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Infectious diseases seem to be appearing at an unprecedented rate:

within the last few years alone, a sequence of novel diseases like MERS-CoV,

Chikungunya, and Zika have emerged. Concurrently, a number of previously

known diseases have re-emerged like the 2009 H1N1 pandemic and the 2014

Ebola epidemic. While these known and unknown emergence events have all

begun with a wildlife or livestock spillover transmission event into humans,

they each present unique subsequent public health challenges. Quantitative

prediction of either the re-emergence of a known disease or potential for global

spread of a novel disease can help optimize public health responses and resource

allocation, but these events are usually analyzed in retrospect. In this disser-

tation, I developed quantitative frameworks that can be used in real-time for

predicting disease emergence risk. In Chapter 2, I identified a seasonal trend

to pandemic influenza emergence events, and proposed a hypothesis to ex-

plain the seasonal patterns and predict pandemic emergence risk for seasonal

flu data. In Chapter 3, I developed a framework to both predict the number

viii



of imported Zika cases into a region, and subsequently assist public health

decision-making during an uncertain outbreak. Finally, in Chapter 4, I devel-

oped a method that can be used to update regional transmission risk estimates

of a novel disease before transmission occurs. Altogether, the results presented

in this dissertation suggest that statistical modeling can be an important tool

to assist real-time public health predictions and responses.
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Chapter 1: Introduction

Scientific and medical advances have greatly improved our ability to

prevent and treat infectious diseases, but as of the year 2000, they still ac-

count for four of the top ten causes of mortality globally [187]. While malaria,

Human Immunodeficiency Virus (HIV), and respiratory diseases are the largest

continual threats globally, the World Health Organization (WHO) has priori-

tized diseases preparing for the next major new global epidemic, including a

”Disease X” for currently unknown diseases [189]. Upon emergence in humans,

public health officials will be forced to estimate the potential for a disease to

spread locally and globally with little to no historical data to draw upon. For

example, when the Zika virus emerged in the Americas, early estimates sug-

gested that almost half of the United States might be at risk for transmission

[1, 24]. However, even with over 5,000 imported cases, there have only been

229 locally acquired cases and these have been spatially limited to previously

known hot spots in southern Texas and Florida (as of March 30, 2018). Had

early predictions been more accurate, health officials could have properly al-

located resources and the public could have planned travel accordingly.

Predicting novel emergences is inherently difficult, but statistical mod-

eling can provide a quantitative framework to encapsulate potential sources of

uncertainty and provide probabilistic forecasts to assist both public health pre-
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paredness and response. In this dissertation I present three examples in which

these methods can be used to predict disease emergence, quantify uncertainty,

and provide insights for public health decision making.

In chapter 2, I attempt to better understand the risk for pandemic

influenza emergence events. In looking back at historic pandemic emergence

events, I uncovered an unexplained seasonal emergence trend: the six pan-

demics dating back to 1889 have all emerged in the spring or summer months.

This was surprising, as influenza is normally thought of as a winter disease. I

developed a mathematical model describing competition between seasonal and

pandemic flu strains, and found close alignment between the model predictions

and the actual historic pandemic emergence timing. Our model also made an

interesting prediction concerning pandemic wave dynamics, which aligns well

with many historical records. If our hypothesis holds, then public health offi-

cials will be better able to allocate surveillance resources, and anticipate and

respond to emerging pandemics.

Chapter 3 lays a framework for how statistical models can directly as-

sist public health decision-making in the face of an uncertain but growing

epidemic. The framework was motivated by the emerging Zika epidemic in

the Americas, where public health officials in the United States knew there

would be many imported cases, but didn’t know where and when to expect

those cases. Furthermore, Zika had a notoriously low reporting rate [46, 50],

meaning the detection of a single locally acquired case could indicate a single

transmission event or a growing epidemic. The framework we developed pre-
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dicted where and when importations would arrive in Texas in 2016, identified

the Houston metropolitan region and the lower Rio Grande Valley as the most

at risk regions for Zika in Texas, and provided a quantitative means for public

health officials to develop county-specific triggers - guidelines for the number

of detected cases needed before enacting public health interventions.

In carrying out the work in Chapter 3, I found that current methods for

estimating transmission risk of vector-borne diseases are inadequate for public

health decision-making. Predictions for county transmission risk suggested a

wide-range of expected outbreak scenarios, from limited local transmission to

full-blown epidemics. However, I discovered that there was information con-

tained within the lack of transmission from the hundreds of importations that

were found across Texas, and in Chapter 4 I developed a method to down-

grade previous transmission risk estimates based on the presence or absence of

transmission from imported cases. Our new transmission risk estimates sug-

gest that no county is expected to be at risk for a Zika epidemic, and correctly

predict the number of local transmission events detected in Texas in 2017. Our

method will also work for future emerging diseases, as it allows one to update

transmission risk estimates in real-time in the midst of an emerging epidemic.
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Chapter 2: Seasonality in risk of pandemic

influenza emergence

2.1 Abstract

Influenza pandemics can emerge unexpectedly and wreak global devas-

tation. However, each of the six pandemics since 1889 emerged in the Northern

Hemisphere just after the flu season, suggesting that pandemic timing may be

predictable. Using a stochastic model fit to seasonal flu surveillance data from

the United States, we find that seasonal flu leaves a transient wake of het-

erosubtypic immunity that impedes the emergence of novel flu viruses. This

refractory period provides a simple explanation for not only the spring-summer

timing of historical pandemics, but also early increases in pandemic severity

and multiple waves of transmission. Thus, pandemic risk may be seasonal and

predictable, with the accuracy of pre-pandemic and real-time risk assessments

hinging on reliable seasonal influenza surveillance and precise estimates of the

breadth and duration of heterosubtypic immunity.

2.2 Introduction

Influenza pandemics have emerged regularly throughout the 20th and

21st centuries, resulting in significant morbidity and mortality [92]. In prepa-

ration for future pandemics, public health agencies have enacted measures
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to expedite pandemic vaccine development [193]. However, the manufactur-

ing and distribution process is still expected to take several months, as oc-

curred following the initial identification of the 2009 H1N1 pandemic virus

[31, 43, 63, 99, 193]. In the interim, the primary pandemic control measures

will include prophylaxis and treatment with antiviral medications and social

distancing measures [81, 140, 193]. Given the potential severity of disease and

rapid pace of emergence, advanced warning and early response are imperative.

Thus, public health agencies have established extensive surveillance networks

in humans, livestock, and wild bird populations [56, 153, 188]. While these sys-

tems are designed to identify potential pandemic threats as infections arise, re-

searchers have also conducted mutatagenesis experiments to identify upstream

evolutionary risks, that is, potential pathways toward human infectivity and

virulence [76, 82]. However, the utility of such ”gain-of-function” experiments

has been disputed, particularly given the risks associated with handling highly

virulent influenza viruses [109].

While public health agencies cannot yet anticipate the timing and loca-

tion of the next pandemic, past pandemics may provide insight into spatiotem-

poral trends in risk. All recent pandemics emerged in the Northern Hemisphere

in the spring and summer months (Fig 2.1): March (1918), April (1957, 2009),

May (1889, 1977), and July (1968), though the 1977 pandemic virus was highly

similar to a previously circulating virus, and thus thought to have emerged via

accidental release from a laboratory [130, 152]. The 1889, 1977 and 1968 pan-

demics produced single epidemic waves, while the 1918, 1957, and 2009 pan-
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demics spread in two waves–a relatively short spring-summer wave followed

by a more extensive fall wave [2, 3, 17, 18, 34, 37, 42, 87, 144, 168]. These pan-

demics also varied in severity, as measured by case fatality rates, with 1918

far more severe than the others [86, 172].
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Figure 2.1: Historical pandemics emerged at the tail-end of flu seasons. Gray
curves show the 1995-2015 flu seasons in the US, excluding the 2009 H1N1 pan-
demic, as estimated by the CDC’s ILINet surveillance system [190]. Vertical
dashed lines indicate emergence week of historical pandemics in their source
populations, defined as the first reported outbreak of severe influenza preced-
ing the initial pandemic wave. These estimates were obtained from: 1889
[144], 1918 [87, 168], 1957 [2, 3], 1968 [34, 42], and 1977 [17]. To be consistent,
we date the emergence of the 2009 pandemic according to the first significant
outbreak preceding the initial wave, rather than the earlier outbreaks in rural
Mexico that were identified only in retrospect [30].

The spring and summer emergence of the six recent pandemics seems

more than just a coincidence (Multinomial test; p < 0.05), but the sample

is quite small and derived from imperfect historical data. If, indeed, pan-
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demic risk is seasonal, there are several plausible drivers. Two factors might

favor pandemic emergence during the typical flu season. First, the socio-

environmental conditions thought to promote seasonal influenza transmission

(e.g., humidity and school calendar) might also favor pandemic transmission

during the winter months [116, 159, 160]. Second, pandemic emergence is of-

ten preceded by viral reassortment in hosts co-infected by a seasonal influenza

virus and a novel virus, which should become more likely as the prevalence

of seasonal flu increases [164, 165, 195]. On the other hand, transient cross-

immunity from seasonal influenza infections may impede infection by novel

viruses during the flu season. Together, these counterbalancing factors may

produce a tight and predictable window for pandemic emergence.

Viruses of a common subtype (e.g. H3N2) are known to compete

via homosubtypic immunity, producing stereotypical single branch influenza

phylogenies [15, 16, 94, 95, 200]. However, the extent and mechanisms of com-

petition among viruses of differing subtypes (e.g. a resident seasonal virus

and a novel pandemic virus) via heterosubtypic immunity are not fully un-

derstood [57, 67, 68, 98, 106, 133, 157, 195]. A first childhood influenza infec-

tion may provide lifelong heterosubtypic immunity against subtypes within

the same phylogenetic group (Group 1 includes H1, H2, and H5; Group 2 in-

cludes H3 and H7) [52, 67, 95, 104, 126, 145, 195]. In addition, any childhood or

adulthood influenza infection may provide temporary, generalized heterosub-

typic protection against other subtypes, lasting from a week to several months

[57, 74, 89, 100, 101, 106]. This is perhaps mediated by cells surviving influenza
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infection that exhibit an increased antiviral response and naturally turnover

within a short period of time [74]. Immunity may not fully prevent infection,

but individuals infected within this period experience reduced viral shedding,

disease severity, and infection durations, likely reducing subsequent spread of

the disease [100, 106, 133, 134].

Heterosubtypic immunity among influenza viruses would naturally lead

to competition between subtypes, with the strength of the competition de-

termined by the magnitude and duration of the immune response. Even if

heterosubtypic immunity were short-lived, seasonal influenza may temporarily

impede the emergence novel influenza subtypes. If a pandemic virus manages

to emerge during this so-called refractory period, it would likely start slow and

accelerate as residual immunity wanes.

Here, we characterize the impact of seasonal influenza on both the like-

lihood and magnitude of pandemic emergence events, mediated by transient

heterosubtypic immunity following infection, and then integrate environmental

constraints on flu transmission to estimate the seasonality of pandemic emer-

gence risk. We fit two mathematical models to historical influenza data–one

that assumes a homogeneous population and another that captures realistic

heterogeneity in contact patterns–and simulate the introduction of novel in-

fluenza virus throughout the influenza season. We focus our analysis on the

2008-2009 seasonal epidemic, since it directly preceded the 2009 pandemic;

for comparison, we also analyzed the larger 2003-2004 season (Figs 2.9, 2.10,

and 2.11). As expected, the risk of pandemic emergence declines in the wake
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of seasonal influenza, as does the effective reproduction number (early trans-

mission rate) of any emerging pandemic. The seasonality of pandemic risk

depends critically on the duration of immunity and the structure of the host

population.

2.3 Methods

We developed a stochastic two-strain influenza transmission model that

incorporates contact network structure, heterosubtypic immunity, and new

estimates of the seasonal flu reproduction number to investigate the dynamics

of pandemic emergence risk. We simulated thousands of novel pandemic virus

introductions to estimate the changing probability of pandemic emergence and

the Reff upon emergence, as the flu seasons unfold.

2.3.1 Two-strain influenza transmission model

We included short-term heterosubtypic immunity using a two-strain

SEIPR (Susceptible-Exposed-Infectious-Protected-Recovered) network model

similar to [150] (Fig 2.6). All individuals are initially susceptible to both sea-

sonal and pandemic influenza. Upon infection with one strain, individuals

progress through the Exposed and Infectious classes; upon recovery, they en-

ter a short period of complete protection from infection by the other strain,

after which they regain full susceptibility to that strain. Our modeling frame-

work does not allow simultaneous infection (co-infection) by both subtypes, as

co-infection is thought to be relatively infrequent during concurrent epidemics
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[167]. Close sequential infections can occur in the model, as some individu-

als transition through the protected class almost immediately (Fig 2.7). We

modeled single influenza seasons, and thus assumed that recovered individuals

are fully and permanently immune to their infecting strain, that there are no

births or deaths, and that the network structure does not change over the

course of a single simulation.

Infectious nodes infect susceptible neighbors at a per contact rate of

βi, where i ∈ {seasonal, pandemic} indicates strain. We estimate βseasonal

by fitting a seasonal transmission model to recent flu season data (see sec-

tion 2.3.3), and consider three transmission rate scenarios for the pandemic

virus (1) equal transmissibility (βpandemic = βseasonal), (2) lower transmissibility

(βpandemic < βseasonal), and (3) higher transmissibility (βpandemic > βseasonal).

We assume that durations of the exposed, infectious, and recovered pe-

riods are exponentially distributed. Upon infection by either strain, individuals

instantaneously enter the Exposed class, then become infectious stochastically,

at rate η = 1
2.26

days−1, recover from infection at rate γ = 1
3.38

days−1, and leave

the heterosubtypic immune period at rate α = 1
42

days−1, based on published

estimates [74, 180]. We considered a range of heterosubtypic immune periods

(Fig 2.8), and herein report results based on a 42-day duration.

Adding Seasonal Forcing

We implemented seasonal forcing through a traditional humidity-forced

influenza model estimating R0 through time (R0(t)) [197]:
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R0(t) = exp(−180q(t) + ln(R0max −R0min)) +R0min

Where q(t) is the specific humidity at time t. We set R0min = 0.8, as

it is the lower bound estimate from [197], and solve for R0max through model

fitting. We used equation 2.3 to convert between R0 and β, obtaining β(t)

for model fitting and simulation purposes. We used the daily average specific

humidity for the United States from 2000-2016 available from NOAA [136].

2.3.2 Simulation implementation

We simulated two-strain influenza epidemics using a stochastic Gillespie

next-reaction algorithm built from EpiFire, a C++ network epidemic simu-

lation library [64, 80]. We generated random contact networks with specified

degree distributions using a configuration model algorithm [80]. For purposes

of comparison, we assume that the homogeneous and empirical networks share

the same mean degree of 〈k〉, with all nodes in the homogeneous network hav-

ing degree exactly equal to 〈k〉 and the degrees in the empirical network ran-

domly assigned according to an exponential distribution with rate 1
〈k〉 . Based

on published estimates for a large urban network, we assume 〈k〉 = 16 [13].

