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Comprehensive Partitioning of Student Achievement Variance 
to Inform Equitable Policy Design 

 
 

Abstract 

So that large-scale assessments positively impact teaching and learning, we must more 

comprehensively investigate (partition) the sources of variance in achievement test scores and 

evaluate assessment-accountability policy targets. We find less than 20% of variance in a state 

assessment is between schools (over 80% within), of which 70% is explained by school 

demographics. Practice and policy implications are explored. 

 

 

Conceptual Framework 

As the Nation’s Report Card, the National Assessment of Educational Progress (NAEP, 

2017) provides strong long-term trends in the academic achievement of the nation’s students. 

The NAEP program strives to achieve the theme of this year’s NCME program: To make 

assessment a stronger force for positive impact on teaching and learning. It does this primarily by 

monitoring trends, among which are trends regarding educational disparities. Through the NAEP 

results, we are able to evaluate progress toward educational equity, particularly regarding the 

role of test use in informing educational practice and public policy. The use of test results to 

inform practice and policy is, of course, a modest approach to the use of achievement tests from 

the federal perspective; whereas a more ambitious position is in the use of standards-based tests 

as the education form agent, which was a failure as anticipated (Koretz, 2017). 

Among the many means of supporting the use of assessment information, NAEP releases 

periodic reports on special topics of national interest. A recent report, School Composition and 

the Black-White Achievement Gap (Bohrnstedt et al., 2015), closely examined the role of school 

composition in schools that participated in NAEP, with a strong focus on educational equity. 

Other researchers make similar cases, investigating the role of school and teaching resources and 

other school and community characteristics addressing educational equity (Baker, Farrie, & 

Sciarra, 2015; Hanushek & Woessmann, 2017; Reardon , 2015; Reardon, Kalogrides, & Shores, 

2016; Whitehurst, Reeves, & Rodrigue, 2016). Figlio & Karbownik (2017) presented evidence 

regarding the variability in educational disparities across schools. They argued that because of 
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variability of school success with advantaged and/or disadvantaged student groups, attention 

should focus on practices within individual schools. A number of other reports make similar 

cases, arguing for a redistribution of school funding, school resources, teaching resources, and 

other context variables that play a role in addressing achievement gaps (Baker, Farrie, & Sciarra, 

2015). Because school composition is of great concern, particularly in urban areas, we explore 

the role of school composition with a statewide population-level database of student 

achievement. 

Achievement Gaps 

Typically, achievement gaps are defined simply in terms of differences in percent 

proficient or average score between students of color and White students. Perhaps the most 

common question regarding the magnitudes of achievement gaps is about the role of socio-

economic status (SES; Harwell, Maeda, & Lee, 2004). Ideally, we would have a complex 

measure of SES, including family income, parental education level and occupation(s), and 

other resources. But typically we only have participation in free and reduced-priced lunch 

programs (FRL) as an indicator of SES. Unfortunately, we know there are limitations in 

this indicator, particularly for students in secondary schools, who are less likely to 

participate. Nevertheless, it is a powerful explanatory variable when examining variance in 

test performance, both at the student and the school levels. 

As an example, Cotrell et al. (2015) summarized wide-ranging cognitive disparities 

reported in the research literature and argued that cognitive tests robustly predict job 

performance. They found evidence to support an established model of educational 

disparities, based on racially disparate conditions, including family income, maternal 

education level and verbal ability, availability of learning materials in the home, parenting 

factors, and child birth outcomes. Based on analysis of the NICHD Study of Early Child 

Care and Youth Development, they found: 

• The Black-White gap has been studied since as least 1922. 

• There is no strong theoretical basis for the cognitive ability gap. 

• Cognitive tests show large Black-White differences, an average Cohen’s d 

(standardized mean difference) of 1.0. 
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• This gap in cognitive tests is near three times as large as the gap in job performance 

(although there is substantial evidence supporting the use of cognitive abilities to 

predict job performance, racial disparities do not follow the same pattern). 

• The concept of race implies a history of housing segregation, education segregation, 

and occupational segregation (among others). Occupational segregation results in 

income disparities; education segregation results in  disparities in maternal 

education and verbal abilities; housing segregation results in educational & 

occupational disparities. A cyclical pattern emerges. 

It is clear that race/ethnicity embodies complex characteristics that are consistently 

associated with academic achievement, often the result of exclusionary public policies or 

structural barriers reducing access to resources and opportunities to learn. Segregation is a 

long term result of such policies/structures and this plays an important role in 

understanding variance in student and school-level achievement. 

The Importance of Variability 

State departments of education (as a result of federal regulations) report and focus 

on the percent meeting standards and other performance levels; states and local education 

agencies report and focus on percent meeting standards and average test scores; NAEP 

reports and focuses on percent at each proficiency level and average test scores. However, 

in most schools, teachers do not work with a majority of students who achieve at the 

average – teachers do not target their teaching practices at the percent meeting standards. 

Teachers and schools (and communities) are struggling to meet the needs of diverse 

students – particularly students who differ in academic preparation, in academic 

experience, and in academic achievement. By focusing on the percent meeting standards or 

the average test score, we limit our understanding of the real challenge in education, which 

is how to meet the needs of students who vary widely in achievement (knowledge, skills, 

and abilities). The variability in achievement presents the greatest challenges. 

In a comprehensive study of student achievement data from 49 states, the district-

level ICCs ranged from near zero to .23 in ELA and mathematics, and were 29% larger in 

8th grade compared to 3rd grade (Fahle & Reardon, 2017). Furthermore, the ICCs in 

mathematics tended to be larger than those in ELA (about 13% larger), yet the correlation 

between the ICCs in the two subject areas was .94. In a study of TIMMS-R 1999 data, the 
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estimate ICC was only about 6.3% of variance was between schools (Kim & Choi, 2008). 

OECD (2004) estimated that about 34% of variance in student PISA mathematics scores 

among 15-year-olds was between schools, but this varied substantially across countries. In 

the USA, the between-school variance is closer to about 30%. 

