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Laurent Mathevet

My dissertation studies the optimal design of institutions and information

structures for different objectives of a designer or a social planner. The questions

addressed are interesting both from a theoretical point of view, and in terms of their

real-life applications.

The first chapter of the dissertation focuses on supermodular mechanism de-

sign in environments with arbitrary finite type spaces and interdependent valuations.

In these environments, the designer may have to use Bayesian equilibrium as a so-

lution concept, because ex post implementation may not be possible. We propose

direct Bayesian mechanisms that are robust to certain forms of bounded rationality

while controlling for equilibrium multiplicity. In quasi-linear environments with in-

formational and allocative externalities, we show that any Bayesian mechanism that

implements a social choice function can be converted into a supermodular mechanism

that also implements the original decision rule. The proposed supermodular mecha-

nism can be chosen in a way that minimizes the size of the equilibrium set, and we

provide two sets of sufficient conditions to this effect: for general decision rules and

for decision rules that satisfy a certain requirement. This is followed by conditions

for supermodular implementation in unique equilibrium.
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The second chapter looks at the incentives of a revenue-maximizing seller

(designer) who discloses information to a number of interacting bidders (agents). In

particular, the designer chooses the level of precision with which agents can infer the

quality of a common-value object from their privately observed signals. We restrict

attention to the second-price sealed-bid auction format. If the seller has perfect

commitment power and can choose the precision level before observing the quality

of the object, in the presence of any small cost to precision it is ex ante optimal for

her to choose completely uninformative signals. For the case when the seller chooses

the precision level after observing the quality of the object, we characterize pooling,

partial pooling, and separating equilibria. We show that in this setting the cost

associated with precision can be viewed as a form of commitment device: if costs are

too low, the best pooling equilibrium ceases to exist as the high type seller is too

tempted to separate. Thus, the seller ends up with a lower ex ante expected payoff

than in the case when cost parameters are above a certain threshold.

The third chapter of this dissertation studies the optimal choice of information

structure from the perspective of a designer maximizing a certain objective function.

Generally speaking, there are two ways of creating incentives for interacting agents

to behave in a desired way. One is by providing appropriate payoff incentives, which

is the subject of mechanism design. The other is by choosing the information that

agents observe, which we refer to as information design. We consider a model of sym-

metric information where a designer chooses and announces the information structure

about a payoff relevant state. The interacting agents observe the signal realizations,

update their beliefs, and take actions which affect the welfare of both the designer

and the agents. We characterize the general finite approach to deriving the optimal

information structure — the one that maximizes the designer’s ex ante expected util-

ity subject to agents playing a Bayes Nash equilibrium. We then apply the general
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approach to a symmetric two state, two agent, and two actions environment in a

parameterized underlying game and fully characterize the optimal information struc-

ture. It is never strictly optimal for the designer to use conditionally independent

private signals. The optimal information structure may be a public signal, or may

consist of correlated private signals. Finally, we examine how changes in the un-

derlying game affect the designer’s maximum payoff. This exercise provides a joint

mechanism/information design perspective.
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Chapter 1

Finite Supermodular Design with Interdependent

Valuations

1.1 Introduction

This paper studies supermodular mechanism design in environments with in-

terdependent valuations and arbitrary (in particular, multidimensional) finite type

spaces.1 This approach was introduced by Mathevet [45] in differentiable quasilinear

environments with private values and one-dimensional types.2 The main motivation

is to design direct mechanisms that are robust to certain forms of bounded rationality

while controlling for equilibrium multiplicity. It is important to extend supermodu-

lar mechanism design to environments with informational and allocative externalities

and multidimensional types for at least two reasons. First, these environments cap-

ture many realistic situations. Second, it is often impossible to use dominant strategy

or ex-post implementation in these settings (see Jehiel et al. [38] and Section 1.2),

1Substantial portions of this chapter have been published in an article coauthored by Laurent
Mathevet and Ina Taneva: “Finite Supermodular Design with Interdependent Valuations”, Games
and Economic Behavior 82 (2013), 327-349. The part of the work conducted by the present author
cuts across all aspects and portions of the paper, which may be summarized as follows. The idea
of supermodular mechanism design is due to Mathevet. The current author contributed the simple
motivating example, which exemplifies the impossibility of ex post implementation and the virtues
of supermodular implementation in the context of interdependent valuations and multidimensional
types. The authors split, more or less equally, the ideas on how to approach the mathematical
analysis and proofs of the results.

2Chen [14] was the first to propose a supermodular mechanism (to implement the Lindahl corre-
spondence).
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and thus the designer may resort to Bayesian equilibrium as a solution concept. It

becomes useful to have a simple method for improving the behavioral robustness of

Bayesian mechanisms.

In this paper, we are concerned with the design of supermodular mechanisms

whose equilibrium set is of minimal size. We call this minimal supermodular imple-

mentation. Supermodular mechanism design aims to induce the right incentives so

that agents play a supermodular game. Supermodular games are games where players

have monotone best responses, i.e. each player wants to play a “larger” strategy if

others do so as well. On the theoretical front, the reasons for using supermodular

mechanisms stem from Milgrom and Roberts [48], [49] and Vives [57]: supermodular

games have extremal equilibria, a smallest and a largest one, that enclose all the

iteratively undominated strategies and all the limit points of all adaptive and so-

phisticated learning dynamics. Therefore, supermodular games are robust to a wide

range of behaviors, including boundedly rational behaviors. In particular, if the de-

signer had the opportunity to use her mechanism repeatedly, then adaptive learners

(Milgrom and Roberts [48]) would end up within the interval prediction, which is

the interval between the extremal equilibria. Therefore, the objective of minimiz-

ing the size of the interval prediction has several virtues. It minimizes the multiple

equilibrium problem, since all equilibria are contained in it.3 It also guarantees a

more accurate convergence of the learning dynamics. Ideally, this interval reduces to

a single point in certain situations (see Section 1.2), thereby solving the multiplicity

issue and ensuring convergence of all dynamics.

Supermodular mechanisms have other attractive theoretical properties. Not

3If the outcome function of the mechanism is continuous and if the interval prediction is tight,
then all equilibrium outcomes are close, so that the output of the mechanism must be close to the
socially desirable objective.
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only are their mixed strategy equilibria unstable (Echenique and Edlin [25]), which

justifies ruling them out of the analysis, but many pure equilibria are stable, such

as the extremal equilibria (Echenique [26]). Thus, a perturbation should not desta-

bilize permanently a socially desirable alternative implemented via a supermodular

mechanism (provided the underlying equilibrium was stable).

The robustness properties of supermodular mechanisms have been corrobo-

rated by several experiments. Chen and Gazzale [17] run experiments on a game for

which they control the amount of supermodularity. They show how convergence in

that game is significantly better when it is supermodular. Healy [33] tests five public

goods mechanisms and he observes that subjects learn to play the equilibrium only in

those mechanisms that induce a supermodular game. Other experiments (e.g. Chen

and Plott [15], and Chen and Tang [16]) provide results emphasizing the importance

of dynamic convergence in the context of implementation. Most of these experiments

demonstrate that convergence to an equilibrium is not a trivial issue.

In this paper, we generalize supermodular mechanism design to environments

with allocative externalities, interdependent valuations (i.e. informational external-

ities) and arbitrary (finite) type spaces. There are two important reasons for doing

so.

Firstly, it allows us to cover mechanism design problems of interest. The

importance of allocative externalities is well documented in the literature. Jehiel

and Moldovanu [36] use patent licensing in an oligopolistic market as an example.

Informational externalities are also a realistic assumption, proved to be interestingly

challenging by many papers (Cremer and McLean [21], Maskin [44], Dasgupta and

Maskin [23], Perry and Reny [52], Chung and Ely [19], Bergemann and Morris [4],

etc). Finally, it is often natural to interpret information as a multidimensional type

in many design problems. Consider, for example, oil companies bidding to obtain a

3



drilling permit. Their private information is modeled as a multidimensional signal

(e.g., expected amount of oil in the oil field, proximity to other reserves, etc).

Secondly, it is difficult to use dominant strategy or ex-post implementation

in those environments — with allocative externalities, interdependent valuations and

multidimensional types — and thus behaviorally-robust Bayesian mechanisms be-

come especially appealing. In quasilinear environments with interdependent valua-

tions and multidimensional types, many impossibility results limit the set of available

solution concepts. The conclusions are rather pessimistic about dominant strategy

equilibrium and ex-post equilibrium. Williams and Radner [59] show that efficient

dominant strategy implementation is generally not possible when agents have inter-

dependent valuations. Jehiel et al. [38] prove a strong impossibility result: when

types are multidimensional and valuations are interdependent, only trivial decision

rules can generically be implemented in ex-post equilibrium. If the designer wants

to implement a meaningful social choice function, not even necessarily efficient, she

may have to use Bayesian equilibrium as a solution concept (see Section 1.2). Even

then, impossibility results exist. Jehiel and Moldovanu [37] show that it is difficult

to reconcile Bayesian incentive compatibility with some efficiency constraint. These

negative results indicate that Bayesian equilibrium may often be a natural candidate

as a solution concept. However, playing a Bayesian equilibrium requires more, in

general, on the part of the agents. Agents have to be Bayesian rational, and strong

knowledge assumptions about the information structure and the rationality must hold

(Brandenburger and Dekel [11]). For example, Bayesian equilibrium calls for correct

predictions of opponents’ play to determine one’s own strategy. In this context, the

ability to construct supermodular Bayesian mechanisms is attractive, because even-

tual play of some equilibrium can be achieved by unsophisticated agents who follow

simple behavioral rules.
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Our paper provides methods for converting any truthful Bayesian mechanism

into a (truthful) supermodular mechanism whose equilibrium set is of minimal size.

The idea is to create complementarities between agents’ announcements by augment-

ing the original transfer scheme with a function. This function vanishes in expectation

and therefore preserves incentive compatibility. Although there exist many ways in

which a mechanism can be transformed into a supermodular mechanism, we derive

the one that most adequately addresses the multiple equilibrium problem. To this

purpose, we add just enough strategic complementarities to ensure that a supermod-

ular game is induced, but not in any excess of that level.

We present two sets of results for minimal supermodular implementation. In

both instances, “best” is used to designate the mechanism with the smallest interval

prediction. The first result shows that if a social choice function is implementable,

then its decision rule can be implemented by the best supermodular mechanism among

all the supermodular mechanisms whose transfers are in a certain class. No additional

condition is required. In particular, this result holds for all (implementable) decision

rules and all valuation functions. The result also provides an explicit transfer scheme.

The second result characterizes the overall best supermodular mechanism

among all possible supermodular mechanisms or transfers: if a social choice func-

tion is implementable, then its decision rule can be implemented by the (overall) best

supermodular mechanism if and only if some (explicitly stated) finite system of linear

equations admits a solution. This result determines the existence and the numerical

values of the minimally supermodular transfers. As a complementary result, we pro-

vide a sufficient condition, order reducibility, under which existence of a solution is

guaranteed. Although the former result reaches a weaker conclusion than the latter,

it applies under very general conditions.

Finally, we provide conditions that ensure that truthtelling is the (essentially)
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unique equilibrium. For fine type spaces, this guarantees stability: all learning dy-

namics converge to the truthful equilibrium and the game is dominance solvable.

Beyond the generalizations of supermodular mechanism design, this paper pro-

vides new insights into the design of minimally supermodular mechanisms. The use

of finite types clarifies the existence and the construction of these mechanisms. For

example, the fact that minimally supermodular mechanisms are a solution to a sys-

tem of linear equations allows the application of numerical methods for designing

them. Further, this formulation helps clarify what the necessary conditions for the

existence of such transfers might look like. In this regard, we provide a simple suf-

ficient condition under which the system admits a solution; although this condition

is not necessary, it gives valuable information about the type of mechanism design

problems that might cause issues for minimally supermodular implementation.

A number of papers are related to our work. The first paper to present a su-

permodular mechanism was Chen [14]. Mathevet [45] developed supermodular mech-

anism design as a general method under incomplete information. Since his paper is

the closest to ours, our contribution deserves clarification. As already said, our envi-

ronment is more general, due to the interdependent values and the multidimensional

types, but we use a finite setup. In Mathevet [45]’s environment, dominant strategy

implementation is still a powerful tool, while it in our environment it is significantly

less applicable. The present paper also clarifies the construction of minimally super-

modular mechanisms, especially with our reducibility condition and the formulation

as a linear system. Finally, we propose different options for minimal supermodular

design when sufficient conditions fail, while Mathevet [45] does not. In particular,

our first main result always applies. Cabrales and Serrano [13] study implementation

with boundedly rational agents who follow adaptive better response dynamics. This

learning rule excludes learning processes that our mechanisms allow for. Finally, our
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paper is related to the literature on rationalizable implementation (e.g. Abreu and

Matsushima [1], and Bergemann, Morris, and Tercieux [6]), because this solution con-

cept has the potential to imply nice learning properties when a unique equilibrium

is rationalizable. Abreu and Matsushima [1] show that any social choice function

can be virtually implemented in iteratively undominated strategies. Their result is

very powerful but their mechanism remains complex, as the dimension of the mes-

sage space must be arbitrarily large. Experimental evidence does not support this

mechanism (Sefton and Yavas [54]). Instead we look at direct mechanisms and exact

implementation. In general, the concept of rationalizability is such that a strategy

may not be rationalizable, because it is dominated by another dominated strategy,

an argument a la Jackson [35]. For example, in Bergemann, Morris, and Tercieux [6],

the best responses are not well-defined off-equilibrium, and off-equilibrium behaviors

are one of our motivations.

The remainder of the paper is organized as follows. A motivating example is

presented in Section 1.2. Section 1.3 defines the framework of supermodular mech-

anism design. Section 1.4 introduces the notion of minimal implementation and

contains our two main results. Section 1.5 studies supermodular implementation in

unique equilibrium. Concluding remarks appear in Section 1.7. All proofs are rele-

gated to the Appendix.

1.2 Motivating Example

This section illustrates our approach in a simple example. In this example,

the designer would like to make an efficient decision, but this cannot be done in

ex-post equilibrium and, hence, also not in dominant strategies. Thus, the designer

7



may decide to work with Bayesian implementation.4 We show how the designer can

start from any truthful Bayesian mechanism, in particular one with poor stability

properties, and turn it into a (truthful) supermodular mechanism with a unique

equilibrium.

Consider a social planner who has to make a decision between two public

projects, A: improving the roadway or B: building a park. There are two agents (e.g.,

food vendors), 1 and 2, on each side of the road who will be affected by the decision.

Each agent i receives a two-dimensional signal θi = (θAi , θ
B
i ) ∈ {(1, 2), (2, 1)}, where

each dimension represents a projected flow of traffic resulting from the implementation

of the respective project. Types are drawn with equal probabilities: Pr(θ1 = (1, 2)) =

Pr(θ2 = (1, 2)) = .5. Let V g
i (θ) be i’s valuation for project g ∈ {A,B} at θ = (θ1, θ2).

Valuations represent the expected gain for each vendor from a project and are given

in the following matrix (rows represent agent 1):

V (θ) (1, 2) (2, 1)

(1, 2)
V A

1 = 1 V A
2 = 1

V B
1 = 2.5 V B

2 = −1
V A

1 = 2 V A
2 = 0

V B
1 = 1.5 V B

2 = 1

(2, 1)
V A

1 = 2 V A
2 = 0

V B
1 = 1.5 V B

2 = 1
V A

1 = 4 V A
2 = −2

V B
1 = 1 V B

2 = −1.

Agent 1 always interprets the higher flow of traffic as good news in terms of

revenue, and that view is reinforced by agent 2’s signal. That is, 1’s value for project

A (B) increases in the first (second) dimension of her signal and of agent 2’s signal.

From 1’s perspective, there are positive informational externalities coming from agent

2.

4There are many situations in which Bayesian implementation is possible, while ex-post imple-
mentation is not. So, we are not restricting attention to non-generic cases. Bayesian incentive
compatibility (BIC) can be viewed as a weighted average of ex-post incentive constraints. Thus,
some ex-post constraints can be violated while BIC holds, if other ex-post constraints hold with
enough slack.
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Agent 2, on the other hand, considers the first dimension of both signals to

be bad news for project A. In particular, he thinks that the higher the increase

in traffic due to improved roadway, the lower its profits will be, because increased

traffic flow should attract other competitors. That is, 2’s value for A decreases in

the first dimension of his signal and of 1’s signal. As for project B, 2 thinks that it

will be profitable for him only if there are medium levels of traffic, which corresponds

to opposite estimates from 1 and 2, θBi 6= θBj . When both second dimensions are

low, the park should not increase the market size and the profits; the same applies if

both estimates are high, due to (expected) increased competition. Overall, from 2’s

perspective, the informational externalities coming from 1 are ambiguous (they are

negative for project A and ambiguous for B).

The designer’s objective is to choose the efficient project, i.e., the project

which maximizes the sum of valuations for each possible profile of types. Given the

valuations, the efficient decision rule, which the designer would like to implement, is:

x(θ̂) (1, 2) (2, 1)
(1, 2) A B
(2, 1) B A

Denote agent i’s transfers as a function of reported types by:

ti(θ̂) (1, 2) (2, 1)
(1, 2) t1i t2i
(2, 1) t3i t4i

The efficient decision rule is not ex-post incentive compatible.5 To see why, let us

consider the ex-post incentive compatibility conditions for agent 1 when agent 2’s

5Ex-post incentive compatibility requires that for all i and θ, ui(x(θ), θ) ≥ ui(x(θ′i, θ−i), θ) for
all θ′i. This means that if all other agents report truthfully, truthtelling is a best response for each
agent i at every possible realizations of types θ.
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type is θ2 = (1, 2) and is truthfully reported. At type θ1 = (1, 2), ex-post incentive

compatibility for agent 1 requires

1 + t11 ≥ 2.5 + t31.

At type θ1 = (2, 1), ex-post incentive compatibility requires

1.5 + t31 ≥ 2 + t11.

The last two inequalities cannot be jointly satisfied, which proves that the efficient

decision rule is not ex-post implementable. The designer is therefore inclined to work

with Bayesian implementation. We proceed to show that there exist transfers that

implement the efficient decision rule in Bayesian equilibrium.

Bayesian incentive compatibility for agent 1 requires that truthtelling be weakly

preferred to lying when her true type is (1, 2)

.5(1 + t11) + .5(1.5 + t21) ≥ .5(2.5 + t31) + .5(2 + t41)

and when her true type is (2, 1)

.5(1.5 + t31) + .5(4 + t41) ≥ .5(2 + t11) + .5(1 + t21).

Combining these two inequalities, we obtain that for any t1 such that

2.5 ≥ t11 + t21 − t31 − t41 ≥ 2

the efficient decision rule is Bayesian incentive compatible for agent 1. Similarly,

Bayesian incentive compatibility is satisfied for any t2 such that

0 ≥ t12 − t22 + t32 − t42 ≥ −3.

In particular, the designer can choose:
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t1(θ̂) (1, 2) (2, 1)
(1, 2) -5 7
(2, 1) 4.75 -5

t2(θ̂) (1, 2) (2, 1)
(1, 2) 5 -5
(2, 1) -5.5 5

As we will see, the magnitude of these transfers is large enough to offset any con-

sideration about the valuations. Given these transfers, the resulting payoff matrix in

the ex ante Bayesian game is:

EU truthtelling constant (1,2) constant (2,1) always lie
truthtelling 2.43∗; .1∗ 1.25; 0 3.5; -.5 2.31; -.62

constant (1,2) 2.37; .25 -2.75; 4.75∗ 8.62∗; -5 3.5∗; -.5
constant (2,1) 2.37;-.75 6.37∗; -5.5 -2.75; 4.75∗ 1.25; 0

always lie 2.31; -.62 2.37; -0.75 2.37; 0.25∗ 2.44; .12

where row entries and first payoffs correspond to agent 1, while column entries and

second payoffs correspond to agent 2. Best responses are denoted by asterisks. The

game described by this payoff matrix is not (ex ante) dominance solvable. Despite

being the unique equilibrium, truthtelling is unstable; after a small perturbation,

convergence to it fails under various dynamics. The intuition goes as follows. If agent

2 plays the constant announcement (1, 2) irrespective of his true type, then agent 1

will best-respond by announcing (2, 1) regardless of her type. In return, agent 2 will

also announce (2, 1) for every type. Then agent 1 will want to play the constant

announcement (1, 2), followed by a constant announcement of (1, 2) by agent 2.

We are back to the original strategy of agent 2. These transfers give rise to cycling

behaviors and the problem extends beyond best-response dynamics.

To overcome this problem, we propose converting the mechanism into a super-

modular mechanism. The idea is to modify the original transfers in a way that adds

complementarity between agents’ reports. Start from the above transfers ti. Given a

collection of numbers {δi(θ) : θ ∈ Θ}, define

tSMi (θ̂) = δi(θ̂)− Eθ−i [δi(θ̂i, θ−i)] + Eθ−i [ti(θ̂i, θ−i)] (1.1)
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for each agent i. Transfers tSMi satisfy Eθ−i [t
SM
i (θi, θ−i)] = Eθ−i [ti(θi, θ−i)] for all θi,

i.e., these two transfer functions have the same expected value when agents other than

i report their type truthfully. Thus, if agent i finds it optimal to play truthfully under

ti (when others do so), then she also finds it optimal under tSMi . Thus, transfers tSM

elicit truthful revelation for every collection {δi(θ) : θ ∈ Θ}. Choosing this collection

is the next question. In differentiable environments, supermodularity is characterized

by positive cross-partial derivatives (Milgrom and Roberts [48]). If our environment

were differentiable, we would have ∂2tSMi /∂θ̂i∂θ̂j = ∂2δi/∂θ̂i∂θ̂j. That is, δi controls

the supermodularity, which is also true in our environment. In Section 4, we provide

the formula for an appropriate δi. Since an agent’s utility is Vi + tSMi , the formula

essentially adds enough supermodularity to compensate any effects coming from Vi,

but not in any excess. When applied to this example, the formula and (1.1) output

tSM1 (θ̂) (1, 2) (2, 1)
(1, 2) 1 1
(2, 1) -1.625 1.375

tSM2 (θ̂) (1, 2) (2, 1)
(1, 2) -.25 -1
(2, 1) -.25 1

which translates into the ex ante payoff matrix:

EU truthtelling constant (1,2) constant (2,1) always lie
truthtelling 2.44∗; .13∗ 1.06; 0 3.69∗; -.5 2.31; -.63

constant (1,2) 2.38; −.38∗ 3.25∗;-.5 2.63; -1 3.5∗; -1.13
constant (2,1) 2.38; -.13 0; -.25 3.63; .75∗ 1.25; .63

always lie 2.31; -.63 2.19; -.75 2.56; .25∗ 2.44; .13

This payoff matrix describes a supermodular game — assuming (2, 1) > (1, 2) —

in which truthtelling is the unique equilibrium. Supermodularity implies that, for

every true type, each agent wants to make larger announcements (under the assumed

order) if the other agent does so as well. This mechanism has nice properties: iterative

deletion of strictly dominated strategies gives a unique prediction, truthtelling, and

12



all adaptive learning dynamics converge to the truthful equilibrium (wherever they

are initiated) by Milgrom and Roberts [48]. The original instability problem is solved.

In Section 1.8.1 of the Appendix, we present another version of this example

where the designer starts with transfers that create multiple equilibria. In this case,

our transformation technique solves the multiple equilibrium problem, as truthtelling

is the unique equilibrium of our supermodular mechanism.

1.3 Finite Supermodular Design: The Framework

Consider n agents, each endowed with quasilinear preferences over a set of

alternatives. The set of agents will be denoted by N . An alternative is a vector

(x, t) = (x1, . . . , xn, t1, . . . , tn), where xi ∈ Xi and ti ∈ R for all i. In this environment,

xi is interpreted as agent i’s allocation; x ∈ X ≡
∏n

i=1 Xi is the complete allocation

profile; ti is the money transfer to i; and t ∈ Rn is the vector of transfers.

Each agent i has a finite type space Θi with generic element θi. The types

of agents other than i are denoted by θ−i ∈ Θ−i ≡
∏

j 6=i Θj, and θ ∈ Θ ≡
∏

i∈N Θi

denotes a full type profile. There are no restrictions on the nature of the type spaces:

each Θi could be, for example, a subset of R, Rn, or any other finite collection of

elements. Information is incomplete. There is a common prior with probability

mass function φ on Θ known to the mechanism designer. Types are assumed to be

independently distributed, and φ has full support.

A mechanism designer wishes to implement an allocation for each realization

of types. This objective is represented by a decision rule x : Θ 7→ (xi(θ))
n
i=1. To this

end, the designer sets up a transfer scheme ti : Θ → R for each i. A mechanism is

denoted by Γ = ({Θi}, (x, t)). Agents are asked to announce a type, and from the

vector of announced types, an allocation and a transfer accrue to each agent. The
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pair f = (x, t) is called a social choice function. We adopt the conventional notation

where θ̂i is agent i’s announced type, θ̂−i is the vector of announced types of all agents

but i, and θ̂ denotes the announced types of all agents.

Each agent i’s preferences over alternatives are represented by a utility func-

tion ui(x, ti, θ) = Vi(x; θ) + ti, where Vi : X × Θ → R is referred to as i’s valuation.

This formulation allows for allocational externalities, as Vi can depend on the alloca-

tions of agents other than i. It also captures the case of informational externalities

(interdependent valuations) since the valuations may depend on other agents’ types.

Agent i’s utility function at type θ in Γ is uΓ
i (θ̂; θ) = Vi(x(θ̂); θ) + ti(θ̂). A pure strat-

egy for agent i under incomplete information is a function θ̂i : Θi → Θi that maps

true types into announced types. Strategy θ̂i(·) is called a deception. Agent i’s (ex

ante) utility function in Γ is UΓ
i (θ̂i(.), θ̂−i(.)) = Eθ[u

Γ
i (θ̂(θ); θ)].

A partial order ≥ on a set X is a binary relation that satisfies reflexivity,

antisymmetry, and transitivity (see Topkis [56]). The couple (X,≥) is referred to as

a partially ordered set. For x, y ∈ X, if y ≥ x and y 6= x, then we write y > x. A

total order on set X is a binary relation that satisfies comparability, antisymmetry,

and transitivity.6 If ≥ is a total order on X, then (X,≥) is called a totally ordered

set. An interval in (X,≥) is a set of the form [x′, x′′] = {x ∈ X : x′′ ≥ x ≥ x′}.

A total order ≥∗ on set X is called a linear extension of the partial order ≥ if

(i) (X,≥∗) is a totally ordered set and (ii) for every x, y in X, if y ≥ x, then y ≥∗ x.

Elements that are ordered under ≥ remain identically ordered under ≥∗, but ≥∗ also

orders all the elements that are unordered under ≥. By the order-extension principle

(Marczewski [43]), every partial order can be extended to a total order. Therefore,

every partially ordered set admits a linear extension.

6Comparability means that x ≥ y or y ≥ x for all x, y in X. Note that comparability implies
reflexivity; hence, every total order is also a partial order.
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Suppose that (X,≥X) and (Y,≥Y ) are partially ordered sets. A function

h : X × Y → R has increasing (decreasing) differences in (x, y) on X × Y if for all

x′′ ≥X x′ and all y′′ ≥Y y′, h(x′′, y′′)− h(x′, y′′) ≥ (≤)h(x′′, y′)− h(x′, y′). Increasing

(decreasing) differences express the notion of strategic complementarities (substitutes)

when applied to payoff functions.

Take x, x′ in a partially ordered set (X,≥). If x and x′ have a least upper

bound (greatest lower bound) in X, it is referred to as their join (meet) and denoted

by x∨x′ (x∧x′). A lattice is a partially ordered set that contains the join and meet of

every pair of its elements. Given a lattice X, a function h : X → R is supermodular

if h(x) + h(x′) ≤ h(x ∨ x′) + h(x ∧ x′) for all x and x′ in X.

A finite game is a tuple (N, {(Σi,≥i)}, {wi}) where N is a finite set of players;

(Σi,≥i) is a finite partially ordered strategy set for each i; and wi :
∏

i∈N Σi → R is

Player i’s payoff function. In the following definition, the set of strategy profiles of

i’s opponents, denoted Σ−i =
∏

j 6=i Σj, is endowed with the product order induced by

{≥j}j 6=i, according to which σ′−i is weakly larger than σ−i iff σ′j ≥j σj for all j 6= i.

Definition 1. A finite game G = (N, {(Σi,≥i)}, {wi}) is supermodular if for all

i ∈ N , (1) (Σi,≥i) is a lattice, (2) wi has increasing differences in (σi, σ−i) on

(Σi,Σ−i), and (3) wi is supermodular in σi on Σi for each σ−i ∈ Σ−i.

