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Abstract 

Extensive research implicates the cerebellum as a forward internal model that predicts the 

sensory consequences of motor commands and compares them to their actual feedback, 

generating prediction errors that guide motor learning. However, lacking is a 

characterization of how information relevant to motor control and sensory prediction 

error is processed by cerebellar neurons. Of major interest is the contribution of Purkinje 

cells, the primary output neurons of the cerebellar cortex, and their two activity 

modalities: simple and complex spike discharges. The dominant hypothesis is that 

complex spikes serve as the sole error signal in the cerebellar cortex. However, no current 

hypotheses fully explain or are completely consistent with the spectrum of previous 

experimental observations. 

 

To address these major issues, Purkinje cell activity was recorded during a pseudo-

random manual tracking task requiring the continuous monitoring and correction for 

errors. The first hypothesis tested by this thesis was whether climbing fiber discharge 

controls the information present in the simple spike firing. During tracking, complex 

spikes trigger robust and rapid changes in the simple spike modulation with limb 

kinematics and performance errors. Moreover, control of performance error information 

by climbing fiber discharge is followed by improved tracking performance, suggesting 

that it is highly important for optimizing behavior. 
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A second hypothesis tested was whether climbing fiber discharge is evoked by errors in 

movement. Instead, complex spikes are modulated predictively with behavior. 

Additionally, complex spikes are not evoked as a result of a specific ‘event’ as has been 

previously suggested. Together, this suggests a novel function of complex spikes, in 

which climbing fibers continuously optimize the information in the simple spike firing in 

advance of changes in behavior. 

 

A third hypothesis tested is whether the simple spike discharge is responsible for 

encoding the sensory prediction errors crucial for online motor control. To address this, 

two novel manipulations of visual feedback during pseudo-random tracking were 

implemented to assess whether disrupting sensory information pertinent to motor error 

prediction and feedback modulates simple spike activity. During these manipulations, the 

simple spike modulation with behavior is consistent with the predictive and feedback 

components of sensory prediction error. Together, this thesis addresses a major 

outstanding question in the field of cerebellar physiology and develops a novel 

hypothesis about the interaction between the two activity modalities of Purkinje cells.  
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CHAPTER 1: CEREBELLAR CONTRIBUTION TO ONLINE MOTOR 

CONTROL 

 

Introduction 

“The cerebellum is important for the production of smooth, continuous movements.” This 

statement, in some form or another, can be found in just about any neuroscience or 

anatomy textbook. Such straightforward language can leave the impression that the 

contribution of the cerebellum to behavior is minimal and clearly defined, relegated 

purely to abstract tasks such as tracing a line. However, generating a movement that is 

both ‘smooth’ and ‘continuous’ is not as trivial as it seems. For a motor action to be both 

‘smooth’ and ‘continuous,’ its performer must be able to anticipate and correct for any 

potential errors, either externally or internally generated, without altering the trajectory of 

the movement itself. Additionally, the movement must be effective and accurate in often 

ever changing environments. Consider the ballet dancer who produces graceful and 

effortless movements no matter the venue, costume, or state of her pointe shoes (all of 

which will vary considerably from rehearsal to the stage). During a performance, she will 

be required to make numerous corrective movements in order to maintain her balance and 

control, but a well-trained ballerina will implement those corrections so well that they are 

imperceptible to the average audience member. The complexity of neural control of 

smooth, continuous movement is evident in the fact that despite major progress in 

computer science and engineering, even the most advanced robotics fail to replicate the 

coordinated movements that most humans accomplish with relative ease. Thus, while the 
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role of the cerebellum in behavior is often reduced to a simple, one sentence description, 

the functions to which the cerebellum contributes are critical for everyday life.  

 

While understanding the mechanisms by which the cerebellum controls movement is of 

course essential for the treatment of cerebellar disease, its role in optimizing behavior is 

also of relevance to fields such as robotics, neural prosthetics, and other brain computer 

interfaces. However, lacking is a characterization of how information relevant to motor 

control is processed by cerebellar neurons. Of major interest is the contribution of 

Purkinje cells, the primary output neurons of the cerebellar cortex. These cells are unique 

in that they exhibit two functionally different activity modalities: the complex spike (CS), 

resulting from a powerful depolarization by climbing fiber activation, and the high 

frequency simple spikes (SSs), which are modulated by input from over 100,000 parallel 

fibers. A major outstanding question in cerebellar physiology is the role of and 

interaction between SS and CS discharges, but no current hypotheses fully explain or are 

completely consistent with the spectrum of previous experimental observations. Thus, a 

crucial issue in understanding cerebellar function is the characterization of CS and SS 

activity during motor control. 

 

Excerpts from this chapter have been published in The Neuronal Codes of the Cerebellum 

(Popa LS*, Streng ML*, Ebner TJ. “Signaling of predictive and feedback information in 

Purkinje cell simple spike activity.” In The Neuronal Codes of the Cerebellum.  Heck, D., 

Editor, Elsevier, New York, NY. 2015.) 
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Online control of movement  

Effective motor control requires the continuous monitoring and correcting of errors in an 

ever-changing environment (Todorov and Jordan, 2002;Berniker and Kording, 

2008;Shadmehr et al., 2010;Wolpert and Ghahramani, 2000). For example, taking a drink 

from a glass will require different motor commands depending on how full the glass is, 

but the central nervous system accomplishes this task with relative ease. Early views 

suggested that error correction is accomplished by closed-loop control, in which motor 

commands are updated by sensory feedback (Miall and Wolpert, 1996;Wolpert and 

Ghahramani, 2000;Shadmehr et al., 2010;Kawato, 1999). However, the inherent delays 

present in sensory feedback loops render such control subject to discontinuous, over-

corrective movements. One highly relatable example of this sensation is the experience of 

trying to reach the desired water temperature in the shower (Shadmehr et al., 2010). The 

delay between a given turn of the temperature controller and the perceived change in 

temperature can often result in alternating between undesirably hot and cold water.  

 

Additionally, error correction occurs more rapidly than (Flanagan and Wing, 1997) and 

even in the absence of sensory feedback (Shadmehr et al., 2010;Xu-Wilson et al., 

2009;Golla et al., 2008;Wagner and Smith, 2008). This is particularly evident in the fine 

control of brief, ballistic eye movements known as saccades, which are too short in 

duration for visual feedback to be processed while the eyes are in flight (Keller and 

Robinson, 1971;Guthrie et al., 1983).  In humans, repeated saccades to a visual target will 
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result in a decrease in the velocity of the eye movement over time. In these conditions, 

however, the motor command is altered in flight resulting in a prolonged movement of 

the eyes, allowing for an overall accurate movement towards the visual target (Xu-

Wilson et al., 2009). Somehow, the central nervous system is able to anticipate a potential 

error caused by the decreased eye velocity and implement a corrective movement during 

the ongoing motor command, despite the fact that no visual feedback about eye position 

relative to the visual target is available. Similarly, in the context of the shower example 

described above, the desired temperature can only be reached effectively when one is 

able to predict a change in water temperature that will result from a given turn of the 

controller. Thus, these observations necessitate alternative mechanisms for error 

detection and correction.  

 

One solution is that the central nervous system accomplishes this rapid correction for 

potential errors by predicting the consequences of motor commands using a forward 

internal model (Flanagan et al., 2003;Morton and Bastian, 2006;Robinson, 1975;Xu-

Wilson et al., 2009;Maschke et al., 2004;Shadmehr et al., 2010;Imamizu et al., 

2000;Diedrichsen et al., 2005). The forward internal model receives information about 

the current state as well as an efference copy of a motor command, using the two to 

estimate a prediction as to the outcome of that motor command. If the predicted sensory 

consequences are incongruent with the behavioral goal, a corrective movement is 

implemented prior to the sensory feedback of the actual movement itself. The ability of 

the central nervous system to compute and integrate predictions into behavior is crucial 
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for effective interaction with the world. For example, consider the common procedure of 

making a right-hand turn at a red light when driving. If there are cars approaching from 

the left on the intersecting street, it is necessary for the driver to make a prediction as to 

whether the time it takes the approaching car to enter the intersection exceeds that which 

is required to complete the necessary motor commands (e.g., rotating the steering wheel 

to the right, pressing the gas pedal, etc) for a right hand turn. If not, it would be safest to 

wait until the oncoming car passes through to make the turn. If so, then the driver can 

successfully make the right turn on red. In this example, relying on the delayed sensory 

feedback alone would be woefully insufficient when considering the potential 

consequences of a poorly executed turn into traffic.  

 

While the feedforward predictions generated by a forward internal model are helpful for 

familiar behaviors, a crucial aspect is the ability to adapt to changing conditions and 

novel environments and alter predictions accordingly. One mechanism by which this 

adaptation can be achieved is by comparing the feedforward predictions to the actual 

sensory consequences of the movement. This integration of prediction and feedback, 

known as a sensory prediction error, serves as a measure of accuracy used both to 

improve subsequent predictions and guide future actions. Extensive evidence suggests 

that humans use sensory prediction errors, particularly during learning and adaptation 

(Wallman and Fuchs, 1998;Noto and Robinson, 2001;Mazzoni and Krakauer, 

2006;Shadmehr et al., 2010). Although other error-related signals such as the actual 

corrective movements (Kawato, 1996;Miles and Lisberger, 1981), or sensory feedback at 
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the end of a movement contribute (Magescas and Prablanc, 2006;Cameron et al., 2010), 

sensory prediction errors appear to have a dominant role in controlling movement and 

motor learning (Held and Freedman, 1963;Wolpert and Ghahramani, 2000;Izawa and 

Shadmehr, 2011;Mazzoni and Krakauer, 2006;Gaveau et al., 2014;Taylor and Ivry, 

2012;Shadmehr et al., 2010). 

 

Cerebellum as a candidate for the forward internal model 

While extensive evidence suggests that the central nervous system acquires and 

implements forward internal models in order to achieve effective motor control, the 

mechanisms by which this is accomplished remain unknown. The cerebellum has long 

been implicated in control of movement, beginning in part with Dr. Gordon Holmes’ 

studies on World War I soliders with damage to the cerebellum, which was somewhat 

common due to insufficient helmet coverage of the skull overlying the cerebellum and 

visual cortex. Dr. Holmes observed that patients with cerebellar damage exhibited 

hypotonia and disorders of voluntary movement (Holmes, 1939). More recent studies 

have demonstrated that patients with cerebellar damage often have difficulties adapting to 

repeated disruptions of movement, suggesting a failure to compensate for predictable 

errors (Maschke et al., 2004;Smith and Shadmehr, 2005). These findings raise the 

possibility that the cerebellum plays a role in implementing forward internal models. In 

support of this, disruption of cerebellar activity by transcranial magnetic stimulation 

results in inaccurate reaches towards a target (Miall et al., 2007). During this task, 

subjects were instructed to make a reach towards and intercept a moving target on a 
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screen. Intriguingly, in trials in which the stimulation was applied, the subjects’ reaches 

would have been accurate if made at earlier time points (e.g. arm position prior to 

stimulation onset).  These results suggest that disrupting cerebellar activity impaired the 

generation of internal predictions, requiring the motor commands be planned and initiated 

using delayed sensory feedback information about arm position. 

 

In addition to its role in generating feedforward predictions about movements, substantial 

clinical evidence implicates the cerebellum in processing sensory prediction errors during 

adaptation. For example, one task in which accuracy is highly dependent on sensory 

prediction error-driven adaptation is throwing an object towards a visual target. Once we 

take aim and throw an object, like a dart towards a dart board, the trajectory can’t be 

altered in flight. Accuracy can only be improved by comparing the outcome of the throw 

to where we originally intended the dart to land, and then adjust subsequent throws 

accordingly. Flexibility is crucial in tasks such as this, as motor commands will differ 

based on how far away the target is or the weight of the object being thrown. Sensory 

prediction error can also be artificially induced by subjecting a participant to prism 

goggles that shift the visual field to the left or right. Initially, the subject will exhibit 

errors in the same direction of the visual transformation. After repeated throws, and thus 

exposure to sensory prediction error, however, the subject will learn to correct for this 

visual field shift (Tseng et al., 2007). That the resulting adaptation is sensory prediction 

error dependent is evident immediately after the prism goggles are removed. Instead of 

producing accurate throws, subjects will make errors in the opposite direction of the 
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visual transformation. This suggests that participants are not merely making a cognitive 

strategy adjustment, but rather updating their motor commands based on previous 

experience. Importantly, patients with damage to the cerebellum do not exhibit the same 

adaptation and after-effects. Even after repeated throws, they fail to adapt to the visual 

transformation induced by prism goggles (Tseng et al., 2007). However, after removal of 

the goggles, the patients return to baseline performance, indicating the sensory prediction 

error induced by the prism goggles has not been integrated into their subsequent motor 

commands (Tseng et al., 2007). 

 

Numerous other studies also support the hypothesis that the cerebellum serves as a 

forward internal model and processes sensory prediction errors (Wolpert et al., 

1998;Shadmehr et al., 2010;Pasalar et al., 2006;Shadmehr and Krakauer, 2008;Kawato 

and Wolpert, 1998). As described above, saccades are too brief in duration to allow for 

sensory input in flight (Keller and Robinson, 1971;Guthrie et al., 1983), and thus must be 

controlled by internal, sensory prediction error-mediated mechanisms (Shadmehr et al., 

2010;Chen-Harris et al., 2008;Robinson, 1975). Patients with cerebellar damage, 

including those with spinocerebellar ataxia type 6 that primarily results in Purkinje cell 

degeneration, are unable to adapt to variability in saccade motor commands (Xu-Wilson 

et al., 2009;Golla et al., 2008). In healthy subjects, increases in cerebellar activation are 

observed during errors (Diedrichsen et al., 2005;Ide and Li, 2011;Imamizu et al., 2000), 

such as the divergence between movement goal and the actual consequences induced by 

an unexpected force field (Schlerf et al., 2012). In a reaching experiment, healthy 
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subjects given an explicit instruction on how to compensate for a visuomotor rotation 

showed a gradual decay in performance consistent with an implicit motor adaptation 

process driven by sensory prediction errors (Mazzoni and Krakauer, 2006). In a similar 

experiment, patients suffering from spinocerebellar ataxia exhibited an attenuated 

reduction in performance compared to the controls (Taylor et al., 2010), suggesting the 

cerebellum is required for processing of the sensory prediction errors. Together, these 

results strongly implicate the cerebellum in the generation and use of sensory prediction 

errors in motor adaption.   

 

Evidence for cerebellar processing of sensory prediction errors also extends to the 

sensory domain. Increased cerebellar activation occurs with omission of an expected 

somatosensory stimulus (Tesche and Karhu, 2000). On a single cell level, neurons in the 

cerebellar nuclei, the targets of Purkinje cells, encode temporal aspects of stimulus 

omission (Ohmae et al., 2013). Clearly, there is a need to understand how sensory 

prediction errors are represented in the firing of cerebellar neurons, but the mechanisms 

by which sensory prediction error is encoded on the cellular level remain unknown. 

 

Anatomy and physiology of the cerebellar cortex 

The cerebellar cortex exhibits relatively homogeneous cytoarchitecture. In particular, the 

cortex is characterized by primary output neurons known as Purkinje cells. Purkinje cells 

of the cerebellar cortex receive two main inputs, climbing fibers and parallel fibers 

(Eccles et al., 1967;Ito, 1984). The dendritic tree of a mature Purkinje cell receives 
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extensive glutamatergic synaptic input from a single climbing fiber originating from the 

inferior olive. Climbing fiber activation of a Purkinje cell produces a powerful post-

synaptic depolarization, which generates Ca2+ spikes throughout the entire dendritic tree 

and a CS, which consists of a large Na+ somatic spike and a burst of smaller spikelets 

(Llinas and Sugimori, 1980;Davie et al., 2008). Parallel fibers provide the second main 

input with over 100,000 individual glutamatergic synapses on each Purkinje cell. Parallel 

fibers produce small, post-synaptic excitatory responses in Purkinje cells and modulate 

the intrinsic SS discharge (Raman and Bean, 1997).  CS discharge occurs at a low 

frequency (~0.5-2.0/sec) compared to the high frequency SS discharge (~50-150/sec). 

 

Climbing fiber discharge in the cerebellar cortex 

The primary hypothesis has been that climbing fiber input provides motor error signals. 

(Gilbert and Thach, 1977;Kitazawa et al., 1998;Ito, 2000;Ito, 2013;Stone and Lisberger, 

1986;Kawato and Gomi, 1992).  This view is a central tenet of the Marr-Albus-Ito 

hypothesis in which long-term depression (LTD) of parallel fiber-Purkinje cell synapse 

results from co-activation of parallel fiber and climbing fiber inputs (Marr, 1969;Albus, 

1971;Ito and Kano, 1982).  This framework for understanding the role of the climbing 

fiber input and CSs is supported by numerous studies.  CS discharge is coupled with 

errors during saccades, smooth pursuit and ocular following (Barmack and Simpson, 

1980;Graf et al., 1988;Kobayashi et al., 1998;Medina and Lisberger, 2008;Soetedjo and 

Fuchs, 2006).  Undoubtedly, CS discharge in response to retinal slip provides one of the 

strongest demonstrations of error encoding (Graf et al., 1988;Kobayashi et al., 
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1998;Barmack and Shojaku, 1995). For example, CS modulation during a phenomenon 

known as the ocular following response, or the reflexive eye tracking movement evoked 

by the motion of a visual stimulus, has been extensively characterized. During the ocular 

following response, accurate tracking of the visual stimulus requires generating motor 

commands to smoothly move the eyes at the same velocity as the stimulus in order to 

stabilize the image on the retina. Inaccurate motor commands will result in the movement 

of the stimulus across the retina, an eye movement error referred to as retinal slip. In the 

vermis, CS firing rates are correlated linearly with retinal slip error during the ocular 

following response, such that increases in retinal slip velocity are associated with 

increases in CS discharge (Kobayashi et al., 1998). During reaching, CSs are modulated 

by unexpected loads (Gilbert and Thach, 1977), movement redirection (Kim et al., 1987), 

and end point errors (Kitazawa et al., 1998).  Additionally, CS discharge is also 

associated with perturbations applied during locomotion (Kim et al., 1987;Lou and 

Bloedel, 1986;Andersson and Armstrong, 1987). 

 

However, other studies found limited support for the classical view, suggesting that error 

processing in the cerebellum is more multi-faceted than originally proposed. For 

example, as described above, CS discharge is associated with end point errors during 

saccades. One method by which saccade end point errors can be experimentally induced 

is by changing the location of a target to which the subject has been instructed to make a 

saccade while the eyes are in flight (Catz et al., 2005). Over time, the subject will learn to 

predict the change in target location, prolonging the motor command such that the eyes 
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are able to successfully reach the target end point. During this type of saccadic 

adaptation, the classical error encoding hypothesis predicts that CSs would be highly 

modulated early during adaptation, when errors are maximal. As the animal learns to 

predict the change in target position and errors are reduced, the CS modulation should  

decrease. However, the opposite relationship is observed: CS discharge in the oculomotor 

vermis increases late in adaptation when errors have decreased greatly (Catz et al., 

2005;Dash et al., 2010;Prsa and Thier, 2011).   

 

Similarly, perturbations and performance errors during reaching in cats do not evoke 

responses in inferior olive neurons, the origin of the climbing fiber projection (Horn et 

al., 1996). CS modulation could not be related to direction or speed errors during 

reaching (Fu et al., 1997b;Ebner et al., 2002). Even when climbing fiber input is 

associated with errors during reaching movements, the CSs occur only in a small 

percentage of trials (Ojakangas and Ebner, 1994;Kitazawa et al., 1998). A similar 

dissociation between CS modulation and error amplitude occurs during reach adaptation 

to a visuo-motor perturbation (Ojakangas and Ebner, 1992).  In the oculomotor vermis, 

CS error modulation with saccades appears limited to direction errors, and whether they 

encode error magnitude is unclear (Soetedjo and Fuchs, 2006;Soetedjo et al., 2008a). 

Therefore, the precision, specificity and extent to which CSs encode error information 

remains unknown.  
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Moreover, the motor learning/error hypothesis does not account for spontaneous CS 

firing and the observation that removal of climbing fiber input results in a dramatic 

change in the SS firing pattern and a cerebellar-like motor disorder (Llinas et al., 

1975;Horn et al., 2013;Colin et al., 1980;Montarolo et al., 1982;Cerminara and Rawson, 

2004). Therefore, climbing fiber input must play a role in on-line cerebellar function and 

motor control. Several hypotheses on CS contribution to real time motor control 

emphasize short-term changes in Purkinje cell excitability. The “gain change” and “bi-

stability” hypotheses suggest CSs control the responses of a Purkinje cell to parallel fiber 

inputs (Ebner et al., 1983) and switch between ‘up’ and ‘down’ SS firing states 

(Loewenstein et al., 2005;Yartsev et al., 2009;McKay et al., 2007), respectively. Also, 

during behavior CSs and SSs exhibit a reciprocal firing pattern that is mediated by 

climbing fiber input (Graf et al., 1988;Simpson et al., 1995;Yakhnitsa and Barmack, 

2006;Badura et al., 2013). The rhythmicity and synchronicity of climbing fibers suggests 

a role in movement timing independent of their action on SS firing (Welsh et al., 

1995;Lang et al., 1999;Llinas, 2013). However, in the awake, behaving animal the 

evidence for strong CS rhythmicity or that CSs act to control gain or bi-stability is 

controversial (Simpson et al., 1995;Engbers et al., 2013;Schonewille et al., 2006;Keating 

and Thach, 1995). Therefore, lacking is a comprehensive understanding of climbing fiber 

function and its role in cerebellar information processing.  

 

One potentially unifying hypothesis is that the continuous climbing fiber input to the 

cerebellar cortex acts to control the sensitivity of Purkinje cells to particular aspects of 
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the movement. Similar to the gain change hypothesis, climbing fiber discharge may 

increase or decrease the SS sensitivity, but manifest as a change in the information 

present in the SS discharge rather than the overall firing rates This would also provide a 

framework for both spontaneous and evoked climbing fiber discharge, with the 

spontaneous CSs acting to maintain Purkinje cell sensitivity, and the evoked CS firing 

tuning Purkinje cell sensitivity with respect to external changes during movement. 

 

However, it is still unclear which aspects of movement best modulate CS activity. As 

described above, CSs are not invariably activated by errors in movement. In a recent 

study in which monkeys adapted to a transient mechanical perturbation during reach, the 

rather weak CS modulation evoked could not account for either the learning or the 

changes in SS firing (Hewitt et al., 2015). Intriguingly, the majority of CS modulation 

occurred at movement onset rather than the timing of the limb perturbation (and thus 

error), suggesting a role for climbing fiber activity in motor control beyond error 

processing. One potential hypothesis is that rather than serving as a pure error ‘event’ 

signal, CS firing is modulated linearly with behavior, with the probability of CS firing 

increasing as the magnitude of the behavioral change increases. In this view, CS firing 

could be evoked by both movement kinematics and performance errors. Finally, the 

observation of increased CS firing at the timing of movement onset also suggests a role 

for CS modulation as a predictive rather than feedback signal. 

 

Purkinje cell simple spike discharge 



15 

 

The SS discharge of Purkinje cells modulates with a host of movement-related 

parameters. Kinematic signaling in the SS discharge has been reported across a wide 

range of motor behaviors involving different effectors. During arm movements, the SS 

firing of Purkinje cells in the intermediate zone of lobules IV-VI of awake monkeys is 

correlated with limb position, direction, speed, and movement distance (Harvey et al., 

1977;Thach, 1970;Fortier et al., 1989;Fu et al., 1997a;Coltz et al., 1999;Roitman et al., 

2005;Pasalar et al., 2006;Marple-Horvat and Stein, 1987;Mano and Yamamoto, 

1980;Hewitt et al., 2011).  The importance of kinematic signaling in the cerebellar cortex 

is evident in that limb position and velocity are found in the SS discharge during passive 

limb movements in anesthetized or decerebrate cats and rats (Valle et al., 2000;Kolb et 

al., 1987;Giaquinta et al., 2000;Rubia and Kolb, 1978). During the vestibulo-ocular reflex 

(VOR), smooth pursuit, ocular following or saccades, eye movement kinematics have 

been documented in the SS activity of Purkinje cells in the floccular complex and 

oculomotor vermis (Stone and Lisberger, 1990a;Shidara et al., 1993;Medina and 

Lisberger, 2009;Gomi et al., 1998;Dash et al., 2012;Laurens et al., 2013;Miles et al., 

1980a;Miles et al., 1980b;Lisberger et al., 1994). 

