪H) |= EG(p).

The proof that E[p U (p ∧ q)] is regular is the same as Case 1 above.

65

G ² A[p R q] H ² A[p R q]

G Å H ² ¬ A[p R q]

² q ² p ² p Æ q(a)

² q

² p

² p Æ q

Figure 5.4: Counterexample showing that AR does not preserve regularity.

In [Sen04], Sen provided counterexamples to show that the following oper-

ators do not preserve regularity: negation, disjunction, AF , EU and AU . Figure

5.4 provides a counterexample showing that the operator AR also does not preserve

regularity. In Figure 5.4, G and H both satisfy A[p R q], but (G ∩H) does not.

5.4 Bibliographic Notes

In [SG03a], Sen and Garg defined a logic called RCTL (Regular CTL), which con-

tains only regular formulae. RCTL is a subset of CTL, in which the temporal

operators are limited to EF , AG and EG. Every atomic proposition is required to

be regular, and the only logical operator in RCTL is conjunction. In [SG03a], Sen

and Garg showed that, for a finite program trace, an RCTL formula can be verified

in time that is polynomial in the number of events in the trace. In particular, an

RCTL formula f can be verified in O(|f |.n2.|E|) time, where n is the number of

processes in the trace, E is the event set of the trace, and |f | is the length of the

formula (i.e., the number of temporal and logical operators in the formula).

Sen and Garg’s algorithm works on a partial order representation of a finite

trace. In [KG08], we defined a subset of CTL called CETL (Crucial Event Tempo-

ral Logic), consisting of the temporal operators EU (albeit, the variation used in

66

Theorem 5.5) and ER, and the logical operation of conjunction. We presented a

model checking algorithm for CETL that exploited the lattice-theoretic properties

of regular formulae to achieve state space reduction while also resulting in short

error traces. Our approach was applied to an interleaved model of the state space,

and is presented in Chapter 8 of this dissertation.

The examination of properties preserved by various temporal operators al-

lows us to build logics that are amenable to state space reduction techniques. This

approach is also the basis of the partial order reduction (POR) techniques proposed

by Peled [Pel93], Valmari [Val91b] and Godefroid [GW94b], among others. Partial

order reduction techniques can be used for state space reduction when the properties

to be verified are specified in a logic consisting solely of stutter-invariant formulae.

A formula is said to be stutter-invariant if it cannot distinguish between a sequence

of states and any sequence that results from replacing a single occurrence of a state

with multiple copies of the same state. A formal definition can be found in [PW97].

Peled and Wilke [PW97] showed that removing the next-time operator from LTL

(and/or CTL) produces a stutter-invariant logic. Further comparisons between POR

techniques and our lattice-theoretic approach can be found in Chapters 6 and 8.

5.5 Summary

In this chapter, we addressed the question of which CTL logical and temporal oper-

ators preserve regularity and/or biregularity. We showed that when p is biregular,

so are ¬p, EF (p), AF (p), EG(p), and AG(p). The remaining CTL logical and

temporal operators do not preserve biregularity. We also showed that when p and q

are regular, so are E[p U (p ∧ q)] and E[p R q]. Previous work by Garg and Mittal

[GM01] showed that conjunction preserves regularity, and previous work by Sen and

Garg [SG03a] showed that EF (p), AG(p) and EG(p) are regular when p is regular.

The remaining CTL operators do not preserve regularity.

67

Part III

Partial Order Semantics

68

Chapter 6

Trace Covers

6.1 Introduction

Partial order representations of the state space have been advocated by several

researchers as a means of capturing the true concurrency semantics of distributed

systems. Examples of partial order representations include Lamport’s happened-

before or causality relation [Lam78], Mazurkiewicz’s trace model [Maz89], Winskel’s

event structures [Win87], Pratt’s pomsets [Pra86] and C. A. Petri’s Petri nets [Pet62].

A common observation about distributed systems is that an interleaving

model imposes an arbitrary total ordering on concurrent events. To avoid discrim-

inating against any particular ordering, interleaving models represent all possible

total orderings of concurrent events. This results in the state space representation

being exponential in the number of events. Partial order models avoid this problem

by representing the order between events as a poset. Thus, partial order models

allow for a compact representation of the state space.

Most commonly-used temporal logics for specifying correctness properties

of programs can, however, distinguish between different interleavings of concurrent

events. Therefore, while a partial order representation of the state space is com-

69

pact, we also need to avoid state space explosion during verification by avoiding the

exploration of all linearizations of the partial order.

A class of techniques known as partial order reduction (POR) techniques

[Val91a, Val91b, Val93, God91, GW92, GW94b, Pel93, Pel94] capitalizes on log-

ics that cannot distinguish between different interleavings of concurrent events by

defining an equivalence relation on the set of all interleavings, based on the formula

being verified. The specified formula holds true in one interleaving of an equiva-

lence class iff it holds true in all interleavings. An example of such an equivalence

relation is stuttering-equivalence (described in Section 6.7 of this chapter). POR

techniques still use an interleaving representation of the state space, but combat

state space explosion by exploring a reduced set of interleavings, namely, one inter-

leaving per equivalence class. However, this still results in the exploration of multiple

interleavings per program trace. That is, the equivalence relation is stronger than

trace-equivalence.

Another drawback of interleaving models is that they abstract away the fact

that the distributed program in question is composed of independently comput-

ing processes, and models the program as purely sequential patterns of events. A

partial order representation captures the notion of independently operating agents,

making it easier to differentiate between program errors due to race conditions be-

tween processes, versus program errors due to a single incorrectly operating process.

The ability to communicate this distinction to a programmer can ease the task of

debugging distributed systems.

POR techniques, as they are based on an interleaving model, also suffer from

the above drawback. Namely, once an interleaving is chosen for inclusion in the

reduced state space graph, we lose all concurrency information between the events

in the interleaving. Further, the reduced state space is generated with respect to the

particular formula being verified. The subsequent verification of a different formula

70

requires the construction of a different (reduced) state space.

6.1.1 Our Contribution

In this chapter, we show how a program can be decomposed into a set of partial

orders. In particular, we present a mechanism to represent a (finite-state) program

as a finite set of finite trace posets, called a finite trace cover. The finite trace cover

represents all the reachable states of the program, and maintains all the concurrency

information of the original program. In addition, the state space representation is

independent of the formula being verified.

Like the POR techniques of [God91, GW92, GW94b, Pel93, Pel94], our ap-

proach uses trace semantics. This allows for a direct comparison between our ap-

proach and POR techniques. In fact, we exploit previous results from POR tech-

niques to build the trace cover. We first generate a single representative transition

sequence for each maximal program trace (therby avoiding state space explosion),

then use a “vector timestamping” mechanism [Mat89, Fid88] to capture the concur-

rency information (specifically, the → relation) between events in the trace.

We also show how a restricted, but useful, class of formulae can be verified on

the finite trace cover, while avoiding state space explosion. Currently, our approach

is limited to the verification of formulae of the form EF (φ), where φ does not

contain temporal operators. Specifically, these verification algorithms have running

time complexity that is polynomial in the number of events in the trace cover.

Experimental results are presented, comparing our approach to POR techniques.

In our experiments, we detected safety violations in a leader election protocol in

53.53 seconds, compared to POR techniques, which took 547.41 seconds to detect

the same violations.

71

6.2 Trace Covers

Let States(σ) denote the set of all reachable states in a trace σ. That is, if σ = [s, v]

is a trace, then t ∈ States(σ) iff there exists some path in σ that contains t.

Definition 6.1. A set of traces ∆ of a program P = (S, T, s0) is called a trace

cover iff for every reachable program state s ∈ S, there exists a trace σ ∈ ∆ such

that s ∈ States(σ).

Theorem 6.1. Given traces σ1 and σ2, σ1 v σ2 ⇒ States(σ1) ⊆ States(σ2).

Proof. Let t ∈ States(σ1). Then, there exists some transition sequence u of σ1 such

that t occurs along u. In particular, there exists a prefix u′ of u such that t is

the final state reached after executing the events in u′. From the definition of the

subsumes relation in Section 2.3, there exists some transition sequence w of σ2 such

that u′ is a prefix of w. Therefore, t occurs while executing the transition sequence

w, which means t ∈ States(σ2). Thus, t ∈ States(σ1) ⇒ t ∈ States(σ2), which

implies that States(σ1) ⊆ States(σ2).

Theorem 6.1 shows that it is sufficient to consider only traces that are max-

imal under the subsumes relation when constructing a trace cover.

6.3 Representative Transition Sequences

In this section, we present a method to generate a representative transition sequence

for each maximal trace of the program, while avoiding state space explosion. In

order to avoid state space explosion, we need to avoid exploring all interleavings

of concurrent events. Ideally, we would like to explore only a single interleaving of

events per maximal program trace.

In [Kwi89, PP94], it was shown that the set of transition sequences that

belong to maximal program traces is exactly the same as the set of sequences that

72

satisfy the following constraint:

(Constraint A) If a transition α is enabled at some state of a transition

sequence, then a transition that is dependent on α (possibly α itself) must occur

later (or immediately) in this sequence.

It was shown in [Pel94] that in order to construct at least one transition

sequence per maximal program trace, it is sufficient to explore an ample set ample(s)

that satisfies the following condition:

(C1) Along every path starting from s in the full state space graph, a tran-

sition that is dependent on a transition from ample(s) cannot be executed without

a transition from ample(s) occurring first.

Lemma 6.2. The transitions in enabled(s) \ ample(s) are all independent of those

in ample(s).

Proof. Let α ∈ enabled(s) \ample(s), and β ∈ ample(s). Assume (α, β) ∈ D. Since

α ∈ enabled(s), there must be a path in the full state space graph that starts with

α. Thus, there exists a path starting from s in the full state space graph in which a

transition (α) that is dependent on a transition (β) in ample(s) occurs before any

transition from ample(s) occurs. This contradicts condition (C1). Therefore, α and

β must be independent.

Theorem 6.3. 1. Every transition sequence generated by Algorithm 6.1 is a valid

transition sequence of the input program P .

2. Assuming that every queued sequence is eventually explored, Algorithm 6.1

produces a representative transition sequence for each maximal trace of P .

Proof. 1. Obvious from the BFS construction.

2. The proof is by construction. Let w = α1α2... be a representative transition

sequence of some maximal trace of P , starting from the state s. Then, w

73

Algorithm 6.1: trace cover
input : A program P , with initial state s0.
output: A transition sequence per maximal program trace
begin1

enqueue(s0, ε) /* (initial state, the empty string) */2

while queue is not empty do3

(s, τ) := dequeue()4

work set := ample(s)5

while work set 6= ∅ do6

let α ∈ work set7

work set := work set \ {α}8

t := α(s)9

τnew := τ.α10

enqueue(t, τnew)11

endw12

endw13

end14

must satisfy Constraint A. We show that Algorithm 6.1 explores (constructs)

a sequence that is trace-equivalent to w.

(a) Case 1: α1 ∈ ample(s).

Then, the algorithm adds α1 to the sequence τ , in line 10. Thus, the algo-

rithm constructs a prefix of w, and the construction proceeds inductively

from the state α1(s).

(b) Case 2: α1 6∈ ample(s).

Let β be some arbitrary transition in ample(s). Then, clearly, β ∈

enabled(s). By Constraint A, w must contain some transition that is

dependent on β. However, by condition (C1), a transition that is depen-

dent on β cannot occur in w before some transition from ample(s) occurs

in w. Let αk, where k ≥ 1, be the first transition in the sequence w that

belongs to ample(s). By condition (C1), the events α1, α2, ..., αk−1 must

all be independent of αk, and thus can all commute with it. Therefore,

74

the sequence αkα1α2...αk−1αk+1... is trace-equivalent to w, and the al-

gorithm constructs the prefix αk of this trace-equivalent sequence in line

10. Construction proceeds inductively from the state αk(s).

6.4 Obtaining Posets From Sequences

In the previous section, we presented an algorithm that generates a representative

transition sequence per maximal program trace. Recall that each transition sequence

of a trace is a linear extension of the poset corresponding to the trace. In this section,

given a transition sequence and the dependency relation, we present a method for

retrieving the corresponding trace poset.

Our method generalizes the notion of vector timestamps introduced indepen-

dently by Mattern in [Mat89] and Fidge in [Fid88], as a mechanism for representing

the causality relation in a distributed computation. To each event in a trace, we

assign an integer vector of dimension n, where n is the number of processes in the

program. This integer vector is called a vector timestamp, The vector timestamp of

an event α is denoted by α.ν, and the ith component of α.ν is denoted by α.ν[i].

Given two n-dimensional vector timestamps, α.ν and β.ν, we compare them

as follows:

α.ν = β.ν iff ∀i : α.ν[i] = β.ν[i]

α.ν ≤ β.ν iff ∀i : α.ν[i] ≤ β.ν[i]

α.ν < β.ν iff α.ν ≤ β.ν and α.ν 6= β.ν

Let a program P consist of n processes {P1, ..., Pn}. We now describe an online

mechanism for assigning timestamps to the events in a sequence. We assume that

the empty sequence ε contains the empty event ε, and ε.ν = [0, 0, 0...., 0]. We assume

75

that every event is dependent on ε. When an event α is concatenated to the sequence

τ , it is assigned a timestamp as follows.

1. Calculate the set dep(α), where:

dep(α) = {β|(β ∈ τ) ∧ (α, β) ∈ D}

2. For all j ∈ {1...n}, set:

α.ν[j] := max{β.ν[j]|β ∈ dep(α)}

3. Let α ∈ Pi, where 1 ≤ i ≤ n. Set α.ν[i] := α.ν[i] + 1.

To put it simply, when a new event α is added to a transition sequence, we

first take the component-wise maximum of all the events that precede α the sequence

and that α is dependent on. Then, we increment the component corresponding to

the process to which α belongs.

Let τ be a representative sequence of the trace σE . The following theorem

shows how our timestamping mechanism captures the poset (E,→).

Theorem 6.4. Given a trace σ = (E,→), and α, β ∈ E:

α→ β ⇔ α.ν ≤ β.ν

Proof. Straightforward from the definition of → and the timestamping procedure.

Example 6.1. Figure 6.1(a) shows the process transition graphs for three processes,

P1, P2, P3. We assume that all pairs of events on the same process are dependent.

76

α
4

β1

β
2

γ
1

γ2

α1 β1 γ1 α3 β2 γ2 α5

[0,0,1] [0,1,0] [1,0,0] [0,1,2] [1,2,0] [2,0,0] [0,1,3]

α1 β1 γ1 α2 β2 α4 γ2

[0,0,1] [0,1,0] [1,0,0] [0,1,2] [1,2,0] [0,1,3] [2,1,3]

P1 P2 P3

α
2

α
3

α
1

α
5

(a)

α
4

β1

β
2

γ
1

γ2

α1 β1 γ1 α3 β2 γ2 α5

[0,0,1] [0,1,0] [1,0,0] [0,1,2] [1,2,0] [2,0,0] [0,1,3]

α1 β1 γ1 α2 β2 α4 γ2

[0,0,1] [0,1,0] [1,0,0] [0,1,2] [1,2,0] [0,1,3] [2,1,3]

P1 P2 P3

α
2

α
3

α
1

α
5

(b)

α1 β
1

γ
1

α2

α4

β
2

γ2

α1 β1 γ1

α3

α
5

β2
γ2

[0,0,1] [0,1,0] [1,0,0] [0,0,1] [0,1,0] [1,0,0]

[0,1,2][0,1,2]

[1,2,0][1,2,0]

[2,0,0]

[2,1,3]

[0,1,3]
[0,1,3]

(c)

Figure 6.1: (a) Process transition graphs for processes P1, P2, P3, (b) representative
transition sequences and the vector timestamps assigned based on the dependency
relation given in Example 1, and (c) the posets induced by the assigned timestamps.

In addition to these dependencies, we have the following dependencies for events

from different processes: {(β1, α3), (γ1, β2), (β1, α2), (α4, γ1)}. It is easy to verify

that the specified program has two maximal traces, and Figure 6.1(b) shows one

interleaving sequence for each maximal trace. Under each interleaving sequence is

the corresponding sequence of assigned vector timestamps. These vector timestamps

induce a partial order on the events of each sequence. Figure 6.1(c) shows the partial

order (trace) corresponding to each interleaving sequence.

So far in this chapter, we have presented a method to generate a representa-

tive transition sequence for each maximal program trace, and a method to timestamp

these sequences to capture the partial order relation of their corresponding traces.

Note that the transition sequences generated in Algorithm 6.1 may be infinite in

length. In the next section, we present a technique for generating a finite trace cover

for a program. That is, a trace cover consisting of a finite number of traces, each of

77

finite length.

6.5 Finite Trace Covers

For finite-state programs, it is possible to construct a finite trace cover, that is,

a finite set of traces, where each trace is of finite length, which contains all the

reachable states of the program. In this section, we present a modified version of

Algorithm 6.1 which generates such a finite trace cover.

Definition 6.2. Given a poset (X,≤) and an element x ∈ X, the principal down-

set of x, denoted ↓ x, is defined as:

↓ x
def
≡ {y ∈ X|y ≤ x}

In other words, ↓ x is the minimum set of events that must occur in any down-set

containing x.

Lemma 6.5. Let σ = (E,→) be a trace, and G be some down-set of σ that contains

the event α. Then, G is reachable from ↓ α.

Proof. From the definition of principal down-sets, it is clear that ↓ α ⊆ G. Thus,

the state corresponding to G is reachable from the state corresponding to ↓ α in the

full state space graph.

In [McM93], McMillan used Lemma 6.5 to develop a technique for “unfold-

ing” a Petri net into a finite acyclic structure called a finite complete prefix. The

finite complete prefix contains all the reachable states of the Petri net, and can be

used to check reachability properties. McMillan’s approach was applied to Petri net

semantics. Here, we apply a similar approach to a system model based on trace

semantics.

78

Let α and β be two events such that ↓ α and ↓ β are different occurrences

of the same state in the full state space graph. That is, even though ↓ α and ↓ β

may be different vertices in the lattice L(σ), they lead to the same vertex in the full

state space graph. Clearly, any state reachable from ↓ α is also reachable from ↓ β.

Therefore, when constructing a finite trace cover, if we explore the states reachable

from ↓ α then it is redundant to explore the ones reachable from ↓ β.

Algorithm 6.1 adds events to transition sequences to generate representative

transition sequences of maximal program traces. Combined with the timestamping

method presented in Section 6.4, Algorithm 6.1 can be viewed as adding events to

traces, to eventually obtain the set of all maximal program traces. In the example of

the previous paragraph, if Algorithm 6.1 adds an event α to a trace σ1, then it does

not need to add β to any other constructed trace σ2, because all the states reachable

from ↓ β will be part of States(σ1). The event β is called a cutoff event [McM93].

If an event β is marked as a cutoff event in σ2, then no event γ such that β → γ

needs to be added to the transition sequence representing σ2 when constructing a

finite trace cover. This is because any down-set that contains γ will correspond to

some state that is contained in States(σ1).

In order to safely eliminate cutoff events from a trace, we need to ensure

that we explore all the reachable states of some “equivalent” event. That is, if some

event α is marked as a cutoff event, then all the reachable states from ↓ α must be

explored by some other trace. McMillan [McM93] showed that a sufficient condition

for ensuring that no reachable states are ignored is that an event β is marked as

a cutoff event iff there exists some event α such that ↓ α and ↓ β correspond to

the same state in the full state space graph and | ↓ α| < | ↓ β|. That is, if an

event is marked as a cutoff event, then there exists some “equivalent” event with

a smaller principal down-set. Since principal down-sets cannot be made arbitrarily

small (they are well-founded sets), there exists some equivalent event that cannot

79

be marked as a cutoff event.

