
Copyright

by

Sriram Sridharan

2010



The Dissertation Committee for Sriram Sridharan
certifies that this is the approved version of the following dissertation:

Capacity of Interference Networks: Achievable Regions and

Outer Bounds

Committee:

Sriram Vishwanath, Supervisor

Gustavo de Veciana

Sanjay Shakkottai

David Morton

Angel Lozano

Shlomo Shamai (Shitz)



Capacity of Interference Networks: Achievable Regions and

Outer Bounds

by

Sriram Sridharan, B.Tech., M.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2010



To my parents



Acknowledgments

First and foremost I would like to thanks my supervisor Prof.Sriram Vish-

wanath for his continued technical guidance in my research.From the very begin-

ning his constant motivation and technical inputs have beenextremely helpful and

allowed me to make progress in my research. He has also been instrumental in

funding my research through generous grants from NSF and AROthroughout my

studies and I never had to worry about the research funding.

I would also like to thank Prof. Sanjay Shakkottai, Prof. Constantine Cara-

manis for allowing me to attend their research group meetings which helped me

greatly in grasping the fundamentals of other research areas such as Networks and

Optimization. I would also like to thank all the other professors in WNCG who

have helped me greatly at various stages during my Ph.D.

I would also like to thank the professors at my undergraduatecollege, Indian

Institute of Technology, Madras. Professors like R. Arvind, V.V. Rao, Bhaskar

Ramamoorthy, Jayashankar were instrumental in shaping my interest in research in

wireless communications.

I really enjoyed doing research in WNCG. It has been a pleasure working

with so many high quality researchers. During my Ph.D. I havehad many useful

research discussions in WNCG with Shreeshankar Bodas, Sundar Subramanian,

Rahul Vaze, Harish Ganapathy, Rajiv Soundararajan, Jubin Jose, Amin Jafarian,

v



Brian Smith, Caleb Lo, Aneesh Reddy.

During my stay in Austin, I have had the pleasure of having a lot of good

friends. In my initial days Sandeep Badra and Avinash helpedme a lot in getting

settled in. They were very generous and extraordinarily courteous hosts. My var-

ious roommates over the years, Sathish, Arvind, Srikanth, Shankar, Sreekanth and

Hari have been good friends and a great source of support. It will be hard to forget

the various friends I made by playing cricket. Playing cricket has been an integral

part of my life here in Austin. It has been a great hobby for me and It has been a

privilege playing with Divya, Amit, Sreeni, Shiva, Karthik, Gaurav, Sachin, Dhoni,

Tushar, Rahul, Harish, Sibi.

I am also thankful to my parents and brother for their constant support,

and encouragement. They have been a constant source of motivation for me all

throughout my life. My entire family have always been very helpful, and have

always been right behind me. I really appreciate their support.

vi



Capacity of Interference Networks: Achievable Regions and

Outer Bounds

Publication No.

Sriram Sridharan, Ph.D.

The University of Texas at Austin, 2010

Supervisor: Sriram Vishwanath

In an interference network, multiple transmitters communicate with multi-

ple receivers using the same communication channel. The capacity region of an

interference network is defined as the set of data rates that can be simultaneously

achieved by the users of the network. One of the most important example of an

interference network is the wireless network, where the communication channel is

the wireless channel. Wireless interference networks are known to be interference

limited rather than noise limited since the interference power level at the receivers

(caused by other user’s transmissions) is much higher than the noise power level.

Most wireless communication systems deployed today employtransmission

strategies where the interfering signals are treated in thesame manner as thermal

noise. Such strategies are known to be suboptimal (in terms of achieving higher data

rates), because the interfering signals generated by othertransmitters have a struc-

ture to them that is very different from that of random thermal noise. Hence, there is
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a need to design transmission strategies that exploit this structure of the interfering

signals to achieve higher data rates. However, determiningoptimal strategies for

mitigating interference has been a long standing open problem. In fact, even for the

simplest interference network with just two users, the capacity region is unknown.

In this dissertation, we will investigate the capacity region of several models of

interference channels. We will derive limits on achievabledata rates and design

effective transmission strategies that come close to achieving the limits. We will in-

vestigate two kinds of networks - “small” (usually characterized by two transmitters

and two receivers) and “large” where the number of users is large.
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Chapter 1

Introduction

An interference network is characterized by multiple transmitters commu-

nicating with multiple receivers using the same communication channel. Practical

wireless networks such as the cellular networks are important examples of interfer-

ence networks, where the common communication channel is the wireless channel.

Wireless interference networks are known to be interference limited since the in-

terference power (caused by signals transmitted by other users) received by each

destination is at a higher level than the noise power. The capacity region of a wire-

less interference network is the set of data rates that different transmitter receiver

pairs can achieve simultaneously, and hence determines thefundamental limits of

performance of the network.

Determining the capacity region of wireless interference networks is a hard

problem, because of the inherent decentralized nature of the interference network,

whereby the co-operation that can be achieved between transmitters or between

receivers is very limited. Most practical systems deal withinterference either by

treating it as noise or by separating different user’s transmissions in orthogonal

time/frequency/space. It is known that these transmissionstrategies are in gen-

eral suboptimal since, interference generated by other transmitters usually have a
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structure to them that is significantly different from that of random thermal noise.

Moreover, separating user’s transmissions in orthogonal time/frequency/space af-

fects the data rate achieved by the users, because the users are transmitting only for

a limited duration or over a limited band of frequency. Hence, there is a need to

design transmission strategies that exploits the structure of the interfering signals

and enables simultaneous transmission by all the users. Examples of a couple of

transmission strategies that do not require too much co-operation between trans-

mitters or receivers and that are effective in mitigating interference are interference

alignment and interference cancelation at receivers.

In this research, we investigate the capacity region of several classes of wire-

less interference networks. We derive limits on data rates that can be achieved

in these networks and design effective transmission strategies that come close to

achieving these limits. The rest of the chapter is organizedas follows: In Sec-

tion 1.1, the information theoretic model of the interference channel is introduced

and the current state of this research area is summarized. The classes of interference

networks that are studied in this thesis are presented in Section 1.2. The motivations

for studying the selected class of interference channels are presented in Section 1.3.

The thesis statement and contributions are presented in Section 1.4 and1.5. Finally,

Section 1.6 provides the organization of the rest of the thesis.

1.1 Interference Channel

In an interference channel, multiple transmitters communicate with multiple

receivers using the same communication channel. Figure 1.1depicts a general two
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Common Communication

Medium

Transmitter 1

Transmitter 2

Receiver 1

Receiver 2

Figure 1.1: General Two User Interference Channel

user interference channel, where transmitter1 communicates with receiver1 and

transmitter2 communicates with receiver2 and their transmissions interfere with

each other. The capacity region of a two user interference channel is the set of data

rate pairs that can be simultaneously achieved by both the users.

The interference channel was first studied from an information theoretic

perspective in [1]. In [2], simple and fundamental inner andouter bounds were

derived for the two user (two transmitters and two receivers) interference channel.

Throughout this report, we will refer to a two user interference channel as a channel

with two transmitters and two receivers as depicted in Figure 1.1.

A major breakthrough towards determining the capacity region of a two user

interference channel came from the achievable rate region derived in [3], where

message splitting was used as a transmission strategy. In message splitting, both

the transmitters split their messages into two parts - a private part and a common

part. The receivers first decode the common parts of the message transmitted by

the two transmitters and then decode the private part of the message intended for

them after canceling the interference caused by the common part of the messages.

3



In [4], an improved achievable rate region is derived by allowing each receivers to

jointly decode the common messages of both transmitters andthe private message

of its corresponding transmitter. The achievable rate region derived in [4] is the

best known achievable rate region for the two user interference channel to date. For

larger interference networks with more than two users, interference alignment has

been used as an effective transmission strategy in derivingorder optimal achievable

rate regions in [5–8].

Several outer bounds on the capacity region of interferencechannels have

been derived over the past three decades. In [9], an outer bound for the two user

discrete memoryless interference channel is derived (an interference channel is dis-

crete memoryless if the channel inputs and outputs are discrete and the channel state

is independent across time slots). In [10], an outer bound onthe capacity region of

a two user Gaussian interference channel is derived by allowing the two transmit-

ters to fully co-operate with each other. In [12], Kramer derived outer bounds on

Gaussian interference networks by providing extra side information to the receivers

(side information is usually information about transmit signal or received signals of

other transmitters and receivers). The same technique has also been used in [13–16]

in deriving other outer bounds for Gaussian interference networks.

Even though interference channels have been studied for several decades,

determining the capacity region of even the two user interference channel is still an

open problem. The capacity region of the two user interference channel is known

only for certain special cases described in [17–21]. In a recent result [13], outer

bounds are derived for the two user Gaussian interference channel that differs from

4



known inner bounds by within one bit. In other recent results[14–16], the sum

capacity of the Gaussian interference channel is derived for a wide range of channel

parameters (the channel gains from transmitters to receivers).

In this research, we will investigate the capacity region ofseveral classes of

interference networks. In the next section, we will introduce the different models

of interference networks that we study.