The Role of School Composition & Resources 

Figlio & Karbownik (2017) presented evidence regarding the variability in 

educational disparities across schools. They argue that because of variability of school 

success with advantaged and/or disadvantaged student groups, attention should focus on 

practices in individual schools. They were not able to explain variation in school success 

levels regarding educational disparities based on kindergarten readiness of students or the 

overall level of SES within a school. Because of the inconsistency in school success with 

advantaged or disadvantaged students or both, they argued that accountability policies 

should focus on school success with specific populations. 

International evidence typically illustrates the limited power of school expenditures 

and class size to explain variation in student achievement, pointing to measures of school 

quality inputs as having more potential regarding student outcomes (Hanushek & 

Woessmann, 2017). 

In Minnesota, a series of policy shifts contributed to housing and educational 

segregation, particularly in the Twin Cities urban area (Orfield, 2015). In addition, MN is 

known for its innovation in charter school and school choice policy design. However, 

charters are another source of segregation, where 45 of the 50 most racially concentrated 

schools in the Twin Cities are charter schools (Orfield, 2017). “The evidence suggests that, 

under the most favorable set of assumptions for poverty academies, racial integration is 

more likely to produce academic benefits for nonwhite and low-income students than the 

creation and maintenance of segregated charter schools” (Orfield, 2017, p. 3). Nationally, 

charter schools are also seen as being “generally more racially and economically 

segregated than traditional public schools” (Whitehurst, Reeves, & Rodrigue, 2016, p.6). 

Differences in school racial composition are associated with meaningful (but small) 

differences in student achievement, but perhaps with the exception of those charter schools 

with strong academic focus and “no-excuses” philosophies (Whitehurst, Reeves, & 

Rodrigue, 2016). 
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Reardon (2015) conducted a number of focused studies on school segregation and 

racial academic achievement gaps. Among the volumes of findings, he argued that 

disparities in school poverty rates between White and Black students are “consistently the 

most powerful correlate of achievement gaps” (p. 1). This implies that high-poverty 

schools are less effective than low-poverty schools. In addition, there is significant 

variation in achievement gap magnitudes across the country – economics, demographics, 

segregation, and school conditions explain about three-fourths of the geographic variation 

in gaps; the strongest correlates being racial/ethnic differences in parental income, parental 

education, and racial/ethnic segregation (Reardon, Kalogrides, & Shores, 2016, p.1). 

Finally, Fahlea and Reardon (2017) recently reported that nearly 90% of the variation in 

district-level ICCs across states can be explained by variation in district racial and 

economic segregation and the composition of students in school districts. Moreover, “states 

with high levels of white-black and economic segregation have, on average, more between 

district variation” represented in ICCs (Fahlea & Reardon, 2017, p. 17). This should be 

expected, since as districts (or schools) become more homogeneous as a result of 

segregation, the proportion of variance due to districts will increase (larger ICCs); and 

paradoxically, if we adequately measure that segregation resulting in larger between-

district variance, we will ultimately be able to account for it (resulting in a higher variance-

accounted-for statistics). 

Test Score Use 

As with most state tests, the MCAs were developed in response to the requirements 

in the Elementary & Secondary Education Act (ESEA, initially established in 1965). ESEA 

was reauthorized as NCLB (2001), required standards-based testing for evaluating school 

quality, and imposed severe sanctions on poorly performing schools. ESEA was recently 

reauthorized as ESSA (2015), retaining the use of standards-based tests without punitive 

consequences for poorly performing schools. ESSA currently requires states to identify the 

bottom 5% performing schools based on academic achievement, growth, and a number of 

other indicators (however, being on “the list” is punitive to members of the communities of 

those schools, with secondary negative consequences such as home sales and enrollment). 

We acknowledge that the MCAs provide the key evidence of academic achievement and 

progress for schools. With this information, the state identifies the bottom 5% of 
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performing schools in order to provide comprehensive supports and interventions. As 

required by federal regulations, the tests must be aligned to grade-level state academic 

content standards (standards-based tests), so that the resulting inferences can be made 

regarding the success of the school in providing access to state content standards (i.e., high 

quality educators provide high quality instruction regarding state standards and students 

learn them). 

The Minnesota Office of the Legislative Auditor (2017) recently completed an audit 

of the state testing programs. They found that use of test scores at the local level varies 

widely, where many educators and school leaders feel unprepared to interpret most testing 

data they receive. Policy shifts in Minnesota have contributed to housing, employment, and 

educational segregation, particularly in the Twin Cities (Orfield, 2015). Moreover, there is 

an increasing trend toward culturally-specific charter schools, as well as several other 

trends with education and assessment policies. These are relevant contexts for 

understanding variability in achievement. 

Our interest in partitioning variance in student test scores is largely due to the use of 

these scores as school-level success/quality indicators. The federal accountability target is 

school, focusing on stakes for schools, not students. We maintain that the vast majority of 

variance in student performance is within schools, rather than between schools, which may 

suggest that the accountability targets are misplaced. 

Research Questions 

• How much variation in student achievement is within versus between schools? 

• How much variation is a function of student (within school) and school (between 

school) demographic characteristics? 

• How much additional variation is a function of school quality indicators, including 

those included as options through ESSA? 

Answers to these questions have implications for educational, assessment, and accountability 

policies. 
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Methods 

Data Sources 

Data were linked from four sources, including (a) 2014-2015 Minnesota Comprehensive 

Assessment and Minnesota state demographic database, (b) 2013-2014 National Center for 

Education Statistics School Universe Survey Common Core of Data, (c) 2011-2012 Office of 

Civil Rights Data Collection, and (d) 2013 Minnesota Student Survey. The variables and 

descriptions from each data file are listed in Table 1. 

Minnesota Comprehensive Assessment (MCA). The MCAs are the state’s school 

accountability tests for students in grades 3-8 and high school 

(https://education.mn.gov/MDE/fam/tests/). They are summative measures of student 

achievement of the Minnesota Academic Standards in mathematics, reading, and science. They 

are administered annually in the spring. “The State uses the aggregated test scores to report to the 

public and the U.S. Department of Education how Minnesota students are performing in school. 