We can use cutoff events to prune the sequences generated by Algorithm 6.1.

Recall that each pair of events from the same process are dependent. Therefore, if

two events α, β belong to the same process and α occurs before β in a transition

sequence, then α → β. If an event α ∈ Pi is identified as a cutoff event while

constructing the sequence τ , further events from process Pi can be ignored when

constructing sequences that contain τ as a prefix. That is, if α is identified as a

cutoff event, then Pi is no longer considered an eligible process while picking an

ample set to extend the sequence τ . Let eligible(s) be the set of all enabled events

from eligible processes at a state s in the current trace. Then, in addition to (C1),

we impose the following constraint on ample(s) while constructing a finite trace

cover.

(C2) ample(s) ⊆ eligible(s).

Algorithm 6.2 constructs a finite trace cover based on cutoff events. The key

difference between Algorithms 6.1 and 6.2 is that Algorithm 6.2 chooses ample sets

only from the set of eligible processes. In the worst case, if no reduction is found,

ample(s) = eligible(s). Initially, in line 3, all processes are considered eligible. If

an event α is identified as a cutoff event, then the corresponding process is removed

from the set of eligible processes (lines 15-17). Each event in the ample set is

appended to the current transition sequence (lines 10-14), and is queued back for

further exploration (line 21).

Two sets of traces are said to be state-equivalent iff they have the same

set of reachable states. For a given program P , let ∆ denote the trace cover (set of

traces) produced by Algorithm 6.1, and Γ represent the set of traces produced by

Algorithm 6.2.

Theorem 6.6. Γ is state-equivalent to ∆.

Proof. It is obvious that the set of reachable states in Γ is a subset of the set of

80

Algorithm 6.2: finite trace cover
input : A program P , with initial state s0.
output: Set of transition sequences corresponding to a finite trace cover
begin1

/* All processes are initially eligible */2

eligible := {P1, P2, ..., Pn}3

/* (initial state, the empty string, eligible procs) */4

enqueue(s0, ε, eligible)5

while queue is not empty do6

(s, τ, eligible) := dequeue()7

/* ample set events restricted to eligible procs */8

work set := ample(s)9

while work set 6= ∅ do10

let α ∈ work set11

work set := work set \ {α}12

t := α(s)13

τnew := τ.α14

if α is a cutoff event then15

let α ∈ Pi16

eligiblenew := eligible \ Pi17

else18

eligiblenew := eligible /* unchanged */19

endif20

enqueue(t, τnew, eligiblenew)21

endw22

endw23

end24

reachable state in ∆. We show the converse. Let G be a down-set belonging to some

trace in ∆, such that G is not a down-set of any trace in Γ. Then, G contains a

cutoff event, say α. Thus, there exists some event β belonging to a trace in Γ such

that | ↓ β| < | ↓ α|, and ↓ α and ↓ β correspond to the same state in the full state

space graph of the program. Then, ∆ contains a down-set H =↓ β ∪ (G\ ↓ α), such

that H and G correspond to the same state in the full state space graph. Note that

|H| < |G| because | ↓ β| < | ↓ α|.

If H is also not a down-set of any trace in Γ then, by similar reasoning,

81

there exists some down-set I belonging to a trace in ∆ such that G, H and I all

correspond to the same state in the full state space graph. Also, |I| < |H| < |G|.

If I is also not a down-set of any trace in Γ, then we iterate this process of finding

an “equivalent” down-set again. We cannot iterate infinitely because the order <

on the size of down-sets is well-founded. Therefore, there must exist some down-set

J in Γ that corresponds to the same state as G. Thus, each reachable state in ∆ is

also reachable in some trace of Γ.

By Theorem 6.6, Algorithm 6.2 also produces a trace cover for the given

program. It now remains to be shown that it produces a finite trace cover.

Theorem 6.7. 1. Every trace in Γ is of finite length.

2. There are a finite number of traces in Γ.

Proof. 1. Let N be the total number of distinct states in the given finite state

program. Let w = α1α2.... be a transition sequence, starting from the initial

state s0, produced by Algorithm 6.2. We show that w cannot be of infinite

length. Consider the first N + 1 events in this sequence. Since there are only

N states, there exist events αi and αj in w, where 1 ≤ i < j ≤ N + 1, such

that the state corresponding to the down-set ↓ αi is the same as the state

corresponding to ↓ αj . Also, since w is a linearization of the trace partial

order on α1, α2..., and i < j, we have | ↓ αi| < | ↓ αj |. Thus, αi would be

recognized as a cutoff event. Therefore, the length of any transition sequence

produced by Algorithm 6.2 cannot be more than N + 1.

2. Follows from the fact that the length of any trace in Γ is bounded by N + 1,

and |enabled(s)| is finite for each state s.

In this section, we presented a technique to obtain a finite trace cover for

a given finite-state program. The finite trace cover is a set of traces represented

82

in partial order form, through the use of vector timestamps. In the next section,

we discuss how we can apply lattice theory to develop efficient model checking

algorithms for certain classes of predicates, on a finite trace cover.

6.6 Model Checking on Finite Trace Covers

The finite trace cover generated by Algorithm 6.2 is a set of finite traces that contains

all the reachable states of the program. The reachability problem on a finite trace

is defined as follows:

Reachability on a finite trace: Given a formula φ and a finite trace

σ = [s, v], does there exist some t ∈ States(σ) such that t |= φ? In other words,

does s |= EF (φ)?

In [CG95], it was shown that the reachability problem is NP-complete in the

number of events in the trace for a general boolean formula φ. However, there are

classes of predicates for which reachability can be solved in time that is polynomial in

the number of events in the trace. Examples of such predicate classes were discussed

in Section 3.3. Clearly, if an efficient algorithm exists for deciding reachability for a

single finite trace, we can repeatedly invoke this algorithm on each trace in the finite

trace cover. In this way, we can decide if any reachable state of the given program

satisfies the predicate. In the following sections, we discuss two useful classes of

predicates for which efficient reachability algorithms exist for a finite trace. We

implemented these reachability detection algorithms, together with our algorithm

for generating finite trace covers, in a model checking tool. Experimental results are

provided in Section 6.8.

6.6.1 Meet-closed predicates

In Section 3.4, we introduced meet-closed formulae and the notion of crucial events.

In Section 3.4.2, we presented Chase and Garg’s algorithm [CG95] for determining,

83

given a finite trace and a meet-closed formula, whether any reachable state of the

trace satisfies the formula. In this section, we show how Chase and Garg’s algo-

rithm can be applied towards model checking meet-closed formulae in a program

represented by a finite trace cover.

We restrict ourselves to checking formulae of the kind EF (φ), where φ is a

conjunction of process-local state formulae, that is, φ is of the form p1 ∧ p2 ∧ ...pm,

where each pi is a process-local state formula. Recall, from Table 5.1 in Chapter 5,

that process-local state formulae are regular, and conjunction preserves regularity.

Thus, φ is regular, and hence meet-closed.

Recall, from the discussion in Section 3.4.2, that given a trace σ = [s, v]

with E as its set of events, Chase and Garg’s algorithm can determine whether

s |= EF (φ) in time that is polynomial in E iff the crucial event from any given

state can be identified in time that is polynomial in E. In the case where φ is a

conjunction of process-local state formulae, if a given state t does not satisfy φ,

then one of the conjuncts must be false in that state. That is, there is some i

such that pi is false in t. If pi is a process-local state formula on process Pj , then

clearly we must execute an event from Pj in order to turn pi true. So, the next

event in the trace that belongs to Pj is a crucial event. Clearly, we can identify the

false conjunct in O(m) time if there are n conjuncts in φ. In that case, Chase and

Garg’s algorithm (Algorithm 3.1) for detecting whether s |= EF (φ) has running

time complexity O(m.|E|).

In order to decide whether any reachable state of the given program satisfies

φ, we simply invoke Chase and Garg’s algorithm on each trace in the finite trace

cover. This restricted application of Chase and Garg’s algorithm to verifying con-

junctions of process-local state formulae was presented by Garg and Waldecker in

[GW94a].

84

6.6.2 0-1 sum predicates

Another useful class of predicates are those of the form x1 +x2 ++xn > k, where

each xi is a local variable on some process, and k is a constant. Such predicates

were first introduced in [TG93], where they were called “relational predicates”. The

term “bounded-sum predicates” was used to describe them in [CG95]. A special

case of bounded-sum predicates is where each xi can only be equal to either 0 or

1. Such predicates are called 0-1 sum predicates. 0-1 sum predicates can be used

to detect mutual exclusion violation (EF (
∑

i incsi > 1)). Or, to detect if there are

more than k copies of a k-licensed software in use at once (EF (
∑

i in usei > k)).

In [TG97], it was shown that the problem of deciding whether any reachable state

of a finite trace satisfies a given 0-1 sum predicate can be reduced to the problem of

finding the width of a poset. Given a poset (X,≤), two elements x, y ∈ X are said

to be incomparable iff x 6≤ y and y 6≤ x. The width of a poset (X,≤) is equal

to the cardinality of the largest subset of A of X such that every pair of distinct

elements x and y in A are incomparable.

We show how to derive a partial order relation from the trace poset (the →

relation) such that the problem of verifying 0-1 sum predicates becomes equivalent

to finding the width of the (derived) poset.

An event α ∈ Pi is called a local event iff it affects only the local variables

of Pi (including the program counter at Pi). All other events are called non-local

events. That is, the set of events E of a trace is partitioned into the set of local

events, EL, and the set of non-local events, ENL. We now split each event β ∈ ENL

into two sub-events, βnl and βl, where βnl affects only non-local variables (including

message channels), and βl affects only local variables, including the program counter.

Note that βl is a local event, but is not a member of EL. β can now be considered

the sequential composition of βnl and βl, i.e., β ≡ βnl.βl. The splitting process

transforms ENL into a set of sub-events, ÊNL.

85

αnl αl

(a)

α β

(b)

αnl αl

βnl βl

(c)

α

βnl βl

(d)

αnl αl

β

(e)

Figure 6.2: The relation . (a) α ∈ ENL. (b)α, β ∈ EL, (c) α, β ∈ ENL, (d)
α ∈ EL, β ∈ ENL, and (e) α ∈ ENL, β ∈ EL. Note that in (b) - (e), we also have
α→ β.

Let Ê = EL ∪ ÊNL. We now transform the trace poset (E,→) into another

poset (Ê,), where the relation is the smallest transitive relation that satisfies

each of the following (as shown in Figure 6.2):

(a) α ∈ ENL ⇒ αnl αl

(b) (α, β ∈ EL) ∧ (α→ β) ⇒ α β

(c) (α, β ∈ ENL) ∧ (α→ β) ⇒ αnl βnl

(d) (α ∈ EL) ∧ (β ∈ ENL) ∧ (α→ β) ⇒ α βnl

(e) (α ∈ ENL) ∧ (β ∈ EL) ∧ (α→ β) ⇒ αnl β

For any H ⊆ E, let Ĥ denote the “expanded” set of events obtained by

splitting the non-local events of H. That is,

Ĥ
def
≡ {α|α ∈ (H ∩ EL)} ∪ {αnl, αl|α ∈ (H ∩ ENL)}

Let frontier(Ĥ) denote the set of maximal events, under , from each process Pi

in Ĥ:

frontier(Ĥ)
def
≡ {α|α ∈ (Pi ∩ Ĥ) ∧ (6 ∃β ∈ (Pi ∩ Ĥ) :: α β)}

That is, frontier(Ĥ) contains the “latest” event in Ĥ from each process Pi. From

Figure 6.2, it is clear that frontier(Ĥ) can contain only local events.

The following lemma is proved in [Mat89] and in [SL85].

86

Lemma 6.8. G is a down-set of (E,→) iff:

∀α, β ∈ frontier(Ĝ) : (α 6 β) ∧ (β 6 α)

Let G be a down-set of (E,→) such that G |= ϕ. Let αj be the (local) event

from Pj in frontier(Ĝ). Let `(αj) denote the local state (i.e., valuation of local

variables) on Pj reached upon execution of αj . Since G |= ϕ, there must exist a

set Π of (k + 1) processes such that ∀Pj ∈ Π, (xj = 1) in the local state `(αj). By

Lemma 6.8, ∀i, j ∈ Π : (αi 6 αj) ∧ (αj 6 αi).

Let E =
⋃

i{αi ∈ Pi|(xi = 1) in `(αi)} That is, E is the set of all events that

lead to a local state in which any xi is set to 1. Thus, in order to detect EF (ϕ), we

simply need to determine whether the poset (E ,) has width greater than k, where

(E ,) is the sub-poset of (Ê,) induced by the relation on the set E .

Tomlinson and Garg [TG97] presented an algorithm that solves this problem

in O(k.m.n(k+ log n)) time, where m = |E| and n is the number of processes in the

program. We can invoke Tomlinson and Garg’s algorithm on each trace in the finite

trace cover in order to determine if any reachable program state satisfies a given 0-1

sum predicates.

6.7 Comparison to POR Techniques

Our approach based on finite trace covers avoids state space explosion by exploring

only a single path through each program trace to build a partial order model of the

state space. That is, it uses a true partial order semantics. A class of techniques

known in the literature as partial order reduction (POR) applies a similar notion

to an interleaved model of the state space to cleverly obtain reduced state space

graphs. This class of techniques also explores a subset of the set of all enabled

87

p, q p, q p, ¬ q p, ¬ q ¬ p, q ¬ p, q

p, q p, q p, q p, ¬ q ¬ p, q

p, q p, ¬ q ¬ p, q

(a)

p, q p, q p, ¬ q p, ¬ q ¬ p, q ¬ p, q

p, q p, q p, q p, ¬ q ¬ p, q

p, q p, ¬ q ¬ p, q

(b)

Figure 6.3: (a) Two stuttering-equivalent sequences, and (b) their corresponding
collapsed sequence.

events at each state in order to construct a reduced state space graph. The term

“POR techniques” encompasses the stubborn set method of Valmari [Val91a, Val91b,

Val93], the persistent sets method of Godefroid and Wolper [God91, GW92, GW94b],

and the ample set method of Peled [Pel93, Pel94]. These works contain similar ideas,

although they differ in some details of choosing the subset of enabled events for

reduction.

Unlike our approach, the amount of state space reduction achieved by POR

techniques is sensitive to the property being verified. This is because POR tech-

niques use the notion of stuttering-equivalence to generate a reduced state space

graph. Assume the property being verified involves the subset of variables V ′ from

the set of all variables of the program. A function that assigns a valuation to the

variables in V ′ is called a label. Two states are said to be identically labeled if they

have the same valuation for the variables in V ′. Given a sequence of labeled states

(path), any sub-sequence of consecutive identically-labeled states is called a stutter.

A labeled sequence can be “collapsed” by replacing each stutter by a single state

with the same label as the states in the stutter. Two state sequences are said to be

stuttering-equivalent iff they can be collapsed into the same labeled state sequence

(see Figure 6.3).

Peled and Wilke showed [PW97] that any LTL property expressible with-

out the next-time operator X (this subset of LTL is called LTL−X) cannot distin-

guish between stuttering-equivalent paths. That is, if π1 and π2 are two stuttering-

88

equivalent state sequences, then an LTL−X formula φ holds in π1 iff it holds in π2.

POR techniques exploit this observation to verify LTL−X formulae by constructing

a reduced state space graph which includes at least one stuttering-equivalent path

for each path in the full state space graph. In order to perform this reduction, they

use the notion of invisibility of transitions. A transition is said to be invisible with

respect to a given formula if its execution does not change the value of any variable

used in the formula. That is, a transition α is said to be invisible with respect to a

formula if s and α(s) have the same label, for every state s such that α ∈ enabled(s).

A transition that is not invisible is said to be visible.

When choosing ample sets for exploration, POR techniques impose the fol-

lowing constraint (in addition to (C1) from Section 6.3):

Invisibility constraint: If ample(s) 6= enabled(s), then every transition

α ∈ ample(s) must be invisible.

As a result of the invisibility constraint, the reduction achieved by POR tech-

niques is directly proportional to the number of invisible transitions in the program.

Experimental results [CGMP99, PVK01] show that the effectiveness of reduction

diminishes rapidly with an increase in the number of visible events. In contrast, our

approach does not consider the invisibility of transitions, neither when constructing

the finite trace cover, nor when performing model checking on the resulting partial

order representation of the state space. As the experimental results presented in the

next section show, this can result in significantly greater state space reduction than

POR techniques.

6.8 Implementation and Experimental results

We implemented the approach presented in this chapter as an extension to the

popular model-checker SPIN [Hol03, Hol07]. We chose SPIN for our implementation

because it a widely-used software verification tool, and is especially effective for the

89

verification of concurrent and distributed systems. Inspiring applications of SPIN

have included the verification of mission-critical software for a number of space

missions by NASA, including Deep Space 1 [HLP01], Cassini [SECH98], and the

Mars Exploration Rovers [HJ04]. SPIN won the prestigious ACM System Software

Award for 2001.

The input language for SPIN is called PROMELA (PROcess MEta LAn-

guage). The protocol to be verified is specified in the form of a PROMELA pro-

gram. The syntax and semantics of PROMELA are documented in [Hol03, Hol91].

SPIN implements Peled’s partial order reduction technique based on ample sets.

The algorithm used is described in [HP95]. As part of its POR implementation,

SPIN provides a mechanism for constructing ample sets that satisfy condition (C1)

presented in Section 6.3. We modified this implementation to allow restricting the

choice of ample sets to events from eligible processes, rather than all processes, in

order to satisfy condition (C2) from Section 6.5.

For checking safety properties, SPIN allows a choice of using either breadth-

first search (BFS) or depth-first search (DFS) for state space exploration. As the

algorithms presented in this chapter use BFS, we compared our implementation

against that of BFS search with POR in SPIN. Note that our algorithms can easily

be adapted to use DFS, as well.

Our implementation is called TC-SPIN (”Trace Cover” SPIN). The experi-

mental testbed was a single-CPU 2.8 GHz Intel Pentium 4 machine with 512 MB

of memory, running Red Hat Enterprise Linux WS Release 4. Tables 6.1 and 6.2

present our experimental results from the verification of the following three proto-

cols:

• Chandy and Misra’s distributed dining philosophers protocol [CM84], with

six philosophers (N = 6). We checked for the safety property that no pair of

neighboring philosophers can ever eat simultaneously.

90

Protocol Formula Tool Time
(sec)

States Memory
(MB)

Dining
philosophers

EF (eating[i]∧
eating[(i+
1)modN])

SPIN, no reduction *** *** ***
SPIN, POR 759.71 2116120 439.12
TC-SPIN 0.03 83 1.25

Leader
election

EF (nr leaders >
1)

SPIN, no reduction *** *** ***
SPIN, POR 777.24 238569 64.74
TC-SPIN 0.05 187 2.65

Mutual
exclusion

EF (incs > 1)
SPIN, no reduction 25.31 652365 349.82

SPIN, POR 2.51 46880 26.24
TC-SPIN 0.05 187 2.65

*** denotes “ran out of memory”

Table 6.1: Experimental results in the absence of errors in the verified protocols.