For each scenario—combination of contact network, pandemic intro-

duction time, βpandemic, and immune period α—we ran 5,000 simulations. Each

was seeded by infecting five randomly chosen individuals with the seasonal

virus; at the designated introduction time, a single randomly chosen suscepti-

ble individual was infected by the pandemic virus. We terminated the simula-
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tions once no individuals remained Exposed or Infectious. For each simulation

we tracked the number of nodes in each class (Fig 2.6) and the average excess

degree in the susceptible portion of the network, which is defined as follows.

Consider only nodes currently susceptible to pandemic infection; call edges

connecting such nodes susceptible edges and the number of such edges ema-

nating from a susceptible node, the susceptible degree of that node. Imagine

choosing a random susceptible edge and following it to one of its nodes. The

average excess degree is the expected number of susceptible edges emanating

from that susceptible node (other than the one along which we arrived), and is

given by
〈k2susceptible〉−〈ksusceptible〉

〈ksusceptible〉
, where 〈ksusceptible〉 and 〈k2

susceptible〉 are the aver-

age susceptible degree and average squared susceptible degree in the network.

Simulation source code can be accessed at https://github.com/sjfox/EpiFire.

2.3.3 Data and model fitting

To estimate the seasonal flu transmission rate, we fit a simple deter-

ministic, network-based, ordinary differential equation (ODE) SEIR model of

seasonal flu transmission to national influenza data from the United States.

We chose 2008-2009 as it preceded the 2009 pandemic and 2003-2004 as a

representative large season [190], and specifically analyzed weeks 1-15 of 2009

and week 45 of 2003 through week 3 of 2004. We estimated seasonal influenza

incidence (denoted ILI+) throughout these periods by multiplying the CDC’s

ILINet estimates of influenza activity by WHO public health lab estimates of

percent positive flu tests [190], as suggested by [66].
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We implemented the Volz-Miller edge-based compartmental ODE model

[26, 122, 185], which is given by following equations:

S(t) = ψ(θ(t))

E(t) = 1− S(t)− I(t)−R(t)

İ(t) = ηE(t)− γI(t)

Ṙ(t) = γI(t)

φ̇I = η

[
θ − φS(0)

ψ′(θ)

ψ′(1)
− γ(1− θ)

β
− φR(0)

]
−(γ + β + η)φI

θ̇ = −βφI

(2.1)

The system can be understood by considering a test individual, u, which

is a random individual in the network chosen at time, t = 0. θ is the overall

probability that a given contact of u has not transmitted to u, and φS, φE,

φI , and φR are the probabilities that the contact has not transmitted to u

and is currently susceptible, exposed, infectious, or recovered, respectively. S,

E, I, and R denote the proportion of the population in each state, and the

parameters β, η, and γ correspond to the per contact rate of transmission, the

rate of becoming infectious upon exposure, and the recovery rate, respectively.

P (k) describes the degree distribution and tells us the probability a random

individual has degree k in the network. It follows that the average degree

is given by 〈k〉 =
∑

k kP (k). S(k, 0) is the probability a random individual

of degree k is initially susceptible, which leads to the probability generating

function describing the proportion of susceptible individuals in the population
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(ψ) as, ψ(x) =
∑

k S(k, 0)P (k)xk, where x is the probability a given contact

of u has not transmitted to u.

We match the parameters in this model to our stochastic two-strain

model, including the disease progression parameters (γ and η), network struc-

tures and the initial introduction of five infections in a population of 10,000

(that is, I(0) = φI(0) = 5
10000

, φS(0) = 1 − φI(0), R = φR(0) = φE(0) = 0,

θ(0) = 1, and φI = φI(0)). We solved the system of equations numerically

using the deSolve package in R [146, 166].

To estimate both the per contact transmission rate, βseasonal, and time of

epidemic introduction for each network, we minimized the sum of the squared

errors between the 2008-2009 ILI+ data and the incidence predictions from the

ODE model, using the optim function in R [146]. Given that different network

structures lead to different rates of epidemic growth, the flexible epidemic start

time allows tighter fitting of the models to the seasonal flu incidence data. For

the 2008-2009 season, we estimated the epidemic start date to be November

15th and December 18th, 2008 for the homogeneous and empirical networks,

respectively [146].

2.3.4 Analytic approximations of emergence probability and effec-
tive R0

We derive mean field approximations of the emergence probabilities

and effective R0 using the process outlined in [121], which we outline briefly

here. The generating function for the number of infected nodes in the first

14



generation of an outbreak is given by

f(x) = p0 + p1x+ · · ·+ pjx
j + · · ·

where pj is the probability the index case infects j neighbors. More specifically,

pj =
∞∑
k=j

P (k)

∫ 1

0

Bi(k, j, T )P (T )dT

with Bi(k, j, T ) denoting the probability of j successful outcomes from k Bernoulli

trials with probability of success equal to the transmissibility, T , defined by

the probability distribution P (T ). (The probability distribution for T is de-

fined by the randomly drawn recovery and infectious times in the Gillespie

simulation.) A node of degree k that has just been infected has k− 1 possible

neighbors to infect. The probability that this node infects j neighbors is given

by

qj =
1

〈k〉

∞∑
k=j+1

kP (k)

∫ 1

0

Bi(k − 1, j, T )P (T )dT

Similar to f(x), h(x) =
∑
qjx

j is the generating function for the number of

infections caused by a non-index case, which leads to the equation

h(x) =

∫ 1

0

P (T )

〈k〉

∞∑
k=1

[1 + T (x− 1)]k−1kP (k)dT

Ignoring finite size effects, the generating function for the number of infections

g generations after the initial infection is f(hg−1(x)) where hg−1(x) denotes

composition of h with itself g − 1 times. The extinction probability is the

probability that eventually there are 0 infections limg→∞ f(hg−1(0)). Setting
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x0 = limg→∞ h
g−1(0) we find that the emergence probability in a näıve network

is given by

P = 1− f(x0) (2.2)

It also follows that the basic reproduction number (R0) is given by

R0 = 〈T 〉〈k
2〉 − 〈k〉
〈k〉

(2.3)

as originally shown in [119], where 〈T 〉 is the average transmission probability.

Under our continuous-time constant-rate assumptions, this is 〈T 〉 = β
β+γ

.

2.3.5 Statistical analysis of simulated epidemics

For a given scenario, we restricted our analyses to simulations in which

a seasonal epidemic actually occurred (defined as outbreaks with cumulative

incidence reaching at least 5% of the population). We then estimated the

pandemic emergence probability as the number of pandemic introductions that

progressed into sustained outbreaks (infecting at least 5% of the population)

divided by the number of simulations with seasonal epidemics of that scenario.

We approximated the emergence timing of the pandemic as the first day in

which the daily incidence was ≥ 5 individuals, as this was a good indicator for

the beginning of the exponential growth phase.

Each time a pandemic successfully emerged, we estimated its Reff by fit-

ting the corresponding (empirical or homogeneous) single strain ODE network

model (defined by equations in 2.1) to the simulated pandemic time series.

The procedure is as described in the Data and model fitting section (2.3.3),
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with two alterations: (1) we fix the introduction time to that specified by the

simulation scenario and only estimate the transmission rate, and (2) we fit the

model to the cumulative incidence of the pandemic virus. To then obtain an

R0 estimate, we plugged the estimated pandemic transmission rate and full

degree distribution into equation 2.3.

During the refractory period, immunity in the population increases the

transmissibility necessary for a pandemic to invade the population. We use

equation 2.3 to estimate this changing invasion threshold; we let 〈k2〉 and

〈k〉 reflect the current susceptible portion of the network, set R0 = 1, and

solve for T . For a given time point t and scenario, we calculated T for a

single, prototypical simulation and divided it by the comparable threshold in

a completely susceptible population. Importantly, this analysis assumes that

the network susceptibility is frozen in time at the introduction time, and does

not take into account subsequent epidemic and pandemic dynamics.

2.4 Results

We fit two network models—an empirical model and a homogeneous

model (roughly equivalent to a simple mass action model)—to influenza data

from the 2008-2009 season in the US (Fig 2.2A), and estimated reproduction

numbers (R0) of 1.8 and 1.4, respectively (Analogous results for the larger

2003-2004 flu season are presented in section 2.6). Both estimates are consis-

tent with prior studies [18, 186], and their discrepancy highlights a potential

pitfall of simple epidemiological models. Given the observed heterogeneity in
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human social behavior [13], the mass action models, which assume that all in-

dividuals have identical contact rates, may underestimate epidemic potential.

Using these estimates of R0, we simulate typical seasonal influenza epidemics

and estimate the evolving probability of pandemic emergence. We assume

an average 42-day period of complete heterosubtypic immunity upon recovery

from a seasonal flu infection (Fig 2.7), which corresponds to the waning of

generalized immunity in a human club cell-like line [74] and lies in between

other estimates [57, 106]. We provide a sensitivity analysis with respect to the

duration of immunity in the supplementary information (Fig 2.8).

2.4.1 Pandemic refractory period

Heterosubtypic immunity is expected to reduce pandemic emergence

during the seasonal epidemic, with pandemic emergence probability reaching

a minimum just after the epidemic peak of the flu season and then quickly

rebounding (Fig 2.2B). The length and intensity of this pandemic refractory

period should increase with the duration of heterosubtypic immunity, with

prolonged immunity leading to complete pandemic exclusion (Fig 2.8).

The refractory period also depends on the transmissibility of the pan-

demic virus: the greater the transmission rate, the more readily a pandemic

will emerge with or without immunological interference; the opposite is true

for less transmissible viruses (Fig 2.14). The refractory effect is greater in the

empirical (network) model than in the homogeneous model, suggesting that

mass action assumptions may lead to underestimation of viral interference and
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Figure 2.2: Seasonal epidemics produce a pandemic refractory period. A: Ac-
tual 2008-2009 epidemic curve (solid black line) and 200 stochastic simulations
of seasonal epidemics for each network (green for empirical; purple for homo-
geneous), assuming transmission parameters estimated from 2008-2009 data.
B: The probability of pandemic emergence upon the introduction of a single
infected individual, assuming that the pandemic virus has the same transmis-
sion rate as the seasonal virus. Horizontal dashed lines indicate the emergence
probabilities in a completely susceptible population calculated with Equation
2.2. The pandemic refractory periods (shaded regions) are expected to occur
during and immediately following the seasonal epidemic peak. C: Assuming
that the emerging pandemic has an R0 = 2.5 in a näıve population (dashed
horizontal line), we plot the median (points) and interquartile range of the
measured Reff, for each introduction time and network.
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overestimation of pandemic risk. Assuming that the pandemic virus has the

same intrinsic transmission rate as the seasonal virus, the probability of pan-

demic emergence is reduced by 73% and 62% in the empirical and homogeneous

models, respectively, at the base of the refractory period, relative to compa-

rable introductions in a completely susceptible population. Higher transmis-

sion rates lead to smaller reductions (56% and 19% respectively), while less

transmissible viruses can be almost fully excluded (99% and 84% reductions

respectively) (Fig 2.14). The 2008-2009 influenza season was relatively mild;

larger seasonal flu epidemics produce deeper refractory periods, as illustrated

for the 2003-2004 influenza season (Figs 2.9, 2.10, and 2.11).

2.4.2 Underestimation of pandemic R0

For each simulated pandemic that successfully emerges, we estimate

the effective R0 (Reff) of the virus, the reproduction number of the disease in a

population that is not fully susceptible. Its magnitude depends on the extent of

immunological interference by seasonal flu. Generally, the Reff of the emerging

pandemic virus decreases as the seasonal epidemic progresses towards its peak,

bottoming out slightly before the emergence probability reaches its minimum.

However, this occurs slightly earlier and more precipitously in the empirical

model than in the homogeneous model (Fig 2.2C).

Whether or not a virus emerges depends on its intrinsic infectiousness

and structure of the susceptible portion of the population. During the re-

fractory period, the susceptible population is diminished, both in number and

20



connectivity. At the peak of the refractory period in the empirical network, we

estimate that a introduced virus must be 1.16 times more infectious (transmis-

sible) to emerge, relative to one entering a completely susceptible population.

If the seasonal epidemics preceding the 1918 and 2009 pandemics were sim-

ilar in timing and magnitude to our simulated epidemics, then we estimate

that their intrinsic R0’s would have been 1.08-1.20 and 1.05-1.13 times larger,

respectively, than their Reff’s as the first waves emerged.

2.4.3 Contact networks determine pandemic vulnerability

The different levels of pandemic risk observed in our two models stem

from their underlying contact networks. To illustrate this, we use nodes and

edges to represent individuals and contacts between individuals, respectively.

The degree of a node is defined as the number of edges connecting it to other

nodes. The homogeneous model assumes that all individuals have the same

number of contacts; the empirical model assumes realistic variation in degree

[13]. We constrained the two models to have the same total number of nodes

and empirically-derived mean degree, and, consequently, the same total num-

ber of edges.

The susceptible portion of a network is the subset of individuals that

are currently susceptible to pandemic infection and any connections among

them (Fig 2.3, orange circles and lines). (This is also known as the residual

network [14].) The susceptible degree of a susceptible node is the number

of contacts it has with other susceptibles. Upon infection by seasonal flu,
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individuals and their coincident edges leave the susceptible network, returning

only when their heterospecific influenza immunity wanes. This dynamic wake

of immunity depends on the underlying network structure and, importantly,

determines the population’s vulnerability to pandemic emergence (Fig 3, grey

nodes and edges).
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Figure 2.3: The evolving structure of the susceptible population as the flu
season unfolds. For purposes of illustration, we present caricatures of each
model through time, assuming that the average degree is 〈k〉 = 6 and that
we repeatedly observe the same subset of each population. Orange represents
individuals susceptible to infection by the pandemic virus and the contacts
between them; gray indicates individuals who are currently or recently infected
by the seasonal virus, and thus immune to pandemic infection.

As a disease spreads, the chance of a node becoming infected will de-

pend on its degree. The more contacts a node has, the higher its exposure

risk. In a homogeneous network, chains of transmission progress randomly;

in a heterogeneous network, outbreaks hit the most connected nodes earliest

and hardest. Consider two emerging outbreaks–one in the empirical network
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and another in the homogeneous network–that have reached the same cumula-

tive incidence. Although the susceptible networks will have identical numbers

of susceptible nodes, the empirical susceptible network will be much sparser

(fewer edges) than the homogeneous counterpart, and will thus be more re-

fractory to pandemic invasion (Fig 2.3, middle panels).

