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Data aggregation is ubiquitous in modern life. Due to various reasons like

privacy, scalability, robustness, etc., ground truth data is often subjected to aggre-

gation before being released to the public, or utilised by researchers and analysts.

Learning from aggregated data is a challenging problem that requires significant al-

gorithmic innovation, since naive application of standard techniques to aggregated

data is vulnerable to the ecological fallacy. In this work, we explore three different

versions of this setting.

First, we tackle the problem of using generalised linear models when fea-

tures/covariates are fully observed but the targets are only available as histograms-

a common scenario in the healthcare domain where many datasets contain both non-

sensitive attributes like age, sex, zip-code, etc., as well as privacy sensitive attributes

like healthcare records. We introduce an efficient algorithm that uses alternating data

imputation and GLM estimation steps to learn predictive models in this setting.
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Next, we look at the problem of learning sparse linear models when both

features and targets are in aggregated form, specified as empirical estimates of group-

wise means computed over different sub-groups of the population. We show that if

the true sub-populations are heterogeneous enough, the optimal sparse parameter

can be recovered within an arbitrarily small tolerance even in the presence of noise,

provided the empirical estimates are obtained from a sufficiently large number of

observations.

Third, we tackle the scenario of predictive modelling with data that is sub-

jected to spatio-temporal aggregation. We show that by formulating the problem in

the frequency domain, we can bypass the mathematical and representational chal-

lenges that arise due to non-uniform aggregation, misaligned sampling periods and

aliasing. We introduce a novel algorithm that uses restricted Fourier transforms to

estimate a linear model which, when applied to spatio-temporally aggregated data,

has a generalisation error that is provably close to the optimal performance by the

best possible linear model that can be learned from the non-aggregated data set.

We then focus our attention on the complementary problem that involves

designing aggregation strategies that can allow learning, as well as developing al-

gorithmic techniques that can use only the aggregates to train a model that works

on individual samples. We motivate our methods by using the example of Gaussian

regression, and subsequently extend our techniques to subsume binary classifiers and

generalised linear models. We deonstrate the effectiveness of our techniques with

empirical evaluation on data from healthcare and telecommunication.

Finally, we present a concrete example of our methods applied to a real life

viii



practical problem. Specifically, we consider an application in the domain of online

advertising where the complexity of bidding strategies require accurate estimates

of most probable cost-per-click or CPC incurred by advertisers, but the data used

for training these CPC prediction models are only available as aggregated invoices

supplied by an ad publisher on a daily or hourly basis. We introduce a novel learn-

ing framework that can use aggregates computed at varying levels of granularity for

building individual-level predictive models. We generalise our modelling and algo-

rithmic framework to handle data from diverse domains, and extend our techniques

to cover arbitrary aggregation paradigms like sliding windows and overlapping/non-

uniform aggregation. We show empirical evidence for the efficacy of our techniques

with experiments on both synthetic data and real data from the online advertising

domain as well as healthcare to demonstrate the wider applicability of our framework.
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Chapter 1

Introduction

Modern life is highly data driven. Datasets with potential for granular, indi-

vidual level predictive modelling and inference are generated every day in large vol-

umes in fields as diverse as healthcare (Park & Ghosh, 2014; Armstrong et al., 1999),

econometrics (Davidson et al., 1978), climate science (Lozano et al., 2009; Liu et al.,

2010), financial forecasting (Taylor, 2007), Internet of Things (IoTs) (Da Xu et al.,

2014; Li et al., 2013). This creates an opportunity for researchers and policy-makers

to analyze the data and draw individual level inferences using machine learning and

data mining models trained on the data.

The traditional machine learning training paradigm involves models, both

parametric and non-parametric, that are learned by training them to fit a dataset of

individual level training samples as best as they can, up to generalisation constraints.

Therefore, the typical machine learning setup requires access to data points that

are in the form of individual-level records, e.g., account information for individual

customers, or health records for individual patients, etc. However, in many domains,

access to such individual records are severely restricted due to a variety of reasons.

Instead, the data available to practitioners for training their machine learning models

is often available only in an aggregated form or as summaries.
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1.1 Data Aggregation in Various Contexts

Data aggregation and other statistical disclosure limitation techniques are an

immensely popular technique in varied contexts including, but not limited to, the

following

1.1.1 Privacy preservation

Aggregation is a common strategy for sharing of sensitive data in the health-

care industry where regulations and ethics guidelines protecting the privacy of pa-

tients restricts public access to granular information about individuals. Sensitive

patient information is subject to various Statistical Disclosure Limitation (SDL)

techniques (Armstrong et al., 1999; Duncan et al.) before public release, and data

aggregation is a common statistical disclosure limitation technique to enable learn-

ing while preserving user anonymity. There are lots of applications in domains like

healthcare (e.g. patient records), or users and communities in social media (e.g.

purchases on e-commerce websites, or sample statistics about consumed content on

Hulu, Netflix, Spotify, etc. together with information about social network graphs).

1.1.2 Communication bottlenecks

Large scale data is inherently difficult to transport, hence data is often ag-

gregated before transferring between different nodes. Census data and other large

scale data collection programs like the General Social Survey (GSS) collect and re-

port data in aggregated form (NORC). Similarly, data collected and released by the

Bureau of Labour Statistics (US Department of Labour) and Bureau of Economic
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Analysis (US Department of Commerce) are often aggregated for ease of use.

1.1.3 Limitations of data collection

Some kinds of data simply cannot be collected with sufficient information

granularity. This is especially true for dynamic data collection, where point by

point snapshots may not be available, or reliable (for example, a person may rate

his experience with an airline or an e-commerce portal as “overall unsatisfactory”,

without elaborating on specific positives or negative- the timeline of his interactions

with the portal might still be available, but not his “rating” for each step in the

timeline).

1.1.4 Robustness

Aggregated data is known to be more robust to noise and interference. A lot

of decentralised sensor networks or user behavious therefore report data in aggre-

gated form, which are more reliable for analysis and inferential application than raw

non-aggregated data. Potential applications include physical sensor networks that

monitor temperature, humidity, etc. for agriculture or meteorology, or crowdsourced

information collection for, say restaurants ratings or real time waiting periods, or cur-

rent traffic information, for example. Data from IoTs and other distributed sensor

networks are often collected in aggregated form to mitigate communication costs, and

improve robustness to noise and malicious interference (Wagner, 2004; Zhao et al.,

2003)
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1.1.5 Spatio-temporal Applications

This is another context in which aggregation shows up. In many real life

cases (Burrell et al., 2004; Lozano et al., 2009; Davidson et al., 1978) instead of

releasing granular datasets involving individual samples with localised measurements,

the data that is collected is publicly reported only as spatio-temporally aggregated

averages, collected over specific intervals and released periodically. For example,

data released by the Bureau of Labour Statistics (US Department of Labour) and

Bureau of Economic Analysis (US Department of Commerce) are often in this form.

Analysis of such data with complex strucutral correlations is an important and ever

present problem in many disciplines with applications in diverse and wide-ranging

fields.

1.1.6 Proprietary Data Protection

It is very common in industry for two or more different companies work to-

gether on a common platform to provide a service to their clients or customers. In

such a case, effective service would require data sharing between the companies, but

to protect proprietary ownership and the integrity of private data, a company cannot

provide carte blanche access to their own individual records to third parties. In such a

case, companies often aggregate the data before they share it with external partners.

For example, in the multi-billion dollar online advertising industry (Zeff & Aron-

son, 1999; Yan et al., 2009), ad publishers (like Google or Facebook) have to work

with advertisers (like Criteo) to ensure that the right ad reaches the right customer.

The backbone of the entire process is a partially observed auction mechanism, where
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advertisers bid for ad space on publishers’ domains using their proprietary bidding

algorithm, and publishers charge advertisers using their own cost-per-click (CPC)

formula. To protect their algorithms and retain leverage during negotiation, each

side only provides aggregated user propensity or CPC data to the other side, and

models for each have to be learned at the individual ad or individual user level using

only these aggregates.

1.1.7 Security and Legal Regulations

Data security is a critical consideration in many sensitive applications, includ-

ing healthcare, e-commerce, and Telecom. In these domains, storage and transporta-

tion of individual level records can be problematic due to both ethical concerns as

well as vulnerability to leakage or hacks. In such domains, data can only be accessed

at the individual level in small chunks, after which the data needs to be aggregated

and all individual records purged from the system. For example, in the telecom

domain (Breyer, 2005; Brown, 2010), federal regulations prohibit the storage of user

data in identifiable form beyond a specific period of time, and all future models need

to be learned only using these aggregates.

1.2 Ecological Fallacy

One of the main challenges in learning from aggregated is the phenomenon

of Ecological Fallacy, wherein inferences drawn by analysing a system at the group

or aggregate level differs significantly from the ground truth at the individual level.

An especially egregious variation of this phenomenon is Simpson’s paradox (Wagner,
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1982; Kievit et al., 2013), where trends that can be observed in data at a lower level

of granularity reverse themselves when the data is viewed at an aggregate level.

A particularly famous example of Simpson’s paradox occurred in the context

of undergraduate admissions at the University of California in Berkeley for Fall of

1973 (Bickel et al., 1975), when comparison of the proportions of women accepted for

admission to the University as a whole was found to be less than the corresponding

proportion of men admitted. This analysis pointed towards the possibility of gender

bias against women. However, when the data was broken down by Department,

this inference was found to be highly misleading– in fact, the proportion of women

accepted turned out to be comparable or marginally higher for most departments.

The discrepancy was caused by the fact that during that particular semester, most

women happened to apply for admission to highly competitive departments, while

most men applied to departments that admitted a larger proportion of students

overall. Hence, when the data was aggregated across all applicants to the University

as a whole, the proportion of men admitted was inflated.

Another well known example of Simpson’s paradox occurred (Cohen & Nagel,

1957) in the context of tuberculosis related deaths in the cities of Richmond, Virginia

and New York, New York, during the year 1910. While New York city had a lower

mortality rate overall compared to Richmond, when the data was separated by race

into white and non-white categories, the mortality rate for each category was found

to be lower in Richmond. The resolving explanation was the same as in the Berkeley

case– unequal racial distribution for the two cities resulted in the discrepancy between

the aggregate trend and the trend at the sub-group level.
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These examples, and many others throughout history, demonstrate the ne-

cessity of caution in using aggregate level data analysis to make inferences at the

individual level without adequate due diligence in ensuring the transferability of the

analysis. To avoid these pitfalls, while we train our models using aggregated data,

for all methods presented throughout this thesis we compare the performance of our

model when applied to data at the individual level.

1.3 Learning from Aggregated Data

This aggregated data setup is a relatively new form of semi-supervision, which

requires novel techniques and significant algorithmic innovation on the part of data

analysts to perform modeling and inference. However, despite its ubiquity, there

has not been sufficient attention devoted to problems in this domain. In this thesis

we investigate machine learning and data mining in various settings involving data

aggregation, and rectify in part the lacunae in research on aggregated data. We

consider various forms of aggregation paradigms and develop novel algorithmic tech-

niques to offset some of the challenges that accompany data analysis under each such

setup. We also design new aggregation frameworks as well as corresponding learning

protocols that allow for training a model while preserving privacy. Finally, to bridge

the gap between esoteric mathematical theory and out-of-domain stakeholders, we

introduce new criteria for measuring privacy that is both stringent yet easily com-

prehensible without a strong foundation in rigorous mathematical disciplines. We

further show how our aggregation paradigms satisfy these new criteria in privacy

preservation.
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1.3.1 Organisation

The rest of the thesis is organised as follows:

Chapter 2 introduces the requisite background and preliminaries that form

the foundation of most of the work in the thesis. It also describes some related work

that form complementary reading to the material covered by the thesis.

Chapter 3 studies the case where all covariates or feature variables are fully

observed at individual level (e.g. demographic information), but the target variables

of interest is in aggregated form (e.g. privacy-sensitive patient information). We

study the variation of this problem is when the target variables are aggregated in a

non-linear manner, specifically when they are available as order statistics like me-

dians and quartiles, or available as histograms of arbitrary granularity. We develop

novel techniques to learn under such constraints in the context of generalised linear

models, and demonstrate its efficacy using empirical evaluation of parameter estima-

tion fidelity and estimation error on synthetic data, as well as predictive accuracy

on real data from the healthcare domain.

Chapter 4 looks at the setup where both the features/covariates and targets

are aggregated group-wise– specifically, they only known up to their respective group-

wise means. This section investigates when parameter recovery is possible in such a

scenario, in the context of linear regression models. The main result is that under

certain standard incoherence conditions on the matrix of feature variable, and struc-

tural constraints on the regression parameter, parameter recovery is still possible

from only the aggregated data. Recovery is exact for the noiseless case, and approx-
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imate up to arbitrary tolerance when the measurements are corrupted with random

noise. In the special case where the data is aggregated into histograms, recovery is

possible within a tolerance that depends on the granularity of the histograms. Exper-

imental results on synthetic data is used to corroborate the theoretical results, and

further empirical evaluation on two healthcare datasets demonstrated the relevance

of the results on real life applications.

Chapter 5 investigates the problem of building predictive models that can

be trained using data that is subjected to a spatio-temporal aggregation procedure

before being publicly released. Aggregated time series data is ubiquitous in domains

like econometrics and healthcare, and also in recommendation systems that use user

history. The problem with its arbitrary correlation structures poses its unique set of

challenges, but also provides exploitable structural properties. This chapter shows

how to bypass the inherent structural problems in aggregated spatio-temporal data

by introducing a novel framework to perform predictive modeling in the frequency

domain, and uses duality properties of Fourier analysis to design a new algorithm

with strong theoretical guarantees. We provide experimental results on syntheti-

cally generated data to corroborate our theoretical results. Empirical evaluation on

three real world datasets showed significant improvement in performance compared

to naive time-domain techniques.

Chapter 6 looks at the complementary problem, where the objective is to

design aggregation strategies that can still allow learning predictive models. The

motivation for this comes from concrete practical problems that are common in
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many real-life modern applications, where considerations like privacy, security and

legal doctrines like the GDPR put limitations on data storage and sharing with third

parties. We bypass these constraints by designing aggregation paradigms that con-

form to privacy or non-identifiability requirements, while at the same time designing

learning algorithms that can nevertheless be used to learn from only the aggregates.

We delineate our framework for the case of Gaussian regression, and extend our

techniques to subsume arbitrary binary classifiers and generalised linear models. We

provide theoretical results and empirical evaluation of our methods on real data from

healthcare and telecom. Finally, noting that existing metrics for privacy can often

be too esoteric for wide applicability in non-mathematically grounded domains, we

introduce a new criterion for measuring privacy that is more stringent but easily

comprehensible with minimal mathematical background, and we demonstrate how

our framework satisfies these new constraints.

Chapter 7 describes the application of our techniques for learning from aggre-

gated data on a concrete real world problem. Specifically, we consider the problem of

learning individual level predictive models when the target variables used for train-

ing are only available averaged over varying aggregation windows. In particular, this

problem is a critical bottleneck in designing effective bidding strategies in the context

of online advertising where ground-truth cost-per-click (CPC) data is aggregated to

protect proprietary information before being released to advertisers. While accurate

estimates of cost-per-click or CPC expenses at individual click level are required

in the bidding process, for various reasons the ground-truth CPC data for training

these models is usually available only as aggregates over a certain time period (daily,
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hourly, etc.). We introduce a novel learning framework that can use aggregates com-

puted at varying levels of granularity for building individual-level predictive models.

We generalise our modelling and algorithmic framework to handle data from diverse

domains, and extend our techniques to cover arbitrary aggregation paradigms like

sliding windows and overlapping/non-uniform aggregation. We show empirical evi-

dence for the efficacy of our techniques with experiments on both synthetic data and

real data from the online advertising domain as well as healthcare to demonstrate

the wider applicability of our framework.

Finally, Chapter 8 rounds out the thesis with a summary of the main details

covered in the thesis and provides concluding remarks putting our results in broader

context. Aggregated data arises in a vast number of domains and in a wide variety

of avatars, and it is impossible to cover all possible bases in a single dissertation, if

they can be solved at all, regardless of the size and scope of the study. We therefore

include some thoughts on future directions of research in this area and provide some

potential directions and ideas on how to tackle the challenges that are yet open

problems.
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Chapter 2

Background and Related Work

The objective in a standard machine learning program is to learn a mapping

function φ : X 7→ y that maps features X to targets y. In our work we mostly

concern ourselves with parametric models, where the targets y are related to the

features X via a vector parameter β, that is, y ∼ φ(Xβ). The standard setup– one

that has been studied extensively in existing literature– deals with the case where

both y and X are available as individual level samples, in non-aggregated form.

The next few sections provide a short overview of concepts and techniques

that we shall use in our work.

2.1 Sample Statistics and Histograms

Aggregated data is often summarized using a sample statistic, which provides

a succinct descriptive summary (Wilks, 1962). Examples of sample statistics include

the average, median and various other quantiles. While the mean is still the most

common choice, the best choice for summarizing a sample generally depends on the

distribution the sample has been generated from. In many cases, the use of his-

tograms Scott (1979b) or order statistic summaries is much more “natural” e.g. for
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categorical data, binary data, count valued data, etc.

Order Statistics: Given a sample of n real valued datapoints, the τ th order

statistic of the sample is the τ th smallest value in the sample. For example, the first

order statistic is the minimum value of the sample, the n
2
th order statistic is the me-

dian and the nth order statistic is the maximum value of the sample. We specifically

design a framework which makes it relatively straightforward to work with order

statistics.

Histograms : Given a finite sample of n items from a set C, a histogram is a

partition of the set C into disjoint bins Ci : ∪iCi = C and the respective count or per-

centage of elements from the sample in each bin. Seen this way, for any sample from

C ⊆ R, a histogram is essentially a set of order statistics for that sample. Histograms

can sometimes be specified without their boundary values (eg. ”x < 30“ as opposed

to ”0 < x < 30“)- this is equivalent to leaving out the first and the nth order statis-

tic. Further, a set of sample statistic summaries are easily converted to (and from)

a discrete cumulative distribution by identifying the quantile value as the cumula-

tive histogram boundary, and the quantile identity as the height. This cumulative

histogram is easily converted to a standard histogram by differencing of adjacent

bins. A similar strategy is also applicable to unbounded domains using abstract

max and min boundaries of ±∞. Based on this bijection, we we will refer to a his-

togram as a generalization of the order statistic for the remainder of this manuscript.
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2.2 Exponential Family Distributions

The exponential family of distributions are a large class of ubiquitously prob-

ability measures that share a common parametric form. As a generalisation of the

Gaussian distribution, the exponential family subsumes many standard distributions

like Poisson, binomial, negative binomial, chi-squared, pareto, etc.

A random variably Y ∈ Y is said to be in the exponential family in canonical

form if its probability distribution takes the following form for any y ∈ Y:

Pφ(y|µ) ∝ h(y) exp (t(y) · µ−Gφ(µ)) (2.1)

where µ ∈ t(Y) is called the mean parameter, h is known as the base measure,

t(·) is known as the sufficient statistic, and Gφ is a function known as the log-partition

function. In particular, whenever defined, we have

Gφ(µ) = −log
(∫

y∈Y
h(y)exp(t(y) · µ)

)
A key property of the log-partition function for exponential family distribu-

tions is that all moments of the sufficient statistic of the random variable t(Y ) can

be obtained by successive differentiation of the log partition function. In particular,

we use the property that

gφ(µ) ≡ ∇Gφ(µ) = E[t(Y )|µ]

Without loss of generality, for the rest of this thesis, we shall assume t(·) to

be the identity function. A detailed analysis of exponential family distributions can

be found in Banerjee et al. (2005).
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2.3 Bregman Divergences

Let φ : Θ 7→ R be a strictly convex, closed function on the domain Θ ⊆ Rm

which is differentiable on int(Θ). Then, the Bregman divergence Dφ(·‖·) correspond-

ing to the function φ is defined as

Dφ(y‖x) , φ(y)− φ(x)− 〈∇φ(x),y − x〉

From strict convexity, it follows that Dφ(y‖x) ≥ 0 and Dφ(y‖x) = 0 if and only if

y = x. Bregman divergences are strictly convex in their first argument but not nec-

essarily in their second argument. In this paper we only consider convex functions

of the form φ(·) : Rm 3 x 7→
∑

i φ(x(i)) that are sums of identical scalar convex

functions applied to each component of the vector x. We refer to this class as iden-

tically separable (IS). Square loss, Kullback-Leibler (KL) divergence and generalized

I-Divergence (GI) are members of this family (Table 2.1).

Table 2.1: Examples of Bregman Divergences

φ(x) Dφ(y‖x)

1
2
‖x‖2, with x ∈ Rn SQ(y‖x) = 1

2
‖y − x‖2

(Square Loss)∑
i(x

(i) log x(i)) with x ∈ Prob. Simplex KL(y‖x) =
∑

i

(
y(i) log( y

(i)

x(i)
)
)

(Kullback-Leibler Divergence)∑
i x

(i) log x(i) − x(i) with x ∈ Rn
+ GI(y‖x) =

∑
i y

(i) log( y
(i)

x(i)
)− y(i) + x(i)

(Generalised Itakura-Saito Distance)
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As shown in Banerjee et al. (2005), each Bregman divergence has a one-to-

one relationship with a distribution in the exponential family, parametrized by the

convex function φ.

2.4 Generalised Linear Models

While least squares regression is useful for modeling continuous real valued

data generated from a Gaussian distribution. This is not always a valid assumption.

In many cases, the data of interest may be binary valued or count valued. A general-

ized linear model (GLM) (McCullagh & Nelder, 1989; Nelder & Wedderburn, 1972)

is a generalization of linear regression that subsumes various models like Poisson re-

gression, logistic regression, etc. as special cases. A generalized linear model assumes

that the response variables, y are generated from a distribution in the exponential

family with the mean parameter related via a monotonic link function to a linear

function of the predictor x. The model therefore is specified completely by a distri-

bution Pφ(· | θ) from the exponential family, a linear predictor η = xθ, and a link

function g−1
φ ≡ (∇φ)−1(·) which connects the expectation parameter of the response

variable to a linear function of the predictor variables as E[y|x,θ] = (∇φ)−1(xθ)

In particular, given a predictor x, a parameter θ, and an exponential family

distribution Pφ, the likelihood of the target y has the following form:

Pφ(y|x,θ) = h(y) · exp
(
y · x>θ −Gφ(x>θ)

)
(2.2)

where h(·) is the base measure associated with the distribution Pφ

16



As explored in great detail in Banerjee et al. (2005), Bregman Divergences

have a very close relationship with generalized linear models. In particular, maxi-

mum likelihood parameter estimation for a generalized linear model is equivalent to

minimizing a corresponding Bregman divergence. For example, maximum likelihood

for a Gaussian corresponds to squares loss, for Poisson the corresponding divergence

is generalized I-divergence and for Binomial, the corresponding divergence is the KL

divergence (see Banerjee et al. (2005) for details). GLMs have been successfully

applied in a wide variety of fields including biological surveys (Nicholls, 1989), im-

age segmentation and reconstruction (Paul et al., 2013), analysis of medical trials

(Dias et al., 2013), studying species-environment relationships in ecological sciences

(Jamil et al., 2013), virology (Gart, 1964) and estimating mortality from infectious

diseases (Hardelid et al., 2013), among many others, and are widely prized for the

interpretability of their results and the extendability of their methods in a plethora

of domain specific variations (Song et al., 2013). They are easy to use and implement

and many off-the-shelf software packages are available for most major programming

platforms.

2.5 Compressed Sensing

The case of under-determined linear systems appears in a large number of

practical applications and is a very well studied problem in the compressed sensing

domain. The standard form of such problems involves estimating the linear model

parameter β0 given a feature matrix M ∈ Rk×d and a target vector y, such that

y = Mβ0, when the number of rows in the feature matrix is smaller than the dimen-
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sionality of the problem, k < d, resulting in an under-determined system.

A line of work including (Candes & Tao, 2006; Donoho, 2006), among others,

have shown that subject to certain sparsity conditions on β0 and restricted isometry

constraints on the matrix M, the parameter β0 can be recovered uniquely as the

solution to an `1 minimisation optimisation problem under observation constraints.

min
β
‖β‖1 s.t. Mβ = y (2.3)

The principal condition that allows the recovery of a sparse parameter in such

under-determined systems is called the restricted isometry property.

Definition 2.5.1. For a k × d matrix M and a set T ⊆ {1, 2, · · · , d}, suppose MT

is the k × |T | matrix consisting of the columns of M corresponding to T . Then, the

s-restricted isometry constant δs of the matrix M is defined as the smallest quantity

δs such that the matrix MT obeys

(1− δs)‖c‖2
2 ≤ ‖MT c‖2

2 ≤ (1 + δs)‖c‖2
2

for every subset T ⊂ {1, 2, · · · , d} of size |T | < s and all real c ∈ R|T |

Restricted isometry is a common and standard assumption in the sparse pa-

rameter recovery literature. Intuitively, this property means that when M satisfies

Definition 2.5.1 with a small δs, every sub-matrix of small enough size constructed

out of the columns of the matrix behaves approximately like an orthonormal system.
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In fact, a number of random matrices satisfy this property including the Gaussian

ensemble and the Bernoulli ensemble (Donoho, 2006; Candès et al., 2006).

Suppose we had access to the true mean matrices (M,y). First, we consider

the case when observations are noise-free, i.e. ε = 0. Suppose β0 is known to be κ0-

sparse and M satisfies the restricted isometry hypothesis, then the following result

applies:

Theorem 2.5.1 (Exact Recovery (Foucart, 2010)). Let Θ0 = 3
4+
√

6
≈ 0.465. If there

exists an s0 such that δ2s0 < Θ0 for M, then as long as κ0 < s0, the constraint

Mβ0 = y is sufficient to uniquely recover any κ0-sparse β0 exactly as the solution of

the following optimization problem:

min
β
‖β‖1 s.t. Mβ = y (2.4)

A similar result for approximate recovery holds for the case when the observa-

tions are corrupted with noise ε, i.e., instead of y = Mβ0, we are given yε = Mβ0+ε.

Theorem 2.5.2 (Approximate Recovery (Candes, 2008)). Let Θ1 =
√

2−1 ≈ 0.414.

If there exists an s0 for M such that δ2s0 < Θ1, then as long as κ0 < s0 and the noise

ε in observations yε = Mβ0 + ε is bounded as ‖ε‖2 < ξ, any κ0-sparse β0 can be

recovered within an `2 distance of Cs0ξ from the true parameter β0 using the noisy

measurements (M,yε). That is, the solution β̂ to the following optimization problem:

min
β0

‖β‖1 s.t. ‖Mβ − yε‖2 < ξ (2.5)
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satisfies ‖β̂ − β0‖2 < Cs0ξ where the constant Cs0 depends only on δ2s0 and is well-

behaved (for example when δ2s0 = 0.2, the constant is less than 8.5).

The aforementioned results are a sampling of the existing breadth of literature

in the compressed sensing domain, and while we use these extensively in Chapter

4, we note that other results from this field can be used very easily to extend the

analyses presented in this dissertation. In particular, various alternative frameworks

like non-sparse parameter, alternative estimators to LASSO, beyond sub-gaussian

assumptions on different marginals, etc. can be analysed in an identical manner,

and the main results we present in this dissertation would still continue to hold,

albeit with slightly different sample complexity.

2.6 Fourier Transforms and Frequency Domain Analysis

A random signal {z(t) ∈ R : t ∈ R} is said to be centered and weakly

stationary with finite variance if the following conditions hold:

1. the process is centred, E[z(t)] = 0 for all t

2. for any time-stamps t, t′, we have E[z(t)z(t′)] = ρz(‖t − t′‖) for a non-negative

real valued auto-correlation function ρz(·) : R+ 7→ R+

3. at every point, the noise process has finite variance, E[z(t)2] = ρ(0) < +∞

Stationarity is a standard assumption in time series analysis and very common

in many real life applications (see (Granger & Newbold, 2014; Dzhaparidze, 2012;

20



Feige & Pearce, 1974)). In particular, many predictive models for standard time

series analysis use methods like filtering out trend lines and differencing to ensure

stationarity in the data before analysis (Hibon & Makridakis, 1997).

Given a continuous signal z(t), the Fourier Transform of the signal with

respect to a particular frequency ω ∈ R is given by

Z(ω) =

∫
R
z(t)e−ιωtdt (2.6)

For a signal z(t), we use both Z(ω) and Fz(ω) to denote its Fourier transform.

We can similarly define the T -restricted Finite Fourier Transform ZT (ω)

for the signal z(t) as

ZT (ω) =

∫ T

−T
z(t)e−ιωtdt (2.7)

The Power Spectral Density PZ(ω) of a signal z(t) with respect to a par-

ticular frequency ω ∈ R is given by

PZ(ω) = lim
T↑∞

1

T
E

‖ T∫
−T

z(t)e−ιωtdt‖2

 (2.8)

Let z(t) be a weakly stationary process with autocovariance function ρz(τ) =

E[z(t)z(t+ τ)]. Let ρz(0) = E[z(t)2] <∞ be the variance of the process. We simply

state the following well known results (Grafakos, 2004) without proof:

1. (Wiener-Khinchin Theorem)The power spectral density of a stationary process

z(t) is the Fourier Transform of its autocovariance function

PZ(ω) =

∞∫
−∞

ρz(τ)e−ιω(τ)dτ (2.9)
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2. (Corrollary of above) For a stationary process, the integral of the power spectral

density gives the instantaneous variance

∞∫
−∞

PZ(ω)dω = ρz(0) = E[z(t)2] (2.10)

2.6.1 Decay Rates

In our work, we assume that the power spectral density and autocovariance

function for every signal of interest exists finitely for each ω. We further assume

that the autocovariance function decays rapidly with lag for all processes involved

in our analysis. In essence this means that the value of the time series at any given

point is highly correlated with values at points close to it in time, but the correlation

decreases rapidly with values farther away in time.