Statewide test data help the State evaluate the progress schools are making in reducing 

achievement gaps among student groups” (MN Department of Education, 2016, p.1). 

We received the statewide MCA score data file at the student-level, with information 

about the school of enrollment. Only students who were in a school on October 1, with MCA 

scores in that school, were included, as this is the inclusion rule for school accountability 

purposes. MCA scale scores (i.e., linearly transformed IRT scores) were used as the outcome 

variable. Student variables used for required student-group reporting were included as predictors 

in the models, such as English Language Learner, Title I, Special Education, Gender, 

Free/Reduced-Priced Lunch, Race/Ethnicity (American Indian, Asian/Pacific Islander, Hispanic, 

Black, White). 

Common Core of Data (CCD). The Public Elementary/Secondary School 

Universe Survey CCD was obtained from the National Center for Educational Statistics 

(NCES; https://nces.ed.gov/ccd/). The CCD provides basic information and descriptive 

statistics for all schools, their students, and their teachers. Several school-level variables 

were obtained from the CCD for MN schools, including Full-Time-Equivalent (FTE) staff 

counts, Title-I status; indicators for magnet and charter schools; proportion of students 

receiving FRL, and city/urban/suburban location of school. In addition, “regular” public 

schools (School-Type 1; 67% of all schools) were included in these analyses, eliminating 
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the inclusion of special education schools (11.9%), vocational schools (0.4%), and 

alternative schools (20.7%). This included 1698 schools statewide (out of 2521 in the CCD 

file). 

Civil Rights Data Collection (CRDC). We received the Office of Civil Rights 

Data Collection (CRDC) data files for MN, including data collected from USA school 

districts as mandated by the Civil Rights Act of 1964, the Education Amendments of 1972, 

the Rehabilitation Act of 1973, and the Department of Education Organization Act. At the 

CRDC website (https://ocrdata.ed.gov/), this effort is described as “wide-ranging education 

access and equity data collected from our nation’s public schools”. This data file was used 

to compute several school-level variables, including student-teacher ratio, total expense 

(combined salaries and other expenses), expense per student, teachers with under 2 years of 

experience, proportion of certified teachers, proportion of students taking at least one 

Advanced Placement course, number of sports teams offered and proportion of students 

participating in school athletics, and discipline variables. 

Minnesota Student Survey (MSS). The MSS is developed by the MN Departments of 

Education, Health, Human Services, and Public Safety 

(https://education.mn.gov/MDE/dse/health/mss/). It is administered every three years and 85% of 

MN school districts participate, administering the survey to their students voluntarily in grades 5, 

8, 9, and 11. From this survey, indicators related to school engagement were obtained and 

included in these analyses, including student mobility, participation in after-school activities, 

rates of skipping class and rates of skipping school (full days without an excuse). 

Of current interest regarding the consideration of social and emotional learning (SEL) 

factors, a set of three developmental skills and three developmental supports are measured, 

which can be considered SEL measures (see Rodriguez, 2017, for a full technical report on these 

measures). Commitment to Learning includes items regarding student engagement in class, 

preparation for learning, time spent on homework, being achievement oriented and valuing the 

role of being a student–generally caring about school. Positive Identity includes having a sense 

of control of one’s life, feeling good about self and future, dealing well with disappointment and 

life’s challenges, and thinking about one’s purpose in life. Social Competence embodies the 

abilities to say no to dangerous/unhealthy things, build friendships, express feelings 

appropriately, resist bad influences, resolve conflicts without violence, accept differences in 



9 

others, and recognize the needs and feelings of others. Empowerment includes having a sense of 

safety at home, at school, and in the neighborhood; feeling valued; being included in family 

roles; and having responsibilities. Family/Community Support involves being able to talk with 

mothers (if available) and feeling cared for by parents, other adult relatives, friends, adults at 

school, and adults in the community. Finally, Teacher/School Support includes the perception 

that adults at school treat students fairly and listen to students; that youth feel cared for by 

teachers at school. In addition, scores concerning being bullied (as a victim), engaging in 

bullying behavior (as a perpetrator), family violence, and mental distress were obtained from the 

MSS and included in these analyses. 

The measurement and inclusion of SEL measures in school accountability has been a 

recent topic of interest, inspired by the so called 5th allowable indicator in the Every Student 

Succeeds Act (S. 1177, 2015). ESSA allows states to include  

measures of school quality, climate, and safety, including rates of in-school suspensions, 
out-of-school suspensions, expulsions, school related arrests, referrals to law 
enforcement, chronic absenteeism (including both excused and unexcused absences), 
incidences of violence, including bullying and harassment. (p. 1848) 

However, the currently approved ESSA plan in MN does not include aspects related to school 

climate or SEL, as chronic absenteeism was chosen to meet the federal requirements. 
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Table 1 
Description of Each Variable Included in Each Model 
 

Model Variable Level Variable Description 

FR
L FRL 1 Indicator for whether student receives free or 

reduced-priced Lunch 
FRL.M 2 Proportion of students in a school that receive FRL 

FR
L+

R
ac

e 

AI 1 Indicator for American Indian student 
API 1 Indicator for Asian/Pacific Islander student 
HIS 1 Indicator for Hispanic student 
BLK 1 Indicator for Black student 

AI.M 2 Proportion of students in a school who are American 
Indian 

API.M 2 Proportion of students in a school who are 
Asian/Pacific Islander 

HIS.M 2 Proportion of students in a school who are Hispanic 
BLK.M 2 Proportion of students in a school who are Black 

FRL•AI 1 Indicator for whether student is both American 
Indian and receives FRL 

FRL•API 1 Indicator for whether student is both Asian/Pacific 
Islander and receives FRL 

FRL•HIS 1 Indicator for whether student is both Hispanic and 
receives FRL 

FRL•BLK 1 Indicator for whether student is both Black and 
receives FRL 

FRL•AI.M 2 Proportion of students in a school who are both 
American Indian and receive FRL 

FRL•API.M 2 Proportion of students in a school who are both 
Asian/Pacific Islander and receive FRL 

FRL•HIS.M 2 Proportion of students in a school who are both 
Hispanic and receive FRL 

FRL•BLK.M 2 Proportion of students in a school who are both 
Black and receive FRL 

 

A
ll 

D
em

og
ra

ph
ic

s LEP 1 Indicator for student's limited English proficiency 
classification 

SPED 1 Indicator for student's special education classification 
FEMALE 1 Indicator for female 

LEP.M 2 Proportion of students in a school who are classified 
as SPED 

SED.M 2 Proportion of students in a school who are classified 
as LEP 

FEM.M 2 Proportion of female students in a school 
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Table 1 (cont.) 
 