In a randomly selected pair of simulations, the homogeneous network

decays to an susceptible network consisting of 71% of its original nodes and

43% of its original edges, before rebounding (Fig 2.4A). In contrast, the em-

pirical network maintains more nodes (78%) and fewer edges (36%) at its

most refractory moment, with the high degree nodes bearing the brunt of the

seasonal epidemic (Fig 2.4B and C).

2.4.4 Seasonal pandemic emergence timing

The above analyses assume that pandemic emergence is constrained

solely by heterosubtypic immunity, and do not consider the socio-environmental

factors that shape seasonal flu dynamics. When we incorporate humidity-

forced seasonality into the model, we find that pandemics are most likely to

emerge soon after the seasonal epidemic peak (Fig 2.5), with the timing more

constrained to the spring and early summer in the empirical network than in

the homogeneous network. For both models, the most probable week of emer-

gence falls within one week of the actual 2009 pandemic emergence event. To

assess the consistency of our models with observed pandemics (five emerged in

the spring and one emerged in the summer), we conduct multinomial tests of
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Figure 2.4: Seasonal flu disconnects the susceptible portion of a population. A:
For a typical seasonal epidemic simulation, the number of individuals suscep-
tible to infection by a pandemic virus and the number of edges connecting two
such individuals are plotted for each network (green for empirical; purple for
homogeneous), with each point representing a single time point over the course
of the epidemic. Arrows indicate temporal progression. B: The distribution
of degrees (number of contacts) assumed for the empirical model. The homo-
geneous model assumes that all individuals have 16 contacts. C: Snapshot of
the susceptible portion of the empirical network at the base of the refractory
period (at the time point indicated in panel A by the box labeled ’C’). Points
indicate the percent of the nodes that are immune to pandemic infection, across
different levels of connectivity. (We bin degrees by 10; for example, the lowest
bin includes individuals with 1 to 10 contacts). For comparison, the horizontal
dashed line indicates the overall proportion of individuals immunized in the
network at the base of the refractory period.

the model-derived probabilities of emergence across each of the four seasons.

While the empirical and homogeneous models are consistent with recent his-

tory (multinomial exact test p = 0.53 and p = 0.35, respectively), the simple
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null model in which emergence risk is assumed to be constant throughout the

year is not (p < 0.05). Although all historic pandemics seem consistent with

the model, we note that these estimates are based on the 2008-2009 flu sea-

son and thus strictly pertain only to the 2009 pandemic. We speculate that

projections from the seasons preceding each of the other historical pandemics

would be similar and perhaps even better aligned with the emergence of the

corresponding pandemic.

Earlier seasonal epidemics give rise to earlier risks of pandemic emer-

gence (Fig 2.11), and extending the period of pandemic introduction from just

the flu season to the entire year reduces the spring/summer emergence prob-

ability and renders the model predictions inconsistent with historic pandemic

timing (Fig 2.12 (p < 0.05) and Fig 2.13 (p < 0.05)).

2.5 Discussion

The coincidental timing of recent pandemics may reflect multiple con-

straints, including environmental and behavioral factors that shape influenza’s

transmissibility (e.g. humidity, school calendar, etc.), reassortment events me-

diated by co-infection, and immune-mediated competition between pandemic

and established viruses [57, 116, 156, 159, 160]. On the one hand, we would

expect pandemics to emerge during the flu season, when socio-environmental

conditions are conducive to influenza transmission and co-infections are likely;

on the other hand, those would be the months of greatest competitive inter-

ference. These competing effects suggest that the risk of pandemic emergence
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Figure 2.5: Seasonality further constrains pandemic emergence timing. Proba-
bility density for pandemic emergence timing for pandemics that emerge during
the seasonal influenza epidemic for the homogeneous (purple) and empirical
(green) networks. Pandemic emergence timing, the time in which the simu-
lated pandemic begins rapid spread, is defined as the day the pandemic strain
incidence reaches five or more cases. Results are for a pandemic emerging
during the 2008-2009 flu season with the same transmission rate as the sea-
sonal epidemic. Vertical lines indicate the timing of historic pandemics, with
the solid line indicating the timing of the 2009 pandemic and dashed lines
indicating timing of others.

may be greatest at the tail of the flu season, when conditions are still fa-

vorable and co-infections are possible, but competition is waning. Consider

the following scenario. A novel virus is produced by co-infection mediated

reassortment during the heart of the influenza season. It initially stutters,

hindered by widespread heterosubtypic immunity, but does not completely

disappear. With each new infection, emergence is possible and increasingly

probable, as heterosubtypic immunity dissipates. This is consistent with the
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timing of all recent pandemics (Fig 2.1), most of which (all but 1977) were

caused by livestock-human reassortment viruses [155, 156, 165, 173, 195].

Pandemic emergence requires both the evolution of novel pandemic

subtypes capable of human-to-human transmission and the ability of such

new viruses to spread once they have appeared in humans. Our study focuses

exclusively on the latter process, the success of new human-transmissible in-

fluenza viruses facing dynamic short-term heterosubtypic immunity resulting

from seasonal influenza. Specifically, we have modeled a scenario in which

potentially pandemic viruses appear (starting with a single infection) with

constant probability during or following a typical Northern Hemisphere flu sea-

son. Individuals infected by seasonal flu are assumed to enjoy a short period

of immunity towards other influenza subtypes, including the novel pandemic

virus. Under reasonable assumptions regarding the duration of heterosubtypic

immunity and human contact patterns, we characterize the changing risk of

pandemic emergence throughout the flu season and find a considerable refrac-

tory period that is consistent with historical pandemic emergence events in

the spring and summer months.

The rate of pandemic spread will depend on the time of emergence.

Pandemics emerging during the seasonal refractory period will initially grow

slowly and accelerate as residual immunity dissipates. Thus, the threat and

pace of global expansion may far exceed projections based on early estimates

of the viral reproduction number (R0). In our model based on the 2008-2009

flu season, we estimate that, at the peak of the refractory period, naturally
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occurring immunity will reduce the probability of pandemic emergence 73%

and reduce the reproduction number of a successfully emerging virus by 30%.

We assumed that all recovered individuals experience full protection during

their short period of heterosubtypic immunity. If, for example, heterosubtypic

immunity is incomplete or fails to prevent subsequent spread, the refractory

effect may be diminished. Nonetheless, the qualitative results, including the

timing of the refractory period and differences between the two network models

should still hold.

Our comparison between homogeneous and empirical contact networks

suggests that, while the refractory effect is robust, estimation of pandemic

risk prior to and during emergence events will be highly sensitive to statistical

assumptions regarding population structure. Several other studies have exam-

ined the impact of network structure on herd immunity following an epidemic

or vaccination campaign, and similarly found that contact heterogeneity am-

plifies the refractory effect [14, 59, 103, 132]. Conventional models, that ignore

social heterogeneity, are likely to overestimate both the emergence risk during

the refractory period and the early transmission rate (R0) of an emerging pan-

demic virus. Given the simplicity and growing flexibility of network methods,

this further supports their scientific and public health utility [123, 124, 185].

Pandemics often emerge in multiple waves [107], including a herald

wave in the spring or summer and a secondary wave the following fall or winter.

These wave patterns are well documented for the 1918, 1957, and 2009 pan-

demics [11, 36–38, 48, 62, 131, 139]. Our results provide potential insight into
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this phenomenon. The asynchronous forces of heterosubtypic herd immunity

and suppressive off-season conditions may constrain pandemic emergence to

the immediate wake of the flu season, exactly when lingering population-wide

immunity is expected to dampen the initial wave of pandemic transmission. In

the months following, the limited herald wave runs its course, residual seasonal

immunity continues to decline, and socio-environmental conditions slowly be-

come more conducive to flu transmission, thereby setting the stage for a major

winter pandemic wave. Early estimates of pandemic R0 that do not properly

account for underlying population immunity may substantially underestimate

the magnitude of the second (fall or winter) pandemic wave, as the Reff at the

time of emergence may be considerably lower than R0 in a fully susceptible

population. Our analysis suggests that a pandemic emerging between March

and June may produce a secondary wave with an Reff that is 4-28% larger

than the initial Reff, depending on the duration of heterosubtypic immunity,

the timing of emergence, and the baseline transmissibility of the virus. Recent

analyses of the 1918 and 2009 pandemic waves found that the initial waves

were 3.6% and 6.5% less transmissible than the secondary wave, supporting

our conclusions [197, 198]. This finding is broadly consistent with published

estimates for the reproduction numbers of primary and secondary pandemic

waves, with the exception of the 1918 pandemic in Denmark [11, 18]. This

discrepancy may be attributable to poor data or stem from local differences

in the preceding flu season or population structure.

Most historic pandemic viruses were likely created by recent livestock-
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human reassortment events [164, 165, 195], with two possible exceptions. The

1977 pandemic was caused by a lab escapee, and the 2009 pandemic evolved

from a human-derived variant that circulated in swine for years before the

precipitating reassortment event, which may have occurred in livestock sev-

eral months or years prior to its 2009 emergence [165]. We have assumed

that pandemic introductions will be constrained to the flu season for two rea-

sons (Fig 2.5). First, the chance of a livestock-human reassortment event will

depend on the prevalence of flu in both humans and livestock, and thus in-

crease as seasonal flu gains momentum. Second, flu prevalence in livestock is

thought to mirror seasonal flu in humans [45, 115]. Thus, even viruses emerg-

ing directly from livestock, without a precipitating human reassortment event,

may be constrained to the same months.

When we remove this assumption and introduce pandemic viruses through-

out the year, the plausible emergence times start earlier in the fall, before

the seasonal flu epidemic takes hold (Fig 2.12 and Fig 2.13). This broader

emergence scenario is inconsistent with historical pandemics, given that none

emerged in the fall just prior to a seasonal epidemic. While this does not prove

our seasonality assumptions, it suggests that there may be factors restricting

emergence events in the fall, such as the ones we have hypothesized, or that

fall emergence simply has not occurred, by chance alone, across the limited

number of recent pandemics. Our study was not designed to detect such sea-

sonal constraints on pandemic emergence (rather we assume them and analyze

the consequences), but leaves this as an interesting open question for future
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work. Interestingly, the broader emergence scenario may apply to the 1977

pandemic, which, unlike the other recent pandemics, did not emerge directly

from influenza circulating in livestocks or humans, as well as to risks associated

with future gain-of-function avian influenza experiments.

This approach can be readily applied to other retrospective or predic-

tive global risk assessments, using seasonal flu surveillance data at the relevant

geographic and temporal scale [90, 170]. Our results suggest that Southern

hemisphere pandemic risk will be greatest in September and October follow-

ing their respective flu season [60]. Tropical and subtropical regions, which

have low levels of sporadic flu transmission, seasonal patterns, or bimodal sea-

sonality should experience refractory periods in the wakes of their respective

epidemics [10, 161, 170, 171, 184]. Estimating spatiotemporal emergence risks

will require data-driven models that consider local flu seasonality and contact

networks, both of which can vary greatly with climatic zone and human de-

velopmental index. Such analyses can support pandemic planning, including

the targeting of surveillance systems for detecting emergence events around

the globe [108, 153].

Our model makes several assumptions about the transmissibility of

both seasonal and pandemic influenza viruses. We assume that the intrin-

sic transmission rates depend on humidity (Fig 2.5), and do not explicitly

consider other environmental and sociological factors that may be important

(e.g., school calendar) [83, 116]. Since we estimated pandemic emergence lo-

cations and dates based on reports of major outbreaks, our estimates may be
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biased towards regions with high reporting rates or population densities. Our

study is further limited by the small number of pandemic emergence event;

with five natural pandemics emerging in subtropical and temperate climates,

we lack the power to fit high resolution predictive model. Instead, we used the

North American 2008-2009 influenza season as a prototypical flu season for ex-

ploring seasonal and immunological drivers of pandemic risk. The flu seasons

preceding the other 20th century pandemics likely varied in both timing and

magnitude. Additional historical data from those pandemics and their preced-

ing seasons might enable more reliable spatiotemporal estimates of pandemic

emergence risk and the duration of cross-immunity.

Recent pandemics exhibited similar timing and geographic origins, hav-

ing all emerged in the Northern Hemisphere. Why this is so, and whether

it suggests higher risk of future pandemic emergence in the Northern Hemi-

sphere is yet unknown. Molecular analyses suggest that seasonal flu diversity

is seeded in the Northern Hemisphere (Southeast Asia) [16]. Furthermore, hu-

man and livestock populations tend to have higher densities in the Northern

Hemisphere than the Southern Hemisphere [111, 149]. These two factors could

suggest that the Northern Hemisphere may be a likely source for future pan-

demics. If influenza refractory periods are estimated for other climatic zones,

as we have done here for the Northern Hemisphere, we may better understand

the common origins of past pandemics and gain actionable insights into global

dynamics of pandemic risk.

We also focus exclusively on transient heterosubtypic immunity imme-
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diately following seasonal flu infection, which is only one of many forms of

immunological heterogeneity that may constrain pandemic emergence. For

example, the age-specific rate of severe and deadly infections of novel H7N9

and H5N1 in China reflect long-lasting heterosubtypic immunity stemming

from early childhood influenza infections [67]. Our model does not consider

such long-term heterogeneity in susceptibility, nor does it consider intrinsic

heterogeneity in heterosubtypic immunity following infection (e.g., variation

in severity, transmissibility, or infectious period) [133, 134]. Incorporating

historically-acquired immunity, individual heterogeneity, and future advances

in our understanding of transient heterosubtypic immunity should improve

pandemic risk assessments.

Our study is intended as a proof of concept. Using simple, conservative

models of influenza transmission, cross-immunity, and seasonality, we lend

support to a parsimonious explanation for the historical spring-summer timing

of pandemic emergence and demonstrate that pandemic risk may be both

seasonal and predictable. However, there is much we still cannot predict, such

as when and where reassorted viruses capable of human-to-human transmission

will arise. Recent human outbreaks of H7N9 and H5N1 influenza during the

winter and spring months suggest that other factors may inhibit spread, such

as intrinsic transmissibility and the underlying immunological landscape [51,

67, 97]. Although we do not address the biogeographic risks of novel viruses

first arising through reassortment events in humans or livestock, laboratory

experimentation, or other mechanisms, our study provides insight into the
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subsequent risk of emergence and a method for estimating such risk from

seasonal flu surveillance data. As we gain a better understanding of breadth

and duration of heterosubtypic immunity, both in general and between specific

combinations of influenza viruses, our insights and methodology can be applied

to improve global surveillance, detection, planning and intervention efforts for

pandemic influenza.