 

Purkinje cell SS discharge has also been associated with parameters related to task 

performance. For example, induced dissociation between cursor and hand movement by 

coordinate transformation shows that in some Purkinje cells, SSs encode cursor position 

independent of hand kinematics (Liu et al., 2003). SS discharge modulates with target 

motion during both reaching and tracking tasks (Miles et al., 2006;Cerminara et al., 
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2009;Ebner and Fu, 1997). These observations suggest that, in addition to a robust 

encoding of movement parameters, SS discharge also contains representations of task-

specific parameters relevant to the behavioral goal.  

 

The broad range of signals observed in the discharge of Purkinje cells makes constructing 

a unified theory of the cerebellar cortical function elusive. One theoretical framework 

that can account for the different signals is that Purkinje cells serve as the output of the 

forward internal model (Miall and Wolpert, 1996;Pasalar et al., 2006;Shadmehr et al., 

2010;Kawato and Wolpert, 1998). If Purkinje cells are the output of a forward model, 

multiple types of behavioral signals are integrated to predict the consequences of 

movement commands. In this view, information about movement kinematics, kinetics, 

timing, and errors are all relevant to generating predictions about the upcoming motor 

behavior. Consistent with a forward internal model, SS discharge tends to lead effector 

kinematics during movements (Roitman et al., 2005;Marple-Horvat and Stein, 

1987;Gomi et al., 1998;Shidara et al., 1993;Stone and Lisberger, 1990a;Fu et al., 

1997a;Dash et al., 2013;Hewitt et al., 2011). The SS modulation leading kinematics of 

limb movements is independent of the muscle forces necessary to complete a movement. 

This was demonstrated during a circular tracking task, in which rhesus macaques were 

trained to track a circularly moving target with a manipulandum under normal conditions 

and with both viscous and elastic forces applied to the manipulandum (Pasalar et al., 

2006). This resulted in limb movements that were identical in kinematics but differed 

significantly in their dynamics. Importantly, the SS modulation did not significantly 
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differ in any of the conditions, indicating that the output of Purkinje cells faithfully 

encodes the predicted kinematics of a movement, consistent with the output of a forward 

internal model.  

 

Encoding of predictive and feedback information in the cerebellar cortex 

There is growing evidence to suggest that Purkinje cell SS discharge also encodes error 

feedback information. For example, the changes in SS output following smooth pursuit 

adaptation appear sufficient to drive learning (Kahlon and Lisberger, 2000). In the 

posterior vermis, SS firing provides a neural correlate of retinal slip (Kase et al., 1979).  

Cerebellar-dependent VOR adaptation can be driven by instructive signals in the SS 

firing in the absence of climbing fiber input (Ke et al., 2009). Increasing VOR gain 

appears dependent on CS-driven LTD while gain decrease depends on non-CS-driven 

long-term potentiation (LTP) mechanisms (Boyden et al., 2004;Boyden and Raymond, 

2003). Moreover, while optogenetic activation of climbing fibers can induce VOR 

adaptation (Kimpo et al., 2014), similar findings result from optogenetically driven 

increases in SS discharge (Nguyen-Vu et al., 2013). SS discharge modulates with trial 

success or failure in a reaching task (Greger and Norris, 2005), and with direction and 

speed errors during manual circular tracking (Roitman et al., 2009). Together, these 

observations suggest a need for reevaluating the classical hypothesis that CS discharge is 

the only or primary channel carrying motor error information in the cerebellum. If 

Purkinje cell firing represents the output of a forward internal model, a major outstanding 
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question is whether the SS firing contains the predictive and feedback information 

necessary for the computation of sensory prediction error. 

 

Most previous studies relied on highly predictable tasks, confounding predictions of 

motor commands with trial planning, and generating stereotypical and time-locked 

movements that result in highly correlated kinematic parameters (Paninski et al., 

2004;Ebner et al., 2011). Also, task performance and errors are typically highly 

correlated with kinematics. These constraints limit a thorough understanding of the 

kinematic and error signals in cerebellar neurons. Pseudo-random tracking allows for the 

examination of the interactions among CS discharge, SS firing, and behavior in which the 

correlations between parameters or learning are reduced. Accurate performance on this 

task requires continuously monitoring the salient behavioral parameters and adjusting for 

mismatches in hand movement relative to target movement (Hewitt et al., 2011;Popa et 

al., 2012). This task subverts overly learned, stereotypic behaviors, such as reaching and 

saccades, in which movement parameters are correlated (Paninski et al., 2004;Soetedjo et 

al., 2008b). Additionally, tracking a pseudo-randomly moving target is challenging and 

requires continuous evaluation of motor performance and implementation of corrective 

movements. 

 

During pseudo-random tracking, both kinematic and performance error signaling were 

evaluated in the SS firing of Purkinje cells (Hewitt et al., 2011;Popa et al., 2012). The 

kinematic parameters included position (X and Y), velocity (Vx and Vy) of the arm/hand.  
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Performance errors were defined as the divergence between the current movement goal, 

approximated by the target center, and the consequences of the motor commands, 

indicated by cursor movement. Performance errors evaluated included cursor position 

relative to the target center (XE and YE). The error parameters provide a continuous 

measure of the difference between cursor movement relative to the target center rather 

than discrete errors, such as when cursor strays outside the target boundary.  Not only are 

these “natural” measures of motor performance for this tracking task, the behavior shows 

that the monkeys strive to minimize these errors and maintain the cursor in the target 

center (Hewitt et al., 2011;Popa et al., 2012).   

  

Temporal linear regressions were used to fit the SS firing to the behavioral parameters to 

determine the lead/lag (τ-value) between Purkinje cell activity and each parameter 

(Hewitt et al., 2011;Popa et al., 2012).  Although this type of regression analysis has been 

used previously (Ashe and Georgopoulos, 1994;Roitman et al., 2009;Medina and 

Lisberger, 2009;Gomi et al., 1998), a novel refinement was incorporated such that for 

each parameter the SS variability associated with the other kinematic and error 

parameters was removed. This was done for each parameter by first determining the 

firing residuals from a multi-linear model of SS firing that included the kinematic and 

error parameters not being evaluated.  The firing residuals were then regressed against the 

parameter of interest, determining the coefficient of determination (R2) and regression 

coefficient (βs) as functions of time independent of other parameters. In a majority of 

Purkinje cells recorded, SS discharge encodes a dual representation of errors at both lead 
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and lag timing. The representations have opposing effects on the SS firing, consistent 

with the predictive and feedback signals necessary to compute sensory prediction errors 

(Popa et al., 2012;Popa et al., 2014). Across the population, the SS firing can be used to 

reconstruct the behavior by inverting the linear regression equation, indicating that the SS 

firing contains a highly accurate representation of task performance. However, these 

correlations between SS firing and behavior were observed during optimal conditions in 

highly trained animals. Thus, it is necessary to evaluate whether disruptions of either 

predictive or feedback information about performance errors and kinematics also has 

appropriate effects on the SS firing. 

 

Hypotheses and rationale 

As described above, the cerebellum is essential for online control of movement and 

extensive evidence suggests that it serves as a forward internal model. The SS discharge 

of Purkinje cells and their sole climbing fiber afferents modulate with a host of 

movement related parameters, but a full characterization of their interactions and roles in 

motor control remains elusive. While previous research has suggested a role of SS firing 

in encoding predictive and feedback information about performance errors during online 

motor control (Popa et al., 2012;Popa et al., 2014), the influence of climbing fiber 

discharge remains unclear. Therefore, we first evaluated the roles of both spontaneous 

and evoked climbing fiber discharge during our online motor control task, pseudo-

random tracking. Pseudo-random tracking also provided the opportunity to investigate 

CS modulation in a task in which both the kinematic and error workspaces are more 
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extensively explored. We also tested whether the SS modulation with kinematics and 

performance errors is consistent with the predictive and feedback information from a 

forward internal model by introducing novel manipulations of visual feedback and 

characterizing the effects on SS and CS firing. The experiments and results are described 

in Chapters 2-4. 

 

Hypothesis 1: CS discharge tunes the sensitivity of SS firing to behavior by altering the 

SS encoding of performance errors and kinematics during pseudo-random tracking 

 

Hypothesis 2: CS firing is also modulated by kinematics and performance errors, but 

rather than being evoked by error ‘events’ as has been described previously, it is linearly 

modulated with behavior. 

 

Hypothesis 3: SS modulation during online motor control encodes the predictive and 

feedback components of sensory prediction error. 
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CHAPTER 2: CLIMBING FIBERS CONTROL PURKINJE CELL 

REPRESENTATIONS OF BEHAVIOR 

 

Introduction 

The distinctive morphological and physiological properties of the climbing fiber-Purkinje 

cell synapse suggest a unique functional role in the cerebellum (Eccles et al., 1967;Ito, 

1984). Climbing fiber afferents originate solely from the inferior olive and provide one of 

two main inputs to the cerebellar cortex. Firing at low rates (~0.5-2.0/sec), a climbing 

fiber produces a powerful depolarization of a single Purkinje cell through hundreds of 

glutamatergic synapses along the proximal dendritic tree. This results in a complex spike 

(CS) consisting of a large Na+ somatic spike accompanied by a burst of smaller spikelets 

as well as Ca2+ spikes throughout the entire dendritic tree (Llinas and Sugimori, 

1980;Davie et al., 2008). In contrast, a Purkinje cell receives input from over 100,000 

parallel fibers that modulate the high frequency simple spike (SS) discharge.  

 

Requisite for elucidating the principles of cerebellar function is an understanding of the 

interaction between CS discharge and SS firing. Much attention has focused on the long-

term effect of CS discharge on SS firing. In the Marr-Albus-Ito hypothesis, long-term 

depression (LTD) of parallel fiber-Purkinje cell synapses resulting from co-activation of 

parallel and climbing fiber inputs underlies motor learning (for reviews see(Marr, 

1969;Albus, 1971;Ito and Kano, 1982)).  In this context, CSs are evoked by errors and 

provide a teaching signal that modifies subsequent SS activity to correct the behavior 
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(Gilbert and Thach, 1977;Kitazawa et al., 1998;Yang and Lisberger, 2014;Medina and 

Lisberger, 2008). While substantial evidence supports a role for climbing fibers in error 

signaling and motor learning, CSs are not invariably activated by errors (for review 

see(Popa et al., 2015)). Also, CSs are not essential for cerebellar motor learning 

(Nguyen-Vu et al., 2013;Ke et al., 2009;Hewitt et al., 2015), SS discharge carries robust 

error signals (Popa et al., 2012), and there are significant challenges to the role of 

cerebellar LTD in motor learning (Schonewille et al., 2011).  

 

Moreover, the motor learning/error hypothesis does not account for spontaneous CS 

firing and the observation that removal of climbing fiber input results in an immediate 

and dramatic change in the SS firing pattern and a cerebellar-like motor disorder (Llinas 

et al., 1975;Horn et al., 2013;Colin et al., 1980;Montarolo et al., 1982;Cerminara and 

Rawson, 2004). Also, spontaneous CSs have been proposed to perturb movements as a 

probe for initiating plasticity (Bouvier et al., 2016). Therefore, climbing fiber input must 

play a role in on-line cerebellar function and motor control. Several hypotheses on CS 

contribution to real time motor control emphasize short-term changes in Purkinje cell 

excitability. The “gain change” and “bi-stability” hypotheses suggest CSs control the 

responses of a Purkinje cell to parallel fiber inputs (Ebner et al., 1983) and switch 

between ‘up’ and ‘down’ SS firing states (Loewenstein et al., 2005;Yartsev et al., 

2009;McKay et al., 2007), respectively. Also, during behavior CSs and SSs exhibit a 

reciprocal firing pattern that is mediated by climbing fiber input (Graf et al., 

1988;Simpson et al., 1995;Yakhnitsa and Barmack, 2006;Badura et al., 2013). The 
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rhythmicity and synchronicity of climbing fibers suggests a role in movement timing 

independent of their action on SS firing (Welsh et al., 1995;Lang et al., 1999;Llinas, 

2013). However, in the awake, behaving animal the evidence for strong CS rhythmicity 

or that CSs act to control gain or bi-stability is controversial (Simpson et al., 

1995;Engbers et al., 2013;Schonewille et al., 2006;Keating and Thach, 1995). Therefore, 

lacking is a comprehensive understanding of climbing fiber function and its role in 

cerebellar information processing.  

 

This study evaluates the modulation of SS representations by climbing fiber input. To 

obtain a comprehensive characterization of the interactions among CS discharge, SS 

firing and behavior, we tested this question in a pseudo-random tracking task.  The key 

observation is that CSs are followed rapidly by large increases and decreases in the 

signals encoded by the SS discharge. These novel findings suggest the global 

depolarization of a Purkinje cell by climbing fiber input allows for a change in the 

information conveyed by the SS firing.  

 

The content of this chapter has been published in the Journal of Neuroscience (Streng 

ML, Popa LS, Ebner TJ (2017) Climbing fibers control Purkinje cell representations of 

behavior. J Neurosci 37:1997-2009) 

  

Materials and Methods 
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Behavioral and electrophysiological data were obtained from two rhesus monkeys 

(Macaca mulatta; female 6.3 kg age 15; male 6.8 kg age 8) during normal daytime hours. 

Animals were housed in single cages and kept on a 12hr light/dark cycle. All animal 

experimentation was approved by the Institutional Animal Care and Use Committee of 

the University of Minnesota and conducted in accordance with the guidelines of the 

National Institutes of Health.   

 

Random tracking 

This study utilized a previously described pseudo-random tracking task (Hewitt et al., 

2011;Popa et al., 2012;Paninski et al., 2004) and, therefore, the paradigm is only briefly 

detailed here. Two rhesus monkeys were trained to use a robotic manipulandum 

(InMotion²) that controls a cross-shaped cursor to track a circular shaped target (2.5 cm 

diameter) on a computer screen (Fig. 1A).  The paradigm started with an initial hold 

inside a stationary target for a random period of time (1000 – 2000 msec).  The initial 

target position on the screen was also random.  Next, the target moved for 6-10 s along a 

trajectory selected randomly from 100 trajectories defined a priori. Pseudo-random target 

paths were generated from a sum of sine waves. Target speed was randomly varied so 

that the average speed was approximately 4 cm/s  and conformed to the two-thirds power 

law (Viviani and Terzuolo, 1982;Lacquaniti et al., 1983). The trajectories were low-pass 

filtered and selected to avoid sharp turns and large changes in speed, and ended with a 

final hold period of at least 1000 msec. The paradigm required that the monkey maintain 

the cursor within the target, and allowed only brief excursions outside the target (<500 
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msec). Pseudo-random tracking has several advantages compared to other tasks including 

providing more comprehensive and uniform coverage of parameter workspaces and 

dissociating kinematic from error parameters (Paninski et al., 2004;Hewitt et al., 2011). 

Hand (X and Y, based on cursor position) and target (Xtg, Ytg) position were sampled at 

200 Hz. Cursor velocity (VX, VY) was derived by numerical differentiation and position 

error (XE, YE) was defined as the difference between cursor and target positions (see 

Fig. 1B). 

 

Surgical procedures, electrophysiological recordings and data collection 

Head restraint hardware and a recording chamber targeting lobules IV-VI of the 

intermediate and lateral cerebellar zones were chronically implanted over the ipsilateral 

parietal cortex in each animal using aseptic techniques and full surgical anesthesia. The 

positions of the electrodes were confirmed by radiographic imaging techniques that 

combined a CT scan of the skull with an MRI of the cerebellum (Hewitt et al., 2011). 

After full recovery from chamber implantation surgery, extracellular recordings were 

obtained during normal daytime hours using Pt-Ir electrodes with parylene C insulation 

(0.8-1.5 MΩ impedance, Alpha Omega Engineering, Nazareth, Israel). Purkinje cells in 

lobules IV-VI of the intermediate and lateral cerebellar zones were targeted following 

previously established methods.(Hewitt et al., 2015) After conventional amplification and 

filtering (30 Hz-3 kHz band pass, 60 Hz notch), SSs were discriminated online using the 

Multiple Spike Detector System (Alpha Omega Engineering, Nazareth, Israel). Resulting 

spike trains were digitized and stored at 1 kHz. The raw electrophysiological data was 
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also digitized and stored at 32 kHz. CSs were sorted offline using a combination of 

software and manual confirmation (Hewitt et al., 2015). Using the fractional interval 

method, the SS trains were transformed to a continuous firing rate in 5 msec bins. 

Importantly, the SS firing rates were not filtered in order to minimize autocorrelation 

artifacts. For display and analyses, the mean firing rate for each trial was subtracted from 

the instantaneous firing rate. The behavioral parameters were filtered (low pass (4th order 

Butterworth with a 5 Hz cut-off). The analyses evaluating the relation among the SS 

firing and the behavioral variables were restricted to the tracking period.  

 

Linear modeling of simple spike firing irrespective of complex spike occurrence 

The first analysis determined for each Purkinje cell the presence and timing of kinematic 

and error signals in the SS firing during tracking irrespective of the time of CS discharge. 

This involved fitting the SS firing to each kinematic and error parameters using the 

temporal linear regressions on firing residuals, as described previously (Popa et al., 

2012;Hewitt et al., 2015). For each Purkinje cell this analysis was performed for the 

tracking periods across all trials and is referred to as the non-CS aligned linear regression.  

For a given parameter (e.g. VX), SS variability associated with the rest of the parameters 

was first removed by determining the firing residuals from a multi-linear model that fitted 

the SS firing to the other kinematic and error parameters (e.g., X,Y,VY, XE and YE)(see 

(Popa et al., 2012)). The resulting SS firing residuals were regressed against the 

individual parameters at 20 msec intervals from -500 to 500 msec, determining the R2 

and regression coefficient (β) temporal profiles as functions of the lead/lag (τ-value). The 
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significance of the R2 at each τ-value was determined against a noise distribution defined 

as the mean ± 3SD of the R2 values obtained from 100 repeats of the same regression 

analysis performed on firing and behavioral data uncoupled through random trial 

shuffling. For each parameter, significant correlations were defined if a local maximum 

of the R2 profile at either predictive or feedback timings exceeded the trial shuffled noise 

level, and the timing (τ-value) of the peak lead and/or lag was determined (Fig. 1C). 

 

Complex spike-aligned analysis of simple spike encoding 

CS-coupled changes in encoding were determined for each significant SS representation 

identified by the non-CS aligned linear regression described above. Next the SS firing 

and the behavioral data were aligned to the times of CS firing for the entire recording 

session (i.e., all trials) as diagramed in Fig. 1D1. Then the behavioral parameter was 

shifted relative to the SS firing by the peak lead or lag (τ) determined in the non-CS 

aligned regression analysis (Fig. 1D2). To visualize and quantify the CS-coupled 

changes, the data was partitioned into 64 (8 x 8) equal bins of 0.5 cm ranging from -2 to 2 

cm for XE and YE, 3.0 cm/sec ranging from -12 to 12 cm/s for VX and VY, and  6 cm 

from -6 to 6 cm for X and Y, and averaged using a sliding window of 200 msec in 20 

msec intervals. The CS-aligned SS firing was averaged in these bins. This partitioning 

allowed construction of SS firing maps aligned on all CS occurrences at each time 

interval for position, velocity and position error, respectively (see Fig. 2A), and was also 

used for the CS-aligned regression analysis described below.  
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Using this shifted and partitioned behavior, the SS firing was regressed against the 

behavioral parameter using the same sliding window of 200 msec in ten 20 msec intervals 

to quantify the SS encoding strength relative to CS occurrence (Fig. 1D3). To account for 

the sliding window, the first interval for -200 msec in the pre-CS period was obtained by 

regressing the firing with behavior data from aligned -400 to -200 msec, and the final pre-

CS interval at -20 msec using the data aligned from -220 to -20 msec. The same 

procedure was used for the post-CS data, with the first post-CS step based on 20 to 220 

msec to avoid the brief inactivation period after CS discharge and prevent any overlap 

between pre- and post-CS periods. The sliding window continued in 20 msec intervals, 

with the final post-CS interval using the data aligned from 200 to 400 msec. Because the 

first 20 msec interval following the CS was omitted, we elected to omit the 20 msec 

interval before the CS to balance the subsequent statistical testing of differences between 

the pre- and post-CS periods. Therefore, the pre- and post-CS regression analyses were 

each determined using > 10 sliding regression windows of 200 msec duration at 20 msec 

intervals. The CS-aligned regression analysis resulted in R2 and β temporal profiles 

ranging from -200 to 200 msec before and after CSs for each significantly encoded 

behavioral parameter (bottom R2 plots in Fig. 1D3). We also assessed whether changes in 

encoding occurred for parameters that were not significantly modulated based on the 

results of the non-CS aligned linear regression analysis.  For these data, we preformed the 

same analysis except that the behavioral data was not shifted relative to the SS firing (i.e., 

τ of 0 msec).  
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The significance of the CS-coupled changes in encoding was determined by comparing 

the difference between mean R2 pre- vs mean R2 post-CS to a distribution of pre versus 

post R2 changes obtained from 1000 CS shuffled R2 profiles. The data for this CS-

shuffled analysis were restricted to time periods that did not overlap with the window 

used for the CS-coupled regression analysis. The latter ensured that any random changes 

in encoding were not being driven by overlap with actual CSs. The analysis focused on 

identifying changes in the R2 profile relative to the timing of CSs. While sharp transitions 

in SS encoding strength were tightly coupled to CS discharge, the time course to reach 

the peak change in R2 ranged from 100 to 200 msec (for examples, see Fig. 2B and Fig. 

4B). Thus, the mean differences in encoding were computed by collapsing the data across 

two different time windows: 100 msec pre-100 msec post (pre-CS window = -100:-20 

msec, post-CS window =20:100 msec) CS and 200 msec pre-200 msec post CS (pre-CS 

window = -200:-20 msec, post-CS window = 20:200 msec). A CS-coupled change in 

encoding was determined to be significant if it was above mean ± 2SD of the CS-shuffled 

distribution for either the ± 100 msec or ± 200 msec windows. Importantly, the majority 

of significant encoding changes (>70%) met the criteria for significance at both the ± 100 

msec and ± 200 msec windows. 

 

For the representations with significant CS-coupled changes in encoding, we also 

quantified the changes in sensitivity by computing the difference between the absolute 

value of the mean post-CS β-values and the absolute value of the mean pre-CS β-values 

(|βpost| - |βpre|). Positive changes indicate increases in sensitivity while negative changes 
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indicate decreases in sensitivity. Changes in sensitivity were determined using the time 

window that produced the significant change in encoding strength. 

 

Figure 1:  Experimental paradigm and regression analysis. A) Rhesus macaques use a 

robotic manipulandum to control a cross-shaped cursor to track a circular target (2.5 cm 

diameter) on a computer screen (Hewitt et al., 2011;Paninski et al., 2004;Popa et al., 

2012). B) Kinematic parameters (X, Y, VX, VY) are based on cursor motion (red trace). 

Position error (XE and YE) is the difference between cursor (X, Y) and target center 

position (Xtg, Ytg). C) Timing of SS signals encoding a parameter was based on the local 

maxima of the coefficient of determination (R2) profile determined using the temporal 

linear regression analysis described previously(Popa et al., 2012). D1) Effects of CS 

discharge on the SS encoding was assessed by aligning the SS firing (dark blue) and the 

parameter (green) to CS occurrences. D2) Behavior was then shifted by the peak lead or 

lag (τ-peak) obtained from the non-CS aligned linear regression (C). D3) Linear 

regressions were performed 400 msec before and after CS discharge using a 20 msec step 

sliding window of 200 msec, generating pre (blue) and post (red) R2 profiles that quantify 

encoding strength.  
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It needs to be emphasized that the temporal linear regression analysis used is highly 

sensitive to the coverage of the parameter workspace, which is minimal on the single CS 

level or over the small number of CSs that occur in a single trial compared to the non-CS 

aligned regression analysis. Therefore, a meaningful regression analysis on how the SS 

encoding changes for a single CS or trial was not possible. Instead, the regression 

analysis over all trials shows the average effect of the CS discharge on the signals in the 

SS firing. 

 

Relationship between complex spikes and behavior 

The relationship between CS firing and each behavioral parameter was assessed using CS 

spike triggered averaging. The average behavioral trace of each parameter was computed 

from 500 msec before to 500 msec after each CS occurrence in 20 msec intervals. We 

elected to use a 500 msec time window to make certain we captured all significant 

changes in behavior both before and after CS discharge. The noise level was determined 

by randomly shuffling the inter-spike interval of CS times within a trial (ISI-shuffled, 50 

repeats) and computing the mean and standard deviation of the ISI-shuffled CS-triggered 

average behavioral trace. For this analysis, we tested for peak changes in behavior 

relative to the time of CS firing instead of averaging across pre- and post-CS intervals. As 

such, we utilized a more stringent criterion for significance. CS-triggered average 

behavioral parameters with local minima or maxima exceeding a threshold of mean ± 

3SD of the CS shuffled noise distribution were considered significant. The magnitude of 

the behavioral change and timing of the change relative to CS discharge were determined, 
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with negative times indicating behavioral changes occurring prior to and positive times 

indicating behavioral changes occurring after CS discharge. 