1.2 Interference Network Models

The objective of this research is to derive limits on achievable data rates for

several models of interference networks and design effective transmission strategies

that come close to achieving the limits. The models that we will study include:

1. Cognitive Interference Networks: In a cognitive interference network, some

of the transmitter nodes have some side information (about the transmit sig-

nals from other transmitters). We will study two sub-classes of cognitive

interference networks.

(a) Cognitive Radio Channel : This is a two user Gaussian interference

channel with two user pairs - the licensed transmitter - receiver (tx -

rx) pair and the cognitive tx - rx pair. It is assumed that the cognitive

transmitter knows the message transmitted by the licensed transmitter

apriori.

(b) Cognitive Relay Network : This is a Gaussian interference network with

the presence of extra cognitive relay nodes. Relay nodes serve to assist

5



the transmitters in communicating their messages to their receivers. In

this model, it is assumed that the relay nodes know the message of all

the transmitters apriori.

(c) Cognitive Radio Channel in Multiple Access Networks: This is an inter-

ference network with three transmitters and two receivers.Transmitters

1 and2 are the licensed transmitters transmitting messages in a multiple

access manner to a common licensed receiver. We also have a cogni-

tive transmitter-receiver pair communicating in the same spectrum as

the licensed users. It is assumed that the cognitive transmitter knows

the messages transmitted by both the licensed transmittersapriori.

(d) Cognitive Radio Channel with partial cognition: This isa two user

Gaussian interference channel with two user pairs - the licensed trans-

mitter - receiver (tx - rx) pair and the cognitive tx - rx pair.It is assumed

that the cognitive transmitter knows a portion of the message transmit-

ted by the licensed transmitter apriori.

2. Large Interference Networks: We will investigate the capacity region ofk

user interference channel. This is a Gaussian interferencechannel withk

transmitters andk receivers, and each transmitter transmits an independent

message to its corresponding receiver.

6



1.3 Motivation

The capacity region of wireless interference networks determines the set of

all possible data rates that can be achieved by the users in the network. Determining

the capacity region of wireless interference networks is thus an important problem.

In this research, we will derive effective bounds on the capacity region of several

classes of wireless interference networks. These bounds will provide insights into

the capacity regions of a much wider class of wireless interference networks.

First, we will analyze the capacity region of cognitive interference networks.

In the cognitive radio channel model, some transmitter nodes are cognitive and

have side information on the transmission signals of other transmitters. For exam-

ple, information theoretic models of cognitive radio networks assume that cognitive

transmitters know the messages transmitted by other transmitters. This enables in

designing transmission strategies incorporating transmitter co-operation, which is

impossible to achieve in the absence of any side information. Obtaining such side

information is not very impractical. In scenarios when a transmitter is located very

close to another transmitter, it is possible that a transmitter is able to decode the

message of the other transmitter faster than the intended receiver. The cognitive

transmitter can then help the other transmitter in transmitting its information to its

receiver. This model of cognitive radio channel can also serve as a new way in

which software defined radios or cognitive radios can be implemented. Cognitive

radios were originally thought of as devices that could communicate over the por-

tion of the licensed spectrum unoccupied by licensed users.This model was used

so that the cognitive users do not cause interference to the licensed users. By pro-
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viding the cognitive radios with the message of the licensedusers, we can allow the

cognitive users to access the entire spectrum, while still being able to limit the in-

terference caused to the licensed users. We also extend the channel model to study

cognitive radio channels in multiple access networks. In this channel model, we

have multiple licensed transmitters communicating with a common receiver in a

multiple access manner. We also have a cognitive transmitter-receiver pair where

the cognitive transmitter knows the messages of the licensed transmitters in an apri-

ori manner.

Next, we will analyze cognitive relay networks. These are essentially in-

terference networks, where additional cognitive relay nodes are deployed to assist

the transmitting nodes in their communication. Relay nodesserve to increase the

data rates and coverage of a network. The transmission strategies currently used in

many relay based networks is the multi-hop communication, where the transmitter

first transmits to the relay node and the relay node then transmits the information

to the receiver. Transmission strategies that involve simultaneous transmission by

both the transmitter and the relay to the receiver can lead tosignificantly higher data

rates, particularly if the receiver is not very far from the transmitter.

In the above cognitive radio channel models, we assume that the cognitive

transmitter/relay knows the messages transmitted by the other transmitters in an

apriori manner. While obtaining such side information is possible in systems where

the cognitive transmitter is located close to the licensed transmitters, it might not

always be possible in practical networks. Hence, we study a cognitive radio channel

model where the cognitive transmitter has access to only a part of the message

8



transmitted by the licensed transmitter.

In analyzing the above mentioned cognitive interference networks, we will

invariably deal with small sized networks (usually with twotransmitters and two

receivers). Most practical wireless interference networks are large and have many

users interacting with each other over the common wireless channel. Determining

the capacity region of thek user interference channel is an important step towards

analyzing large wireless interference networks. In ak user interference channel,

there arek transmitter-receiver pairs, and each transmitter transmits an independent

message to its corresponding receiver. While a lot of research has been done on

the two user interference channel, little progress has beenmade in analyzing thek

user interference channel. The message splitting transmission strategy used in [4]

for the two user interference channel is not expected to workvery well for thek

user case. In this dissertation, we will use lattice coding techniques to design novel

interference alignment transmission strategies to determine the capacity behavior

of such communication networks.

1.4 Thesis Statement

Analyzing the capacity region of a class of interference networks including

various cognitive radio channel models and the generalK user interference channel.

9



1.5 Contributions

In this research, we will derive achievable rate regions andouter bounds on

the capacity region of several classes of interference channels. The contributions of

this thesis are summarized below:

1. Cognitive Radio Channel : We derive an achievable rate region and an outer

bound on the capacity region of a two user Gaussian cognitiveradio chan-

nel, where all the transmitters and receivers have multipleantennas. This

channel will be termed “Gaussian MIMO cognitive radio channel”, where

MIMO stands for Multiple Input and Multiple Output. In this cognitive ra-

dio channel, we assume that the cognitive transmitter knowsthe message of

the licensed transmitter apriori. The transmission strategy used to derive the

achievable rate region is based on power splitting and dirtypaper coding [22]

at the cognitive transmitter. The outer bound is derived through a series of

channel transformations. We show that the achievable rate region and outer

bound partially meet under certain channel conditions.

2. Cognitive Radio Channel in MAC Networks : We derive achievable regions

and outer bounds on the capacity region of a cognitive radio channel in a

multiple access network. In this channel model, we have two licensed trans-

mitters communicating with a common receiver in a multiple access manner.

We also have a cognitive transmitter-receiver pair where the cognitive trans-

mitter knows the messages of the licensed transmitters in anapriori manner.

We also derive the capacity region of such a channel model under certain

10



channel conditions.

3. Cognitive Relay Network : In this network setup, we study atwo user Gaus-

sian interference channel with a cognitive relay. We compute an achiev-

able rate region by employing a transmission strategy that combines Han-

Kobayashi coding scheme [4] with dirty paper coding [22]. Wealso derive

outer bounds on the capacity region of the channel.

4. Cognitive Radio Channel with partial cognition : We consider a two user

cognitive radio channel with a licensed and cognitive transmitter-receiver pair

where the cognitive transmitter has access to only a portionof the message

transmitted by the licensed transmitter. We derive achievable regions and

outer bounds on the capacity region of such a channel model.

5. K User Interference Channel : We study the GaussianK user interference

channel model withK transmitter-receiver pairs. We use lattice coding to

derive a novel interference alignment transmission strategy to analyze the ca-

pacity region of such a channel model. We derive the capacityregion of such

channel under certain strict symmetric channel conditions. We also determine

how the sum capacity scales with increasing power in the system for a larger

class of such channel models.

1.6 Organization

The rest of the dissertation is organized as follows: in chapter 2, we derive

results on the capacity region of the two user MIMO cognitiveradio channel. In
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chapter3, we analyze the capacity region of cognitive radios in MAC networks. We

study the capacity region of cognitive relay networks in chapter4. In chapter5, we

analyze the capacity region of cognitive radio channel model with partial cognition.

In chapter6, we analyze the capacity region ofK user interference channel using

lattice coding schemes. Finally, we conclude in chapter7.
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Chapter 2

Capacity Region of MIMO Cognitive Radio Channel

In this chapter, we analyze the capacity region of a two user Gaussian

MIMO cognitive radio channel. The cognitive radio channel we consider is a two

user interference channel with a licensed transmitter-receiver pair and a cognitive

transmitter-receiver pair. It is assumed that the cognitive transmitter knows the

transmissions of the licensed transmitter apriori and usesthis knowledge to design

its own transmission signals.

2.1 Introduction

The design of radios to be “cognitive” has been identified by the Federal

Communications Commission (FCC) as the next big step in better radio resource

utilization [23]. The term “cognitive” has many different connotations both in anal-

ysis and in practice, but with two underlying common themes:intelligencebuilt

into the radio architecture coupled withadaptivity.

Cognitive radios have been studied under different model settings. The first

models studied cognitive radios as a spectrum sensing problem [24–27]. Under

this setting, the cognitive radio opportunistically uses licensed spectrum when the

licensed users are sensed to be absent in that band. Problemsencountered in this
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setup are threefold :

1. Sensing must be highly accurate to guarantee non interference with the li-

censed radio.

