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Hypoxia is frequently detected during summer in Corpus Christi Bay, Texas, and 

causes significant harm to benthic organism population and diversity.  Hypoxia is 

associated with the density stratification in the Bay but the cause of stratification is 

uncertain.  To support the study of hypoxia and stratification, a cyberinfrastructure based 

on the CUAHSI (Consortium of Universities for the Advancement of Hydrologic 

Science, Inc) Hydrologic Information System (HIS) is implemented.  HIS unites the 

sensor networks in the Bay by providing a standard data language and protocol for 

transferring data.  Thus hypoxia-related data from multiple sources can be compiled into 

a structured database. 

  In Corpus Christi Bay, salinity data collected from many locations and times are 

synthesized into a three-dimensional space-time continuum using geostatistical methods.  

The three dimensions are the depth, the distance along a transect line, and time.  The 

kriged salinity concentration in space and time illuminates the pattern of movement of a 
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saline gravity current along the bottom of the Bay.  The travel time of a gravity current in 

the Bay is estimated to be on the order of one week and the speed is on the order of 1 km 

per day.  Statistical study of high-resolution wind data shows that the stratification pattern 

in the Bay is related to the occurrence of strong, southeasterly winds in the 5 days prior to 

the observation.  This relationship supports the hypothesis that stratification is caused by 

the wind initiating hypersaline gravity currents which flow from Laguna Madre into 

Corpus Christi Bay. 

An empirical physical hypoxia model is created that tracks the fate and transport of 

the gravity currents.  The model uses wind and water quality data from real-time sensors 

published by HIS to predict the extent and duration of hypoxic regions in the Bay.  

Comparison of model results with historical data from 2005 to 2008 shows that wind-

driven gravity currents can explain the spatially heterogeneous patterns of hypoxic zones 

in Corpus Christi Bay. 
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CHAPTER 1: INTRODUCTION 

1.1 Hypoxia as an environmental problem 

Hypoxia in aquatic systems refers to waters where the dissolved oxygen concentration is 

below 2 mg/L (Dauer et al., 1992). Most organisms avoid, or become physiologically 

stressed, in waters with oxygen below this concentration (Diaz and Rosenberg, 1995).   

Hypoxia can also kill marine organisms which cannot escape the low-oxygen water, 

affecting commercial harvests and the health of impacted ecosystems. While hypoxia can 

occur naturally, it is also a symptom of environments stressed by human impact such as 

from excess nutrient enrichment from point and non-point sources. Over half of U.S. 

estuaries now experience natural or human-induced hypoxic conditions at some time each 

year and evidence suggests that the frequency and duration of hypoxic events have 

increased over the last few decades (NOAA, 2007).  According to Diaz and Rosenberg 

(2008), hypoxia problems are increasing world-wide, so providing and understanding of 

the mechanisms and possible solutions is a vital new problem.   

1.2 Hypoxia in Corpus Christi Bay 

Hypoxia in Corpus Christi Bay, Texas was first documented in 1988 (Montagna and 

Kalke, 1992) and later observed every summer (Martin and Montagna, 1995; Applebaum 

et al. 2005). Hypoxia in Corpus Christi Bay results in about a ten-fold reduction in 

benthic standing stock and diversity.  
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Unlike other systems along the Gulf of Mexico, e.g. the Louisiana coast, a linkage 

between eutrophication and hypoxia has not been established in Corpus Christi Bay 

(Applebaum et al, 2005).  Instead, hypoxia is found to be correlated with salinity-induced 

stratification of the Bay, which occurs in summer when temperature and evaporation are 

high and precipitation is low (Ritter and Montagna, 1999).   Stratification can cause 

hypoxia by reducing vertical turbulent mixing of heat, momentum, mass and constituents 

(Ralston and Stacey, 2005; Armenio and Sarker, 2002), and therefore limit the 

replenishment of dissolved oxygen in the bottom layer.  Over time, benthic demand 

depletes dissolved oxygen to hypoxic levels.  As a result, unlike many other coastal and 

estuarine systems, hypoxia in the Bay is thought to be naturally occurring and driven by 

stratification, instead of being man-made and driven by nutrient loadings. 

Figure 1.1 shows the areas where stratification-induced hypoxia has been observed in 

Corpus Christi Bay.  They were observed by: 

1. Dr. Paul Montagna, a marine biologist from the Harte Research Institute of Texas 

A&M University, Corpus Christi.  The region discovered by Montagna is 

highlighted in brown. 

2. Dr. Ben Hodges, an environmental engineer at University of Texas at Austin.  The 

region discovered by Hodges is highlighted in orange. 
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Ernest Sin Chit To, CRWR

Montagna

Hodges

 

Figure 1.1.  Hypoxia in Corpus Christi Bay  

1.3 Investigating the hypoxia problem 

Because the exact cause and occurrence of stratification and hypoxia in the Bay are not 

completely known, a team of biologists, engineers and computer scientists from four 

universities has been assembled to study the problem.  To enhance collaboration among 

its members, this team implemented a cyberinfrastructure in its investigation.  A 

cyberinfrastructure is a result of recent advances in information technology. It is defined 
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as an integrated system of computers (ranging from laptops to supercomputers), data 

storage systems, advanced instruments, visualization environments, and people that are 

all linked by high speed networks to foster innovation and discoveries not otherwise 

tenable.  The cyberinfrastructure used in Corpus Christi Bay is the CUAHSI (the 

Consortium of Universities for the Advancement of Hydrologic Science, Inc) HIS 

(Hydrologic Information System). HIS was released in August 2007 and is the first 

national-level cyberinfrastructure for the hydrologic sciences. The goal of HIS is to unify 

and streamline the flow of environmental data among governmental and research 

organizations. HIS is a system of web-interactive programs, protocols and computer 

servers that allow participators to  

1) publish data on the internet,  

2) discover relevant data from other sources and  

3) ingest data into modeling or analytical workflows. 

By adopting HIS, researchers provide their computer systems with the ability to interact, 

on a machine-to-machine basis, with the systems of their peers, thereby allowing them to 

become part of the overall cyberinfrastructure.  HIS benefits the overall scientific 

community by enlarging the common pool of data and resources through its 

cyberinfrastructure.  In Corpus Christi Bay, sensor networks from various state agencies 

and academic institutions have measured environmental data in since the 1970s.  The 

implementation of HIS enables data from the various environmental sensor networks in 

Corpus Christi Bay to be published and accessed in a unified manner. 
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1.4 Modeling the hypoxia problem 

Although the potential of cyberinfrastructure is much touted, the process by which 

information technology leads to scientific discovery is not well understood.  Since its 

release, HIS has been implemented on more than ten study areas (also known as 

“testbeds”) across the nation to evaluate its effectiveness in the advancement of 

hydrologic science.  These testbeds cover a variety of systems, ranging from rivers, 

estuaries to oceans.  Each testbed has a unique environmental phenomenon that is being 

researched by a team of scientists. Corpus Christi Bay is one of these testbeds.   

Apart from investigating the hypoxia problem in Corpus Christi Bay, the goal of this 

research is to use the Corpus Christi Bay testbed to conceive and implement a framework 

for utilizing hydrologic information systems, and thus cyberinfrastructures, for advancing 

science.  This framework shows how HIS can be harnessed to: 

1. generate insights into an environmental process (e.g. hypoxia)  that is previously 

not well-understood; 

2. support the development of a model of the environmental process; and,  

3. support the execution of the model to generate predictions over space and time.  

By demonstrating that cyberinfrastructure can directly contribute to scientific discovery,   

this research proves they are a critical component in future collaborative research.  The 

framework is described in the next section. 
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1.5 Framework for harnessing HIS for scientific discovery 

The framework developed for investigating hypoxia in Corpus Christi Bay addresses the 

question, “Now that I have HIS, what do I do with it?”  It is described in the steps below 

and illustrated in Figures 1.2 and 1.3. 

1. Data compilation 

First, the relevant data are harvested from various sources into a local database.  

Because different sources follow different naming conventions for labeling their 

data, semantic mediation is performed to sort out similar and dissimilar variables.  

2. Data analysis 

After compilation, the local database exhibits two main characteristics: 

1).   It contains a collection of data that are scattered over space and time.   

2). It contains a collection of environmental variables that describe different 

environmental factors.   

 For 1), the scattered data can be synthesized spatially and temporally into a 

continuous space-time volume.  Cross-sections of can be sliced from the space-

time volume to visualize how a particular variable changes over space and time.  

Spatial and temporal trends, such as velocity, can be observed from such 

visualizations. 

For 2), the relationships among environmental factors can be observed by 

performing hypothesis-testing of associated variables.  For instance, cause-and-

effect relationships can be elicited by appropriately applying correlation or partial 
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correlation tests.  Needless to say, hypothesis posed need to be grounded on sound 

scientific principles in order to extract meaningful information. 

3. Knowledge integration 

Knowledge of trends and relationships that are gained from data analysis can be 

incorporated into a parsimonious model of the environmental process.  A 

parsimonious model is one that is very careful or economical in its use of model 

parameters, and thus requiring only the available input data. The parsimonious 

model, once calibrated and validated, is a reflection of how much we understand 

about an environmental system. 
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Hydrologic information 
System

1. Harvest data from HIS  with web service clients.
2. Mediate semantic differences among data 

sources with lookup tables.
3. Organize data using standard data models.

Integrate knowledge into a model.

Data
Compilation

Local 
database

1. Data scatteredover space
and time.

2. Multiple variables 
representing different 
environmental properties.

Identify relationships
among  environmental 
variables by performing 
hypothesis testing.

Spatial  and temporal 
trends 

Insights on 
relationships 

1. Interpolate data into a 
continuous space‐time 
domain.

2. Visualize domain and 
interpret spatial and 
temporal trends. 

Data 
Analysis

Knowledge
Integration

Model  of 
environmental system

 
Figure 1.2.  Framework for harnessing hydrologic information system for scientific 

discovery. 
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4. Simulation 

The model can be connected to data sources via HIS generate predictions and 

estimations of the environment system. 

Hydrologic information 
System

Model
Simulation

Predictions

Use model to simulate
environment

 

Figure 1.3.  Using HIS to support execution of environmental models. 

1.6 Research Questions 

Several technologies need to be developed in order for the above process to be possible.  

The first hurdle is to figure out how data compilation can be performed.  More 

specifically, the technology or protocol for assembling data from multiple sensor network 

needs to be developed.  So the first research question is: 
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1. How can data be assembled from a service-oriented architecture of 

environmental sensor networks to describe the properties of a water domain in 

space and time? 

The next step is to understand how data from multiple sensor networks can be 

synthesized.  In other words, how can time series data from various locations be 

integrated into a continuous space-time domain to describe a variable across space and 

time.  Hence the second research question is: 
 

2. How can data collected at different locations, times, spatial resolutions and 

temporal frequencies be synthesized to provide a continual description of an 

environmental variable over space and time? 

The third step is to extract scientific knowledge from the data.  Prior knowledge of the 

environmental system is used to frame hypotheses about the environmental phenomenon.  

By developing experiments around HIS data, the hypotheses are tested and insights about 

the underlying mechanisms are gained.  Therefore the third question is:    
 

3. How can data about different environmental variables be used to generate 

insight about underlying mechanisms about a given environmental 

phenomenon? 

The last step is to integrate space-time trends and knowledge gained from hypotheses-

testing into useful models.  These models take advantage of HIS data streams to generate 

useful predictions.   Therefore the final question is: 

 
4. How can new models be designed around hydrologic information systems to 

make predictions about a given environmental phenomenon? How do  models 

explain the hypoxia patterns in southeast Corpus Christi Bay? 
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1.7 Organization of dissertation 

This dissertation consists of a series of four related papers to address each of the three 

research questions.  The papers are included in chapters 2 to 5.  The titles of the chapters 

are listed in Table 1.1 below. 

Table 1.1. Titles of paper chapters in dissertation. 

Chapter Chapter title

2 Harvesting data from hydrological information systems for environmental

research in Corpus Christi Bay 

3 Using space-time interpolation to characterize movement of gravity currents 

in Corpus Christi Bay 

4 Effects of wind on salinity stratification in southeast Corpus Christi Bay.

5 Modeling the effects of wind on hypoxia in southeast Corpus Christi Bay.

 

Chapter 6 discusses how the four research questions are answered and summarizes the 

contributions of this research to science.  It also describes how improvements can be 

made in the future.  
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CHAPTER 2:  HARVESTING DATA FROM HYDROLOGIC 

INFORMATION SYSTEMS FOR ENVIRONMENTAL RESEARCH 

IN CORPUS CHRISTI BAY 

By Sin Chit To, Timothy L. Whiteaker and David R. Maidment 

 

2.1 Abstract 

Hypoxia is frequently detected during summer in Corpus Christi Bay and causes 

significant harm to benthic organism population and diversity.  Several governmental 

agencies and research institutes have monitored the Bay since the 1970s, thus providing a 

wealth of data available for hypoxia research.  However, access to the data is often 

impeded by the disparate formats and methods by which the Bay data are stored and 

published.   To unify the data sources, a cyberinfrastructure based on the CUAHSI 

(Consortium of Universities for the Advancement of Hydrologic Science, Inc) 

Hydrologic Information System (HIS) is deployed.  HIS employs a web service oriented 

architecture to provide a common interface for users to query and download data from the 

different sensor networks.  Two kinds of CUAHSI data web services are implemented in 

Corpus Christi Bay.  Generic OD web services are implemented to handle data sources 

that are updated infrequently while the more complex Hybrid web services are 

implemented on data sources that are updated in real time.  The consolidation of data is 

achieved by using a software tool called HydroGET.  HydroGET works in a geographic 
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information system environment and can 1) batch process data requests for multiple sites, 

variables and time periods 2) store and organize data using the Arc Hydro data model; 

and, 3) mediate the differences in terminologies among heterogeneous data sources using 

a MySelect table.   

HydroGET is applied successfully to the sensor networks in Corpus Christi Bay to 

harvest hypoxia-related data.  The organization of the data within the Arc Hydro data 

model supports the clear presentation of spatial and temporal patterns of the harvested 

data using the Datacube diagram. 

   

2.2 Introduction 

BACKGROUND 

Hypoxia is detected episodically during the summer in Corpus Christi Bay in south Texas 

and is known to cause a dramatic reduction in benthic organisms in the Bay 

(Coopersmith, et. al., 2007).   Corpus Christi Bay is an urban estuary that is located near 

the Gulf of Mexico (see Figure 2.1) next to the city of Corpus Christi.    

Hypoxia in the Bay was first documented in 1988 (Montagna and Kalke, 1992) and later 

observed every summer (Martin and Montagna, 1995; Applebaum et al. 2005).  Hypoxia 

is associated with salinity-induced stratification of the Bay, which occurs in summer 

when temperature and evaporation are high and precipitation is low (Ritter and 

Montagna, 1999).  Studies by Russell and Montagna (2007) have shown that stratification 
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is correlated with environmental variables like wind, salinity, dissolved oxygen and 

temperature and depth.  

 

 

Figure 2.1. Sensor networks in Corpus Christi Bay (To, 2008). 

Because the exact cause of stratification and hypoxia in the Bay is not known, a study is 

being conducted by a team of scientists and engineers from four universities (the 

University of Illinois at Urbana-Champaign, Texas A&M University College Station, 

University of Texas at Austin and Texas A&M University Corpus Christi) to understand 

the underlying mechanisms. The foremost step in the investigation is to compile available 

hypoxia-related data to support the study.  This paper describes how modern information 

technology is used to perform the data compilation. 
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DATA SOURCES IN CORPUS CHRISTI BAY 

Since the 1970s, several governmental agencies and research institutes have maintained 

sensor networks in the Bay to measure environmental variables such as salinity, dissolved 

oxygen and wind speed.  These networks include the HRI (Harte Research Institute) 

network, TWDB (operated by Dr. Ben Hodges of the University of Texas at Austin and 

funded by Texas Water Development Board) surveys, SERF (Shoreline Environmental 

Research Facility) network, TCEQ (Texas Commission on Environmental Quality) 

network, TCOON (Texas Coastal Ocean Observation Network) network, TPWD (Texas 

Parks and Wildlife Department) network and the USGS (United States Geological 

Survey) network.  Figure 2.1 shows the locations of the networks. Table 2.1 provides a 

brief description of each network and the data they collect.  



16 
 

Table 2.1.   Sensor networks in Corpus Christi Bay 

 Name of 
network 

Description Data

1. HRI 
 

Monitoring stations 
maintained by Dr. Paul 
Montagna of the Harte 
Research Institute 
 

Collects grab samples of dissolved oxygen, 
salinity, temperature and other water 
quality data on a bi-weekly to monthly 
basis during summer months.   
 

2. TWDB 
surveys  
(by Dr. 
Hodges) 

Plume tracking studies 
performed by Dr. Ben 
Hodges of the University 
of Texas at Austin 

Collects grab water quality samples at high 
temporal (12 hour) and spatial resolutions 
to track the movement of hypersaline 
waters from Oso Bay and Laguna Madre 
(Hodges, et al., 2008, Brower, et al. 2007). 
 

3 SERF Shoreline Environmental 
Research Facility 
 

Collects continuous water quality data and 
surface current velocities. 

4 TCEQ Texas Commission on 
Environmental Quality 
 

Collects water quality data in water bodies 
in Texas 

5 TCOON Texas Coastal Ocean 
Observation Network 
 

Collects continuous wind and tide data
along the coast of Texas. 

6 TPWD Texas Parks and Wildlife 
Department 

Collects grab water quality samples as part 
of its biological sampling program along 
the coast and estuaries of Texas.   Sampling 
is performed using a 1 minute x 1 minute 
grid over the Texas coast. 
 

7 USGS United States Geological 
Survey 
 

Collects hydrodynamic and water quality 
data for streams and rivers. 
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CHALLENGES IN INTEGRATING SENSOR DATA 

Despite the presence of several sensor networks, access to the data is impeded by the 

disparate formats and methods used by the data sources to publish their data.  The 

methods used by the data sources (prior to this research) are summarized as follows: 

1. SERF, TCOON and USGS publish data on their web sites almost immediately 

after collection.  Users can access the data using online forms.  However the 

formats of the forms are different for each data sources.  In addition, the formats 

of the data returned from the websites are not the same.   

2. TCEQ publishes data on a periodic basis on its website.  Unfortunately the web 

site cannot handle queries for specific sites or variables and only facilitates bulk 

downloads of data for individual water quality segments. 

3. TPWD, TWDB, HRI store data within in-house databases and publish them in 

scientific reports. Users had to manually request the data from the source in order 

to get them. 

The differences in publication methods make data compilation a tedious task.   Not only 

is significant time consumed in requesting the data, but also in reformatting the data and 

consolidating them into a database.  To tackle the challenges posed by disparate data 

publication methods, a Hydrologic Information System (HIS) is implemented to unify 

access to the data sources.   
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2.3 What is a hydrologic information system (HIS)? 

The Hydrologic Information System (HIS) is a cyber-infrastructure that is designed by 

CUAHSI’s (Consortium of Universities for the Advancement of Hydrologic Science, Inc) 

Hydrologic Information System (HIS) Project (CUAHSI, 2007).  The immediate goal of 

HIS is to unify access to the nation’s water information by creating a set of tools and 

communication protocols for publishing and accessing environmental data.  The 

advantages of the system are three-fold: 

1. data users can search for environmental data across a multitude of sources instead 

of one source at a time; 

2. computers of data users can directly ingest environmental data from data servers 

without the need for human intervention;  

3. data providers can publish data in a widely-accepted format – thus obviating the 

need to cater to individual data requests.   

HIS is built upon a distributed network of computer servers that are linked together by 

the internet.  These computer servers, known as HIS servers, host a family of web 

services, tools and applications.  Researchers can easily setup HIS servers following the 

HIS manual published by CUAHSI (CUAHSI, 2007).  These various HIS technologies 

function together as an integrated system, allowing hydrologic data to be stored, found, 

accessed, interpreted and analyzed.   
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WEB SERVICES: THE BUILDING BLOCKS OF HIS 

CUAHSI-HIS is built using a service-oriented architecture (SOA) in which the 

fundamental building block is the web service.  In simple terms, a web service is a 

computer application that is executed remotely over the internet.   Web services provide a 

variety of functions, such as computation, data retrieval and manipulation. Web services 

allow users to access technologies without knowledge of, expertise with, or control over 

the infrastructure that supports them.  Users can create scientific workflows that rely on 

existing web services to perform analyses. 