• Dolev, Klawe and Rodeh’s leader election protocol on a unidirectional ring

[DKR82] of six processes. We used random initialization to assign id’s to the

processes in the ring. The safety property to be verified was that there was

never more than one leader in the ring.

• Ricart and Agarwala’s distributed mutual exclusion protocol [RA81] on five

processes. The safety property to be checked was that there was at most one

process in the critical section at any time.

The results in Table 6.1 are from verification runs where the protocols had

no errors in them. For the second set of results, reported in Table 6.2, we intro-

duced errors (safety violations) in each of the protocols, and measured the time and

memory required to find these errors. In all our experiments, we compiled the ver-

ifier with the SPIN options -DBFS (for breadth-first search), and -DXUSAFE (to

facilitate p.o. reduction). For SPIN, the safety properties were specified through a

simple assert() statement placed in a separate monitor process. For TC-SPIN runs,

91

Protocol Formula Tool Time
(sec)

States Memory
(MB)

Dining
philosophers

EF (eating[i]∧
eating[(i+
1)modN])

SPIN, no reduction 41.86 1141680 257.05
SPIN, POR 10.22 170619 43.34
TC-SPIN 0.03 81 1.25

Leader
election

EF (nr leaders >
1)

SPIN, no reduction *** *** ***
SPIN, POR 547.41 159750 44.77
TC-SPIN 53.53 87435 69.247

Mutual
exclusion

EF (incs > 1)
SPIN, no reduction 19.61 510828 276.61

SPIN, POR 1.59 26126 15.39
TC-SPIN 0.01 181 2.65

*** denotes “ran out of memory”

Table 6.2: Experimental results in the presence of safety violations in the verified
protocols.

we specified our predicates in a different file. Consequently, for TC-SPIN runs only,

we had to disable SPIN’s dataflow optimizations (-o1) during verifier generation

because variables that were flagged as being “dead” by the SPIN preprocessor were

actually being read in our predicates file, and used by our verification algorithms.

The results show that, while POR techniques do result in significant state

space reduction compared to exhaustive state space search, the invisibility constraint

(explained in Section 6.7) in POR techniques gives a greater advantage to TC-SPIN.

In particular, the protocols being verified had a significant percentage of visible

transitions, which greatly hampered the effectiveness of choosing ample sets using

POR techniques.

On the downside, the overhead of storing vector timestamps for each event

in the finite trace cover can constitute a significant memory overhead for TC-SPIN

compared to SPIN. That is, for the same number of states explored, TC-SPIN

consumes significantly more memory. When the number of visible transitions in a

program is low, this gives the advantage to POR techniques, compared to our ap-

proach. For example, we verified a leader election protocol in 75.02 seconds, whereas

92

partial order reduction techniques verified the same protocol in 777.24 seconds.

6.9 Bibliographic Notes

The work presented in this chapter was published in [KG05a].

The use of vector timestamps for capturing the partial order relation of a

trace was pioneered by Fidge [Fid88] and Mattern [Mat89]. Since then, vector

timestamps have been in widespread use in algorithms for distributed debugging

[Fid88, GW94b], distributed simulation [Mat93, DWG97], and distributed recovery

[SY85], among other applications. In [CB91], Charron-Bost showed that, in general,

a trace consisting of n processes requires an integer vector of dimension at least n

to capture the partial order relation (in the worst case). Garg and Skawratonand

[GS01] showed the relation between vector timestamps and the dimension of a poset.

The dimension of a poset is the smallest number of total orders whose intersection

gives rise to the poset [DM41]. In [GS01], it was shown that, in order to capture

the causality relation in a trace poset, it is necessary and sufficient to use an integer

vector of dimension equal to the string dimension of the poset. In [AG05], Agarwal

and Garg introduced the concept of chain clocks, which can be viewed as vector

timestamps of variable dimension, where the upper bound on the vector dimension

is equal to the number of processes. They showed that, in most real applications,

the use of chain clocks results in far less memory consumption than n-dimension

vector timestamps. Chain clocks can be applied to our finite trace cover algorithm

to reduce memory consumption.

In [ERV96], Esparza et al. improved upon McMillan’s [McM93] algorithm

for identifying cutoff events, with the aim of reducing the size of the finite complete

prefix. McMillan proposed using the < relation on size of the “local configuration”

of a Petri net marking to decide which events could be marked as cutoff events.

This is analogous to the approach we used, which is the < relation on the size of

93

the principal down-set. Esparza et al. showed the sufficient conditions that such an

order relation had to satisfy, and that the < order on the size of the configuration

was only one such relation satisfying these conditions. In particular, they showed

the existence of weaker order relations, which could be used to reduce the size of

the finite complete prefix. The results from [ERV96] can also be used to generate a

smaller trace cover.

Chase and Garg [CG95] and, independently, Groselj [Gro93] presented an al-

gorithm to detect reachability for bounded-sum predicates based on max-flow tech-

niques. This algorithm works on the poset representation of a finite trace, and has

a running time complexity of O(|E|2.n2.log(|E|.n)), where E is the set of events

of the trace, and n is the number of processes. Thus, reachability of bounded-sum

predicates can also be verified efficiently using finite trace covers.

6.10 Summary

In this chapter, we presented a method to decompose a program into a finite set of

trace posets, while avoiding state space explosion. We presented verification algo-

rithms that could be used for deciding reachability for some classes of formulae. Ex-

perimental results were presented, comparing our method against POR techniques.

The results showed that we can achieve far greater state space reduction than POR

techniques, due to the fact that we are not restricted by the invisibility constraint.

For example, we verified a leader election protocol in 75.02 seconds, whereas partial

order reduction techniques verified the same protocol in 777.24 seconds.

94

Chapter 7

Predicate Filtering

7.1 Introduction

In Chapter 6, we presented algorithms to efficiently verify restricted classes of for-

mulae on a partial order representation of the state space. However, the techniques

presented so far do not improve the efficiency of model checking for formulae that

do not belong to one of our “efficient” predicate classes.

In this chapter, we discuss a technique called predicate filtering, which can

be used for state space reduction for checking reachability for an extended class of

formulae. Predicate filtering was introduced under the name “computation slicing”

by Garg and Mittal in [GM01]. We use the term “predicate filtering” to avoid

confusion with the completely distinct notion of program slicing [Wei81]. The

distinction between program slicing and computation slicing is discussed in [MG05].

Given a finite trace σ and a predicate φ, we “filter” the trace w.r.t. φ, and

produce a filtrate. The filtrate is the smallest trace, i.e., the one with the fewest

states, that contains all the states of σ that satisfy φ, while eliminating states that do

not satisfy φ1. The process of producing the filtrate from a trace is called predicate
1As we will see in Section 7.3, depending on the predicate φ, the filtering process may not

eliminate all the states of σ that do not satisfy φ.

95

filtering.

The filtrate of a trace w.r.t. φ can be computed in polynomial time if and

only if reachability for φ can be decided in polynomial time on the trace [MSGA04].

Predicate filtering can be used for state space reduction as follows. Suppose we want

to determine whether any reachable state of a program satisfies some predicate φ.

Further, suppose that φ does not belong to any class of predicates for which efficient

verification algorithms exist. We can specify a predicate ψ that is weaker that φ,

such that ψ belongs to a class for which reachability can be decided efficiently. By

weaker, we mean that whenever a state satisfies φ, it also satisfies ψ.

Now, we can filter each trace σ in the finite trace cover representation of a

program w.r.t. ψ, producing a set of filtrates. Recall that a filtrate is the smallest

trace containing all the states that satisfy ψ. Therefore, the filtrate of σ w.r.t. ψ

should have far fewer states than the original trace σ. Traditional model checking

techniques can now be used to verify ψ on these smaller traces.

7.1.1 Our Contribution

Predicate filtering has previously been used for state space reduction during the

verification of finite traces in [MG03, SG03a], among others. However, these ap-

plications were limited to single, finite execution traces. In this chapter, we apply

predicate filtering to reducing state space explosion in finite-state programs.

In our experiments, we could verify a leader election protocol using predicate

filtering by constructing only one-third as many states as constructed by SPIN using

partial order reduction.

7.2 Background

In this section, we present the relevant background material required for presenting

the predicate filtering technique.

96

We represent the meet operation of a lattice by u, and the join operation by

t.

Definition 7.1. Let L be a lattice and M ⊆ L be a non-empty subset of L. Then,

M is a sublattice of L if:

∀a, b ∈M : (a u b) ∈M and (a t b) ∈M

where the u and t operations are the meet and join operations of L.

a b

(a)

a b

(b)

Figure 7.1: The shaded elements in (a) form a sublattice, while those in (b) do not.

Example 7.1. In Figure 7.1(a), the shaded elements form a sublattice of the lattice

shown. Figure 7.1(b) shows that a subset M of a lattice L can be a lattice in its own

right, without being a sublattice of L. In particular, a u b is not in M .

Let 0 represent the least element of a lattice L.

Definition 7.2. An element x ∈ L is join-irreducible if:

1. x 6= 0, and

2. ∀ a, b ∈ L : x = a t b =⇒ (x = a) ∨ (x = b).

In simple terms, an element of L is join-irreducible if it is not the least

element of L, and it cannot be expressed as the join of two elements, both different

97

from itself. Pictorially, in a finite lattice, an element is join-irreducible iff it has

exactly one incoming edge. Figure 7.2 shows an example. We will use the notation

J(L) to denote the set of join-irreducible elements of a lattice L.

Figure 7.2: The shaded elements are join-irreducible.

A meet-irreducible element is defined dually. That is, an element of L is

meet-irreducible if it is not the greatest element of L, and it cannot be expressed as

the meet of two elements, both different from itself. Pictorially, in a finite lattice, a

meet-irreducible element is one that has exactly one outgoing edge.

For a poset P = (X,≤), let O(P) represent the set of all down-sets of P .

Recall that (O(P),⊆) is a lattice. A well-known result in lattice theory states that

(O(P),⊆) is actually a special kind of lattice, called a distributive lattice [DP90].

Definition 7.3. A lattice L is said to be distributive if it satisfies the following

distributive law:

∀a, b, c ∈ L : a u (b t c) = (a u b) t (a u c)

Predicate filtering is based on the following theorem by Birkhoff [DP90],

which shows that any finite distributive lattice can be represented succintly by a

poset.

Theorem 7.1. [Birkhoff’s Representation Theorem for Finite Distributive

Lattices]

98

Let L be a finite distributive lattice. Then, the map f : L→ O(J(L)) defined by

f(a) = {x ∈ J(L)|x ≤ a}

is an isomorphism of L onto O(J(L)). Dually, let P be a finite poset. Then the

map g : P → J(O(P)) defined by

g(a) = {x ∈ P |x ≤ a}

is an isomorphism of P onto J(O(P)).

Birkhoff’s Theorem establishes a 1-1 correspondence between a finite poset

and a finite distributive lattice. Given a finite poset P , we can obtain the finite

distributive lattice by considering the set of all its down-sets, O(P). Given a finite

distributive lattice L, we can recover the corresponding finite poset by considering

only the join-irreducible elements, J(L). The number of join-irreducible elements in

a lattice is typically exponentially smaller than the total number of elements in the

lattice. For a finite distributive lattice, the number of join-irreducible elements is

exactly equal to the length of the longest chain in the lattice [DP90]. In the case of

a trace σ, it is easy to see that the number of join-irreducible elements is bounded

by |E|, where E is the set of events in the trace. The size of the corresponding

lattice L(σ) is bounded by 2|E|.

In the next section, we show how predicate filtering makes use of Birkhoff’s

Theorem (Theorem 7.1) to achieve state space reduction during verification.

7.3 Filtering a Trace

The notion of filtering a trace through a predicate is best introduced through an

example. Figures 7.3(a) and (b), respectively, show a trace σ and its correspond-

99

ing down-set lattice, L(σ). In the figure, each down-set in L(σ) is labeled by the

maximal events (under the → relation) in the down-set. For example, the down-set

{e1, f1, f2, g1} is represented as {f2, g1}. Let φ be a given predicate. The shaded

elements of the lattice L(σ) correspond to the states that satisfy φ.

Figure 7.3(c) shows the smallest sublattice of L(σ) that contains all the

shaded elements. By “smallest”, we mean the sublattice with the fewest elements.

We denote this sublattice by Lφ. Note that, in order to make Lφ a sublattice of

L(σ), we need to include some non-shaded elements (i.e., down-sets that do not

satisfy φ).

Every sublattice of a distributive lattice is also distributive [DP90]. So, we

can apply Birkhoff’s Representation Theorem (Theorem 7.1) to Lφ, and retrieve the

poset J(Lφ). Figure 7.3(d) shows this poset. The set of down-sets of the poset in

Figure 7.3(d) contains all the states of σ that satisfy φ. We call the poset induced

by J(Lφ) the filtrate of σ with respect to φ.

Definition 7.4. Let σ be a trace, and φ a predicate. Let Lφ be the smallest sublattice

of L(σ) that contains all the down-sets of σ that satisfy φ. The poset J(Lφ) is called

the filtrate of σ with respect to φ.

As seen in Figure 7.3(d), an element of the poset J(Lφ) can correspond to

multiple events from σ. That is, the filtrate can be viewed as a trace in which

multiple events from σ are merged into a single (atomic) event.

The intersection of any two sublattices of a lattice L is also a sublattice of L

[DP90]. Consequently, the smallest sublattice Lφ is unique and well-defined, which

yields the following theorem.

Theorem 7.2. The filtrate of a trace σ w.r.t. a predicate φ is unique and well-

defined.

A filtrate is said to be pure if each of its down-sets satisfies φ. It is easy to

see that a filtrate is pure if and only if the set of all down-sets of σ that satisfy φ

100

e1

e2

f1

f2

g1

g2

(a)

{e2,f1} {f2} {e2,g1} {f1,g1}

{e2} {f1} {e1,g1}

{e2,f2} {e2,f1,g1} {f2,g1}

{e2,f2,g1} {g2}

{e2,g2}

{e1} {g1}

∅

(b)

{e2,f1}

{f1}

{e2,f1,g1} {g2}

{e2,g2}

{g1}

∅

{f1,g1}

(c)

{e1,f1}

{e2}

{g1}

{f2,g2}

: does not satisfy φ : satisfies φ : join-irreducible

(d)

{e1,f1}

{e2}

{g1}

{f2,g2}

: does not satisfy φ : satisfies φ : join-irreducible

Figure 7.3: Predicate filtering. (a) A trace, σ, (b) its lattice of down-sets, L(σ), (c)
the sublattice Lφ, and (d) the filtrate of σ w.r.t. φ.

101

forms a sublattice of L(σ). That is, the filtrate is pure iff Lφ contains exactly those

down-sets of σ that satisfy φ. In [MG01], it was shown that the filtrate of σ w.r.t.

φ is pure iff φ is a regular formula.

The filtrate can be viewed as a compact representation of the set of all φ-

satisfying states of a trace. We say compact because the size of the filtrate is bounded

by |E|, the number of events in the trace σ. In order to avoid state space explosion

while constructing the filtrate, we need to avoid construction of the lattices L(σ)

and Lφ, because their size could be exponential in the number of events in σ. In

[MSGA04], it was shown that, given an algorithm A that can detect whether any

reachable state of σ satisfies φ, we can derive an algorithm B to construct the filtrate

of σ w.r.t. φ, such that the time complexity of B is within a polynomial factor of

the time complexity of A. We explore this construction in the next section.

7.3.1 Constructing the Filtrate

For the purpose of constructing a filtrate, rather than modelling a trace as a poset,

we model it as a directed graph. Note that a poset itself corresponds to a special

kind of directed graph, namely, a directed acyclic graph (DAG). We extend the

definition of down-sets of a poset to directed graphs as follows.

Definition 7.5. Given a directed graph G = (V,E), a subset C ⊆ V is called a

down-set of G iff for every f ∈ C, if there exists some edge (e, f) ∈ E, then e ∈ C.

Note that a down-set of a directed graph either contains all the vertices in

a given strongly connected component, or none of them. Let O(G) denote the set

of all down-sets of a directed graph G. The following theorem is a generalization of

the result in lattice theory that the set of down-sets of a poset forms a distributive

lattice, and was shown in [MG01].

Theorem 7.3. Given a directed graph G, (O(G),⊆) is a distributive lattice.

102

a b

c d

(a)

a b

c d

z

S

(b)

Figure 7.4: (a) A trace σ, and (b) its corresponding directed graph, G.

The empty set and the set of all vertices of G both trivially belong to O(G).

We call them trivial down-sets. We can construct a graph G corresponding to a trace

poset σ such that there is a 1-1 correspondence between the non-trivial down-sets

of G and the down-sets of σ. We achieve this by adding two additional vertices to

the Hasse diagram representing σ: ⊥ and >, where ⊥ is the “smallest” vertex and

> is the “largest” vertex (i.e., there is a path from ⊥ to every vertex and a path

from every vertex to >). An example of such a transformation is shown in Figure

7.4. Clearly, any non-trivial down-set of G will contain ⊥ and not contain >. As a

result, every down-set of σ is a non-trivial down-set of G, and vice versa.

By definition, adding edges to a directed graph can only reduce the number of

its down-sets. So, if G′ is obtained by adding edges to G, then O(G′) is a sublattice

of O(G). In [Gar02], it was shown that every sublattice of O(G) can be derived by

adding edges to G.

Algorithm 7.1, from [Gar02], computes the filtrate directly from the directed

graph representation of a trace. It takes as input a directed graph G (derived from

a trace σ) and a predicate φ. The algorithm constructs the filtrate by adding edges

to G (lines 3-8), and finally returns the graph Gφ (line 9), which corresponds to the

filtrate.

In line 2, the filtrate Gφ is initialized to G. For each pair of events e and f

103

Algorithm 7.1: construct filtrate
input : A directed graph G and a predicate φ.
output: The filtrate, Gφ.
begin1

Gφ := G /* Initialize filtrate to G */2

for each pair of events (e, f) do3

Q := G with the additional edges (f,⊥) and (>, e)4

if reachable(φ,Q) == false then5

add edge (e, f) to Gφ6

endif7

endfor8

return Gφ9

end10

in the trace σ, the algorithm constructs a graph Q by adding two additional edges

to G: one from f to ⊥, and the other from > to e (line 4). Any non-trivial down-

set of Q cannot contain >, so it cannot contain e. On the other hand, it must

contain ⊥, hence must contain f . Procedure reachable(φ,Q) checks whether any

non-trivial down-set of Q satisfies φ. If reachable(φ,Q) returns false, that means

no φ-satisfying down-set of the trace σ contains f but not e. Therefore, adding an

edge from e to f in G will not eliminate any φ-satisfying down-sets, but it will create

a sublattice of L(σ). We continue this procedure for all pairs of vertices. With each

added edge, we produce an even smaller sublattice of L(σ), all the time retaining

every φ-satisfying down-set of L(σ).

Note that the graph Gφ may not be acyclic, because adding edges to G can

produce a cycle. We obtain a DAG (poset) from Gφ by collapsing each strongly-

connected component of Gφ into a single node. This DAG (poset) is the filtrate

of G w.r.t. φ. Figure 7.5 shows the directed graph Gφ returned by Algorithm 7.1

for the example in Figure 7.3, and the poset (filtrate) obtained by collapsing its

strongly-connected components.