2. Control and coordination between the cognitive transmitter receiver pair is

required to ensure the same spectrum is used, and finally

3. There are no QoS guarantees for the cognitive transmitterreceiver pair.

Other models with different side information at the cognitive users have been stud-

ied. In [28] and [29], the authors study frequency coding by the cognitive transmit-

ter by assuming non causal knowledge of the frequency use of the primary trans-

mitter. Other works on this model include [30–38].

In this chapter, we study cognition from an information theoretic setting

where we assume that the cognitive transmitter knows the message of the licensed

transmitter apriori. Such a model is interesting for two reasons : 1) It provides

an upper limit, or equivalently a benchmark on the performance of systems where

the cognitive radio gains a partial understanding of the licensed transmitter and 2)

It allows us to understand the ultimate limits on the cognitive transmitter by giv-

ing it maximum information and allowing it to change its transmission and coding

strategy based on all the information available at the licensed user. In essence, it en-

larges the possible schemes that can be implemented at the cognitive radio, and 3)

It lends itself to information theoretic analysis, being a setting where such tools can

be applied to determine the performance limits of the system. Many other config-

urations, including the interference channel setting whenthe cognitive transmitter
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does not know the message of the licensed transmitter are multi-decade long open

problems.

The goal of this chapter is to study the fundamental limits ofperformance of

cognitive radios. Along the lines of [39], we consider the model depicted in Figure

2.1. In this setting, we have an interference channel [3,4,11,18], but with degraded

message sets, where the transmitter with a single message iscalled “legacy,” “pri-

mary” or “dumb” and the transmitter with both messages termed the “cognitive”

transmitter. Prior work on this model for the single antennacase is in [39–43]. Re-

cently, the capacity region of the single antenna cognitiveradio channel was derived

to within 1.87 bits per channel use [44,45].

In this chapter, we study the performance of the cognitive radio model under

a multiple antenna (MIMO) setting. Both the licensed and cognitive transmitter and

receiver may have multiple antennas. MIMO is fast becoming the most common

feature of wireless systems due to its performance benefits.Thus, it is important

to study the capacity of cognitive radios under a MIMO setting. There are some

instances where the methods here bears similarities with the methods used for the

SISO setting. However, most of the proofs and techniques used here are distinct

and considerably more involved than those used in [42]. In the SISO setting, it

is possible to analyze the model for specific magnitudes of channels. This is not

possible for the MIMO setting. We list some of the crucial differences between the

methods used here and the methods that have been used under the SISO setting.

1. In [42], the authors obtain the outer bound using conditional entropy inequal-
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ity. This method cannot be extended to the MIMO setting.

2. We obtain the outer bound through a series of channel transformations. Al-

though the channel transformations are similar in spirit tothose in [41], the

actual transformations used are significantly different both in nature and in

the mathematical proofs that accompany them. In [41], the authors reduce

the channel to a broadcast channel where the combined transmitters have

individual power constraints and the cognitive receiver has the message of

the licensed user provided to it by a genie. The capacity region for such a

variation of broadcast channel is not known in general. The authors solve

for the capacity region of the broadcast channel using aligned channel tech-

niques. On the other hand, we reduce the MIMO cognitive channel to a

broadcast channel with sum power constraint and whose capacity region is

now known [46–48]. We then use optimization techniques to compare the

achievable scheme with the outer bound.

2.1.1 Main Contributions

In this chapter, our main contributions include:

1. We find an achievable region for the Gaussian MIMO cognitive channel (MCC)

in a fashion analogous to [39,41,42].

2. We find an outer bound on the capacity region of the MCC.

3. We show that, under certain conditions (that depend on thechannel parame-

ters), the outer bound is tight for a portion of the capacity region boundary,
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including points corresponding to the sum-capacity of the channel. Combin-

ing the two above, we characterize the sum capacity of this channel and a

portion of its entire capacity region under certain conditions.

2.1.2 Organization

The rest of the chapter is organized as follows. We describe the notations

and system model in Section2.2. The main results are presented in Section 2.3.

In Section 2.4, we present an achievable region for the Gaussian MIMO cognitive

channel (MCC). An outer bound on the capacity region is shownin Section 2.5.

The optimality of the achievable region for a portion of the capacity region (un-

der certain conditions) is shown in Section2.6. Numerical results are provided in

Section 2.7. We conclude in Section2.8.

2.2 System Model and Notation

Throughout the thesis, we use boldface letters to denote vectors and matri-

ces. |A| denotes the determinant of matrixA, while Tr(A) denotes its trace. For

any general matrix or vectorX, X† denotes its conjugate transpose.In denotes the

n × n identity matrix.Xn denotes the row vector(X(1), X(2), . . . , X(n)), where

X(i), i = 1, 2, . . . , n can be vectors or scalars. The notationH � 0 is used to

denote that a square matrixH is positive semidefinite. Finally, ifS is a set, thenS

denotes the closure of convex hull ofS.

We consider a MIMO cognitive channel shown in Figure2.1. Let np,t and

np,r denote the number of transmitter and receiver antennas respectively for the
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licensed user. Similarly,nc,t andnc,r denotes the number of transmitter and receiver

antennas for the cognitive user.

Cognitive Receiver  

Licensed Source

Cognitive Source
Power Constraint

Power Constraint

Licensed Receiver  
Hp,p

Hp,c

Hc,p

Hc,c

Pc

Zp

Yp

Zc

Yc

Pp

Xp(mp)

Xc(mp, mc)

Figure 2.1: MIMO Cognitive Radio System Model

The licensed user has messagemp ∈ {1, 2, . . . , 2nRp} intended for the li-

censed receiver. The cognitive user has messagemc ∈ {1, 2, . . . , 2nRc} intended

for the cognitive receiver as well as the messagemp of the licensed user.

The primary user encodes the messagemp into Xp
n. Here,Xp(i) is anp,t

length complex vector. The cognitive transmitter determines its codewordXc
n as

a function of bothmp andmc. Note that the cognitive transmitter wishes to com-

municate bothmp (to the licensed receiver) andmc (to the cognitive receiver). The

channel gain matrices are given byHp,p,Hp,c,Hc,p andHc,c, and are assumed to

be static. It is assumed that the licensed receiver knowsHp,p,Hc,p, the licensed

transmitter knowsHp,p. It is also assumed that the cognitive transmitter knows

Hc,p,Hp,c,Hc,c and the cognitive receiver knowsHp,c,Hc,c. The received vectors

of the licensed and cognitive users are denoted byYp
n andYc

n respectively.
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With the above model and notations, we can describe the system at time slot

i by

Yp(i) = Hp,pXp(i) + Hc,pXc(i) + Zp(i)
Yc(i) = Hp,cXp(i) + Hc,cXc(i) + Zc(i).

(2.1)

The additive noise at the primary and secondary receivers isdenoted by

Zp
n andZc

n respectively. The noise vectorsZp
n andZc

n are Gaussian and are

assumed to be i.i.d. across symbol times and distributed according toN(0, Inp,r)

andN(0, Inc,r) respectively. The correlation betweenZp
n andZc

n is assumed to be

arbitrary. This correlation does not impact the capacity region of the system as the

licensed and the cognitive decoders do not co-operate with each other.1

We denote the covariance of the codewords of the licensed andcognitive

transmitters at timei by Σp(i) andΣc(i) respectively. Then, the transmitters are

constrained by the following transmit power constraints.

∑n

i=1 Tr(Σp(i)) ≤ nPp∑n
i=1 Tr(Σc(i)) ≤ nPc.

(2.2)

A rate pair(Rp, Rc) is said to be achievable if

1. there exists a sequence of encoding functions for the licensed and cognitive

usersEn
p : {1, . . . , 2nRp} → Xp

n andEn
c : {1, . . . , 2nRp}×{1, . . . , 2nRc} →

Xc
n such that the codewords satisfy the power constraints givenby (6.2),

1A proof of this can be obtained using steps almost exactly identical to those for the broadcast
channel in [67, Exercise 15.10]
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2. there exists decoding rulesDn
p : Yp

n → {1, . . . , 2nRp} andDn
c : Yc

n →

{1, . . . , 2nRc} such that the average probability of decoding error is arbitrarily

small for suitably large values ofn.

The capacity region of the Gaussian MIMO cognitive channel is the set of all

achievable rate pairs(Rp, Rc) and is denoted byCMCC .

2.3 Main Results

In this section, we describe the main results of the chapter.Let G =

[Hp,p Hc,p]. Let Rach denote the set described by





(
(Rp, Rc),Σp,Σc,p,Σc,c,Q

)
: Rp ≥ 0, Rc ≥ 0,Σp � 0,Σc,p � 0,Σc,c � 0

Rp ≤ log
∣∣I + GΣp,netG

† + Hc,pΣc,cH
†
c,p

∣∣− log
∣∣I + Hc,pΣc,cH

†
c,p

∣∣
Rc ≤ log

∣∣I + Hc,cΣc,cH
†
c,c

∣∣

Σp,net =

(
Σp Q

Q† Σc,p

)
� 0, Tr(Σp) ≤ Pp, Tr(Σc,p + Σc,c) ≤ Pc






.(2.3)

In this setting,Σp,net is a(np,t + nc,t) × (np,t + nc,t) covariance matrix whileΣc,c

is a nc,t × nc,t covariance matrix.Σp andΣc,p represent principal submatrices

of Σp,net of dimensionsnp,t × np,t andnc,t × nc,t respectively. The covariances

matricesΣp, Σc,p andΣc,c determine the power constraints of the system.

