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In an interference network, multiple transmitters comngate with multi-
ple receivers using the same communication channel. Thacttgpegion of an
interference network is defined as the set of data rates #mabe simultaneously
achieved by the users of the network. One of the most impbeteample of an
interference network is the wireless network, where theroomication channel is
the wireless channel. Wireless interference networks aosvk to be interference
limited rather than noise limited since the interference/g@olevel at the receivers

(caused by other user’s transmissions) is much higher tiendise power level.

Most wireless communication systems deployed today entpdogmission
strategies where the interfering signals are treated irséinee manner as thermal
noise. Such strategies are known to be suboptimal (in tefaxshieving higher data
rates), because the interfering signals generated by wHremitters have a struc-

ture to them that is very different from that of random thelrnmase. Hence, there is
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a need to design transmission strategies that exploittthistare of the interfering
signals to achieve higher data rates. However, determimytignal strategies for
mitigating interference has been a long standing open enobln fact, even for the
simplest interference network with just two users, the capaegion is unknown.
In this dissertation, we will investigate the capacity mgof several models of
interference channels. We will derive limits on achievadié¢a rates and design
effective transmission strategies that come close to aicigehe limits. We will in-
vestigate two kinds of networks - “small” (usually charaized by two transmitters

and two receivers) and “large” where the number of usersgela
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Chapter 1

Introduction

An interference network is characterized by multiple trarters commu-
nicating with multiple receivers using the same commumcathannel. Practical
wireless networks such as the cellular networks are impbetgamples of interfer-
ence networks, where the common communication channet iwitieless channel.
Wireless interference networks are known to be interfexdmaited since the in-
terference power (caused by signals transmitted by othemslseceived by each
destination is at a higher level than the noise power. Thadagpregion of a wire-
less interference network is the set of data rates thatrdiftedransmitter receiver
pairs can achieve simultaneously, and hence determindarnidamental limits of

performance of the network.

Determining the capacity region of wireless interferenetworks is a hard
problem, because of the inherent decentralized natureeaghtbrference network,
whereby the co-operation that can be achieved betweemiitiess or between
receivers is very limited. Most practical systems deal viitierference either by
treating it as noise or by separating different user’s trassions in orthogonal
time/frequency/space. It is known that these transmissitategies are in gen-

eral suboptimal since, interference generated by othestnéters usually have a



structure to them that is significantly different from th&trandom thermal noise.
Moreover, separating user’s transmissions in orthogamad/frequency/space af-
fects the data rate achieved by the users, because the testeamitting only for

a limited duration or over a limited band of frequency. Henbere is a need to
design transmission strategies that exploits the streattithe interfering signals
and enables simultaneous transmission by all the useranjidga of a couple of

transmission strategies that do not require too much coatipa between trans-
mitters or receivers and that are effective in mitigatingiference are interference

alignment and interference cancelation at receivers.

In this research, we investigate the capacity region ofra¢ekasses of wire-
less interference networks. We derive limits on data rates ¢an be achieved
in these networks and design effective transmission sfiegehat come close to
achieving these limits. The rest of the chapter is organa®dollows: In Sec-
tion 1.1, the information theoretic model of the interfererchannel is introduced
and the current state of this research area is summarizecldasses of interference
networks that are studied in this thesis are presented o&elc2. The motivations
for studying the selected class of interference channelprasented in Section 1.3.
The thesis statement and contributions are presented fioSéct and1.5. Finally,

Section 1.6 provides the organization of the rest of theishes

1.1 Interference Channel

In an interference channel, multiple transmitters commate with multiple

receivers using the same communication channel. Figurdehitts a general two
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Transmitter 2

Receiver .

Figure 1.1: General Two User Interference Channel

user interference channel, where transmitt@ommunicates with receivdr and
transmitter2 communicates with receivér and their transmissions interfere with
each other. The capacity region of a two user interferenaaro#l is the set of data

rate pairs that can be simultaneously achieved by both #rs.us

The interference channel was first studied from an inforomatheoretic
perspective in [1]. In [2], simple and fundamental inner ander bounds were
derived for the two user (two transmitters and two recejaterference channel.
Throughout this report, we will refer to a two user interfeze channel as a channel

with two transmitters and two receivers as depicted in Fduf.

A major breakthrough towards determining the capacityaregif a two user
interference channel came from the achievable rate regeoived! in [3], where
message splitting was used as a transmission strategy. deage splitting, both
the transmitters split their messages into two parts - aafgipart and a common
part. The receivers first decode the common parts of the medsansmitted by
the two transmitters and then decode the private part of thesage intended for

them after canceling the interference caused by the comradropthe messages.



In [4], an improved achievable rate region is derived bywillg each receivers to
jointly decode the common messages of both transmittersrenprivate message
of its corresponding transmitter. The achievable rateoregierived in [4] is the

best known achievable rate region for the two user intentegeehannel to date. For
larger interference networks with more than two usersyfi@etence alignment has
been used as an effective transmission strategy in derorohey optimal achievable

rate regions in [5-8].

Several outer bounds on the capacity region of interferehe@nels have
been derived over the past three decades. In [9], an outerddou the two user
discrete memoryless interference channel is derived tenf@rence channel is dis-
crete memoryless if the channel inputs and outputs areadesand the channel state
is independent across time slots). In [10], an outer bounitherapacity region of
a two user Gaussian interference channel is derived by mlipthe two transmit-
ters to fully co-operate with each other. In [12], Kramerided outer bounds on
Gaussian interference networks by providing extra siderimétion to the receivers
(side information is usually information about transmgrsal or received signals of
other transmitters and receivers). The same techniqudswbeen used in [13—-16]

in deriving other outer bounds for Gaussian interferende/omks.

Even though interference channels have been studied feraedecades,
determining the capacity region of even the two user interfee channel is still an
open problem. The capacity region of the two user interiggezhannel is known
only for certain special cases described in [17-21]. In amecesult [13], outer

bounds are derived for the two user Gaussian interfereramenet that differs from



known inner bounds by within one bit. In other recent res[ils-16], the sum
capacity of the Gaussian interference channel is deriveal fade range of channel

parameters (the channel gains from transmitters to recive

In this research, we will investigate the capacity regioseferal classes of
interference networks. In the next section, we will introduhe different models

of interference networks that we study.

1.2 Interference Network Models

The objective of this research is to derive limits on achidealata rates for
several models of interference networks and design effettansmission strategies

that come close to achieving the limits. The models that wistvidy include:

1. Cognitive Interference Networks: In a cognitive integigce network, some
of the transmitter nodes have some side information (atb@utransmit sig-
nals from other transmitters). We will study two sub-classé cognitive

interference networks.

(a) Cognitive Radio Channel : This is a two user Gaussianference
channel with two user pairs - the licensed transmitter -ivecetx -
rx) pair and the cognitive tx - rx pair. It is assumed that tbgrative
transmitter knows the message transmitted by the licemaedritter
apriori.

(b) Cognitive Relay Network : This is a Gaussian interfeeenetwork with

the presence of extra cognitive relay nodes. Relay nodes seassist



the transmitters in communicating their messages to teegivers. In
this model, it is assumed that the relay nodes know the messagjl

the transmitters apriori.

(c) Cognitive Radio Channel in Multiple Access Networksidlis an inter-
ference network with three transmitters and two receivBEr@nsmitters
1 and2 are the licensed transmitters transmitting messages irltgprau
access manner to a common licensed receiver. We also haygna co
tive transmitter-receiver pair communicating in the saipectrum as
the licensed users. It is assumed that the cognitive tratesnkinows

the messages transmitted by both the licensed transmagersi.

(d) Cognitive Radio Channel with partial cognition: Thisdstwo user
Gaussian interference channel with two user pairs - thadied trans-
mitter - receiver (tx - rx) pair and the cognitive tx - rx pdiris assumed
that the cognitive transmitter knows a portion of the meesagnsmit-

ted by the licensed transmitter apriori.

2. Large Interference Networks: We will investigate theafy region ofk
user interference channel. This is a Gaussian interferenaanel withk
transmitters and receivers, and each transmitter transmits an independent

message to its corresponding receiver.



1.3 Motivation

The capacity region of wireless interference networksrdatees the set of
all possible data rates that can be achieved by the users nettvork. Determining
the capacity region of wireless interference networksus @n important problem.
In this research, we will derive effective bounds on the céapaegion of several
classes of wireless interference networks. These bourltpravide insights into

the capacity regions of a much wider class of wireless iaterfce networks.

First, we will analyze the capacity region of cognitive ifiéeence networks.
In the cognitive radio channel model, some transmitter saale cognitive and
have side information on the transmission signals of otfarsimitters. For exam-
ple, information theoretic models of cognitive radio netkgassume that cognitive
transmitters know the messages transmitted by other tigtessn This enables in
designing transmission strategies incorporating trattiemgo-operation, which is
impossible to achieve in the absence of any side informatistaining such side
information is not very impractical. In scenarios when asmitter is located very
close to another transmitter, it is possible that a trartemis able to decode the
message of the other transmitter faster than the intendsivez. The cognitive
transmitter can then help the other transmitter in trartgmgiits information to its
receiver. This model of cognitive radio channel can alsees@s a new way in
which software defined radios or cognitive radios can be emganted. Cognitive
radios were originally thought of as devices that could camitate over the por-
tion of the licensed spectrum unoccupied by licensed ugdrs model was used

so that the cognitive users do not cause interference todiesied users. By pro-



viding the cognitive radios with the message of the licenssats, we can allow the
cognitive users to access the entire spectrum, while gtiidable to limit the in-

terference caused to the licensed users. We also extentldhaea model to study
cognitive radio channels in multiple access networks. Ia tihhannel model, we
have multiple licensed transmitters communicating withoenmon receiver in a
multiple access manner. We also have a cognitive trangmééeiver pair where
the cognitive transmitter knows the messages of the lickmaasmitters in an apri-

ori manner.

Next, we will analyze cognitive relay networks. These argeasally in-
terference networks, where additional cognitive relayasodre deployed to assist
the transmitting nodes in their communication. Relay nagse to increase the
data rates and coverage of a network. The transmissioegigatcurrently used in
many relay based networks is the multi-hop communicatidrere the transmitter
first transmits to the relay node and the relay node thenrrasshe information
to the receiver. Transmission strategies that involve Eaneous transmission by
both the transmitter and the relay to the receiver can leadjtoficantly higher data

rates, particularly if the receiver is not very far from tih@tsmitter.

In the above cognitive radio channel models, we assumetikatdgnitive
transmitter/relay knows the messages transmitted by ther atansmitters in an
apriori manner. While obtaining such side information isgible in systems where
the cognitive transmitter is located close to the licensadgmitters, it might not
always be possible in practical networks. Hence, we stuagaitive radio channel

model where the cognitive transmitter has access to onlyriagbdhe message



transmitted by the licensed transmitter.

In analyzing the above mentioned cognitive interferendevorks, we will
invariably deal with small sized networks (usually with tivansmitters and two
receivers). Most practical wireless interference netwaie large and have many
users interacting with each other over the common wirelbagmel. Determining
the capacity region of the user interference channel is an important step towards
analyzing large wireless interference networks. lh aser interference channel,
there aré: transmitter-receiver pairs, and each transmitter tratrssani independent
message to its corresponding receiver. While a lot of rebelas been done on
the two user interference channel, little progress has beste in analyzing thé
user interference channel. The message splitting tras@mistrategy used in [4]
for the two user interference channel is not expected to werl well for thek
user case. In this dissertation, we will use lattice codauphiques to design novel
interference alignment transmission strategies to deteritme capacity behavior

of such communication networks.

1.4 Thesis Statement

Analyzing the capacity region of a class of interferencevoets including

various cognitive radio channel models and the gernféraser interference channel.



1.5 Contributions

In this research, we will derive achievable rate regionsautér bounds on
the capacity region of several classes of interferencereianThe contributions of

this thesis are summarized below:

1. Cognitive Radio Channel : We derive an achievable rat®mnegnd an outer
bound on the capacity region of a two user Gaussian cogmniig® chan-
nel, where all the transmitters and receivers have mulapkennas. This
channel will be termed “Gaussian MIMO cognitive radio chaliinwhere
MIMO stands for Multiple Input and Multiple Output. In thiognitive ra-
dio channel, we assume that the cognitive transmitter kritbevsnessage of
the licensed transmitter apriori. The transmission sgiatesed to derive the
achievable rate region is based on power splitting and gaper coding [22]
at the cognitive transmitter. The outer bound is derivedugh a series of
channel transformations. We show that the achievable egfiem and outer

bound partially meet under certain channel conditions.

2. Cognitive Radio Channel in MAC Networks : We derive achige regions
and outer bounds on the capacity region of a cognitive ralancel in a
multiple access network. In this channel model, we have ivenked trans-
mitters communicating with a common receiver in a multigleess manner.
We also have a cognitive transmitter-receiver pair whegectignitive trans-
mitter knows the messages of the licensed transmitters apeari manner.

We also derive the capacity region of such a channel modetrucertain

10



channel conditions.

3. Cognitive Relay Network : In this network setup, we studwea user Gaus-
sian interference channel with a cognitive relay. We compt achiev-
able rate region by employing a transmission strategy tbathines Han-
Kobayashi coding scheme [4] with dirty paper coding [22]. &l&0 derive

outer bounds on the capacity region of the channel.

4. Cognitive Radio Channel with partial cognition : We calgsia two user
cognitive radio channel with a licensed and cognitive traitigr-receiver pair
where the cognitive transmitter has access to only a podidhe message
transmitted by the licensed transmitter. We derive aclileveegions and

outer bounds on the capacity region of such a channel model.

5. K User Interference Channel : We study the Gaussianser interference
channel model withiK transmitter-receiver pairs. We use lattice coding to
derive a novel interference alignment transmission gixete analyze the ca-
pacity region of such a channel model. We derive the capasifipn of such
channel under certain strict symmetric channel conditivesalso determine
how the sum capacity scales with increasing power in theesy$br a larger

class of such channel models.

1.6 Organization

The rest of the dissertation is organized as follows: in térd) we derive

results on the capacity region of the two user MIMO cognitiadio channel. In

11



chapter3, we analyze the capacity region of cognitive radios in MA@vueks. We
study the capacity region of cognitive relay networks inptkad. In chapters, we
analyze the capacity region of cognitive radio channel rhatitl partial cognition.
In chapter6, we analyze the capacity region Af user interference channel using

lattice coding schemes. Finally, we conclude in chapter

12



Chapter 2

Capacity Region of MIMO Cognitive Radio Channel

In this chapter, we analyze the capacity region of a two usansSian
MIMO coghnitive radio channel. The cognitive radio channe gonsider is a two
user interference channel with a licensed transmittegivec pair and a cognitive
transmitter-receiver pair. It is assumed that the cogmitransmitter knows the
transmissions of the licensed transmitter apriori and tlieknowledge to design

its own transmission signals.

2.1 Introduction

The design of radios to be “cognitive” has been identified hwy Eederal
Communications Commission (FCC) as the next big step irebedtdio resource
utilization [23]. The term “cognitive” has many differemtienotations both in anal-
ysis and in practice, but with two underlying common themiegelligencebuilt

into the radio architecture coupled wildaptivity.

Cognitive radios have been studied under different modehgs. The first
models studied cognitive radios as a spectrum sensinggrof24-27]. Under
this setting, the cognitive radio opportunistically usestsed spectrum when the

licensed users are sensed to be absent in that band. Prodhemsntered in this

13



setup are threefold :

1. Sensing must be highly accurate to guarantee non inéaderwith the li-

censed radio.

2. Control and coordination between the cognitive tranemiteceiver pair is

required to ensure the same spectrum is used, and finally

3. There are no QoS guarantees for the cognitive transmatteiver pair.

Other models with different side information at the cogmtisers have been stud-
ied. In [28] and [29], the authors study frequency codingh®y/dognitive transmit-
ter by assuming non causal knowledge of the frequency udeegbrimary trans-

mitter. Other works on this model include [30-38].

In this chapter, we study cognition from an information tre¢@ setting
where we assume that the cognitive transmitter knows theagesof the licensed
transmitter apriori. Such a model is interesting for twosaes : 1) It provides
an upper limit, or equivalently a benchmark on the perforoeanf systems where
the cognitive radio gains a partial understanding of thensed transmitter and 2)
It allows us to understand the ultimate limits on the cogeitransmitter by giv-
ing it maximum information and allowing it to change its tsamssion and coding
strategy based on all the information available at the Beeruser. In essence, it en-
larges the possible schemes that can be implemented atdhéige radio, and 3)
It lends itself to information theoretic analysis, beinge#ting where such tools can
be applied to determine the performance limits of the systeliany other config-

urations, including the interference channel setting wifiencognitive transmitter

14



does not know the message of the licensed transmitter ateaeghde long open

problems.

The goal of this chapter is to study the fundamental limitgserformance of
cognitive radios. Along the lines of [39], we consider thedelodepicted in Figure
2.1. In this setting, we have an interference channel [3,4,8]1 dut with degraded
message sets, where the transmitter with a single messaghed “legacy,” “pri-
mary” or “dumb” and the transmitter with both messages terthe “cognitive”
transmitter. Prior work on this model for the single antenase is in [39-43]. Re-
cently, the capacity region of the single antenna cognitid& channel was derived

to within 1.87 bits per channel use [44, 45].

In this chapter, we study the performance of the cognitideorenodel under
a multiple antenna (MIMO) setting. Both the licensed andnitpge transmitter and
receiver may have multiple antennas. MIMO is fast becomiregrhost common
feature of wireless systems due to its performance bendfitas, it is important
to study the capacity of cognitive radios under a MIMO seittiThere are some
instances where the methods here bears similarities watimgethods used for the
SISO setting. However, most of the proofs and techniqued beee are distinct
and considerably more involved than those used in [42]. SIS0 setting, it
is possible to analyze the model for specific magnitudes ahohls. This is not
possible for the MIMO setting. We list some of the cruciafeliénces between the

methods used here and the methods that have been used in8&s@ setting.

1. In[42], the authors obtain the outer bound using conai@i@ntropy inequal-

15



ity. This method cannot be extended to the MIMO setting.

2. We obtain the outer bound through a series of channelftnanations. Al-
though the channel transformations are similar in spirthtase in [41], the
actual transformations used are significantly differerthbo nature and in
the mathematical proofs that accompany them. In [41], thbeaas reduce
the channel to a broadcast channel where the combined tittersnhave
individual power constraints and the cognitive receives ttee message of
the licensed user provided to it by a genie. The capacityorefpr such a
variation of broadcast channel is not known in general. Tiitb@&s solve
for the capacity region of the broadcast channel using etigthannel tech-
niques. On the other hand, we reduce the MIMO cognitive chiat;ma
broadcast channel with sum power constraint and whose itgpagion is
now known [46—-48]. We then use optimization techniques togare the

achievable scheme with the outer bound.

2.1.1 Main Contributions

In this chapter, our main contributions include:

1. We find an achievable region for the Gaussian MIMO cogaitivannel (MCC)

in a fashion analogous to [39,41,42].
2. We find an outer bound on the capacity region of the MCC.

3. We show that, under certain conditions (that depend ochihanel parame-

ters), the outer bound is tight for a portion of the capac#yion boundary,
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including points corresponding to the sum-capacity of thennel. Combin-
ing the two above, we characterize the sum capacity of thasiohl and a

portion of its entire capacity region under certain coraadis.

2.1.2 Organization

The rest of the chapter is organized as follows. We deschieenbtations
and system model in Sectian2. The main results are presented in Section 2.3.
In Section 2.4, we present an achievable region for the GausslMO cognitive
channel (MCC). An outer bound on the capacity region is show®ection 2.5.
The optimality of the achievable region for a portion of ttepacity region (un-
der certain conditions) is shown in Secti26. Numerical results are provided in

Section 2.7. We conclude in Sectiors.

2.2 System Model and Notation

Throughout the thesis, we use boldface letters to denotengeand matri-
ces. |A| denotes the determinant of mati while Tr(A) denotes its trace. For
any general matrix or vectd, X' denotes its conjugate transpo$g denotes the
n x n identity matrix. X" denotes the row vectdrX (1), X (2),..., X(n)), where
X(i),i = 1,2,...,n can be vectors or scalars. The notatidn> 0 is used to
denote that a square matiiik is positive semidefinite. Finally, 8 is a set, ther§

denotes the closure of convex hull f

We consider a MIMO cognitive channel shown in Figaré. Letn,, and

n, denote the number of transmitter and receiver antennagctggy for the
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licensed user. Similarly;., andn., denotes the number of transmitter and receiver
antennas for the cognitive user.

Power Constraint

Pp Zp . )
Licensed Source H i Licensed Receive
Xp(my) B
Xe(my, me) / DY,
Cognitive Source  He, T Cognitive Receive
Power Constraint

P, Ze

Figure 2.1: MIMO Cognitive Radio System Model

The licensed user has messagg € {1,2,...,2"%} intended for the li-
censed receiver. The cognitive user has message {1,2,...,2"%} intended

for the cognitive receiver as well as the messageof the licensed user.

The primary user encodes the messagento X,,". Here,X,(7) is an,;

length complex vector. The cognitive transmitter deteesiits codeworX." as

a function of bothm, andm,.. Note that the cognitive transmitter wishes to com-
municate bothn,, (to the licensed receiver) and. (to the cognitive receiver). The
channel gain matrices are given By, ,. H,, ., H. , andH_ ., and are assumed to
be static. It is assumed that the licensed receiver kiidys, H. ,, the licensed
transmitter knowdH,, ,. It is also assumed that the cognitive transmitter knows
H.,, H; ., Hc . and the cognitive receiver know$, ., H. .. The received vectors

of the licensed and cognitive users are denoted’ Yy andY." respectively.

18



With the above model and notations, we can describe themsyadtéme slot
i by

Yp(i)
()

pXp(1) + HepXe (i) + Zp (i)

Hp’
Hy, o Xp (1) + He o Xe (1) + Ze(3).

2.1)

The additive noise at the primary and secondary receivetemdted by
Z," andZ." respectively. The noise vecto#,” andZ." are Gaussian and are
assumed to be i.i.d. across symbol times and distributedrdicg toN(0,1,,,,)
andN(0, I, , ) respectively. The correlation betwe#p™ andZ." is assumed to be
arbitrary. This correlation does not impact the capacityae of the system as the

licensed and the cognitive decoders do not co-operate aith ether?

We denote the covariance of the codewords of the licensedaguitive
transmitters at time by 3, (i) andX.(¢) respectively. Then, the transmitters are

constrained by the following transmit power constraints.

2o Tr(Zp (i) < nP,

> Tr(2e(d) < nl. (2.2)

Arate pair(R,, R.) is said to be achievable if

1. there exists a sequence of encoding functions for thade and cognitive
usersky : {1,...,2"} — X "andE} : {1,...,2M} x {1,... 2"} —

X." such that the codewords satisfy the power constraints diy€6.2),

A proof of this can be obtained using steps almost exactlgtidal to those for the broadcast
channelin [67, Exercise 15.10]
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2. there exists decoding rulds} : Y," — {1,....2""} andD} : Y." —
{1,...,2"%} such that the average probability of decoding error is by

small for suitably large values of.

The capacity region of the Gaussian MIMO cognitive chanselhie set of all

achievable rate paif?,, R.) and is denoted b ;¢ c.

2.3 Main Results

In this section, we describe the main results of the chaptat G =

Hp,p, Hep). LetR,., denote the set described by

( \

<(RP,RC), Y depr e, Q) R, >0,R. > 0,3, =0,3:5,>=0,3..~0

R, <log|I+ GEp et Gl + He p X cH log I+ Hp3c HI |
R. <log|I+ H S HY |

Ep,net - ( 3? g ) t 07 TI'(Ep) S Pp> Tr(zc,p + Ec,c) S Pc
\ c,p

In this setting Xp, net IS a(n,; + ncy) X (ny,: + 1) cOvariance matrix whil&, .

T ‘_
c?p

(2.3)

J

Is an.; X n.; covariance matrix.X, and X, represent principal submatrices
of 3, net Of dimensionsn,; x n,; andn., x n., respectively. The covariances

matrices¥,, X. , andX, . determine the power constraints of the system.

Let R;, be the set of rate pairs described by

:Rin - {(Rpa Rc) : El Epa Ec,pa Ec,m Qa and ((Rpa Rc)a Epa Ec,pa Ec,ca Q) € jzach}(z-4)
Theorem 2.3.1.The capacity region of the MCQ,,c satisfies

Rin C Crrce. (2.5)
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The proof of the theorem is given in Section 2.4. The codimgtsgy is
based on Costa’s dirty paper coding [22] [61].

We now describe an outer bound on the capacity region of tid®itog-

nitive channel. Letx > 0, G, = [Hp,p %} andK = [ Hg’p gc’p?g :

Let X, be a covariance matrix of dimensiofis, , + n. ) % (n,, + n.,) and of the

form

5, = [ g:; I?z‘ } . 2.6)

Here, Q. is an,, X n., matrix that makes, positive semidefinite. LeR%;>=

conv

denote the set described by

4

<(RpaRc)7Qpan> Ry 20,k >0,Qp=0,Qc =0
ReZe — ] Ry <1og|T+ GaQpGl + GaQeGh| ~log [1+G.QGL| 57

R, < 10g| B, + KQKT| — log|%,|
Tr(Qp) + Tr(Qc) < P, + aP.

Let R%>= denote the set of rate pairs described by

out

R = {(Rp, R.):3Qp, Q¢ = 0suchthat(R,, R.), Qp, Qc) € R?(;E;}.
(2.8)

Also, letR,,; be represented as

Rowr = ()] R (2.9)

¥, a>0

Then, the next theorem describes an outer bound on the tapegion of the MCC.

Theorem 2.3.2.The capacity region of the MCQ,,c satisfies

REZ2 oy > (), 8,

out

N

Cmce

8MCC g :Rout- (210)
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The proof is given in Section 2.5 and proceeds by a seriesafredl trans-
formations. Each channel transformation results in a neamiell whose capacity
region is in general a superset (outer bound) of the capeagipn of the preceding

channel.