Assuming reachable(φ,Q) takes O(t) time, Algorithm 7.1 has a time com-

104

e1

e2

f1

f2

g1

g2

Strongly connected components
Collapse SCCs

{e1,f1}

{e2}

{g1}

{f2,g2}

Figure 7.5: Converting the graph returned by Algorithm 7.1 into a poset.

plexity of O(t.|E|2), where E is the event set of the trace. Thus, if the reachability

problem for φ can be solved in polynomial time on a trace poset, then the filtrate

w.r.t. φ can be computed in polynomial time. The converse is also true, as stated

in the following theorem, which was proved in [MSGA04].

Theorem 7.4. The filtrate of a trace σ with respect to a predicate φ can be com-

puted in polynomial time if and only if there exists a polynomial time algorithm to

determine whether there exists a reachable state of σ that satisfies φ.

Algorithm 7.1 constructs the filtrate w.r.t. any predicate φ. For special

classes of predicates, more efficient filtering algorithms exist. For example, for the

case where φ is a meet-closed predicate, an O(n2.|E|) algorithm for constructing the

filtrate was presented in [MG03], where n is the number of processes in the trace,

and E is the event set of the trace.

7.4 Filtering for State Space Reduction

To use predicate filtering as a state space reduction tool, we first decompose a

program into its finite trace cover representation, using the algorithms presented

in Chapter 6. To decide reachability for a formula φ, we find a weaker formula

ψ, for which reachability can be decided in polynomial time on the finite trace

cover representation. Then, we filter each trace in the trace cover w.r.t. ψ. This

105

yields a set of filtrates, where each filtrate contains fewer states than the original

trace. Exhaustive state space exploration techniques such as depth-first search or

breadth-first search can then be used to decide reachability for φ.

In the following section, we present an experimental case study which demon-

strates the effectiveness of predicate filtering as a state space reduction tool.

7.4.1 Case Study: Leader Election Protocol

We extended our implementation of TC-SPIN, presented in Chapter 6, to include

Algorithm 7.1 to compute the filtrate of a trace w.r.t a given predicate. That is, TC-

SPIN now takes a PROMELA program as input, generates a finite trace cover, then

filters each trace in the finite trace cover with respect to a user-specified predicate.

Each filtrate is written out as a PROMELA program.

For our experiments, we used a PROMELA specification of Dolev, Klawe and

Rodeh’s [DKR82] leader election protocol, with random initialization of processes.

This PROMELA specification is available as part of the SPIN distribution [Hol07].

We added two local variables to each process: know leader, which is set to 1 when

the process knows the identity of the leader, and leader id, which is set to the

process id of the leader. The property being validated was that, once a leader is

elected, every process is in agreement about the leader’s identity:

¬EF ((
∧
i

know leaderi) ∧ (6 ∃j : leader idj 6= leader id(j+1)%N))

where N is the number of processes participating in the protocol. In the SPIN

verification run, the property is specified by means of an assert() statement in a

separate monitor process.

TC-SPIN executes in two passes - in Pass 1, it creates the finite trace cover

and computes the filtrate of each trace w.r.t. the predicate
∧

i know leaderi. This

predicate is a conjunction of process-local state formulae, for which a polynomial

106

time reachability detection algorithm exists [GW94b]. Hence, the filtrate can be

computed efficiently. Each filtrate is written out as a PROMELA program. In

Pass 2, SPIN is called on each filtrate. The property being verified in Pass 2 is

AG(∀i : leaderi == leader(i+1)%N). This property is specified by means of an

assert() statement in a separate monitor process. Table 7.1 shows the number of

states constructed (stored) by SPIN vs. TC-SPIN during verification. For TC-

SPIN, the number of states in Pass 2 is the sum of all the states generated during

verification of all the filtrates. In this example, the filtrates only created about 15

states each. The number of filtrates itself increased with the value of N , because

the amount of non-deterministic choice in the program was directly proportional to

N . The number of states in Pass 1 is the total number of states generated (stored)

during construction of the finite trace cover and the filtrate computation.

procs (N) SPIN, P.O. reduc-
tion - # states

TC-SPIN - # states

Pass 1 Pass 2 Total
4 3985 2465 345 2810
5 47727 16721 1785 18506
6 408091 125755 9630 135385

Table 7.1: Number of states constructed during verification of the leader election
protocol.

The time taken by SPIN vs. TC-SPIN was comparable in this example.

However, our focus was on the amount of state space reduction achieved, because

memory consumption is usually the larger concern during verification.

7.5 Bibliographic Notes

In [GM01], only pure filtrates were considered. That is, a filtrate was defined only

with respect to a regular predicate. The definition of a filtrate w.r.t. any predicate

107

was introduced in [MG01]. Predicate filtering has since been applied to a large

range of problem domains. In [Gar02], filtering were used to provide mechanical

(algorithmic) solutions to well-known combinatorial problems in the area of integer

partitions, set families and permutations. In [MG03], filtering was used for state

space reduction while verifying predicates of the form EF (φ), AG(φ) and EG(φ),

where φ does not contain any temporal operators. That is, nesting of temporal

operators was not allowed. Filtering a trace with respect to a formula containing

nested temporal operators was first used in [SG03a] for state space reduction. A

verification tool called the Partial Order Trace Analyzer (POTA) was built by Sen

and Garg [SG03b], which incorporated filtering as a state space reduction mecha-

nism. However, POTA required a specially-formatted trace as input, compared to

TC-SPIN, which takes a PROMELA program as input.

The work presented in this chapter is also available as a technical report

[KG06].

7.6 Summary

In this chapter, we introduced predicate filtering, which can be used on finite

trace covers as a state space reduction tool for checking reachability properties. In

our experiments, we could verify a leader election protocol using predicate filtering

by exploring only one-third as many states as those explored by SPIN using p.o.

reduction.

108

Part IV

Interleaving Semantics

109

Chapter 8

Producing Short

Counterexamples

8.1 Introduction

In Part III, we showed how results from lattice theory could be applied to improve

the efficiency of model checking on a partial order representation of the state space.

A lively point of debate in the verification community is whether it is preferable

to use partial order semantics or interleaving semantics for representating the state

space of a program. An interleaving semantics is traditionally considered easier

to work with, as it lends itself to a simpler theory of specification and verification

of concurrent systems, e.g., with finite state machines. In this chapter, we show

that lattice-theoretic concepts can also be used to improve the efficiency of model

checking using interleaving semantics.

The ability to produce counterexamples (error trails) is one of the great

strengths of model checking. Counterexamples help in the task of debugging by

giving the programmer a way to reproduce the sequence of actions that lead to an

error. Shorter error trails greatly reduce debugging effort, because they are easier to

110

comprehend. Additionally, the ability to find errors at shorter depths can make it

possible to verify larger models, by finding the error state before the model checker

runs out of available computational resources, such as time or memory.

Traditional model checking algorithms based on depth-first or breadth-first

search perform an “uninformed” state space exploration. That is, the order in which

nodes are expanded is arbitrary. This can result in a lot of effort being wasted

exploring “uninteresting” portions of the state space, that is, portions of the state

space that are not relevant to the property being verified. Additionally, the error

trails produced can be needlessly lengthy.

A class of techniques, known as directed model checking (DMC) techniques

[YD98, ELL01, ELLL04, TAC+04] use heuristic search strategies to guide state

space exploration towards those portions of the state space that are most likely

to contain errors. The aim is to generate short counterexamples by reaching error

states quickly. Heuristic search techniques calculate a cost function for each outgoing

transition from the current state, then explore these transitions in the order of

increasing cost. Lower cost transitions are considered to be “closer” to the error

state. However, in the absence of errors, heuristic search techniques do nothing to

reduce state space explosion, because they simply change the order in which nodes

are expanded, without reducing the number of nodes to be expanded. Thus, these

methods are not suitable for complete validation of the model.

POR techniques [Val91b, Pel93, GW94b] have proved to be highly successful

in tackling state space explosion. However, it has been observed that they produce

lengthier error trails than even “blind” search strategies. The reason for this can be

traced back to the invisibility constraint, which was discussed in Section 6.7. In

POR techniques, preference is given to executing invisible events. However, invisible

events are less likely to be relevant to the formula being verified, as illustrated in

Figure 8.1.

111

In Figure 8.1, we are interested in determining whether any reachable pro-

gram state satisfies q. The shortest path from the initial state to a q-satisfying state

is shown in Figure 8.1(d). One possible reduced graph generated by POR is shown

in Figure 8.1(c). While this reduced graph is significantly smaller than the full graph

in Figure 8.1(b), it still contains several events that do not contribute to reaching

the target state. In particular, the events α1, α2 and α3 are irrelevant w.r.t. the

property being verified. While there are other possible outcomes for the reduced

state graph generated by POR, the main drawback remains the same, namely, POR

cannot distinguish between necessary and unnecessary events. It only distinguishes

between necessary and unnecessary (redundant) interleavings.

There has been some effort to combine heuristic search techniques with state

space reduction techniques [LLEL02, Laf03]. However, the combination can interfere

with the efficiency of the individual techniques, either resulting in less reduction

[Laf03], or lengthier error trails [LLEL02]. To the best of our knowledge, there is

currently no single technique that achieves both objectives - state space reduction

for complete validation, while narrowing down on error states quickly to produce

short error trails. We present such a technique in this chapter.

8.1.1 Our Contribution

In this chapter, we show that lattice theory can be used to produce short error trails

while providing state space reduction comparable to POR techniques, even in the

absence of errors.

Our approach exploits the properties of meet-closure. Recall, from Section

3.4.1, that for a meet-closed formula, there exists a unique minimum set of crucial

events per maximal program trace, whose execution is both necessary and sufficient

to lead to a state satisfying the formula in that trace. Executing crucial events in

any order consistent with the dependency relation of the trace results in the same

112

α1

α2

α3

β1

β2

α1

α1

α1

α2

α2

α2

α3

α3

α3
β1

β2

β1β1

β2 β2

α1

α2

α3

β1

β2

β1

β2

(a)

α1

α2

α3

β1

β2

α1

α1

α1

α2

α2

α2

α3

α3

α3
β1

β2

β1β1

β2 β2

α1

α2

α3

β1

β2

β1

β2

(b)

α1

α2

α3

β1

β2

α1

α1

α1

α2

α2

α2

α3

α3

α3
β1

β2

β1β1

β2 β2

α1

α2

α3

β1

β2

β1

β2

(c)

α1

α2

α3

β1

β2

α1

α1

α1

α2

α2

α2

α3

α3

α3
β1

β2

β1β1

β2 β2

α1

α2

α3

β1

β2

β1

β2

(d)

Figure 8.1: The property to be verified is whether any reachable state satisfies q.
(a) Two concurrent processes. β2 is visible, and changes the value of q to true. All
other transitions are invisible. (b) The full state space graph. (c) A reduced state
space graph, generated through POR. (d) The shortest path to a state satisfying q.

113

state [God96]. A path consisting only of crucial events is called a crucial path.

For a single trace, it is sufficient to explore any one crucial path through

the trace. If an error state exists, a crucial path will lead to it through the fewest

possible transitions. If the explored crucial path does not encounter an error state,

then there is no error state in the trace.

We identify a subset of CTL, which we call Crucial Event Temporal Logic

(CETL), which consists only of meet-closed formulae. CETL includes the existential

until1 and release operators of CTL, and allows conjunction. Atomic propositions

are limited to process-local variables. CETL does not allow negation, except at the

level of atomic propositions, nor does it allow disjunction. Despite these limitations,

CETL can express many reachability, safety, liveness and response properties. In

fact, of the 131 properties in the BEEM database [Pel07], which is a large repository

of benchmarks for explicit-state model checkers, 101 (77%) can be expressed in

CETL.

We present an explicit-state model checking algorithm for CETL formulae,

and show how crucial events can be identified. While the problem of identifying a

crucial event for a general CETL formula remains open, there are many cases where

we can identify crucial events.

We have implemented our approach as an extension to the popular model

checker SPIN [Hol03]. We call our tool SPICED (Simple PROMELA Interpreter

with Crucial Event Detection). We provide experimental results from a wide range

of examples from the BEEM database [Pel07], as well as from the SPIN distribution

[Hol07]. We ran experiments on 76 different variations (with differences in problem

sizes and the location of errors) of 16 different models from the BEEM database.

In 100% of our tests, the error trails produced by SPICED were at least as short as

those produced by SPIN. SPICED achieved trail reduction greater than 1x in 93% of
1 We use a modified version of the EU operator, E[φ1 U (φ1 ∧ φ2)], as discussed in Section 5.3.

114

the cases, greater than 10x in 55% of the cases, and greater than 100x in 19% of the

cases. We completed verification faster than SPIN (with POR) in 44% of the cases,

with a 10x reduction in time in 9% of the cases. For 3 of the 15 models, we were

able to verify problem sizes for which SPIN ran out of resources. We also provide

experimental results that show that we achieve state space reduction comparable to

POR techniques even in the absence of errors.

8.2 Crucial Event Temporal Logic (CETL)

We define a grammar for a subset of CTL, called Crucial Event Temporal Logic

(CETL), such that every formula generated by the grammar is regular. In Section

5.2, we showed that process-local state formulae are regular. In Section 5.3, we

showed that if p and q are regular, so are E[p U (p ∧ q)] and E[q R p]. Based on

these results, we define the following grammar for CETL.

Definition 8.1. Crucial Event Temporal Logic (CETL) A CETL formula is

one that can be generated from the following rules:

1. The trivial propositions true and false are CETL formulae.

2. Every process-local state formula is a CETL formula.

3. If φ1 and φ2 are CETL formulae, so are (φ1∧φ2), E[φ2 R φ1], and E[φ1 U (φ1∧

φ2)].

Definition 8.2. Let φ be a CETL formula. The set sub(φ) of subformulae of φ is

defined as follows:

• If φ is a process-local state formula, or true or false, then sub(φ) = {φ}.

• If φ is φ1∧φ2, E[φ2 R φ1] or E[φ1 U (φ1∧φ2)], then sub(φ) = {φ}∪sub(φ1)∪

sub(φ2).

115

The length of a CETL formula φ is equal to the cardinality of sub(φ).

If G is a down-set of L(σ), and H is an immediate successor of G in L(σ),

we denote this by G . H. Formally, if G,H ∈ L(σ), and ∃e 6∈ G, and H = G ∪ {e},

then G . H. The notation G D H means (G . H) ∨ (G = H). The following two

lemmas are used in the proofs presented in Sections 8.4.1 and 8.4.2, and are from

[SG02].

Lemma 8.1. [SG02] Given a trace σ, and down-sets C,D,F ∈ L(σ), if C . F and

D ⊆ F , then (C ∩D)DD.

Proof. From the definition of ., ∃e 6∈ C : C ∪ {e} = F . If e 6∈ D, then D ⊆ C, so

(C ∩D) = D. If e ∈ D, then (C ∩D) = D \ {e}. That is, (C ∩D) . D.

Lemma 8.2. Given a trace σ, and down-sets C,D,F ∈ L(σ), if F .C and F ⊆ D,

then D D (C ∪D).

Proof. Let C = F ∪ {e}. If e ∈ D, then C ⊆ D, so (C ∪ D) = D. If e 6∈ D, then

C ∪D = D ∪F ∪{e}. Since F ⊆ D, (C ∪D) = D ∪{e}, which implies D . (C ∪D).

We now show how lattice-theoretic concepts can be used to prune the state

space and produce short counterexamples while model checking CETL formulae.

We will start by presenting a “baseline” model checking algorithm in Section 8.3,

then enhance it with techniques based on lattice theory in Sections 8.4 and 8.5.

8.3 Baseline Algorithm

The method we present in this chapter is applicable to any recursive, local model

checking algorithm. By recursive, we mean that the truth value of a subformula

is decided at a state before starting the search for determining the truth value of

116

Procedure check CETL(s, φ)
pre : info(s, φ) is true, false or ?.
post: info(s, φ) 6= ?.
begin1

if info(s, φ) 6= ? then return2

if φ is a process-local state formula then3

if s |= φ then info(s, φ) := true4

else info(s, φ) := false5

endif6

if φ is (φ1 ∧ φ2) then7

check CETL(s, φ1)8

if info(s, φ1) = false then info(s, φ) := false9

else10

check CETL(s, φ2)11

info(s, φ) := info(s, φ2)12

endif13

endif14

if φ is E[φ1 U (φ1 ∧ φ2)] or E[φ2 R φ1] then15

new stack(stk) /* Create a new stack, with id stk */16

push(s, stk)17

check EU ER(s, φ, stk)18

pop(stk)19

endif20

end21

the top-level formula at that state. A local model checking algorithm is one that

decides, for a specific state s and formula φ, whether s |= φ. This is in contrast to

a global model checking algorithm which decides whether s |= φ for every state s of

the program. An advantage of local model checking is that we do not explore the

parts of the state space that are not relevant to the formula being evaluated. This

often translates to reduced memory consumption in practical use. An example of a

recursive, local model checking algorithm for CTL is ALMC [VL93], which has an

asymptotic time complexity that is linear in the size of the state space graph and

the length of the formula being verified. Our baseline algorithm is based on ALMC.

As in ALMC, we use a function info(), which uses a hash table to implement

117

the function:

info : S × sub(φ) 7→ {true, false, ?}

info() keeps track of all the subformulae evaluated so far at any state s. If

info(s, φ1) = ?, then we do not yet know whether s |= φ1. If φ1 has already been

evaluated at s, then info(s, φ1) = true if s |= φ1, and false otherwise. Of course,

initially info(s, φ1) = ? for all state-subformula pairs.

Procedure check CETL() is the main routine of our model checking algo-

rithm, and is self-explanatory for process-local state formulae (lines 3-6) and con-

junctions (lines 7-14). For temporal subformulae, we offload the work to Procedure

check EU ER(), passing it a clean stack to use for its state space search (lines

15-20). Procedure check EU ER(s, φ) performs a depth-first search starting from

state s, with the stack stk maintaining the current search path. The depth first

search only explores the events returned by Procedure ample(s, φ) (line 15) from

each state s. We call the set of events returned by Procedure ample() an “am-

ple set”, which is a term borrowed from Peled’s partial order reduction technique

[Pel93]. In the non-reduced (baseline) case, ample(s, φ) is equal to enabled(s).

We are interested in finding a witness for either E[φ1 U (φ1∧φ2)], or EG(φ1)

(if φ = E[φ2 R φ1]). In either case, every state of the witness path must satisfy φ,

and also φ1. Consequently, we abandon the current search path (by backtracking)

if we encounter a state s′ that either does not satisfy φ (line 3), or does not satisfy

φ1 (lines 5-8).

The search stops with success in one of three cases: (1) a state satisfying

(φ1∧φ2) is found (line 11), which is the final state of a witness path for E[φ1 U (φ1∧

φ2)], or (2) some state t satisfying φ is reached (line 3, 28-30), in which case we

can transitively deduce that s |= φ, or (3) if φ = E[φ2 R φ1], and a cycle is

found consisting entirely of φ1-satisfying states (lines 18-24). If a witness is found,

then we use the fact that every state on the witness path also satisfies φ to set

118

Procedure check EU ER(s, φ, stk)
begin1

/* φ = E[φ1 U (φ1 ∧ φ2)] or E[φ2 R φ1] */2

if info(s, φ) 6= ? then return3

check CETL(s, φ1)4

if info(s, φ1) = false then5

info(s, φ) := false6

return7

endif8

check CETL(s, φ2)9

if info(s, φ2) = true then10

info(s, φ) := true /* s |= (φ1 ∧ φ2) */11

return12

endif13

/* s |= (φ1 ∧ ¬φ2) */14

working set := ample(s, φ)15

for each α ∈ working set do16

t := α(s)17

if on stack(t, stk) then18

/* Found a cycle */19

if φ is E[φ2 R φ1] then20

info(s, φ) := true /* Cycle demonstrates EG(φ1) */21

return22

endif23

else24

push(s, stk)25

check EU ER(t, φ)26

pop(stk)27

if info(t, φ) = true then28

info(s, φ) := true /* (s |= φ1) ∧ (t |= φ) ⇒ (s |= φ) */29

return30

endif31

endif32

endfor33

info(s, φ) := false /* No successors satisfy φ, backtrack */34

return35

end36

119

info(s′, φ) = true for every state s′ on the current search path (lines 28-31).