 

Relationship between complex spikes and simple spike firing properties 

The relationship between CS discharge and SS firing was assessed using three methods. 

For all three analyses described here, we evaluated changes in SS firing properties using 

both ±200 and ±500 msec windows relative to CS firing, with the post-CS window 

beginning after the mean + 1SD of the CS-induced inactivation period. Again, the 

rationale for using two time periods was to fully assess whether the SS firing changes in 

relation to the CS occurrence.  One Purkinje cell was excluded from these analyses due to 

variability in the inactivation period that exceeded 1000 msec. However, removal of this 

Purkinje cell did not affect the analysis and conclusions, as this neuron did not exhibit 

any significant CS-coupled changes in SS encoding. First, we compared the mean SS 

firing pre- and post-CS to evaluate whether CS firing produced significant changes in SS 

firing rate across the population. Significant changes in SS firing across the population 

were assessed using Student’s paired t-test (p < 0.05). Second, we assessed CS-coupled 

changes in SS firing rate for each Purkinje cell by comparing each 20 msec interval of 

CS-aligned SS firing in the post-CS interval to the mean ± 3SD of the CS-aligned SS 

firing in the pre-CS interval. Finally, to test for changes in SS firing variability, the Fano 

factor (Fano, 1947), defined as the ratio of variance over the mean, was calculated. 

Significant changes in the Fano factor before and after CS occurrence were evaluated for 

each Purkinje cell also using a paired t-test (p < 0.05).  
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Properties of complex spike discharge and the encoding changes 

Additional analyses assessed the properties of the CS discharge in relation to the changes 

in SS encoding.  The first of these analyses assessed whether the time course of the 

encoding changes can be attributed to CS discharge at t = 0 msec, rather than a 

combination of subsequent CSs. We addressed this by quantifying the number and 

probability of CS discharges in each bin for the ± 200 msec CS-aligned windows. 

Rhythmicity in CS discharge has been proposed as essential feature of CS function 

(Welsh et al., 1995;Lang et al., 1999;Llinas, 2013).  To test for rhythmicity, the 

autocorrelation of the CS discharge was computed over a long time scale (-2000 to 2000 

msec) to account for the low CS firing rates in a majority of Purkinje cells. Significance 

was determined by a change in correlation outside the mean ± 3SD of the autocorrelation 

computed from randomized CS timing (50 repeats). Additionally, the peak amplitudes of 

the autocorrelation in the 8-12 Hz range, the frequency of the intrinsic rhythmicity in CS 

firing, were compared to that of randomized CSs.  

 

 

Results 

Complex spikes modulate simple spike representations of kinematics and errors 

Forty Purkinje cells were recorded from two rhesus macaques performing a visually 

guided, manual pseudo-random tracking task (Fig. 1A, B)(Hewitt et al., 2011;Popa et al., 

2012). The overall goal of the analyses is to characterize the effect of CS discharge on the 
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motor signals present in SS firing, specifically on the encoding of position (X and Y), 

velocity (VX and VY) and position error (XE and YE). The first step in the analyses 

determined the significant SS representations and their optimal τ-values as identified by 

the non-CS aligned regression analysis (see Fig. 1C and Materials and Methods). Next, 

the SS firing and the behavioral data were aligned to the times of CS firing for the entire 

recording session (i.e., all trials) as diagramed in Fig. 1D1. For each significant parameter 

identified, the parameter was shifted relative to the SS firing by the peak lead or lag (τ-

values) determined in the non-CS aligned regression analysis (Fig. 1D2). The alignment 

on CSs involved a large number of occurrences, as the long duration of the random 

tracking trials (6-10 sec) had an average of 8.06 ± 2.87 CSs per trial. These analyses 

allowed for visualization of the SS modulation in relation to climbing fiber input by 

generating firing maps from -200 before to 200 msec after CS occurrence for parameters 

determined to have significant encoding based on the non-CS aligned regression analysis.  

Figure 2A presents an example of CS-coupled increase in SS sensitivity to VY. The 

firing maps reveal weak SS modulation with VY prior to CS occurrence (t = 0). 

Following CS discharge, the SS modulation with velocity greatly increases (Fig. 2A).  

 

The CS-aligned SS firing and shifted behavior were also used to perform the CS-aligned 

linear regressions that quantified the changes in the SS representations before and after 

the CSs (Fig. 1D3). The strength and timing of SS modulation are reflected in the R2 

temporal profile (Fig. 2B), and the changes in SS sensitivity reflected in the β profile 

(Fig. 2C). The R2 and β profiles (Fig. 2B and C) mirror the strong increase in VY 
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encoding visualized in the SS firing maps. The significance of CS-coupled changes in 

encoding was assessed by comparing the difference between the mean R2 for pre- and 

post-CS encoding (Fig. 2D, cyan bar) to a distribution obtained from 1000 profiles 

aligned to randomized CS times selected outside the real CS time windows, which 

provides a measure of the encoding changes occurring independent of the climbing fiber 

input (Fig. 2D, grey bars). Moreover, the skew of this random distribution can 

characterize the overall encoding stability of an individual cell. For this example, the 

change in encoding (R2
post - R

2
pre  = 0.38) shows the increase in modulation with VY falls 

far to the right of the noise distribution, exceeding the significance criterion of the mean 

± 2SD (p < 0.05). Intriguingly, the distribution of encoding changes occurring outside the 

CS window skews negatively (-0.12  0.12) in contrast to the CS-coupled increase. The 

CS-coupled increase in the SS encoding is followed by a significant change in VY (Fig. 

2E). However, the significant change in VY occurs after the onset of encoding increase, 

demonstrating that the change in VY representation cannot be attributed to differences in 

kinematics prior to CS occurrence.  

 

The SS firing rates are similar before and after CS discharge with the exception of the 

inactivation period (Fig. 2F). Therefore, the change in SS encoding is not due to an 

alteration in firing rate, instead reflects an increase in sensitivity to VY as demonstrated 

by the β profile in which the modulation with VY increases markedly following the CS. 

Finally, the change in encoding is not influenced by other CSs or CS rhythmicity in the 

±200 msec window. The probability of another CS within this period is extremely low, 
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with only a very few CSs occurring on the boundaries of the window, reaching a 

maximum probability of only 1%. Furthermore, there is little evidence of CS rhythmicity 

(Fig. 2G).  

 

Figure 2:  CS-coupled increase in SS encoding.  A) Firing maps illustrating an example 

of Purkinje cell SS modulation with velocity (VY) relative to CS discharge (t = 0). B) 

Encoding strength (R2) of VY both pre- (blue trace) and post-CS (red trace). C) 

Sensitivity (β) of the same Purkinje cell to VY both pre- (blue trace) and post-CS (red 

trace). D) Magnitude of the CS-coupled change in SS encoding strength as quantified by 

the difference between R2
post – R2

pre  in the +/- 200 msec window (marked by the light 

blue line) relative to the distribution of changes in encoding strength aligned to 

randomized CS times selected outside the actual CS window (grey bars). Note that the 

light blue light in this and subsequent figures only denotes the magnitude of the change in 

encoding (position along the x-axis) and not a probability (y-axis).  E) CS-triggered 

average of VY (light blue trace) relative to the VY variability from CS-shuffled ISIs 

(mean ± 3SD, grey region). F) CS-triggered average of SS firing (blue trace) relative to 

the SS variability from CS-shuffled ISIs (mean ± 3SD, grey region). Note the brief firing 

rate reduction (t = 0) due to CS inactivation of the SS discharge. G) Distribution of 

additional CSs in the -200 to 200 msec intervals centered on CS occurrence (CS 

probability on left axis, CS count on right axis).   
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Both increases and decreases in SS encoding were observed for all the parameters 

evaluated. Figure 3 illustrates an example of a CS-coupled decrease in SS encoding for a 

Purkinje cell modulated with YE (Fig. 3A-D). Over the 200 msec prior to a CS, the firing 

maps show strong SS modulation with YE. After CS discharge, both the strength of the 

encoding and the sensitivity are significantly attenuated (Fig. 3B-D, R2
post - R

2
pre = -0.26).  

As for the velocity example described above, encoding changes at randomized time 

points tend to oppose the CS-coupled changes in SS encoding, with a mean change of 

0.07  0.16. For this example, the change in encoding is not explained by any significant 

variations in behavior (Fig. 3E) or SS firing relative to CS (Fig. 3F). As in the previous 

example, the time course of the encoding change cannot be explained by other CSs in the 

±200 msec window or CS rhythmicity (Fig. 3G). 
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Figure 3: CS-coupled decrease in SS encoding. a) Firing maps of another Purkinje cell 

with a change in SS modulation with position errors (YE) relative to CS occurrence (t = 

0). Black circle denotes target edge. B) Encoding strength (R2) of YE before (blue trace) 

and after (red trace) CS discharge. C) Sensitivity (β) of the cell to YE, before (blue trace) 

and after (red trace) CS discharge. D) Magnitude of the CS-coupled change in SS 

encoding strength in the +/- 200 msec window (marked by the light blue line) relative to 

the distribution of profiles aligned to randomized CS times selected outside the actual CS 

window (grey bars). E) CS-triggered average of YE (purple trace) relative to the YE 

variability from CS shuffled ISIs (mean ± 3SD, grey region). F) CS-triggered average SS 

firing (blue trace) relative to the SS variability from CS shuffled ISIs (mean ± 3SD, grey 

region) showing SS inactivation following CSs.  G) Distribution of additional CSs in the 

-200 to 200 msec intervals centered on CS occurrence (CS probability on left axis, CS 

count on right axis).  

 

In some Purkinje cells, the CS-coupled changes in SS encoding are characterized as a 

shift in the preferred area of the parameter workspace represented. For example, Fig. 4A 

illustrates a Purkinje cell in which the SS firing is strongly modulated by X position in 
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the pre-CS window. After CS occurrence, the SS modulation shifts with Y position 

strongly encoded. This change in SS modulation is due to a sharp decrease in X encoding 

(R2
post - R

2
pre = -0.23, Fig. 4B, C) and sensitivity (Fig. 4E) and simultaneous increase in Y 

encoding (R2
post - R

2
pre = 0.25) and sensitivity. As with the previous two examples, this 

shift in encoding cannot be explained by significant changes in either parameter (Fig. 

4F), SS firing rates (Fig. 4D) or CS rhythmicity (Fig. 4G).  

 

 

Figure 4: CS-coupled switch in SS encoding. A) Firing maps illustrating an example 

cell SS modulation with position relative to CS occurrence (t = 0).  B). Pre-and post-CS 

encoding strength of X and Y (conventions as in Figures 2 and 3).  C) Magnitude of the 

CS-coupled change in SS encoding of X (left) and Y (right) in the +/- 100 msec window 

(marked by the light blue lines) relative to the distribution of profiles aligned to 

randomized CS times selected outside the actual CS window (grey bars).  D) CS-

triggered average of SS firing (blue trace) relative to the SS variability CS shuffled ISIs 

(mean ± 3SD, grey region).  E) Pre-and post-CS SS firing sensitivity for this cell to X 

(left, green trace) and Y (right) (conventions as in Figures 2 and 3). F) CS-triggered 

average of X (left) and Y (right) relative to the variability from CS-shuffled ISIs (mean ± 

3SD, grey region). G) Occurrence of additional CSs in the ± 200 msec window centered 

on CS discharge (CS probability on left axis, CS count on right axis). 
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CS-coupled changes in Purkinje cell sensitivity to errors and kinematics 

Changes in predictive and feedback SS kinematic and error encoding following a CS are 

relatively common, occurring in 22/40 Purkinje cells. The changes in the strength of 

encoding across the population were assessed by separately averaging the significantly 

increased and decreased R2 profiles for error, position, and velocity (Fig. 5A-F).  The 

population of R2 profiles demonstrate that the transitions in SS encoding, both decreases 

and increases, are tightly timed to CS occurrence. Changes in SS sensitivity were 

quantified by calculating the difference between the mean absolute values of the 

regression coefficients both post- and pre-CS (Fig. 5G). All significant increases in 

encoding were associated with an increase in sensitivity (Fig. 5G, red bars), and all but 

one of the significant decreases in encoding were associated with a decrease in sensitivity 

(Fig. 5G, blue bars). The population summary indicates that most of the SS 

representations exhibit a positive or negative skew in the distribution of encoding 

changes not associated with CS discharge. As shown for the examples in Figures 2 and 3, 

the direction of CS-coupled encoding tends to oppose these average changes. Across the 

population, these encoding changes not associated with CS discharge show a significant 

negative correlation with the CS-coupled encoding changes ( = -0.51, p = 0.003) (Fig. 

5H). 
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Figure 5: Population summary of CS-coupled changes in encoding and sensitivity. 
A-F) Mean of the pre- and post- CS R2 profiles for each parameter with a significant CS-

coupled encoding change (blue: pre-CS, red: post-CS) ± S.E.M (grey areas). Increases 

and decreases in encoding are grouped separately. The “n” refers to the number of 

profiles.  G) Population distribution of changes in SS sensitivity with significant CS-

coupled changes in encoding (blue bars: encoding decreases, red bars: encoding 

increases). H) Distribution of the magnitude of CS-coupled encoding changes vs. mean 

magnitude of encoding changes not associated with CS firing for all significant CS-

coupled encoding changes across the population (n = 40). Proportions for increases and 

decreases were calculated separately. The Pearson correlation coefficient is included and 

the line depicts the significant trend of the distribution (p = 0.003).   
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The CS-coupled changes in SS encoding described above (Figs. 2-5) are based on 

kinematic or position error signals encoded throughout the entire tracking period as 

determined by the non-CS aligned linear regression analysis. We also examined CS-

coupled encoding changes in the SS firing that did not meet the significance criteria for 

encoding in the non-CS aligned regression analysis. In 32% of Purkinje cells (n=13), 

climbing fiber discharge significantly alters the encoding of at least one parameter (Fig. 

6), finding both increases (5 parameters) and decreases (9 parameters).  Changes in 

signaling are not due to changes in pre- or post-CS discharge SS firing or CS rhythmicity 

(Fig. 6D-F), and increases and decreases in encoding are associated with increases and 

decreases in sensitivity, respectively (Fig. 6I). CS-coupled changes in encoding also tend 

to oppose encoding changes not associated with CS discharge. When combined with the 

CS-coupled changes in encoding described in Figures 2-5, this inverse relationship is 

significant ( = -0.498, p = 0.002).  

 

Overall, CS discharge was followed by a significant alteration in 53 SS representations in 

67% of Purkinje cells (n = 27), an average of approximately 2 representations per neuron. 

The CS-coupled changes include 19 increases (18 Purkinje cells), and 18 decreases (16 

Purkinje cells). In the remaining 16 profiles (8 Purkinje cells), the CS-coupled changes 

involved a paired increase and decrease, manifested as a shift in the preferred area of the 

parameter workspace represented (e.g. Fig. 4). Together, these results illustrate that CS-

coupled changes in SS encoding are common during pseudo-random tracking. 
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Figure 6: CS-coupled changes in encoding of parameters not initially determined to 

be significant. A) Encoding strength (R2) of X positon before (blue trace) and after (red 

trace) CS occurrence for an example Purkinje cell. B) Sensitivity (β) of same cell to X, 

before (blue trace) and after (red trace) CS discharge. C) Magnitude of the CS-coupled 

change in SS encoding strength in the +/- 200 msec window (marked by the light blue 

bar) relative to the distribution of profiles aligned to randomized CS times selected 

outside the real CS (grey bars. D) CS-triggered average of X (green trace) relative to the 

X variability from CS shuffled ISIs (mean ± 3SD, grey region). E) CS-triggered average 

SS firing (blue trace) relative to the SS variability from CS shuffled ISIs (mean ± 3SD, 

grey region). F) Distribution of additional CSs in the -200 to 200 msec intervals centered 

on CS occurrences (CS probability on left axis, CS count on right axis).  G-H) Mean of 

R2 profiles showing significant CS-coupled increases (G) and decreases (H) in encoding 

(mean ± SEM) with the number of profiles denoted by “n”.  I) Population distribution of 

changes in SS sensitivity to for these parameters with significant CS-coupled changes in 

encoding (blue bars: encoding decreases, red bars: encoding increases).  
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Complex spike modulation relative to behavior 

Given previous observations of task-evoked CS discharge (Gilbert and Thach, 

1977;Kitazawa et al., 1998;Medina and Lisberger, 2008;Yang and Lisberger, 2014), we 

assessed the relationship between changes in kinematics and position errors and CS firing 

using spike triggered averaging. A peak change in the CS-triggered average of behavior 

was considered statistically significant if it exceeded mean ± 3SD noise level as 

determined by shuffling the CS interspike intervals (ISIs) within a trial. Both the 

magnitude and timing of significant changes were determined (Fig. 7 B, C, E and F). In 

55% of Purkinje cells (n=22), there is a significant change in behavior in relation to CS 

occurrence (4 cells with a change in only kinematics, 2 with only errors and 16 with both 

kinematics and errors). Intriguingly, the CS discharge is not driven by behavior, as the 

behavioral changes occur predominantly after CS discharge with a mean lag of 172.5 ± 

98.65 msec for velocity and 100.9 ± 147.2 msec for errors (Fig. 7 C, F).  In only 9% of 

cases (n = 4 parameters) does the behavioral change occur prior to CS occurrence. 

Additionally, the magnitudes of CS-coupled changes are small compared to the overall 

behavioral variability, ranging from ± 1.88 cm/sec for velocity and ± 0.64 cm for position 

error (Fig. 7B,E). These small changes in behavior, while significant, are not likely to 

explain the large changes in sensitivity observed in the SS encoding. Moreover, the 

transitions in encoding are tightly coupled to CS occurrence whereas the behavioral 

changes occur predominantly after CS discharge. Together, these results suggest that 

neither the CSs nor the SS encoding changes are driven by position errors or changes in 
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kinematics. Instead, climbing fiber discharge is predictive of changes in behavior that 

may reflect corrective adjustments made during tracking. 

 

 

Figure 7: Relationships between CS firing and behavior. A, D) Examples of 

significant CS-coupled changes in VY (A, blue trace) and XE (D, purple trace) as 

determined by comparison to mean CS-shuffled control (black trace) ± 3 SD (grey 

region). B, E) Distributions of peak changes in velocity (B) and error (E) in the 22 

Purkinje cells with significant CS-coupled changes in behavior. In E, vertical dashed line 

marks the target edge. C, F) Timing of peak changes in velocity (C) and error (F) 

illustrating that behavioral changes lag CSs. 

 

Relationship between CS-coupled changes in SS encoding and behavior 

An essential question is the potential influence of the observed CS-coupled changes in SS 

encoding on the behavior.  Therefore, several analyses evaluated the relationship between 

CS-coupled modulation of SS encoding and changes in behavior. The first observation is 



47 

 

that a CS-coupled change in SS encoding of behavior (e.g., velocity) is associated with a 

CS-coupled change in that behavior (e.g. velocity) in 38% of profiles (41% of cells). As 

described, 91% of these changes in behavior occur after the CSs. Therefore, in a large 

fraction of the neurons SS encoding and changes in behavior are coupled. 

 

The next analysis was undertaken at the population level and assessed whether behavior 

changed in a consistent pattern following a CS-coupled change in SS encoding. For 

example, one possibility is that an increase in SS encoding of a kinematic parameter (e.g., 

VY) following CSs would be followed by a larger change in that parameter (e.g., VY) 

than for a decrease in the encoding of the same kinematic parameter. To test this 

possibility, we evaluated if a significant CS-coupled change (i.e. increase or decrease) in 

SS encoding for a behavioral parameter was related to a change in behavior defined as 

the magnitude of the mean difference in behavior pre versus post-CS (pre-CS time 

window: -500 to 0 msec, post-CS time window: 20 to 500 msec).  The changes in 

magnitude were normalized to the maximum change for each parameter. For this 

analysis, we grouped the four kinematic parameters together because of the relatively 

small number of SS-encoding changes for any single parameter. The results show that 

changes in kinematics following CSs correlate with the SS encoding of kinematics with 

CS-coupled increases in SS encoding of a kinematic parameter (e.g. VY) associated with 

a significantly larger change in that parameter (e.g. VY) than for CS-coupled decreases 

(Fig. 8A, unpaired Student’s t-test, t = 2.61, p = 0.014).  
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We also observed a significant relationship between SS encoding changes and position 

errors using the same analysis described above. Even a stronger relation was uncovered, 

as CS-coupled changes in position error encoding are inversely correlated with position 

errors, such that the magnitude of performance error decreases as the SS encoding of 

error increases (Fig. 8B, Pearson correlation, ρ = -0.57, p < 0.05). Together, these results 

suggest that CS-coupled encoding changes are important for upcoming changes in both 

kinematics and error performance.   

 

Figure 8: CS-coupled changes in SS encoding are associated with modulation of 

behavior. A) Mean + SD normalized changes in the kinematic parameters (meanpost-

meanpre) for significant CS-coupled increases and decreases in SS encoding. Asterisk (*) 

indicates p < 0.05, unpaired Student t-test.  B) Distribution of all normalized changes in 

the position error parameters (meanpost-meanpre) with the magnitude of significant CS-

coupled changes in SS encoding. The Pearson correlation coefficient is included and the 

line depicts the significant trend of the distribution (p = 0.017).  

 

Simple spike firing rates, variability and complex spike rhythmicity do not contribute to 

encoding changes 
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Because both short and long-term changes in SS firing have been observed following 

CSs(Ebner et al., 1983;Loewenstein et al., 2005;Yartsev et al., 2009), we evaluated 

whether alterations in SS firing rates can account for the CS-coupled changes in 

encoding. The effect of climbing fiber input on the SS firing rates was evaluated over 

both ±200 and ±500 msec windows (with the post CS window beginning after the mean + 

standard deviation of the inactivation period), determining whether at any time (20 msec 

bins) after a CS the SS firing differed from the pre-CS rates (mean ± 3 SD). A change in 

SS firing was only observed in 5 Purkinje cells. However, the changes in SS firing were 

single 20 msec bin transient fluctuations in all but one of the Purkinje cells. Additionally, 

there was not a significant relationship between pre- and post-CS SS firing rate across the 

population (Fig. 9A). Also assessed was whether the CS discharge altered the SS 

variability based on the Fano factor, defined as the ratio of the variance of firing over 

mean firing.  The Fano factor both pre and post CS were determined using the two 

different time windows defined above. Significant differences in the Fano factor pre 

versus post-CS occurrence were observed in only two Purkinje cells (p < 0.05, paired t-

test) in either window, suggesting that climbing fiber discharge has little effect on the 

variability of SS firing during pseudo-random tracking (Fig. 9B). Furthermore, both the 

increases and decreases in SS encoding persist well beyond the inactivation period (mean 

= 48.6 ± 85.7 msec, Fig. 9C), further demonstrating that CS-coupled changes in SS firing 

rates cannot underlie the changes in encoding.  
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A major hypothesis is that CS firing is intrinsically rhythmic (8-12 Hz) and used to 

organize movement timing (Welsh et al., 1995;Lang et al., 1999;Llinas, 2013), raising the 

possibility that CS rhythmicity plays a role in the changes in SS encoding. To address 

whether CS rhythmicity is involved, we determined the autocorrelation of CS discharge 

for each Purkinje cell over a window of ± 2000 msec, which encompasses the vast 

majority of CS firing with a mean rate of 0.85 ± 0.33 spikes/sec (Fig. 9D). There are no 

significant secondary peaks at any lag or lead for any Purkinje cell, including in the 8-12 

Hz range, as determined by comparison to the autocorrelation of randomized CS times. 

There is no CS rhythmicity in the population average (Fig. 9E).  Additionally, the lack of 

CS rhythmicity in the 8-12 Hz range is evident by the low correlation coefficient (ρ < 

0.005) and similarity to the shuffled results (Fig. 9F). As found for spontaneous activity 

in the awake monkey (Keating and Thach, 1995), there is no evidence for CS rhythmicity 

during pseudo-random tracking. Therefore, CS rhythmicity does not appear to play a role 

in the SS encoding changes. 
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Figure 9: No evidence for CS-associated changes in SS firing properties or CS 

rhythmicity. A) Mean SS firing before and after CS discharge based on the 200 msec 

pre-CS and 200 msec post-CS windows (mean + SD of the inactivation period) for 39/40 

recorded Purkinje cells.  As described in the Materials and Methods one cell was 

excluded due to high SS variability following the CS; however, this cell did not have 

significant SS encoding changes.  B) Mean Fano factor pre- and post-CS using the same 

window in A for 39/40 recorded Purkinje cells. C) Distribution of mean SS inactivation 

periods after CS discharge (Inact) for all 40 Purkinje cells. D) Histogram of mean CS 

firing rate for all 40 Purkinje cells. E) Population average of CS discharge autocorrelation 

(mean ± SD). Note the discontinuous Y-axis. F) Average maximum autocorrelation in the 

8-12 Hz range for CS firing (Real) and randomly shuffled control data (CS shuff). Error 

bars indicate SD.  