CUAHSI’s data web services act as intermediaries between data sources and users.  

Typically, one web service is built for each data source. The web service provides a 

standard interface for querying data from the data source.  To get data, the user submits a 

request to the web service that contains standard parameters that include 1) the location 

of interest, 2) the variable desired and 3) the start and end data of the period of interest.  

The web service translates these parameters to a form understandable by the computer 

system of the target data source.  When the data source returns the data, the web service 

transforms the data into a common language known as WaterML (Goodall, et al., 2008) 

and then sends them to the user.  This process is abbreviated as ETL (Extract – 

Transform – Load) (see Figure 2.2).  The concept, design and function of CUAHSI data 

web services are explained in detail in the paper by Goodall, et al., 2008.   

Apart from queries for getting the data, CUAHSI data web services can also support 

queries to the catalog of the data.  This means the user can discover what sites and 

variables are measured by a data source.  The user can use this information to determine 
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what data to download.  The functions that support queries to the data are known as data 

delivery methods.  The functions that support queries to the data catalog are known as 

data discovery methods. 

 

 

Figure 2.2. How CUAHSI data web services work. 

 

STATUS OF IMPLEMENTATION OF HIS IN CORPUS CHRISTI BAY 

 
CUAHSI data web services have been implemented for six of the seven sensor networks 

in Corpus Christi Bay.  The web addresses of the web services are shown in Table 2.1.   
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Table 2.1.  Web service locations of Corpus Christi Bay environmental sensor networks 

 Name of 
network 
 

Web service address (WSDL)

1 HRI http://ccbay.tamucc.edu/CCBayODWS/cuahsi_1_0.asmx?WSDL 
 

2 SERF http://his.crwr.utexas.edu/serf/serf.asmx?wsdl

3 TCEQ http://his.crwr.utexas.edu/TRACS/cuahsi_1_0.asmx?WSDL 
 

4 TCOON http://his.crwr.utexas.edu/tcoonts/tcoon.asmx?wsdl
 

5 TPWD http://his.crwr.utexas.edu/TPWDCoast/cuahsi_1_0.asmx?wsdl 
 

6 USGS http://water.sdsc.edu/WaterOneFlow/NWIS/DailyValues.asmx?wsdl
 

 

The method of their implementation is summarized as follows: 

1. For TPWD, TCEQ, and HRI, the in-house databases mentioned previously are 

transferred to computer servers where they are migrated wholesale to a standard 

database schema known as the ODM (Observations Data Model).  Generic web 

services designed by CUAHSI are installed over these new databases to make 

their data accessible on the web.  The wholesale migration method is a simple 

implementation method that requires little programming skills.  It also 

automatically generates catalog of the data during the implementation.  This data 

catalog supports data discovery methods of the CUAHSI data web.    However, 

the migration process can be tedious because of the need to map the original 

database schema to the ODM schema.  Therefore it is more suitable for databases 
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that are updated less frequently (i.e. less than once a month).  For this reason, this 

method is used for the TPWD, TCEQ and HRI sensor networks.  

2. For SERF, TCOON and USGS, a different kind of web service called a hybrid 

web service is used.  The wholesale migration method is not applicable for these 

networks because their databases are continuously updated by real-time data.  

Fortunately, the data for these sources are published on the web, so data delivery 

requests are satisfied by mediating data transfers between the user and the source 

web sites.  The mediation is performed by functions called “webscrapers” that 

extract and translate contents from web pages into WaterML.  Data discovery 

methods for TCOON and USGS are supported by a data catalog created by a 

partial migration of the metadata into ODM and followed by installation of 

generic OD web services.  The process is less simple and is out of the scope of 

this paper.  On the whole, because of the need to work with real-time data, hybrid 

services are more complicated to deploy than generic OD web services.   

 

HOW DO WE CONSOLIDATE DATA FROM HIS?  

The implementation of HIS in Corpus Christi Bay has made available a large collection 

of hypoxia-related data.  The next challenge is to develop a methodology to consolidate 

data from multiple sources into a structured database to support scientific research.  

Different data sources have varying naming conventions for naming sites and variables 
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that need to be mediated before they can be gathered into one database.  Therefore, the 

methodology needs to address the following three questions:  

How can data from multiple web services be harvested? 

This question calls for the ability batch process multiple web service requests.  

HydroGET, a web service client for ArcGIS, is tool developed to harvest data for 

multiple sites and variables across different networks. 

How should the harvested data be stored? 

This question calls for a data model that is robust enough to store heterogeneous data 

from multiple sources.  The Arc Hydro data model (Maidment, 2002) contains a highly 

versatile time series component that is designed to handle point observations in space-

and-time. 

How should harvesting be managed and semantic differences be mediated? 

This question calls for a data tagging system that groups “like” variables together and 

differentiates “unlike” variables so that data can be properly organized in a database.  The 

MySelect table is a lookup table that tags variables from different sources with internal 

identifiers so that differences and similarities can be sorted out. 
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2.4 Methodology 

A methodology is developed to address the three research questions.  It involves three 

technological components:  CUAHSI’s HydroGET (To, 2008), the Arc Hydro data model 

(Maidment, 2002) and a table schema called MySelect.  It is described in the following. 

USING CUAHSI’S HYDROGET TO PROCESSES MULTIPLE WEB SERVICE REQUESTS 

CUAHSI’s HydroGET tool is designed to assemble data from multiple web services into 

one database.   HydroGET (Hydrologic GIS Extraction Tool) is a Geographic 

Information System (GIS) application and runs within ESRI™’s ArcMap environment.  

It interacts with site locations on the map (represented as feature classes) and downloads 

data for them.  Figure 2.3 shows the interface for HydroGET.  The locations where data 

are desired are specified by selecting a feature class from the ArcMap’s table of contents.  

The desired variable (e.g. precipitation, streamflow) is chosen from one of HydroGET’s 

five tabs: Atmosphere, Surface, Subsurface, Custom (Single Point) and Custom (Multiple 

Points).  Finally, the period of interest and the output location for the data are specified in 

the interface.  HydroGET stores the downloaded data into an Arc Hydro geodatabase 

(Maidment, 2002).  A description of the Arc Hydro geodatabase is discussed in the next 

section. 
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Figure 2.3. The HydroGET interface (To, et al. 2007) 

 
Once executed, HydroGET cycles through each location within the selected feature class, 

and downloads the desired data through CUAHSI data web services.  Time series data are 

stored into the TimeSeries table of an ArcHydro geodatabase (see Figure 2.4), while 

information regarding the data variable are stored into the TSType table. 
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Figure 2.4. The operation of HydroGET. 

A detailed tutorial of the HydroGET application, associated installation files and source 

code are available from the CUAHSI-HIS web site at: http://his.cuahsi.org/hydroget.html 

(To, et al. 2008). 

 

USING THE ARC HYDRO DATA MODEL TO STORE HETEROGENEOUS TIME SERIES 

DATA  

HydroGET stores the downloaded data into an Arc Hydro geodatabase, which is a 

relational database that implements the Arc Hydro data model (Maidment, 2002).  The 

Arc Hydro data model uses the data cube concept to integrate time series data from 

heterogeneous data providers. The data cube, also known as a space-time-variable cube 
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(Goodall, et al., 2008), states that every observation is unique in 1) space, 2) time and 3) 

variable type (e.g. salinity, oxygen, temperature).  In other words, a minimum of these 

three properties is needed to address a given observation (see Figure 2.5).  The Arc 

Hydro data model utilizes one table to store information for each of the three properties.  

They are  

1) the TimeSeries table, which describes the time and the observed value; 

2) the MonitoringPoint table, which describes the location; and, 

3) the TSType table, which describes the variable type. 

 Database relationships link the three tables together to describe a set of observations.   
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TSType Table – describes
variable

Field name Data type

OBJECTID OID

TSTypeID Integer

Variable String

Units String

IsRegular Integer

TSInterval Integer

DataType Integer

Origin Integer

TimeSeries Table –
describes time and value

Field name Data type

OBJECTID OID

FeatureID Integer

TSTypeID Integer

TSDateTime Date

TSValue Double

Monitoring Point Table –
describes location

Field name Data type

OBJECTID OID

Shape Geometry

HydroID Integer

HydroCode String

Ftype String

Name String

Time   

Location   

Variable   

Value

 

Figure 2.5. Data cube model (Maidment, 2002) 

 

The benefit of using three tables is that it stores the data compactly.  Redundancies 

caused by repeating sites and variables are minimized.  The data cube model is often 

augmented by additional tables to describe ancillary information (e.g. sampling method).  

For example, the Arc Hydro data model employs additional tables to describe the 

connectivity of monitoring points with hydrologic features such as streams and lakes. 
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USING THE MYSELECT TABLE TO MANAGE DATA HARVESTING AND STORAGE 

The MySelect table is a special kind of feature class that allows HydroGET to batch 

process multiple data requests from multiple web services for multiple locations, 

variables and periods of interest.  The attribute table of MySelect contains the essential 

information needed to query the desired data from CUAHSI data web services.  In 

addition, the table also contains the identifiers for each piece of downloaded data so that 

they can be properly organized in database.   

Structure of MySelect 

The structure of MySelect is shown in Figure 2.6. Each row of the table is a data request 

to a specific web service for one location, variable and time period.  The columns of the 

table can be grouped into three portions: 

1. A web service portion contains query parameters for calling web service.   

2. The Arc Hydro portion contains identifiers to relate web service terminologies for 

variables and sites to existing database terminologies.  

3. The metadata portion is optional.  It contains additional information that explains 

the query parameters.  For instance, the site code of ‘H1’ refers to the site name of 

‘Hypoxia_1’ in the HRI network and the variable code of “DOConcGrab’ refers 

to the variable name of “Dissolved oxygen concentration grab sample”.  These 

fields are not read by HydroGET.  Their goal is to improve the understandability 

of the MySelect table.  
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Arc Hydro portion
-Contains identifiers to relate web service 
terminologies for variables and sites to existing 
database terminologies.

Metadata portion (optional) 
-Contains optional fields to explain the query parameters
-Not read by HydroGET.  Created for sake of increasing 
understandability.
-User can include additional metadata fields as desired.

Web service portion
- Contains query parameters for calling web service

Web service portion Arc Hydro portion Metadata portion 

 

Figure 2.6. Structure of MySelect 

The fields in the web service portion of MySelect are described in Table 2.2. 
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Table 2.2.  Explanation of fields in the web service portion of MySelect. 

Column Explanation Example 

WSDL        Web Service Description Language 

(WSDL).  This is the web address of 

the web service. 

http://ccbay.tamucc.edu/CCBayOD

WS/cuahsi_1_0.asmx?WSDL 

 

NETWORK  Name of the sensor network CCBay (this is the network name 

of the HRI network) 

SITECODE  Site code of the monitoring point  H1 

VARCODE Variable code for the variable of 

interest 

SalinityGrab (this is the variable 

code for salinity grab samples)  

STARTDATE Start date for the period of interest 1/1/2005 

ENDDATE  End date for the period of interest  1/1/2008 

AUTHCODE Authentication code  
 

Together, the above set of query parameters can be read as follows: 

 

Get salinity data (variable code: SalinityGrab) data between 1/1/2005 and 1/1/2008 at 

site H1 from the HRI environmental sensor network (network name: CCBay).  The 

address for the HRI web service is  

http://ccbay.tamucc.edu/CCBayODws/cuahsi_1_0.asmx?wsdl 
 

The fields in the Arc Hydro portion of MySelect are described in Table 2.3. 
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Table 2.3.  Explanation of fields in the Arc Hydro portion.of MySelect. 

HYDROID Internal ID in the Arc Hydro database 

for identifying the site where the data 

was collected. 

1001 (a long integer) 

TSTYPEID Internal ID in the Arc Hydro database 

for identifying the variable type of the 

data. 

1002 (a long integer) 

 

Together, the example information can be interpreted as follows:: 

 

Once the salinity data is downloaded, tag the location of the data with the internal 

HydroID of 1001 and the variable type of the data with the internal TSTypeID of 1002.   
 

The HydroID is a location identifier which is explained in the MonitoringPoint table of 

the Arc Hydro model while the TSTypeID is a variable identifier explained in the 

TSType table.  New variables do not need to be pre-defined within the Arc Hydro 

database before downloading the data.  When a new TSTypeID is introduced in the 

MySelect table, HydroGET extracts the related information about the variable from the 

web service and adds them to the TSType table.   

Semantic mediation 

The tagging of the data is particularly critical to the consolidation of data.  Each sensor 

networks in Corpus Christi Bay has a different naming convention for environmental 



33 
 

variables.  Some networks even have two or more names for the same variable. For 

instance, a total of seven names are given for dissolved oxygen.  The HRI network uses 

1) “DOConcCon” to name dissolved oxygen that is collected continuously along the 

depth of the water column, 2) “DOConGrab” to name dissolved oxygen that is collected 

as grab samples, 3) “DOBottomGrab” to name dissolved oxygen that is collected at the 

bottom of the Bay as grab samples and 4) “DOBottomCon” to name dissolved oxygen 

that is collected at the bottom of the Bay as continuous samples.  The Hodges, SERF and 

TPWD networks use 5) “DO”, 6) “oxygen”, and 7) OXY001”, respectively. 

To the researcher, all six variables are qualitatively the same.  By tagging all these 

variables with the TSTypeID of 1001 in the MySelect table, they are consolidated as one 

variable within the Arc Hydro database.  Thus, MySelect acts as lookup table for 

mediating differences in semantics among the different data sources.  An illustration is 

provided in Figure 2.7. 
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TSTypeID/VarID Variable

1001 Dissolved_Oxygen_Concentration

1002 Salinity

1003 Temperature

1005 Wind_Direction

1006 Wind_Speed

HRI: DOConcCon
HRI: DOConGrab
HRI: DOBottomGrab
HRI: DOBottomCon
Hodges: DO

HRI: SalinityCon
HRI: SalinityGrab
Hodges: Salinity

HRI: TempGrab
HRI: TempCon
Hodges: Temperature

TCOON: wsd

SERF: oxygen

TCOON: wdr

SERF: temperature

SERF: salinity

MySelect

 

Figure 2.7.  Semantic mediation by MySelect 

 

2.5 Application to Corpus Christi Bay 

An example of how dissolved oxygen data was harvested in Corpus Christi Bay is 

presented to illustrate the application of the consolidation methodology.  First an area 

near Laguna Madre at the southeast corner of the Bay is chosen as the study area.  Next, 

the sensors from networks that measure dissolved oxygen are overlaid with the study 

area.  A feature class is created by merging all the sites that intersect the study area into 

one feature (see Figure 2.8).    
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1.  A study area is 

selected in Corpus Christi 

Bay

2.  Sensor networks that 

measure dissolved oxygen 

are overlaid with the study 

area.

3.  A MySelect feature 

class is created to harvest 

dissolved oxygen data 

from all the sites that 

intersect the study area.

HRI 
sensors

SERF 
sensor

TPWD 
cells

MySelect
harvest 
locations

Corpus Christi BayCorpus Christi Bay Corpus Christi Bay

Laguna MadreLaguna MadreLaguna Madre

 

Figure 2.8 Creating a MySelect featureclass. 

 
The feature class is converted to a MySelect feature class by appending extra fields 

(recall Tables 2.1 and 2.2) to its attribute table so that it was compliant with the MySelect 

table schema.  A portion of the resulting table is shown in Figure 2.9.  Note that because 

this particular MySelect table harvested dissolved oxygen data only, one TSTypeID 

(1001) is used to identify the variable type of all the downloaded data.   
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Figure 2.9 MySelect table that harvests oxygen data in southeast Corpus Christi Bay. 

 

HydroGET is used to process the MySelect table and store the data into an Arc Hydro 

geodatabase.   Downloaded time series are stored into the TimeSeries table.  A new 

variable (i.e. TSTypeID: 1001, Dissolved Oxygen Concentration) is added to the TSType 

table.  The MySelect, TSType, and TimeSeries tables together describe the location, 

variable, time and value of each dissolved oxygen observation (see Figure 2.10). 
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Time   

Location   

Variable   

Value

Downloaded 
data are 
stored in 
TimeSeries
table.

Locations 
of data are 
described in 
MySelect
feature 
class.

Variable type of data are 
described in TSType table.

 

Figure 2.10 Dissolved oxygen in an ArcHydro database. 

 

To plot the downloaded dissolved oxygen data, the Datacube diagram is devised.  A data 

cube diagram is a set of graphs that plot the observed values along four dimensions – x 

(longitude), y (latitude), z (depth) and t (time).  The four graphs are arranged around a 

map of the sampling area, which is essentially a graph of latitude vs. longitude.  The axes 

of the “Value vs. Longitude” and “Latitude vs. Value” graphs are aligned with the 
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latitude and longitude axes of the map.  This allows data on the plots to be referenced 

directly to map features, namely the sensor locations.   An example of a data cube 

diagram is shown in Figure 2.11.  It shows all the dissolved oxygen data collected in 

southeast Corpus Christi Bay in August, 2005.  The top graph shows the time series 

profile.  The “strings” of data indicate days of collection on 8/3/2005, 8/9/2005, 

8/16/2005, 8/23/2005 and 8/31/2005.  The left and bottom graphs show profiles along the 

latitudinal and longitudinal axes.  The “strings” of data in the left and bottom graphs can 

be extended into the map to pin point the location where they were collected.  The right 

graph shows the depth profile of the oxygen.  Oxygen values are observed to decrease as 

depth increased.  Some of the oxygen values were less than 2 mg/L, indicating the 

occurrence of hypoxia during the period. 

The space-time data cube structure of the Arc Hydro data model is very amenable to the 

display of spatial and temporal patterns of the data using the Datacube diagram.  The 

Datacube diagram shown in Figure 2.11 is developed in Excel and retrieves data from an 

Arc Hydro geodatabase using SQL queries.   
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Figure 2.11. A data cube diagram of dissolved oxygen collected in southeast Corpus 

Christi Bay in August, 2005. 
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2.6 Conclusions for Chapter 2 

This study describes how challenges in consolidating environmental data for hypoxia 

research in Corpus Christi Bay are met by the implementation of CUAHSI’s Hydrologic 

Information System (HIS) and the HydroGET tool.   

HIS opens up the data sources in the Bay to the researchers by unifying the methods for 

accessing their data.   In the implementation of HIS in the Bay, two kinds of CUAHSI 

web services are used.  Generic OD webservices are simple to implement but cannot 

handle continuous updates to the data source.  Therefore they work better with data 

sources that are static or infrequently updated.  Hybrid web services are more difficult to 

implement because they require custom programming of webscrapers. However, they can 

handle data sources that are constantly updated by real-time data. 

HydroGET consolidates the data from the sources into a structured database to support 

scientific research.  To store the downloaded data, HydroGET uses the Arc Hydro data 

model.  The time series component of the Arc Hydro data model is versatile enough to 

accommodate any time series data that are collected at point locations.  In addition, its 

structure is also amenable to the display of spatial and temporal data using the Datacube 

diagram.  To manage the multiple web service requests involved in data harvesting, 

HydroGET employs the MySelect table.  The MySelect table stores the parameters 

necessary for querying CUAHSI data web services.  The table also works as a lookup 

table that mediates semantic difference between different data sources. 
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CHAPTER 3:  USING SPACE-TIME INTERPOLATION TO 

CHARACTERIZE MOVEMENT OF GRAVITY CURRENTS IN 

CORPUS CHRISTI BAY 

 

By Sin Chit To and David R. Maidment 

 

3.1 Abstract 

In Corpus Christi Bay in south Texas, hypoxia is correlated with salinity-induced density 

stratification of the water column.  One of the suspected causes of stratification is the 

introduction of gravity currents from shallow bays adjacent to Corpus Christi Bay.   This 

paper describes the application of space-time interpolation models, namely kriging, for 

synthesis.  The purpose of synthesis is to facilitate the construction of a continuous space-

time volume of salinity.  By dissecting the domain in regular time intervals, snapshots of 

the gravity current as it undergoes stages of emergence, movement and dissipation are 

visualized.  From the snapshots, the persistence of a gravity current in the Bay is 

estimated to be on the order of 5 days (approximately one week).  The gravity current 

speed is estimated to be on the order of magnitude of 1 km/day.   
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3.2 Introduction 

MOTIVATION 

Gravity currents have been observed in Corpus Christi Bay in south Texas (David and 

Hodges, 2006, Brower, et al., 2007, Hodges, et al., 2008) and are suspected to cause 

hypoxia in the Bay.   In fluid dynamics, a gravity current is a primarily horizontal flow in 

a gravitational field that is driven by a horizontal density difference (Simpson, 1999).  