A
ll 

C
C

D
 

FTE 2 Full-time equivalent teachers 
MAGNET 2 Indicator for magnet school 
CHARTER 2 Indicator for charter school 

Diversity 2 
Measure of diversity within a school based on 
number of ethnicities and proportion of ethnicities 
represented 

STratio 2 Student-to Teacher ratio 
 

C
R

D
C

 - 
Te

ac
he

rs
 

Prop.fte.cert 2 Proportion of FTE teachers in a school that are 
certified 

Avg.teach.salary 2 Average teacher salary  

Prop.fte.absent 2 Proportion of FTE teachers in a school who were 
absent more than 10 days of the school year 

Prop.teach.under2 2 Classroom teachers in their first or second year of 
teaching 

 

C
R

D
C

 - 
R

es
ou

rc
es

 Expense.student 2 Expense per student 

Prop.out.sus 2 Proportion of students in a school receiving one or 
more out of school suspensions 

Prop.in.sus 2 Proportion of students in a school receiving one or 
more in-school suspensions 

Tot.teams 2 Total sports teams offered at the school 

Prop.athletes 2 Proportion of athletes in a school from all possible 
athletes in the school 

Note. The last two variables regarding sports and athletes are only included in the high school 
model, since these were only available for high schools. 
 

C
R

D
C

 - 
A

ca
de

m
ic

s Num.ap.courses 2 Number of AP courses offered by the school 

Prop.ap.course 2 Proportion of students in a school who took at least 
one AP course` 

Num.class.math 2 Number of advanced Math courses offered by the 
school 

Num.class.biology 2 Number of Biology courses offered by the school 
Num.class.physics 2 Number of Physics courses offered by the school 

Num.class.chemistry 2 Number of Chemistry courses offered by the school 
Note. These variables are only included in the high school model, since these were only available 
for high schools. 
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Table 1 (cont.) 
 

M
SS

 - 
En

ga
ge

m
en

t 
Mobility 2 Proportion of students in a school who moved 

schools during the year 

Activity3 2 
Proportion of students in a school who participate in 
a combination of number of activities or number of 
days summing to 3 or more 

Activity.intensity 2 Average days per week the average student in a 
school participates in an extracurricular activity 

Skip.class 2 Proportion of students in a school who skipped 
school in the last 30 days 

Skip.school 2 Proportion of students in a school who skipped a 
class in the last 30 days 

M
SS

 - 
A

ss
et

s CTL 2 Commitment to learning 
Em 2 Empowerment 
PI 2 Positive identity 
SC 2 Social competence 
TSS 2 Teacher-school support 
FCS 2 Family/Community Support 

M
SS

 - 
C

ha
lle

ng
e Bullied 2 Getting bullied 

Bully 2 Bullying others 
FV 2 Family violence 
MD 2 Mental distress 

Note. MSS variables are included in models for grades 5, 8, and high schools, as they are only 
measured in those grades; skipped school, skipped a class, and mental distress are only included 
in grades 8 and high school, since they are only measured in those grades. 
 

Analytic models. Hierarchical Linear Modeling (HLM) was employed in order to 

partition variance in MCA scores within and between schools while also examining the specific 

student- and school-level characteristics that account for that variation (Peugh, 2010; 

Raudenbush & Bryk, 2002). All student-level characteristics were group mean centered within 

school while all school-level characteristics were grand mean centered. The centering procedures 

result in the student-level and school-level characteristics being uncorrelated, and thus, the 

regression coefficients are the unbiased within-school (i.e., student-level) and between-school 

effects (Enders & Tofighi, 2007; Raudenbush & Bryk, 2002). 

Using the lme4 package (Bates, Maechler, Bolker, & Walker, 2015) in R (R Core Team, 

2017) a series of models built sequentially were estimated to explore the amount of variance explained 

uniquely by each set of variables.  The series of models were run separately for mathematics and 
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reading scaled scores and by each of the grades 3 to 8 and high school.0F

1 Additionally, each 

model was run once using full-information maximum likelihood (FIML) estimation and once 

with restricted maximum likelihood (REML). FIML is needed for comparing nested models 

directly whereas REML has been shown to produce less biased variance estimates (Peugh, 2010; 

Raudenbush & Bryk, 2002). Both purposes were of interest in the present study. Ultimately, like 

the simulations run by Kreft & de Leeuw (1998), the estimators produced similar results which is 

unsurprising given that the data used is nearly the entire population. The first model in the series 

was the unconditional model. The unconditional model with the Level 1 and Level 2 models 

combined is 

SSCOREij = γ00 + u0j+ rij 

 

where SSCOREij is the MCA scaled score for student i in school j, γ00 is the mean intercept 

(school grand mean), u0j is the random effect for school j, and rij is the residual for student i in 

school j (student random effect). The distribution of the student residuals and school random 

effects are assumed to be rij ~ N(0, σ2) and u0j ~ N(0, τ00), respectively. The intraclass correlation 

(ICC) is the proportion of the total variance in SSCOREij that is between-school variation (τ00) 

and is represented by ( )2
00

00

σ+τ
τ

=ρ . 

After the unconditional model, the models shown in Table 1 were run with each set of 

variables added to the antecedent set. Most HLM software, including lme4, are unable to account 

for missing data at Level 2 (i.e., school-level) and although the CCD, CRDC, and MSS datasets 

attempted to collect information from all schools there was non-response and the schools that did 

not provide responses varied by dataset. Thus, as variables from the CRDC, for instance, were 

added to the models that already included the MCA demographic and CCD variables, greater 

numbers of schools contained missing data, which reduced the sample used in the model. 