The paper focuses on totally ordered strategy sets. In this case, requirements

(1) and (3) are automatically satisfied and we only need to satisfy (2) to ensure that

the game is supermodular.

We endow agents’ type spaces with ordering relations and use them to define

supermodular implementation. For all i, let (≥1
i ,≥2

i ) be a pair of orders such that ≥1
i

is a total order on Θi and ≥2
i is a total order on Θ−i. Denote by ≥−i the product order
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induced by {≥1
j}j 6=i on Θ−i. A profile of orders {(≥1

i ,≥2
i )} is said to be consistent if

for all i, ≥2
i is a linear extension of ≥−i on Θ−i.

The game induced by mechanism Γ can be formulated at three stages: Ex

ante, interim, and ex-post (complete information). Among these three formulations,

the paper considers supermodularity at the ex-post level, because this is the strongest

requirement. If the ex-post game is supermodular for all possible realizations of types

θ, then the game will be supermodular in its ex ante and interim formulations.

Let G(θ) = (N, {(Θi,≥1
i )}, {uΓ

i (· ; θ)}) denote the game induced ex-post by

mechanism Γ. Let G = (N, {(ΘΘi
i ,≥i)}, {UΓ

i }) be the ex ante Bayesian game induced

by Γ, where ≥i is the pointwise order induced by ≥1
i on ΘΘi

i . The next definition

introduces the main implementation concept in the context of direct mechanisms.

Definition 2. A social choice function f = (x, t) is (truthfully) supermodular im-

plementable if truthtelling, i.e., θ̂i(θi) = θi for all i, is a Bayesian equilibrium of G

and if G(θ) is supermodular for each θ.

1.4 Minimal Supermodular Implementation

In this section, we present two results dealing with minimally supermodular

mechanisms. The main issue with supermodular implementation lies in finding the

appropriate amount of complementarity to add to a mechanism. While complemen-

tarities lead to good dominance and learning properties, via the monotonicity of the

best responses, excessive complementarities can generate multiple equilibria. There-

fore, one negative consequence might be enhancing the “learnability” of undesirable

equilibria. In our model, only the truthful equilibrium outcome is known to be socially

desirable. Hence, adding complementarities can make it easier for agents to learn;

but if this induces multiplicity, they may learn to play an untruthful equilibrium.
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This section is organized as follows. First, we present the foundational results

and concepts behind minimal supermodular implementation. Then we present our

results in separate sections. Our first result is that, for any implementable social

choice function, its decision rule can be minimally supermodular implemented by

transfers within a class. This result holds for all valuation functions. This is a strong

result, conditionally on choosing transfers within the class. Our second result does not

restrict attention to a class of mechanisms or transfers. For any valuation functions,

if a social choice function is implementable, then its decision rule can be minimally

supermodular implemented (among all transfers that induce a supermodular game)

if and only if a finite system of linear equations admits a solution. This solution, if

it exists, is the set of minimally supermodular transfers. As a complementary result,

we provide a sufficient condition, called order reducibility, under which existence of a

solution is guaranteed. Both results provide explicit expressions for the transfers.

1.4.1 Foundations

Mathevet [45] relates the degree of complementarities to the size of the equi-

librium set via the following binary relation.

Definition 3. The binary relation �ID on the space of transfer functions is defined

such that t̃ �ID t if for all i ∈ N and for all θ′′i ≥1
i θ
′
i and θ′′−i ≥−i θ′−i, t̃i(θ′′i , θ′′−i) −

t̃i(θ
′′
i , θ
′
−i)− t̃i(θ′i, θ′′−i) + t̃i(θ

′
i, θ
′
−i) ≥ ti(θ

′′
i , θ
′′
−i)− ti(θ′′i , θ′−i)− ti(θ′i, θ′′−i) + ti(θ

′
i, θ
′
−i).

This binary relation orders transfers according to the magnitude of their in-

creasing differences. In differentiable environments, this definition is equivalent to

saying that t̃ �ID t, if and only if, for all i ∈ N the cross-partial derivatives of t̃i are

larger than those of ti, ∂
2t̃i(θ)/∂θi∂θj ≥ ∂2ti(θ)/∂θi∂θj, for all j ∈ N and θ ∈ Θ.

This definition captures the amount of complementarities contained in transfers and
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compares them accordingly. While relation �ID is transitive and reflexive, it is not

antisymmetric. Denote the set of �ID-equivalence classes of transfers by T .7

In a supermodular game, the interval prediction is the interval between the

largest and the smallest equilibrium. We compare supermodular mechanisms by the

size of the interval prediction of the game that they induce. The next proposition,

taken from Mathevet [45], provides the tool to do so. If transfers t′′ generate more

complementarities than t′, and if both transfers induce truthtelling and a supermod-

ular game, then the interval prediction induced by t′′ contains that induced by t′.

For any t ∈ T such that f = (x, t) is supermodular implementable, let θ
i

t :

Θi → Θi and θit : Θi → Θi denote the largest and the smallest equilibrium strategy

of Player i in the game induced by the mechanism. Define

[θt, θt] = {(s1, . . . , sn)|si : Θi → Θi and

θ
i

t(θi) ≥1
i si(θi) ≥1

i θ
i
t(θi) for all i ∈ N and θi ∈ Θi} (1.2)

to be the interval of strategy profiles in between the extremal equilibria.

Proposition 1. If (x, t′′) and (x, t′) are supermodular implementable social choice

functions and if t′′ �ID t
′, then [θt′ , θt′ ] ⊂ [θt′′ , θt′′ ].

This proposition is proved in Mathevet [45]. It implies that the objective of

minimizing the equilibrium set coincides with the objective of minimizing the com-

plementarities. A social choice function f = (x, t∗) will be minimally supermodular

implementable if the transfers t∗ elicit truthful revelation and induce a supermod-

ular game with the weakest complementarities. This will give the tightest interval

prediction around the truthful equilibrium.

7Each equivalence class contains transfer functions t and t̃ such that t̃ �ID t and t �ID t̃ while
t 6= t̃. Any quasi-order can be transformed into a partial order by using equivalence classes.
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1.4.2 Minimal Implementation under Total Orders

This section addresses minimal supermodular implementation within a class

of transfers. We explicitly show how to convert any truthful mechanism into a super-

modular mechanism while controlling for the intensity of the complementarities.

Our approach takes advantage of the totality of orders ≥1
i . If the strategy sets

are totally ordered, then the only requirement to check to satisfy Definition 1 is the

increasing differences condition. Therefore, if the transfer functions ensure that (I)

for each θ and i, uΓ
i (θ̂, θ) has increasing differences in (θ̂i, θ̂−i) on (Θi,≥1

i )×(Θ−i,≥−i),
then (II) the ex-post game G(θ) will be supermodular for each θ, as desired. In this

section, we restrict attention to the class of transfers that guarantee that (III) for

each θ and i, uΓ
i (θ̂, θ) has increasing differences in (θ̂i, θ̂−i) on (Θi,≥1

i ) × (Θ−i,≥2
i ),

where {(≥1
i ,≥2

i )}i is a consistent profile of orders. Since ≥2
i is a linear extension of

≥−i, (III) implies (I), and hence (II) holds. Consider the following family of transfers:

Definition 4. Family F(x, {(≥1
i ,≥2

i )}i) ⊂ T is the set of transfers t such that

(x, t) is truthfully implementable and uΓ
i (θ̂, θ) has increasing differences on (Θi,≥1

i

)× (Θ−i,≥2
i ) for each θ ∈ Θ and i ∈ N , where {(≥1

i ,≥2
i )}i is consistent.

We now define our concept of minimal supermodular implementation.

Definition 5. A social choice function f = (x, t∗) is minimally supermodular im-

plementable over family F if it is supermodular implementable, t∗ ∈ F , and t �ID t
∗

for all transfers t ∈ F .

Minimally supermodular transfers elicit truthful revelation and produce the

supermodular game with the weakest complementarities. By Proposition 1, they give

the tightest equilibrium set within the class of transfers F . Here is our first main

result.
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Theorem 1. If f = (x, t) is implementable, then for any consistent profile of orders

{(≥1
i ,≥2

i )}i there exist t∗ such that (x, t∗) is minimally supermodular implementable

over F(x, {(≥1
i ,≥2

i )}i).

The theorem reaches a strong conclusion: for any implementable social choice

function, its decision rule can be minimally supermodular implemented. There are

no other restrictions on the decision rule or the valuation functions. Despite the

finiteness of the type sets, there are infinitely many transfers that can supermodularly

implement a decision rule for a given consistent profile of orders. Having a method

for choosing the best among them is useful. To understand this, as well as our

construction, start from any truth-revealing transfers {ti(θ) : θ ∈ Θ}. For each i and

collection of numbers {δi(θ) : θ ∈ Θ}, define

t∗i (θi, θ−i) = δi(θi, θ−i)− Eθ−i [δi(θi, θ−i)] + Eθ−i [ti(θi, θ−i)]. (1.3)

Transfers t∗i (θ) satisfy Eθ−i [t
∗
i (θi, θ−i)] = Eθ−i [ti(θi, θ−i)] for all θi, i.e., these two trans-

fer functions have the same expected value when agents other than i report their type

truthfully. Since agent i finds it optimal to play truthfully under ti(θ) (when others

do so), she must also find it optimal under t∗i (θ). We conclude that for every collec-

tion {δi(θ) : θ ∈ Θ}, the transfers t∗i (θ) also elicit truthful revelation. The problem

becomes the choice of each δi(θ), as there are infinitely many ways of inducing a su-

permodular game given a profile of orders. The proof provides an explicit formula for

the collection {δi(θ) : θ ∈ Θ} that generates the best transfers {t∗i } (within a family

of transfers) in terms of minimizing the interval prediction.

To sum up, our method suggests totally ordering type sets and then using our

formula. Can this method be useful? In Section 1.2, it delivered a supermodular

mechanism with a unique equilibrium, while ex-post implementation was not an op-

20



tion. In the Appendix (see Section 1.8.1), it also delivers a supermodular mechanism

with a unique equilibrium, while the original transfers produce multiple equilibria.

Given a choice of consistent orders, the theorem provides appropriate transfers.

But there are many possible orders and the designer may want to discriminate among

the many associated transfers. Suppose that the designer has a concept of distance,

i.e., a metric d on Θ. Then Theorem 1 can be used to select the transfers that lead

to the smallest equilibrium set across all the families. Let F∗(x) be the union of

F(x, {(≥1
i ,≥2

i )}i) over all consistent orders {(≥1
i ,≥2

i )}i.

Corollary 1. If f = (x, t) is implementable, then there exist transfers t∗∗ and

consistent orders {(≥∗1i ,≥∗2i )}i such that (x, t∗∗) is minimally supermodular imple-

mentable over F(x, {(≥∗1i ,≥∗2i )}i) and t∗∗ give the smallest interval prediction in

F∗(x) given d.

Our corollary ultimately says that for every metric, there is a choice of total

orders (≥∗1i ,≥∗2i ) for each i that is most adapted to d, since the equilibrium set

resulting from the corresponding minimal transfers is minimized (under d) among all

of F∗(x). The explanation is simple. For each profile of orders, the theorem provides

the transfers that deliver the smallest interval prediction within the corresponding

class. Since there are finitely many types, there are finitely many (consistent) profiles

of orders. Therefore, there must be a profile of orders whose associated transfers

deliver the smallest interval prediction under d among all of F∗(x).

1.4.3 Unconditional Minimal Implementation

In this section, we study (unconditional) minimal supermodular implemen-

tation by looking for the overall best transfers. In the previous section, the super-

modular transfers were minimal within a class. We required that, for every agent
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i, increasing differences be satisfied on (Θi,≥1
i ) × (Θ−i,≥2

i ). By doing so, we did

not consider all the transfers that induce a supermodular game. Indeed, some trans-

fers may induce increasing differences on (Θi,≥1
i )× (Θ−i,≥−i) but not on the above

product set, yet it is sufficient for our purpose. This happens because ≥−i typically

orders fewer elements than ≥2
i , which changes the number of inequalities that have

to hold to satisfy increasing differences. To summarize, our previous theorem was a

conditional form of minimal supermodular implementation, while in this section, we

aim for an unconditional form. For convenience, we write Vi(x, θ) = Vi(xi, θ) for all

i to emphasize the dimension of the decision rule on which i’s utility depends. This

notation does not exclude allocative externalities, for an agent’s own allocation xi

could be a function of another agent’s allocation.

Definition 6. A social choice function f = (x, t∗) is minimally supermodular im-

plementable if it is minimally supermodular implementable over family T .

Our main result shows that the problem of finding minimally supermodular

transfers is equivalent to solving a system of linear equations. This insight is highly

useful, as it allows the application of standard methods and algorithms from numerical

linear algebra (e.g. Paige and Saunders [51], Demmel [24]). In what follows, we

refer to the supermodularity of a function hi : Θ → R between types θ′′i ≥1
i θ
′
i and

θ′′−i ≥−i θ′−i as the expression

hi(θ
′′
i , θ
′′
−i)− hi(θ′′i , θ′−i)− hi(θ′i, θ′′−i) + hi(θ

′
i, θ
′
−i). (1.4)

Consider (1.3) and note that the supermodularity of t∗i is equal to the supermodularity

of δi. Therefore, our objective of finding the overall best transfers is tantamount

to finding a function δi that induces increasing differences on (Θi,≥1
i ) × (Θ−i,≥−i)

for each i, without introducing unnecessary complementarities. Before deriving the
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linear system that corresponds to this objective, we define the concept of immediate

successor/predecessor.

Definition 7. For x′ and x′′ in a partially ordered set (X,≥X), x′′ is an immediate

successor of x′ (and x′ is an immediate predecessor of x′′) if (a) x′′ >X x
′, and (b) the

set {x ∈ X|x′′ >X x >X x
′} is empty.

Consider the system of linear equations Ai ·δi = bi, where δi is a column vector

that contains the values of δi(θ) for every θ ∈ Θ; Ai is a sparse matrix whose nonzero

elements (four per row) are equal to -1 or 1, and positioned so as to produce the

supermodularity of δi for types that are immediate successors; bi is a vector containing

expressions (1.5), i.e., the minima of the differences in valuations between immediate

successors. For example, a typical row of Ai takes the form (0, 1,0,−1,0,−1,0, 1,0)

where 0 is a block of zeroes, so that the dot product with vector δi produces an

expression such as (1.4). The system matches this expression with an entry of bi

that involves the same types. In Section 1.8.2, we derive this system in a particular

example.

The next proposition characterizes the (unconditional) minimally supermod-

ular transfers as a solution to the above system of linear equations.

Proposition 2. Minimally supermodular transfers exist, if and only if, the finite

linear system Ai · δi = bi has a solution δi ≥ 0 for all player i.

Before providing the intuition for the result, we make a few remarks.

Assuming δi ≥ 0 is without loss of generality, because we can always add any

positive constant c to any solution δi and obtain another solution. The reason is

that any constant gets canceled out when we form the supermodularity of a function.

Moreover, assuming bi ≥ 0 is also without loss of generality, since any equation
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with a negative right hand side can be multipled by -1 (i.e. the relevant rows of Ai

and bi get multiplied by -1). We can use linear programming (LP) techniques and

software to solve the feasibility problem implied by the system of equations stated

in Proposition 2. By introducing a vector zi of positive auxiliary variables, we can

restate the feasibility problem into a standard form LP:

min
δi,zi

eT · zi
s.t. Ai · δi + zi = bi

δi ≥ 0, zi ≥ 0

where e is a vector of 1s of appropriate dimension. This auxilary LP has optimal

value 0 (i.e. z = 0) if and only if there exists a non-negative solution δi to the system

of linear equations stated in the proposition.

Besides linearity, the main virtue of Proposition 2 is to only involve immediate

successors. The necessity part of this result is intuitive. For all θ′i, θ
′′
i where θ′′i is

an immediate successor of θ′i in Θi, and for all θ′−i, θ
′′
−i, where θ′′−i is an immediate

successor of θ′−i in Θ−i, the supermodularity of δi (which corresponds to that of t∗i )

must equal

− min
θ∈Θ

[Vi(xi(θ
′′
i , θ
′′
−i), θ) − Vi(xi(θ

′′
i , θ
′
−i), θ) − Vi(xi(θ

′
i, θ
′′
−i), θ) + Vi(xi(θ

′
i, θ
′
−i), θ)],

(1.5)

for every i, for otherwise we could construct alternative transfers t̃i that satisfy this

equality (at particular types); therefore, it could not hold that t̃ �ID t
∗, and hence no

t∗ could be minimally supermodular.

While necessity seems clear, it is not obvious that it suffices to search for δi’s

whose supermodularity equals (1.5) for successive types only. This property, which
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greatly simplifies the problem, comes from the proof of Theorem 1: the supermodular-

ity of any function of two variables, when measured between non-successive elements,

is equal to the sum of the supermodularities between all pairs of immediate succes-

sors in between. The intuition goes as follows. Take a function h with two variables,

where each variable is in N. Note that

h(2, 3)− h(2, 1)− (h(1, 3)− h(1, 1)) (1.6)

is equal to

[h(2, 3)− h(2, 2)− (h(1, 3)− h(1, 2))] + [h(2, 2)− h(2, 1)− (h(1, 2)− h(1, 1))]. (1.7)

The differences between non-successive types (1 and 3 are not immediate successors

in (1.6)) are sums of differences between successive types, (1.7). Therefore, if the

supermodularity of δi between successive types equals (1.5), which is the minimal

requirement, then our previous observation implies that the supermodularity of δi

between non-successive types must also be minimal. In conclusion, we just need to

be concerned with supermodularity between successive types.

In Section 1.8.4, we provide a sufficient condition that ensures minimal trans-

fers exist and have a simple closed-form representation. Although this condition is not

necessary, it appears to be tight. The condition, called order reducibility, is imposed

on the set of decision rules.

1.5 Uniqueness

In this section, we provide sufficient conditions for supermodular implementa-

tion in unique equilibrium. In light of our current results, a natural question to ask is:

when does a minimally supermodular mechanism, i.e., one with the smallest equilib-

rium set, actually have a unique equilibrium? If a supermodular game has a unique

25



equilibrium, then it is dominance-solvable, and many learning dynamics converge to

the unique equilibrium (Milgrom and Roberts [48]). Supermodular implementation

is, therefore, particularly appealing when truthtelling is the unique equilibrium. The

study of unique supermodular implementation allows us to draw some conclusions

regarding the type of environments — preferences and social choice functions — for

which supermodular implementation may be most useful.

In this section, we impose more structure on the type sets. Suppose (Θi, di)

is a metric space for every i. Our only requirement is that for any i, if θ′i ≥1
i θi and

if θ′′i ≥1
i θ
′
i, then di(θ

′′
i , θi) ≥ di(θ

′
i, θi), so that each metric respects the order.

Recall that i’s utility at type θ is denoted by uΓ
i (θ̂; θ) = Vi(x(θ̂); θ) + ti(θ̂). For

each i and θ, let Ki(θ) be a real number such that

(uΓ
i (θ′′i , θ

′′
−i; θ)− uΓ

i (θ′i, θ
′′
−i; θ))− (uΓ

i (θ′′i , θ
′
−i; θ)− uΓ

i (θ′i, θ
′
−i; θ))

≤ di(θ
′′
i , θ
′
i)Ki(θ)

∑
j 6=i

dj(θ
′′
j , θ
′
j) (1.8)

for all θ′′i ≥1
i θ
′
i and θ′′−i ≥−i θ′−i.8 Due to the finiteness of types, Ki always exists.

When types are real-valued and di is the Euclidean metric, (1.8) can be written as

uΓ
i (θ′′i , θ

′′
−i; θ)− uΓ

i (θ′i, θ
′′
−i; θ))− (uΓ

i (θ′′i , θ
′
−i; θ)− uΓ

i (θ′i, θ
′
−i; θ))

(θ′′i − θ′i)
∑

j 6=i(θ
′′
j − θj)

≤ Ki(θ), (1.9)

and so if the environment is differentiable, Ki(θ) = maxj 6=i maxθ̂ ∂
2uΓ

i (θ̂; θ)/∂θ̂i∂θ̂j.
9

The cross-partial derivatives measure the strategic complementarities between agents’

reports. Therefore, Ki(θ) is an upper bound on the strategic complementarities (be-

tween agents’ reports) induced by Γ at θ, and thus it is a nonnegative number. Note

that Ki is an endogenous quantity, as it depends on the transfers.

8In (1.8), we use the L1-norm induced by {di} to measure the distance between opponents’
profiles.

9Let θ′′k = θ′k for k 6= i, j. If θ′′i → θ′i and θ′′j → θ′j , the lhs of (1.9) becomes ∂2uΓ
i (θ′; θ)/∂θ̂i∂θ̂j .
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Similarly, for each i and θ−i, let γi(θ−i) be a real number such that

(Vi(x(θ̂′′i , θ−i); θ
′′
i , θ−i)− Vi(x(θ̂′i, θ−i); θ

′′
i , θ−i))− (Vi(x(θ̂′′i , θ−i); θ

′
i, θ−i)

− Vi(x(θ̂′i, θ−i); θ
′
i, θ−i)) ≥ γi(θ−i)di(θ̂

′′
i , θ̂
′
i)di(θ

′′
i , θ
′
i) (1.10)

for all θ̂′′i ≥1
i θ̂
′
i and θ′′i ≥1

i θ
′
i. Due to the finiteness of types, γi always exists. In differ-

entiable environments with real-valued types, γi(θ−i) = min(θi,θ̂i)
∂2Vi(x(θ̂i, θ−i); θ)/∂θ̂i∂θi.

Therefore, γi is a lower bound on the complementarities between i’s own report and

type when other agents report truthfully. Note that γi is an exogenous quantity,

because it is determined by the primitives of the problem. Examples 3 and 4 in

Mathevet [45] provide numerical illustrations for the computation of the Ki’s and

γi’s.

Numbers Ki and γi represent opposite forces in the shaping of the equilib-

rium set. An agent with a large γi is very responsive to her own type, because her

marginal utility is very sensitive to a change in θi. Thus, small changes in type lead

to large changes in report, independently of others’ reports, which have relatively

little importance. Therefore, when γi is large, i’s behavior is not responsive to others.

By definition, equilibrium multiplicity is caused by the mutual influence that players

have on one another. Since a large γi isolates i from the other agents, this favors

uniqueness. A large Ki, however, expresses strong interdependence between players’

reports. If i’s behavior is strongly responsive to others, this favors multiplicity. These

effects and their impact on the set of rationalizable strategy profiles in incomplete

information games are the subject of Mathevet [46].

Our next results formalize the trade-off between these forces. Denote the

truthful strategy by θTi (·). For each i and θi, let K̄i(θi) = maxθ−i Ki(θ).

Proposition 3. Let f be a supermodular implementable social choice function. For

every i, consider some deception θ∗i (·) ≥ θTi (·). If there exist i, θi and θ̂i ∈ [θi, θ
∗
i (θi))
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such that

K̄i(θi)
∑
j 6=i

Eθj [dj(θ
∗
j (θj), θj]− Eθ−i [γi(θ−i)]di(θ̂i, θi) < 0 (1.11)

then θ∗(·) is not a Bayesian equilibrium. The same conclusion applies to deceptions

θ∗i (·) ≤ θTi (·) if there exist i, θi and θ̂i ∈ (θ∗i (θi), θi] such that (1.11) holds.

The proof demonstrates that if agent i deviates from his report at type θi,

θ∗i (θi), and announces θ̂i instead, while other agents play according to θ∗−i(·), then

the lhs of (1.11) is an upper bound on how much i loses from that deviation. If this

upper bound is positive, then the deviation may not be profitable. However, if it is

negative, then θ̂i is a profitable deviation and hence θ∗(·) cannot be an equilibrium.10

Proposition 3 should read as follows: if there exist metrics di and constants

Ki(θ) and γi(θ−i) satisfying (1.8) and (1.10), and if the hypotheses of Proposition 3

are satisfied, then θ∗(·) is not a Bayesian equilibrium. Of course, agents need not be

aware of which metrics are used by the designer. In the same way, agents need not

be aware of which order is used by the designer to induce a supermodular game.

Inequality (1.11) summarizes the trade-off between the opposite forces K̄i and

E[γi(·)]. If the uniqueness effect dominates, i.e., E[γi(·)] is large enough, then the

untruthful profile θ∗(·) does not fall within the bounds of the interval prediction.11

The proposition is not useful for profiles for which, for every i and θi, θ
∗
i (θi) and

θi are equal or successive types. In that case, di(θ̂i, θi) would be zero. Furthermore,

although the theorem is useful to determine whether a given strategy profile is not

an equilibrium, it does not deliver an immediate conclusion about uniqueness. The

next proposition addresses this question.

10It is clear what losing 2 means, for example. But losing -2 is equivalent to gaining 2. Thus,
when (1.11) holds, the loss must be negative and so the deviation profitable.

11Using the smallest possible K̄i(θi) and the largest possible γi(θ−i) is a natural way for the
designer to utilize this proposition.
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Before proceeding, we define a measure of coarseness on agents’ type spaces.

For any type θi in Θi, letting θ′i and θ′′i be its immediate predecessor and immediate

successor, we define

εi(Θi) = max
θi∈Θi

max{di(θ′i, θi), di(θi, θ′′i )}

to be a measure of the maximal distance between any type in Θi and its immediate

successor or predecessor. As we get closer to the continuous case, εi(Θi)→ 0. Define

ε(Θ) = maxi εi(Θi) to be the overall measure of coarseness.

Our next result will be concerned with “eventual uniqueness,” which first

requires to define the neighborhood of truthtelling.

Definition 8. A profile θ∗(·) is outside the neighborhood of truthtelling if θ∗(·) and

θT (·) are ordered and if for all i, there is θi such that (θi ∧ θ∗i (θi), θi ∨ θ∗i (θi)) 6= ∅.

A profile is outside the neighborhood of truthtelling if it is larger or smaller

than truthtelling (i.e., all agents always over- or under-report), and if all agents i

have the option for some θi to report a non-truthful type in between truth θi and her

actual report θ∗i (θi). In order for an agent to have this option, her original deception

must be far enough from truthtelling, for otherwise the only possible deviation would

be to report her type truthfully.

Proposition 4. Let f be a supermodular implementable social choice function (on

Θ). If for every agent i

(n− 1)Eθi [K̄i(θi)] < Eθ−i [γi(θ−i)], (1.12)

then any profile θ∗(·) outside the neighborhood of truthtelling such that for some θ

min
i

{∑
j 6=i

Eθj [dj(θj, θ
∗
j (θj))]

}
> ε(Θ)ξ(θ) (1.13)
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where

ξ(θ) =
maxi{Eθ−i [γi(θ−i)]}

mini

{
Eθ−i [γi(θ−i)]

n−1
− Eθi [Ki(θi)]

} , (1.14)

is not a Bayesian equilibrium.

This proposition says that if (1.12) holds, then the size of the equilibrium set

depends essentially on the richness of the type sets. Indeed, if function ξ in (1.14) is

bounded above as ε(Θ) → 0,12 then ε(Θ)ξ(θ) → 0. Thus, the set of profiles that in-

clude truthtelling and that might be equilibria vanishes as type sets become infinitely

fine, and hence truthtelling eventually becomes unique. To be clear, condition (1.12)

captures the main driving force behind uniqueness, but we must take the fineness

of type sets into account. Otherwise, some untruthful profiles can become equilibria

simply because some deviations are not available to an agent who would have other-

wise chosen it. Note also that if (1.13) holds for some profile θ∗(·), then it also holds

for all finer type sets and all profiles θ∗∗(·) ≥ θ∗(·), assuming ξ is stable. Therefore,

as ε(Θ)→ 0, the set of potential equilibria shrinks monotonically to zero measure.

This proposition generalizes Mathevet [45]’s uniqueness result (Proposition 3,

p.418) to our environments. In continuous type spaces, richness is obviously not an

issue — (1.13) holds automatically when ε(Θ) = 0 — and only (1.12) matters.

This proposition seems to be mostly useful a posteriori. After the mechanism

has been built, we can use it to check whether truthtelling is eventually unique.

However, it would be useful to know a priori whether the design problem at hand is

compatible with unique supermodular implementation given its primitives.