Density differences in natural water bodies can be caused by factors such as differences 

in temperature, salinity and sediment content.  Gravity currents can have significant 

environmental impact on estuaries, lakes and oceans because they can cause vertical 

stratification in water bodies, which limits the transport of chemicals, such as dissolved 

oxygen, along the depth of the water column.  For instance hypoxia can occur because 

dissolved oxygen near the surface of the water cannot reach the lower depths.  Also, 

gravity currents can transport chemicals and physical properties (such as heat) 

horizontally over large horizontal distances.  For example, turbidity currents on the 

seafloor can carry material thousands of miles.  Gravity currents in Corpus Christi Bay 

consist of hypersaline water that flow into Corpus Christi Bay from adjacent water 

bodies, namely, Laguna Madre and Oso Bay (see Figure 3.1).  
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Ernest Sin Chit To, CRWR

Montagna

Hodges

 

Figure 3.1. Hypoxia in Corpus Christi Bay 

 

Physically, Corpus Christi Bay is approximately circular in shape with a diameter of 

approximately 13 miles.  The average depth of the Bay is 9 feet, and the Bay is separated 

from the Gulf of Mexico by a barrier island, so that water circulation in the Bay is driven 

more by wind than by tides.   

In Figure 3.1, the yellow and orange areas in the southeast corner of the Bay indicate 

areas where episodic hypoxia has been found in the past.  These areas are downstream of 
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Laguna Madre and Oso Bay.  These are also areas where gravity currents have been 

found.  Laguna Madre is a lagoonal system that is characterized by: 

1. Shallow depth.  The northern portion of it is about 3 to 4 feet deep – therefore 

shallower than Corpus Christi Bay. 

2. Limited freshwater inflow.  Most inflows are from surrounding surface runoff 

during storm events 

3. Dense aquatic vegetation (Montagna, 1993). 

Due to the shallowness of Laguna Madre and Corpus Christi Bay, as well as their limited 

interaction with the Gulf of Mexico, elevated salinity levels are found during periods in 

the summer when evaporation is high and precipitation is low.   The typical salinity in the 

Gulf of Mexico ranges from 10 to 30 psu (practical salinity units).  During the summer, 

salinity in Corpus Christi Bay can reach as high as 50 psu, while salinity in upper Laguna 

Madre can reach as high as 70 psu.  The difference in salinity between the two bays 

results in a horizontal density difference that leads to the development of gravity currents.   

Oso Bay is an estuarine system that receives freshwater from Oso Creek.  However it 

receives a flow of 500 MGD of hypersaline water from Laguna Madre through the 

Barney Davis power plant.  The Barney Davis power plant draws cooling water from 

Laguna Madre and discharges it into a cooling pond that leads to Oso Creek.  As a result, 

Oso Creek also experiences hypersalinity during the summer. 
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ROLE OF GRAVITY CURRENTS IN HYPOXIA 

Hypoxia has been found to be correlated with the occurrence of salinity-induced vertical 

stratification of the water column (Russell and Montagna, 2007).  However, the exact 

mechanism of how gravity currents lead to hypoxia in the Bay has yet to be found.  The 

following is a hypothesis of how gravity currents cause hypoxia (see Figure 3.2):  

Dense aquatic vegetation in Laguna Madre retards the movement of hypersaline waters 

into Corpus Christi Bay.  As a result, external forces, such as wind and tide, are needed to 

overcome the resistance.   Once gravity currents are released, they travel down slope 

towards deeper areas of the Bay (see Figure 3.2).   Transfer of dissolved oxygen into 

gravity currents is limited because of the energy barrier posed by the difference in 

densities between the hypersaline water in the gravity current and the less saline water 

above it.  A net reduction in oxygen within the gravity current occurs because oxygen is 

depleted much faster by sediment oxygen demand than it is replenished by diffusion from 

the overlying water.  If left unabated, oxygen concentration in the gravity current can 

drop to hypoxic levels.  Despite the role of the wind as an initiator of gravity currents, it 

can also break up gravity currents by introducing mixing energy into the water column.  

As a result it can also prevent or stop hypoxia.  



46 
 

  

DO

DO
DO DO

DO

Laguna Madre Corpus Christi Bay

1. Occurrence:
Gravity currents emerge when wind and 
tide conditions are conducive.

Wind

4. Oxygen consumption:
Dissolved oxygen in the pulse is depleted by 
benthic demand, sometimes to hypoxic levels.

2. Path:
Gravity dominates the movement of the current.  
Current travels down-slope along bay bottom.

2. Wind Conditions:

• Mixing energy from the wind is 
transmitted down water column.

• The fluid at the top of the gravity 
current  is entrained into the 
ambient fluid.

• Thickness of the bottom layer is 
reduced.

 

Figure 3.2. Relationship between gravity currents and hypoxia in southeast Corpus 

Christi Bay 

In summary, four conditions need to be satisfied in order for hypoxia to happen at a given 

location in the Bay.  These are initiation, travel, wind conditions, and oxygen 

consumption.  First of all, a gravity current needs to emerge from the shallow bays.  

Secondly, the given location must be within the travel path of the current.  Thirdly, wind 

conditions are not strong enough to break up the gravity current before it reaches the 
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location.  Lastly, dissolved oxygen is depleted below 2 mg/L when the gravity current 

reaches the location.  An illustration is provided in Figure 3.3. 
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Figure 3.3. Conditions leading to hypoxia 

MOTIVATION  

Characterization of gravity currents  

Since the 1970s, several governmental agencies and academic entities have deployed 

sensors in the Bay to monitor salinity and oxygen.  Each sensor network measured a 

different region of the Bay at different spatial and temporal resolutions.  This resulted in a 

collection of data sets – each set captured an incomplete piece of the hypoxia 



48 
 

phenomenon. Despite this, no documented effort has been made in integrating these sets 

of data.  Therefore the first goal of this interpolation study was to synthesize these 

fragments over space and time into a continuous description of the salinity in the Bay.    

By visualizing the synthesized results, physical properties of the gravity current, such as 

its speed and persistence through time, can be observed.  

Evaluation of space-time kriging as a method for synthesizing data harvested using  

cyberinfrastructures  

In recent years, efforts have been made to develop cyberinfrastructures to streamline and 

unite access to environmental data from multiple governmental and research 

organizations.  CUAHSI’s (Consortium of Universities for the Advancement of 

Hydrologic Science, Inc) Hydrologic Information System (HIS) is one of these 

cyberinfrastructures.  HIS is a system that provides researchers with a unified set of tools 

and protocols to publish and access data over the internet.  The number of organizations 

around the nation that have adopted HIS has steadily increased since HIS’s inception in 

2007.  Within Corpus Christi Bay alone, data from 5 sensor networks have been 

published via HIS.   The need for synthesizing data from multiple sources is growing and 

the challenge is to find an appropriate method.  Kriging is a widely used geostatistical 

method for interpolating spatial data and is very popular in oil and mining applications.  

Its strength lies in the fact that it is a statistical method and therefore general enough to be 

applied to a broad range of variables.  In southeast Corpus Christi Bay, it has been 

previously used to interpolate salinity data from one of the sensor networks in three 
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spatial dimensions (To, 2007).     However, interpolation across the time dimension has 

not yet been attempted for the Bay.  Space-time kriging is a relatively recent development 

in geostatistics.  Its theoretical foundations were expounded by mathematicians such as 

Rouhani and Meyers (1990), Cressie and Huang (1999) and De Iaco, et al., (2000, 2002).  

Its application has been made possible via tools developed by researchers like Christakos, 

et al. (2002) and DeCesare, et al. (2001).   Because of its recent development, its 

application to natural environmental processes, particularly those in estuarine systems, is 

still limited.  The second goal of this study is therefore to evaluate space-time kriging as a 

method for synthesizing data harvested using cyberinfrastructures. 

 

3.3 Scope of investigation 

STUDY AREA 

The area selected for the interpolation study is situated in southeast Corpus Christi Bay 

(see area outlined by dash line in Figure 3.4).  In 2007, NOAA published new bathymetry 

data in Corpus Christi Bay as part of its SIFT (Short-Term Inundation Forecasting for 

Tsunami) project (NOAA, 2007b).  The bathymetry data indicated that the bottom of the 

Bay is uneven and is populated with underwater ridges and depressions.  These terrain 

features can be used to compartmentalize the Bay into multiple underwater basins using 

the same principles as watershed delineation.  In southeast Corpus Christi Bay, one such 

underwater basin which receives hypersaline waters from the eastern portion of Laguna 
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Madre is identified.  As a result it presents an isolated system where one may observe 

gravity currents emerging from one shallow bay (i.e. East Laguna Madre).  For the rest of 

this paper, this region referred to as the study area. 
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Figure 3.4. The study area  
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SOURCES OF SALINITY DATA 

Within the study area are two sensor networks that measure salinity.  These are the HRI 

network and TWDB network.  The HRI network is operated by Dr. Paul Montagna of 

Texas A&M Corpus Christi.  It contains data collected by Dr. Paul Montagna since the 

1980s. The TWDB network is operated by Dr. Ben Hodges of University of Texas under 

the funding of the Texas Water Development Board. Table 3.1 provides a brief 

description of each network and the data they collect.  
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Table 3.1.   Sensor networks in study area of Corpus Christi Bay 

 Network Description Data Locations 
within 
study 
area 

Sampling 
period 

Sampling 
frequency 

1 HRI 
 

• Harte Research 
Institute  

 
• Operated by 

Dr. Paul 
Montagna of 
Texas A&M, 
Corpus Christi 

 

• Previously 
known as  the 
UTMSI 
network – also 
operated by  
Dr. Montagna. 

 

Depth profiles of 
• salinity 

• dissolved 
oxygen 

• temperature 

• other water 
quality data.  

 
 

23 fixed 
stations  

Every 
summer 
since the 
1980s. 
 

Bi-weekly 
to monthly 

2 TWDB  • Plume tracking 
studies 

 
• Operated  by 

Dr. Ben 
Hodges, 
University of 
Texas at Austin 

 

Depth profiles of 
• salinity 

• dissolved 
oxygen 

• temperature 

 

Multiple 
locations 
along 
transect  

July 14 to 
17, 2006. 

Twice 
daily 

STUDY PERIOD 

Between the two sensor networks, HRI possesses data for the longer period of time and 

over the largest area.   With its sampling frequency of roughly two weeks it has been able 

to detect the presence of salinity stratification in the Bay.  However, the resolution is not 

fine enough to track the movement and development of gravity currents.    On the other 

hand, Dr. Hodges performed one plume tracking survey in the study area from July 14 to 
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17, 2006.  Not only did this survey detect a gravity current, the survey’s sampling 

frequency of twice daily meant that it was able to capture the movement of the gravity 

current.  For this reason, the study period for this interpolation was defined around the 

period July 14 to 17, 2006.   Serendipitously, HRI collected samples on July 12, and 18, 

2006 in the study area.  These data provide more information on the initiation and 

dissipation of the gravity current.  By combining these two data sets and then 

synthesizing them using space-time interpolation, the history of the gravity current as it 

underwent initiation, movement and dissipation can be observed.  Figure 3.5 shows the 

location of the TWDB survey transect and the HRI stations that were sampled during this 

period.  
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Plume tracking survey 
July 14 to 17, 2006. 
(During movement 
of gravity current)

Water quality data
July 12 and 18, 2006.

(At initiation and demise 
of gravity current)

 

Figure 3.5. Sampled locations in the southeast Corpus Christi Bay study area from 

July 12 to 18, 2006 (To, 2008) 

3.4 Data Preparation 

DATA HARVESTING 

Both HRI and TWDB data are published via web services of the CUAHSI hydrologic 

information system.  A web service client called HydroGET (To, 2008) harvested data 

from these two sources into a Microsoft Access database that followed the Arc Hydro 
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data model (Maidment, 2002) structure.  An illustration of the data harvesting process is 

shown in Figure 3.6. 

ArcHydro

1.  Sensor networks 
publish data using CUAHSI 
web services.

2.  HydroGET
harvests hypoxia 
data from CUAHSI 
web services. 

3.  Harvested data 
stored in 
ArcHydro
database.

  

Figure 3.6. Harvesting sensor data into a database. 

PROJECTION OF DATA ONTO DIRECTION OF FLOW 

Because of the way the data were collected, data locations are distributed densely along 

the TWDB transect but sparsely in the transverse direction.  Due to this non-uniformity, 

preliminary attempts at interpolating across the entire surface area yielded anomalous 

results.  Therefore the original intention of interpolation along all four dimensions (i.e., 
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latitude, longitude, depth and time) was not pursued.  To improve the results, the 

following simplifying assumption was made to reduce the number of dimensions from 

four to three: 

Recall from Figure 3.4, that the bottom of the study area sloped gently downwards along 

a north to north-easterly direction.  This suggested that gravity currents flowed along this 

general direction and that the front of the current was oriented in a direction 

approximately perpendicular to the flow. 

By assuming that the depth profile of salinity was relatively uniform along the front, the 

number of spatial dimensions was reduced from three to two by omitting the transverse 

direction.  This was achieved by defining a reference axis oriented along the flow 

direction (see Figure 3.7).  Data locations were perpendicularly projected onto the axis 

and then assigned a distance value which corresponded to the length between the 

projected location and the origin of the axis.  The origin of the axis was set at the mouth 

of East Laguna Madre.  Thus the original four dimensions (latitude, longitude, depth and 

time) are reduced to just three (along the direction of flow, depth and time).  
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2. Space-time kriging
was performed in 
three dimensions

X=  Longitudinal 
measure
(meters from 
origin point)

Y =Time 
(days since 
7/12/2006)

Z =Elevation 
(meters from 
water surface)

1.  Data locations were 
projected onto a 
reference line following 
the general direction of 
flow.

Origin
x = 0 m  

Figure 3.7. Synthesis of salinity data collected in East SECCB Study Area. 

 

3.5 Methodology 

BACKGROUND ON SPACE-TIME KRIGING 

Space-time kriging 

Space-time kriging extends conventional kriging into the time dimension.   It is 

fundamentally the same as conventional spatial kriging except in the management of 

covariance modeling (De Cesare, et al., 2001, Christakos, et al., 2002).  One may seek to 
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treat time as if it is an extra dimension in spatial kriging and then lump the lag distances 

along the spatial and temporal axes into a single Euclidean space-time metric.  However, 

this has been shown to be theoretically and practically problematic (Rouhani and Myers, 

1990).  The key reason is because the time axis is by nature different (i.e. it is not 

geometric) and not necessarily orthogonal to the other three principal axes (Srinivasan, 

2007).  Environmental processes occurring in time almost always have some dependence 

on processes occurring in space, which accounts for some of the non-orthogonality 

between the time and spatial axes. 

Covariance modeling in space-time kriging 

When orthogonality and similarity among the axes of the random space are in question, it 

is necessary to step back to a more general form and treat the lags along the different axes 

as separate arguments. As a demonstration, let us revisit three dimensional spatial kriging 

and start from the general form of the covariance function in three-dimensional space, 

which is: 

 

))(),(),((),( 21212121 zzyyxxfuuC −−−=     Equation 3.1 

Where: 

u1 and u2 are the locations of any given two data points, 1 and 2. 

x1, x2, y1, y2, z1, z2 are the coordinates of points 1 and 2 along the three geometric 

axes. 
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When the covariance function is directionally independent (i.e. isotropic), the lags along 

the axes can be summarized into a single lag, parameter, h, using the distance formula, 

where  

2
21

2
21

2
21 )()()( zzyyxxh −+−+−=     Equation 3.2 

When the covariance function is directionally dependent (i.e. anisotropic), linear 

transformations are used to project the lag vector – which is the vector between two 

locations – onto a space where the three principal axes are 1) along the direction of the 

greatest correlation and 2) minor direction of correlation and 3) the direction normal to 

the plane defined by the former two directions.    To account for different correlation 

distances, a subsequent linear transformation is applied to scale the transformed vector to 

isotropic space.  The mathematical functions that perform these transformations are 

described in many geostatistics text books and are not presented here because of their 

length.  The transformed lag, h’, can then be applied to Equation 3.1 to estimate the 

covariance.  The resultant form of the covariance model is shown in Equation 3.3. 
 

)'(),( 21 hfuuC =        Equation 3.3 

 

Equation 3.3 is the common form of the covariance function used in spatial kriging where 

one spatial metric, h’, is used to characterize lag between two points.  Using the distance 

formula to calculate lag is only applicable when the x, y, z axes are orthogonal to each 

other.  In space-time kriging, the temporal axis is not necessary orthogonal to the spatial 

axis because processes that happen in space often have dependencies on time.  Therefore 
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the appropriate method is to treat the spatial lag, h, and the temporal lag, τ, as 

independent arguments.  As a result, the covariance function has the form: 

 

),'(),( 21 τhfuuC =        Equation 3.4 

 

This treatment of the space-time covariance leads to two families of models.  The first is 

the family of separable models where the covariance function can be separated into 

covariance functions that are either totally dependent on the spatial lag, h, or the temporal 

lag, τ .  This family contains the product sum model shown in Equation 3.5 and the 

product model shown in Equation 3.6. 

 

)()()()(),( 432121 ττ fhffhfuuC ++=     Equation 3.5 

)()(),( 2121 τfhfuuC =       Equation 3.6 

 

The second is the family of non-separable models that cannot be separated into 

covariance functions that are either totally dependent on the spatial lag, h, or the temporal 

lag, τ. 

 

),(),( 21 τhfuuC =        Equation 3.7 

 

According to De Iaco, et al., (2000, 2002) and Cressie and Huang (1999) both families of 

space-time covariance models are valid. 
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Tools for space-time kriging 

The most common tool used in kriging is GSLIB which is developed by Clayton V. 

Deutch and Andre Journel from Stanford University (Deutch and Journel, 1992.).  It is, 

however, limited to performing spatial kriging only. To execute space-time kriging, De 

Cesare, et al.(2002) augmented the original GSLIB libraries with extra FORTRAN 77 

routines for performing space-time covariance modeling using the separable models 

shown in Equation 3.5.  These tools include programs for plotting and fitting space-time 

variograms and programs for implementing separable space-time covariance models in 

kriging. This study uses De Cesare’s version of GSLIB, which can be found at the 

website of the International Association of Mathematical Geology (De Cesare, et. al., 

2002). 

Unfortunately, De Cesare, et al. did not increase the total number of dimensions handled 

by GSLIB.  The addition of the time dimension was compensated by the reduction of the 

number of spatial dimensions from three to two.  Fortunately for this study, data points 

were already projected onto the direction of flow before the interpolation, thereby 

reducing the number of dimensions from four (northing, easting, depth and time) to three 

(distance from origin, depth and time).  In this way, De Cesare’s version of GSLIB was 

applicable to this study. 

PROCEDURES 

Because the GSLIB interface is very basic and has little means of operating with other 

computer programs, several scripts were written in ITTVIS’s IDL programming language 
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to manage the workflow of the overall geostatistical interpolation process.  The workflow 

process consists of the following tasks: 

1. Generating input data file from the Arc Hydro database 

2. Write parameter files for the modified GSLIB functions, GAMVmod.exe and 

KT3Dmod.exe, to perform variogram analysis and space-time kriging.  

3. Run the GAMVmod.exe and KT3Dmod.exe functions.  

4. Visualize kriging results using voxels.  

Data file 

The combined salinity data were written GEOEAS format, which is the input data format 

for GSLIB.  A snapshot of the data file is shown in Figure 3.8.  The first column contains 

the x-coordinates of the samples, which are the distances (in meters) from the origin 

along the direction of flow.  The second column contains the y-coordinates, which are the 

depths of the samples in meters.  The third column contains the t-coordinates, which are 

the length of time (in days) since July 12, 2006 0000hrs (Central Standard Time).  

Finally, the fourth column contains the salinities measured (in practical salinity units).  

Altogether the table contains 1510 data points spanning 500 to 9300 m along the 

direction of flow, 0 to 4.3 m along the depth and 6.5 days.  The average salinity is 40.8 

psu and the sample variance is 3.6 psu2. 



63 
 

 

Figure 3.8. Snapshot of the input data file for space-time interpolaion 

 

Variogram modeling 

Three experimental variograms were plotted using the GAMVmod.exe function in 

DeCesare’s modified GSLIB.   The variograms are 

1. variogram along the direction of flow; 

2. variogram along the depth; and, 
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3. variogram along the time axis. 