Next, we discuss the optimality of the achievable region weved and
present conditions when the achievable region might meebther bound. Let
BC(H,, H,, P) denote a two user MIMO broadcast channel with channel nestric
given by H, andH, and with a transmitter power constraint Bf Let Cp5™>"
denote the capacity region BIC(H,, H,, P).

Let R denote the set described by

part,conv

<(RP7RC)7 Qp7 EC,C) : Rp 2 07 RC Z 07 Qp t 07 z}C,C i 07
Ry <10g [T+ GaQpGl + tHepSe. oSy

R < log |1+ LHc o HL
Tr(Qp) + Tr(Xee) < Py + oF,

—log (I +L1H, 3 H

(2.11)
We letR?,,, .. to denote the set of rate pairs described by
gart,out = {(RP7 RC) : EIQP’ 2070 t 0 SUCh tha((RIN RC)’ QP’ 2070) € :Rgart,conv
(2.12

Let K = [0 H../+/a]. We show that if the boundary of the rate region
described byR?, ., ... partially meets the boundary of the capacity region of the
braoadcast channélC(G,, K, P, + o), then the boundary @k, ., partially

a

meets the boundary of the rate region describefthy~ in (2.8) for some=,. We

22



formally state the result in Theorem 2.3.3. For notatiomeivenience, we denote

the capacity region aBC(G,,, K, P, + aP.) by C%..

Theorem 2.3.3.Lety > 1 anda > 0. If

max R,+ R.= max R, + R, 2.13
(vaRC)eRgar't,out Iu P (RIHRC)ee%C Iu . ( )
then, we have
max R,+ R.=inf  max R, + R.. (2.14)
(RP7RC)€Rgart,out M v DI (Rp,Rc)E:R:;’L?z u v

The proof of the theorem is described in Section 2.5. Hemtegicondition
(2.13) is satisfied, the rate region described®jy,, ., is an outer bound on the

capacity region of the MCC in terms of maximizing thesumpR, + R..

Let (R,, R.) be a point on the boundary of the capacity regiap.c. Then,

there exists @ > 0 such that

R ,RC =ar max R, + R..
( P ) g(vaRc)EeMcc’u b

The next theorem shows that (i?,, R.) lies on the boundary of the achievable

region given byR,,,, then(R,, R,) lies on the boundary k¢ for somea > 0.

part,out

That is, the theorem describes conditions of optimalityhefdchievable regiaR;,,.

Theorem 2.3.4.For any . > 0,

R,+ R, = inf R,+R..
= B P S

part,out

Also, there exista* € (0, c0), such that for any: > 1,

(Rpu Rey) =arg  max  uR,+ R,

(Rp 7RC)E:RL'7L

23



is a point on the boundary of the capacity region of the MIM@rdtive channel if

the condition given by (2.13) is satisfied fot.

The proof of the theorem is described in Section 3.5 and isdas opti-

mization techniques. The results in this chapter are pteden [56] [57].

2.4 Achievable Region

Proof of Theorem 2.3.1 In this section, we show that the rate regi&p,

given by (5.35) is achievable on the MCC.

Encoding rule for Licensed usgk} ) : For every message,, € {1,.. ., onke )
the licensed encoder generateslangth codewor®X " (m,,), according to the dis-
tribution p(X,,") = I, p(X (7)), and X, (i) «~ N(0,3,) such thatZ, > 0 and
Tr(X,) < P,.

Encoding rule for the cognitive uséF”): The cognitive encoder acts in
two stages. For every message pair,, m.), the cognitive encoder first generates a
codewordX.. ," (m,, m.) for the primary message, according tdI?_, p(Xc p(7)|Xp (%)),
wherep(X¢ (7)) «~ N(0,X. ) and the joint distribution of X, (7), X ,(7)) is
given by

P00 Xepl) N (0] T2 ). 2.15)

Here, Q denotes the correlation betwe, (i) and X, (7). In the sec-

ond stage, the cognitive encoder generafgs™ which encodes message.. The
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codewordX, " is generated using Costa precoding [22] by trealfjg, X" +
H..X.p" as non causally known interference. A characteristic featfi Costa’s
precoding is thak. ." is independent oK. ,", andX_ ." is distributed a$l} , p(X. (7)),
whereX, (i) «~ N(0, 2. ). Note that the codeworX. ," is used to convey mes-
sagem,, to the licensed receiver and the codewXrd." is used to convey message
m. to the cognitive receiver. The two codeworHs ," and X.." are superim-
posed to form the cognitive codewokXl." = X.," + X..". Itis clear thatX."

is distributed asI?_p(Xc(7)), Xc(i) «~ N(0, X.), whereX, = ¥, + X .. The

covariance matrices satisfy the constraits, = 0, .. >~ 0, Tr(X.) < P..

Decoding rule for the licensed receivép; ) : The licensed receiver receives
Hp, o Xp" + He p(Xep" + Xoo") + Zp". It treatsH, , X" + He , X " as the

valid codeword an®. ,X.." + Z," as Gaussian noise. Takitg= [H, , H. )

andXy pet” = [ ;(( - } , the received vector at the licensed receiver is
cip
Y," = GXpnet” + HepXeo" + Zp". (2.16)
: : : 3, Q
The covariance matrix oK, e iS denoted by>,, et = Q = , Where
C7p

Q = E[XpX{ ] In this setup, we use steps identical to that used for MIMO
channel with colored noise in [67, Section 9.5] to show thatanye > 0, there
exists a block length; so that for anyn > ny, the licensed decoder can recover

the messager,, with probability of error< e if

R, <log I+ GXpnetG' + He p,Xc HE | — log [T+ He pXe HY (2.17)

,p}_ 7p"

Decoding rule for the cognitive us¢pD”) : The cognitive decoder is the

Costa decoder (with the knowledge of the encodg€t). The cognitive receiver
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receivesY." = Hy, X" + Heo(Xep" + Xeo') + Z.". Here, the non-causally
known interferencdd,, .X," + H. X" is canceled by the Costa precoder. To
show this formally, we follow steps similar to Eqns (3) to (i@)22]. We get that,
for any e, > 0, there existsi; such that forn > n,, the cognitive decoder can

recover the message,. with probability of error< e, if

R. <log|I+Hc 2 H . (2.18)

Note that the achievable scheme holds for all possible Goves matri-
cesX,, Y. p, X that are positive semidefinite and satisfy the power comstra
Tr(Xp) < P, Tr(Xep + Xec) < F.. HenceR,,, which is the set of all achievable

rate pairs described by (5.35), is achievable for any caugtihe: > max(n, ny).

2.5 Outer Bound on the Capacity Region

In this section, we prove that the rate region describe®}yy” is an outer
bound on the capacity region of the Gaussian MIMO cognithaemel. The proof
proceeds by a series of channel transformations where ematfdrmation creates
an outer bound on the channel at the previous stage. At tHesfange, we obtain
a physically degraded broadcast channel. The capacitgmetfi this channel is
now known [46] [47] [48] and is used as the outer bound for dyeacity region of
the MIMO cognitive channel. Figurz2 depicts the various channel configurations
considered, and the system equations of all the configlnmﬁﬁ‘; shown in Figures
2¢, 2d and2e has the same distribution Zg", but has an arbitrary correlation with

Z.". Before proving Theorem 2.3.2, we prove the following lemma
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Power Constraint Zy

Licensed Source B H,,
X,(my,

»

Xo(my,m,)
Cognitive Source H,
Power Constraint

P, Z,
Figure 2a MIMO Cognitive Channel (MCC)

Y.

Power Constraint Z

P,
Licensed Source " 7 "
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Xo(my,m,) Ae [ Y, ]

Cognitive Source K, Y,
Power Constraint Cogpnitive Receiver
aP, Z,
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Figure 2d Scaled MIMO Cognitive Channel B (SMCCB)

Licensed User Y, = H,,X, + H.,X. + Z,

Cognitive User Y, = H, X, + H..X, + Z,

MIMO Cognitive Channel (MCC)

Licensed User Y, = H,,, X, + (H.,/o)X. + Z,

Cognitive User Y, = H,,X, + (H.,/vaX. + Z,

Yo = (Heo/Va) X+ Z,

Scaled MIMO Cognitive Channel B (SMCCB)

v
l Licensed Receiver

T Cognitive Receiver

i Licensed Receiver

Power Constraint Z

Licensed Source B H,,

X, (my)

Xomy,me)

Cogpnitive Source Heo/Va T Cogpnitive Receiver
Power Constraint
aP Z.

Figure 2b Scaled MIMO Cognitive Channel (SMCC)
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Figure 2e Scaled MIMO Broadcast Channel A (SMBCA)

Licensed User ¥, = H,,, X, + (H,, /o) X. + Z,

Cognitive User 1Y, = H, X, + (H../\a) X, + Z,

Scaled MIMO Cognitive Channel (SMCC)

Licensed User ¥, = [ H,, H.,/va] X+ 2,

Cognitive User Y, = [ H,, H.,/va|X +Z,
Y,=[0 H/Va] X+ 2

Scaled MIMO Broastc@hannel A (SMBCA)

l Licensed Receiver

Power Constraint Zy
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X, (my)

Xo(mpme) Ae { Y, }
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Figure 2c Scaled MIMO Cognitive Channel A (SMCCA)
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Figure 2f Scaled MIMO Broadcast Channel (SMBC)

Licensed User ¥, = H,, X, + (H.,/a)X. + Z,

Cognitive User Y, = H,, X, + (H.,/Va&)X. + Z,
Vo= Hy Xy + (Hee/ V)Xo + 2,

Scaled MIMO Cognitive Channel A (SMCCA)

Licensed User ¥, = [ H,, H.,/va]X +Z,

Cognitive User Y, = [0 H../vVa ] X + Z,

Scaled MIMO Broadcast Channel (SMBC)

Figure 2.2: Channel Configurations and their System Equsitio

Transformation 1 (MIMO Cognitive Channel (MCE} Scaled MIMO cog-

nitive channel) : The scaled MIMO cognitive channel is defiie Figure2b and

Figure2.3. In this transformation, the channel matridds , andH. . are scaled

by 1/y/a. Also, the power constraint at the cognitive transmittehianged tav F...

Lemma 2.5.1. The capacity region of the MIMO cognitive channel is equahi®

capacity region of the scaled MIMO cognitive channel (SM&Cany0 < o < oo.
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Power Constraint Power Constraint Z

Licensed Source ©» I Licensed Receiver Licensed SourcePs " Licensed Receive
»p

Xp(my) e Y, Xp(my) +)—=Y,
_ Hy
Equal
X(my, me) M Y. X (my, me) Y.
Cogpnitive Source He, T Cognitive Receiver Cognitive Source Hee/ Ve T Cognitive Receive
Power Constraint Power Constraint
P, Z, aP, Z,
MIMO Cognitive Channel (MCC) Scaled MIMO Cognitive Channel (SMCC)

Figure 2.3: Capacity Region of MCC = Capacity Region of SMCC

Proof. Let (R,, R.) be a rate pair that is achievable on the MCC. That is, for all
€1, € > 0, there exists @ and a sequence of encoder decoder pairs at the licensed
and cognitive transmitter and receivdr) : m, — X", D) @ Y," — 1, BT

(my, m.) — X", D : Y. — 1) such that the codewords," andX." satisfy

the power constraints given by (6.2) and the probability@tatling error is small
(Pr(m, # my,) < e, Pr(m. # m.) < €). We use the following encoder decoder
pairs at the licensed and cognitive transmitters and receiof the scaled MIMO

cognitive channel. E : m, — X", Dy : Y," — m,, E!

c : (mp7mc) -

VaX.", D - Y. — m.. Itfollows that using these encoder and decoder pairs,
the licensed and cognitive codewords satisfy the new pomestcaints ofF, and

a P, respectively. Also, the system equation is the same as thaedMICC and
Pr(m, # m,) < ¢ andPr(m. # m.) < €. Hence, the rate paiiR,, R,.) is
achievable on the scaled MIMO cognitive channel. Hencec#pacity region of

the SMCC is a superset of the capacity region of the MCC.

Similarly, we can also establish this in the other directioamely we can

treat the MCC as the scaled version of the SMCC (scalingd fay). Therefore,
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it can be shown that the capacity region of the MCC is a supefdhe capacity

region of the SMCC.

Hence, the capacity region of the MCC is equal to the capaegipn of the
SMCC. O

Transformation 2 (scaled MIMO cognitive channel (SMCE€xcaled MIMO
cognitive channel A (SMCCA)) : The scaled MIMO cognitive anal A (SMCCA)
is described in Figurec and Figure.4. In this transformation, we provide a mod-
ified version ofY,", which is Yg to the cognitive receiverYg is corrupted by
noiseZg, which has the same probability distribution as thaZgf (i.e., complex
Gaussian with zero mean and identity covariance matrix)shpermitted to be cor-
related withZ," or Z.". In fact, we assume that the joint probability distribution

of (Zy (i), Z.(7)) is given by
P(Zp(0), Ze(1)) = N(0, Za), (2.19)

whereX, has the form given by (2.6). The received vechyis made available to
the cognitive receiver by transforming the channel masridg . andH../\/a to

H H.,/\« } . .
K, = PP and K, = “P respectively. Hence, the received vector
= Ly Jana {{ic,c/\/& PR

at the cognitive receiver i% ;( P

Lemma 2.5.2. The capacity region of the scaled MIMO cognitive channel M-S

CCA) is a superset of the capacity region of the scaled MIM@ndoze channel

(SMCC).
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z, Z,

Power Constraint Power Constraint

Licensed Sourcel» I l Licensed Receiver Licensed Source?» I l Licensed Receiver
Xp(my) m ) Xp(my) i Y,
<
Subset
X.(my, m,) g X (my,m,) [ Y, }
Cognitive Source Heo/Va T Cognitive Receiver Cognitive Source K Yo
Power Constraint Power Constraint Cognitive Receive
aP, Z oP, Z,
Scaled MIMO Cognitive Channel (SMCC) Z.

Scaled MIMO Cognitive Channel A (SMCCA)

Figure 2.4: Capacity Region of SMCC Capacity Region of SMCCA

Proof. Letthe rate paifR,, R.) be achievable on the SMCC. Thatis, foralle, >

0, there exists a and a sequence of encoder decoder pairs at the licensed and
cognitive transmitter and receivéfs) = m, — X", D} 2 YY" — iy, B
(my,m.) — X", D : Y. — m,) such that the codewords," andX." satisfy

the power constraints and the probability of decoding eiscsmall (Pr(m, #

my) < €, Pr(m. # m.) < €). Inthe SMCCA, we can use the same encoder
decoder paity; and D) at the licensed transmitter and receiver to achieve a rate
R, with probability of decoding errox ;. Also, by ignoring the received vector
Yg at the cognitive receiver, we can ug& and D! at the cognitive transmitters
and receivers to achieve a rate with the decoding probability of errot e,.
Hence, the rate paiiR,, R.) is achievable on the scaled MIMO cognitive channel
A (SMCCA). Therefore, the capacity region of the SMCCA is pexset of the
capacity region of the SMCC. ]

Transformation 3 (scaled MIMO cognitive channel A (SMCCA)scaled
MIMO cognitive channel B (SMCCB) ) : The scaled MIMO cognéichannel (B)
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is described in Figur@d and Figure2.5. The channel matrix from the licensed

transmitter to the cognitive receiver is modified frdy = { Hpp } to K, =
P,C

{ ng } Hence, the received vector at the cognitive receiver iergb)y{ ;( 5 }

Hee X" + Z.". The intuition behind the transformation is to remove

Ja
the original interference caused by the licensed tranemitthe cognitive receiver.

whereY_." =

Lemma 2.5.3. The capacity region of the scaled MIMO cognitive channel RS

CCB) is equal to the capacity region of the scaled MIMO cageithannel A (SM-

. Z,
Power Constraint v ) Power Constraint %
Licensed Sourcé» " l Licensed Receiver | ;.4 Sourcds i l Licensed Receiver
Xp('mW) = YI} le('mp) ve +)— Y}’
K, . K
Equal
Xc(my, me) [ )}2’ ] Xe(my, m,) ) [ Zl ]
Cognitive Source K, c Cognitive Source K Y,
Power Constraint N Cognitive Receiver Power Constraint ' Cognitive Receive
aP, [ Z, aP,. Z,
Z, Z,
Scaled MIMO Cognitive Channel A (SMCCA) Scaled MIMO Cognitive Channel B (SMCCB)

Figure 2.5: Capacity Region of SMCCA = Capacity Region of SBBC

Proof. Let the rate paifR,, RR.) be achievable on the SMCCA. This implies that for
everye, e; > 0, there exists encoder-decoder pair for the licensed(uggk, ), D} (1))
and for the cognitive usgE” (e>), D (e2)) such that the probability of decoding
error is less tham; ande, respectively for the licensed and cognitive user. Let
01,02 € (0,1). In SMCCB, the licensed user can empl&y (min(d,/2, d2/2)),

D7 (min(0/2,0,/2)) to decoden, with a probability of error< 6,/2 < 4;. The
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cognitive receiver useg; (min(d,/2,»/2)), D (min(d1/2,0,/2)) on Yg to ob-
tain m,, with probability of error< ¢,/2. The cognitive receiver can now con-
struct X," and henceH, .X,,". Thus, the cognitive receiver recove¥s." =
Hp, o Xp" + =2X2 4 Z.". Now, it uses,k (d,/2), Dr(6,/2) to obtainm, with
probability of error< é,/2. Clearly, the probability of error in recovering.. is
less thard,. Hence, the rate pail?,, R.) is achievable on SMCCB. Therefore, the

capacity region of SMCCB is a superset of the capacity regf@MCCA.

Let the rate paifR,, R.) be achievable on SMCCB. Then, for everye, >
0, there exists encoder-decoder pair for the licensed (Usgfe, ), D, (;)) and for
the cognitive use(E” (e2), D (e2)) such that the probability of decoding error is
less thare; ande, respectively for the licensed and cognitive user. d;et, > 0. In
SMCCA, the licensed user can emplbY (min(d, /2, d2/2)), D (min(d, /2, 02/2))
to decoden,, with a probability of error< §,/2 < 4,. The cognitive user employs
E(min(dy/2, 6,/2)), D2(min(d; /2, 6»/2)) on'Y? to obtainm,, with probability of
error < d,/2. The cognitive receiver can now constri” and henced, . X,".
Hence, the cognitive receiver subtraéls . X," from Y. " to obtainY.". The
cognitive receiver can now uge’(d,/2), D(d,/2) to obtainm, with probability

of error < d,. Thus, the rate paifR,, R.) is achievable on SMCCA.

Therefore, the capacity region of the SMCCA is equal to thmacay region
of the SMCCB. O

Transformation 4 (scaled MIMO cognitive channel (B) scaled MIMO

broadcast channel A (SMBCA)): The scaled MIMO broadcashnkebA (SMBCA)
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is depicted in Figuree and Figure.6. We let the two transmitters to co-operate and
transform it into a broadcast channel with a sum power caimgtof P, + a.F,. The
new channel matrices from the combined transmitters toitke$ed and cognitive

: : — H,, H.,/Va
receivers are given b§, = [ Hy, Hc,/v/a | andK = oF ch/\/&
respectively.
Lemma 2.5.4.The capacity region of the scaled MIMO broadcast channelM-(S
BCA) is a superset of the capacity region of scaled MIMO digmichannel B

(SMCCB).

Power Constraint Z %
Licensed Source!» o i Licensed Receiver l Licensed Receiver
o

Xp(my,)

‘)}/p

G(}
C Joint Source

X(my, m,)

Power Constraint 77

Xe(my, m) . [z}; ] P, +al; ‘)[)7/1, ]
Cognitive Source K, ¢

Power Constraint Cognitive Receiver . Cognitive Receive
aP. Zy Zp
Z.

Scaled MIMO Cognitive Channel B (SMCCB) Scaled MIMO Broadcast Channel A (SMBCA)

Figure 2.6: Capacity Region of SMCCB Capacity Region of SMBCA

Proof. Let the rate pai(R,, R.) be achievable on the SMCCB. In the SMBCA,
using no collaboration between the two transmitters anglguséparate power con-
straints ofP, anda P, respectively, we reduce the SMBCA to the SMCCB. Hence,
the rate pailR,, R.) is achievable on the SMBCA. Therefore, the capacity region
of the SMBCA is a superset of the capacity region of the SMCCB. O
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We have showed that for any > 0, Cyicc = Csmce € Csycca =
Csmeoor € Csupoa. Hence, the capacity region of the scaled MIMO broadcast
channel A (SMBCA) is a superset of the capacity region of tH&® cognitive

channel (MCC).

Proof. of Theorem 2.3.2In the SMBCA, letQ,, denote the covariance matrix of
the codeword for the licensed user anddgtdenote the covariance matrix for the
cognitive user. The SMBCA is a physically degraded broadclaannel. Hence,
the capacity region of the SMBCA (as described by [46]) deddiy Csy/c4 IS

given by the set of rate pairs described by

(Ry,R.): R, >0,R. >0

R, <log|I+ GoQpGl, + GuQ.G | —log |I+ G, Q.Gl|
Rc S log )Ez + K(Qcﬁ) - 1Og |Ez|

VQp = 0,Q. = 0 suchthaflr(Q,) + Tr(Q.) < P, + aP.

(2.20)

Also, this is the outer bound of the MCC. Hen6&:>* described by (2.8)
is an outer bound on the capacity region of the MCC. Hefigg;c C R%>*. Also,

Cymcc € Rous, WhereR,,,; is described in (9). O

Transformation 5 (scaled MIMO broadcast channel A (SMBCAkcaled
MIMO broadcast channel (SMBC)) : The scaled MIMO broadchainmel (SMBC)
is depicted in Figuref and Figure2.7. We change the received vector at the cog-

n

nitive receiver from{ ;{P } to Y.". This is done by changing the channel matrix

n
[

from the joint transmitters to the cognitive receiveifo= [ 0 H../Va ]

Lemma 2.5.5( [62]). The capacity region of the SMBCA is a superset of the ca-
pacity region of the scaled MIMO broadcast channel (SMBC).
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ZP ZIJ

L Licensed Receiver i Licensed Receive
O O—Y
Joint Source G D) Joint Source
X (my, me) W’ X (my, me)
Power Constraint 77 X (Partly Equal) Pov}\;er Co]r;straint K
P, +aP, Y ptake 7
Oy ®
T T Cognitive Receive
Cognitive Receiver
Z, Ze
Z. Scaled MIMO Broadcast Channel (SMBC)

Scaled MIMO Broadcast Channel A (SMBCA)

Figure 2.7: Capacity Region of SMBCA Capacity Region of SMBC

Proof. Letthe rate paifRR,, R.) be achievable on the SMBC. Thatis, foralle, >

0, there exists & and a sequence of encoder decoder pairs at the transmitter an
the two receivers&™ : (my, m.) — X", D} - Y," — 1, D? - Y." — 1) such

that the codeworX" satisfies the power constraint Bf + o.F. and the probability

of decoding error is smallPr(m, # m,) < €1, Pr(m. # m.) < €).

In the SMBCA, the transmitter and the receivers use the saiag strat-
egy. The licensed receiver can decode messagat a ratek,. The cognitive
receiver can ignoré.fg and use jusY, " to decode message. at a rateR.. Hence,
the rate paifR,, R.) is achievable in the SMBCA. Hence, the capacity region of
the SMBCA is in general a superset of the capacity regionekBC. O

We describe one more lemma whose result is used in the pradfexdrem

(2.3.3).

Lemma 2.5.6( [62]). Let Cs)spc denote the capacity region of the scaled MIMO
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broadcast channel described in Figuté Then, for any: > 1,

sup ul, + R, = inf sup wR, + R..
(Rp,Rc)€CsmBC 2z (Rp,Re)€CsmBoa

The proof is described in [62, Section 5.1] and is omittecther
We now give the proof for Theorem (2.3.3).

Proof of Theorem 2.3.3It was shown in [46] that Gaussian codebooks (i.e.,
codebooks generated using i.i.d. realizations of an ap@atepGaussian random
variable) achieve the capacity region for the MIMO broatichannel. In SMBC,
let Q, denote the covariance of codewadXd for the licensed user an@. denote
the covariance matrix for the cognitive user. The covagamatrices satisfy the
joint power constraintr(Qp, + Qc) < P, + aF.. LetRg,, 5, denote the set of

rate pairs described by

(R, R.): R, > 0,R.>0

R, <log|I+ GoQpGl, + Go QG| — log [T+ G, Q.G | (2.21)
R. < log |T+ KQKT| ' '
VQp = 0,Qc = 0 andTr(Qp) + Tr(Xee) < Py, + oF,

Similarly, letRg,, 5., denote the set of rate pairs described by

(Ry,R.): R, >0,R. >0

R, <log I+ G,QpG| (2.22)
R. <log [I+KQ,K + KQ.K'| —log [T + KQ,KI| '
VQp = 0,%. . = 0suchthaflr(Q,) + Tr(Xcc) < P, + P,

The capacity region of SMBQ; s,/ 5c IS the closure of the convex hull of

RGrrpor U RGyrpe - Thatis,

Csmpo = :RgMBC,l U :Rg‘MBC,Z' (2.23)
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R$ s, denotes the portion of the capacity region of SMBC where itenked
user’'s message is encoded first. That is, the cognitivewerceees no interference.