For example, we may assume that ρ(·)(·) is a Schwartz function (Terzioğlu,

1969), that is ρ(·) and all its derivatives decay at least as fast as any inverse polyno-

mial. That is, ∀α, β ∈ Zn+ we have

|ζα∂
βρ(ζ)

∂ζn
| → 0 as |ζ| → ∞

Examples of Schwartz functions are exponential functions like e−aζ
2

for a > 0,

or any polynomial ℘(ζ) multiplied with an exponential function like ℘(ζ)e−aζ
2
, or

any smooth domain-restricted function f(ζ) which is 0 outside of a bounded compact

subset ζ ∈ = ⊂ Rn, e.g. all time limited signals are automatically Schwartz functions.
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A key property of Schwartz functions is that the Fourier Transform of a

Schwartz function is itself a Schwartz function (Gröchenig & Zimmermann, 2001;

Strichartz, 2003). Therefore, if we assume that the covariance functions ρ(·)(τ) de-

cays rapidly with τ for each of our signals, then their corresponding power spectral

densities P(·)(ω) will decay rapidly with ω, since P = Fρ. Therefore, most of the

power for our signals will be concentrated around ω = 0.

We note that unlike traditional signal processing applications, we do not con-

sider a flat power spectral density (e.g. white noise) for our noise process. This

is because traditional signal processing applications assume band-limited signals of

interest. Properties of the noise process outside the band are irrelevant since out-

puts are going to be filtered regardless, and analysis only needs to focus on effects

of additive noise within the frequency band of interest. In our case, we can make no

such assumption– signals need not be bandlimited and therefore we have to consider

effects of noise throught the entire spectrum1.

As we have seen, for a stationary process z(t), the power spectral density Pz

and the autocorrelation function ρz are Fourier Transform pairs.

PZ(ω) =

∞∫
−∞

ρz(τ)e−ιω(τ)dτ (2.11)

1Note that a true white noise process is unrealistic because it implies infinite variance for the
noise process which renders any attempt at parameter learning futile.
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Rates of decay will vary from case to case depending on the exact functional

forms for the autocorrelation function (or, equivalently, the power spectral density).

Standard expressions can be obtained by using the fact that for a signal z(t) with

finite variance, Pz(ω)
∞∫
−∞

Pz(ω)dω
is a valid probability density function, and then using the

tail probability results for the corresponding probability distribution.

For example, if ρ exhibits a Gaussian decay (analogous to normal distribu-

tion), that is, ρ(τ) ∼ exp(−O(τ 2)), then Pεβ also exhibits a Gaussian decay, that

is Pεβ(ω) ∼ exp(−O(ω2)), and therefore, ξω0 ∼ exp(−O(ω2
0)). Similarly, if ρ ex-

hibits power law/ Lorentzian decay (analogous to Cauchy distribution), that is,

ρ(τ) ∼ 1
O(τ2)

, then Pεβ exhibits exponential decay (Laplace distribution), that is

Pεβ(ω) ∼ exp(−O(|ω|)), and therefore ξω0 ∼ exp(−O(|ω0|). Similar arguments can

be made for other decay rates using Fourier duality.

This makes intuitive sense because the more spread out ρ(τ) is, the more

”peaky“ Pεβ(ω) is and the smaller the value of ω0 required. This means that if the

error terms are well-correlated, most of the instantaneous power will be concentrated

within a very small range of frequencies.

2.6.2 Multidimensional Fourier Transform

Let Rp be the p-dimensional Euclidean space (called the interaction space),

discrete points in which are indexed by the vector v ∈ Rp. Signals z in the inter-

action space are random processes z(v) operating at each point in v ∈ Rp. For

24



example, for spatial processes, p = 2 or 3, and v denotes the spatial coordinates, and

a typical signal z(v) may indicate the temperature or pressure at a particular point v.

Similar to the unidimensional case, a random signal {z(v) ∈ R : v ∈ Rp} is

said to be centered and weakly stationary with finite variance if the following

conditions hold:

1. E[z(v)] = 0 for all v ∈ Rp

2. E[z(v)z(v′)] = ρ(‖v−v′‖) for a non-negative real valued auto-correlation func-

tion ρ(·), for every v,v′ ∈ Rp

3. E[v(v)2] = ρ(0) < +∞

Observations for any signal z(v) are obtained as aggregates over periodically

translated (similar to a sliding window) bounded connected set A ⊂ Rp as

z[k] =
1

V ol(A)

∫
v∈A+k

z(v)dv

Given a continuous signal z(v), for any point θ = [θ1, θ2, · · · θp] ∈ Rp (the

”frequency“ vector), the Multidimensional Fourier Transform is defined in

a way very similar to the one-dimensional case (Tangirala, 2014; Easton; Smith &

Smith, 1995), provided the integral exists

Z(θ) =

∫
Rp
z(v)e−ι〈θ,v〉dv (2.12)

where 〈·, ·〉 represents the standard inner product. All the properties of Fourier

Transforms that are required within the scope of our work follow exactly as in the

unidimensional case (see (Easton; Smith & Smith, 1995)).
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2.6.3 Related Work

Learning from aggregated data is a challenging problem, and there is ex-

tremely limited prior art on this topic. This is a new and relatively unexplored form

of semi-supervision, and there are significant gaps in analysis and understanding,

rectifying which is the main objective of this dissertation. Here, we delineate some

of this existing work but restrict ourselves to the topic of learning from aggregated

data. Further related literature that is specific to the material covered in each chapter

is included within the content of the chapters themselves.

The problem of imputing individual level records from the sample mean has

been studied in (Park & Ghosh, 2012) and (Park & Ghosh, 2014) among others. In

particular, the paper Park & Ghosh (2014) attempts to reconstruct the individual

level matrix by assuming a low rank structure and compares their framework with

other approaches which include an extension of the neighborhood model (Freedman

et al., 1991b) and a variation of ecological regression (Freedman et al., 1991a) for the

task of imputing individual level records of the response variable. In particular, these

works focus on data reconstruction rather than predictive modelling, and they further

make structural assumptions on their data generation procedure for this purpose.

In the classification literature, learning from label proportions (LLP) (Quadrianto

et al., 2009; Patrini et al., 2014) involves estimation of classifiers given the proportion

of discrete valued labels in groups or bags of labeled targets. The authors further

introduced an estimation algorithm that used the idea of sufficient statistics for

paranmeter estimation through an implicit label imputation step. The main draw-

back of this approach is that it is restricted to cases where the targets variables can

26



only take values from a finite alphabet, and therefore their methods can no longer

be applied to wider regression where the targets can be real-valued.
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Chapter 3

Learning from Histogram Aggregated Data

3.1 Introduction

In many domains like healthcare, census reports, voting and political data, etc.

it is common for applications to work with both sensitive records (like patient records,

income data, etc.) as well as information in the public domain (e.g. census records,

voter files, etc.) Most agencies in such areas usually report both individual level

information for non-sensitive attributes together with the aggregated information in

the form of sample statistics. Care must be taken in the analysis of such data, as näıve

modeling with aggregated data may significantly diminish the accuracy of inferences

at the individual level due the problem of ecological fallacy (Robinson, 2009) that was

extensively discussed in Chapter 1. Without this due diligence, resulting conclusions

at the group level may be misleading to researchers and policy makers interested in

individual level inferences.

Portions of this chapter has been published as: A Bhowmik, J Ghosh, O Koyejo, “General-
ized Linear Models for Aggregated Data”, International Conference on Artificial Intelligence and
Statistics, (AISTATS) 2015, San Diego, USA

Co-authors have participated extensively in model formulation and research methods, and have
contributed in reviewing the final manuscript.
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Aggregated data is often summarized using a sample statistic, which provides

a succinct descriptive summary (Wilks, 1962). Examples of sample statistics include

the average, median and various other quantiles. While the mean is still the most

common choice, the best choice for summarizing a sample generally depends on

the distribution the sample has been generated from. In many cases, the use of

histograms (Scott, 1979b) or order statistic summaries (see section 2.1) is much

more ”natural” e.g. for categorical data, binary data, count valued data, etc. In

particular, when the data has a long tail, where means and other moment-based

summaries can be misleading due to being heavily affected by outliers.

Aggregated data in the form of histograms and other sample statistics are

becoming more and more common. Further, most of the data that is collected relates

to questions for which the respondents have only a few discrete options from which to

select their answer. For example, data available from the Generalized Social Survey

(NORC) are often in this form. This chapter addresses the scenario where features

are provided at the individual level, but the target variables are only available as

histogram aggregates or order statistics. Despite the prevalence of order-statistic

and histogram aggregated data, to the best of our knowledge, this problem has not

been addressed in the literature.

We consider a limiting case of generalized linear modeling when the target

variables are only known up to permutation, and explore how this relates to permuta-

tion testing (Good, 2005); a standard technique for assessing statistical dependency.

Based on this relationship, we propose a simple algorithm to estimate the model

parameters and individual level inferences via alternating imputation and standard
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generalized linear model fitting. Our results suggest the effectiveness of the proposed

approach when, in the original data, permutation testing accurately ascertains the

veracity of the linear relationship. The framework is extended to general histogram

data with larger bins - with order statistics such as the median as a limiting case.

Our experimental results suggest a diminishing returns property - when a linear re-

lationship holds in the original data, the targets can be predicted accurately given

relatively coarse histograms. Our results also suggest caution in in the widespread

use of aggregation for ensuring the privacy of sensitive data.

In summary, the main contributions of this chapter are as follows:

1. We propose a framework for estimating the response variables of a generalized

linear model given only a histogram aggregate summary by formulating it as an

optimization problem that alternates between imputation and generalized linear

model fitting.

2. We examine a limiting case of the framework when all the data is known up

to permutation. Our examination suggests the effectiveness of the proposed

approach when, in the original data, permutation testing accurately ascertains

the veracity of the linear relationship.

3. We examine a second limiting case where only a few order statistics are provided.

Our experimental results suggest a diminishing returns property - when a linear

relationship holds in the original data, the targets can be predicted accurately

given relatively coarse histograms.
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The proposed approach is applied to the analysis of simulated datasets. In addition,

we examine the Texas Inpatient Discharge dataset from the Texas Department of

State Health Services (TxID, 2014) and a subset of the SynPUF dataset (DESynPUF,

2008).

Notation

Matrices are denoted by boldface capital letters, vectors by boldface lower case

letters and individual elements of the vector by the same lowercase letter with the

boldface removed and the index added as a superscript. v> refers to the transpose

of the column vector v. We denote column partitions using semicolons, that is,

M = [X; Y] implies that the columns of the submatrices X and Y are, in order,

the columns of the full matrix M. We use ‖ · ‖ to denote the L2 norm for vectors

and Frobenius norm for matrices. The vector v is said to be in increasing order if

v(i) ≤ v(j) whenever i ≤ j, and the set of all such vectors in Rn is denoted with a

subscripted downward pointing arrow as Rn
↓ . Two vectors v and w are said to be

isotonic, v ∼↓ w, if v(i) ≥ v(j) if and only if w(i) ≥ w(j) for all i, j.

Chapter 2 contains an in-depth treatment of all the preliminaries required

for this chapter. In particular, we encourage the reader to refer to section 2.4 for a

description of Generalised Linear Models, section 2.3 for a note on Bregman Diver-

gences, and section 2.1 for order statistics and histograms the way we use them in

this chapter.
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3.2 Problem Description

Consider a set of fully observed covariates X = [x1; x2; · · · ; xd−p] ∈ Rn×(d−p),

and columns of response variables, Z = [z1; z2; · · · zp] ∈ Rn×p, which are only known

only up to the respective histograms of their values (i.e., up to order statistics).

We assume that each element of zi has been generated from covariates X

according to some generalized linear model (as described in section 2.1) with param-

eters βi. The objective is to estimate the βi together with Z = [z1; z2; · · · zp] subject

to the given order statistic constraints. Since maximum likelihood estimation in a

generalized linear model is equivalent to minimizing a corresponding Bregman diver-

gence, we choose the loss function L(Z,β) = Dφ (Z‖(∇φ)−1(Xβ)) to be minimized

over the variables Z,β while satisfying order statistics constraints on Z.

Without additional structure, the regression problem for each column can

be solved independently, therefore without loss of generality we assume Z is a single

column z. We denote the τi
th order statistic of z as sτi , with τi ∈ {τ1, τ2, · · · τh} ⊆ [n],

which is the set of h order statistics specified via the histogram. For simplicity, in the

following section we consider estimation under a single order statistic which has been

computed over the entire column. We extend it subsequently to the more general

case of multiple order statistics computed over disjoint partitions.

Therefore, with Frobenius regularization terms R(β) = λ‖β‖2, the overall

problem statement boils down to the following optimization problem:

min
z,β

Dφ

(
z‖(∇φ)−1(Xβ)

)
+ λ‖β‖2

s.t. τ thi order statistic of zi = sτi

(3.1)
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3.2.1 Estimation under a Single Order Statistic constraint

Estimating under order statistics constraints is in general a highly non-trivial

problem. It is easy to see that the set of vectors with a given order statistic is not

a convex set. Therefore, the above optimization problem looks especially difficult

to even represent in a concise manner in terms of z. However, it turns out that

with the following reformulation, the analysis of the problem becomes much more

manageable.

We rewrite z = Py where P ∈ P is a permutation matrix and y is a vector

sorted in increasing order. Note the following-

(i) For a y ∈ Rn
↓ , if eτi is a row vector with 1 in the τi

th index and 0 everywhere

else, then eτiy represents the τi
th order statistic of y. Since permutation does

not change the value of order statistics, this is also the τi
th order statistic of z

(ii) If Λ is the matrix with Λj,j+1 = −1,Λj,j = 1 and Λj,k = 0 for all other j, k :

(k − j) 6= 0,±1, the condition that y is sorted in increasing order is equivalent

to the linear constraint Λy ≤ 0.

Putting all this together, the optimization problem (3.1) becomes the follow-

ing
min
P,y,β

Dφ

(
Py‖(∇φ)−1(Xβ)

)
+ R(β)

s.t. eτiy = sτi , Λy ≥ 0, P ∈ P
(3.2)

The above optimization problem is jointly convex in y and β for a fixed P,

but the presence of P as a variable makes the problem much more complicated.
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Therefore, we attempt to solve it iteratively for each variable in an alternating min-

imization framework. The update steps consist of the following for each timestep:

(i) βt = argmin
β

Dφ (Pt−1yt−1‖(∇φ)−1(Xβ)) + R(β)

(ii) yt = argmin
y

Dφ (Pt−1y‖(∇φ)−1(Xβt)) such that Λy ≤ 0 and eτiy = sτi

(iii) Pt = argmin
P∈P

Dφ (Pyt‖(∇φ)−1(Xβt))

Step (i) is a standard generalized linear model parameter estimation problem. This

problem has been studied in great detail in literature and a variety of off-the-shelf

GLM solvers can be used for this. We focus instead on steps (ii) and (iii) which are

much more interesting.

For (ii), note that since we assumed that φ is identically separable, the

same permutation applied to both arguments of the corresponding Bregman di-

vergence Dφ(·‖·) does not change its value. For any constraint set C, we have

argmin
y∈C

Dφ (Py‖(∇φ)−1(Xβt)) = argmin
y∈C

Dφ (y‖P−1(∇φ)−1(Xβt)) given1 a fixed

P,X,β. Following this fact, step (ii) is a convex optimization problem in y and can

be solved very easily.

Step (iii) is a non-convex optimization problem in general. However, for an

identically separable Bregman divergence it turns out that the solution to this is

remarkably simple.

Lemma 3.2.1. The (set of ) optimal permutation(s) in step (iv) above is given by-

1note that for a permutation matrix P, P−1 = P>
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argmin
P∈P

Dφ

(
Pyt‖(∇φ)−1(Xβt)

)
≡ P̂ such that P̂yt ∼↓ (∇φ)−1(Xβt)

In other words, the optimal permutation is the one which makes yi,t isotonic

with (∇φ)−1(Xβt). Note that the optimal permutation is not unique if (∇φ)−1(Xβt)

is not totally ordered. This is a direct application of the following result which

appeared as Lemma 3 in the paper Acharyya et al. (2012).

Lemma 3.2.2. If x1 ≥ x2 and y1 ≥ y2 and φ(·) is identically separable, then

Dφ(
[
x1
x2

]
‖
[
y1
y2

]
) ≤ Dφ(

[
x1
x2

]
‖
[
y2
y1

]
), and

Dφ(
[
y1
y2

]
‖
[
x1
x2

]
) ≤ Dφ(

[
y2
y1

]
‖
[
x1
x2

]
)

3.2.1.1 Solution in terms of z

Lemmata 3.2.1 and 3.2.2 suggest that we can optimize jointly over P and y

instead of separately, since for any y we already know the optimal P. Combining

the optimization steps (ii) and (iii) in terms of P and y, our update step for z in the

original optimization problem is the following

ẑt = argmin
z

Dφ

(
z‖(∇φ)−1(Xβt)

)
(3.3)

s.t. τ thi order statistic of z = sτi

It is not immediately obvious how to approach the solution to this since the

constraint set for z is not convex. However, note that as a result of Lemma 3.2.2 it
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is clear that given a fixed X and βt if ẑt is a solution to the subproblem (3.3), we

must have ẑt ∼↓ (∇φ)−1(Xβt).

Therefore, instead of searching over the set of all vectors in Rn, it is sufficient

to search only in the subset of vectors that are isotonic with (∇φ)−1(Xβt). It turns

out that not only is this set convex given a fixed X,βt, the solution for zt is readily

available in closed form.

Let Γt =(∇φ)−1(Xβt). Since the Bregman Divergence is IS, without loss of

generality we can assume that Γt is in increasing order, therefore the constraint

set for z becomes z ∈ Rn
↓ and order statistics constraints for z becomes the linear

constraint eτiz = sτi .

Therefore, the optimization problem (3.3) over z is equivalent, up to a simple

re-permutation step, to the following

min
z

Dφ(z‖Γt)

s.t. z ∈ Rn
↓ , eτiz = sτi

(3.4)

Lemma 3.2.3. Let ẑ be the solution to the optimization problem (3.4). Then, ẑ is

given by-

ẑ
(j)
t =


sτi j = τi

max(Γ
(j)
t , sτi) j > τi

min(Γ
(j)
t , sτi) j < τi

(3.5)

Sketch of Proof In the space of all z ordered in increasing order, the τ thi

order statistic constraint simply becomes ẑ
(j)
t < sτi for j < τi and vice versa for

j > τi. Suppose we were to optimize over all space instead of Rn
↓ - because the

Bregman divergence is identically separable, the optimization problem separates out
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over different coordinates j as ẑ
(j)
t = arg minzDφ(z‖Γ(j)

t ) such that z < (>)sτi for

j < (>)τi. This is a unidimensional convex optimization problem the solution to

which is given by equation (3.5) above.

Finally we note that ẑt, automatically lies in Rn
↓ since Γt ∈ Rn

↓ , and hence, is

also the solution to the optimisation problem (3.4).

Now, note that since we are performing iterative minimization, the cost func-

tion is non-increasing at every step. As the cost function is bounded below by 0, the

algorithm converges to a stationary point. We now extend the framework to include

histogram constraints and blockwise partitioning.

3.2.2 Histogram Constraints

In case there are multiple order statistics constraints (histogram), the solution

can be obtained by repeated application of equation (3.5).

Suppose for the column z we have constraints as τi
th order statistic of z = sτi

for τi ∈ {τ1, τ2, · · · τh} ⊆ {1, 2, · · ·n}, the solution is given by the following-

1. For all j < τ1, ẑ(j) = min(Γ
(j)
i , sτ1); similarly, for all j > τh, ẑ

(j) = max(Γ
(j)
i , sτh)

2. For all 1 ≤ k < h, and j : τk ≤ j ≤ τk+1,

ẑ(j) =


sτk j = τk

sτk+1
j = τk+1

min
(
sτk+1

,max(Γ
(j)
i , sτk)

)
τk ≤ j ≤ τk+1

The proof for this follows in an identical manner to the proof for the non-

partitioned case earlier. As above, the updated zt can be obtained by re-permuting ẑ
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to preserve isotonicity with (∇φ)−1(Xβ). For a fully observed histogram, the update

for z only involves a permutation at each step.

3.2.3 Blockwise Order Statistic Constraints

In the setup where the order statistics (or histograms) are computed over

blockwise partitions of the sample, the permutation matrix is a blockwise permuta-

tion matrix and the isotonicity constraint is a blockwise isotonicity costraint.

Since the Bregman Divergence is identically separable, the update for z sep-

arates out into independent updates for every block which can be done in a manner

identical to that given by Lemma 3.2.3. The update step for β remains unchanged.

(a) Poisson Fit Error (b) Gaussian Fit Error (c) Binomial Fit Error

Figure 3.1: Permutation tests under Poisson, Gaussian and Binomial Estimation for
2, 5, 25 bins (top left, top right, bottom left) and “No Relationship” (bottom right)

3.3 Experiments

We provide experimental results using both simulated data and real data.

Error for each generalized linear model is defined as the corresponding Bregman

divergence (square loss for Gaussian, generalized I-divergence for Poisson, etc. see
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(a) Poisson Training Error (b) Gaussian Training Error (c) Binomial Training Error

Figure 3.2: Training Error under Poisson, Gaussian and Binomial Estimation

(a) Poisson Test Error (b) Gaussian Test Error (c) Binomial Test Error

Figure 3.3: Test Set Error under Poisson, Gaussian and Binomial Estimation

Banerjee et al. (2005)) between the true and recovered targets. The average errors

for each model is shown separately.

3.3.1 Simulated Data

We randomly generate different sets of real valued predictor variables and

parameters, and use the corresponding exponential family to generate their respective

response variables. We compute histograms for the response variables thus generated

39



(a) Training Set Error (b) Test Set Error

Figure 3.4: Performance on SynPUF dataset

(a) Training Set Error (b) Test Set Error

Figure 3.5: Performance on Texas Inpatient Discharge dataset

with varying number of bins and test our algorithm for each case. We perform the

experiments for three different models - Gaussian, Poisson and Binomial.
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(a) Recovered Histogram of DE-SynPUF Data (b) Recovered Histogram of Texas Discharged Data

Figure 3.6: Recovered Histograms of both datasets (true histograms on the left)

We perform a basic permutation test2 to show how our algorithm performs

with respect to the fit by a generalized linear model which knows the values of

the target variables but permutes the target variables randomly for estimation. We

perform the randomized permutations multiple times and plot a histogram of the

fitting errors thus obtained and see how the results from our algorithm compares to

the histogram (Figure 3.1). The black bar is the error obtained by our framework, the

red histogram is the histogram of errors obtained by fitting after randomly permuting

the targets. The blue histogram is the histogram of errors obtained by fitting a model

where there is no relationship between the target variable and the covariate, the cyan

bar is the result of our framework applied to this data with a histogram of 5 bins

(histograms of other granularities perform similarly). Our test successfully rejects

the null hypothesis of “no relationship when the the black bar is to the left of the

red histogram. Figure 3.1 shows that as histogram becomes finer (i.e number of bins

increase) error is lower i.e. black bar shifts towards left.

We plot the average fitting and predictive performance of our algorithm with

2Refer to Good (2005) for more details on permutation tests
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increasing number of bins over five fold cross validation. We compare our results

with the results obtained with the best possible GLM estimator which observes the

full dataset (Figures 3.2 and 3.3)3. It can be seen in each case that as the histogram

of targets becomes finer (i.e., more bins) the error decreases but with a diminishing

returns property with respect to the coarseness of the histogram.

3.3.2 DE-SynPUF dataset

The CMS Beneficiary Summary DE-SynPUF dataset (DESynPUF, 2008) is

a public use dataset created by the Centers for Medicare and Medicaid Services

by applying different statistical disclosure limitation techniques to real beneficiary

claims data in a way so as to very closely resemble real Medicare data. It is often

used for testing different data mining or statistical inferential methods before getting

access to real Medicare data. We use a subset of the DE-SynPUF dataset for a single

state from the year 2008. With some trimming of datapoints (eg, we do not take

into account deceased beneficiaries) we model outpatient institutional annual primary

payer reimbursement amount (PPPYMT-OP) with a number of available predictor

variables including age, race, sex, duration of coverage, presence/absence of a variety

of chronic conditions, etc.

We perform a log transform and compute histograms of varying granularity

on the target variables. We use a Gaussian model for our estimation and evaluate the

average performance of our algorithm over five fold cross validation in fitting both

3training/test error in figures 3.2b and 3.3b for the Gaussian estimator for the fully observed
case is ≈ 0
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the training and test data sample points, comparing with the best possible Gaussian

estimator which performs the estimation by observing the full dataset (Figures 3.4).

As seen in the plot, the performance of our framework improves as the histogram

of targets becomes finer in granularity and approaches the performance of the best

Gaussian estimator. We also compare the histogram of target variables as recovered

by our framework with the true histogram (Figure 3.6a).

3.3.3 Texas Inpatient Discharge dataset

We then test our algorithm on the Texas Inpatient Discharge dataset from

the Texas Department of State Health Services (TxID, 2014), which is a healthcare

dataset first used in Park & Ghosh (2014). As with the simulated data, we use his-

tograms of varying granularity on the respective response variables and evaluate the

average performance in fitting both the training and test data sample points over five

fold cross validation. We use hospital billing records from the fourth quarter of 2006

in the Texas Inpatient Discharge dataset and regress it on the available individual

level predictor variables including binary variables race and sex, categorical variables

county and zipcode, and real valued variables like length of stay.

Following Park & Ghosh (2014), we perform a log transform on the hospital

charges and length of stay before applying a Poisson regression model. We compare

the performance of our algorithm over five-fold cross-validation with the best possible

Poisson estimator which estimates in a fully observed scenario with an uncensored

dataset (Figure 3.5). The plot shows that the performance of our framework improves

with increasingly finer granularity of histograms and approaches the performance of
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the best Poisson estimator. Finally, we compare the histogram recovered by our

framework with the true histogram for the dataset (Figure 3.6b).

3.4 Conclusion

This chapter addresses the scenario where features are provided at the indi-

vidual level, but the target variables are only available as histogram aggregates or

order statistics. We proposed a simple algorithm to estimate the model parameters

and individual level inferences via alternating imputation and standard generalized

linear model fitting. We considered two limiting cases. In the first, the target vari-

ables are only known up to permutation. Our results suggest the effectiveness of the

proposed approach when, in the original data, permutation testing accurately ascer-

tains the veracity of the linear relationship. The framework was then extended to

general histogram data with larger bins - with order statistics such as the median as

a second limiting case. Experimental results on simulated data and real healthcare

data show the effectiveness of the proposed approach which may have implications

on using aggregation as a means of preserving privacy.
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Chapter 4

Recovery of Sparse Parameter from Group-Wise

Aggregated Data

4.1 Introduction

When sensitive or large-scale data is collected over natural geographic or

demographic partitions of the population, individual samples are often aggregated

over the corresponding sub-divisions and released as group-wise summaries (e.g.,

avergaes over race, gender, state, zip-code, etc.). For most applications in such

domains, this aggregation paradigm is usually applied to both the feature or attribute

variables, as well as target variables. Learning structured model parameters from

such group-wise aggregated data is the focus of this chapter.

Group-wise aggregation is a common technique for sharing of privacy-sensitive

healthcare data, where sensitive patient information is subject to various Statistical

Disclosure Limitation (SDL) techniques (Armstrong et al., 1999) before public re-

lease. Similarly, large scale data collection programs like the General Social Survey

Portions of this chapter has been published as: A Bhowmik, J Ghosh, O Koyejo, “Sparse Pa-
rameter Recovery from Aggregated Data”, International Conference on Machine Learning (ICML)
2016, New York, NY, USA

Co-authors have participated in discussions on research methods and contributed in the writing
and review of the final manuscript.
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(GSS) report data in aggregated form1. Data from IoTs and other distributed sensor

networks are often collected in aggregated form to mitigate communication costs, and

improve robustness to noise and malicious interference (Wagner, 2004; Zhao et al.,

2003).

Building individual-level models given aggregates in the form of means, sam-

ple statistics, etc., constitutes a relatively unexplored semi-supervision framework.

We note that even standard problems like regression and parameter recovery become

very challenging in the context of aggregated data. Specifically, näıve application of

standard techniques in the aggregated context is vulnerable to the ecological fal-

lacy (Robinson, 2009; Goodman, 1953), wherein conclusions drawn from aggregated

data can differ significantly from inferences at individual level, and are misleading

to researchers/policy makers using the data.