2.6 Supplemental Information
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Figure 2.6: Short-term heterosubtypic immunity model description for a sin-
gle individual (node) in the network. Solid arrows indicate the individual’s
transitions through epidemiological states, and dashed arrows indicate neigh-
bor influence on the individual’s transitions, with nIXY

indicating the number
of the individual’s neighbors who are currently in state IXY . Symbols labeling
arrows indicate the transition rates between states (solid arrows), or the rate
at which individuals transmit to susceptible individuals (dashed arrows). For
example, an individual in state S21 has been infected and recovered from dis-
ease 2 and is currently susceptible to disease 1, so this individual will become
exposed to disease 1 at rate (nI01 +nI21)β1, where β1 is the per contact rate of
transmission for disease 1, and nI01 + nI21 is the number of its neighbors who
are currently infected with disease 1.
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Figure 2.7: Probability distribution for immune duration. We model the im-
mune duration as an exponentially distributed random variable with rate =
1/42, meaning the most likely immune duration is nearly zero days of immu-
nity, but on average individuals will spend 42 days in the immune state. As
the influenza epidemics we model last 100 days or more, the immune dura-
tion allows for an individual to experience serial infections of the seasonal and
pandemic strain.
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Figure 2.8: The extent and magnitude of the pandemic refractory period
depends on the duration of cross-immunity. Columns represent the duration
of cross-immunity (α), and the rows represent the two networks considered.
Lines represent the emergence probability of pandemics across the 2008-2009
seasonal influenza epidemic for a variety of pandemic R0s (colors).
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Figure 2.9: Larger seasonal epidemics produce larger pandemic refractory pe-
riods. A: Actual 2003-2004 epidemic curve (solid black line) and 200 stochas-
tic simulations of seasonal epidemics for each network (green for empirical;
purple for homogeneous), assuming transmission parameters estimated from
2003-2004 data. B: The probability of pandemic emergence upon the introduc-
tion of a single infected individual, assuming that the pandemic virus has the
same transmission rate as the seasonal virus. Horizontal dashed lines indicate
the emergence probabilities in a completely susceptible population calculated
with Equation 2.2. C: Underestimation of pandemic R0. Assuming that the
emerging pandemic has an R0 = 3 in a näıve population (dashed horizontal
line), we plot the median (points) and interquartile range of the measured Reff,
for each introduction time and each network.
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Figure 2.10: Seasonal flu disconnects the susceptible portion of a popula-
tion (Large seasonal epidemic). A: For a single (typical) 2003-2004 seasonal
epidemic simulation, the number of individuals susceptible to infection by a
pandemic virus and the number of edges connecting two such individuals are
plotted for each network (green for empirical; purple for homogeneous), with
each point representing a single time point over the course of the epidemic.
Arrows indicate temporal progression. B: The distribution of degrees assumed
for the empirical model. The homogeneous model assumes that all individu-
als have 16 contacts. C Snapshot of the susceptible portion of the empirical
network at the base of the refractory period (at the time point indicated in
panel A by the box labeled ’C’). Points indicate the percent of the nodes that
are immune to pandemic infection, across different levels of connectivity.
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Figure 2.11: Seasonality also constrains pandemic emergence timing for the
2003-2004 season. Probability density for pandemic emergence timing for pan-
demics that emerge during the seasonal influenza epidemic for the homoge-
neous (purple) and empirical (green) networks. Pandemic emergence timing,
the time in which the simulated pandemic begins rapid spread, is defined as
the day the pandemic strain incidence reaches five or more cases. Results
are for a pandemic emerging during the 2003-2004 flu season with the same
transmission rate as the seasonal epidemic. Vertical dashed lines indicate the
timing of historic pandemics.
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Figure 2.12: Pandemic emergence less constrained if pandemics introduced
throughout the year (2008-2009). Probability density for pandemic emergence
timing for pandemics that emerge across the whole year during and follow-
ing the seasonal epidemic for the homogeneous (purple) and empirical (green)
networks. Pandemic emergence timing, the time in which the simulated pan-
demic begins rapid spread, is defined as the day the pandemic strain incidence
reaches five or more cases. Results are for the 2008-2009 flu season with the
same transmission rate as the seasonal epidemic. Vertical lines indicate the
timing of historic pandemics, with the solid line indicating the timing of the
2009 pandemic and dashed lines indicating timing of others.
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Figure 2.13: Pandemic emergence less constrained if pandemics introduced
throughout the year (2003-2004). Probability density for pandemic emergence
timing for pandemics that emerge across the whole year during and follow-
ing the seasonal epidemic for the homogeneous (purple) and empirical (green)
networks. Pandemic emergence timing, the time in which the simulated pan-
demic begins rapid spread, is defined as the day the pandemic strain incidence
reaches five or more cases. Results are for the 2003-2004 flu season with the
same transmission rate as the seasonal epidemic. Vertical dashed lines indicate
the timing of historic pandemics.
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Figure 2.14: Pandemic refractory period reduces as transmissibility increases.
Pandemic emergence probabilities plotted for the 2008-2009 seasonal simula-
tion for a pandemic that is less transmissible than the seasonal strain (Top) and
one that is more transmissible than the seasonal strain (Bottom) on the two
analyzed networks (fill colors). Probability is estimated as the proportion of
introductions that subsequently infected at least 5% of the overall population
out of the 5,000 simulations. Horizontal dashed lines indicate the emergence
probabilities in a completely susceptible population calculated with Equation
2. The pandemic refractory periods (shaded regions) are plotted the same as
in the manuscript. Refractory period is deeper and wider for the less trans-
missible strain, and nearly disappears if the pandemic transmissibility is high
enough.
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Chapter 3: Assessing real-time Zika risk in the

United States

3.1 Abstract

Confirmed local transmission of Zika Virus (ZIKV) in Texas and Florida

have heightened the need for early and accurate indicators of self-sustaining

transmission in high risk areas across the southern United States. Given ZIKVs

low reporting rates and the geographic variability in suitable conditions, a clus-

ter of reported cases may reflect diverse scenarios, ranging from independent

introductions to a self-sustaining local epidemic. We present a quantitative

framework for real-time ZIKV risk assessment that captures uncertainty in

case reporting, importations, and vector-human transmission dynamics. We

assessed county-level risk throughout Texas, as of summer 2016, and found

that importation risk was concentrated in large metropolitan regions, while

sustained ZIKV transmission risk is concentrated in the southeastern coun-

ties including the Houston metropolitan region and the Texas-Mexico border

(where the sole autochthonous cases have occurred in 2016). We found that

counties most likely to detect cases are not necessarily the most likely to ex-

perience epidemics, and used our framework to identify triggers to signal the

start of an epidemic based on a policymakers propensity for risk. This frame-

work can inform the strategic timing and spatial allocation of public health
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resources to combat ZIKV throughout the US, and highlights the need to de-

velop methods to obtain reliable estimates of key epidemiological parameters.

3.2 Introduction

In February 2016, the World Health Organization (WHO) declared

Zika virus (ZIKV) a Public Health Emergency of International Concern [71].

Though the Public Health Emergency has been lifted, ZIKV still poses a great

threat for reemergence in susceptible regions in seasons to come [?]. In the

US, the 268 reported mosquito-borne autochthonous (local) ZIKV cases oc-

curred in Southern Florida and Texas, with the potential range of a primary

ZIKV vector, Aedes aegypti, including over 30 states[1, 61, 177]. Of the 2,487

identified imported ZIKV cases in the US through the end of August, 137 had

occurred in Texas. Given historic small, autochthonous outbreaks (ranging

from 4 - 25 confirmed cases) of another arbovirus vectored by Ae. Aegypti-

dengue (DENV) [175–177], Texas was known to be at risk for autochthonous

arbovirus transmission, and the recent outbreaks have highlighted the need

for increased surveillance and optimized resource allocation in the states and

the rest of the vulnerable regions of the Southern United States.

As additional ZIKV waves are possible in summer 2017, public health

professionals will continue to face considerable uncertainty in gauging the

severity, geographic range of local outbreaks, and appropriate timing of inter-

ventions, given the large fraction of undetected ZIKV cases (asymptomatic)

and economic tradeoffs of disease prevention and response [8, 102, ?, 113]. De-
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pending on the ZIKV symptomatic fraction, reliability and rapidity of di-

agnostics, importation rate, and transmission rate, the detection of five au-

tochthonous cases in a Texas county, for example, may indicate a small chain

of cases from a single importation, a self-limiting outbreak, or a large, hidden

epidemic underway (Fig 3.1). These diverging possibilities have precedents.

In French Polynesia, a handful of ZIKV cases were reported by October 2013;

two months later an estimated 14,000-29,000 individuals had been infected

[102, 113]. By contrast, Anguilla had 17 confirmed cases from late 2015 into

2016 without a subsequent epidemic, despite large ZIKV epidemics in sur-

rounding countries [142]. To address the uncertainty, the CDC issued guide-

lines for state and local agencies; they recommend initiation of public health

responses following local reporting of two non-familial autochthonous ZIKV

cases [32].

Previous risk assessments of ZIKV have provided static a priori assess-

ments based on historical incidence and vector suitability, but they do not

provide dynamic risk assessments as cases accumulate in a region. Here, we

present a framework to support real-time risk assessment, and demonstrate its

application in Texas. Our framework accounts for the uncertainty regarding

ZIKV epidemiology, including importation rates, reporting rates, local vector

populations, and socioeconomic conditions, and can be readily updated as our

understanding of ZIKV evolves. To estimate current and future epidemic risk

from real-time ZIKV case reports, the model incorporates a previously pub-

lished method for estimating local ZIKV transmission risk and a new model
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Figure 3.1: ZIKV emergence scenarios. A ZIKV infection could spark (A) a
self-limiting outbreak or (B) a growing epidemic. Cases are partitioned into
symptomatic (grey) and asymptomatic (black). Arrows indicate new ZIKV
importations by infected travelers and vertical dashed lines indicate case re-
porting events. On the 75th day, these divergent scenarios are almost indis-
tinguishable to public health surveillance, as exactly three cases have been
detected in both. By the 100th day, the outbreak (A) has died out with 21
total infections while the epidemic (B) continues to grow with already 67 total
infections. Each scenario is a single stochastic realization of the model with
R0=1.1, reporting rate of 10%, and introduction rate of 0.1 case/day.

for estimating local importation risk. Across Texas 254 counties, we find that

the estimated risk of a locally sustained ZIKV outbreak rises precipitously

as autochthonous cases accumulate, and that counties at the southern tip of

the Texas-Mexico border and in the Houston Metropolitan Area are at the

highest risk for ZIKV transmission. This statewide variation in risk stems pri-

marily from mosquito suitability and socio-environmental constraints on ZIKV
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transmission rather than heterogeneity in importation rates.

3.3 Methods

Our risk-assessment framework is divided into three sections: (1) county-

level epidemiological estimates of ZIKV importation and relative transmission

rates, (2) county-specific ZIKV outbreak simulations, and (3) ZIKV risk anal-

ysis (Fig 3.5). To demonstrate this approach, we estimate county-level ZIKV

risks throughout the state of Texas for August 2016, given that, by May 2016,

Texas experienced dozens of ZIKV importations without subsequent vector-

borne transmission.

3.3.1 Estimating Importation Rates

Our analysis assumes that any ZIKV outbreaks in Texas originate with

infected travelers returning from active ZIKV regions. To estimate the ZIKV

importation rate for specific counties, we (1) estimated the Texas statewide

importation rate (expected number of imported cases per day) for August

2016, (2) estimated the probability (import risk) that the next Texas import

will arrive in each county, and (3) took the product of the state importation

rate and each county importation probability.

1. During the first quarter of 2016, 27 ZIKV travel-associated cases were

reported in Texas [177], yielding a baseline first quarter estimate of 0.3

imported cases/day throughout Texas. In 2014 and 2015, arbovirus in-

troductions into Texas increased threefold over this same time period,
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perhaps driven by seasonal increases in arbovirus activity in endemic

regions and the approximately 40% increase from quarter 1 to quarter

3 in international travelers to the US [138]. Taking this as a baseline

(lower bound) scenario, we projected a corresponding increase in ZIKV

importations to 0.9 cases/day (statewide) for the third quarter.

2. To build a predictive model for import risk, we fit a probabilistic model

(maximum entropy) [84] of importation risk to 183 DENV, 38 CHIKV,

and 31 ZIKV Texas county-level reported importations from 2002 to 2016

and 10 informative socioeconomic, environmental, and travel variables.

Given the geographic and biological overlap between ZIKV, DENV and

Chikungunya (CHIKV), we used historical DENV and CHIKV impor-

tation data to supplement ZIKV importations in the importation risk

model, while recognizing that future ZIKV importations may be fueled

by large epidemic waves in neighboring regions and summer travel, and

thus far exceed recent DENV and CHIKV importations [129]. Currently,

DENV, CHIKV, and ZIKV importation patterns differ most noticeably

along the Texas-Mexico border. Endemic DENV transmission and spo-

radic CHIKV outbreaks in Mexico historically have spilled over into

neighboring Texas counties. In contrast, ZIKV is not yet as widespread

in Mexico as it is in Central and South America, with less than 10 re-

ported ZIKV importations along the border to date (October 2016). We

included DENV and CHIKV importation data in the model fitting so as

to consider potential future importation pressure from Mexico, as ZIKV
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continues its increasing trend since March 2016 [143]. To find informative

predictors for ZIKV importation risk, we analyzed 72 socio-economic, en-

vironmental, and travel variables, and removed near duplicate variables

and those that contributed least to model performance, based on out-

of-sample cross validation of training and testing sets of data [117, 192],

reducing the original set of 72 variables to 10. We validated our im-

portation model by comparing the predicted distribution of cases across

the state given a total number of imported cases (September 2016) as a

linear predictor of the empirical distribution of cases across counties.

3.3.2 County Transmission Rates (R0)

The risk of ZIKV emergence following an imported case will depend

on the likelihood of mosquito-borne transmission. For emerging diseases like

ZIKV, the public health and research communities initially face considerable

uncertainty in the drivers and rates of transmission, given the lack of field

and experimental studies and epidemiological data, and often derive insights

through analogy to similar diseases. For our case study, we estimated county-

level ZIKV transmission potential by Ae. aegypti using a recently published

model [7], that derives some of its key parameters from DENV data 3.1. The

utility of our framework depends on the validity of such estimates and will

increase as our knowledge of ZIKV improves. However, we expect our results

to be robust to most sources of uncertainty regarding ZIKV and DENV epi-

demiology, as they may influence the absolute but not relative county-level
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risks.