Hence, foru > 1, we have

max uR, + R, = max uR, + R..
(vaRC)EmgMBcJ (Rch)EeSMBC

Therefore, from Lemma 5.6, we have that for 1,

max ul, + R, = inf max wiR, + R..
(RJNRC)ER%MBCJ D2 (vaRc)EeSMBCA

We can see thatR®

part,out

described in (2.12) is a subset &k, formed by

restricting the covariance matr@@. to have the form

0 O
Qc:|:0 Ec,c:|.

It can also be seen th&;> described in (2.8) equal¥s, zc4. Hence, it follows

that for anyp, > 1 and fora > 0, if

R RC - R Rc7
(Rp,RC)Hé%Q}E* pbp (Rp,%ljé(e%cu ¥

part,out

then we have that

max ulk,+ R, =inf  max _ pR,+ R..
(vaRC)E:R;o;a'rt,out A% (Rp,Rc)efRa’zz

out

2.6 Optimality of the Achievable Region

In this section, we describe conditions under which the ex@ble region
described byR;, in (5.35) is optimal for a portion of the capacity region. larfic-

ular, we show that if R,, R.) lies on the boundary of the achievable region given
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by Rin, then(R,, R.) lies on the boundary aR?,,, ... given by (2.12) for some

a

a > 0. That is, for anyu > 0,

sup puR,+ R. = inf sup 1R, + R..
(RP7RC)E:R’i7L a>0 (RP,RC)ERO‘

Thenthere exists™ < (0, 00) suchthat, forany, > 1, (R, ., R. ) = arg max(g, r.)ex,, t3p+
R. is a point on the boundary of the capacity region of the MIMQ@Qrutive channel

if the condition (2.13) is satisfied for*.
We denote byR .. rate, the setof all (R, R.), Xp, e p, Xec, Q) given by

((va Re),¥p, Bep, Yee: Q) : By, Re 2 0,55, Xep, Bee = 0

Rp S log ‘I + Gzp,netGT + Hc,pzc,cH IOg ‘I + HC,pEc,cHi,p‘
R. <log }I + HC,CEQCHLC‘

3, Q
Ep,net: ( Qgr) Ecp ) =0

T ‘_
C7p

Vs
(2.24)
The rate pair that maximizesR, + R, in the achievable region is given by solving
the optimization problem
SUD((R,,Re),Ep,Se.p,Se.e,Q) Htp + e
such that(R,, R.), Xp, X p, Zee, Q) € Rachrate - (2.25)
Tr(3p) < By, Tr(Bcp + Xee) < Fe

We define the functions(R,, R., Xp, X p, Xe.c, A1, A2) @andg( R, R, Xp, Xe p, ic.c)

as follows

L(R,, Re, X5, Eep: Xee, A A2) = pR,+ R.— M (Te(Xp) — By)

(T (Sep + Zee) — P,)) (2.26)

9(Rpy ResEp, Beps See) = min L(Ry, Re, Zp, Seps Sees A, Aa). (2.27)

A120,A220
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The optimization problem given by

maX(Rp7Rc7zpyzc,p72c,c,Q) g(Rp7 RC7 2])7 20,])7 EC,C)

such thal (R, B.). £p. Lo Sees Q) € Ruonrare (2.28)

has the same optimum value as that of (2.25). This is fornsédiied in the lemma

below.

Lemma 2.6.1.Let M denote the optimal value of the optimization problem defined
in (2.25), andU denote the optimal value of the optimization problem defined

(2.28). ThenM = U.

Proof. We show that for any set of covariance matri€Es, X. ,, X. ) that do not
satisfy the power constraints given by (6.2)R,, R., Xp, e p, 2ic,c) = —00. The

power constraints can be violated by three means :

o Tr(X,) > P, andTr(X.,) + Tr(X..) < P.: In this case,\; takes an

arbitrarily large value and, = 0 to driveg(R,, R., ¥p, X¢ p, Xec.c) 10 —00.

o Tr(X¥,) < PyandTr(X.,) + Tr(X..) > P.: Inthis case\; = 0 and )\,

takes an arbitrarily large value to driyéR,, R., X,, X p, Xe¢ ) 10 —00.

o Tr(X,) > P,andTr(X. ) + Tr(X. ) > P.: Inthis case)\; and )\, take

arbitrarily large values to drive(R,,, R., ¥, X¢ p, Xec,c) 10 —00.

When both the covariance matrices satisfy the power cantraith inequality,
then); = X\, = 0. Thisis becausélr(X,) — P, andTr(X. , + X, ) — P. are both
negative. Hence, for any positive valueXgfor Ay, L(R,, R., X, 3¢ p, Lc.c, A1, A2) >

L<Rp7 RC7 ZFH ZC,FH 20,07 07 O)
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When one of the power constraint is satisfied with equaldy, & (3,) —
P, = 0 and the other power constraint is satisfied with inequdlity-. , +3..c) —
P. < 0, then, we have\, = 0 and )\, is some real number. In any case, we still

have, (Tr(Xp) — P,) = Xo(Tr(Bep + Bee) — P) = 0.

Similarly, when the first constraint is satisfied with inelifyaand the sec-
ond constraint satisfied with equality, we have= 0 and\, is some non negative

real number. We havi, (Tr(X,) — P,) = Ao (Tr(Zep + Xee) — P.) = 0.

Finally, if both the power constraints are satisfied withady, A\, and \,
are some non-negative real numbers. Apdlr(X,)—F,) = Ao (Tr(Bep+Xec)—

P) =0.

Hence, in all the cases, the complementary slackness comgldire satis-
fied. Hence, the optimal solution of the optimization probl€2.28) satisfy the
power constraints and the objective function reduces todhaptimization prob-
lem (2.25). Hence, both the optimization problems have #meesoptimal values.

Thatis,M = U. O

Next, we find the optimum value @fR, + R, over all the rate pairs that are

in the regionR®

part,out

described by (2.12). This is done by solving the following

optimization problem:

Sup((vaRc)7Qp7Ec,c) MRP + RC
suchthaf(R,, R.), Qp, Xc.c) € R,

part,conv,rate

Tr(Eee) + Tr(Qp) < aP.+ P,

(2.29)

40



whereR%

part,conv,rate

is the set of quadruple$R,, R.), Qp, X..c) described by

((Rp> Rc)7 Qpa 2c,c) . Rp7 R. > 0, Qpa Ec,c ~0
R, <log I+ G.QpG/, + 1H. 3. .H log I+ 1H. 3. H
R.<log|I+1H. 2. H]_|

tnl — Lol

c,p c,p
(2.30)

We let the optimal solution of (2.29) to be denotedHgy). Let N = min,~o N ()

and

of = arg m>1%)1 N(a). (2.31)

We show in Lemma 6.2 that* € (0, co) exists. Then)V is given by the optimum
value of the followinginf sup optimization problem

Sup((RP7RC)7QP72C,C) 'LLRp _|_ RC
N = inf suchthat(R,, R.), Qp, Xc.c) € R,

a>0 part,conv,rate

Tr(Xee) + Tr(Qp) < aP.+ P,

(2.32)

The infimum constraind > 0 is not a compact set. We modify the constrainton
toa € RTU{0, co}. This is done to compactify the set by adding two extra symbol
0 andoo. The point zero is added to make the set closed. The procesklofg the
pointoo is called one point compactification. Details on one poimbhpactification
can be found in [63, Section 2.8]. The new space Rt U {0, o} is compact and

Hausdorff.

The optimization problem after changing the constrainbset becomes

SUD (R, R.).Qp,Ze.c) HEp + Re
N, = inf suchthal(R,, R.), Qp, Ze.c) € R

a€RTU{0,00} part,conv,rate

Tr(Xee) + Tr(Qp) < aP.+ P,

(2.33)

We show that adding the two poinfisand co to the constraint set on does not
change the optimum value of the optimization problem. Tesult is formally

stated and proved in the following lemma.
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Lemma 2.6.2. The optimum value of the optimization problem given by (2.32
is equal to the optimum value of the optimization problentdeed by (2.33)/V;.

Thatis,N = N;.

Proof. For anya € RT U {0, 00}, we leth(«) to denote the value of the innerp

problem. That s,

h(a{) == Sup((prRc)yQp,zc,c) /./LRp + RC
such that((RIN RC)’ va EC,C) < :Rgart,conv,rate ' (234)
Tr(Xee) + Tr(Qp) < aP.+ P,

We show thatim inf, .o h(a) = liminf, . h(a) = oc.

Lettinga — 0, we put all the power ir¥. .. That is, we choos&,, = 0,

Yep=0,Q=0andX,. = %L, Also, we take

1P, + P,

R,=0andR. =log I+ —
[0 Net

H. H]

c,cl|*

It follows from (2.30) that((R,, R.), Qp, Zec.c) € Rowrs convrate: AlSO, Tr(Qp) +
Tr(X..) = P, + aP.. Hence,((R,, R.), Qp, X ) satisfy all the necessary con-
straints of (2.34). Substituting these particular value§(&,, R.), Qp, Xc.c), We

get a lower bound oh(«). That is,

1 P, + aF,

« Net

H. H

I+ lel = oo (2.35)

limiglfh(oz) > limiglflog

Next, we look at the situation when — oc. In this case, we put all the power in

>,. Thatis, we choos&, = 2% 5 =0,%..=0andQ = 0. We

Np,t
also choose
P, +aP,

Tpt

R.=0andR, = log H, H!

I+ P.p
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These values of(R,, R.), Qp, Xc) Satisfy all the necessary constraints of (2.34).

Hence, we have

liminf h(a) > liminf plog|I + MHP,F,HJr = o0. (2.36)

a—00 a—00 np t p.p
b

Hence,h(a) = oo whena = 0 or & = co. Also, whena € R*, h(a) < 0.
Hence, the optimum value of (2.33) is reached whaa neither0) nor co. Hence,

N:Nl. D

As Q, is the covariance matrix of the codewaXdi),: = 1, ..., n for the

primary user, it can be written as

Q, — ( 31;’ E(i ) . (2.37)

It is easy to see that the s&f,

art,conv

described in (11) can also be written as

((RP,R) Yo, B, QB | Ry Re > 0,55, e p, See = 0

R, <log I+ GQ,G! +HCPZCCH log [T+ HpXccH
R. <log |1+ Hc X H] |
Tr(Xp) + aTr(Xep) + aTr(Xee) < P+ b,

(2.38)

cp‘_ cp‘

whereG = [H, , H.,]. Thisis done by transformin@, X ,, X, ¢ into /aQ, o3¢ 5, aXc ¢

respectively. We defin®,4,+ conv rate @S the set described by

(Rp, Re),Xp, Xep, Q,Xce) : Ry, Re > 0,35, 3¢5, Xce = 0

P
R, <log I+ GQ,G! +Hcp2CCHCp\—1og\I+HCp20CH
Y Q

R S O I+HCCZCCH Q :( )
g‘ P QT Ec,p

ol

(2.39)

43



Hence, the optimization problem (2.33) can be written as

Sup((vaRC)vzp7Ec,p7szc,c) 'URp + RC
N = +mf such that(R,, R.), Xp, Xcp, Q. Xec) € Rpart.conv,rate
a€RTU{0,00} Tr(X,) + aTr(Bep) + aTr(Xee) < By + aF,
(2.40)

We state the following lemma for switchingin andmax in minimax problems.

The lemma is described and proved in Theorem 2 in [64].

Lemma 2.6.3. (Ky-Fan’s minimax switching theorem [64, Thm. 2]) L¥tbe a
compact Hausdorff space arid an arbitrary set (not topologized). Let be a
real-valued function onX x Y such that, for every € Y, f(z,y) is lower semi
continuous onX. If f is convex onX and concave o, then

inf sup f(z,y) = sup ig}f(f(x,y).z (2.41)

zeX yeY yey =

We see that the objective functipiR?, + R, is concave with respect to the
maximizing variableg(R,, R., Qp, 3¢ ) and convex with respect to the minimiz-
ing variablea. The constraint space € R* U {0,000} is compact and Haus-
dorff [63, Section 2.8]. Hence, all the conditions of the teenare satisfied. Hence,
by Ky-Fan’s mini-max switching theorem [64], we can inteaiolye thesup andinf

without affecting the optimum value. Hence,

inf
N = sup a € RTU{0, 00} ul, + R..
((Rp,Rc),Zp,zc,p7Q,Ec,c)ejqpart,conv,'rate TI-(ZP + O[ECJ, _'_ aZC,C) S Pp + O[PC

(2.42)

2In (49), theinf can be replaced witin, but we usenf throughout to maintain continuity and
to avoid confusion.
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Similar to the functiond. andg defined in (2.26) and (2.27), we define the functions
Li(Ry, Rey Xp, Be py Lee, A ) andgy (R, Re, Xp, Xe p, Lic.c, @) as follows

Li(Ry, Re, Xp, Bepy Zee, M) = pR,+ Re — MTr(E,) + aTr(X.p) +

aTr(X..) — P, — aP,). (2.43)

91(Ry, Re, B, B, Bee, @) = inf Li(Ry, Rey B, Do, Bee A a). (2.44)

We define the following optimization problem

V= sup inf 91( Ry, Re, X, Yep, 2ec, O).
((RP7Rc)7213720,137Q720,0)E:R?(L'r‘t,cunv,r'ate CEGR+U{0,00} 1< Y P P )
(2.45)
Lemma 2.6.4.The optimum value of optimization problem (2.42), N is etuéhe

optimum value of the optimization problem (2.45), V.

Proof. The proof of the lemma is along the same lines as the proof aofrha
2.6.1. We show that for any set of covariance matriEgs ¥ ,, and X, . that do
not satisfy the power constraifit(3,) + oTr(3.,) + aTr(X..) < P, + aF,
91(Ry, R, 3, X p, e e, ) = —oo. This is becauselr(X,) + aTr(X. ) +
aTr(¥..) — P, — aF, is positive, and hence\ takes an arbitrarily high value to
drive g1 (R, R., Xp, Xe p, e, @) 10 —00. Hence, the outer supremization prob-

lem ensures that the power constraint is satisfied.

Moreover, when the power constraints are satisfied withugaéty, then
Tr(X,) +aTr(Xep) +aTr(X. ) — P, —aP. is negative. Therefore, for any> 0,
we havel (R, R, Xp, e p; Lee, A, @) > Li(R,, R, Xp, X p, Xee, 0, ). Hence,
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A will take the value zero. When the power constraint is satisWith equality,
thenTr(X,) + aTr(X.p) + aTr(Xee) — P, — aP. = 0. Then,\ will take some
non negative real number. Hence, the complementary slaskrendition is sat-
isfied. Hence, the optimal solution of the optimization penb satisfy the power
constraint and the objective function reduces to that afZR. It follows that, the
optimum value of the optimization problem (2.42y),is the same as the optimum

value of the optimization problem (2.43). O

Next, we show that the optimum value of the optimization peob(2.28),

U is an upper bound on the optimal value of the optimizatiorfam (2.45),V .

Lemma 2.6.5. The optimal value of (2.28)/ is an upper bound on the optimal

value of (2.42)).

Proof. Both the optimization problems asep min problems. For any; > 0 and
A2 > 0, we can choosg = \; anda = \y/\; sothatl (R,, R., Xy, Xe p, Decs A, ) =
L(Ry, Rey Xp, Ee ps Xecy A1, A2). Hence, for any (R, R.), ¥p, Xe p, Zc.c)s

inf  Li(Ry ReySp, Sep, Se, Ay @) <

A>0,0€R+TU{0,00}

A1210r’1xf220 L(Ry, Rey Xp, Ec ps Xecy A1y A2). (2.46)
AlSO, Ryart convrate = Rach rate- HENCE, it follows thal” < U. O

We can now prove Theorem 2.3.4.

Proof of Theorem 2.3.4 :Let 4 > 1. The proof of the theorem follows

directly from Lemmas 2.6.1, 2.6.4 and 2.6.5. From Lemmal2\6e have that the
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optimum value of the optimization problem (2.23), equals the optimum value
of optimization problem (2.28)/. From Lemma 2.6.4, we have that the optimum
value of optimization problem (2.42)y equals the optimum value of the opti-
mization problem (2.45)y. M is the solution of the optimumR, + R. over the
achievable region and’ is the solution of the optimumF, + R. overRy, ., ..
described in (2.12). Hence if the condition given by (2. E3atisfied forr* given
by (2.31),M < N. From Lemma 2.6.5, we also have < U. Hence, we have
that the optimal value of the original optimization problé®25), M is equal to

the optimal value of the optimization problem described 2y#2), N. Hence, the

achievable regiofR;,, is u-sum optimal.

2.7 Numerical Results

In this section, we provide some numerical results on thedapregion
of the MIMO cognitive channel. We consider a MIMO cognitivgseem where
the licensed and cognitive transmitters have one anteraig aad the licensed and
cognitive receivers have one and two antennas respectiViéé assume that the
channel coefficients are real and also restrict ourselfdabinguts and outputs. We

generate the channel values randomly

—0.3510

H,, = 14435 H,,= { 0,623

} . Hep=0799, Hg, = { 0-9409 } .

—0.9921

We assume a power constraintoht the licensed and cognitive transmitters. In

Figure2.8, we plot the achievable regio®,,, and partial outer boundg?, for

'part,out

different values ofv. Figure2.8 shows howR? intersects withR;,, at different

part,out
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=—@— Achievable Region
—*— Outer Bounds for Different a

08 05 1 15 2 25 3 35

Figure 2.8: Plot of Achievable RegidR;, and partial outer bound®?,,, . for
different values ofv

points for different values at.

Next, we find the maximum value of rate than can be supportethby
licensed user in the example we considered. In both the\adbieeregion and the
outer bound, this corresponds to maximizing theump.R, + R. wheny — oc.
This would correspond to using all the power to support tbensed user. Note
that the maximum value ak, in the set described b}, .., is an upper bound
on the maximum value ok, in the setR,,, for all values ofa > 0, irrespective of

the channel parameters.

Maximizing R, overX;, : The cognitive transmitter uses all its power for
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helping the licensed user. Thati$(X.,) = P.. This then reduces to a MIMO
channel with channel matrix given 6y = [ H,, Hc, |. The licensed transmit-
ter has a power constraint 6, and the cognitive transmitter has a power constraint
of .. Applying this to our example channel, we hatte= | 1.4435 0.799 |. The

optimum covariance matrix is of the form

5 Hp
Ep,net:l5p 5:|7

wherep is the correlation between the two transmitters. Theretbeerate achieved

by the licensed user is
1 .
Ry(p) = 2 log(1 + GXp netG').

The maximum rate is attained at= 1 and the maximum value a®,, is 2.3542.

Maximizing R, overX¢,

part,out

. For a givenq, this reduces to a single user
MIMO channel withG,, = [ H,, Hc,/v/a | and a sum power constraint of
P, + aF.. Note that, there is a significant difference between thedingle user
MIMO channels. The MIMO channel that we considered whenisglthe maxi-
mum value ofR, in the achievable region had individual power constrainthea
licensed and cognitive transmitters. However, the MIMOrcied we obtain when

solving for the maximum value aR, over RS has a sum power constraint.

part,out

This is a conventional MIMO channel and the optimum covargamatrix is ob-

tained by water-filling. For a given, the best?, is got by

max R, (o) = %log I+ GoXpnetGal

such thaflr (X, pet) < P, + aP..
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It is easy to solve this problem if we look at the flipped chdn@g. The capacity

of the flipped channel is given by

1
Ry(a) = 5 log |I+ Gl (P, + aP.)G,|

= %log (14 (P, + aP.)G,Gl) .

Note thatR,(«) is an outer bound on the maximum value®f. The best upper
bound is got by minimizing over all possible valuescofThe optimum value of
is got by solving a cubic equatia@{0.799)%a?* + (0.799)%a? — 1.4435* = 0, and its

approximate value i8.9689.

2.8 Conclusions

In this chapter, we derived an achievable regi®j, given by (5.35) and an
outer boundR%>* given by (2.8) for the MIMO cognitive channel. We describe
conditions when the achievable regioniisum optimal for any: > 1. In par-
ticular, for anyu > 1, there existsy* € (0, 00), such that if the region given by
RS .o OPtimMizes theu— sum rate of the SMBC (for that particular), then the

a

achievable region achieves thesum capacity of the MCC.
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Chapter 3

Cognitive Radio in Multiple Access Networks

In this chapter, we look at cognitive radio channel in a npldtiaccess
(MAC) network. Specifically, this is an interference netwuaiith three transmitters
and two receivers. Transmittetsand?2 are the licensed transmitters transmitting
messages in a multiple access manner to a common licenseiglarec\We also
have a cognitive transmitter-receiver pair communicaimthe same spectrum as
the licensed users. It is assumed that the cognitive tratesrknows the messages
transmitted by both the licensed transmitters apriori. fidst of the chapter is or-
ganized as follows. In Section 3.1, we describe the probkatement, prior work
and contributions. We describe the system model in Sect@n3 Section 3.3, we
describe an outer bound on the capacity region of cogniaigierin MAC network.
We describe an achievable region in Section 3.4. In Secti®nw& show the opti-
mality of the achievable region when the channel gain frogndive transmitter to

licensed receivex 1. We conclude in Section 3.6.

3.1 Introduction

The cognitive radio channel has been studied as a specral dbiinter-

ference channel where one of the transmitter (the “coggiitivansmitter) gains
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some knowledge about the transmissions of the other traiesmNetworks with
cognitive users are gaining prominence with the developroécognitive radio
technology, which is aimed at improving the spectral efficieand the system per-
formance by designing nodes which can adapt their strataggdon the network
setup. The information theoretic model for the cognitive@ioachannel models the
channel as a two user interference channel, where one tisas(the cognitive
transmitter) knows apriori the message transmitted by therdransmitter. Prior
work on this channel model include [39-45,57,66]. More ntlgethe interference

channel with a cognitive relay has been studied in [49-5R, 65

In this chapter, we study the performance limits of a cogeitadio channel
in a multiple access setting. In particular, we considerstesy where two primary
transmitters communicate their messages to a primaryveraei a multiple access
setting, and one cognitive transmitter transmits its ngss$a a cognitive receiver.
We assume that the cognitive transmitter knows apriori tessages of both the
primary transmitters. We derive an outer bound on the capeagion of the cog-
nitive radio channel in a multiple access setting (MACRC# fitst derive an outer
bound for the discrete memoryless channel and then shovsthatsians maximize
the outer bound for the Gaussian channel when the chanmelrgai the cognitive
transmitter to the primary receiver is “weakX (1). We also derive an achievable
region for the MACRC which combines superposition and dadper coding tech-
niques [22]. We show that the achievable region meets ther tmatund when the
cross channel gain from the cognitive transmitter to thenpry receiver is weak

(< 1). The contributions of this chapter have been presentesBn[H4].
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Throughout the chapter, we denote random variables byatagiters, their
realizations by lower case and their alphabets by callly@ptters (eg.X, x andX
respectively). We denote vectors of lengthvith boldface letters (e.gc™), and the
it" element of a vectax” by ;. For any sefS, S denotes the closure of the convex

hull of S respectively.

3.2 System Model

In this section, we describe the system model for the cogniidio channel
in a multiple access setting (MACRC). In this system, we haweeprimary trans-
mitters communicating their messages to a primary receivarmultiple access
manner, and one cognitive transmitter communicating itssage to a cognitive
receiver. We assume that the cognitive receiver knows aphie® messages of both
the primary transmitters. The system model is describedyarE3.1. The channel
is described by(X, X, X, Y, Y, p(y1, yc|z1, x2, z.)) WhereX;, Xy denote the input
alphabets of the primary transmittef§, denotes the input alphabet of the cogni-
tive transmitter, an®, andY. denote the output alphabets of the primary and the

cognitive receiver.

Transmitter, : € {1,2} has message; € {1,2,...,2"%} that it wishes to
communicate with receivdrin a multiple access manner. The cognitive transmitter
has message.. € {1,2,...,2"%} that it wishes to communicate to the cognitive
receiver. The cognitive transmitter has non-causal adcesgessages of both the
primary transmitters. Lek, X,, X. andYi, Y, denote the variables representing

the respective channel inputs and outputs. Note that thenethanput from the
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Primary Transmitter 1
Message m; — X,
Primary Receiver

Yi = X7 + Xo + bX, + Ny

Primary Transmitter 2

Message mas — Xo

Cognitive Transmitter Cognitive Receiver

Message my, ma, m., — X,

'\( Y.=a1 X1 + o Xo + Xo + N

No

Figure 3.1: System Model of Cognitive Radio in Multiple Assa\etworks

cognitive transmitter X.) is a function of all the three messages. For the Gaussian
channel, the input-output relationship can be expressethdéysystem equations

given below:
Yi=Xi+Xo+bX.+ N
Y; = CI,1X1 + GQXQ + Xc -+ Nc.

(3.1
whereay, ay, andb represent the channel gains as shown in Figure 3.1. Thraigho
the chapter, we assume that the channel gains are positige¢ha results can be
readily extended when the channel gains are negakiyeand N,; denote the addi-
tive noise at the two receivers which are i.i.d. Gaussiadoanvariables distributed

asN(0,1). The channel inputs must satisfy the following power caists:

1< ‘
=1
nR1 o9nRs onRe H _ nRy
A (2nfh 2ntz gnfle 'y Pe) code consists of message sétfs = {1,...,2""}

My ={1,...,2"%} andM, € {1, ...,2"E}, three encoding functions

f11M1—>x?, f21M2—>x§,

3.3
fCZM1XM2XMC—>:X:?, ( )

54



and two decoding functions
g1: 97 — My X My, g : Y7 — M., (3.4)

such that the transmitted codewoM$, X7 and X! satisfy the power constraints
given by (4.2) and the overall decoding error probabilitypath the receivers is

< Pe.

Arate tuple( Ry, Ry, R,.) is achievable if there exists a sequence of
(2nfi gnkiz gnken pe(m)) codes such thaPe™ — 0 asn — oo. The capacity re-
gion of the MACRC is then the set of all rate tuples , RR», R.) that are achievable,

and is denoted b@ ; acrc.

3.3 Outer Bound on the Capacity Region of MACRC

In this section, we derive an outer bound on the capacityoregif the
MACRC when the cross channel gain from the cognitive trattemto the primary
receiverb < 1.Let P, denote the set of all probability distributio®s(.) given by

PO(Q) xy, T2, Uu,v, [L‘c) = P(Q)p(xlm)p(xﬂ@p(ua U|ZE1, T2, Q) (35)
p(xc|u7 U, T, T2, Q)

Let R,..(P,) denote the set of rate tupleB,, R., R.) given by

Ry < I(X,U;n|V, X5,Q)
Ry, < I(X,, VWU X1,Q)
R1 +R2 S I(Xl,U, Xg,v7}/1|Q) (36)
R, < I(X;Ye|X1,U X5, V,Q)
Ri,Ry,R. > 0

Let R,.; denote the set of rate tuples given by

fRout = U :Rout(Po> (37)

Po()EP,
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Then, the following theorem describes an outer bound ongpadity region

of the discrete memoryless MACRC.