Let Rin be the set of rate pairs described by

Rin =

{
(Rp, Rc) : ∃ Σp,Σc,p,Σc,c,Q, and

(
(Rp, Rc),Σp,Σc,p,Σc,c,Q

)
∈ Rach

}
.(2.4)

Theorem 2.3.1.The capacity region of the MCC,CMCC satisfies

Rin ⊆ CMCC . (2.5)
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The proof of the theorem is given in Section 2.4. The coding strategy is

based on Costa’s dirty paper coding [22] [61].

We now describe an outer bound on the capacity region of the MIMO cog-

nitive channel. Letα > 0, Gα =
[
Hp,p

Hc,p√
α

]
andK =

[
Hp,p Hc,p/

√
α

0 Hc,c/
√

α

]
.

Let Σz be a covariance matrix of dimensions(np,r + nc,r)× (np,r + nc,r) and of the

form

Σz =

[
Inp,r Qz

Qz
† Inc,r

]
. (2.6)

Here,Qz is a np,r × nc,r matrix that makesΣz positive semidefinite. LetRα,Σz
conv

denote the set described by

Rα,Σz

conv =






(
(Rp, Rc),Qp,Qc

)
: Rp ≥ 0, Rc ≥ 0,Qp � 0,Qc � 0

Rp ≤ log
∣∣∣I + GαQpG

†
α + GαQcG

†
α

∣∣∣− log
∣∣∣I + GαQcG

†
α

∣∣∣
Rc ≤ log

∣∣∣Σz + KQcK†
∣∣∣− log |Σz|

Tr(Qp) + Tr(Qc) ≤ Pp + αPc






. (2.7)

Let Rα,Σz

out denote the set of rate pairs described by

R
α,Σz

out =

{
(Rp, Rc) : ∃Qp,Qc � 0 such that((Rp, Rc),Qp,Qc) ∈ R

α,Σz
conv

}
.

(2.8)

Also, letRout be represented as

Rout =
⋂

Σz

⋂

α>0

Rα
out. (2.9)

Then, the next theorem describes an outer bound on the capacity region of the MCC.

Theorem 2.3.2.The capacity region of the MCC,CMCC satisfies

CMCC ⊆ R
α,Σz

out , ∀α > 0,Σz

CMCC ⊆ Rout. (2.10)
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The proof is given in Section 2.5 and proceeds by a series of channel trans-

formations. Each channel transformation results in a new channel whose capacity

region is in general a superset (outer bound) of the capacityregion of the preceding

channel.

Next, we discuss the optimality of the achievable region we derived and

present conditions when the achievable region might meet the outer bound. Let

BC(H1,H2, P ) denote a two user MIMO broadcast channel with channel matrices

given byH1 andH2 and with a transmitter power constraint ofP . Let C
H1,H2,P
BC

denote the capacity region ofBC(H1,H2, P ).

Let Rα
part,conv denote the set described by





(
(Rp, Rc),Qp,Σc,c

)
: Rp ≥ 0, Rc ≥ 0,Qp � 0,Σc,c � 0,

Rp ≤ log
∣∣∣I + GαQpG

†
α + 1

α
Hc,pΣc,cΣ

†
c,p

∣∣∣− log
∣∣∣I + 1

α
Hc,pΣc,cH

†
c,p

∣∣∣
Rc ≤ log

∣∣∣I + 1
α
Hc,cΣc,cH

†
c,c

∣∣∣
Tr(Qp) + Tr(Σc,c) ≤ Pp + αPc





.

(2.11)

We letRα
part,out to denote the set of rate pairs described by

Rα
part,out =

{
(Rp, Rc) : ∃Qp,Σc,c � 0 such that((Rp, Rc),Qp,Σc,c) ∈ Rα

part,conv

}
.

(2.12)

Let K = [0 Hc,c/
√

α]. We show that if the boundary of the rate region

described byRα
part,out partially meets the boundary of the capacity region of the

braoadcast channelBC(Gα,K, Pp + αPc), then the boundary ofRα
part,out partially

meets the boundary of the rate region described byR
α,Σz

out in (2.8) for someΣz. We
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formally state the result in Theorem 2.3.3. For notational convenience, we denote

the capacity region ofBC(Gα,K, Pp + αPc) by Cα
BC .

Theorem 2.3.3.Letµ ≥ 1 andα > 0. If

max
(Rp,Rc)∈Rα

part,out

µRp + Rc = max
(Rp,Rc)∈Cα

BC

µRp + Rc, (2.13)

then, we have

max
(Rp,Rc)∈Rα

part,out

µRp + Rc = inf
Σz

max
(Rp,Rc)∈R

α,Σz
out

µRp + Rc. (2.14)

The proof of the theorem is described in Section 2.5. Hence, if the condition

(2.13) is satisfied, the rate region described byRα
part,out is an outer bound on the

capacity region of the MCC in terms of maximizing theµ- sumµRp + Rc.

Let (R̂p, R̂c) be a point on the boundary of the capacity regionCMCC . Then,

there exists aµ ≥ 0 such that

(R̂p, R̂c) = arg max
(Rp,Rc)∈CMCC

µRp + Rc.

The next theorem shows that if(Rp, Rc) lies on the boundary of the achievable

region given byRin, then(Rp, Rc) lies on the boundary ofRα
part,out for someα > 0.

That is, the theorem describes conditions of optimality of the achievable regionRin.

Theorem 2.3.4.For anyµ > 0,

max
(Rp,Rc)∈Rin

µRp + Rc = inf
α>0

max
(Rp,Rc)∈Rα

part,out

µRp + Rc.

Also, there existsα∗ ∈ (0,∞), such that for anyµ ≥ 1,

(Rp,µ, Rc,µ) = arg max
(Rp,Rc)∈Rin

µRp + Rc
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is a point on the boundary of the capacity region of the MIMO cognitive channel if

the condition given by (2.13) is satisfied forα∗.

The proof of the theorem is described in Section 3.5 and is based on opti-

mization techniques. The results in this chapter are presented in [56] [57].

2.4 Achievable Region

Proof of Theorem 2.3.1: In this section, we show that the rate regionRin

given by (5.35) is achievable on the MCC.

Encoding rule for Licensed user(En
p ) : For every messagemp ∈ {1, . . . , 2nRp},

the licensed encoder generates an length codewordXp
n(mp), according to the dis-

tribution p(Xp
n) = Πn

i=1p(Xp(i)), andXp(i) ∽ N(0,Σp) such thatΣp � 0 and

Tr(Σp) ≤ Pp.

Encoding rule for the cognitive user(En
c ): The cognitive encoder acts in

two stages. For every message pair(mp, mc), the cognitive encoder first generates a

codewordXc,p
n(mp, mc) for the primary messagemp according toΠn

i=1p(Xc,p(i)|Xp(i)),

wherep(Xc,p(i)) ∽ N(0,Σc,p) and the joint distribution of(Xp(i),Xc,p(i)) is

given by

p(Xp(i),Xc,p(i)) ∽ N

(
0,

[
Σp Q

Q† Σc,c

])
. (2.15)

Here,Q denotes the correlation betweenXp(i) andXc,p(i). In the sec-

ond stage, the cognitive encoder generatesXc,c
n which encodes messagemc. The
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codewordXc,c
n is generated using Costa precoding [22] by treatingHp,pXp

n +

Hc,cXc,p
n as non causally known interference. A characteristic feature of Costa’s

precoding is thatXc,c
n is independent ofXc,p

n, andXc,c
n is distributed asΠn

i=1p(Xc,c(i)),

whereXc,c(i) ∽ N(0,Σc,c). Note that the codewordXc,p
n is used to convey mes-

sagemp to the licensed receiver and the codewordXc,c
n is used to convey message

mc to the cognitive receiver. The two codewordsXc,p
n andXc,c

n are superim-

posed to form the cognitive codewordXc
n = Xc,p

n + Xc,c
n. It is clear thatXc

n

is distributed asΠn
i=1p(Xc(i)), Xc(i) ∽ N(0,Σc), whereΣc = Σc,p + Σc,c. The

covariance matrices satisfy the constraintsΣc,p � 0,Σc,c � 0, Tr(Σc) ≤ Pc.