Note that check EU ER(s, φ) not only evaluates whether s |= φ, but also

evaluates the truth value of φ at every state visited during the search. This gives

our baseline model checking algorithm an asymptotic time complexity that is linear

in the length of the formula and the size of the full state space graph, similar to

ALMC.

The baseline algorithm does not exploit any lattice-theoretic properties. We

now show how we can use meet-closure to select only a subset of the enabled events at

each state as our ample set. We start with the narrower problem of model checking

a CETL formula in a single trace of a program, then extend this approach to model

checking the entire program.

8.4 Model Checking CETL in a Trace

The following example highlights the basic principle of our approach. Let σ = [s, v]

be some trace, and φ a meet-closed formula. Suppose we are interested in finding

out whether s |= EF (φ). If s |= φ, then we are done. If s 6|= φ, then there exists a

crucial path for φ in σ, starting from s. Starting from s, we simply need to choose

an ample set that consists of a single crucial event at each state in order to build this

crucial path. This approach results in state space reduction by choosing a singleton

ample set, and the crucial path built is the shortest witness for s |= EF (φ). In this

section, we show how crucial paths can act as witnesses for the temporal operators

in CETL.

8.4.1 Existential Until Operator (EU)

Let G0 be some down-set of σ that satisfies E[φ1 U (φ1 ∧ φ2)]. Let π be the

corresponding witness path with πl = H as its final state. Then, ∀j : 0 ≤ j ≤

l : πj |= φ1, and H |= (φ1 ∧ φ2). Let J be the set of all down-sets of σ that are

120

reachable from G0, are minimal under ⊆2, and satisfy (φ1 ∧ φ2). Define:

G =
⋂

J∈J
J (8.1)

Since (φ1 ∧ φ2) is regular, G |= (φ1 ∧ φ2).

G0

π1

π2

π3

π4

π5

H = π6

λ1 = λ2 Å π4

G = λ3

λ2 = λ3 Å π5

: satisfies φ1

: satisfies φ Æ φ2

Figure 8.2: Example illustrating the construction of Theorem 8.3

Theorem 8.3. There exists a path from G0 to G such that every state along the

path satisfies φ1.

Proof. We will construct a path λ from G0 to G, consisting entirely of φ1-satisfying

states. We construct this path backwards, starting from λk = G, towards λ0 = G0.

Figure 8.2 illustrates this construction through an example.

We show that, if λi |= φ1 for any 1 ≤ i ≤ k, there exists a G′ . λi such that

G′ |= φ1. We can then extend λ with λi−1 = G′, and proceed with our construction.

For the base case, we have λk = G, and G |= φ1.

Let 1 ≤ j ≤ l be the least j such that λi ⊆ πj . First, we show that such

a j must exist. Recall that πl = H, and λi ⊆ G ⊆ H. Therefore, for some j ≤ l,

λi ⊆ πj . Also, π0 = λ0 = G0, so ∀i : i ≥ 1 : λi 6⊆ π0. Therefore, j ≥ 1. Since j is

the least such, we have:

λi 6⊆ πj−1 (8.2)
2This ensures that J is finite

121

So, we have πj−1 . πj , and λi ⊆ πj . From Lemma 8.1, this implies (λi ∩

πj−1)D λi. We cannot have (λi ∩ πj−1) = λi, because this would imply λi ⊆ πj−1,

which violates (8.2). Therefore, (λi∩πj−1).λi. Set G′ = (λi∩πj−1). Since λi |= φ1,

and πj−1 |= φ1, by the meet-closure of φ1, G′ |= φ1.

Theorem 8.3 tells us that if G0 |= E[φ1U(φ1 ∧ φ2)], then a crucial path for

(φ1 ∧ φ2) can act as a witness. Since G0 |= φ1, and every state along the witness

path satisfies φ1, it is easy to see that crucial(G0, (φ1 ∧φ2), σ) = crucial(G0, φ2, σ).

The following theorem shows how we can construct this path “forward”, that is,

starting from G0.

Theorem 8.4. We can construct the path of Theorem 8.3 as follows. Starting from

G0, at each state H we execute a single enabled event α that satisfies the following

two conditions:

• α ∈ crucial(H,φ2, σ), and

• H ∪ {α} |= φ1.

Proof. Let G be as in (8.1). From Theorem 8.3, there exists some path λ such that

λ0 = G0, λk = G, and ∀j : 0 ≤ j ≤ k : λj |= φ1. We need to show that we can

construct such a path by choosing, at each state, any crucial event that leads to a

φ1-satisfying successor.

Clearly, if every event along our path is crucial for φ2, then our path will

lead to G. It remains to be shown that, at any state H along our constructed path,

there exists a successor J such that J |= φ1. To begin with, H = G0. Of course, our

construction ends when H = G, so any H for which a successor needs to be found

must be a strict subset of G.

Let 0 ≤ i < k be the greatest i such that λi ⊆ H. We first show that such

an i exists. Note that λ0 = G0 ⊆ H. Thus, for some i ≥ 0 : λi ⊆ H. Also, λk = G,

122

and H ⊂ G. Therefore, λk 6⊆ H, so i < k. Since i is the greatest such, we have:

λi+1 6⊆ H (8.3)

Now, λi . λi+1, and λi ⊆ H. By Lemma 8.2, H D (λi+1 ∪H). If H = (λi+1 ∪H),

then λi+1 ⊆ H, which violates (8.3). Therefore, H . (λi+1 ∪H). Also, H |= φ1, and

λi+1 |= φ1, so by the join-closure of φ1, λi+1 ∪H |= φ1. Hence, J = λi+1 ∪H is the

required successor for H.

8.4.2 Existential Release Operator (ER)

Recall that E[φ2 R φ1]
def
≡ E[φ1U(φ1 ∧ φ2)] ∨EG(φ1). Theorem 8.4 showed how to

construct a witness for G0 |= E[φ1U(φ1 ∧ φ2)]. The following theorem shows how

to construct a witness for G0 |= EG(φ1).

Theorem 8.5. Let G0 ∈ L(σ) such that G0 |= EG(φ1) in σ. We can construct

a witness path as follows. Starting from G0, at each state H, we execute a single

enabled event α such that H ∪ {α} |= φ1.

Proof. We simply need to show that, for every state H on the constructed path,

there exists a φ1-satisfying successor state. The proof for this is exactly the same

as shown in Theorem 8.4.

Procedure ample trace() constructs an ample set in accordance with The-

orems 8.4 and 8.5. We assume the existence of a function find crucial(s, φ2, σ),

which returns a (possibly empty) subset of enabled(s) ∩ crucial(s, φ2, σ). The im-

plementation of this function is deferred till Section 8.6. In lines 4-8, we try to find

some α such that α ∈ crucial(s, φ2, σ) and α(s) |= φ1. If such an event is found,

then it satisfies the requirements of both Theorems 8.4 and 8.5, so our ample set is

123

Procedure ample trace(s, φ)

begin1

/* φ is E[φ1U(φ1 ∧ φ2)] or E[φ2 R φ1] */2

working set := find crucial(s, φ2, σ)3

for each α ∈ working set do4

t := α(s)5

check CETL(t, φ1)6

if info(t, φ1) = true then return {α}7

endfor8

return enabled(s)9

end10

a singleton consisting of this event. If such an event is not found, then we explore

all enabled events (line 9). The following theorem is straightforward.

Theorem 8.6. Procedure ample trace() returns an ample set that is sufficient for

model checking CETL formulae in a single trace of a program.

We now extend our approach beyond a single trace, to model checking a

program.

8.5 Model Checking CETL in a Program

For model checking CETL in a single trace, we simply needed to explore a single

crucial path for the formula through the trace. We achieved this by exploring a

crucial successor event at each state during our depth first search. To model check

CETL in a program, we need to explore a crucial path in each maximal trace of

the program. That is, at each state s encountered during DFS, our ample set must

contain a crucial event for every trace that starts from s.

Let ample(s, φ) denote the ample set at state s, for the CETL formula φ. In

[Pel93], it was shown that if ample(s, φ) satisfies the following condition (C1), then

it generates a successor in each maximal trace starting from s.

124

(C1) Along every path starting from s in the full state space graph, a transi-

tion that is dependent on a transition from ample(s, φ) cannot be executed without

a transition from ample(s, φ) occurring first.

Theorem 8.7. [Pel93] If ample(s, φ) satisfies condition (C1), then for every max-

imal trace σ starting from s, there exists some α ∈ ample(s, φ) such that [s, α] v σ.

Recall that Condition (C1) was also used in Section 6.3 to generate a rep-

resentative transition sequence per maximal program trace. If ample(s, φ) satisfies

(C1), then it contains a successor event for each trace starting from s. A single event

α ∈ ample(s, φ) can be a successor in multiple traces starting from s. For example,

executing α may enable β and γ, where (β, γ) ∈ D. Thus, α is a successor in both

[s, αβ] and [s, αγ]. In order to construct a crucial path per maximal trace, α must

be crucial in every trace in which it is a successor:

Definition 8.3. Universally crucial event: An event α is said to be universally

crucial from a state s for a meet-closed formula φ2, denoted α ∈ ucrucial(s, φ2), iff

for every trace σ such that [s, α] v σ, α ∈ crucial(s, φ2, σ).

Recall that Procedure check EU ER(s, φ, stk) calls Procedure ample(s, φ),

passing it a formula φ of the form E[φ1 U (φ1 ∧ φ2)] or E[φ2 R φ1]. Procedure

ample(s, φ) tries to construct an ample set that satisfies the following three condi-

tions: (1) If α ∈ ample(s, φ), then α ∈ ucrucial(s, φ2) (line 3), (2) If α ∈ ample(s, φ),

then α(s) |= φ1 (lines 4-8), and (3) ample(s, φ) satisfies condition (C1) (line 9). If

any of these conditions is violated, then ample(s, φ) = enabled(s) (lines 7, 10).

We discuss the implementation of find ucrucial() in the next section. For now,

it suffices to say that find ucrucial(s, φ2) returns a (possibly empty) subset of

enabled(s) ∩ ucrucial(s, φ2). The function satisfies C1() is the same as that used

in the implementation of p.o. reduction in SPIN [Hol03].

125

Procedure ample(s, φ)

begin1

/* φ is E[φ1U(φ1 ∧ φ2)] or E[φ2 R φ1] */2

candidate := find ucrucial(s, φ2)3

for each α ∈ candidate do4

t := α(s)5

check CETL(t, φ1)6

if info(t, φ1) = false then return enabled(s)7

endfor8

if (candidate = ∅) or (¬satisfies C1(candidate)) then return9

enabled(s)
else return candidate10

end11

Theorem 8.8. Procedure ample() returns an ample set that is sufficient for model

checking CETL in a program.

Proof. It is straightforward to see that if check EU ER(s, φ, stk) finds a witness

path, then s |= φ. We show the other direction. Assume s |= φ, where φ is

E[φ1 U (φ1∧φ2)] or E[φ2 R φ1]. Then, either s |= E[φ1 U (φ1∧φ2)], or s |= EG(φ1).

• Case 1: s |= E[φ1 U (φ1∧φ2)]. Let σ be the maximal program trace to which

the witness path belongs. By Theorem 8.3, there exists a crucial witness path

for s |= φ in σ. We will construct a crucial witness path using only transitions

in ample(s, φ).

Let u denote the transition sequence of the witness path constructed so far,

and s′ be the final state reached after executing u from s. In our construction,

we will maintain the invariant that every event in u is in crucial(s, φ2, σ), and

for every state s′ in the path, s′ |= φ1. By Theorem 8.4, these two invariants

ensure that at each state s′ along the constructed path, there exists some

α ∈ enabled(s′) such that α ∈ crucial(s′, φ2, σ), and α(s′) |= φ1. We will show

that ample(s′, φ) contains such an event α. Initially, u := ε (the empty string),

126

and s′ := s. Since s |= φ, we know that s |= φ1.

– Case 1.1: The candidate set picked in line 3 of Procedure ample()

does not satisfy (C1) or is empty. Then, ample(s′, φ) = enabled(s′) (line

9). As discussed in the previous paragraph, enabled(s′) must contain

an event α that satisfies the two conditions of Theorem 8.4, so we set

u := u.α, and continue construction.

– Case 1.2: The candidate set picked in line 3 is non-empty and satisfies

(C1). We can express σ as the concatenation [s, u].σ′, for some σ′. By

Theorem 8.7, there exists some α ∈ ample(s′, φ) such that [s′, α] v σ′.

That is, [s, u.α] v σ. Since α is in ucrucial(s′, φ2) ∩ enabled(s′) (line

3), we have α ∈ crucial(s′, φ2, σ), and α(s′) |= φ1, thus satisfying the

conditions of Theorem 8.4. We set u := u.α, and continue construction.

• Case 2: s 6|= E[φ1 U (φ1∧φ2)] and s |= EG(φ1). Again, let σ be the maximal

program trace containing the witness path in the full state space graph. Using

arguments identical to those in Case 1, we can show that ample(s′, φ) always

contains an event from σ that satisfies the conditions of Theorem 8.5. Thus,

we can construct a witness path using the technique of Theorem 8.5, with only

the transitions returned by Procedure ample().

Next, we provide an implementation for the function find ucrucial(), which

is used by Procedure ample().

8.6 Finding Universally Crucial events

In this section, we identify some sufficient conditions for an event to be universally

crucial. Procedure find ucrucial() takes as input a state s and a CETL formula

127

φ2, and returns a subset of ucrucial(s, φ2) ∩ enabled(s).

First, note that find ucrucial(s, φ2) is called by our model checking routine

only when s 6|= φ2. This assertion can be verified by navigating the procedure

call chain of our model checking algorithm. Procedure check EU ER(s, φ) calls

Procedure ample(s, φ) (line 22), where φ is E[φ1 U (φ1 ∧ φ2)] or E[φ2 R φ1]. The

call to ample(s, φ) is only made after verifying that s 6|= φ2 (line 16). Procedure

ample(s, φ) then calls find ucrucial(s, φ2) (line 3). The following theorem both

explains Procedure find ucrucial() and shows its correctness.

Procedure find ucrucial(s, φ2)

input : State s and CETL formula φ2, where s 6|= φ2.
output: A subset of ucrucial(s, φ2) ∩ enabled(s).
begin1

if φ2 is a process-local state formula on process Pi then2

return enabled(s) ∩ Ti /* Ti is the set of transitions3

of Pi */
endif4

if φ2 is (ψ1 ∧ ψ2) then5

check CETL(s, ψ1)6

if info(s, ψ1) = false then return find ucrucial(s, ψ1)7

else return find ucrucial(s, ψ2)8

endif9

if φ2 is E[ψ1 U (ψ1 ∧ ψ2)] or E[ψ2 R ψ1] then10

check CETL(s, ψ1)11

if info(s, ψ1) = false then return find ucrucial(s, ψ1)12

else13

if ¬ψ1 is meet-closed then return find ucrucial(s,¬ψ1)14

else return ∅15

endif16

endif17

end18

Theorem 8.9. Procedure find ucrucial(s, φ2) returns a subset of ucrucial(s, φ2)∩

enabled(s).

Proof. We show that Procedure find ucrucial() returns only enabled, universally

128

crucial events for each formula type.

• (Lines 2-4): φ2 is a process-local state formula on process Pi.

Only transitions from Ti can change the truth value of φ2. Since s 6|= φ2, in

order to reach a φ2-satisfying state from s, we must execute some transition

from Ti∩enabled(s). Now, for any α, β ∈ Ti∩enabled(s), (α, β) ∈ D. Further,

execution of α disables β and vice-versa. Therefore, each α ∈ Ti ∩ enabled(s)

is a crucial event in any trace that subsumes [s, α]. Thus, Ti ∩ enabled(s) ⊆

ucrucial(s, φ2) ∩ enabled(s).

• (Lines 5-9): φ2 = ψ1 ∧ ψ2.

This case is straightforward. If s 6|= ψ1, then clearly we first need to get

to a state that satisfies ψ1. Similarly for ψ2. Therefore, if s 6|= ψ1 then

ucrucial(s, ψ1) ⊆ ucrucial(s, φ2), else ucrucial(s, ψ2) ⊆ ucrucial(s, φ2).

• (Lines 10-17): φ2 = E[ψ1 U (ψ1 ∧ ψ2)] or φ2 = E[ψ2 R ψ1].

– (Line 12): s 6|= ψ1. Clearly, any state that satisfies φ2 must satisfy ψ1.

Therefore, ucrucial(s, ψ1) ⊆ ucrucial(s, φ2).

– (Lines 13-16): s |= ψ1. Let t be some state reachable from s such that

t |= φ2. Let w be a witness for t |= φ2. Since s 6|= φ2, along every

path v from s to t, there must exist some state s′ such that s′ 6|= ψ1

(otherwise, v.w would be a witness for s |= φ2). That is, we must first

reach a state that satisfies ¬ψ1 in order to reach any state that satisfies

φ2. If ¬ψ1 is meet-closed, then there exist crucial events for ¬ψ1, so

ucrucial(s,¬ψ1) ⊆ ucrucial(s, φ2).

129

8.7 Experimental Results

We have implemented the CETL model checking algorithms presented in this chap-

ter as an extension to the SPIN model checker [Hol03, Hol07], called SPICED (Sim-

ple PROMELA Interpreter with Crucial Event Detection). Our implementation of

SPICED, along with detailed experimental results, is available at:

http://maple.ece.utexas.edu/spiced.

We ran SPICED against a large set of examples from the BEEM database

[Pel07]. The BEEM database is a large collection of benchmarks for explicit-state

model checkers. The database includes PROMELA3 models with errors injected into

them, and lists the properties to be verified on these models. Of the 131 properties

included in the BEEM database for verification, 101 (77%) can be expressed in

CETL. All experiments were performed on a single-cpu 2.8 GHz Intel Pentium 4

machine with 512 MB of memory, running Red Hat Enterprise Linux WS Release

4.

For our experiments, we specified the formulae to be verified in CETL for the

SPICED runs, and in LTL for the SPIN runs. Table 8.1 lists the formulae verified

for each of the models used in our experiments.

BEEM contains multiple problem sizes for each model. We verified 16 differ-

ent protocols, and several problem sizes for each of the verified protocols. Overall,

we verified over 80 models, with 76 of these models containing errors in them. The

errors were already present within the models in the BEEM database - we did not

inject the errors ourselves.

For SPIN, never claims [Hol03] were used for the verification of LTL proper-

ties, and simple assert() statements were used for specifying reachability properties.

The SPIN runs use POR techniques for state space reduction, and an automata-

theoretic approach, called on-the-fly model checking [VW86, CVWY92], for the
3Recall that PROMELA is the input language for SPIN.