The experimental variograms were fitted by eye using professional judgment.   

Figure 3.9 shows the fitted and experimental variograms along the direction of flow.  The 

fitted variogram adopts the Gaussian model structure and its equation is: 

)1)(()(
)(

010
22

23

xa
xh

eh xxxxx

−

−−+= γγγγ
  Equation 3.8 

where  

xh = lag distance along direction of flow in meters 

x0γ = nugget = 2 psu2 

x1γ = sill = 3.6 psu2
 

xa = range = 6000 m 
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Figure 3.9. Experimental and fitted variograms along the longitudinal axis. (Spatial 

lag distances are in meters and semivariances are in psu2). 

Figure 3.10 shows the fitted and experimental variograms along the depth.  The fitted 

variogram along the depth axis also adopts the Gaussian model structure and its equation 

is: 

)1)(()(
)(

010
22

23

ya

yh

eh yyyyy

−

−−+= γγγγ
  Equation 3.9 

where  

yh = lag distance along the depth in meters 
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y0γ = nugget = 0 psu2 

y1γ = sill = 3.6 psu2
 

ya = range = 1.7 m 

 

 

Figure 3.10. Experimental and fitted variograms along the depth axis. (Spatial lag 

distances are in meters and semivariances are in psu2).   

Figure 3.11 shows the fitted and experimental variograms along the time axis.  The fitted 

variogram along the time axis uses the spherical model structure and its equation is: 
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ττγγγτγ −−+=
   Equation 3.10 

where  

τ = lag distance along the time axis (in days) 

t0γ = nugget = 0 psu2 

t1γ = sill = 3 psu2
 

a = range = 1 day 

 

 

Figure 3.11. Experimental and fitted variograms along the time axis. (Temporal lag 

distance is in days and semivariances are in psu2).   



68 
 

EXECUTION OF KRIGING 

The modified GSLIB generates the spatial-temporal variogram model from the fitted 

variograms along the depth, direction of flow and temporal axes.   First the variogram 

models for the two spatial axes are combined into a spatial variogram model of the 

form, ),( yxs hhγ .   Because the variogram along the direction of flow has a nugget, it is 

broken down into two structures.  Structure 1 is for the nugget: 

)1(2),( ])()[(
1

22
2
3

∞
− +−=

yhxh

ehh yxx
εγ

   Equation 3.11 

Structure 2 is for the rise to the partial sill of 1.6 at a range of 6000 m. 

)1(6.1),( ])()[(
1

22
60002

3
∞

− +−=
yhxh

ehh yxxγ    Equation 3.12 

Whereε  is an infinitesimally small positive number, that causes a discontinuity in the 

variogram (i.e. the nugget effect) 

∞
yh

is a dummy term added so that the variogram model is nominally dependent on yh . 

For the variogram along the depth, the equation is: 

)1(6.3),( ])()[( 2
7.1

2
2
3 yhxh

ehh yxy
+∞

−

−=γ
  Equation 3.13 

Summing Equations 3.11, 3.12 and 3.13 together yields the spatial variogram, )(hs

v
γ , 

(Equation 3.14): 
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          Equation 3.14 

where h
v

 is a vector that consists of the elements, xh  and yh  . 

The spatial variogram model, )(hs

v
γ , is combined with the temporal model , )(τγ t  , to 

produce the spatial-temporal model, ),( τγ hs  , using Equation 3.15 (De Cesare, et al, 

2000): 

)()()()(),( 11 τγγτγγγγτγ tstsstst hhkh
vvv

−+=
 

          Equation 3.15 

where  

t1γ = temporal sill = 3.6 psu 

t1γ = spatial sill = 3 psu 

k is a parameter determined by Equation 3.16 (De Cesare, et al, 2000): 

ss

stk
11

1

γγ
γ

=
       Equation 3.16 
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where st1γ  is the global sill that can be estimated from sample data. 

The variogram model in Equation 3.15 corresponds to the space-time covariance model, 

),( τhCst

v

, shown in Equation 3.17. 

 

)()(),( ττ tsst ChkChC
vv

=
   Equation 3.17 

Where  

)(hCs

v

 is the spatial covariance model 

)(τtC  is the temporal covariance model 

 

Notice the form of Equation 3.17 corresponds with the product model shown in Equation 

3.6. 

This space-time covariance model in Equation 3.17 is then used in conjunction with the 

input data to produce the interpolation results. 
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3.6 Results and discussion 

KRIGING RESULTS 

A space-time volume comprising of three dimensions (distance, depth and time) was 

created after the execution of kriging (see Figure 3.12).  By slicing out cross sections 

from the volume at different time steps, salinity profiles along the depth and direction of 

flow were obtained.   

 

Figure 3.12. Workflow of computer programs for performing space-time kriging 
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Figure 3.13 shows a series of salinity profiles sliced at 12-hour intervals from the space-

time volume.   The black dots in each cross section depict the location of actual samples 

collected during the preceding time interval.    

 

 

Figure 3.13. Snapshots of gravity current as it travels from the mouth of Laguna Madre 

(located at x-axis origin) into Corpus Christi Bay (To and Maidment, 2008). 

The progress of the gravity current can be described as follows: 

1.  At the beginning in July 12, 2006, samples indicated slight salinity stratification in the 

study area.  The highest salinity (42 to 43 psu) was found at mid-slope near the upstream 
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end and the lowest salinity (less than 40 psu) was found at the water surface at the 

downstream end.   

2.    On July 14, 2006, samples collected indicated the presence of high salinity water (44 

to 46 psu) at the bay bottom between 2000 to 5000 m from the mouth of Laguna Madre.  

The region colored in red can be visually interpreted as the extent of the gravity current.  

Through space-time interpolation, the progress of the gravity current as it descended into 

the Bay between July 12 and 14 was visualized.   

3. Between July 14 and July 16, the gravity current advanced further downstream.  

The salinity of the current was diluted during its movement due to lateral entrainment of 

less saline ambient fluid.  For this period in time, the orange region (which represents the 

salinity range of 43 to 44 psu) can be visually interpreted as the extent of the gravity 

current.  The gravity current was estimated to reach the downstream end of the study area 

on July 16. 

4. Between July 16 and July 18, the gravity current was gradually dissipated.  The 

thickness of the gravity current was slowly reduced to nothing.  Samples collected on 

July 18 indicated slight stratification in the study area.  The salinity profile on July 18 

was similar to the state observed at the beginning of the study on July 12. 

The time history of the gravity current can also be visualized from top down.  By 

assuming that the front of the gravity current was perpendicular to the reference line, the 

propagation of the gravity current was mapped.  Figure 3.14 shows the estimated bottom 

salinity in the Bay from at 12 hour intervals.  The colored dots show the measured 
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salinities at the bottom of the Bay.  The series of profile shows the advancement and 

dissipation of the gravity current at the bottom of the Bay through time. 
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 Figure 3.14.  Bottom salinity in East SECCB study area from July 12 to 18, 2006. 
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.   

CROSS VALIDATION OF RESULTS 

Cross-validation is a common method that is used to evaluate the appropriateness of the 

adopted kriging model.  This was performed using the “fictitious point” method 

(Delhomme, 1978), which involved removing one data point at a time from the data set 

and then using the remaining n-1 points the estimate the removed point.  The estimated 

and actual values of the data point were then compared with each other.  A plot of the 

estimated salinities in the Bay versus the actual measured salinities is shown in Figure 

3.15.   
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Figure 3.15.  Cross validation results from space-time kriging. 
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A trend line is fitted and the r2 value obtained is 0.85.   

3.7 Conclusions for Chapter 3 

The following observations are made from the visual interpretation of the kriging results: 

1. The “life span” of a gravity current, in other words, the time from its descent into the 

Bay to its dissipation, was estimated to be on the order of 5 days (approximately one 

week). 

2. The time it took for the gravity current to travel from the mouth of Laguna Madre (0 

m) to the northern end of the study area (9000 m) was between 4 to 5 days.   In other 

words the current speed was on the order of magnitude of 1 km/d.   

From the cross-validation results, it was observed that the variogram models used in the 

kriging was able to explain 85% of the variability in the data.  This performance was 

considered quite remarkable given the spottiness of the data and the fact that a statistical 

method was used to model natural data.   The high performance could also be a result of 

the strength of the correlation in the salinity data over space and time.  Unlike mineral 

deposits – which kriging is frequently applied to – salinity in water bodies are much less 

heterogeneous and changes over space and time are more gradual.   

 
This study demonstrated that space-time kriging can facilitate the construction of a 

continuous space-time volume of salinity from fragments of data collected by multiple 

sensor networks.  De Cesare et al’s modified GSLIB proved to be a very useful tool for 

performing space-time kriging.  By dissecting the space-time volume in regular time 
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intervals, snapshots of the gravity current as it underwent stages of emergence, movement 

and dissipation were visualized.  By interpreting the snapshots, the persistence of a 

gravity current in the Bay and its speed were estimated.  The applicability of space-time 

kriging to data harvested by cyberinfrastructure has been demonstrated for Corpus Christi 

Bay.  The potential of space-time kriging towards broader application lies in the fact that 

it is a statistical method and therefore general enough to be applied to a broad range of 

environmental variables and systems.   This is important because the need for data 

synthesis is increasing as more and more environmental data are published via 

cyberinfrastructure.  Space-time kriging allows environmental researchers to take 

advantage of the synergy provided by the unification of multiple data sources to obtain 

insights to environmental problems.   
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CHAPTER 4:  EFFECTS OF WIND ON SALINITY 

STRATIFICATION IN SOUTHEAST CORPUS CHRISTI BAY 

 

By Sin Chit To, Ben Hodges, Paul Montagna, Paula Kulis and David Maidment 

 

4.1 Abstract 

Hypoxia is the depletion of dissolved oxygen to levels harmful to aquatic organisms.  It is 

a common environmental problem that affects many coastal water bodies in the United 

States.  A major cause of hypoxia is density stratification in the water column – which 

imposes an energy barrier against the transfer of oxygen from the top to the bottom of the 

column.  External forces like strong winds eliminate stratification and, in turn hypoxia, 

by vertically mixing the water column.  However plume-tracking studies in southeast 

Corpus Christi Bay led by Ben Hodges from the University of Texas at Austin found 

stratification in a large part of the Bay immediately after a period of strong winds (> 4 

m/s).  Most of these winds blew from the southeast direction.  This led to the 

development of hypothesis that certain winds actually induce stratification by forcing 

hypersaline waters from adjacent shallow bays (such as the Laguna Madre) into southeast 

Corpus Christi Bay.   This paper presents a series of statistical tests conducted on data 
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recorded from 2005 to 2008 to 1) test the dominance of the gravity current theory in the 

Bay, and 2) identify what ranges of wind speed and direction are responsible for forcing 

hypersaline waters into the Bay.  Results showed that wind patterns for different levels of 

stratification are significantly different from each other.  Also the occurrence of strong 

winds (> 4m/s) blowing from the southeast direction is found to correlate positively with 

the level of stratification.   

 

4.2 Introduction 

SALINITY STRATIFICATION AND HYPOXIA 

Hypoxia in aquatic systems refers to the situation when the dissolved oxygen 

concentration is below 2 mg/L (Dauer et al., 1992). Most organisms avoid, or become 

physiologically stressed, in waters with oxygen below this concentration (Diaz and 

Rosenberg, 1995).   Hypoxia is caused by the exertion of oxygen demand by organic 

material under  conditions of restricted water exchange and insufficient oxygen supply, 

often closely connected with density stratification of the water column (Pearson and 

Rosenberg, 1978 and Gray et al., 2002). Stratification reduces vertical turbulent mixing 

of heat, momentum, mass and constituents (Ralston and Stacey, 2005; Armenio and 

Sarker, 2002), and therefore limit the replenishment of dissolved oxygen in the bottom 

layer.   

While hypoxia can occur naturally, it is often exacerbated by human impact such as 

excess nutrient enrichment of water bodies from point and non-point sources. More than 
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half of the U.S. estuaries now experience natural or human-induced hypoxic conditions at 

some time each year and the frequency and duration of hypoxic events have increased 

over the last few decades (NOAA, 2007).  According to Diaz and Rosenberg (2008), 

hypoxia problems are increasing world-wide, so understanding the mechanisms behind 

them and providing solutions is vital to the protection of the environment.  Of the various 

mechanisms, investigating the cause of stratification takes priority because of its close 

relationship with hypoxia. 

SALINITY STRATIFICATION  IN CORPUS CHRISTI BAY 

This research focuses on the hypoxia problem in Corpus Christi Bay, which is located 

along the Gulf of Mexico in south Texas (see Figure 4.1).  Hypoxia and stratification in 

Corpus Christi Bay was first documented in 1988 (Montagna and Kalke, 1992) and later 

observed every summer (Martin and Montagna, 1995; Applebaum et al. 2005).  Hypoxia 

occurs mainly in summer when temperature and evaporation are high and precipitation is 

low (Ritter and Montagna, 1999).  Hypoxia causes a ten-fold reduction in benthic 

standing stock and diversity in the Bay.  

Figure 4.1 shows the regions where stratification-induced hypoxia was observed in 

Corpus Christi Bay.  These hypoxic regions were delineated by: 

1. Dr. Paul Montagna, a marine biologist from the Harte Research Institute of Texas 

A&M University, Corpus Christi.   

2. Dr. Ben Hodges, an environmental engineer at University of Texas at Austin.  
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Ernest Sin Chit To, CRWR
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Figure 4.1.  Hypoxia regions in Corpus Christi Bay delineated by Montagna and Hodges. 

DESCRIPTION OF CORPUS CHRISTI BAY 

The Corpus Christi Bay system is an urban estuary with complex hydrodynamic and 

water quality conditions.  The bay is approximately circular in shape and has a diameter 

of approximately 13 miles.  The average depth of the Bay is 9 feet, and is separated from 

the Gulf of Mexico by a barrier island, so that water circulation in the Bay is driven more 

by wind than by tides.  Communication with the gulf is available via two channels: 
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1. Aransas Pass – a deep ship channel which connects Corpus Christi Bay to the 

Gulf of Mexico. 

2.  Packery Channel – a shallow channel that connects Laguna Madre to the Gulf.  

Adjacent to Corpus Christi Bay is Laguna Madre which is a lagoonal system that is 

characterized by: 

1. Shallow depth.  They are about 3 to 4 feet deep (compared to 9 ft in Corpus 

Christi Bay). 

2.  Limited freshwater inflow.  Most inflows are from surrounding surface runoff 

during storm events 

3. Dense aquatic vegetation (Montagna, 1993). 

Due to the shallowness of Laguna Madre and Corpus Christi Bay, as well as their limited 

interaction with the gulf, elevated salinity levels are found during periods in the summer 

when evaporation is high and precipitation is low.   The typical salinity in the Gulf of 

Mexico ranges from 10 to 30 psu (practical salinity units).  During the summer, salinity 

in Corpus Christi Bay can reach as high as 50 psu, while salinity in upper Laguna Madre 

can reach as high as 70 psu. 

An interesting characteristic of hypoxia in Corpus Christi Bay is that a linkage between 

eutrophication and hypoxia has not been established (Applebaum et al, 2005) therefore 

hypoxia is predominantly correlated with salinity-induced stratification of the Bay.   This 

study focuses on the causes of stratification in Corpus Christi Bay to provide insights to 

future attempts in modeling hypoxia in the Bay. 
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MECHANISMS FOR STRATIFICATION IN SOUTHEAST CORPUS CHRISTI BAY 

Two mechanisms exist for the generation of stratification in water system 

• In situ generation of stratification due to evaporation 

• Ex situ generation of stratification due to introduction of gravity currents from 

Laguna Madre. 

In situ generation of stratification:  Evaporation  

Heat from the sun evaporates surface water and increases its salinity.  The denser saline 

water and sinks towards the bottom of the Bay – producing fingering patterns known as 

“salt-fingering”.  Over time, the dense water accumulates to form a bottom layer, 

resulting in stratification.  The boundary between the bottom layer and the top layer is 

known as the pycnocline.  Bottom oxygen levels are gradually depleted by benthic 

demand.  At the same time, winds blowing over the Bay introduce mixing energy into the 

water column, which is then transferred down the water column.  Mixing gradually 

erodes away the thickness of the bottom layer causing the gravity current to dissipate.  

Hypoxia happens when strong winds fail to dissipate the bottom layer before oxygen falls 

below hypoxic levels.   The process is illustrated in Figure 4.2. 
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2. Wind Conditions:

• Mixing energy from the 
wind is transmitted down 
water column.

• Fluid from gravity 
current  is entrained into 
the ambient fluid.

• Thickness of the bottom 
layer is reduced.

1. Occurrence:

• Evaporation increases 
salinity at water surface.  
Hypersaline waters
sink to bay bottom.

• Hypersaline water form 
bottom layer causing 
stratification. 

3. Oxygen consumption:

• Dissolved oxygen in the 
pulse is depleted by 
benthic demand, 
sometimes to hypoxic 
levels.

DO

Wind

DO

DO

 

Figure 4.2.   Effect of evaporation on stratification and hypoxia.  

 

Southeast Corpus Christi Bay is susceptible to in situ generation of stratification because 

of two factors.  First of all, bays in south Texas experience high evaporation rates and 

low precipitation during the summer (Applebaum and Montagna, 2004).  The net 
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evaporation rate during the summer months (that is the evaporation rate minus the 

precipitation rate) is 11 cm month-1 (Ward and Armstrong, 1997).  Therefore conditions 

in south Texas are conducive for stratification.  Secondly, southeast Corpus Christi Bay 

often experiences sustained periods of low water circulation (Powell et al., 1997) and low 

wind speeds (Morehead et al., 2002) in the summer.   In addition, anthropogenic 

structures in the region (i.e., ship channel, Intracoastal Waterway, and a causeway across 

the Bay) have altered circulation patterns and created sluggish water circulation.  As a 

result they impede the mixing and dissipation of the stratified layer. Applebaum and 

Montagna (2004) also observed that salinity stratification is significantly correlated with 

distance from the ship channel.   

Ex situ generation of stratification:  Gravity currents 

Ex situ generation of stratification is caused by hypersaline flows (also known as gravity 

currents) that enter southeast Corpus Christi Bay.  This theory, also known as the gravity 

current theory, was put forward by Hodges and Kulis (Hodges, et al. 2008).  The 

movement of these gravity currents is dominated by gravity, and flow of hypersaline 

waters occurs towards deeper areas by traveling along the bottom surface of the Bay.  

Dissolved oxygen transfer into the gravity current is limited and oxygen levels drop to 

hypoxic levels if the wind does not dissipate the gravity current first.  However, wind 

also plays a creation role in stratification: dense aquatic vegetation in Laguna Madre 

impedes the movement of water and therefore a certain force is required to give a gravity 

current the momentum to overcome this resistance.  Winds blowing in the right direction 
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and speed provide this force.  The process of ex situ generation of stratification is 

illustrated in Figure 4.3.  

DO

DO
DO DO

DO

Laguna Madre Corpus Christi Bay

1. Occurrence:
Gravity currents emerge when wind and 
tide conditions are conducive.

Wind

4. Oxygen consumption:
Dissolved oxygen in the pulse is depleted by 
benthic demand, sometimes to hypoxic levels.

2. Path:
Gravity dominates the movement of the current.  
Current travels down-slope along bay bottom.

2. Wind Conditions:

• Mixing energy from the wind is 
transmitted down water column.

• The fluid at the top of the gravity 
current  is entrained into the 
ambient fluid.

• Thickness of the bottom layer is 
reduced.

 

Figure 4.3. Gravity currents and hypoxia. 

 

Summer evaporation increases the salinity in Laguna Madre and Oso Bay to levels above 

that of Corpus Christ Bay.  Hypersaline waters can enter the Bay and cause stratification.  

Evidence of hypersaline flows have been found both downstream of Oso Bay (Hodges, et 

al, 2008) and Laguna Madre (Brower, et al. 2007).  Therefore southeast Corpus Christi 

Bay is also susceptible to ex situ generation of stratification. 
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Since both in situ and ex situ mechanisms are possible, the question is therefore which 

mechanism dominates.  Answering this question would not only help the understanding 

of the hypoxia problem but also the prediction of its occurrence, size and persistence.  