Decoding rule for the licensed receiver(Dn
p ) : The licensed receiver receives

Hp,pXp
n + Hc,p(Xc,p

n + Xc,c
n) + Zp

n. It treatsHp,pXp
n + Hc,pXc,p

n as the

valid codeword andHc,pXc,c
n + Zp

n as Gaussian noise. TakingG = [Hp,p Hc,p]

andXp,net
n =

[
Xp

n

Xc,p
n

]
, the received vector at the licensed receiver is

Yp
n = GXp,net

n + Hc,pXc,c
n + Zp

n. (2.16)

The covariance matrix ofXp,net is denoted byΣp,net =

[
Σp Q

Q† Σc,p

]
, where

Q = E[XpX
†
c,p]. In this setup, we use steps identical to that used for MIMO

channel with colored noise in [67, Section 9.5] to show that,for any ǫ > 0, there

exists a block lengthn1 so that for anyn ≥ n1, the licensed decoder can recover

the messagemp with probability of error< ǫ if

Rp ≤ log
∣∣I + GΣp,netG

† + Hc,pΣc,cH
†
c,p

∣∣− log
∣∣I + Hc,pΣc,cH

†
c,p

∣∣ . (2.17)

Decoding rule for the cognitive user(Dn
c ) : The cognitive decoder is the

Costa decoder (with the knowledge of the encoder,En
c ). The cognitive receiver
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receivesYc
n = Hp,cXp

n + Hc,c(Xc,p
n + Xc,c

n) + Zc
n. Here, the non-causally

known interferenceHp,cXp
n + Hc,cXc,p

n is canceled by the Costa precoder. To

show this formally, we follow steps similar to Eqns (3) to (7)in [22]. We get that,

for any ǫ2 > 0, there existsn2 such that forn ≥ n2, the cognitive decoder can

recover the messagemc with probability of error< ǫ2 if

Rc ≤ log
∣∣I + Hc,cΣc,cH

†
c,c

∣∣ . (2.18)

Note that the achievable scheme holds for all possible covariance matri-

cesΣp,Σc,p,Σc,c that are positive semidefinite and satisfy the power constraints

Tr(Σp) ≤ Pp, Tr(Σc,p +Σc,c) ≤ Pc. Hence,Rin, which is the set of all achievable

rate pairs described by (5.35), is achievable for any code lengthn ≥ max(n1, n2).

2.5 Outer Bound on the Capacity Region

In this section, we prove that the rate region described byR
α,Σz

out is an outer

bound on the capacity region of the Gaussian MIMO cognitive channel. The proof

proceeds by a series of channel transformations where each transformation creates

an outer bound on the channel at the previous stage. At the final stage, we obtain

a physically degraded broadcast channel. The capacity region of this channel is

now known [46] [47] [48] and is used as the outer bound for the capacity region of

the MIMO cognitive channel. Figure2.2 depicts the various channel configurations

considered, and the system equations of all the configurations.Ẑn
p shown in Figures

2c, 2d and2e has the same distribution asZp
n, but has an arbitrary correlation with

Zc
n. Before proving Theorem 2.3.2, we prove the following lemmas.
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Ŷp

Y c

]

Hc,p/
√

α
Xc(mp, mc)

Hc,p/
√

α [
Ŷp

Yc

]

K1 =

[
Hp,p

Hp,c

]
K2 =

[
Hc,p/

√
α

Hc,c/
√

α

]

Hc,c/
√

α

X(mp, mc)

K

Gα =
[

Hp,p Hc,p/
√

α
]

K =
[

0 Hc,c/
√

α
]

Gα

K

[
Ẑp
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√

α
]
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[
Hp,p Hc,p/

√
α
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√

α
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Ẑp

Zc
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√

α

Zp

Zp

K2 =
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Hc,p/

√
α

Hc,c/
√

α
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Licensed User :Yp = Hp,pXp + Hc,pXc + Zp

Cognitive User :Yc = Hp,cXp + Hc,cXc + Zc

MIMO Cognitive Channel (MCC)

Licensed User :Yp = Hp,pXp + (Hc,p/
√

α)Xc + Zp

Cognitive User :Yc = Hp,cXp + (Hc,c/
√

α)Xc + Zc

Scaled MIMO Cognitive Channel (SMCC)

Licensed User :Yp = Hp,pXp + (Hc,p/
√

α)Xc + Zp

Cognitive User :Ŷp = Hp,pXp + (Hc,p/
√

α)Xc + Ẑp

Scaled MIMO Cognitive Channel A (SMCCA)

Yc = Hp,cXp + (Hc,c/
√

α)Xc + Zc

Licensed User :Yp = Hp,pXp + (Hc,p/
√

α)Xc + Zp

Yc = (Hc,c/
√

α)Xc + Zc

Licensed User :Yp =
[
Hp,p Hc,p/

√
α
]
X + Zp

Cognitive User :Ŷp = Hp,pXp + (Hc,p/
√

αXc + Zp Cognitive User :Ŷp =
[
Hp,p Hc,p/

√
α
]
X + Ẑp

Yc =
[

0 Hc,c/
√

α
]
X + Zc

Licensed User :Yp =
[
Hp,p Hc,p/

√
α
]
X + Zp

Cognitive User :Yc =
[

0 Hc,c/
√

α
]
X + Zc

Scaled MIMO Broadcast Channel (SMBC)Scaled MIMO Cognitive Channel B (SMCCB) Scaled MIMO Broadcast Channel A (SMBCA)

Figure 2.2: Channel Configurations and their System Equations

Transformation 1 (MIMO Cognitive Channel (MCC)→ Scaled MIMO cog-

nitive channel) : The scaled MIMO cognitive channel is defined in Figure2b and

Figure2.3. In this transformation, the channel matricesHc,p andHc,c are scaled

by 1/
√

α. Also, the power constraint at the cognitive transmitter ischanged toαPc.

Lemma 2.5.1.The capacity region of the MIMO cognitive channel is equal tothe

capacity region of the scaled MIMO cognitive channel (SMCC)for any0 < α < ∞.
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=
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α
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α
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Zc

Yc

Yp

Hp,c

Xp(mp)

Figure 2.3: Capacity Region of MCC = Capacity Region of SMCC

Proof. Let (Rp, Rc) be a rate pair that is achievable on the MCC. That is, for all

ǫ1, ǫ2 > 0, there exists an and a sequence of encoder decoder pairs at the licensed

and cognitive transmitter and receiver(En
p : mp → Xp

n, Dn
p : Yp

n → m̂p, E
n
c :

(mp, mc) → Xc
n, Dn

c : Yc
n → m̂c) such that the codewordsXp

n andXc
n satisfy

the power constraints given by (6.2) and the probability of decoding error is small

(Pr(mp 6= m̂p) ≤ ǫ1, P r(mc 6= m̂c) ≤ ǫ2). We use the following encoder decoder

pairs at the licensed and cognitive transmitters and receivers of the scaled MIMO

cognitive channel.En
p : mp → Xp

n, Dn
p : Yp

n → m̂p, En
c : (mp, mc) →

√
αXc

n, Dn
c : Yc

n → m̂c. It follows that using these encoder and decoder pairs,

the licensed and cognitive codewords satisfy the new power constraints ofPp and

αPc respectively. Also, the system equation is the same as that of the MCC and

Pr(mp 6= m̂p) ≤ ǫ1 andPr(mc 6= m̂c) ≤ ǫ2. Hence, the rate pair(Rp, Rc) is

achievable on the scaled MIMO cognitive channel. Hence, thecapacity region of

the SMCC is a superset of the capacity region of the MCC.

Similarly, we can also establish this in the other direction, namely we can

treat the MCC as the scaled version of the SMCC (scaling by1/α). Therefore,
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it can be shown that the capacity region of the MCC is a superset of the capacity

region of the SMCC.

Hence, the capacity region of the MCC is equal to the capacityregion of the

SMCC.

Transformation 2 (scaled MIMO cognitive channel (SMCC)→ scaled MIMO

cognitive channel A (SMCCA)) : The scaled MIMO cognitive channel A (SMCCA)

is described in Figure2c and Figure2.4. In this transformation, we provide a mod-

ified version ofYp
n, which is Ŷn

p to the cognitive receiver.̂Yn
p is corrupted by

noiseẐn
p, which has the same probability distribution as that ofZp

n (i.e., complex

Gaussian with zero mean and identity covariance matrix), but is permitted to be cor-

related withZp
n or Zc

n. In fact, we assume that the joint probability distribution

of (Ẑp(i),Zc(i)) is given by

p(Ẑp(i),Zc(i)) = N(0,Σz), (2.19)

whereΣz has the form given by (2.6). The received vectorŶn
p is made available to

the cognitive receiver by transforming the channel matrices Hp,c andHc,c/
√

α to

K1 =

[
Hp,p

Hp,c

]
andK2 =

[
Hc,p/

√
α

Hc,c/
√

α

]
respectively. Hence, the received vector

at the cognitive receiver is

[
Ŷn

p

Yc
n

]
.

Lemma 2.5.2.The capacity region of the scaled MIMO cognitive channel A (SM-

CCA) is a superset of the capacity region of the scaled MIMO cognitive channel

(SMCC).
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⊆
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Ŷp

Yc

]
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Figure 2.4: Capacity Region of SMCC⊆ Capacity Region of SMCCA

Proof. Let the rate pair(Rp, Rc) be achievable on the SMCC. That is, for allǫ1, ǫ2 >

0, there exists an and a sequence of encoder decoder pairs at the licensed and

cognitive transmitter and receiver(En
p : mp → Xp

n, Dn
p : Yp

n → m̂p, E
n
c :

(mp, mc) → Xc
n, Dn

c : Yc
n → m̂c) such that the codewordsXp

n andXc
n satisfy

the power constraints and the probability of decoding erroris small (Pr(mp 6=

m̂p) ≤ ǫ1, P r(mc 6= m̂c) ≤ ǫ2). In the SMCCA, we can use the same encoder

decoder pairEn
p andDn

p at the licensed transmitter and receiver to achieve a rate

Rp with probability of decoding error< ǫ1. Also, by ignoring the received vector

Ŷn
p at the cognitive receiver, we can useEn

c andDn
c at the cognitive transmitters

and receivers to achieve a rateRc with the decoding probability of error< ǫ2.