Differing sample sizes means that direct comparisons of the full model to the previous nested 

models can no longer be made appropriately. To include as many school-level variables as 

possible while still being able to make comparisons across models, three different samples were 

created: one with no missing data from the CCD variables, one with no missing data from the 

                                                 
1 The reading MCA is only taken by grade 10 students and the mathematics MCA is only taken by grade 11 
students. 
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CCD and CRDC variables, and one with no missing data from the CCD, CRDC, and MSS 

variables. This means that the first sample, which we will call the CCD sample, only the 

unconditional model, FRL model, FRL+Race, All Demographic, and All-CCD models could be 

fit. For the CRDC sample (the second sample, which contained fewer schools than the CCD 

sample), all of the models for CCD sample were fit as well as the Teacher, Resources, and 

Academics models. Lastly, all of the models from Table 2 were fit with the third and smallest 

sample – the MSS sample. 

From a theoretical standpoint, in order to explain as much of the between-school 

variation as possible we would fit the models with random effects for every student-level 

variable, including interaction variables. Practically, however, doing so would create overfitting 

and convergence issues. To balance the theoretical desire with the practical limitations we first 

ran a series of pilot models whereby for each of the samples (CCD, CRDC, and MSS) the full 

model was run once with the only random effect being the intercept (i.e., u0j) and then a separate 

model for each student-level variable with the variable added as a random effect. A deviance test 

then determined whether adding the student-level variable as a random effect significantly 

improved model fit. If the deviance test for a student-level variable as a random effect was 

significant at p < .01 across all grades, then it was included as a random effect in the final series 

of models.1F

2 The pilot models produced similar significant random effects across the three 

samples, six grades, and two subjects. For all three samples with MCA reading as the outcome,  

FRL, API, BLK, LEP, and SPED were significant as random effects for all grades while the pilot 

models with MCA mathematics also included HIS as a significant random effect. With group 

mean centering at Level 1, grand mean centering at Level 2, and random effects for certain Level 

1 variables, the FRL+Race model with MCA mathematics as the outcome, for example, is 

written as  

  

                                                 
2 If the random effects used in the model were allowed to differ by grade then we would not be able to appropriately 
compare the variance explained across grades.  
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Level-1 Model for FRL, Race/Ethnicity, and Interactions (denoted with •) 
 
SSCOREij = β0j + β1j(FRLij - FRL.Mj) + β2j(AIij - AI.Mj) + β3j(APIij - API.Mj) + 

β4j(HISij - HIS.Mj) + β5j(BLKij - BLK.Mj) + β6j(FRL•AIij - FRL•AI.Mj) + 

β7j(FRL•APIij - FRL•API.Mj) + β8j(FRL•HISij - FRL•HIS.Mj) + 

β9j(FRL•BLKij - FRL•BLK.Mj) + rij  

 

Level-2 Model 
 

β0j = γ00 + γ01(FRL.Mj - FRL.M���������) + γ02(AI.Mj - AI.M������) + γ03(API.Mj - API.M��������) + 

γ04(HIS.Mj - HIS.M��������) + γ05(BLK.Mj - BLK.M���������) + γ06(FRL•AI.Mj - FRL•AI.M�������������) + 

γ07(FRL•API.Mj - FRL•API.M��������������) + γ08(FRL•HIS.Mj - FRL•HIS.M��������������) + 

γ09(FRL•BLK.Mj - FRL•BLK.M���������������) + u0j 

β1j = γ10 + u1j 

β2j = γ20 + u2j 

β3j = γ30 + u3j 

β4j = γ40 + u4j 

β5j = γ50 + u5j 

β6j = γ60 + u6j 

β7j = γ70 + u7j 

β8j = γ80 + u8j 

β9j = γ90 + u9j 

 

Random-effect coefficients from Level-1 were not modeled at level-2, as the purpose of the 

models were to explain variation in student-level achievement (SSCOREij, within schools) and 

school-level achievement (β0j, between schools). In some cases, as noted above, level-2 random 

effects (uj) were not estimable or nonsignificant and were removed (fixed), and this was done so 

consistently across grades to support model comparison. 
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The series of HLM models were run sequentially for each grade and each test subject 

(mathematics and reading). The sequence of model is as it appears in Table 1. Each subsequent 

model includes all variables from the antecedent model. 

1. Unconditional (no explanatory variables) 
2. Race/ethnicity only 
3. FRL with race/ethnicity × FRL interaction terms 
4. Additional student status variables (gender, limited English  proficiency, special 

education) 
5. CCD school variables 
6. CRDC teacher variables 
7. CRDC school resource variables and school academic variables 
8. MSS student engagement variables (at the school level) 
9. MSS SEL measures (at the school level) 

After running all of the models the ICCs were calculated from the unconditional models 

to determine the amount of total variance in MCA scores due to within-school and between-

school differences. This was done to account for the reduced sample size as subsequent data files 

added to the models contained missing data for some schools (described above). The reduction in 

within-school variance (σ2) and reduction in between-school variance (τ00) was calculated for 

each model, based on its unconditional variance estimates, to determine the extent to which the 

variables in the model explained variation in MCA scores. 
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Results 

As a brief summary of some initial exploratory analyses of the achievement data, we 

found the following: 

1. Students in each racial/ethnic group vary substantially – in most grades, students in 

each group achieve the lowest and highest possible scores, with the exception of 

American Indian students in mathematics grades 5-8 who do not obtain the highest 

possible score. 

2. School averages vary substantially and the average scores of high-poverty schools 

(about 18% of schools) are much lower than the average scores of low-poverty schools 

(about 23% of schools), with little overlap in distributions (poverty level was defined 

with NCES, 2016, definitions). 

3. Within each racial/ethnic group, students participating in FRL score much lower than 

students not in FRL (with Asian students even more so). 