DATA SOURCES IN CORPUS CHRISTI BAY 

Several governmental agencies and academic institutions maintain environmental sensor 

networks in Corpus Christi Bay.  The three networks that are relevant to this study are the 

HRI (Harte Research Institute) network, Hodges surveys (funded by the Texas Water 

Development Board), TCOON (Texas Coastal Ocean Observation Network).  The 

locations of these sensors are shown in Figure 4.4.  Table 4.1 provides a summary of the 

data they collect.  A detailed discussion of each network is provided in the rest of this 

section. 
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Figure 4.4.  Sensor networks in Corpus Christi Bay 

Table 4.1. Sensor networks in Corpus Christi Bay. 

 Name of 
network 

Description Data

1. HRI Harte Research Institute
 

Collects water quality data 

2. Hodges 
surveys 

Plume tracking studies 
performed by Dr. Ben 
Hodges of the University 
of Texas at Austin 

Collects water data at high temporal 
frequencies to track the movement of 
hypersaline waters from Oso Bay and 
Laguna Madre. 
 

3. TCOON Texas Coastal Ocean 
Observation Network 
 

Collects wind and tide data 



90 
 

 

Harte Research Institute (HRI) network  

In east Corpus Christi Bay, Dr. Paul Montagna and his team have collected water quality 

data over a wide area (~ 50 square kilometers) since the 1980s.  The stations monitored 

are shown in grey in Figure 4.4.  These data have undergone rigorous statistical analyses 

to characterize long-term spatial and temporal variability in hypoxia-related variables 

such as dissolved oxygen, salinity and temperature (Russell and Montagna, 2007).  

Relationships among the variables themselves have also been studied (Applebaum and 

Montagna, 2004, Russell and Montagna, 2007).  Most data were collected at weekly to 

bi-weekly intervals during the summer months.  Despite the extent of the data in time and 

space, it was noticed that the formation of stratification and hypoxic events typically 

occurred over a finer temporal scale (on the order of one week) than the sampling 

frequency.  Therefore although the data captured the occurrence and extent of 

stratification, it was not sufficient to capture the process by which stratification 

developed.   

Hodges plume tracking studies  

In the region downstream of Oso Bay, Dr. Ben Hodges and his team have performed 

short-term intensive data collection over small areas (~ 1 to 2 square miles) to capture the 

formation and dissipation of stratification (Hodges and Furnans, 2006, Hodges, et al., 

2008) (see Figure 4.4).  They found that hypersaline flows, also known as gravity 

currents, from Oso Bay are associated with stratification and hypoxia in the area.   
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In 2006, Dr. Hodges performed an intensive plume tracking study in the Bay just 

downstream of Laguna Madre (Brower, et al. 2007).  Salinity, oxygen and temperature 

data were collected every 12 hours.  The study captured a gravity current as it emerged 

from the mouth of Laguna Madre and descended into the Bay.   

Texas Coastal Ocean Observing Network  

The Texas Coastal Ocean Observation Network (TCOON) is a set of observing stations 

located along the Texas coast that measure water level, wind speed, direction and a 

variety of environmental conditions, including water and air temperature.   These stations 

collect data continuously at six-minute intervals.  Six TCOON stations are located around 

Corpus Christi Bay, as shown in Figure 4.4.   Historical data going back to 1993 are 

available for most parameters at these stations.    

 

Conclusions from data sources 

The juxtaposition of the various sensor networks in the Bay indicates that southeast 

Corpus Christi Bay has the highest concentration of data. More importantly, it contains 

data from both intensive short-term study from Hodges and long-term extensive 

monitoring from Montagna.   The synthesis of these two data sets offers a unique 

opportunity to find both the cause of stratification and its occurrence.  This research 

focuses on southeast Corpus Christi and insights acquired from this area can potentially 

be applied to other parts of the Bay. 
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4.3 Role of wind in stratification and hypoxia 

DIFFERENCES IN EFFECT OF WIND BETWEEN IN SITU AND EX SITU  

In situ and ex situ stratification differ not only in the source of hypersalinity, but also in the 

effect of the wind. 

• In in situ generation of stratification, the only effect of the wind is the dissipation of the 

bottom layer.  Therefore wind reduces stratification and does not cause it.  

• In ex situ generation of stratification, the wind plays two roles.  On one hand, it can 

dissipate the bottom layer.  On the other hand, if it blows in a certain direction and at 

certain speed, it can provide an external force that pushes hypersaline waters into Corpus 

Christi Bay.   Therefore even though in general wind reduces stratification, certain types 

of wind can cause it. 

To determine whether the in situ or ex situ mechanism dominates, it is necessary to find out 

whether trends exist between wind patterns and stratification events. 

 

TRENDS OBSERVED IN HISTORICAL DATA 

Between 1/1/2005 and 9/13/2007, Paul Montagna and Ben Hodges collected salinity 

profiles in the southeast Corpus Christi Bay for a total of 37 days.  Salinity profiles from 

each sampling day were mapped.  Figures 4.5, 4.7, and 4.9 are three examples of these 

maps.  For each sampling day, the percentage of profiles that were stratified (i.e. those 

having density differences between the top and bottom layer > 2 g/L) was calculated.  

The wind pattern surrounding each sampling day was plotted as wind vectors.  Each wind 
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vector represents the speed and direction of one wind observation.  A wind vector can be 

visualized as an arrow where the tail arises from its source and the length of the shaft 

represents its speed – the longer the shaft, the faster the wind.  The data for the wind 

patterns were measured by TCOON (Texas Coastal Ocean Observation Network.  The 

wind patterns corresponding to Figures 4.5, 4.7, and 4.9 are shown in Figures 4.6, 4.8 and 

4.10.  Comparison of the wind history and stratification fraction yielded insights as to 

what classes of winds cause stratification.  The following is a discussion of the trends 

shown in Figures 4.5 to 4.10. 

 

August 16, 2005 – Stratification in majority of experimental area 

Figure 4.5 shows the stratification state and wind for August 16, 2005.  This is a day 

where 100% of the profiles were stratified.  Figure 4.6 showed that in the 7 days prior to 

this date, a consistent strong wind (~ 6 m/s) was blowing from the southeast direction. 
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Figure 4.5. Salinity profile on Aug 16, 2005 showing stratification in most of 

Southeast Corpus Christi Bay. 

Sampling day on 8/16/2005.

Time Series of wind vectors from Aug 7 to Aug 16, 2005.

 

Figure 4.6. 10-day wind history surrounding Aug 16, 2005 (from Aug 7, 2005 PM to 

Aug 17, 2008 AM). 
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June 28, 2005 – No stratification in experimental area. 

Figure 4.7 shows the stratification state and wind for June 28, 2005.  This is a day where 

0% of the profiles were stratified.  Figure 4.8 showed that in the 8 days prior to this date, 

the wind was blowing consistently from the east. 

 

 

Figure 4.7. Salinity profile on June 28, 2005 showing no stratification in Southeast 

Corpus Christi Bay. 
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Figure 4.8. 10-day wind history surrounding June 28, 2005 (from June 19, 2005 PM 

to June 29, 2008 AM). 

 

July 27, 2005 – Stratification in part of the experimental area. 

Figure 4.9 shows the stratification state and wind for July 27, 2005.  This is a day where 

62% of the profiles were stratified.  Figure 4.10 showed that in the 9 days prior to this 

date, wind first blew from the northeast for 2 days, then from an assortment of directions 

for 2 days, then finally from the southeast for 5 days. 
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Figure 4.9. Salinity profile on July 27, 2005 showing stratification in part of southeast 

Corpus Christi Bay 
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Figure 4.10. 10-day wind history surrounding July 27, 2005 (from July 18, 2005 PM to 

July 28, 2008 AM) 

In all three cases, the stratification fraction in the Bay is observed to increase with the 

increase in occurrence of winds from the southeast.  To relate this observation to the 

underlying mechanism in the Bay, a valve model hypothesis was posed. 

VALVE MODEL HYPOTHESIS 

Under ex situ generation of stratification, winds of certain speed and direction provide the 

external force to push gravity currents into the Bay.  The resulting mechanism is like 

operating a valve on a hose.  Some winds turn the valve on and release a gravity current, 

other winds leave the valve off and release no gravity currents (see Figure 4.11).   A wind 

event is defined as a wind that turns the valve on and cause stratification.  More wind 

events leads to stratification in a larger portion of the Bay.   
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Figure 4.11. Concept of a valve model. 

4.4 Selection of experimental area 

In order to study the underlying mechanism behind stratification in southeast Corpus 

Christi bay, it was necessary to define an experimental area for hypotheses testing and 

modeling.  Scientific insights gathered from analyzing data from this area can then be 

transferred to other parts of the Bay.  Two requirements were set for selecting the 

experimental area: 

1. The area has to be small enough to comprise only one water system.  Analyzing 

an area that spans multiple water systems introduces noise into the analysis.  From 

an ex situ stratification stand point, this means the area can only be influenced by 

one source of hypersaline waters.  For in-situ stratification, area defined must be 
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small enough so that precipitation and evaporation are uniform over the entire 

area.   

2. The area has to be big enough to be well-populated by sensors to provide 

sufficient data for analysis.  

USING BATHYMETRY TO DEFINE ZONES OF INFLUENCE 

The selection of a suitable experimental area is met by considering the gravity current 

theory.  Because the movement of gravity currents is dominated by gravity, they flow 

down the slope in a manner similar to runoff in a watershed.  Bathymetric features such 

as depressions and ridges limit the advancement of gravity currents.  Ridges act as 

barriers to block the movement of gravity currents.  Depressions act as sinks that trap the 

gravity current.   In 2007, NOAA published new bathymetry data in Corpus Christi Bay 

as part of its SIFT (Short-Term Inundation Forecasting for Tsunami) project (NOAA, 

2007b).  These bathymetry data indicate the presence of the following significant terrain 

features in south Corpus Christi Bay (see Figure 4.12): 

A. An underwater ridge that runs from north to south into the chain of islands that 

divides the region downstream of Laguna Madre into east and west portions. 

B. An underwater ridge that runs from northeast to southwest through the center of 

the Bay. 

C. A depression that lies directly north of the western portion of Laguna Madre. 

D. A depression that lies to the northwest of Laguna Madre. 
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Figure 4.12. Terrain features in bay bottom compartmentalize effects of gravity currents. 

The underwater terrain features compartmentalize the Bay into underwater basins, each 

influenced by a different shallow bay.  These basins are: 

1. East Southeast Corpus Christi Bay Area (East SECCB), which is influenced by 

East Laguna Madre; 

2. West Southeast Corpus Christi Bay Area (West SECCB), which is influenced by 

West Laguna Madre; 

East 
SECCB

West 
SECCB

SCCB 
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3. South Corpus Christi Bay Area (SCCB), which is influenced by Oso Bay. 

One of the most interesting observations from the bathymetry data is that the union of the 

East and West SECCB areas matches with the extent of the episodic hypoxic area 

observed by Paul Montagna using his HRI stations (see white dash line in Figure 4.12).   

This is an extra piece of evidence that supports the ex situ mechanism for stratification. 

Because East SECCB contains the most sensors, and therefore the most data-rich, it is 

selected as the experimental area to test the dominance of in situ vs. ex situ generation of 

stratification. 

4.5 Wind-stratification analysis 

Plume tracking data collected Dr. Hodges in 2006 demonstrated that ex situ stratification 

can occur in southeast Corpus Christi Bay.   However there still remained the question of 

whether it is the dominant cause of stratification in the area.  Because none of the sensor 

networks in the Bay collected salinity data at high enough temporal resolution, it is not 

possible to examine the processes leading to each recorded stratification event.  In the 

absence of high-resolution temporal salinity data, one looks into the driving force behind 

ex situ stratification, i.e. the wind, to test if it indeed is the dominant cause.  Therefore, 

high-resolution wind data from TCOON is the key data element to analyze the cause of 

stratification.  This section describes how a series of hypothesis tests 1) demonstrate the 

relationship between wind and stratification and 2) identify certain categories of winds 

that contribute to stratification. 
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DATA PREPARATION 

The analysis of the relationship between wind and stratification requires 1) a metric for 

quantifying the degree of stratification in the Bay and 2) a means of summarizing the 

wind patterns in the Bay.  This section presents the methodology for doing the above.   

Quantification of stratification events 

The stratification intensity for a salinity profile collected in the experimental area of 

southeast Corpus Christi Bay can be quantified using sigma-t (σt).  Sigma-t is the 

difference in density (measured in parts per thousand, or g/L) between the top and bottom 

of the water column.   

(g/L)density  bottom - (g/L)density   top=tσ   (Equation 4.1) 

 

The conversion of salinity (in practical salinity units) to density (g/L) can be performed 

using the Equation 4.2: 

 

salinity761.01000  ×+=ρ     (Equation 4.2) 

 

Equation 4.2 is a linear approximation of the UNESCO’s regression equations for salinity 

to density conversion (UNESCO, 1980).  The EPA criterion for strong stratification is σt 

> 2 g/L (EPA, 2008).  Using this criterion, a given salinity profile is classified as either a 

stratified profile or a non-stratified profile depending on whether its σt is greater or less 

than 2 g/L.   To summarize the state of stratification for a given sampling day, the 
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stratification fraction is calculated by dividing the number of profiles that are stratified 

with the total number of profiles (Equation 4.3). 

  

collected profiles ofnumber  total
 profiles stratified ofnumber fractiontion stratifica =  (Equation 4.3) 

 

The stratification fraction can also be expressed as a percentage value.  For instance, 

when 15 out of 20 profiles collected in the Bay are stratified (i.e. stratification fraction = 

0.75), the Bay is experiencing 75% stratification. 

 

Summarizing wind histories as wind roses 

To summarize wind patterns in the Bay, the prior 5-day wind histories for each sampling 

days is plotted as a wind rose.  A 5-day wind history is used because the time of travel of 

a gravity current in the study area is about 5 days according to the TWDB plume tracking 

study by Hodges.   

 

Categorizing wind vectors into wind classes 

The wind vectors are categorized into 144 wind classes, which represents 24 directional 

intervals and 6 speed intervals (see Figure 4.13).  The directional intervals are 15 degree 

intervals starting from 0 to 360 degrees (measured clockwise from the North).  The speed 

intervals are 0 to 2 m/s, 2 to 4 m/s, 4 to 6 m/s, 6 to 8 m/s, 8 to 10 m/s and 10 to 15 m/s.  

All observed wind speeds between 1/1/2005 to 1/1/2008 were between 0 to 15 m/s. 
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Each wind rose is a bivariate (i.e. speed and direction) probability distribution of the 

wind.  Figure 4.13 shows the average wind rose of winds measured from 1/1/2005 to 

1/1/2008.   On the right side of the figure shows how this wind rose is represented in 

tabular format.  Each cell in the table is the probability of each wind class.  The 

probability of each wind class is calculated as the sum of the durations of each wind that 

falls within the wind class, and then divided by the total period of 5 days.  This bivariate 

distribution of the wind was used in subsequent statistical tests to validate the valve 

model hypothesis. 

 

 

Figure 4.13. Wind roses as probability distributions. 
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Grouping of wind roses by stratification fraction 

The wind roses for the sampling days are ranked by the stratification fraction.  Figure 4.14 

shows an excerpt of the ranked series. 
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…

……

1/3/2005
0% stratification

4/8/2005
0% stratification

4/10/2007
0% stratification

…
…

7/16/2006
62% stratification

7/05/2006
75% stratification

7/18/2005
20% stratification

6/27/2006
25% stratification

8/2/2005
27% stratification

7/15/2006
74% stratification

…

 

Figure 4.14. Wind roses of sampling days ranked by stratification fraction. 
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To eliminate the apparent noise in the wind distributions the wind roses are grouped into 

three categories:  0% stratification, >0% to 50% stratification and >50% to 100% 

stratification.   The averaged wind roses of each of the three categories are shown in 

Figure 4.15.  Figure 4.15 also shows the average wind rose for the entire period of record 

(1/1/2005 to 1/1/2008). 
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Figure 4.15.  Average wind roses for sampling days that have 0% stratification, >0% to 

50% stratification and >50% to 100% stratification and for all days from the entire period 

of record from 1/1/2005 to 1/1/2008. 
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From Figure 4.15, one can observe that the percentage of southeasterly winds with speeds 

greater than 4 m/s increases with the stratification fraction.  However, this is not 

sufficient to conclude that strong, southeasterly winds cause stratification.  Recall that 

stratification is usually found during the summer months (June, July, August) when 

precipitation is low and evaporation is high.  If stratification is the result of seasonality 

and not of the wind (in other words in situ stratification dominates over ex situ 

stratification) then the wind distributions shown in Figure 4.15 is merely a reflection of 

the wind distribution converging towards the typical summer wind distribution.  It is 

therefore necessary to address the following three questions: 

1. Are wind distributions from different levels of stratification significantly different 

from each other?  

2. Which classes of winds exhibit significant positive correlation with the 

stratification fraction?   

3. Is the variability in the stratification fraction better explained by the season or by 

the wind distribution?   

To address these questions, a series of hypothesis tests is performed. 
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HYPOTHESIS TESTING 

Do wind patterns change significantly as stratification increases? Are wind 

distributions from different levels of stratification significantly different from each 

other?  

Chi-square tests are applied to verify that the differences between pairs of wind 

distributions from different stratification fractions are statistically significant.   The chi-

square test is a comparison of entire sample distributions and therefore more powerful 

than just the comparison of means (as represented by broad brush tests such as ANOVA 

and MANOVA).  The chi-square test can conclusively determine that the differences in 

wind distributions are significant.  

The chi-square test is a goodness of fit test that measures of how far a sample distribution 

deviates from a theoretical distribution (Zar, 1999).  It is applied by Wallis and Griffith 

(1997) to compare wind roses predicted by models with those derived from wind 

measurements.  For this analysis, the chi-square test is used to establish that the wind 

distributions for 0% stratification, >0% to 50% stratification and >50% to 100% 

stratification are all significantly different from one other.   

 

The chi-square statistic is calculated using Equation 4.4
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where 
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2χ  is the chi-square statistic; 

if    is the frequency, or number of counts, observed in the wind class i; 

 if̂   is the frequency expected in class i if the null hypothesis is true; and,  

  k    is the number of wind classes. 

Since there are 144 wind classes (24 wind direction ranges * 6 wind speed ranges) the 

number of degrees of freedom for chi-square test is 144-1 = 143.  Equation 4.4 shows 

that larger differences between two distributions result in a higher chi-square statistic.   

The chi-square test is used to compare the following pairs of wind roses: 

1. 0% stratification vs. >0% to 50% stratification 

2. >0% to 50% stratification vs. >50% to 100% stratification 

3. 0% stratification vs. >50% to 100% stratification 

For each comparison, the following null and alternate hypotheses are stated.  

• Null hypothesis: H0:  Wind distribution #1 is no different from Wind distribution 

#2  

• Alternate hypothesis: HA:  Wind distribution #1 is significantly different from 

Wind distribution #2.  

The significance level of p < 0.05 is used to reject the null hypothesis.  However, because 

the test involves three pairwise tests, the significance level was adjusted using the 

Bonferroni correction to 0.05/3 = 0.017.  The Bonferroni correction states that if an 

experimenter is testing n dependent or independent hypotheses on a set of data, then one 

way of maintaining the familywise error rate is to test each individual hypothesis at a 
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statistical significance level of 1/n times what it would be if only one hypothesis were 

tested.   

In all the above three cases (0% stratified vs. >0 to 50% stratified; >0 to 50% stratified 

vs. >50 to 100% stratified; and, 0% stratified vs. >50% to 100% stratified) the null 

hypothesis is rejected at a significance level of 0.017.  Therefore wind distributions from 

days with higher stratification fraction are significantly different from days with lower 

stratification fraction. 

Which classes of winds exhibit significant positive correlation with the stratification 

fraction?   

Having demonstrated that wind patterns from different levels of stratification are 

significantly different from each other, the next challenge is to identify which wind 

classes change with increasing stratification fraction.  A wind event is a wind class that 

increases with stratification fraction.  At first glance, this can be investigated by applying 

a logistic regression of the stratification fraction versus the 144 wind classes (see 

Equation 4.5).   From the regression, wind classes that exhibit significantly positive 

slopes are identified as wind events. 

14414422110 ...logit(p) XbXbXbb ++++=
  Equation 4.5 

where p is the stratification fraction; 

logit() is the logistic transformation function; 
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X j is the occurrence of a wind class, j, within a 5-day period – quantified as a percentage 

of the entire period; 

b0 is the intercept of the regression; and, 

b1 to b1144 are the slopes of the 144 wind classes.
 