Hence, the rate pair(Rp, Rc) is achievable on the scaled MIMO cognitive channel

A (SMCCA). Therefore, the capacity region of the SMCCA is a superset of the

capacity region of the SMCC.

Transformation 3 (scaled MIMO cognitive channel A (SMCCA)→ scaled

MIMO cognitive channel B (SMCCB) ) : The scaled MIMO cognitive channel (B)
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is described in Figure2d and Figure2.5. The channel matrix from the licensed

transmitter to the cognitive receiver is modified fromK1 =

[
Hp,p

Hp,c

]
to K1 =

[
Hp,p

0

]
. Hence, the received vector at the cognitive receiver is given by

[
Ŷn

p

Yc
n

]

whereYc
n = Hc,c√

α
Xc

n +Zc
n. The intuition behind the transformation is to remove

the original interference caused by the licensed transmitter to the cognitive receiver.

Lemma 2.5.3.The capacity region of the scaled MIMO cognitive channel B (SM-

CCB) is equal to the capacity region of the scaled MIMO cognitive channel A (SM-

CCA).
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Power Constraint

Licensed Source
Power Constraint

Licensed Receiver

Scaled MIMO Cognitive Channel A (SMCCA)
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Xp(mp)

Xc(mp, mc)

Pp

αPc

Hp,p

K1

Hc,p/
√

α

K2

Zp

=

Pp
Hp,p

Zp

Hc,p/
√

α

K2

αPc

Yp Yp

[
Ŷp

Y c

]

K1

[
Ŷp

Yc

]
Xc(mp, mc)

[
Ẑp

Zc

] [
Ẑp

Zc

]

Xp(mp)

Figure 2.5: Capacity Region of SMCCA = Capacity Region of SMCCB

Proof. Let the rate pair(Rp, Rc) be achievable on the SMCCA. This implies that for

everyǫ1, ǫ2 > 0, there exists encoder-decoder pair for the licensed user(En
p (ǫ1), D

n
p (ǫ1))

and for the cognitive user(En
c (ǫ2), D

n
c (ǫ2)) such that the probability of decoding

error is less thanǫ1 and ǫ2 respectively for the licensed and cognitive user. Let

δ1, δ2 ∈ (0, 1). In SMCCB, the licensed user can employEn
p (min(δ1/2, δ2/2)),

Dn
p (min(δ1/2, δ2/2)) to decodemp with a probability of error≤ δ1/2 < δ1. The
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cognitive receiver usesEn
p (min(δ1/2, δ2/2)), Dn

p (min(δ1/2, δ2/2)) on Ŷn
p to ob-

tain mp with probability of error≤ δ1/2. The cognitive receiver can now con-

struct Xp
n and henceHp,cXp

n. Thus, the cognitive receiver recoversYc
n =

Hp,cXp
n + Hc,c√

α
Xn

c,c + Zc
n. Now, it uses,En

c (δ2/2), Dn
c (δ2/2) to obtainmc with

probability of error≤ δ2/2. Clearly, the probability of error in recoveringmc is

less thanδ2. Hence, the rate pair(Rp, Rc) is achievable on SMCCB. Therefore, the

capacity region of SMCCB is a superset of the capacity regionof SMCCA.

Let the rate pair(Rp, Rc) be achievable on SMCCB. Then, for everyǫ1, ǫ2 >

0, there exists encoder-decoder pair for the licensed user(En
p (ǫ1), D

n
p (ǫ1)) and for

the cognitive user(En
c (ǫ2), D

n
c (ǫ2)) such that the probability of decoding error is

less thanǫ1 andǫ2 respectively for the licensed and cognitive user. Letδ1, δ2 > 0. In

SMCCA, the licensed user can employEn
p (min(δ1/2, δ2/2)), Dn

p (min(δ1/2, δ2/2))

to decodemp with a probability of error≤ δ1/2 < δ1. The cognitive user employs

En
p (min(δ1/2, δ2/2)), Dn

p (min(δ1/2, δ2/2)) onŶn
p to obtainmp with probability of

error≤ δ2/2. The cognitive receiver can now constructXp
n and henceHp,cXp

n.

Hence, the cognitive receiver subtractsHp,cXp
n from Yc

n to obtainYc

n
. The

cognitive receiver can now useEn
c (δ2/2), Dn

c (δ2/2) to obtainmc with probability

of error< δ2. Thus, the rate pair(Rp, Rc) is achievable on SMCCA.

Therefore, the capacity region of the SMCCA is equal to the capacity region

of the SMCCB.

Transformation 4 (scaled MIMO cognitive channel (B)→ scaled MIMO

broadcast channel A (SMBCA)): The scaled MIMO broadcast channel A (SMBCA)
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is depicted in Figure2e and Figure2.6. We let the two transmitters to co-operate and

transform it into a broadcast channel with a sum power constraint ofPp +αPc. The

new channel matrices from the combined transmitters to the licensed and cognitive

receivers are given byGα =
[

Hp,p Hc,p/
√

α
]

andK =

[
Hp,p Hc,p/

√
α

0 Hc,c/
√

α

]

respectively.

Lemma 2.5.4.The capacity region of the scaled MIMO broadcast channel A (SM-

BCA) is a superset of the capacity region of scaled MIMO cognitive channel B

(SMCCB).

Subset

Cognitive Source
Power Constraint

Licensed Source
Power Constraint

Licensed Receiver

Scaled MIMO Cognitive Channel B (SMCCB)

Licensed Receiver

Joint Source

Power Constraint

Scaled MIMO Broadcast Channel A (SMBCA)

Cognitive ReceiverCognitive Receiver

Pp + αPc

Xp(mp)

Xc(mp, mc)

Pp
Hp,p

K1

Hc,p/
√

α

K2

αPc

Zp

Yp

[
Ŷp

Y c

]

[
Ẑp

Zc

]

⊆
X(mp, mc)

Gα

K [
Ŷp

Y c

]

Zp

Yp

[
Ẑp

Zc

]

Figure 2.6: Capacity Region of SMCCB⊆ Capacity Region of SMBCA

Proof. Let the rate pair(Rp, Rc) be achievable on the SMCCB. In the SMBCA,

using no collaboration between the two transmitters and using separate power con-

straints ofPp andαPc respectively, we reduce the SMBCA to the SMCCB. Hence,

the rate pair(Rp, Rc) is achievable on the SMBCA. Therefore, the capacity region

of the SMBCA is a superset of the capacity region of the SMCCB.
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We have showed that for anyα > 0, CMCC = CSMCC ⊆ CSMCCA =

CSMCCB ⊆ CSMBCA. Hence, the capacity region of the scaled MIMO broadcast

channel A (SMBCA) is a superset of the capacity region of the MIMO cognitive

channel (MCC).

Proof. of Theorem 2.3.2: In the SMBCA, letQp denote the covariance matrix of

the codeword for the licensed user and letQc denote the covariance matrix for the

cognitive user. The SMBCA is a physically degraded broadcast channel. Hence,

the capacity region of the SMBCA (as described by [46]) denoted byCSMBCA is

given by the set of rate pairs described by




(Rp, Rc) : Rp ≥ 0, Rc ≥ 0
Rp ≤ log

∣∣I + GαQpG
†
α + GαQcG

†
α

∣∣− log
∣∣I + GαQcG

†
α

∣∣
Rc ≤ log

∣∣∣Σz + KQcK†
∣∣∣− log |Σz|

∀Qp � 0,Qc � 0 such thatTr(Qp) + Tr(Qc) ≤ Pp + αPc





. (2.20)

Also, this is the outer bound of the MCC. Hence,R
α,Σz

out described by (2.8)

is an outer bound on the capacity region of the MCC. Hence,CMCC ⊆ R
α,Σz

out . Also,

CMCC ⊆ Rout, whereRout is described in (9).

Transformation 5 (scaled MIMO broadcast channel A (SMBCA)→ scaled

MIMO broadcast channel (SMBC)) : The scaled MIMO broadcast channel (SMBC)

is depicted in Figure2f and Figure2.7. We change the received vector at the cog-

nitive receiver from

[
Ŷn

p

Yc
n

]
to Yc

n. This is done by changing the channel matrix

from the joint transmitters to the cognitive receiver toK =
[

0 Hc,c/
√

α
]
.

Lemma 2.5.5( [62]). The capacity region of the SMBCA is a superset of the ca-

pacity region of the scaled MIMO broadcast channel (SMBC).
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Figure 2.7: Capacity Region of SMBCA⊇ Capacity Region of SMBC

Proof. Let the rate pair(Rp, Rc) be achievable on the SMBC. That is, for allǫ1, ǫ2 >

0, there exists an and a sequence of encoder decoder pairs at the transmitter and

the two receivers(En : (mp, mc) → Xn, Dn
p : Yp

n → m̂p, D
n
c : Yc

n → m̂c) such

that the codewordXn satisfies the power constraint ofPp +αPc and the probability

of decoding error is small(Pr(mp 6= m̂p) ≤ ǫ1, P r(mc 6= m̂c) ≤ ǫ2).