130

Model Description Logic Formula

anderson
Anderson’s mutual
exclusion [And90]

CETL EF (P0.wait ∧ EG(!P0.cs))
LTL ¬�(wait0 ⇒ ♦cs0)

at
Alur-Taubenfeld mutual
exclusion [AT96]

CETL EF (P0.wait ∧ EG(!P0.cs))
LTL ¬�(wait0 ⇒ ♦cs0)

bakery
Bakery mutual exclusion
[Lam74]

CETL EF (P0.wait ∧ EG(!P0.cs))
LTL ¬�(wait0 ⇒ ♦cs0)

driving phils
Driving philosophers
[PBG04]

CETL EF (P0.req ∧ EG(!P0.grant))
LTL ¬�(req0 ⇒ ♦grant0)

fischer
Fisher’s mutual
exclusion [Fis85]

CETL EF (P0.wait ∧ EG(!P0.cs))
LTL ¬�(wait0 ⇒ ♦cs0)

frogs
2D Toads and Frogs
puzzle [BC87]

CETL EF (Check.done)
LTL local assert()

gear Gear controller [LPY01]
CETL EF (Clutch.err open)
LTL local assert()

lamport
Lamport’s mutual
exclusion [Lam87]

CETL EF (P0.wait ∧ EG(!P0.cs))
LTL ¬�(wait0 ⇒ ♦cs0)

loyd
Sam Lloyd’s fifteen
square puzzle

CETL EF (Check.done)
LTL local assert()

mcs
MCS mutual exclusion
[MCS91]

CETL EF (P0.wait ∧ EG(!P0.cs))
LTL ¬�(wait0 ⇒ ♦cs0)

msmie
Multiprocessor
Shared-Memory
Information Exchange

CETL EF (P0.wait ∧ EG(!P0.cs))
LTL ¬�(wait0 ⇒ ♦cs0)

needham
Needham-Schroeder
encryption [NS78]

CETL EF (init0.fin ∧ resp0.fin)
LTL ¬♦(init fin ∧ resp fin)

peterson
Peterson’s mutual
exclusion [Pet83]

CETL EF (P0.wait ∧ EG(!P0.cs))
LTL ¬�(wait0 ⇒ ♦cs0)

phils
Dining philosophers
[Dij72]

CETL EF (P0.req ∧ EG(!P0.grant))
LTL ¬�(req0 ⇒ ♦grant0)

POTS
Plain Old Telephony
Service [KL00]

CETL EF (P0.dial ∧ P1.idle ∧ EG(!P0.connect))
LTL ¬�((P0 dial ∧ P1 idle) ⇒ ♦P0 connect)

szymanski
Szymanski mutual
exclusion [Szy90]

CETL EF (P0.wait ∧ EG(!P0.cs))
LTL ¬�(wait0 ⇒ ♦cs0)

Table 8.1: Formulae being verified on various models.

131

verification of LTL formulae. For SPICED, the CETL formulae were specified a

separate file, and fed directly as input to our model checking algorithm.

8.7.1 Length of Error Trails

Table 8.2 shows the largest reduction in trail length achieved for each of the 16

protocols verified, compared to SPIN with POR. As seen in the table, for 3 of these

protocols, SPIN was unable to complete verification for the larger problem sizes.

SPICED consistently achieves dramatic reductions in the size of the produced

error trail, compared to SPIN with p.o. reduction. In many instances, this also

results in a significant reduction in the number of states visited during verification,

which in turn resulted in less memory consumption and faster run times.

Over all our experiments, SPICED produced error trails that were at least

as short as SPIN’s in 100% of the cases, were at least 10x shorter in 55% of the

cases, and at least 100x shorter in 19% of the cases. For 44% of the cases, SPICED

completed verification faster than SPIN, with at least a 10x reduction in time in

9% of the cases. Although CETL is a branching-time logic, in these examples, the

properties were in LTL ∩ CETL, so the error trails were non-branching. The error

trails were produced in the same format as those of SPIN’s, and can be examined

using SPIN’s guided simulation feature.

The complete set of results for all of the verified models is presented in Table

8.4.

8.7.2 State Space Reduction

Table 8.3 shows the state space reduction achieved by SPICED, compared to SPIN

with p.o. reduction, in the absence of errors. The examples in Table 8.3 are from

the SPIN distribution [Hol07], and have previously been used to showcase the effec-

tiveness of p.o. reduction [CGMP99]. For SPIN, no LTL properties were specified

132

Model Tool Time (sec) States Memory
(MB)

Trail length Trail reduc-
tion factor

phils.7
SPICED 0.01 15 3.15 6

N/A
SPIN **Could not complete** -

szymanski.9
SPICED 0.02 256 3.15 43

N/A
SPIN **Could not complete** -

fischer.18
SPICED 0.02 28 3.15 19

N/A
SPIN **Could not complete** -

mcs.5
SPICED 0.09 30227 4.89 14

403.29
SPIN 0.03 2821 2.72 5646

anderson.7
SPICED 0.03 65387 7.03 82

382.79
SPIN 0.13 15692 6.63 31389

peterson.7
SPICED 0.09 29080 4.89 159

125.69
SPIN 0.1 9992 9.93 19984

lamport.7
SPICED 0.06 6850 3.45 30

44.33
SPIN 0.02 665 2.62 1330

at.7
SPICED 0.02 19 3.15 11

33.64
SPIN 0.01 182 2.62 370

bakery.6
SPICED 0.01 69 3.15 46

18.61
SPIN 0.02 896 2.62 856

POTS
SPICED 0.89 153775 21.58 41

5.39
SPIN 0.38 40161 6.72 221

gear.2
SPICED 0.03 4185 3.13 5056

3.84
SPIN 0.13 22386 5.5 19396

needham.4
SPICED 0.01 27 2.72 15

3.47
SPIN 0.04 4003 3.03 52

msmie.2
SPICED 0.02 83 2.72 63

3.4
SPIN 0.01 370 2.62 214

loyd.2
SPICED 0.19 50931 9.24 52597

1.6
SPIN 0.63 166133 17.61 84418

driving phils.4
SPICED 0.01 212 3.15 123

1.38
SPIN 0.01 85 2.62 170

frogs.3
SPICED 0.41 190318 16.45 261

1
SPIN 0.38 190315 13.99 261

Table 8.2: Trail reduction with SPICED, compared to SPIN with p.o. reduction.

133

Model Tool Time
(sec)

States Memory
(MB)

Formula

sort
SPIN, no reduction 1.19 107713 20.64 -

SPIN, p.o. reduction 0.1 135 2.62 -
SPICED 0.1 148 2.72 EG(!left.tstvar)

leader
SPIN, no reduction 0.17 15779 3.35 -

SPIN, p.o. reduction 0.01 97 2.62 -
SPICED 0.05 104 2.72 EG(!node[4].tstvar)

eratosthenes
SPIN, no reduction 0.52 49790 9.07 -

SPIN, p.o. reduction 0.02 3437 3.03 -
SPICED 0.02 2986 3.13 EG(!sieve[0].tstvar)

snoopy
SPIN, no reduction 0.53 81013 11.34 -

SPIN, p.o. reduction 0.06 14169 4.06 -
SPICED 0.4 58081 9.69 EF (cpu0.tstvar)

Table 8.3: State space reduction with SPICED.

during verification, which is optimal for maximizing the effectiveness of p.o. re-

duction. Since our algorithm is based on choosing crucial events, it requires the

specification of a property. For each example, we chose a property that is never

satisfied in the program, and forces exhaustive validation. As the results in Table

8.3 show, we achieve state space reduction comparable to POR techniques.

8.7.3 Complete List of Results

Table 8.4 lists the complete set of results for all of the verified models that had

errors in them. The table contains 76 models, and shows that SPICED consistently

produces significantly shorter error trails than SPIN, often resulting in shorter run

times and lower memory consumption than SPIN.

Model Tool Time (sec) States Memory

(MB)

Trail length Trail reduc-

tion factor

anderson.1
SPICED 0.01 99 3.15 39

67.56
SPIN 0.02 1317 2.62 2635

anderson.3
SPICED 0.01 246 3.15 58

51.48
SPIN 0.02 1492 2.62 2986

anderson.5
SPICED 0.03 6664 3.45 74

413.89

134Table 8.4

Model Tool Time (sec) States Memory

(MB)

Trail length Trail reduc-

tion factor

SPIN 0.12 15312 4.61 30628

anderson.7
SPICED 0.03 65387 7.04 82

382.79
SPIN 0.13 15692 6.63 31389

at.1
SPICED 0.02 16 3.15 8

18.88
SPIN 0.01 74 2.62 151

at.2
SPICED 0.02 16 3.15 8

18.88
SPIN 0.01 74 2.62 151

at.3
SPICED 0.02 17 3.15 9

24.89
SPIN 0.01 110 2.62 224

at.4
SPICED 0.02 18 3.15 10

29.70
SPIN 0.01 146 2.62 297

at.5
SPICED 0.02 18 3.15 10

29.70
SPIN 0.01 146 2.62 297

at.6
SPICED 0.02 18 3.15 10

29.70
SPIN 0.01 146 2.62 297

at.7
SPICED 0.02 19 3.15 11

33.64
SPIN 0.01 182 2.62 370

bakery.1
SPICED 0.02 2601 3.25 510

1.97
SPIN 0.02 2071 2.62 1006

bakery.2
SPICED 0.01 45 3.15 28

5.71
SPIN 0.01 163 2.62 160

bakery.3
SPICED 0.02 2257 3.25 55

6.51
SPIN 0.01 179 2.62 358

bakery.4
SPICED 0.01 57 3.15 37

16.49
SPIN 0.03 748 2.62 610

bakery.5
SPICED 1.23 401575 25.57 158

8.30
SPIN 0.02 656 2.62 1312

bakery.6
SPICED 0.01 69 3.15 46

18.61
SPIN 0.02 896 2.62 856

bakery.7
SPICED 5.80 1740000 100.84 670

2.88
SPIN 0.02 964 2.62 1928

135

Table 8.4

Model Tool Time (sec) States Memory

(MB)

Trail length Trail reduc-

tion factor

bakery.8
SPICED 5.98 1500000 92.85 77

5.66
SPIN 0.01 218 2.62 436

driving phils.1
SPICED 0.01 85 3.15 53

1.28
SPIN 0.01 34 2.62 68

driving phils.3
SPICED 0.01 747 3.25 426

1.86
SPIN 0.01 397 2.62 794

driving phils.4
SPICED 0.01 212 3.15 123

1.38
SPIN 0.01 85 2.62 170

fischer.1
SPICED 0.01 23 3.15 14

6.07
SPIN 0.01 48 2.62 85

fischer.2
SPICED 0.01 24 3.15 15

15.33
SPIN 0.01 156 2.62 230

fischer.3
SPICED 0.01 26 3.15 17

91.88
SPIN 0.02 1237 2.62 1562

fischer.4
SPICED 0.01 27 3.15 18

297.83
SPIN 0.05 6454 3.03 5361

fischer.5
SPICED 0.01 28 3.15 19

268.37
SPIN 0.04 4744 2.93 5099

fischer.6
SPICED 0.01 28 3.15 19

777.37
SPIN 0.15 21860 5.12 14770

fischer.7
SPICED 0.01 28 3.15 19

497.37
SPIN 0.07 8016 3.24 9450

fischer.18
SPICED 0.02 28 3.15 19

N/A
SPIN **Could not complete** -

frogs.1
SPICED 0.01 1436 2.72 86

1.00
SPIN 0.01 1433 2.62 86

frogs.2
SPICED 0.04 9859 3.24 30

1.00
SPIN 0.03 9856 3.03 30

frogs.3
SPICED 0.41 190318 16.45 261

1.00
SPIN 0.38 190315 13.99 261

gear.1
SPICED 0.01 1060 2.83 1256

2.27

136
Table 8.4

Model Tool Time (sec) States Memory

(MB)

Trail length Trail reduc-

tion factor

SPIN 0.03 3186 2.93 2846

gear.2
SPICED 0.03 4185 3.13 5056

3.84
SPIN 0.13 22386 5.50 19396

lamport.1
SPICED 0.01 230 3.15 28

10.86
SPIN 0.01 152 2.62 304

lamport.2
SPICED 0.01 92 3.15 14

21.71
SPIN 0.01 152 2.62 304

lamport.3
SPICED 0.01 63 3.15 17

5.41
SPIN 0.01 46 2.62 92

lamport.5
SPICED 0.01 1221 3.15 29

28.90
SPIN 0.02 419 2.62 838

lamport.6
SPICED 0.01 483 3.15 19

37.05
SPIN 0.01 352 2.62 704

lamport.7
SPICED 0.06 6850 3.45 30

44.33
SPIN 0.02 665 2.62 1330

lamport.8
SPICED 0.01 1087 3.15 25

4.32
SPIN 0.01 54 2.62 108

loyd.1
SPICED 0.01 47 2.72 42

1.00
SPIN 0.01 363 2.62 42

loyd.2
SPICED 0.19 50931 9.24 52597

1.60
SPIN 0.63 166133 17.61 84418

mcs.1
SPICED 0.01 345 3.15 12

22.33
SPIN 0.01 133 2.62 268

mcs.2
SPICED 0.01 118 3.15 29

2.48
SPIN 0.01 35 2.62 72

mcs.3
SPICED 0.02 2710 3.25 13

91.15
SPIN 0.01 591 2.62 1185

mcs.4
SPICED 0.01 771 3.15 30

2.30
SPIN 0.01 33 2.62 69

mcs.5
SPICED 0.09 30227 4.89 14

403.29
SPIN 0.03 2821 2.72 5646

137

Table 8.4

Model Tool Time (sec) States Memory

(MB)

Trail length Trail reduc-

tion factor

mcs.6
SPICED 0.03 8871 3.66 36

2.22
SPIN 0.01 38 2.62 80

msmie.2
SPICED 0.02 83 2.72 63

3.40
SPIN 0.01 370 2.62 214

needham.1
SPICED 0.01 21 2.72 11

3.36
SPIN 0.01 296 2.62 37

needham.2
SPICED 0.01 24 2.72 13

3.23
SPIN 0.01 1313 2.72 42

needham.3
SPICED 0.01 27 2.72 15

3.13
SPIN 0.03 4001 2.93 47

needham.4
SPICED 0.01 27 2.72 15

3.47
SPIN 0.04 4003 3.03 52

peterson.1
SPICED 0.01 592 3.15 46

6.13
SPIN 0.01 141 2.62 282

peterson.2
SPICED 0.01 93 3.15 59

6.51
SPIN 0.01 192 2.62 384

peterson.3
SPICED 0.01 50 3.15 37

8.16
SPIN 0.01 151 2.62 302

peterson.4
SPICED 0.02 3004 3.25 95

16.17
SPIN 0.02 768 2.62 1536

peterson.5
SPICED 0.01 175 3.15 110

56.20
SPIN 0.04 3091 2.93 6182

peterson.6
SPICED 0.01 75 3.15 59

97.29
SPIN 0.03 2870 2.83 5740

peterson.7
SPICED 0.09 29080 4.89 159

125.69
SPIN 0.10 9992 9.93 19984

phils.1
SPICED 0.02 15 3.15 6

4.83
SPIN 0.01 15 2.62 29

phils.2
SPICED 0.01 13 3.15 5

98.80
SPIN 0.01 969 2.62 494

phils.3
SPICED 0.01 15 3.15 6

80.00

138

Table 8.4

Model Tool Time (sec) States Memory

(MB)

Trail length Trail reduc-

tion factor

SPIN 0.01 253 2.62 480

phils.4
SPICED 0.01 13 3.15 5

16687.60
SPIN 0.36 41719 9.09 83438

phils.5
SPICED 0.01 15 3.15 6

8106.17
SPIN 0.21 24319 6.36 48637

phils.6
SPICED 0.04 15 3.15 6

141948.50
SPIN 3.83 425846 86.22 851691

phils.7
SPICED 0.01 15 3.15 6

N/A
SPIN **Could not complete** -

POTS
SPICED 0.89 153775 21.58 41

5.39
SPIN 0.38 40161 6.72 221

szymanski.1
SPICED 0.01 80 3.15 31

17.68
SPIN 0.01 274 2.62 548

szymanski.2
SPICED 0.06 19006 4.07 25

9.28
SPIN 0.01 116 2.62 232

szymanski.3
SPICED 0.01 138 3.15 37

197.35
SPIN 0.04 3651 2.83 7302

szymanski.4
SPICED 4.98 1 70.42 28

56.14
SPIN 0.01 786 2.62 1572

szymanski.5
SPICED 0.02 256 3.15 43

1811.53
SPIN 0.31 38948 9.19 77896

szymanski.9
SPICED 0.02 256 3.15 43

N/A
SPIN **Could not complete** -

Table 8.4: Complete list of results for 76 models, each contain-

ing an error.

139

8.8 Bibliographic Notes

The representation of concurrent programs by transition graphs was advocated by

Lamport [Lam83]. The modeling of concurrency by interleaving was first used by

Dijkstra [Dij65]. The term “interleaving” was also coined by Dijkstra [Dij72].

While the production of counterexamples has always been an integral part

of model checkers, until recently, they were largely treated as a mere by-product of

model checking. During the last few years, however, counterexamples have received

renewed interest in their own right as useful debugging tools. A survey of recent

contributions in the area of counterexamples appears in [CV04].

Research on counterexample minimization can be divided into two categories:

(1) finding a short path to an error state, and (2) finding short cycles (loops) as

counterexamples for liveness properties. For example, LTL formulae are defined

over infinite paths. In finite-state systems, a failing LTL property has a lasso-shaped

counterexample u.vω, where u is the stem and v is the loop [VW86]. Minimizing

the length of the stem u falls under category (1) above, while minimizing the length

of the loop v falls under the latter category. The problem of minimizing the length

of the loop in the presence of fairness constraints was shown to be NP-complete in

[CGMZ95].

Our approach falls under the former category (minimizing the length of the

stem), as do the directed model checking techniques presented in [YD98, ELL01,

ELLL04, TAC+04]. In [YD98], heuristics such as Hamming distance are used in

a symbolic model checker to estimate the distance of the current state from an

error state, and thereby guide state space exploration. In [ELL01, ELLL04], best-

first search based on the A* algorithm [HNR68] is used in an explicit-state model

checker to guide the search towards an error state.

Approaches that attempt to minimize the length of the loop in an explicit-

state model checker include a BFS-based approach in [HK06] and a DFS-based

140

approach in [GM07].

The work presented in this chapter is also published in [KG08].

8.9 Summary

In this chapter, we presented a model checking algorithm for a subset of CTL, called

CETL, which produces short counterexamples, while simultaneously achieving state

space reduction for the exhaustive validation of programs. Experimental results

confirm that our approach can significantly outperform SPIN in the presence of

errors, while providing state space reduction comparable to POR techniques. The

effectiveness of our approach is highly dependent on the ability to identify crucial

events during state space exploration. We have shown how crucial events can be

identified in many cases, but the problem of finding crucial events for a general

CETL formula remains open.

141

Part V

Conclusion

142

Chapter 9

Conclusion and Future Work

9.1 Conclusion

The focus of this dissertation has been on applying results from lattice theory to

the problem of model checking concurrent and distributed systems.