Theorem 3.3.1.The capacity region of the discrete memoryless cognitiiora

channel in a multiple access setting (MACRC) satisfies

Crvracre € Rout- (3.8)

Proof. We fix a probability distributiorP,(.) € P,. Then, we have

—
S
N

an == H(Wl‘WQ)

INE

T(Wy; Y [Wa) + nel
(3.9)

—
3)
N

Z?:l H(}/lZ|W27 }/li_lv XZZ') + 716711—
S H (Y1;|Wa, Y71 Wi, X1iy Xop)
= > I(Ui, Xuis Y1l Vi, Xog) + ey,

whereV; = W,, Y/ "' andU; = Wy, Y/ ~'. Here, (a) follows from the independence

of W, andW;, (b) follows from Fano’s inequality and (c) follows from tlfect that

X5, 1s a function ofiV,.

A similar set of inequalities can be derived to show that

nRy < (Vi, Xoi; Y| Ui, X1i) + nei (3.10)
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Subsequently, we can show that

H(R1+R2) - H(Wl,Wg)

IN

I(Wl, Wg; YV{L) + 716;’2

> H(Yy) +ney? — (3.11)

1=1

IN

Z H(Wy, Wa, Y™ Xy, Xoy)

1=1
< Y (U X, Vi, Xoi Yii) + ney?
=1
and
nR. © H(W W), Wy, X7, X5)
(e)
S ](Wm }/cn‘wh W27XIL7 X2n> + neil
) & ,
S ZH()/;i|}/;Z_1,W1,W2,XIL,XQTL)
1=1
- Z H(Yei| Xei, Xuiy Xoi) + ey, (3.12)
=1
DN HYYIL YL W, W, X XE)
1=1
— Z H(Ye| Xei, X1iy Xo;) + ney,
=1
< D HYLYTT W, W, X7 X))
=1
=Y H(Yuil Xei, Xui, Xoi) + e,
1=1
= > I(Xei; Yol Xi, Uiy Xoi, Vi) + e,
1=1
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where (d) follows from mutual independence betw&gén 11, and;, (e)
follows from Fano’s inequality, (f) follows from the memadegs nature of the chan-
nel and (g) follows from the degraded nature of the channéh(tie assumption

thatb < 1).
Defining @ to be the time-sharing random variable that is distributed u
formly over{1,2,...,n} and defining

(Q7 X17 X27 U7 ‘/7 }/17 }/c) - (Qa XI,Q7 XQ,Q? UQ7 VQ7 }/E,Qa }/C,Q)

yields the desired outer bound. O

3.4 Achievable Region for MACRC

In this section, we describe an achievable region for the RECThe cod-
ing strategy combines superposition and dirty paper cogiogniques. Lef; de-

note the set of probability distributiorf3(.) given by

Fi(q, w1, 4, 0,0, 2, 1) = p(@)p(u, 2:1|g)p(v, 22q) (3.13)
p(t, xe|u, v, 21, 232). '

Let R;,(P;) denote the set of rate tuplég;, R, R.) given by

Ry

VAN

I(X17 U7}/1|‘/7X27 Q)

Ry

IN

I(X27 Vv}/l|U7 le Q)

Ry + Ry

IN

&
A

I(T5Y|Q) — I(T; X1, U, X2, V|Q)

R17R27RC

v

0.
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Let R;, denote the set of rate tupléB;, R, R.) given by

Rin=|J Rin(P). (3.15)

PL'(.)ETZ‘

Then, the following theorem describes an achievable refgicthe MACRC.

Theorem 3.4.1.The capacity region of the MACRC satisfies
Rin € Crracre- (3.16)

Proof. For simplicity, we shall present the coding-scheme for tbgetherate case
where the time-sharing random varialdleis deterministic. It should be kept in
mind that the introduction of time-sharing may increaserdggon by convexifica-

tion. We fix aP;(.) € P; and show that the regidR;,(P;) is achievable. First, we

describe codebook generation at the transmitters.

Codebook Generation: Transmitter 1 generat@s” vector pairsXy, U™ ~ [, p(z1;, u;)
and index them using € {1,...,2"%}. Similarly, transmitter 2 generates’:

vector pairsXy, V" ~ [[., p(x2,v;) and index them using € {1,...,2"f},

The cognitive transmitter generatg&® 7" ~ [I-, p(t;) and places them uni-
formly in 27 bins. We next describe the transmission strategy at the thaes-

mitters.

Transmission strategy: Given message:; € {1,...,2"%}, transmitter 1 deter-
minesX?(m;) and transmits it. Similarly, for message, € {1,...,2"%}, trans-
mitter 2 transmitsX}'(m.). As the cognitive transmitter has access to messages

andms, the cognitive transmitters determin&g (m,), U" (my ), X3 (ma), V"™ (ma).
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For message. € {1,...,2"%}, the cognitive transmitter determines a sequence
T™ in bin m. such that(T"(w.), X7"(m1), U"(m1), X5 (msg), V" (ms)) is jointly
typical. If such aI™ is located, then aX is generated according to the condi-
tional [ [\, p(xe|21s, wi, x2i, v;) is generated and transmitted. We next describe the

decoding strategy at the two receivers.

Reception: The primary receiver determines indides, , m») such that

(X7 (1), U™(my), X5 (1), V™ (1m2), Y{") is jointly typical. The cognitive receiver
determines &™ such that 7™, Y™) is jointly typical. The cognitive receiver then
determines the bin index @™ and declares that as the decoded message. We next

describe the probability of error of encoding and decodirugess.

Decoding Error at Primary Receiver: Lét;; denote the decoding error
event tha{ X7'(7), U"(j), X5 (k), V"(k), Y]") is jointly typical. We assume that the
transmitters transmitted messages andm,. Then the probability of decoding

error is given by

Pe=rr|E, ..U |J Eu

mi,ma2
(jvk)7é(m17m2)

The probability of decoding error can be upper bounded by

Pe < Pr(E;, ..) + Z Pr(E;.,) + Z Pr(Em, 1)+

J#EML k#ms

> Pr(Bjg).

J#mMk#Fms

For anye > 0, there exists: large enough such that the first teftm(E,,, ,,,) < e.
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The other three terms can be made smaller than

Rl < ](Xl,U,YHXQ,V) — 3e
R, I(Xo,V; Y11 X1,U) — 3¢ (3.17)
Rl"‘RQ I(Xl,U,XQ,V;K)—ZlE.

<
<
Encoding Error at Cognitive Transmitter: An encoding ewocurs at the
cognitive transmitter if n@™ in bin indexm,. can be found such that the sequence
(T, X7(myq), U™(my), X5 (ms), V™ (my) is jointly typical. The probability of this

happening can be upper bounded by

2”(ﬁc*Rc)

Pe < (1 — 2_"I(T;X1,U,X2,v))
The probability of encoding error can be made arbitrarilyabif

Fc 2 Rc"'I(Ta X17U7X27V) (318)

Decoding Error at Cognitive Receiver: The cognitive reeedetermines a
bin indexm,. and a sequencé” from that bin such that7™,Y") is jointly typi-
cal. To analyze the probability of error, we assume that thwesimitter wished to
communicate message. and no error occurred at the cognitive encoder. Then,
a decoding error occurs if Nd™ in bin m,. is jointly typical with Y., or if a 7™
from a different bin is jointly typical withy”*. The probability that n@™ in bin m,.
is jointly typical with Y* can be made arbitrarily small for suitably large The
probability that aI™ from a different bin is jointly typical withY* can be made
small if

R. < I(T;Y.) — 3¢ (3.19)

61



ChoosingR, = R, + I(T; X1,U, X5, V) + ¢, we get

Hence the region described By, is achievable. ]

3.5 Optimality of the Achievable Region

In this section, we show that for the Gaussian MACRC, whenctioss
channel gain from the cognitive transmitter to the primaegeiver,b < 1, the
achievable region described by Theorem 3.4.1 meets the boted described in
Theorem 3.3.1. Lety, p; € [0, 1] such thap? + p2 < 1. DefineA = 1 — p? — p2.
Define the functiorl : Ry — R by L(z) = £ log(1 + z). LetR(p, p») denote the

set of rate tuplesRy, Ry, R,) € Ri”r given by

P+ b/Pop)’
R o< I (VP1 + bV/Popy)
1+ 02P.A
(\/?2+b\/ﬁcpz)2
< )
Ry < L 1+ 02P.A (3.21)
. (VP + 0vPopr)” + (VP + 0V Pops)’
broe= 1+ 2P.A
R. < L(PRA)
Let R denote the set of rate tupléB,, R, R.) described by
R = U R(p1, p2)- (3.22)

p1,p2€[0,1]:p3+p3<1
Then, the following theorem describes the capacity regiath® MACRC

when the cross channel gdir< 1.
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Theorem 3.5.1.When the cross channel gain< 1 in a MACRC, the capacity

region of the channel is given by

Cyvacre = R. (3.23)

3.5.1 Proof of Inner Bound

Consider the achievable region given by (5.35). Take iAB8(IX, X5, X,)
jointly Gaussian with zero means and varian@@s P, P.) respectively and where
E(X,1X,) = 0 and E(X.X;) = piv/P,P.fori = 1,2. ChooseU andV to be

deterministic random variables.

The random variabl&’ is defined as follows
T = XC + Oéle + OZQXQ,

wherea; andas, are constants to be specified. It is evident that for thisaghof
random variables we have,

T:Y.) — I(T; X1,U, X5, V)
T.Y.) — (T X, X,)

T Y| X1, Xo) — I(T; X1, XoYe)
Xo; Yol X, Xo) = I(T; Xy, Xo|Ye)

R. =
- (3.24)

I
I
I
I

From [55, Lemma 1], there exist§, a5 such that/ (7; X, X»|Y.) = 0. We choose

oy = aj andasy = oj. Therefore, we get

R. = I(TIvY,) — I(T; X;,U, X5, V)
— [T - [T X, X)
= (X Ye|Xy, X5,0)
= L(P(1-pf—p3)).

(3.25)
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With these choice of random variables, we observe that

h(Y1]1X,) = 3 log (2me (1 + Py + 2boy + V2 P.(1 — p3)))
h(Y1|Xy) = %log (2me (1 + Py + 200y + V> P.(1 — p?)))
h(Y1) = Llog (2me (1 + P, + Py + 2b(0y + 03) + b*P.))

2

h(Y1| X1, Xo) = %log (2me (1 +V*P.(1 — 0} — 03))).

Substituting the above expressions and (3.25) into thesaahle region in
(5.35), it is easy to see that the achievable region matdteesate region given by

R.

3.5.2 Outer Bound

In this section, we show that Gaussians maximize the outendbderived
in Section 3.3. From Section 3.3, we have the outer boundeasrtion over all the

rate tuples that satisfy

Ry

IN

h<}/1|v7 X27 Q) - h(}/l‘Xlu U7 X27 ‘/7 Q)

Ry

N

>~ h(}/l|U7X17Q) _h<}/1|X17U7X27V7Q)

R1+R2 S h(Y1|Q) _h<}/1‘X17U7X27‘/7Q>

Rc S h(n‘Xla U7 X27 ‘/7 Q) - h<N2)

for somely x, v x, v whereY; = X1+ Xo+0X.+Ny, Y. = X 4+a1 X1 +as Xo+ Ny
and X; and X, are independent giveq. In this section, we derive the outer bound
for a degenerat@ (that is, we assume that; and X, are independent). The overall

outer bound is in fact the convex hull over the entire obtdiregion.

Since0 < I(X,; Y. X1,U, X5, V) < 21og (1 + P.), there exists some €

1
2
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[0,1] such that
1
I(Xcu }/;‘X17 U7 X27 V) = 5 log (1 =+ fyPC) )
and consequently

W(Ya| X0, U, Xy, V) = %log (2re(1+~P.)). (3.26)
Let J be a Gaussian noise with variance- v?>. Using the Entropy Power
Inequality, we obtain
92h(V1|X1,U.X2,V)  _  92h(bXe+N1|X1,U.X2,V)
92h(bYe+J|X1,U,X2,V)
Z 22h(bYC\X1,U,X2,V) 4 22h(J) (327)
= 2rme (V*(1+~P.) +1-0%)

= 2re (1 + ’yb2Pc) )

Next, we recall that for a given covariance matrix (0f;, X,, X., U, V),
the conditional entropies(Y;|V, Xs), h(Y1|U, X;) and h(Y;) are maximized if

(X1, Xo, X, U, V) is a Gaussian vector. Also, we have that
h(Yi|X1,U) < h(Y1]X1) andh(Yi] X, V) < h(Y1]Xa)

Finally, for Gaussiatk;, X, X, such thatX; and X, are independent anfd[ X; X .| =

65



piv P;P., we observe that

1
510g(27re(1+7Pc)) = h(Y.X1,U, X5, V)
= h(X.+ N|X;,U, X5, V)
< (X, + NIXy, X5) (3.28)

= %log (2me(1+ AP,)).

Hence, we have < A =1 — p} — p3.

Hence, the outer bound reduces to

1. (14 P +2 2P,(1 — p2
R < Llog + Py + 2boy + b*P,( 03)
2 1+ 0Py
1 1+ Py + 2boy + V*P.(1 — p?)
< 21 2
R < 5 Og( 1+ 0Py (3.29)
]_ 1+P1+P2—|—2b(0’1+0’2)—|—b2pc
< =1
R+ Ry < 203( 1+ 2P
1
R, < 510g(1+7Pc)-

where the outer bound is optimized over all p, € [0, 1] such thatp? + p3 < 1

and~y < A.

We note that if one substitutes= A into (3.30), we get the desired region
(3.22). The following lemma concludes the proof of the olteand of Theorem

3.5.1, by showing that it is sufficient to consider= A.
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Lemma 3.5.2. The region of all rate triplesR;, Rs, R..) such that

2p (1 _
ngllg 1+P1+2b0’1+b (1 pZ)
2 14+ 2Py
1 1+P2+2b0’2+b2 (1—p1)
< -1
1 1—|—P1—|—P2+2l)(0’1—|—0’2)+b2Pc
< —lo
ot fh = g lo g( 1+ 0Py
1
R. < Jlog(1+7P.).,

for some(oy,01) = (VP2P.pa, /P P.py) such thatd < p? + p2 < 1 and some
v €10,A], A = (1-p? — p3) remains the same if one takes= A (and therefore

equal to the region (3.22)).

Proof. Fix R, = élog(l + dP,.). To obtain this rateA cannot be smaller thath

Consider therefora € [d, 1]. Denote

c(A) = L(0’AP,)
filpi, p2) = L(Py + 200y + V*Pe(1 — p3))
2p (3.30)
fa(p1,p2) = L(Py + 200y + V*Pe(1 — p7))
(p ) :L(P1+P2+2b(0'1+0'2) bP)
Fory = A and the rate?. we fixed, the region becomes
Ry < filp1, p2) — c(A)
Ry < falpr, p2) — c(A)
3.31
Ri+ Ry < fs(p1, /)2) —c(A) ( )
R. = 3log(1+dF,)

wherep? + p2 =1 — A andA € [d, 1].

If we allow v < A, it is obvious that the optima} is d and the region
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becomes

Ry < filpr, p2) — c(d)
Ry < falpr, p2) — c(d)

Ri+ Ry < f3(p1, p2) — c(d) (3.32)
Rc = % log(l + PC)

wherep? + p3 =1 — AandA € [d, 1].

—

The regions (3.31) and (3.32) would coincide iff the optimain (3.31) as
well as in (3.32) isl. We show that this is indeed the case and this establishes tha

the optimaly is equal toA.

The optimal A in (3.31) isd: First, we observe that the sum of the bounds
on the individual rates?;, R, in (3.31) is never smaller than the sum-rate bound,

that is, we establish the inequality

fi(p1; p2) — (D) + fa(p1, p2) — c(A) > fs(p1, p2) — c(A).

This implies that region (3.31) is basically determined g Yertex points of pen-
tagons. Hence, a vertex point of interestin (3.31) is deteetheither by the bounds
on Ry + R, and Ry, or by the bounds o®; + R, and R, (but not simultaneously by
the two bounds on the individual rat&s and R,). First, assume that the determin-
ing bounds are those dt, + R, andR,. Letp, € [0,+/1 — d] be the correlation
coefficient that achieve this vertex point, anddegtbe the corresponding correla-
tion. It is easy to realize that for fixea the functionsf,, f; are decreasing with
A and therefore the minimal possibde for this vertex point is the optimal, i.e.,

A =d.

Similarly, if the determining bounds are those®f + R, and R; we no-

tice that for fixedp,, the functionsf, f5 are decreasing with, and therefore the
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optimal A for this vertex point is the minimal, i.e) = d.

The optimal A in (3.32) isd: We observe that the sum of the bounds on the
individual ratesR;, R, is never smaller than the sum-rate bound in (3.32) too. That

is, we have the following inequality:

fi(p1, p2) — c(d) + falpr, p2) — c(d) > f3(p1, p2) — c(d).

Hence, similarly to (3.31), a vertex point of interest in3@). is determined
either by the bounds oR; + R, andR,, or by the bounds o®; + R; andR,. And,

similarly, the arguments

e for fixed p; the functionsf,, f; are decreasing with

e for fixed p, the functionsf;, f5 are decreasing with,

are sufficient to prove that the optimalis d.

This concludes the proof of Lemma 3.5.2 and Theorem 3.5.1. O

In Figure 3.2, we depict the capacity region of MACRC whgn= P, =
P. = 10 and the channel gain= 0.5.

3.6 Conclusions

In this chapter, we analyzed the capacity of the cognitiggorahannel in
a multiple access setting. We derived an outer bound on {hecds region of the

MACRC when the cross channel gain from the cognitive trattemto the primary
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Figure 3.2: Plot of Achievable region and Outer bound foetfgrence channel
with Cognitive Helper
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receiverp < 1. We also show that Gaussians maximize the outer bound. VWeder
an achievable region using superposition and dirty papdingoat the cognitive

transmitter. Finally, we show that when the cross channaliga 1, the achievable

region achieves the entire capacity region.
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Chapter 4

Interference Networks with Cognitive Relay

In this chapter, we analyze the capacity region of an intenfee network
with cognitive relay. Relay nodes serve to assist the trétes in communicat-
ing their messages to their receivers. In this model, it giased that the relay
nodes know the message of all the transmitters apriori. Hapter is organized
as follows: The problem statement, prior work and our cobations are discussed
in Section 4.1. In Section.2, we describe the system model. In Sectio®, we
describe a transmission strategy and a correspondingvatiiéeregion for the in-
terference network with cognitive relay. We derive an oli@und on the capacity
region of the interference network with cognitive relay iec8on4.4. We provide

numerical results in Sectioh5. We conclude the chapter in Sectio6.

4.1 Introduction

Networks with cognitive users are gaining prominence wté tievelop-
ment of cognitive radio technology, which is aimed at impngvthe spectral effi-
ciency and the system performance by designing nodes whithdapt their strat-
egy based on the network setup. Much recent work has beesddan the two

user interference channel with a cognitive transmitte~f29 57]. In this channel
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setting, one of the transmitters has non-causal acces® tmélssage transmitted
by the other transmitter. In this chapter, we study a two @&rssian interference
channel in the presence of a cognitive relay (see Figune This channel model is
different from the one used in [39—42,57] in that, each tnaitter has access to only
their respective messages. However, we assume that treecegnitive relay node
which has non-causal access to the messages of both theittens. This relay
node serves only to assist the two transmitters in commtingctheir messages to
their respective receivers. An achievable region for thsdesm is described in [49].

Other work on this channel model include [50-52].

In this chapter, we present a new achievable region for thes&an interfer-
ence channel with a cognitive relay. This region is a geigiabn of the achievable
region given in [49]. The coding scheme used in this chaptaicombination of the
Han-Kobayashi coding scheme for the general interferenaertel [4] and Costa’s
dirty paper coding [22]. The Han-Kobayashi coding schems also used for the
interference channel with a normal (non cognitive) relafbit]. We perform dirty
paper coding simultaneously for both the users insteadre s§haring between the
two users as was done in [49]. We also derive an outer bounteonapacity re-
gion of the Gaussian interference channel with a cognitayr The outer bound
is obtained by allowing transmitter co-operation to ob&iMIMO cognitive radio
channel [57]. We use the outer bound of the MIMO cognitivegadhannel as the
outer bound for the capacity region of the interference nkawith cognitive relay.
We also derive the degree of freedom (d.o.f.) region of therierence channel

with cognitive relay. We show that we can achieve the fullrdeg of freedom of
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a two user no-interference channel for a large range of aigrmarameters. The

contributions of this chapter were presented in [65].

Throughout the chapter, we denote random variables byatadgiters, their
realizations by lower case and their alphabets by calligEetters (eg.X, z andX
respectively). We denote vectors of lengthvith boldface letters (e.gc™), and the
i" element of a vectax™ by z;. For any sef5, S andCH(S) denote the closure and
convex hull ofS respectively. For any vector or matrix, A’ denotes its transpose.
Tr(A) denotes the trace of a matrix. We define the functiod : R, — R as

L(x) = %log(l + z).

4.2 System Model

We study a Gaussian interference channel with two transrajttwo re-
ceivers and a cognitive relay. The system model is desciib&igure4.1. The
interference channel is described (¢, X5, X, Y1, Yo, p(v1, y2|x1, 22, ,)), Where
X1, Xy, X, are the input alphabets associated with the two transimidied the re-
lay, Y1, Y, are the two output alphabets. For the Gaussian channel, sugnas
that all the alphabets are the entire reRls Sourcei, i = 1,2 has message
m; € {1,...,2"%} to be communicated to destinatioovern channel uses. The
relay has non-causal access to both the messagesdm, and assists the two
sources. LetX;, X,, X, andY;, Y, denote the random variables representing the

respective channel inputs and outputs. Then, the inpytubuelationship can be
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. Zy
Transmitterl
Py Receiver 1

—= Y, —=1my

X1<m1)

Cognitive Relay
B X, (my,ma)

Xo(ma) Yo —=

Transmitter2 Receiver 2

P

Zy

Figure 4.1: System model for Gaussian Interference ChamitielCognitive Relay.

represented by the system equations

H:Xl—‘—ng—‘—Cer—FZl

4.2
}/2 = CLX1 -+ X2 + CQXT + Zg,
whereaq, b, ¢; andc, represent the channel gains as shown in FigureZ; and 7,
denote the additive noise which are i.i.d. Gaussian randamabies distributed as

N(0, 1). The channel inputs must satisfy the following power caists:
1 < ‘
EZE[X]%Z.] <P, je{1,2,r}. (4.2)
i=1

A (2nfa ot - Pe) code consists of message skfs= {1,...,2""} andM, =
{1,...,2"%} three encoding functions

f1:M1—>3C§’{, f21M2—>x§,

4.3
fT:M1XM2—>f)Cﬁ, ( )
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and two decoding functions
a1 iy?HMh 92 19§—>M2, (4.4)

such that the transmitted codewo$, X1 andX satisfy the power constraints
given by (4.2) and an error probability Pe = max(FP, 1, P.2). Fort = 1,2, we
have

1 ;Y Prig(Y) # my|(mi,ms) sent. (4.5)

Pi=——=
&t on(Ri+Re

(m1,m2)
Arate pair(R;, R,) is achievable if there exists a sequenc&of, 272 n Pe(™)
codes such thaee™ — 0asn — oo. The capacity region of the interference chan-
nel with cognitive relay is then the set of all rate pdifs, R,) that are achievable,
and is denoted b¢;-. The d.o.f. region of the Gaussian interference channél wit
cognitive relayD is defined as
(di,d2) € RZ : Vw € Ry,
D= wd +dy <limsupp ,p,p oo ) (4.6)

wRi1+Ra
SUP(Ry,R2)€Crc Tog(Py+ Pat Pr)

4.3 Achievable Region and Transmission Strategy

In this section, we describe an achievable region for trerfietence channel

with cognitive relay and describe the corresponding trassion strategy.

Let P denote the set O(PH, Plg, Pgl, PQQ, P7«11, Prlg, P7«21, PTQQ, P7«3, P7«4)
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described by

\

(P117P127P217P227Pr117Pr127) . )

Pr217Pr227P7“37P7“4
P+ Po=F
Py + Py = Py

P+ Pas+ Por+ Pos+ P+ Py =P

S 4.7)

Let P* € P. Letal,ag,ﬁl,ﬁg € {—1, 1} We denote”ll,’l“lg,’l“gl,’f’gg as follows :

\/Plj—f—Oé]Cl\/ rl] 2, ] c {1 2}
b\/PQJ_I_/BJCl\/ T»gj 2, ]6{1,2}.

Let RE " (ay, as, 31, B2) denote the set described by

\

( (Ry1, Ri2, Ry1) : Riy > 0,R15 >0, Ry >0 )

R <L L

I4+ra2+c3 (Pra+Pra)
R12 S L 1+r22+c§1(§)r3+Pr4)
Ry <L 1+7»22+c§2(}9r3+13r4)
Rll + R12 S L 1-‘,—7“22:-161%—’(_]72?)4‘137"4)
R+ Ry <L 1+7‘22:—1€1%4(_;3113+Pr4)
R12 + R21 S L 1-‘,—7“22:-162%—’(_]7;3;4‘137"4)
Rii+ R+ Ry <L ( 1+7‘2;1+—"(-2§1(§)—:-;‘T‘1PT4)> )

We denotes;q, s12, So1, S2o as follows :

a\/Plj —l—OéjCQ\/ 7”1] 2, ] c {1 2}
\/ P2] _l'ﬁ]CZ\/ 7”2] 27 ] € {1a2}
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RE (, o, B, 2) denotes the set described

< 512
Rip < L 1+s11+c3(Pr3+Pra)

Roy <L 2L

1+511+C§(P’l‘3+PT4)

Ry < L 22

1+511+C%(P’l‘3+PT4)

by

( (Ry2, Ro1, Ra2) : Rig > 0, Ry >0, Rgp >0 )

ng +R21 S L S12+S821

1+s11+c3(Pr3+Pra)

ng +R22 S L S12+522

1+511+C§(P7‘3+P'r4)

R21 +R22 S L S$21+S822

1+s11+c3(Pr3+Pra)

\

Leta = (ay,az) andB = (B, 32). Let

set of rate pair$R;, R,) described by
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< S12+821+522
Fag + Ry + Ry < | 508 atpe i )

RE”

in,l

(@, /) andR

P*
in,2

(4.11)

(@, ) be the



( (Rl,RQ)IRlzo,RQZO
Ry = Ry + Rip + Ry3

Ry = Ry + Roy + Ros B
@B = (Ri1, Ri2, Rn) € Rﬁi (?, B)
.1 (Ri2, Ro1, Ra) € ng (@p) [’

2P,
< Cl r3
ng - L 1+C%P7‘4

| Ras < L(c3P) )

(( (R,Ry): Ry >0,Ry >0 )
Ry = Ry + Rya + Rys
Ry = Ry + Roy + Ro3 B
(R117 ng, Rgl) - Rlpl* (a, é)
(Ri2, Ra1, Rao) € R (@, B)
Ri3 < L(ciPys)

2
c5Pry
\ Ras < L<1+c§PT3 )

(4.12)

Riy (@, B) = (4.13)

Let R;, be the set of rate pairs described by

m_CH< U U@ @p)urk, (@, B))). (4.14)

P*ePa B

Then, the following theorem describes an achievable refgiothe Gaussian inter-

ference channel with cognitive relay.