4. After accounting for FRL status, gaps between White students and students of color are 

reduced, but still large. 

a. For American Indian, Black, and Latino students in FRL, gaps are 35% smaller. 

b. For these students not in FRL, the gaps are 43% smaller. 

5. On average, American Indian, Latino, and Black students not in FRL score at levels 

near White students in FRL, generally across grades and subjects. 

Regarding school composition, we found: 

6. On average, White students attend schools that are 5% Black, whereas Black students attend 

schools that are 30% Black. 

7. Nearly 94% of the state’s White students attend schools with 0-19% Black students, whereas 

42% of Black students attend such schools (this includes 85% of MN schools). Another way 

to say this is: 58% of Black students attend schools with 20% or more Black students, 

compared to 6% of White students). 

These results suggest that there is a connection between FRL and race/ethnicity, but racial/ethnic 

achievement disparities remain after accounting for FRL (with a reduction of about 1/3). In 

addition, there is a significant amount of segregation, as expected. 
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Partitioning Variance 

The results of the initial unconditional models, for the purpose of the baseline partitioning 

of variance are in Tables 2 (mathematics) and 3 (reading). Recall that the unconditional model is: 

SSCOREij = γ00 + u0j+ rij where rij ~ N(0, σ2) and u0j ~ N(0, τ00) and ( )2
00

00

σ+τ
τ

=ρ . 

Table 2 
Partitioning Variance in Mathematics by Grade 
 

Grade # Students # Schools τ00 σ2 ρ 
3 59825 862 46.96 202.52 .19 
4 60221 854 60.67 254.65 .19 
5 58139 826 31.48 141.85 .18 
6 56326 594 38.05 156.60 .20 
7 57068 509 21.17 108.44 .16 
8 55867 505 29.70 154.92 .16 
11 52982 430 48.96 234.05 .17 

Note: τ00 is between-school variance, σ2 is within-school variance, ρ is the ICC. 
 
Table 3 
Partitioning Variance in Reading by Grade 
 

Grade # Students # Schools τ00 σ2 ρ 
3 59717 862 62.48 350.78 .15 
4 60107 854 37.72 195.23 .16 
5 57846 826 32.77 169.48 .16 
6 56203 594 41.76 254.99 .14 
7 57163 509 40.75 260.84 .14 
8 56139 505 38.56 260.53 .13 
10 55390 430 25.95 189.30 .12 

Note: τ00 is between-school variance, σ2 is within-school variance, ρ is the ICC. 
 

 Most notable, the between-school variance is relatively small, ranging from 16 to 20% 

for mathematics and from 12 to 16% in reading; these are lower than ICCs reported by 

researchers investigating other testing programs, as reviewed above. However, consistent with 

prior studies, the ICCs are larger for mathematics than reading. 
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Modeling Within and Between-School Variance 

Based on the series of HLM models of variability, we can summarize the findings here: 

1. Generally, more than 80% of the variance (80 to 88%) in the mathematics and reading 

achievement scores is within-school variance. 

2. FRL and race/ethnicity are powerful explanatory variables regarding school variance, 

accounting for 64% of the between-school variance in mathematics on average (58% to 69% 

across grades), and about 73% in mathematics on average (66% to 77% across grades). 

3. Inclusion of LEP, SPED, Gender and Race × LEP interactions (All Demos model) more than 

double the amount of within-school variation explained for both mathematics and reading as 

compared to the amount explained by just FRL and race/ethnicity. However, these additional 

variables only accounted for 1% to 2% additional variance between schools on average. 

4. Demographics explain about 20% of the within-school variation of mathematics and reading 

scores; whereas they explain 66% to 74% of between-school variance. 

5. The amount of within school variation explained by the models does not vary much by grade. 

6. CCD variables did not explain much additional between-school variance (and no within 

school variation) beyond what was explained by demographics (about 0 to 2% additional 

variance across grades). 

7. CRDC teacher variables explained an additional 0 to 1% between-school variance. CRDC 

school resource variables explained an additional 0 to 2% between-school variance. CRDC 

academic variables (available for high schools only) explained an additional 1% between-

school variance. It’s important to note that these values are the incremental between-school 

variance explained, such that the CRDC variables explained less than 1% of the 12 to 20% of 

variance between schools. 

8. The measures of SEL and other challenges measured by the MSS explained an additional 0 

to 3% of between-school variance, restricted to grades 5, 8, and high school test scores, more 

so in reading scores than mathematics scores. 

 

Tables 4 and 5 contain the unconditional ICCs and the unique and incremental variance 

explained by the addition of each set of variables regarding mathematics scores (Table 4) and 

reading scores (Table 5). 
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Table 4 
Unique Between School Variance in Mathematic MCA Scores Explained by Model and Data Source for Each Grade 
 
  CCD  CRDC  MSS 
Grade 3rd 4th 5th 6th 7th 8th HS  3rd 4th 5th 6th 7th 8th HS  5th 8th HS 
ICC .19 .19 .18 .20 .16 .16 .17  .17 .17 .16 .17 .14 .15 .15  .14 .13 .11 
Model                    

   FRL .65 .60 .62 .63 .58 .52 .60  .63 .56 .58 .57 .53 .47 .59  .56 .48 .48 
   FRL+Race .04 .04 .02 .02 .04 .06 .04  .05 .04 .01 .02 .06 .08 .03  .01 .05 .06 
   All Demos .01 .00 .02 .00 .00 .02 .08  .01 .00 .01 .00 .00 .01 .07  .03 .04 .06 
   CCD .00 .00 .01 .00 .01 .02 .01  .00 .00 .01 .00 .02 .03 .01  .00 .03 .01 
   Teacher         .00 .00 .00 .00 .01 .00 .00  .00 .00 .00 
   Resources         .00 .00 .00 .02 .02 .03 .01  .00 .03 .01 
   Academic               .01    .03 
 Engagement                 .00 .02 .03 
   Assets & 
   Challenges 

                .00 .02 .00 
Total 
Explained .70 .64 .65 .64 .63 .62 .72  .69 .60 .63 .60 .63 .62 .72  .62 .67 .68 