The limiting factor in model checking large concurrent and distributed sys-

tems is state space explosion. In this dissertation, we established the usefulness of

lattice theory in ameliorating state space explosion during the verification of concur-

rent and distributed systems. We showed that it is possible to exploit the structure

exhibited by the the formulae being verified, to selectively explore a portion of the

state space, rather than the entire state space. Specifically, we showed that the set

of states satisfying formulae belonging to some “efficient” logics exhibit a lattice

structure. We used this knowledge to devise efficient algorithms for state space

traversal, which avoid construction of the entire state space.

The ability to produce a counterexample illustrating how an error state is

reached is a central feature of model checking tools. Counterexamples are generated

for human consumption, to aid in the task of debugging. Consequently, the pro-

duction of short counterexamples is highly desirable. We have shown that lattice

143

theory can be used to produce short counterexamples, containing only events that

are both necessary and sufficient to lead to an error state.

A model checking framework has three basic elements [McM92]:

1. A formal language for specifying the properties to be verified.

2. A mathematical model of the system to be verified.

3. A set of algorithms that can be mechanically applied to prove these properties

on the model.

This dissertation makes contributions in each of the above three areas.

Previous researchers [CL85, KP87, CBDGF95, CG95, GM01] have identified

various classes of properties based on the structure exhibited by states that sat-

isfy these properties in a computation, and used the exhibited structure to avoid

state space explosion during verification. In this dissertation, we have shown that

the problem of deciding membership in these classes is co-NP-complete in the size

of the trace. In particular, we showed that the decision problem of identifying

whether a given formula is meet-closed [CG95] or regular [GM01] is co-NP-complete,

and the problem of deciding whether a given formula is stable [CL85] or observer-

independent [KP87, CBDGF95] is NP-complete.

We extended the work of Sen and Garg [SG03a, Sen04] in studying the lattice-

theoretic characteristics of CTL operators. We showed that the existential until

(EU) and existential release (ER) operators of CTL preserve regularity. We also

showed that the CTL operators EF , AF , EG and AG preserve biregularity. These

results allow us to build a specification logic that yields formulae whose structure

can then be exploited to derive efficient verification algorithms.

We showed how Mazurkiewicz trace semantics [Maz89] can be used in con-

junction with a vector timestamping mechanism [Fid88, Mat89] to obtain a set of

partial orders, called a trace cover, that encode all the reachable states of the pro-

144

gram. This provides a compact representation of the state space of the program.

Our method involves exploring only a single interleaving per maximal program trace

to obtain the trace cover, thereby avoiding state space explosion during model con-

struction.

We applied algorithms developed for the verification of reachability properties

on partial order representations to finite trace covers, in order to decide reachability

in the program. In particular, we applied Chase and Garg’s [CG95] algorithm for

reachability detection of meet-closed predicates to verify safety properties on sev-

eral famous distributed protocols. We also applied Tomlinson and Garg’s [TG97]

algorithm for deciding reachability for 0-1 sum predicates to verify properties on

these protocols. These algorithms avoid state space explosion by efficiently extract-

ing the necessary information from the partial order trace representation, without

constructing the entire state space. We provided experimental results from an imple-

mentation based on SPIN, which corroborated the effectiveness of these algorithms

in achieving state space reduction.

We showed that predicate filtering can be used on a finite trace cover to

reduce the state space for verifying classes of properties for which efficient verifi-

cation algorithms do not exist. Predicate filtering allows us to take advantage of

polynomial-time reachability algorithms to generate a reduced state space w.r.t. a

weaker property than the one to be verified. The reduced state space contains all

the states of the program that satisfy the weaker property (and hence, the original

property as well), but is typically exponentially smaller than the full state space of

the program.

We showed that lattice theory can also be used for state space reduction

in an interleaving representation of the state space. We developed efficient model

checking algorithms for a subset of CTL, which we call CETL, that consists entirely

of regular formulae. Not only do these algorithms provide significant state space

145

reduction by avoiding the exploration of multiple interleavings of concurrent events,

but they also result in the production of short error trails, thereby reducing debug-

ging effort. Our model checking algorithms explore only those events which are both

necessary and sufficient to verify the specification. Further, it explores only a single

interleaving of such events per maximal program trace. CETL consists of the exis-

tential until and release operators of CTL, and the conjunction operator. CETL can

express most safety and liveness properties. We implemented these algorithms as

an extension to SPIN, which we call SPICED (Simple PROMELA Interpreter with

Crucial Event Detection). Experimental results compared our performance against

that of SPIN with partial order reduction, and demonstrated that we consistently

produced significantly shorter error trails than SPIN. This ability to find errors

at shorter depths also resulted in faster run times and less memory consumption,

compared to SPIN with POR. Furthermore, the amount of state space reduction

achieved was comparable to POR techniques.

9.2 Future Work

Our model checking algorithms rely on the ability to identify crucial events. In par-

ticular, we need to be able to efficiently identify a crucial event to execute from the

current state. In [KG05b], we showed that unless RP=NP, there is no polynomial-

time algorithm for determining a crucial event for a meet-closed formula. In other

words, there is unlikely to be a deterministic polynomial-time algorithm for finding

a crucial event for a general meet-closed formula.

For some kinds of formulae, such as conjunctions of local predicates, the

crucial event can be identifed in time that is linear in the size of the formula. We

also identified cases where crucial events could be identified for CETL formulae.

However, the time complexity of identifying a crucial event for a general CETL

formula remains an open problem, and is a direction for future research.

146

Our algorithms for verification on partial order models are currently limited

to deciding reachability, that is, deciding whether the initial state of a program

satisfies EF (φ), where φ is a formula that contains no temporal operators. A future

direction of research is to extend these algorithms to include other CTL operators,

such as EG and AF , to enable the efficient verification of liveness properties on

partial order models. The finite trace cover model succintly encodes all the reachable

states of a program. However, this representation loses information about complete

paths in the original program, because of the use of cutoff events to truncate state

space construction. The verification of liveness properties requires information about

infinite paths, which is not preserved in the finite trace cover model. Thus, in order

to verify liveness properties, the finite trace cover model needs to be enhanced

to include information that allows a verification algorithm to traverse complete

paths, including cycles, in a computation. Beyond the verification of additional

CTL operators, future work on verification using finite trace covers would entail the

verification of formulae containing nested temporal operators.

For an interleaving state space representation, we presented model checking

algorithms for the logic CETL. While CETL can express many interesting safety and

liveness properties, it is strictly less expressive than CTL. In particular, CETL does

not contain the disjunction operator, and negation can only be applied to atomic

propositions. A future direction of research would be to apply lattice-theoretic

methods to improve the efficiency of model checking the full CTL logic.

In this dissertation, we used the mechanism of predicate filtering for state

space reduction. Another potential application of this technique lies in the area

of program repair. There has recently been some research interest in the use of

automated techniques to find the cause of an error encountered during verification.

For example, Ball et. al. [BNR03] examine all executions that lead to the same

control location (program counter) as that of error state, and attribute the error

147

to those transitions that are present only in an incorrect execution, and never in a

correct one. A similar approach was also proposed by Groce and Visser [GV03].

In predicate filtering, additional dependencies are added between events in a

trace, thereby reducing the number of possible interleavings in the trace. The aim

of adding these additional dependencies is to produce a sublattice of the down-set

lattice corresponding to the original trace. Given a predicate φ, predicate filtering

tries to produce a sublattice that contains only all the states that satisfy φ. Sup-

pose a property φ is required to be an invariant in a trace, that is, it is a correctness

requirement that φ must hold in every reachable state of the trace. If φ is a regular

formula, filtering each maximal trace of P w.r.t. φ retains all the states that satisfy

φ, while eliminating all the states that do not satisfy φ. In other words, all undesir-

able behaviors are eliminated, while all correct behaviors are maintained. Exploring

this application of predicate filtering for program repair is another direction for

future research.

148

Bibliography

[AG05] Anurag Agarwal and Vijay K. Garg. Efficient dependency tracking for

relevant events in shared-memory systems. In PODC ’05: Proceed-

ings of the 24th annual ACM symposium on Principles of distributed

computing, pages 19–28, New York, NY, USA, 2005. ACM.

[AG07] Anurag Agarwal and Vijay K. Garg. Predicate detec-

tion on infinite computations. Technical Report TR-

PDS-2006-001, ECE Dept., University of Texas at Austin,

http://maple.ece.utexas.edu/TechReports/2006/TR-PDS-2006-

001.ps, 2007.

[And90] T. E. Anderson. The performance of spin lock alternatives for shared-

money multiprocessors. IEEE Transactions on Parallel and Distributed

Systems, 1(1):6–16, 1990.

[AT96] Rajeev Alur and Gadi Taubenfeld. Fast timing-based algorithms. Dis-

tributed Computing, 10(1):1–10, 1996.

[BC87] W. W. Rouse Ball and H. S. M. Coxeter. Mathematical Recreations

and Essays. Dover, 1987.

[BHSV+96] Robert K. Brayton, Gary D. Hachtel, Alberto L. Sangiovanni-

Vincentelli, Fabio Somenzi, Adnan Aziz, Szu-Tsung Cheng, Stephen A.

149

Edwards, Sunil P. Khatri, Yuji Kukimoto, Abelardo Pardo, Shaz

Qadeer, Rajeev K. Ranjan, Shaker Sarwary, Thomas R. Shiple, Gi-

tanjali Swamy, and Tiziano Villa. VIS: A system for verification and

synthesis. In CAV ’96: Proceedings of the 8th International Confer-

ence on Computer Aided Verification, pages 428–432, London, UK,

1996. Springer-Verlag.

[BNR03] Thomas Ball, Mayur Naik, and Sriram K. Rajamani. From symp-

tom to cause: Localizing errors in counterexample traces. In POPL

’03: Proceedings of the 30th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, pages 97–105, New York, NY,

USA, 2003. ACM Press.

[CB91] Bernadette Charron-Bost. Concerning the size of logical clocks in dis-

tributed systems. Information Processing Letters, 39(1):11–16, 1991.

[CBDGF95] Bernadette Charron-Bost, Carole Delporte-Gallet, and Hugues Fau-

connier. Local and temporal predicates in distributed systems. ACM

Trans. Program. Lang. Syst., 17(1):157–179, 1995.

[CE82] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of

synchronization skeletons using branching-time temporal logic. In Logic

of Programs, Workshop, pages 52–71, London, UK, 1982. Springer-

Verlag.

[CG95] Craig M. Chase and Vijay K. Garg. Efficient detection of restricted

classes of global predicates. In WDAG ’95: Proceedings of the 9th Inter-

national Workshop on Distributed Algorithms, pages 303–317, London,

UK, 1995. Springer-Verlag.

150

[CGMP99] E.M. Clarke, O. Grumberg, M. Minea, and D. Peled. State space

reduction using partial order techniques. Software Tools for Technology

Transfer, 2(3):279–287, 1999.

[CGMZ95] E. M. Clarke, O. Grumberg, K. L. McMillan, and X. Zhao. Efficient

generation of counterexamples and witnesses in symbolic model check-

ing. In DAC ’95: Proceedings of the 32nd ACM/IEEE conference on

Design automation, pages 427–432, New York, NY, USA, 1995. ACM.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model

Checking. MIT Press, 1999.

[CL85] K. Mani Chandy and Leslie Lamport. Distributed snapshots: deter-

mining global states of distributed systems. ACM Trans. Comput.

Syst., 3(1):63–75, 1985.

[CM84] K. M. Chandy and J. Misra. The drinking philosophers problem. ACM

Trans. Program. Lang. Syst., 6(4):632–646, 1984.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In

STOC ’71: Proceedings of the third annual ACM symposium on Theory

of computing, pages 151–158, New York, NY, USA, 1971. ACM.

[CV04] E. M. Clarke and H. Veith. Counterexamples revisited: Principles,

algorithms, applications. Verification: Theory and Practice, Lecture

Notes in Computer Science, 2772:208–224, 2004.

[CVWY92] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory-

efficient algorithms for the verification of temporal properties. Formal

Methods in System Design, 1(2-3):275–288, 1992.

[Dij65] E. W. Dijkstra. Solution of a problem in concurrent programming

control. Communications of the ACM, 8(9):569, 1965.

151

[Dij72] E. W. Dijkstra. Hierarchical ordering of sequential processes. In

C. A. R. Hoare and R. H. Perrott, editors, Operating Systems Tech-

niques, New York, NY, 1972. Academic Press.

[DKR82] D. Dolev, M. Klawe, and M. Rodeh. An O(n log n) unidirectional dis-

tributed algorithm for extrema finding in a circle. Journal of Algo-

rithms, 3:245–260, 1982.

[DM41] B. Dushnik and E. W. Miller. Partially ordered sets. American Journal

of Mathematics, 63:600–610, 1941.

[DP90] B.A. Davey and H.A. Priestley. Introduction to Lattices and Order.

Cambridge University Press, Cambridge, 1990.

[DWG97] Om P. Damani, Yi-Min Wang, and Vijay K. Garg. Optimistic dis-

tributed simulation based on transitive dependency tracking. SIGSIM

Simulation Digest, 27(1):90–97, 1997.

[EC82] E. Allen Emerson and Edmund M. Clarke. Using branching time tem-

poral logic to synthesize synchronization skeletons. Science of Com-

puter Programming, 2(3):241–266, 1982.

[ELL01] Stefan Edelkamp, Alberto Lluch Lafuente, and Stefan Leue. Directed

explicit model checking with HSF-SPIN. In SPIN ’01: Proceedings of

the 8th international SPIN workshop on Model checking of software,

pages 57–79, New York, NY, USA, 2001. Springer-Verlag New York,

Inc.

[ELLL04] Stefan Edelkamp, Stefan Leue, and Alberto Lluch-Lafuente. Directed

explicit-state model checking in the validation of communication proto-

cols. International Journal on Software Tools for Technology Transfer,

6(4), 2004.

152

[Eme90] E. Allen Emerson. Temporal and modal logic. Handbook of theoretical

computer science (vol. B): formal models and semantics, pages 995–

1072, 1990.

[ERV96] Javier Esparza, Stefan Römer, and Walter Vogler. An improvement

of McMillan’s unfolding algorithm. In TACAS ’96: Proceedings of

the Second International Workshop on Tools and Algorithms for Con-

struction and Analysis of Systems, pages 87–106, London, UK, 1996.

Springer-Verlag.

[Esp94] Javier Esparza. Model checking using net unfoldings. In TAPSOFT

’93: Selected papers of the colloquium on Formal approaches of soft-

ware engineering, pages 151–195, Amsterdam, The Netherlands, The

Netherlands, 1994. Elsevier Science Publishers B. V.

[Fid88] C. J. Fidge. Partial orders for parallel debugging. In PADD ’88: Pro-

ceedings of the 1988 ACM SIGPLAN and SIGOPS workshop on Par-

allel and distributed debugging, pages 183–194, New York, NY, USA,

1988. ACM.

[Fis85] Michael J. Fischer. Real-time mutual exclusion. Unpublished

manuscript, 1985.

[Gar02] Vijay K. Garg. Algorithmic combinatorics based on slicing posets. In

FSTTCS ’02: Proceedings of the 22nd Conference Kanpur on Founda-

tions of Software Technology and Theoretical Computer Science, pages

169–181, London, UK, 2002. Springer-Verlag.

[GJ90] Michael R. Garey and David S. Johnson. Computers and Intractability;

A Guide to the Theory of NP-Completeness. W. H. Freeman & Co.,

New York, NY, USA, 1990.

153

[GM01] Vijay K. Garg and Neeraj Mittal. On slicing a distributed computation.

In ICDCS ’01: Proceedings of the The 21st International Conference

on Distributed Computing Systems, pages 322–329, Phoenix, AZ, USA,

May 2001.

[GM07] Paul Gastin and Pierre Moro. Minimal counterexample generation

for SPIN. In SPIN 2007: Proceedings of the 14th International SPIN

Workshop on Model Checking Software, pages 24–38, 2007.

[GMS03] Vijay K. Garg, Neeraj Mittal, and Alper Sen. Applications of lattice

theory to distributed computing. ACM SIGACT Notes, 34(3):40–61,

sep 2003.

[God91] Patrice Godefroid. Using partial orders to improve automatic verifi-

cation methods. In CAV ’90: Proceedings of the 2nd International

Workshop on Computer Aided Verification, pages 176–185, London,

UK, 1991. Springer-Verlag.

[God96] Patrice Godefroid. Partial-Order Methods for the Verification of

Concurrent Systems: An Approach to the State-Explosion Problem.

Springer-Vabderlag New York, Inc., Secaucus, NJ, USA, 1996. Fore-

word By-Pierre Wolper.

[Gol87] Robert Goldblatt. Logics of time and computation. Center for the

Study of Language and Information, Stanford, CA, USA, 1987.

[Gro93] Bojan Groselj. Bounded and minimum global snapshots. IEEE Parallel

and Distributed Technology, 1(4):72–83, 1993.

[GS01] Vijay K. Garg and Chakarat Skawratananond. String realizers of posets

with applications to distributed computing. In PODC ’01: Proceedings

154

of the twentieth annual ACM symposium on Principles of distributed

computing, pages 72–80, New York, NY, USA, 2001. ACM.

[GV03] Alex Groce and Willem Visser. What went wrong: Explaining coun-

terexamples. In 10th International SPIN Workshop on Model Checking

of Software, pages 121–135, Portland, Oregon, May 9–10, 2003.

[GW92] Patrice Godefroid and Pierre Wolper. Using partial orders for the

efficient verification of deadlock freedom and safety properties. In CAV

’91: Proceedings of the 3rd International Workshop on Computer Aided

Verification, pages 332–342, London, UK, 1992. Springer-Verlag.

[GW94a] V. K. Garg and B. Waldecker. Detection of weak unstable predicates

in distributed programs. IEEE Trans. Parallel Distrib. Syst., 5(3):299–

307, 1994.

[GW94b] Patrice Godefroid and Pierre Wolper. A partial approach to model

checking. Information and Computation, 110(2):305–326, 1994.

[Hel99] Keijo Heljanko. Deadlock and reachability checking with finite com-

plete prefixes. Research Report A56, Helsinki University of Technol-

ogy, Department of Computer Science and Engineering, Laboratory for

Theoretical Computer Science, Espoo, Finland, December 1999.

[Hel00] Keijo Heljanko. Model checking with finite complete prefixes is pspace-

complete. In CONCUR ’00: Proceedings of the 11th International Con-

ference on Concurrency Theory, pages 108–122, London, UK, 2000.

Springer-Verlag.

[HJ04] Gerard J. Holzmann and R. Joshi. Model-driven software verification.

In SPIN ’04: Proceedings of the 11th International SPIN Workshop

155

on Model Checking of Software, pages 77–92, Barcelona, Spain, April

2004. Springer-Verlag, LNCS 2989.

[HK06] Henri Hansen and Antti Kervinen. Minimal counterexamples in

O(n log n) memory and O(n2) time. In ACSD ’06: Proceedings of

the Sixth International Conference on Application of Concurrency to

System Design, pages 133–142, Washington, DC, USA, 2006. IEEE

Computer Society.

[HLP01] Klaus Havelund, Mike Lowry, and John Penix. Formal analysis of

a space-craft controller using SPIN. IEEE Transactions on Software

Engineering, 27(8):749–765, 2001.

[HNR68] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the

heuristic determination of minimum cost paths. IEEE Transactions

on Systems Science and Cybernetics, 4(2):100–107, 1968.

[Hol91] Gerard J. Holzmann. Design and validation of computer protocols.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1991.