Logistic regression is applied instead of linear regression because the stratification 

fraction is a probability of obtaining stratified salinity profiles on a given sampling day.  

Therefore it has a value between 0 and 1.  Logistic regression transforms the probability 

into a parameter called the logit which ranges from –∞ to +∞ (Equation 4.6).  This 

prevents the regression from generating erroneous models that predict outside the 0 to 1 

range (Helsel and Hirsch, 1995).   

)
1

log(logit(p)
p

p
−

=
    Equation 4.6

 

where p  is the stratification fraction. 

However, because there exists only a total of 37 observations of stratification fraction 

from the 37 sampling days, regressing 144 wind classes with Equation 4.5 results in 

overspecification.  For this reason, it is necessary to group the wind classes into broader 

categories to reduce the number of explanatory variables. 

The strategy is therefore to first perform one-on-one regression between the occurrence 

of each wind class, j, and stratification fraction using the form:    
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jjj Xbb 10logit(p) +=
     Equation 4.7

 

Where p is the stratification fraction; 

X is the occurrence of a wind class, j, within a 5-day period – quantified as a percentage 

of the entire period; 

b0j is the intercept of the wind class, j; and, 

b1j is the slope of the wind class, j. 

  
 

Slope (b0j) from the logistic regression is tested to see if it is positive and significantly 

different from zero.  Based on the one-on-one regression, the wind classes are grouped 

into two groups: 

1.  A wind-event group that comprises of wind classes that possess significant, 

positive relationships with stratification fraction (XON).   

2. A non-wind event group that comprises of all other classes (XOFF).  .   

 

A final regression is performed to 1) confirm that there exists a significant positive 

relationship between the wind event group and stratification fraction; and, 2) evaluate the 

ability of wind events to explain the uncertainty in stratification fraction. 

The confirmation regression equation has the form: 
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OFFON XbXbb 210logit(p) ++=
   Equation 4.8

 

Where p is the stratification fraction as a fraction; 

XON is the occurrence of a wind event occurring within a 5 day period; 

XOFF is the occurrence of a non-wind event occurring within a 5 day period; 

b0 is the intercept, 

b1 is the slope of the wind event. 

b2 is the slope of the non-wind event. 

Because XOFF is the complement of XON, (i.e. XOFF = 1-XON ) the regression simplifies to 

Equation 4.9.  

ONXbb 10logit(p) +=
     Equation 4.9

 

Logistic regression on wind classes 

When performing individual regressions with Equation 4.7, the maximum likelihood 

estimation (MLE) method is used instead of ordinary least squares (OLS) because the 

distribution of the stratification fraction and its logit are not normal.  This results in the 

violation of the OLS assumption of homoskedasticity.  To implement MLE, a search 

algorithm is programmed to choose the slope and intercept parameters that maximize the 

log-likelihood of the resulting regression model.   
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The log-likelihood is a measure of the likelihood that the observed data would be 

produced from a given set of slopes and hence is a measure of the performance of the 

regression model.  The greater the log-likelihood,value, the better the performance.  The 

equation of the log-likelihood is given in Equation 4.10. 

 

∑
=

−−+⋅=
n

i
iijiiijj pyNpyl

1
])ˆ1ln[)(]ˆln[(

 Equation 4.10
 

where 

jl  is the log-likelihood for the regression of wind class, j; 

iy is the number of stratified salinity profiles on a particular sampling day, i; 

iN  is the total number of salinity profiles on a particular sampling day, i; 

n is the total number of sampling days, which is 37; 

ip̂ is the expected probability of finding a stratified salinity profile on a particular 

sampling day, i. 

 

Evaluation of logistic regression results 

Overall likelihood ratio tests are performed to identify slopes that are statistically 

significant (Helsel and Hirsch, 1995).  The overall likelihood ratio compares whether the 

logistic regression model is better than an intercept only model (i.e., one that has a slope 

of zero – which indicates no correlation) by taking the difference between the log-

likelihoods of the regression model and the intercept-only model.   

The following null and alternate hypotheses of the test are stated: 

Null hypothesis:  Stratification is independent of the occurrence of wind in the wind 

class.  
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    H0:  0=jb  

Alternate hypothesis:  Stratification is dependent of the occurrence of wind in the wind 

class.   
    HA:  0≠jb  

where jb  is the slope coefficient for wind class, j, from the one-on-one logistic regression 

(recall Equation 4.8). 

The log-likelihood ratio between the logistic regression model and the pure-intercept 

model is given by Equation 4.11: 

   
)(2 0 jcjrj lll −⋅=

   Equation 4.11
 

Where 

rjl is the overall log-likelihood ratio for wind class, j. 

cjl is the log-likelihood of the logistic regression model for wind class, j. 

jl0 is the log-likelihood of the pure-intercept model for wind class, j. 

 

The overall likelihood ratio is approximated by a chi-square distribution with 1 degree of 

freedom, which is the number of additional coefficients the regression model possesses 

over the pure-intercept model.  The null hypothesis is rejected at a significance level of 

0.05.  However, because this hypothesis test is performed for 144 wind class, the 

significance level for each wind class was corrected to 0.05/144 = 0.00035.   

 

The signs of the slope coefficients for the 144 wind classes and their significance are 

displayed in Table 4.2. Table cells that are highlighted in black are wind classes that are 

tested to have significantly positive slopes.  Table cells that are highlighted in grey are 



119 
 

wind classes that have positive slopes which are not significantly different from zero. The 

table cells that are in white are those that have negative or zero slopes.  Cells that have 

“Not-a-Number” (NaN) values are wind classes with no occurrences.  
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Table 4.2.  Slope coefficients calculated from logistic regression for the 144 wind classes.   

Velocity (meters per second)

0 to 2 2 to 4 4 to 6 6 to 8 8 to 10 10 to 15

0 to 15 ‐ ‐ ‐ ‐ NaN NaN

15 to 30 ‐ ‐ ‐ ‐ ‐ NaN

30 to 45 ‐ ‐ + + NaN NaN

45 to 60 ‐ ‐ ‐ ‐ ‐ NaN

60 to 75 ‐ ‐ ‐ ‐ ‐ NaN

75 to 90 ‐ ‐ ‐ ‐ NaN NaN

90 to 105 ‐ ‐ ‐ ‐ ‐ NaN

Degrees 105 to 120 ‐ + ‐ + ‐ NaN

clockwise 120 to 135 ‐ ‐ + + + ‐
from 135 to 150 ‐ ‐ + + + ‐
North 150 to 165 ‐ ‐ + + + +

165 to 180 ‐ ‐ ‐ + + NaN

180 to 195 ‐ ‐ ‐ ‐ ‐ NaN

195 to 210 ‐ ‐ ‐ ‐ NaN NaN

210 to 225 ‐ ‐ ‐ NaN ‐ ‐
225 to 240 ‐ ‐ ‐ NaN NaN NaN

240 to 255 ‐ ‐ ‐ NaN NaN NaN

255 to 270 ‐ ‐ ‐ NaN NaN NaN

270 to 285 ‐ ‐ ‐ ‐ NaN NaN

285 to 300 ‐ ‐ ‐ ‐ ‐ NaN

300 to 315 ‐ ‐ ‐ ‐ ‐ NaN

315 to 330 ‐ ‐ ‐ ‐ ‐ NaN

330 to 345 ‐ ‐ ‐ ‐ ‐ NaN

345 to 360 ‐ ‐ ‐ ‐ NaN NaN

LEGEND
NaN No occurrence 

‐ Negative

+ Not significantly positive

+ Significantly positive
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The wind classes with significantly positive slopes are considered wind events that turn 

the valve ON, and the rest of the wind classes turn the valve OFF.  Figure 4.16 shows that 

the wind events constitute winds that blow from N120 oW to N165 oW at a velocity 

between 4 and 8 m/s.     
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Velocity (meters per second)
0 to 2 2 to 4 4 to 6 6 to 8 8 to 10 10 to 15

0 to 15 OFF OFF OFF OFF NaN NaN
15 to 30 OFF OFF OFF OFF OFF NaN
30 to 45 OFF OFF OFF OFF NaN NaN
45 to 60 OFF OFF OFF OFF OFF NaN
60 to 75 OFF OFF OFF OFF OFF NaN
75 to 90 OFF OFF OFF OFF NaN NaN
90 to 105 OFF OFF OFF OFF OFF NaN

Degrees 105 to 120 OFF OFF OFF OFF OFF NaN

clockwise 120 to 135 OFF OFF ON ON OFF OFF
from 135 to 150 OFF OFF ON ON OFF OFF
North 150 to 165 OFF OFF ON ON OFF OFF

165 to 180 OFF OFF OFF OFF OFF NaN
180 to 195 OFF OFF OFF OFF OFF NaN
195 to 210 OFF OFF OFF OFF NaN NaN
210 to 225 OFF OFF OFF NaN OFF OFF
225 to 240 OFF OFF OFF NaN NaN NaN
240 to 255 OFF OFF OFF NaN NaN NaN
255 to 270 OFF OFF OFF NaN NaN NaN
270 to 285 OFF OFF OFF OFF NaN NaN
285 to 300 OFF OFF OFF OFF OFF NaN
300 to 315 OFF OFF OFF OFF OFF NaN
315 to 330 OFF OFF OFF OFF OFF NaN
330 to 345 OFF OFF OFF OFF OFF NaN
345 to 360 OFF OFF OFF OFF NaN NaN

 

Figure 4.16. Wind classes identified as wind events that cause stratification. 
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Confirmation analysis 

To confirm that 1) the wind-event group is positively correlated with stratification 

fraction and 2) quantify the amount of uncertainty in the stratification fraction that is 

explained by wind events, the following logistic regression is performed: 

 

ONXbb 10logit(p) +=     (recall Equation 4.9) 

where p is the stratification fraction; 

XON is the probability of a wind event occurring within a 5 day period; 

b0 is the intercept, 

b1 is the slope of the wind event. 

The resulting slope of the regression calculated by MLE is 4.5 and the intercept is -2.8.  

The graph of the regression model is shown in Figure 4.17.  The log-likelihood of the 

regression model is calculated to be -181 using Equation 4.10 while the log-likelihood of 

a pure intercept model (i.e. one that does not depend on XON) is -210.  The overall log-

likelihood ratio, lr, is calculated to be 58 (Equation 4.11).  Using the chi-square test with 

1 degree of (based on the number of additional coefficients between the regression model 

and the pure intercept model), one can reject the null hypothesis that the regression model 

in Equation 4.9 is no different from the pure intercept model at a significance level of 

0.05.  Therefore wind event group is significantly and positively correlated with 

stratification fraction. 
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A measure of the amount of uncertainty explained by the logistic regression model is the 

likelihood-R2 or McFadden’s R2 (Hensel and Hirsch, 1995).  The likelihood-R2 is 

calculated as the proportion of log-likelihood (Equation 4.12). 

0

2 1
l
lR −=     Equation 4.12 

Where 

l is the log-likelihood of the logistic regression model. 

0l is the log-likelihood of the pure-intercept model. 

The likelihood-R2 is 0.14 which means the wind events explain a minor portion of the 

uncertainty in stratification.  This is not unexpected because stratification also depends on 

other factors such as the presence of hypersaline waters in Laguna Madre, the dissipation 

effect of winds as well as the spatial locations of the salinity profiles.   
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Figure 4.17.  Graph comparing estimated stratification fraction (pest) with  measured 

stratification fraction  
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Is the variability in the stratification fraction better explained by the season or by 

the wind distribution 

Logistic Regression models 

To examine whether the different levels of stratification are a reflection of seasonal 

variations unrelated to wind or a result of wind forcings, a series of four logistic 

regressions were carried out to investigate the ability of seasonality to explain the 

stratification fraction.  A binary variable, S, is defined where S equals 1 when the 

sampling day falls in the months, June, July and August.  For all other months, S equals 

0. The following four models are proposed: 

Intercept model: 0logit(p) b=  

Season model:  Sbb 10logit(p) +=  

Wind model:  ONXbb 10logit(p) +=  

Wind-Season model: ONON SXbXbSbb 3210logit(p) +++=  

 

The Intercept model acts as the benchmark for comparing the rest of the three models.  It 

proposes that neither wind nor season has an effect on stratification.  The Season model 

proposes that only the season has an effect on stratification.  The Wind model proposes 

that only the wind has an effect on stratification.  Lastly, the Wind-Season model 

proposes that both wind and season have an effect on stratification.  
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Using maximum likelihood estimation (MLE), parameters from the regression are 

obtained as follows: 

Intercept model: 975.0logit(p) −=  

Season model:  S1.140.15logit(p) +−=  

Wind model:  ONX45.483.2logit(p) +−=  

Wind-Season model: ONON SXXS 66.263.14.161.19logit(p) +++−=  

 

Table 4.3 reports 1) the log-likelihoods, l, calculated using Equation 4.10; 2) the number 

of explanatory variables; and 3) Akaike Information Criteria (AIC) for each model.  The 

log-likelihood is the natural log of the likelihood that the model will produce the 

estimated data. Better models tend to possess higher log-likelihoods.  To penalize against 

models that artificially inflate their log-likelihoods by introducing redundant variables, 

the AIC is introduced.  AIC a statistic that measures model error (given by the log-

likelihood -l) and a penalty for too many variables, the number of explanatory variables, 

k (see Equation 4.13) (Hirsch and Helsel).  Smaller AICs indicate better models. 

 

klAIC +−=    Equation 4.13 
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Table 4.3 Log-likelihoods, number of explanatory variables and Akaike Information 

Criteria for the four logistic regression models. 

Overall log-
likelihood (l) 

Number of 
explanatory 
variables (k) 

Akaike Information 
Criteria 

(AIC = -l + k) 
Intercept Model 
 -210.1 1 211.1
Season Model 
 -205.5 2 207.5
Wind Model 
 -180.9 2 183.0
Wind-Season 
Model -179.3 4 183.3

 
 

Conclusion from the Intercept, Season, Wind and Wind-Season models 

From Table 4.3, the performance of the models is ranked as follows (from best to worst 

based on AIC):  1. Wind Model, 2. Wind Season Model, 3. Season Model, and 4.  

Intercept Model. Despite using an additional explanatory variable, the Wind-season 

model offers no significant improvement over the Wind model.  The Wind Model also 

offers significantly better explanation than the Season Model.  From the performance of 

the four models, one can conclude that the effect of seasonal variation on stratification is 

relatively insignificant compared to the effect of the wind.  Therefore results from the 

analysis strongly support the claim that stratification is caused predominantly by the ex 

situ mechanism rather than in situ mechanism. 
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4.6 Conclusions for Chapter 4 

 

This paper investigates the cause of stratification in Corpus Christi Bay by employing a 

series of statistical tests to determine whether stratification happened in situ (i.e. by 

evaporation) or ex situ (by gravity currents).  The valve model hypothesis is proposed and 

tested.  The valve model hypothesis states that under ex situ generation of stratification, 

more wind events leads to stratification in a larger portion of the Bay.  The hypotheses 

tests conducted in this study demonstrated that wind patterns have a significant effect on 

stratification in the study area.  The occurrence of winds that blow from the southeasterly 

direction at a speed between 4 and 8 m/s has a significant, positive correlation with 

stratification fraction.  These winds have been identified as events that introduce gravity 

currents into the Bay according to the valve model concept. The effect of the wind on 

stratification is proven to be much more significant than seasonal effects.  Therefore 

results from the analysis strongly support the claim that stratification is caused 

predominantly by the ex situ mechanism rather than in situ mechanism. 

Despite showing significant, positive correlation between wind events and stratification, 

the occurrence of wind only explains a minor portion of the variation in stratification 

pattern.  This is not unexpected because stratification also depends on other factors such 

as the presence of hypersaline waters in Laguna Madre, the dissipation effect of winds as 

well as the spatial locations of the salinity profiles.  A full development of the valve 

hypoxia model that takes into account the other factors is needed in order to properly 

explain the stratification pattern in the Bay.
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CHAPTER 5:  MODELING THE EFFECTS OF WIND ON HYPOXIA 

IN SOUTHEAST CORPUS CHRISTI BAY 

By Sin Chit To, Ben Hodges, Paul Montagna, Paula Kulis and David Maidment 

5.1 Abstract 

Hypoxia is a common environmental problem that affects many coastal water bodies in 

the United States.  Hypoxia is related to density stratification in the water column – 

which imposes an energy barrier against the transfer of oxygen from the top to the bottom 

section of the column.  In southeast Corpus Christi Bay, strong southeasterly winds force 

hypersaline waters from adjacent shallow bays (e.g. Laguna Madre) into the Bay, thereby 

causing density stratification.   A simple plug flow model (the valve hypoxia model) was 

constructed to simulate the fate and transport of gravity currents.  The model simulates 

the release of gravity currents during wind events is simulated by a valve mechanism.  

Comparison of model results with historical data from 2005 to 2008 showed that wind-

driven gravity currents offer a compelling explanation of hypoxia patterns in southeast 

Corpus Christi Bay. A simple plug flow model (or the valve hypoxia model) was 

constructed to simulate the fate and transport of gravity currents that emerge during wind 

events.  Comparison of model results with historical data from 2005 to 2008 showed that 

wind-driven gravity currents offer a compelling explanation of hypoxia patterns in 

southeast Corpus Christi Bay. 
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5.2 Introduction 

HYPOXIA AS AN ENVIRONMENTAL PROBLEM 

Hypoxia in aquatic systems refers to waters where the dissolved oxygen concentration is 

below 2 mg/L (Dauer et al., 1992). Most organisms avoid, or become physiologically 

stressed, in waters with oxygen below this concentration (Diaz and Rosenberg, 1995).   

Hypoxia affects commercial harvests and the health of ecosystems. While hypoxia can 

occur naturally, it is also a symptom of environments stressed by human impact such as 

from excess nutrient enrichment from point and non-point sources. Over half of the U.S. 

estuaries now experience natural or human-induced hypoxic conditions at some time each 

year and evidence suggests that the frequency and duration of hypoxic events have 

increased over the last few decades (NOAA, 2007).  According to Diaz and Rosenberg 

(2008), hypoxia problems are increasing world-wide, so providing and understanding of 

the mechanisms and possible solutions is important.   

HYPOXIA IN CORPUS CHRISTI BAY 

Hypoxia in Corpus Christi Bay, Texas is first documented in 1988 (Montagna and Kalke, 

1992) and later observed every summer (Martin and Montagna, 1995; Applebaum et al. 

2005). Hypoxia in Corpus Christi Bay results in about a ten-fold reduction in benthic 

standing stock and diversity.  Unlike other systems along the Gulf of Mexico, e.g. the 

Louisiana coast a linkage between eutrophication and hypoxia has not been established in 
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Corpus Christi Bay (Applebaum et al, 2005).  Instead, hypoxia is found to be correlated 

with salinity-induced stratification of the Bay, which occurs in summer when temperature 

and evaporation are high and precipitation is low (Ritter and Montagna, 1999).   

Stratification causes hypoxia by reducing vertical turbulent mixing of heat, momentum, 

mass and constituents (Ralston and Stacey, 2005; Armenio and Sarker, 2002), and 

therefore limit the replenishment of dissolved oxygen in the bottom layer.  Over time, 

benthic demand depletes dissolved oxygen to hypoxic levels.  As a result, unlike many 

other coastal and estuarine systems, hypoxia in the Bay is thought to be naturally 

occurring and driven by stratification, instead of being man-made and driven by nutrient 

loadings. 

Figure 5.1 shows the regions where stratification-induced hypoxia occurs in Corpus 

Christi Bay.  The regions are delineated by. Paul Montagna, a marine biologist from the 

Harte Research Institute of Texas A&M University, Corpus Christi; and Ben Hodges, an 

environmental engineer at University of Texas at Austin. 
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Figure 5.1.  Hypoxia in Corpus Christi Bay  

   

DESCRIPTION OF CORPUS CHRISTI BAY 

The Corpus Christi Bay system is an urban estuary with complex hydrodynamic and 

water quality conditions (see Figure 5.1).  The bay is approximately circular in shape 

with a diameter of approximately 13 miles.  The average depth of the Bay is 9 feet, and is 

separated from the Gulf of Mexico by a barrier island, so that water circulation in the Bay 
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is driven more by wind than by tides.  Communication with the gulf is available via 

Aransas Pass (near Port Aransas) and Packery Channel.   