Since the minimally supermodular transfers minimize the size of the equilib-

rium set, they are a natural choice for unique implementation. We have a closed

12Note that Ki and γi depend on the type sets for every i. If the utility functions and the transfers
are well-behaved, then Ki and γi exist in the limit as ε(Θ)→ 0.
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form expression for these transfers when the decision rule satisfies order reducibil-

ity (See Section 1.8.4 in the Appendix). Assuming order reducibility, the minimally

supermodular transfers are constructed from two equations: (1.62) and (1.63) (p.52

in the Appendix). The critical observation is that these transfers, and hence the

Ki’s they produce, depend entirely on the primitives of the model. In other words,

the minimally supermodular transfers endogenize the Ki’s. This property is very

useful, because (1.12) becomes a condition that only involves the primitives of the

design problem. As such, we can check it before building the mechanism and de-

termine whether unique supermodular implementation might be attainable based on

the primitives. By doing so, we learn valuable information about the type of environ-

ments for which supermodular implementation may be most useful. We explain this

below.

For any implementable social choice function f , let

K∗i (θ) = max
{θ′′i ,θ′i,θ′′−i,θ′−i}

Vi(θ
′
i . θ

′′
i , θ
′′
−i; θ)− Vi(θ′i . θ′′i , θ′−i; θ)−Hi(θ

′′
i , θ
′
i, θ
′′
−i, θ

′
−i)

di(θ′′i , θ
′
i)
∑

j 6=i dj(θ
′′
j , θ
′
j)

(1.15)

where Vi(θ
′
i .θ

′′
i , ·; θ) = Vi(xi(θ

′′
i , ·); θ)−Vi(xi(θ′i, ·); θ) and Hi(θ

′′
i , θ
′
i, θ
′′
−i, θ

′
−i) is the sum

of elements

min
θ∈Θ

[Vi(θ̂
′
i . θ̂

′′
i , θ̂
′′
−i; θ)− Vi(θ̂′i . θ̂′′i , θ̂′−i; θ)]

for all pairs of immediate successors θ̂′′i ≥1
i θ̂
′
i, such that θ′′i ≥1

i θ̂
′′
i ≥1

i θ̂
′
i ≥1

i θ
′
i, and all

pairs of immediate successors θ̂′′−i ≥−i θ̂′−i for a chosen “path” between θ′−i and θ′′−i,

such that θ′′−i ≥−i θ̂′′−i ≥−i θ̂′−i ≥−i θ′−i. Notice that ≥1
i is a total order, which means

that there is only one path of immediate successors connecting θ′i and θ′′i . In contrast,

≥−i is a partial order and there could be many paths of immediate successors that

connect any two ordered elements θ′−i and θ′′−i. However, order reducibility ensures

that irrespective of the path being chosen, the value of Hi will be the same.

31



Under the minimally supermodular transfers, K∗i (θ) is the smallest number

that satisfies (1.8). That is, K̄∗i (θi) ≡ maxθ−i K
∗
i (θ) bounds the strategic comple-

mentarities in the game induced by these transfers at θ. When the designer uses the

minimally supermodular transfers, K̄∗i is the value that appears in condition (1.12).

In this case, notice that (1.12) only involves the primitives of the model. If this in-

equality holds, then supermodular implementation is particularly well-suited for the

design problem at hand, because the minimal transfers supermodularly implement

the social choice function and truthtelling is eventually unique.

Expression (1.15) has a nice interpretation. It measures how much the su-

permodularity of the valuations varies across true types. We know that the designer

must induce a supermodular game for any realization of types.13 In this context, a

large K̄∗i can be caused by valuation functions that exhibit large substitutes for some

(true) types (say θ) and large complementarities for other (true) types (say θ′). Since

the designer does not know the realization of the true types, she will need to add a lot

of complementarities through the transfers to ensure that the game is supermodular

at θ. But this may induce a game that is “too supermodular” at θ′, since there are

already enough complementarities at that type, thereby violating (1.12) and causing

multiplicity.

1.6 Discussion

In our motivating example, the social choice function is not ex post imple-

mentable and yet it is Bayesian implementable. Therefore, the question regarding

13It is sufficient but not necessary that the ex-post game be supermodular for each realization in
order for the ex ante Bayesian game to be supermodular. For example, if the prior is mostly concen-
trated on some subset Θ′ of Θ, it may not be necessary to make the ex-post payoffs supermodular
for types in Θ\Θ′. Of course, the possibility of neglecting Θ\Θ′ depends on how unlikely that set is
compared to how submodular the utility function may be for types in that set.
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how generic this situation is, is an important one. We address it in this section.

Consider a generalized version of our motivating example. There are two

players, each with two possible types, and two alternatives (X and Y). Small letters are

used to denote 1’s valuations (row player) and capital letters to denote 2’s valuations

(column player); upper rows in each cell represent valuations for alternative X and

lower rows represent valuations for alternative Y. The alternative in the middle of each

cell is the one that the designer would like to implement. The associated transfers

are stated next to it.

V (θ, τ) (τ1, τ2) (τ3, τ4)

(θ1, θ2)

a A

X, t1

b B

c C

X, t2

d D

(θ3, θ4)

e E

Y, t3

f F

g G

X, t4

h H

The smallest departure from a trivial (or constant) decision rule is the above.

The designer would like to implement alternative X for all but one of the type profiles.

The minimal conditions that need to hold for this decision rule to not be ex post

implementable is that for at least one of the two agents, and for at least one type

of his opponent, there are no transfers that achieve ex post incentive compatibility

(EPIC). Without loss of generality, consider player 1 and opponent type (τ1, τ2).

There are two EPIC constraints, one for each possible type of player 1:

for type (θ1, θ2)

a+ t11 ≥ b+ t31 ⇔ t11 − t31 ≥ b− a (1.16)

and for type (θ3, θ4)
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f + t31 ≥ e+ t11 ⇔ t11 − t31 ≤ f − e. (1.17)

Therefore, if the valuations are such that f − e < b− a, there are no transfers

that can satisfy (1.16) and (1.17). Furthermore, irrespective of what the distribution

over opponent types is, the Bayesian incentive compatibility (BIC) constraints can

never be satisfied. Assume that opponent type (τ1, τ2) occurs with probability q. The

two BIC constraints for player 1 are:

for type (θ1, θ2)

q(a+ t11) + (1− q)(c+ t21) ≥ q(b+ t31) + (1− q)(c+ t41)

which is equivalent to

q(t11 − t31) + (1− q)(t21 − t41) ≥ q(b− a) (1.18)

and for type (θ3, θ4)

q(f + t31) + (1− q)(g + t41) ≥ q(e+ t11) + (1− q)(g + t21)

which is equivalent to

q(t11 − t31) + (1− q)(t21 − t41) ≤ q(f − e). (1.19)

If valuations are such that f−e < b−a, there are no transfers that can satisfy the two

BIC constraints for player 1. In this case, the impossibility of ex post implementation

implies that of Bayesian implementation.

For Bayesian implementation to be possible when ex post implementation is

not, there needs to be some variability in the decision rule. Consider the following

situation:
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V (θ, τ) (τ1, τ2) (τ3, τ4)

(θ1, θ2)

a A

X, t1

b B

c C

Y, t2

d D

(θ3, θ4)

e E

Y, t3

f F

g G

X, t4

h H

In this case, the BIC constraints for player 1 are: for type (θ1, θ2)

q(a+ t11) + (1− q)(d+ t21) ≥ q(b+ t31) + (1− q)(c+ t41)

which is equivalent to

q(t11 − t31) + (1− q)(t21 − t41) ≥ q(b− a) + (1− q)(c− d) (1.20)

and for type (θ3, θ4)

q(f + t31) + (1− q)(g + t41) ≥ q(e+ t11) + (1− q)(h+ t21)

which is equivalent to

q(t11 − t31) + (1− q)(t21 − t41) ≤ q(f − e) + (1− q)(g − h). (1.21)

Even if the valuations are such that f − e < b − a and hence ex post imple-

mentation is impossible, (1.20) and (1.21) can hold simultaneously; that is, Bayesian

implementation is feasible if g − h is large enough compared to c− d. But note that

g − h ≥ c− d is a necessary condition for EPIC to hold (given the opponent type is

(τ3, τ4)). As intuition suggests, BIC is a weighted average of EPIC conditions, and

thus, if some EPIC conditions are violated while others hold and compensate (in

numbers or magnitude), then BIC will hold.14 Clearly, the variability of the decision

rule affects the number of EPIC conditions, and in turn, the flexibility we have to

satisfy BIC when EPIC is violated.

14As a consequence, the addition of players or types makes the gap between ex post and Bayesian
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1.7 Conclusion

This paper extends supermodular mechanism design to environments with

interdependent valuations, informational and allocative externalities, and arbitrary

finite type spaces. While realistic, these environments present a serious challenge

to mechanism designers. It is typically impossible to employ dominant strategy and

ex-post equilibrium. This makes Bayesian implementation particularly relevant. In

this context, supermodular Bayesian mechanisms are attractive.

The main motivation behind our mechanism design approach is to facilitate

convergence to a desired equilibrium. This includes two problems: the robustness

to bounded rationality (especially learning) and the multiple equilibrium problem.

Supermodular mechanisms have nice learning properties, and the interval between

their extremal equilibria contains all the limit points of learning dynamics. To some

extent, this interval “measures” the multiple equilibrium problem. Our methodology

is to impose orders on type sets, and given these orders, to induce a supermodular

mechanism and to minimize its interval prediction by weakening the complementar-

ities. It is worth mentioning that agents need not be aware of the orders. While

the analyst can exploit the monotonicity of agents’ best-responses to derive conver-

gence properties, agents need not know or be informed that their best-responses are

monotonic.

The paper has focused on behavioral robustness and left other issues unan-

swered.

implementation grow wider. Consider our impossibility condition for ex post implementation: (f −
e < b − a) is both necessary and sufficient for that; if we keep this as the only violation of EPIC
and increase the number of opponent types, then we increase the degrees of freedom to meet BIC.
Increasing the number of player types also increases the relative number of BIC versus EPIC decision
rules.
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First, our mechanisms are parametric. The designer needs to know the prior

beliefs to construct the mechanisms, which is demanding (Ledyard [40]). Moreover,

mistakes with respect to the prior may lead to shifts in equilibrium behavior and

deviations from efficiency. Along this line, the literature on robust mechanism design

(Bergemann and Morris [5]) advocates the use of ex-post equilibrium. But this is not

always possible in these environments.

Second, we have avoided the issue of budget balancing. Robustness to bounded

rationality may well come at the price of a balanced budget, i.e. full efficiency. In both

of the examples presented in Section 1.2 and Section 1.8.1, the designer could achieve

dominance-solvability, uniqueness, and allocation efficiency by using the minimally

supermodular transfers, but these transfers were not balanced. Reconciling budget

balancing and minimal supermodularity (or, in general, dominance solvability) would

be optimal, but this is an open question. If both properties were exclusive in general,

the designer would be faced with a difficult choice: balancing the budget at the

price of the implementation target (in case players do not learn to play the desired

equilibrium), or guaranteeing the implementation target is reached at the price of a

balanced budget.
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1.8 Appendix

1.8.1 Another Motivating Example

Consider the motivating example of Section 1.2. The designer may choose the

following transfers to implement the efficient decision rule:

t1(θ̂) (1, 2) (2, 1)
(1, 2) 2 -.10
(2, 1) 0 -.25

t2(θ̂) (1, 2) (2, 1)
(1, 2) 1.5 .25
(2, 1) -1 .75

Given these transfers, the resulting payoff matrix for the ex ante Bayesian game is

EU truthtelling constant (1,2) constant (2,1) always lie
truthtelling 2.41∗; .63∗ 2.38; .05 2.33∗;0 2.29; -.13

constant (1,2) 2.33; 1.13 4.25∗;1.25∗ 1.53; .25 3.45∗; .38
constant (2,1) 2.38;-.63 1.63; -1 2; .5∗ 1.25; 0.13

always lie 2.29; -.13 3.5; -.25 1.2; .75∗ 2.41; .63

Both truthtelling and a constant announcement of (1,2) by both players are ex ante

Bayesian equilibria. If we instead use the supermodular transfers that add minimal

complementarities

tSM1 (θ̂) (1, 2) (2, 1)
(1, 2) .95 .95
(2, 1) -1.625 1.375

tSM2 (θ̂) (1, 2) (2, 1)
(1, 2) .25 -.5
(2, 1) .25 1.5

we obtain the ex ante payoff matrix:

EU truthtelling constant (1,2) constant (2,1) always lie
truthtelling 2.41∗; .63∗ 1.04; .5 3.66∗; 0 2.29; -.13

constant (1,2) 2.33; .13∗ 3.2∗; 0 2.58; -.5 3.45∗; -.63
constant (2,1) 2.38; .38 0; .25 3.63; 1.25∗ 1.25; 1.13

always lie 2.29; -.13 2.16; -.25 2.54; .75∗ 2.41; .63

Converting the original mechanism into a minimally supermodular mechanism has

solved the multiple equilibrium problem. Truthtelling is the unique Bayesian equilib-

rium.
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1.8.2 An Example of Linear System for Minimal Supermodular Imple-
mentation

Consider a setting with n = 3 agents, and types in Θi = {1, 2} for all i.

Assume the conventional order 2 >1
i 1 for all i. For each player i, in order to minimally

supermodular implement the decision rule x, we are interested in finding a solution

to the following system of linear equations:


1 −1 −1 1 0 0 0 0
1 −1 0 0 −1 1 0 0
0 0 1 −1 0 0 −1 1
0 0 0 0 1 −1 −1 1





δi(1, (1, 1))
δi(2, (1, 1))
δi(1, (1, 2))
δi(2, (1, 2))
δi(1, (2, 1))
δi(2, (2, 1))
δi(1, (2, 2))
δi(2, (2, 2))


=


−minθX(θ)
−minθ Y (θ)
−minθ Z(θ)
−minθW (θ)

 .

where

X(θ) = Vi(xi(2, (1, 2)); θ)− Vi(xi(1, (1, 2)); θ)− Vi(xi(2, (1, 1)); θ) + Vi(xi(1, (1, 1)); θ)

Y (θ) = Vi(xi(2, (2, 1)); θ)− Vi(xi(1, (2, 1)); θ)− Vi(xi(2, (1, 1)); θ) + Vi(xi(1, (1, 1)); θ)

Z(θ) = Vi(xi(2, (2, 2)); θ)− Vi(xi(1, (2, 2)); θ)− Vi(xi(2, (1, 2)); θ) + Vi(xi(1, (1, 2)); θ)

W (θ) = Vi(xi(2, (2, 2)); θ)− Vi(xi(1, (2, 2)); θ)− Vi(xi(2, (2, 1)); θ) + Vi(xi(1, (2, 1)); θ).

Consider agent i ∈ N , whose valuations are given by:

Vi(·; θ) (1, 1, 1) (1,1,2) (1,2,1) (2,1,1) (1,2,2) (2,1,2) (2,2,1) (2,2,2)
A 0 0 0 0 0 0 0 0
B 3 1 2 1 2 2 2 2

Let us assume the decision rule to be implemented is:

(1, 1, 1) (1,1,2) (1,2,1) (2,1,1) (1,2,2) (2,1,2) (2,2,1) (2,2,2)
x̃i(θ) B A A B B B B B
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Then the rhs of the system becomes:
−minθX
−minθ Y
−minθ Z
−minθW

 =


−1
−1
3
3


One possible solution for the system is δi = (0, 1, 0, 0, 1, 1, 0, 3)T .

1.8.3 Proofs

Proof of Theorem 1 Take a consistent profile of orders {(≥1
i ,≥2

i )}i. For every
i ∈ N , each element θi ∈ Θi is assigned an index k that corresponds to its position
in the set Θi under the total order ≥1

i . Similarly, each element θ−i ∈ Θ−i is assigned
an index q according to the total order order ≥2

i on Θ−i. Suppose that f = (x, t) is
implementable. Letting

δi(θ̂
k
i , θ̂

q
−i) ≡ −

k−1∑
l=1

q−1∑
z=1

min
θ∈Θ

[Vi(x(θ̂l+1
i , θ̂z+1

−i ); θ)− Vi(x(θ̂li, θ̂
z+1
−i ); θ)

− Vi(x(θ̂l+1
i , θ̂z−i); θ) + Vi(x(θ̂li, θ̂

z
−i); θ)]. (1.22)

for all θ̂ki ∈ Θi and θ̂q−i ∈ Θ−i, we define

t∗i (θ̂
k
i , θ̂

q
−i) ≡ δi(θ̂

k
i , θ̂

q
−i)− Eθ−i [δi(θ̂ki , θ−i)] + Eθ−i [ti(θ̂

k
i , θ−i)] (1.23)

and show that (x, t∗) is minimally supermodular implementable.

Step 1. We show that t∗i has smaller one-step supermodularity than any ti
such that (x, t) is supermodular implementable.

Let us define the one-step supermodularity of Vi(x(·); θ) at any given announce-
ment (θ̂ki , θ̂

q
−i) as

gi(k, q; θ) ≡ Vi(x(θ̂k+1
i , θ̂q+1

−i ); θ)− Vi(x(θ̂ki , θ̂
q+1
−i ); θ)

− Vi(x(θ̂k+1
i , θ̂q−i); θ) + Vi(x(θ̂ki , θ̂

q
−i); θ). (1.24)

For notational simplicity, we define

di(k, q) ≡ min
θ∈Θ

[Vi(x(θ̂k+1
i , θ̂q+1

−i ); θ)− Vi(x(θ̂ki , θ̂
q+1
−i ); θ)

−Vi(x(θ̂k+1
i , θ̂q−i); θ) + Vi(x(θ̂ki , θ̂

q
−i); θ)]

= min
θ∈Θ

gi(k, q; θ). (1.25)
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Since the one-step supermodularity of t∗i is equivalent to the one-step supermodularity
of δi we have

si(k, q) ≡ δi(θ̂
k+1
i , θ̂q+1

−i )− δi(θ̂ki , θ̂
q+1
−i )− δi(θ̂k+1

i , θ̂q−i) + δi(θ̂
k
i , θ̂

q
−i)

= −
k∑
l=1

q∑
z=1

di(l, z) +
k−1∑
l=1

q∑
z=1

di(l, z) +
k∑
l=1

q−1∑
z=1

di(l, z)−
k−1∑
l=1

q−1∑
z=1

di(l, z)

= −di(k, q) (1.26)

as the one-step supermodularity of t∗i (and δi).

Therefore, the one-step supermodularity of (Vi + t∗i ) is given by

gi(k, q; θ) + si(k, q) ≥ 0 (1.27)

for all θ̂ki , θ̂
q
−i, θ, k, q, and i.

Denote the one-step supermodularity of transfer ti as sm1(ti; k, q), that is:

sm1(ti; k, q) = ti(θ̂
k+1
i , θ̂q+1

−i )− ti(θ̂ki , θ̂
q+1
−i )− ti(θ̂k+1

i θ̂q−i) + ti(θ̂
k
i , θ̂

q
−i).

For all transfers t such that (x, t) is supermodular implementable, it must hold that
gi(k, q; θ) + sm1(ti; k, q) ≥ 0 for all θ ∈ Θ, which is equivalent to:

sm1(ti; k, q) ≥ −min
θ∈Θ

[Vi(x(θ̂k+1
i , θ̂q+1

−i ); θ)− Vi(x(θ̂ki , θ̂
q+1
−i ); θ)

− Vi(x(θ̂k+1
i , θ̂q−i); θ) + Vi(x(θ̂ki , θ̂

q
−i); θ)] = si(k, q). (1.28)

The above shows that if (x, t) is supermodular implementable then the one-step su-
permodularity of transfers t is necessarily (weakly) greater than the one-step super-
modularity of transfers t∗, which establishes Step 1.

Step 2. We show that the (multiple-step) supermodularity of any function of
two variables is a sum of one-step supermodularities. Let us define the “(η, γ)-step
supermodularity” of any function ti(θ̂

k
i , θ̂

q
−i) as

SM(η,γ)(ti; k, q) = ti(θ̂
k+η
i , θ̂q+γ−i ) − ti(θ̂

k
i , θ̂

q+γ
−i ) − ti(θ̂

k+η
i , θ̂q−i) + ti(θ̂

k
i , θ̂

q
−i). (1.29)

Note that

ti(θ̂
k+η
i , θ̂q+γ−i ) = sm1(ti; k + η − 1, q + γ − 1) + ti(θ̂

k+η−1
i , θ̂q+γ−i )

+ ti(θ̂
k+η
i , θ̂q+γ−1

−i )− ti(θ̂k+η−1
i , θ̂q+γ−1

−i ), (1.30)
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and so it follows from (1.29) that

SM(η,γ)(ti; k, q) =
[
sm1(ti; k + η − 1, q + γ − 1) + ti(θ̂

k+η−1
i , θ̂q+γ−i ) + ti(θ̂

k+η
i , θ̂q+γ−1

−i )

− ti(θ̂k+η−1
i , θ̂q+γ−1

−i )
]
− ti(θ̂ki , θ̂

q+γ
−i )− ti(θ̂k+η

i , θ̂q−i) + ti(θ̂
k
i , θ̂

q
−i)). (1.31)

Note that

ti(θ̂
k+η−1
i , θ̂q+γ−i ) = sm1(ti; k + η − 2, q + γ − 1) + ti(θ̂

k+η−2
i , θ̂q+γ−i )

+ ti(θ̂
k+η−1
i , θ̂q+γ−1

−i )− ti(θ̂k+η−2
i , θ̂q+γ−1

−i ), (1.32)

and therefore it follows from (1.31) that

SM(η,γ)(ti; k, q) = sm1(ti; k + η − 1, q + γ − 1) +

[
sm1(ti; k + η − 2, g + γ − 1)

+ ti(θ̂
k+η−2
i , θ̂q+γ−i ) + ti(θ̂

k+η−1
i , θ̂q+γ−1

−i )− ti(θ̂k+η−2
i , θ̂q+γ−1

−i )

]
+ ti(θ̂

k+η
i , θ̂q+γ−1

−i )− ti(θ̂k+η−1
i , θ̂q+γ−1

−i )− ti(θ̂ki , θ̂
q+γ
−i )− ti(θ̂k+η

i , θ̂q−i) + ti(θ̂
k
i , θ̂

q
−i)
(1.33)

which is equal to

2∑
n=1

sm1(ti; k + η − n, q + γ − 1) + ti(θ̂
k+η−2
i , θ̂q+γ−i )− ti(θ̂k+η−2

i , θ̂q+γ−1
−i )

+ ti(θ̂
k+η
i , θ̂q+γ−1

−i )− ti(θ̂ki , θ̂
q+γ
−i )− ti(θ̂k+η

i , θ̂q−i) + ti(θ̂
k
i , θ̂

q
−i). (1.34)

Proceeding iteratively with this process of substitution and regrouping of terms for
n = (1, . . . , η) we obtain

SM(η,γ)(ti; k, q) =

η∑
n=1

sm1(ti; k + η − n, q + γ − 1) + ti(θ̂
k
i , θ̂

q+γ
−i )− ti(θ̂ki , θ̂

q+γ−1
−i )

+ ti(θ̂
k+η
i , θ̂q+γ−1

−i )− ti(θ̂ki , θ̂
q+γ
−i )− ti(θ̂k+η

i , θ̂q−i) + ti(θ̂
k
i , θ̂

q
−i)

=

η∑
n=1

sm1(ti; k + η − n, q + γ − 1)

+ ti(θ̂
k+η
i , θ̂q+γ−1

−i )− ti(θ̂ki , θ̂
q+γ−1
−i )− ti(θ̂k+η

i , θ̂q−i) + ti(θ̂
k
i , θ̂

q
−i)

=

η∑
n=1

sm1(ti; k + η − n, q + γ − 1) + SM(η,γ−1)(ti; k, q). (1.35)
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Iterating on Equation (1.35) for m = 1, . . . , γ − 1 we obtain:

SM(η,γ)(ti; k, q) =

η∑
n=1

sm1(ti; k + η − n, q + γ − 1) + SM(η,γ−1)(ti; k, q)

=

η∑
n=1

sm1(ti; k + η − n, q + γ − 1) +

η∑
n=1

sm1(ti; k + η − n, q + γ − 2) + SM(η,γ−2)(ti; k, q)

=

η∑
n=1

γ−1∑
m=1

sm1(ti; k + η − n, q + γ −m) + SM(η,1)(ti; k, q). (1.36)

Now, using the fact that

SM(η,1)(k, q) = ti(θ̂
k+η
i , θ̂q+1

−i )− ti(θ̂ki , θ̂
q+1
−i )− ti(θ̂k+η

i , θ̂q−i) + ti(θ̂
k
i , θ̂

q
−i)

= sm1(ti; k + η − 1, q) + SM(η−1,1)(ti; k, q)
=

∑η
n=1 sm1(ti; k + η − n, q)

and plugging this into Equation (1.36), we obtain

SM(η,γ)(ti; k, q) =

η∑
n=1

γ−1∑
m=1

sm1(ti; k + η − n, q + γ −m) +

η∑
n=1

sm1(ti; k + η − n, q)

=

η∑
n=1

γ∑
m=1

sm1(ti; k + η − n, q + γ −m)

=

k+η−1∑
l=k

q+γ−1∑
z=q

sm1(ti; l, z). (1.37)

Thus, the multiple-step supermodularity of any function of two ordered variables is
equal to the sum of one-step supermodularities, which establishes Step 2.

Step 3. Conclusion. Note that

Eθ−i [t
∗
i (θ̂

k
i , θ−i)] = Eθ−i [δi(θ̂

k
i , θ−i)]−Eθ−i [δi(θ̂ki , θ−i)]+Eθ−i [ti(θ̂ki , θ−i)] = Eθ−i [ti(θ̂

k
i , θ−i)]

(1.38)

and therefore transfers ti and t∗i have the same expected value given that all other
agents report their types truthfully. That is, assuming truthful reporting, the ex-
pected utility of an agent is the same under ti and t∗i . Since (x, t) is truthfully
implementable, the above implies that (x, t∗) is also truthfully implementable.
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Using the result eshablished in Step 2, the (η, γ)-step supermodularity of
Vi(x(·); θ) at any given announcement (θ̂ki , θ̂

q
−i) can now be written as:

G
(η,γ)
i (k, q; θ) = Vi(x(θ̂k+η

i , θ̂q+γ−i ); θ)− Vi(x(θ̂ki , θ̂
q+γ
−i ); θ)

−Vi(x(θ̂k+η
i , θ̂q−i); θ) + Vi(x(θ̂ki , θ̂

q
−i); θ)

=

k+η−1∑
l=k

q+γ−1∑
z=q

gi(l, z; θ). (1.39)

and the (η, γ)-step supermodularity of t∗i is analogously given by

S
(η,γ)
i (k, q) = δi(θ̂

k+η
i , θ̂q+γ−i )− δi(θ̂ki , θ̂

q+γ
−i )− δi(θ̂k+η

i , θ̂q−i) + δi(θ̂
k
i , θ̂

q
−i)

= −
k+η−1∑
l=1

q+γ−1∑
z=1

di(l, z) +
k−1∑
l=1

q+γ−1∑
z=1

di(l, z) +

k+η−1∑
l=1

q−1∑
z=1

di(l, z)−
k−1∑
l=1

q−1∑
z=1

di(l, z)

= −
k+η−1∑
l=k

q+γ−1∑
z=q

di(l, z). (1.40)

It is straightforward to check thatG
(η,γ)
i (k, q; θ)+S

(η,γ)
i (k, q) ≥ 0 for all θ̂ki , θ̂

q
−i, θ, k, q, η, γ

and i and, therefore, t∗ is supermodular implementable.

Moreover, Step 1 says that t∗ has the smallest one-step supermodularity among
all supermodular transfers t. Combined with Step 2, this establishes that t∗ has the
smallest (η, γ)-step supermodularity for any (η, γ) among all supermodular transfers
t. Thus we conclude that (x, t∗) is minimally supermodular implementable under the
chosen order profile {(≥1

i ,≥2
i )}i.

Proof of Corollary 1 In the proof of Theorem 1, we constructed transfers that min-
imally supermodular implemented the decision rule x under some chosen consistent
profile of orders {(≥1

i ,≥2
i )}i. Each (≥1

i ,≥2
i ) is a pair of complete orders on finite sets.

Since there are finitely many agents, for each i there are finitely many complete or-
ders, and consequently, finitely many consistent profiles. For each such profile, we can
compute the distance between the largest and the smallest equilibrium in the ex ante
induced game under the minimal transfers, using a metric d. Among all consistent
profiles of orders we can thus choose the one associated with the smallest interval
prediction as measured by d: denote this profile of orders by {(≥∗1i ,≥∗2i )}i and the
corresponding minimal transfers by t∗∗. Therefore, t∗∗ give the smallest interval pre-
diction under d among all minimally supermodular transfers on consistent profiles of
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orders.