We estimated the ZIKV reproduction number (R0), the average number

of secondary infections caused by a single infectious individual in a fully sus-

ceptible population, for each Texas county following the method described in

Perkins et al [7]. The method calculates R0 using a temperature-dependent for-

mulation of the Ross-Macdonald model, where mosquito mortality rate (µ) and

extrinsic incubation period of ZIKV (n) are temperature dependent functions;

the human-mosquito transmission probability (b = 0.4), number of days of hu-

man infectiousness ( c
r

= 3.5), and the mosquito biting rate (a = 0.67) are held

constant at previously calculated values [4, 7, 19, 22, 33, 128]; and the economic-

modulated mosquito-human contact scaling factor (m) is a function of county

mosquito abundance and GDP data fit to historic ZIKV seroprevalence data

[7]. To account for uncertainty in the temperature-dependent functions (the

extrinsic incubation period (EIP) and mosquito mortality rate) and in the re-

lationship between economic index and the mosquito-to-human contact rate,

Perkins et al. generated functional distributions via 1000 Monte Carlo samples

from the underlying parameter distributions. We assume DENV estimates for

these temperature-dependent functions, since we lack such data for ZIKV and

these Flaviviruses are likely to exhibit similar relationships between temper-

ature and EIP in Ae. Aegypti [19]. We used the resulting distributions to

estimate R0 for each county, based on county estimates for the average Au-

gust temperature, mosquito abundance from Kraemer et al [93], and GDP

[19]. Our R0 estimates were similar to those reported by Perkins et al. [7]
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Parameter Description
Values

Investigated (or
median 95%)

Source

Exposed
compartments

(e)
Number of exposed compartments 6

Fit (See
Section
3.6.1)

Incubation
Rate (ν)

Daily probability of progressing from
one exposed compartment to the next

0.584 [102, 114]

Infectious
compartments

(n)
Number of infectious compartments 3

Fit (See
Section
3.6.1)

Recovery Rate
(δ)

Daily probability of progressing from
one infectious compartment to the

next
0.3041 [102, 114]

Reproduction
Number (R0)

The expected total number of
secondary infections from one
infectious individual in a fully

susceptible population

0− 3.1
County R0

estimates

Daily
Reporting
Rate (η)

The daily probability of an infectious
individual being reported

Daily:
0.011− 0.0224

Overall: 10− 20%
[50]

Daily
Importation
Rate (σ)

The expected number of infectious
ZIKV importations per day

0.0− 1.21

County im-
portation

rate
estimates

Generation
Time

The average length of time between
consecutive exposures GT = e

ν + (1
2)
n
δ

15 (9.5-23.5) days [114]

Table 3.1: Stochastic ZIKV outbreak model parameters. We hold the disease
progression parameters constant across all scenarios, estimate R0 and importa-
tion rate for each individual county, and vary the reporting rate to investigate
its impact on the uncertainty of ZIKV risk assessments.
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with 95% confidence intervals spanning from 0 to 3.1 (Fig 3.6). Given this

uncertainty, and that our primary aim is to demonstrate the risk assessment

framework rather than provide accurate estimates of R0 for Texas, we use

these estimates to estimate relative county-level transmission risks (by scaling

the county R0 estimates from 0 to 1). In each simulation, we assume that a

countys R0 is the product of its relative risk and a chosen maximum R0. For

our case study, we assume a maximum county-level R0 of 1.5 This is consistent

with historical arbovirus activity in Texas (which has never sustained a large

arbovirus epidemic) and demonstrates the particular utility of the approach

in distinguishing outbreaks from epidemics around the epidemic threshold of

R0 = 1.

3.3.3 ZIKV Outbreak Simulation Model

Assuming mosquito-borne transmission as the main driver of epidemic

dynamics, to transmit ZIKV, a mosquito must bite an infected human, the

mosquito must get infected with the virus, and then the infected mosquito

must bite a susceptible human. Rather than explicitly model the full transmis-

sion cycle, we aggregated the two-part cycle of ZIKV transmission (mosquito-

to-human and human-to-mosquito) into a single exposure period where the

individual has been infected by ZIKV, but not yet infectious, and do not ex-

plicitly model mosquitos. For the purposes of this study, we need only ensure

that the model produces a realistic human-to-human generation time of ZIKV

transmission, and the simpler model is more flexible to disease transmission
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pathways. We fit the generation time of the ZIKV model to early ZIKV Epi-

demiological estimates, with further fitting details described in section 3.6.1.

The resultant model thus follows a Susceptible-Exposed-Infectious-Recovered

(SEIR) transmission process stemming from a single ZIKV infection using a

Markov branching process model (Fig 3.7). The temporal evolution of the

compartments is governed by daily probabilities of infected individuals tran-

sitioning between disease states. New cases arise from importations or au-

tochthonous transmission (Table 3.1). We treat days as discrete time steps,

and the next disease state progression depends solely on the current state and

the transition probabilities. We assume that infectious cases cause a Pois-

son distributed number of secondary cases per day (via human to mosquito

to human transmission), but this assumption can be relaxed as more infor-

mation regarding the distribution of secondary cases becomes available. We

also assume infectious individuals are introduced daily according to a Poisson

distributed number of cases around the importation rate. Furthermore, Infec-

tious cases are categorized into reported and unreported cases according to a

reporting rate. We assume that reporting rates approximately correspond to

the percentage (∼ 20%) of symptomatic ZIKV infections [?] and occur at the

same rate for imported and locally acquired cases. Additionally, we make the

simplifying assumption that reported cases transmit ZIKV at the same rate

as unreported cases. We track imported and autochthonous cases separately,

and conduct risk analyses based on reported autochthonous cases only, under

the assumption that public health officials will have immediate and reliable
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travel histories for all reported cases [32].

3.3.4 Simulations

For each county risk scenario, defined by an importation rate, transmis-

sion rate, and reporting rate, we ran 10,000 stochastic simulations. Each sim-

ulation began with one imported infectious case and terminated either when

there were no individuals in either the Exposed or Infectious classes or the

cumulative number of autochthonous infections reached 2,000. Thus the total

outbreak time may differ across simulations. We held R0 constant throughout

each simulation, as we sought to model early outbreak dynamics over short

periods (relative to the seasonality of transmission) following introduction.

We classified simulations as either epidemics or self-limiting outbreaks; epi-

demics were simulations that fulfilled two criteria: reached 2,000 cumulative

autochthonous infections and had a maximum daily prevalence (defined as the

number of current infectious cases) exceeding 50 autochthonous cases (Fig 3.8

and 3.10). The second criterion distinguishes simulations resulting in large

self-sustaining outbreaks (that achieve substantial peaks) from those that ac-

cumulate infections through a series of small, independent clusters (that fail

to reach the daily prevalence threshold). The latter occurs occasionally under

low R0s and high importation rates scenarios.

To verify that our simulations do not aggregate cases from clear tem-

porally separate clusters, we calculated the distribution of times between se-

quential cases (Fig 3.9). In our simulated epidemics, almost all sequentially
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occurring cases occur within 14 days of each other, consistent with the CDCs

threshold for identifying local transmission events (based on the estimated

maximum duration of the ZIKV incubation period) [32].

3.3.5 Outbreak Analysis

Our stochastic framework allows us to provide multiple forms of real-

time county-level risk assessments as reported cases accumulate. For each

county, we found the probability that an outbreak will progress into an epi-

demic, as defined above, as a function of the number of reported autochthonous

cases. We call this epidemic risk. To solve for epidemic risk in a county fol-

lowing the xth reported autochthonous case, we first find all simulations that

experience at least x reported autochthonous cases, and then calculate the

proportion of those that are ultimately classified as epidemics. For example,

consider a county in which 1,000 of 10,000 simulated outbreaks reach at least

two reported autochthonous cases and only 50 of the 1,000 simulations ulti-

mately fulfill the two epidemic criteria; the probability of detecting two cases

in the county would be 10% and the estimated epidemic risk following two re-

ported cases in that county would be 5%. This simple epidemic classification

scheme rarely misclassifies a string of small outbreaks as an epidemic, with the

probability of such an error increasing with the importation rate. For example,

epidemics should not occur when R0 = 0.9. If the importation rate is high,

overlapping series of moderate outbreaks occasionally meet the two epidemic

criteria. Under the highest importation rate we considered (0.3 cases/day),
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only 1% of outbreaks were misclassified.

This method can be applied to evaluate universal triggers (like the

recommended two-case trigger) or derive robust triggers based on risk tolerance

of public health agencies. For example, if a policymaker would like to initiate

interventions as soon as the risk of an epidemic reaches 30%, we would simulate

local ZIKV transmission and solve for the number of reported cases at which

the probability of an epidemic first exceeds 30%. Generally, the recommended

triggers decrease (fewer reported cases) as the policymaker threshold for action

decreases, (e.g. 10% versus 30% threshold) and as the local transmission

potential increases (e.g. R0 = 1.5 versus R0 = 1.2).

Variables ordered by importance

Total Amount of County Direct Spending on Traveling ($K)
Percentage Population holding Graduate or professional degree

Total Amount of Visitor Tax Receipts(Local) ($K)
County Male Population

Population Commuting to Work with Other Means
Max Temperature of Warmest Month

Percentage Population below Poverty Level
Precipitation of Wettest Quarter

Population without Health Insurance
Population holding Graduate or professional degree

Table 3.2: Import risk model variables. These 10 variables were selected from
72 variables using a combination of representative variables selection and pre-
dictive backwards selection. The importance of each variable (from top to
bottom) is determined by order of exclusion in backwards selection, with the
most important variables remaining in the model the longest.
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3.4 Results

ZIKV importation risk within Texas is predicted by variables reflecting

urbanization, mobility patterns, and socioeconomic status table 3.2, and is

concentrated in metropolitan counties of Texas (Fig 3.2A). In comparing the

predictions of this model to out-of-sample data from April to September 2016,

the model underestimated the statewide total number of importations (81 vs

151), but robustly predicted the relative importation rates between counties

(β = 0.97, R2 = 0.74, p < 0.001). The two highest risk counties–Harris, which

includes Houston, and Travis, which includes Austin, have an estimated 27%

and 10% chance of receiving the next imported Texas case respectively and

contain international airports.

ZIKV transmission risk is concentrated in southeastern Texas (Fig

3.2B), partially overlapping with regions of high importation risk (Fig 3.2A).

Our county-level estimates of R0 range widely (from 0.8 to 3.1 for the highest-

risk county), reflecting the uncertainty in socioeconomic and environmental

drivers of ZIKV (Fig 3.6). We therefore analyzed the relative rather than

absolute transmission risks. For purposes of demonstration, we assumed a

plausible maximum county-level R0 of 1.5, which closely followed our median

estimates, and scaled the transmission risk for each county accordingly. The

following risk analyses can be readily refined as we gain more precise and

localized estimates of ZIKA transmission potential.

Wide ranges of outbreaks are possible under a single set of epidemi-

ological conditions (Fig 3.3A). The relationship between what policymakers
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Figure 3.2: ZIKV importation and transmission risk estimates across Texas for
August 2016. (A) Color indicates the probability that the next ZIKV import
will occur in a given county for each of the 254 Texas counties. Probability is
colored on a log scale. The 10 most populous cities in Texas are labeled. Hous-
tons Harris County has 2.7 times greater chance than Austins Travis County
of receiving the next imported case. (B) Estimated county-level transmission
risk for ZIKV (See Fig 3.11 for seasonal differences). Harris county and Dallas
County rank among the top 5 and top 10 for both importation and trans-
mission risk respectively; counties in McAllen and Houston metropolitan area
rank among the top 20. Bolded county border indicates counties with recorded
local ZIKV transmission.

can observe (cumulative reported cases) and what they wish to know (cur-

rent underlying disease prevalence) can be obscured by such uncertainty, and

will depend critically on reporting rates (Fig 3.3B). Under a scenario esti-

mated for Cameron County which experienced the only autochthonous ZIKV

transmission in Texas and with a 20% reporting rate, ten linked and reported

autochthonous cases correspond to 6 currently circulating cases with a 95%

CI of 1-16 from inherent, early-stage outbreak stochasticity. From this wide
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Figure 3.3: Real-time risk-assessment for ZIKV transmission. All figures are
based on transmission and importation risks estimated for Cameron County,
Texas. (A) Two thousand simulated outbreaks. (B) Total number of (current)
autochthonous cases as a function of the cumulative reported autochthonous
cases, under a relatively high (dashed) or low (solid) reporting rate. Ribbons
indicate 50% quantiles. (C) The increasing probability of imminent epidemic
expansion as reported autochthonous cases accumulate for a low (solid) and
high (dashed) reporting rate. Suppose a policy-maker plans to trigger a public
health response as soon as a second case is reported (vertical line). Under a
10% reporting rate, this trigger would correspond to a 49% probability of an
ensuing epidemic. Under a 20% reporting rate, the probability would be 25%.

range of outbreak trajectories, we can characterize time-varying epidemic risk

as cases accumulate in a given county. We track the probability of epidemic

expansion following each additional reported case in high and low reporting

rate scenarios (Fig 3.3C).

These curves can support both real-time risk assessment as cases ac-

cumulate and the identification of surveillance triggers indicating when risk

exceeds a specified threshold. For example, suppose a policymaker wanted to

initiate an intervention upon two reported cases, this would correspond with

a 49% probability of an epidemic if 10% of cases are reported, but only 25% if
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the reporting rate is doubled.. Alternatively suppose a policy maker wishes to

initiate an intervention when the chance of an epidemic exceeds 50%. In the

low reporting rate scenario, they should act immediately following the third

autochthonous reported case, but could wait until the eleventh case with the

high reporting rate.
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Figure 3.4: Texas county ZIKV risk assessment. (A) Probability of an outbreak
with at least two reported autochthonous ZIKV cases. (B) The probability
of epidemic expansion at the moment the second autochthonous ZIKV case is
reported in a county. White counties never reach two reported cases across
all 10,000 simulated outbreaks; light gray counties reach two cases, but never
experience epidemics. (C) Recommended county-level surveillance triggers
(number of reported autochthonous cases) indicating that the probability of
epidemic expansion has exceeded 50%. White counties indicate that fewer
than 1% of the 10,000 simulated outbreaks reached two reported cases. All
three maps assume a 20% reporting rate and a baseline importation scenario
for August 2016 (81 cases statewide per 90 days) projected from historical
arbovirus data.

To evaluate a universal intervention trigger of two reported autochthonous

cases, we estimate both the probability of two reported cases in each county

and the level of epidemic risk at the moment the trigger event occurs (sec-

ond case reported). Assuming a baseline importation rate extrapolated from
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importation levels in March 2016 to August 2016, county R0 scaled from a

maximum of 1.5, and a 20% reporting rate, only a minority of counties are

likely to experience a trigger event (Fig 3.4A). While 247 of the 254 counties

(97%) have non-zero probabilities of experiencing two reported autochthonous

cases, only 86 counties have at least a 10% chance of such an event (assuming

they experience at least one importation), with the remaining 168 counties

having a median probability of 0.0038 (range 0.0005 to 0.087). Assuming that

a second autochthonous case has indeed been reported, we find that the under-

lying epidemic risk varies widely among the 247 counties, with most counties

having near zero epidemic probabilities and a few counties far exceeding a

50% chance of epidemic expansion. For example, two reported autochthonous

cases in Harris County, correspond to a 99% chance of ongoing transmission

that would proceed to epidemic proportions without intervention, with the

rest of the Houston metropolitan also at relatively high risk ranging from 0

(Galveston) to 90% (Waller) (Fig 3.4B).