As a first work on parameter recovery from aggregated data, we investigate the

problem for regression in the case of linear models, where the mapping between input

features and the output variable is defined by a vector parameter. We consider the

scenario, very common in domains like healthcare, sociological studies, etc., where

data is collected and aggregated within groups, e.g., patient records aggregated at

county or hospital level, and empirical estimates of true group level moments for

features and targets are the only available information.

While this problem is relatively easy to handle in the non-aggregated setup,

parameter recovery becomes highly challenging when only aggregated data is avail-

1The General Social Survey, NORC, http://www3.norc.org/GSS+Website/
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able and the resulting linear systems are under-determined. Well known works on

compressed sensing (Donoho & Elad, 2003; Candes & Tao, 2005) have shown that

recovery is still possible from such systems when the parameter is sparse (common

in many applications of interest, e.g. in healthcare where interpretability is part of

the desiderata), but existing analyses do not apply directly to the aggregated case.

Our work is motivated by the question: ”Is it possible to infer the individual-

level parameter of a linear model given aggregated data?” Surprisingly, we answer

this question in the affirmative, and to our knowledge, ours is the first such work. We

use techniques that exploit structural properties of the data aggregation procedure

and show that under standard incoherence conditions on the matrix of true group

level moments, the true parameter is recoverable with high probability.

The key contributions of this chapter are summarised below:

1. To our knowledge we are the first to investigate the problem of recovery of the

sparse population parameter of a linear model when both target variables as well

as features are aggregated as sample moments. We provide a theoretical analysis

showing that under standard conditions, the parameter can be recovered exactly

with high probability.

2. We extend the analysis to capture approximation effects such as sample estimates

of the population moment, additive noise, and histogram aggregated targets,

showing that the population parameter is recoverable in these scenarios.

3. In the bigger picture, our work extends existing results in the compressed sensing

literature by providing guarantees for exact and approximate parameter recovery
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for the case when the noise in the sensing matrix and measurement vector are

linearly correlated, which may be of independent interest.

Experimental results on synthetic data are provided in support of these theoretical

claims. We also show that the estimated parameter approaches the predictive ac-

curacy of parameter estimation from non-aggregated or “individual-level” samples

when applied to two real world healthcare applications - predictive modeling of reim-

bursement on CMS Medicare data, and estimation of healthcare charges using Texas

State hospital billing records.

Note: Proofs for all results in this chapter are included in Appendix A.

4.2 Parameter Recovery from Exact Means

Let x ∈ Rd represent features and y ∈ R represent the target variables, drawn

independently from a joint distribution (x,y) ∼ P. We assume a linear model where

each feature is related to the target y via some parameter β0 ∈ Rd with noise ε as

y = x>β0 + ε (4.1)

where ε represents observation noise assumed zero mean E[ε] = 0 without loss of

generality. In the standard regression setting, data is observed at the individual

level in the form of n pairs of targets and their corresponding features as D(x,y) =

{(xi, yi) : i = 1, 2, . . . n}, so β0 may be estimated using standard techniques. Instead,

we assume that the inputs Dx = {xi : i = 1, 2, · · ·n} and the targets Dy = {yl :

l = 1, 2, · · ·n} are subject to an aggregation process (not controlled by the learner)
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that produces summaries. In particular, we focus on an aggregation procedure that

produces means or first order moments of the data. A discussion on higher order

moments is presented in Appendix A.

We consider the case when this aggregation procedure is applied separately to

k subgroups of the population. This is common in many domains, e.g., in healthcare,

such groups may refer to patient data aggregated by ward, or by hospitals, or based

on administrative units like HRR’s or HSA’s. Similarly, the natural grouping could be

demographic information for GSS data and topological clustering for sensor networks.

We assume that the grouping is fixed, and data associated with each group

j ∈ {1, 2, · · · k} is drawn independently from a possibly group-dependent distribu-

tion (x, y)j ∼ Pj with their own corresponding group-dependent means for covari-

ates/features {µj = EPj [x], j = 1, · · · , k} and targets {νj = EPj [y], j = 1, · · · , k}.

We also assume that the model parameter of interest β0 is shared by the

entire population. By the distributive property of inner products and linearity of the

expectation operator, any β0 consistent with the data satisfies the set of equations

µ>j β0 = νj ∀ j = 1, 2, · · · , k. Let M = [µ1,µ2, · · ·µk]> ∈ Rk×d be the matrix of

feature means, and y = [ν1, ν2, · · · νk]> ∈ Rk is the vector of target means, it follows

from eq. (4.1) that β0 satisfies

Mβ0 = y. (4.2)

Clearly, if k ≥ d and the rank of M is greater than d, then (4.2) is sufficient

to characterize β0. The more interesting case, and a more practical scenario, is when

k � d, that is, the dimensionality of the problem is much larger than the number
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of subgroups. We defer to compressed sensing approaches to estimate β0 from such

systems.

4.2.1 Estimation from True Means using Compressed Sensing

The case of under-determined linear systems appears in a large number of

practical scenarios and is a fairly well studied problem in compressed sensing. We

adopt ideas from prior art in this field and demonstrate how they can be applied to

our problem. An extended discussion on compressed sensing is available in Chapter

2, in this section we only summarise the principal results that we require for our

analysis.

Definition 4.2.1. For a k × d matrix M and a set T ⊆ {1, 2, · · · , d}, suppose MT

is the k × |T | matrix consisting of the columns of M corresponding to T . Then, the

s-restricted isometry constant δs of the matrix M is defined as the smallest quantity

δs such that the matrix MT obeys

(1− δs)‖c‖2
2 ≤ ‖MT c‖2

2 ≤ (1 + δs)‖c‖2
2

for every subset T ⊂ {1, 2, · · · , d} of size |T | < s and all real c ∈ R|T |

Restricted isometry is a common and standard assumption in the sparse pa-

rameter recovery literature. Intuitively, this property means that when M satisfies

Definition 4.2.1 with a small δs, every sub-matrix of small enough size constructed

out of the columns of the matrix behaves approximately like an orthonormal system.

In fact, a number of random matrices satisfy this property including the Gaussian

ensemble and the Bernoulli ensemble (Donoho, 2006; Candès et al., 2006).
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For the rest of the chapter we assume that the matrix of true means M

satisfies the restricted isometry property. This is quite general as it is a direct

corollary for many kinds of common and standard assumptions on the true mean

matrix, for example the assumption that the true mean matrix is generated from a

Gaussian distribution. Evidence from health care literature (Armstrong et al., 1999;

Robinson, 2009) suggests that indeed, there is a significant geographical variation

in demographics and health outcomes (due to variations in demographic make-up,

average economic status, prevalent industries, etc.) which is often used as a predictive

feature for healthcare models (Park & Ghosh, 2014; Bhowmik et al., 2015). All of

this, together with our experiments on real datasets, suggest that there is sufficient

inhomogeneity in mean healthcare attributes across groups to justify the matrix

incoherence assumption for M.

Suppose we had access to the true mean matrices (M,y). First, we consider

the case when observations are noise-free, i.e. ε = 0. Suppose β0 is known to be κ0-

sparse and M satisfies the restricted isometry hypothesis, then the following result

applies:

Theorem 4.2.1 (Exact Recovery (Foucart, 2010)). Let Θ0 = 3
4+
√

6
≈ 0.465. If there

exists an s0 such that δ2s0 < Θ0 for M, then as long as κ0 < s0, the constraint

Mβ0 = y is sufficient to uniquely recover any κ0-sparse β0 exactly as the solution of

the following optimization problem:

min
β
‖β‖1 s.t. Mβ = y. (4.3)
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A similar result for approximate recovery holds for the case when the observa-

tions are corrupted with noise ε, i.e., instead of y = Mβ0, we are given yε = Mβ0+ε.

Theorem 4.2.2 (Approximate Recovery Candes (2008)). Let Θ1 =
√

2−1 ≈ 0.414.

If there exists an s0 for M such that δ2s0 < Θ1, then as long as κ0 < s0 and the

noise ε in observations yε = Mβ0 + ε is bounded as ‖ε‖2 < ξ, any κ0-sparse β0

can be recovered within an `2 distance of Cs0ξ from the true parameter β0 using the

noisy measurements (M,yε). That is, the solution β̂ to the following optimization

problem:

min
β0

‖β‖1 s.t. ‖Mβ − yε‖2 < ξ (4.4)

satisfies ‖β̂ − β0‖2 < Cs0ξ where the constant Cs0 depends only on δ2s0 and is well-

behaved (for example when δ2s0 = 0.2, the constant is less than 8.5).

4.2.2 Empirical Mean Estimates and Aggregation Error

Clearly, if the matrix of true means M satisfies the restricted isometry hy-

pothesis, and β0 is sufficiently sparse, Theorems 4.2.1 and 4.2.2 apply. Therefore,

given the true population means M and y, the parameter β0 can be recovered exactly

from noiseless data y by solving (4.3) and approximately from noisy observations by

solving (4.4).

Unfortunately, in many practical scenarios we do not have access to the true

M or y, but only to group level empirical estimates computed from a finite number

of samples. Assume n samples for each group to simplify the analysis. Denote the

corresponding empirically estimated means for the jth group by µ̂j,n and ν̂j,n for

each j = 1, · · · k. The corresponding sample mean matrices are given by M̂n =
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[µ̂1,n, · · · µ̂k,n]> and Ŷn = [ν̂1,n, · · · ν̂k,n]>. The corresponding sample mean matrices

are given by M̂n = [µ̂1,n, µ̂2,n, · · · µ̂k,n]> and Ŷn = [ν̂1,n, ν̂2,n, · · · ν̂k,n]>.

The empirical mean estimation procedure introduces aggregation errors en

and sn to the setup. That is instead of the true group means (M,y), the data

available for estimating β0 are restricted to empirical estimates (M̂n, Ŷn) where M̂n =

M + en and Ŷn = y + sn, and the results from section 4.2.1 no longer apply directly.

For the rest of the chapter, we investigate parameter recovery for this scenario.

4.3 Parameter Recovery from Approximate Means

As mentioned earlier, the aggregation procedure for the estimation of true

means introduces additive error terms en and sn to the matrices M and y. Note

that for the models we study in this work, these two noise terms are not independent

but are linearly correlated. Existing compressed sensing literature is restricted to

the analysis of models where the additive error terms en and sn are independent.

Furthermore, any such existing analysis that deals with additive error terms are

severely limited in the sense that they can only provide guarantees for approximate

recovery rather than exact recovery (e.g. see Zhao & Yu (2006); Rosenbaum et al.

(2013); Rudelson & Zhou (2015)).

Remarkably, as we show in the subsequent sections the true parameter is still

exactly recoverable with high probability, even in the presence of linearly correlated

aggregation error. This is because the aggregation procedure applied to linear mod-

els generates additional structure, which can then be exploited by the estimation

procedure to get exact parameter recovery even from empirical estimates of the data
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means from a finite number of samples.

We first analyse the case where the aggregation procedure has been applied to

noise-free samples and then extend the analysis to the noisy case, and to the special

case of data collected as histogram aggregates.

Throughout this chapter we shall make the standard assumption (Georgiou &

Kyriakakis, 2006; Hsu et al., 2012) that the marginal distribution of each coordinate

of the covariates is sub-Gaussian with parameter σ2. Thus, for each covariate x
(i)
j ∈

xj = [x
(1)
j , x

(2)
j · · ·x

(d)
j ] and each group j ∈ {1, 2, · · · k}, and for every t ∈ R, the

logarithm of the moment generating function is quadratically bounded

lnE[et(x
(i)
j −µ

(i)
j )] <

t2σ2

2
.

Similarly, we assume that the marginal distribution for each noise term is

zero-mean and sub-Gaussian with parameter ρ. Note that the assumptions on the

covariates and the noise terms are only on the marginal distributions. In particular,

we do not require either independence or identical distribution across groups or

even across individual coordinates. As discussed in section 4.5.1, the analysis for

alternative distributional assumptions follows along very similar lines by using other

standard concentration inequalities. Proofs for all subsequent results are presented

in Appendix A.

4.3.1 Noise-Free Observations

First we consider empirical means computed from noiseless observations. As

mentioned earlier, the true parameter β0 can still be recovered exactly from empir-
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ical estimates of group means (M̂n, Ŷn) despite the presence of linearly correlated

aggregation error (en, sn).

Key observation: For a linear model, the relationship satisfied by the true

group means E[y] = E[x]>β0 is also exactly satisfied by the empirically estimated

means
∑
y
n

=
(∑

x
n

)>
β0. Therefore, for aggregated noise-free observations, the equa-

tion

M̂nβ0 = Ŷn (4.5)

still holds exactly. As long as the empirical moment matrix M̂n satisfies the re-

stricted isometry constraints, we may still guarantee exact recovery by solving the

optimization problem:
min
β

‖β‖1

s.t. M̂nβ = Ŷn.
(4.6)

Our first main result is to show that this is indeed the case, and the true

parameter β0 can be recovered with high probability if the number of samples n

used to compute empirical moment estimates in each subgroup is sufficiently large.

Theorem 4.3.1 (Main result 1). Let Θ0 = 3
4+
√

6
≈ 0.465. Suppose there exists an s0

such that the isometry constant δ2s0 for the true mean matrix M satisfies δ2s0 < Θ0.

Also suppose that the marginal distribution of the coordinates of each feature is sub-

Gaussian with parameter σ2. Then, given (M̂n, Ŷn) any κ0-sparse β0 with κ0 < s0

can be recovered exactly with probability at least 1− e−C0n by solving (4.6). Here, the

constant C0 in the expression is such that C0 ∼ O
(

(Θ0−δ2s0 )2

kdσ2(1+δ2s0 )

)
.

We can unpack the result with respect to the constant C0 which depends on

the isometry parameter δ2s0 , the size of the mean matrix (k, d) and the sub-Gaussian
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parameter of the feature terms σ. The robustness of the isometry property of M̂n

depends on the strength of the isometry property in the true moment matrix M.

Fewer samples are required for estimating M̂n if M satisfies the isometry hypothesis

more robustly (that is, δ2s0 small) and consequently, a larger value of
(Θ0−δ2s0 )2

1+δ2s0
.

Similarly, if the feature distributions have a thinner tail i.e. a smaller value of the

sub-Gaussian parameter σ2, empirically estimated means are more accurate with

fewer samples.

4.3.2 Observations with Noise

We now consider the case when the observations are noisy and the equation

(4.5) no longer holds exactly. In particular, we assume that the data used to compute

the sample moments is observed with zero mean additive noise as yεi,j = x>i,jβ0 + εi,j

for each datapoint i ∈ {1, · · · , n} in population subgroup j ∈ {1, · · · , k}. This leads

to an error in the empirical target means over and above the aggregation error.

Let Ŷn,ε = Ŷn + εn where Ŷn,ε (henceforth denoted Ŷε) is the empirical target

mean estimated from noisy samples and εn is the cumulative estimation error due to

noise in n samples. With the feature sample mean M̂n, eq. (4.5) becomes

M̂nβ = Ŷn = Ŷε − εn. (4.7)

Similar to the results of Theorem 4.2.2, it can be expected that if the sample

mean matrix M̂n satisfies the isometry hypothesis for noisy measurements, and if

the error term εn is bounded as ‖εn‖2 < ξ for some ξ > 0, then β0 can be recovered
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to within an `2 distance of O(ξ) by solving the following optimization problem

min
β

‖β‖1

s.t. ‖M̂nβ − Ŷε‖2 < ξ.
(4.8)

In fact, in our case we can show that the aggregation procedure smooths out the

destabilising effects of noise in observations to allow arbitrarily accurate parameter

recovery within any small degree ξ of `2 estimation error.

Theorem 4.3.2 (Main Result 2). Let Θ1 =
√

2 − 1 ≈ 0.414. Suppose there exists

an s0 such that the isometry constant δ2s0 for the true mean matrix M satisfies

δ2s0 < Θ1. Also suppose that the marginal distribution of the coordinates of each

feature is sub-Gaussian with parameter σ2, and noise in each observation is zero-

mean and sub-Gaussian with parameter ρ2. Let ξ > 0 be any small positive real

value. Then, any κ0-sparse β0 with κ0 < s0 can be recovered within an `2 distance of

O(ξ) with probability at least 1− e−C1n − e−C2n by solving (4.8). Here, the constant

C1 is such that C1 ∼ O
(

(Θ1−δ2s0 )2

kdσ2(1+δ2s0 )

)
and the constant C2 is such that C2 ∼ O

(
ξ2

ρ2k

)
.

The constant term in O(ξ) is the same as that in Theorem 4.2.2 and it depends

only on δ2s0 and is well-behaved for small values of δ2s0 . Note the similarity of the

constant C1 in the noisy case and the constant C0 in the exact case. As for exact

recovery, the probability of recovery depends on the tail properties of the feature

distribution as well as the robustness of the isometry property for the true mean

matrix M. The constant ξ2

ρ2k
in the additional term accounts for observational noise.

As expected, more samples are required if the noise has heavy tails ρ2 or if the degree

of approximation ξ is small. In addition, the constant for O(ξ) in the approximation

factor may depend only δ2s0 in a manner similar to Theorem 4.2.2.
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4.3.3 Extension to Histogram Aggregation

For the preceding analysis, we have assumed that errors in the target moments

is a result of the empirical aggregation or observational noise. It is worth noting that

this analysis can be extended to cover any additional source of error which can be

bounded deterministically or with high probability. An example of this is when

the targets are available as histogram aggregates with bin size ∆ and the mean is

estimated from the histogram. Suppose h∆ is the error in estimation of target mean

from the histogram such that the estimated sample mean Ŷ∆ is related to the true

sample mean for the targets as Ŷ∆ = Ŷn + h∆.

Then, we can use the exact same procedure as for noisy observations to bound

the `2 error in estimation of β0 to O(ξ∆) by solving the optimisation problem

min
β

‖β‖1

s.t. ‖M̂nβ − Ŷ∆‖2 < ξ∆

(4.9)

for some positive ξ∆ > 0.

The value of ξ∆ and theoretical guarantees arising therefrom will depend on

the manner in which the target mean in estimated from the histogram. Here, we

analyse one such standard moment estimation approach.

Consider a single population subgroup. Suppose the range of the targets is

bounded by some R, that is, ymax − ymin < R. We have a set of bins B = {Bτ =

(bτ , bτ+1) : τ = 1, 2, · · · , bR
∆
c} such that bτ+1− bτ = ∆ for each bin. We also have for

each bin an integer nτ which is the number of targets for that subgroup that fall in

that particular bin. Suppose b̄τ = (bτ+bτ+1)
2

is the mid point of each bin. Then, the
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target mean for that group is estimated as

ν̂∆ =

∑
τ nτ b̄τ∑
τ nτ

=

∑
τ nτ b̄τ
n

.

For this mean imputation procedure, we get a very similar result to Theorem

3.2 for aggregated data that bounds the probability of recovery in terms of the

isometry constants of the true mean matrix and the granularity of the histogram.

Theorem 4.3.3 (Main Result 3). Let Θ1 =
√

2 − 1 ≈ 0.414. Suppose there exists

an s0 such that the isometry constant δ2s0 for the true mean matrix M satisfies

δ2s0 < Θ1.Also suppose that each covariate has a sub-Gaussian distribution with

parameter σ2. Let the targets for each group be available as histogram aggregates with

bin size bounded below by ∆. Then, any κ0-sparse β0 with κ0 < s0 can be recovered

within an `2 distance of O(
√
k∆) with probability at least 1− e−C1n by solving (4.9)

with ξ∆ =
√
k∆

2
. Here, the constant C1 is such that C1 ∼ O

(
(Θ1−δ2s0 )2

kdσ2(1+δ2s0 )

)
.

Note that the constants on O(
√
k∆) are the same as in the case of noisy

observations. Also, in the case of exact estimation, bin size ∆ → 0, therefore β0

can be recovered exactly. Furthermore, the bin size does not have any effect on the

sample complexity of recovery probability, only on the accuracy of estimation.

In particular, the recovery error is small for a histogram of fine enough gran-

ularity. In most cases of binned data, the bin size used for reporting the histogram

decreases as a function of n. In fact for many real world scenarios (see Scott (1979a))

the bin size decreases at least as fast as ∆ = O( 1
nc

) for some 0 < c < 1. In any case,

the worst case error in parameter estimation is limited solely by the bin size, and

59



tighter bounds can be obtained by making reasonable assumptions on the target dis-

tribution. Note that if instead of supplying a coarse histogram the data is released in

full (without specifying the relationship between x and y in each group), the effective

bin size is 0 and the parameter can be estimated exactly by Theorem 4.3.3.

Related Work

While there is a rich literature on sparse parameter recovery and predictive

modeling in general, the aggregated data case is much more limited. To our knowl-

edge, ours is the first analysis of sparse parameter recovery for aggregated data of

any kind. Our main result while seemingly obvious after the fact, has not been

shown in more than 60 years of ecological data analysis dating at least to Good-

man (Goodman, 1953), with parallel work in the compressed sensing literature, and

renewed interest in machine learning (Park & Ghosh, 2014; Bhowmik et al., 2015).

Furthermore, as noted in section 4.5.1, our analysis can be easily extended to study

sparse parameter recovery from aggregated data in various contexts using a wide

variety of estimation techniques beyond what we present in this chapter.

The techniques used in our work follows a long line of research on compressed

sensing as discussed in Section 4.2.1, where related analyses fall mainly under three

categories:

1. error in the design matrix M̂ = M+e, without any error or noise in observation

vector y

2. noise in observations Ŷ = y + s, with a fixed design matrix M without error
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3. design matrix error e and observation noise s, where e and s are independent

Prior work, eg. (Herman & Strohmer, 2010; Zhao & Yu, 2006; Rudelson

& Zhou, 2015), deals only with case 1, or with cases 2 and 3 in a way to only

provide approximate parameter recovery guarantees. We focus our investigation on

the aggregated data case 4: where E and s are linearly correlated. Even ignoring

the linear correlation in the noise model, the best existing analyses are still limited

to using a naive error bounding technique to analyse the stability of the LASSO

resulting in weak guarantees for only approximate parameter recovery.

In contrast, we propose non-trivial modifications to the analysis, and are able

to exploit the additional structure generated by the data aggregation procedure to

recover the sparse parameter exactly even with aggregation error, as in Theorem

4.3.1, and upto arbitrarily accurate degree of estimation from noisy data as we see

in Theorems 4.3.2 and 4.3.3.

4.4 Experiments

We corroborate our theoretical results with experiments on synthetic data to

show that probability of exact parameter recovery follows a pattern just as predicted

by our main results. We also demonstrate the efficacy of our technique in two real

world applications by applying it to predictive modeling of outpatient reimbursement

claims in CMS Medicare data (DE-SynPUF), and to modeling healthcare costs us-

ing Texas Inpatient Discharge dataset (TxID) from the Texas Department of State

Health Services.
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4.4.1 Synthetic Data

We first generate the true covariate mean matrix M using a Gaussian and

a Bernoulli ensemble, and compute the respective true target means using a sparse

β0. We then generate random covariates centred around the true mean matrix and

compute the corresponding empirical mean matrix M̂n from the covariates. The

targets are then generated using the parameter β0. We consider two cases separately-

noiseless targets y and targets yε to which noise has been added. The corresponding

empirical target means Ŷn and Ŷε are computed for both sets of targets and used

together with the sample covariate means M̂n to estimate β0.

This entire procedure is repeated multiple times and the proportion of in-

stances in which the true parameter β0 is recovered exactly, both in magnitude and

support, is plotted against the number of datapoints used to compute the empiri-

cal sample means. Figures 4.1 and 4.2 show the results for Gaussian and Bernoulli

ensembles respectively. As can be seen in the figures, the probability of recovering

the exact parameter increases as the number of data points used to compute the em-

pirical sample means increases, in a manner exactly as predicted by our theoretical

results.

4.4.2 Real datasets - DE-SynPUF and TxID

We now apply our methods to two real datasets. Since ours is the first work on

sparse recovery from aggregated data, we do not know of any competing algorithmic

baselines. We evaluate our methods by comparing the parameter estimated from

aggregated data to the performance upper bound of the “true” parameter that is
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(a) Probability of recovering exact parameter (b) Probability of recovering exact signed support

Figure 4.1: Performance on Gaussian model with increasing number of datapoints in each group

(a) Probability of recovering exact parameter (b) Probability of recovering exact signed support

Figure 4.2: Performance on Bernoulli model with increasing number of datapoints in each group

estimated from the full non-aggregated dataset.

Our first dataset is the CMS Beneficiary Summary (DE-SynPUF) dataset

DESynPUF (2008) which is a public use dataset created by the Centers for Medi-

care and Medicaid Services and is often used for testing different data mining or

statistical inferential methods before getting access to full Medicare data. We use a

subset of the DE-SynPUF dataset for Louisiana state from the year 2008 and model
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outpatient institutional annual primary payer reimbursement (PPPYMT-OP) with

all the available predictor variables that include age, race, sex, duration of coverage,

presence/absence of a variety of chronic conditions, etc.

Our second dataset is the Texas Inpatient Discharge dataset (TxID) from

the Texas Department of State Health Services ((TxID, 2014), see also (Park &

Ghosh, 2014)). We model healthcare charges using hospital billing records from the

fourth quarter of 2006 in the TxID dataset, and use all the available individual level

predictor variables, which include demographic information like race, and real valued

variables like length of hospital stay for each datapoint.

In both these datasets, we first use a LASSO estimator (with parameter chosen

via cross-validation) on the full dataset to obtain a sparse regression parameter βfull.

We use a k-means algorithm to cluster the datapoints into groups and compute the

sample means for each group with increasing number of datapoints. We then use

only these empirical sample means to obtain an estimate βagg for the parameter,

and compare βagg to the parameter βfull obtained from full non-aggregated dataset.

Results averaged across multiple clusterings are shown in figures 4.3 and 4.4.

Figures 4.3a and 4.4a show the `2 norm of the distance between the param-

eter estimated from the full dataset βfull and the parameter estimated from the

aggregated version βagg, for the DE-SynPUF dataset and TxID dataset respectively,

plotted against the number of datapoints used to estimate the means. Figure 4.3b

and 4.4b show the number of conflicts or discrepancies between the support (non-zero

coordinates) of βagg estimated from aggregated data and support of βfull estimated

from the non-aggregated dataset, for the DE-SynPUF dataset and TxID dataset
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(a) Avg. Error in Parameter Recovery
‖βfull − βagg‖

(b) Avg. Error in Support Recovery

Figure 4.3: Performance on DESynPUF dataset with increasing number of datapoints in each
group

(a) Avg. Error in Parameter Recovery
‖βfull − βagg‖

(b) Avg. Error in Support Recovery

Figure 4.4: Performance on TxID dataset with increasing number of datapoints in each group

respectively. It can be seen that as the number of datapoints used to compute the

sample means increases, the parameter recovered using aggregated data exactly iden-

tifies the support of the “true” parameter estimated from the full dataset, and also

closely matches it in magnitude.
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4.5 Discussion

4.5.1 Extensions

The techniques presented in this work can be applied to the parameter recov-

ery problem in a much wider class of cases of interest by building on and extending

existing results in the compressed sensing literature (see Candes et al. (2006); Can-

des & Tao (2007); Cai et al. (2010a, 2009), etc). In particular, we note that various

alternative frameworks like non-sparse β0, alternative estimators to LASSO, beyond

sub-gaussian assumptions on different marginals, etc. can be analysed in an identical

manner, and our main results on parameter recovery would still continue to hold,

albeit with slightly different sample complexity.

4.5.2 Higher Order Moments

The results in this chapter focused on estimation from first order moments.

It may seem like including higher order moments might make estimation in this

framework easier but it turns out that this is not the case in general. We include

a discussion in Appendix A on the difficulties of using higher order moments for

estimation. In particular, we prove a surprising and counter-intuitive negative result

which shows that even with second order moments, in the general case the estimation

cannot be guaranteed to be easier or more accurate than when we use only first order

moments. Similar results may also hold for other higher order moments.
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4.6 Conclusion

In this chapter we study the problem of parameter recovery for sparse linear

models from data which has been aggregated in the form of empirical means com-

puted from different subgroups of the population. We show that when the collection

of true group moments is an incoherent matrix, the parameter can be recovered with

high probability from the empirical moments alone provided the empirical moments

are computed from a sufficiently large number of samples. We extend the framework

to the case of moments computed from noisy or histogram aggregated data and show

that the parameter can still be recovered within an arbitrarily small degree of error.

We corroborate our theoretical results with experiments on synthetic data and also

show results on two real world healthcare applications- predictive modeling of reim-

bursement claims from CMS Medicare data, and modeling healthcare charges using

hospital billing records from the Texas Department of State Health Services.
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Chapter 5

Frequency Domain Predictive Modelling with

Spatio-Temporally Aggregated Data

5.1 Introduction

Analysis of spatio-temporally correlated data is an important and ever present

problem in diverse and wide-ranging fields including econometrics (Davidson et al.,

1978), climate science (Lozano et al., 2009; Liu et al., 2010), financial forecasting

(Taylor, 2007) and Internet of Things (IoTs) (Da Xu et al., 2014; Li et al., 2013).