Note. CCD = Common Core of Data (NCES); CRDC = Civil Rights Data Collection, including Teacher, Resources, and Academic 
variables; MSS = Minnesota Student Survey, including Engagement and Assets & Challenges variables; ICC = Intraclass correlation; 
FRL = free or reduced-priced lunch; models are defined in Table 1. Unique variance explained in each column sum to Total Explained 
within rounding error. 
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Table 5 
Unique Between School Variance in Reading MCA Scores Explained by Model and Data Source for Each Grade 
 
  CCD  CRDC  MSS 
Grade 3rd 4th 5th 6th 7th 8th HS  3rd 4th 5th 6th 7th 8th HS  5th 8th HS 
ICC .15 .16 .16 .14 .14 .13 .12  .13 .14 .14 .12 .12 .11 .10  .12 .09 .08 
Model                    
   FRL .70 .72 .74 .69 .72 .64 .57  .68 .70 .72 .64 .68 .60 .54  .69 .57 .49 
   FRL+Race .04 .04 .01 .03 .05 .04 .09  .04 .04 .01 .03 .06 .05 .10  .00 .07 .15 
   All Demos .00 .01 .00 .00 .00 -.01 .07  .00 .00 .00 .00 -.01 -.01 .04  .03 .00 .01 
   CCD .01 .00 .01 .01 .02 .02 .01  .01 .00 .01 .00 .02 .03 .01  .00 .03 .00 
   Teachers         .00 .00 .01 .00 .00 .01 .01  .01 .00 .01 
   Resources         .00 .00 .00 .02 .01 .01 .00  .00 .00 .00 
   Academics               .01    .02 
 Engagement                 .01 .02 .04 
   Assets & 
   Challenges        

 
       

 
.01 .03 .03 

Total 
Explained .75 .77 .76 .72 .78 .69 .75  .73 .75 .75 .70 .76 .67 .70  .77 .72 .74 

Note. CCD = Common Core of Data (NCES); CRDC = Civil Rights Data Collection, including Teacher, Resources, and Academic 
variables; MSS = Minnesota Student Survey, including Engagement and Assets & Challenges variables; ICC = Intraclass correlation; 
FRL = free or reduced-priced lunch; models are defined in Table 1. Unique variance explained in each column sum to Total Explained 
within rounding error. 
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Exploring the Independent Role of School-Level Factors 

 Since FRL and race/ethnicity were such powerful explanatory variables, we wanted to 

explore the independent role of the school-level factors absent the demographic variables 

(considering schools to come from the same population, essentially without the effects of 

segregation and unequal distribution of student characteristics). The resulting variance explained 

for the sequential inclusion of the variables in models without demographics are contained in 

Tables 6 (mathematics) and 7 (reading). Those findings can be summarized as: 

1. When demographic variables are not included, school-level factors explain 29 to 60% of the 

between-school variance in mathematics and 23 to 66% for reading (including CRDC and 

MSS variables). 

2. School-level factors tend to explain more between-school variance at the higher grades for 

mathematics, but not necessarily for reading. 

3. Teacher variables explain less variance during middle school (grades 6 to 8) than elementary 

or high school. 

4. We explored the data further and found that there is a confounding among the set of 

demographic variables and these school resource variables. One possible reason that these 

variables add little to no incremental variance explained to the full models is that they vary 

with student demographics – schools with more students in FRL and more students of color 

are associated with lower levels of resources. So when school demographics are controlled, 

the potential impact of resources has been explained (accounted for). 
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Table 6 
Unique Between-School Variance in Mathematic MCA Scores Explained by Level 2 Only Model 
and Data Source for Each Grade 
 

 CRDC  MSS 
Grade 3rd 4th 5th 6th 7th 8th HS  5th 8th HS 
ICC .17 .17 .16 .17 .14 .15 .15  .14 .13 .11 
Model            

   Teachers .23 .20 .23 .15 .17 .14 .37  .32 .24 .45 
   Resources .09 .08 .08 .15 .17 .22 .11  .05 .21  
   Academics       .04    .06 
   Engagement         .09 .13 .05 
   Assets         .04 .01 .02 
   Challenges         .01 .01 .02 
Total 
Explained .32 .29 .31 .30 .34 .36 .52  .51 .60 .60 

Note. CRDC = Civil Rights Data Collection, including Teachers, Resources, and Academics 
variables; MSS = Minnesota Student Survey, including Engagement, Assets and Challenges 
variables; ICC = Intraclass correlation; models are defined in Table 1. 
 
Table 7 
Unique Between School Variance in Reading MCA Scores Explained by Level 2 Only Model and 
Data Source for Each Grade 
 

 CRDC  MSS 
Grade 3rd 4th 5th 6th 7th 8th HS  5th 8th HS 
ICC .13 .14 .14 .12 .12 .11 .10  .12 .09 .08 
Model            

   Teachers .21 .20 .20 .14 .11 .08 .21  .38 .24 .28 
   Resources .12 .11 .13 .17 .17 .15 .07  .08 .16  
   Academics       .05    .12 
   Engagement         .15 .17 .14 
   Assets         .04 .04 .04 
   Challenges         .01 .00 .03 
Total 
Explained .33 .31 .32 .31 .27 .23 .32  .66 .60 .61 

Note. CRDC = Civil Rights Data Collection, including Teachers, Resources, and Academics 
variables; MSS = Minnesota Student Survey, including Engagement, Assets and Challenges 
variables; ICC = Intraclass correlation; models are defined in Table 1. 
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Exploring the Independent Role of School-Level SEL Measures 

 Given the recent interest in the possible role of SEL measures, we explored their 

associations with academic achievement without the influence of student demographics and 

other school resources. It appears that a similar case exists here as with school resources. There 

is some a priori alignment between student demographics and SEL, and between SEL and school 

resources, as with student demographics and school resources. Once school resources are 

accounted for, the SEL measures provide little to no additional explanation of achievement 

variance. In Table 8, we see that in 5th grade mathematics achievement scores, student 

demographics explain 57% of the variance between schools, whereas SEL measures explain 47% 

of the variance between schools. However, once school demographics are accounted for, the 

measures in combination explain an additional 7.3% of the between-school variance. However, 

once school resources are accounted for, this drops to zero. The findings are similar for reading 

and the other two grades where SEL measures were available. 