 

Discussion 

This study describes a novel function of climbing fiber input during on-line motor 

control. Following CS discharge, rapid increases or decreases occur in SS kinematic and 

error encoding. The CS-coupled changes in SS encoding are common and occur in all the 

parameters studied. Importantly, the encoding changes are not related to pre- or post-CS 

firing rates or variability, CS rhythmicity and firing rates, or the inactivation period. 
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Instead, the powerful synaptic action of a climbing fiber on a Purkinje cell alters the 

encoding of subsequent parallel fiber inputs, changing the sensitivity to behaviorally 

relevant measures. 

 

Pseudo-random tracking, complex spikes and changes in simple spike encoding 

Pseudo-random tracking allows for the examination of the interactions among CS 

discharge, SS firing, and behavior in which the correlations between parameters or 

learning are reduced. Accurate performance on this task requires continuously monitoring 

the salient behavioral parameters and adjusting for mismatches in hand movement 

relative to target movement (Hewitt et al., 2011;Popa et al., 2012). This task subverts 

overly learned, stereotypic behaviors, such as reaching and saccades, in which movement 

parameters are correlated (Paninski et al., 2004;Soetedjo et al., 2008b). It is possible that 

during more stereotypic movements, particular aspects of the behavior dominate the CS 

and SS modulation with little need to adjust the information in the SS firing. In contrast, 

pseudo-random tracking requires the monitoring of and altering the weights placed on 

multiple streams of continuously varying kinematic and error information. Therefore, the 

action of climbing fiber input on SS firing may be markedly different during low 

dimensional as opposed to high dimensional behaviors. 

 

Intriguingly, in this task CSs are not strongly driven by position errors or movement 

kinematics. Instead, the CSs consistently lead changes in behavior (Fig. 7A and D), a 

finding that is similar to an emerging view that CSs can provide predictive information 
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(Ohmae and Medina, 2015;Ten Brinke et al., 2015).  In approximately 41% of the cells in 

which the CSs preceded a change in kinematics or position error, the encoding of the 

parameter changed.  This finding offers a link to behavior in which CSs are evoked in 

anticipation of a change in behavior and there is a corresponding change in the encoding 

of the same parameter.  In this manner, the change in SS sensitivity that follows CSs 

provides a way for Purkinje cells to dynamically focus on the most salient aspects to the 

behavior.  

 

Changes in simple spike encoding are manifest as a change in sensitivity and not firing 

rate 

Several studies demonstrate that climbing fiber input exerts long-term control over the SS 

firing rate of Purkinje cells (Colin et al., 1980;Montarolo et al., 1982;Cerminara and 

Rawson, 2004) and the reciprocal pattern of SS modulation to mossy fiber input (Graf et 

al., 1988;Simpson et al., 1995;Yakhnitsa and Barmack, 2006;Badura et al., 2013). 

However, the observations described here emphasize a short term change in the SS 

encoding not related to SS firing rate. These encoding changes imply that a Purkinje cell 

responds differently to the same input following a CS.  Similar to the gain-change and bi-

stability hypotheses, the effects of a climbing fiber on a Purkinje cell’s excitability alters 

its response to subsequent parallel fiber inputs (Loewenstein et al., 2005;Yartsev et al., 

2009;Ebner et al., 1983;McKay et al., 2007). Also, similar to these previous hypotheses, 

the present findings show that a Purkinje cell changes its state and therefore, the 

information present in the SS firing. However, in contrast the large changes in the SS 
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encoding are not associated with marked changes in the SS firing rate. Only a small 

number of Purkinje neurons exhibited altered firing rates following CS discharge and in 

those cells the duration of the change was brief (~20 msec). Several mechanisms likely 

explain the lack of CS-coupled changes in SS firing rate.  First, as noted in the 

Introduction, CS-coupled changes in SS firing rates are prominent in reduced or 

anesthetized preparations but not in the awake animal (Schonewille et al., 2006;Engbers 

et al., 2013). Second, a large fraction of SS discharge is intrinsic, with parallel fiber input 

modulating this intrinsic discharge (Raman and Bean, 1997). Third, both increases and 

decreases in SS encoding occur in single cells. Therefore, in the awake animal, the net 

effect of climbing fiber input on the SS firing rate is limited. One interpretation of the 

constant SS firing rate is that climbing fiber activation reallocates the overall bandwidth 

of a Purkinje cell, with encoding decreases in some parameters to allow increases in 

others.  This reallocation of the bandwidth is consistent with the nearly equal number and 

magnitude of the increases and decreases (Fig. 5) and the paired increases and decreases 

in encoding observed in many cells (Fig. 4).   

 

Bi-directional changes in SS encoding 

Several mechanisms could explain why both increases and decreases in SS encoding 

occur. Recent studies show that climbing fiber activation of a Purkinje cell is not all-or-

none, but instead varies with the properties of the pre-synaptic climbing fiber burst, the 

excitability state of the Purkinje cell and the local inhibitory circuitry. The number of 

spikes in the incoming climbing fiber modulates the CS burst pattern, dendritic Ca2+ 



55 

 

spiking and parallel fiber-Purkinje cell synaptic plasticity (Bazzigaluppi et al., 

2012;Mathy et al., 2009). Post-synaptically, the Ca2+ response to climbing fiber input 

varies with stimulus properties and is enhanced when triggered by an unexpected sensory 

event, suggesting that the level of parallel fiber input modulates the Ca2+ response (Najafi 

et al., 2014b;Najafi et al., 2014a). The amplitude of the Ca2+ transients depends on the 

location in the dendritic tree, local membrane potential and concurrent parallel fiber input 

(Kitamura and Hausser, 2011). GABAergic inhibition generated by cerebellar 

interneurons locally modifies the conductance changes and Ca2+ fluxes evoked by 

climbing fiber input (Callaway et al., 1995;Kitamura and Hausser, 2011). Decreases in 

gain occur following a CS when high Ca2+ levels reduce parallel fiber input by activation 

of BK channels and/or endocannabinoid release (Brenowitz and Regehr, 2003;Rancz and 

Hausser, 2010) and modelling suggests gain increases occur with local increases in Ca2+ 

(Forrest, 2014). These same sources of variability in the response to climbing fiber input 

determine whether long-term facilitation or depression results at parallel fiber–Purkinje 

cell synapses (Coesmans et al., 2004;Rasmussen et al., 2013;Medina and Lisberger, 

2008). Also, the timing of climbing fiber discharge may differentially modulate parallel 

fiber input and thereby, determine the direction of synaptic potentiation (Piochon et al., 

2012;Suvrathan et al., 2016). Therefore, multiple factors regulate a Purkinje cell’s 

response to climbing fiber input that potentially underlie the bidirectional SS encoding 

changes. 

 

Do the complex spikes cause the change in simple spike encoding? 
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The present study does not prove unequivocally that the CSs produce the change in SS 

sensitivity. However, two findings support this view.  First, the changes in SS encoding 

are tightly coupled to and follow the occurrence of a CS, both in individual Purkinje cells 

(Figs. 2-4) and in the population (Fig. 5). Second, the CSs are rarely preceded by 

behavioral changes, also arguing against the notion that an unknown factor is driving the 

sensitivity recalibration (Fig. 7). However, these observations do not imply that the 

encoding changes are not related to the prior status of the SS representation in Purkinje 

cells. The direction of CS-coupled encoding changes tends to be in the opposite direction 

to the state of SS encoding not associated with CS discharge, with CS-coupled increases 

in encoding associated with net decreases in the shuffled data, and vice versa (Fig. 5H). 

Taken together, these observations suggest a role in online motor control in which the CS 

actively controls the sensitivity of a Purkinje cell, either in anticipation of a change in 

behavior or in response to an encoding state that is suboptimal. 

 

Complex spike-coupled changes in simple spike encoding reflect the need to adjust to 

constantly changing conditions 

The motor system produces highly accurate movements under constantly changing 

conditions and goals. To achieve this level of task performance, the motor system 

processes and uses different information including kinematics and errors. For example, 

the motor system as needed can include or exclude an internal gravitation model from 

estimations of target motion (Zago et al., 2004). That the cerebellum engages in 

switching among and utilizing multiple representations can be inferred from the temporal 



57 

 

and spatial overlap of activation patterns when subjects use different tools to perform 

similar tasks (Imamizu et al., 2004). Pseudo-random tracking requires a dynamic 

representation of behavior with constantly varying target kinematics and a continual 

effort to minimize performance errors. Consistent with the CSs playing a role, CS-

coupled increases in SS encoding of kinematics coincide with larger changes in 

kinematics than decreases in SS encoding. Furthermore, CS-coupled increases in error 

encoding correlate with decreases in performance errors. These observations suggest that 

climbing fiber input adjusts SS encoding in a manner consistent with upcoming changes 

in behavior. The changes in SS encoding show that the motor information at the level of a 

single Purkinje cell is highly dynamic and suggest that climbing fiber input is continually 

updating the encoding state of Purkinje cells.  
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CHAPTER 3: CLIMBING FIBERS PREDICT MOVEMENT KINEMATICS AND 

PERFORMANCE ERRORS 

  

Introduction 

Purkinje cells of the cerebellar cortex receive two main inputs, climbing fibers and 

parallel fibers (Eccles et al., 1967;Ito, 1984). The dendritic tree of a mature Purkinje cell 

receives extensive glutamatergic synaptic input from a single climbing fiber originating 

from the inferior olive. Climbing fiber activation of a Purkinje cell produces a powerful 

post-synaptic depolarization, which generates Ca2+ spikes throughout the entire dendritic 

tree and a complex spike (CS), which consists of a large Na+ somatic spike and a burst of 

smaller spikelets (Llinas and Sugimori, 1980;Davie et al., 2008). Parallel fibers provide 

the second main input with over 100,000 individual glutamatergic synapses on each 

Purkinje cell. Parallel fibers produce small, post-synaptic excitatory responses in Purkinje 

cells and modulate the intrinsic simple spike (SS) discharge (Raman and Bean, 1997).  

CS discharge occurs at a low frequency (~0.5-2.0/sec) compared to the high frequency 

SS discharge (~50-150/sec). To understand the function of CSs, we need to understand 

the signals carried by climbing fibers.  

 

The primary hypothesis has been that climbing fiber input provides motor error signals. 

Supporting this view is the CS modulation with retinal slip during smooth pursuit 

adaptation and induced saccade errors (Graf et al., 1988;Soetedjo et al., 2008b;Medina 

and Lisberger, 2008;Yang and Lisberger, 2014;Kobayashi et al., 1998;Barmack and 
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Shojaku, 1995;Stone and Lisberger, 1990b). In addition to sensory derived errors, CSs 

modulate in response to inferred errors related to eye performance (Frens et al., 

2001;Winkelman et al., 2014;Winkelman and Frens, 2006) and prediction errors during 

eye blink conditioning (Ohmae and Medina, 2015). During reaching movements, CSs 

modulate with unexpected loads (Gilbert and Thach, 1977), reach redirection (Wang et 

al., 1987), end point errors (Kitazawa et al., 1998), and adaptation to visuomotor 

transformations (Ojakangas and Ebner, 1994). The error signals conveyed by climbing 

fibers are hypothesized to play a teaching role in cerebellar motor learning, specifically in 

long-term depression at parallel fiber-Purkinje cell synapses (for reviews see (Boyden et 

al., 2004;Hansel et al., 2001;Gao et al., 2012;Ito, 2001;Marr, 1969;Albus, 1971;Jorntell 

and Hansel, 2006)).  

 

However, climbing fiber activation cannot always be placed in an error framework. 

Inferior olivary neurons respond poorly to limb movement perturbations in the cat (Horn 

et al., 1996) as do CSs in response to error-inducing force pulses during reaching in the 

monkey (Hewitt et al., 2015). Complex spikes do not appear to unambiguously encode 

the magnitude of saccadic error (Soetedjo and Fuchs, 2006;Soetedjo et al., 2008b). It has 

even been suggested that climbing fibers are activated only by unexpected sensory input 

and do not respond during motor behavior (Gibson et al., 2004). One of the strongest 

demonstrations that climbing fiber input does not simply report errors is that in the 

oculomotor vermis, changes in CS discharge during saccade and smooth pursuit 

adaptation are most prominent after the vast majority of adaptation has occurred, when 
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retinal slip errors are minimal (Catz et al., 2005;Dash et al., 2010;Prsa and Thier, 2011). 

Furthermore, CSs encode non-error information about motor behavior, including reach 

and eye kinematics (Fu et al., 1997b;Ebner et al., 2002;Kitazawa et al., 1998;Kobayashi 

et al., 1998). These observations demonstrate that CSs do not only or always signal 

errors. In addition, climbing fibers are not the only source of error information in the 

cerebellar cortex, as SS firing provides robust performance error signals (Popa et al., 

2012;Ke et al., 2009).  

 

One common feature of CS modulation, whether with errors, unexpected sensory inputs 

or kinematics, is that the responses are primarily feedback related. During limb 

movements and saccades, increases in CSs occur predominantly after movement onset 

(Fu et al., 1997b;Ebner et al., 2002;Meyer-Lohmann et al., 1977;Mano et al., 1986;Catz 

et al., 2005;Soetedjo and Fuchs, 2006;Noda and Suzuki, 1979). Recently, however, 

feedforward CS responses have been described during eye blink conditioning, with CS 

increases prior to and predicting the conditioned response (Ohmae and Medina, 2015;Ten 

Brinke et al., 2015). In our study of Purkinje cell firing during pseudo-random tracking, 

CSs occur primarily in advance of a change in hand kinematics and performance errors 

(Streng et al., 2017). However, that initial study focused on how CSs trigger a change in 

the information encoded in the SS firing and did not fully assess the spatio-temporal 

aspects of CS modulation during pseudo-random tracking. These observations of CSs 

leading behavior further the view that climbing fiber input provides signals that are not 

limited to error processing.  
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To fully understand the information signaled by the CSs, it is necessary to expand the 

behaviors studied. This is particularly true for previous arm movement studies that 

primarily used single joint movements or reaching tasks (Gilbert and Thach, 1977;Wang 

et al., 1987;Kitazawa et al., 1998;Ojakangas and Ebner, 1994;Fu et al., 1997b;Mano et 

al., 1986). Further, most investigations of CS modulation evaluated stereotypic behaviors, 

including vestibular and oculomotor reflexes, reaching or saccades, in which movement 

parameters are strongly correlated (Reimer and Hatsopoulos, 2009;Hewitt et al., 2011). 

Also, there is a need to examine CS activity during tasks that require the continuous 

monitoring of behavior and correction for errors, as previous studies have emphasized the 

importance of spontaneous climbing fiber input in ongoing movements (Llinas et al., 

1975;Horn et al., 2013;Colin et al., 1980;Montarolo et al., 1982;Cerminara and Rawson, 

2004;White and Sillitoe, 2017). Therefore, this study evaluates CS modulation during 

pseudo-random tracking that demands constant monitoring and adjusting for mismatches 

in hand movement relative to target movement and allows for the examination of the 

interactions between CS discharge and behavior in which the correlations between 

parameters are minimized (Hewitt et al., 2011;Popa et al., 2012). During this task, CS 

firing is strongly and linearly modulated with hand kinematics including position, 

velocity and acceleration, and position error, a measure of tracking performance. 

Intriguingly, the most frequent CS modulation occurs with acceleration. Contrary to the 

error feedback encoding hypothesis, the vast majority of the CS modulation leads the 

changes in behavior. Also, CS firing does not respond to ‘events,’ either for position error 
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or kinematics. These results provide novel observations about the diversity and properties 

of the signals carried by climbing fiber input. 

 

The content of this chapter is in press in the Journal of Neurophysiology (Streng ML, 

Popa LS, Ebner TJ (2017). Climbing fibers predict movement kinematics and 

performance errors.) 

 

Materials and Methods 

Behavioral and electrophysiological data were obtained from two rhesus monkeys 

(Macaca mulatta; female 6.3 kg, age 15; male 6.8 kg, age 8) during normal daytime 

hours. All animal experimentation was approved by the Institutional Animal Care and 

Use Committee of the University of Minnesota and conducted in accordance with the 

guidelines of the National Institutes of Health.   

 

Random tracking 

This study utilized a previously described pseudo-random tracking task (Hewitt et al., 

2011;Popa et al., 2012;Paninski et al., 2004;Streng et al., 2017) and, therefore, the 

paradigm is only briefly detailed here. Two monkeys were trained to use a robotic 

manipulandum (InMotion², Watertown, MA) that controls a cross-shaped cursor to track 

a circular shaped target (2.5 cm diameter) on a computer screen (Fig. 10A).  The 

paradigm started with an initial hold period in which the animals placed and maintained 

the cursor inside a stationary target for a random period of time (1000-3000 msec).  The 
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initial target position on the screen was also randomized.  Next, during the track period, 

the target moved for 6-10 s along a trajectory selected randomly from 100 trajectories 

defined a priori. Pseudo-random target paths were generated from a sum of sine waves. 

Target speed was randomly varied so that the average speed was approximately 4 cm/s  

and conformed to the two-thirds power law (Viviani and Terzuolo, 1982;Lacquaniti et al., 

1983). The trajectories were low-pass filtered and selected to avoid sharp turns and large 

changes in speed, and ended with a final hold period of 1000-3000 msec. The paradigm 

required that the monkey maintain the cursor within the target, and allowed only brief 

excursions outside the target (<500 msec). Pseudo-random tracking has several 

advantages, including providing more comprehensive and uniform coverage of parameter 

workspaces and dissociating kinematic from error parameters (Paninski et al., 

2004;Hewitt et al., 2011). Random tracking also results in extensive combinations of the 

different kinematic parameters and position error, providing a rich data set to assess what 

information the CSs encode. Hand (X and Y) and target (Xtg, Ytg) position were sampled 

at 200 Hz. The velocity (VX, VY) and acceleration (AX, AY) of the hand movements 

were derived by numerical differentiation (Hewitt et al., 2011). Position error (XE, YE) 

was defined as the difference between cursor and target positions (Fig. 10B). 

 

Surgical procedures, electrophysiological recordings and data collection 

Head restraint hardware and a recording chamber targeting lobules IV-VI of the 

intermediate and lateral cerebellar zones were chronically implanted over the parietal 

cortex ipsilateral to the arm used to track in each animal using aseptic techniques and full 
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surgical anesthesia. The positions of the electrodes were confirmed by radiographic 

imaging techniques that combined a CT scan of the skull with an MRI of the cerebellum 

(Hewitt et al., 2011). After full recovery from chamber implantation surgery, 

extracellular recordings were obtained during normal daytime hours using Pt-Ir 

electrodes with parylene C insulation (0.8-1.5 MΩ impedance, Alpha Omega 

Engineering, Nazareth, Israel). Purkinje cells in lobules IV-VI of the intermediate and 

neighboring lateral cerebellar zones were targeted following previously established 

methods (Hewitt et al., 2015). Individual Purkinje cells were identified by the presence of 

CSs followed by a characteristic pause in SS activity (Fig. 10C) (Bloedel and Roberts, 

1971;Thach, Jr., 1967). After conventional amplification and filtering (30 Hz-3 kHz band 

pass, 60 Hz notch), SSs were discriminated online using the Multiple Spike Detector 

System (Alpha Omega Engineering, Nazareth, Israel). Resulting spike trains were 

digitized and stored at 1 kHz. The raw electrophysiological data was also digitized and 

stored at 32 kHz. Using a combination of software and manual confirmation, CSs were 

discriminated and digitized offline (Hewitt et al., 2015). Using the fractional interval 

method, the SS trains were transformed to a continuous firing rate in 5 msec bins and the 

SS firing rates were not filtered in order to minimize autocorrelation artifacts. For display 

and analyses, the mean firing rate for each trial was subtracted from the instantaneous 

firing rate. The behavioral parameters were low pass filtered (4th order Butterworth with a 

5 Hz cut-off).  

 

Analysis of complex spike modulation with behavior 
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The goal of this analysis was to determine significant CS modulation associated with the 

three kinematic measures as well as position error. Both data and original MATLAB code 

written for analysis can be made available on request. The analyses, evaluating the 

temporal relationship and spatial tuning of the Purkinje cell firing with the behavioral 

variables, were restricted to the track period and used a reverse-correlation approach 

(Schoppmann and Hoffmann, 1976;Borghuis et al., 2003). The reverse correlations were 

computed separately for each pair of parameters (e.g., VX and VY). First, each 

behavioral parameter was aligned to the times of all CSs across the recording session. 

Due to the low frequency of CS discharge, feedforward CS modulation was determined 

from behavior occurring during the 0 to 300 msec epoch after CS discharge and feedback 

CS modulation was determined from the behavior occurring during the 300 to 0 msec 

epoch prior to CS discharge (Fig. 10D). Each behavioral parameter was partitioned into 

64 (8 x 8) equal bins ranging from -2 to 2 cm (0.5 cm x 0.5 cm bin) for XE and YE, -6 to 

6 cm (1.5 cm x 1.5 cm bin s) for X and Y, -12 to 12 cm/s (3 cm/s x 3 cm/s bin) for VX 

and VY, and -32 to 32 cm/sec2 (8 cm/sec2 x 8 cm/sec2 bin) for AX and AY. For each 300 

msec epoch (before and after a CS), reverse correlation determines the number of data 

points in each bin during a given epoch normalized to the total number of data points in 

the same bin during entire recording session. For each parameter and epoch, we 

generated a two-dimensional probability map of the behavior in relation to CS discharge. 

Given that the reverse correlation probability is equal to the probability to observe a CS 

in each behavioral bin, we refer to the bin probability as CS probability. 
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Figure 10: Behavioral paradigm and analysis of CS modulation. A) Rhesus macaques 

tracked a pseudo-randomly moving target (red circle) using a cursor controlled by a 

manipulandum (Hewitt et al., 2011;Popa et al., 2012).  B) Kinematic parameters 

evaluated included position (X, Y), velocity (VX, VY) and acceleration (AX, AY, not 

shown). Position error (XE, YE) was defined as the difference between the cursor and the 

target center (modified from (Streng et al., 2017)). C) Purkinje cells were identified by 

the presence of complex spikes (asterisk (*)) followed by a pause in SS activity (top 

trace), and each parameter was aligned to CS occurrences (dashed vertical line) as shown 

for VX. CS modulation was quantified as the probability of behavior either 300 msec 

before (feedback) or 300 msec after (feedforward) CS firing. 
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The encoding strength and direction of either feedforward or feedback CS modulation 

with behavior were quantified using linear regression analysis. For each parameter, CS 

firing probability was modeled as a function of the “x” and “y” directions. For example, 

the following computations were performed for the feedforward CS firing probability 

associated with velocity (VX, VY): 

 

𝐶𝑆𝑝𝑟𝑜𝑏
𝑓𝑓𝑤𝑑

 =  𝛽0 + 𝛽𝑉𝑋 ∗ 𝑉𝑋 +  𝛽𝑉𝑌 ∗ 𝑉𝑌      

(eqn. 1) 

The regression resulted in the coefficient of determination (R2) and the regression 

coefficients for each parameter (e.g., VX, VY). The preferred direction () was then 

computed as the arctangent of the ratio of VX to VY: 

 

𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 (𝜃) =  arctan
vy

vx
    

(eqn. 2) 

The magnitude of the preferred direction vector was computed as: 

 

𝑉𝑒𝑐𝑡𝑜𝑟 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 =  √𝛽𝑉𝑋
2 + 𝛽𝑉𝑌

2
   

 (eqn. 3) 

The significance of the CS modulation with a parameter was determined by comparing 

the actual R2 value and the magnitude of the preferred direction vector to bootstrapped 

noise distributions generated by randomly shuffling the bins in each map 10,000 times 
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(Best et al., 2016;Riehle et al., 2013). The bootstrapped noise distributions were 

generated by performing the linear regression analysis on each shuffled map. This 

analysis was performed separately for the feedforward and feedback CS epochs. CS 

modulation with a parameter was considered statistically significant if both the R2 and 

vector magnitude exceeded the mean + 4SD of the shuffled distributions. This threshold 

ensured the identification of robust feedforward or feedback CS modulation with each 

behavioral parameter of interest.  