Proof of Proposition 2
⇐ (sufficiency) The structure of the system implies that if there exists a solution
δi for all i, then for all θ′i, θ

′′
i , where θ′′i is an immediate successor of θ′i in Θi, and for

all θ′−i, θ
′′
−i, where θ′′−i is an immediate successor of θ′−i in Θ−i, the supermodularity

of δi(θ) is equal to

− min
θ∈Θ

[Vi(xi(θ
′′
i , θ
′′
−i), θ) − Vi(xi(θ

′′
i , θ
′
−i), θ) − Vi(xi(θ

′
i, θ
′′
−i), θ) + Vi(xi(θ

′
i, θ
′
−i), θ)].

(1.41)

We construct transfers t∗i (θ) by transforming any set of truth-revealing transfers ti(θ)
according to (1.3). Note that transfers ti(θ) and t∗i (θ) have the same expected value
given that all other agents report truthfully. Hence transfers t∗i (θ) also achieve truthful
implementation of the same decision rule.

Moreover, it is easy to see from (1.3) that the supermodularity of t∗i (θ) is
equivalent to that of δi(θ) for any two pairs of announcements. Since the one-step
supermodularity of δi(θ) is equivalent to that of t∗i (θ), and in turn equal to the above
equation, we can conclude that transfers t∗i (θ) have the smallest possible one-step
supermodularity.

To argue that transfers t∗i (θ) also have the smallest multiple-step supermodu-
larity, we rely on the proof of Theorem 1 (Step 2). In particular, (1.37) states that
the multiple-step supermodularity of any function of two ordered variables is equal
to the sum of all one-step supermodularities in between. We develop our argument
below.

Take any θ′′i ≥1
i θ
′
i and θ′′−i ≥−i θ′−i. Consider the sequence of immediate succes-

sors (θ0
i , θ

1
i , . . . , θ

M
i ) such that θ0

i = θ′i, θ
M
i = θ′′i , and θm+1

i is the immediate successor
of θmi for all m = 1, . . . ,M − 1. Since Θi is totally ordered by ≥1

i , this sequence
is unique. On the other hand, the set of opponent types Θ−i is only partially or-
dered by ≥−i. Thus, there may be several different sequences of immediate successors
that connect θ′−i to θ′′−i. Take any sequence of immediate successors (θ0

−i, θ
1
−i, . . . , θ

N
−i)

such that θ0
−i = θ′−i, θ

N
−i = θ′′−i, and θn−i is an immediate successor of θn−1

−i for all
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n = 1, . . . , N − 1. We can now apply (1.37) to these sequences:

δi(θ
′′
i , θ
′′
−i)− δi(θ′′i , θ′−i)− δi(θ′i, θ′′−i) + δi(θ

′
i, θ
′
−i) =

δi(θ
M
i , θ

N
−i)− δi(θMi , θ0

−i)− δi(θ0
i , θ

N
−i) + δi(θ

0
i , θ

0
−i) =

M∑
m=1

N∑
n=1

[δi(θ
m
i , θ

n
−i)− δi(θmi , θn−1

−i )− δi(θm−1
i , θn−i) + δi(θ

m−1
i , θn−1

−i )]. (1.42)

Combining (1.41) and (1.42), we obtain:

δi(θ
′′
i , θ
′′
−i)− δi(θ′′i , θ′−i)− δi(θ′i, θ′′−i) + δi(θ

′
i, θ
′
−i) =

M∑
m=1

N∑
n=1

−min
θ∈Θ

[Vi(xi(θ
m
i , θ

n
−i), θ)− Vi(xi(θmi , θn−1

−i ), θ)

− Vi(xi(θm−1
i , θn−i), θ) + Vi(xi(θ

m−1
i , θn−1

−i ), θ)]. (1.43)

Irrespective of which sequence of immediate successors connecting θ′−i to θ′′−i we
choose, the multiple-step supermodularity of δi(θ), and therefore of t∗i (θ), can al-
ways be represented as a sum of minimal one-step supermodularities. Thus, there are
no other transfers that can do better on any multiple step while ensuring that all one
steps are not smaller than the corresponding expression (1.41). Hence, transfers t∗i (θ)
have the smallest possible multiple-step supermodularities. We conclude t �ID t

∗ for
all t ∈ T .

⇒ (necessity) Suppose the system does not have a solution. Then any collection of
numbers {δi(θ) : θ ∈ Θ, i ∈ N}, and in particular any transfers {ti(θ) : θ ∈ Θ, i ∈ N},
must fall into one or both of the following cases:

Case 1: There exist i and two pairs of immediate successors (θ′i, θ
′′
i ) and

(θ′−i, θ
′′
−i) such that

ti(θ
′′
i , θ
′′
−i)− ti(θ′′i , θ′−i)− ti(θ′i, θ′′−i) + ti(θ

′
i, θ
′
−i) >

−min
θ∈Θ

[Vi(xi(θ
′′
i , θ
′′
−i), θ)− Vi(xi(θ′′i , θ′−i), θ)− Vi(xi(θ′i, θ′′−i), θ) + Vi(xi(θ

′
i, θ
′
−i), θ)].

(1.44)

In this case, we can choose different numbers {δ̃i(θ)} such that, for these particular
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reports, the equality is satisfied:

δ̃i(θ
′′
i , θ
′′
−i)− δ̃i(θ′′i , θ′−i)− δ̃i(θ′i, θ′′−i) + δ̃i(θ

′
i, θ
′
−i) =

−min
θ∈Θ

[Vi(xi(θ
′′
i , θ
′′
−i), θ)− Vi(xi(θ′′i , θ′−i), θ)− Vi(xi(θ′i, θ′′−i), θ) + Vi(xi(θ

′
i, θ
′
−i), θ)].

(1.45)

Using numbers {δ̃i(θ)}, we build transfers {t̃i(θ)} according to equation (1.3). Clearly,
it does not hold that t̃ �ID t, which violates the definition of minimally supermodular
implementation.

Case 2: There exist i and two pairs of immediate successors (θ′i, θ
′′
i ) and

(θ′−i, θ
′′
−i) such that

ti(θ
′′
i , θ
′′
−i)− ti(θ′′i , θ′−i)− ti(θ′i, θ′′−i) + ti(θ

′
i, θ
′
−i) <

−min
θ∈Θ

[Vi(xi(θ
′′
i , θ
′′
−i), θ)− Vi(xi(θ′′i , θ′−i), θ)− Vi(xi(θ′i, θ′′−i), θ) + Vi(xi(θ

′
i, θ
′
−i), θ)].

(1.46)

In this case, the supermodularity contained in ti is not sufficient to induce
a supermodular game, which also violates the definition of minimally supermodular
implementation.

Proof of Proposition 3 By way of contradiction, suppose that profile θ∗(·) ≥ θT (·)
is an equilibrium so that player i’s best response to θ∗−i(·) is θ∗i (·). Thus, for all i, θi,

and θ̂i such that θ∗i (θi) >
1
i θ̂i ≥1

i θi, the following must hold

Eθ−i [∆ui(θ
∗
−i(θ−i); θ)] ≡ Eθ−i [ui(θ

∗
i (θi), θ

∗
−i(θ−i); θ)]− Eθ−i [ui(θ̂i, θ∗−i(θ−i); θ)] ≥ 0.

(1.47)
We will show that this condition is not satisfied if the inequality in the theorem holds,
i.e. there must be a player for whom a deception closer to the truthful strategy is
strictly better than θ∗i (·). For simplicity, define15

Eθ−i [∆Vi(θ−i; θ̂i, θ−i)] ≡ Eθ−i [Vi(x(θ∗i (θi), θ−i); θ̂i, θ−i)]− Eθ−i [Vi(x(θ̂i, θ−i); θ̂i, θ−i)].
(1.48)

15The notation we used in Equation (1.15) becomes cumbersome in this proof, and so we replace

Vi(θ̂i . θ
∗
i (θi), θ−i; θ̂i, θ−i) with ∆Vi(θ−i; θ̂i, θ−i).

47



It follows from (1.8) and the definition of K̄i(θi) that for each i and θi:

Eθ−i [∆ui(θ
∗
−i(θ−i); θ)] ≤ Eθ−i [∆ui(θ−i; θ)] + di(θ

∗
i (θi), θ̂i)K̄i(θi)

∑
j 6=i

Eθj [dj(θ
∗
j (θj), θj)].

(1.49)
Since the social choice function (x, t) is implementable, the transfers {ti} induce truth-
ful revelation. Therefore, it must be that for all i and θi the incentive compatibility
constraint is satisfied, that is:

Eθ−i [Vi(x(θ̂i, θ−i); θ̂i, θ−i)]− Eθ−i [Vi(x(θ∗i (θi), θ−i); θ̂i, θ−i)] ≥
Eθ−i [ti(θ

∗
i (θi), θ−i)]− Eθ−i [ti(θ̂i, θ−i)]. (1.50)

Thus, we obtain

Eθ−i [∆ui(θ−i; θ)] = Eθ−i [Vi(x(θ∗i (θi), θ−i); θi, θ−i)]− Eθ−i [Vi(x(θ̂i, θ−i); θi, θ−i)]

+ Eθ−i [ti(θ
∗
i (θi), θ−i)]− Eθ−i [ti(θ̂i, θ−i)]

≤ Eθ−i [∆Vi(θ−i; θi, θ−i)]− Eθ−i [∆Vi(θ−i; θ̂i, θ−i)]
≤ −Eθ−i [γi(θ−i)]di(θ∗i (θi), θ̂i)di(θ̂i, θi). (1.51)

where the first inequality is derived after substituting in the LHS of (1.50) and the
second inequality follows from (1.10). Combining (1.49) and (1.51), we arrive at

Eθ−i [∆ui(θ
∗
−i(θ−i); θ)]

di(θ∗i (θi), θ̂i)
≤ K̄i(θi)

∑
j 6=i

Eθj [dj(θ
∗
j (θj), θj]− Eθ−i [γi(θ−i)]di(θ̂i, θi). (1.52)

If there exist i, θi, and θ̂i ∈ [θi, θ
∗
i (θi)) such that

K̄i(θi)
∑
j 6=i

Eθj [dj(θ
∗
j (θj), θj]− Eθ−i [γi(θ−i)]di(θ̂i, θi) < 0 (1.53)

then by (1.52) Eθ−i [∆ui(θ
∗
−i(θ−i); θ)] < 0, which contradicts (1.47). Therefore, θ∗(·)

is not a Bayesian equilibrium.

The same reasoning applies when θ∗(·) ≤ θT (·): if the condition of the theorem
holds, θ∗(·) cannot be a Bayesian equilibrium.

Proof of Proposition 4 Take any profile θ∗(·) ≥ θT (·) outside the neighborhood of
truthtelling. By way of contradiction, suppose that θ∗(·) is an equilibrium. Then, for
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all i and θi, the following must hold:

Eθ−i [∆ui(θ
∗
−i(θ−i); θ)] =

Eθ−i [ui(θ
∗
i (θi), θ

∗
−i(θ−i); θ)]− Eθ−i [ui(θ̂i(θi), θ∗−i(θ−i); θ)] ≥ 0 (1.54)

for all deceptions θ̂i(·) ∈ [θTi (·), θ∗i (·)]. This in turn implies that the rhs of (1.52) must
be nonnegative for all i, θi and θ̂i(·), and thus its expected value (over θi) must also
be nonnegative, that is

Eθi [K̄i(θi)]
∑
j 6=i

Eθj [dj(θ
∗
j (θj), θj]− Eθ−i [γi(θ−i)]Eθi [di(θ̂i(θi), θi)] ≥ 0. (1.55)

We will show that there is an agent i and a strategy θ̂i(·) for which this inequality is
violated, which is a contradiction.

Pick any agent i such that Eθi [di(θ
∗
i (θi), θi)] ≥ Eθj [dj(θ

∗
j (θj), θj)] for all j. Let

us show that agent i has an incentive to deviate from θ∗i (·) if the conditions of the
proposition hold. By the definition of a metric,

Eθi [di(θ
∗
i (θi), θi)] ≤ Eθi [di(θ

∗
i (θi), θ̂i(θi))] + Eθi [di(θ̂i(θi), θi)]

and
Eθi [di(θ̂i(θi), θi)] ≤ Eθi [di(θ

∗
i (θi), θ̂i(θi))] + Eθi [di(θ

∗
i (θi), θi)],

and hence

|Eθi [di(θ∗i (θi), θi)]− Eθi [di(θ̂i(θi), θi)]| ≤ Eθi [di(θ
∗
i (θi), θ̂i(θi))] (1.56)

for any θ̂i(·). Note also that∑
j 6=iEθj [dj(θ

∗
j (θj), θj]

Eθi [di(θ
∗
i (θi), θi)]

≤ (n− 1) <
Eθ−i [γi(θ−i)]

Eθi [K̄i(θi)]
, (1.57)

where the first inequality follows from our choice of i, and the second inequality
follows from the condition of the proposition. Hence,

Eθi [K̄i(θi)]
∑
j 6=i

Eθj [dj(θ
∗
j (θj), θj)]− Eθ−i [γi(θ−i)]Eθi [di(θ∗i (θi), θi)] (1.58)

≤ Eθi [K̄i(θi)]
∑
j 6=i

Eθj [dj(θ
∗
j (θj), θj)]− Eθ−i [γi(θ−i)]

∑
j 6=iEθj [dj(θ

∗
j (θj), θj)]

n− 1

=
∑
j 6=i

Eθj [dj(θ
∗
j (θj), θj)]

[
Eθi [Ki(θi)]−

Eθ−i [γi(θ−i)]

n− 1

]
< 0. (1.59)
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It follows from (1.56) and the definition of ε(Θ) that we can choose a deviation
θ̂i(·), which is closer to truthtelling, i.e. θ∗i (·) >i θ̂i(·), and which is close enough to
θ∗i (·) so that

Eθi [di(θ
∗
i (θi), θi)]− ε(Θ) ≤ Eθi [di(θ̂i(θi), θi)]. (1.60)

By (1.58) and (1.60), we obtain

Eθi [K̄i(θi)]
∑
j 6=i

Eθj [dj(θ
∗
j (θj), θj)]− Eθ−i [γi(θ−i)]Eθi [di(θ̂i(θi), θi)]

≤ Eθi [K̄i(θi)]
∑
j 6=i

Eθj [dj(θ
∗
j (θj), θj)]− Eθ−i [γi(θ−i)] [Eθi [di(θ

∗
i (θi), θi)]− ε(Θ)]

which is negative if∑
j 6=i

Eθj [dj(θ
∗
j (θj), θj)]

[
Eθ−i [γi(θ−i)]

n− 1
− Eθi [Ki(θi)]

]
> Eθ−i [γi(θ−i)]ε(Θ),

and thus, if

min
i

{∑
j 6=i

Eθj [dj(θj, θ
∗
j (θj))]

}
> ε(Θ)

maxi{Eθ−i [γi(θ−i)]}

mini

{
Eθ−i [γi(θ−i)]

n−1
− Eθi [Ki(θi)]

} . (1.61)

Therefore, (1.55) is violated, which means that θ̂i(·) is a profitable deviation from
θ∗i (·). Thus, θ∗(·) is not an equilibrium. An analogous argument applies to the case
θ∗(·) ≤ θT (·).

1.8.4 Unconditional Minimal Implementation and Order Reducibility

We first define a richness condition on decision rule x.

Definition 9. A decision rule x(θ) is order reducible if for each i, there are sets
{Gi

p}Pp=1 such that (a) Θ−i = ∪Pp=1G
i
p, (b) for each θi, xi(θ) = xi(θi, θ

′
−i) for all

θ−i, θ
′
−i ∈ Gi

p, and (c) if θ−i ∈ Gi
p, all immediate successors of θ−i must be in Gi

p ∪
Gi
p+1.

Order reducibility ensures that, through the structure of the decision rule,
opponents’ type profiles can be put into groups to form a linear path between the
images of xi. This linear path preserves the product order on Θ−i and does not
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impose any ordering of images between unordered types. To illustrate the definition,
consider a setting with n = 3 agents and Θi = {1, 2} for all i. Assume types are
ordered according to the usual order, i.e. 2 >1

i 1 for all i. Suppose the decision rule
is xi(θ) = x(θ) = h(

∑
θi) where h is some strictly increasing real-valued function

(Mathevet [45] presents several examples where the efficient decision rule takes this
form). This decision rule is order reducible: for each agent i, it yields partition
Gi

1 = {(1, 1)}, Gi
2 = {(1, 2), (2, 1)} and Gi

3 = {(2, 2)}. Note that for n = 2, order
reducibility is trivially satisfied by all decision rules. Indeed, for each j 6= i, let each
type in Θj form its own group with an index that corresponds to the position of the
type under >1

j . Below we present an example where order reducibility is violated.

Proposition 5. Let f = (x, t) be a social choice function such that x is order
reducible. If f is implementable, then there exist to such that (x, to) is minimally
supermodular implementable.

This proposition establishes minimal supermodular implementability of a class
of social choice functions. For any implementable social choice function, if the decision
rule satisfies order reducibility, then there exist transfers to that guarantee truthful
supermodular implementation as well as the smallest equilibrium set among all su-
permodular transfers. There are many ways in which a mechanism can be converted
into a supermodular one. It is therefore useful to describe the best way to convert it
(and when it exists) given the objective of minimized equilibrium set. In the proof of
the proposition, we provide an explicit formula for transfers to.

Order reducibility may seem to be a restrictive condition. Unfortunately, re-
laxing it just a little in a simple setting already defies existence of minimal transfers,
as the following example demonstrates. Consider a three-agent two-type example.
Let Θi = {1, 2} and 2 >1

i 1 for all i. Choose a decision rule x such that for some
i, the only possible grouping is Gi

1 = {(1, 1)}, Gi
2 = {(1, 2)}, Gi

3 = {(2, 1), (2, 2)}
(actual group indexes do not matter). This decision rule is not order reducible since
(2,1), despite being an immediate successor of (1,1), is in a group that does not im-
mediately follow G1

i . For most valuation functions, a solution to our system of linear
equations does not exist in this case. Thus, the transfers to are not minimal but no
other transfers are.

Proof of Proposition 5 Suppose f = (x, t) is implementable and x is order re-
ducible. For every i ∈ N , assign to each element θi ∈ Θi an index k that corresponds
to its position in the set Θi under the total order ≥1

i . Since x is order reducible, each
element θ−i ∈ Θ−i can be assigned an index p according to the group Gi

p to which
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it belongs. Note that more than one element θ−i can be assigned the same index p,
because all the elements in group Gp share the same index p. Letting

δi(θ
k
i , θ

p
−i) = −

k−1∑
l=1

p−1∑
z=1

min
θ∈Θ

[Vi(x(θl+1
i , θz+1

−i ), θ)− Vi(x(θli, θ
z+1
−i ), θ)

− Vi(x(θl+1
i , θz−i), θ) + Vi(x(θli, θ

z
−i), θ)] (1.62)

for all θki ∈ Θi and θp−i ∈ Θ−i, we define

toi (θ
k
i , θ

p
−i) = δi(θ

k
i , θ

p
−i)− Eθ−i [δi(θki , θ−i)] + Eθ−i [ti(θ

k
i , θ−i)] (1.63)

and show that (x, to) is minimally supermodular implementable.

Note that Eθ−i [t
o
i (θ

k
i , θ−i)] = Eθ−i [ti(θ

k
i , θ−i)] and thus (x, to) is truthfully im-

plementable. Moreover, the supermodularity of toi (θ
k
i , θ

p
−i) is equal to the supermod-

ularity of δi(θ
k
i , θ

p
−i). We proceed to show in separate steps of the proof that transfers

to achieve minimal supermodularities across immediate successors on (Θi,≥1
i ) and

(Θ−i,≥−i) (Step 1) and that the supermodularities of toi across (multiple-step) suc-
cessive types are sums of supermodularities between immediate (one-step) successors
(Step 2).

Step 1. Consider any two pairs of immediate successors θ′′i ≥1
i θ
′
i and θ′′−i ≥−i

θ′−i. As they are immediate successors, we can instead write θk+1
i ≥1

i θ
k
i . The (one-

step) supermodularity of toi is

toi (θ
k+1
i , θ′′−i)− toi (θki , θ′′−i)− toi (θk+1

i , θ′−i) + toi (θ
k
i , θ
′
−i) =

δi(θ
k+1
i , θ′′−i)− δi(θki , θ′′−i)− δi(θk+1

i , θ′−i) + δi(θ
k
i , θ
′
−i). (1.64)

Since x is order reducible and θ′′−i ≥−i θ′−i are immediate successors, it must be that
either θ′−i, θ

′′
−i ∈ Gi

p or θ′−i ∈ Gi
p and θ′′−i ∈ Gi

p+1.
Case 1. If θ′−i, θ

′′
−i ∈ Gi

p, then by order reducibility, x(θi, θ
′
−i) = x(θi, θ

′′
−i) for all θi and

we obtain

Vi(x(θk+1
i , θ′′−i); θ) − Vi(x(θki , θ

′′
−i); θ) − Vi(x(θk+1

i , θ′−i); θ) + Vi(x(θki , θ
′
−i); θ) = 0.

(1.65)

Using equation (1.62) for δi we have that δi(θi, θ
′
−i) = δi(θi, θ

′′
−i) = δi(θi, θ

p
−i) for all

θi. The supermodularity of toi hence becomes:

toi (θ
k+1
i , θ′′−i)− toi (θki , θ′′−i)− toi (θk+1

i , θ′−i) + toi (θ
k
i , θ
′
−i) =

δi(θ
k+1
i , θp−i)− δi(θki , θ

p
−i)− δi(θk+1

i , θp−i) + δi(θ
k
i , θ

p
−i) = 0. (1.66)
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Hence, for all ti such that (x, t) is supermodular implementable it must hold that:

ti(θ
k+1
i , θ′′−i)− ti(θki , θ′′−i)− ti(θk+1

i , θ′−i) + ti(θ
k
i , θ
′
−i) ≥

−min
θ

[Vi(x(θk+1
i , θ′′−i); θ)− Vi(x(θki , θ

′′
−i); θ)− Vi(x(θk+1

i , θ′−i); θ) + Vi(x(θki , θ
′
−i); θ)]

= 0 = toi (θ
k+1
i , θ′′−i)− toi (θki , θ′′−i)− toi (θk+1

i , θ′−i) + toi (θ
k
i , θ
′
−i). (1.67)

Therefore, for all i and immediate successors θ′−i, θ
′′
−i ∈ Gi

p, transfers toi have the
smallest one-step supermodularity.
Case 2. If θ′−i ∈ Gi

p and θ′′−i ∈ Gi
p+1, using equation (1.62) to obtain the supermodu-

larity of toi we get

toi (θ
k+1
i , θ′′−i)− toi (θki , θ′′−i)− toi (θk+1

i , θ′−i) + toi (θ
k
i , θ
′
−i) =

δi(θ
k+1
i , θp+1

−i )− δi(θki , θ
p+1
−i )− δi(θk+1

i , θp−i) + δi(θ
k
i , θ

p
−i) =

−min
θ

[Vi(x(θk+1
i , θp+1

−i ); θ)−Vi(x(θki , θ
p+1
−i ); θ)−Vi(x(θk+1

i , θp−i); θ)+Vi(x(θki , θ
p
−i); θ)] =

−min
θ

[Vi(x(θk+1
i , θ′′−i); θ)− Vi(x(θki , θ

′′
−i); θ)− Vi(x(θk+1

i , θ′−i); θ) + Vi(x(θki , θ
′
−i); θ)].

(1.68)

Hence, for all ti such that (x, t) is supermodular implementable it must hold that:

ti(θ
k+1
i , θ′′−i)− ti(θki , θ′′−i)− ti(θk+1

i , θ′−i) + ti(θ
k
i , θ
′
−i) ≥

−min
θ

[Vi(x(θk+1
i , θ′′−i); θ)− Vi(x(θki , θ

′′
−i); θ)− Vi(x(θk+1

i , θ′−i); θ) + Vi(x(θki , θ
′
−i); θ)]

= toi (θ
k+1
i , θ′′−i)− toi (θki , θ′′−i)− toi (θk+1

i , θ′−i) + toi (θ
k
i , θ
′
−i). (1.69)

Therefore, for all i and immediate successors θ′−i ∈ Gi
p and θ′′−i ∈ Gi

p+1, transfers toi
have the smallest one-step supermodularity.

Cases 1 and 2 allow us to conclude that transfers to achieve minimal super-
modularities across any pair of immediate successors on (Θi,≥1

i ) and (Θ−i,≥−i), as
long as x is order reducible.

Step 2. Consider the supermodularity between successive types θki , θ
k+q
i and

θ′−i ∈ Gi
p, θ

′′
−i ∈ Gi

p+m. For q = 1 and m = 1 (or m = 0) this would reduce to the
case of supermodularities between immediate successors considered in Step 1. Using
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equation (1.62), we obtain

toi (θ
k+q
i , θ′′−i)− toi (θki , θ′′−i)− toi (θ

k+q
i , θ′−i) + toi (θ

k
i , θ
′
−i) =

δi(θ
k+q
i , θp+m−i )− δi(θki , θ

p+m
−i )− δi(θk+q

i , θp−i) + δi(θ
k
i , θ

p
−i) =

−
k+q−1∑
l=k

p+m−1∑
z=p

min
θ∈Θ

[Vi(x(θl+1
i , θz+1

−i ), θ)− Vi(x(θli, θ
z+1
−i ), θ)

− Vi(x(θl+1
i , θz−i), θ) + Vi(x(θli, θ

z
−i), θ)]. (1.70)

Hence, the q,m-step supermodularity of transfers toi is a sum of all the one-step
supermodularities between the groups Gp and Gp+m. We next show that this sum
between the groups is equivalent to a sum of minimal one-step supermodularities on
Θi×Θ−i, all of which need to be minimized for minimal supermodular implementation
to hold.

Take a sequence θki , . . . , θ
k+q
i of immediate successors under ≥1

i , and a sequence
θ1
−i, . . . , θ

1+s
−i of immediate successors under ≥−i such that θ1

−i = θ′−i and θ1+s
−i = θ′′−i.

Since θ′−i ∈ Gi
p, θ

′′
−i ∈ Gi

p+m, and x is order reducible, it cannot be that θ′′−i is more
that s groups away from θ′−i, i.e. it must be that s ≥ m.
Case 1. If m = s, then

toi (θ
k+q
i , θ′′−i)− toi (θki , θ′′−i)− toi (θ

k+q
i , θ′−i) + toi (θ

k
i , θ
′
−i) = (1.71)

−
k+q−1∑
l=k

p+m−1∑
z=p

min
θ∈Θ

[Vi(x(θl+1
i , θz+1

−i ), θ)− Vi(x(θli, θ
z+1
−i ), θ)

−Vi(x(θl+1
i , θz−i), θ) + Vi(x(θli, θ

z
−i), θ)] = (1.72)

−
k+q−1∑
l=k

s−1∑
w=1

min
θ∈Θ

[Vi(x(θl+1
i , θ̂w+1

−i ), θ)− Vi(x(θli, θ
w+1
−i ), θ)

−Vi(x(θl+1
i , θw−i), θ) + Vi(x(θli, θ

w
−i), θ)]. (1.73)

Since the supermodularity of Vi is equal to

k+q−1∑
l=k

s−1∑
w=1

[Vi(x(θl+1
i , θw+1

−i ), θ)− Vi(x(θli, θ
w+1
−i ), θ)

− Vi(x(θl+1
i , θw−i), θ) + Vi(x(θli, θ

w
−i), θ)] (1.74)
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and all of the summands involve one-step supermodularities, it holds that

Vi(x((θk+q
i , θ′′−i), θ)− Vi(x(θki , θ

′′
−i), θ)− Vi(x(θk+q

i , θ′−i), θ) + Vi(x(θki , θ
′
−i), θ)]

+ [toi (θ
k+q
i , θ′′−i)− toi (θki , θ′′−i)− toi (θ

k+q
i , θ′−i) + toi (θ

k
i , θ
′
−i)] ≥ 0 (1.75)

and the multiple-step supermodularity of toi is the smallest possible, so that all one-
steps are minimally supermodular.
Case 2. If s > m, it means that s−m immediate successors θ̃′′−i under ≥−i are in the

same category as their immediate predecessors θ̃′−i and are disregarded in the sum
(1.72). However, note that for all of these successors, it holds that:

Vi(x((θk+1
i , θ̃′′−i), θ) − Vi(x(θki , θ̃

′′
−i), θ) − Vi(x(θk+1

i , θ̃′−i), θ) + Vi(x(θki , θ̃
′
−i), θ)] = 0

(1.76)

and hence equality between (1.72) and (1.73) prevails. The rest of the argument for
this case follows that for case 1.

Steps 1 and 2 prove that transfers toi minimally supermodular implement the
decision rule x under the chosen profile of total orders {≥1

i }i.