In the SMBCA, the transmitter and the receivers use the same coding strat-

egy. The licensed receiver can decode messagemp at a rateRp. The cognitive

receiver can ignorêYn
p and use justYc

n
to decode messagemc at a rateRc. Hence,

the rate pair(Rp, Rc) is achievable in the SMBCA. Hence, the capacity region of

the SMBCA is in general a superset of the capacity region of the SMBC.

We describe one more lemma whose result is used in the proof ofTheorem

(2.3.3).

Lemma 2.5.6( [62]). Let CSMBC denote the capacity region of the scaled MIMO
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broadcast channel described in Figure2f. Then, for anyµ ≥ 1,

sup
(Rp,Rc)∈CSMBC

µRp + Rc = inf
Σz

sup
(Rp,Rc)∈CSMBCA

µRp + Rc.

The proof is described in [62, Section 5.1] and is omitted here.

We now give the proof for Theorem (2.3.3).

Proof of Theorem 2.3.3: It was shown in [46] that Gaussian codebooks (i.e.,

codebooks generated using i.i.d. realizations of an appropriate Gaussian random

variable) achieve the capacity region for the MIMO broadcast channel. In SMBC,

let Qp denote the covariance of codewordXn for the licensed user andQc denote

the covariance matrix for the cognitive user. The covariance matrices satisfy the

joint power constraintTr(Qp + Qc) ≤ Pp + αPc. Let Rα
SMBC,1 denote the set of

rate pairs described by





(Rp, Rc) : Rp ≥ 0, Rc ≥ 0
Rp ≤ log

∣∣I + GαQpG
†
α + GαQcG

†
α

∣∣− log
∣∣I + GαQcG

†
α

∣∣
Rc ≤ log

∣∣I + KQcK
†∣∣

∀Qp � 0,Qc � 0 andTr(Qp) + Tr(Σc,c) ≤ Pp + αPc





. (2.21)

Similarly, letRα
SMBC,2 denote the set of rate pairs described by





(Rp, Rc) : Rp ≥ 0, Rc ≥ 0
Rp ≤ log

∣∣I + GαQpG
†
α

∣∣
Rc ≤ log

∣∣I + KQpK
† + KQcK

†∣∣− log
∣∣I + KQpK

†∣∣
∀Qp � 0,Σc,c � 0 such thatTr(Qp) + Tr(Σc,c) ≤ Pp + αPc





. (2.22)

The capacity region of SMBC,CSMBC is the closure of the convex hull of

Rα
SMBC,1 ∪ Rα

SMBC,2. That is,

CSMBC = Rα
SMBC,1 ∪ Rα

SMBC,2. (2.23)
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Rα
SMBC,1 denotes the portion of the capacity region of SMBC where the licensed

user’s message is encoded first. That is, the cognitive receiver sees no interference.

Hence, forµ ≥ 1, we have

max
(Rp,Rc)∈Rα

SMBC,1

µRp + Rc = max
(Rp,Rc)∈CSMBC

µRp + Rc.

Therefore, from Lemma 5.6, we have that forµ ≥ 1,

max
(Rp,Rc)∈Rα

SMBC,1

µRp + Rc = inf
Σz

max
(Rp,Rc)∈CSMBCA

µRp + Rc.

We can see that,Rα
part,out described in (2.12) is a subset ofRα

SMBC,1 formed by

restricting the covariance matrixQc to have the form

Qc =

[
0 0

0 Σc,c

]
.

It can also be seen thatR
α,Σz

out described in (2.8) equalsCSMBCA. Hence, it follows

that for anyµ ≥ 1 and forα > 0, if

max
(Rp,Rc)∈Rα

part,out

µRp + Rc = max
(Rp,Rc)∈Cα

BC

µRp + Rc,

then we have that

max
(Rp,Rc)∈Rα

part,out

µRp + Rc = inf
Σz

max
(Rp,Rc)∈R

α,Σz
out

µRp + Rc.

2.6 Optimality of the Achievable Region

In this section, we describe conditions under which the achievable region

described byRin in (5.35) is optimal for a portion of the capacity region. In partic-

ular, we show that if(Rp, Rc) lies on the boundary of the achievable region given

37



by Rin, then(Rp, Rc) lies on the boundary ofRα
part,out given by (2.12) for some

α > 0. That is, for anyµ > 0,

sup
(Rp,Rc)∈Rin

µRp + Rc = inf
α>0

sup
(Rp,Rc)∈Rα

part,out

µRp + Rc.

Then there existsα∗ ∈ (0,∞) such that, for anyµ ≥ 1, (Rp,µ, Rc,µ) = arg max(Rp,Rc)∈Rin
µRp+

Rc is a point on the boundary of the capacity region of the MIMO cognitive channel

if the condition (2.13) is satisfied forα∗.

We denote byRach,rate, the set of all((Rp, Rc),Σp,Σc,p,Σc,c,Q) given by




(
(Rp, Rc),Σp,Σc,p,Σc,c,Q) : Rp, Rc ≥ 0,Σp,Σc,p,Σc,c � 0

Rp ≤ log
∣∣I + GΣp,netG

† + Hc,pΣc,cH
†
c,p

∣∣− log
∣∣I + Hc,pΣc,cH

†
c,p

∣∣
Rc ≤ log

∣∣I + Hc,cΣc,cH
†
c,c

∣∣

Σp,net =

(
Σp Q

Q† Σc,p

)
� 0





.

(2.24)

The rate pair that maximizesµRp + Rc in the achievable region is given by solving

the optimization problem

sup((Rp,Rc),Σp,Σc,p,Σc,c,Q) µRp + Rc

such that((Rp, Rc),Σp,Σc,p,Σc,c,Q) ∈ Rach,rate

Tr(Σp) ≤ Pp, Tr(Σc,p + Σc,c) ≤ Pc

. (2.25)

We define the functionsL(Rp, Rc,Σp,Σc,p,Σc,c, λ1, λ2) andg(Rp, Rc,Σp,Σc,p,Σc,c)

as follows

L(Rp, Rc,Σp,Σc,p,Σc,c, λ1, λ2) = µRp + Rc − λ1(Tr(Σp) − Pp)

−λ2(Tr(Σc,p + Σc,c) − Pc)) (2.26)

g(Rp, Rc,Σp,Σc,p,Σc,c) = min
λ1≥0,λ2≥0

L(Rp, Rc,Σp,Σc,p,Σc,c, λ1, λ2). (2.27)
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The optimization problem given by

max(Rp,Rc,Σp,Σc,p,Σc,c,Q) g(Rp, Rc,Σp,Σc,p,Σc,c)
such that((Rp, Rc),Σp,Σc,p,Σc,c,Q) ∈ Rach,rate

. (2.28)

has the same optimum value as that of (2.25). This is formallystated in the lemma

below.

Lemma 2.6.1.LetM denote the optimal value of the optimization problem defined

in (2.25), andU denote the optimal value of the optimization problem definedin

(2.28). Then,M = U .

Proof. We show that for any set of covariance matrices(Σp,Σc,p,Σc,c) that do not

satisfy the power constraints given by (6.2),g(Rp, Rc,Σp,Σc,p,Σc,c) = −∞. The

power constraints can be violated by three means :

• Tr(Σp) > Pp andTr(Σc,p) + Tr(Σc,c) ≤ Pc : In this case,λ1 takes an

arbitrarily large value andλ2 = 0 to driveg(Rp, Rc,Σp,Σc,p,Σc,c) to−∞.

• Tr(Σp) ≤ Pp andTr(Σc,p) + Tr(Σc,c) > Pc : In this case,λ1 = 0 andλ2

takes an arbitrarily large value to driveg(Rp, Rc,Σp,Σc,p,Σc,c) to −∞.

• Tr(Σp) > Pp andTr(Σc,p) + Tr(Σc,c) > Pc : In this case,λ1 andλ2 take

arbitrarily large values to driveg(Rp, Rc,Σp,Σc,p,Σc,c) to−∞.

When both the covariance matrices satisfy the power constraints with inequality,

thenλ1 = λ2 = 0. This is because,Tr(Σp)−Pp andTr(Σc,p +Σc,c)−Pc are both

negative. Hence, for any positive value ofλ1 orλ2, L(Rp, Rc,Σp,Σc,p,Σc,c, λ1, λ2) ≥

L(Rp, Rc,Σp,Σc,p,Σc,c, 0, 0).
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When one of the power constraint is satisfied with equality, say Tr(Σp) −

Pp = 0 and the other power constraint is satisfied with inequalityTr(Σc,p+Σc,c)−

Pc < 0, then, we haveλ2 = 0 andλ1 is some real number. In any case, we still

haveλ1(Tr(Σp) − Pp) = λ2(Tr(Σc,p + Σc,c) − Pc) = 0.

Similarly, when the first constraint is satisfied with inequality, and the sec-

ond constraint satisfied with equality, we haveλ1 = 0 andλ2 is some non negative

real number. We haveλ1(Tr(Σp) − Pp) = λ2(Tr(Σc,p + Σc,c) − Pc) = 0.