Nearly all existing modelling techniques in literature assume access to datasets with

individual level samples for each time and/or location index. However, in many

real life cases (Burrell et al., 2004; Lozano et al., 2009; Davidson et al., 1978), for

various reasons including measurement fidelity, robustness to random noise, cost of

data collection, privacy preservation, scalability, etc., data is often collected and/or

publicly reported as aggregates or time averages, collected over specific intervals

and released periodically, e.g., data released by the Bureau of Labour Statistics

Portions of this chapter has been published as: A Bhowmik, J Ghosh, O Koyejo, “Frequency
Domain Predictive Modelling with Aggregated Data”, International Conference on Artificial Intel-
ligence and Statistics (AISTATS) 2017, Fort Lauderdale, USA

Co-authors have participated in discussions on research methods and contributed in reviewing
the final manuscript.

68



(US Department of Labour) and Bureau of Economic Analysis (US Department of

Commerce), or by the General Social Survey (NORC) are often in this form.

The central question addressed in this chapter is whether one can provably

learn individual level models given only aggregated spatio-temporal data– a chal-

lenging and relatively unexplored form of semi-supervision, which requires novel

techniques and significant algorithmic innovation on the part of data analysts to

perform modeling and inference. As a first work (to the best of our knowledge) on

predictive modelling with spatio-temporally aggregated data, we tackle the problem

in the context of predictive linear modelling where real valued targets are regressed

on multivariate features via a vector parameter.

Even for this relatively simple setup, naive application of standard modelling

techniques to aggregated data often fails due to ecological fallacy (Robinson, 2009;

Freedman et al., 1991a; Goodman, 1953) wherein inferences drawn at the group level

differ significantly from the ground truth at individual level. Learning is especially

difficult if aggregation periods are not uniform or aligned across features and targets.

For example, an econometric model may want to use as features metrics like GDP

growth rate (reported quarterly), unemployment rate and inflation rate (reported

monthly), interest rate and balance of trade (reported daily) and ratio of government

debt to GDP (reported yearly) to predict, say, stock market indices and currency

exchange rates (reported daily) (US Department of Commerce; US Department of

Labour).

In such a scenario, it is extremely challenging even to formulate a cogent math-

ematical representation that captures the relationship among the available misaligned

69



aggregates. On the other hand, effective reconstruction of data at the individual-level

is very difficult because aggregation fundamentally obfuscates local information.

5.1.1 Contributions

In this chapter, we demonstrate that by formulating the problem in the fre-

quency domain, selected global properties of individual components of the model can

be separately estimated with high fidelity even from aggregated data, which can then

used for learning and inference without being affected by local-level information ob-

fuscation caused by aggregation– all of this without any explicit data reconstruction.

Our specific contributions are summarised below-

1. To our knowledge, we are the first to investigate the problem of predictive mod-

elling from aggregated spatio-temporal data. We introduce a novel framework

and new algorithmic mechanisms for learning from aggregated spatio-temporal

data that leverages structural properties of frequency domain analysis techniques

to perform predictive modelling with minimal data reconstruction.

2. We provide theoretical guarantees for our framework, and establish that under

mild regularity conditions, the parameter vector learned from aggregated data

suffers a generalisation error that is provably close to the optimal that can be

obtained from any linear model in the non-aggregated setting, that is, with

individual level samples

3. We extend our analysis to derive guarantees for our algorithm to capture real

world approximation effects caused by aliasing and randomness in the data gen-
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eration procedure, and show that our methods can still learn a parameter that

closely matches the optimal generalisation error.

We empirically evaluate the efficacy of our methods on both synthetic data

and three real datasets involving applications in ecological surveys, agricultural stud-

ies and climate science.

Note: The proofs for all results presented in this chapter are relegated to

Appendix B

5.1.2 Related Work

There is a vast range of work on spatio-temporal data analysis (Lozano et al.,

2009; Lambert et al., 2004; Ho et al., 2013) but very little existing literature applies to

the aggregated case. The closest that come to our setup are interpolation techniques

like Kriging (Stein, 2012; Oliver & Webster, 1990), which also typically assume that

data is sampled at localised discrete positions on a grid, rather than as aggregates.

Among frequency domain techniques, the closest line of work is spectral regression

(Cai et al., 2007; Phillips et al., 1988; Corbae et al., 2002) which has been previously

used in econometrics and financial modeling. However, existing work only deals

with non-aggregated data in the discrete domain, and in particular, we have not

come across an estimation framework nor analysis techniques, nor any guarantees

for generalisation error as introduced in this chapter.

Note that while our work involves spatio-temporal data, the goal is neverthe-

less a general framework for predictive modelling rather than forecasting– in fact,
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our methods can be used even outside spatio-temporal applications, e.g. in any do-

main wherein sampled measurements can be represented as tensors where a sense

of ordering or structural chronology exists along each mode (for example, clinical

measurements).

Existing literature as relates to estimation from aggregated data is discussed

in chapter 2 and a detailed discussion on the same is, therefore, omitted from this

chapter.

In chapter 2, we provided an in-depth discussion on frequency domain analysis

and related topics. These results are examples of the well known duality properties

of Fourier analysis, where global properties in the time domain are related to local

properties in the frequency domain and vice versa. We shall use these properties

extensively in our work.

Throughout this chapter, we assume that the power spectral density (and cor-

respondingly, the autocovariance function) for every signal of interest exists finitely,

and decays rapidly with lag for all processes involved. In particular, we assume that

ρ(·)(·) is a Schwartz function (Terzioğlu, 1969), that is ρ(·) and all its derivatives

decay at least as fast as any inverse polynomial. Therefore, most of the power for

our signals will be concentrated around ω = 0. An extended discussion on this is

presented in section B.3 in Appendix B.
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5.2 Problem Setup

In the interest of simplicity we delineate our setup for temporally aggregated

data, where features x(t) and targets y(t) are time series signals or processes. Dis-

cussion on higher dimensional aggregation frameworks are deferred to section 5.4.

Consider the task of predictive linear modelling, where real valued targets

y(t) ∈ R are regressed on multivariate feature vectors x(t) ∈ Rd via a parameter

vector β∗ ∈ Rd in a linear model

y(t) = x(t)>β∗ + ε(t) (5.1)

where ε(t) is a random noise process. For the rest of our chapter, we make the

assumption that all our signals of interest x, y, ε are centered and weakly stationary

with finite variance.

Stationarity is a standard assumption in time series analysis and very com-

mon in many real life applications (see Granger & Newbold (2014); Dzhaparidze

(2012); Feige & Pearce (1974)), and techniques like filtering out trend lines and dif-

ferencing are often applied to the data to ensure stationarity before analysis (Hibon

& Makridakis, 1997). Note that we do not assume any specific functional form for

the generative processes (Gaussian, etc.) for the signals studied in this chapter.

Loss Function and Parameter Estimation

Standard statistical learning approaches estimate the optimal linear model

given the data by minimising an appropriate loss function over the vector parameter
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β. Define the residue process at any particular β as

εβ(t) = x(t)>β − y(t)

One potential option for a loss function might have been the total energy of the

residue process
∫
R |εβ(t)|2dt

However, the total energy in the noise process is often not finite (Koopmans,

1995; Tangirala, 2014), hence for weakly stationary processes, a better loss function

to use is the variance of the noise process at time t, that is,

L(β) = E[|εβ(t)|2] = E[|x(t)>β − y(t)|2]

By assumption our signals are weakly stationary, therefore the variance does

not depend on t. Therefore, the “optimal” linear model parameter is given by

β∗ = arg min
β

L(β) = arg min
β
E[|x(t)>β − y(t)|2] (5.2)

Given access to the detailed, full-resolution dataset, the typical strategy for

solving the estimation problem (5.2) is to replace the expectation by a sum over indi-

vidual datapoints. This finite sum converges to the expectation given enough data-

points under certain conditions, for example, if the noise process is ergodic (Wiener,

1949). However, the story becomes more complicated if the data is available in

aggregated form.
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5.2.1 Data Aggregation in Time Series

Instead of the individual targets y(t) at time t, we are given aggregates sam-

pled with period T , which are of the form

y[k] =
1

T

kT/2∫
(k−1)T/2

y(τ)dτ (5.3)

for k ∈ Z = {· · · − 1, 0, 1, · · · }.

Features can also be aggregated in a more complicated manner with different

periodicities, that is, each coordinate {xi(t) : i = 1, 2, · · · d} of the features x(t) can

be aggregated periodically with period Ti as

xi[l] =
1

Ti

lTi/2∫
(l−1)Ti/2

xi(τ)dτ (5.4)

Therefore, instead of the continuous time data {(x(t), y(t)) : t ∈ R} specified

across t, we are given access to discrete aggregates {y[k] : k ∈ Z} and sets of

aggregates {{xi[l] : i = 1, 2, · · · d} : l ∈ Z}.

5.3 Frequency Domain Parameter Estimation from Spatio-
Temporally Aggregated Data

We show that an approximately equivalent frequency domain formulation of

the problem allows us to sidestep the challenges inherent in a data aggregation setup

without explicit reconstruction. Since local time-domain properties are captured

by global frequency domain properties, a frequency domain analysis allows us to
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individually extract high fidelity estimates of selected global properties of all the

quantities involved to then use for inference and predictive modelling.

5.3.1 Frequency Domain Representation of Aggregated Time-Series Data

The first key insight that enables us to work with aggregated time series

data is the fact that aggregation in the time domain corresponds to convolution and

subsampling in the frequency domain.

Recall that in our setup, continuous signals of the form z(t) get aggregated

into samples of the form-

z[k] =
1

T

kT/2∫
(k−1)T/2

z(τ)dτ (5.5)

There are two steps here. First, the continuous process z(t) is aggregated into

the sliding-window averaged continuous process z(t) as

z(t) =
1

T

t+T/2∫
t−T/2

z(τ)dτ (5.6)

This is equivalent to a convolution operation z(t) = z(t) ∗ u(t) with the

square wave function u(t) = 1
T
I{t ∈ (−T/2, T/2)}, where I{·} is the indicator func-

tion. In the frequency domain, this is equivalent to multiplying with a sinc function

UT (ω) = sin(ωT/2)
ωT/2

.

The final observation sequence {z[k] : k ∈ Z} is obtained by sub-sampling at

periodicity T the aggregated time series z(t); in the frequency domain this becomes
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a 2πk
T

-periodicity sub-sampling operation, via a convolution with a delta train or a

Dirac comb 1
T

∑
k∈Z δ(ω −

2πk
T

).

Therefore, putting it all together, we can write our observation signal in the

frequency domain as

Z̄(ω) =
1

T

∑
k∈Z

Z(ω − 2πk

T
)UT (ω − 2πk

T
) (5.7)

=
1

T
Z(ω)UT (ω) + ∆z(ω|T ) (5.8)

where ∆z(ω|T ) = 1
T

∑
k∈Z\{0} Z(ω − 2πk

T
)UT (ω − 2πk

T
) is the error due to ag-

gregation and aliasing.

For succinctness of notation, we assume identical rates for aggregation and

subsampling. Estimation is identical in the case where aggregation time period and

reporting frequency are different for targets and features (e.g. in case of overlapping

aggregation or sliding windows), but the analysis requires some additional book-

keeping - a brief discussion is included in section 5.4.

5.3.2 Formulation and Estimation Algorithm

We now proceed to formulate our parameter estimation framework in the

frequency domain. First, we note that the Fourier1 Transform z ↔ Fz is a linear

operation, therefore the linear relationship that holds in the time domain must also

hold in the frequency domain. That is for any signal x(t), y(t) with noise ε(t), and

1as well as the Finite Fourier Transform
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Algorithm 1 Fourier-domain Estimation from Aggregated Data

1: Input: x, y, ω0, D, T0

2: Sample D frequencies uniformly in (−ω0, ω0) to get

Ω = {ω1, ω2, · · ·ωD : ωi ∈ (−ω0, ω0)}

3: for each ω ∈ Ω, and i ∈ {1, 2, · · · d} do

4: compute the T0-limited finite Fourier transforms

X i,T0(ω) = FT0xi(ω), Y T0(ω) = FT0y(ω)

5: reconstruct non-aggregated Fourier Transforms

X̂i,T0(ω) =
X i,T0(ω)

UTi(ω)
, ŶT0(ω) =

Y T0(ω)

UT (ω)

6: end for

7: Estimate the parameter as

β̂ = arg min
β

1

|Ω|
∑
ω∈Ω

‖X̂T0(ω)>β − ŶT0(ω)‖2

8: return β̂
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for any β, we have

y(t) = x(t)>β + ε(t)⇐⇒ Y (ω) = X(ω)>β + ε(ω)

Therefore, it stands to reason that if we have good estimates for Y (ω),X(ω)

for specific values of ω, parameter estimation should be able to proceed in the fre-

quency domain.

However, the preceding section makes it clear that unless our signals are band-

limited, estimates for X(ω) and Y (ω) will be affected by aliasing. Since in the real

world we can only work with finite time signals, our signals will never be band-limited

because they are time-limited.

Nevertheless, if we assume that the power spectral density for the original

signal decays rapidly with ω and, for some ω0, almost vanishes beyond |ω| > ω0.

Then, it is easy to see that the effect of aliasing from the sampling process will be

minimum for all our signals around ω = 0. Therefore, it makes sense to use only high

fidelity estimates of Y (ω),X(ω) for estimation, by restricting ourselves to values of

ω ∈ (−ω0, ω0).By doing so, we also bypass any necessity for reconstruction of the

original values of our signals in the time domain.

These ideas are the crux of the intuition for our framework and algorithmic

treatment of the problem. Section B.1 in Appendix B contains an extended expos-

itory discussion that motivates and outlines the steps involved in translating these

intuitive ideas to specific algorithmic strategy in mathematical terms.

By formulating the estimation problem in the frequency domain in a way

that exactly exploits these intuitive ideas, we can derive our first main result which
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shows that under our assumptions, frequency domain parameter estimation leads to

generalisation error that is close to the optimal.

Theorem 5.3.1. Let β∗ be the optimal parameter as in equation 5.2. Denote the

parameter estimated from the T0-restricted Fourier Transforms as

β̂ = arg min
β

∑
ω∈Ω

E
[
‖XT0(ω)>β − YT0(ω)‖2

]
(5.9)

Then, for every small ξ1, ξ2 > 0, there exist correspondingly T0, ω0, D such

that for the set Ω = {−ω0 < ωi < ω0 : i = 1, 2, · · · |Ω|} with |Ω| = D sampled

uniformly between (−ω0, ω0), we have

E
[
|x(t)>β̂ − y(t)|2

]
<(1 + ξ1)

(
E
[
|x(t)>β∗ − y(t)|2

])
+ (1 + ξ1)ξ2

with probability at least 1− e−O(D2ξ22)

In essence, this result shows that given a long enough signal, with enough

granularity in sampled frequencies, the estimated parameter β̂ leads to a generalisa-

tion error that is arbitrarily close to the optimal generalisation error obtained by β∗.

Because of the multiple tunable parameters in our formulation, it allows for enough

trade-offs that our algorithm can be applied to a wide range of applications (see for

example, Wu (2005); Peligrad & Wu (2010); Robert & Casella (1999); Doucet et al.

(2001)), and Theorem 5.3.1 can be used as a generic template to derive more precise

and bespoke guarantees for each such case. The exact guarantees obtained will de-

pend on the specifics of the application and the data setup– we provide a concrete

example of a particular class of common cases in the subsequent section.
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5.3.3 Aliasing and Approximation Effects

In real life cases, we have to deal with approximation effects arising from

aliasing and randomness of the data that affect our algorithm and analysis procedure,

especially in computing our objective function. However, we can show that in most

cases the objective function in our estimator as defined in equation (5.9) can be

closely approximated with mild regularity assumptions.

For instance, suppose we have data collected independently from N loca-

tions with corresponding T0-restricted Fourier Transforms {(Xj
T0

(ω), Y j
T0

(ω)) : j =

1, 2, · · ·N} (for example, these can be economic metrics from different states or

counties, or meteorological measurements at different points in the atmosphere). We

assume that the individual processes at each location is strictly sub-Gaussian (Buldy-

gin & Kozachenko, 2000; Mendelson, 2011). We also assume that the power spectral

density of all processes involved is finite for every ω ∈ (−ω0, ω0), and decays rapidly

at a sub-Gaussian rate e−O(ω−ω0)2 beyond |ω| > ω0.

Then, the following result holds which shows that even for the case where

the targets and features are aggregated at different rates, we can still estimate a

parameter that leads to a generalisation error that is close to the optimal linear

modelling error.

Theorem 5.3.2. Let Ti be the sampling/aggregation period for the ith coordinate

xi(t) and Ty be the corresponding period for the target y(t). Let ωs = 2π
Ts

with Ts =

max{Ty, T1, T2, · · ·Td}. Denote the parameter obtained by our estimator from N data
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sources as

β̂ = arg min
β

∑
j∈[N ]

∑
ω∈Ω

‖X̂j
T0

(ω)>β − Ŷ j
T0

(ω)‖2

Then, for every small ξ1, ξ2, ξ3 > 0, there exist correspondingly T0, ω0, D such

that for the set Ω = {−ω0 < ωi < ω0 : i = 1, 2, · · · |Ω|} with |Ω| = D sampled

uniformly between (−ω0, ω0), we have, if the aggregation rate is high enough ωs > 2ω0,

E
[
|x(t)>β̂ − y(t)|2

]
<(1 + ξ1)

(
E
[
|x(t)>β∗ − y(t)|2

])
+(1 + ξ1)(ξ2 + ξ3 + e−O((ωs−2ω0)2))

with probability at least 1− e−O(D2ξ22) − e−O(N2ξ23)

Note that our estimation procedure requires no explicit reconstruction of the

original time domain data, which would require spectral information about the sig-

nal over the entire spectrum, much of which is severely affected by aliasing effects.

In contrast, our methods only use information about the specific parts of the spec-

trum which are robust and least impacted by aliasing, and are thus more accurate

snapshots of the signal.

When the sampling and aggregation periodicity is uniform across all coordi-

nates, an interesting effect can be observed wherein uniform aliasing effects in features

and targets essentially cancel each other out. This is because the aliasing error ∆x

for features are related linearly to the error ∆y for targets via the same parame-

ter. Therefore, parameter estimation can proceed without explicit reconstruction

of X̂i(ω), Ŷ (ω) as a standard linear regression albeit with a slightly different noise
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model. However, estimation can still be affected by aliasing in the noise in the sig-

nal, therefore, as our experiments on synthetic data shall show, it may preferable to

perform estimation in the frequency domain nevertheless.

5.4 Discussion and Extensions

5.1. Multi-dimensional Aggregation:

So far our discussion has been limited to the case where d-dimensional feature vectors

x and real valued targets y are obtained at (and aggregated along) points on a single

dimension, i.e., time. We can extend our work very easily to the more general

case, where features and targets are indexed by and averaged over points in the

p-dimensional Euclidean space Rp.

For example, in spatial climate models, we may use as features x ∈ Rd and

targets y ∈ R values of meteorological variables (CO2 levels, temperature, etc.) at

discrete points on the earth’s surface, indexed by a 2-dimensional (latitude, longi-

tude) vector (i.e., p = 2). But instead of (x, y) for every location, measurements

may only be available aggregated averaged over regions on the earth’s surface (e.g.,

averages over 1mi x 1mi spatial grids), which can then be used for learning climate

models. Similarly, in 3-dimensional space, p = 3, measurements can be obtained

aggregated over 3-d blocks. Note that the ambient dimension p is distinct from the

dimensionality of the feature space d.

Suppose locations in Rp are indexed by points v, and each such location is

associated with its own d-dimensional feature vector x(v) ∈ Rd and real valued target
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y(v) ∈ R, which are regressed on each other via a vector parameter β∗ ∈ Rd as

y(v) = x(v)>β∗ + ε(v) (5.10)

Each signal here is again a random zero-mean, weakly stationary noise pro-

cess with finite variance. Observations for any signal2 z(v) are again obtained as

aggregates over periodically translated bounded connected set A ⊂ Rp as

z[k] =
1

V ol(A)

∫
v∈A+k

z(v)dv

Given a signal z(v), for any “frequency” vector θ = [θ1, θ2, · · · θp] ∈ Rp, the

Multidimensional Fourier Transform is defined in a way very similar to the

one-dimensional case (Tangirala, 2014; Easton; Smith & Smith, 1995)

Z(θ) =

∫
Rp
z(v)e−ι〈θ,v〉dv (5.11)

where 〈·, ·〉 represents the standard inner product.

All properties of Fourier Transforms required within the scope of this chapter

follow exactly as in the unidimensional case (see Easton; Smith & Smith (1995)). For

example, aggregation over regions defined by periodic translations of a set A ⊂ Rp

becomes equivalent to multiplication in the frequency domain with the corresponding

multidimensional Fourier Transform of the indicator function gA(v) = I(v ∈ A). In

particular, if A is the hypercube A = {v : −ai/2 ≤ vi ≤ ai/2}, then FgA(θ) =∏p
i=1 Uai(θi), where U(·) is the standard sinc function as in the unidimensional case.

The algorithm and results remain virtually identical with unidimensional

quantities being replaced by their multidimensional equivalents. The only penalty

2where z(v) is a stand-in for either x(v) or y(v)
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that we pay is the number of sampled frequencies required, that is |Ω|, which can in

some cases scale exponentially with p. However, we note that in most real life cases

p is very small (limited to at most p = 4 for spatio-temporal applications), hence

this is not a severe impediment on the application on our methods.

5.2. Sliding Windows:

The estimation protocol in this case remains unchanged, but the analysis involves

a little extra book-keeping. Note that a sliding window basically means that the

aggregation periodicity and sampling periodicity are different. Say Ta is the aggre-

gation period, that is, the period over which averages are computed for the signal

(as in equation (5.6)). Also let Tb be the sampling period, that is, the period with

which the aggregated signal z(t) is sampled. Then, equation (5.7) can be rewritten

as

Z̄(ω) =
1

Tb

∑
k∈Z

Z(ω − 2πk

Tb
)UTa(ω −

2πk

Tb
) (5.12)

with a corresponding aliasing error term ∆z(ω|Ta;Tb) = 1
Tb

∑
k∈Z\{0} Z(ω −

2πk
Tb

)UTa(ω− 2πk
Tb

). Theorem 5.3.2 can then be extended to show that in general, if Ta

is reasonably small relative to 2π
ω0

, the aliasing error is dominated by effects from Tb,

the sampling period. However, if Ta becomes too large in comparison to 2π
ω0

, the sinc

function UTa(ω) can become too sharp and peaky which may result in gaps in the

spectrum covered by Ω (refer to the proofs in Appendix B for more details). This is

intuitive since larger aggregation windows lead to higher loss of information.

5.3. Aggregation with Weighted Smoothing:

The analysis in the chapter has been presented in the context of a simple aggregation
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schema that uses a square wave as a smoothing function for averaging. To cater to

alternative aggregation schemata, one just needs to replace the sinc function U(·)

with the Fourier Transform of the specific aggregation scheme being used– e.g., for

Gaussian smoothing, the relevant Fourier Transform will be another Gaussian, etc.

Our results remain unchanged for Schwartz smoothing functions, which includes most

of the commonly used smoothing functions. In particular, note that the Gaussian

function is a Schwartz function, and so is any smoothing function over a finite support

(square wave, triangular wave, etc.), therefore their Fourier Transforms are Schwartz

functions as well.

(a) Uniform Sampling (b) Low Discrepancy (c) Medium Discrep-
ancy

(d) High Discrepancy

Figure 5.1: Results on Synthetic Data – Mean Estimation Error with increasing Fourier Window
ω0 for uniform aggregation (5.1a), and non-uniform aggregation with increasing discrepancy among
aggregation periodicities (5.1b through 5.1d). Frequency domain parameter estimation outperforms
naive application of time domain methods

5.5 Experiments

We empirically evaluate the efficacy of our methods on both synthetic data

and three real datasets. In each case, we use an aggregated version of the individual-

level dataset for learning model parameters using the techniques in this chapter, and

evaluate the results by computing the predictive error obtained by our parameter
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(a) Las Rosas Dataset (b) Forest Fires Dataset (c) CCDS Dataset

Figure 5.2: Results on Forest Fires Dataset, Las Rosas Datasets show that frequency domain
parameter estimation outperforms naive application of time domain methods and approaches the
optimal for high enough ω0. If ω0 is too large, however, aliasing effects can lead to deteriorated
performance as in Figure 5.2b

on the full non-aggregated dataset. Since this is a first work on this topic, we are

unaware of any real algorithmic baselines. However, we do test our methods against

two baselines- the “true” linear model which is learned with access to the full non-

aggregated dataset, and a “time-domain” model that naively imputes individual-level

measurements by substituting the corresponding average for the group.3

Our synthetic data experiments proceed as follows. We generate multivariate

time series data as features x(t) and univariate time series data as targets y(t) that

obeys our assumptions in this chapter. We then aggregated this data– first using

uniform sampling frequency, and second using non-uniform sampling frequency with

increasing average discrepancy in the periodicity across features and targets. The

aggregated data is then used for learning our model, and the results are compared

against a time domain method that imputes the individual aggregates with group

3We also tried kriging for resampling i.e. reconstructing the non-aggregated data, then fitting
a linear model on the resampled data. This approach performed poorly, hence we omit the results
for clarity
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level values.

Plots for mean estimation error |x(t)β̂−y(t)| with increasing Fourier Window

ω0 are shown for the uniform sampling period in figure 5.1a, and for non-uniform

sampling period with increasing discrepancy in periodicity in figures 5.1b through

5.1d. In each of these cases, the results show that beyond a certain value of ω0, fre-

quency domain learning significantly outperforms naive time domain modeling. As

described in section 5.3.3, Figure 5.1a shows that for uniform sampling frequency,

time domain methods can be still used but our framework is nevertheless preferable

because aliasing from error signal can affect estimation accuracy in the time domain.

Moreover, as we describe in the chapter, the performance of frequency domain esti-

mation deteriorates if the value of ω0 becomes too high because aliasing effects start

distorting the results.

The first real spatio-temporal dataset involves an application from agricul-

tural studies, wherein corn yield monitor data las from the Las Rosas agricultural

plantation in Cordoba, Argentina is regressed against features including nitrogen lev-

els, topographical properties, brightness value, etc. (see Bongiovanni & Lowenberg-

DeBoer (2000); Lambert et al. (2004) for further details on the dataset).

The second real dataset is the Forest Fires Dataset from the UCI Machine

Learning Repository University of California, Irvine which involves predictive mod-

elling of burned acreage from forest fires in the northeast region of Portugal. by

using as features meteorological and other data like relative humidity, ISI index, etc.

(see Cortez & Morais (2007) for more details on the dataset).
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In both these datasets, the data points are stamped with latitude-longitude

positional indices, which are used to topographically order each observation. The

ordered data is then aggregated based on positional indices and used for learning a

linear model.

In our final experiment, we test our techniques on the Comprehensive Climate

Dataset (CCDS) which is an extensive collection of climate modeling variables for

North America compiled from various sources including NASA, National Oceanic

and Atmospheric Administration (NOAA), National Climate Data Center (NCDC),

etc. (see Lozano et al. (2009); Liu et al. (2010) for further details on the dataset).

We use this dataset to model atmospheric vapour levels using various measurements,

including carbon dioxide, methane, cloud cover, etc. and other extra-meteorological

factors like rate of frost/rainy days, etc. over a grid that covers most of continental

United States. This collection contains two datasets, one of which is aggregated and

the other is observed at a much higher resolution. We use the aggregated dataset for

learning β̂ and test the predictive performance of our learned model on the higher

resolution dataset.

Figures 5.2a, 5.2b and 5.2c show plots for mean estimation error |x(t)β̂ −

y(t)| with increasing Fourier Window ω0 for each of the three real datasets. Our

results show that in all three datasets, for a large enough ω0 our method significantly

outperforms the corresponding time domain technique, and starts coming close to

the performance of the optimal estimator.
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5.6 Conclusion

In this chapter we investigated the problem of predictive modelling of linear

models involving correllated spatio-temporal data when the data is available only

in aggregated form rather than as individual-level measurements with localised es-

timates. In particular, we analysed the scenario where aggregation is non-uniform

across targets and different coordinates of the features, leading to significant chal-

lenges in cogent mathematical representation of any relationship among available

feature and target aggregates. We showed that by formulating the problem in the

frequency domain and exploiting duality properties of Fourier analysis, many of the

inherent structural challenges of this setting can be bypassed. We introduced a novel

framework and new algorithmic techniques to perform frequency domain estimation

and inference for this setup and provided both theoretical guarantees and empirical

validation of our methods.
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Chapter 6

Aggregation Paradigms and Learning with

Sensitive Data

6.1 Introduction

So far in this dissertation, we have considered scenarios where data available

for analysis was aggregated using a pre-defined schemata (histograms, group-wise

moments, spatio-temporal averages, etc.) that was determined by the proprietor of

the data, and was beyond the control of the practitioner who was actually analysing

the data. In this chapter we consider the complementary problem, where the entity

that is performing the aggregation has a common interest with the entity performing

the data analysis, but they cannot store or share the data at the finest possible level

of granularity for analysis without violating legal or ethical principles. However,

being stakeholders in any results or inferences obtained by the data analysts, they

need to perform the aggregation in such a manner as to ensure that the aggregates

can still be used in a learning algorithm to train any machine learning models.