Given that a universal trigger may signal disparate levels of ZIKV risk,

policy makers might seek to adapt their triggers to local conditions. Suppose

a policymaker wishes to design triggers that indicate a 50% chance of an

emerging epidemic (Fig 3.4C). Under the baseline importation and reporting

rates, an estimated 31 of the 254 counties in Texas are expected to reach a

50% epidemic probability, with triggers ranging from one (Harris County) to

21 (Jefferson County) reported autochthonous cases, with a median of two

cases. Counties who detect cases simply due to high importation rates do not
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have triggers, and the magnitude of a trigger helps quantify a countys absolute

risk for an epidemic as a function of the reported autochthonous cases.

3.5 Discussion

Our framework provides a data-driven approach to estimating ZIKV

emergence risks from potentially sparse and biased surveillance data [20, 29].

By mapping observed cases to current and future risks, in the face of consider-

able uncertainty, the approach can also be used to design public health action

plans and evaluate the utility of local versus regional triggers. We demonstrate

its application across the 254 ecologically and demographically diverse counties

of Texas, one of the two states that has sustained autochthonous ZIKV out-

breaks [175, 176]. The approach requires local estimates of ZIKV importation

and transmission rates. For the Texas analysis, we developed a novel model for

estimating county-level ZIKV importation risk and applied published methods

to estimate relative county-level transmission risks (Fig 3.2). We expect that

most Texas counties are not at risk for a sustained ZIKV epidemic (Fig 3.4),

and find that many of the highest risk counties lie in the southeastern region

surrounding the Houston metropolitan area and the lower Rio Grande valley.

However, R0 estimates are uncertain, leaving the possibility that the R0 could

be as high as other high risk regions that sustained epidemics [7, 96, 151]. Our

analysis is consistent with historic DENV and CHIKV outbreaks and correctly

identifies Cameron county, the only Texas county to have reported local trans-

mission, as a potential ZIKV hot-spot, especially when November estimates
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are used [174] (Fig 3.11).

Surveillance triggers, guidelines specifying situations that warrant in-

tervention, are a key component of many public health response plans. Given

the urgency and uncertainty surrounding ZIKV, universal recommendations

can be both pragmatic and judicious. To assist Texas policymakers in inter-

preting the two-case trigger for intervention guidelines issued by the CDC [32],

we used our framework to integrate importation and transmission risks and

assess the likelihood and implication of a two-case event for each of Texas 254

counties, under a scenario projected from recent ZIKV data to August 2016.

Across counties, there is enormous variation in both the chance of a trigger

and the magnitude of the public health threat if and when two cases are re-

ported. Given this variation, rather than implement a universal trigger, which

may correspond to different threats in different locations, one could design

local surveillance triggers that correspond to a universal risk threshold. Our

modeling framework can readily identify triggers (numbers of reported cases)

for indicating any specified epidemic event (e.g., prevalence reaching a thresh-

old or imminent epidemic expansion) with any specified risk tolerance (e.g.,

10% or 50% chance of that the event has occurred), given local epidemiologi-

cal conditions. We found close agreement between the recommended two-case

trigger and our epidemic derived triggers based on a 50% probability of ex-

pansion. Of the 30 counties with derived triggers, the median trigger was 2,

ranging from one to 21 reported autochthonous cases. These findings apply

only to the early, pre-epidemic phase of ZIKV in Texas, when importations
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occur primarily via travel from affected regions outside the contiguous US.

These analyses highlight critical gaps in our understanding of ZIKV bi-

ology and epidemiology. The relative transmission risks among Texas counties

appear fairly robust to these uncertainties, allowing us to identify high risk

regions, including Cameron County in the Lower Rio Grande Valley. Public

health agencies might therefore prioritize such counties for surveillance and in-

terventions resources. Given the minimal incursions of DENV and CHIKV into

Texas over that past eleven years since the first DENV outbreak in Cameron

County, and the high number of importations into putative hotspot counties

without autochthonous transmission, we suspect that, if anything, we may

be underestimating the socioeconomic and behavioral impediments to ZIKV

transmission in the contiguous US. Our analysis also reveals the significant

impact of the reporting rate on the timeliness and precision of detection. If

only a small fraction of cases are reported, the first few reported cases may

correspond to an isolated introduction or a growing epidemic. In contrast, if

most cases are reported, policymakers can wait longer for cases to accumu-

late to trigger interventions and have more confidence in their epidemiological

assessments. ZIKV reporting rates are expected to remain low, because an es-

timated 80% of infections are asymptomatic, and DENV reporting rates have

historically matched its asymptomatic proportion [?, 46]. Obtaining a realistic

estimate of the ZIKV reporting rate is arguably as important as increasing

the rate itself, with respect to reliable situational awareness and forecasting.

An estimated 8-22% of ZIKV infections were reported during the 2013-2014
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outbreak in French Polynesia [96]; however estimates ranging from 1 to 10%

have been reported during the ongoing epidemic in Columbia [?, 151]. While

these provide a baseline estimate for the US, there are many factors that could

increase (or decrease) the reporting rate, such as ZIKV awareness among both

the public and health-care practitioners, or active surveillance of regions with

recent ZIKV cases. Our analysis assumes that all counties have the same case

detection probabilities. However, only 40 of the 254 Texas counties maintain

active mosquito surveillance and control programs, potentially leading to dif-

ferences in case detection rates and surveillance efficacy throughout the state

[162]. Thus, rapid estimation of the reporting rate using both traditional epi-

demiological data and new viral sequenced based methods [154] should be a

high priority as they become available.

Our framework can support the development of response plans, by forc-

ing policymakers to be explicit about risk tolerance, that is, the certainty

needed before sounding an alarm, and quantifying the consequences of prema-

ture or delayed interventions. For example, should ZIKV-related pregnancy

advisories be issued when there is only 5% chance of an impending epidemic?

10% chance? 80%? A policymaker has to weigh the costs of false positives–

resulting in unnecessary fear and/or intervention–and false negatives–resulting

in suboptimal disease control and prevention–complicated by the difficulty in-

herent in distinguishing a false positive from a successful intervention. The

more risk averse the policymaker (with respect to false negatives), the earlier

the trigger should be, which can be exacerbated by low reporting rates, high
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importation rate, and inherent ZIKV transmission potential. In ZIKV prone

regions with low reporting rates, even risk tolerant policymakers should act

quickly upon seeing initial cases; in lower risk regions, longer waiting periods

may be prudent.

3.6 Supplemental Information

3.6.1 Fitting the Generation Time

To capture the correct outbreak timing, we fit the generation time of

our SEIR model to estimates for the ZIKV exposure and infectious periods in

humans. The generation time measures the average duration from initial symp-

tom onset to the subsequent exposure of a secondary case, and is estimated to

range from 10 to 23 days for ZIKV [114]. In our model, the generation time

corresponds to the sum of the exposure period and 1/2 the infectious period.

We therefore fit the infectious period in our model to human ZIKV estimates

for duration of viral shedding, and then fit the exposure period so that the

sum of the two classes match the estimated ZIKV serial interval.

According to our modeling framework: with one infectious compart-

ment, the distribution of waiting times in the compartment would follow a

geometric distribution, with the most common waiting time equal to one day

regardless of the transition rate. As this is a biologically unrealistic waiting

time distribution, we use Boxcar implementations to yield a more realistic dis-

tribution [110]. In such a framework one splits a compartment into multiple

separate compartments (boxes), has individuals transition through these com-
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partments, and alters the transition rate for each compartment so the average

waiting time spent in all compartments equals that of the original desired av-

erage. For example, if a 10 day infectious period were desired, one could model

the infectious period as 1 compartment with a daily transition rate of 1/10, or

5 compartments with a daily transition rate of 5/10. The number of infectious

individuals is either the number of individuals in the single compartment, or

the total number of individuals in all five boxes. Both scenarios would have

an average waiting time of 10 days to move through the infectious period,

but the 5 boxes would necessitate individuals being infectious for at least 5

days giving a more realistic waiting time distribution that follows a negative

binomial distribution (sum of multiple independent geometric distributions).

First, we solved for transition rates and compartments of a Boxcar

Model infectious period that yielded an infectious period with 3 compartments

and mean duration of 9.88 days and 95% CI of (3-22) [102]. Then, we fit the

exposure period so that the combined duration of the infectious and exposure

periods matched the empirical ZIKV generation time range [114], yielding 6

compartments and a mean exposure period of 10.4 days (95% CI 6-17) and

finally a mean generation time of 15.3 days (95% CI 9.5-23.5). Given that

the exposure period includes human and mosquito incubation periods and

mosquito biting rates, this range is consistent with the estimated 5.9 day

human ZIKV incubation period [102]
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Figure 3.5: ZIKV Risk Assessment Framework. The method consists of three
steps. First, we use data-derived models to estimate county-level ZIKV intro-
duction rates and ZIKV transmission rates. Each estimate is based on a com-
bination of general and county-specific factors. Second, for every county-risk
combination, we simulate 10,000 ZIKV outbreaks using a stochastic branch-
ing process ZIKV transmission model parameterized by the county-level im-
portation and transmission rate estimates along with several other recently
published disease progression estimates. The simulations track the numbers
of autochthonous and imported cases (unreported and reported) and, based
on the total size and maximum daily prevalence, classifies each outbreak as
self-limiting or epidemic. Third, we analyze the simulations to determine (1)
robust relationships between the number of reported cases in a county and
the current and future ZIKV threat and (2) surveillance triggers (number of
reported cases) indicative of imminent epidemic expansion.
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Figure 3.6: The 95% CI of R0 Distributions for August. From left to right, the
2.5%, 50% and 97.5% quantile R0 values for August. The range of absolute
values spans 0.02-6.90. Given the considerable uncertainty in socioeconomic
and environmental drivers of ZIKV, we analyzed relative rather than absolute
transmission risks.
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Figure 3.7: Diagram of ZIKV outbreak model. The model tracks disease pro-
gression, transmission, and reporting of both imported and autochthonous
ZIKV cases. Individuals progress through compartments via a daily Marko-
vian process, according to the solid arrows in the diagram. The Exposed and
Infectious periods consist of several (boxcar) compartments to simulate realis-
tic outbreak timing. Unreported infected individuals have a daily probability
of being reported. Imported cases are assumed to arrive daily according to
a Poisson distribution (with mean σ) at the beginning of their infectious pe-
riod, and otherwise follow the same infectious process as autochthonous cases.
Autochthonous transmission occurs at rate β(IA + II), where IA and II are
the total number of infectious autochthonous and imported cases, respectively
(dashed arrows).
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Figure 3.8: Determining outbreak simulation length. If outbreak simulations
are too short, self-limiting outbreaks may reach the maximum number of infec-
tions due to stochasticity. We chose to run our simulations to 2,000 cumulative
infections as it conservatively differentiated the large outbreaks of simulations
with R0 just below 1 (0.95) from the epidemics of those with R0 just above 1
(1.05). We therefore chose to run our simulations until a maximum number of
2,000 infections.
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Figure 3.9: Time between detection of locally transmitted cases during epi-
demics. Across a range of R0 values with an importation rate 0.1 cases/day, we
plot the time between detection events of autochthonous cases for simulations
out of the 10,000 trials in which epidemics occurred (black dots). The blue
line indicates a two-week threshold as recommended by the CDC for follow-up
of local transmission. Even under a high importation rate of 0.1 cases/day,
epidemics do not occur when R0 = 0.8, and rarely occur when R0 = 0.9. As
R0 increases, a greater proportion of simulations have fewer days in between
detection events as the number of infections rapidly increase.
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Figure 3.10: Selecting daily prevalence threshold for distinguishing self-
limiting outbreaks from epidemics. Across a range of R0 values, we plot the
maximum daily total autochthonous infectious individuals for 1,000 of our
10,000 trials (black dots). The blue line indicates the threshold (50) selected
to differentiate epidemics with R0 > 1 from outbreaks with R0 ≤ 1. At a
low importation rate (0.01), the majority of simulations with R0 ≤ 1 are self-
limiting and rarely progress into large sustained outbreaks. As R0 increases,
a greater proportion of simulations exceed the threshold. As the importation
rate increases (panels from left to right) the separation between self-limiting
outbreaks and epidemics becomes more pronounced.
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Figure 3.11: Monthly R0 estimates based on seasonal changes in the
temperature-dependent extrinsic incubation period of ZIKV in Ae. aegypti
and the mosquito mortality rate of Ae. aegypti
.
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Chapter 4: Downgrading disease transmission

risk estimates using terminal importations

4.1 Abstract

As emerging and re-emerging infectious arboviruses like dengue, chikun-

gunya, and Zika threaten new populations worldwide, officials scramble to as-

sess local severity and transmissibility, with little to no epidemiological history

to draw upon. Indirect estimates of risk from vector habitat suitability maps

are prone to great uncertainty, while direct estimates from epidemiological

data are only possible after cases accumulate and, given environmental con-

straints on arbovirus transmission, cannot be widely generalized beyond the

focal region. Combining these complimentary methods, we use disease im-

portation and transmission data to improve the accuracy and precision of a

priori ecological risk estimates. We demonstrate this approach by estimating

the spatiotemporal risks of Zika transmission throughout Texas, a high-risk

region in the southern United States. Our estimates are, on average, 80%

lower than published ecological estimates–with only six of 254 Texas counties

deemed capable of sustaining a Zika epidemic–and they are consistent with the

number of autochthonous cases detected in 2017. Real-time updating of prior

risk estimates as importations and outbreaks arise can thereby provide criti-

cal, early insight into local transmission risks as emerging arboviruses expand
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their global reach.

4.2 Introduction

The explosive emergence of Ebola in West Africa in 2014 and Zika in

the Americas in 2016 caught the global health community by surprise. Officials

scrambled not only to control the diseases at their source but also to antic-

ipate and rapidly contain global transmission via infected travelers [69, 179].

The rate at which a newly introduced infectious disease spreads can vary

enormously, depending on the physical and social environment. For exam-

ple, serological surveys of dengue virus (DENV) exposure on either side of

the Texas-Mexico border indicated far higher DENV exposure in the Mexi-

can community despite virtually identical climatic conditions and even higher

mosquito abundance in the Texan community [148].