Theorem 4.3.1.The capacity region of the Gaussian interference chanrtél eag-

nitive relayC;. satisfies

Rin C Cic- (4.15)

Proof of Theorem 4.3.1We fix a P* € P where® is described in (4.7).
We also fixay, o, 01,8, € {—1,1}. We show thatR!, (@, 3) is achievable.

We assume that’, Pis, P51, P, > 0. The proof for the case when some of
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P11, Pio, Py, Py are equal to zero is identical to the one presented here and is

hence omitted.

Fori = 1,2, sourcei splits its messager; € {1,...,2""%} into 3 indepen-
dent partgm;y, mi, mi3) € {1,... 2"} x {1,... 2782} x {1,... 2"f=} such

thatRﬂ + RiQ + Ri3 = RZ

Encoding Scheme : Far= 1, 2, transmitteri encodes message;; into
Xj, such thatp(xjy) = H5_, P(zi1;), and Xy ; «~ N(0, P;1). Messagen;; is
then encoded int&X}, such tha(x},) = I17_, P(7s;), and Xiz ; « N(0, Pp).

Transmitter; transmitsX} = X7, + X7,.

The relay encodes messa@ei, mi2) into X™, = ay\/(Poa1/Pr) XY, +
s/ (Pria/ Pr2) X7, and messagéma;, mas) into X7 = B/ (Prar/Pa1) Xy, +
Bar/(Pras/ P22)X35,. The relay node encodes messagg into X7, treating(b +
121/ (Praa/ Pa2)) X3, as non-causally known interference at receiveiThat is,
X1, is formed using Costa’s dirty paper coding [22], and is distied agp(x];) =
1", P(x,3;) and X,3,; «~ N(0, P,3). Finally, the relay encodes message; into
X7, treating (a + caay\/(Pr1/Pi)) X} + X7, as non-causally known inter-
ference at receive?. X7, is distributed ap(x],) = I P(x,4;) and X,4; «
N(0, P.4). The relay transmitX” = X7, + X7, + X7; + X7,. Itis to be noted that
this coding scheme uses the result that the capacity rei@Gaussian broadcast
channel with additive state known non-causally at the tratter is the same as the

capacity region of the same broadcast channel with no &ifite [

Decoding : Receivel decodes(m;i,mia, msoy) jointly by treating (b +
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1027/ (Praz/ Pa2)) Xby+c1 (X154 X", )+Z1 as Gaussian noise. Hencey 1, my2, moy)
can be successfully decoded at receivédr(Ry;, Ris, Ra1) € RE (@, B). Receiver

1 then decodes messagg; by treatinge; X7, + Z7 as Gaussian noise.

Receiver decodesgm,, mo1, mas) jointly by treating(a+coaq v/ (Pr11/ Pr1) ) X+
(X7 + X)) + Z3 as Gaussian noise. Henden, o, mo;, maz) €an be success-
fully decoded at receiverif (Ri2, Ra1, R22) € RE (@, 3). Finally, messagens is

decoded by treating? as noise.

Hence, it follows thalR} ", («, 3) is achievable. SimilarlyR!,(a, §) is also

achievable. Hence, the region describedRyy is achievable for the interference

channel with cognitive relay.

Remark4.3.1 The coding scheme used to achieve the region givefRhyis a
combination of Han-Kobayashi coding scheme for an interfee channel [4] and

Costa’s dirty paper coding [22].

Remark4.3.2 There are two main differences between the achievablengge-

sented in this chapter and the one given in [49]. The first stiedt, we incorporate
message splitting and partial interference cancelaticheteceiver. This strat-
egy is motivated by the Han-Kobayashi coding scheme for émeral interference
channel [4]. The second major difference is, we perfornydgigper coding for both
the users simultaneously and time share the order in whighesferm dirty paper
coding. In [49], the authors perform dirty paper coding fatyoone user at a time

and time share between the two dirty paper coding regions.
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4.4 Outer Bound on the Capacity Region of Interference Chan-
nel with Cognitive Relay
In this section, we derive outer bounds on the capacity regfdhe inter-
ference channel with cognitive relay. we also derive theelegf freedom region
of the interference channel with cognitive relay. ket- 0 be any positive real

number. We define the following x 1 matrices:

Q
5
I
[ —
—_
Sk
o Sk
| I
T
5
|
(@]
Sk
~ S
| I

Gon=| 5 % 0], Hy=|3% & 1] (4.16)

Consider the tw@-user Gaussian MIMO broadcast channels given in Figlires

and4.3 with three transmit antennas and one antenna at each recéiedenote

Zy
Receiver 1
Y1
Co-operating Transmitters G
P +~P, +~P, 7
X (my,ma)
Hy,

O—=x

T Receiver 2
Zy

Figure 4.2: Broadcast Channel 1.
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Receiver 1
Y1
Co-operating Transmitters
YP + Py + P,
X (mq,ma)
Hy,
—= Y,
T Receiver 2

Zy

Figure 4.3: Broadcast Channel 2.

the two broadcast channels B¢ and BC; respectively. Let their capacity re-
gions be denoted b§y. , andCj , respectively.R | represents the closure of

the convex hull of the set of rate pairs described by

( (Ri,Rs): R1 > 0,Ry >0
G1,31G},,

Ry < L<1+GH(§:1+22)G’H)

Ry < L(H.,%,H).)

3, =0, =0

Tr(§31+§]2) §P1—|—’}/P2—|—’}/Pr )

(4.17)
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Rpe. represents the closure of the convex hull of the set of rdts gascribed by

([ (R1,Ry): Ry >0,Ry >0 )
R, < L(GQ,YEIGIQ,Y)

Rg <L< H2«/E2H;W ) . (418)

1+Ha, (31+32)Hj |
¥, =0, =0
Tr(21+22) §7P1+P2—|—’}/Pr )

Then, we have the following lemma.

Lemma4.4.1.Foranyu > 1, we have

max  puRy+ Ry = max Ry + Ry (4.19)
(R17R2)E:REC171 (RlWlRQ)E@EC71

max R1 + ,MRQ = max R1 + ,MRQ. (420)
(R1,R2)EIREC’2 (R1mR2)€e’éC’2

The proof of the lemma follows directly from the results oB[%and is
omitted here. The following theorem describes an outer dawm the capacity

region of the Gaussian interference channel with cognitezy.

Theorem 4.4.2.Letu > 1. The capacity region of the Gaussian interference chan-

nel with cognitive relay®;- satisfies

max pR;+ Ry <min max  uR; + R (4.22)
(R1,R2)€Crc v>0 (1121,}22)€JQ73071

max Ry +pRy <min  max Ry + puRs. (4.22)
(R1,R2)€Crc >0 (R1,R2)€9Q’]5,C,2

Proof of Theorem 4.4.2: The outer bound is obtained by allowing trans-
mitter co-operation. We allow transmitteto fully co-operate with the relay. This

is done by providing transmitteX with messagen; non-causally. This reduces
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the channel to a Gaussian MIMO cognitive channel studiechap@er2 [57]. Let
the capacity region of the corresponding MIMO cognitiveruiel be denoted by
Crmeca. Then, forany: > 1, itis shown in [57, Theorem 3.2 and Lemma 5.6] and

Chapter 2 (Theorem 2.3.2 and Lemma 2.5.6) that

max Ri + Ry < min max Ry + Rs. 4.23
(Rl,Rz)EeMccll,Ll ! 2= 7>0 (R1,R2)€RY i ? ( )

It follows that for anyu > 1,

max Ry + R < min max Ry + Rs.
(R1,R2)€Cc >0 (R1,R2)€RY (4

By allowing transmitterl to co-operate fully with the relay node, we obtain the

other bound. Thatis, for any > 1,

max Ry + pRs < min max Ry + pR,.
(R1,R2)€Crc v>0 (R1,R2)EIR’]BC’2

Remark4.4.1 It is to be noted that the outer bound is not obtained by merely
letting all the transmitters co-operate with a sum powesst@mnt. In the broadcast
channel in Figure8 ands, it can be seen that one of the channel gains is made zero.
Also, the outer bound is obtained by minimizing over a sesfdsroadcast channel
with different sum power constraints and channel gains. duter bound obtained

is in general not tight, even with respect to the cognitiiagachannel [42] [57],
because, the non cognitive transmitter in the cognitiveoreldannel cannot transmit

any information with respect to the message of the othesingter.

Let p1, p2 € [—1,1]. Let A(py, p2) be given by
P 0 VPP,
P, P2 PQPT . (424)

A(plvPZ): 0 2
pl\/PIPT p2\/P2Pr Pr
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We define the functions’ (p1, p2) andFy(py, p2) as

Fi(p1, p2) = L(Py + 3 P.(1 — p3) + 2c1p1V/ P P,)

4.25
Fy(pr, p2) = L(Py + GPo(1 — 02) + 2capy /o). (4.29)

The following theorem describes another outer bound onapadity region

of the interference channel with cognitive rel&y.

Theorem 4.4.3.Let(R;, Ry) € C;c. Then for anyd < u < oo, we have

pRi+ Ry < max uFi(pr, p2) + Fa(pr, p2) (4.26)

B Pl,P2€[—171}

such thatA(p;, p2) = 0.

Proof of Theorem 4.4.3The proof follows from a sequence of information
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theory inequalities:

< pd (Wi Y Wa) + I(Wa3 Y3 |W1) + ne (4.28)
= ph(Y{"[W2) — ph(Y{'|Wi, Wa) + h(Y3'[W2) (4.29)

—h(YQ"\Wl, Wz) + ne
= ph(Y)"[Wa, X3) — ph(Y{"|XT, X3, X', Wi, W)+ (4.30)

(Y3 Wy, XT) — h(YS'| XT, X3, X, W, Wa) + ne

< ph(Y[XS) = ph(VIXT, X5, X7) + (Y |XT) = (4.31)
h(Y3 X7, X5, XP) + ne
= ph(X]+aX] + Z71X5) — ph(Z]) + (4.32)
h(X3 + o X+ Z7| XT) — h(Z3) + ne
< Y ph(Xu+ e Xy — pZu|Xa) = Y h(Z;) (4.33)
i=1

1=1

+ Z h(XgZ -+ CQXM' — ZQZ|X11) — Z h(ZQZ> + ne
=1

i=1
where(4.28) follows from Fano’s inequality an¢#t.31) follows because removing

conditioning increases entropy. L@tbe a random variable uniformly distributed
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inthe set{1,2,...,n}. Therefore, we have

Ri+ Ry < ph(Xig+ aX.g+ Zig|Xag, Q) — nh(Z10|Q) (4.34)
Th(Xaq + 2X5q + Z20|X1q, Q) — h(Z2q|Q) + €

< ph(Xig + aXeg + Zig| Xag) — ph(Z1g) (4.35)
+h(Xog + 2 X0 + Zog| X1g) — M Zag) + €

= ph(Xi+aX, + Z1|Xy) — ph(Z:) (4.36)

+h(X2 + CQXT + ZQ|X1) — h(Zg) + €

where(4.35) follows fom removing conditioning increase entropy andli.idistri-

bution of noise.

Let 3 denote the covariance matrix @K, X», X,.). ¥ is of the form

P 0 iV PP,
2 — 0 P2 PraVv PQPT . (437)

prl\/PIPr p2\/P2P7" Pr
wherep; denotes the correlation betwe&n and X, andp, denotes the correlation
betweenX; and X;. The theorem follows from the result that conditional epies

with covariance constraint is maximized by Gaussian randamnables.
The following theorem characterizes the d.o.f. region ef@aussian inter-

ference channel with cognitive relay.

Theorem 4.4.4.1f ¢; a # ¢y andcy, b # ¢, the d.o.f. region of the Gaussian

interference channel with cognitive relay is

o (dl,dg)ER?’_Z
@1_{d1§17 Lt (4.38)
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If c;a = ¢y andloreyb = ¢4, then the d.o.f. region of the cognitive relay is

given by

. (dl,dg) € Ri_ .
Dy _{ s < 1 . (4.39)

Proof of Theorem 4.4.4: We first consider the case whem # ¢, and
cob # c1. We describe an outer bound on the d.o.f. region. We allothalkhree
transmitters to co-operate and obtain a two user broadbashel with3 antennas
at the transmitter antlantenna at each receiver. The d.o.f. region of the broadcast
channel is equal to the region described by (4.38). Heneeefjion described by
D, is an outer bound on the d.o.f. region of the Gaussian inarte channel with

cognitive relay.

We now show that the d.o.f. regidD;, is achievable by interference can-
celation. Fori = 1, 2, transmitteri chooses its transmit codewoid according to
the distributionX; -~ N(0, Q;), @; < P;. The relay transmits(, = A\ X + A Xo.
Hence, we musthavgQ;+3Q, < P,. We choosembda; = —g and\; = —2,
to cancel out the interference at each receiver. To satigfpobwer constraints, we
choose); = min(z%,]%),i = 1,2. We then achieve the poifit;, d>) = (1,1).

Hence, the regio, is achievable.

Next, we consider the case wham = ¢, and/orc;b = ¢;. The region given
by D, is achievable by time sharing. Whepa = ¢, using arguments similar
to those used in [18], we can show that rece@ean decode both the messages
my, andmsy successfully, and that is the optimal strategy for receiveHence,

dy +ds < 1is an upper bound on the d.o.f. region. The proof is similattie case
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whencyb = ¢;.

4.5 Numerical Results

In this section, we provide some numerical results on thac&pregion of
the two user Gaussian interference channel with a cognighas. We consider an
example system, where= b = 2, ¢; = 1.5,¢, = 0.75. We take all power con-
straints to be equal tt0 (i.e., P, = P, = P, = 10). Figure4.4 plots the achievable
regionXR;, described in (4.14), and the outer bounds in Theokeand LemmaR.
The plot shows the performance improvements over the aahlevegion by [49]

and the gap between the achievable region and the outer ound

4.6 Conclusions

In this chapter, we derived a new achievable region for theeuser Gaus-
sian interference channel with a cognitive relay. The aabke region is a gener-
alization of the region given in [49]. In Theoremsl.2 and4.4.3, we derive outer
bounds on the capacity region of the interference channblaignitive relay. We
also derive the d.o.f. region of the channel setting and ghatwve can achieve the
full degrees of freedom of a two user no-interference chiafunea large range of

channel parameters.
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with Cognitive Helper
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Chapter 5

Cognitive Radio Channel with Partial Cognitionl

In this chapter, we study the cognitive radio channel wherctignitive (or
secondary) transmitter has only a partial knowledge of tkesage transmitted by
the licensed (or primary) transmitter. This models a muchenpoactical model of
cognitive radio. We restrict the amount of information ttieg cognitive radio can
possess. The rest of the chapter is organized as followsedtidd 5.1, we describe
the problem statement and our contributions. We describesyistem model in
Section 5.2. In Section 5.3, we describe an outer bound onapacity region of
partial cognitive radio channel. We describe an achievedgen in Section 5.4.

We conclude in Section 5.5.

5.1 Introduction

The cognitive radio channel has been studied by severanesers over the

past decade. Most of the work has focused on two scenarios :

1. Underlay model where the cognitive transmitter has normation on the
transmissions of the licensed transmitter and has to gaisfinterference
constraint at the licensed receiver using either chanrelledge or spectrum

information.
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2. Overlay model where the cognitive transmitter has fulbwledge of the
transmissions of the licensed transmitter and it uses itiesisformation to

design its transmit strategy.

For more background on the cognitive radio models and prarkywe re-
fer the readers to earlier chapters. This chapter consedeognitive radio channel
model where the cognitive transmitter is not fully cogretief the other transmit-
ter's message set. In this setting, the cognitive radio besss only to a portion of
the message. As this portion varies from nothing to evemgthihe channel model
includes the interference channel (IFC), and IFC with fulggraded message set as
special cases. This channel is referred to as an interferdrennel with a partially
cognitive transmitter. Note that this channel model is waigd by practical con-
straints, where the cognitive transmitter is only able tmgalimited information

about the legitimate transmitter’s message.

The interference channel with a partially cognitive traitten has already
been studied in [76] with a specific focus on strong interfeessettings. Results on
degree of freedom and sum capacity of symmetric channehbiga@e in [77, 78].
This chapter focuses on the weak interference settingscif®jadly, we derive an
outer bound on the capacity region of this channel for boghdikcrete memoryless
and Gaussian cases when the interference from the cogingivanmitter to the legit-
imate receiver is “weak”. Subsequently, we show for the Gamscase that Gaus-
sian distributions satisfying the constraints on the isfautxiliary random variables

optimizes the outer bound. We also derive an achievablemegi the Gaussian
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partially cognitive-radio channel using a combinationberposition and dirty pa-
per coding. Note that the achievable region described sndhapter can be readily
extended to discrete memoryless channel. The resultssrchizipter are presented
in [79] [80]. The results of this chapter are joint work witto@&hul Chung, a Ph.D.
student in the Department of Electrical and Computer Ergging. Goochul Chung
derived the outer bound on the capacity region of partiahitog radio channel and
| derived the acievable region for the partial cognitivéoazhannel. For the sake of
completeness of the chapter, we present the outer bound afitimthe achievable

region.

5.2 System Model and Preliminaries

Throughout this chapter, random variables are denotedtatetters, and
their realizations by the corresponding lower-case Iett&(’ denotes the random
vector(X,,, ..., X,,), X" denotes the random vectox, ..., X,,), andX™\" denotes
the random vectof X1, ..., X,n_1, Xpmt1, ..., X»). Also, for any setS, S denotes the
convex hull of S, andS means the complementary set®f Finally, the notation
X = Y = Zis used to denote thaf and~Z are conditionally independent given

Y.

5.2.1 Discrete Memoryless Partially Cognitive Radio Chanels

Atwo user interference channel as in Figareis a quintuplg X, Xs, Y1, Y2, p),
where X;, X, are two input alphabet set$};,Y, are two output alphabet sets;

p(y1, Y| 71, x2) IS @ transition probability. Since we confine channel to benme
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Figure 5.1: The discrete memoryless partially cognitivcddaanodel

oryless, the transition probability of, y5 givenz?, % is

p(yls yalat, vy) = H p(yl,ia y2,i|$1,z', xz,z')-
i=1

This channel model is similar to that of an interference dehnvith the
difference being the message sets at each transmittersriiter 1 is the legit-
imate user, who communicates messages from thelggtsE {1,..., My} and
Wy € {1, ..., My} to Receiver 1, the legitimate receiver. Transmitter 2, thgnitive
transmitter communicates a mességec {1, ..., M,} to Receiver 2, the cognitive
receiver. The unique feature of this channel is that thezat#bn of 11/, is known to
bothtransmitters 1 and 2, which allows partial and unidireciacooperation be-
tween the transmitters. AiRy, Ry, R2, n, P. o, P. 1, P. ») code is any code with the
rate vectol Ry, Ry, R,) and block size:, whereR; = log(M,)/n bits per usage for
t =0,1,2. As discussed abovél, and}V; are the messages that Receiver 1 must
decode with (average) probabilities of error of at mBsg, F. ; respectively, and
W5 is the message that Receiver 2 must decode with an errorlplitpaf at most

P. ,. Rate triplet( Ry, R, R») is said to be achievable if the error probabilities
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fort = 0, 1,2 can be made arbitrarily small as the block sizgrows. The capacity
region of the interference channel with partially cogrativansmitter is the closure

of the set of all achievable rate tripletB, R, Rs).

Throughout this chapter, we have a restriction on the Q&ir R,), such
that R, > puRy for some positive number. This restriction is to ensure that opti-
mization of rate regions does not drive the r&teto zero, which results in a fully
cognitive solution. This goal and restriction apply to bdiscrete memoryless and

gaussian channel which follows.

5.2.2 Gaussian Partially Cognitive Radio Channel

In the Gaussian IFC, input and output alphabets are the Readéd out-
puts are the linear combination of the inputs and additiveeMBaussian noise. A

Gaussian IFC model in Figufe2 is characterized mathematically as follows:

Yi =Xi+bXe + 74,

Yo =aXy+ Xy + 2, (5.1)

wherea andb are real numbers and, and Z; are independent, zero-mean, unit-
variance Gaussian random variables. Further, each tréteshas a power con-

straint

n

1
~Y EXZ)<Pit=12
=1

In the next section, we describe the outer bound on the dgpagion for

these channels under “weak” interference.
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Figure 5.2: The Gaussian partial cognitive radio channel

5.3 The Outer Bound region

We first derive an outer bound on the capacity region of thereie memo-

ryless partial cognitive radio channel under a weak interfee condition.
5.3.1 Discrete Memoryless Partially Cognitive Radio Chanels
For a discrete memoryless channel, under the condition
Xo| Xy = Yol Xy = V1] X,, (5.2)

we say that the legitimate receiver is observing weak iaterfce [42]. In this

setting, we present the outer bound in the following theorem

Theorem 5.3.1.The convex closure of the following inequalities defines @ero
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bound on the capacity region of “weak” partially cognitivadio channels:

Ry < I(U, Xy;;11|V), (5.3)
Ry < 1(X1;:Y1|Xy), (5.4)
Ro+ Ry < I(U, Xy; Y1), (5.5)
Ry < I(X9; Y5|U, X7), (5.6)
Ry > puRy, (5.7)

for anyp(u, v)p(x1|u, v)p(xe|u) such that:
1. V and X, are independent.
2. X, is afunction of/ andV'.

3.(U,V) = (X1, X5) = (%1, V).

Proof: First, we borrow the lemma from [81] which is used in consiitg the outer

bound.

Lemma 5.3.2( [81]). The following forms a Markov chain for the partially cogni-

tive radio channel:
(W07 Wt) = (W07 Xt) = }/;fv (58)

wheret = 1, 2.

We start the main proof by verifying the outer bound 1@y, R;, and R,.
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We have

nRO = H(WO|W1)

< I(Wo; YW1 + neg

(]

[H (Y1, Y7~ Wh) = H(Y1, Y7 Wo, Wh)] + neo
1

.
Il

[H (Y14 Wh) — H(Y1 Vi X7V Wo, Wy, X14)] + neo

)=

1

.
Il

—
S
N

-

@
Il
—

[H(Yaa W) — H(Y Vs XY Wo, Wi, X4 ,)] + neg

[H(}/l,zﬂ/l) - H(}/l,z|U27 ‘/ia Xl,i)] + neo

E
-

s
Il
—_

)=

I(UiaXl,zGYl,i“/;) + neg,
1

.
Il

where(a) results from the conditional Markov chain for the weak ifgéeznce chan-
nel, Xp|X; = Y3|X; = Yi1|X; in (5.2). (b) results from identifying auxiliaries
U = (Y71 XV W) andV; = W,

an = H(Wl)

< I(Wi; Y") + neg

(Wi Y[ X5) + neg

[H(Y1:|Yy !, X3) — H(Y1: Yy, X3, Wh)] + neg

1

i

i

@
Il
—

[H (Y14 X2,) — H(Y14| X1, Xo,)] + neo

I

@
Il
—

I(Y15 X1, X)) + neo,
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and

Ry — H(Wa|WWy)
< T(Wo YW, + ney
< T(Wo YU, XTHWo) + neg
@ Wy, YIXT, Wo) + nes
= H(Y5'| X7, Wo) — H(Y3' | X7, Wo, Wa) + ney
< HOPIXT, Wo) — HOGIXT, Wo, X3) + nes

(©) <
< Z[H(Y2,i|Uz'>X1,i) — H(Y2,|Us, X1, Xo4)] + nez
i=1

n

= Z I(Xz,i§ Yz,i|Ui7 Xl,i) + neg,

i=1
where (a) is due to the independence @f, and X7, (b) is from Lemma 5.3.2

(Wo, Wa) = (Wo, XT') = (Y3*), and(c) comes from the same definition above of
Ui - }/;_1, Xln\z’ WQ.
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Next, we prove the outer bound for the sum r&te+ R;. We have

nRO + an = H(W(), Wl)
< I(Wo, Wi YT") + ney
= H(Y)") = H(Y{"|Wo, W) + ney

@) H(Y") — H(Y W, X2) + ney

—

_Z (Yo Yi™Y) — H(YV Vit XN W, X14)] + ney

2SS IORY) — HOG XT X00)]

< Z }/lz mz‘UzaXlz)]+n€1

n

= Z I(U;, X1 Y1) + ner.

i=1
(a) results from(Wy, Wy) = (W, X7') = (Y{") (Lemma 5.3.2)(b) results from
X, = Y, = Y, givenXj; in (5.2), and(c) results from the definition above 6f =
Y=, X" W,. Note that the choice of auxiliary random variables auticaty

satisfies the constraints imposed on them in Theorem 5.3.1.

5.3.2 Gaussian Partially Cognitive Radio Channel

For the Gaussian case, the weak interference constraibedaterpreted as
the requirement of < 1 in (1). With the conditionp < 1, the conditional Markov
chain for the weak interference channd&l; = Y, = Yi, given X; in (5.2) is
satisfied. Thus, similar proof ensures the outer bound frake region defined in

Theorem 5.3.1 to be valid for the Gaussian partially cogaitadio channel. Next,
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we establish three lemmas that is essential in proving thienapty of a jointly

Gaussian input distribution for the region defined in Theoke3.1.