55



Chapter 2

Precision of Information in Second Price Common

Value Auctions

2.1 Introduction

This papers considers the optimal information revelation policy when a pri-

vately informed seller has control over the precision of signals that potential bidders

receive about the common value of a single object. The objective of the seller is to

maximize his payoff, which is defined as expected revenue minus cost of precision.

There is a common prior over the value of the object. Bidders form their valuations

based on the publicly observed level of precision set by the seller and the privately

observed signals they receive.

To our best knowledge, this is the first paper to study the information reve-

lation incentives of the auctioneer in a common value setting where bidders observe

conditionally independent signal realizations and precision of information is costly to

the seller. The seminal results of Milgrom and Weber (1982) are related to our work,

but they are derived in a different informational environment. In a model with affili-

ated values they show that it is optimal for the seller to reveal as much information

as possible about the quality of her product through a public signal observable by

all bidders. This holds true irrespective of whether the seller has a high or a low

quality product and results in a fully revealing equilibrium. The provision of public

information decreases the winner’s curse and the informational rent of the winning

bidder, thus increasing revenues.

56



In our environment the conclusions are quite different. The first distinction

of our model lies in the fact that the only way the seller can control the amount of

information she supplies is by determining the precision of the private signals that

bidders observe. Therefore, if the seller can commit to her policy before observing the

value of the object, the winner’s curse is the lowest either for low values of precision

or for high values of precision, and the highest for intermediate values of precision.

In the presence of any cost to precision, it is hence ex ante optimal to choose the

smallest possible level of precision. The second distinction is that in our set-up there

are two different channels through which the seller can influence bidders’ beliefs. The

first channel is the choice and announcement of a precision level which, in the case of

no commitment, is a signal of the type of seller. The second channel is stochastic in

nature and represents the privately observed signals, the joint distribution of which is

determined by the chosen level of precision. The most important contribution of the

model is to show that pooling equilibria can be sustained in the presence of cost to

precision of information when sellers send conditionally independent private signals.

This is in contrast with the full separation results of Milgrom and Weber (1982) and

might explain observed the lack of transparency in some markets.

Our model is closely related to the signaling literature, and in particular to

the paper by Daley and Green (2012). They consider a market signaling model in

which receivers observe both a costly signal as well as a stochastic “grade” that is

correlated with the sender’s type. The main difference, and an important one at that,

is the fact that in their framework the stochastic grades are publicly observable, while

in ours they are privately observed. This paper is also related to the literature on

information in mechanism design, e.g. Bergemann and Pesendorfer (2007), Eso and

Szentes (2007), and Gershkov (2002).

Our paper is organized as follows: Section 2 describes the model. Section 3
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addresses the optimal information precision for the case of perfect commitment, while

Section 4 contains the characterization of equilibria in the signaling environment.

Section 5 addresses some interesting extensions of the model, and Section 6 concludes.

2.2 Model

A seller (sender) has a single object for sale, which she values at 0. She

privately observes the quality V of the object she is selling, which can be either high

(1) or low (0), i.e. V ∈ {0, 1}. We will use V to refer to both the quality of the object

and the type of seller.

There is a set of N bidders (receivers) each indexed by i ∈ {1, 2, . . . , N}, which

share a commonly known prior over the quality of the object p ≡ Pr(V = 1) ∈ (0, 1).

We will first focus on the case when there are two bidders, i.e. N = 2. Each bidder

privately observes the realization of a random signal Si that reveals information about

V . The signals Si’s are independently distributed conditional on V and can take on

the values {0, 1
2
, 1}. The seller chooses and publicly announces the precision of signals

δ ∈ [0, 1], which determines for each Si the probability of a perfectly informative signal

realization. In particular, the Si’s have the following distribution: Pr(Si = V ) = δ,

Pr(Si = 1
2
) = 1− δ.

We focus on this particular signal structure since it allows for straightforward

updating following Bayes’ rule. Conditional on observing a signal realization Si = 0

or Si = 1 bidder i knows he has observed the true quality V . On the other hand,

conditional on observing Si = 1
2

(a completely uninformative signal or a ”blank page”)

bidder i continues to assign the prior probabilities associated with each possible value

of V .

We assume that precision is costly. Any level of precision is equally costly for
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both types of sellers, i.e. a seller of a high quality product does not have any cost

advantage when compared to a low quality seller. We restrict attention to affine cost

functions of the form C(δ) = a + b · δ with a ≥ 0 and b ≥ 0 and C(0) = 0. The

objective of the seller is to maximize her payoff, which is equal to expected revenue

minus cost of precision.

Each bidder i submits a bid bi ∈ R+. The format of the auction is fixed at

a standard second-price sealed-bid auction, in which the highest bidder receives the

object and pays the second highest bid. In the event of a tie at the highest bid, each

of the highest bidders are awarded the object with equal probability. The utility of

each bidder is quasi-linear and given by ui = 1(V − b−i) where b−i = maxj 6=i bj. The

indicator function 1 takes on the value of 1 if bidder i is awarded the object and 0

otherwise. In the analyses to follow we restrict attention to symmetric equilibrium

strategies.

2.3 Perfect Commitment

In this section we consider the case when the seller chooses and publicly an-

nounces the precision δ before observing the quality of the product she is selling. We

assume that once announced, δ cannot be changed and the seller is thus perfectly

committed to the chosen level of precision. In this case the choice of δ cannot be

interpreted as a signal regarding the quality of the product. Consequently, a bidder

would update his prior belief p only if he were to observe a perfectly informative signal

Si = 0 or Si = 1. It is a weakly dominant strategy for each player to bid according

to the following bidding function:

bi(δ, Si) =

{
Si if Si = 0, 1
p if Si = 1

2
.

The expected revenue for a high quality seller who chooses a level of precision
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δ is E[R|V = 1, δ] = δ2 + (1− δ2)p, while for a low quality seller the expected revenue

is given by E[R|V = 0, δ] = (1− δ)2p. Thus, the ex ante expected seller revenue for

any chosen level of precision δ is:

E[R|δ] = p[1− 2δ(1− p) + 2δ2(1− p)] (2.1)

This is a convex function in δ, which achieves a minimum at δ = 0.5.

0

1

0 1
δ

E[R]

0.5

p

Figure 2.1: Ex Ante Expected Revenue

Therefore, in the presence of any cost to precision it is ex ante optimal for the

seller to choose the lowest possible level of precision, i.e. δ = 0. This is the statement

of our first result.

Proposition 6. Assume the seller can perfectly commit to a precision level δ before

observing the quality of the product she is selling. In the presence of any cost to

precision, i.e. C(δ) > 0 for δ 6= 0, the ex ante expected payoff maximizing level of

precision is δ = 0:

arg max
δ

[E[R|δ]− C(δ)] = 0
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Proof Ex ante expected revenue as given by 2.1 is maximized at δ = 0 or δ = 1. The

cost of precision are minimized at δ = 0 whenever a > 0 and/or b > 0, or in other

words whenever there is some strictly positive costs associated with strictly positive

levels of precision. Therefore, in the presence of any positive cost to precision, δ = 0

maximizes ex ante expected revenue and minimizes cost. This implies that ex ante

expected payoff defined as the difference between ex ante expected revenue and cost

associated with precision is maximized at δ = 0.

It is worthwhile to interpret this result in the context of Milgrom and Weber’s

linkage principle. Notice that in their analysis the seller discloses information in

the form of a public signal, while here the seller chooses the precision or probabilistic

informativeness of privately observed signals. Therefore, in their paper, the statistical

linkage between a bidder’s information and the price he would pay upon winning

increases with the release of more or more precise public information, which reduces

the winner’s curse and increases expected revenue. In contrast, in our case, this

linkage is the strongest either when δ = 0, i.e. completely uninformative signals,

or for δ = 1, in which case the signals are perfectly informative. This provides the

intuition for the above results.

2.4 No Commitment: The Signaling Environment

In this section we focus on the informed seller case. In other words, the seller

knows the quality of the object that she has for sale at the time when she makes and

announces the decision regarding the level of signal precision δ. The choice of δ can

be therefore interpreted as a signal by the buyers.
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2.4.1 Solution Concept and Beliefs

The solution concept that we use throughout the analysis is that of perfect

bayesian equilibrium (PBE). All bidders hold identical beliefs off the equilibrium

path. We also consider a refinement on the off-equilibrium-path beliefs (D1) in order

to derive sharper predictions and more concrete insights. Buyers use Bayes rule to

update their beliefs after any history for which it is possible to do so.

After observing the publicly announced precision δ, buyers update their prior

belief to an interim belief µ(δ) ≡ Pr(V = 1|δ). Notice that this interim belief is

common to all buyers. In addition, each buyer privately observes a signal Si(δ, V )

and subsequently updates the interim belief to a final belief

πi[µ(δ), Si(δ, V )] = πi(δ, V ) ≡ Pr(V = 1|δ, Si).

The final beliefs are specific to the individual bidder as they are also based on the

privately observed signals Si. Furthermore, due to the distributional assumptions

on the Si’s, the final belief of bidder i is either equal to 0 or 1 (in case a perfectly

informative signal Si is observed) or it remains equal to the interim belief (when the

signal is completely uninformative, i.e. Si = 1
2
). More specifically, the updating works

as follows: πi(µ(δ), Si = 1) = 1, πi(µ(δ), Si = 0) = 0, and πi(µ(δ), Si = 1
2
) = µ(δ).

Since the update based on the privately observed signals is purely statistical,

the interim belief is all a seller of a certain type needs in order to calculate her

expected revenue. Indeed, the joint distribution of the private Si signals determines

how the common interim belief µ(·) is going to be updated to the individual final

belief πi(·). Therefore, the choice of precision level δ determines, on the one hand,

the equilibrium interim belief µ(·), and on the other, the statistical distribution over

private signals Si conditional on quality V . The combination of these two channels
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(equilibrium and statistical) determines the joint distribution over final beliefs πi for

a given quality V .

We will now proceed by characterizing the set of PBE of this signaling game.

There are pooling, separating, and partial pooling1 equilibria. The set of PBE is

indeed large, as there is a lot of flexibility when specifying off-equilibrium-path beliefs.

In the following, we restrict attention to equilibria satisfying the intuitive criterion of

Cho and Kreps (1987).

2.4.2 Pooling Equilibria

Pooling equilibria are characterized by both types of seller choosing the same

level of precision δ̃ ∈ [0, δ̄]. The upper bound on the set of pooling equilibria δ̄

is determined from the combination of incentive compatibility constraints for the

different types of seller.

In the case of pooling the interim beliefs are µ(δ) = p for δ ≥ δ̃ and µ(δ) = 0

for δ < δ̃. For any pooling equilibrium with δ̃ it is a symmetric weakly dominant

strategy to bid according to:

bi(δ̃, Si) =

{
Si if Si = 0, 1
p if Si = 1

2
.

The incentive compatibility constraint for the low type seller in a pooling

equilibrium (ICLp) addresses only downward deviations. Upward deviations to higher

δ’s are never profitable for this type of seller as they increase the probability of buyers

realizing that the true quality is V = 0 which lowers expected revenue while at the

same time increases the cost. The most profitable downward deviations is to δ = 0:

(1− δ̃)2p− a− bδ̃ ≥ 0 (ICLp)

1Partial pooling equilibria are characterized by the high type seller choosing a precision level δ̂
and the low type seller mixing between δ = 0 and δ = δ̂.
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This condiction pins down a value δ̄L = 1+
b−
√
b2+4p(a+b)

2p
, which represents the highest

level of precision that a low type seller would choose in a pooling equilibrium. For δ̄L

to be positive it needs to hold that p ≥ a.

For the high type seller downward deviations are never profitable. The in-

centive compatibility constraint for the high type seller in any pooling equilibrium

(ICHp) therefore guarantees that no upward deviations are profitable. In particular,

for all δ̃ > 0 it has to hold that:

δ̃2 + (1− δ̃2)p− a− bδ̃ ≥ 1− a− b (ICHp)

On the graph below, condition (ICHp) can be interpreted as the vertical distance

between the green and the red line being bigger at any pooling equilibrium δ̃ > 0

than the distance between these two lines at δ = 1. Condition (ICHp) holds for

values of δ smaller than δ̄H = b
1−p − 1 and at δ = 1. Therefore, the upper bound on

the range of sustainable pooling equilibria is determined as δ̄ = max
{

0,min{δ̄L, δ̄H}
}

.

Notice that the lowest cost pooling equilibrium occurs at δ̃ = 0. This equi-

librium is the most easily sustainable pooling equilibrium in terms of the incentive

compatibility constraint for the high type seller, because the (ICHp) constraint for it

is simply p ≥ 1− a− b. Therefore, this lowest cost pooling equilibrium is the last one

that ceases to exist as we decrease the cost parameters. That is, if the sum of the fixed

cost and the marginal cost parameters, (a+ b) falls below a certain level determined

by the prior, (1− p), the lowest cost pooling equilibrium is no longer sustainable and

neither are any other pooling equilibria. These conclusions are summarized in the

next two propositions.

Proposition 7. A necessary and sufficient condition for the existence of a pooling

equilibrium with δ̃ = 0 is p ≥ 1− a− b.
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Figure 2.2: Pooling Equilibria (Constraints and Bounds)

Proof The result is derived from (ICHp) and (ICLp) when δ̃ = 0.

Proposition 8. A necessary and sufficient condition for the existence of a strictly

positive pooling equilibrium (δ̃ > 0) is p ≥ max{a, 1− b}.

Proof The result of the proposition follows in a straightforward way from the preced-

ing incentive compatibility constraints.

In the presence of cost to precision, pooling equilibria can be thus sustained for

a wide range of parameter values. This is in sharp contrast with the fully separating

results of Milgrom and Weber (1982), according to which the high type seller always

reveals all the information she has; in our environment that corresponds to the high

type always choosing δ = 1, and the low type choosing δ = 0. Another point worth

emphasizing is that our results are not driven by differences in the explicit costs of

precision between the high and the low quality seller, as the parameters of the cost

65



function a and b are the same across types. Instead, the implicit costs and benefits

associated with increasing precision are the driving force behind the equilibria here.

The implicit costs to the low quality seller of increasing δ come with the increased

probability of having bidders observe her true type, while to the high quality seller

increasing δ is beneficial for the exact same reason.

It is instructive to derive the expression for the ex ante expected seller payoff

in the lowest cost pooling equilibrium, so that we can later compare that to the

corresponding expression in the best separating equilibrium. When δ̃ = 0 the expected

revenue is simply equal to the prior, while the cost of precision is zero. Thus, the

expected seller payoff in the lowest cost pooling equilibrium is:

E[P |δ̃ = 0] = p. (2.2)

2.4.3 Separating Equilibria

In a separating equilibrium the high type seller chooses a level of precision

δ∗ ∈ [δ, 1], while the low type seller chooses δ = 0. The interim beliefs in a separating

equilibrium are µ(δ) = 1 for δ ≥ δ∗ and µ(δ) = 0 for δ < δ∗. In any separating

equilibrium characterized by δ∗ it is a weakly dominant strategy to bid according to:

it is a weakly dominant strategy for each player to bid according to the following

bidding function:

bi(δ, Si) =


Si if Si = 0, 1
1 if Si = 1

2
and δ = δ∗

0 if Si = 1
2

and δ = 0.

The lower bound δ on the set of precision levels chosen by the high type seller in

any separating equilibrium is determined by the incentive compatibility constraints

for the low type seller, as the ones for the high type are always satisfied for any

δ∗. The incentive compatibility constraint for the low type seller in any separating

equiilibrium (ICLs) ensures that an upward deviation to δ∗ is not profitable:
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0 ≥ (1− δ∗)2 − a− bδ∗ (ICLs)

On the graph below this condition can be interpreted as the purple curve being below

the red cost line in any separating equilibrium. The point of intersection between these

two curves determines the value of δ, which algebraically is derived as a solution to

the (ICLs) condition holding with equality: δ = 1 +
b−
√
b2+4(a+b)

2
.

Proposition 9. A necessary condition for the existence of a separating equilibrium

is a < 1.

Proof For the existence of a separating equilibrium we need to have δ > 0. From the

formula for δ given above we can derive this is equivalent to a < 1, i.e. the magnitude

of the fixed cost parameter needs to be smaller than 1.

0

1

0 1

δ

a+ bδ

δ2

(1− δ)2

(1− δ)2p

δ2 + (1− δ2)p

δ̄L δ

p

Figure 2.3: Separating Equilibria (Constraints and Bounds)

Therefore, from the perspective of the seller, the best separating equilibrium

is the one associated with the lowest cost, i.e. δ∗ = δ. The ex ante expected seller

67



payoff in this lowest cost separating equilibrium is

E[P |δ = δ] = p[1− a− bδ] = p− p

(
a+ b+

b2 − b
√
b2 + 4(a+ b)

2

)
. (2.3)

2.4.4 Partial Pooling Equilibria

The set of partial pooling equilibria is characterized by the high type seller

always choosing a precision level δ̂, while the low type seller mixes with probability

1 − λ on δ = 0 and probability λ on δ̂. Hence, the interim beliefs in partial pooling

equilibria are given by µ(δ) = p
p+λ(1−p) for δ ≥ δ̂ and µ(δ) = 0 for δ < δ̂. The set of

precision levels δ̂ which constitute partial pooling equilibria is found by solving the

indifference condition for the low type seller (ICLpp):

0 = (1− δ̂)2 p

p+ λ(1− p)
− a− bδ̂ (ICLpp)

which also determines the mixing probability λ:

λ =
p

1− p

[(1− δ̂)2

a+ bδ̂
− 1
]
. (2.4)

The incentive compatibility constraint of the high type seller

δ̂2 + (1− δ̂2)
p

p+ λ(1− p)
− a− bδ̂ ≥ 0 (ICHpp)

is always satisfied as long as (ICLpp) holds.

The fact that λ and δ̂ are inversely related becomes apparent from equation

(ICLpp). An increase (decrease) in δ̂ leads to an unambiguous decrease (increase) of

the righthand side of the equation. In order to preserve the equality, λ has to decrease

(increase). We can thus determine the bounds on the set of partial pooling equilibria

by considering the extreme values that λ can take on. For λ = 1 we obtain the lower
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bound on the set of partial pooling equilibria, while for λ = 0 we obtain the upper

bound on this set. These are respectively given by δ̄L and δ in Figure 2.3. Therefore

the set of partial pooling equilibria— (δ̄L, δ) — is always in between the set of pooling

equilibria and the set of separating equilibria.

2.4.5 Ex Ante Welfare Analysis

In this section we analyze the highest ex ante expected seller payoff in any

equilibrium as a function of the cost parameters of the model. We know from the

preceding sections that the lowest-cost pooling equilibrium δ̃ = 0 is the overall best

in terms of ex ante seller payoff. Also, we observed that it is the most “robust” of the

pooling equilibria, as it is the last pooling equilibrium to cease to exist as the cost

parameters of the model change. If we are in the case when the fixed cost to precision

is smaller than the prior (a ≤ p), as the sum of the fixed plus variable cost parameters,

(a + b) becomes smaller, the set of sustainable pooling equilibria shrinks. Once this

sum falls below the value (1 − p), pooling equilibria can no longer be sustained and

they cease to exist. The overall best equilibrium in terms of ex ante seller payoff

then becomes the lowest cost separating equilibrium δ∗ = δ, which is strictly worse

than the best pooling equilibrium. In the following graph we plot ex ante expected

equilibrium payoff for the seller as a function of (a+b) for fixed a ∈ [0, p] and variable

marginal cost parameter b:

The analysis and the graph demonstrate that in fact ex ante seller welfare

may be higher in the case of larger cost associated with precision. For given fixed

cost a ≤ p, if the marginal cost b associated with precision are lower than 1− p− a,

the pooling equilibria cease to exist. The reason is that in this case the cost are low

enough that the temptation to separate for the high type seller is really strong and

even the incentive compatibility constraints for the most robust pooling equilibrium
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Figure 2.4: Ex Ante Expected Seller Payoff

(δ̃ = 0) can no longer be satisfied. Therefore, if the costs associated with precision

are too low, the lowest cost separating equilibrium δ∗ = δ is the best a seller can do

and the associated ex ante seller payoff is lower than p.

2.5 Extensions

There are a few extensions of the model that we are interested in pursuing. In

this section we outline the basic intuition and approach to incorporating these into

the basic framework presented above.

2.5.1 Arbitrary Number of Bidders

Allowing for an arbitrary number of bidders N is an important aspect to

consider. There are a couple of interacting effects that occur when we increase the

number of bidders. Let us consider the pooling equilibrium constraints for the low
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and high type seller for the general case of N bidders:

(
1− δ̃N −Nδ̃N−1(1− δ̃)

)
p− a− bδ̃ ≥ 0 (ICLp)

(
(1− δ̃)N +Nδ̃(1− δ̃)N−1

)
(p− 1) + 1− a− bδ̃ ≥ 1− a− b. (ICHp)

Hence, for any given δ̃, as N increases, the pooling equilibrium incentive constraints

for both types of sellers change non-monotonically. However, there is a cutoff value

for N beyond which any further increase in the number of bidders makes both the

(ICLp) and the (ICHp) constraints easier to satisfy. Therefore, as N increases beyond

that cutoff value, the range of pooling equilibria expands.

On the other hand, the separating equilibrium incentive compatibility con-

straint of the low type seller for arbitrary N is:

0 ≥
(
1− δ∗N −Nδ∗N−1(1− δ∗)

)
− a− bδ∗ (ICLs)

This constraint becomes harder to satisfy as N increases beyond the cutoff level

mentioned above. Hence, the range of separating equilibria shrinks.

2.5.2 Two-Dimensional Types

Another interesting and challenging extension is allowing for the presence of

both a common and a private value component to buyer valuations, in which case

buyers have two-dimensional types. In particular we are interested in how robust the

current results derived in the pure common value setting are to the introduction of a

private value component. We consider the case when buyer valuations are a convex

linear combination of a common value component V ∈ {0, 1} and a private value

component ti ∈ {0, 1} as given by:

αti + (1− α)V (2.5)

71



where α ∈ (0, 1) is the weight assigned to the common value. We define the infor-

mation structure for this environment in the following way: with probability δ each

buyer observes both the his true private value ti and the true common value V , and

with probability (1−δ) he observes nothing. There is a common prior over the private

component q ≡ Pr(ti = 1) ∈ (0, 1) for i = 1, 2 and a common prior over the common

component p ≡ Pr(V = 1) ∈ (0, 1).

We find out that for α > 1
2

there exist symmetric equilibrium bidding strategies

which are also truthful: informed bidders bid their valuations, while uninformed ones

bid their expected valuations. For this case the analysis of the signaling game is very

similar to the one presented for the pure common value environment.

However, for the case when α < 1
2

we run into issues of non-existence of sym-

metric equilibria, as pointed out by Jackson (2009). His results are actually stronger,

showing non-existence of equilibria not only in symmetric, but more generally in un-

dominated strategies, when buyers have two-dimensional types. Nonetheless, in our

environment we are able to characterize an asymmetric equilibrium in undominated

strategies, as our information structure is slightly different than Jackson’s. The two-

bidder asymmetric equilibrium is depicted in Figure 2.5 in terms of the best response

correspondences. The red sets are the best responses of bidder 1, while the blue ones

are bidder 2’s best responses. The asymmetric equilibria are given by the overlap of

the two correspondences. With these asymmetric equilibrium bidding strategies, we

could theoretically proceed with the analysis of the signaling model.

2.6 Conlusion

Our motivation for this project was to understand how the choice of informa-

tion structure affects the equilibria and the ex ante seller welfare in a pure common

value auction. We use a simple model with two bidders and a parameterized infor-
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Figure 2.5: Asymmetric Equilibria in Undominated Strategies (α < 1
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mation structure that allows for easy updating, in order to derive stylized results

in this environment. We believe that the resulting signaling model provides for an

interesting analysis and results, in its own right.

While this project has been mainly driven by theoretical aspects and results, It

is important to point out a number of limitation that are inherent to the applicability

of our analysis and results to the design of auctions in practice. First of all, we are

taking the format of the auction as fixed and we only look at the effects that the

choice of information structure has on the equilibrium and seller welfare in a second

price auction. The question of how the choice of information structure and the choice

of an optimal mechanism design interact when chosen simultaneously is certainly an

interesting one and constitutes a research venue we would like pursue. Another strong

assumption we are making is the fact that the seller can perfectly control the precision

of information. This certainly need not be the case in reality, as the seller might be
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subject to significant constraints in the choice of information structure. Moreover, the

potential bidders might have some prior information about the quality of the good,

which is also assumed away here. These are all potential extensions that would make

the current set-up more realistic and relevant for real-world applications.
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Chapter 3

Information Design

3.1 Introduction

In many economic and social settings one person or institution communicates

with multiple interacting parties. In courts, a prosecutor presents the results of her in-

vestigation to a jury consisting of several members. In advertising, a company chooses

how much and what type of information to reveal about its new product to target

different groups of customers through samples, demo versions, information brochures.

In politics, election platforms are designed to appeal to constituents, government of-

ficials, leaders of other countries. In financial markets, a firm discloses information

about its profitability that is relevant to both shareholders and competitors. In eco-

nomic policy, the Fed releases information about its stimulus campaign, which affects

the economic outlook of consumers, as well as domestic and foreign investors.

These are but a few settings of economic importance that provide context for

our general questions: What is the optimal mode of information transmission between

a self-interested sender (designer) and a group of interacting receivers (agents)? If

agents are rational Bayesian players, can the designer select the information structure

in a way that makes them play an equilibrium profile most beneficial to her? Is it

always optimal for the sender to send a public message observed by all receivers? Or

is it sometimes optimal to send privately observed signals? If so, what is the optimal

degree of correlation between these private signals? Further, when is the optimal

information structure symmetric, and when is it optimal to design an asymmetric
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information structure? We consider this the subject of information design.

Consider a general environment with multiple interacting agents who choose

within a set of possible actions. Their payoffs are determined by their own action,

the actions of their opponents, and the realization of a payoff relevant state with a

commonly known prior distribution. We refer to this as the basic game. In order

to analyze the strategic interactions in this setting, we need to also specify what the

agents believe about the payoff state, what they believe about their opponents’ beliefs,

and so on. This is captured by the information structure. Consider a designer who

has preferences over the payoff state and the actions taken by the agents. Mechanism

design takes the information structure as given and modifies the basic game so that the

agents achieve the designer’s desired objective in equilibrium. In contrast, information

design takes the basic game as given and imposes the information structure which

maximizes the designer’s objective in equilibrium.

We study the general problem of a self-interested designer communicating with

multiple agents engaged in a strategic interaction. Before observing the state of the

world, the designer chooses the information structure which maximizes her objective

in expectation. The designer’s objective is an arbitrary function of the state and the

agents’ actions. The choice of information structure can be viewed as a choice of joint

distributions over signals conditional on different states. Once the designer chooses

the information structure, it becomes common knowledge. The agents then observe

the signal realizations and formulate their beliefs about the state of the world as well

as their higher order beliefs. After this, they take actions which affect their own, their

opponent’s, and the designer’s payoffs.

The main contribution of this paper is laying out the methodology of infor-

mation design in finite settings. The general problem is that of engineering the infor-

mation structure which for the given basic game supports a Bayes Nash equilibrium
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that maximizes the designer’s objective in expectation. In order to do that, we need

to first characterize the set of all Bayes Nash equilibria for all possible information

structures. This seems like a daunting task, especially in view of the many different

beliefs and higher order beliefs we would need to keep track of. Bergemann and Morris

[9] provide a tool that allows us to accomplish this task. They introduce a definition

of Bayes correlated equilibrium under which we show we can characterize the set of

all Bayes Nash equilibria associated with all possible information structures for given

basic game by characterizing the set of Bayes correlated equilibria when agents have

no information but their prior. By using this concept of correlated equilibrium, we

can characterize the set of all Bayes Nash equilibria without explicitly using informa-

tion structures. Then we maximize the designer’s objective function over this set to

find the optimal Bayes Nash equilibrium. After that, we back out the information

structure which supports it as a Bayes Nash equilibrium for the given basic game.

We apply the general methodology outlined above to a class of symmetric

problems with two agents, two actions and two states, for which we are able to derive

crisp results and conclusions. We work with a parameterized basic game, which is

broad enough to capture many different interactions. Moreover, the parameterization

allows for comparative statics with respect to degree of strategic complementarity and

substitutability between agents and between each agent and the state. To the best of

our knowledge, this is the first application to consider arbitrary objective functions

without any a priori assumptions on the form of the information structure.

We provide a complete characterization of the optimal information structure

in the symmetric binary environment. The characterization encompasses all possible

designer objective functions. The optimal information structure is a function of the

underlying game parameters and of the designer’s objective. Not surprisingly, when

the preferences of the designer and the agents are completely aligned, full information
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revelation is optimal. However, we also find that making preferences more aligned

may in fact decrease the optimal degree of information transmission. This contrasts

with results from the literature on cheap talk without commitment.