In all such cases, any machine learning solution has to operate under the con-

straint that data will only be available in small subsets for brief periods, after which

they need to be aggregated by the system. In particular, most legal requirements

like (Federal Trade Commission, 2005, 2018) stipulate that any stored information
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compiled from sensitive data (e.g., patient records, user data, etc.) be in such a form

that preserves privacy entirely, and guarantees non-identifiability.

Our setup is very different from standard privacy preserving data mining(Lindell

& Pinkas, 2000). Most methods in this line of work are either based on cryptography

or perturbation (Aggarwal & Philip, 2008), or it studies the setting where a common

model is learnt with data stored across multiple sites but with restrictions on data

sharing among these sites (Merugu & Ghosh, Nov, 2003, 2005). In each of these

cases, individual datapoints are retained (up to noise) in at least one location– in

our setup, they have to be deleted everywhere. Sketching methods that maintain

summary statistics of the data often do not preserve privacy, or they tend to mod-

ify the relationship between covariates with targets, especially in non-linear models

(Liberty, 2013). Stream data mining (Leskovec et al., 2014) are an extreme version

of our setup where each data point is seen exactly once and then deleted immediately

– most existing methods in that line of work can only be used to estimate very basic

data summaries that are not informative enough for predictive modelling. SGD and

other streaming techniques (Bottou, 2010; Recht et al., 2011) that store approxi-

mate gradients have a poor rate of convergence, and usually require repeated access

to each data point (in the form of training epochs) to learn an effective model, which

is disallowed by our problem setup. In fact, as we show in our experiments, SGD

performs rather poorly in comparison to the methods we introduce in this work.

To summarise, our work is motivated by two complementary objectives:

1. design aggregation paradigms that protect data security and privacy
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2. formulate learning algorithms that can use these aggregates or summaries to

train predictive models that are effective at individual level predictions

This is a tall task, but we show that both these objectives can be achieved in

several cases.

Motivating Example: Gaussian Regression

To illustrate our ideas, consider the case of Gaussian regression where covari-

ates X are related to targets y via a linear parameter θ as y = Xθ+ ε, ε ∼ N(0, σ2)

It is well known that the MLE parameter θMLE can be obtained in closed form from

the data as

θMLE = (X>X)−1X>y

Clearly, we do not require the entire dataset – the only relevant quantities

that are required for learning the model are aggregates X>X and X>y which can be

re-written as

X>X =
N∑
i=1

xix
>
i , X>y =

N∑
i=1

yix
>
i

Therefore, if we store only these aggregates, and delete the individual data-

points themselves, we can still recover the MLE parameter error-free without access

to the raw dataset. For the Gaussian case, therefore, we have an exact solution.

Furthermore, this aggregation scheme also preserves data privacy since these

aggregates cannot be used to reconstruct any individual data points within any

tolerance level (see section 6.4).
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This particular paradigm, of course, only applies to Gaussian regression, but

we can use this as a basic modus operandi for other setups as well. In this chapter,

we expand on these ideas and introduce a new framework of aggregation paradigms

and learning algorithms that satisfy both our stated objectives for two other common

models – binary classification and generalised linear models.

As an auxiliary contribution, we note that common privacy paradigms like

differential privacy (Dwork, 2008) that are favoured in academia and other technical

domains can often deemed too esoteric (Schneps & Colmez, 2013) to be satisfactory

to certain regulatory bodies. Therefore, we introduce an alternative privacy criterion

that is stringent yet easily comprehensible in lay terms, and we show how our methods

satisfy this constraint – an extended discussion on this is deferred to section 6.4.

Contributions:

Our specific contributions are summarised below:

1. We design novel aggregation paradigms and learning algorithms that guarantee

privacy while still allowing learning for a wide variety of models. We motivate

our methods with Gaussian regression, and extend our methods to binary clas-

sification and generalised linear models. To our knowledge, we are the first to

tackle this exact problem setup.

2. We provide a theoretical analysis as well as empirical evaluation for our methods

with experiments on data from telecommunication and healthcare

3. Finally, we introduce the notion of Reconstructive Privacy and Total Recon-
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structive Privacy as an alternative criterion for non-identifiability. We further

show that each of our aggregation paradigms satisfy these constraints.

We call our framework SlAgg, or Slice and Aggregate, after the main steps

involved in the procedure. While keeping the overall approach fairly simple and

intuitive, we prove strong guarantees on its performance, and also show very favorable

empirical results.

6.2 Problem Definition

In this work, we consider predictive models that are trained via supervised

learning. Let X = [x1,x2, · · ·xN ] ∈ RN×d be a set ofN data points in a d-dimensional

feature space, and let y = [y1, y2, · · · yN ] ∈ YN ⊆ RN be their corresponding targets.

We assume that their exists a function ƒ such that for each (x, y) pair, we have

y = ƒ(x) + η, where η is random noise.

The standard machine learning setup estimates this function ƒ using a training

set of the form D = (X,y) ≡ {(xi, yi) : i = 1, 2, · · · } and a learning protocol that

consists of solving the following optimisation problem

ƒ∗ = arg min
ƒ∈F

∑
(x,y)∈D

L(ƒ(x), y) (6.1)

where L : Y × Y 7→ R+ is a loss function that measures the discrepancy

between predicted ƒ(x) and measured y (e.g., negative log-likelihood).

In our setup, the full dataset is not available for training. Instead, the data

is divided into M disjoint “chunks” or subsets as DT = {(xi, yi) : i ∈ IT}, where
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IT ⊂ [N ] are partitions of the index set, and T = 1, 2, · · ·M . For example, DT may

be customer data or patient records for the T th month, which need to be compiled

into non-identifiable aggregates and the individual data points are to be deleted at

the beginning of the (T + 1)th month for privacy reasons.

Therefore, instead of the full dataset D, the learner is only allowed access to

each chunk, one at a time, for a brief period of time. The learner’s task is to use

these chunks to learn a non-identifiable aggregates before the individual data points

in each chunk are deleted. Finally, the learner will be required to devise a training

algorithm for the final predictive model that only use these aggregates.

6.3 Aggregation Design Paradigms

The question now is how to use these chunks to learn an effective estimate of

the function ƒ. For this, we take inspiration from the concept of “sufficient statistics”

in estimation theory that studies various methods to estimate a parameter for a dis-

tribution given data. Let θ be a parameter to be estimated from a given dataset D.

A sufficient statistic for θ is a quantity (or a set of quantities) S computed from the

dataset D such that the posterior of the parameter given the statistic is independent

of the individual datapoints themselves, that is, P (θ|S,D) = P (θ|S). Basically, a

sufficient statistic summarises the dataset by extracting from the individual data-

points all the information that is necessary for parameter estimation, and discards

the rest.

Our task here is similar – given a data chunk, extract the useful information

from the data chunk in the form of aggregates that can be subsequently used for
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training a final predictive model. We now discuss specific instantiations of both an

aggregation paradigm as well as a learning algorithm that only uses these aggregates.

We have already seen this idea in action for the case of Gaussian linear regression. In

the rest of the chapter, we extend these methods to the case of binary classification

and generalised linear models.

6.3.1 Binary Classifiers

Unlike the Gaussian case, there is no nice closed form solution for most bi-

nary classification models. In fact, the model parameter itself may not always be

unique and suffer from identifiability issues owing to rotational or scale invariance.

Therefore, we study the case of binary classification not in formal model specification

terms, but by treating a classifier as a black box with a specific probability of error

over the population.

In particular, consider the case where one has access to multiple noisy classi-

fiers. One can consider the output of each of these classifiers as noisy estimates for

the “true” class label (defined as the mode of P (y|x)), and by taking the majority

vote, one can estimate the true class label with high accuracy. Therefore, if we can

“aggregate” each data chunk to learn a black box noisy binary classifier, we no longer

need individual training datapoints themselves to get the final predictive model.

Hence, our protocol is the following:

1. For each data chunk DT , learn a classifier ƒT : X 7→ {0, 1} from only the data

points in DT
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2. Given a new random sample x, and the classifiers {ƒT : T = 1, 2, · · ·M}, obtain

the corresponding predictions {ŷT = ƒT (x) : T = 1, 2, ·M}

3. Obtain the final estimate for the class label as

ƒ̂(x) = median{yT : T = 1, 2, · · ·M} (6.2)

We now analyse the predictive accuracy of our final classifier. To account for

unavoidable noise and limitations of model class, we compare the performance of

our method to the best possible model from the function class that can be learned

from the individual non-aggregated data points. Let λ be the probability of mis-

classification on a randomly selected data point for the best possible model ƒ∗ from

the function class. For any x, let zT (x, y) = I{ƒT (x) 6= y} where I is the indicator

function. Note that since each data chunk DT consists of i.i.d samples of the same size,

zT are independent and identically distributed random variables over the probability

space for data chunks. For any x, let p = E[zT ] be an upper bound on the mis-

classification probability for the T th classifier.We then have the following result:

Proposition 6.3.1. Let p < 0.5 and ƒ̂ be our final classifier from M data chunks as

defined in equation 6.2. Then, the probability that ƒ̂ does worse than ƒ∗ on any given

datapoint is upper bounded by the quantity:

1− p
(1− λ)(1− 2p)

[(1− p)p exp (2κ− ξM + ζM))]M/2

where κ ≈ 0.693, ξM ∼ O( logM
M

), and ζM ∼ O( 1
M2 )

98



See Appendix C for the proof. It is easy to see that as M increases, the

probability of error rapidly decreases. Recall from Ng & Jordan (2002) that the

performance of the classifer learned from each chunk is close to model optimal if

the size of each chunk is NT ∼ Ω(d) where d is the dimensionality of the data.

Note that one corollary of this result is that a learner that uses data chunks

can potentially learn better than a single learner that uses the full non-

aggregated dataset. Indeed, this is exactly what happens with our experiments

on real data as we show in section 6.5.

Multi-Class Case

Our analysis extends to the multi-class case by treating it as multiple 2-class

classification, and then using union bound to get an upper bound on error. A similar

result holds as above, with an additional multiplicative cost factor, which can be

tuned by taking into consideration certain trade-offs. For example, if we use one-vs

rest classification, the cost factor is L, where L is the number of classes. However,

in this case, the number of data points in each chunk required to get an appropriate

p is higher. To avoid this, one can use pair-wise classification models for each pair

of class labels, but this latter step will introduce a cost-factor of
(
L
2

)
∼ O(L2).

6.3.2 Generalised Linear Models and Exponential Family Distributions

We now extend our techniques to generalized linear models or GLMs (Mc-

Cullagh & Nelder, 1989; Nelder & Baker, 1972) which are generalizations of linear
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regression that subsume various models like Poisson regression, logistic regression,

etc. as special cases. They are the standard workhorse in a wide variety of domains,

and can be used to model a wide variety of data types – Gaussian for real-valued,

Poisson regression for integer valued, logistic for binary, log-Normal for non-negative

reals, etc. Many such applications fall under our problem setup as they arise in sen-

sitive domains with restricted access to data due to privacy and security constraints.

A GLM is usually parametrized by a convex function φ (usually assumed or

known, see (Banerjee et al., 2005; Acharyya & Ghosh, 2014)) and a parameter θ

(to be learned from data). Given a predictor x and a parameter θ, a generalised

linear model generates the target y as follows. First, it computes the linear function

of the predictor x>θ (also known as the canonical or natural parameter). Next, it

transforms this scalar value using a monotonic link function gφ(·) (that depends on

φ, see Banerjee et al. (2005)) in order to bring the real valued x>θ to the domain of

y (e.g., logit if y is binary, exponential if y is non-negative, etc.).

The transformed scalar value gφ(x>θ) is known as the mean parameter, and

the target y is generated from it using a probability distribution Pφ from the expo-

nential family such that EPφ
(y|x) = gφ(x>θ). The specific Pφ depends on the GLM

used (e.g. Poisson for Poisson regression, Bernoulli for logistic regression, etc.) but

for each case, the probability distribution for y|x in a GLM takes the following form:

Pφ(y|x,θ) ∝ exp
(
y · x>θ −Gφ(x>θ)

)
(6.3)

where Gφ is such that gφ ≡ ∇Gφ.The typical GLM parameter estimation algorithm

proceeds by the standard log-likelihood minimisation approach that requires individ-

ual level training datapoints. The protocol in section 6.3.1 (maintaining independent
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predictors and aggregating their outputs) cannot be used since for most GLM’s (e.g.,

Poisson regression), the variance of the output can be very large and heteroskedas-

tic, unlike for binary random variables. Hence, we need an alternative paradigm for

estimating the GLM parameter.

Unbiased Estimators

Generally speaking, learning the MLE parameter θ∗ for a GLM from any-

thing other than individual data points can be an intractable problem (Montanari

et al., 2015). However, we can still approximate the model parameter using a learn-

ing protocol that is efficient and easily computable. For this, we use the idea of

concentration in statistics – given a random variable z ∼ Pz such that E[z] = µ,

we can approximate µ by averaging samples z1, z2, · · · zM where each zi is drawn

independent and identically distributed according to Pz. For example, using Ho-

effding’s inequality one can show that if z is a sub-Gaussian random variable and

µ̂ = 1
M

∑
i zi, the concentration can be exponentially fast in M – for any small ε > 0,

we have P (|µ̂− µ| > ε) < exp (−O(Mε))

Therefore, our data summarisation protocol basically consists of using each

chunk of data DT to try and compute noisy but unbiased estimates θ̂T of the “true”

model parameter θ as in equation 6.4. Let P be an unbiased estimator that takes any

dataset D and outputs an estimate for the parameter P(D) such that ∀D, ED[P(D)] =

θ∗, the optimal model parameter. For any data chunk T , define θ̂T = P(DT ) as result

of the estimator applied to the data chunk. We define our final parameter estimate
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as

θ̂ =
1

M

M∑
T=1

θ̂T

It is easy to see that if M is high enough, then with high probability, θ̂ → θ∗. Note

that the quality of the individual θ̂T might be very poor because the data chunks

used to learn θ̂T may be very small, but as long as they are unbiased and have finite

variance, the average will converge to the optimal parameter.

Learning Protocol

We now give some intuition for our learning protocol. Recall that the proba-

bility distribution for y|X in a GLM takes the following form:

Pφ(y|X,θ) ∝
∏
(x,y)

exp
(
y · x>θ −Gφ(x>θ)

)
(6.4)

With ∇Gφ ≡ gφ, the gradient of the log likelihood with respect to θ is

∇θLL(y|X,θ) =
∑
(x,y)

(
y − gφ

(
x>θ

))
x (6.5)

Setting this to zero for the optimal θ∗ gives

Xgφ(X>θ) = Xy (6.6)

where gφ(·) is applied elementwise. Clearly, eq. (6.6) does not have a closed form

solution except when X,X> are both invertible. Suppose we divided up D in chunks

of d data samples each1, where d is the dimensionality of the data. Then for each T ,

1For reasons stabilitiy, in practice it is better to have a matrix that is slightly tall, that is, n
slightly greater than d
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we can obtain a parameter θ̂T that is locally optimal for the samples corresponding

to the data chunk DT .

Therefore, our learning protocol can be summarised as follows –

1. For each data chunk DT , compute a locally optimal parameter as

θ̂T = (XTX>T )−1XTg−1
φ (yT )

2. Using the individual θ̂T for each data chunk DT , compute the final estimate for

the global GLM parameter as

θ̂ =
1

M

M∑
T=1

θ̂T

=
1

M

M∑
T=1

(XTX>T )−1XTg−1
φ (yT )

Here, g−1
φ is defined element-wise. In case y is outside the domain of g−1

φ , one

can use any projection of y to the interior o the domain of g−1
φ instead. We have the

following result:

Proposition 6.3.2. If g−1
φ (equivalently gφ) is a linear function, θ̂ is an unbiased

estimator of θ∗

See Appendix C for the proof. It follows that everything described in the

previous section follows, and θ̂ → θ∗ if the number of data partitions M is large

enough. Note that this covers a large class of GLM’s because the link function is

effectively linear for many exponential family distributions, like Gaussian, Exponen-

tial, Pareto, Chi-Squared, etc.
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When gφ is not linear

When the link function is not linear, there are a few possible directions one

can take. The entire protocol remains the same, except g−1
φ (y) now needs to be

replaced by E[g−1
φ (y)|x]. This quantity can be approximate using many methods,

one such technique being sampling. Note that for a given x, the target y is a sample

from Pφ(y|x,θ∗) centred around gφ(x>θ). Therefore, we take y as an estimate for

gφ(x>θ), use this y as the mean to sample y1, y2, · · · yk i.i.d. from Pφ, and then

compute 1
k

∑
i g
−1
φ (yi) as an estimate for E[g−1

φ (y)|x,θ∗]. Another way is to use θ̂T

as an estimate of θ∗, and use gφ(x>θ̂T ) as an estimate for for gφ(x>θ), and then

perform the sampling as in the previous case.

For both methods, we repeat the two steps, approximating E[g−1
φ (y)|x] and es-

timating θ̂T , alternatingly until convergence. Note that this procedure is structurally

similar to expectation-maximisation, which is a common technique for parameter es-

timation in latent variable models.

6.4 Discussion on Privacy

A key motivation for all our work so far has been data privacy, both in the

context of ethics as well as new regulatory frameworks like the GDPR. While privacy

has been studied in machine learning and statistics, the main lens for almost all

prior art is differential privacy (Dwork, 2008; Dwork et al., 2014) which quantifies

the amount of change to the output of an algorithm when you change the dataset

by a single datapoint (usually exponential in terms of change to the dataset).
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While differential privacy is fairly well accepted in academia and certain tech-

nical domains, it is still a rather abstract and esoteric criterion that is not easily

comprehensible to lay persons. In certain scenarios like legal regulation, court cases,

healthcare, etc. with high privacy sensitivity, or where the stakeholders may not

have a strong mathematical background, differential privacy may be too technical to

be sufficiently reassuring from either a human or a legal perspective (see (fivethir-

tyeight.com, 2017; Schneps & Colmez, 2013)). Out of an abundance of caution, prac-

titioners often require privacy criteria that are stringent, yet also easily accessible to,

for example, a judge or a regulator who may not possess the requisite mathematical

foundation.

For this purpose, as an alternative to differential privacy, we introduce the no-

tion of Reconstructive Privacy that is a strong guarantee yet easy to understand

in non-mathematical terms.

Definition 6.4.1. Let D = {zi : i = 1, 2, · · ·N} ∈ ZN be a dataset, and A : ZN 7→ Λ

be an aggregating function. Let D′ ∈ ZN be a candidate dataset such that A(D) =

A(D′) Then, A is defined to preserve τ -Reconstructive Privacy over D if there

exists at least one such D′ such that the minimum distance between any two points

in the two datasets is at least τ :

sup
D′∈ZN

A(D′)=A(D)

min
z∈D,z′∈D′

‖z− z′‖ ≥ τ

If τ is unbounded, then A is said to preserve Total Reconstructive Pri-

vacy.
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The basic idea is that aggregation keeps the data private since there are

multiple candidate datasets (arbitrarily far apart) that lead to the same aggregates

making it difficult to reconstruct the original from aggregates alone. Note that we

define the “distance” between two datasets as the minimum distance between any

two datapoints within the dataset, rather than the average distance between the

datasets. In particular, for any τ > 0, this forces the original dataset and any

candidate dataset to have no overlap in their samples.

Note that unlike the idea of differential privacy, the notion of total privacy

does not involve any consideration of the effectiveness or usability of an algorithm

that satisfies the condition. The definition is purely a criterion that restricts the kind

of data that can be stored – it is standalone and tuned exclusively to ensure privacy,

and it is up to individual algorithms to satisfy performance benchmarks without

violating total privacy constraints.

In the previous sections, we have already shown how our algorithms and learn-

ing paradigms satisfy performance requirements. Now we show that our aggregation

frameworks also satisfy total reconstructive privacy constraints. For the Gaussian

case, our aggregates satisfy total reconstructive privacy since the set of (X,y) that

can lead to the summary statistics comes from the full RN×d as long as the datapoints

are arranged in general position.

Privacy guarantees for binary classifiers depends a bit on the model. For

models with a linear class boundary, total reconstructive privacy is maintained since

the same boundary is still optimal for data points arbitrarily far away but balanced

for each class. For non-linear models like kernelised SVM, the y ∼ sign
(
ƒ(x)

)
form
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still allows scale invariance for most standard versions, hence total reconstructive

privacy is still maintained.

Note that in case of SVM’s, the dual formulation for kernelised SVM defines

the classifier explicitly in terms of individual data points, i.e., support vectors. How-

ever, for any non-linear kernel we can use the idea of Randomised Kitchen Sinks

(Rahimi & Recht, 2008, 2009) to re-parametrize these classifiers into the standard

primal formulation so that the individual data points can still be deleted with only

the parameter θ being stored.

The GLM case is similar to the Gaussian case since it is easy to verify that the

set of datapoints that lead to the same aggregate comes from the full vector space.

Moreover, note that in equation 6.4, for any parameter θ, we get both rotational

invariance (rotating each x around θ keeps their product unchanged) as well as scale

invariance since one can multiply each x, y by some γ, β > 0 such that Pφ(γy|βx,θ) ∝

Pφ(y|x,θ), thereby leading to the same optimal parameter.

6.5 Experiments

We demonstrate the efficacy of our methods with empirical evaluation on three

real datasets from the healthcare and telecom domains where our problem setup is

particularly relevant. We do not show experiments for Gaussian models since our

algorithm is exact for that case, and hence will always arrive at the optimal solution.

Due to the properties of the datasets, we use Logistic Regression for our experiments

on binary classifiers, and Poisson regresssion for the experiments on data with real-

valued (non-negative integer) targets (see Acharyya & Ghosh (2014) for a discussion
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on GLM model selection).

Since this is a first work, we do not know of any alternative algortihmic com-

petitors for our methods. Hence, in each case, we compare against three baselines.

First, we use as a performance “upper-bound” the results obtained from learning from

the full non-aggregated dataset with individual level samples. Second, we compare

against an SGD learner. Third, we use an ecological regression (EcoReg) baseline

(King et al., 2004; Brown & Payne, 1986) that treats aggregates as individual level

samples and uses them for training.

As performance metrics, we compare test error on unseen data as well as

training error on the full training dataset (since our setup assumes that full training

dataset is not available), averaged over 100-fold randomised cross validation (error

bars were minuscule and are omitted for clarity). We show plots of performance

metrics versus number of learners/data chunks seen by our method, as well as a final

table of results. SGD and EcoReg are included only in the table and omitted from

plots for clarity, since their performance is rather poor in comparison.

6.5.1 Binary Classification: Churn in Telecom:

We use two datasets from the Telecom industry for our binary classification

tasks. In both cases, the objective is to predict churn (Hung et al., 2006) from cus-

tomer account and usage details. In the telecom industry, churn or attrition refers

to the event where a customer terminates a service or contract with a particular

company. Predicting churn in advance is critical for business, since dissatisfied cus-
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(a) Train Error on IBM
(churn) dataset

(b) Train Error on Kaggle
(churn) dataset

(c) Train Error on DESynPUF

(d) Train Error on IBM
(churn) dataset

(e) Train Error on Kaggle
(churn) dataset

(f) Train Error on DESynPUF

Figure 6.1: Training and Test error vs Number of Data Chunks on IBM, Kaggle and DESynPUF
datasets: even with very few data chunks, our algorithm performs comparable to or even better
than that obtained from a non-aggregated dataset
Note 1: Our algorithm does better than a binary classifier trained with non-aggregated data,
exactly as predicted by Prop 6.3.1.
Note 2: Training error is shown here since our algorithm does not has full access to the training
dataset

tomers can potentially be prevented from leaving by, for example, special offers and

incentives, or by catering to specific complaints the customer might have.

Our first dataset is a Telecom dataset provided by IBM Watson Analytics.

It consists of data from 7044 customers, including demographic information like

gender, senior citizen and dependent status, as well as service information including

monthly charges and tenure, plan details like data backup, online security and device
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# chunks Non-Agg Our Work SGD EcoReg

IBM (churn) 29
Train 0.1967 0.1947 0.285 0.356

Test 0.197 0.196 0.287 0.357

Kaggle (churn) 30
Train 0.142 0.142 0.245 0.216

Test 0.142 0.143 0.245 0.218

DESynPUF 14
Train 0.125 0.153 1.785 0.22

Test 0.130 0.159 1.797 0.23

Table 6.1: Final Training and Test Error on all three datasets (with full data used) for learner
with non-aggregate data, our method, SGD and naive averaging. Our method outperforms baseline
and has performance very close to learner with full, non-aggregated dataset

protection, as well as usage details like streaming and internet (details of the dataset

can be found in (IBM TJ Watson)).

Our second dataset is a very similar dataset from Kaggle (Kaggle Churn in

Telecom) about customer churn. Similar to the first dataset, this one has information

like state, phone plan details like international calling, as well as usage details like

total calls and number of voicemail messages. In sum, the dataset has records for

3334 customers.

With minor processing (categorical variables converted to one-hot encoding,

for example) we collect the data into chunks (of size 2.5 times the dimensionality of

the data) and feed it into the various algorithms and note the results. The results

(Fig 6.1 and Table 6.5) show that for both datasets, our algorithm needs only a

few data chunks to achieve a performance better than learner with non-aggregated
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dataset, and significantly outperforms SGD and EcoReg.

6.5.2 Real-valued data: Healthcare

We now apply our methods on a healthcare dataset where the objective is

to estimate Medicare charges. This application falls under the purview of our prob-

lem setup since patient privacy and ethical considerations limit access to healthcare

records for data analysis.

We use the CMS Beneficiary Summary DE-SynPUF dataset (DESynPUF,

2008) for our experiments. This a public use dataset created by the Centers for

Medicare and Medicaid Services by applying different statistical disclosure limitation

techniques to Medicare beneficiary claims data. We use a subset of the DE-SynPUF

dataset for Louisiana state from the year 2008 and model outpatient institutional

annual primary payer reimbursement (PPPYMT-OP) with available predictor vari-

ables that include age, race, sex, duration of coverage, presence of a variety of chronic

conditions, etc.

Because of the nature of our target variables, we use a Poisson regression

model for this application. The data is collected into chunks with size the same

order as the dimensionality, with a few extra data points2 in each chunk for stability.

We feed the data chunks into each algorithm (and the full dataset, in case of the non-

aggregated baseline) and compile the results. For EcoReg, there were not enough

aggregates to learn with because of “perfect separation” issues, so we boosted its

2we used 15 extra data points, but results with other choices were very similar
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performance by using twice the number of aggregates for model training.

The results (Fig 6.1 and Table 6.5) show that our techniques with only a few

data chunks can perform very close to a learner with access to the full dataset. Note

that there is a slight performance gap with respect to the optimal because the link

function for Poisson is non-identity, and therefore we require an additional approxi-

mation step as detailed in section 6.3.2. SGD did not show promising performance.

EcoReg seems to work better here, but recall that its performance was boosted, and

it still failed to compare favourably with the our method.

6.6 Conclusion

In this chapter we tackle the problem of learning in the scenario when privacy,

scalability, security, etc. concerns limit access to training data only in the form of

chunks that need to be aggregated and deleted after a specific duration of time.

We design aggregation techniques, as well as algorithms to learn models from these

aggregates that can nevertheless work at the individual level. We motivate our

techniques by using Gaussian regression, and subsequently extend them to the case

of binary classification and GLMs. We provide both theoretical results as well as

empirical evaluation for our work. Finally, we introduce a new alternative criterion

for privacy preservation, as well as show that our methods satisfy that criterion.
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Chapter 7

Predicting Cost-per-Click in Online Advertising

from Aggregated Invoices

7.1 Introduction

One of the key areas in industry where aggregated data shows up quite fre-

quently is when two or more different companies work on a common platform to

provide a service or a product to consumers. A key coordination issue involves how

the companies can work together without compromising the integrity, security and

privacy of their own proprietary data. In these situations, it is very common for

individual companies to protect proprietary ownership by only sharing their data

with third parties in an aggregated form.

Online advertising (Goldfarb & Tucker, 2011; Perlich et al., 2014) is a domain

where this scenario arises all the time. The advertising process (Zeff & Aronson,

1999; Yan et al., 2009) consists of two main players– the advertiser (e.g. Criteo or

AdRoll) who provides the ads and bids for advertising space, and the publisher (e.g.

Google or Facebook) who provides the platform on which to display such ads. The

highest bidder is allowed to place an ad of their choice on the provided platform, and

charged a specific fee whenever an end-user clicks on the ad. These transactional

charges (called cost-per-click or CPC) are based on a pre-negotiated but only partially
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declared auction mechanism that depends, among other things, on the advertiser’s

bid, the position of the ad, demand etc. Modelling and estimating CPC beforehand

is, therefore, a key component of the complex bidding strategy (Ghosh et al., 2009;

Yuan et al., 2014; Feldman et al., 2010), and also in the decision-making process

for the specific advertisement to use which will optimally balance critical trade-offs

between cost incurred and potential revenue earned from a given ad-space.

Unfortunately, for various reasons like transactional efficiency, protection of

proprietary mechanism design, etc. publishers often submit the invoice of charges

to advertisers on a cumulative basis (total charges over a day, etc.) rather than

on a per-click basis. Therefore, the transaction data available to the advertiser

for training their models only consists of aggregated CPC values, where the per-

click charges have been obfuscated through averaging. A specific example of this

type of data sharing happens on the Google Shopping product (NORC) where the

platform shares only the aggregated and not per click cost information. Developing a

framework to address this use case– training individual-level models with aggregated

data– is thus a critical bottleneck in online advertising.