Adjacent to Corpus Christi Bay are four bays: Redfish Bay, Laguna Madre, Nueces Bay, 

Oso Bay.  The first two, Redfish Bay and Laguna Madre, are lagoonal systems that are 

characterized by: 

1. Shallow depth.  They are about 3 to 4 feet deep – therefore shallower than Corpus 

Christi Bay. 

2. Limited freshwater inflow.  Most inflows are from surrounding surface runoff 

during storm events 

3. Dense aquatic vegetation (Montagna, 1993). 

Due to the shallowness of Redfish Bay, Laguna Madre and Corpus Christi Bay, as well as 

their limited interaction with the gulf, elevated salinity levels are found during periods in 

the summer when evaporation is high and precipitation is low.   The typical salinity in the 

Gulf of Mexico ranges from 10 to 30 psu (practical salinity units).  During the summer, 

salinity in Corpus Christi Bay can reach as high as 50 psu, while salinity in upper Laguna 

Madre can reach as high as 70 psu. 

The other two bays, Nueces Bay and Oso Bay are estuarine systems which are fed by 

freshwaters from the Nueces River and Oso Creek respectively.  Because of this, Nueces 

Bay experiences lower salinities than Corpus Christi Bay.  However in Oso Bay, 

hypersaline conditions can occur (up to 70 psu) because the Barney Davis Power Plant 

(see Figure 5.1) draws 400 million gallons a day of cooling water from the upper Laguna 
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Madre through an intake shown in the lower part of Figure 5.1, and discharges this flow 

into Oso Bay.   

Gravity currents and hypoxia 

In the previous chapter, hypersaline currents from Laguna Madre are shown to be the 

dominant cause of density stratification in southeast Corpus Christi Bay.  Hypersaline 

currents are often referred to as gravity currents because their higher density (compared 

to the ambient fluid) causes gravity to control their movement.  Gravity currents follow 

the bathymetry and travel towards deeper portions of the Bay.  The emergence of gravity 

currents is controlled by strong southeasterly winds.  The winds provide the hypersaline 

waters the momentum needed to overcome the resistance from the dense aquatic 

vegetation in Laguna Madre.  The fate and transport of gravity currents are illustrated in 

Figure 5.2.  
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Ernest Sin Chit To, CRWR  

Figure 5.2. Gravity currents and hypoxia (To, 2008). 

In summary, four conditions need to be satisfied in order for hypoxia to happen at a given 

location in the Bay.  These are occurrence, travel, wind conditions, and oxygen 

consumption.  First of all, a gravity current needs to emerge from the shallow bays.  

Secondly, the given location must be within the path of the current.  Thirdly, wind 

conditions are not strong enough to break up the gravity current before it reaches the 

location.  Lastly, dissolved oxygen is depleted below 2 mg/L when the gravity current 

reaches the location.  An illustration is provided in Figure 5.3. 
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Figure 5.3.   Conditions leading to hypoxia 

 

DATA SOURCES IN CORPUS CHRISTI BAY 

Several governmental agencies and academic institutions maintain environmental sensor 

networks in Corpus Christi Bay.  These include the HRI (Harte Research Institute) 

network, Hodges surveys (funded by the Texas Water Development Board), TCOON 

(Texas Coastal Ocean Observation Network), and the TPWD (Texas Parks and Wildlife 

Department) biological sampling grid.  The locations of the sensors are shown in Figure 

5.4.  A brief description of the data collected by these four networks is provided below. 
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Figure 5.4.   Sensor networks in Corpus Christi Bay. 

Harte Research Institute (HRI) network  

In east Corpus Christi Bay, Dr. Paul Montagna and his team have collected water quality 

data over a wide area (~ 50 square kilometers) since the 1980s.  The monitoring stations 

of the network are shown in grey in Figure 5.4.  Data are collected at weekly to bi-weekly 

intervals mostly during the summer months of June, July and August.   

Hodges plume tracking studies  

In the two regions downstream of Oso Bay and Laguna Madre, Dr. Ben Hodges and his 

team have performed short-term intensive data collection over smaller areas (see regions 

highlighted in orange in Figure 5.1) to capture the formation and dissipation of 

stratification in the Bay (Hodges and Furnans, 2006, Brower, et al. 2007, Hodges, et al., 
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2008).  Salinity, oxygen and temperature data are collected every 12 hours.  These high 

resolution studies have captured the emergence, movement and dissipation of gravity 

currents from Oso Bay and Laguna Madre. 

Texas Coastal Ocean Observing Network  

The Texas Coastal Ocean Observation Network (TCOON) is a set of observing stations 

located along the Texas coast that measure water level, wind speed, direction and a 

variety of environmental conditions, including water and air temperature.   They collect 

data continuously at six-minute intervals.  Six TCOON stations are located around 

Corpus Christi Bay, as shown in Figure 5.4.   Historical data going back to 1993 are 

available for most parameters at these stations.    

 

Texas Parks and Wildlife Department 

The Texas Parks and Wildlife Department collects dissolved oxygen, salinity and 

temperature data in Corpus Christi Bay as part of its biological sampling program (see 

Figure 5.5).  Sampling is performed based on a 1 minute by 1 minute grid along the entire 

Texas coast and its associated estuaries (TPWD, 2002).   It is a spatially and temporally 

extensive data set that contains over 20,000 data points for CCBay, Upper Laguna Madre 

and Aransas Bay for the period from 1977 to present.  Despite this, the temporal 

resolution TPWD data is limited.  On average 2 samples are collected in each cell per 

year.  Although these limitations prevent the data from capturing the fate and movement 

of gravity currents, the data are still useful for estimating the ambient conditions in 

Corpus Christi Bay and its adjacent bays. 
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Figure 5.5.   Location of water quality samples collected by the Texas Parks and 

Wildlife Department. 

5.3 Using wind to model hypoxia patterns 

CONCEPT OF THE VALVE HYPOXIA MODEL  

The previous chapter demonstrated that winds of certain speed and direction provide the 

external force to push gravity currents into the Bay.  The resulting mechanism is like 

operating a valve on a hose.  Some winds turn the valve on and release a gravity current, 
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other winds leave the valve off and release no gravity currents.   A wind event is defined 

as a wind that turns the valve on.  More wind events leads to stratification in a larger 

portion of the Bay. The valve hypoxia model extends this concept to explain the spatial 

and temporal pattern of hypoxia by tracking the fate and transport of gravity currents 

once they have been released into the Bay.  The model is a simple plug flow model that 

takes into account oxygen depletion and the dissipation of the gravity current by the 

wind.  To minimize the parameters needed to run the model, a parsimonious approach 

was taken.  This meant making simplifying assumptions about gravity current physics 

and dissolved oxygen mechanics so that the model is workable with the sensor data 

available.   

The model concept is described as follows (see Figure 5.6): 

1. Wind events control the emergence of gravity currents similar to the operation of 

a valve. 

2. The gravity currents travel along the bottom of the Bay towards lower elevation.  

3. Some currents are eventually dissipated by wind mixing. 

4. Some currents become hypoxic due to depletion by sediment oxygen demand. 
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Figure 5.6. Concept of the valve hypoxia model 

The model is Lagrangian because it tracks the fate and transport of every gravity current 

that emerges from Laguna Madre. The purpose of this model is to offer a basic 

framework for building future models to predict gravity-current-related hypoxia.    

 

DOMAIN OF THE VALVE HYPOXIA MODEL  

The model domain is is situated in southeast Corpus Christi Bay (see area outlined by 

dash line in Figure 5.7.  This is an area where bathymetric features form an underwater 

basin that receives hypersaline waters from the eastern portion of Laguna Madre.  As a 

result it presents an isolated system where one may observe gravity currents emerging 
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from a single source (East Laguna Madre).  This area is defined as the domain of the 

valve hypoxia model.  
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Figure 5.7. Domain of the valve hypoxia model. 
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ALGORITHM OF THE VALVE HYPOXIA MODEL 

Create a time series of the valve state 

Because every wind blowing across Corpus Christi Bay elicits an instantaneous response 

from the valve: ON or OFF, the time series of the wind vectors is converted into a time 

series of the valve state.    Based on the wind-stratification analysis of the previous 

chapter, wind that blow from N120 oW to N165 oW at a velocity between 4 and 8 m/s turn 

the valve ON while other winds leave the valve OFF.  As a demonstration, the wind 

history for the ten days prior to July 13, 2006 12:00 pm (from now on abbreviated as 

7/13/2006 PM) shown in Figure 5.8 is converted to a ten-day time series of the valve 

state (see Figure 5.9).  The period of ten days is chosen as a conservative measure.  Even 

though a five-day travel time is observed from TWDB surveys, it is a value that was 

estimated visually and has inherent uncertainties.  Therefore a period of ten days is 

chosen so that a longer wind history is considered.   
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Figure 5.8 Time series of wind vectors in the ten days prior to July 13, 2006 

afternoon. 

Figure 5.9 Time series of valve states in the ten days prior to July 13, 2006 afternoon. 

The time series of the valve state indicates when in recent history have gravity currents 

been issued into the Bay.  The isolation time is the length of time a gravity current has 

spent in the Bay.  For example, a gravity current that was issued on 7/11/2006 6:00 a.m. 

would have an isolation time of 2.25 days on 7/13/2006 12:00 p.m. 
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Convert valve states to gravity current locations 

The locations of gravity currents (i.e. described as distance from the mouth of Laguna 

Madre) are calculated using an assumed average speed multiplied by the isolation time.  

From the TWDB surveys, it is observed that gravity currents travelled at an average 

speed of ~1 km/day.  Applying this speed to the gravity current issued on 7/11/2006 6:00 

a.m. results in a computed location of 1 km/d x 2.25 d = 2.25 km from Laguna Madre on 

7/13/2006 PM.  If the entire ten-day wind history prior to 7/13/2006 PM is computed, 

then the location of all the gravity currents in the model domain (prior to accounting for 

wind mixing) can be obtained for the day of interest.   

The spatial pattern of salinity along the depth and distance axes (prior to accounting for 

wind mixing) for 7/13/2006 PM is calculated by applying the following assumptions  

1.  Initial thickness of the gravity current is 1 m (based on observing data from the 

TWDB plume tracking study) ; 

2. Salinity in Laguna Madre and Corpus Christi Bay are 40 ppt and 38 ppt, 

respectively (based on Texas Parks and Wildlife Data); 

Figure 5.10 shows the preliminary salinity profile computed by the model. 

 

 



147 
 

 

Figure 5.10. Salinity concentrations vs. depth and distance from mouth of Laguna 

Madre (before accounting for wind mixing). 

Account for wind mixing 

Equations from Hodges, et al. (2008) are used to quantify the effect of wind mixing on 

the thickness of the gravity currents.  The energy transfer rate from the wind to per unit 

area of the water surface is quantified using Equation 5.1 (Hodges, et al., 2008): 

   
3

* )(
2
1~ uC

dt
de

Na
w ρ    Equation 5.1 

where  

CN is an empirical coefficient ~ 1.4 x 10-3 (Hodges, et al., 2008);  

*u is the wind shear velocity; and, 

ρa is the water density at the surface ~ 1.3 kg m-3.  
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The wind shear velocity, *u , is scaled on the wind speed, Uw, using Equation 5.2  

(Hodges, et al., 2008): 

a

air
Dw CUu
ρ
ρ

=*     Equation 5.2 

where  

ρair is the air density;  and, 

CD is a drag coefficient ~ 1.33 (Hodges, et al., 2008). 

 

Only a fraction of the wind-stirring energy is effectively used for mixing the gravity 

current because the majority is lost due to viscous dissipation.  The rate of change of the 

mixing energy, pe , is given by Equation 5.3 (Hodges, et al., 2008):  

dt
deC

dt
de w

m
p =      Equation 5.3 

 

where Cm is the fraction of available kinetic energy that mixes the gravity current ~ 0.2  

(Hodges, et al., 2008).    Consider a gravity current that is issued at t0 to t1, integrating 

Equation 5.3 from t0 to t1 gives us the total energy accumulated, pe , over the time period 

(see Equation 5.4) : 
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  Equation 5.4 

where tΔ is the time interval between wind observations. 
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By processing the entire ten-day wind history prior to July 13, 2006, the wind mixing 

energy accumulated in southeast Corpus Christi Bay can be obtained as a function of 

isolation time/distance (see Figure 5.11).   

 

 

Figure 5.11. Wind mixing energy accumulated in Southeast Corpus Christi Bay on July 

13, 2006 afternoon. 

The mixing energy quantified in Equation 5.4 causes a top-down erosion of the dense 

underflow.  Mixing increases the potential energy of the water column by pulling denser 

water from the bottom layer into the top layer.  It is assumed that any dense fluid that is 

mixed is instantly evenly distributed throughout the water column of the top layer. The 

change in thickness of the bottom layer can be calculated by balancing the change in 

mixing energy and potential energy  (see Equation 5.5 – Hodges, et al., 2008). 

  dt
dHHDg
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2
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−Δ−= ρ     Equation 5.5 

where  
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Δρ is the density difference between the two layers.   

D is the total depth of the water column. 

H1 is the thickness of the bottom layer that is eroded. 

 

Two simplifying assumptions are made to ease the computation of the bottom thickness: 

1) depth is constant with time (which is valid in the flat region of the Bay); and  

2)  Δρ does not change within period of interest because  

a.  the top layer mixing laterally with adjacent waters and  

b.  no ambient fluid is entrained into the bottom layer. 

 By incorporating these two assumptions and then integrating Equation 5.6 over the time 

interval, t0 to t1, Equation 5.6 is obtained: 
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where  

H1t0 is the thickness of the bottom layer at t0;   

H1t1 is the thickness of the bottom layer at time t1; and 

pe is the mixing energy that was accumulated between t1 and t0.  

 

It can be seen that Equation 5.6 is quadratic with respect to the final thickness H1t1.  

Solving Equation 5.6 results in two roots, where one is less than the water depth, D, and 
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the other is greater than D.  Because the thickness of the bottom layer can only decrease 

after mixing (thus H1t1 ≤ D), only the lesser of the two roots is valid. 

Equation 5.6 is used to compute the change in bottom thickness from after wind mixing 

to that before mixing. H1t0 and H1t1 referred to the thicknesses of the bottom layer before 

and after accounting for the wind.   

As an example, let us consider a gravity current that is located at 2.25 km from the mouth 

of Laguna Madre and at a depth of 3.77m, with the following conditions: 

1. thickness before considering mixing = H1t0 = 1 m  

2. mixing energy accumulated over isolation time = pe  = 21.3 J/m2 

3. difference in top-bottom density of 2.3 g/L = 2.3 kg/m3 

Substituting these values into Equation 5.6, we get Equation 5.7: 
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  Equation 5.7 

Solving this equation yields two roots:  0.39 m and 7.15 m.  Because the depth of the 

water is only 3.77 m, the only valid root is 0.39 m.  Therefore the thickness of the gravity 

current after considering wind mixing is 0.39 m.  By extending this computation process 

to the entire model domain, the salinity profile after accounting for wind can be obtained.  

Figure 5.12 shows the salinity profile in southeast Corpus Christi Bay on 7/13/2006 PM 

after considering wind mixing. 
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Figure 5.12. Salinity concentrations vs. depth and distance from mouth of Laguna 

Madre (after accounting for wind mixing). 

Account for oxygen depletion 

The oxygen depletion rate within the gravity current is assumed to deplete under a 

constant rate.  A net oxygen demand rate of 0.18 mg/L/hr is used.  This value is obtained 

from the average of the net oxygen demand rates published in Hodges, et al. 2008.  It is 

also within the respiration rates stated in Russell and Montagna (2007), which ranges 

from 2 to 6 mg/L/d or 0.08 mg/L/hr to 0.24 mg/L/hr. Thus for a gravity current that was 

issued 2.25 days ago with an initial dissolved oxygen concentration of 9 mg/L, the 

current dissolved oxygen concentration would be 0 mg/L (9 mg/L – 2.25 days x 24 

hrs/day x 0.18 mg/L/hr  < 0 mg/L).  Using this constant rate, the oxygen profile along the 

model domain is calculated and plotted.  Figures 5.13 and 5.14 show the oxygen profile 
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on 7/13/2006 PM before and after accounting for wind mixing and oxygen depletion 

respectively. 

 
 

Figure 5.13 Salinity concentrations vs. depth and distance from mouth of Laguna 

Madre on 7/13/2006 PM (before accounting for wind mixing and oxygen depletion). 
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Figure 5.14 Salinity concentrations vs. depth and distance from mouth of Laguna 

Madre on 7/13/2006 PM (after accounting for wind mixing and oxygen depletion). 

 

5.4 Results of the valve hypoxia model 

MAPPING THE RESULTS 

Results from the valve model are mapped for comparison with the salinity and oxygen 

profiles collected in the Bay.  A simplifying assumption is made where gravity currents 

propagated forward in waves where fronts are perpendicular to the centerline of the 

experimental area.   This is reasonable given the relatively rectangular geometry of the 

model domain (see Figure 5.15).  The centerline of the model domain is depicted as a 

black line that runs from the mouth of Laguna Madre to the north.  Distance markers are 

denoted as black triangles along the centerline.  Salinity profiles collected on 7/13/2006 
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PM are represented as stacked charts on the map.  The bottom salinity predicted by the 

model for 7/13/2006 PM (recall Figure 5.12) is shown as colored bands underneath the 

salinity profiles.  Figure 5.16 shows the oxygen profiles and bottom oxygen 

concentrations predicted by the model for 7/13/2006 PM.  
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Figure 5.15 Bottom salinity predicted by the valve hypoxia model and salinity profiles 

collected on July 13, 2006. 

The red zones in Figure 5.16 indicate where bottom oxygen concentrations are less than 2 

mg/L.  Therefore they indicate the hypoxic areas in the model domain. 
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Figure 5.16 Bottom oxygen concentrations predicted by the valve hypoxia model and 

dissolved oxygen profiles collected on 7/13/2006 PM. 

From Figure 5.15 and 5.16, it is observed that the general spatial distribution of gravity 

currents and hypoxic areas matched up well with the profiles collected in the Bay on 

7/13/2006 PM. 
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RESULTS FROM 8/16/2005, 6/28/2005 AND 7/27/2005 

The valve hypoxia model is also executed for the remainder of the 37 sampling days.   

Figures 5.17, 5.18 and 5.19 are maps of model results for the sampling days of 8/16/2005, 

6/28/2005 and 7/27/2005.  In each figure, predicted and observed salinities are presented 

on the left panel and predicted and observed oxygen concentrations are presented on the 

right panel. 

  

Figure 5.17. Maps of bottom salinity (left) and dissolved oxygen (right) predicted by 

the valve hypoxia model for 8/16/2005. 

For 8/16/2005, the model predicts the presence of gravity currents in the majority of the 

model domain area.  This agrees with the data because all the salinity profiles collected 

exhibits stratification.  However, the model does not predict any stratification or hypoxia 
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in the northern part of the Bay where the stratified profiles are found.  Possible 

explanations include: 

1. The gravity currents travel faster than the assumed speed of 1 km/d that is used in 

the model. 

2. The gravity currents dissipate slower than predicted by the model. 

3. The actual ON/OFF criteria for the valve model differ slightly from real 

conditions.  

  

Figure 5.18. Maps of bottom salinity (left) and dissolved oxygen (right) predicted by 

the valve hypoxia model for 6/28/2005. 

For 6/28/2005, the model predicts the absence of gravity currents from the majority of the 

model domain.   This agrees with the data collected because none of the salinity profiles 
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show stratification.  For the oxygen profiles, it is observed that there is oxygen 

stratification on the east side of the model domain.  However, the stratification is likely 

caused by highly-oxygenated freshwater running off Mustang Island in the east – which 

the model does not account for – and not by gravity currents from Laguna Madre.  

Nonetheless, the model’s performance in predicting hypoxic areas is still reasonable. 

 

  

Figure 5.19. Maps of bottom salinity and dissolved oxygen predicted by the valve 

hypoxia model for 7/27/2005. 

For 7/27/2005, the model predicts a concentration of gravity currents mostly in the south, 

with intermittent waves of currents in the middle region and almost no gravity currents in 



160 
 

the north.  This agrees with the general stratification pattern revealed by salinity profiles, 

although some discrepancies exist between the exact locations of stratification.  This can 

be a result of the discrepancy in current speeds.  For the oxygen patterns, the predicted 

and observed hypoxic areas are in general agreement with each other.  As the model 

predicted, hypoxia is found between 2000 to 4000 m from the mouth of Laguna Madre. 