Epidemiological risk assessment–estimating the severity and transmissi-

bility of a threatening disease–can be vital to successful mitigation with limited

resources. Historical outbreak data can provide invaluable insight into future

epidemic risk. However, for a disease that has yet to arrive or has just begun

to spread, we are forced to borrow epidemiological data from other popula-

tions or related diseases, or to indirectly assess risk based on environmental

suitability. For example, as the first importations of Zika virus (ZIKV) arrived

in the US in 2016, early attempts to determine the likelihood and rate of lo-

cal transmission relied primarily on dengue epidemiological data from regions

with markedly different climatic and socioeconomic conditions [7, 25, 28].
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These ecological risk assessments provide information regarding the

reproduction number of a disease (R0)—the expected number of secondary

human infections resulting from a single human infection—which provides a

meaningful and predictive measure of local epidemiological risk. In a naive

population, R0 indicates whether importations can potentially ignite local

epidemics; if so, it also provides insight into the probability, magnitude, and

speed of spread [112, 186]. However, ecological estimates often carry consid-

erable uncertainty stemming from model parameterization and regional ex-

trapolation, and suggest a wide-range of possible epidemic outcomes, from

terminal importations to stuttering chains of transmission to full blown epi-

demics [24, 28, 53, 77]. Once an outbreak is underway, we can use early case

data to directly estimate R0 [20, 21, 75]. For arboviruses with environmentally

constrained spatial heterogeneity, we cannot easily extrapolate such case-based

estimates from one region to others.

Here, we introduce a method for estimating the R0 of an emerging ar-

bovirus prior to a large outbreak in populations that face the ongoing threat

of infected travelers from affected regions. This approach was motivated by

recent introductions of ZIKV into the continental US. As hundreds of cases

arrived from affected regions throughout the Americas, officials sought to esti-

mate risks of autochthonous (local) transmission and identify high risk regions

in the southern US. However, given the novelty of ZIKV and the large pro-

portion of ZIKV cases that go undetected, early ecological estimates had high

uncertainty [7, 25, 50, 72, 118]. Our method combines indirect and direct es-
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timation methods to reduce such uncertainty and increase accuracy at high

spatiotemporal resolution. We first build prior ecological estimates of local

R0 and then harness real-time importation data—cases that arrive in a naive

location with or without subsequently infecting others—to update the esti-

mates, while explicitly modeling case reporting uncertainty. As a case study,

we use the almost complete absence of secondary transmission following 298

importations of ZIKV into the state of Texas in 2016 and 2017 to reduce and

narrow local estimates of R0.

4.3 Methods

We used a two-step procedure to estimate the monthly R0 for each

of the 254 Texas counties (hereafter county-month R0): (1) estimate a pri-

ori county-month R0 distributions using published ecological models of ZIKV

transmission [7, 28], and (2) using these as Bayesian priors, generate posterior

R0 distributions based on reported importations and subsequent local trans-

mission.

4.3.1 Data

We analyzed all ZIKV importations into Texas from January 2016 to

September of 2017, including the county and notification date; county-level

purchasing power parity (PPP) in US dollars [137]; daily temperature data at

a 5 km x 5 km resolution for 2016-2017 and historical averages from 1960-1990

[78, 136]. For each county and month, we averaged daily temperatures across
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all 5 km x 5 km grid cells whose center fell within the county; we aggregated

5 km x 5 km mosquito (Aedes aegypti) occurrence probabilities similarly [93].

Data available https://dx.doi.org/10.18738/T8/HYZ53B.

In all, six mosquito-borne, autochthonous cases of ZIKV were reported

in Texas in 2016 and two were reported in 2017 [178]. For updating R0 es-

timates, we analyzed 2016 data and assumed that two autochthonous cases

were detected in Cameron County–one in November and one in December

2016; we excluded four nearby cases discovered during the November follow-

up investigation, because our model does not incorporate active surveillance.

As sensitivity analyses, we re-estimated R0 assuming that no cases were de-

tected and that all six cases were detected (Fig 4.12). For validating our

estimates, we analyzed 2017 data and considered only one of the two reported

autochthonous cases, as the second case occurred outside the timeline of our

2017 importation data.

4.3.2 A priori county-month R0 estimates

Following Perkins et al [7], we estimated R0 using the Ross-Macdonald

temperature-dependent formulation:

R0(T ) = m
bca2e−µ(T )n(T )

µ(T )r
(4.1)

with parameters as defined in Table 4.1. We calculated relative abun-

dance of the ZIKV vector based on Ae. aegypti occurrence probabilities as

−ln(1 − ρ), where ρ is the occurrence probability, and we interpret this as a
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relative (rather than absolute) abundance, which is sufficient for our R0 es-

timation [7]. We derived a priori county-month R0 distributions by drawing

1,000 Monte Carlo samples from each underlying parameter distribution, with

the appropriate county and month data. Finally, we fit gamma distributions

to each probability distribution for use as an informative priors.

Table 4.1: Parameters of prior R0 estimates.

Parameter Description Distribution Value (CI) Citation
b Mosquito-to-human transmission

probability
Constant 0.4 [4]

c
r

Human-to-mosquito transmission
probability times the duration of
human infectiousness

Constant 3.5 [158]

a Mosquito biting rate Constant 0.67 [147]
µ(T ) Mosquito daily mortality rate Non-parametric

GAM
0.1151 [22, 128]

n(T ) Extrinsic incubation period in
mosquitoes

Exponential 6.1 (3.4, 9.9)2 [33]

m Economic mosquito-human con-
tact factor

Monotonic
decreasing

SCAM

0.67 [7]

1. Fit to data from mark-recapture study occurring between 20-34°C

2. At 30°C

4.3.3 Autochthonous transmission likelihood

Following [21], we developed a likelihood function describing the ex-

pected outbreak size following an importation. We assumed that the secondary

case distribution for each infected is negative binomial with mean R0 and dis-

persion parameter, k. Assuming all cases are detected, the probability of an

outbreak of chain size, j, is given by:
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s(j, R0, k) =
Γ(kj + j − 1)

Γ(kj)Γ(j + 1)

(R0/k)j−1

(1 + (R0/k))kj+j−1
(4.2)

where Γ(n) = (n− 1)!. However, not all cases are detected and the im-

ported index case is always detected and correctly classified as an importation,

so the probability of detecting a chain of size, j, from a given importation is

given by:

s∗(j, R0, k) =
∞∑
l=j

s(l, R0, k) ·
(
l − 1

j − 1

)
· pj−1

d · (1− pd)l−j (4.3)

where pd is the case detection probability. Importantly, this allows

for local, undetected cases. We take the product of all likelihoods for each

imported case as

L( ~O|α, ~R0, k, pd) =

length( ~O)∏
i=1

s∗(Oi, αR0γi,ωi
, k, pd) (4.4)

where ~O, contains the observed outbreak sizes for each importation

(terminal importations have an outbreak size of one), R0γi,ωi
denotes the

county(γ)-month(ω) R0 for the location and time that the importation oc-

curred, and α is a statewide scaling factor applied to each R0γi,ωi
. The in-

troduction of the state-wide scaling factor allows for localized importations to

inform statewide estimates, but assumes that biases in the a priori R0 estima-

tion procedure are constant across counties and months. Details of simulations
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and validation of the likelihood can be found in supplemental section 4.6.1 and

Fig 4.6.

4.3.4 Estimating the dispersion parameter

The negative binomial dispersion parameter governs the variability in

secondary cases following each importation, with values near zero meaning that

most importations yield few or no cases while a few superspreaders produce

many. We assume that ZIKV secondary case distributions resemble that of

dengue virus (DENV) [141]. Padmanabha et al. describe the relationship

between regional R0 and the percentage of DENV cases generating over 20

secondary infections (p20), as R0 = 0.63 × 100(p20) + 0.58. We assumed that

p20 = 1 × 10−8 for R0 < 0.58, and found that a single dispersion parameter

captures this relationship for all R0 values and thus used k = 0.12 for all

analyses (Fig 4.7).

4.3.5 Updating posterior R0 estimates

We estimated posterior distributions for α, and each county-month R0

for each day with a new importation between January 2016 and January 2017.

We assumed a uniform prior for α of U ∼ (0, 2), and used a blocked Gibbs

sampling algorithm of MCMC. For each MCMC step we provide the detected

imported cases to date and propose each county-month R0, a single α, and a

pd. County-month R0 proposals were normally distributed around the previous

sample with standard deviation of 0.1, α proposals were distributed U ∼ (0, 2),
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and we used a previously estimated distribution for the reporting rate, pd ∼

N(5.74%, sd = 1.49%), which we assumed to not vary spatiotemporally [199].

We used the Metropolis-Hastings probability to accept or reject proposals.

Our chains consisted of 200,000 samples with a burn-in duration of 100,000;

thinning every 10 steps. Further algorithmic details and code are available on

Github (https://github.com/sjfox/rnot_updater).

4.3.6 Validating posterior county-month R0 estimates

We derived the expected number of autochthonous cases from the im-

portations data through September of 2017 (at that time, the most recent

importation was detected in mid-May) and compared the estimates to the

actual reported autochthonous cases. We integrated uncertainty into our es-

timates by sampling from the posterior county-month R0 distributions and

simulating outbreaks accordingly (full details in section 4.6.2).

4.4 Results

4.4.1 Importation-based updates of transmission risk

Hypothetically, suppose that the first 15 imported cases of Zika into

Texas arrived in August into Harris County (which contains Houston) with-

out any detected autochthonous transmission. Prior to these importations,

environmental suitability models yielded a relatively high local risk estimate

with median Harris county R0 above the epidemic threshold of one (Figure

4.1A - dark grey). The lack of secondary cases following all 15 importations
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suggests that R0 may be lower. Indeed, our updated estimates suggest that

the Harris county R0 is likely below one (Fig 4.1A - light grey). Our method

leverages such county-level importation data to update R0 estimates through-

out the state (via a scaling factor), based on the assumption that any a priori

biases will be similar across counties (Fig 4.1B).

Figure 4.1: R0 updating using importation data. Consider a hypothetical
scenario in which the first 15 terminal ZIKV importations into Texas arrive in
Harris county (which includes Houston) during August 2016. (A) Estimated
Harris county R0 for August 2016 a priori (dark grey) and after accounting
for the 15 (light grey) terminal importations (Future August). (B) Median R0

estimates for August before (August 2016) and following (Future August) the
importation-based update.

4.4.2 Baseline importation and transmission risks in Texas

Prior to making importation-based updates, our initial median esti-

mates of R0 across Texas 254 counties in 2016 range from approximately 0 to

1.5 throughout the year with July and August having the highest transmission

risk (Fig 4.2A). Throughout the manuscript, we conduct a one-sided test at

a 1% significance level and thus consider counties with 99 percentiles (upper
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bounds) that include one to be at risk for an epidemic (R0 > 1). Initial upper

bound estimates reach as high as three, and 119 (47%) of Texas counties are

expected to be at risk of a local outbreak in at least one month of the year

(Fig 4.2A, 4.8). When we considered historic average temperatures rather than

2016 temperatures, the projected 2017 risks were consistently lower, with the

largest differences occurring during the unseasonably warm 2017 winter (Fig

4.9). Case importations peaked in July, August, and September of 2016, with

164 (55%) of the 298 total 2016 importations arriving then (Fig 4.2B). The

few detected autochthonous cases occurred in November and December, when

expected risk was relatively low but not negligible.

4.4.3 Updated transmission risks in Texas

Based on all importations and autochthonous cases that occurred in

Texas prior to January 2017, we estimate that all Texas counties have a median

posterior R0 below one (Fig 4.3). Median estimates range from 0 to 0.29;

upper-bound estimates range from 0 to 1.12, with only six (5%) of the original

119 high-risk counties maintaining epidemic potential (Fig 4.10). When we

assume historic averages rather than 2016 temperatures, we obtain similar

results (Fig 4.11).

In a sensitivity analysis that assumes 20 times more undetected im-

portations, we found that the estimated risks decreased further (Fig 4.12). We

also varied the number of detected autochthonous cases in November: as they

decrease from one to zero, the estimated risks decrease considerably; as they
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Figure 4.2: Texas importations and baseline transmission risk estimates for
2016-17. (A) Initial ZIKA R0 estimates using ecological risk models param-
eterized with actual 2016-2017 temperatures. Each solid line shows median
values for one of Texas 254 counties. Dashed line shows the highest upper
bound (99th percentile) across all counties. (B) Daily ZIKV importations
into Texas. Blue arrows indicate importations that produced detected au-
tochthonous transmission; shading indicates training (2016) and testing (2017)
periods.

increase to five, estimated risks increase, with 83 counties becoming at risk for

a local outbreak (Fig 4.12).

Importation events had variable impacts on the posterior estimates, de-

pending on their timing and location (Fig 4.4). Terminal importations early

in the year, when a priori R0 estimates were low, had little effect; those ar-

riving in the summer months, when high a priori R0 estimates suggested that

transmission should have occurred, led to sharp decreases and a shrinking con-

fidence interval. By early November, the median α decreased from 1.0 to 0.06
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Figure 4.3: Posterior median county R0 estimates for Texas, based on ZIKV
importations through January 2017. This assumes that all importations were
terminal except for a two autochthonous cases detected in Cameron County
in late 2016.

with a narrow 95% CI of 0.002-0.30. However, the two secondary transmission

events detected in November and December increase R0 estimates and widen

the confidence intervals. Incorporating all data up to January 2017, our best

estimate is that R0 values across the state are roughly one fifth the original

estimates (median: 0.19, 95% CI: 0.05-0.48).
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4.4.4 Expected autochthonous transmission in Texas

We use transmission risk estimates based on importations through De-

cember 2016 to estimate the number of autochthonous cases we would expect

to detect in Texas in 2017. Assuming first that only the reported importa-

tions occurred in 2017 (26 total), we estimate that there should have been

0.08 (95%CI: 0-1) detected autochthonous cases in the state; assuming that

many importations went undetected, according to the reporting probability

(26
pd
≈ 453), we estimate 1.3 (95% CI: 0-7) detected autochthonous cases. Both

of these estimates are consistent with the single autochthonous case detected

in Texas in 2017, though our results best fit a scenario with many undetected

importations (Fig 4.5).

4.5 Discussion

The global expansion of ZIKV was declared a Public Health Emergency

of International Concern in February 2016, and caused more than 565,000

confirmed or probable cases and over 3,352 documented cases of congenital

Zika syndrome. Although it is receding in most regions of the world, ecological

risk assessments suggest that previously unaffected or minimally affected areas

may remain at risk for future emergence, including parts of Asia and South

America [12, 44, 163]. Differentiating regions that can sustain a ZIKV epidemic

(R0 > 1) from those that cannot is vital to effective planning and resource

allocation for future preparedness plans. To address this challenge, we have

developed a simple method for refining uncertain risk assessments with readily
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available data on disease importations.

We applied the method to update ZIKV R0 estimates for each of the

254 counties in Texas, and found that only six counties have non-negligible

probabilities of sustained local transmission. This is a substantial downgrade

in expected risk, given that 43% of the 254 counties were previously thought

to be vulnerable to ZIKV outbreaks [28]. These estimates suggest that there

should have been roughly one detected case of locally acquired ZIKV between

January and September of 2017, closely corresponding to the single transmis-

sion event actually detected in Cameron County in July 2017 (Fig 4.5). Our

sensitivity analysis suggests that, if our assumptions about case-reporting in

November are too liberal, 77 additional counties have non-negligible but low

risks of summer outbreaks. Given comparable importation and climatic data,

this approach could readily update ZIKV transmission risk estimates for all

counties in the continental US and elsewhere.