While we use online advertising as a motivating example, the specific setup we

consider is ubiquitous across a much wider variety of domains. Aggregation is used

as a statistical disclosure limitation technique in many privacy sensitive domains like

healthcare (Park & Ghosh, 2012, 2014) where confidential information like hospital

records are often aggregated to protect individual patients’ privacy. In large scale

data collection settings like census or population surveys (NORC) or meteorological

studies (Lozano et al., 2009; Liu et al., 2010), individual level data is often collected
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or stored as aggregates for scalability reasons. Sensor networks and IoTs (Wagner,

2004; Zhao et al., 2003) use data aggregation in the interest of robustness, when mea-

surements by individual sensors tend to be corrupted with noise that gets canceled

out when the measurements are averaged over space or time. Financial forecasting

applications depend on economic metrics which are often released as aggregates (US

Department of Labour; US Department of Commerce) by governmental agencies and

independent think tanks.

The key problem we focus on in this work is this– how do we build models

that work at the individual level but that can nevertheless be trained with data

collected at the aggregate level? Unfortunately, despite its near universal presence,

learning from aggregated data is still a relatively unexplored topic, and there are

rarely any easy answers. This is a new and extremely challenging semi-supervised

learning paradigm, and naive application of standard techniques almost always fail

because of the ecological fallacy (Robinson, 2009; Kramer, 1983), wherein inferences

drawn at the group level are significantly different from those drawn at the individual

level.

In this chapter, we introduce a novel modelling and algorithmic framework

to learn individual level models for the case when the target variables of interest are

collected into group-wise aggregates. We emphasise that we use online advertising

only as an example application for easier presentation of our learning framework.

Our methods are extremely general and can be used for any application that in-

volves learning from aggregated target variables. To this end, we use as our base

modelling framework generalised linear models, which are a large class of models
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that can handle diverse data types (real valued, binary, integer, etc.) and are the

primary work-horse in a vast range of domains, from climate science to recommen-

dation engines to healthcare. Since nearly all existing work on generalised linear

models assume access to individual level data, we introduce significant modelling

innovations on top of existing theory and algorithms in prior art that enables us to

extend this large class of models to the aggregated data scenario.

Contributions: Our specific contributions are outlined below–

1. We introduce a novel framework that can learn individual level generalised lin-

ear models when the target data is available only as aggregates computed over

sub-groups of the data space. To the best of our knowledge, we are the first to

tackle this problem.

2. We design a new learning algorithm that uses alternating data imputation and

estimation steps to train the generalised linear model with access only to aggre-

gated target variables

3. We extend our analysis to cover cases where the data aggregation has been

performed over arbitrary grouping paradigms to subsume cases like overlapping

aggregation, sliding window, non-uniform aggregation, etc.
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4. We empirically evaluate our methods on both synthetic and real datasets from

the advertising domain to show the efficacy of our techniques. We further demon-

strate the general applicability of our methods by evaluating the performance of

our techniques on problems from the healthcare domain.

7.2 Problem Description

Let X = [x1,x2, · · ·xn] be a set of feature vectors for n data samples and

Y = [y1, y2, · · · yn] be their corresponding values for the target variables of interest.

In the interest of clarity and notational succinctness, we start off by describing our

framework within the simplified context of linear models, and extend our analysis to

the more general version in section 7.3. For a linear model, the corresponding target

y for each covariate x is generated via a vector parameter β as

y = x>β + ε

where ε is a zero mean noise term. Maximum likelihood parameter estimation in-

volves solving an optimisation problem to minimise the regularised negative log-

likelihood of the observed data,

β∗ = arg min
β

∑
(x,y)∈(X,Y )

L(x>β, y) + λR(β) (7.1)

where L is the loss function (L = ‖ · ‖2 for Gaussian noise) and R(·) is an

appropriate regulariser (`2 for ridge regression, `1 for LASSO, etc.).

In the standard regression setting, the data used for training the model is
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available at the individual level, in the form of n pairs of targets and their corre-

sponding features as D(x,y) = {(xi, yi) : i = 1, 2, . . . n}, so β∗ may be estimated

using standard machine learning techniques. In our scenario, we do not have ac-

cess to data at this level of granularity– instead, while X is fully observed, the

target values {yi : i = 1, 2, · · ·n} are subjected to an aggregation process (partially

specified, and not controlled by the learning agent) that produces a set of m sum-

maries {zk : k = 1, 2, · · ·m} that are then made available to us. That is, instead

of the individual yi, we are provided with summaries zk =
∑

i∈Ik yi, where each

Ik ⊂ {1, 2, · · ·m} is an index set that defines which target variables contribute to a

given aggregate.

For example, each yi may be the individual CPC and zk is the aggregate

CPC value computed over all click activity in the kth aggregation window, while xi

may be information like that is available in full to the advertiser like price or brand

for products, or target country, campaign type, etc. for the ad itself. In privacy-

sensitive applications, zk might refer to aggregated information like health metrics or

income aggregated at the zipcode level, while xi may refer to data like demographic

information (race, gender, etc.) available publicly at the individual level from, say,

voter files. We assume for now that the aggregation indices are disjoint, that is,

Ik ∩ Ik′ = ϕ for k 6= k′, we extend this to the overlapping case in section 7.3.2.

We now introduce our learning framework for β that can predict individual

level targets ŷ, but use only the aggregates z for training. Denote the set of n feature

vectors stacked up into a matrix as X ∈ Rn×d and the set of m aggregates as z ∈ Rm.

For notational succinctness, we use y ∈ Rn to denote imputed or predicted targets,
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and use ytrue ∈ Rn for the “ground truth”. We call our framework EstImAgg or

Estimate-Impute for Aggregated Data after the main steps involved in the learning

process.

Algorithm 2 EstImAgg-Simplified
Non-overlapping aggregation, Gaussian model

1: Input: X, z, Aggregation groupings Ik
2: Initialise {yi = zk : i ∈ Ik}
3: while not converged do
4: Solve for β+ using standard methods given y

β+ = arg min
β

∑
(x,y)∈(X,y)

‖x>β − y‖2 + λR(β)

5: for each k ∈ {1, 2, · · ·m} do
6: Compute imputed aggregate error given new β+

γk =
1

|Ik|

(
zk −

∑
i∈Ik

x>i β
+

)

7: Impute each target based on the true aggregate

∀ i ∈ Ik : y+
i = x>i β

+ − γk

8: end for
9: Update variables (y,β) = (y+,β+)

10: end while
11: return y,β

In the standard case, learning the model effectively implies minimising the

loss function only over the parameter β, as in Equation 7.1. In our case, we not only

have to estimate the parameter β, but also the non-aggregated targets y subject to

the constraints that the imputed estimates agree with the aggregates z, which adds

an extra set of constraints
∑

i∈Ik yi = zk ∀ k = {1, 2, · · ·m} to the optimisation
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problem 7.1.

We solve this using alternating minimisation. The first step, solving for β

given a particular value of y, is a simple regression parameter estimation problem.

The second step, solving for y given a particular estimate for β, is more interesting.

For a Gaussian model (L = ‖ · ‖2), the optimisation problem is as follows

y+ = argmin
y

∑
(x,y)∈(X,y)

‖x>β − y‖2 s.t.
∑
i∈Ik

yi = zk ∀ k (7.2)

By using standard optimisation theory it can be proved that the optimal

value for y for this problem can actually be obtained in closed form. As shown in

Algorithm 2, the solution involves applying an additive update to each estimated

target to make it compatible with the aggregates.

The learning steps described in plain English above is summarised as Al-

gorithm 2. Note that while we do not explicitly assign a mathematical form for

regularisation function R, it only appears in our algorithm in the estimation of the

parameter β. While the specific form depends on the structure imposed on β (`2

for ridge regression, LASSO for sparsity, etc.), this nevertheless remains a standard

regularised regression problem and off-the-shelf estimators are available for almost

any such choice of R that is commonly used in practice.

7.3 General Formulation

In this section, we generalise our framework to handle a wider class of prob-

lems by extending our methods to incorporate generalised linear modelling, and
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modifying our algorithm to handle arbitrary aggregation paradigms.

7.3.1 Generalised Linear Models

While least squares regression is useful for modeling continuous real valued

data generated from a Gaussian distribution, this is not always a valid assumption.

In many cases, the data of interest may be binary valued or count valued, and

generalised linear models are more appropriate for such scenarios. A detailed note

on GLM’s is provided in Chapter 2, here we only summarise the main concepts. In a

GLM, the response variables, y are generated from a distribution in the exponential

family centred around a mean parameter that is related to a linear function of the

predictor x via a monotonic link function often denoted as (∇φ)−1(·). Here, φ

is a convex function that depends on the specific exponential family distribution

used (Banerjee et al., 2005). Specifically, given a predictor x, a parameter β and

a probability distribution Pφ from the exponential family, the target y is obtained

according to the distribution Pφ such that

y|x ∼ Pφ(ηx), where ηx = EPφ
(y|x) = (∇φ)−1(x>β)

7.3.1.1 Loss Function: Bregman Divergences

As noted in Chapter 2, the matching loss functions associated with learning

GLM parameters are distance-like functions called Bregman divergences, which are

generalisations of square loss. Let φ : Θ 7→ R be a strictly convex, closed function on

a convex domain Θ ⊆ Rn, that is differentiable on int(Θ). Then, for any a,b ∈ Θ,

the Bregman divergence Dφ(·‖·) between a and b corresponding to the function φ
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is defined as

Dφ(a‖b) , φ(a)− φ(b)− 〈∇φ(b), a− b〉

where gφ is the gradient of the function φ, applied elementwise. Bregman divergences

are convex in their first argument. Although strictly speaking they are not a distance

metric, they satisfy many properties of metrics, for example Dφ(a‖b) ≥ 0 for any

a,b, and Dφ(a‖b) = 0 if and only if a = b. Many standard distance-like functions

like Square loss and KL-divergence are members of this family (see Table 2.1 in

Chapter 2).

Bregman Divergences have a very close relationship with generalized linear

models. In particular, there is a one-to-one correspondence between each GLM and

each Bregman divergence via the convex function φ(·) that is also closely related to

the specific exponential family distribution associated with the GLM.

Specifically, for our work we use the fact that MLE parameter estimation in a

GLM with given object features X and target variable y is equivalent to minimising

Dφ (y‖(∇φ)−1(Xβ)) over β, that is, the optimal parameter is the minimiser β̂ for

the following optimisation problem,

β̂ = arg min
β

∑
(x,y)

Dφ

(
y‖(∇φ)−1(x>β)

)
+ λR(β)

where φ(·) is the convex function associated with the particular GLM used. For

example, maximum likelihood for a Gaussian model or standard linear regression

corresponds to square loss, for Poisson the corresponding divergence is generalized

I-divergence (GI-divergence) and for Binomial, the corresponding divergence is the
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Kullback-Leibler or KL divergence. We refer the reader to Banerjee et al. (2005) for

a detailed exposition on the relationship between Bregman Divergences and GLM’s.

In particular, we note that the only aspect of our framework that is affected

by generalising linear regression to GLMs is in the loss function, which now changes

from a square loss to a general Bregman Divergence.

7.3.2 Extension to Overlapping Aggregation

In section 7.2, we studied and derived an algorithm for the case when the ag-

gregation is non-overlapping. We now generalise this to a wider class of aggregation

paradigms. The basic formulation remains unchanged– the aggregation paradigm

only shows up in the constraint set of our optimisation framework as a linear con-

straint.

Consider the matrix Γ ∈ Rm×n such that for each k ∈ {1, 2, · · ·m} and each

i ∈ {1, 2, · · ·n}, we have Γki = 1 if and only if i ∈ Ik, where Ik are the aggregation

groupings as defined in section 7.2. Then, it is clear that Γy = z exactly captures

the aggregate summaries zk =
∑

i∈Ik yi.

Extensions to arbitrary aggregation paradigms is now obvious– we just design

the appropriate Γ matrix. For example, overlapping aggregation can be represented

by a Γ where multiple rows have 1’s in the same column. A sliding window aggre-

gation framework with window size τ can be represented with a Γ such that Γik = 1

for i ∈ {kτ, kτ + 1, · · · (k + 1)τ}, and 0 otherwise.

We can extend this further to the case where the aggregation is weighted– in

this case, Γ is a matrix with general real-valued entries, rather than a binary matrix.
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One example where this occurs is when the grouping is done over sub-populations

sampled non-uniformly, and the aggregates are computed from weighted summaries

that represent unbiased estimates of the mean parameter for the target value over

the sub-populations. Another example of weighted aggregation is when the target

variables are multiplied with a random matrix in the interest of statistical disclosure

limitation. All these cases can be handled in the same manner as for a binary matrix

by using an appropriate Γ.

7.3.3 Learning Algorithm for the General Case

We are now ready to describe the modelling framework and the solution al-

gorithm for the general case. Let φ be the convex function on which the Bregman

divergence corresponding to the GLM used is defined. We overload our notation

and use gφ(·) and (∇φ)−1(·) to denote functions applied to the individual elements

of the vector, that is for a vector a, we have gφ(a) = [gφ(a1), gφ(a2) · · · gφ(an)] and

(∇φ)−1(a) = [(∇φ)−1(a1), (∇φ)−1(a2) · · · (∇φ)−1(an)] whenever this is well defined.

Let Γ be the aggregation matrix as defined in section 7.3.2. Then, the optimisation

problem for the general version of the problem is

min
y,β

Dφ

(
y‖(∇φ)−1(Xβ)

)
+ λR(β)

s.t. Γy = z
(7.3)

As earlier, we use alternating minimisation to solve this optimisation problem

for the imputed targets y and parameter β respectively. Given a particular set of
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values for the imputed targets, estimating the parameter is equivalent to solving

β+ = arg min
β

Dφ

(
y‖(∇φ)−1(Xβ)

)
+ λR(β)

This is the standard formulation for estimating the parameter for a generalised

linear model, and off-the-shelf packages are available for most programming platforms

to solve this. The more interesting problem here is the imputation of targets y given

a particular value of β, which can be summarised as the following optimisation

problem
y+ = argmin

y
Dφ

(
y‖(∇φ)−1(Xβ)

)
s.t. Γy = z

(7.4)

Because Bregman Divergences are convex in their first argument, and because

the constraint set is linear, this optimisation problem is convex in terms of y. In fact,

not only is the optimisation problem convex, it can be shown that we can actually

estimate the optimal value of y in closed form

Lemma 7.3.1. Target Imputation: Given β, the optimality conditions for the

optimisation problem as described in equation 7.4 lead to the parameter y+, where

y+ is defined as

y+ = (∇φ)−1
[
Xβ − Γ>

(
ΓΓ>

)−1
Γ
(
Xβ − gφ

(
(Γ>Γ)−1Γz

))]
(7.5)

where the operations gφ and (∇φ)−1 are applied elementwise to their corresponding

vector arguments.

The proof of this follows directly by using either optimality conditions on

the Lagrangian, or by using the Karush-Kuhn Tucker conditions for the constrained

optimisation problem.
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Algorithm 3 EstImAgg
Arbitrary aggregation, Generalised Linear Models

1: Input: X, z, GLM ∼ φ, Aggregation matrix Γ
2:

3: Initialise {yi =
∑

k
zk
|Ik|

: i ∈ Ik}
4:

5: while not converged do
6: Solve for β+ using standard GLM estimation

β+ = arg min
β

Dφ

(
y‖(∇φ)−1(Xβ)

)
+ λR(β)

7: Compute imputed aggregate error given new β+

ϑ =
(
Xβ − gφ

(
(Γ>Γ)−1Γz

))
8: Transform aggregate error

ξ = Γ>
(
ΓΓ>

)−1
Γϑ

9: Impute each target applying a monotonic transform

y+ = (∇φ)−1 (Xβ − ξ)

10: Update variables (y,β) = (y+,β+)
11:

12: end while
13:

14: return y,β
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The steps involved in the overall algorithm for the general case (GLMs with

arbitrary aggregation paradigms) is summarised as Algorithm 3. For better presen-

tation and intuitive clarity, we separate out the target imputation step into three

parts– they can, of course, be combined in any implementation as in equation 7.5.

We use the generalised inverse in the matrix inversion steps whenever the matrices

involved are not full rank.

Convergence: While the optimisation problem is not jointly convex, and

the solution methodology in algorithms 2 and 3 involve alternating estimation and

imputation steps, it can be shown that both the algorithms always converge.

Lemma 7.3.2. Convergence: For any choice of initialisation and set of inputs,

both algorithms 2 and 3 converge to a local minimum.

This fact can be proved using the observation that every step in the algorithm

reduces the value of the objective function, and the fact that the objective function is

bounded below by 0. The objective function is not jointly convex except for specific

types of Bregman Divergences (Acharyya et al., 2012; Acharyya & Ghosh, 2014),

hence convergence is local.

7.4 Experiments

We evaluate our methods on synthetic data as well as three real datasets with

applications in online advertising and healthcare. As mentioned earlier, because of a

lack of existing literature on this topic we are not aware of any algorithmic baselines

127



(a) Test Prediction Error (b) Train Reconstruction Error (c) Parameter Estimation Error

Figure 7.1: Synthetic Data (Gaussian): Error on predictions for test data, error in reconstructed
training data and estimation error for parameter recovery plotted vs iteration for Gaussian Model.
Our model outperforms the baseline in all three metrics and converges within very few iterations

(a) Test Prediction Error (b) Train Reconstruction Error (c) Parameter Estimation Error

Figure 7.2: Synthetic Data (Poisson): Error on predictions for test data, error in reconstructed
training data and estimation error for parameter recovery plotted vs iteration for a Poisson Regres-
sion Model. Our model outperforms the baseline in all three metrics and converges within very few
iterations

for our work. Therefore, the performance of our method is compared against a

straightforward baseline which plugs in the aggregates z as individual level labels

into standard machine learning estimators and learns a predictive model.

The evaluation metrics that we use are threefold. First, following standard

practice we examine the performance of our algorithms in predicting target values

on an unseen test set– to this end, we compute the `2 prediction error ‖ytesttrue −

(∇φ)−1(Xtestβestim)‖ between the true value of the test target and the estimated
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value obtained by our algorithm. All of this is done at the individual-sample level

of granularity. Next, note that while reconstruction is not an explicit objective, our

algorithm nevertheless involves a data imputation step. Therefore, whenever we have

access to ground truth data for the training set, we also evaluate the `2 reconstruction

error ‖ytraintrue −ytrainrecons‖ between the true value of the training target and the imputed

values. This is compared against the `2 error as obtained by replacing every target

variable by the aggregate. Finally, whenever we have access to the “true” parameter

of the GLM, we also compare the parameter recovery error ‖βtrue − βestim‖ of the

estimated parameter for both our algorithm as well as the baseline.

7.4.1 Synthetic Data

We run two different experiments on synthetic data– one for a Gaussian re-

gression model and one for a Poisson regression model. In both cases, we generate

covariates X independently and identically distributed according to the standard

Normal. We also generate the true parameter β∗ by sampling from the multivari-

ate standard normal distribution in the same manner. We then use the parame-

ter and the covariates to generate the corresponding targets y. For the Gaussian

model, the targets are generated as the linear function of each x with β∗, that is,

y|x ∼ N(x>β∗, σ2). For the Poisson model, following standard practice (McCullagh

& Nelder, 1989; Banerjee et al., 2005) we further apply the canonical exponential

link function to x>β∗ to bring this linear function to the domain of a Possion distri-

bution. That is, we generate each y from their covariate x as y|x ∼ Poiss (ηx), where

ηx = exp(x>β∗) is the mean around which y is distributed.
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In each case we generate the aggregation set Γ in the following manner– for

each aggregate, we sample a Bernoulli variable for every data point independently

with probability ρ = 5%. If we sample 1, the datapoint is used for computing the

aggregate, otherwise not. This is equivalent to setting every element of Γ indepen-

dently as Bernoulli(ρ). Initialisation for y is deterministic, and uses the aggregates

as the “true” individual labels.

We then feed these aggregates to our algorithm together with the grouping

information Γ. The evaluation metrics are threefold. First, we compute prediction

error at the individual level for each method on samples in the test. Next, we calculate

error in reconstructing the training data as imputed by our method. Finally, since

we have the “true” parameter for this set of experiments, we also plot parameter

recovery error.

Figures 7.1 and 7.2 show the results for the Gaussian regression model and

the Poisson regression model respectively. In both cases, it can be seen that our

algorithm significantly outperforms the baseline and converges within a very small

number of iterations. The same experiments repeated with other values of ρ and

for varying problem size showed similar results. Note that for the Poisson regression

case, even though training reconstruction error is close to 0 the other metrics are

not. This is an artefact of how GLM solvers work for Poisson regression where the

targets are always integer valued even when the mean parameter exp(x>β) is not,

and where the noise is directly proportional to the mean parameter. Reconstruction

error nevertheless goes close to 0 because we have additional information in the form

of aggregates to estimate the training y.
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(a) Test Error for Aggregation
over ≤ 30 clicks

(b) Test Error for Aggregation
over ≤ 35 clicks

(c) (Scaled) Test Error Compar-
ison

Figure 7.3: Real Data: Estimating CPC for Online Advertising: Error on predictions for test data
plotted vs iteration for a Log-Normal Model, for aggregation period limited to 30 clicks (figure 7.3a)
and 35 clicks (figure 7.3b). Errors for both cases shown in figure 7.3c, scaled for ease of comparison.
Our model outperforms the baseline, leading to nearly 4-5% improvement in predictive performance

7.4.2 Real Data: CPC in Online Advertising

Recall that the digital advertising (Zeff & Aronson, 1999; Yan et al., 2009)

process comprises of an advertiser who bids for ad-space provided by a publisher for

a fee called cost-per-click or CPC (Hu et al., 2010) computed based on an auction-

mechanism that is only partially revealed. Designing an effective and profitable

bidding strategy depends on models which require the CPC value at the click-level.

However, in many advertising products (e.g., the Google Shopping advertising prod-

uct (NORC)) the CPC data is only available to the advertiser in aggregated form

because the publishers provide only daily or hourly invoices with the charges com-

puted over the entire set of clicks. Our task here is to design effective predictive

models for estimating CPC that can work at the per-click level but use only aggre-

gates for training.

We evaluate our methods on a real-world proprietary aggregated-CPC dataset

from Criteo (criteo.com), an online advertising company that provides personalised
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behaviourally retargeted advertising services for Internet retailers. As mentioned

earlier, our task here is to design predictive models for estimating CPC at the per-

click level, but use only the available aggregated CPC data for training. We use a

subset of Criteo’s advertising data collected over a period of one week in February

2017. The dataset contains 25691 instances of ad-click data for different products,

and each sample consists of the the CPC aggregate corresponding to its aggregate

group, as well as a feature-set of size 1551 containing information about product-

country, product-price, timestamp, campaign-type, etc. The groupings over which

the aggregates have been computed are known. We also use taxonomic category

information for each product in the dataset, based on the Google Product Taxonomy

(Google Product Taxonomy) which is widely used in the online ad-tech space.

Since the number of times an advertisement gets clicked per day can be ar-

bitrary, the aggregation period for each aggregate has been computed over varying

numbers of clicks. Ideally, we would prefer to test the performance of our methods in

predicting per-click CPC, but by design this information is not available for all data

points. However, ground truth itemised CPC is nevertheless available for display ads

that have only been clicked once during the entire aggregation period, hence in this

case the aggregate is equal to the per-click CPC. Since the number of such samples

are extremely limited, we use the entire set of single-click data points as test data,

so that we can evaluate the performance of our predictive model at the granularity

that is required for the real world application. The remaining data, which have only

aggregated CPC information, is used for training.

Based on common industry practice in the ad-tech domain, we use a log-
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normal model (Johnson et al., 1994) as our base GLM framework for predicting

CPC. We perform our experiments on two different scenarios– first where the data

has been aggregated over at most 30 clicks, and similarly for data aggregated over

35 clicks. Since ground truth information is not available for training data, we only

show predictive performance on test data.

Figures 7.3 shows the plots of test error versus iteration for the two sets of

experiments. For reasons of stability, we use a validation set to define a maximum

number of iterations for the algorithm. In both cases, we can see that our algorithm

results in a improvement in predictive performance over the baseline. For ease of

understanding, we provide the scaled bar chart of the final average error values in

figure 7.3c. It is clear that EstImAgg results in a nearly 4-5% improvement in

estimation error. To put that in context, note that the online advertising industry

sees billions of dollars in transactions per year (AdWeek, March 14, 2017) and even

an improvement a few percentage points can indicate significant difference in revenue.

7.4.3 Real Data: Healthcare

We presented our work so far within the context of predicting click-level CPC

in the online advertising domain. However, aggregated data is common in many

other fields, and our framework can be applied in an identical manner to domains

beyond online advertising. Healthcare is one such domain where data aggregation

arises naturally– privacy concerns regarding the confidentiality of patient information

limits the kinds of data that can be released to the public, and statistical disclosure

techniques like aggregation is one of the most popular techniques for this purpose.

133



(a) Test Prediction Error (b) Train Reconstruction Error

Figure 7.4: Real Data: Estimation of Medicare Reimbursement Using CMS Data: Error on
predictions for test data and error in reconstructed training data plotted vs iteration, as estimated
using a Gaussian Model. Our model outperforms the baseline and converges within very few
iterations, with a reasonably faithful reconstruction of the training data

(a) Test Prediction Error (b) Train Reconstruction Error

Figure 7.5: Real Data: Estimation of Texas State Hospital Charges: Error on predictions for test
data and error in reconstructed training data plotted vs iteration, as estimated using a Poisson
Regression Model. Our model outperforms the baseline and converges within very few iterations,
with a reasonably faithful reconstruction of the training data

Patient information like healthcare charges, prevalence of pathological conditions,

etc. are often released at the county or zip-code level, which can then be combined

with publicly available census data to perform individual level predictive modelling.

We use two healthcare datasets to demonstrate the general applicability of our

134



framework– the application involved is predicting Medicare reimbursements for the

first dataset, and hospital charges for the second dataset. Since we need individual-

level ground truth data for testing, we only use public datasets where the target

variable is available in non-aggregated form, and aggregate the training data before

applying our techniques.

Our first dataset is the CMS Beneficiary Summary DE-SynPUF dataset (DESyn-

PUF, 2008), which is a public use dataset created by the Centers for Medicare and

Medicaid Services by applying different statistical disclosure limitation techniques

to real beneficiary claims data in a way so as to very closely resemble real Medi-

care data. We use a subset of the DE-SynPUF dataset for Louisiana state from the

year 2008 and model outpatient institutional annual primary payer reimbursement

(PPPYMT-OP) with all the available predictor variables that include age, race, sex,

duration of coverage, presence of a variety of chronic conditions, etc. Because of the

nature of our target variable, we use a Poisson regression model for this problem.

Our second dataset is the Texas Inpatient Discharge dataset from the TX

Department of State Health Services (TxID, 2014) that contains information about

total medical charges that were paid by patients in various hospitals around Texas

(see Park & Ghosh (2014) for more details on the dataset). We use hospital billing

records from the fourth quarter of 2006 in the Texas Inpatient Discharge dataset and

regress it on the available individual level predictor variables including binary vari-

ables race and sex, categorical variables county and zipcode, and real valued variables

like length of stay. Following (Park & Ghosh, 2014), we perform a log transform on

the hospital charges and length of stay before applying a Poisson regression model
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(Banerjee et al., 2005).

For both the datasets, we have ground truth information for our targets,

which we use to form aggregates. Just like in the synthetic data experiments, we

generate aggregates by sampling the targets independently and adding them up,

which is equivalent to sampling the individual entries of Γ independently according

to a Bernoulli distribution. We then use these aggregates as training data and feed

them to our framework along with the corresponding variables.

Similar to the synthetic data experiments, we evaluate the performance of

our algorithm by computing the predictive error on the test set as well as the recon-

struction error on the training data. Since we do not have access to ground truth

information about the true parameter, we skip parameter recovery error in this case.

Figures 7.4 and 7.5 show the results for test data estimation error and training

data reconstruction error for the DESynPUF and TxID datasets respectively. For

both these datasets, the plots show that our algorithm significantly outperforms the

baseline with respect to either metric. Furthermore, our framework reaches a rea-

sonably steady-state solution fairly rapidly within a few iterations of the algorithm.

Results for other similar values of ρ were similar.

7.5 Conclusion

In this chapter, we introduced a novel learning framework that can learn gen-

eralised linear models when the targets are only available as aggregates computed

over arbitrary groupings of the data samples. This is an important learning paradigm
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in domains ranging from online advertising to healthcare where privacy and propri-

etary concerns limit the release of data at a granular level. We developed a new

algorithm and empirically demonstrated its efficacy in learning under aggregation

constraints with experiments on both synthetic data as well as data from healthcare

and from the online advertising industry.
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Chapter 8

Conclusion and Future Work

8.1 Summary of the Dissertation

While aggregated data occurs in a large number of modern contexts and use-

cases, there is very limited prior art on training machine learning models using data

that is only available in aggregated form. In particular, problems arising from in-

built structural properties like ecological fallacy make it very challenging to adapt

traditional methods and techniques to the aggregated data framework. This disser-

tation addresses these lacunae in existing literature on the subject of using machine

learning models when data is only available in aggregated form. To this end, we de-

velop algorithmic techniques and learning frameworks for several different contexts

and problem settings.