 

Quantification of event-related complex spike modulation 

To determine whether CS modulation with the parameters is continuous or a discrete, 

event-related representation (e.g., increasing CS probability with increasing position error 

versus evoked CS firing when the cursor leaves the target), we aligned CS firing to the 

timing of specific behavioral events. For positon error, we aligned the CS firing to the 

times during tracking when the cursor exited the target area. To account for the 

directional preference of CS firing and to capture the region in which CS firing increases, 

we restricted the analysis to the quadrant of the target within ± 45º of the preferred 

direction of the position error vector. For position error, the position at which the cursor 

exited the target edge corresponded to approximately the magnitude of the position error 

vector exceeding the mean + 1SD of the distribution of position error values. The 

experimental paradigm provides a definition of an error event, crossing out of the target, 

as this triggers the need for a timely corrective action. However, there are no similarly 

defined events for the kinematic parameters. Therefore, we used the equivalent statistical 
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threshold found for position error events (i.e., exiting out of the target) to define events 

related to the kinematic parameters (mean + 1 SD of the parameter). For these error and 

kinematic events, we calculated the cumulative probability of CS firing within a ± 500 

msec window. 

 

Analysis of simple spike modulation with behavior 

We also assessed the SS modulation to determine the relationship between SS and CS 

encoding of behavior. SS modulation with behavior was analyzed using the same 

feedforward and feedback epochs and the same partitioning used for the analysis of CS 

firing. For feedforward SS modulation, we computed the average SS firing (mean-

subtracted) in the 300 msec period prior to being in a given bin of the parameter 

workspace. For the feedback SS modulation, we computed the average SS firing (mean-

substracted) in the 300 msec period after being in a given bin of the parameter 

workspace. For each parameter, linear regression analysis was performed on the SS firing 

maps as for the CS probability maps, obtaining both the R2 and regression coefficients 

(βs). The latter were used to compute the preferred direction of SS modulation and the 

vector magnitude (see eqns. 2 and 3). The significance of the SS modulation was 

determined using the same bootstrapping method used for the CS firing maps. The 

interaction between SS and CS modulation was determined by comparing the preferred 

directions for each significant pair of CS and SS modulation for a given parameter and 

epoch (e.g., feedforward velocity CS versus feedforward velocity SS modulation). 
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Results 

Random tracking and measurements of kinematics and performance error 

Two rhesus macaques performed a visually guided, manual pseudo-random tracking task 

(Fig. 1A) (Hewitt et al., 2011;Popa et al., 2012). Using a robotic manipulandum, 

monkeys controlled a cursor to track a pseudo-randomly moving target on a screen. Three 

kinematic parameters, derived from the instantaneous hand position, describe the 

movements of the hand position (X, Y), velocity (VX, VY) and acceleration (AX, AY). 

Position errors (XE and YE) are defined as the difference between the cursor and the 

target center (Fig. 10B). To assess the statistics of the kinematic and error parameters 

relative to the workspaces, we determined the probability densities. Position, velocity, 

acceleration, and position error are concentrated in the center of the workspaces and are 

highly symmetrical and the position error plot shows that the animals strive to keep the 

cursor in the center of the target space (Fig. 11A-D), as observed previously during this 

task (Hewitt et al., 2011;Popa et al., 2012). While it is possible to compute other error 

measures, such as the discrepancy between cursor and target velocity (velocity error) and 

acceleration (acceleration error), we focus on position error for several reasons. 

Performance on pseudo-random tracking is dictated entirely by position error, as 

excursions outside the target edge lasting more than 500 msec result in trial failure. To 

show this, the magnitude of position error to position magnitude was compared to similar 

ratios for velocity and acceleration (Fig. 11E). There are no explicit constraints placed on 

either velocity or acceleration error. The animals tightly control the position error ratio 

during tracking, but not the corresponding velocity or acceleration error ratios (Fig. 11E). 
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This result is not unexpected as minimizing position error requires that velocity and 

acceleration deviate from target velocity and acceleration. 

 

 

Figure 11: Behavioral parameters during pseudo-random tracking. Probability 

density plots of A) position error, B) position, C) velocity, and D) acceleration during 

pseudo-random tracking. The density plots were determined from all trials for all 

Purkinje cells recorded. Black circle in panel A indicates the target edge. E) Ratio of 

error to target kinematics for position, velocity, and acceleration error. 

 

 

Complex spike modulation with kinematics and performance error 

Forty-five Purkinje cells were recorded during pseudo-random tracking. This data set 

includes a re-analysis of 40 neurons used to describe the CS-coupled changes in SS 

sensitivity to kinematics and performance errors during random tracking (Streng et al., 

2017) and an additional 5 Purkinje cells in which the CS firing was fully analyzed. The 

basic CS firing statistics are similar to previous reports, with an average of 0.87 ± 0.36 
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spikes/sec during the track periods (Fig. 12A), which overall involved 881 ± 752 CSs per 

session. On average, the animals completed 110 ± 71 trials in a recording session. We 

also analyzed the variability in CS firing rates across trials. There was no trend in firing 

rate across trials either for individual Purkinje cells (Fig. 12B) or across the population 

(Fig. 12C,  = 0.16, p > 0.05, Pearson correlation). As reported in the previous Chapter, 

there was little evidence for CS rhythmicity (see Figure 9 in Chapter 2).  

 

Figure 12: CS firing properties during pseudo-random tracking. A) Distribution of 

CS firing rates for all 45 Purkinje cells. B) Average CS firing rate over trials for 5 

example Purkinje cells. C) Population averages of CS firing rates over 100 trials. 

 

The goal of the analyses was to determine the spatial and temporal modulation of CSs 

during this pseudo-random tracking task. Using a reverse correlation approach, the 

modulation was characterized by the probability of being in a given bin of the parameter 

workspace either 300 msec before (feedback) or 300 msec after (feedforward) CS 

discharge. The binning of the behavior in these 300 msec intervals allows for determining 

changes in the CS firing probability that predict or respond as feedback to position, 

velocity, acceleration, and position error.  
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Figure 13 illustrates an example of a Purkinje cell in which CS firing modulates 

predictively with position error. The probability maps reveal spatial tuning in the 300 

msec period prior to position error, as CS probability increases in the positive XE 

direction and decreases in the negative XE direction (Fig. 13A, feedforward). The 

probability maps were generated from the 371 CSs recorded during 59 successful trials 

for this example Purkinje cell. The spatial relationship between CS firing probability and 

position error was quantified by both the strength (R2) and preferred direction (Fig. 13B) 

using linear regression analysis (see Materials and Methods). The significance of the CS 

modulation with behavior was assessed by comparing both the R2 and vector magnitude 

to distributions obtained from 10,000 random shuffles of the CS probability maps. A 

significant relationship between CS modulation and behavior required that both the R2 

and vector magnitude exceeded the mean + 4SD of the shuffled probability maps. For the 

example shown in Fig. 13A, the R2 and vector magnitude (CS prob/cm) fall far to the 

right of the distributions obtained from the shuffled probability maps (Fig. 13C and D, 

respectively), confirming the significance of the feedforward CS modulation. However, 

the CS firing probability is not significant for the 300 msec period following position 

error (Fig. 13A, feedback and E and F). For this Purkinje cell, only 4 additional CSs 

occur in both the feedforward and feedback epochs, demonstrating that the probability 

maps are not heavily influenced by the occurrence of these small number of intervening 

CSs. Finally, the spatial tuning is fundamentally different than the position error 

probability density maps (Fig. 13A), demonstrating that the increases in CS firing 



74 

 

probability cannot be explained by the number of occurrences of the behavior within the 

map.  

 

Figure 13: CS modulation with position error. A) Probability maps of feedforward and 

feedback CS modulation with position error determined using 371 CSs recorded during 

tracking in 59 trials. Black circle indicates target edge. B) Preferred direction of CS 

feedforward tuning with position error computed using the regression coefficients from 

the linear regression analysis (see Materials and Methods). C) Magnitude of the 

feedforward CS modulation with position error as quantified by the R2 (black bar) 

compared to the distribution of R2 values from shuffled probability maps (gray bars). D) 

Magnitude of the predictive CS preferred direction (black bar) compared to the 

distribution of vector magnitudes from shuffled probability maps (gray bars). E-F) 

Magnitude of feedback modulation as in C-D showing that neither the R2 value nor 

magnitude of the preferred direction vector differs from the shuffled distributions. 
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Significant CS modulation with kinematics and position error occurs in 75% of Purkinje 

cells (n = 30/45), with robust spatial tuning for each of the four parameters evaluated. 

Examples of Purkinje cells with significant CS modulation with position, velocity, and 

acceleration are shown in Figure 14. For the first example (Fig. 14A-B), increased CS 

firing probability occurs with position in the left side of the position space during the 

feedback epoch (denoted by the red vector in Fig. 14B), however, the modulation during 

the feedforward epoch is not significant. For another Purkinje cell, strong feedforward CS 

modulation occurs for velocity with increased probability for negative VX and decreased 

probability for positive VX (Fig. 14C-D). No significant CS modulation with velocity is 

observed during the feedback period. The final example shows CS firing probability 

spatially tuned to and predicting acceleration, with increased CS firing in the lower left of 

the acceleration space (Fig. 14E-F). As for velocity, there is no significant feedback 

modulation with acceleration. 
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Figure 14: CS modulation with kinematics. A) CS probability maps illustrating an 

example Purkinje cell with significant feedback tuning with position. Feedforward 

modulation is not significant. The maps were computed using 1114 CSs during tracking 

from 110 trials. B) Preferred direction of CS feedback tuning with position. C -D) CS 

probability maps and preferred direction plot for another example Purkinje cell with 

significant feedforward tuning with velocity computed using 807 CSs recorded during 

tracking in 182 trials. Feedback tuning was not significant. E-F) CS probability maps and 

preferred direction plot for a third example Purkinje cell with significant feedforward 

tuning with acceleration computed using 3248 CSs recorded during tracking in 337 trials. 

Feedback modulation was not significant. 
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Figure 15: Population summary of CS spatial tuning with behavior. A-D) Preferred 

direction vectors for all Purkinje cells with significant feedforward CS modulation with 

A) position, B) velocity, C) acceleration and D) position error. E-H) Preferred direction 

vectors for all Purkinje cells with significant feedback CS modulation with the same 

kinematic and error parameters. N indicates the number of cells with significant 

modulation. 

 

Across the population, CS modulation with behavior is strongly predictive for each 

parameter analyzed and considerably more frequent than feedback modulation (Fig. 15, 

top versus bottom row). The CSs are most commonly modulated in relation to velocity 

and acceleration. Purkinje cells have a significantly greater number of feedforward (n = 

41) than feedback (n = 17) relationships between CS firing and behavior (χ2 (3, n = 58)  = 

11.17, p = 0.011). Of particular interest given the climbing fiber error hypothesis, only 2 

Purkinje cells have significant feedback CS modulation with position error and the 

magnitude of the modulation is small. In contrast, feedforward CS modulation with 

position error is found for 11 Purkinje cells. However, the strength of the relationship 
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between CS firing probability and behavior based on the R2 values is similar for both 

predictive (Fig. 16, black bars) and feedback (Fig. 16, red bars) across all parameters 

(t(56) = 0.5034, p = 0.6167). Importantly, there was no relationship between the strength 

(R2) of the relationship between CS firing probability and the overall CS firing rates (Fig. 

16E,  = 0.24 p > 0.05, Pearson’s correlation). Together, these results demonstrate that 

CS firing is highly modulated with both kinematics and position error during tracking, 

though feedforward CS encoding was considerably more prevalent than feedback 

encoding. The strength of the CS encoding is not related to the rate of CS discharge. 

 
Figure 16: Population summary of the magnitude of CS encoding of behavior. 
Distribution of R2 values for feedforward (black bars) and feedback (red bars) 

relationships between CS firing and A) position, B) velocity, C) acceleration, and D) 

position error. E) R2 values for feedforward and feedback CS modulation as a function of 

mean CS firing rate. 

 

Correlation among behavioral parameters is not reflected in complex spike modulation 

CS modulation with multiple behavioral parameters was common, with an average of 

1.93 ± 0.87 parameters per neuron. To ensure that CS modulation with multiple 
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parameters was not due to the interactions between parameters, we determined the degree 

to which the behavioral parameters were correlated over the 300 msec feedforward and 

feedback CS-aligned epochs (Fig. 17A). For most parameters, the correlations are 

minimal with a few exceptions. The highest correlations are for the individual position 

components (e.g., XFfwd and XFbck). However, correlations between the feedforward and 

feedback epochs for X and for Y position are expected due to the slowly changing nature 

of position over a 600 msec period. More modest levels of correlation include XEFbck 

with VXFfwd (R
2=0.29) and YEFbck with VYFfwd (R

2=0.30)(i.e. the brighter blue squares in 

Fig. 8A). To address this, we compared the correlation structure between a given pair of 

behavioral parameters (Fig. 17A) to the number Purkinje cells in which the CSs are 

significantly correlated with that pair of parameters (Fig. 17B). If the correlation structure 

in the behavior influences the CS responses, one would expect a similar correlation 

structure in the CS responses. This would be particularly true for any of the larger 

correlations observed among parameters (described above), for example for the 

correlations between XFfwd and XFbck, XEFbck with VXFfwd or XFfwd and XFbck. Consider 

position, which has the highest correlation between the feedforward and feedback epochs.  

Eight Purkinje cells exhibited CS feedforward modulation with position, however, none 

of these cells were also modulated with position feedback. The 3 Purkinje cells that had 

CS feedback modulation with position are different neurons and, conversely, did not have 

CS predictive modulation.  Another key comparison is for both pairs of ErrFbck and 

VelFfwd parameters (i.e. XEFbck and VXFfwd, YEFbck and VYFfwd) that also exhibit higher 

behavioral correlations (Fig. 17A).  In contrast, only one Purkinje cell had CS modulation 
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with both ErrFbck and VelFfwd. The more common pairs of parameters with CS modulation, 

for example, VelFwd and ErrFwd that are dually encoded by 6 cells, have a negligible 

behavioral correlation (R2 < 0.005). To relate the correlations between behavioral 

parameters to CS modulation, we plotted the correlation between each parameter pair (R2 

from Fig. 17A) against the total number of cells that had dual CS modulation with that 

parameter pair (from Fig. 17B). Across the population, the higher correlations between 

behavioral parameters are not reflected in the incidence of dual CS modulation with those 

parameters (Fig. 17C, ρ = -0.08, p > 0.05). Together, these results indicate that the 

interactions between behavioral parameters cannot explain the observed CS modulation, 

and that the analysis of behavior in the 300 msec feedforward and feedback epochs 

allows for a relatively independent characterization of the CS modulation, both predictive 

and feedback, with each of these parameters. 

 

Figure 17: Correlations between parameters and CS modulation. A) Correlation 

matrix of the regression coefficient (R2) between each pair of behavioral parameters for 

both feedforward (Ffwd) and feedback (Fbck) epochs. The correlations between 

parameters were computed based on all trials for all Purkinje cells recorded. B) 

Frequency of CS modulation with multiple parameters. The numbers in each cell indicate 

the number of Purkinje cells that had significant modulation with parameters indicated in 

the row and column. C) Relationship between the frequency of CS modulation with 

behavior and the correlations between parameters. 
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Event-related complex spike modulation 

To address whether climbing fibers are evoked in response to specific error events, we 

determined the CS modulation to the time at which the cursor crosses from inside to 

outside the target. Leaving the target is clearly an error event as only brief excursions 

outside the target center (<500 msec) are allowed. An error event requires rapid detection 

and correction to continue tracking and successfully complete a trial. To account for the 

spatial tuning of the climbing fiber input with position error (for example, see Fig. 18A), 

we evaluated only excursions occurring within ± 45º of the CS preferred direction 

determined using the linear regression analyses (Fig. 18B). The average error magnitude 

aligned to these excursions provides a measure of a position error event, in which the 

cursor exits the target at t = 0 msec and is followed by a corrective movement to bring the 

cursor back into the target (Fig. 18D). If responsive to position error events, the 

expectation is that CS firing would show a distinct increase (or decrease) after the cursor 

left the target (t = 0 msec in Fig. 18D). This increase should be evident in a plot of the 

cumulative probability of CS firing. For the example Purkinje cell, the CS firing is not 

modulated by these position error events, illustrated by the lack of a distinct change in the 

cumulative probability of occurrence at t = 0 msec. Instead, the cumulative CS firing 

probability linearly increases from the inside to the outside of the target (Fig. 18E).  
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A similar question is whether CSs are evoked by events related to hand position, velocity, 

or acceleration. While a position error event can be clearly defined as the moment the 

cursor exits the target, there are no such events for the kinematic parameters in our 

pseudo-random tracking paradigm. Therefore, we defined a kinematic event as when a 

specific kinematic parameter exceeded a threshold relative to the normal distribution of 

that parameter. The threshold for a kinematic event was based on the magnitude of a 

position error event in which the target edge corresponds to approximately the mean + 

1SD of the total error magnitude workspace (Fig. 18C, red dashed line). Therefore, for 

each kinematic parameter an event was defined as the time at which the behavior exceeds 

the mean + 1SD of the parameter’s workspace. An example of acceleration events is 

illustrated in Fig. 18F-J. For this Purkinje cell, the CS discharge is predictive and 

directionally tuned with acceleration, with a preferred direction toward the lower right 

area of the workspace (Fig. 18F-G). As for position error events, acceleration exceeding 

the mean + 1SD (Fig. 18H, red dashed line) and occurring within ± 45º of the preferred 

direction were selected as events. The average acceleration illustrates that the analysis 

identifies events as the acceleration rapidly increases after t = 0 msec, peaks and then 

returns to within mean + 1SD (Fig. 18I). As is the case for position error, the cumulative 

CS firing is not strongly related to acceleration events, as there is little change after an 

event at t = 0 msec (Fig. 18J). 
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Figure 18: Event-related analysis of CS modulation. A) Example Purkinje cell with 

significant feedforward CS tuning with position error. B) Preferred direction of CS tuning 

with ± 45º window used for the analysis. C) Probability distribution of error magnitude 

(EM) during tracking. Red dashed line indicates the target edge. D) Average error 

magnitude aligned to the times, t = 0 msec, at which the cursor exited the target (error 

events) within ± 45º of the preferred direction vector shown in B. E) Cumulative 

probability of CS firing over a ± 500 msec window around the timing of error events. F) 

Example Purkinje cell with significant feedforward CS tuning with acceleration. G) 

Preferred direction of CS tuning. H) Probability distribution of acceleration magnitude 

(AM) during tracking. Red dashed line indicates the mean + 1 SD of the distribution, the 

threshold used for identifying acceleration events. I) Average acceleration magnitude 

aligned to the timing of acceleration events (t = 0 msec). J) Cumulative probability of CS 

firing over a ± 500 msec window around the timing of acceleration events. 
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Figure 19: CSs are not evoked by behavioral events. A) Average error magnitude 

relative to the timing of error events for all Purkinje cells with significant CS tuning with 

position error (Shaded region indicates SD). B) Cumulative CS probability for all 

Purkinje cells with significant feedforward (black line) and feedback (red line) CS 

modulation with errors relative to trial shuffled error events (white line and shaded region 

= mean + 1 SD). C) Average position magnitude relative to timing of position events for 

all Purkinje cells with significant CS tuning with position. Conventions are as in A. D) 

Cumulative CS probability for Purkinje cells with significant CS tuning to position. 

Conventions are as in B. Average E) velocity and G) acceleration magnitudes and the 

corresponding cumulative CS probabilities for Purkinje cells with significant CS tuning 

with F) velocity and H) acceleration are also shown. 
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Across the population, similar results were obtained for each parameter. For Purkinje 

cells in which the climbing fiber input are significantly modulated with position errors 

(Fig. 19A-B), cumulative CS firing probability does not exhibit an inflection around the 

timing of position error events (Fig. 19B), regardless of whether the relationship between 

CS firing and position error was predictive (black trace) or feedback (red trace). Similar 

results are observed for position (Fig. 19C-D), velocity (Fig. 19E-F), and acceleration 

events (Fig. 19G-H). Together, these results show that during tracking, CSs are not 

related to behavioral ‘events,’ either for position error or kinematics. Instead, CS firing is 

linearly modulated across the workspace of each parameter. 

 

Simple spike modulation with kinematics and position error 

We recorded Purkinje cells in lobules IV-VI of the cerebellum, areas that have been 

shown to be strongly involved with arm movements based on electrophysiological 

recordings, functional imaging, and the results of lesions (Harvey et al., 1977;Thach, 

1970;Fortier et al., 1989;Fu et al., 1997a;Coltz et al., 1999;Roitman et al., 2005;Pasalar et 

al., 2006;Marple-Horvat and Stein, 1987;Mano and Yamamoto, 1980;Hewitt et al., 

2011;Schoch et al., 2006;Kitazawa et al., 1998;Diedrichsen et al., 2005). We thus next 

assessed the spatial tuning of SS discharge in the same feedforward and feedback epochs 

utilized for the CS firing. For each parameter, maps of the mean SS firing were 

determined for 300 msec before (feedforward) and 300 msec after (feedback) the 

behavior. The significance and preferred direction of SS firing maps were computed as 
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for the CS firing probability maps. The Purkinje cells recorded were very engaged in 

pseudo-random tracking, as 44 out of the 45 (98%) are significantly modulated by either 

kinematics or position error.  

 

Figure 20A illustrates an example of a Purkinje cell with feedback SS modulation with 

position error. Feedforward SS modulation is not significant (not shown).  The SS firing 

increases in the upper left quadrant of the position error workspace and has a preferred 

direction of 155º (Fig. 20B). Both the encoding and the magnitude of the SS modulation 

with position error are significant as assessed by noise distributions obtained from 10,000 

shuffled maps (Fig. 20C and D, respectively). For each of the 44 Purkinje cells with 

significant modulation, we determined the absolute difference between the largest 

increase and decrease in SS firing for the best encoded parameter calculated using the SS 

modulation maps. This analysis provides a measure of the depth of modulation in the SS 

firing across the workspace for a given behavioral parameter. Across the population, the 

SS firing is highly modulated by kinematics and position errors during tracking, with an 

average range of 29 ± 13 spikes/sec. Therefore, these Purkinje cells are highly involved 

in this task. 

 

Across the population, both feedforward and feedback SS modulation with kinematics 

and position errors is common, as observed previously (Hewitt et al., 2011;Popa et al., 

2012). Purkinje cell SS discharge is strongly modulated by position (Fig. 20E, I), velocity 

(Fig. 20F, J), acceleration (Fig. 20G, K), and position error (Fig. 20H, L). In contrast to 



87 

 

the CS modulation, there is no bias towards either feedforward or feedback SS 

modulation with behavior (χ2 (3, n = 167)  = 1.61, p = 0.658). Together, these results 

demonstrate that SS firing contains rich representations of all kinematic and error 

parameters studied, with broad coverage of the individual workspaces.  

 

Figure 20: Linear SS modulation with behavior. A) Probability map of example 

Purkinje cell with feedback SS modulation with position error. Black circle indicates 

target edge. B) Preferred direction of SS feedback tuning with position error. 

Feedforward modulation was not significant. C) Magnitude of the feedback SS 

modulation with position error as quantified by the R2 (red bar) compared to the 

distribution of R2 values from shuffled probability maps (grey bars). D) Magnitude of the 

feedback SS preferred direction (red bar) compared to the distribution of vector 

magnitudes from shuffled probability maps (grey bars). E-H) The preferred direction and 

magnitude of significant feedforward SS firing modulation with E) position, F) velocity, 

G) acceleration and H) position error for the population. I-L) The preferred direction and 

magnitude of significant feedback SS firing modulation with the same kinematic and 

error parameters. N indicates the number of cells with significant modulation. 
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Directional tuning of complex spike and simple spike firing 

A final question was the relationship between the directional tuning of the CSs and SSs, 

specifically the degree to which SS and CS modulation are reciprocal. All pairs of 

significant CS and SS modulation with a given behavioral parameter (e.g., velocity) for 

the same epoch (e.g., feedforward) were selected and the differences computed between 

the preferred directions (n = 38). Two examples of the spatial tuning of the SSs and CSs 

are illustrated in Figure 21. The first example Purkinje cell has both predictive CS and SS 

modulation with velocity, with approximately reciprocal spatial tuning, as evident both 

by the firing maps (Fig. 21A-B) and the 138º difference in their preferred directions (Fig. 

21C).  

 

Many Purkinje cells had CS and SS spatial tuning that was approximately reciprocal (Fig. 