For the symmetric binary setting our results demonstrate that in almost all

of the cases the designer benefits from information design as opposed to revealing no

information and letting the agents interact under their prior beliefs. We further show

that conditionally independent private signals are never optimal, irrespective of the

designer’s objective function. Additionally, we ask the question of when modifying the

payoffs may be beneficial to the information designer. We obtain clear-cut answers for

some of the parameter values. This analysis can be viewed both as comparative statics

with respect to the underlying game or as a joint mechanism-design/information-

design perspective. Finally, we discuss important extensions that can be addressed

in out framework.

Several assumptions are crucial to our model and analysis. The first one is

that the designer chooses the information structure before observing the state of

the world and is able to perfectly commit to it.1 The second one is that once the

signal realizations occur, the designer cannot change or obfuscate them. Therefore,

the agents know that what they observe are undistorted signal realizations from the

commonly known conditional distributions. This ensures that they can update their

beliefs without considerations of the designer’s incentive compatibility constraints.

Third, we abstract away from any communication between the agents. In certain

instances, this is a reasonable and realistic assumption. However, in other cases, it

might be strategically beneficial for the agents to reveal their signals to each other.

We provide some discussion regarding these issues and other possible extensions after

1In Section 1.C Kamenica and Gentzkow [39] provide an excellent discussion on why this assump-
tion is in fact not as restrictive as it may appear at first.
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presenting our main results.

The remainder of the paper is organized as follows. Section 3.2 provides an

overview of the related literature, followed by the motivating example presented in

Section 3.3. Section 3.4 introduces the framework and outlines the general approach

to information design. In Section 3.5 we apply the general approach to a particular

tractable environment. We provide a complete analysis and characterization of the

optimal information structure in the symmetric binary case. Section 3.6 presents

some important extensions, as well as a discussion of how these can be incorporated

into the model. Section 3.7 concludes with some directions for future research. All

proofs are relegated to the Appendix.

3.2 Literature Review

This paper is related to the literature on cheap talk communication. The

cheap-talk framework analyzes the optimal information structure when the sender

knows the realized state of the world and can send costless, non-verifiable messages.

Alternatively, it can be viewed as the case when the designer cannot credibly commit

to the ex ante chosen information structure and abide by it once the state of the

world has been realized. Most related to our framework are the papers by Farrell and

Gibbons [29] and Goltsman and Pavlov [31], which extend the cheap talk model of

Crawford and Sobel [20] to an environment with two receivers/audiences. They study

the impact of costless, non-verifiable claims on the beliefs and therefore the actions

of the receivers, which in turn affect the utility of both the sender and the receivers.

There are two significant differences between these papers and ours. First,

in our environment, the sender has full commitment power and credibly chooses the

information structure, a collection of signal distributions conditional on the state,

before the state of the world has been realized. Second, the receivers in the cheap
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talk literature are independent decision makers and their payoffs depend only on their

own action and the state of the world. Therefore, if the sender were to communicate

via privately observed signals, the problem reduces to solving the single receiver case

individually for each of the receivers. In our framework, in contrast, the receivers are

involved in a strategic interaction with each other, i.e. they play a game. In this case,

even if the sender were to communicate via private signals, the information structure

affects the higher order beliefs of the agents, which in turn impact the equilibrium

actions.

This paper is also closely related to the literature on Bayesian persuasion,

which is sometimes referred to as cheap talk with commitment. A pivotal paper in

that literature is Kamenica and Gentzkow [39], which is equivalent to information

design with one agent. They characterize the optimal signal for any given set of

preferences and initial beliefs with techniques from convex analysis. However, the

tools used by Kamenica and Gentzkow [39] are not sufficient to address the question

in an environment with multiple interacting receivers, as the authors themselves point

out: “There is an important third class of multiple-receiver models, however, where

our results do not extend easily: those where the receivers care about each other’s

actions and Sender can send private signals to individual receivers.2”

We use a definition of Bayes correlated equilibrium proposed by Bergemann

and Morris [9] to answer this open question and show how things differ in the multiple-

interacting-receivers environment. We suggest a general approach to the optimal de-

sign of information structures, which can be applied in very general environments. We

also provide insights regarding the characterization of optimal information structures

for different properties of the designer’s objective function and of the underlying game

2See Kamenica and Gentzkow [39], p. 2609.
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played by the interacting agents. While Bergemann and Morris [9] provide the tool

that enables our analysis, we use it for very different purposes. They focus on char-

acterizing the set of possible Bayes Nash equilibrium outcomes that can arise when

players have observed at least a certain level of information and potentially more.

They further describe a partial order on information structures under which the size

of the equilibrium set varies monotonically. There is no “designer” in their paper,

who chooses the information structure with her objective maximization in mind.

A paper by Wang [58] also examines the question of “Bayesian persuasion with

multiple receivers”. She looks at a specific voting environment, in which the sender

has a state-independent utility with a preference for the same alternative. Moreover,

she only allows for conditionally independent private signals or purely public signals

and compares these two structures. We, on the other hand, allow for a general

form of the designer’s objective and impose no a priory assumptions on the types

of information structures we consider. Public and conditionally independent private

signals are special cases contained in our specification. More importantly, we show

that restricting attention to these two special categories of persuasion mechanisms is

not without loss of generality, as the optimal information structure does not always

belong to one of them.

Eliaz and Forges [27] consider a specific environment in which a principal

chooses what information to reveal to two symmetric agents whose actions are strate-

gic substitutes. In their framework, the disclosure policy is restricted to verifiable

evidence where the sender reports the set of possible states and must include the true

state. The sender can control the precision of information by controlling the number

of elements she includes in that set. In this setting the authors find that when the

sender can commit to a disclosure policy before observing the state, it is optimal to

reveal the state perfectly to one agent and disclose nothing to the other. However,
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this result crucially relies on the specific designer objective function they look at,

the strategic substitutes assumption on the players’ actions and the hard evidence

assumption. The main part of the analysis in Eliaz and Forges [27] however deals

with the case of an informed principal who chooses the information disclosure in the

absence of commitment, which is different from our framework. Moreover, their dis-

closure policy is always constrained to include the true state, while we impose no such

restriction. Further, we allow for the agents’ actions to be both strategic substitutes

and strategic complements.

There is an extensive list of papers studying the comparison of information

structures in strategic interactions: Bergemann and Morris [9], Gossner [32], Lehrer,

Rosenberg and Shmaya [41] and [42], Peski [53], etc. Closest to ours is Lehrer,

Rosenberg and Shmaya [41]. They restrict attention to symmetric games of common

interest and rank information structures according to highest player payoffs they

induce under different solution concepts. In contrast, we characterize the optimal

information structure under Bayes Nash equilibrium and in view of the designer’s

welfare rather than the agents’ equilibrium payoffs.

A number of papers analyze the equilibrium behavior and socially optimal

use of information in a tractable class of environments with quadratic payoffs and

a normally distributed state of the world (Angeletos and Pavan [2], Bergemann and

Morris [10], Bergemann et al. [8]). These papers assume a specific information struc-

ture under which each player observes two normally distributed signals: a public

signal common to all players and a conditionally independent signal that is privately

observed. They characterize the equilibrium use of information and compare that to

some efficiency benchmark. In contrast, we do not assume a particular information

structure a priori. Our focus is the reverse-engineering aspect of the problem, which

concerns the choice of an information structure that will decentralize the most desir-
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able distribution over actions and states of the world as a Bayes Nash equilibrium. We

are also interested in how this optimal choice changes with the designer’s objective

function, which is not necessarily socially optimal.

3.3 Motivating Example

Consider a prosecutor who conducts an investigation and reports the outcomes

to a jury.3 The prosecutor’s objective is to convince the jury that the defendant

is guilty and to achieve conviction. She chooses the investigation process and is

obligated by law to fully and truthfully report the outcomes to the jury. The choice

of investigation process can be viewed as the prosecutor’s decisions regarding which

witnesses to subpoena, what questions to ask them, which forensic and other tests to

order, how to structure her arguments, etc. If the defendant is guilty, then choosing a

more informative investigation will tend to help the prosecutor’s case and increase the

likelihood of conviction. However, if the defendant is innocent, a more informative

investigation will impede the prosecutor’s case. The question we focus on is whether

the prosecutor can gain by choosing the investigation process optimally, in a way

that maximizes the overall probability of conviction by a jury consisting of rational

Bayesian agents.

To formalize the example, suppose the jury consists of two members, indexed

by i and j. There are two states of the world: the defendant is either innocent (θ0)

or guilty (θ1). The prosecutor (designer) and jurors (agents) share a common prior

belief, which assigns probability to the defendant being innocent 70 percent of the

time, Pr(θ0) = 0.7, and guilty 30 percent of the time, Pr(θ1) = 0.3. The jurors get

3This is a multiple-agent version of the prosecutor-judge example of Kamenica and Gentzkow
[39]. In fact, we purposefully assume the same prior distribution and prosecutor objective, which
allows for direct comparisons with the single receiver case.
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utility from choosing the just action: vote to acquit (a0) when innocent and vote to

convict (a1) when guilty. Let us assume that unanimity of the jurors’ votes is required

for a verdict to be reached. If the votes are not unanimous, the case is declared a

mistrial due to a deadlocked jury. The payoffs of the jury members are given by the

following matrix:

θ = θ0 a0 a1

a0 2, 2 1, 0
a1 0, 1 0, 0

θ = θ1 a0 a1

a0 0, 0 0, 1
a1 1, 0 2, 2

Each juror receives payoff of at least 1 if he chooses the just vote irrespective of what

the other juror does. If the other juror votes justly as well, the payoff is increased to 2,

since then a just verdict is reached. Whenever a juror votes unjustly (to convict when

innocent and to acquit when guilty) he gets a payoff of 0 irrespective of what the other

juror does. The objective of the prosecutor is to achieve a conviction, irrespective of

the state. Her utility function is thus given by

V (ai, aj, θ) =

{
1 if ai = aj = a1

0 otherwise.

The choice of investigation can be formally represented by conditional distri-

butions π(·|θ0) and π(·|θ1) over a set of signal relaizations. The prosecutor chooses π,

which then becomes common knowledge, and the jury observes the undistorted signal

realizations from the investigation. If the prosecutor chooses a completely uninforma-

tive investigation or equivalently if she chooses not to conduct one, then both jurors

will vote to acquit. This is their default action profile since innocence is more likely

than guilt. The prosecutor will in turn receive a certain payoff of V (a0, a0) = 0. At

the other extreme, if she were to choose a completely informative investigation pro-

cess, i.e. one that reveals the state perfectly, the jurors will both vote for conviction

only when the defendant is indeed guilty. This happens 30 percent of the time and

results in an expected payoff of 0.3 for the prosecutor.
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However, the prosecutor can do better than that. The optimal investigation

is in fact given by the following signal structure:

θ = θ0 t0 t1
t0 1/7 0
t1 0 6/7

θ = θ1 t0 t1
t0 0 0
t1 0 1

which is asymmetric with respect to the state. Under this information structure it

is a BNE for each jury member to vote to acquit (a0) when he observes t0 and to

convict (a1) when he observes t1. The incentive BNE compatibility constraints are

as follows:

u(a0|t0) = 1 · 2 = 2 > u(a1|t0) = 1 · 0 = 0

and

u(a1|t1) =
2

3
· 0 +

1

3
· 2 =

2

3
= u(a0|t1) =

2

3
· 1 +

1

3
· 0 =

2

3
.

Under this information structure and BNE, the expected value of the prosecutor’s

objective function is 0.9. The jury members know that 70 percent of the defendants

are innocent, yet they end up convicting 90 percent of them. They are completely

aware that the investigation was chosen in a way to maximize the probability of

conviction; yet they react in a rational Bayesian way given the signal realizations

they observe.

We observe the same two characteristics here that Kamenica and Gentzkow

[39] derive for the optimal information structure in the single receiver case. First,

when each juror votes to acquit, the prosecutor’s least favorite option, he is certain

that the defendant is innocent. In other words, we have π(t0, t0|θ1) = π(t0, t1|θ1) =

π(t1, t0|θ1) = 0. If these probabilities were positive, the prosecutor could decrease

them in favor of increasing π(t1, t1|θ1). This will increase both the marginal prob-

ability of the signal realization (t1, t1) and the willingness of each juror to convict
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when observing t1. Both of these effects increase the expected payoff of the pros-

ecutor. Hence, the optimal information structure in this setting will always have

π(t1, t1|θ1) = 1.

Second, when a juror votes for conviction, he is exactly indifferent between the

two votes. If he were strictly in favor of convicting, then the prosecutor could increase

the probability of π(t1, t1|θ0) and decrease the probability of π(t0, t0|θ0), to the point

at which the juror becomes indifferent. That will not change the juror’s optimal

choice given t1 — he will still choose to convict — but will increase the probability

of (t1, t1) and hence, also the probability of conviction. The designer could increase

π(t1, t1|θ0) to the point where, conditional upon receiving t1, the posterior probability

put on θ0 becomes so high that the juror would choose to acquit. This turning point

for the posterior on θ0 is 2
3

in this example.

A fundamental difference between the single receiver case of Kamenica and

Genzkow [39] and the current framework concerns the posterior beliefs. The judge

in their example needs to have a posterior belief (on “guilty” or θ1) of at least 1
2

in

order to convict. Here, in contrast, each juror convicts as long as his posterior belief

on θ1 is at least 1
3
. This happens because of the complementarities in the strategic

interaction and the choice of information structure. Since unanimity is needed for a

verdict to be reached and the structure is such that both jurors always observe the

same signal realization, each juror knows that voting for conviction will only really

make a difference if the other juror were to vote in the same way. Therefore, receiving

a signal indicative of a guilty defendant, i.e. t1, will make a juror more willing to vote

for conviction for two reasons. First, if the defendant is guilty, then his vote is needed

for a just verdict to be reached. Second, if the defendant is innocent, then voting to

acquit will not help achieve the right verdict (a payoff of 2) and will only give him

the payoff from unilaterally choosing the right action (a payoff of 1). This is because,
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each juror knows that conditional on receiving a signal t1, the other juror has received

the same signal and so, in equilibrium, is voting to convict.4

We can also show that in the analogous case of strategic substitutes with

c = 1 and d = 2, the posterior on θ1 that is necessary for conviction increases to 2
3
.

While the prosecutor-jury framework does not make sense with this parameteriza-

tion, changing the game to one with strategic substitutes provides intuition as to how

that affects the results for the same objective function. In particular, the optimal

information structure now has π(t0, t0|θ0) = 11
14

and π(t1, t1|θ0) = 3
14

, with the distri-

bution conditional on θ1 remaining the same as before. Conditional on observing t1

the posterior necessary for a juror to convict is now 2
3
, that is twice as high as in the

case of strategic complements. This is due to the strong incentive for each juror to

individually choose the just vote, irrespective of what the other juror decides. Hence,

a designer who wants the agents to coordinate on the non-default action will have

a harder time doing so when the underlying game is one of strategic substitutes as

opposed to strategic complements.

3.4 The General Approach

This section describes the general approach to information design in finite

environments.

4In the case when there is no benefit to choosing the just vote, i.e. when instead of 1 the payoffs
to mis-coordinated votes are always 0, the posterior can be as low as the prior for an equilibrium of
both jurors always convicting to be achieved. This is because under the null information structure,
if the other juror were to always vote to convict, it is a best response to do the same.
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3.4.1 Setup

There are N agents engaged in a strategic interaction. The set of agents is

denoted by I and we index a generic player by i = 1, . . . , N . Each player has a finite

set of actions Ai and we write A = A1 × · · · ×AN for the set of action profiles and a

for a generic element of that set. There is a finite set of states Θ with θ denoting a

generic element of that set. Each agent has a utility function ui : A × Θ → R that

depends on the played action profile and on the ex ante unknown state of the world.

The designer has a utility function V : A× Θ→ R, so that her payoff is affected by

the action profile that agents play and the state of the world. Designer and agents

share a common full support prior ψ ∈ int(∆(Θ)) and that is common knowledge.

Let G =
(
(Ai, ui)

N
i=1, ψ

)
. We refer to G as the basic game.

An information structure S =
(
(Ti)

N
i=1, π

)
consists of a finite set of signals Ti

for each player i and a signal distribution π : Θ → ∆(T ) where T = T1 × · · · × TN .

We denote by ti a generic element of Ti and similarly by t, a generic element of T .

Together, the tuple (G,S) defines a game of incomplete information.5

Given a known basic game G, the designer chooses and publicly announces an

information structure S, which becomes common knowledge. The agents then observe

the choice S and the subsequent signal realizations. Depending on the choice of

information structure, these signal realizations may be only privately observable, they

may be common to different subsets of agents, or they might be public to everyone.

Upon observing his signal realization each agent formulates his first order and higher

order beliefs taking into account the common knowledge of the information structure

S. Then, each agent selects an action, which maximizes his interim expected utility.

5This division of a game of incomplete information into a basic game and an information structure
has been previously used in the literature; see for example Bergemann and Morris [9] and Lehrer,
Rosenberg, and Shmaya [41].
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The resulting action profile is a Bayes Nash equilibrium (BNE) of the incomplete

information game (G,S) at the interim level. The designer’s problem is to choose

an information structure which induces agents to play a BNE that maximizes her ex

ante expected utility. That is, the designer selects among the BNE of (G,S) at the

ex ante level, the one that is most beneficial to her. If there are multiple equilibria

of (G,S), we take a best-case approach and consider the one which yields the highest

ex ante expected utility to the designer. If in turn there are multiple equilibria that

maximize the designer’s ex ante expected utility, we select arbitrarily among them.

We follow Kamenica and Gentzkow [39] and take this best-case approach since it

provides a meaningful benchmark in case of equilibrium multiplicity.

3.4.2 Designer’s Problem

For a given basic game G, an information structure S induces a BNE of the

incomplete information game (G,S), which in turn determines a distribution over

action profiles and states of the world. Hence, the designer’s problem can be organized

as follows: 1) Characterize the set of all BNE of G that could emerge under all possible

information structures. We refer to this as the constraint set of the optimization

problem. 2) Among all BNE, select (the) one which generates a distribution over

actions and states that maximizes the designer’s ex ante expected utility. We refer

to the latter as the objective function of the designer’s optimization. 3) Find the

information structure which induces this BNE for the given basic game G. In this

section we will show that steps 1) and 2) reduce to a linear programming problem.

We will also show that without loss of generality we can focus on a particular class

of information structures when approaching step 3).
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3.4.2.1 Constraint Set

To determine the constraint set, we need to characterize the set of all BNE

that could emerge under all possible information structures, of which there are in-

finitely many. To accomplish this task, we use a definition of correlated equilibrium

introduced by Bergemann and Morris [9]. We show below that using their definition

of correlated equilibrium under a special information structure, we can characterize

the set of BNE that could emerge under all possible information structures. With this

purpose in mind, we introduce a few definitions to establish the necessary terminology.

A (behavioral) strategy for player i in (G,S) is a mapping βi : Ti → ∆(Ai).

Definition 10. (Bayes Nash Equilibrium)

A strategy profile β is a Bayes Nash equilibrium (BNE) of (G,S) if for each i ∈ I,

ti ∈ Ti and ai ∈ Ai with βi(ai|ti) > 0, we have

∑
a−i,t−i,θ

ψ(θ)π(ti, t−i|θ)
(∏
j 6=i

βj(aj|tj)
)
ui((ai, a−i), θ)

≥
∑

a−i,t−i,θ

ψ(θ)π(ti, t−i|θ)
(∏
j 6=i

βj(aj|tj)
)
ui((a

′
i, a−i), θ) (3.1)

for all a′i ∈ Ai.

We next state the definition of Bayes correlated equilibrium as introduced by

Bergemann and Morris [9]. Let σ : T × Θ → ∆(A) be a distribution over action

profiles conditional on type profiles and states.

Definition 11. (Bayes Correlated Equilibrium)

A distribution σ is a Bayes correlated equilibrium (BCE) of (G,S) if for each i ∈ I,
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ti ∈ Ti and ai ∈ Ai, we have∑
a−i,t−i,θ

ψ(θ)π(ti, t−i|θ)σ((ai, a−i)|(ti, t−i), θ)ui((ai, a−i), θ)

≥
∑

a−i,t−i,θ

ψ(θ)π(ti, t−i|θ)σ((ai, a−i)|(ti, t−i), θ)ui((a′i, a−i), θ) (3.2)

for all a′i ∈ Ai.

A BCE distribution σ reflects the assumption of common certainty of rationality and

the common prior assumption in the basic game G when the players have observed

at least information structure S.

The designer is ultimately interested in what can be said about the equilibrium

distributions of action profiles conditional on states of the world, as that determines

the expected value of her objective function. She is not interested in the distributions

conditional on the signals, as the information structure is simply a tool and not the

end goal. Therefore, she would like to find the most beneficial equilibrium distri-

bution of actions conditional on states, which maximizes the expected value of her

objective function, without assuming a specific information structure to start with.

Let mapping ν : Θ → ∆(A) be a distribution over action profiles conditional on

states.

Definition 12. A distribution ν is a BNE of (G,S) if β is a BNE of (G,S) and

∑
t∈T

π(t|θ)
( N∏
j=1

βj(aj|tj)
)

= ν(a|θ) (3.3)

for each a ∈ A and θ ∈ Θ. A distribution ν is a BCE of (G,S) if σ is a BCE of

(G,S) and ∑
t∈T

π(t|θ)σ(a|t, θ) = ν(a|θ) (3.4)

for each a ∈ A and θ ∈ Θ.
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Subsequently, for a basic game G and information structure S, we use BNE(G,S)

to denote the set of BNE distributions ν and BCE(G,S) to denote the set of BCE

distributions ν. In the designer’s problem, the constraint set is the largest set of

distributions ν that could emerge if agents play a BNE for a basic game G under any

possible information structure. To characterize this set, we show that it is easier to

work with the set of BCE for G under a particular information structure.

We next define the information structure, which plays an important role in

the upcoming analysis. The null information structure S has T i = {ti} for all i and

π(t|θ) = 1 for all θ ∈ Θ. Thus, the null information structure S =
(
T , π

)
provides

no information at all about the state of the world. The next results established the

characterization of the largest set of BNE distributions through its equivalence to the

set of BCE under the null information structure.

Proposition 10. The following holds: BCE(G,S) = ∪SBNE(G,S).

The above result established the equivalence between the largest set of BNE

distributions for a basic game G and the set of BCE random choice rules for G under

the null information structure. It is a version of Theorem 2 by Bergemann and Morris

[9]. We will work with the constraints defining the set BCE(G,S) to characterize the

constraint set of the designer ∪SBNE(G,S).

Intuitively, the result can be interpreted as follows. In a BCE distribution, the

correlation between the actions given the state is arbitrary. In a BNE distribution,

the correlation between the actions given the state can be generated only through

independent probability distributions of individual actions given signals according to

(3.3). To generate every possible distribution in BCE(G,S) as a BNE, i.e. with

behavioral strategies, the additional coordination with the state must come through

the conditioning on the signals. Therefore, the information structure has to provide
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the necessary correlation of the independently chosen actions and the state. Every

BCE distribution can thus be replicated as a BNE distribution for an appropriately

chosen information structure S. S should provide enough information about the state

to generate the required correlation in the equilibrium distribution. To summarize, a

BCE distribution under S can be viewed as a stochastic device which is sophisticated

in terms of how much correlation it can generate between the actions, but does not

use the information structure at all. A BNE distribution under S, on the other hand,

can be viewed as a stochastic device which generates all the correlation between the

actions through S. Therefore more intricate information structures are required for

the latter to replicate any distribution of the former.

By Proposition 10 we can characterize the set of all BNE by means of the

BCE incentive constraints (3.2) under the null information structure S. We need to

combine these with the constraints ensuring ν is a proper probability distribution.

Hence, the set BCE(G,S) is the collection of ν(a|θ) such that:

i) ν(a|θ) ≥ 0 for all a ∈ A and θ ∈ Θ,

ii)
∑
a∈A

ν(a|θ) = 1 for all θ ∈ Θ, and

iii)
∑
a−i,θ

ψ(θ)ν((ai, a−i)|θ)ui((ai, a−i), θ) ≥
∑
a−i,θ

ψ(θ)ν((ai, a−i)|θ)ui((a′i, a−i), θ)

for all i ∈ I, ai ∈ Ai and a′i ∈ Ai.

The above constraints are all linear in ν(a|θ). Therefore, the set BCE(G,S) is a

convex polygon. By Theorem A of Stinchcombe [55], the set of BCE is non-empty.

Hence, the constraint set of the designer is a non-empty convex polygon.
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3.4.2.2 Objective Function

The designer’s utility when the agents play action profile a and the state is

θ is given by V (a, θ). The designer’s objective is to maximize the ex ante expected

value of her utility, which can be written as

Eν [V ] =
∑
a,θ

V (a, θ)ν(a|θ)ψ(θ).

Notice that this objective is also linear in ν(a|θ). Hence, the designer is maximizing

a linear objective function over a non-empty convex polygon and the tools of linear

programming can be utilized to find the optimal solution. By the fundamental the-

orem of linear programming, a solution ν∗ exists and is at one of the corners of the

constraint set. Therefore, ν∗ ∈ ∪SBNE(G,S) is the BNE the designer would like to

induce. We next character use the information structure S∗ which supports ν∗ as a

BNE, i.e. for which ν∗ ∈ BNE(G,S∗).

3.4.2.3 Optimal Information Structure

We first simplify the problem by showing that, without loss of generality, we

can restrict attention to a certain class of information structures, which we call direct.

Definition 13. Given a basic game G, an information structure S = (T, π) is direct

if T = A and there exists ν ∈ BNE(G,S) such that ν(a|θ) = π(a|θ) for all a ∈ A
and θ ∈ Θ.

Definition 14. Given basic game G, we say that an information structure S has

value Ṽ if there exists a distribution ν ∈ BNE(G,S) such that Eν [V ] = Ṽ .

Proposition 11. The following are equivalent:

(i) There exists an information structure with value V ∗;
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(ii) There exists a direct information structure with value V ∗;

(iii) There exists a BNE distribution ν such that Eν [V ] = V ∗.

The main implication of Proposition 11 is that we can work with direct in-

formation structures only. The equivalence of (i) and (ii) is in spirit very similar to

the revelation principle (e.g., Myerson [50]). The equivalence between (ii) and (iii)

uses Proposition 10 and a truthful equilibrium strategy. The intuition behind this is

simple. If there is a BNE distribution ν over action profiles conditional on states, then

it must be that ν is also a BCE distribution under the null information structure.

Thus, if the designer uses a direct information structure with the same probability

distribution ν, it is Bayes incentive compatible for each agent to follow the action

recommendation implied by the observed signal realization assuming that the other

agents do so as well. This generates an BNE equilibrium distribution ν under a direct

information structure, which in turn results in the same ex ante expected payoff for

the designer.

Corollary 2. The optimal information structure is given by S∗ = (A, π∗), where

π∗(a|θ) = ν∗(a|θ) and ν∗ = arg max
ν

Eν [V ] s.t. ν ∈ BCE(G,S).

This corollary establishes the equivalence between the optimal information

structure and the optimal BCE distribution under the null information structure.

Once we find ν∗, we create a direct information structure with the same probability

distribution over signal realizations conditional on states. The signal realizations

are in fact the action recommendations, which agents have incentive to follow in

equilibrium. This direct information structure is optimal.

In our setting, there is nothing that precludes a designer, who has chosen a

partially informative information structure, from deciding to release more information
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after certain “unfavorable” signal realizations. The following result establishes that

regardless of the actual signal realizations and the implied equilibrium action profile,

the designer would never want to deviate and send additional signals, if the initial

information structure was optimally chosen to begin with and if all players have

observed the resulting action profile a. In this case, the designer cannot benefit from

persuading the players to switch to a different action profile by gicing them more

information.

Proposition 12. If a realized action profile a ∈ A observed by all players was induced

by an optimal signal, the designer has no incentive to release more information.

3.5 Application: Symmetric Binary Environments

In this section we apply the general information design approach outlined

above to a symmetric binary environment.

3.5.1 Setup

Consider a two-player, two-state, two-action environment with symmetric pay-

offs. There are N = 2 players, and we use i as an index for the typical player, and j

for his opponent. The set of states of the world is Θ = {θ0, θ1}. The set of actions is

the same for both players and given by A = {a0, a1}. The payoffs (or utility functions)

u : A × Θ → R are also the same for both players. Further, we assume a common

prior ψ, which is uniform on the two states, i.e. ψ(θ0) = ψ(θ1) = 1
2
. Hence, we

have specified the basic game G =
(
A2, u, ψ

)
. We will refer to this as the symmetric

2× 2× 2 environment.