[Hol01] Gerard J. Holzmann. Economics of software verification. In PASTE

’01: Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on

Program analysis for software tools and engineering, pages 80–89, New

York, NY, USA, 2001. ACM.

[Hol03] Gerard J. Holzmann. The SPIN Model Checker: Primer and Reference

Manual. Addison-Wesley, September 2003.

[Hol07] Gerard Holzmann. On-the-fly LTL model checking with SPIN. http:

//spinroot.com/spin/, 2007.

[HP95] Gerard J. Holzmann and Doron Peled. An improvement in formal

verification. In Proceedings of the 7th IFIP WG6.1 International Con-

156

http://spinroot.com/spin/
http://spinroot.com/spin/

ference on Formal Description Techniques VII, pages 197–211, London,

UK, UK, 1995. Chapman & Hall, Ltd.

[KG05a] Sujatha Kashyap and Vijay K. Garg. Exploiting predicate structure

for efficient reachability detection. In ASE ’05: Proceedings of the

20th IEEE/ACM international Conference on Automated software en-

gineering, pages 4–13, New York, NY, USA, 2005. ACM.

[KG05b] Sujatha Kashyap and Vijay K. Garg. Intractability results in predicate

detection. Information Processing Letters, 94(6):277–282, June 2005.

[KG06] Sujatha Kashyap and Vijay K. Garg. State space re-

duction using predicate filters. Technical Report TR-

PDS-2006-003, ECE Dept., University of Texas at Austin,

http://maple.ece.utexas.edu/TechReports/2006/TR-PDS-2006-

003.pdf, 2006.

[KG08] Sujatha Kashyap and Vijay K. Garg. Producing short counterexam-

ples using crucial events. In CAV ’08: Proceedings of the 17th In-

ternational Conference on Computer Aided Verification (to appear).

Springer-Verlag, 2008.

[KL00] Moataz Kamel and Stefan Leue. VIP: A visual editor and compiler

for v-PROMELA. In TACAS ’00: Proceedings of the 6th International

Conference on Tools and Algorithms for Construction and Analysis of

Systems, pages 471–486, London, UK, 2000. Springer-Verlag.

[KP87] Shmuel Katz and Doron Peled. Interleaving set temporal logic. In

PODC ’87: Proceedings of the sixth annual ACM Symposium on Prin-

ciples of distributed computing, pages 178–190, New York, NY, USA,

1987. ACM.

157

[KP92] Shmuel Katz and Doron Peled. Defining conditional independence us-

ing collapses. Theor. Comput. Sci., 101(2):337–359, 1992.

[KPM01] S. H. Kan, J. Parrish, and D. Manlove. In-process metrics for software

testing. IBM Systems Journal, 40(1):220–241, 2001.

[KT07] Danny Kopec and Suzanne Tamang. Failures in complex systems: case

studies, causes, and possible remedies. SIGCSE Bull., 39(2):180–184,

2007.

[Kwi89] Marta Z. Kwiatkowska. Event fairness and non-interleaving concur-

rency. Formal Aspects of Computing, 1:213–228, 1989.

[Laf03] Alberto Lluch Lafuente. Symmetry reduction and heuristic search for

error detection in model checking. In Workshop on Model Checking

and Artificial Intelligence, August 2003.

[Lam74] Leslie Lamport. A new solution of Dijkstra’s concurrent programming

problem. Commun. ACM, 17(8):453–455, 1974.

[Lam78] L. Lamport. Time, clock and the ordering of events in a distributed

system. Communications of the ACM (CACM), 21(7):558–565, July

1978.

[Lam83] Leslie Lamport. Specifying concurrent program modules. ACM Trans-

actions on Programming Languages and Systems (TOPLAS), 5(2):190–

222, 1983.

[Lam87] Leslie Lamport. A fast mutual exclusion algorithm. ACM Transactions

on Computer Systems, 5(1):1–11, 1987.

[LLEL02] Alberto Lluch-Lafuente, Stefan Edelkamp, and Stefan Leue. Partial

order reduction in directed model checking. In Proceedings of the 9th

158

International SPIN Workshop on Model Checking of Software, pages

112–127, London, UK, 2002. Springer-Verlag.

[LPY01] Magnus Lindahl, Paul Pettersson, and Wang Yi. Formal design and

analysis of a gearbox controller. Springer International Journal of

Software Tools for Technology Transfer (STTT), 3(3):353–368, 2001.

[Mat89] F. Mattern. Virtual time and global states of distributed systems. In

Proc. of the International Workshop on Distributed Algorithms, pages

215–226, 1989.

[Mat93] Friedemann Mattern. Efficient algorithms for distributed snapshots

and global virtual time approximation. Journal of Parallel and Dis-

tributed Computing, 18(4):423–434, 1993.

[Maz77] Antoni Mazurkiewicz. Concurrent program schemes and their interpre-

tations. Technical Report DAIMI PB 78, Aarhus University, Aarhus,

1977.

[Maz84] Antoni W. Mazurkiewicz. Traces, histories, graphs: Instances of a

process monoid. In Proceedings of the Mathematical Foundations of

Computer Science 1984, pages 115–133, London, UK, 1984. Springer-

Verlag.

[Maz85] Antoni W. Mazurkiewicz. Semantics of concurrent systems: a modular

fixed-point trace approach. In Proceedings of the European Workshop

on Applications and Theory in Petri Nets, covers the last two years

which include the workshop 1983 in Toulouse and the workshop 1984

in Aarhus, selected papers, pages 353–375, London, UK, 1985. Springer-

Verlag.

159

[Maz87] A Mazurkiewicz. Trace theory. In Advances in Petri nets 1986, part

II on Petri nets: applications and relationships to other models of con-

currency, pages 279–324, New York, NY, USA, 1987. Springer-Verlag

New York, Inc.

[Maz89] Antoni W. Mazurkiewicz. Basic notions of trace theory. In Linear

Time, Branching Time and Partial Order in Logics and Models for

Concurrency, School/Workshop, pages 285–363, London, UK, 1989.

Springer-Verlag.

[McM92] Kenneth Lauchlin McMillan. Symbolic model checking: an approach to

the state explosion problem. PhD thesis, Carnegie Mellon University,

Pittsburgh, PA, USA, 1992.

[McM93] Kenneth L. McMillan. Using unfoldings to avoid the state explosion

problem in the verification of asynchronous circuits. In CAV ’92: Pro-

ceedings of the Fourth International Workshop on Computer Aided Ver-

ification, pages 164–177, London, UK, 1993. Springer-Verlag.

[MCS91] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scal-

able synchronization on shared-memory multiprocessors. ACM Trans.

Comput. Syst., 9(1):21–65, 1991.

[MG01] Neeraj Mittal and Vijay K. Garg. Computation slicing: Techniques and

theory. In DISC ’01: Proceedings of the 15th International Conference

on Distributed Computing, pages 78–92, London, UK, 2001. Springer-

Verlag.

[MG03] Neeraj Mittal and Vijay K. Garg. Software fault tolerance of dis-

tributed programs using computation slicing. In ICDCS ’03: Proceed-

ings of the 23rd International Conference on Distributed Computing

160

Systems, page 105, Providence, Rhode Island, USA, 2003. IEEE Com-

puter Society.

[MG05] Neeraj Mittal and Vijay K. Garg. Techniques and applications of com-

putation slicing. Distrib. Comput., 17(3):251–277, 2005.

[MMB08] Thierry Massart, Cédric Meuter, and Laurent Van Begin. On the com-

plexity of partial order trace model checking. Information Processing

Letters, 106(3):120–126, 2008.

[MP79] Zohar Manna and Amir Pnueli. The modal logic of programs. In

Proceedings of the 6th Colloquium, on Automata, Languages and Pro-

gramming, pages 385–409, London, UK, 1979. Springer-Verlag.

[MSGA04] Neeraj Mittal, Alper Sen, Vijay K. Garg, and Ranganath Atreya. Find-

ing satisfying global states: all for one and one for all. In IPDPS ’04:

Proceedings of the 18th International Parallel and Distributed Process-

ing Symposium, pages 66–75, April 2004.

[NS78] Roger M. Needham and Michael D. Schroeder. Using encryption for

authentication in large networks of computers. Communications of the

ACM, 21(12):993–999, 1978.

[OG07] Vinit Ogale and Vijay K. Garg. Detecting temporal logic predicates

on distributed computations. In DISC ’07: Proceedings of the 21st

International Conference on Distributed Computing, pages 420–434,

London, UK, 2007. Springer-Verlag.

[PBG04] B. Pochon, S. Baehni, and R. Guerraoui. The driving philosophers.

In TCS’04: Proceedings of the 3rd IFIP International Conference on

Theoretical Computer Science, 2004.

161

[Pel93] Doron Peled. All from one, one for all: on model checking using rep-

resentatives. In CAV ’93: Proceedings of the 5th International Con-

ference on Computer Aided Verification, pages 409–423, London, UK,

1993. Springer-Verlag.

[Pel94] Doron Peled. Combining partial order reductions with on-the-fly

model-checking. In CAV ’94: Proceedings of the 6th International Con-

ference on Computer Aided Verification, pages 377–390, London, UK,

1994. Springer-Verlag.

[Pel07] Radek Pelanek. BEEM: BEnchmarks for Explicit Model checkers.

http://anna.fi.muni.cz/models/index.html, 2007.

[Pet62] Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Uni-

versitt Bonn, Schriften des Instituts fr Instrumentelle Mathematik Nr.

3., 1962.

[Pet83] Gary L. Peterson. A new solution to Lamport’s concurrent program-

ming problem using small shared variables. ACM Transactions on

Programming Languages and Systems (TOPLAS), 5(1):56–65, 1983.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Proceedings of the

18th IEEE Symposium on Foundations of Computer Science, pages

46–57, 1977.

[Pnu81] Amir Pnueli. The temporal semantics of concurrent programs. Theo-

retical Computer Science, 13:45–60, 1981.

[Pnu86] A Pnueli. Applications of temporal logic to the specification and veri-

fication of reactive systems: a survey of current trends. Current trends

in concurrency. Overviews and tutorials, pages 510–584, 1986.

162

http://anna.fi.muni.cz/models/index.html

[PP94] Doron Peled and Amir Pnueli. Proving partial order properties. The-

oretical Computer Science, 126(2):143–182, 1994.

[Pra86] Vaughan Pratt. Modeling concurrency with partial orders. Interna-

tional Journal of Parallel Programming, 15(1):33–71, 1986.

[PVK01] Doron Peled, Antti Valmari, and Ilkka Kokkarinen. Relaxed visibility

enhances partial order reduction. Formal Methods for System Design,

19(3):275–289, 2001.

[PW84] Shlomit S. Pinter and Pierre Wolper. A temporal logic for reasoning

about partially ordered computations (extended abstract). In PODC

’84: Proceedings of the third annual ACM symposium on Principles of

distributed computing, pages 28–37, New York, NY, USA, 1984. ACM.

[PW97] Doron Peled and Thomas Wilke. Stutter-invariant temporal properties

are expressible without the next-time operator. Information Processing

Letters, 63(5):243–246, 1997.

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and verification

of concurrent systems in CESAR. In Proceedings of the 5th Colloquium

on International Symposium on Programming, pages 337–351, London,

UK, 1982. Springer-Verlag.

[RA81] Glenn Ricart and Ashok K. Agrawala. An optimal algorithm for mutual

exclusion in computer networks. Commun. ACM, 24(1):9–17, 1981.

[SECH98] Francis Schneider, Steve M. Easterbrook, John R. Callahan, and Ger-

ard J. Holzmann. Validating requirements for fault tolerant systems

using model checking. In ICRE ’98: Proceedings of the 3rd Interna-

tional Conference on Requirements Engineering, pages 4–13, Washing-

ton, DC, USA, 1998. IEEE Computer Society.

163

[Sen04] Alper Sen. Techniques for Formal Verification of Concurrent and Dis-

tributed Program Traces. PhD thesis, University of Texas at Austin,

May 2004.

[SG02] Alper Sen and Vijay K. Garg. Detecting temporal logic predicates

on the happened-before model. In IPDPS ’02: Proceedings of the 16th

International Symposium on Parallel and Distributed Processing, pages

76–83, Washington, DC, USA, April 2002. IEEE Computer Society.

[SG03a] Alper Sen and Vijay K. Garg. Detecting temporal logic predicates

in distributed programs using computation slicing. In OPODIS ’03:

Proceedings of the 7th International Conference on Principles of Dis-

tributed Systems, pages 171–183, La Martinique, France, December

2003.

[SG03b] Alper Sen and Vijay K. Garg. Partial Order Trace Analyzer (POTA)

for distributed programs. In RV’03: Proceedings of the Workshop on

Runtime Verification, pages 105 – 113, Boulder, Colorado, USA, 2003.

Electronic Notes on Theoretical Computer Science (ENTCS), vol. 89.

[SL85] Fred B. Schneider and Leslie Lamport. Paradigms for distributed pro-

grams. In Distributed Systems: Methods and Tools for Specification,

An Advanced Course, April 3-12, 1984 and April 16-25, 1985 Munich,

pages 431–480, London, UK, 1985. Springer-Verlag.

[SY85] Rob Strom and Shaula Yemini. Optimistic recovery in distributed

systems. ACM Trans. Comput. Syst., 3(3):204–226, 1985.

[Szy90] B. K. Szymanski. Mutual exclusion revisited. In JCIT: Proceedings of

the fifth Jerusalem conference on Information technology, pages 110–

119, Los Alamitos, CA, USA, 1990. IEEE Computer Society Press.

164

[TAC+04] Jianbin Tan, George S. Avrunin, Lori A. Clarke, Shlomo Zilber-

stein, and Stefan Leue. Heuristic-guided counterexample search in

FLAVERS. SIGSOFT Softw. Eng. Notes, 29(6):201–210, 2004.

[TG93] Alexander I. Tomlinson and Vijay K. Garg. Detecting relational global

predicates in distributed systems. In PADD ’93: Proceedings of the

1993 ACM/ONR workshop on Parallel and distributed debugging, pages

21–31, New York, NY, USA, 1993. ACM.

[TG97] Alexander I. Tomlinson and Vijay K. Garg. Monitoring functions on

global states of distributed programs. J. Parallel Distrib. Comput.,

41(2):173–189, 1997.

[Val91a] Antti Valmari. A stubborn attack on state explosion. In CAV ’90:

Proceedings of the 2nd International Workshop on Computer Aided

Verification, pages 156–165, London, UK, 1991. Springer-Verlag.

[Val91b] Antti Valmari. Stubborn sets for reduced state space generation. In

Proceedings of the 10th International Conference on Applications and

Theory of Petri Nets, pages 491–515, London, UK, 1991. Springer-

Verlag.

[Val93] Antti Valmari. On-the-fly verification with stubborn sets. In CAV ’93:

Proceedings of the 5th International Conference on Computer Aided

Verification, pages 397–408, London, UK, 1993. Springer-Verlag.

[Var01] Moshe Y. Vardi. Branching vs. linear time: Final showdown. In TACAS

2001: Proceedings of the 7th International Conference on Tools and

Algorithms for the Construction and Analysis of Systems, pages 1–22,

London, UK, 2001. Springer-Verlag.

165

[VL93] Bart Vergauwen and Johan Lewi. A linear local model checking algo-

rithm for CTL. In CONCUR ’93: Proceedings of the 4th International

Conference on Concurrency Theory, pages 447–461, London, UK, 1993.

Springer-Verlag.

[VW86] Moshe Vardi and Pierre Wolper. An automata-theoretic approach to

automatic program verification. In LICS ’86: Proceedings of the First

IEEE Symposium on Logic in Computer Science, pages 322–331, 1986.

[Wei81] Mark Weiser. Program slicing. In ICSE ’81: Proceedings of the 5th

international conference on Software engineering, pages 439–449, Pis-

cataway, NJ, USA, 1981. IEEE Press.

[Wes89] C. H. West. Protocol validation in complex systems. SIGCOMM Com-

puter Communication Review, 19(4):303–312, 1989.

[Win87] G. Winskel. Event structures. In Advances in Petri nets 1986, part II

on Petri nets: applications and relationships to other models of con-

currency, pages 325–392, New York, NY, USA, 1987. Springer-Verlag

New York, Inc.

[YD98] C. Han Yang and David L. Dill. Validation with guided search of the

state space. In DAC ’98: Proceedings of the 35th annual conference on

Design automation, pages 599–604, New York, NY, USA, 1998. ACM.

166

Vita

Sujatha Kashyap was born in Srinagar, Jammu & Kashmir, India in 1977. She

received her Bachelor of Technology degree in Computer Engineering from the Na-

tional Institute of Technology, Karnataka in 1998. She graduated with a Master

of Science degree in Computer Science from Texas A&M University in 2000. She

started her Ph.D. program at the University of Texas at Austin in 2002. She has

been an employee of IBM Corporation since 2000.

Permanent Address: 32, Jalvayu Vihar,

Kammanahalli Main Road,

Bangalore, India - 560043

This dissertation was typeset with LATEX2ε1 by the author.

1LATEX2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin, and extended
by Bert Kay, James A. Bednar, and Ayman El-Khashab.

167

	Acknowledgments
	Abstract
	Contents
	Chapter Introduction
	Motivation
	Contributions of This Dissertation
	Related Work
	Lattice-Theoretic Approaches
	Concurrency in Interleaving Models
	Verifying Partial Order Models

	Organization of this Dissertation

	I Preliminaries
	Chapter System Model
	Introduction
	Programs
	Traces
	Traces and Posets
	Traces and Lattices

	Processes
	The Dependency Relation

	Bibliographic Notes
	Summary

	Chapter Predicates
	Introduction
	Computation Tree Logic
	Predicate Structure
	Meet-Closed Predicates
	Crucial Events
	Exploiting Meet-Closure

	Regular Predicates
	Bibliographic Notes
	Summary

	II Predicate Structure
	Chapter Predicate Recognition
	Introduction
	Problem Statement
	Our Contribution

	Recognizing Meet-Closure
	Recognizing Regularity
	Other Recognition Problems
	Bibliographic Notes
	Summary

	Chapter Regular CTL Operators
	Introduction
	Our Contribution

	Preserving Biregularity
	Preserving Regularity
	Bibliographic Notes
	Summary

	III Partial Order Semantics
	Chapter Trace Covers
	Introduction
	Our Contribution

	Trace Covers
	Representative Transition Sequences
	Obtaining Posets From Sequences
	Finite Trace Covers
	Model Checking on Finite Trace Covers
	Meet-closed predicates
	0-1 sum predicates

	Comparison to POR Techniques
	Implementation and Experimental results
	Bibliographic Notes
	Summary

	Chapter Predicate Filtering
	Introduction
	Our Contribution

	Background
	Filtering a Trace
	Constructing the Filtrate

	Filtering for State Space Reduction
	Case Study: Leader Election Protocol

	Bibliographic Notes
	Summary

	IV Interleaving Semantics
	Chapter Producing Short Counterexamples
	Introduction
	Our Contribution

	Crucial Event Temporal Logic (CETL)
	Baseline Algorithm
	Model Checking CETL in a Trace
	Existential Until Operator (EU)
	Existential Release Operator (ER)

	Model Checking CETL in a Program
	Finding Universally Crucial events
	Experimental Results
	Length of Error Trails
	State Space Reduction
	Complete List of Results

	Bibliographic Notes
	Summary

	V Conclusion
	Chapter Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Vita