21G). However, many Purkinje cells did not follow this pattern as shown in the second 

example cell with significant feedforward CS and SS modulation with position error (Fig. 

21D-E). While the feedforward CS modulation occurs predominantly in the upper right 

region of the error space, the SS modulation occurs in the lower right region of the space. 

The difference in the preferred directions is 48º (Fig. 21F). Across the population, the 

difference in the preferred directions between CS and SS modulation appears to be 

uniformly distributed, without a significant bias for a certain difference in preferred 
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direction (χ2 (19, n = 38)  = 16.74, p = 0.6077). Therefore, during pseudo-random 

tracking, there is not a fixed spatial relationship between the CS and SS modulation. 

 

Figure 21: Interaction between CS and SS encoding. A-B) Example Purkinje cell with 

significant feedforward CS (A) and SS modulation with velocity (B). C) Preferred 

direction of CS tuning (grey vector) and SS tuning (black vector) (note the difference in 

scales on X and Y axes for SS and CS). D-E) A second example Purkinje cell with 

significant feedforward CS modulation with position error (D) and significant 

feedforward SS modulation with position error (E). F) Preferred direction of CS tuning 

(gray vector) and SS tuning (black vector). G) Population distribution of the angular 

differences between the preferred directions for all pairs of significant CS and SS 

modulation with a given behavioral parameter and the same epoch. 

 

Discussion 

This study describes several major observations about the information carried by 

climbing fiber input to the cerebellar cortex. First, CS discharge modulates not only with 

motor performance measures but also with movement kinematics. Intriguingly, 

acceleration was the parameter most commonly correlated with CSs. Second, CS 

discharge is predominantly predictive of upcoming kinematics and position error. Third, 

CS discharge is not related to discrete events, either for errors or kinematics. Instead CSs 

provide a linear representation of each parameter. Finally, CS and SS firing are 
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modulated by the same parameters, though the relationship between their spatial tuning is 

not always reciprocal. These results show that during online motor control, CS firing 

conveys considerable predictive information about multiple aspects of behavior rather 

than serving primarily as an error feedback signal. 

 

The pseudo-random tracking task provides for a more thorough exploration of the 

kinematic and position error workspaces than many paradigms (Hewitt et al., 2011;Popa 

et al., 2012;Paninski et al., 2004). This task results in extensive combinations of 

kinematic parameters and performance errors and produces a robust data set to assess the 

signals that activate climbing fibers. The lack of correlation between many of the 

parameters (e.g., position and velocity) over the brief epochs reflects their orthogonality. 

Also, pseudo random tracking minimizes the correlations between the feedforward and 

feedback epochs for most of the parameters, with the exception of position. However, the 

feedforward-feedback correlations for X and Y are expected and reflect the slow 

changing nature of hand position. Overall, this task represents a considerable departure 

from those involving discrete movements, such as reaching or saccade tasks, which 

produce more stereotypic movement patterns. For example, during reaching there is a 

stereotypic bell-shaped velocity profile and strong coupling between position and 

velocity (Abend et al., 1982;Hewitt et al., 2011) or that during smooth pursuit, retinal slip 

error evokes a corrective eye movement, and thus a change in acceleration (Collewijn and 

Tamminga, 1984). The greater coverage of the workspaces and low correlations aid in 
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uncovering the multiple signals in the CS discharge and a fuller characterization of the 

properties of those signals.  

 

The finding that CSs commonly encode acceleration is intriguing. To our knowledge, this 

is one of a few studies describing acceleration-dependent CS firing. During ocular 

following, while eye velocity was the strongest driver of CSs, the acceleration 

contribution to the CS modulation is greater for CSs than for the SSs (Kobayashi et al. 

1998). During three-dimensional vestibular stimulation, CS discharge correlates with 

inertial acceleration (Yakusheva et al., 2010). The prevalence of acceleration encoding 

may clarify the commonly observed increase in climbing fiber activity at movement onset 

during reaching or single joint movements (Mano et al., 1986;Ojakangas and Ebner, 

1994;Fu et al., 1997b;Hewitt et al., 2015), as movement onset involves large changes in 

acceleration. Furthermore, the observation of acceleration modulation, in combination 

with the other aspects of the movement encoded, emphasizes that CSs signal a wide 

spectrum of movement information. 

 

For each parameter investigated, CS discharge provides a planar representation of the 

workspace, with a clear directional component characterized by a preferred direction 

vector. This planar encoding strengthens previous observations that the climbing fiber 

input provides graded information about the behavior (Fu et al., 1997b;Ebner et al., 

2002;Kitazawa et al., 1998;Kobayashi et al., 1998). In contrast, the analyses failed to 

detect any evidence for a threshold or event-like signals at which CS firing was 
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preferentially evoked. Instead, a linear model provides a better fit of the data. Linear 

representations may optimize separation of patterns, are less susceptible to saturation and 

increase the dynamic range (Chen et al., 2016;Fujita, 1982;Park et al., 2012). Similar 

linear encoding characterizes SS firing in a variety of tasks (Hewitt et al., 2015;Popa et 

al., 2012;Hewitt et al., 2011;Medina and Lisberger, 2009;Dash et al., 2012;Shidara et al., 

1993;Chen et al., 2016) and Purkinje cells are thought to linearly integrate parallel fiber 

and inhibitory interneuron inputs (Park et al., 2012;Walter and Khodakhah, 2006;Walter 

and Khodakhah, 2009). Therefore, the cerebellar cortex utilizes linear encoding of 

movement information in both the climbing fiber-Purkinje cell and the mossy fiber-

granule cell-Purkinje cell circuits.  

 

During pseudo-random tracking, the degree of reciprocal modulation between SS and CS 

firing was distributed uniformly among Purkinje cells (see Fig. 10). Reciprocal 

modulation of SSs and CSs is commonly observed during several behaviors, including 

the vestibulo-ocular and optokinetic reflexes (Graf et al., 1988;Kobayashi et al., 

1998;Stone and Lisberger, 1990a;Kitama et al., 1999). Importantly, out of phase 

modulation is not due to the pause in SS activity that follows a CS (Yakusheva et al., 

2010;Kobayashi et al., 1998). The climbing fiber projection itself plays a dominant role 

in the reciprocity as shown in the Ptf1a::cre,Robo3lox/lox mouse (Badura et al., 2013). In 

this mutant, climbing fiber input is rerouted and projects almost exclusively to the 

ipsilateral flocculus, yet the SS and CS discharge exhibit normal reciprocity. However, a 

spectrum of relationships between the directional tuning of SS and CS discharge have 
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been observed in reaching tasks (Ebner et al., 2002;Ojakangas and Ebner, 1994) and in-

phase modulation has been reported for rotation in the dark and during three dimensional 

vestibular stimulation (Yakusheva et al., 2010;Winkelman et al., 2014). Therefore, while 

a reciprocal pattern of SS and CS firing occurs in many behaviors, this is not a 

completely “hard-wired” relationship, but instead appears to be task specific.  

 

One of the more remarkable findings in this study is that for the majority of Purkinje 

cells, CS occurrence led the behavior. Furthermore, predictive CS signaling was observed 

across all parameters, extending our initial report of feedforward CS discharge during 

pseudo-random tracking (Streng et al., 2017). Many previous studies emphasized that 

CSs respond to sensory inputs or after the onset of movement. It was even argued that CS 

only respond to unexpected sensory feedback (Gibson et al., 2004). As noted in the 

Introduction, recent eye blink conditioning studies report CS increases prior to and 

predicting the conditioned response (Ohmae and Medina, 2015;Ten Brinke et al., 2015). 

In both of these studies, the predictive modulation was also accompanied by the CS 

response to the unconditioned stimulus. In contrast, during our demanding tracking task 

predictive CS modulation was greater than two times as common as the feedback 

responses (see Fig. 15).  

 

The mechanism underlying the predictive encoding remains to be investigated and we 

can only speculate on the circuitry involved. The inferior olive receives a variety of 

excitatory and inhibitory inputs including from the spinal cord, nuclei at the 
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mesodiencephalic junction, cerebellar nuclei, and cerebral cortex (for reviews see (De 

Zeeuw et al., 1998;Oscarsson, 1980;Apps and Garwicz, 2005)), integrating both 

feedforward and feedback information. For the development of predictive CS signals 

during classical conditioning it was suggested that recurrent activity within the 

olivocerebellar network plays a major role (Ten Brinke et al., 2015). Another possibility 

is cerebral cortical involvement, specifically the motor cortices, in generating 

feedforward signals. Importantly, the responses of inferior olivary neurons to 

glutamatergic inputs from the motor cortex are bi-phasic in a manner that appears to 

penalize late inputs (Garden et al., 2017). This could create a bias toward early motor 

signals and thus a mechanism for the predictive CS modulation. Taken together, these 

observations suggest that, at least during pseudo-random tracking, CS discharge contains 

predictive motor signals about multiple aspects of the upcoming behavior instead of 

predominately providing sensory feedback.  

 

Another intriguing observation is that the same behavioral parameters linearly modulate 

both CSs and SSs in the same reference frames. This suggests that these two activity 

modalities of Purkinje cells function in concert during movements as opposed to acting 

independently. Consistent with this hypothesis, it was demonstrated that when Purkinje 

cells are organized according to the CS directional tuning, the SS population response 

provides a better prediction of the speed and direction of saccades (Herzfeld et al., 2015). 

Moreover, we recently reported a mechanism that integrates online CS and SS activity, 

showing that CSs control the information encoded in the SS firing (Streng et al., 2017). 
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Both increases and decreases in the SS sensitivity to these same motor parameters are 

tightly timed to CS occurrence. For the Purkinje cells common to both studies, a number 

of encoding changes are also associated with significant CS modulation with behavior (9 

cells, 12 parameters). Nearly all of those CS-coupled changes in SS encoding changes are 

associated with predictive CS modulation with behavior (10/12 parameters), consistent 

with the hypothesis that climbing fiber discharge alters the SS sensitivity in anticipation 

of a change in behavior. Furthermore, at the population level, these changes in encoding 

are consistent with optimizing behavior, with increases in SS encoding of the kinematic 

parameters followed by kinematic changes and increases in SS encoding of position error 

followed by decreases in position error. Therefore, we interpret the prevalence of 

feedforward CS modulation as a mechanism to inform the output of the cerebellar cortex 

of the need to update the information represented in the SS firing in anticipation of 

upcoming behavioral demands.  
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CHAPTER 4: SENSORY PREDICTION ERROR SIGNALS IN PURKINJE CELL 

SIMPLE SPIKE DISCHARGE 

 

Introduction 

Effective motor control requires continuous monitoring and correction for motor errors 

(Todorov and Jordan, 2002;Berniker and Kording, 2008;Shadmehr et al., 2010;Wolpert 

and Ghahramani, 2000). While early views postulated that error detection and correction 

was achieved primarily by closed-loop, sensory feedback-mediated control (Miall and 

Wolpert, 1996;Wolpert and Ghahramani, 2000;Shadmehr et al., 2010;Kawato, 1999), the 

delays imposed by sensory feedback loops render this type of control inadequate and 

even unstable (Miall and Wolpert, 1996;Wolpert and Ghahramani, 2000;Shadmehr et al., 

2010;Kawato, 1999). Additionally, error correction occurs more rapidly than (Flanagan 

and Wing, 1997) and even in the absence of sensory feedback (Shadmehr et al., 2010;Xu-

Wilson et al., 2009;Golla et al., 2008;Wagner and Smith, 2008), necessitating alternative 

mechanisms for error detection and correction. 

 

One compelling hypothesis is that the central nervous system implements a forward 

internal model that predicts the sensory consequences of motor commands (Flanagan et 

al., 2003;Morton and Bastian, 2006;Robinson, 1975;Xu-Wilson et al., 2009;Maschke et 

al., 2004;Shadmehr et al., 2010;Imamizu et al., 2000;Diedrichsen et al., 2005). These 

predictions are then compared to the actual sensory consequences, resulting in a sensory 

prediction error (SPE) (Wolpert and Ghahramani, 2000;Shadmehr et al., 2010). It has 
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been proposed that SPEs are the critical error signals for both online control and motor 

learning (Shadmehr et al., 2010;Kawato and Wolpert, 1998;Miall and Wolpert, 

1996;Wolpert and Ghahramani, 2000;Wong and Shelhamer, 2011;Mazzoni and 

Krakauer, 2006). Extensive behavioral, clinical, imaging, and physiological evidence 

suggests that the cerebellum serves as a forward internal model (Wolpert et al., 

1998;Wolpert et al., 1995;Kawato, 1999;Shadmehr et al., 2010;Bell et al., 2008;Pasalar et 

al., 2006;Bastian, 2006). Additionally, the cerebellum has long been implicated in error 

processing (Oscarsson, 1980;Gilbert and Thach, 1977;Ito, 2000;Stone and Lisberger, 

1986;Kawato and Gomi, 1992), and more recently in processing the SPEs essential for 

adaptation (Miall and Wolpert, 1996;Shadmehr et al., 2010;Diedrichsen et al., 

2005;Tseng et al., 2007). The mechanisms by which SPEs are encoded, however, remain 

unknown. Of particular interest is the representation of SPEs in the discharge of 

cerebellar neurons.  

 

A longstanding view is that errors are encoded exclusively by complex spike (CS) 

discharge of Purkinje cells (Gilbert and Thach, 1977;Kitazawa et al., 1998;Ito, 2000;Ito, 

2013;Stone and Lisberger, 1986;Kawato and Gomi, 1992). Clearly, there has been 

compelling evidence for this hypothesis from studies of retinal slip (Graf et al., 

1988;Kobayashi et al., 1998;Barmack and Shojaku, 1995;Stone and Lisberger, 1990b), 

arm movement perturbations (Gilbert and Thach, 1977;Kim et al., 1987;Kitazawa et al., 

1998;Kitazawa et al., 1998;Lou and Bloedel, 1986;Andersson and Armstrong, 1987), and 

during learning (Yang and Lisberger, 2014).  However, considerable evidence suggests 
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that CSs may not be the sole or simply an error signal in a variety of tasks (Horn et al., 

1996;Catz et al., 2005;Dash et al., 2010;Prsa and Thier, 2011;Ebner et al., 2002;Fu et al., 

1997b;Soetedjo et al., 2008a;Soetedjo and Fuchs, 2006). Furthermore, questions remain 

on whether the low frequency CS discharge (0.5-2.0 Hz) provides adequate bandwidth 

for continuous error monitoring(Ojakangas and Ebner, 1994;Kitazawa et al., 1998;Popa 

et al., 2012;Popa et al., 2014). Therefore, while CSs respond to errors in many tasks, the 

responsive properties are richer as we have shown during pseudo-random tracking 

(Chapter 3). 

 

A complementary hypothesis is that the higher frequency simple spike (SS) discharge of 

Purkinje cells also encodes error signals. SS discharge modulates linearly with retinal slip 

velocity independent of eye movement kinematics (Kase et al., 1979). SS firing 

modulates with trial success or failure during reaching (Greger and Norris, 2005) and 

with direction or speed errors during circular tracking, including leading those errors 

(Roitman et al., 2009). Changes in SS firing following smooth pursuit adaptation appear 

sufficient to drive learning (Kahlon and Lisberger, 2000). Cerebellar-dependent VOR 

adaptation can be driven by instructive signals in the SS firing (Nguyen-Vu et al., 2013), 

even in the absence of climbing fiber input (Ke et al., 2009). During pseudo-random 

manual tracking, SS discharge encodes a dual representation of errors at both lead and lag 

timing. Furthermore, the SS firing can be used to decode both predictive and feedback 

errors with remarkable accuracy (Popa et al., 2012;Popa et al., 2017). The representations 
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have opposing effects on the SS firing, consistent with the predictive and feedback 

signals necessary to compute SPEs (Popa et al., 2012;Popa et al., 2014). 

 

Therefore, SS discharge encodes the predictive and feedback information consistent with 

SPE (Popa et al., 2015). However, whether these SS signals have the properties needed to 

be labelled as predictive and feedback is unclear. To test this hypothesis, we investigated 

how disrupting sensory information pertinent to motor error prediction and feedback 

during the pseudo-random tracking task modulates SS activity. Visual feedback was 

reduced by hiding the cursor while it was inside the target or delayed by introducing a lag 

between manipulandum movement and cursor movement. In the feedback reduction 

paradigm, linear encoding of errors was reduced such that encoding was restricted to the 

target edge, where visual feedback was available. Conversely, the magnitude of 

predictive encoding of errors was not significantly affected. In the feedback delay 

paradigm, the timing of predictive encoding was negatively shifted equal to the duration 

of the delay, consistent with a forward internal model that has not adapted to the delay 

and makes predictions with respect to the manipulandum movement rather than the 

delayed cursor. Importantly, predictive and feedback encoding of arm kinematics was 

unaffected in both paradigms, suggesting a representation of arm movement irrespective 

of the visually-dependent performance errors. Our results suggest that dual encoding of 

errors and kinematics by SS discharge represents the predictive and feedback signals 

necessary for the generation of SPEs. 
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Materials and methods 

All animal experimentation was approved by the Institutional Animal Care and Use 

Committee of the University of Minnesota and conducted in accordance with the 

guidelines of the National Institutes of Health.   

 

Random tracking 

This study utilized a variant of the pseudo-random tracking paradigm described 

previously (Hewitt et al., 2011;Popa et al., 2012;Paninski et al., 2004). Two rhesus 

monkeys were trained to use a robotic manipulandum (InMotion²) that controls a cross-

shaped cursor to track a circular shaped target (2.5-3.5cm in diameter) on a computer 

screen. The paradigm started with an initial hold inside a stationary target for a random 

period of time (500 – 3000 msec).  The initial target position on the screen was also 

random.  Next, the target moved along a trajectory selected randomly from 100 

trajectories defined a priori. Pseudo-random target paths were generated from a sum of 

sine waves and ranged from 3-10s. Target speed was randomly varied so that the average 

speed was approximately 4 cm/s  and conformed to the two-thirds power law (Viviani 

and Terzuolo, 1982;Lacquaniti et al., 1983). The trajectories were low-pass filtered and 

selected to avoid sharp turns and large changes in speed, and ended with a final hold 

period of 500-3000 msec. The paradigm required that the monkey maintain the cursor 

within the target, and allowed only brief excursions outside the target (<700 msec). Note 

that the hold times, length of trajectories and duration of permitted “excursions” were 

modified from the original studies in order to accommodate the increased difficulty of 
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tracking in the altered feedback conditions. Pseudo-random tracking has several 

advantages compared to other tasks including providing more comprehensive and 

uniform coverage of parameter workspaces and dissociating kinematic from error 

parameters (Paninski et al., 2004;Hewitt et al., 2011). Hand (X and Y, based on cursor 

position) and target (Xtg, Ytg) position were sampled at 200 Hz. Cursor velocity (VX, 

VY) was derived by numerical differentiation of the hand position, and position error 

(XE, YE) was defined as the difference between cursor and target positions. 

 

Visual feedback manipulations 

This study applied two novel manipulations of visual feedback during pseudo-random 

tracking in order to test whether the SS modulation with performance errors and 

kinematics represents the predictive and feedback components of sensory prediction 

error. For a given recording session, a block of baseline trials were first collected. For the 

second block of trials, one of two manipulations of visual feedback were implemented 

during tracking. Visual feedback was delayed (delay condition) by introducing a lag 

between the movement of the manipulandum and resulting movement of the cursor on 

the computer screen by either 100 or 200 msec. Visual feedback was reduced (hidden 

cursor condition) by hiding the cursor from view while it is inside the moving target, 

allowing for a significant reduction in visual feedback without prohibitive difficulty of 

the task. Recording sessions typically consisted of blocks of 50 baseline trials followed 

by 50 visual feedback manipulation trials, though in many cases more trials were 

collected. Importantly, visual feedback manipulations were removed during the inter trial 



102 

 

intervals, during which the animal moved the cursor to a new target start position, in 

order to reduce any adaptation effects.  

 

Surgical procedures, electrophysiological recordings and data collection 

Head restraint hardware and a recording chamber targeting lobules IV-VI of the 

intermediate and lateral cerebellar zones were chronically implanted over the ipsilateral 

parietal cortex in each animal using aseptic techniques and full surgical anesthesia. The 

positions of the electrodes were confirmed by radiographic imaging techniques that 

combined a CT scan of the skull with an MRI of the cerebellum (Hewitt et al., 2011). 

After full recovery from chamber implantation surgery, extracellular recordings were 

obtained during normal daytime hours using Pt-Ir electrodes with parylene C insulation 

(0.8-1.5 MΩ impedance, Alpha Omega Engineering, Nazareth, Israel). Purkinje cells in 

lobules IV-VI of the intermediate and lateral cerebellar zones were identified by the 

presence of CSs followed by the characteristic pause in SS activity and recorded using 

previously established methods (Hewitt et al., 2015;Streng et al., 2017). After 

conventional amplification and filtering (30 Hz-3 kHz band pass, 60 Hz notch), SSs were 

discriminated online using the Multiple Spike Detector System (Alpha Omega 

Engineering, Nazareth, Israel). Resulting spike trains were digitized and stored at 1 kHz. 

The raw electrophysiological data was also digitized and stored at 32 kHz.  

 

Analysis of simple spike modulation 
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SS firing relative to both error and kinematic parameters was analyzed using temporal 

linear regressions.(Popa et al., 2012;Hewitt et al., 2011) The goal of this initial analysis 

was to determine the predictive and/or feedback SS modulation with the behaviors of 

interest: position, velocity, and position error. Correlations between SS firing and each 

pair of error (XE and YE) and kinematic (X and Y or VX and VY) parameters is assessed 

at 20 msec time steps to determine the lead/lag (τ-value) between SS activity and 

behavioral parameters.(Hewitt et al., 2011;Ashe and Georgopoulos, 1994;Medina and 

Lisberger, 2009;Gomi et al., 1998;Popa et al., 2012) At each time step, SS variability 

associated with the rest of the parameters is removed by determining the firing residuals 

from a multi-linear model of SS firing that includes the kinematic and error parameters. 

The firing residuals are then regressed against the parameters of interest, generating the 

R2 and regression coefficient (β) profiles as a function of τ. For example, the firing 

residuals needed to evaluate the SS modulation with position error are obtained by 

regressing actual firing (F) to this multi-linear model: 

 

F(t) = ßo(τ) + ßX(τ)X(t + τ) + ßY(τ)Y(t + τ) + ßVX(τ)VX(t + τ) +   

ßVY (τ)VY(t + τ) +  ε(t + τ)        

(eqn. 1) 

The resulting firing residuals (FR, equivalent to ε) are then regressed to the two position 

error terms, XE and YE: 

 

FR(t) = ß0(τ) + ßXE (τ)  XE(t + τ) + ßYE (τ)  YE(t + τ)   
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(eqn. 2) 

This regression results in, for each τ, an R2 value indicating goodness of fit of the SS 

firing to both XE and YE, and two regression coefficients (ß), one for each error 

parameter. The overall SS sensitivity to position error is computed from the two 

regression coefficients: 

Sensitivity = √𝛽𝑋𝐸
2 +  𝛽𝑌𝐸

2
   

(eqn. 3) 

The significance of the R2 at each τ-value was assessed against a noise distribution of 

shuffled data. R2 values were obtained from 100 repeats of the same regression analysis 

performed on firing and behavioral data uncoupled through random trial shuffling.  The 

threshold for significance was defined as the mean ± 3SD of the shuffled distribution. For 

each parameter, significant correlations were defined if a local maximum of the R2 profile 

at either predictive or feedback timings exceeded the trial shuffled noise level. Then, the 

timing (τ-value) of the peak lead and/or lag was determined. A similar analysis as 

outlined in eqn 1-3 was undertaken for velocity and position. 

 

Analysis of visual feedback delay 

For the visual feedback delay paradigm, our primary hypothesis was that introducing a 

lag between the movement of the manipulandum and the movement of the cursor would 

affect the timing of the SS encoding of position errors. Therefore, we determined the 

peak predictive and/or feedback timing (τ) of the SS modulation with each behavior of 

interest under both baseline and delay conditions using the regression analysis described 



105 

 

above. To ensure that we were accurately comparing the same SS signals between 

baseline and delay, peaks were selected for analysis if they were present in both baseline 

and delay conditions with the same sign regression coefficients (e.g. positive modulation 

with XE and YE in both baseline and delay). An additional question was whether the 

temporal specificity of SS modulation, defined as the width of the R2 peak, was affected 

by the visual feedback delay. To address this, we quantified the slope of each peak in 

both baseline and delay conditions by computing the ratio between the peak magnitude 

and the half width of the peak.  