 

Table 8 
Percent of Between-School Variance Explained by SEL, With and Without Student Demographic 
Information; 5th Grade Mathematics 
 

Variables Percent of variance explained 
Student demographics alone 57.4% 
Social & emotional learning alone 46.9% 

Above & beyond student characteristics 7.3% 
     Teacher/School Support 2.6% 
     Bullied 4.8% 
     Commitment to Learning 1.1% 
     Positive Identity 5.3% 
     Social Competence 6.7% 
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Summary of Variance Partitioning and Variance Explained 

In an attempt to represent the many models graphically (98 models were estimated in 

total), we included the first 84 models in Figure 1. These models do not include the models 

involving the MSS student engagement and SEL measures, as those only included grades 5, 8, 

and high schools, but moreover, did not explain additional variance between schools. Figure 1 

illustrates the extent to which the variance in mathematics and reading achievement scores is a 

function of within and between-school variance and the extent to which each model explains 

both within and between-school variance. The purple-shaded regions, near the top of each 

stacked-bar, represents the volume of between-school variance, the green-shaded regions 

represent the volume of within-school variance. Notice that the green bars are substantially larger 

(accounting for the 80%+ variance within schools). Within each color, the darker color accounts 

for the explained variance. 

 Figure 1 illustrates a few high-level findings: 

1. The vast majority of achievement score variance is within-school variance (80% or more). 

2. FRL and race/ethnicity explain a significant portion of between-school variance (63 to 74% 

on average) and little within-school variance (5 to 10%). 

3. With the additional student demographic variables, a slight additional variance is explained 

between-schools, but the within-school variance explained is more than doubled. 

4. Additional school-level variables, including information about teachers, resources, 

academics, explain hardly noticeable additional variance between schools. 
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Figure 5. Between and within school variance in Math and Reading MCA scores explained and 
unexplained by each model by grade. 
 
Each subsequent block includes all previous variables: 
 
Student-level variables (group-mean centered) and school-level averages 
FRL: Free/reduced price lunch indicator (proportion at school-level). 
Race: Four race/ethnicity indicators (proportions at school-level) + FRL×Race interactions. 
All Demos: Gender + Special Ed. Status + ELL Status (proportions at school-level). 
 
Additional school-level variables 
NCES: The CCD variables, including teacher FTE, magnet school indicator, charter school indicator, 

student-teacher ratio. 
Teacher: the CRDC variables regarding teachers, including proportion of certified teachers, average 

teacher salary, proportion FTE teachers absent more than 10 days during the year, proportion of 
teachers in 1st or 2nd year of teaching. 

OCR: Additional CRDC school resource variables, including expenses per student, proportion receiving 
out-of-school suspensions, proportion receiving in-school-suspensions, total number of sports 
teams offered, proportion of athletes in school. 

 
The following school level variables were added to the above models with no noticeable change: 
CRDC academic variables, MSS student engagement variables, MSS measures of SEL and challenges. 
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Implications 

 

The measurement of academic achievement is driven by two primary drivers or realities. 

First, individuals differ and the research on individual differences has inspired much of what we 

do in educational and psychological measurement. Second, public education is an important 

societal investment, as it supports the training and preparation of people to contribute to their 

family, community, and the world. For as long as we have engaged in the measurement of 

educational outcomes, there also has been a need to engage in accountability-associated decision 

making; we believe that decisions are better made when they are informed. As we strive to 

improve the educational preparation and outcomes of students at all levels of education, we 

similarly strive for educational equity, meeting the unique learning needs of all students. In fact, 

at some level, the inspiration behind some elements of ESEA, NCLB, and ESSA (federal 

accountability legislation) is based in equity concerns, essentially to close achievement gaps. 

Partitioning variance in student achievement is an important way to understand where 

individual and group differences occur and to what we might attribute variation in those 

differences. Sources of variation (those things that explain variation) potentially become policy 

targets. Much of the federally funded research in education is devoted to finding those malleable 

factors that might influence individual and group differences in achievement. This partitioning of 

variance is particularly helpful when student and school-level indicators that are malleable are 

found to explain variation in achievement. Although many student-level indicators are not 

necessarily malleable, they do help us identify groups of students who may need additional 

supports – the practices and policies regarding the support of students with different 

characteristics are malleable. 

Given the consistency of ICCs across grades and subject areas, there are policy 

implications regarding the focus of school supports. When the vast majority of variation in 

student achievement is within schools, rather than between schools, the focus might better serve 

school and student needs if focused within school, rather than school differences, which is the 

current focus of federal and state school accountability policies. These findings and 

recommendations are consistent with those of many others (e.g., Baker, Farrie, & Sciarra, 2015; 

Borhnstedt, 2015; Figlio & Karbownik, 2017; Orfield, 2017; Yeh, 2017). 
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From these results, the promise of SEL measures to contribute meaningfully to 

accountability policy indicators of school quality is limited. The SEL measures employed here 

do not appear to contribute additional explanatory power regarding school-level achievement. 

Overall, these findings have implications for equitable distribution of key education 

resources across schools or to focus equitable use of resources within schools to reduce 

achievement gaps and improve educational achievement for all students. We find that school 

resources are important, but once we account for school demographics, the role of resources is 

negligible (because they are distributed inequitably in a way that is associated with school 

demographics). 

We need to call into question the practice of identifying schools as the target for federal 

education accountability. It is clear that the majority of variance in achievement occurs within 

schools, and the smaller portion that occurs between schools (less than 20%) is mostly explained 

by within-school demographics (about 70% or more). Less than 7% of variance in achievement 

remains between schools, little of which is explained by school level teacher characteristics, 

school resources, school advanced academics, or SEL (indicators valued in the current ESSA 

requirements). 
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