Lemmab5.3.3(Lemma 1in[82]) Let X, X5, ..., X}, be arbitrarily distributed zero-
mean random variables with covariance matd and X7, X, ..., X} be zero
mean Gaussian distributed random variables with the samartance matrixx'.

Let S be any subset dfl, 2, ..., k} and S be its complement. Then,
h(Xs|X5) < h(XEIXE). (5.9)

Lemma 5.3.4.Let X, X5, V' be an arbitrarily distributed zero-mean random vari-
ables with covariance matriX’, where X, and V" are independent of each other.
Let X7, X5, V* be the zero mean Gaussian distributed random variables thih

same covariance matrix as;, X,, V. Then,

E[X,X,] = E[X7X;|V*]. (5.10)

Without loss of generalityX; can be written as{; = W* + ¢V*, where

W* is the zero mean Gaussian random variable independéfit.dfhen

E[X1X5] = E[X]X]
= E[EXTXG V"]
= E[E[W" + V) X3V7]]
= E[E[W*X;|V*]] + cE[E[V*X3]V7]]
Y RX; X3V + CE[VE[X;]]

= E[Xle‘V ]7
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where(a) results from the independence &f andV*. And, (b) results from the

fact thatX; is zero mean.

Lemma 5.3.5.Random variables in Lemma 5.3X;, X, andV* satisfy the fol-

lowing equation:

NI

E[X7X;5[V"] < (E[(X7)’[V*])? (E[(E[X5]X7])))?.

Proof: Note that

* VK « (@) * Vo * *
EXTX5[V*] = E[E[X{ X5 [V", X{]]

=

EXTEXG [V, XTIV

—
2]
~

D=

(E[(XT)* (V)2 (EIELX; V7, X7])%)

= IA

[NIES

IN

(E[(X7)’[V*])2 (E[E[XG]X7])])2,

where(a) comes from the law of iterated expectatio(lg, from the independence
of X5 andV*, (¢) from the Cauchy-Schwartz inequality, acd) from the fact that

entropy can only be reduced by conditioning.

Definition 5.3.1. Define the rate regioR®””* to be the convex hull of all rate

out
triplets (R, R;, R») satisfying
1 B1P1+b%(1—a) Pa+2by/ (B2(1—a) Py Ps)
2 + (1+b2aPs) )
Ry < $log (2me (1+ (1 — fo(1 — ) 1)),

Py4+b2(1—a) Pa+2b 1—q)P, P 511
Ry < Llog (14 Dm0l 2y )”’), &

for somex € [0,1], 4, € [0,1], andg; € [0, 54].
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Definition 5.3.2. Define the rate regiof®,,; to be convex hull of the union of rate

regionR%:4:

out *

out
0<a,81<1,0<B2< 51

Rout 2 U RSPz (5.12)
We denote to be the capacity region of the Gaussian weak partially cog-
nitive radio channel. An outer bound f6ris obtained as follows.

Theorem 5.3.6.R,,; is an outer bound of the capacity region for the Gaussian

weak partially cognitive radio channel:

CC Rouwt-

Proof: We start from the rate region in Theorem 5.3.1.

Ry < I(U, Xi; Y1|[V)) = h(N|V)) = h(N|V, U, X3)

=h(M|V) = h(1|U, X1), (5.13)

Ry < I(X4;Y1]Xz) = h(Y1|X2) — h(N3), (5.14)
Ro+ R < I(U, X1; Y1) = h(Y1) = h(V1|U, X1), (5.15)
Ry < [(X; Ya|U, X1) = h(Ya|U, X1) — h(Ny). (5.16)

(5.13) follows from the Markov chairl{ = (U, X;) = Y;. First, we set
h(Ya|U, X,) = %log(Zwe(l +aPy)), (5.17)
without loss of generality for some € [0, 1]. Note that
Vi =b(Xo+ Z1)+ Xy + 7,

h(1|U, X1) = h(b(X2 + Z1) + Z'|U, X), (5.18)
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whereb < 1 because legitimate receiver faces a weak interference7 as@ Gaus-
sian distributed random variable with varianice 5. By entropy power inequality

(EPI) [67], we have,
92h(Y1|U,X1) > 92h(bY2|U,X1) + 92h(Z")
— b222h(Y2‘U,X1) + 27T€(1 _ 62)
= 2me(1 + b2aP2),

which yields

h(Y1|U, X1) > = log(2me(1 + b?aPy)). (5.19)

N —

Next, we need to bound(Y7), h(Y1|V), andh(Y1|X>). Note that, by setting
h(Y»|U, X;) = § log(2me(1 + aP,)), we have the following result.

h(Ys|U, X1) < h(Xs + Z5|X1)
< W(X5 + Zo| XT)

log(2me(1 + (X5|X7))), (5.20)

1
2
where(-|-) denotes the conditional covariance. Combining (5.17) \{6tR0), we
obtain the bound

(X51XT) > aP,. (5.21)

Also,

(X31X7) = E[(X35)"] - E[E[X3]X7])°). (5.22)
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From (5.21) and (5.22), we obtain,
E[(E[LX;X;])% < (1 - a)P, (5.23)
Note that
E[(X7)*|V*] < P, (5.24)

since conditioning only reduces the entropy. Again, wéis$ek ;)?|V*] = 3, P, for
somef; € [0, 1] without loss of generality. Now combining Lemma 5.3.4, Leanm

5.3.5, and the above result, (5.23),

E[X1X,] < V/AiPiy/(1 — )P (5.25)

We can set

E[X1X5] = v/BaP1y/(1 — a) P, (5.26)

whereg, € [0, 4,]. Therefore, we obtain the bound fbfY;) as

h(Y1) < %log (27T€ ( i;bl(a)[()l()l}jz()@ ))
1

B 14+ P, + 0P,
= 2log <27T€( +26\/ﬁ2(1 — PP, )) ) (5.27)

For h(Y1|V), note thatY}*, V*) has the same covariance matrix(&s, V) if Y, =

X{ 4+ bX;. Also, Y; is a mean zero Gaussian distributed random variable. Thus,
h(YA[V) <h(Y{'[V7)

=h(X] +0X5 + Z,|V7)

1 1+ (X V)
=3 log | 2me | +b*(X5|V™)
+20E[ X7 X5 |V

1 1—|—61P1+b2P2
gilog <27T€( +2b\/(ﬁ2(1 — PPy )) ) (5.28)
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For h(Y1]|X3),

(Y| Xs) =h(X; + bXs + 71| X)
—h(X) + 74| Xs)

<h(X] + Z,|X3)

:% log (2me (1 + (XI|X2)) (5.29)
:% log <27re (1 P E[X;%Q]z» (5.30)
:% log (27¢ (1 + (1= Bo(1 —a)) 1)), (5.31)

which gives the desired outer bound for the capacity regRate regiorR%:2-%

out

shows that outer bound can be obtained by hawinget to 1.

5.4 Achievable Region for the Gaussian Channel

In this section, we describe an achievable region for thes&an channel
model described in (5.1). In deriving the achievable regws combine superposi-
tion coding, dirty paper coding [22], and Han and Kobayasedieg [4]. The reason
for using this combination is to cope with the channel statitls different’s. We
have more strict restriction on how much data can be sharggeba cognitive and
legitimate transmitters with large. Thus, asu increases, the channel becomes
more close to an interference channel. Han and Kobayahngasliknown to have
best achievable rate region to date for the general intaréer channel. Also, as
decreases, the channel becomes more similar to cognithewath full knowledge

of legitimate transmitters message sets. In such a casgpdiper coding is known
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Figure 5.3: The Gaussian partial cognitive radio channel

to be optimal [41] [42]. By combining superpositon codingydpaper coding,
and Han and Kobayashi coding, achievable scheme can copdhgitbest possi-
ble strategy in two extremes. Figuse3 shows the messages sets that encoded and

decoded at each transmitter and receiver.

The legitimate transmitter encodes messafjgdV;:, andV;, using Gaus-
sian codebooks and superimposes them to form its final cadiewq, is the mes-
sage set that is shared between legitimate and cognitiwsnigters.|V;; andWi,
correspond to the individual message set for legitimatesages which id1; in
Fig. 1 and Fig. 2./}, is a public message set which is intended to be decoded in
both legitimate and cognitive receiverd/;; is a private message set which is de-
coded only in the legitimate receiver. The cognitive traittanallocates a portion
of the power in communicating messddg to the legitimate receiver. The remain-
ing power is used in encoding its own message Again, IW; is divided into a
public message sétl,,, and a private message sBf;,. The cognitive transmitter

encodes messad®,, using dirty paper coding treating the codewords fridias

108



non-causally known interference.

Let oy, ag, s, By, B2, B3 > 0 such that

o+ oy +oaz =1, B+ B2+ B3 = 1.

We define function : Rt — R™ asL(z) = 1log(l + z). LetQ =

2 2
(1“‘\/%) a1 Py andsS = <a+\/%> oy Py

We define the constantg, 1, s, . . . 717 as follows:

ro = L (#) r=L (1%{:}32)
ro= L (5 ro =L (£%%)
=1 (552) =1 ()
o= 1 (=50m) =1 ()
rio = L <Q+§a2+a3)P1> —— <Q+a2P1+b262P2) (5.32)
+83 P> 1483 P>
T2 =L (—QJrafflﬁjg&PQ) ri3 =L <(a2+a13l];;;§252p2>
ra =L (QJF(OQJETB)SD;{)%ZPQ) rs = L <l+S+a2a024;ng1P-‘:1-beta3P2>
e = L <1+S+a25;2})}2)1+,33P2> rr =L (1+gio;32};12;?i};23132)

— _ Bk
T8 = L <1+a2a2P1

Define the rate regioRS**>**:7% to be the convex hull of all rate
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triplets (Ro, Ry, Ry) satisfying

Ry < 1o
Ry < min(ry,r +715)
Ry < min(rz + rig, 716 + 718)
Ry+ Ry < min(ry,ry + 715)
Ry+ Ry < 1rg+1is
Ry + Ry < min(riz + 718,78 + 715 + 718, 74717 + T18)
Ro+ Ry + Ry < min(ryg + rig, 711 + 715 + 718, 74 + 717 + 718)
2Ry + Ry < ry+rs
Ry + 2Ry < min(rg + 19 + 2r1s, 78 + 117 + 2718)
2Ry + Ry + Ry < min(rs + riy + 718,74 + 712 + 718)
Ro+ Ry + 2Ry < min(rg + 7111 + 2718, 78 + 112 + 2718, 711 + 717 + 2718)

2Ry + Ry + 2R,

IN

T11+7’12+2T18
(5.33)

Define the rate regiok; to be convex hull of the union of rate region

RO1,02,03 81,852,083
i :

R; A U R?LOQ,O!I%BLB%BB. (5.34)

ay +az +ag =1
B1+B2+P3=1

Theorem 5.4.1.For the Gaussian channel with partially cognitive radio as-d

scribed in (5.1), the region described by
iRm = {(RQ,Rl, RQ) S iRZ Ry > LLRo} (535)

is achievable.

In proving the theorem, we use an encoding strategy that cw@slBuperpo-

sition coding, dirty paper coding, and Han and Kobayashirgpd/\Ve first describe

110



the encoding strategy at the two transmitters. Wefixas, oz, 51, 52, 53 such that

041—|—042+043:1and61+52+63:1.

Encoding Strategy at legitimate transmitt&or every messadé, € {1,..., My},
the legitimate transmitter generates a codewojg 1V;) from the distributiorp(X7];,) =
17, p(X10(7)), whereX(i) ~ N(0, « P, ). For every messadéy; € {1,..., My},
the legitimate transmitter generates a codewoyd 1V, ) from the distributiop( X7, ) =
117, p(X11(4)), whereXy, (i) ~ N(0, aa P, ). For every messadé’, € {1,..., My»},
the legitimate transmitter generates a codewoyd 1V,) from the distributiorp(X7,) =
17, p(X12(7)), whereX5(i) ~ N(0, a3 P ). The legitimate transmitter then super-

imposes these codewords to form the net codewgtas

X7 = X{o + X{1 + X5

Encoding strategy at cognitive transmitteFhe cognitive transmitter allo-
cates a portion of its power in communicating the mesd&gedo the legitimate
receiver. For messag€), the cognitive transmitter generates a codewbig 11)
as follows:

PPy

Xgo(WO) = EX{LO(WO)-

That is, the cognitive transmitter uses the same codewardrfooding message
W, as used by the legitimate transmitter except that it is scadepower3; Ps.
Next, the cognitive transmitter encodes message to codewordX?,. The cog-
nitive transmitter generates a codewoxd, (17;) from the distributionp(X3,) =
17, p(Xa1(7)), where Xy, (i) ~ N(0, 52P,). Then, the cognitive transmitter en-

codes messagdés, to codewordX?, using dirty paper coding treatingX7, + X1,
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as non-causally known interferencgy, is independent of the interfereneeXy, +
X%, and is distributed ag(X%,) = 117" p(Xa2(7)) and Xoe(i) ~ N(0, B3 FP»). The
cognitive transmitter superimposes the three codewdrgs X/, , and X7, to form

its net codeword\}'. That is,
X3 = Xg + X5, + X35,
Next, we describe the decoding strategy and the rate camstessociated
at the two receivers.

Decoding strategy at legitimate receivéihe legitimate receiver obtains the
signal
Y' = X, + X7y + X1 +0X5 + bX3, + bXJ, + Z7.
The licensed receiver decodes the messéigesl;;, W2, Woy jointly treating X7,

as noise. The decoding is successful if the rates satisfydhstrainst given by

Ro <1 Ry <ny
Ryp <1y Ro1 <13
Ro+ Ri1 <y Ro+ Rz <73
Ro+ Ro1 < Ry <7 (5.36)
Ri1 + Roy <13 Ris + Roy <19
Ry + Ry <719 Ro+ Ry + Ro1 <11
Ry + Rip + Ro1 <712 Ry + Ry < ri3

Ro + R1 -+ R21 S T14.
Decoding strategy at cognitive receivefrhe cognitive receiver obtains the
signal
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The cognitive receiver decodes messaggs and Wy, jointly treating X7, X5,
X7, and X7, as Gaussian noise. The receiver can decode me$Bagand W5,

successfully if

IN

Ry 15
Roy 16 (5.37)
Ris+ Ry < 17

IN

Finally, the cognitive receiver decodB$, using Costa’s dirty paper decod-
ing. In decodingiV»,, X7, and X}, do not appear as noise as they were canceled
out at the encoder side using Costa’s dirty paper codingd€hbeding is successful
if

Ros < 'ris. (5.38)

Using Fourier-Motzkin elimination, we can easily show tthegt region given
by Ro1e20301.02.85 5 achievable. By taking the closure of the convex hull otrer t
set ofa’s and 3's, we show that the region given I%; is achievable,. This com-

pletes the achievability proof.

Remark5.4.1 As i grows to infinity, transmission of the shared message sets ar
not allowed, which means that channel becomes more clodeetinterference
channel with no cognitive message sets. Our achievablareckeaforces’; and

«; to be fixed at 0, and use regular Han and Kobayashi coding. e rotier ex-
treme, the channel becomes cognitive radio channels witinssage sets of the
legitimate user. In this casey, a3 are fixed to zero, and cognitive user make the
dirty paper coding with the transmission support to legtienuser, which is opti-

mal.
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1F | —=— inner bound 1=0.001
o —— Outer bound p=0.1
ok =—#— Outer bound p=0.1
! Outer bound p=1
Inner bound p=1
06k QOuter bound p=10
Inner bound p=10
=——&— Outer bound pu=1000
0.4F .| —€—nner bound y=1000
. 1
0 0.5

Figure 5.4: Achievable region and Outer bound

Achievable region and outer bound are compared in Fig. Soth Bansmit
powers,P; and P, are set to 10, and interference gaiandb are fixed to 2 and 0.5

respectively. For the licensed user, we use the totalkgte R;.

Notice that as the valyegrows, achievable region asymptotically approaches

the outer bound.

5.5 Conclusion

In this chapter, we investigated the capacity region ofrfatence chan-
nel with partially cognitive transmitter. For the gener@édalete memoryless IFC

setting, we obtained the outer bound for the capacity regioen the legitimate re-
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ceiver observes the weak interference. We also derived t&n bound and achiev-

able region for the Gaussian partial cognitive-radio clehnn

115



Chapter 6

K User Gaussian Interference Channel

In this chapter, we deviate from cognitive radio channel el®@nd study
the K user interference channel with transmitter-receiver pairs. The goal of this
chapter is to understand the capacity behavior of such laeteorks and to deter-
mine if the capacity scales with the number of users in thevodt and to derive
transmission strategies that help in understanding cgphehavior at all power
levels. We use lattice coding as an interference alignnmanstnission strategy and

derive capacity results for th€ user Gaussian interference channel.

6.1 Introduction

Determining the capacity region of large Gaussian interfee network has
been a long standing open problem. Several capacity résatsbeen derived for
the two user interference channel [17-21]. Recently, itdesesn shown in [13] that
the gap between the Han-Kobayashi achievable region [4hayehie aided outer
bound for the two user Gaussian IC is at most one bit per chaseeln [14]-[16],
the sum capacity of the two user Gaussian IC has been detirfon a range of
“very weak” or “noisy” interference cases where treatintgrference as noise is

optimal. While the results of [14]- [16] are generalizalwentore than two users,
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other capacity results such as [13, 18, 19] do not extendtasference channels

with more than two transmitter-receiver pairs.

For interference networks with more than two transmitesrerver pairs, de-
grees of freedom characterization (capacity approximatimithin o(log(SNR)))
have been found for a class of time or frequency varying ceisnin [68]— [72].
These results do not apply to interference networks withstaort channels, i.e.,
channels that are not time or frequency varying. In [73]aliors compute the ap-
proximate capacity of constant many-to-one Gaussianfergice channels (where
only one receiver sees interference from the other tratersjtand the other re-
ceivers see no interference) by building and using an appete deterministic
model for the channel. In [74], the generalized degreessgidom (GDOF) of the
symmetricK user Gaussian interference channels are derived. Hovibigeresult
holds only in the high SNR regime for channels where the celgains scale with
power. In [7], some examples &f user interference channels are presented which

come close to achieving the outer limit &f/2 degrees of freedom.

Very recently, it has been shown that for the interferen@nokl with real
and rational coefficients, total degrees of freedom is bedravay fromi’/2 [75].
In the same work, authors present an achievable scheme fassaf interference
channel with a mix of rational and algebraic irrational ah@rgains channel gains
to achieveK /2 degrees of freedom. For the case of complex channel gai8k, [8
show that at least/5 total degrees of freedom are achievable for almost all walue

of channel coefficients.

Note that the main emphasis of a majority of previous workastopic has
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been on the degrees of freedom characterization for a K osaference network.
The primary difference between prior work and the work irstthesis is that our
aim is to determine new achievable regions for the fully @med, symmetric K
user interference channel at any SNR. To this end, we usitizetured transmission
schemes based on lattice codes. Note that the use of latddesdo effect an
interference alignment can also be found in [73] where ip@li@d to the many-to-

one Gaussian interference channel.

Lattice coding has also been used as an effective trangmissiategy in
achieving the capacity of several other channels. It is (akxhg with lattice de-
coding) on an AWGN channel in [84]- [86] to achieve a rate étpuaj log( SNR).
In [87,88], lattice coding, along with simplified maximunkdlihood decoding, is
shown to achieve the capacity of the AWGN channel. Latticdrgphas also been
used to determine the approximate capacity of two-way reffe@nnels in [89, 90].

Some other relevant results on lattice coding include [§9&

In this chapter, we study a class &f user Gaussian interference channels

(see Figure 6.1) from a capacity and a degree of freedom @&iep. The pri-
mary tool we use in deriving achievable rates is lattice wgdLattice coding helps

in aligning the interference at each receiver and enablés decode thé¢otal in-
terferencewithout decoding each individual interference signal acchemessage.
Note that, for two user Gaussian interference channelfdileg the net interfer-
ence is equivalent to decoding each interfering signaksags (as there is only one
interferer), but there is a clear distinction between ‘ttatéerference” and “each

interfering transmitter’s signal” for channels with mokean two users. First, we
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derive a “very strong” interference regime for symmetkicuser Gaussian inter-
ference channels and extend the result to a class of non-synmmhannels. A
“very strong” interference regime is one in which the capargion of the inter-
ference channel is the same as the capacity region of thréeirdece channel with
no interference. That is, the interference can be complegahceled out first by
each receiver without incurring a rate penalty. This exsahé work in [17] where
the “very strong” interference regime is derived for twoniséerference channels.
Note that there is a fundamental difference between they“steong” interference
channels in [17] and those in this chapter. In [17], eachivecalecodes all the
messages from all the transmitters. In our work, each recelecodes only its
message and fanctionof the other signals. Second, we use this “very strong” in-
terference result to propose a layered lattice coding selfema class of’ user
Gaussian interference channel beyond the very strondenéeice regime. We use
this layered lattice coding strategy to show that we canesehimore than one de-
gree of freedom for a large range of channel parameters. riicplar, we also
show that there exist channels which achieve degrees afdnearbitrarily close
to K /2. We also numerically compare the layered lattice codingtsgy with a
coding/decoding scheme that resembles Han-Kobayashingche[4] with code-
books that are generated i.i.d Gaussian, to show that signifrate benefits can
be achieved by decoding the interference instead of pamvimie) of undesired
messages from the interfering transmitters. The main idritons of this work are

summarized below:

e We derive a “very strong” interference regime for a clas&afiser Gaussian
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interference channels,

e We propose a layered lattice coding strategy for any SNRs ddling scheme
is also shown to achieve more than one degree of freedom foga range

of channel parameters (in the class of interference chamoelsidered),

e We show numerically that significant rate benefits can beeaeki by the
layered lattice coding strategy when compared with thenskéa of the Han-

Kobayashi style strategy with Gaussian codebooks.

It is to be noted that the results presented in this chapégoart work with
Amin Jafarian, a Ph.D. student at the Department of Eleadtand Computer Engi-
neering. Amin Jafarian derived the “very strong” interfeze regime for symmetric
K user interference channels. This dissertation appliegahestrong interference
result to develop a layered lattice alignment scheme farfatence networks and
analyzes the degree of freedom of such networks. The layatick alignment
scheme also presents a very effective transmission syritagjworks at any signal
power levels. For the sake of completeness of the chaptepresent the “very

strong” interference result for interference networks @éct®n6.4.

The rest of the chapter is organized as follows: In Secti@n\se present
the system model. We describe notations and present sotice lateliminaries in
Section 6.3. In Sectiofi.4, we summarize the “very strong” interference condi-
tions for the two user Gaussian interference channel atel @tal prove our results
on “very strong” interference regime for th€ user Gaussian interference chan-

nel. In Section6.5, we present the layered lattice coding strategy for symmetr

120



K user Gaussian interference channels and analyze the tgetes of freedom
achieved by that strategy. In Sectiérs, we extend the layered lattice coding ap-
proach to a class of non-symmetric channels. In Seétionwe present numerical
results comparing our layered lattice coding approach thi¢ghextension of Han-
Kobayashi coding strategy with i.i.d. Gaussian inputs figr $ymmetric three user

Gaussian interference channels. We conclude with Seétion

6.2 System Model

A K user Gaussian interference channel consists afansmitter-receiver
pairs andK independent messages such that messgageriginates at Transmitter
k and is intended for Receivérfor all £ € {1,2,..., K'}. The system model is
described in Figure 6.1 and the channel equations are deddny

K
V(i) = X;(0) + Y hpXeli) + Z;(), j €{1,2,..., K} (6.1)
k=1,k#j

whereY; (i) is the received signal at thé" receiver at the" channel useX, (i) is
the transmitted signal at thé" transmitter at theé” channel use, antl;;. denotes
the channel gain from the’” transmitter to thg'” receiver. In Equation (6.1), all
the direct channel gains have been normalized to ufitii) is the zero mean, unit
variance additive white Gaussian noise at recejvattime:. The Gaussian noise
at each receiver is i.i.d. across time, but the noise at crever maybe correlated
with noise at any other receiver, and this correlation dassaffect the capacity
region of the system. In this setup, it is assumed that thereayains are constant

and are known at all the transmitters and receivers. We alsiict the system
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Transmitter 1 . * Receiver 1
X1 (ml) le
‘ ha1
. hlZ .
Transmitter 2 ‘ Receiver 2

Xr(mg)
Transmitter K

Receiver K
2K

Figure 6.1: System Model fak User Gaussian Interference Channel

model to real channel inputs and channel outputs. The channgs are subject to

the following average power constraints:

1
— E Xk(’b)2 < P, Vke {1,2,,K} (62)
n

i=1

Let H denote theX x K matrix of channel gains

1 hie - hig
o | b e
hgr hge -+ 1

Let H,, H, denote the following classes of channel matrices:

Ho={H e R"*F i by =1}

}CQI{HGQKXKIhiizl},
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whereQ is the set of all rational numbers.

The class of channels to which our coding strategy appligs/en by JH;,

whereH, C H; C H,. For example, in three user ca8€; is:

h12 h23 h31 } (6 3)

9{3:{HEQ3X3:—><—><—EQ
' hor  hsz  has

Note that this is a (fairly) non-trivial class of channelsigfincludes the
symmetric interference channel and interference chanitielrational gains as spe-

cial cases. In a symmetric interference channel,
1ifi=j
h”"{ aifi#j
That is, all the cross channel gains are equal. Moreover, i @ser symmet-

ric interference channel, all the power constraints arekde., P, = PV j €

1,2...,K).

We represent the interference to noise ratio of yseaused by transmitter
kas INR ;. Thatis,
INR; , = R . Py

A (2rfh onR2 o onfi o)) code for theK user Gaussian interference

channel consists ok message sets
M, ={1,2,...,2"%} VEkec{l,2,... K},
K encoding functions
Fy: My — X3, Vke{l,2,...,K},
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and K decoding functions
Gk:HzeMk, VEke {1,2,,K}

such that the average probability of decoding error is lbas or equal to\. A
rate tuple(Ry, Rs, . .., Ri) is said to be achievable if there exists a sequence of
(2nfi gnkiz - orfik g A7) codes such that™ — 0 asn — oo. The capacity

region of the channel is the set of all achievable rate tughesis denoted bg,,.