Consider the following parameterized framework, where the payoffs in each

state are given by: with c ≥ 0 and d ≥ 0. The assumption that the payoff parameters
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θ = θ0 a0 a1

a0 c, c d, 0
a1 0, d 0, 0

θ = θ1 a0 a1

a0 0, 0 0, d
a1 d, 0 c, c

Table 3.1: Parameterized Basic Game

are weakly positive ensures that the participation constraints of the agents to engage

in the strategic interaction are always satisfied. This two-parameter representation is

rich enough to capture many different environments of interest. We will refer to the

basic game with parameters c and d as Gc,d.

The above payoff matrices assume that players have a preference for playing

different actions in the different states of the world. This is an important assumption.

Notice that if the same action were preferred in both states, there would be a dominant

strategy equilibrium. In this case, the information that players receive is irrelevant

for their strategies, and the designer cannot use information design to achieve her

desired objective. Hence, information design becomes relevant only when the players

have preferences for coordinating each action with a different state. We denote by

ak the action preferred in state θk for k = 0, 1. Additionally, we use superscript to

signify the agent that takes the action, i.e. aik stands for agent i taking action ak.

In addition to the preference for aligning their action with the state, the play-

ers may exhibit either a preference for coordination (strategic complementarity) or

mis-coordination (strategic substitutability) of their action with the action of their op-

ponent. The strength of the preference for alignment with the state versus alignment

with one’s opponent depends on the relative magnitude of c and d.

The preference of each player for coordination with the state, for any given

action of the other player, is represented by c + d, which we will refer to as the
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unilateral complementarity (U). This is given by the difference:

U = u(a1, a
j, θ1)− u(a0, a

j, θ1)− u(a1, a
j, θ0) + u(a0, a

j, θ0) = c+ d (3.5)

for each aj ∈ A. Due to the symmetry, we obtain the same expression for each player

and each possible opponent action. The larger (3.5), the stronger the preference for

alignment between each player’s own action and the state.

In each state, the preference of each player for coordination with the other

player is captured by c− d. This is given by:

T = u(a1, a1, θk)− u(a0, a1, θk)− u(a1, a0, θk) + u(a0, a0, θk) = c− d (3.6)

for k = 0, 1. We will refer to this as the strategic complementarity (T ). If this

difference is positive and large, there is a strong preference for coordination with

one’s opponent, that is, strong strategic complementarity. On the other hand, if

this difference is negative and large, there is a strong preference for mis-coordination

between the players and thus, strong strategic substitutability. Consequently, we

say that the basic game Gc,d exhibits strategic complements if c > d and strategic

substitutes if c < d.

This two-parameter payoff representation captures many strategic interactions

of interest and different preferences for (mis)coordination. For example, c > d > 0

represents the beauty contest game: players want to match the state and have an

added benefit if their actions match. This may correspond to a situation of two people

deciding to invest in one of two projects. The profitability of the projects depends

on an unknown state and on the total investment, with higher investment leading

to a more profitable project. Therefore, choosing the right project is associated

with a higher payoff if the opponent also invests in the same project. When d >

c > 0, the payoffs represent the situation of two competitors trying to match the
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consumer preference for a certain product. If they both match it, they split the

market. However, if one of them fails to produce the product with desired features,

then the other firm captures the whole market and obtains a higher payoff.

For any value T of the strategic complementarity (3.6) and any value U ≥ |T |

of the unilateral complementarity (3.5), we can choose payoff parameters c and d to

yield these coordination preferences by setting c = U+T
2

and d = U−T
2

.

3.5.2 Designer’s Problem

3.5.2.1 Constraint Set

To determine the constraint set we need to characterize the set of all possible

BNE for basic game Gc,d under all possible information structures. By Proposition

10 we know that for a given basic game G, the largest set of distributions over actions

and states of the world, which can be sustained as BNE under some information

structure, is given by BCE(G,S). We restrict attention to distributions which are

symmetric both in terms of the players and with respect to the state. These can be

fully described by two parameters — q and r — and denoted as ν(q, r). Hence, a

symmetric distribution over action profiles conditional on state can be represented as

follows

θ = θ0 a0 a1

a0 r q − r
a1 q − r 1− 2q + r

θ = θ1 a0 a1

a0 1− 2q + r q − r
a1 q − r r

We denote a particular random choice rule as ν(q, r). The parameter r represents the

probability with which in each state both agents simultaneously match the state with

their actions: Pr(a0, a0|θ0) = Pr(a1, a1|θ1) = r. Hence, it measures the likelihood

with which the players coordinate both with each other and with the state. On the

other hand, q denotes the probability with which in each state each agent matches the
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state with his action, irrespective of whether the other agent does so as well or not.

For agent i and state θ0, this probability is given by Pr(ai0, a
j
0|θ0) + Pr(ai0, a

j
1|θ0) = q.

We choose to work with symmetric distributions for a number of reasons.

First, this is without loss of generality when the utility function of the designer is

also symmetric in agents and in states — we will define explicitly what this means

in the following subsection. However, in general, this will be a constrained optimal

BNE distribution. Second, we use symmetric distributions as that allows for a two-

dimensional graphical representation of the constraint set and objective function.

Third, sometimes the designer is naturally constrained in her choice to symmetric

information structures due to laws and regulations. In the symmetric 2 × 2 × 2

environment that means that the she will be optimizing over the set of symmetric

BNE, which are induced by symmetric information structures.

Our next result characterizes the set of symmetric BCE of (Gc,d, S). We con-

sider all possible values of the basic game parameters c and d which do not make

the strategic interaction trivial. In other words, we consider all possible cases with

c, d ≥ 0 and for which both parameters are not simultaneously equal to zero.

Proposition 13. (BCE Random Choice Rules)

Consider the symmetric 2× 2× 2 environment.

If c > d (strategic complements), the set of symmetric BCE random choice

rules of
(
Gc,d, S) is given by

{
(q, r) ∈ Co

{(
d
c+d

, d
c+d

)
,
(

2c−d
3c−d ,

c−d
3c−d

)
, (1, 1)

}}
.

If d > c (strategic substitutes), the set of symmetric BCE random choice rules

of
(
Gc,d, S) is given by

{
(q, r) ∈ Co

{(
d
c+d

, d
c+d

)
, (1, 1),

(
d

3d−c , 0
)
,
(

1
2
, 0
)}}

.

If d = c > 0, the set of symmetric BCE random choice rules of
(
Gc,d, S) is

given by
{

(q, r) ∈ Co
{(

1
2
, 1

2

)
,
(

1
2
, 0
)
, (1, 1)

}}
.

100



The proof of the proposition shows that the set of BCE random choice rules

under the null information structure for a basic game Gc,d is the constraint set de-

termined by four linear inequalities. Three of these inequalities ensure that the pa-

rameters of the random choice rule satisfy the consistency conditions for probability

distributions. The fourth inequality represents the incentive constraints associated

with BCE under the null information structure.

We make use of the following example to show the construction of the con-

straint set. We will return to this example throughout the rest of the section to

illustrate the different steps of the information design problem.

Symmetric Example. Consider the parameterized basic game in Table 3.1 with

c = 2 and d = 1. Hence, the agents are involved in a coordination game, where they

want to both match each other and the state with their actions. Suppose the designer

benefits from mis-coordination between the agents’ actions irrespective of the state.

That is, her utility function is given by:

V (ai, aj, θ) =

{
1 if ai 6= aj

0 otherwise.
(3.7)

The constraint set BCE(G2,1, S) is depicted in Figure 3.1. The red line represents

the BCE incentive constraint. It always goes through the point (1
2
, 1

4
), plotted on the

graph, which represents the symmetric mixed strategy BNE when the agents have no

information.

3.5.2.2 Objective function

We consider a general utility function for the designer V : A×Θ→ R. Hence,

V (a, θ) is the designer payoff when a is the action profile played by the agents and θ is
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Figure 3.1: Constraint Set (Symmetric Example)

the state of the world. For any given objective function V (a, θ), where a is the action

profile played by the agents and θ is the realized state of the world, its expectation

given a BNE distribution ν(q, r) is

E(V ) = ψ
[
rV (a0, a0, θ0)+(q−r)V (a0, a1, θ0)+(q−r)V (a1, a0, θ0)+(1−2q+r)V (a1, a1, θ0)

]
+(1−ψ)

[
rV (a1, a1, θ1)+(q−r)V (a0, a1, θ1)+(q−r)V (a1, a0, θ1)+(1−2q+r)V (a0, a0, θ1)

]
.

(3.8)

Reorganizing and regrouping terms gets us to:

E(V ) =
[
ψ
[
V (a1, a1, θ0)− V (a0, a1, θ0)− V (a1, a0, θ0) + V (a0, a0, θ0)

]
+ (1− ψ)

[
V (a1, a1, θ1)− V (a0, a1, θ1)− V (a1, a0, θ1) + V (a0, a0, θ1)

]]
r

+
[
ψ
[
V (a0, a1, θ0)− V (a1, a1, θ0) + V (a1, a0, θ0)− V (a1, a1, θ0)

]
+ (1− ψ)

[
V (a0, a1, θ1)− V (a0, a0, θ1) + V (a1, a0, θ1)− V (a0, a0, θ1)

]]
q

+ ψV (a1, a1, θ0) + (1− ψ)V (a0, a0, θ1)

= R · r +Q · q + const.

(3.9)
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The coefficient in front of r, which we denote by R, captures the “expected”

preference for complementarity between the actions in the designer’s objective func-

tion. It is indeed a weighted average of the complementarities between the actions

in each state, the weights being the prior probabilities for each state. Therefore, the

coefficient in front of r measures the average importance of coordination of the agents’

actions in the designer’s objective function.

The coefficient in front of q, which we label Q, is the expected preference for

unilateral coordination of each player’s action with the state, assuming the other

player mismatches the state. For example, suppose that the state is θ0. Then

V (a0, a1, θ0) − V (a1, a1, θ0) captures the benefit of having the first player unilater-

ally match the state with his action as opposed to having perfect mis-coordination

between both of the actions and the state. For the second player, the relevant expres-

sion is V (a1, a0, θ0)−V (a1, a1, θ0). So the sum of those two expressions represents the

preference of the designer for “unilateral” coordination between the players and the

state θ0. Therefore, the coefficient in front of q measures the importance of unilateral

coordination in the designer’s utility in expectation over the two states.

Lastly, a utility function that is symmetric in both the agents’ actions and

the state is characterized by the following equalities: (i) V (a0, a0, θ0) = V (a1, a1, θ1),

(ii) V (a0, a1, θ0) = V (a1, a0, θ0) = V (a0, a1, θ1) = V (a1, a0, θ1) and (iii) V (a1, a1, θ0) =

V (a0, a0, θ1). As mentioned above, when the designer’s utility function is symmetric,

restricting attention to symmetric information structures is without loss of generality.

Symmetric Example. The utility function of the designer given by (3.7) is sym-

metric both with in the agents’ actions and in the state. Substituting the values into

(3.9), gives

E(V ) = −2r + 2q (3.10)
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as the ex ante expected objective function. This is represented by a level line with a

slope of one, the value of which increases when shifted in the direction of the lower-

right corner (see Figure 3.3).

3.5.2.3 Optimal Information Structure

In the previous section, we characterized the set BCE(Gc,d, S), which is the

budget set of the designer. We can now maximize the designer’s objective function

(3.9) over this set. Let us denote by ν∗(q, r) the distribution which maximizes (3.9)

over BCE(Gc,d, S). Once we find ν∗(q, r), we can reverse-engineer the information

structure S∗ which decentralizes it as a BNE. By Proposition 11 we know that there

exists a direct information structure S∗ such that ν∗(q, r) ∈ BNE(Gc,d, S
∗). And

by Corollary 2 we know that S∗ = (A, π∗) with π∗(a|θ) = ν∗(a|θ) for all a ∈ A and

θ ∈ Θ.

Therefore, the direct information structures which support all distributions

ν(q, r) ∈ BCE(Gc,d, S) as BNE, can be parameterized in an analogous way with the

following conditional probabilities π(·|θ) on signal realizations:

θ = θ0 a0 a1

a0 r q − r
a1 q − r 1− 2q + r

θ = θ1 a0 a1

a0 1− 2q + r q − r
a1 q − r r

Table 3.2: Direct Information Structures

The information structure parameterization in Table 3.2 is very general as it

represents all binary information structures which are symmetric across agents and

states. The parameter q is the probability with which each agent receives the action

recommendation that “matches” the state, i.e. the “state-matching” action. We

refer to it as the precision of the information structure. The parameter r is the
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probability with which both agents simultaneously receive the state-matching action

recommendation. We refer to it as the correlation of the information structure.

The above parameterization also includes many important special structures.

The case of conditionally independent private signals is captured by setting r = q2

for q ∈ (0, 1). In this case, each agent receives a private signal which is equal to

the state-matching action with probability q and is independent of the signal of his

opponent. Both agents thus receive the state-matching action recommendation with

probability q × q = r and receive opposite action recommendations with probability

q× (1− q) = q− r. On the other hand, the case of public signals is covered by setting

r = q. This ensures that both agents always receive the same action recommendation,

where q is the probability of having that action match the state. We denote public

signals by Sq,q. For the general case of private signals with precision q and correlation

r, we write Sq,r.

Of particular importance is the null information structure S which provides

no information about the state θ. In terms of the above parameterization, the null

information structure corresponds to q = 1
2

and can be denoted as S 1
2
,r. In this

case, the signals are completely uninformative with respect to the state. Notice also

that there are infinitely many null information structures, each one associated with

a different degree of correlation between the signals. On the other hand, there is

only one full information structure S̄ which reveals the state of the world perfectly,

captured by q = r = 1 and written as S1,1.

It is useful for the upcoming analysis to graphically represent the set of direct

binary information structures in the (q, r)−space (Figure 3.2). For the conditional

probabilities in Table 3.2 to be positive, we need to have r smaller than q, greater than

2q − 1 and greater than 0. Thus, the set of possible direct information structures is

defined by three linear constraints. The first line is r = q, which describes the set of all
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Figure 3.2: Set of Direct Information Structures

public signals with different levels of precision. The second line is r = 2q − 1, which

represents all information structures with minimal levels of correlation for a given

level of precision q. And the third line is r = 0, which corresponds to all information

structures with zero correlation consistent with different levels of precision. That is

why these three lines determine the set of direct information structures. It is easy to

see that the set of conditionally independent signals, r = q2 with q ∈ (0, 1) is in the

interior of the set of all possible information structures.

Before we move on to the complete characterization, let us demonstrate graph-

ically how we obtain the optimal information structure in the symmetric example we

have been using throughout this section. This is shown in Figure 3.3.

Symmetric Example. The symmetric BCE which maximizes the expectation of the

objective function is ν∗(3
5
, 1

5
). The optimal direct information structure is thus given

by S∗ = (A, ν∗) and is summarized in the following matrices:
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Figure 3.3: Optimal Information Structure (Symmetric Example)

θ = θ0 a0 a1

a0
1
5

2
5

a1
2
5

0

θ = θ1 a0 a1

a0 0 2
5

a1
2
5

1
5

Under this information structure, the expected value of the prosecutor’s objective func-

tion is 4
5
. Due to the symmetry of the binary environment and of the designer’s utility

function, this information structure is a global optimum. In other words, restricting

attention to symmetric information structures is, in this case, without loss of gener-

ality.

Our next result is a complete characterization of the optimal symmetric infor-

mation structure for all possible designer’s objective functions and basic games Gc,d.

Recall that R and Q are defined as the average preference for coordination of the

agents’ actions and the average preference for unilateral coordination of each player

with the state, respectively (see Section 3.5.2).

Theorem 2.
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1. If R > 0 and Q > 0, the full information structure is always optimal.

2. If R < 0, Q > 0 and the basic game exhibits strategic complements, the optimal

information structure is public signals with precision d
c+d

if −Q
R
< c−3d

2(c−d)
; private

signals with precision 2c−d
3c−d and correlation c−d

3c−d if c−3d
2(c−d)

< −Q
R
< 2; and the full

information structure if −Q
R
> 2.

3. If R < 0, Q > 0 and the basic game exhibits strategic substitutes, the optimal

information structure is the null information structure if −Q
R
< 2; and the full

information structure if −Q
R
> 2.

4. If R > 0, Q < 0 and the basic game exhibits strategic complements, the optimal

information structure is the full information structure if −Q
R
< 1; and private

signals with precision 2c−d
3c−d and correlation c−d

3c−d if −Q
R
> 1.

5. If R > 0, Q < 0 and the basic game exhibits strategic substitutes, the optimal

information structure is the full information structure if −Q
R
< 1; public signals

with precision d
c+d

if 1 < −Q
R
< c−3d

2(c−d)
; and private signals with precision d

3d−c

and correlation 0 if −Q
R
> c−3d

2(c−d)
.

6. If R < 0, Q < 0 and the basic game exhibits strategic complements, the optimal

information structure is public signals with precision d
c+d

if −Q
R
< c−3d

2(c−d)
; and

private signals with precision 2c−d
3c−d and correlation c−d

3c−d if −Q
R
> c−3d

2(c−d)
.

7. If R < 0, Q < 0 and the basic game exhibits strategic substitutes, the optimal

information structure is private signals with precision d
3d−c and correlation 0.

Our characterization theorem is summarized in Table 3.3 of Appendix B. The

information design problem can be seen as utility maximization given the designer’s
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preferences over distributions of actions conditional on the states, where the budget

set is BCE(Gc,d, S). The slope of the designer’s level line, −Q
R

, can be viewed as a

marginal rate of substitution. It represents the designer’s benefit from an increase in

the probability (q) of state coordination relative to the benefit from an increase in

the probability (r) of action coordination. When this slope is negative, the designer

benefits from simultaneous movements in both probabilities and so is willing to trade

in an increase in one for a decrease in the other. When it is positive, however, the

designer is willing to trade between simultaneous movements: an increase (decrease)

in one for an increase (decrease) in the other. Thus, the slope of the designer level

line represents the tradeoff that she is willing to accept between the two parameters

of the equilibrium distributions.

The set of BCE under the null information structure, BCE(Gc,d, S), is the

budget set of the information designer. The slopes of its boundaries represent the

tradeoffs between the parameters q and r that need to be maintained so that the BCE

incentive compatibility constraints remain satisfied. Therefore, these slopes represent

the rates at which the designer may trade changes in one parameter for changes in

the other. We next explain the intuition in a few cases.

Consider the case when the designer would like the agents to both coordinate

their actions with each other (R > 0) and with the state (Q > 0). If the game

has strategic complements, then the agents have the exact same preferences as the

designer. Therefore, it is best to give the agents full information, as they will use it

to coordinate perfectly with each other and the state, which is the objective of the

designer. Notice that for the same preferences of the designer, the optimal information

structure is full information also when the game has strategic substitutes, which is

somewhat counterintuitive. The reason is that once the agents have full information,

it is always a dominant strategy to play the action that matches the state, because
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the strategic substitutes are not strong enough. This is due to the fact that we

restrict the payoff parameters to be strictly positive, which is a limitation of the

model. If we were to allow for c to be negative, this result would change. However,

in the current setting, a designer who would like the agents to coordinate with each

other and with the state achieves that by giving full information both when the game

exhibits strategic complements and strategic substitutes.

Next, consider the case of a designer with preferences described by R < 0

and Q > 0. She would hence like to choose q to be as high as possible and r to

be as low as possible. This translates into a preference for mis-coordination between

the agents irrespective of the state, as it maximizes the probability of mismatched

actions Pr(a0, a1) = Pr(a1, a0) = q − r. If the game has strategic substitutes, there

is an underlying incentive for the agents to mismatch their actions. However, each

one of them still has an incentive to match the state and the mismatched action

profile is never a full information Nash equilibrium. If the preference for coordination

with the state is not as strong as the disutility from coordination between the agents,

then the designer would choose to reveal no information. This will maximize the

probability of mis-coordinated actions. Conversely, if the preference for coordination

with the state is stronger than the disutility from coordination between the actions,

then it is optimal for the designer to reveal everything. The actions will never be

mis-coordinated in this case; nonetheless, the designer would prefer to have perfect

state coordination.

For the case of R > 0 and Q < 0, the designer wants the agents to coordinate

their actions but to not coordinate with the state. If the game exhibits strategic

complements, the agents would like to both coordinate with each other and with the

state. Therefore, if the designer’s preference for action coordination is stronger than

the disutility from state coordination, she will choose the full information structure
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and have them coordinate on both actions and the state. In contrast, if she really

dislikes state coordination, she will choose correlated privates signals with imperfect

precision. By doing this, the designer foregoes the perfect action coordination she

could achieve with full information in order to achieve some degree of state mis-

coordination. Thus, depending on the strength of those two preferences, the outcome

is either full information or correlated private signals with imperfect precision.

Lastly, consider the case of R < 0 and Q < 0, where the designer wants the

agents to mis-coordinate both on the state and the actions. If the game exhibits

strategic substitutes, the optimal information structure is private signals with low

precision. This ensures that the agents do not obtain enough information about the

state, so that they don’t coordinate too much with it. At the same time, they have

enough information about what the other player has likely observed. Since the game

has strategic substitutes, the agents have an incentive to mis-coordinate their actions.

Hence the signals are used mainly as a device for the agents to condition their actions

on, in order to achieve mis-coordination.

To contrast our results with those from the literature on cheap talk without

commitment, we would like to point out that making the preferences of the designer

and the agents more aligned, may in fact decrease the optimal precision of information.

For example, when we have strategic substitutes, and the preferences of the designer

are R > 0, Q > 0, full information is optimal. For strategic substitutes and R <

0, Q > 0, the designer also wants action mis-coordination and state coordination, just

like the agents. So the preferences have become more aligned. However, the null

structure is optimal in this case for certain values of the parameters.

Corollary 3. Conditionally independent private signals are never optimal.

Notice that r = q2, q ∈ (0, 1) is always in the interior of the set of information

structures and is therefore never optimal.
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Corollary 4. The only case when the designer may not benefit from information

design is when R < 0, Q > 0, −Q
R
< 2 and the basic game exhibits strategic substitutes.

There is no benefit from information design whenever revealing no information

and letting the agents operate under their prior beliefs is optimal. Thus, as long as

the optimal information structure differs from the null, the designer benefits from

information design. No information revelation, i.e. q = 1/2, is only ever strictly

optimal in the case of strategic substitutes when the designer has preferences described

by R < 0, Q > 0 and −Q
R
< 2 . The intuition behind this case was described above.

In all remaining cases, information design is beneficial.

3.5.2.4 Indirect Information Structures

In some cases, rather than sending direct action recommendations, the designer

may prefer or be confined to using signals, which are intrinsically associated to varying

degrees with the different states of the world.6 This is the second class of information

structures we consider, which we call “indirect”.

When the designer is not able to send direct action recommendations to create

the information structure, the interpretation of the signals becomes relevant. In a

way, this can be viewed as using a predetermined “language” to create the information

structure. In binary environments, the designer needs two different signals to generate

the set of information structures that can support all BNE. In order to generate

symmetric information structures, one of the signals has to be designated as more

indicative of state θ0, and the other signal — as more indicative of state θ1. Let

us denote the former by t0 and the latter by t1. Therefore, conditional on θ0 (θ1)

6The chairman of the Fed does not typically talk about how economic agents should be behaving.
Rather, his statements include signals regarding the Fed’s stimulus policy and the economic outlook.
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the probability that signal t0 (t1) is observed has to be at least 1
2

i.e. Pr(t0|θ0) =

Pr(t1|θ1) = r + (q − r) = q has to be weakly greater than 1
2
. Otherwise the signals

would not be indicative of the states.

We can use the same parameterization as in Table 3.2, only instead of the

action recommendations a0 and a1, we use the signals t0 and t1 respectively. Most

importantly, we now have the added restriction that the precision q has to be weakly

larger than 1
2
. Thus, the set of indirect information structures is smaller than the set

of direct information structures due to this additional constraint q ≥ 1
2
. Figure 3.4

depicts the set of indirect information structures.
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Figure 3.4: Set of Indirect Information Structures

Every ν∗(q, r) ∈ BCE(Gc,d, S) can be thus supported as a BNE by an indirect

information structure Sq,r as long as q ≥ 1
2
. In this case, following the signal and

playing a0 when t0 is received, and a1 when t1 is received, is a BNE. This can be

viewed as “truthtelling” under indirect information structures.
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However, for ν∗(q, r) ∈ BCE(Gc,d, S) with q < 1
2

we can no longer use an

indirect information structure Sq,r, as it is not defined for precision values less than

a half. We need to find an indirect information structure, which will decentralize

ν∗(q, r) as a BNE. The next proposition establishes the information structure that

accomplishes this.

Proposition 14. For q < 1
2
, ν∗(q, r) ∈ BCE(Gc,d, S) only if ν∗(q, r) ∈ BNE(Gc,d, S1−q,1−2q+r).

The indirect information structure which decentralizes a BCE ν∗(q, r) with

q < 1
2

as a BNE is given by S1−q,1−2q+r. The intuition is that the designer creates

an indirect structure that is a “mirror image” of the direct information structure she

would have used. This is necessary so that the precision of the indirect structure is

greater than 1
2
. Under S1−q,1−2q+r, it is a BNE for both players to play the opposite

action of what the signal suggests; that is, play a1 if t0 is received, and play a0 if t1

is received. This BNE results in a random choice rule which is exactly equivalent to

ν∗(q, r). Since the information structure S1−q,1−2q+r is a mirror image of ν∗(q, r) and

the BNE strategy we consider is in turn a mirror image of truthtelling, the resulting

distribution over actions conditional on states of the world is exactly the desired

distribution ν∗(q, r).

3.5.3 Mechanism and Information Design

Thus far we maintained the assumption that the payoffs of the underlying game

— the parameters c and d — were constant. In this section we offer insights into how

changes in these parameters affect the maximal payoff of the information designer.

This change in parameter values may come about due to exogenous factors. Another

possibility is if the designer uses state and action contingent transfers to modify the

payoffs of the agents. This is feasible if the state of the world becomes observable after
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the game has been played and if the actions of the agents are verifiable. Angeletos and

Pavan [3] use taxes contingent on ex post public information about the realized state

and aggregate activity. They show that such policies can improve the equilibrium use

of information.

The main idea of this section is that in some cases the designer can induce an

even better equilibrium outcome by combining the tools of mechanism design (payoff

modification) and information design (belief modification), than when she uses only

one or the other. Changes in the payoff parameters through state and payoff contin-

gent transfers can affect the maximal utility of the information designer. An increase

in c, while d is held constant, increases both the complementarities with the state

and between the agents. In contrast, an increase in d, while c is held constant, in-

creases the complementarities with the state, while decreasing the complementarities

between the agents. These changes have different effects on the maximum utility of

the designer, depending on her preferences and also on the extent of the changes.

It is not always possible to draw general conclusions from the comparative

statics analysis. Frequently, if the change in the parameter is substantial enough,

it may cause a shift from the case of strategic complements to the case of strategic

substitutes. When this happens, the comparison is very sensitive to the size of the

shift and we cannot evaluate the changes based only on its direction. In some in-

stances, however, we are able to make clear-cut conclusions regarding the direction of

the effects. The next proposition established the cases for which this is possible and

for which mechanism design can improve on the outcome achieved with information

design.

Proposition 15. Holding all else equal,

1. and starting with c > d, an increase in c or a decrease in d is always beneficial

to a utility maximizing designer with R < 0, Q < 0, who uses public signals.
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2. and starting with c < d, a decrease in c or an increase in d is always beneficial

to a utility maximizing designer with R > 0, Q < 0 who uses private signals

and to a designer with R < 0, Q < 0.

We next explain the intuition behind the last case: R < 0, Q < 0 and c < d.

If the designer wants players to mis-coordinate both with the state and with each

other, and the game exhibits strategic substitutes, the optimal information structure

is private signals with low precision. This allows the players to use the signals in

order to mis-match their actions, while obtaining very little information about the

state. The signals need to have some level of precision in order for the players to pay

attention to them and utilize them when formulating their strategies. This comes to

the designer at the cost of the agents being able to predict the state better. When c

decreases, or d increases, the level of strategic substitutability decreases. Therefore,

the incentives of the agents for mis-coordinating their actions become stronger. They

will now need less precise signals about the state to achieve this. This is beneficial to

the designer as the less precise signals also result in less coordination with the state.

3.6 Discussion and Extensions

3.6.1 Communication

In certain environments it is unreasonable to assume that agents will not

share the information they observe with each other, if that is beneficial to them.

When the underlying game exhibits strategic complements, this issue is of particular

relevance. The agents want to match the state and each other with their actions.