One item of interest is the cluster of oxygen profiles collected in the southern region of 

the domain (Figure 5.19 right panel).  These profiles are data collected from continuous 

monitoring of dissolved oxygen at the Bay bottom over a 24-hour period.  Each profile 

represents the average oxygen concentrations within a 2-hour interval. One can observe 

that actual oxygen concentrations fluctuated from hypoxic to marginally normoxic at 

different times of the day, even though they are all sampled at the same location.  This 

phenomenon is the result of photosynthesis and respiration.  Because the model does not 

account for diurnal fluctuations but uses an average depletion rate to compute changes in 

oxygen levels, it can under-predict oxygen concentrations during the day and over-predict 

during the night.  Methods for improving the model in the future are described in section 

5.6. 

5.5 Implications of the valve hypoxia model 

EXPLAINING HYPOXIA PATTERNS IN SOUTHEAST CORPUS CHRISTI BAY 

Comparison between observations and model results (Figure 5.17, 5.18 and 5.19) showed 

that even for such a rudimentary model, the valve hypoxia model provides a logical 
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explanation of salinity and oxygen patterns in the Bay.   Data collected by HRI often find 

hypoxic areas interspersed with non-hypoxic areas in the Bay.  This contradicts with the 

assumption that bottom salinity and hypoxia are continuous in space – as one would 

expect from in situ generation of stratification.  The model demonstrates that wind-driven 

gravity currents, and therefore ex situ generation of stratification, are a much better 

explanation of hypoxia patterns in the Bay than in situ generation of stratification. 

Conventional oceanographic wisdom suggests that shallow bays that have large surface 

areas like Corpus Christi Bay should be well-mixed during strong wind events.  As such, 

stratification/hypoxia should only happen during extended calm wind periods.  Contrary 

to this, the model shows that strong wind events can also cause stratification.  In fact, the 

pattern of hypoxic vs. normoxic areas in the Bay can be related to waves of gravity 

currents flowing in as wind events turn the valve on and off.    

The model results generally support the ON/OFF criteria deduced from wind 

stratification analysis.  Several discrepancies between the predicted and actual gravity 

current patterns and hypoxia patterns are noted during the comparison.  Methods for 

reducing these discrepancies are presented later in this chapter. 

MANAGEMENT AND ENGINEERING IMPLICATIONS  

With the understanding of ex situ stratification as the dominant cause of hypoxia patterns 

in Southeast Corpus Christi Bay, several management and engineering practices are 

suggested to control its occurrence: 
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1. On the upstream end, the source of hypersaline water can be mitigated by the 

following engineering measures. 

a. Dilute the salinity in Laguna Madre by building channels to the Gulf of 

Mexico.  The main obstacle to this is that Laguna Madre is a large water 

body that extends all the way 150 km south from Corpus Christi Bay to 

Port Isabel.  Several narrow inlets already exist along its length.  The 

closest inlet is the Packery Channel.   However, the tidal range provided 

by the inlets is relatively insignificant and has little effect on the 

hypersalinity in the lagoon.  Significant dredging is needed to create a gap 

large enough to provide sufficient water for dilution. 

b. Build physical barriers to increase the wind speed threshold needed to 

push the gravity current into the Bay.  One method is to construct low 

head dams at the mouth of Laguna Madre to prevent the down flow of 

gravity currents.  The disadvantage is that such a dam prevents exchange 

between the Bay and Laguna Madre and exacerbates the hypersaline 

conditions in Laguna Madre.  The presence of the dam can lead to 

conditions that are more catastrophic to the benthic life when the “dam” 

overtops during extreme wind events then without the dam. 

2. On the downstream side, the gravity current can be mitigated by the following 

engineering measures: 

a. Enhance the dispersion the gravity currents in the Bay by dredging away 

terrain features that restrict bottom circulation; or, 
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b. Channel the gravity current to an even smaller area, for instance, into the 

ship channel, so that its effects are more localized and restricted.   

5.6 Areas for improvement 

The possible causes for discrepancies in the gravity current and hypoxia patterns are 

listed follows: 

1. The ON/OFF criteria deduced for the valve model can differ slightly from actual 

conditions.  This leads to discrepancies in the existence of gravity currents.  The 

ON/OFF criteria can be refined in the future by repeating the wind-stratification 

analyses as more data are collected. 

2. Discrepancies in gravity current speed. 

The constant speed assumption is an approximation of actual conditions.   In reality, 

the speed of the gravity current varies depending on factors such as, the density 

difference between the gravity current and the ambient fluid, the slope of the Bay 

bottom and the lateral spreading of the current.  Variations in speed lead to 

discrepancies in location of gravity currents.  More sophisticated physical models can 

be incorporated in the future to better characterize gravity current movements. 

3. Discrepancies in mixing mechanisms 

The mixing mechanisms govern how long gravity currents persist in the Bay.  Two 

main assumptions are made to simplify the implementation of mixing dynamics.  The 

first assumption is that the water column is approximated as a two box model where 

the density difference between the top and bottom layers is preserved throughout the 

mixing.  Mixing only affects the thickness of the layers.  In reality, entrainment of 
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ambient fluid reduces the density difference between the two layers.  The second 

assumption is that wind mixing occurs in a stepwise manner, where: 

• In the first step, the model simulates the propagation of the gravity currents in the 

Bay without taking into account interactions with the ambient fluid. An unmixed 

salinity pattern in the Bay is computed based on valve states, travel time and an 

assumed initial thickness.   

• In the second step, the model introduces mixing energies that are accumulated 

over the isolation times of the gravity currents into the Bay.  Physically, this is 

analogous to a   sudden violent stirring of the water column that causes the 

salinity pattern to change instantaneously. The mixing energy changes the 

thickness of the gravity current from a pre-mixed state to the post-mix state.   

In reality, both propagation and mixing processes happen simultaneously over the 

isolation time of a gravity current.  However modeling these two processes 

simultaneously, calls for a more sophisticated model and is therefore recommended 

for future work. 

4. Discrepancies in density stratification 

The mixing energy required to dissipate gravity currents is highly sensitive to the 

density difference between gravity current and ambient fluid.  For instance, a density 

difference of 2 g/L between gravity current and ambient fluid requires twice as much 

mixing energy to dissipate than a gravity current with a density difference of 1 g/L.   

Therefore it is critical to obtain accurate estimates of salinities in Laguna Madre and 

Corpus Christi Bay.  Unfortunately, TPWD data is the only source of water quality 
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data available for this model.  Because of the sparseness of its data, 90-day moving 

averages are used to interpolate estimates for the day of interest.  This solution is less 

than ideal due to the fact that salinity in both Laguna Madre and Corpus Christi Bay 

can vary significantly after precipitation events.   Higher sampling frequencies are 

needed to accurately characterize salinity.  Recently, a real time sensor is installed by 

SERF (Shoreline Environmental Research Facility by Texas A&M University) in the 

center of the model domain to measure salinity in the Bay.  However, no sensors are 

available to measure salinity in Laguna Madre. 

5. Discrepancies in dissolved oxygen mechanisms 

The model assumes a constant rate of oxygen depletion while in reality, dissolved 

oxygen concentrations fluctuate diurnally because of photosynthesis and respiration.  

Better biological models can be used in the future to characterize dissolved oxygen 

dynamics more realistically.   

6. Other sources of hypersaline flows 

The potential presence of other sources of hypersaline water in the northern part of 

the domain can cause discrepancies in the model results.  For instance, salt flats are 

identified near Wilson’s cut on Mustang Island (see Figure 5.20).  These salt flats 

drain into the study area.  However, because thes flats have not been sampled 

frequently, the extent of their influence is unknown.  Because of their relatively small 

areas (compared to Laguna Madre) they are assumed by the model to have negligible 

influence.  However, future studies need to be conducted in order to confirm this.  
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Salt Flats

 

(Left image courtesy of Google Earth) 

Figure 5.20. Presence of salt flats in the northeastern portion of the study area. 
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5.7 Conclusions for Chapter 5 

 

This study demonstrated how wind-driven gravity currents can cause hypoxia in 

southeast Corpus Christi Bay.  A simple plug flow model (also known as the valve 

hypoxia model) was constructed to simulate the transport and dissipation of gravity 

currents that emerge during these wind events.  The model also simulated oxygen 

depletion within the currents.  Results from the model demonstrated that the 

heterogeneous distribution of hypoxic areas in the Bay can be explained by of waves of 

hypersaline water flowing into the Bay during wind events.   The model results also 

challenged the conventional oceanographic wisdom that shallow bays that have large 

surface areas like Corpus Christi Bay should be well-mixed during strong wind events.  

Contrary to this, the model shows that strong wind events can also cause stratification.   

The valve hypoxia model is presented as a framework for building models to predict 

wind-driven hypoxia.  Its various simplifying assumptions can be replaced by more 

sophisticated models that better characterize gravity current movements and dissolved 

oxygen mechanics. 
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CHAPTER 6: CONCLUSIONS OF THE DISSERTATION 

The framework proposed for using a Hydrologic Information System to study and predict 

hypoxia has been implemented successfully in Corpus Christi Bay.  Methods for 

performing data compilation, data synthesis, hypothesis testing and predictive modeling 

of the hypoxia phenomenon are proposed and demonstrated.  This chapter answers the 

four research questions of this dissertation, describes the contributions of this research, 

and provides recommendations for future work.   

6.1 Answering the research questions 

1. How can data be assembled from a service-oriented architecture of 

environmental sensor networks to describe the properties of a water domain in 

space and time? 

 

Chapter 2 presents a methodology for harvesting and managing data from multiple 

sources.  The methodology draws together a number of technologies (i.e. hydrologic 

information systems, web services, HydroGET, MySelect and ArcHydro) into one 

process.  It is applied to the Corpus Christi Bay testbed project to help gather data to 

perform scientific research on hypoxia.  The methodology is described as follows:  First, 

a hydrological information system is constructed to provide unified access to 

environmental sensor networks via a service-oriented architecture.   Next, the user creates 
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a table called MySelect, which serves as a shopping list for data from sensor network and 

as a lookup table for mediating semantic differences among various networks.  Third, the 

MySelect table is processed by HydroGET, a web service client that can harvest data 

from web services, to get the data from the HIS.  Finally, HydroGET stores the data into 

an Arc Hydro data model, which utilizes the space-time data cube model to store time 

series data.  While storing the data into Arc Hydro, HydroGET uses MySelect to group 

like variables together and separate unlike variables in the database.  By utilizing this 

methodology, data can be consolidated from multiple sensor networks and organized into 

a format that is amenable to data analysis by researchers. 

 

2. How can data that were collected at different locations, times, spatial 

resolutions and temporal frequencies be synthesized to provide a continual 

description of an environmental variable over space and time? 

 

Chapter 3 demonstrates that space-time kriging can facilitate the construction of a 

continuous space-time domain of salinity from fragments of data collected by multiple 

sensor networks.  De Cesare et al’s modified GSLIB software proved to be a very useful 

tool for performing space-time kriging.  The theory behind space-time kriging is largely 

similar to spatial kriging.  However, the non-orthogonality among the spatial and 

temporal axes means that spatial and temporal variograms need to be modeled separately 

and then merged together using a product-sum or product model.  Space-time kriging of 

salinity in Corpus Christi Bay from July 12 to 18, 2006 produces a continuous 3D space-



170 
 

time domain, where the dimensions are distance along a transect line, depth, and time. By 

dissecting this space-time volume in regular time intervals, snapshots of the gravity 

current as it undergoes stages of emergence, movement and dissipation are visualized.  

By interpreting the snapshots, the gravity current in the Bay is estimated to persist for a 

week and its average speed is estimated to be on the order of magnitude of 1 km/day.   

 

3. How can data about different environmental variables be used to generate 

insight about underlying mechanisms about a given environmental 

phenomenon? 

 

Chapter 4 presents a series of hypothesis tests for coupling wind and salinity conditions, 

whose results demonstrate that southeasterly winds blowing at velocities between 4 and 8 

m/s are positively correlated with recorded instances of stratification.  Moreover, the 

correlation between such winds and stratification is independent of the season they occur.  

Because wind is a much stronger factor than season in explaining stratification, the 

generation of stratification is dominated by the ex situ mechanism of gravity currents, 

rather than by the in situ mechanism of evaporation of bay waters.evaporation).   

 
4. How can new models be designed around hydrologic information systems to 

make predictions about a given environmental phenomenon?  What do models 

explain the hypoxia patterns in southeast Corpus Christi Bay? 
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In Chapter 5, insights from the wind-stratification analysis are incorporated into a plug 

flow model called the valve hypoxia model.  The valve hypoxia model determines the 

release of gravity currents into the Bay based on the occurrence of strong, southeasterly 

winds in the recent wind history.  The mechanism is analogous to operating a valve on a 

hose.  Wind events turn the valve ON and release gravity currents.  Non-wind events turn 

the valve OFF.  The valve hypoxia model uses the gravity current speed, wind-mixing, 

and oxygen depletion mechanisms to predict the level of hypoxia.  The valve hypoxia 

model was connected to real-time wind data from the TCOON web service and salinity 

and oxygen data from the TPWD web service to predict hypoxia patterns in the Bay.  

 

Results from the model showed agreement with the general hypoxia patterns observed in 

the Bay.  Therefore the model is able to explain the following about hypoxia 

phenomenon: 

1. Hypoxia is caused by ex situ generation of stratification (i.e. by gravity currents 

from Laguna Madre) rather than in situ (i.e., by evaporation).  Spatially 

heterogeneous hypoxic profiles can be explained as the result of waves of 

hypersaline water that emerge into the Bay during wind events. 

2. Strong southeasterly winds that are faster than 4 m/s can force gravity currents 

into the Bay. Prior to this research, researchers have been perplexed about the 

occurrence of hypoxia after an extended period of stiff winds.  Conventional 

oceanographic wisdom suggests that shallow bays that have large surface areas 

like Corpus Christi Bay should be well-mixed after strong wind events.   
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However field data, especially from the plume tracking studies contradict this 

wisdom.  With the valve hypoxia model, the presence of stratification after strong 

wind events is explained as the result of strong southeasterly winds pushing 

gravity currents from Laguna Madre into Corpus Christi Bay.   

6.2 Contributions to science and technology 

The contributions of the proposed research to scientific knowledge are two-fold. To the 

field of collaborative environmental research, this research provides the following 

contributions: 

1. Development of a framework for using HIS in environmental research which can 

be applied to a broad spectrum of environmental studies; 

2. Creation of a methodology and set of tools (e.g. HydroGET, MySelect) for 

assembling data from a service-oriented architecture of environmental sensor 

networks to describe the properties of a water domain in space and time; 

3. Demonstration of space-time kriging as a versatile method for synthesizing the 

data that are scattered over time and space, and is therefore an appropriate method 

for dealing with the data that are made available by HIS;  

4. Demonstration of how data harvested from HIS can be used to build a 

parsimonious model to explain an environmental system; and, how the model, in 

turn, can be connected to real time data streams from HIS to predict the behavior 

of the environment; and,  
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5. An example of how HIS can be an integral component of collaborative 

environmental research. 

To the investigation of the hypoxia phenomenon in Corpus Christi Bay this research 

contributes the following: 

1. Evidence that extrinsic factors (e.g. gravity currents) is the dominant cause of 

stratification in bay and estuaries. 

2. Visualization of the initiation, movement and dissipation of gravity currents in the 

Bay that allows estimation of the gravity current speed; 

3. Proof that a positive relationship exists between southeasterly winds and 

stratification which enables the prediction of the onset and spatial pattern of 

stratification and hypoxia in southeast Corpus Christi Bay; 

4. Creation of a simple valve hypoxia model that explains  

a. the heterogeneity in hypoxic patterns in southeast Corpus Christi Bay are 

caused by waves of gravity currents emerging from Laguna Madre; 

b. the occurrence of hypoxia typically observed after extended periods of 

strong winds from the southeast are caused by gravity currents pushed into 

the Bay.   

5. Identification of data and knowledge gaps in the hypoxia phenomenon that can be 

covered by future investigation and sampling. 
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6.3 Next steps and recommendations 

The following recommendations are proposed for the improvement of the framework for 

using HIS in scientific research:  

1. Integrate data discovery with data compilation 

The methodology in Chapter 2 requires the user to create the MySelect table so as 

to specify what kind of data is harvested from each sensor network.  This 

necessitates knowledge of sites and variables monitored by each network.  To 

create a MySelect table, the user relies on other HIS applications like HydroExcel 

to get a catalog of each network.  The catalog provides information on the 

availability of data for each site and variable and organizes the information in the 

MySelect format.  Another HIS application that performs in data discovery is 

HydroSeek.  HydroSeek is a map-based program provides users the ability to 

search for data across several networks using variable ontology by specifying 

general concepts such as nitrogen, oxygen, and streamflow. By integrating the 

capabilities of HydroGET, HydroSeek and HydroExcel together, a more 

streamlined process for data discovery and compilation can be achieved, which 

will greatly enhance the framework for scientific research. 

2. Incorporate uncertainty in space-time interpolation 

Data collected by different sensors can contain different levels of uncertainty.    

One limitation of space-time kriging is that it treats data as discrete measurements 

without considering their errors.  This results in less accurate synthesis results.   

Newer geostatistical methods such as the Bayesian Maximum Entropy (BME) 
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method (Christakos, 2000) have the ability to incorporate both hard (discrete) and 

soft (probabilistic) data in its estimation and can be applied to improve the quality 

of data synthesis results. 

3. Create an integrated analysis platform to perform all components of the scientific 

discovery framework.  

A variety of languages, ranging from Visual Basic, Fortran, MATBLAB, R to 

IDL; and applications, such as ArcGIS, Excel, and Google Earth were used in this 

research.  To streamline the process of scientific discovery, an integrated analysis 

platform needs to be created to incorporate or access the functions of these 

programs.  At the basic level, the platform can be a simple desktop application 

that has the basic functions of mapping, interfacing with HIS and some basic 

analytical functions.  At the more advance level, the platform should have the 

ability to interoperate with other applications and to incorporate them into 

workflows.  Existing applications such as ArcGIS already have strong capabilities 

to map, analyze, interact with web services and implement workflows.  New 

applications such as NCSA’s CyberIntegrator (Marini, et al., 2006) and the 

OpenMI Association’s OpenMI (Moore, R.V., 2007) have the ability to 

incorporate programs created from disparate environments in analytical 

workflows.  This platform may result from a mash-up of these different 

applications.   
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The following recommendations are proposed for the investigation of the hypoxia 

phenomenon in Corpus Christi Bay: 

1. Increase real-time sensors in the Bay 

Real-time salinity and oxygen sensors in Laguna Madre and southeast Corpus 

Christi Bay are needed to accurately characterize the boundary conditions for the 

valve hypoxia model.  The Texas Parks and Wildlife data are very sparse and the 

steps taken to interpolate the data mentioned in Chapter 5 probably reduced the 

model’s accuracy. A real time sensor was installed by SERF (the Shoreline 

Environmental Research Facility of Texas A&M University) in southeast Corpus 

Christi Bay in August 2006, but had not been properly calibrated until recently.  

Another sensor is needed in Laguna Madre in order to properly characterize the 

upstream conditions for the model. 

2. Perform more comprehensive hypoxia and plume tracking surveys 

The analysis for the valve hypoxia model was deduced from a data set spanning 

three years.  Certainly with more hypoxia and plume tracking surveys, more 

accurate parameters can be derived (e.g. better ON/OFF criteria for the valve and 

gravity current speed).  This can increase the accuracy of the predictive model.  

3. Incorporate more sophisticated models to simulate gravity current speed and 

dissipation. 

The constant speed assumption used in the valve hypoxia model is an 

approximation of actual conditions.   In reality, the speed of the gravity current 
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can vary depending on factors such as density difference between gravity current 

and ambient fluid, ground slope and lateral spreading of the current.  Variations in 

speed lead to discrepancies in location of gravity currents.  More sophisticated 

physical models may be incorporated in the future to better characterize gravity 

current movements.  The mixing mechanisms can be improved to take into 

account lateral entrainment of fluid into the gravity current.  This will improve the 

accuracy in estimating the amount of wind energy needed to dissipate a gravity 

current.  As a result, better predictions of the persistence of a gravity current in 

the Bay can be made. 

4.  Discrepancies in dissolved oxygen mechanisms 

The model assumes a constant rate of consumption while in reality, dissolved 

oxygen concentrations fluctuate diurnally because of photosynthesis and 

respiration.  Better biological models can be used in the future to characterize 

dissolved oxygen dynamics more realistically.   
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