The degrees of freedom region of theuser Gaussian interference channel

is defined as follows:

@:{(dl,...,d]()GRfZV(ILLl,...,MK)ERf,

: B+ ...+ puxRi
pidy + . pgdrg < limsup sup
Pi+..4Pg—oo (Ri,...Ri)EC % log(Py ...+ Pk)

}(6.4)

The total degrees of freedom of the three user Gaussian I€histed byD,,,,,, and

is defined as

N . Ri+...+ Rk
Dewm = limsup max T )
Pi+...4+Pg—o0 (Rl ----- RK)EG(LP 5 10g(P1 —|— e —|— PK)

(6.5)

The total degrees of freedom represents the rate of growgtrofcapacity in terms
of log(SNR) and thus corresponds to the number of non-interfering linkthe
channel. We desire to determine an achievable region ferctiannel that simulta-

neously has a good performance in terms of degrees of freedom

In the next section, we provide a brief introduction to tzticoding and
also summarize some known results on lattice coding for atgoipoint AWGN

channel.
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6.3 Lattice Coding Preliminaries

A lattice A of dimension is a discrete subset & described by
A={ =Gz :2€Z"},

where( is the generator matrix that describes the lattice. {Letdenote the fun-
damental Voronoi region (as defined in [86]) of the lattiteand V, denote the
volume of(2,. In this chapter, we use lattices generated using a mecha&mewn

as Construction-A [86], which we describe below.

For any positive prime integer, let Z, denote the set of integers modulo
p- Letg : Z" — Z; denote the component wise modyl@peration over integer

vectors. LetC' denote a lineafn, k) code ovelZ,. Then the lattice\ given by
Ae={velZ:gv)eC} (6.6)

is said to be generated using Construction-A with respetiteédinear code”. In
this work, we consider scaled versions of lattices gendiatthis construction, that
is, lattices of the formyA for somey € R. The fundamental volume ofA is

equal toy"p"*.

A set B of linear codes ovefZ, is said to be balanced if every nonzero
element ofZ; is contained in the same number of codesBin An example of a
balanced linear code is given in [87, Section VII]. L&t be the set of lattices
denoted by

Lp={Ac:C € B}. (6.7)
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We now state here the Minkowski-Hlawka Theorem (as estaddisn [86]) with

some minor modifications.

Lemma 6.3.1(Minkowski-Hlawka Theorem)Let f be a Riemann integrable func-
tion R” — R of bounded support. For any integér 0 < k£ < n and any fixed
V, let B be any balanced set of linean, k) codes ovetZ,. Asp — oo,y — 0
such thaty"p"—* = V, at least three-fourths of the lattices in the £ef satisfy the
following relationship

SRV CTE (6.8)

vEYAC:v#£0

The proof of this lemma is similar to the proof of [86, Theorg&hwith few

elementary changes, and is therefore omitted.

Next, we consider a point to point additive noise channel
Y=X+7 (6.9)

whereX is the transmitted signaY; the received signal and is the additive noise
of zero mean and variance equaldd that corrupts the transmitted signal at the
receiver. If the transmitted word over time is a lattice pothen it can be shown
that a suitable lattice and a decoding strategy exists swaththe probability of
decoding error can be made arbitrarily small as the numbeéiménsions of the

lattice increases. This result is stated formally.

Lemma 6.3.2( [86]). Consider a single user point to point additive noise channel

described in (6.9). LeB be a balanced set of linen, k) codes oveZ,. Averaged
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over all lattices from the sét z given in (6.7), each with a fundamental voluie

we have that for any > 0, the average probability of decoding error is bounded

by

P, <(1+9)

2n% log(2mea?)

- (6.10)

for sufficiently largep and smally such thaty"p"—* = V. Hence, the probability
of decoding error for at least three fourths of the lattice<i satisfies

n% log(2mea?)

P, < 4(1+9) v

(6.11)

The proof of Lemma 6.3.2 is also described in [86] and is tioeesomitted.
In essence, Lemma 6.3.2 describes the existence of a latite with sufficient

codewords. The next lemma summarizes the main result of [88]

Lemma 6.3.3. Consider a point to point additive noise channel in (6.9) rehtbe

noise is AWGN with zero mean and variance equaftd_et A be any lattice gener-
ated from Construction A that satisfies (6.11). Then, we baose the fundamental
volume of the latticé/, shift s and a shaping regiord such that the lattice code

(A + s) N S achieves a ratd? with arbitrarily small average probability of error if

1 P
R§§log<1+§).
The proof of Lemma 6.3.3 is provided in [88]. It is importaatriote that
Lemma 6.3.3 requires that the additive noise be i.i.d Ganséistributed. The three

lemmas introduced in this section is used to derive a “vemyngf’ interference

regime for the/” user Gaussian interference channel.
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An important point to note is that these three lemmas whidjirate from
[86] and [88] assume the noise added in the point to pointmodlais statistically
independent of the transmitted codeword and independetiteo$tructure of the
codeword. However, we are often presented with scenaritdssrchapter where
this may not be the case, and the noise may in fact depend ostrilngture of
the codeword being transmitted. The following lemma co&xsich channel where
no assumption is made about the independence of noise ardrticture of the

codebook (or of the codeword being transmitted).

Lemma 6.3.4.Consider a single user point to point additive noise chamméb.9)
where the nois€¢Z is zero mean and the- dimensional noise vectds satisfies
[|Z||> < no?. We assume that the noise is statistically independenedfamsmit-
ted signal (it may be dependent on the structure of the tratesinsignal). LetB
be a balanced set of linedn, k) codes ovetZ,. Averaged over all lattices from
the setl ; given in (6.7), each with a fundamental voluiviewe have that for any

0 > 0, the average probability of decoding error is bounded by

P, <(1+9)

2n% log(2mea?)

% (6.12)

for sufficiently largep and smally such thaty"p"—* = V. Hence, the probability
of lattice decoding error for at least three fourths of thétilzes inL 5 satisfies

n% log(2mea?)

P <4(1+8)—

(6.13)

Proof. : The proof is a minor modification of the proof of Lemma 6.3.2das

scribed in [86]. Leté denote the typical set of noise vectors. [Setlenote the
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sphere of radius/no2. We assume that the transmitted sigials an element of
lattice A. If the noiseZ € &, an error may occur in decodingif can be expressed
asZ = 7'+ X*whereX* € A*andZ’ € €. Then the probability of erroP, can
be upper bounded by

P, < Puje + Pr(Z ¢ €).

In proving the lemma, we work with the sétinstead of the typical set of noise

vectors€ as in [86]. We can also upper bound the probability of error by
Pe< P, ,z+Pr(Z¢¢).

We can show that averaged over all lattices from thelsegiven in (6.7), each

with a fundamental volumé&’, we have that for any > 0, we can upper bound

Pamb\g by

S — V(E)

Bpe < (14 5)Tf-

The remainder of this proof now proceeds along the same &§8486, Theorems

4,5] and the details are therefore omitted. ]

6.4 “Very Strong” Interference Regime

An interference channel is said to be in the “very stronggiférence regime
if the capacity region of the channel is the same as the dgpagion of the channel
obtained by removing all the interfering links. That is, het‘very strong” inter-
ference regime, usercan achieve a rate dflog(1 + SNR;) for j € {1,..., K},
where SNR = % = P;. Note that this is the maximum rate usecan achieve

given its resource constraints. The essential stratedyeinéry strong interference
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regime is to decode the net interference first and then dabedadesired message.
In this regime, the interference is so strong that the ratstraints due to decoding
the interference are not binding on the capacity regionhénrtext subsection, we
briefly summarize the “very strong” interference regime dotwo user Gaussian
interference channel and provide a generalization of theltréo the/X user chan-
nel. In Section 6.4.3, we state the main results on “veryngfirinterference for the
K user symmetric Gaussian interference channel and for a ofason-symmetric

channels. In Section 6.4.4, we provide the proofs for theltes Section 6.4.3.

6.4.1 Two User Gaussian Interference Channel - Very Strongniterference
Regime

In this section, we describe the “very strong” interferereggme for the two

user Gaussian interference channel as shown in Figure @&eié&l [17] showed

Zl ~ N(O, U%)
Transmitter 1 . # Receiver 1
Xi(my) Y
PowerP;
Transmitter 2 Receiver 2
Xo(ma) ; -(H)—> Y,
PowerP, *

Zg ~ N(O, U%)

Figure 6.2: Two User Gaussian Interference Channel

that for the channel in Figure 6.2, interference does notatkgcapacity when it is

very strong, because the interfering signal can be decodbduwt any rate penalty
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for either the desired or the interfering user’'s messages résult is stated formally

in the next lemma.

Lemma 6.4.1.For the two user Gaussian interference channel shown inreigL2,

if the channel parameters satisfy

P1—|—O'% 2 PQ“‘U%
b 01

(6.14)

then the capacity region of the channel is given by

(Rl, Rg) S R%— :
Cop = .

R1§%10g<1+%), R2§%10g<1+%)

The proof of this lemma is described in [17]. The essentiahids that
the receivers decode the interfering message first befaedd®y their message.
If the channel parameters satisfy (6.14), then we can sedhaate constraints
due to decoding the interfering message at receiver 1 (o8 Bpn-binding, and
the constraint resulting from decoding the desired mesatgach receiver is the
primary rate limiting factor. We now provide a direct extemsof the above result
for the K user symmetric Gaussian interference channel as showgimeé=6.3. A
generalization to the non-symmetric case is similar, biairs/ unwieldy to express

due to the number of parameters and factors involved.

Lemma 6.4.2. Consider aK user symmetric Gaussian interference channel as

shown in Figure 6.3. If the channel parameters satisfy
P\ ! P+o?
2 > [ — e — .
a” > ((1+02) 1) K—1P (6.15)
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Z1 ~ N(O, O'2>

Transmitter 1 * Receiver 1

Transmitter2 ¢ ‘
Xy(my)

Zg ~ N(O, 0'2)

'

Receiver 2
——— }/2

Xr(mg) Y
Transmitter K 1 Receiver K
Zg ~ N(0,0?)

Figure 6.3:K User Gaussian Interference Channel

then the capacity region of the channel is given by

e (Rl,...,RK)ERfZ
o R <3log(1+ %), ie{l,...,K} [~

Proof. : The proof of this lemma is similar to the proof of Lemma 6.4nH as
described next. Each transmitter encodes it messages bgiogaodewords from
a suitable i.i.d. Gaussian distribution. Each receivet fiexodes all the interfering
messages by treating its own codeword as noise. After dagcle effect of all
interference, the receiver then decodes its own messag@&oWeanalyze the rate
constraints imposed by this encoding/decoding stratedgeativerl. Due to the

symmetry of the channel, the constraints imposed on otlceivers are similar.

Receiverl observes

K
Y, :X1+Zan+Zl.
k=2
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As Receiverl first decodes all the interfering messages, it treats its @vaeword

X, as noise and hence sees a total noise pow&r-of>2. The receiver can decode

the interfering messages,, . .., my successfully if the rate tupleR,, ..., Rx)
satisfies
1 |S|a*P
<=1 1 §C{2, ....K}. 6.16
%RJ_Qog(+P+02), VS C{2,..., K} (6.16)

After decoding all the interfering messages, receivean decode its messagg

P
; .

Hence, we can describe the achievable rate regioas follows:

successfully if

1

( (R1,Rs,...,Rg) € R
Rjﬁélog(1+P)
Sves, Bi < Mog (14 B1P) w8, C {2,..., K}
R = ZkeSQRk’ 5 log 1+"f§‘+"f, V8, C{1,3,...,K}
\ZkzesK ¢ <3lo (1+'5}§<+'Cff), V8 L. K~ 1} |
(6.17)

We can now see that if the channel parameter satisfy (6 i) the only constraints

in R, that are binding are

1 P ,
Ri§§log<1+§), ie{l,...,K},

and this is the capacity region of the channel as this is therman possible rates

that each user can achieve even in the absence of all irdeder OJ

Remark6.4.1 From the above lemma, the lower bounddrfor very strong inter-

ference increases exponentially with
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In the next section, we investigate the very strong interfee regime for a
deterministick” user symmetric interference channel. We show that the veogig

interference condition remains the same forfall

6.4.2 \ery Strong Interference Regime forK User Interference Channel: A
Deterministic Model

X

X

Figure 6.4: A DeterministidC User Gaussian Interference Channel

In Figure 6.4, we describe an example of a deterministic iwelamodel of
K user fully connected Gaussian interference channel (gwpeal by [73]). In this
example, each user achieves a rate equal to the capacitigetvaduld achieve in
the absence of all interference. Note that with/alusers transmitting at capacity,
a receiver is able to decode the desired message but caruoatedany of the other
interfering messages (as they all add up in the first ternohahch receiver). How-

ever, each receiver is able to decodegtmof the codewords sent by the interfering

134



users. For example, Receiviecannot decode the messages . . ., mg, but it can
decode the sum of the interfering codewords+ ... + Xk. In the terminology
of generalized degrees of freedom [73] the “very strongifatence” condition for

this symmetric deterministic channel can be stated as:

log(INR)

s (SNR > 2 (6.18)

or in our notation, the very strong interference conditian be stated ag® > P.
This shows that the very strong interference condition fdeterministick” user
interference channel is independent/of In the next section, we show that the
even for theK user fully connected Gaussian interference channel, thesteng
interference condition is independent B As in [73], we use the determinis-
tic channel model to help us devise a good transmissioregiydor the Gaussian
channel. As the receivers decode only the sum of the intréer (and not each
interfering message) in the deterministic model, we appdysame principle to the
Gaussian model. Through lattice codes, we “align” the fetence at each receiver
so that to cancel out the interference, the receivers do ane to decode all the

interfering messages, but can directly decode the sum tifalhterference.

6.4.3 Very Strong Interference Regime forK User Interference Channel -
Main Results

In this section, we derive a “very strong” interference negifor symmetric
K user Gaussian interference channels and then extend thieteea class of non-
symmetric channels. We use lattice codes to align intanterat each receiver in

such a way that the sum of the interfering codewords can bedgel; without re-
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quiring the decodability of the messages carried by theferi@g signals. Relaxing
the message decodability constraint produces a much tityletey strong” interfer-
ence condition for thé( user symmetric interference channel. Lattice codes have
previously been used in [73] for interference alignmentwntany-to-onenterfer-
ence channels, leading to capacity characterizationgmattixed number of bits
per channel use for these channels. However, since we arested in fully con-
nected interference networks, several key aspects of theel@ode constructions

in this section are unique to our setup. The next theoreneptes “very strong”

interference region for the symmetr€ user Gaussian interference channel.

Theorem 6.4.3. [99] [101] Consider a K user symmetric Gaussian interference
channel in Figure 6.3 where represents the cross channel gain afds the power

constraint at each transmitter. If the channel gaisatisfies

(P+1)?

a® > IR

(6.19)

then the capacity region of the channel, denote@fyis given

(Rl,...,Rk) .
Cop = ) ) (6.20)
Ry < 5log(1+P) VkeX

The region described by (6.20) is an outer bound on the cigpagjion for
a K user interference channel for any valuexofThis is becausg log(1 + P) is
the maximum rate achieved by any user when there is no inéexde. To show that
the region described by (6.20) is achievable under “vensft interference given
by (6.19), we show that the symmetric rate pdifitog(1 + P),..., 1 log(1 + P))

is achievable when (6.19) is satisfied. The transmitterdaiSee coding to encode
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their messages, while the receivers first decode the tdtffémence and then de-
code their message after canceling all the interference.us®ethe results of the
Lemmas in Sectiors.3 proved in [86] and [88] in proving Theorem 6.4.3. The

proof is presented in Section 6.4.4.

Note that the “very strong” interference condition for tieuser symmetric
Gaussian interference channel is different from the cayior the two user case
given bya? > P + 1. In fact, we have the following approximate capacity result

for a®> > P + 1 for the K user symmetric Gaussian interference channel.

Theorem 6.4.4. [99,101]

For a K user symmetric Gaussian interference channel with croasml
gaina and power constrain®, if the channel gaim satisfies:> > P+ 1, then each
user can achieve a rate dflog(P). Hence, fora> > P + 1, each user achieves

within half a bit per channel use of his maximum possible.rate

The proof of the theorem is very similar to the proof of Thenré.4.3.
In the proof of Theorem 6.4.3, we use the Loeliger frameworkiécoding the
interference and the Urbanke-Rimoldi framework in decgdive message at each
receiver. However, in proving Theorem 6.4.4, we use theifjeelframework for
decoding both the interference and the message at eacheechi this chapter,
we do not prove Theorem 6.4.4 completely as the proof is amd the proof of
Theorem 6.4.3. However, we provide the essential detaiteeproof in Section

6.4.4.
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10 T ;

= = = Very Strong Interference Condition: Lemma 6 »
Very Strong Interference Condition: Theorem 1 A

Very Strong Interference Condition

Power

Figure 6.5: Comparing Very Strong Interference Conditiohisemma 6.4.2, theo-
rems 6.4.3 and 6.4.4

In Figure 6.5, we plot the very strong interference conditad Lemma
6.4.2, Theorems 6.4.3 and 6.4.4 for a three user symmetussgm interference
channel. We can see that the very strong interference ¢ondif Lemma 6.4.2
beats the very strong interference condition of Theoren36f@r low values of
power P. This is due to mixing the Urbanke-Rimoldi and Loeliger aypgmh of
decoding. By using only the Loeliger approach for decodintha receivers, we
get the very strong interference condition of Theorem 6.48dt, we get only an
approximate capacity result. If we can use the Urbanke-Rinfiamework at the

receivers for decoding the interference and the message,wke can get a very
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strong interference condition af > P + 1 and still get capacity. However, we
have not been able to use the Urbanke-Rimoldi framework éopding the inter-
ference. This is because when decoding the interfereneagtieiver observes a
non-Gaussian noise. As the Urbanke-Rimoldi decoding agbravorks only in the
presence of AWGN noise, we cannot use this approach. Butydolerate and high
values of power, the very strong interference condition of Theorem 6.4eaudy/

outperforms the very strong interference condition of Lea6.2.

We now generalize the “very strong” interference result tass of non-
symmetric channels. For simplicity, we restrict ourseliethree user interference
channels as shown in Fig 6.6. However, the results can beaemse to anykK
user interference channels satisfying similar channedlitimms. In this section, we

o VA
Transmitter 1 £;) + Receiver 1
Xi(ma) Y1

+ Receiver 2

—»YTZ

Transmitter 2 ) h“‘
XQ(WLQ) =

X3(m3) 1 >@—> Y3
Transmitter 3 £5) * Receiver 3
Z3

Figure 6.6: Three User Non Symmetric Gaussian Interfer@iannel

consider three user Gaussian interference channels whasaa matrixd € R3*3
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is an element of(} as described in Equation (6.3). That is, we have

h12 h23 h31
— X — X — €& .
T Ty g

Without loss of generality, we assume that

%X%X%IS (6.21)
wherep andq are co-prime integers. Then, Theorem 6.4.5 describes ‘steoyng”
interference conditions for such a class of interferen@nnokls. This theorem is
the generalization of Theorem 6.4.3 to the class of non-sgtmaxhannels being

considered. The proof of the channel is described in Seétibd

Theorem 6.4.5. [101] Consider a three user Gaussian IC, whose channel matri
H € H; and whose channel gains satisfy (6.21). We assume that ther pon-
straints at the transmitters ar®;, P,, P; and the noise variances at the receivers

are o}, o2 anda?. If the channel gains satisfy one of the following three ¢toils

IN; €R, N; >0 forie{1,2,3}:

P+ N P+ N
thZpQ 1;\; 17 h%?,z 1; -
2 3
P, + N- P, + N
h3, > QQ%a hay > 2;\;3 = (6.22)
P3—|—N3 P3+N3
h2 > h2, >
31 = Nl ) 32 = NQ

(on)
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IN; €R, N;>o? forie{1,2,3}:

h%2N2 = h%sNSv pzhglNl = hgsNSv qzhglNl = hgzN%

h% > Plj"\;le’ h%?’ > Plj‘\ZNl
ha, > PQJTGN 2z ;3]\[2 (6.23)
> B g, p
(or)
IN; €R, N; >0 forie{1,2,3}:
q2h§2N2 = h%sNZ%a h%lNl = h§3N3, h%lNl = p2h§2]\f2,
2, > P ;\;2N17 B, > g Pl%gNl
12> ;1%, i, > ;SNQ (6.24)
then, the users can achieve rates given by
R < %log (%) Cief{1,2,3). (6.25)

This theorem is the generalization of Theorem 6.4.4 to thescbf non-
symmetric channels considered. The proof of the theoremassribed in Section

6.4.4.
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6.4.4 Very Strong Interference Regime forK User Interference Channel -
Proofs

In this section, we give the proofs for Theorems 6.4.3 andi6l4 proving
Theorem 6.4.3, we prove only the achievability portion, fes ¢onverse part can
be proved in a straightforward manner by removing all therfierence from the

receivers.

Achievability Proof of Theorem 6.4.3n this proof, we show that in &
user symmetric Gaussian interference channel (with citeasree| gair and power
constraintP), each user can achieve a symmetric rAte< 1log(1 + P) under
very strong interference condition given by (6.19). We fitsscribe the encoding

strategy at the transmitters.

Encoding Strategy: The transmitters employ lattice codmmg transmission
strategy. That is their codewords are elements of a shifiitide within a shaping
region. Due to the symmetry of the channel, we use the lattiaeeach transmitter.
We denote the Voronoi region of the lattideby 2 and the volume of the Voronoi
region byV. The transmitters use codebooks of the fd@m (A + s) N 8, where
s is a shift, ands is a shaping region (to satisfy the power constraint). Tlapsiy
region is taken to be am dimensional sphere of radiugnP. Note that the shift
is there just to ensure a sufficient number of codewordsértsie shaping regiod.
Let Vs denote the volume of the shaping regkrfor j € {1,2,..., K}, transmitter
j communicates message € M = {1,...,2"%} toreceiverj. Foreachn; € M,

transmitterj assigns a codeword;(m) € €. We choose&?’, P’ such that

1 1
R< R < §log(1 + P’ < ilog(l + P).
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We denote the interference seen by recejvas/; and is given by

K

i=1,i#j
Next, we describe the decoding strategy at the receivers.

Decoding Strategy: For € {1,2,..., K}, receivery first decodes its total
interferencel; and then decodes its messagg In decoding the interferenck,
receiver; treats its own codewordd ; as noise. Hence, the total noise power seen by
receiver; when decoding interferendeis upper bounded b¥ + 1. It is important
to note here that, due to the symmetric nature of the chatireeinterferencd; at
receiver; is an element of latticeA. We describe the decoding strategy for receiver
j. The analysis is similar for other receivers and the detagsomitted here. We
first describe the choice of lattice and the shifts. The latticeA is chosen such

that:

e Condition (6.8) (Minkowski-Hlawka condition) is satisfied
e The volume of the Voronoi regioli = 2"V,

¢ In decoding the interference, the probability of error ipepbounded by

(6.11) witho? = 1 + P.

We choose a shift such that the codebodk| > 2", The existence of such a shift

is guaranteed by [88] for large

Decoding Strategy for Receivgr Receiver; first cancels the sum of the

interference caused by other transmitters and then de¢hdevessage intended
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for it. The received outpd; is given by

K
YVi=X;+a > Xi+7Z

i=1,i#j
As each transmitter uses the same latficehe interference caused by the
interfering transmitters at receivgiis aligned and is an element of\. Here, we
use the fact that the receiver knows the shitised by the interfering transmitter
and cancels them out. We use the Loeliger framework in [8@kicoding the total
interference. The volume of the Voronoi region of the indeghce lattice is given

by a™V'. The total noise seen in decoding the interference is given b

The noise power is limited in power by+ P and the noise is independent of the
interferencel;. With the choice of our lattice, the probability of decodiegor
denoted byP. ; is upper bounded by

Zn% log(2me(1+P))

P.r<4(1+9) ey (6.27)
Hence, the probability of error decays if
Liog (20PN Loy < (6.28)
2 a? n

Lemma 6.3.2 guarantees the choice of latficeuch that (6.27) is satisfied.
After decoding the total interferende, receiver; decodes its message from the
resulting point to point AWGN channel. In decoding its ownss&ge, receiver

uses the nearest neighbor decoding approach as descrif88].ir\s the latticeA
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satisfies (6.8), we can use the Urbanke - Rimoldi approaclkedodkt the intended

message at the receiver.
Then, from [88], it follows that the average probability adabding error
decays withm. Hence, receivej can decode its message successfully if

R < %log(l + P) (6.29)

Also by choosing sufficiently large, the condition for decoding the interference

with decaying probability of error as given in (6.28) redsite

, 1 a’P
R < §log (1 —|—P) . (6.30)

The very strong interference condition comes when the @tstcaints im-
posed by decoding the interference is less binding thandhst@aint imposed by
decoding their respective messages at the receivers. Herogery strong interfer-
ence condition is given when the constraint®due to (6.30) is less binding than

that due to (6.29), or when
(P+1)?

2
a® >
> D

(6.31)

By choosingR’ and P’ appropriately, we can show that ugeran achieve a
rate arbitrarily close t(% log(1 4+ P) under very strong interference condition. The
decoding strategy for other receivers is identical, and teaidentical constraints
on rates. Hence, each user can achieve a rate arbitrariig tg log(1 + ) when

the interference is very strong. This completes the prodihaforem 6.4.3.

In Theorem 6.4.3, we derived a “very strong” interferenagime for ai’

user symmetric Gaussian interference channel. The “vempgt interference con-
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dition we derived is weaker than the “very strong” interfeze condition for the two
user symmetric Gaussian interference channel. In Theorém,Gve show that we
can have the same “very strong” interference conditiorifarser symmetric Gaus-
sian interference channel by compromising on the rate wetliby each user. The
proof of Theorem 6.4.4 is very similar to the proof of Theorém.3. Hence, we

just present the main steps of the proof here.

Proof of Theorem 6.4.4\We show that if the cross channel gaisatisfies
a®> P+ 1,
then each user can achieve a rate given by

R; < —log(P),ie{l,...,K}.