In Chapter 3, we considered the setup where covariates or x-variables are

known in full, non-aggregated form, but targets or y-variables are known only in

the form of histograms or order statistics. We tackled this problem in the context

of generalised linear models, and introduced a novel learning algorithm that uses

alternating target imputation and parameter estimation steps to learn a predictive

model given only the histogram aggregated data. As a sanity check, we performed

permutation testing to assess the fidelity of our data imputation procedure, and
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showed that with histograms of sufficient granularity, our reconstructed targets are

close to the true values with high statistical significance. Empirical evaluation of our

methods on both synthetic and real healthcare data were used to demonstrate the

efficacy of our techniques. Results showed that when the histograms are constructed

with fine grained binning, our performance is competitive with that of a learner who

has access to the full non-aggregated data.

We next turned our attention to the case when both the covariates or features,

as well as targets, were available in aggregated form. Specifically, Chapter 4 studied

this setup in the case where the features and targets were available as group-wise

moments. There are two sources of error in this scenario– aggregation error that is

the result of using only a finite number of samples in computing the aggregates, and

measurement error that arises due to noise in the data collection procedure. We con-

sidered this problem in the context of linear models and showed that under standard

isometry conditions on the data matrix, and structural assumptions on the model

parameter, with high probability the true model parameter can be learned exactly

from just the group-wise means alone, provided the means have been computed from

a sufficiently large number of data points. We extended our methods to the case of

noisy measurements and showed that sparse parameter recovery is still possible up

to an arbitrarily low tolerance given that aggregates have been obtained from a large

enough sample size. Finally, we studied the case when the data has been aggregated

into histograms, and proved that the recovery of a sparse model parameter up to a

tolerance that depends on the granularity of the histograms. Experiments on syn-

thetic data were used to corroborate our theoretical results, and empirical evaluation
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on healthcare data showed the relevance of our techniques in real world applications.

Chapter 5 investigated predictive modelling in the context of spatio-temporal

aggregation– a common occurrence in many areas like econometrics, finance, climate

science, IoTs, etc. where data is often released as, for example, monthly or yearly

averages. The chapter studied this problem in the context of linear models, where

each coordinate of the feature variables, as well as the target variables, are only

available as aggregates computed over non-uniform sliding windows that are not

necessarily aligned with each other. We showed that by modelling the problem in

the frequency domain, training becomes much more tractable. We showed that by

formulating the problem in the frequency domain and exploiting duality properties

of Fourier analysis, many of the inherent structural challenges of this setting can

be bypassed. We introduced a novel framework and new algorithmic techniques

to perform frequency domain estimation and inference for this setup and provided

a theoretical analysis that showed the competitiveness of our learning algorithm

with the best possible linear algorithm in terms of agnostic generalisation error.

Empirical validation of our methods on synthetic data was used to reinforce our

theoretical guarantees, while experiments on real data from ecological studies and

climate sciences demonstrated the efficacy of our methods in practical contexts.

We then moved on to study the complementary problem in chapter 6, where

the task was to learn aggregation techniques that would still allow model learning

while preserving privacy and data integrity, and corresponding learning algorithms

that can use these techniques. We motivate our techniques by using Gaussian re-

gression, and subsequently extend them to the case of binary classification and gen-
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eralised linear modelling. We provided both theoretical results as well as empirical

evaluation for our work on real heatlthcare data and data from the telecommunica-

tions industry. Furthermore, to bridge the gap between mathematical theory and lay

stakeholders in the context of privacy preservation literature, we introduces a new

alternative criterion for measuring privacy, as well as showed that all our methods

satisfied that criterion.

Finally. in Chapter 7 we saw a concrete example of our methods being used

in a real life application. Specifically, we considered an application in the domain of

online advertising, where a complex bidding process determines auctions and mon-

etary transactions between advertisers and ad publishers, but where advertisers are

handicapped in terms of training their bidding models due to not being granted ac-

cess by publishers to per-click costs interred when a customer clicks on their ad. To

bypass this issue, we developed an algorithm for estimating cost-per-click or CPC

given only aggregated invoives collected on a daily or hourly basis. We tested our

techniques on real life data from the online advertising company Criteo where they

showed significant improvement over basline methods. Finally, we also tested our

methods on healthcare data to show the wider applicability of our framework on

domains beyond online advertising.

8.2 Future Directions of Research

The problem of learning from aggregated data arises in a wide range of con-

texts and application spaces, and it is not possible to encapsulate all possible settings

within a single dissertation. Here we provide a few pointers towards challenges that
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remain to be tackled and application areas that require further investigation into

developing techniques and frameworks that allow training of individual level models

given only aggregates.

First, we note that a wide range of model families can benefit from being

studied in this context. In particular, kernel methods that model targets to be pre-

dicted using the relationship of their corresponding feature vectors vis-a-vis specif-

ically selected samples in the training dataset via a kernel which acts as a proxy

for similarity metrics. This dependence of kernel methods on access to individual

data points makes it challenging to adapt to the aggregated data setup, since the

kernel computation (or calculating the Gram matrix) explicitly requires knowledge

of non-aggregated covariates. Nevertheless, there are techniques that transform the

kernel training methods back into the primal domain (Rahimi & Recht, 2008, 2009),

which can potentially provide a roadmap for adapting this wide class of models into

this data setup.

Another interesting application involves matrix completion given averages

over randomly sampled entries. The standard recommendation system setup as-

sumes that data is available as localised estimates, that is, user ratings are available

individually for every item in a subset of items relevant to the user. In many cases,

however, such localised estimates are unavailable- instead, the available data is av-

erage user ratings for different groups of items. For example, the Google Now or

Yahoo homepage may offer a curated set of items to a user at the beginning of a

browsing session, and at the end of the activity the user may be asked to rate his

experience- this user feedback would encapsulate the average rating for the entire
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set of curated items rather than individually. Under low rank assumptions on the

data matrix, this can be formulated as a convex optimisation problem with data

constraints. However, it remains to be seen whether the existing results on matrix

completion from randomly selected entries like (Candès & Recht, 2009; Recht, 2011;

Recht et al., 2010) can apply to the case when measurements are only available as

averages over individual entries.

More generally, a wide range of non-linear modelling paradigms offer possibil-

ities of extension wherein they are brought into the fold of learning under aggregated

data constraints. We have already provided a subset of solutions for the case of

generalised linear models, but a vast range of alternative tools exist in the arsenal

of existing machine learning research. The solutions to each method will be applica-

tion specific and would be required to exploit structural properties of the modelling

paradigm– an example is the possibility of exploring generative properties of various

deep learning models (Kingma & Welling, 2013; Goodfellow et al., 2014) for data

reconstruction– but regardless of approach, this would nonetheless be a compelling

direction for future research.

At the other end of the spectrum, non-linear aggregation and non-uniform

aggregation in general is yet another compelling application. In particular, as noted

in Chapter 7, our methods for learning for linearly aggregated data led to an estima-

tion algorithm that had an elegant structural formalism, where the data imputation

step involved piece-wise linear shift to estimates obtained from the linear model at

the current iteration, which mirrors the linearity in the aggregation procedure. This

suggests a form of “structural regularisation”, wherein the data constraints arising
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from various aggregation paradigms might lead to their specific dual formalisms in

the data imputation step.

There is ample scope for future research into the practical aspects of mod-

elling with aggregated data like non-idependent data generation processes, concept

drift, and wider application across problems that arise in various domains. We have

already covered a selection of application areas in this dissertation, like healthcare,

avertising technology, telecommunications, climate science, etc. by using data from

these domains for our empirical evaluation. However, aggregated data arises in many

other domains like e-commerce, econometrics, finance, political science, etc. and

there exists many avenues for testing out techniques in these domains.

Finally, machine learning is used in many areas like personal finance, criminal

justice system, etc. with significant potential impact on underprivileged communites

and has a lot of social justice implications– techniques involved in the aggregated data

context can potentially be of use in such domains. Fairness in machine learning is a

particularly compelling motivation, for example in the design aggregation schemata

that can either result in fair impact or be used to detect unfairness in the results of

algorithms. Voting rights and gerrymandering are yet other areas where aggregation

is a naturally arising structural feature. There is significant debate in political science

and legal jurisprudence on defining a “good” geographic scheme for aggregating

voters together into a electoral district, subject to legal, demographic and ethical

constraints, and the line of research presented in this dissertation can potentially be

of significant utility in making headway into this important problem.
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Appendix A

Recovery of Sparse Parameter from Group-Wise

Aggregated Data: Appendix

A.1 General Remarks on the Results

As mentioned in Chapter 4, existing analyses in the sparse sensing literature

are inadequate for analysing the aggregated data case, and our guarantees are much

stronger than what could be achieved by a naive analysis.

The most general setup of the problem under study can be written in the

following form:
Estimate: β0

Given: M̂, Ŷ

where: M̂ = M + e

Ŷ = y + s

y = Mβ0

(A.1)

There are four variations of this problem that are of interest in our setup:

1. error in design matrix M̂ = M + e, without noise in observation vector y (that

is, s = 0)

2. noise in observations Ŷ = y + s, with exact design matrix M (that is, e = 0)
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3. design matrix error e and observation noise s, where e and s are independent,

e ⊥⊥ s

4. the aggregated data case (as we study in this work) which contains both design

matrix error e and observation noise s, and where e and s are linearly correlated

To our knowledge, all prior work in the literature (eg. Herman & Strohmer

(2010); Chi et al. (2011); Rosenbaum et al. (2013); Rudelson & Zhou (2015) among

others) only concern themselves with cases 1, 2 and 3. Moreover, for papers that

do deal with case 2 and 3, unless s = 0 the existing analysis will be restricted to

providing only approximate recovery guarantees. Thus, these methods do not apply

directly to case 4, a setup that almost always arises in the context of data aggregation.

We focus our investigation on the aggregated data case, that is, case 4: where

E and s are linearly correlated. First of all, the existing literature does not make it

clear how linearly correlated noise affects sparse parameter recovery from standard

methods (like the LASSO or basis pursuit), and if the parameter can be recoverable

in such cases. Even ignoring the linear correlation in the noise model, naive applica-

tion of existing techniques that involve bounding error magnitudes will only be able

to provide approximate recovery guarantees (where the degree of `2-approximation

would depend on ‖β0‖).

The key observation that allows us to bypass all these limitations is the fact

that while E and s are correlated, we have one more piece of the puzzle that can be

used to augment the information in equation A.1: the fact that not only are E and

s linearly correlated, they are tied together via the true parameter β0 in the form of
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the expression s = Eβ0. This is an artefact of the natural structure that is generated

by data aggregation in linear models.

This observation is key to bypassing the problems in parameter recovery out-

lined earlier. Indeed, we show that not only can we guarantee parameter recovery

using standard compressed sensing algorithms, we can also guarantee exact param-

eter recovery, as we see in Theorem 4.3.1, and recovery upto arbitrarily accurate

degree of estimation as we see in 4.3.2 and 4.3.3. These results, while seemingly

intuitive after the fact, have not been shown in either the compressed sensing liter-

ature, or in the literature on ecological estimation dating back at least 60 years to

Goodman (1953), and to our knowledge, ours is the first work that examines and

gives guarantees for the structured parameter recovery problem in the context of

aggregated data.

Furthermore, as we mention in Chapter 4, our analysis techniques generalise

beyond the exact problem setup and estimation procedure that we present in this

work, and can be easily extended to analyse sparse or approximately sparse parameter

recovery from aggregated data in a wide variety of contexts (non-sparse β0, beyond

sub-Gaussian assumptions, etc. (see for example Candes et al. (2006); Cai et al.

(2009)) and using various kinds of estimators beyond the LASSO or basis pursuit

(for example the Dantzig selector, Matrix Uncertainty-selector, etc., (see Candes &

Tao (2007); Rosenbaum et al. (2013)). While the sample complexity required may

vary a little from case to case, our main results, on exact parameter recovery or

recovery to within any arbitrary degree of approximation, would remain the same.
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A.2 Proofs of Main Results

Note that the analysis presented below is one out of many possible approaches.

Slightly different bounds can be achieved using different methods of analysis, for ex-

ample using the Bauer-Fike Theorem, Weyl’s Inequality, Wielandt Hoffman theorem,

etc. and the bounds derived below can be made tighter by making further assump-

tions on the distributions of covariates or noise terms, etc.

The main property that enables recovery of sparse parameters from an under-

determined linear system is the restricted isometry condition, also sometimes known

as the Uniform Uncertainty Principle.

For the matrix M ∈ Rk×d and any set T ⊆ {1, 2, · · · , d}, suppose MT is

the k × |T | matrix consisting of the columns of M corresponding to T . Then, the

s-restricted isometry constant δs of the matrix M is defined as the smallest quantity

such that the matrix MT obeys

(1− δs)‖c‖2
2 ≤ ‖MT c‖2

2 ≤ (1 + δs)‖c‖2
2

for every subset T ⊂ {1, 2, · · · , d} of size |T | < s and all real c ∈ R|T |

As in Chapter 4, we assume that M satisfies the restricted isometry hypothe-

ses for both exact recovery and noisy recovery. That is, there exists an s0 such

that the following conditions are satisfied with respect to the 2s0-restricted isometry

constants δ2s0 for M in the manner as defined below:

1. For exact recovery from noise-free measurements, we assume δ2s0 < Θ0 = 3
4+
√

6
≈

0.465
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2. For approximate recovery from noisy measurements, we assume δ2s0 < Θ1 =
√

2− 1 ≈ 0.414

However, we do not know the true mean matrix M, only the sample mean

matrix M̂n = M+En, where En is the matrix of aggregation error owing to empirical

estimation from a finite number of samples. We now show that when the true mean

matrix M satisfies the restricted isometry conditions, given enough samples n so will

the sample mean matrix M̂n with high probability.

We first show the following result for the isometry constants for M̂n = M+En

in terms of the eigenvalues of En.

Lemma A.2.1. Let δs be the s-restricted isometry constant for M. Let
√
λn denote

the absolute value of the largest (in absolute value) singular value of En,T for all

subsets T ⊂ {1, 2, · · · d}. Then, ζs = (δs + λn + 2
√
λn(1− δs)) is such that for every

subset T ⊂ {1, 2, · · · , d} of size |T | < s and all real c ∈ R|T |

(1− ζs)‖c‖2
2 ≤ ‖(MT + En,T )c‖2

2 ≤ (1 + ζs)‖c‖2
2 (A.2)

Proof. For every subset T ⊂ {1, 2, · · · , d} and all real c ∈ R|T | we have by triangle

inequality,

‖(MT + En,T )c‖ ≤ ‖MT c‖+ ‖En,T c‖ ≤ (
√

1 + δs +
√
λn)‖c‖
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Also, √
(1− δs)‖c‖ ≤ ‖MT c‖

= ‖ ((MT + En,T )− En,T ) c‖

≤ ‖(MT + En,T )c‖+ ‖En,T c‖

≤ ‖(MT + En,T )c‖+
√
λn‖c‖

Therefore, we have

(
√

1− δs −
√
λn)‖c‖ ≤ ‖(MT + En,T )c‖

≤ (
√

1 + δs +
√
λn)‖c‖

Assume1 λn < (1 + δs), and ζs = (δs + λn + 2
√
λn(1 + δs)) < 1, then we have√

(1− ζs) ≤
√

1− δs −
√
λn

and √
(1 + ζs) =

√
1 + δs +

√
λn

This completes the proof.

We now bound the singular values of En,T .

Lemma A.2.2. Let
√
λn denote the absolute value of the largest (in absolute value)

singular value of En,T for any T ⊂ {1, 2, 3, · · · d}. Then

λn ≤ ‖En‖2
F

where ‖ · ‖F denotes the Frobenius norm.

1We shall prove later that with overwhelmingly high probability λn <
(

(Θ−δs)2

9(1+δs)

)
where Θ < 1.

This subsumes both the assumptions stated here.
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Proof. Let

√
λ

(n,T )
τ for τ = 1, 2, · · · be absolute values of the non-zero singular values

of En,T . Consider the singular value decomposition of En,T = UΛV >. Then

‖En,T‖2
F = Trace(E>n,TEn,T ) = Trace(Λ>Λ)

=
∑
τ

λτ ≥ max
τ

λ(n,T )
τ

Therefore, for every T we have

max
τ

λ(n,T )
τ ≤ ‖En,T‖2

F ≤ ‖En‖2
F

Since λn = maxT maxτ λ
(n,T )
τ , we have the result.

This is just one approach, similar results can also be obtained, for example,

by bounding the eigenvalues using the Gershgorin Circle Theorem.

Finally we show that with high probability λn can be bounded.

Lemma A.2.3. Suppose each covariate has a sub-Gaussian distribution with pa-

rameter σ2, that is, for each covariate xj,i ∈ xj = [xj,1, xj,2 · · ·xj,d] and each group

j ∈ {1, 2, · · · k}, we have for every t ∈ R, the logarithm of the moment generating

function is quadratically bounded

lnE[et(xj,i−µj,i)] <
t2σ2

2

Then, for any positive θ > 0, the probability P (λn > θ) < 2kd e−nθ/2kdσ
2

Proof. Note that the (j, i)th element of the matrix En is the zero random variable

En,(j,i) =
∑n
m=1(x

(m)
j,i −µji)
n

, where x
(m)
j,i is the mth observation of the ith covariate in the

jth group, and µji is the mean of the ith covariate in the jth group.
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Since each covariate has a sub-Gaussian distribution with parameter σ2, we

have, by Hoeffding’s inequality for sub-Gaussian random variables, for any θ > 0

P
(
|En,(ij)| >

√
θ
)

= P

(
|
∑n

m=1(x
(m)
j,i − µji)
n

| >
√
θ

)
< 2e−nθ/2σ

2

Therefore, using Lemma A.2.2, we have

P (λn > θ) ≤ P (‖En‖2
F > θ)

≤
∑
ij

P (E2
n,(ij) >

θ

kd
)

≤
∑
ij

2e−nθ/2kdσ
2

= 2kd e−nθ/2kdσ
2

where the second inequality is by union bound and the third is due to Hoeffding’s

inequality.

We are now in a position to prove the main results.

A.2.1 Proof of Theorem 4.3.1

Proof. We saw in Lemma A.2.1 that is the s-restricted isometry constants for M are

δs, then the corresponding s-restricted isometry constants for M̂n are

ζs = δs + λn + 2
√
λn(1 + δs) < δs + 3

√
λn(1 + δs)

for small enough λn
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Let Θ0 = 3
4+
√

6
≈ 0.465. Suppose there exists an s0 such that the isometry

constant δ2s0 for the true mean matrix M satisfy δ2s0 < Θ0. Using Theorem 4.2.1

(Foucart, 2010), we can see that any κ0 sparse β0 can be recovered from M̂n if the

corresponding isometry constants for M̂n satisfy ζ2s0 < Θ0, that is

ζ2s0 < Θ0

≡ ζ2s0 − δ2s0 < Θ0 − δ2s0

⇐ 3
√
λn(1 + δ2s0) < Θ0 − δ2s0

≡ λn < ϑs0

(A.3)

where

ϑs0 =

(
(Θ0 − δ2s0)

2

9(1 + δ2s0)

)
All that is left to show is that the condition ζ2s0 < Θ0 is true with high prob-

ability. This is straightforward by using Lemma A.2.3 and the results in equations

(2) above. We have,

P (ζ2s0 < Θ0) > P (λn < ϑs0)

= 1− P (λn > ϑs0)

≥ 1− e−C0n by Lemma A.2.3

where the constant C0 is such that

C0 = O

(
ϑ0

kdσ2

)
= O

(
(Θ0 − δ2s0)

2

kdσ2(1 + δ2s0)

)

154



A.2.2 Proof of Theorem 4.3.2

Proof. Using Theorem 4.2.2 (Candes, 2008), recovery of β0 within an O(ξ) distance

is possible if the restricted isometry constants for M̂n satisfy ζ2s0 < Θ1 where Θ1 =
√

2 − 1 ≈ 0.414, and the error term εn is bounded as ‖εn‖2 < ξ. For succinctness,

we drop the subscript from the error term and denote εn simply as ε.

The probability of the restricted isometry condition being violated for the

sample means can be bounded in a manner similar to the proof of theorem 4.3.1 as

P (ζ2s0 > Θ1) ≤ e−C1n

where C1 ∼ O
(

(Θ1−δ2s0 )2

kdσ2(1+δ2s0 )

)
. The probability of the error being too large can be

bounded in a similar fashion by using Hoeffding’s inequality as

P (‖ε‖2 > ξ) = P (
k∑
j=1

ε2j > ξ2)

≤
k∑
j=1

P (ε2j >
ξ2

k
)

=
k∑
j=1

P (|εj| >
ξ√
k

)

≤
k∑
j=1

2 e−nξ
2/2ρ2k

= 2k e−nξ
2/2ρ2k

where the first inequality is by union bound and the second inequality is due

to Hoeffding’s inequality.
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Therefore the probability of recovery within O(ξ) is bounded below by

1− P (ζ2s0 > Θ1)− P (‖ε‖2 > ξ) = 1− e−C1n − e−C2n

where C1 ∼ O
(

(Θ1−δ2s0 )2

kdσ2(1+δ2s0 )

)
and C2 ∼ O

(
ξ2

ρ2k

)
As mentioned earlier, there are multiple other approaches for special cases and

using alternative conditions for successful recovery of sparse or nearly sparse vectors

from under-determined linear systems, see for instance Candes & Tao (2007), Candes

& Plan (2011), Cai et al. (2010b), Cai et al. (2010a), Cai et al. (2009), etc. The

analysis with alternative assumptions follows along the same lines as that presented

in our work.

A.2.3 Proof of Theorem 4.3.3

Proof. Note that the observations where the target mean is estimated from ag-

gregated data as Ŷ∆ = Ŷn + h∆ can be considered noisy observations of the type

M̂nβ0 = υ∆ − h∆. Therefore, using Theorem 2.2, recovery of β0 within an O(ξ∆)

distance is possible if the restricted isometry constants for M̂n satisfy ζ2s0 < Θ1 and

the the error term h∆ is bounded as ‖h∆‖2 < ξ∆. The probability of the restricted

isometry hypothesis being violated is

P (ζ2s0 > Θ1) ≤ e−C1n

where C1 ∼ O
(

(Θ1−δ2s0 )2

kdσ2(1+δ2s0 )

)
. This part is exactly identical to the proof of Theorem

4.3.2.
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The bound on the error in estimation of target means can be done in a de-

terministic manner as follows.

The mean estimation procedure from the histogram is exact if the targets

in each bin are distributed symmetrically around the mid point of each bin. Note

that since each target is at a maximum distance of ∆
2

from the mid point of their

corresponding bin, by setting every target to the mid point of the bin we incur

at most an error of ∆
2

for each target. Therefore, the maximum possible error in

estimating the sample mean in each group is

|ν̂n − ν̂∆| <
∆

2

And hence, the error term h∆ is bounded in `2 as

‖h∆‖2 <
√
k

∆

2

This is of course a loose bound which assumed a worst-case pathological

condition. Better bounds on the recovery error can be obtained by appropriate

regularity assumptions on the distribution of the targets.

A.3 Higher Order Moments

Consider the τ th order moments under a linear function

ρτ = E[yτ ] = E[(x>β)τ ], τ = 1, 2, 3, · · · (A.4)

If all moments of the covariates are known, that is, {E[Πjx
aj
j ] : aj ∈ Z+,

∑
j aj =

τ} is known, then the right hand side of (A.4) is a scalar valued (shifted) homoge-

neous polynomial function in β of degree τ . Therefore, (A.4) is essentially a set of
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multivariate polynomial equations in β = [β1, β2, · · · , βd]. First consider whether

the problem is well-defined, that is, whether the system of equations (A.4) has a

unique solution. There is a considerable amount of literature in computational alge-

braic geometry that deals with the determination of whether a system of multivariate

polynomial equations has at least one solution or is inconsistent (using, for instance,

techniques and results in Adams & Loustaunau (1994); Ruiz (1985)). In our case,

this question is moot since we assume that the data is generated according to a

linear model and therefore, there exists at least one solution. Unfortunately, testing

for uniqueness of solution is a much harder problem.

As a base case, consider only using the first two moments. This is a widely

applicable case since for many commonly used distribution choices for Px like Mul-

tivariate Gaussian, Poisson, etc. the first two moments completely characterise the

entire distribution.

The equations (A.4) can now be written comprising of a set of linear and a set

of quadratic equations. The linear system of equations involving first order moments

from each population sub-group j ∈ {1, 2, · · · k} is as follows:

E[x>(j)β] = E[y(j)]⇔ µ>j β = νj j = 1, 2, 3, · · · k (A.5)

Similarly, the set of quadratic equations involving second order moments from each

population-subgroup j ∈ {1, 2, · · · k} can be written as follows:

E[β>(xx>(j))β] = E[y2
(j)]⇔ β>Σjβ = σ2

j j = 1, · · · , k (A.6)

where Σj and σ2
j are the covariance of x and variance of y corresponding to the jth

population subgroup.
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Geometrically, (A.5) and (A.6) represent in terms of β a set of k hyperplanes

and a set of k ellipsoids centred at the origin in Rd space. The problem has a unique

solution if the set of hyperplanes and the set of ellipsoids have a single point of

intersection.

Counting the number of points of intersection of polynomials in real space is

a difficult problem in the general case. It is usually studied for the complex space Cd

under the umbrella of enumerative geometry (Katz, 2006). As earlier, if k ≥ d and

under the assumption that at least one solution exists (the system is consistent), the

set of hyperplanes is sufficient to recover the true β0. We would ideally like to see if

knowledge of second order moments can reduce the number of population subgroups

k required for a unique solution, or aids the estimation process in any other way.

Let Σ be some covariance matrix and U∆SU
> be its singular value decompo-

sition, where U is an orthonormal matrix and ∆S = diag(S) is a diagonal matrix of

loadings S = [s1, s2, · · · sd] � 0. Let σ2 ∈ R+ be any positive real value. Then for a

given β to satisfy the second order moment constraint

β>Σβ = σ2 (A.7)

means that the ellipsoid Σ in Rd centred at the origin with axes defined by U and of

size (S, σ2) passes through β.

We now show that in the general case, knowledge about second order moments

do not help.

Proposition A.3.1. Suppose β1 and β2 are two points in Rd such that the origin,

β1 and β2 are not collinear. For any arbitrary σ2 > 0 and any arbitrary choice of
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axes U , the set of loadings S for which both β1 and β2 satisfy equation (A.7) with

Σ = U∆SU
> and ∆S = diag(S) is given by the intersection of a (d− 2)-dimensional

vector space with the positive orthant.

Before we prove this, let us unpack this result. The essential idea is that,

barring non-degenerate cases like S = 0, and for d > 2, a (d− 2) dimensional vector

space intersects the positive orthant in an infinite number of points, assuming they

do intersect. Therefore, for any two points in Rd, there exist an infinite number of

ellipsoids for every given size σ2 and axes U which passes through both the points.

The implications of the above result are the following. Suppose we place

constraints on β to constrain it to some set C. Then if β1 and β2 are any two points

in C, we can easily find any number of arbitrary second order moment conditions

that are satisfied by both β1 and β2. Therefore, estimation with information about

second order moments from k groups for any k <∞ cannot be guaranteed to be any

better than estimation without second order moments in the general case.

Furthermore, since the result holds for arbitrary values of σ2 and U , it also

implies that many types of common assumptions like sparsity or norm constraints on

β, rank constraints on the covariances Σk, etc. are insufficient in general to make the

parameter recovery problem well defined with second order moments alone. Similar

results can potentially be obtained for higher order moments by noting that a set

of higher order polynomial equations can be converted into polynomial equations of

degree τ ≤ 2 by introducing auxiliary variables.

Proof. Let Σ = U∆SU
> where U is a unitary matrix and ∆S = diag(S) = diag(s1, s2, · · · , sd)
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is a diagonal matrix. Let β1,β2 ∈ Rd be any two arbitrary points. Take the pro-

jections of each βi on the axes defined by the jth column uj of U for each j. Let

λj,2 = (β>1 uj)
2 and λj,2 = (β>2 uj)

2 be the corresponding squared projections of the

two points β1 and β2 on each axis uj for j = 1, 2, 3, · · · d.

Concatenate the projections into the matrix Λ = [Λ1; Λ2]> ∈ R2×d where

Λ1 = [λ1,1, λ2,1, · · ·λd,1]> and Λ2 = [λ1,2, λ2,2, · · ·λd,2]>.

It is easy to verify that

β>1 Σβ1 = Λ>1 S

β>2 Σβ2 = Λ>2 S

Therefore, β1 and β2 will both satisfy the second moment equation (A.7) for

any ellipsoid defined by (Σ = U∆SU
>, σ2) if

Λ>S = [σ2;σ2] (A.8)

S � 0 (A.9)

In terms of S, this represents an intersection of a d − 2 dimensional vector

space Λ>S = [σ2;σ2] with the positive orthant S � 0 which is satisfied by an infinite

number of solutions in terms of S.