 

Analysis of visual feedback reduction 

During the hidden cursor condition, the effect of hiding the cursor while it is inside the 

target creates two conditions during tracking: one where there is no visual feedback 

available (cursor inside target boundary) and one where there is visual feedback available 

(cursor outside target boundary). Thus, to assess the effects of the hidden cursor 

paradigm, we performed two separate analyses: one to determine the SS encoding while 

the cursor was inside the target, where visual feedback was unavailable, and one while 

the cursor was outside the target, where visual feedback was available. For the first 

analysis, we performed similar temporal linear regression analyses (eqn. 1-3), but only 

using the time points during which the cursor was inside the target center (as well as the 

SS firing before and after those time points in 20 msec steps, as described above). The 

resulting R2 and sensitivity profiles provided a quantification of the SS encoding of 

behavior inside the target for the both baseline and hidden cursor conditions. Encoding 
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decreases were considered significant if the peaks exceeded the statistical threshold for 

significance in the baseline but not hidden cursor conditions. Significant increases in 

error encoding (below threshold in baseline but above threshold in the hidden cursor 

condition) were uncommon, occurring in only 3 Purkinje cells. 

 

Given that for the hidden cursor condition, visual feedback was only available outside the 

target boundary, we reasoned that the SS modulation may increase outside the target 

boundary. The goal of the second analysis for the hidden cursor condition was thus to 

determine whether there was increased SS modulation outside the target edge, where 

visual feedback was available. To accomplish this, we first computed the expected SS 

modulation with position error based on the linear model obtained under baseline 

conditions for each peak predictive and feedback τ. This resulted in a map of the error 

workspace, indicating the expected SS modulation for a given XE and YE error bin. We 

next compared these expected error maps to the observed maps obtained during the 

hidden cursor condition. The difference between the two maps indicated areas of the error 

workspace in which the SS modulation exceeded the modulation expected given the 

baseline conditions. 

 

Analysis of kinematic modulation 

We also assessed the effects of visual feedback manipulation on the SS encoding of 

kinematics. For the delay condition, we determined the timing of SS modulation with 

hand kinematics (position and velocity) in both baseline and delay conditions using the 
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same methods as those described for position error. For the visual feedback reduction, we 

determined the magnitude of predictive and feedback modulation with kinematics in both 

baseline and hidden cursor conditions. Importantly, we restricted the analysis to the 

behavior occurring only when the cursor was inside the target center as for position error. 

 

Results 

Visual feedback delay paradigm 

Sixty-two Purkinje cells were recorded from two rhesus macaques during pseudo-random 

tracking under both normal (baseline) conditions and with visual feedback delay (delay 

condition). Of those 62, 43 were collected with a delay of 100 msec and 19 with a delay 

of 200 msec. As we have reported previously, the SS firing of Purkinje cells in lobules 

IV-VI of the intermediate and lateral cerebellar zones are highly modulated with both 

limb kinematics and performance errors (Hewitt et al., 2011;Popa et al., 2012;Streng et 

al., 2017). Purkinje cells can have both lead and lag spike representations of one or more 

behavioral parameters. Of this population, the SS firing of 7 Purkinje cells have at least 

one representation of position, 38 of velocity, and 30 of position error. In total, 50 cells 

had significant modulation with at least one parameter. The first set of analyses focuses 

on those cells with significant SS modulation with position error.  

 

Both baseline and delay conditions result in similar coverage of the parameter 

workspaces (Fig. 22A-B), with no significant difference in the probability distributions 

for position (F(1,127) = 0.67, p = 0.42, ANOVA), velocity (F(1,127) = 0.08, p = 0.77, 
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ANOVA), and position error (F(1,127) = 0.95, p = 0.33, ANOVA) and the animals strive 

to keep the cursor near the target center (Fig. 22C). The similar coverage of all parameter 

workspaces suggests that the visual feedback delay does not induce a significant change 

in strategy during tracking. Importantly, the animals show no evidence for adaptation 

either across trials (baseline, ρ = -0.12 p > 0.05, Pearson’s correlation, delay = 100, ρ = 

0.07, p > 0.05) or recording days (baseline, ρ = -0.27 p > 0.05, Pearson’s correlation, 

delay = 100, ρ = -0.03, p > 0.05) (Fig. 22D-E). 

 

Figure 22. Behavior during pseudo-random tracking and effects of delayed cursor 

paradigm. Average probability densities for cursor position (A), velocity (B), and 

position error (C) across all recording sessions for both baseline (left column of A-C) and 

the 100 msec delay (right column of A-C) conditions. Average probability values are 

indicated by color bar. D) Average position error over trials for baseline (black circles) 

and 100 msec delay (red circles). Position error magnitudes were normalized to the 

average error magnitude in the baseline condition. E) Average position error over 

recording days for baseline (black circles) and 100 msec delay (red circles). Position error 

magnitudes were normalized to the average error magnitude in the baseline condition. 
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Visual feedback delay shifts feedforward encoding of position errors 

The primary hypothesis tested by delaying the visual feedback concerned the lead SS 

encoding. A forward internal model that has not adapted to a delay in visual feedback 

will continue to make predictions with respect to non-delayed cursor movement, 

equivalent to the movement of the manipulandum (Fig. 23A). If the SS discharge 

functions as the output of a forward internal model, the expectation is that the predictive 

error signals will shift to longer feedforward leads (see Fig. 23B).  The shift in the 

predictive timing is because the forward internal model continues to operate as if it were 

in the baseline condition in which there is no delay between the cursor and hand 

movement.  As long as the forward internal model has not adapted, the model will make 

predictions about the upcoming sensory consequences at earlier leads by an amount equal 

to the imposed delay.  The hypothesis also predicts that because the feedback error 

signals monitor the cursor movements, the timing of the SS feedback signals will not 

change. 

 

Figure 23. Visual feedback delay and expected results. A) Visual feedback delay was 

induced by introducing a lag between the movement of the manipulandum (green dashed 

line) and the cursor (blue solid line. B) The expected outcome of the visual feedback 

delay is a negative shift in the lead encoding to more feedforward times, indicating 

predictive encoding with the movement of the manipulandum and not the delayed cursor 

(indicated by shift in dashed green line). Conversely, the lagged encoding should be 

unaffected. 
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An example Purkinje cell that has both lead and lag modulation with position error is 

shown in (Fig. 24). Under baseline conditions, there is strong SS modulation in the lower 

half of the position error workspace that leads behavior by -400 to 0 msec. At more 

feedback times (200 to 600 msec), SS modulation is strongest on the right side of the 

error workspace. When visual feedback is delayed by 200 msec, the lead SS modulation 

shifts to more negative time points, and the strongest modulation occurs between -600 to 

-200 msec. Conversely, the timing of the strongest lag modulation is unaffected. The SS 

modulation with behavior at each time point is quantified using a temporal linear 

regression analysis (see Materials and Methods), resulting in R2 (Fig. 24B) and sensitivity 

profiles (Fig. 24C) for both the baseline and delay conditions. Baseline SS encoding has 

lead and lag peaks at -100 and 440 msec, respectively. Under delay conditions, the timing 

of predictive encoding occurs earlier, with a peak at-280 msec. Conversely, the timing of 

feedback encoding, either for the R2 or sensitivity profiles, is unaffected, with a peak at 

420 msec.  

 

Similar changes in the timing of lead encoding are observed across the population for 

both 100 and 200 msec delays (Fig. 24D), with the delay conditions resulting in a more 

significant shift for lead than lag encoding (Fig. 24E, E(1,39) = 11.732, p = 0.002, 

ANOVA). Importantly, this effect is significant across all cells with significant lead 

and/or lag encoding of position errors. The average shift in the lead encoding is 

approximately equal to the duration of the feedback delay, with an average shift of -118  
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123 msec for 100 msec delay and -206  105 msec for the 200 msec delay. As predicted 

by our hypothesis (Fig. 23), the lag SS modulation relative to position error is not 

affected by the delay, consistent with a visual feedback signal. In contrast, the 

feedforward SS modulation shifts earlier (more negative -value), consistent with a 

predictive signal that estimates the upcoming position errors given the movement of the 

manipulandum, not the delayed visual information. Also, the differential effects on the 

lead and lag encoding confirms the independence of these two aspects of the SS 

modulation. Together, these results suggest that the leading SS modulation encodes the 

prediction of performance errors, and that the timing shift observed in the visual feedback 

delay reflects the output of a forward internal model computing predictions made with 

respect to the movement of the manipulandum and not the delayed cursor. 
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Figure 24. Visual feedback delay shifts predictive encoding of performance errors. 
A) Firing maps for an example Purkinje cell with lead and lag SS modulation with 

position error in both baseline (top row) and 200 msec delay (bottom row) conditions. 

Each map indicates SS modulation at a specific lead (negative time points) or lag 

(positive time points) τ. Black circle indicates target edge. R2 (B) and sensitivity (C) 

temporal profiles computed using linear regression analyses (see Materials and Methods) 

quantifying the SS encoding of position error in both the baseline (black line) and 200 

msec delay (blue line) conditions. As for the firing maps, negative τs indicate lead SS 

encoding. D) Average peak timing of lead and lag encoding for baseline and both 100 

msec (left) and 200 msec (right) delays. Error bars denote SEM. E) Average change in 

the timing of peak lead and lag encoding in the 100 msec (solid blue) and 200 msec 

(checkered blue) conditions, illustrating a significant shift in the timing of lead SS 

encoding. 
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Feedback delay reduces temporal specificity of simple spike encoding 

The delay in visual feedback is that it introduces a temporal mismatch between 

manipulandum movement and cursor movement. As such, we also assessed whether the 

temporal specificity of SS encoding was affected by the visual feedback delay. We 

reasoned that reduced temporal specificity of encoding would be reflected in the slope of 

the peak, such that decreased slopes would indicate decreases in the specificity. An 

example Purkinje cell is shown in Figure 25. Under baseline conditions, the R2 and 

sensitivity profiles (Fig. 25A and B) for this cell reveal both lead and lag SS encoding of 

position error. As for the previous example, the 200 msec delay in visual feedback shifts 

the lead peak more negatively, while the lag peak is unaffected. However, both peaks 

show a decreased slope in the visual feedback delay condition. We computed the slope of 

each significant peak (change in R2 over time) each in both baseline and delay conditions. 

Across the population, visual feedback delay results in a significant decrease in slope for 

both lead and lag peaks (Fig. 25C, F(3,69) = 6.16, p < 0.001, ANOVA). Together, these 

results suggest that the mismatch between manipulandum movement and cursor 

movement induced by the visual feedback delay condition alters both the timing and 

temporal specificity of SS encoding of position errors. 
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Figure 25. Visual feedback delay reduces temporal specificity of SS encoding. R2 (A) 

and sensitivity (B) temporal profiles for an example Purkinje cell with both lead and lag 

encoding of position errors in baseline (black line) and 200 msec delay (blue line) 

conditions. C) Average peak slope for position error encoding for all Purkinje cells in the 

baseline (black bars), 100 msec delay (solid blue bars) and 200 msec delay (checkered 

blue bars) conditions, illustrating the significant decrease in peak slope in the visual 

feedback delay condition. Error bars denote SEM. 

 

Visual feedback reduction paradigm  

Thirty-six Purkinje cells were recorded during pseudo-random tracking under both 

normal (baseline) conditions and with visual feedback reduction (hidden cursor 

condition). As for those recorded in the feedback delay paradigm, the SS firing of 

Purkinje cells is correlated with many different combinations of behavioral parameters at 

different timings. Of the population, the SS activity of 16 Purkinje cells are correlated 

with position, 30 with velocity, and 25 with error (21 with lead encoding, 15 with lag 
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encoding. 10 cells had both lead and lag encoding). In total, 33 Purkinje cells had 

significant encoding of at least one parameter.  

 

As for the delay paradigm, coverage of the parameter workspaces is similar in both 

baseline and hidden cursor conditions, with no significant change in the probability 

distributions for position (Fig. 26A, F(1,127) = 1.74, p = 0.19, ANOVA), velocity (Fig. 

26B, F(1,127) = 0.02, p = 0.90, ANOVA), or position error (Fig. 26C, F(1,127) = 0.002, 

p = 0.97, ANOVA). The animals strive to keep the cursor near the target center (Fig. 

26C), indicating that there is no change in strategy induced by the visual feedback 

reduction. Additionally, there is no evidence for improvement of performance across 

trials, with mean performance errors actually tending to increase over both trials 

(baseline, ρ = 0.16 p > 0.05, Pearson’s correlation, hidden, ρ = 0.29, p = 0.03) and 

recording days (baseline, ρ = 0.29 p = 0.11, Pearson’s correlation, hidden, ρ = 0.62, p < 

0.01) in the hidden cursor, but not baseline condition (Fig. 26D-E).  

 



116 

 

 

Figure 26. Behavior during pseudo-random tracking and effects of hidden cursor 

paradigm. Average probability densities for cursor position (A), velocity (B), and 

position error (C) across all recording sessions for both baseline (left column of A-C) and 

the hidden cursor (right column of A-C) conditions. Average probability values are 

indicated by color bar. D) Average position error over trials for baseline (black circles) 

and hidden cursor (red circles). Position error magnitudes were normalized to the average 

error magnitude in the baseline condition. E) Average position error over recording days 

for baseline (black circles) and hidden cursor (red circles). Position error magnitudes 

were normalized to the average error magnitude in the baseline condition. 

 

Feedback encoding of performance errors is decreased by reduced visual feedback 

The primary hypothesis tested by this feedback manipulation concerned the lagged SS 

encoding of position errors. Given that the cursor is hidden from view whenever it is 

inside the target edge (Fig. 27A), the expectation is that if the lagged SS modulation 

represents the feedback encoding of position errors, it should be reduced whenever the 
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cursor is inside the target. Conversely, if the lead encoding is a prediction of upcoming 

position errors, it should be relatively unaffected (Fig. 27B).  

 

Figure 27. Hidden cursor paradigm and expected results. A) Visual feedback was 

reduced by hiding the cursor while it was inside the target. Whenever the cursor left the 

target boundary, the cursor became visible. B) The expectation is that reducing visual 

feedback should reduce the lagged encoding of position errors inside the target boundary. 

Conversely, the lead encoding should not be decreased. 

 

An example Purkinje cell with both lead and lag SS modulation with position errors is 

shown in Figure 28. Under baseline conditions, there is strong modulation in the upper 

half of the error workspace that leads the behavior by -500 to -300 msec, and strong 

modulation in the lower half of the error workspace that lags the behavior by 100 to 300 

msec (Fig. 28A). When the visual feedback is reduced in the hidden cursor position, the 

SS modulation leading the behavior is relatively maintained, with positive modulation in 

the upper half of the workspace both inside and outside the boundary of the target 

(indicated by black circle). The lagged SS modulation with position errors is markedly 

reduced, however, such that there is little to no modulation within the target boundary 

(Fig. 28A). The SS modulation was quantified using temporal linear regression analysis 

as for the visual feedback delay. However, we restricted our analysis to the behavior and 
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SS firing occurring inside the boundary of the target to quantify the effects of the 

feedback reduction, as we reasoned that the lagged SS encoding would be reduced within 

but not outside the target boundary. The R2 (Fig. 28B) and sensitivity (Fig. 28C) profiles 

mirror the effects seen in the firing maps; significant lead and lag encoding of position 

errors is observed during baseline conditions, whereas visual feedback reduction greatly 

reduces the magnitude of lag, but not lead SS encoding (Fig. 28B-C). Therefore, the SS 

firing for this Purkinje cell during the hidden cursor paradigm strongly matched the 

predictions (Fig. 27). 

 

Significant reductions in SS modulation were defined as encoding that exceeded the 

threshold for significance in the baseline but not hidden cursor condition. Across the 

population, significant reductions in lag encoding were observed in 11/15 of the Purkinje 

cells with significant lag encoding of position errors. In those cells with significant 

decreases, analysis of variance yielded a significant interaction between the feedback 

condition and the timing of encoding (F(1,35) = 10.65, p  = 0.0026, ANOVA), with the 

hidden cursor condition significantly reducing the overall magnitude of the lagged 

encoding of position errors, but not the lead encoding (Fig. 28D). The 4 Purkinje cells 

with lagged encoding that did not decrease below threshold still showed an overall 

decrease in lagged encoding. Peak lag encoding for those 4 cells averaged at an R2 of 

0.79  0.06 for baseline and 0.62  0.12 for hidden cursor. Together, these results suggest 

that the lagged SS modulation represents feedback encoding of position errors. 

Conversely, the lead SS modulation is not altered with the reduction in visual feedback, 



119 

 

consistent with a predictive signal. Finally, as for the delay condition, the results confirm 

the independence of the feedforward and feedback modulation. 

 

Figure 28. Hidden cursor reduces feedback encoding of performance errors. A) 

Firing maps for an example Purkinje cell with lead and lag encoding of position errors on 

both the baseline (top row) and hidden cursor (bottom row) conditions. Black circle 

indicates target edge. R2 (B) and sensitivity (C) profiles for the Purkinje cell in (A), 

illustrating the decrease in lagged SS encoding of position errors. D) Average encoding 

strength (R2) of both lead and lag encoding for the 11 Purkinje cells with significant 

decreases in SS encoding of position errors in the hidden cursor condition. 

 

Simple spike modulation emphasizes information outside the target boundary during 

visual feedback reduction 

One expectation for the visual feedback reduction paradigm is that, given that visual 

feedback is only available outside the target boundary, there may be an increase in the 

importance of cursor information outside the target. Intriguingly, while the SS 
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modulation inside the target is reduced by the hidden cursor condition, the SS modulation 

outside the target edge is not (see Fig. 28A). An additional hypothesis is that the 

increased relevance of position error information outside the target edge would be 

reflected as an increase in the SS modulation outside the target. To test this, we computed 

the expected lead and lag SS modulation with position errors from the behavior in the 

hidden cursor using the linear model derived from baseline firing at the peak τ (see 

Materials and Methods), and compared that expected modulation to the real SS firing 

observed during the hidden cursor paradigm. An example Purkinje cell with both lead 

and lag modulation with position errors is shown in Figure 29. The expected SS 

modulation maps are calculated using the linear model from baseline firing, and the 

observed maps are the actual SS modulation during the hidden cursor condition. The 

difference maps are the discrepancy between expected and observed SS modulation. For 

the lead encoding, there is an increase in SS firing outside the target edge, particularly on 

the right side of the workspace (Fig. 29A). For the lag encoding, the SS modulation 

outside the target edge shows an even greater increase, with the observed SS modulation 

exceeding expected for the majority of the bins outside the target (Fig. 29B).  

 

We assessed for significant differences in expected versus observed SS modulation for 

each significant peak across the population (paired t-test) and found that the a large 

number of both predictive (10/21 Purkinje cells) and feedback (10/15 Purkinje cells) SS 

modulation was significantly greater than expected from baseline conditions. Across the 

population, we compared, for each bin of the error workspace outside the target 



121 

 

boundary, the expected versus observed SS lead and lag modulation. Analysis of variance 

of yields a significant interaction between the visual feedback condition and the timing of 

SS modulation (F(1,2513) = 14.26, p = 0.0002, ANOVA), with a significantly greater 

increase in observed modulation for lag encoding than for lead encoding. Together, these 

results suggest that the hidden cursor condition shifts the lagged SS modulation towards 

the target edge, where visual feedback is available. 

 

Figure 29. Hidden cursor paradigm increases SS modulation outside target edge. A-

B) Firing maps for an example Purkinje cell with significant lead (A) and lag (B) 

encoding of position errors. Maps on the far left indicate the expected SS modulation at 

the peak τ in the hidden cursor using the linear model computed at the peak τ under 

baseline conditions (see Materials and Methods). The middle maps indicate the observed 

SS modulation at the peak τ in the hidden cursor condition. SS modulation is indicated by 

color bar on bottom left. The maps on the far right indicate the difference between 

observed and expected SS modulation, with increases (warmer colors) indicating 

observed modulation that is greater than expected. Change in modulation is indicated by 

color bar on bottom right. C) Average absolute magnitude of expected (black bars) versus 

observed (red bars) SS modulation across all error bins for all Purkinje cells with 

significant lead and/or lag encoding of position error (n = 25 Purkinje cells). Error bars 

indicate SEM. 
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Manipulations of visual feedback do not affect simple spike encoding of kinematics 

While the SS firing during random tracking is highly correlated with position errors, 

multiple studies have shown that SS firing contains robust representations of kinematics, 

including hand positon and velocity (Hewitt et al., 2011;Popa et al., 2012;Streng et al., 

2017;Popa et al., 2015). While the position errors are defined as the difference between 

cursor and target positions on the screen, measurements of kinematics reflect both the 

visual kinematics of the cursor as well as the kinematics of limb movement. As such, an 

additional question is whether the lead and lag SS modulation with kinematics primarily 

reflects the encoding of limb movements or the visual movements of the cursor. If the SS 

modulation with kinematics reflects limb movement information, then the timing of both 

lead and lag encoding of manipulandum movement should be unaffected in the visual 

feedback delay condition. Additionally, the magnitude of both lead and lag encoding of 

kinematics should be unaffected in the visual feedback reduction condition.  

 

Two example Purkinje cells recorded during the feedback delay and feedback reduction 

conditions, respectively, are shown in Figure 30. The first example Purkinie cell has 

strong lead encoding of velocity in both baseline and delayed cursor conditions (Fig 30A-

B). Importantly, the timing of both peak encoding strength (Fig. 30A) and sensitivity 

(Fig. 30B) are unaffected by a delay of 100 msec (note that the profiles reflect SS 

modulation with manipulandum velocity, not delayed cursor velocity). Similar results are 

observed across the population (n = 38 cells with significant encoding of manipulandum 
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position or velocity), with no significant change in the timing of lead or lag encoding of 

manipulandum kinematics (Fig. 30C, p = 0.70, ANOVA). The second example Purkinje 

cell also has strong lead and lag encoding of velocity in baseline and hidden cursor 

conditions. Note that, as for the error encoding, the SS modulation with manipulandum 

kinematics in both baseline and hidden cursor reflects the encoding inside the target 

boundary only. Unlike the encoding of position error inside the target boundary, the 

magnitude of the lagged encoding of velocity inside the target is unaffected by the 

feedback reduction paradigm (Fig. 30 D-E). Across the population (30 Purkinje cells with 

significant encoding of manipulandum position or velocity), there is no significant 

change in either lead or lag encoding of kinematics in the hidden cursor paradigm (Fig. 

30F, p = 0.22, ANOVA). Together, these results suggest that SS modulation with 

kinematics during random tracking reflects the encoding of limb movements, not the 

visual movements of the cursor. 
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Figure 30. Kinematic encoding is unaffected by visual feedback manipulations. A) 

R2 profile for an example Purkinje cell with significant encoding of manipulandum 

velocity in both baseline (black line) and 100 msec delay (blue line) conditions. B) 

Sensitivity profile for the example Purkinje cell in (A). C) Average peak timing of both 

lead and lag SS encoding of manipulandum kinematics in baseline and delay conditions. 

Error bars indicate SEM. D) R2 profile for an example Purkinje cell with significant 

encoding of manipulandum velocity in both baseline (black line) and hidden cursor (red 

line) conditions. E) Sensitivity profile for the example Purkinje cell in (D). F) Average 

encoding strength (R2) of lead and lag encoding for all Purkinje cells with significant 

encoding of kinematics.  

 

 

Discussion 

This study characterizes SS modulation with continuous measures of kinematics and 

performance errors during an on-line motor control task. Two novel manipulations of 

visual feedback applied during tracking reveal that the SS modulation encodes both 

predictive and feedback information about performance errors and kinematics consistent 

with the output of a forward internal model. Delaying visual feedback results in 
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predictive SS encoding about performance errors being shifted to earlier leads, consistent 

with a forward internal that has not adapter to the delay and continues to generate 

feedforward predictions with respect to the movement of the hand but not to the delayed 

movement of the cursor. The degree of the shift matches the duration of the delay used. 

Reducing visual feedback inside the boundary of the target shifts the SS feedback 

modulation primarily to outside the target boundary, where visual feedback is available, 

consistent with encoding of the visual feedback of performance errors. Conversely, SS 

modulation with hand kinematics was unaffected in both paradigms, consistent with the 

encoding of hand kinematics and not the visual cursor movement. The major findings of 

this study are that the SS firing during pseudo-random tracking is consistent with 

encoding the predictive and feedback components of sensory prediction error, the 

predictive and feedback signals are independent, and that the firing contains robust 

representations of both performance errors and kinematics. 