Our estimation method relies on several simplifying assumptions. We

assumed that the shape of the secondary case distribution resembles that of

dengue. Although we have no evidence to the contrary, this should be up-

dated as ZIKV-specific estimates become available [141]. We also assumed

that transmission is equally likely from imported and locally acquired cases.

Imported cases may be less infectious than locally acquired cases for two rea-

sons, leading us to underestimate local transmission risks. First, they may be

more likely to receive care that limits transmission, although most ZIKV cases

are inapparent or mild and do not require medical care [50], and second their
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local infectious periods may be shorter than those of autochthonous cases.

Next, we treat all importations as independent. However, spatiotemporal het-

erogeneity in case detection probabilities or clustering of cases (e.g., testing of

travel companions) could bias risk estimates. Furthermore, when secondary

clusters are detected, we assume they share a transmission tree stemming from

a single detected importation. In fact, the low ZIKV detection rate suggests

that both primary importations and secondary cases are likely to be missed.

If the detection rates are roughly similar, our results hold. When we assume,

in sensitivity analysis, that importations are detected at higher rates than

secondary cases, then the resulting risk estimates will be higher; when we

assume the reverse, they are lower. The additional assumption, that clusters

are epidemiologically connected, seems reasonable for the small contained out-

breaks detected in Texas, but may not be appropriate for importation-fueled

arbovirus outbreaks in Florida, for example. In such cases, molecular data

might enable estimation of transmission clusters [70, 182]. We also rely on

informative Bayesian priors and a statewide scaling factor, which allows us

to use local importations to inform risk estimates elsewhere, but implies that

our prior county-month transmission risk estimates are correct relative to each

other. Given additional importation data, we could potentially estimate each

county-month R0 independently. Finally, we do not consider possibility of sex-

ual transmission of ZIKV. While sexual transmission has occurred and may

be important for specific populations [9], we assumed that mosquito-borne

transmission is the dominant mode of infection.
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During the height of the ZIKV threat, public health agencies in the

US rapidly implemented both preventative measures (e.g., vector control and

educational campaigns) and response measures (e.g. laboratory testing and

epidemic trigger plans), particularly in high risk southern states. Decision

makers sought to identify and narrow the spatiotemporal scope of outbreak

risk to enable targeted responses, efficiently allocate resources, and avoid false

alarms [32, 72]. Our method facilitates such rapid, real-time geographic risk

estimation from typical early outbreak data, and suggests that only 3% of the

Texas population is at risk for a local outbreak. Critically, we can conclude

neither that all initial ecological risk assessments for ZIKV will overestimate

risk, although this seems to be the case for ZIKV in Texas, nor that pub-

lic health preparations and interventions for ZIKV are no longer necessary in

Texas or the southern US. Rather, our results suggest that sustained ZIKV

outbreaks are unlikely, but not impossible, and provide more robust and lo-

calized estimates of ZIKV risk that can inform more targeted surveillance and

reactions to future ZIKV importations.

This framework is novel in its integration of a priori ecological transmis-

sion risk estimates with updating directly from real-time case reports [20, 21].

It thereby provides increasingly accurate and precise risk assessments to sup-

port public health decision making. This approach can be generalized to up-

date R0 estimates from importation data, regardless of the a priori method

of estimation. For example, a new approach combining epidemiological and

molecular analyses suggests that transmission risk in Florida is subcritical (i.e.,
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R0 < 1) [47, 70]. Given that Florida experienced thousands of introductions,

only a few of which sparked large outbreaks, coupling such outbreak-driven

estimation with our terminal importation method may provide a powerful real-

time risk assessment framework for exploiting all available data. This method

resembles those used to assess disease transmission risk during elimination ef-

forts, including malaria in non-endemic regions [39]. The key innovation is

that, by starting with ecological suitability maps, we simultaneously identify

important transmission hotspots and leverage case data from one region to

inform risk estimates elsewhere.

We presented a simple and rational method for continuously updat-

ing transmission risk estimates for populations experiencing infectious disease

importations, with or without secondary transmission. As we demonstrated

for ZIKV in Texas, large numbers of terminal importations can profoundly

lower both estimated risks of transmission and uncertainty in prior estimates,

particularly those derived from ecological suitability or other models that bor-

row inputs from related pathogens in other parts of the world. Expanding our

model globally could drastically reduce the expected number of populations at

risk [24, 25, 118]. Although the threat of ZIKV emergence in the continental US

motivated this study, this new framework can be widely applied to improve

transmission risk assessments when a disease newly threatens a population

via regular introductions with minimal secondary transmission. For exam-

ple, importation-fueled MERS-CoV transmission risk, measles transmission in

vaccinated populations, or highly pathogenic avian influenza [41, 105, 194].
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4.6 Supplemental Information

4.6.1 Outbreak Simulation

We checked our analytical calculations against simulations to ensure

consistency. The outbreak simulations consist of two steps: (1) the outbreak

transmission process and (2) the observation process. We conduct three simu-

lation scenarios to test against analytical results. The first two simply confirm

prior results, and the third confirms our analytical formulation. For each sce-

nario, we obtain 10,000 simulations, and summarize the resultant outbreaks

to obtain a probability mass function for the observed outbreak size. We

then compare these simulated probability mass functions with the analytical

calculations presented in the methods, and find close agreement (Fig S1).

1. Perfect observation. In this simulation, we assume that all cases are de-

tected. For each simulation we begin with an initial index case. That

case, and all subsequent cases, infect individuals according to a negative

binomial distribution of mean, R0, and dispersion parameter k = 0.12.

We continue the simulation until there are no more newly infected in-

dividuals. We only focus on R0 < 1 for simulation purposes, so no

outbreaks grow forever.

2. Imperfect observation. In this simulation, we add the observation process

to the transmission process. We therefore simulate outbreaks according

to the perfect observation process described above, and then simulate the

reporting process. For this, we find the total number of detected cases
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from the chain according to simulating a binomial detection process with

probability of success equal to the reporting rate (0.0574 in this case) and

total possible cases equal to the size of the chain from the transmission

chain (n).

3. Imperfect Import observation. This simulation is exactly the same as

the imperfect observation simulation, except for the fact that we always

detect the index case. So in this case we simulate a binomial detection

process with probability of success equal to the reporting rate (0.0574 in

this case) and total possible cases equal to the size of the transmission

chain minus one (n− 1).

4.6.2 R0 estimate validation

To validate our posterior R0 distributions, we used them to estimate the

expected number of autochthonous cases from the importations data through

September of 2017 (at that time, the most recent importation was detected in

mid-may) and compared the estimates to the actual reported autochthonous

cases. We integrated uncertainty into our estimates as follows:

1. Draw a pd from the reporting rate distribution.

2. Sum the number of importations occurring for each county-month, N ,

3. Draw N , samples of the prior or posterior R0 , distribution depending

on which analysis is being conducted.
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4. For each of the R0 , values, we simulated an outbreak stemming from a

single importation where each case infects individuals according to a neg-

ative binomial distribution with mean of R0 , and dispersion parameter,

k = 0.12. For each simulated outbreak, we simulate the detection pro-

cess for the non-index cases as a binomial distribution with probability

of success, pd. We sum the detected cases for each of the N , outbreaks,

to obtain, ν, the expected number of cases detected for that sample.

5. Repeat steps 1-4 10,000 times, saving ν

The distribution of ν obtained from the process described above can be

compared with the true number of detected autochthonous cases from 2017 if

we assume that all imported cases were reported. However, its likely that there

were a number of imported cases that were missed by surveillance. Therefore,

we also analyzed a scenario with increased importations. To do so we followed

the same process outlined above, except for altering step 3 to draw N ∗ ( 1
pd

)

samples to account for the missed cases rounding the resultant number to the

nearest integer.

Supplemental Figures
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Figure 4.4: Evolving posterior distribution of statewide scaling factor for R0.
Zika importations, both with and without subsequent detected autochthonous
transmission, provide insight into local transmission potential, via a statewide
scaling factor, α. This shows the posterior distributions of α, for each day of
2016 that had at least one imported case. Median estimates reach a minimum
in early November, just before the detected autochthonous transmission events
(upside-down blue triangles). Red shading indicates the average statewide
monthly temperature. Note: the scaling factor is never less than zero.
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Figure 4.5: Expected autochthonous cases in 2017, assuming revised county
R0 estimates and reported importations through September 2017. The proba-
bility distributions are built from 10,000 simulations, each randomly drawing
from the R0 posterior distributions. The dashed blue line indicates the actual
number of detected autochthonous cases in state (one), and the solid black
lines indicate means for the baseline importation scenario, in which only the
reported importations occurred (top) and the increased importation scenario,
in which a large fraction of importations went undetected (bottom).
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Figure 4.6: Comparison between analytical likelihood predictions and sim-
ulations. We compare the probability mass functions for the outbreak sizes
for our simulations (bars) with the analytical expectation (red dots). Rows
demonstrate four different transmission risk scenarios (R0), and columns de-
scribe three different scenarios: (1) where every case within a transmission
chain is detected (Perfect), (2) where all cases are detected independently
with a specific reporting rate (Imperfect), and (3) where all cases are detected
independently with a specific reporting rate except for the index case which is
always detected (Imperfect Import). The Imperfect Import probability mass
function is the one used for all analyses in this article. All simulations are
completed with a reporting probability of 0.0574, and k = 0.12.
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Figure 4.7: Match between estimated and assumed dispersion parameter.
Probability of a single importation generating 20 secondary infections from
(29) (Line), or using our assumed dispersion parameter and negative binomial
distribution (Points).
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Figure 4.8: Prior R0 estimates for Texas counties for each month. Median and
99 percentiles are shown for each County. Fill color indicates the estimated
Median or 99 percentile estimate for that county for the given month, with
counties showing yellow or red indicating their R0 is above one (labels). Es-
timates are made for each month based on the average monthly temperature
for 2016.
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Figure 4.9: Comparison between prior R0 estimates using the historic average
temperature for months versus using the actual temperature from the months
in 2016.
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Figure 4.10: Posterior R0 estimates for Texas counties for each month us-
ing the actual 2016 temperatures. Fill color indicates the estimated Median
or 99 percentile estimate for that county for the given month, with counties
showing yellow or red indicating their R0 is above one (labels). Estimates are
made using all importations through December of 2016, and assuming a single
transmission event in both November and December.
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Figure 4.11: Posterior R0 estimates for Texas counties for each month using
historic temperature data for running estimation procedure and priors. Fill
color indicates the estimated Median or 99 percentile estimate for that county
for the given month, with counties showing yellow or red indicating their R0

is above one (labels). Estimates are made using all importations through
December of 2016, and assuming a single transmission event in November.
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Figure 4.12: Sensitivity analysis of posterior R0 estimates for each county.
Each point indicates a county-month posterior R0 estimate under different es-
timation scenarios. The x-axis value for all points is determined by the baseline
scenario where posterior R0 estimates consider only a single case detected in
the November. The y-axis value is based on three sensitivity scenarios: (1)
posterior estimates assuming no secondary transmission (dark grey), (2) five
cases of secondary transmission in November (black), or (3) a single case of
secondary transmission, but increased overall importations (light grey). Points
falling above the black dashed line indicate that that a given scenario increases
posterior R0 estimates compared to baseline estimates, and points below the
line indicate the opposite. Estimates are compared for the median (left), and
the 99th percentile (right) of the county-month distributions. Posterior R0

estimates increase if more secondary transmission is assumed, and decrease if
less secondary transmission occurs, or is the absolute number of importations
is increased.
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[49] Eve Dubé, Maryline Vivion, and Noni E. MacDonald. Vaccine hesitancy,

vaccine refusal and the anti-vaccine movement: Influence, impact and

implications. Expert Review of Vaccines, 14(1):99–117, 2014.

[50] Mark R. Duffy, Tai-Ho Chen, W. Thane Hancock, Ann M. Powers, Ja-

cob L. Kool, Robert S. Lanciotti, Moses Pretrick, Maria Marfel, Stacey

Holzbauer, Christine Dubray, Laurent Guillaumot, Anne Griggs, Mar-

tin Bel, Amy J. Lambert, Janeen Laven, Olga Kosoy, Amanda Panella,

Brad J. Biggerstaff, Marc Fischer, and Edward B. Hayes. Zika virus

outbreak on Yap Island, Federated States of Micronesia. New Eng J

Med [Internet], 360(24):2536–2543, Jun [cited 2016 Apr 4] 2009.

[51] Lizette O. Durand, Patrick Glew, Diane Gross, Matthew Kasper, Su-

san Trock, Inkyu K. Kim, Joseph S. Bresee, Ruben Donis, Timothy M.

Uyeki, Marc-Alain Widdowson, and Eduardo Azziz-Baumgartner. Tim-

ing of Influenza A(H5N1) in Poultry and Humans and Seasonal In-

fluenza Activity Worldwide, 2004-2013. Emerging Infectious Diseases,

21(2):202–208, feb 2015.

[52] Ali H Ellebedy, Florian Krammer, Gui-Mei Li, Matthew S Miller, Christo-

pher Chiu, Jens Wrammert, Cathy Y Chang, Carl W Davis, Megan Mc-

Causland, Rivka Elbein, Srilatha Edupuganti, Paul Spearman, Sarah F

Andrews, Patrick C Wilson, Adolfo Garćıa-Sastre, Mark J Mulligan,

Aneesh K Mehta, Peter Palese, and Rafi Ahmed. Induction of broadly

cross-reactive antibody responses to the influenza HA stem region follow-

114



ing H5N1 vaccination in humans. Proceedings of the National Academy

of Sciences of the United States of America, 111(36):13133–8, 2014.

[53] Luis E Escobar and Meggan E Craft. Advances and limitations of

disease biogeography using ecological niche modeling. Front. Microbiol.,

7:1174, August 2016.

[54] Stephen Eubank, Hasan Guclu, V. S. Anil Kumar, Madhav V. Marathe,

Aravind Srinivasan, Zoltán Toroczkai, and Nan Wang. Modelling dis-

ease outbreaks in realistic urban social networks. Nature, 429(6988):180–

184, may 2004.

[55] Michelle V Evans, Tad A Dallas, Barbara A Han, Courtney C Murdock,

and John M Drake. Data-driven identification of potential zika virus

vectors. eLife, 6:e22053, feb 2017.

[56] FAO-OIE-WHO. GLEWS+ The Joint FAO-OIE-WHO Global Early

Warning System for health threats and emerging risks at the human-

animal-ecosystems interface. 2013.

[57] Neil M Ferguson, Alison P. Galvani, and Robin M Bush. Ecologi-

cal and immunological determinants of influenza evolution. Nature,

422(6930):428–433, mar 2003.
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