Therefore, each agent has an incentive to disclose the private signal he observes to his

opponent. The benefit from doing so is twofold. First, the agents can coordinate their

actions perfectly once they have the same information. Second, by sharing the signal
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realizations they have observed, they can improve the precision of their information

and update their beliefs accordingly.

A designer who faces a situation where the agents have incentives to communi-

cate with each other, needs to take that into account when designing the information

structure. This implies making the information design robust to communication. In

this case, the designer is restricted to public signal information structures, as every

signal realization will be ultimately observed by both agents. Hence, she needs to

include the constraint q = r in her linear optimization program. This constraint

imposes the restriction of public signals on the choice of information structure. From

Table 3.3 it becomes clear that in some instances this constraint is binding and leads

to lower optimal value of the designer’s objective function. Looking at the case of

strategic complements (c > d), whenever the optimal information structure consists

of private signals, the communication constraint is binding. In these cases, the de-

signer needs to choose a constrained optimum information structure consisting of a

public signal, which will be communication robust.

3.6.2 Multiplicity of Equilibria and Other Solution Concepts

Information design is about finding the information structure under which the

most beneficial BNE is played. However, this does not exclude the possibility of there

being multiple BNE under the optimal information structure. Information design

is subject to the same criticisms as mechanism design with regards to the multiple

equilibrium problem. For example, consider the symmetric 2×2×2 environment when

there are strategic complements (c > d). Under the null information structure, there

are three (agent) symmetric BNE: always play a0, always play a1, and mix with equal

probabilities between the two actions. Only the last equilibrium is also symmetric in

the state, which is what we focus on in our two-dimensional representation. Further
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restrictions need to be imposed on the information structure through the incentive

constraints in order to ensure the uniqueness of equilibrium.

In our framework, we exclusively focus on BNE as a solution concept. Working

with different solution concepts may change the environment, by modifying the in-

centive constraints or adding new ones. For example, Lehrer, Rosenberg and Shmaya

[41] consider solutions concepts which allow for degrees of communication and cor-

relation between the agents that are different from Nash equilibrium. The optimal

information structure, which supports the most desirable equilibrium under a different

solution concept, can be derived using the approach described here with appropriately

modified incentive constraints. An interesting question to investigate would be how

the optimal information structures compare, in terms of their complexity, across the

different solution concepts.

3.6.3 Exogenous Information

Our analysis and results are based on the assumption that the designer is in

complete control of the informational environment. In particular, we assumed away

any signals observed by the agents prior to the ones sent by the designer. In some

instances, however, this assumption is unrealistic as the agents may already have

some information about the state. Depending on the nature of this information,

the designer’s ability to achieve the highest possible objective may be impeded. In

either case, the designer needs to take into account the prior signals of the agents and

incorporate that as an additional constraint into her information design problem.

Consider the motivating example of Section 3.3. Let us assume that in the

course of the trial, the jury already observed some evidence. In particular, she knows

that the jury members have observed signal realizations from the following informa-

tion structure:
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θ0 t0 t1
t0 6/20 7/20
t1 7/20 0

θ1 t0 t1
t0 0 7/20
t1 7/20 6/20

The precision of these signals is 13
20

which is slightly higher than the precision of

3
5

that the optimal information structure was characterized by. Given this prior

information structure observed by the jurors, the prosecutor can no longer achieve

the unconstrained maximum objective value of 4
5
. In fact, the best she could do is

choose a completely uninformative investigation and obtain a value of 7
10

.

Therefore, in the presence of prior information, the optimal information struc-

ture may significantly change as compared to the case of no prior information. Simi-

lar considerations apply when the agents observe additional signals beyond what the

designer reveals. As long as the designer knows the structure of the exogenous in-

formation, she can incorporate that as additional constraints into her optimization

problem. These constraints may not affect her ability to achieve the same maximum

value of the objective as when the agents have no exogenous information. Neverthe-

less, she needs to modify the optimal information structure, since it is augmented by

the exogenous signals.

3.7 Conclusion

The incentives of rational agents to behave in a certain way are determined

by their payoffs and by their beliefs. Mechanism design concerns the modification of

payoffs so that people have incentives to behave in desired ways. This paper lays out

the methodology of information design. Information design operates on the beliefs of

the agents through the choice of information structure. It thus focuses on the choice

and creation of information structures under which agents achieve the most favorable

outcomes.
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As suggested in the previous section, there are many important extensions

and robustness issues that can be studied with the proposed method. All of these

constitute interesting directions for future research.
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Appendix A

Proof of Proposition 10
First we prove that BCE(G,S) ⊆ ∪SBNE(G,S). Choose ν ∈ BCE(G,S). Hence,
it must hold that∑

a−i,θ

ψ(θ)ν(ai, a−i|θ)ui((ai, a−i), θ) ≥
∑
a−i,θ

ψ(θ)ν(ai, a−i|θ)ui((a′i, a−i), θ) (3.11)

for each i ∈ I, ai ∈ Ai and a′i ∈ Ai. Consider the information structure S∗ = (T ∗, π∗)
with T ∗i = A∗i × ti and

π∗((ai, ti)
N
i=1|θ) = π∗(a, t|θ) = ν(a|θ) (3.12)

for each a ∈ A and θ ∈ Θ. In the game (G,S∗) consider the “truthful” behavioral
strategy β∗i for agent i with

β∗i (ai|a′i, ti) =

{
1, if ai = a′i
0, if ai 6= a′i

(3.13)

for all ai, a
′
i ∈ Ai. The interim payoff to agent i observing signal (ai, ti) and choosing

action a′i when his opponents follow β∗−i is∑
a−i,a′−i,θ

ψ(θ)π∗((ai, a
′
−i), t|θ)

(∏
j 6=i

β∗j (aj|a′j, tj)
)
ui((a

′
i, a−i), θ)

=
∑
a−i,θ

ψ(θ)ν(ai, a−i|θ)ui((a′i, a−i), θ) (3.14)

where we use (3.12) and (3.13). Therefore, the BNE interim incentive compatibility
condition∑

a−i,a′−i,θ

ψ(θ)π∗((ai, a
′
−i), t|θ)

(∏
j 6=i

β∗j (aj|a′j, tj)
)
ui((ai, a−i), θ)

≥
∑

a−i,a′−i,θ

ψ(θ)π∗((ai, a
′
−i), t|θ)

(∏
j 6=i

β∗j (aj|a′j, tj)
)
ui((a

′
i, a−i), θ) (3.15)

is equivalent to and implied by the BCE obedience constraint (3.11). Hence, β∗ is a
BNE of (G,S∗). The distribution over actions conditional on states generated from
this equilibrium strategy is∑

a′∈A

π∗(a′, t|θ)
( N∏
j=1

βj(aj|a′j, tj)
)

= ν(a|θ). (3.16)
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Thus, ν is a BNE of the game (G,S∗), i.e. ν ∈ BNE(G,S∗). This impliesBCE(G,S) ⊆
∪SBNE(G,S).

Next we prove that BCE(G,S) ⊇ ∪SBNE(G,S). Choose ν̃ ∈ ∪SBNE(G,S).
Hence, there exist an information structure S̃ = (T̃ , π̃) and a BNE behavioral strategy
β(a|t̃) of (G, S̃) such that

ν̃(a|θ) =
∑
t̃∈T̃

π̃(t̃|θ)
( N∏
j=1

βj(aj|t̃j)
)
. (3.17)

We write π̃(t̃, t|θ) = π̃(t̃|θ), β(a|t̃, t) = β(a|t̃) and ν̃(a|t, θ) = ν̃(a|θ) for t̃ ∈ T̃ and
{t} = T , which trivially holds.

For each ai such that βi(ai|t̃i, ti) > 0, by the BNE incentive compatibility
condition it must hold that∑

a−i,t̃−i,θ

ψ(θ)π̃((t̃i, t̃−i), t|θ)
(∏
j 6=i

βj(aj|t̃j, tj)
)
ui((ai, a−i), θ)

≥
∑

a−i,t̃−i,θ

ψ(θ)π̃((t̃i, t̃−i), t|θ)
(∏
j 6=i

βj(aj|t̃j, tj)
)
ui((a

′
i, a−i), θ) (3.18)

for each i ∈ I, t̃i ∈ T̃i, and a′i ∈ Ai. Multiplying both sides by
∑̃
ti

βi(ai|t̃i, ti) gives

∑
a−i,t̃,θ

ψ(θ)π̃((t̃i, t̃−i), t|θ)
( N∏
j=1

βj(aj|t̃j, tj)
)
ui((ai, a−i), θ)

≥
∑
a−i,t̃,θ

ψ(θ)π̃((t̃i, t̃−i), t|θ)
( N∏
j=1

βj(aj|t̃j, tj)
)
ui((a

′
i, a−i), θ) (3.19)

which by (3.17) is equivalent to∑
a−i,θ

ψ(θ)ν̃(a|t, θ)ui((ai, a−i), θ) ≥
∑
a−i,θ

ψ(θ)ν̃(a|t, θ)ui((a′i, a−i), θ). (3.20)

Thus, ν̃ ∈ BCE(G,S), which implies BCE(G,S) ⊇ ∪SBNE(G,S).

Proof of Proposition 11
By definition, (ii) implies (i) and (iii). Let us first show that (i) implies (ii). Take a
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basic game G and an information structure S = (T, π) with value V ∗. Suppose that
β is the BNE of (G,S) which generates that value, that is

∑
a,t,θ

V (a, θ)π(t|θ)
( N∏
i=1

βi(ai|ti)
)
ψ(θ) = V ∗. (3.21)

Let T a = {t|βi(ai|ti) > 0 ∀ i ∈ I}. Consider the direct information structure S ′ =
(A, π′) with

π′(a|θ) =
∑
t∈Ta

π(t|θ)
( N∏
i=1

βi(ai|ti)
)
. (3.22)

We will show that the truthful strategy of playing the action implied by the signal
realization is a BNE of (G,S ′).

Since βi(ai|ti) > 0 we have the BNE incentive compatibility condition∑
a−i,t−i,θ

ψ(θ)π((ti, t−i)|θ)
(∏
j 6=i

βj(aj|tj)
)
ui((ai, a−i), θ)

≥
∑

a−i,t−i,θ

ψ(θ)π((ti, t−i)|θ)
(∏
j 6=i

βj(aj|tj)
)
ui((a

′
i, a−i), θ) (3.23)

for each i ∈ I, ti ∈ Ti and a′i ∈ Ai. Multiplying both sides of the above inequality by
βi(ai|ti) and summing across all ti we get∑

ti

βi(ai|ti)
∑

a−i,t−i,θ

ψ(θ)π((ti, t−i)|θ)
(∏
j 6=i

βj(aj|tj)
)
ui((ai, a−i), θ)

≥
∑
ti

βi(ai|ti)
∑

a−i,t−i,θ

ψ(θ)π((ti, t−i)|θ)
(∏
j 6=i

βj(aj|tj)
)
ui((a

′
i, a−i), θ) (3.24)

which can be rewritten as

∑
a−i,θ

ψ(θ)
∑
t

π((ti, t−i)|θ)
( N∏
i=1

βi(ai|ti)
)
ui((ai, a−i), θ)

≥
∑
a−i,θ

ψ(θ)
∑
t

π((ti, t−i)|θ)
( N∏
i=1

βi(ai|ti)
)
ui((a

′
i, a−i), θ) (3.25)
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for each i ∈ I and a′i ∈ Ai. Substituting in with (3.22) we obtain∑
a−i,θ

ψ(θ)π′((ai, a−i)|θ)ui((ai, a−i), θ) ≥
∑
a−i,θ

ψ(θ))π′((ai, a−i)|θ)ui((a′i, a−i), θ). (3.26)

In the game (G,S ′) consider the behavioral strategy β′i for agent i with

β′i(ai|a′i) =

{
1, if ai = a′i
0, if ai 6= a′i

(3.27)

for all ai, a
′
i ∈ Ai. The interim payoff to agent i observing signal ai and choosing

action a′i in (G,S ′) when each opponent j follows strategy β′j is∑
a−i,a′−i,θ

ψ(θ)π′((ai, a
′
−i)|θ)

(∏
j 6=i

β′j(aj|a′j)
)
ui((a

′
i, a−i), θ)

=
∑
a−i,θ

ψ(θ)π′((ai, a−i)|θ)ui((a′i, a−i), θ). (3.28)

Hence, (3.26) implies the BNE incentive compatibility conditions for strategy profile
β′. Under β′ the expected payoff to the designer is given by

E[V ] =
∑
a,θ

V (a, θ)π′(a|θ)ψ(θ) = V ∗. (3.29)

where we use (3.21) and (3.22). Hence, the direct information structure S ′ also has
value V ∗.

Next we show that (iii) implies (ii). For basic game G, consider a BNE distri-
bution ν such that

Eν [V ] =
∑
a,θ

V (a, θ)ν(a|θ)ψ(θ) = V ∗.

By Proposition 10 we know that ν ∈ BCE(G,S). Hence, it holds∑
a−i,θ

ψ(θ)ν((ai, a−i)|θ)ui((ai, a−i), θ) ≥
∑
a−i,θ

ψ(θ))ν((ai, a−i)|θ)ui((a′i, a−i), θ). (3.30)

Consider the direct information structure S = (A, π) with π(a|θ) = ν(a|θ) for all
a ∈ A and θ ∈ Θ. In the game (G,S) consider the behavioral strategy βi for agent i
with

βi(ai|a′i) =

{
1, if ai = a′i
0, if ai 6= a′i

(3.31)
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for all ai, a
′
i ∈ Ai. The interim payoff to agent i observing signal ai and choosing

action a′i in (G,S) when each opponent j follows strategy βj is∑
a−i,a′−i,θ

ψ(θ)π((ai, a
′
−i)|θ)

(∏
j 6=i

βj(aj|a′j)
)
ui((a

′
i, a−i), θ)

=
∑
a−i,θ

ψ(θ)π((ai, a−i)|θ)ui((a′i, a−i), θ) =
∑
a−i,θ

ψ(θ)ν((ai, a−i)|θ)ui((a′i, a−i), θ).

(3.32)

where the first equality follow by (3.31) and the second equality follows from π(a|θ) =
ν(a|θ). Hence, (3.32) implies the BNE incentive compatibility conditions for strategy
profile β. The distribution of actions conditional on states of the world under β is

∑
a′∈A

π(a′|θ)
( N∏
i=1

βi(ai|a′i)
)

= π(a|θ) = ν(a|θ) (3.33)

and thus, the expected payoff of the designer under strategy profile β is given by

E[V ] =
∑
a,θ

V (a, θ)ν(a|θ)ψ(θ) = V ∗. (3.34)

Hence, the direct information structure S has value V ∗.

Proof of Proposition 12
Let ν∗ be an optimal direct signal structure that generates an action profile a, i.e.
ν∗(a|θ) > 0 for some θ ∈ Θ. The expected payoff for the designer under realization
a is given by E[V (a)] =

∑
θ

V (a, θ)ν∗(θ|a). Suppose that upon observing the signal

realization a, the designer decides to release a new signal structure ν̂. She will only
strictly prefer to do that if this gives her a higher expected payoff, that is if:∑

θ

V (a, θ)ν∗(θ|a) <
∑
θ

ν∗(θ|a)
∑
a

V (a, θ)ν̂(a|θ). (3.35)

Multiplying both sides of the above inequality by ν∗(a) =
∑
θ∈Θ

ν∗(a|θ) we obtain:

∑
θ

V (a, θ)ν∗(a, θ) <
∑
θ

ν∗(a, θ)
∑
a

V (a, θ)ν̂(a|θ). (3.36)
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Suppose that the designer released the following information structure to start
with:

ν(a|θ) =


ν∗(a|θ)ν̂(a|θ) if ν̂(a|θ) > 0 and ν∗(a|θ) = 0
ν∗(a|θ) + ν∗(a|θ)ν̂(a|θ) if ν̂(a|θ) > 0 and ν∗(a|θ) > 0
ν∗(a|θ) if ν̂(a|θ) = 0, ν∗(a|θ) > 0 and a 6= a
0 otherwise

(3.37)
for each a ∈ A and θ ∈ Θ. It is straightforward to see that ν(a|θ) ∈ [0, 1] and∑
a

ν(a|θ) = 1 and hence ν(a|θ) is a proper probability distribution. Obedience of

ν(a|θ) requires:∑
a−i,θ

ψ(θ)ν((ai, a−i)|θ)ui((ai, a−i), θ) ≥
∑
a−i,θ

ψ(θ))ν((ai, a−i)|θ)ui((a′i, a−i), θ). (3.38)

∑
a−i,θ

ψ(θ)[ν((ai, a−i)|θ) + ν∗(a|θ)ν̂(ai, a−i|θ)] ui((ai, a−i), θ)

≥
∑
a−i,θ

ψ(θ)[ν((ai, a−i)|θ) + ν∗(a|θ)ν̂(ai, a−i|θ)] ui((a′i, a−i), θ). (3.39)

This condition is satisfied due to the obedience of ν∗ under the prior ψ(θ) and the
obedience of ν̂ under the prior ν∗(θ|a).

The above signal structure ν(a|θ) would have resulted in an expected payoff
of∑

θ

ν∗(a|θ)ψ(θ)
∑
a

V (a, θ)ν̂(a|θ) +
∑
a\a,θ

V (a, θ)ν∗(a|θ)ψ(θ)

=
∑
θ

ν∗(a, θ)
∑
a

V (a, θ)ν̂(a|θ) +
∑
a\a,θ

V (a, θ)ν∗(a, θ) (3.40)

By (3.36) the above expression is strictly larger than the expected payoff under ν∗,
which can be written as∑

θ

V (a, θ)ν∗(a, θ) +
∑
a\a,θ

V (a, θ)ν∗(a, θ). (3.41)

This is a contradiction to ν∗ being optimal.
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Proof of Proposition 13
For the null information structure S and a basic game Gc,d the general BCE con-
straints given in Definition 11 become:
for ai = a0, a′i = a1:

1

2
rc+

1

2
(q − r)d ≥ 1

2
(q − r)c+

1

2
(1− 2q + r)d

and
for ai = a1, a′i = a0:

1

2
rc+

1

2
(q − r)d ≥ 1

2
(q − r)c+

1

2
(1− 2q + r)d.

These two constraints are equivalent and reduce to only one inequality:

2(c− d)r ≥ d+ (c− 3d)q. (3.42)

Additionally, the parameters need to satisfy:

r ≤ q (3.43)

r ≥ max{2q − 1, 0} (3.44)

and
q ∈ [0, 1]. (3.45)

Therefore, the set of BCE random choice rules if (Gc,d, S) is equivalent to the set of
(q, r)-pairs which satisfy constraints (3.42)–(3.45).

Case 1: Assume c > d ≥ 0 (strategic complements). The obedience constraint (3.42)
can thus be written as:

r ≥ d

2(c− d)
+

c− 3d

2(c− d)
q (3.46)

In this case, constraint (3.45), which essentially coincides with the x-axis of the graph,
is never binding. The reason behind this is the following. The intercept of constraint
(3.46) is always positive. When in addition c ≥ 3d, the slope is also positive. Hence,
this constraint is always more binding than (3.45), as it always lies above the x-axis.
On the other hand, when c < 3d, the slope of (3.46) is negative. However, it is easy
to show that (3.46) intersects (3.44) before it intersects the x-axis. Therefore, for the
relevant range of values, (3.46) lies above the x-axis also in this case Hence, (3.45) is
never binding.
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Figure 3.5: Strategic Complements (c > d ≥ 0)

The set of random choice rules which satisfy (3.46), (3.43) and (3.44) is thus

equivalent to the convex hull formed by the intersection points (q1, r1) =
(

d
c+d

, d
c+d

)
(of (3.46) and (3.43)), (q2, r2) =

(
2c−d
3c−d ,

c−d
3c−d

)
(of (3.46) and (3.44))and (q3, r3) = (1, 1)

(of (3.43) and (3.44)).

Case 2: Assume d > c ≥ 0 (strategic substitutes). The obedience constraint (3.42)
can thus be written as:

r ≤ d

2(c− d)
+

c− 3d

2(c− d)
q (3.47)

This constraint has a negative intercept and a positive slope. In fact, it always holds
that the slope c−3d

2(c−d)
≥ 3

2
. When c > 0 the slope is strictly greater than 3

2
and (3.47)

intersects only constraints (3.45) and (3.43). In this case, all four constraints (3.47),
(3.43), (3.44) and (3.45) are binding. The set of random choice rules which satisfy all

of them is equivalent to the hull formed by the intersection points (q1, r1) =
(

d
c+d

, d
c+d

)
(of (3.47) and (3.43)), (q3, r3) = (1, 1) (of (3.43) and (3.44)), (q5, r5) =

(
1
2
, 0
)

(of

(3.44) and (3.45)) and (q4, r4) =
(

d
3d−c , 0

)
(of (3.45) and (3.47)).

When c = 0, the slope of (3.47) is exactly equal to 3
2
. In this case (3.47), (3.43)
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Figure 3.6: Strategic Substitutes (d > c ≥ 0)

and (3.44) all intersect at one point — (q3, r3) = (1, 1) — and (3.43) is never binding.
The set of random choice rules is equivalent to the hull formed by the intersection

points (q3, r3) = (1, 1), (q5, r5) =
(

1
2
, 0
)

and (q4, r4) =
(

1
3
, 0
)

.

Case 3: In the special case of c = d > 0, the obedience constraint (3.42) becomes

q ≥ 1
2
. The set of BCE is then equivalent to the covex hull of (q1, r1) =

(
1
2
, 1

2

)
,

(q2, r2) =
(

1
2
, 0
)

, and (q3, r3) = (1, 1).
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Figure 3.7: c = d > 0

Proof of Proposition 14
Since ν∗(q, r) ∈ BCE(Gc,d, S), we know that (3.42) holds. We will show that this
condition implies the behavioral strategy

βi(ak|tn) =

{
1 if k 6= n
0 if k = n

(3.48)

for k, n = 0, 1 and i = 1, 2 is a BNE in the incomplete information game (Gc,d, S1−q,1−2q+r).
For (3.48) to be an equilibrium, it needs to hold that the BNE incentive compatibility
conditions given by (3.1) in Definition 10 are satisfied. Due to the symmetry of the
players, we need to consider only player i. The incentive constraint for βi(a1|t0) = 1
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is given by

1

2
π(t0, t0|θ0)βj(a1|t0)u(a1, a1, θ0) +

1

2
π(t0, t0|θ1)βj(a1|t0)u(a1, a1, θ1)

+
1

2
π(t0, t1|θ0)βj(a0|t1)u(a1, a0, θ0) +

1

2
π(t0, t1|θ1)βj(a0|t1)u(a1, a0, θ1)

≥ 1

2
π(t0, t0|θ0)βj(a1|t0)u(a0, a1, θ0) +

1

2
π(t0, t0|θ1)βj(a1|t0)u(a0, a1, θ1)

+
1

2
π(t0, t1|θ0)βj(a0|t1)u(a0, a0, θ0) +

1

2
π(t0, t1|θ1)βj(a0|t1)u(a0, a0, θ1).

(3.49)

When we substitute in the probabilities π(·|θ) of the information structure S1−q,1−2q+r,
the equilibrium strategy probabilities βj and the basic game payoffs, the above con-
dition reduces to

rc+ (q − r)d ≥ (1− 2q + r)d+ (q − r)c. (3.50)

The incentive constraint for βi(a0|t1) = 1 is given by

1

2
π(t1, t0|θ0)βj(a1|t0)u(a0, a1, θ0) +

1

2
π(t1, t0|θ1)βj(a1|t0)u(a0, a1, θ1)

+
1

2
π(t1, t1|θ0)βj(a0|t1)u(a0, a0, θ0) +

1

2
π(t1, t1|θ1)βj(a0|t1)u(a0, a0, θ1)

≥ 1

2
π(t1, t0|θ0)βj(a1|t0)u(a1, a1, θ0) +

1

2
π(t1, t0|θ1)βj(a1|t0)u(a1, a1, θ1)

+
1

2
π(t1, t1|θ0)βj(a0|t1)u(a1, a0, θ0) +

1

2
π(t1, t1|θ1)βj(a0|t1)u(a1, a0, θ1).

(3.51)

After substituting in we obtain:

(q − r)d+ rc ≥ (q − r)c+ (1− 2q + r)d. (3.52)

Notice that (3.50) and (3.52) are equivalent and, moreover, implied by the BCE condi-
tion (3.42). Hence, the behavioral strategy (3.48) is an equilibrium in the incomplete
information game (Gc,d, S1−q,1−2q+r).

We now need to show that this BNE strategy generates the random choice rule
ν∗(q, r). We will show that for the distribution conditional on θ0, as the rest follows by
analogy. The decision rule induced by strategy (3.48) is given by σ(a0, a0|t1, t1, θ0) =
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σ(a0, a1|t1, t0, θ0) = σ(a1, a0|t0, t1, θ0) = σ(a1, a1|t0, t0, θ0) = 1 and zero otherwise.
Hence, we obtain:

ν(a0, a0|θ0) = σ(a0, a0|t1, t1, θ0)π(t1, t1|θ0) = r

ν(a0, a1|θ0) = σ(a0, a1|t1, t0, θ0)π(t1, t0|θ0) = q − r

ν(a1, a0|θ0) = σ(a1, a0|t0, t1, θ0)π(t0, t1|θ0) = q − r

ν(a1, a1|θ0) = σ(a1, a1|t0, t0, θ0)π(t0, t0|θ0) = 1− 2q + r.

By analogy, we obtain the corresponding values for ν(·|θ1). This is exactly equivalent
to the random choice rule ν∗(q, r). Thus, (3.48) is a BNE strategy which induces
ν∗(q, r) in (Gc,d, S1−q,1−2q+r).

Proof of Proposition 15
Case 1: Consider a designer with R < 0, Q < 0, and −Q

R
< c−3d

2(c−d)
in the case

of strategic complements. By Theorem 3.3 we know that the optimal information
structure is a public signal with precision q = d

c+d
. Notice that c−3d

2(c−d)
is increasing in

c and decreasing in d. Therefore an increase in c and a decrease in d will both increase
its value. This implies that after the change, the optimal information structure will be
a public signal with a new precision level. Therefore, when we consider such changes
in the parameters, we can write the designer’s utility under the optimal information
structure as:

V ∗ = (R +Q)
d

c+ d
+ C

where C is a constant. Notice that V ∗ is increasing in c:

∂V ∗

∂c
= −(R +Q)

d

(c+ d)2
> 0

and decreasing in d:
∂V ∗

∂c
= (R +Q)

c

(c+ d)2
< 0.

Case 2: Consider a designer with R > 0, Q < 0, and −Q
R
> c−3d

2(c−d)
in the

case of strategic substitutes. Since c−3d
2(c−d)

is increasing in c and decreasing in d, a
decrease in c and a increase in d will both decrease its value. This implies that after
the change, the optimal information structure will be a private signal with a new
precision level and same correlation r = 0. Therefore, when we consider such changes

132



in the parameters, we can write the designer’s utility under the optimal information
structure as:

V ∗ = Rr +Q
d

3d− c
+ C = Q

d

3d− c
+ C

where C is a constant. Notice that V ∗ is decreasing in c:

∂V ∗

∂c
= Q

d

(3d− c)2
< 0

and increasing in d:
∂V ∗

∂c
= −Q c

(3d− c)2
> 0

a decrease in c or an increase in d always increases the maximal utility of the designer.
The same argument applies to the case of R < 0, Q < 0 and strategic substitutes.
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Appendix B

Table 3.3: Characterization of Optimal Information Structure

complements [c > d] substitutes [c < d]
R > 0, Q > 0 full information full information

R < 0, Q > 0 public signal (q = d
c+d

) ——————–

if −Q
R
< c−3d

2(c−d)

private signals (q = 2c−d
3c−d , r = c−d

3c−d) null information

if c−3d
2(c−d)

< −Q
R
< 2 if −Q

R
< 2

full information full information

if −Q
R
> 2 if −Q

R
> 2

R > 0, Q < 0 ——————– private signals (q = d
3d−c , r = 0)

if −Q
R
> c−3d

2(c−d)

private signals (q = 2c−d
3c−d , r = c−d

3c−d) public signal (q = d
c+d

)

if −Q
R
> 1 if 1 < −Q

R
< c−3d

2(c−d)

full information full information

if −Q
R
< 1 if −Q

R
< 1

R < 0, Q < 0 public signal (q = d
c+d

) private signals (q = d
3d−c , r = 0)

if −Q
R
< c−3d

2(c−d)
always

private signals (q = 2c−d
3c−d , r = c−d

3c−d) ——————–

if −Q
R
> c−3d

2(c−d)

Full information: (q = 1, r = 1); null information: (q = 1
2
, r = 0); public signals:

q = r.
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