 

Pseudo-random tracking and visual feedback manipulations 

Pseudo-random tracking provides a considerable advantage for examining cerebellar 

signals relevant to online motor control, as it requires continuous monitoring and 

correction for errors. This is a substantial departure from other tasks involving reaching 

and saccades, which instead evoke discrete, highly stereotypic errors. The dynamic and 

highly challenging nature of pseudo-random tracking allows for a thorough evaluation of 

signals relevant to motor prediction and feedback in cerebellar neurons. 
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Both of the visual feedback manipulations implemented during pseudo-random tracking 

increase the difficulty of an already challenging task. However, the distributions of 

kinematics and performance errors show that the manipulations of visual feedback do not 

induce any major changes in the animals’ strategy, as they still strive to maintain the 

cursor in the target center. The fact that the densities do not differ shows that the 

movement kinematics are comparable. Additionally, there is little evidence for any 

adaptation to the feedback manipulations, either over trials or recording sessions. This is 

likely due to the fact that the feedback manipulations are removed during the intertrial 

interval, as rapid switching between task conditions limits adaptation (Herzfeld et al., 

2014;Gonzalez Castro et al., 2014). Thus, the changes in SS encoding observed during 

the delayed and hidden cursor paradigms are a product of the altered visual feedback and 

not any fundamental changes in the movement kinematics, strategy or adaptation effects.  

 

Computing predictive and feedback 

With approximately 200,000 parallel fiber-Purkinje cell synapses (Napper and Harvey, 

1988) and less than 200 active synapses are required to generate a SS (Isope and Barbour, 

2002), Purkinje cells appear to have the capacity to carry a large number of signals.  

Cerebellar granule cells, the origin of parallel fiber inputs to Purkinje cells, are modulated 

by a host of both sensory and motor parameters (Bengtsson and Jorntell, 2009;Huang et 

al., 2013;Chadderton et al., 2004;Ishikawa et al., 2015;Powell et al., 2015) This provides 

Purkinje cells with the necessary information to compute both predictions and feedback 

about movements. In support of this, cerebellar damage produces deficits in predictive 
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control of movement (Horak and Diener, 1994;Nowak et al., 2004;Martin et al., 

1996;Smith and Shadmehr, 2005), and increased cerebellar activation is associated with 

predictable changes in target location during teaching (Diedrichsen et al., 2005). 

Increases in cerebellar activation occur with errors (Diedrichsen et al., 2005;Ide and Li, 

2011;Imamizu et al., 2000) and omission of an expected sensory stimulus (Tesche and 

Karhu, 2000). 

 

Changes in error sensitivity 

One particularly striking findings is the increased SS modulation outside the target 

boundary in the hidden cursor condition. The degree to which the motor system responds 

to an error is highly dependent on the task and environment in which the errors are 

generated, leading to the concept of error sensitivity (Herzfeld et al., 2014;Huang and 

Shadmehr, 2009). Error sensitivity changes with error size (Robinson et al., 2003), task 

parameters (Wei and Kording, 2009), subjective value of error(Trent and Ahmed, 2013), 

and perturbation statistics (Herzfeld et al., 2014;Huang and Shadmehr, 2009;Gonzalez 

Castro et al., 2014). One possible mechanism that could underlie changes in error 

sensitivity is to alter how neurons respond to motor errors. In the visual feedback 

reduction condition, the SS sensitivity to performance errors is altered to emphasize the 

error information outside the target boundary, where visual feedback is available. This 

provides to our knowledge the first demonstration at the neuronal level for control of 

error sensitivity (Herzfeld et al., 2014;Huang and Shadmehr, 2009;Gonzalez Castro et al., 

2014;Robinson et al., 2003) and a demonstration that cerebellar neurons adjust their 
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sensitivity to the available sensory feedback (Scott, 2004;Todorov and Jordan, 2002).  

This is consistent with optimal feedback control in that the motor system tunes the 

representations of sensory feedback to prevailing task demands (Diedrichsen et al., 

2010;Scott, 2004;Todorov and Jordan, 2002). 

 

Implications for forward internal models 

If the predictive and feedback components of SPE are computed by Purkinje cells and 

encoded by their SS output, then an outstanding question is where the discrepancy 

between those signals, or the sensory prediction error itself, is computed. The deep 

cerebellar nuclei (DCN) are a likely candidate for the initial step in this integration due to 

the convergence of numerous Purkinje cells onto a DCN neuron.(Person and Raman, 

2012;Chan-Palay, 1977;Palkovits et al., 1977)  Responses of nuclear neurons are highly 

dependent on the synchronicity of Purkinje cell SS firing (Person and Raman, 

2012;Bengtsson et al., 2011;Gauck and Jaeger, 2003;Gauck and Jaeger, 2000), and 

therefore, could integrate the predictive and feedback signals in a population of Purkinje 

cells to provide an estimate of their mismatch. In support of this, neurons of the rostral 

fastigial nucleus are selectively modulated by passive rather than active self-generated 

motion (Brooks and Cullen, 2013). During active self-generated motion, under ideal 

conditions the sensory consequences predictions would match the actual feedback, 

resulting in a negligible SPE. However, passive motion introduces unexpected sensory 

feedback, thus generating SPE. Similarly, dentate neurons appear to encode the omission 
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of a stimulus from a regularly presented sequence (Ohmae et al., 2013). The preference 

of DCN modulation for unexpected events could indicate a correlate of SPE encoding. 

 

A crucial aspect of the forward internal model is the use SPEs to update motor commands 

and guide motor learning (Miall and Wolpert, 1996;Wolpert and Ghahramani, 

2000;Wong and Shelhamer, 2011;Mazzoni and Krakauer, 2006;Taylor and Ivry, 

2012;Gaveau et al., 2014). Thus, SPEs need to be transmitted to structures that specify 

the motor command. As the final output of the cerebellum (with the vestibular nuclei), 

DCN neurons can provide that information via excitatory projections to multiple 

brainstem nuclei and indirectly to numerous motor cortical areas via the thalamus (Thach, 

1968;Goodkin and Thach, 2003;Flament and Hore, 1988;Meyer-Lohmann et al., 

1977;van Kan et al., 1993;Strick, 1983;Chapman et al., 1986;Schmahmann and Pandya, 

1997;Kelly and Strick, 2003;Gibson et al., 1985;Dum et al., 2002). An outstanding 

question is the mechanism by which the discrepancy between the predictive and feedback 

information in SS firing is used to update the forward model and subsequent predictions, 

an additional function of SPEs (Wolpert and Ghahramani, 2000;Shadmehr et al., 2010). 

One potential candidate for an update signal would be the climbing fiber input to the 

cerebellar cortex. As we have recently demonstrated, complex spike discharge is 

associated with robust and rapid changes in SS encoding (Streng et al., 2017). The DCN 

provide feedback to the inferior olive both directly via a population of GABAergic 

neurons and indirectly via the red nucleus (Lang et al., 1996;De Zeeuw et al., 1989;Teune 

et al., 2000;Bengtsson and Hesslow, 2006). Together, this allows for a loop in which 



130 

 

prediction and feedback is computed by the SS discharge, compared by the DCN, and the 

discrepancy between the two would alter subsequent predictions via CS-coupled changes 

in SS encoding. 
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CHAPTER 5: ADDITIONAL DISCUSSION AND NEXT STEPS 

 

As reviewed in the Introduction, the cerebellum plays a crucial role in fine control of 

movements and error correction. In particular, extensive evidence suggests that the 

cerebellum serves as a forward internal model for motor control, predicting the sensory 

consequences of motor commands and comparing them to their actual consequences, 

generating sensory prediction errors which guide motor learning and adaptation (Wolpert 

et al., 1998;Wolpert et al., 1995;Kawato, 1999;Shadmehr et al., 2010;Bell et al., 

2008;Pasalar et al., 2006). While the dominant hypothesis has been that CSs encode 

errors, this is not a universally accepted view, and emerging evidence suggests that CSs 

are not invariably activated by errors (Popa et al., 2014;Llinas, 2013). Additionally, the 

mechanisms by which the predictive and feedback components of a forward internal 

model are represented by cerebellar neurons have not been fully elucidated. The results in 

this thesis provides new insights into these questions and novel mechanisms by which the 

cerebellum contributes to effective motor control in a dynamic environment.  

 

The role of climbing fiber input to the cerebellum 

The results of Chapter 2 outline a highly novel hypothesis about the function of climbing 

fiber input to the cerebellar cortex. During pseudo-random tracking, climbing fiber 

discharge dynamically controls the information present in the SS firing, triggering robust 

and rapid changes in SS encoding of motor signals in 67% of Purkinje cells. The changes 

in encoding, tightly coupled to CS occurrences, consist of either increases or decreases in 
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the SS sensitivity to kinematics or position errors and are not due to differences in SS 

firing rates or variability. Nor are the changes in sensitivity due to CS rhythmicity. In 

addition, the CS-coupled changes in encoding are not evoked by changes in kinematics or 

position errors. Instead, CS discharge most often leads alterations in behavior. Increases 

in SS encoding of a kinematic parameter are associated with larger changes in that 

parameter than are decreases in SS encoding. Increases in SS encoding of position error 

are followed by and scale with decreases in error. The results suggest a novel function of 

CSs, in which climbing fiber input dynamically controls the state of Purkinje cell SS 

encoding in advance of changes in behavior. 

 

Chapter 3 further expands on the observation that CS discharge tends to lead behavior by 

characterizing CS modulation with kinematics and performance errors. A reverse 

correlation approach was used to determine feedforward and feedback CS firing 

probability maps with position, velocity and acceleration, as well as position error. The 

direction and magnitude of the CS modulation were quantified using linear regression 

analysis. The major findings are that CSs significantly encode kinematics and position 

error. The modulation is not related to ‘events,’ either for position error or kinematics. 

Instead, CSs are spatially tuned and provide a linear representation of each parameter 

evaluated. The CS modulation is largely predictive. Similar analyses show the SS firing 

is modulated by the same parameters as the CSs. Therefore, CSs carry a broader array of 

signals than previously described and argue for climbing fiber input having a prominent 

role in online motor control. 
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Together, these findings are a major departure from the dominant views of cerebellar 

physiology, which for over 40 years asserted that complex spike firing serves primarily as 

the sole error signal in the cerebellar cortex (for reviews see (Boyden et al., 2004;Hansel 

et al., 2001;Gao et al., 2012;Ito, 2001;Marr, 1969;Albus, 1971;Jorntell and Hansel, 

2006)).  Instead, climbing fiber input to the cerebellum actively controls the information 

present in SS firing in advance of changes in behavior. While the observations of CS-

coupled changes in encoding are similar to the ‘gain change’ and bi-stability hypotheses 

(Ebner et al., 1983;Loewenstein et al., 2005;Yartsev et al., 2009;McKay et al., 2007), the 

effects shown in Chapter 2 are manifest as a change in SS information rather than overall 

firing rates. Recent eye blink conditioning studies report similar predictive CS 

modulation, with CS increases prior to the conditioned response (Ohmae and Medina, 

2015;Ten Brinke et al., 2015). However, the results of Chapter 3 indicate a much richer 

representation of behavior than previously reported, with CS modulation providing a 

planar, predictive representation of the workspace. One potential explanation for these 

major departures is the use of pseudo-random tracking, which provides for a more 

thorough exploration of the kinematic and position error workspaces than many previous 

paradigms (Hewitt et al., 2011;Popa et al., 2012;Paninski et al., 2004). 

 

In conclusion, the results of Chapters 2 and 3 represent a new perspective on the role of 

climbing fiber input to the cerebellar cortex. Rather than serving as an error feedback 

signal, climbing fiber discharge is evoked in anticipation of a change in behavior, and its 
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action on the Purkinje cell is to appropriately tune the information present in the SS 

output in order to optimize control of behavior (Fig. 31).  

 

Figure 31: Hypothesized role of predictive CS modulation. A) Predictive (dashed 

lines) and feedback (solid lines) information about kinematics (red) and position errors 

(blue) is encoded by Purkinje cells of the cerebellar cortex and relayed to the deep 

cerebellar nuclei (DCN). B) Climbing fiber input to the cerebellar cortex, originating in 

the inferior olive (IO), modulates in advance of a change in behavior (in this schematic 

example, kinematics), and triggers an increase in SS encoding of kinematics. 

 

Future experiments to determine the mechanisms of complex spike-coupled changes in 

encoding 

The findings in Chapter 2 demonstrate that CS firing is associated with dramatic changes 

in SS encoding. However, a major outstanding question is the potential mechanism(s) by 

which these alterations in SS encoding occur. A number of candidates could explain the 

changes. First, the number of spikes in a given climbing fiber discharge will affect the CS 

burst pattern, influencing parallel fiber-Purkinje cell synaptic plasticity (Bazzigaluppi et 

al., 2012;Mathy et al., 2009). Previous work has shown that the duration of CS discharge 

can be associated with changes in motor learning (Yang and Lisberger, 2014;Rasmussen 
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et al., 2013). Thus, one potential future question is whether the number of wavelets in a 

CS affects the subsequent CS-coupled change in SS encoding. Rather than assessing 

encoding changes across the entire session as was done in Chapter 2, approaching this 

question would require examining either individual CSs or subsets of CSs with similar 

burst patterns. For example, using the methods of Yang et al(Yang and Lisberger, 2014), 

the duration of individual CSs could be defined and categorized, and the CS-coupled 

changes in SS encoding associated with different durations of CSs could be determined. 

If differences in the bursting patterns are responsible for the increases and decreases in 

SS encoding observed after CS discharge, then the expectation is that the number of 

wavelets in a CS should predict a change in SS modulation with behavior.  

 

Additional mechanisms that could explain the CS-coupled changed in SS encoding are 

local inhibition by GABAergic interneurons and the timing of climbing fiber discharge 

relative to parallel fiber inputs. GABAergic inhibition generated by cerebellar 

interneurons locally modifies the conductance changes and Ca2+ fluxes evoked by 

climbing fiber input (Callaway et al., 1995;Kitamura and Hausser, 2011). Also, the 

timing of climbing fiber discharge may differentially modulate parallel fiber input and 

thereby determine the direction of synaptic potentiation (Piochon et al., 2012;Suvrathan 

et al., 2016). Addressing these possibilities would require probing the micro circuitry of 

the cerebellar cortex rather than the approach utilized here, in the nonhuman primate. 

Electrophysiological recordings from an individual Purkinje cell and surrounding 

interneurons would allow for the characterization of inhibitory activity relative to the 
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timing of climbing fiber discharge. If the CS-coupled changes are driven by relative 

activity of GABAergic interneurons, individual CSs should have differential effects on 

SS encoding depending on levels of inhibition from those interneurons. For example, 

increases in interneuron activity around the timing of CS discharge could predict a 

decrease in SS encoding, and vice versa. 

 

While the changes in SS sensitivity are tightly coupled to the timing of CS discharge, this 

does not unequivocally prove that the CSs produce the changes in SS sensitivity. One 

experiment that could address this is by evoking synchronous CS firing via inferior olive 

stimulation.  If the action of the climbing fiber discharge on the Purkinje cell truly causes 

the changes in SS encoding observed, the inferior olive stimulation should produce robust 

changes in SS sensitivity to behavior that are tightly coupled to the timing of stimulation. 

Another approach is to manipulate the required task in relation to CS discharge. For 

example, one could develop a paradigm requiring that the animal switch the information 

needed to perform the task. If our working hypothesis is correct, CSs should be evoked 

and change the SS encoding to the more salient parameter. 

 

Future experiments to determine the role of predictive CS modulation 

Chapter 3 further demonstrates that the role of climbing fiber activity in online motor 

control extends far beyond the classical error encoding hypothesis, with spatially rich 

predictive information about kinematics and performance errors present in CS firing. 

While this predictive modulation is often associated with CS-coupled changes in SS 
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encoding as illustrated in both Chapters 2 and 3, further characterization of its role in 

cerebellar function is essential. The inferior olive integrates both feedforward and 

feedback information from the spinal cord, nuclei at mesodiencephalic junction, 

cerebellar nuclei, and cerebral cortex (for reviews see (De Zeeuw et al., 1998;Oscarsson, 

1980;Apps and Garwicz, 2005)), indicating that predictive climbing fiber discharge is 

feasible with various motor and non-motor information. However, the predictive CS 

modulation characterized in Chapter 3 was observed in highly skilled animals trained 

extensively on pseudo-random tracking. Thus, an interesting question is whether the 

predictive CS modulation with behavior is learned over time and/or correlated with 

performance. One potential experiment is to introduce a novel tracking experiment, with 

the same target trajectory presented repeatedly rather than chosen at random from 100 

trajectories defined a priori as in Chapters 2-4. The expectation is that over the course of 

a session, the predictive CS modulation would increase to reflect the animals’ learning 

the trajectory.  

 

An intriguing observation from Chapter 2 is that the direction of CS-coupled encoding 

changes tends to be in the opposite direction to the state of SS encoding not associated 

with CS discharge, with CS-coupled increases in encoding associated with net decreases 

in the shuffled data, and vice versa. Taken with the observations of predictive CS 

modulation with behavior, this suggests that the CS-coupled change in SS encoding could 

be either in response to an encoding state that is suboptimal or anticipation of a change in 

behavior. However, future directions should aim to more fully unify the predictive CS 
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modulation and the changes in SS sensitivity. As mentioned above, one potential 

experiment would be to introduce a learning paradigm in which one aspect of the 

behavior (e.g., velocity) dominates more than others. For example, design pseudo-

random trajectories in which the target kinematics contain large changes in target velocity 

with little variability in target position. The expectation is that over time, climbing fiber 

input would become highly tuned to changes in velocity, given that in this case, velocity 

represents the most salient aspect of behavior. Increases in CS modulation with velocity 

should also reallocate the bandwidth of SS firing, triggering increases in SS encoding of 

velocity and decreases in SS encoding of position. Finally, these changes in SS sensitivity 

should be associated with improved task performance.  

 

Predictive and feedback information in Purkinje cell simple spike firing 

The results of Chapter 4 suggest that the information needed to generate sensory 

prediction error is found in the SS discharge of Purkinje cells. These findings build upon 

previous observations of lead and lag SS encoding of kinematics and performance errors 

(Popa et al., 2012;Popa et al., 2015) through the implementation of novel manipulations 

of visual feedback.  

 

In the feedback reduction paradigm, linear encoding of errors was reduced such that SS 

modulation was restricted to outside of the target, where visual feedback was available. 

Conversely, predictive encoding of errors was unaffected. In the feedback delay 

paradigm, the timing of predictive encoding was negatively shifted equal to the duration 
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of the delay, consistent with a forward internal model that has not adapted to the delay 

and makes predictions with respect to the manipulandum movement rather than the 

delayed cursor. Intriguingly, predictive and feedback encoding of arm kinematics was 

unaffected in both paradigms, suggesting a representation of arm movement irrespective 

of the visually-dependent performance errors. 

 

Together, these results characterize robust and independent predictive and feedback 

information about a host of movement-related parameters in the SS firing. The dual 

encoding of errors and kinematics by SS discharge is consistent with the predictive and 

feedback signals necessary for the generation of sensory prediction error ((Popa et al., 

2012;Popa et al., 2014;Popa et al., 2015;Wolpert and Ghahramani, 2000;Shadmehr et al., 

2010)). The differential effects of these manipulations on error and kinematic encoding 

suggest the implementation of multiple forward internal models (Popa et al., 

2015;Kawato and Wolpert, 1998).  In this view, the cerebellum processes predictions and 

feedback about both the kinematics of arm movements and the more task-relevant 

performance errors to achieve optimal performance. 

 

Future experiments assessing prediction and feedback in the cerebellum 

The goal of the experiments in Chapter 4 was to determine whether the lead and lag SS 

modulation with behavior represented predictive and feedback information, respectively. 

The experimental design strived to reduce adaptation to the visual feedback 

manipulations, as any adaptation could have also influenced the SS encoding. This was 
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accomplished by removing the visual feedback manipulations during the inter trial 

interval, as rapid switching between task conditions attenuates adaptation (Herzfeld et al., 

2014;Gonzalez Castro et al., 2014). Future experiments should assess effects of 

behavioral adaptation to similar visual feedback manipulations, and whether any 

adaptation is associated with changes in SS encoding. For example, Purkinje cells could 

be recorded during longer blocks of visual feedback manipulation trials, with the 

manipulations maintained for all movements (i.e., not removed during the inter trial 

interval). In these longer blocks, improvement in performance should be correlated with 

changes in SS encoding. For the visual feedback delay, adaptation to the delay should be 

reflected in the forward internal model integrating the delayed visual feedback into 

subsequent predictions. As such, the predictive encoding should shift back to the original 

τ-value as performance improves. For the visual feedback reduction, the expectation is 

that both the predictive and feedback encoding should be highly tuned to performance 

errors outside the target edge only. 

 

An additional question is the role of CS firing during the visual feedback manipulations. 

One hypothesis is that, in the absence of adaptation as in Chapter 4, CS modulation with 

performance errors and kinematics will initially behave similarly to the SS firing. For 

example, the predictive modulation with performance errors should also be shifted earlier 

in the visual feedback delay, whereas kinematic modulation should be unaffected. In the 

visual feedback reduction paradigm, CS modulation with performance errors should also 

be shifted to outside the target boundary, where visual feedback is available.  
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An intriguing question is the role of CS-coupled encoding changes described in Chapter 2 

in the visual feedback manipulations. As stated previously, the experiments implemented 

strived to minimize adaptation. However, one hypothesis would be that CS-coupled 

encoding changes should reflect changes in the reliability of information. For example, 

the delay in visual feedback produces temporally inaccurate, and thus unreliable 

predictions. One hypothesis would be that during the visual feedback delay paradigm, 

CS-coupled decreases in predictive SS modulation with position error would occur. 

Similarly, in the visual feedback reduction paradigm, the climbing fiber hypothesis 

outlined in Chapter 2 would predict that CS firing should reduce SS modulation with 

position error inside the target boundary, while increasing SS modulation outside the 

target boundary. It will be highly important to characterize CS modulation and its effects 

on SS encoding in future analyses. 

 

If the predictive and feedback components of sensory prediction error are independently 

encoded by the SS firing of Purkinje cells as suggested by Chapter 4, then a major 

outstanding question is how and where those signals are compared in order to generate 

sensory prediction errors. The deep cerebellar nuclei (DCN) is a likely candidate for the 

initial step in this integration due to the convergence of numerous Purkinje cells onto a 

DCN neuron (Person and Raman, 2012;Chan-Palay, 1977;Palkovits et al., 1977) (Fig. 

31A). There is evidence supporting DCN modulation with sensory prediction error, as 

increased activity of dentate neurons is associated with omission of a stimulus from a 
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regularly presented sequence (Ohmae et al., 2013), and rostral fastigial nucleus neurons 

are selectively activated by passive rather than self-generated motion (Brooks and Cullen, 

2013). It would be highly interesting (and challenging) to record the activity of Purkinje 

cells and the nuclear neurons to which they project in the visual feedback manipulation 

experiments to determine whether increases in activity are associated with the mismatch 

between predictive and feedback signals in the SS firing. 

 

Finally, as outlined in Chapter 4, the mechanism by which sensory prediction error is 

used to update the forward internal model has yet to be elucidated. A potential candidate 

for an update signal could be the CS-coupled changes in SS encoding described in 

Chapter 2. In this view, a mismatch in prediction and feedback signals computed by SS 

firing could be conveyed to the inferior olive via the DCN or in combination with other 

inputs (Lang et al., 1996;De Zeeuw et al., 1989;Teune et al., 2000;Bengtsson and 

Hesslow, 2006). This could then trigger climbing fiber discharge that updates subsequent 

information in the SS firing (Fig. 32B). 
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Figure 32: Hypothesized roles of simple and complex spike activity in the context of 

a forward internal model. A) Predictive (dashed lines) and feedback (solid lines) 

components of sensory prediction error are computed by Purkinje cells of the cerebellar 

cortex. The working hypothesis is that these signals are compared by the deep cerebellar 

nuclei (DCN). The mismatch between the two, for example, decreases in feedback 

encoding of position errors induced by the hidden cursor condition, would be relayed to 

the inferior olive (IO). This would result in an increase in climbing fiber activity (B), 

triggering a change in the SS sensitivity to position errors and thus updating the forward 

internal model. 

 

Together, the results of this thesis outline a novel hypothesis about the encoding and 

control of sensory prediction error information on the cellular level. The predictive and 

feedback components of sensory prediction error are encoded by the SS discharge of 

Purkinje cells. Rather than serving as a pure error signal as postulated by classical views, 

CS discharge serves to tune the predictive and feedback information present in the SS 

firing. The CS-coupled changes in behavior can occur either in anticipation of a change 

in behavior, or in response to an encoding state that is suboptimal. The representation of 

motor information on the level of a single Purkinje cell is robust and accurate, but also 
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highly dynamic, changing to reflect differing conditions, either internally (as in Chapters 

2 and 3) or externally (as in Chapter 4) generated. 
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