Note that Λ>S = [σ2;σ2] is inconsistent if β1 and β2 are collinear with the

origin, that is, β1 = ηβ2 for some η with |η| 6= 1. If β1 = ±β2, then if one satisfies

the ellipsoid constraint, the other trivially satisfies it as well.
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Appendix B

Frequency Domain Predictive Modelling with

Spatio-Temporally Aggregated Data: Appendix

B.1 Frequency Domain Formulation

Consider our original loss function

L(β) = E[|x(t)>β − y(t)|2]

As earlier, denote the residue term1 at β as εβ(t) = x(t)>β− y(t), therefore our loss

function can be written as

L(β) = E[εβ(t)2]

Suppose Pεβ(ω) is the power spectral density of the residue term εβ(t). Then, we

have

L(β) = E[εβ(t)2] =

∞∫
−∞

Pεβ(ω)dω (B.1)

As mentioned previously, we assume that Pεβ(ω) decays rapidly with ω and

almost vanishes beyond a certain |ω| > ω0 (see section B.3 for an extended discussion

on this). Therefore, the integral on the right hand side can be approximated by a

1Note that the residue process εβ(t) is equal to the error process ε(t) at β = β∗, where β∗ is
the true parameter
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finite integral as
∞∫

−∞

Pεβ(ω)dω ≈
ω0∫

−ω0

Pεβ(ω)dω

for a suitable ω0.

Next, because we assume that Pεβ(ω) exists finitely for every ω, the integral on

the right hand side above can be approximated by averaging the readings of Pεβ(ω)

over a finite set of frequencies Ω = {ω1, ω2, · · · , ωM} as

ω0∫
−ω0

Pεβ(ω)dω ≈ 1

|Ω|
∑
ω∈Ω

Pεβ(ω)

for a suitable Ω.

Finally, recall the definition of power spectral density

Pεβ(ω) = lim
T↑∞

E


‖

T∫
−T

εβ(t)e−ιωtdt‖2

2T


Again, because Pεβ(ω) is assumed to exist finitely for every ω ∈ Ω, for a

high enough T0, the limit on the right hand side can be replaced by the value of the

function at T = T0

lim
T↑∞

E


‖

T∫
−T

εβ(t)e−ιωtdt‖2

2T

 ≈ 1

2T0

E
[
‖εβ,T0(ω)‖2

]

where εβ,T0(ω) = XT0(ω)β − YT0(ω) is the T0 restricted finite Fourier Trans-

form of the residue at β.
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To summarize, the preceding discussion outlines the path by which our orig-

inal loss function

L(β) = E[|x(t)>β − y(t)|2]

can be substituted by an approximate frequency domain equivalent

L̂(β) =
1

2T0|Ω|
∑
ω∈Ω

E
[
‖XT0(ω)β − YT0(ω)‖2

]
Since, the minimizer of an optimisation problem is invariant to positive scalar

multiplication of the objective function, we use as our estimator

β̂ = arg min
β

∑
ω∈Ω

E
[
‖XT0(ω)β − YT0(ω)‖2

]

B.2 Proofs of Main Results

We shall now make these ideas more concrete. We recall the main aspects of

our setup below.

(i). We work with a parametric linear model, where the target variable y(t) is re-

gressod on predictor variables x(t) via a fixed parameter vector β∗ as

y(t) = x(t)>β∗ + ε(t)

for each t.

The partial Fourier Transforms for our signals are

XT (ω) =

∫ T

−T
x(t)e−ιωtdt

YT (ω) =

∫ T

−T
y(t)e−ιωtdt
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(ii). We assume that each of our signals are weakly stationary stochastic processes

with mean zero, and rapidly decaying autocorrelation function ρ(·)(τ) and finite

variance ρ(·)(0). In particular, this implies that εβ(t) is also centered and weakly

stationary with rapidly decaying autocovariance function

We also assume finite power spectral density for all our signals, that is, we

assume that

Pz(ω) = lim
T↑∞

E

[
‖ZT (ω)‖2

2T

]
(B.2)

= lim
T↑∞

E


‖

T∫
−T

z(t)e−ιωtdt‖2

2T

 (B.3)

=

∞∫
−∞

ρz(τ)e−ιω(τ)dτ (B.4)

is finite for every ω, and finitely integrable over ω ∈ (−∞,∞). It follows from

these assumptions that the PSD will also be finite for the residue process εβ(t).

(iii). By linearity of Fourier transform, we have

YT (ω) = XT (ω)>β + εT (ω)

for any T, ω,β.

(iv). We define the optimal parameter β∗ as the one that minimises the generalisation

error, that is,

β∗ = arg min
β

E
[
|x(t)>β − y(t)|2

]
(B.5)
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We estimate our parameter in the frequency domain instead, as

β̂ = arg min
β

∑
ω∈Ω

E
[
‖X̂T0(ω)>β − ŶT0(ω)‖2

]
for fixed parameters ω0, T0 and a set Ω = {−ω0 < ωi < ω0 : i = 1, 2, · · · |Ω|}

of real valued ”frequencies” sampled uniformly between ω ∈ (−ω0, ω0). Let

|Ω| = D. Also, define

L̂(β) =
1

T0|Ω|
∑
ω∈Ω

E
[
‖X̂T0(ω)>β − ŶT0(ω)‖2

]
We now prove some results that will be necessary in deriving our main theo-

rems.

Lemma B.2.1. There exists an 0 < ξω0 < 1 for every ω0 (conversely, for every

ξω0 ∈ (0, 1), there exists ω0) such that

(1− ξω0)E
[
|x(t)>β − y(t)|2

]
≤

ω0∫
−ω0

Pεβ(ω)dω

≤ E
[
|x(t)>β − y(t)|2

] (B.6)

Proof. We use the following standard result. For any weakly stationary signal z, we

have

E
[
|z(t)|2

]
=

∞∫
−∞

Pz(ω)dω (B.7)

By equation (B.7), we have

E
[
|x(t)>β − y(t)|2

]
= E[|εβ(t)|2] =

∞∫
−∞

Pεβ(ω)dω
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Also, by assumption, Pεβ(ω) is finite for every ω, and finitely integrable over (−∞,∞).

Moreover, by definition of power spectral density, Pεβ(ω) ≥ 0 for each ω. Hence, the

result.

The constant ξω0 depends on the exact functional form of Pεβ , or equivalently,

of ρ. Standard rates can be obtained by using the fact that
Pεβ (ω)

∞∫
−∞

Pεβ (ω)dω
is a valid prob-

ability density function, and using the tail probability results for the corresponding

probability distribution.

For example, if ρ exhibits a Gaussian decay (analogous to normal distribu-

tion), that is, ρ(τ) ∼ exp(−O(τ 2)), then Pεβ also exhibits a Gaussian decay, that

is Pεβ(ω) ∼ exp(−O(ω2)), and therefore, ξω0 ∼ exp(−O(ω2
0)). Similarly, if ρ ex-

hibits power law/ Lorentzian decay (analogous to Cauchy distribution), that is,

ρ(τ) ∼ 1
O(τ2)

, then Pεβ exhibits exponential decay (Laplace distribution), that is

Pεβ(ω) ∼ exp(−O(|ω|)), and therefore ξω0 ∼ exp(−O(|ω0|). Similar arguments can

be made for other decay rates using Fourier duality.

This makes intuitive sense because the more spread out ρ(τ) is, the more

peaky Pεβ(ω) is and the smaller the value of ω0 required. This means that if the

error terms are well-correlated, most of the instantaneous power will be concentrated

within a very small range of frequencies.

Lemma B.2.2. Suppose Ω = {−ω0 < ωi < ω0 : i = 1, 2, · · · |Ω|} is a set of real

valued frequencies sampled uniformly between [−ω0, ω0]. Then, for any ξD ∈ (0, 1),
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with probability at least 1− exp(−O(|Ω|2ξ2
m)) we have

ω0∫
−ω0

Pεβ(ω)dω − ξD ≤
1

|Ω|
∑
ω∈Ω

Pεβ(ω) ≤
ω0∫

−ω0

Pεβ(ω)dω + ξD (B.8)

Proof. This is standard Monte Carlo approximation. In particular, consider ω to

be a random variable distributed uniformly in (−ω0, ω0). Now consider the random

variable ζ(ω) = Pεβ(ω). Then, we have for this random variable,
ω0∫
−ω0

Pεβ(ω)dω =

EU(−ω0,ω0)[ζ(ω)] = E[ζ].

Since Pεβ is finite by our assumption, and ω has a finite support (−ω0, ω0),

we also have that ζ(ω) = Pεβ(ω) has a finite support, and we have our result using

Hoeffding’s inequality (Hoeffding, 1963).

Lemma B.2.3. Let ξT0 ∈ (0, 1). Then, for every ω, there exists a T0(ω) such that

−ξT0 + Pεβ(ω) <
1

2T0(ω)
E
[
‖XT0(ω)>β − YT0(ω)‖2

]
< Pεβ(ω) + ξT0

(B.9)

Proof. Define the partial power spectral density of εβ(t) as

gεβ(T ;ω) = E


‖

T∫
−T

εβ(t)e−ιωtdt‖2

2T


By definition of power spectral density, we have

Pεβ(ω) = lim
T↑∞

E


‖

T∫
−T

εβ(t)e−ιωtdt‖2

2T

 = lim
T↑∞

gεβ(T ;ω)

168



By assumption, the power spectral density is finite and converges for each ω

to Pεβ(ω). Therefore, for every ω, we have that gεβ(T ;ω) must be a Cauchy sequence

with respect to T . That is, for every ω ∈ (−ω0, ω0), and every ξT0 ∈ (0, 1), ∃T0(ω)

such that for all T > T0(ω),

−ξT0 + Pεβ(ω) < gεβ(T ;ω) < Pεβ(ω) + ξT0

Remark: The exact value of T0 does not contribute to computation time or

space complexity, etc. beyond the computation of the respective Fourier Transforms,

and can be chosen as large as required without any additional expenditure in the

algorithm. In fact, the optimisation step itself does not depend on T0, therefore by

taking a large enough T0, we can push ξT0 to as small as required.

B.2.1 Proof of Theorem 5.3.1

We are now in a position to prove our first main result.

Proof: For any ξT0 , there always exists a T0 that is the maximum T0(ω) over all

ω ∈ (−ω0, ω0) such that Lemma 3 is satisfied, i.e.,

T0 = min T

s.t. |gεβ(T ′;ω)− Pεβ(ω)| < ξT0

∀T ′ > T, ∀ω ∈ (−ω0, ω0)
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Combining Lemmata B.2.1, B.2.2 and B.2.3 we have, for every ξT0 , ξD, ξω0 ∈

(0, 1), there exist T0, ω0 such that for some set Ω = {−ω0 < ωi < ω0 : i =

1, 2, · · · |Ω|} sampled uniformly between (−ω0, ω0), we have with probability at least

1− exp(−O(|Ω|2ξ2
m))

− ξT0 − ξD + (1− ξω0)E
[
|x(t)>β − y(t)|2

]
≤ 1

2|Ω|T0

∑
ω∈Ω

E
[
‖XT0(ω)>β − YT0(ω)‖2

]
≤ E

[
|x(t)>β − y(t)|2

]
+ ξD + ξT0

(B.10)

In other words,

− ξT0 − ξD + (1− ξω0)L(β) ≤ L̂(β;ω0, T0,Ω) ≤ L(β) + ξD + ξT0 (B.11)

With some algebra, we have,

L(β̂) <

(
1

1− ξω0

)
L̂(β;ω0, T0,Ω) +

1

1− ξω0

(ξD + ξT0)

<

(
1

1− ξω0

)
L̂(β∗;ω0, T0,Ω) +

1

1− ξω0

(ξD + ξT0)

<

(
1

1− ξω0

)
(L(β∗) + ξD + ξT0) +

1

1− ξω0

(ξD + ξT0)

<

(
1

1− ξω0

)
L(β∗) +

2

1− ξω0

(ξD + ξT0)

where the first inequality is due to eq. (B.11), the second by definition of β∗

and β̂,and the final two by eq. (B.11). Therefore, we have
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E
[
|x(t)>β̂ − y(t)|2

]
<

(
1

1− ξω0

)
E
[
|x(t)>β∗ − y(t)|2

]
+

(
2

1− ξω0

)
(ξD + ξT0)

(B.12)

Choosing T0, ω0 and |Ω| = D such that ξ1 =
ξω0

1−ξω0
, ξ2 = 2(ξD + ξT0) completes

the proof.

�

B.2.2 Proof of Theorem 5.3.2

Note that a T0-restricted finite Fourier Transform for a signal z(t) is exactly

identical to the full Fourier Transform of a T0-restricted time-limited signal zT0(t) =

z(t)I{|t| < T0}. Therefore, all the exposition in section 5.3.1 in Chapter 5 still

hold. In particular, frequency domain representation for aggregated data still follows

equation 5.12.

Proof: We require a few modifications to our lemmata to derive the proof of The-

orem 5.3.2. In the subsequent analysis, all Fourier Transforms should be assumed to

be finite Fourier Transforms, but we omit the T superscript for notational succinct-

ness.2 We also assume that for every ω ∈ Ω below, we have |sin(ω)| > τ for some

τ > 0. This will not affect our algorithm because for small enough τ , as long as ω0

2We also omit subscripts from the sinc function notation in the interest of succinctness, they
will be clear from context.
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is small enough in comparison to 2π
T

, the probability of sampling ω which violates

this assumption is vanishingly small. In particular, this will be true for ω0 � ωs/2

where ωs = 2π
Ts

with Ts = max{Ty, T1, T2, · · ·Td}.

Denote the reconstructed Fourier Transforms as

X̂i(ω) =
X i(ω)

U(ω)
, Ŷ (ω) =

Y (ω)

U(ω)

Let ωy = 2π
Ty

and ωi = 2π
Ti

. We have

X̂i(ω) = Xi(ω) + ΛXi(ω|ωi) (B.13)

Ŷ (ω) = Y (ω) + ΛY (ω|ωy) (B.14)

where, using the notation of section 5.3.1 in Chapter 5,

ΛXi(ω|ωi) =
1

Ti

∑
k∈Z\{0}

Xi(ω − kωi)
U(ω − kωi)

U(ω)
(B.15)

ΛY (ω|ωy) =
1

Ty

∑
k∈Z\{0}

Y (ω − kωy)
U(ω − kωy)

U(ω)
(B.16)

Let x̂(t), ŷ(t) and λi(t), λy(t) be the corresponding time domain signals. Use

the following notation

εβ(t) = x(t)β − y(t) (B.17)

ε̂β(t) = x̂(t)β − ŷ(t) (B.18)

ελ,β(t) = λx(t)β − λy(t) (B.19)
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Clearly, ε̂β(t) = εβ(t) + ελ,β(t). Denote the corresponding power spectral

densities as P̂ε̂β , Pεβ , Pελ,β . We now show the following result

Lemma B.2.4. Suppose the power spectral densities of x(t), y(t) are finite for every

ω ∈ (−ω0, ω0), and decay rapidly at a sub-Gaussian rate e−O((ω−ω0)2) beyond |ω| > ω0.

Then, we have, for any ω ∈ (−ω0, ω0)

P̂ε̂β(ω)− e−O((ωs−2ω0)2) ≤ Pεβ(ω) ≤ P̂ε̂β(ω) + e−O((ωs−2ω0)2) (B.20)

where ωs = 2π
Ts

with Ts = max{Ty, T1, T2, · · ·Td}.

Proof. First, note that as a result of our assumptions, the power spectral densities

P̂ε̂β , Pεβ , Pελ,β are also finite for every ω ∈ (−ω0, ω0), and decays rapidly at a sub-

Gaussian rate e−O(ω−ω0)2 beyond |ω| > ω0. Suppose P̂ε̂β , Pεβ , Pελ,β < γ2 for some

finite γ > 0.

The proof of this result requires two steps. First, suppose g(t), h(t) are any

two signals with corresponding (finite) power spectral densities Pg, Ph. Then, we

have

Pg+h ≤ Pg + Ph + 2
√
PgPh (B.21)

The proof of this is easy, and proceeds by simply expanding the expression for

power spectral density and using standard results from real analysis and probability
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theory.

Pg+h = lim
T↑∞

1

T
E
[
|GT (ω) +HT (ω)|2

]
≤ lim

T↑∞

1

T
E
[
|GT (ω)|2 + |HT (ω)|2 + 2|GT (ω)HT (ω)|

]
(Triangle Inequality)

≤ lim
T↑∞

1

T

[
E|GT (ω)|2 + E|HT (ω)|2

]
+ lim

T↑∞

2

T

[√
E[|GT (ω)HT (ω)|2]

]
(Jensen’s Ineq.)

≤ lim
T↑∞

1

T
E|GT (ω)|2 + lim

T↑∞

1

T
E||HT (ω)|2

+ 2

√
lim
T↑∞

1

T
E[|GT (ω)|2 lim

T↑∞

1

T
E|HT (ω)|2]

(Cauchy-Schwartz, limit theorems)

= Pg + Ph + 2
√
PgPh

Therefore, using this result, the definitions of ε̂β(t), εβ(t), ελ,β(t) and the fact

that P−z = Pz for any signal z, we have,

P̂ε̂β(ω)−
(
Pελ,β(ω) + 2γ

√
Pελ,β(ω)

)
≤ Pεβ(ω)

≤ P̂ε̂β(ω) +
(
Pελ,β(ω) + 2γ

√
Pελ,β(ω)

) (B.22)

We can easily extend equation (B.21) to the following standard result. Sup-

pose zi(t) : i = 1, 2, · · · are an arbitrary set of signals. Then,

PΣizi ≤

(∑
i

√
Pzi

)2

(B.23)

174



This result works for infinite sums provided the right hand side exists finitely.

The proof of this also proceeds by expanding the expression for power spectral den-

sity, and using standard limit theorems.

We shall use this to show that Pελ,β(ω) ∼ e−O(ωs−2ω0)2 . Define the following

quantities

ΛXi,k(ω|ωi) =
1

Ti
Xi(ω − kωi)

U(ω − kωi)
U(ω)

ΛY,k(ω|ωy) =
1

Ty
Y (ω − kωy)

U(ω − kωy)
U(ω)

Define λxi,k(t) = F−1ΛXi,k, λy,k(t) = F−1ΛY,k. Clearly,

ΛXi(ω|ωi) =
∑

k∈Z\{0}

ΛXi,k(ω|ωi) (B.24)

ΛY (ω|ωy) =
∑

k∈Z\{0}

ΛY,k(ω|ωy) (B.25)

λi(t) =
∑

k∈Z\{0}

λxi,k(t) (B.26)

λy(t) =
∑

k∈Z\{0}

λy,k(t) (B.27)

We note that for any signal z(t), if Pz(ω) ∼ e−O(ω2) and τ(ω) is a strictly

bounded function of ω, then for λz(t) = F−1Z(ω)τ(ω), we have Pλ(ω) ∼ e−O(ω2).

By assumption, Pxi(ω), Py(ω) ∼ e−O(ω−ω0)2 and for the values of ω we use

U(ω−kωy)

U(ω)
is strictly bounded, therefore, we can show that Pλxi,k(ω), Pλy,k(ω) ∼ e−O(ω−ω0−kωy)2

We have, λi(t) =
∑

k λxi,k(t) and λy(t) =
∑

k λy,k(t). Therefore, we have by

equation B.23,
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Pλi(ω) =

 ∑
k∈Z\{0}

√
Pλxi,k


= 2

(
∞∑
k=1

√
Pλxi,−k

)
by symmetry around 0

= 2
∞∑
k=1

e−O(kωy+ω−ω0)2

∼ e−O(ωi−ω0+ω)2

Similarly, Pλy(ω) ∼ e−O(ωy−ω0+ω)2 . The final step uses standard approxi-

mation techniques exploiting the fact that
∑

n f(n) ∼ Θ(
∫
x
f(x)dx) for bounded,

finite, monotonic functions f , and noting that e−O(kωy+ω−ω0)2 has Gaussian decay

in terms of k, and the area under Gaussian functions over a subset of the positive

real line is given by the complementary error function erfc(·). We also use the fact

(Chang et al., 2011) that the complementary error function has a Gaussian decay

erfc(x) ∼ e−O(x2).

If ωs = min{ωy, ω1, ω2, · · · , ωd}, and for ω ∈ (−ω0, ω0), we have in terms of

ωs the fact that e−O(ω−ω0−ωy)2 < e−O(ωs−2ω0)2 . For ωs > 2ω0, these approximations

can be written more succinctly as Pλi(ω), Pλy(ω) ∼ e−O(ωs−2ω0)2 .

Finally, we note that by definition and using (B.23), we have Pελ,β(ω) ≤

(βi
∑d

i=1

√
Pλi(ω)+

√
Pλy(ω))2. For fixed d and since by assumption |β| is bounded,

we have Pελ,β(ω) ∼ e−O(ωs−2ω0)2 and therefore,
(
Pελ,β(ω) + 2γ

√
Pελ,β(ω)

)
∼ e−O(ωs−2ω0)2 .

This completes the proof for Lemma B.2.4.
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The final piece of the proof is to approximate E‖X̂T0(ω) − ŶT0(ω)‖2. By as-

sumption, the individual processes at each location is strictly sub-Gaussian (Buldygin

& Kozachenko, 2000; Mendelson, 2011). Simply put, this means that for each signal

z(t) at each time t, the logarithm of the moment generating function is quadratically

bounded

∀b > 0, lnE[eb(z(t)−µ)] <
b2σ2

2

for some constant σ, where µ = E[z(t)].

Since by assumption our random processes are bounded and almost surely

finite, it can be shown by using results from calculus and probability theory that fi-

nite aggregation and Finite Fourier Transforms preserve sub-Gaussian property being

linear operations3. In particular, note that most of our Fourier Transform compu-

tations can be estimated by discrete sums using the DTFT-DFT dual relationship,

and linear sums preserve the sub-Gaussian property.

Now, we have that by using Hoeffding’s inequality on sub-Gaussian random

variables (Georgiou & Kyriakakis, 2006; Hsu et al., 2012), we can show that for

independent observations {(X̂j(ω), Ŷ j(ω)) : j = 1, 2, · · ·N} from N locations, for

3An easy way to prove it, for example, would be to represent integration as the limit of a
Riemann sum using definition from first principles, and to use the bounded convergence theorem
and continuity of the exponentiation operator with standard limit theorems
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any small ξ, we have with probability 1− exp(−O(N2ξ2
3)),

E‖X̂T0(ω)β − ŶT0(ω)‖2 − ξ (B.28)

<
1

N

∑
j∈[N ]

‖X̂j
T0

(ω)>β − Ŷ j
T0

(ω)‖2 (B.29)

<E‖X̂T0(ω)β − ŶT0(ω)‖2 + ξ (B.30)

Choose ξ such that ξ3 = (1 + 1
T0

)ξ. Theorem 5.3.2 now follows in a manner

exactly identical to the proof of Theorem 5.3.1, with the addition of two extra steps

that incorporates Lemma B.2.4 and equation B.28. �

Finally we note that Theorem 5.3.2 is only one of many possible results that

can be obtained for estimation using our techniques. In particular, usage of different

assumptions on the data distribution, and different decay rates on the power spectral

densities can be used to derive alternative guarantees.

The proofs for results in the multidimensional case are exactly identical, ex-

cept for the size of the sampled frequency set |Ω| = D. As mentioned in chapter 5, D

can grow exponentially in the ambient dimensionality p of the interaction space Rp.

This is because the sampled frequencies are expected to cover a certain volume, and

volume grows exponentially with dimensionality. However, in most real life cases, p

will be very small (for example p ≤ 4 for spatio-temporal applications), hence the

increase in required size is in and of itself no major impediment in application of our

algorithmic framework.
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B.3 Discussion: Decay Rates

Throughout this dissertation, we assume that the power spectral density and

autocovariance function for every signal of interest exists finitely for each ω. We

further assume that the autocovariance function decays rapidly with lag for all pro-

cesses involved in our analysis. In essence this means that the value of the time series

at any given point is highly correlated with values at points close to it in time, but

the correlation decreases rapidly with values farther away in time.

In particular, we assume that ρ(·)(·) is a Schwartz function (Terzioğlu, 1969),

that is ρ(·) and all its derivatives decay at least as fast as any inverse polynomial.

That is, ∀α, β ∈ Zn+ we have

|ζα∂
βρ(ζ)

∂ζn
| → 0 as |ζ| → ∞

Examples of Schwartz functions are exponential functions like e−aζ
2

for a > 0,

or any polynomial ℘(ζ) multiplied with an exponential function like ℘(ζ)e−aζ
2
, or

any smooth domain-restricted function f(ζ) which is 0 outside of a bounded compact

subset ζ ∈ = ⊂ Rn (e.g. time limited signals).

A key property of Schwartz functions is that the Fourier Transform of a

Schwartz function is itself a Schwartz function (Gröchenig & Zimmermann, 2001;

Strichartz, 2003). Therefore, if we assume that the covariance functions ρ(·)(τ) de-

cays rapidly with τ for each of our signals, then their corresponding power spectral

densities P(·)(ω) will decay rapidly with ω, since P = Fρ. Therefore, most of the

power for our signals will be concentrated around ω = 0.
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As seen earlier, the decay rates of the power spectral density and autocovari-

ance function complement each other- e.g., if ρ exhibits a Gaussian decay, then Pεβ

also exhibits a Gaussian decay. Similarly, if ρ exhibits power law or Lorentzian decay,

then Pεβ exhibits exponential decay. The exact decay rates involved will vary on a

case to case basis, but in essence, this means that we only need to care about a small

set of frequencies around 0 to describe the signal up to a reasonable approximation.

We note that unlike traditional signal processing applications, we do not con-

sider a flat power spectral density (e.g. white noise) for our noise process. This

is because traditional signal processing applications assume band-limited signals of

interest. Properties of the noise process outside the band are irrelevant since out-

puts are going to be filtered regardless, and analysis only needs to focus on effects

of additive noise within the frequency band of interest. In our case, we can make no

such assumption– signals need not be bandlimited and therefore we have to consider

effects of noise throught the entire spectrum4.

4Note that a true white noise process is unrealistic because it implies infinite variance for the
noise process which renders any attempt at parameter learning futile.
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Appendix C

Aggregation Paradigms and Learning with

Sensitive Data: Appendix

C.1 Proof of Proposition 6.3.1

Proof. Let p̂ be the probability of error of our algorithm (call it A on a randomly

drawn datapoint. Let λ be the probability of error on the same data point of our

baseline algorithm (call it B). Then, the probability % that our algorithm does at

least as well as the baseline algorithm on that datapoint is:

% = P (A is correct) + P (Both A and B are incorrect)

= 1− p̂+ p̂λ

since our algorithm is trained

independent of the baseline

= 1− p̂(1− λ)

Therefore, the probability that our algorithm A does worse than the baseline

is at most p̂(1− λ).

Now, all we need to do is quantify p̂ in terms of the number of learners M

and the probability of error or misclassification probability p of each learner. Recall
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that we use the median prediction on any data point for our final class estimate.

Therefore, with M learners, the final prediction will be worse than the baseline

algorithm if and only if at least M
2

of the learners do worse than the baseline.

Note that each learner is trained using a randomly selected sample, and each

such sample is independently selected and is of fixed size. Therefore, the prediction of

each sample can be seen as an independent Bernoulli(p) random variable. Therefore,

our final misclassification probability is the following:

P (Error) =
∑
k≥M

2

(
M

k

)
pk(1− p)M−k (C.1)

= (1− p)M
∑
k≥M

2

(
M

k

)(
p

1− p

)k
(C.2)

Let β = p
1−p .

The above probability can be approximated using Stirling’s Approximation

for binomial coefficients. Recall that using Stirling’s Approximation,
(
M
k

)
can be

written as

log(

(
M

k

)
) ≈ MH(

k

M
)−O(log(M)) +O(

1

M
)

where H(α) = −αlog2(α)−(1−α)log2(1−α) for any α ∈ (0, 1) is the Binary Entropy

function in nats.

Since for H(·) ≤ κ = log2 ≈ 0.693, we have:

log(

(
M

k

)
) ≤ κM −O(log(M)) +O(

1

M
)
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Let β = p
1−p , and γ = exp

(
κ−O( log(M)

M
) +O( 1

M2 )
)

Therefore, we have:

P (Error) ≤ γM(1− p)M
∑
k≥M

2

βk

= γM(1− p)M 1

1− β
βM/2

(
1− βM/2

)
Since by assumption, p < 0.5, we have β < 1, and therefore, the error proba-

bility P (Error) is bounded above by as

1− p
1− 2p

[
(1− p)p exp

(
2κ−O(

log(M)

M
) +O(

1

M2
)

)]M/2

This completes the proof.

C.2 Proof of Proposition 6.3.2

Claim: If g−1
φ (equivalently gφ) is a linear function1, θ̂ is an unbiased esti-

mator of θ∗

1gaussian, exponential, pareto, chi-squared, etc.
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Proof. Omitting the subscript T for succinctness:

E[θ̂T ] = E[(XX>)−1Xg−1
φ (y)]

= E[(XX>)−1XE[g−1
φ (y)|X]]

= E[(XX>)−1Xg−1
φ (E[y|X])]

since gφ is linear

= E[(XX>)−1Xg−1
φ (gφ(X>θ∗))]

by definition of GLMs

= E[(XX>)−1XX>θ∗]

= θ∗
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