N | —

The encoding strategy is similar to the one we described gofiém 6.4.3. Each
transmitter encodes its message using lattice coding bysthg the same latticé.
The shaping region used is ardimensional sphere of radiuénP. The codebook

used by each transmitter is of the fofin= (A N §) + s wheres is the shift used.

The decoding strategy used is also similar to the one usetdéofém thm
. very strong interference symmetric channel. Each recéirgt decodes the total
interference seen treating its own signal as noise. Aftecelng all the interfer-
ence, the receiver decodes its own message. The only difieris that, while in
Theorem 6.4.3, we used the Loeliger framework for decodiegnterference and
the Urbanke-Rimoldi framework for decoding the messag&heorem 6.4.4, we
use the Loeliger framework for decoding the interferenaktthe message. We first

describe the choice of lattick and the shifts. The latticeA is chosen such that:
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e Condition (6.8) (Minkowski-Hlawka condition) is satisfied
e The volume of the Voronoi region’ = 2-"%Vs.

¢ In decoding the interference, the probability of error ipepbounded by

(6.11) witho? = 1 + P.

We choose a shift such that the codebodk| > 2", The existence of such a shift

is guaranteed by [86] for large

We describe the decoding strategy at recejvand the associated rate con-
straints involved. The strategy for other receivers andale constraints involved
are identical. Receiver first cancels the total interference caused by other trans-
mitters and then decodes the message intended for it. Asetiever uses the
same Loeliger strategy for decoding the interference, tmstraints involved are
the same as in Theorem 6.4.3. Hence, receiwan decode the total interference if

1 a’P
< — .
s 2log<1+P)

After decoding the total interference caused by other trattars, receiver
j decodes the message intended for it. In this theorem, wénadeoeliger strategy
at receiverj for decoding message;. From [86], we can show that receivecan

decode message; with vanishingly small probability of error if

R< %log(P).

The very strong interference condition comes when the @tstcaints imposed by

decoding the interference is less binding than the comstraiposed by decoding
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their respective messages at the receivers. Hence if tmmehgaina satisfies
a?>1+P,
then each user can achieve a rate given by

R< %log(P).

This completes the proof of Theorem 6.4.4. We showed thatameachieve the
same “very strong” interference condition for theuser symmetric Gaussian in-
terference channel as for the two user symmetric Gaussiarference channel if

we allow for a% bit per channel use rate penalty for each user.

Next, we prove Theorems 6.4.5 which is generalization ofofém 6.4.4
for a class of three user non symmetric Gaussian interferehannels. Note that

equivalence generalization for Theorem 6.4.3 can be stat@dimilar fashion.

Main Steps in Proof of Theorem 6.4.%/e show that if the channel gains
satisfy (6.22), then each user can achieve the stated reté, be a lattice obtained
from Construction A, that the volume of its Voronoi regioreigual to/N;. Define
Ay = Z_ﬁ:’,;Al andA; = %Al. Note that this assignment and conditions given by
Equations 6.22 enforce the volume of the Voronoi regiondpand A5 to be IV

and N3, respectively.

Forj € {1, 2,3}, transmitter; encodes its message by lattice coding using
lattice A;. The shaping region used by transmitfas ann dimensional spherical
region of radius,/nP;. The codebook used by transmitters of the formC; =

(A;NS;) + s;, wheres; is the shift used by transmittgr
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The decoding strategy is following: each receiver first diesothe total
interference it sees from all the interfering transmittansl then decodes its own
message. Note that here, similar to that in Theorem 6.4.4useethe Loeliger
framework for decoding both the interference and the reiew@aessage. We de-

scribe the rate constraints involved in the decoding poaégeceivert .

Rate Constraints at ReceiverThe interference seen by receiveis given
by hi12As + hi3A3. From the choice of lattices, we can see that the interferenan

element of the latticé;3A3. Hence the interference can be decoded successfully if

1 h2, P,
Ry < =lo L) 6.32
=9 & <p2(P1 +0?) ( )
1 h2, P,
<4 ELEIY 6.33
R3_20g<P1+0'%) ( )

One can check that the above inequalities hold using thetatty; > o2.

After decoding the interference, receivadtecodes its messagg using the
Loeliger framework from the remnant point to point AWGN chah The message

m, can be decoded successfully if

1 Py
< — — | . .
R, < 5 log (N1) (6.34)

The rate constraints involved at receiv@rand3 can be similarly derived. From
the rate constraints, we can see that if (6.22) is satistet, ¢ach user can achieve
a rate within half a bit per channel use of its maximum possifdividual capacity.

Similarly, we can prove Theoremwhen (6.23) or (6.24) is satisfied.
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6.5 Layered Lattice Coding for K User Symmetric Gaussian In-

terference Channels

In this section, we use the “very strong” interference resad derived in
Section IV to derive a layered lattice coding approaclktoser symmetric Gaus-
sian interference channels. We show that the layereddatticling scheme can
achieve more than one degree of freedom for a large rangeaoheth parameters.
We also show that significant rate improvements can be alaising the layered
lattice coding scheme over the extension of the Han-Kolayamsling scheme to
K user interference channels. The main results of this seatie described in the

next theorem.

Theorem 6.5.1. [100, 101] Consider aK user symmetric Gaussian interference
channel with channel parameterand noise variancé at each receiver. The total

degrees of freedom of the channel satisfies

log(a?—1) 2
max (LK X log((K—lg)a4—(K—2)a2)> , ? = 22
= < <
Dy >4 (s KSa 2 (6.35)
log( ——% _
max 1,3><g1fj—K”2“;2> : <L
1°g< (K—1)aT )

Proof. : The proof of the Theorem fo§ < a* < 2is obvious, because a simple
time sharing scheme achieves one degree of freedom far.dtignce, we focus on

the other two cases.

First, we consider the casé > 2. As the channel is symmetric and we
are analyzing the total degrees of freedom, we look at ontyrsgtric rate points.

Forj € {1,2,..., K}, transmitterj communicates message; € {1,...,2"%}
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to receiverj. Transmitterj splits its message:; into NV partsm;, ..., m;y, such
that a rateR; is associated with thé” sub-message of each message. Fe&
{1,..., N}, thei'™ sub-message is encoded to codewstHby the;* transmitter,
which transmitsX ' = PO X7.. Also, each transmitter assigns a powgrfor
encoding itsi’* sub-message. Note that the subscript in rate and power ades n

indicate user, but the sub-messages. The p@&verchosen as
P =(a*—-1)((K—1)a"— (K —-2)d®>)"", ie{l,2,...,N}. (6.36)

We explain the encoding and decoding strategy below inldetai

Encoding Strategy: Each transmitter encodes all its suksages using lat-
tice coding, and chooses lattic&s, . .., Ay, shiftssy, ..., sy and spherical shap-
ing regionsS,, ..., Sy. The codebook foi* sub-message at each transmitters is

denoted bye; = (A; + s1) N S,.

Decoding Strategy: The received signal at recejvisr
N K N
Y X Y Yaxp+z)
i=1 k=1k#£j i=1
We denote the interference at receiyatue to thei'” sub-message from the other
transmitters by7; given by

K

Ii= > aXj. (6.37)
k=1,k#j

The decoding process at receiygroceeds throughv stages. At stagg receiver

j first decodes interferencE; and then decodes message;. In decoding the
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receiver; sees interference plus noise of

N K N
SNXn+ Y D> aXp+ 7y
k=1

I1=1,1#j k=i+1

interferencel T

with an interference plus noise power P; + fo:iﬂ((K —1Da?+1)Py + 1. In
decoding message;, receiver;j sees an interference plus noise
N 3 N
SNXn+ > Y aXp+ 7y
k=i+1 1=1,1#] k=i+1
with an interference plus noise powsr Eff:m((K — 1)a® + 1)P, + 1. Next,
we describe the choice of lattices, shifts and sphericabnsg before proceeding

to probability of error analysis and rate constraints atrdoeivers.

Choice of Lattices, Shifts and Shaping Regions: #ar{1,..., N}, each
transmitter chooses shaping regigyno be am dimensional sphere of radiyén P;.
The volume of the shaping regidiis denoted by/’s,. LatticeA; is generated using

construction A such that

e the volume of the Voronoi regioli; = 27"V |,

e in decoding interferencé}; at receiverj, the probability of error is upper

bounded by (6.11) with? = P, + ., (K — 1)a®> + 1)P, + 1, and

e indecoding message;; at receiver;, the probability of error is upper bounded

by (6.11) witho® = 3", | (K — 1)a® + 1) P + 1.

Finally, shifts; is chosen such that the cardinality of the codeb@goatisfiedC;| =

|(A; + s;) N S;| > 2", Next, we describe the probability of error analysis and rat
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constraints at receiver. The analysis and the rate constraints at other receivers ar

the same.

Receiverl first decodes interferend¢, and message:;;. The interference
plus noise power when decodidy is given byP, + S (K —1)a +1) P + 1.
With the choice of lattice\, the probability of decoding error is upper bounded by
onj log(2me(P1+3 1, (K—1)a?+1) Py +1))

PP < 4(1+90) T :
1

(6.38)

wherea"V; is the volume of the Voronoi region of the lattiad; (the interference

lattice of messagei,; andms;). Hence, the probability of error decays withf

2p
Ry < = log e . (6.39)
2 P+, (K=1)a>+1)P,+1

Similarly, in decoding the message, ;, the interference plus noise power seen by

receiverl is equal to3_, ,((K — 1)a® + 1)P, + 1. The probability of decoding

error is upper bounded by

ons log(2me( Ny (K —1)a?41) Py+1))
P < 4(1 4 9) T . (6.40)
1

Hence, the probability of error decays wiihif

1 P
Ry < 7 log (Zsz((K TR 1) . (6.41)

Proceeding along similar lines, at stagénterferencel/]; and message:;; can be

decoded successfully if

1 a’P,
R, < —log X , (6.42)
2 P> (K= 1)a®+1)P + 1
R; < 1log N b . (6.43)
2 Yok (K= 1a? + 1) +1
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The power values have been chosen so that the “very strotegfenence condition
is satisfied at each stage. The noise plus interference smeer at stagein de-
coding interferencé]. and message.,; is equal ttof:Hl((K —1)a*+1)P, +1.
From the power assignments in (6.36), we can see that

9 P,
S — 1
D okmis1 (262 + )P +1

a
With the choice of power values as in (6.36), the rate at etdeds given by
1 2
R; = 5 log(a” —1). (6.44)

For R; to be positive, we need® > 2. Hence, the total rate achieved by each user
is given by

R:%bgf—lw. (6.45)

Also, the total power used by each transmitter is given by

P - P1+—|—PN

< (K -1)a"— (K —2)a*)". (6.46)

Taking NV to oo, we get the desired result. That is,

' KR log(a® — 1)
lim — > K x .
N.P—oo £1og(P) ~ log((K — 1)a* — (K — 2)a?)

(6.47)

Next, we consider the cagé < % The proof for this case is very similar to that of
a® > 2 with very few modifications. We again focus only on symmetates. For

j € {1,2,3}, transmitter; splits its message: € {1,...,2"} into N sub-parts
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mj1, . .., m;jy such that ratd?; and power”,; is associated with th&" sub-message.

PowerP; is chosen as

B 1—a? 1+ (K —2)a? N=i
b= (K —1)a* ( (K —1)a* ) ' (6.48)

The encoding strategy is similar to the one described focdisen? > 2 in that each
transmitter uses lattice coding to encode all its sub-ngessaHowever, the decod-
ing strategy is slightly different. The decoding procesaiagroceeds throughv
stages. In stagg receiver; first decodes message;; and then decodes interfer-
encel;. Thisis because decoding interference first leads to ratst@nts that are

more binding than the constraints due to decoding the messag

Choice of Lattices, Shifts and Shaping Regions: #ar{1,..., N}, each
transmitter chooses shaping regiyrto be an dimensional sphere of radiygn P;.

Lattice A; is generated using construction A such that

e the volume of the Voronoi regioli; = 2"V |,

e in decoding interferencé’; at receiverj, the probability of error is upper

bounded by (6.11) with?> = 3", (K — 1)a® + 1)P; + 1, and

¢ indecoding message;; at receiver;, the probability of error is upper bounded

by (6.11) witho? = (K — 1)a®P, + > i, (K — 1)a® + 1) P, + L.

Finally, shifts; is chosen such that the cardinality of the codeb@osatisfieqC;| =

|(A; + s;) N S;| > 274, The details of the probability of error analysis are simila
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to the case? > 2 and are omitted here. Using the power assignments in (6:8),

see that each user achieves a ratéor its i sub message given by

1 1 —a?
R, = =1 — ). 6.49
o (=) 649
For R, to be positive, we must have < % Hence, each user achieves a total rate
R given by
1 1—a® \V
=1 SE—— 6.50
=35 Og((K—l)a2) (6.50)

The total power expended by each transmitter is given by

P - P1—|——|—PN

(1+(K—2)a2)N.

& Do (6.51)

Taking NV to oo, we get the desired result. This completes the proof of Téraor

6.5.1. O

Remark6.5.1 From (6.35), we can see that the achievable total degreesemfdm
tends toK'/2 as the channel gain— oo, and wheru — 0. We should also see that

when the channel gain = 0, then we can actually achieve degrees of freedom.

In Figure 6.7, we plot the degrees of freedom that we achava $ymmet-

ric three user Gaussian IC using the layered lattice codapgaach.

In this section, we proposed a layered lattice coding sclenike symmet-
ric K user Gaussian interference channel and we analyzed theesegjfr freedom
that we can achieve using this approach. We showed that waocteeve more than

one degree of freedom for a large range of channel paranatdrshowed that the
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Figure 6.7: Plot of Achievable Degrees of Freedom vergus

total degrees of freedom achievable tend&{@ when the cross channel gain tends

1o oo.

6.6 Layered Lattice Coding Scheme for Non-Symmetric Inter-
ference Channels
In this section, we briefly analyze the degrees of freedorhreiet user non-
symmetric Gaussian ICs. We use the same layered latticeagagheme that we
used for the symmetric case. To present the main ideas amah&bytical tractabil-
ity, we restrict ourselves to the following class of threenuSaussian IC with chan-

nel matrix given by
1 a1 aq
H = a9 1 a9 s (652)

a3 das 1
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wherea?, a3, a2 > 2. Without loss of generality we assume < a, < az. The
analysis for other channel matricesiihe H,; are similar to the one presented and

is omitted here. We describe the encoding and decodinggtréielow:

Forj € {1,2, 3}, transmitterj communicates message € {1,...,2"%}
to receiverj. Transmitter; splits its message inty parts -m;,, m;,, ..., mjy such
that rateR?;; is associated with thé" sub-message. Fore {1, ..., N}, transmitter
j encodes message;; into codewordX7; and transmits\ ' = SV X7 Also,

transmitterj assigns powepP;; to encode its'* sub-message.

Encoding Strategy: Each transmitter encodes all its suksages using lat-
tice coding, and chooses lattices . .., Ay. Transmitterj chooses shifts;;, ..., s,y
and spherical shaping regiofs,, . . ., S;x. The codebook for thé”" sub-message

at transmitterj is denoted byt;; and is given by¢;; = (A; + s;;) N .Sj;.
Decoding Strategy: The received signal at recejvisrgiven by
N 3 N
VoYX Y YeXiez)
i=1 1=1,1#j i=1
We denote the interference at receiyatue to thei' sub-message from the other
transmitter byl”; and is given by

3

=Y aXp

1=1,1#j
The decoding process at receiygoroceeds throughv stages. At stagg receiver

j first decodes interferendg; and then decodes its sub-messagge In decoding
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interferencel

T, receiver; sees an effective noise power of

N 3 N
oL =1+Pi+ Y P+ Y > aiPy (6.53)

l=i+1 1=1,1#] k=i+1
In decoding message;;, receiver; sees an interference plus noise power of
N 3 N
on. =Y Pui+ > Y alPy (6.54)
l=i+1 1=1,l#£] k=i
The choice of lattices\;, shiftss;; and shaping regionS;; are similar to those
described in Theorem 6.4.3 and the details are omitted k¢gechoose the powers
P;; such that the “very strong” interference condition is degtat every decoding
stage. That is, at staggethe rate constraints aRl;; due to decoding interferendg
at receiverl is less binding than the constraint imposed due to decodiessage

m;; at receiverj. Hence, we choose powers such that

— min (252 2 2 2 2
Py = min(ato,,, —o0;, ,ajo,. . —0..)
i (242 2 2 2 2
Py = min(azo,,  — o0, 050, — 0p,) (6.55)
— min (242 2 22 2
Py; = min(azo,, . — 0;,.,0505,, — 0p.).

The rate achieved by usgiat stage is given by

1 Pj;
Rji = 5 lOg (U; ) . (656)

The total power used by transmittgrs given by
Pj:le—l-f)jg—F...f)jN.

The total degrees of freedom then satisfies

3 N
. Zj:l Ei:l Rji
Dowm > limsup T :
P+ Pt Pyooo 210g(Py + Py + P3)
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However, unlike the symmetric channel case in Theorem Gwie3have not been
able to derive closed form expressions for the total degréégedom achievable
for non-symmetric channels. We illustrate the total degmafefreedom achieved

for an example channel (derived numerically) in Figure &8 degree of freedom

15
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Figure 6.8: Achievable Degrees of Freedom for an examplerdiaa, = 2a, ay =
3a, a3 = 4o

analysis for other non symmetric three user Gaussian er@rte channels with
channel matrix{ € 3, follows along the same lines as the analysis for the channel

given by (6.52).

6.7 Comparing Lattice Coding with an extension of Han Kobayahi
with i.i.d Gaussian Coding

In this section, we compare our layered lattice coding aggiavith a cod-

ing scheme that resembles of Han-Kobayashi scheme, extéodbe case of a
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three user symmetric Gaussian IC. In the Han-Kobayashingosicheme for the
two user IC [4], each transmitter splits its message intogasds, a private part and
a common part. For decoding, each receiver decodes its geeasd the common
message transmitted by the interfering transmitter. Inextension of this scheme
to the three user IC, each transmitter splits its messagdont parts - one private
part and three common parts. For instance, transniitggtits its message:; into
four parts - 1)mn,,, the private part, 2)n,,, the common part which is also decoded
by receiver?, 3) m,3, the common part which is also decoded by receivand 4)
mq23, the common part which is decoded by receizasnd3. In this extended ver-
sion of the Han-Kobayashi scheme, we restrict ourselvesaiss&8an codebooks.
Finally, as the channel is symmetric, we restrict our congparto the maximum
symmetric rate that can be achieved using the two approadneghe next Lemma,
we derive a symmetric rate point that can be achieved usmtatfered lattice cod-
ing approach for the three user symmetric Gaussian IC widkscchannel gain

and power constrain®. We defineP as follows

( )(2;1(14_(1(12 1 ’If
N A
Pr = 1a(2) 17f - ) (6.57)

2a4 (1+a )
2a4 -1

W=

Let Ry (P, 0% a) denote the maximum symmetric rate that can be obtained by
Han-Kobayashi coding scheme in a three user symmetric @auks with power

constraintP, noise at the receiver’ and the cross channel gain equakto

INote that, for asymmetric points on this channel’s achikesadgion, our comparison does not
hold and the extended Han-Kobayashi style coding may berdatperformance.
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Lemma 6.7.1. Consider a symmetric three user Gaussian IC with cross oblann
gaina and power constrainP at each transmitter. Then

a) if a®> > 2and P < a? — 1, each user can achieve a symmetric rate given by
Roym = %log(P). (6.58)
b) If a> > 2, and there exists intege¥, > 0 such that
PN < p < PN

then each user can achieve a symmetric rate given by

(202 + 1)(P — P;W))
14 (2a2 4 1)PM

N 1
Rym = 71 log(a® — 1) + 3 log (1 + (6.59)

c) If a®> > 2, and there exists intege¥; > 0 such thatPM = P, then each user

can achieve a symmetric rate given by

N
Ryym = 71 log(a? —1). (6.60)

d)Ifa* < iandP < 1-a® each user can achieve a symmetric rate of
Rsym - fRHK(P, a, 1) (661)
e) If «®> < 1 and there exists intege¥, > 0 such that

PN < p < phott

then each user can achieve a symmetric rate of

Rgym = MaX;=n,—1:N, %IOg 12_;;2 + (6.62)
Ruk(P = P;, (20> + 1) P}, a)
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f)If a® < % and there exists intege¥, > 0 such that? = P2, then each user can

achieve a symmetric rate given by

N2 1-— a2
=21 . .
Rym 5 108 ( 52 ) (6.63)

The proof of the above Lemma is very similar to the proof of diieen
6.5.1 and is therefore omitted. It should be noted that feesgb) and (e) in the
lemma, we use Han-Kobayashi style encoding and decodinthéofirst layer of
the codebook. This is because, the power allocated to théd ig not sufficient
enough to benefit from lattice coding. Figure 6.9 comparessymmetric rate
point achievable using the layered lattice coding appredtinthe maximum sym-
metric rate that can be achieved using Han-Kobayashi sclieme = 2.5 and
a = % Note that in our layered lattice coding approach, we restnirselves to
identical power splitting approach by all the transmittérkis can be generalized
to different power splitting schemes and can lead to a higgterachieved by the
lattice coding scheme. However, it is interesting to noét @ven a possibly subop-
timal lattice coding scheme significantly outperforms oxteaded version of the

Han-Kobayashi style scheme with i.i.d. Gaussian codehooks

This shows that while the Han-Kobayashi coding scheme (@agessplitting
and random coding) with Gaussian codebooks is optimal foimvdne bit for a two
user Gaussian IC [13], a natural extension of this schemienaptven in terms
of degrees of freedom for larger ICs with more than two trattemreceiver pairs.
Lattice coding, while allowing the interference to be demavithout decoding the

interfering messages places fewer constraints on the oatég interfering users.
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Figure 6.9: Comparing Han-Kobayashi and Layered Latticei@pfora = 2.5

In particular, it eliminates the MAC type constraints thasa when decoding the

interfering messages separately.

6.8 Conclusion

In this chapter, we study the impact of using structured saeak’ > 2
user interference channel. We find that it benefits both tlagaderization of the
achievable rate, and enables us to characterize the cleaocaghcity for a class of
very strong interference channels. Lattices enable usdao aiterference signals,
and thus allow for achievable rate characterizations fargel class of Gaussian
interference channels. Note that extending this work tatrarty (irrational chan-
nel gains) asymmetric Gaussian interference channels witayenstraightforward.

However, there is recent work on determining the DoF of sinanoels [75, 98].
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Chapter 7

Conclusions and Future Work

This dissertation has focused on analyzing the capacitypmegf a two
broad classes of interference networks - cognitive netsvarid/” user interference
channel. The capacity region of interference networks legs @an open problem
for several decades. In this dissertation, we have takenfisignt steps in under-
standing the capacity behavior of several cognitive radamlels. We have also
analyzed theil user interference channel and devised a lattice basedergnce
alignment scheme to derive significant rate benefits ovardathditional transmis-
sion strategies. We summarize the main conclusions of 8sedation and discuss

possible future work.

7.1 Cognitive Radio Networksl

In Chapter2, we studied the MIMO cognitive radio channel and derived an
achievable region and outer bound on the capacity regioa.athievable region is
based on lattice coding and is quite similar to the singleram model. The outer
bound was derived through a series of channel transforme#ad is significantly
different than the bounds derived for single antenna casealdd derive possible

channel conditions in which the achievable region mighttrtfeeouter bound.
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In Chapter3, we extended the cognitive radio channel to multiple access
networks. We considered a three transmitter, two recepjgems with two licensed
transmitters transmitting to a common licensed receivdraacognitive transmitter
transmitting to a cognitive receiver. We derived outer siand achievable region
for the discrete memoryless channel. We also showed th#ttédgaussian channel
model, Gaussian signalling at the transmitters is optimatmwthe cross channel

gain from the cognitive transmitter to the licensed receiseveak K 1).

In chapter4, we analyzed the capacity region of cognitive relay network
In this channel model, we essentially have a two user inenfee channel with a
cognitive relay which has access to the messages of thentitders We derive an
achievable region based on Han-Kobayashi message gpkitic dirty paper cod-
ing for both the messages. We also derive an outer bound arafaeity region of
such networks. The outer bounds are derived by permittargsinitter and receiver

co-operation. We also derived the degree of freedom redisnah networks.

In all the above cognitive radio models, it is assumed thattygnitive node
has access to the messages transmitted by the other nodgmpiers, we study
a more practical model of cognitive radio in which the cogmittransmitter has
access to only a portion of the message of the licensed titesm\We analyze
the capacity region of partial cognitive radio channel aedwé outer bounds and

achievable region for the discrete memoryless and the @aussannel model.
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7.1.1 Future Work

While a lot of research has been done on cognitive radiositetst decade,
there are still a lot of open problems. The capacity regiothefcognitive radio
channel with single antennas has been well understood. wwywender multiple
antenna setting, optimal strategies are still unknown.higa dissertation, we ex-
tended the cognitive radio to a two user multiple access ortwEXxtensions to
larger MAC and other network configurations are still pokesilA lot of work re-
mains to be done on the field of cognitive radios with part@gration. Such a

channel model is very practical and and needs to be undersia@peater detalil.

7.2 K User Interference Channel

In chapter6, we analyzed the capacity region ofkauser interference chan-
nel with K transmitter-receiver pairs. use lattice coding as anfiettence align-
ment transmission strategy to study the channel. We deaweasdy strong interfer-
ence regime for thé&l user symmetric Gaussian channel and extended it to a class
of non-symmetric channels. We used the very strong intemfas regime to derive
a layered lattice coding scheme. We use the layered latideg scheme to ana-
lyze the degrees of freedom of the channel and also to decievar transmission
strategy for all power levels. We show that significant raeddits can be obtained

over other traditional transmission strategies.
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7.2.1 Future Work

Several prominent researchers are currently working onrspthe capacity
region of theK user interference channel. Significant advances have bada n
this effort over the last two or three years. It has been shaegantly that/i'/2
degrees of freedom can be achieved for almost all channahpeers. Future work
will revolve around characterizing the capacity regiontod K user interference
channel to within a finite number of bits. Extending the tatcoding scheme to

any general interference network will also be a challengiraiplem.
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