Finally, if both the power constraints are satisfied with equality, λ1 andλ2

are some non-negative real numbers. Andλ1(Tr(Σp)−Pp) = λ2(Tr(Σc,p+Σc,c)−

Pc) = 0.

Hence, in all the cases, the complementary slackness conditions are satis-

fied. Hence, the optimal solution of the optimization problem (2.28) satisfy the

power constraints and the objective function reduces to that of optimization prob-

lem (2.25). Hence, both the optimization problems have the same optimal values.

That is,M = U .

Next, we find the optimum value ofµRp + Rc over all the rate pairs that are

in the regionRα
part,out described by (2.12). This is done by solving the following

optimization problem:

sup((Rp,Rc),Qp,Σc,c) µRp + Rc

such that((Rp, Rc),Qp,Σc,c) ∈ Rα
part,conv,rate

Tr(Σc,c) + Tr(Qp) ≤ αPc + Pp

, (2.29)
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whereRα
part,conv,rate is the set of quadruples((Rp, Rc),Qp,Σc,c) described by





((Rp, Rc),Qp,Σc,c) : Rp, Rc ≥ 0,Qp,Σc,c � 0

Rp ≤ log
∣∣I + GαQpG

†
α + 1

α
Hc,pΣc,cH

†
c,p

∣∣− log
∣∣I + 1

α
Hc,pΣc,cH

†
c,p

∣∣
Rc ≤ log

∣∣I + 1
α
Hc,cΣc,cH

†
c,c

∣∣



 .

(2.30)

We let the optimal solution of (2.29) to be denoted byN(α). LetN = minα>0 N(α)

and

α∗ = arg min
α>0

N(α). (2.31)

We show in Lemma 6.2 thatα∗ ∈ (0,∞) exists. Then,N is given by the optimum

value of the followinginf sup optimization problem

N = inf
α>0





sup((Rp ,Rc),Qp,Σc,c) µRp + Rc

such that((Rp, Rc),Qp,Σc,c) ∈ Rα
part,conv,rate

Tr(Σc,c) + Tr(Qp) ≤ αPc + Pp



 . (2.32)

The infimum constraintα > 0 is not a compact set. We modify the constraint onα

toα ∈ R+∪{0,∞}. This is done to compactify the set by adding two extra symbols

0 and∞. The point zero is added to make the set closed. The process ofadding the

point∞ is called one point compactification. Details on one point compactification

can be found in [63, Section 2.8]. The new spaceα ∈ R+ ∪ {0,∞} is compact and

Hausdorff.

The optimization problem after changing the constraint setonα becomes

N1 = inf
α∈R+∪{0,∞}





sup((Rp,Rc),Qp,Σc,c) µRp + Rc

such that((Rp, Rc),Qp,Σc,c) ∈ Rα
part,conv,rate

Tr(Σc,c) + Tr(Qp) ≤ αPc + Pp



 . (2.33)

We show that adding the two points0 and∞ to the constraint set onα does not

change the optimum value of the optimization problem. This result is formally

stated and proved in the following lemma.
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Lemma 2.6.2.The optimum value of the optimization problem given by (2.32), N

is equal to the optimum value of the optimization problem described by (2.33),N1.

That is,N = N1.

Proof. For anyα ∈ R+ ∪ {0,∞}, we leth(α) to denote the value of the innersup

problem. That is,

h(α) = sup((Rp,Rc),Qp,Σc,c) µRp + Rc

such that((Rp, Rc),Qp,Σc,c) ∈ Rα
part,conv,rate

Tr(Σc,c) + Tr(Qp) ≤ αPc + Pp

. (2.34)

We show thatlim infα→0 h(α) = lim infα→∞ h(α) = ∞.

Letting α → 0, we put all the power inΣc,c. That is, we chooseΣp = 0,

Σc,p = 0, Q = 0 andΣc,c = Pp+αPc

nc,t
Inc,t. Also, we take

Rp = 0 andRc = log

∣∣∣∣I +
1

α

Pp + αPc

nc,t

Hc,cH
†
c,c

∣∣∣∣ .

It follows from (2.30) that((Rp, Rc),Qp,Σc,c) ∈ Rα
part,conv,rate. Also, Tr(Qp) +

Tr(Σc,c) = Pp + αPc. Hence,((Rp, Rc),Qp,Σc,c) satisfy all the necessary con-

straints of (2.34). Substituting these particular values of ((Rp, Rc),Qp,Σc,c), we

get a lower bound onh(α). That is,

lim inf
α→0

h(α) ≥ lim inf
α→0

log

∣∣∣∣I +
1

α

Pp + αPc

nc,t

Hc,cH
†
c,c

∣∣∣∣ = ∞. (2.35)

Next, we look at the situation whenα → ∞. In this case, we put all the power in

Σp. That is, we chooseΣp = Pp+αPc

np,t
Inp,t, Σc,p = 0, Σc,c = 0 andQ = 0. We

also choose

Rc = 0 andRp = log

∣∣∣∣I +
Pp + αPc

np,t

Hp,pH
†
p,p

∣∣∣∣ .

42



These values of((Rp, Rc),Qp,Σc,c) satisfy all the necessary constraints of (2.34).

Hence, we have

lim inf
α→∞

h(α) ≥ lim inf
α→∞

µ log

∣∣∣∣I +
Pp + αPc

np,t

Hp,pH
†
p,p

∣∣∣∣ = ∞. (2.36)

Hence,h(α) = ∞ whenα = 0 or α = ∞. Also, whenα ∈ R+, h(α) < ∞.

Hence, the optimum value of (2.33) is reached whenα is neither0 nor∞. Hence,

N = N1.

As Qp is the covariance matrix of the codewordX(i), i = 1, . . . , n for the

primary user, it can be written as

Qp =

(
Σp Q

Q† Σc,p

)
. (2.37)

It is easy to see that the setRα
part,conv described in (11) can also be written as





(
(Rp, Rc),Σp,Σc,p,Q,Σc,c

)
: Rp, Rc ≥ 0,Σp,Σc,p,Σc,c � 0

Rp ≤ log
∣∣I + GQpG

† + Hc,pΣc,cH
†
c,p

∣∣− log
∣∣I + Hc,pΣc,cH

†
c,p

∣∣
Rc ≤ log

∣∣I + Hc,cΣc,cH
†
c,c

∣∣
Tr(Σp) + αTr(Σc,p) + αTr(Σc,c) ≤ Pp + αPc





.(2.38)

whereG = [Hp,p Hc,p]. This is done by transformingQ,Σc,p,Σc,c into
√

αQ, αΣc,p, αΣc,c

respectively. We defineRpart,conv,rate as the set described by






((Rp, Rc),Σp,Σc,p,Q,Σc,c) : Rp, Rc ≥ 0,Σp,Σc,p,Σc,c � 0

Rp ≤ log
∣∣I + GQpG

† + Hc,pΣc,cH
†
c,p

∣∣− log
∣∣I + Hc,pΣc,cH

†
c,p

∣∣

Rc ≤ log
∣∣I + Hc,cΣc,cH

†
c,c

∣∣ , Qp =

(
Σp Q

Q† Σc,p

)





.

(2.39)
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Hence, the optimization problem (2.33) can be written as

N = inf
α∈R+∪{0,∞}





sup((Rp,Rc),Σp,Σc,p,Q,Σc,c) µRp + Rc

such that((Rp, Rc),Σp,Σc,p,Q,Σc,c) ∈ Rpart,conv,rate

Tr(Σp) + αTr(Σc,p) + αTr(Σc,c) ≤ Pp + αPc



 .

(2.40)

We state the following lemma for switchingmin andmax in minimax problems.

The lemma is described and proved in Theorem 2 in [64].

Lemma 2.6.3. (Ky-Fan’s minimax switching theorem [64, Thm. 2]) LetX be a

compact Hausdorff space andY an arbitrary set (not topologized). Letf be a

real-valued function onX × Y such that, for everyy ∈ Y , f(x, y) is lower semi

continuous onX. If f is convex onX and concave onY , then

inf
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

inf
x∈X

f(x, y).2 (2.41)

We see that the objective functionµRp + Rc is concave with respect to the

maximizing variables((Rp, Rc,Qp,Σc,c) and convex with respect to the minimiz-

ing variableα. The constraint spaceα ∈ R+ ∪ {0,∞} is compact and Haus-

dorff [63, Section 2.8]. Hence, all the conditions of the lemma are satisfied. Hence,

by Ky-Fan’s mini-max switching theorem [64], we can interchange thesup andinf

without affecting the optimum value. Hence,

N = sup
((Rp,Rc),Σp,Σc,p,Q,Σc,c)∈Rpart,conv,rate

inf
α ∈ R+ ∪ {0,∞}

Tr(Σp + αΣc,p + αΣc,c) ≤ Pp + αPc

µRp + Rc.

(2.42)

2In (49), theinf can be replaced withmin, but we useinf throughout to maintain continuity and
to avoid confusion.

44



Similar to the functionsL andg defined in (2.26) and (2.27), we define the functions

L1(Rp, Rc,Σp,Σc,p,Σc,c, λ, α) andg1(Rp, Rc,Σp,Σc,p,Σc,c, α) as follows

L1(Rp, Rc,Σp,Σc,p,Σc,c, λ, α) = µRp + Rc − λ(Tr(Σp) + αTr(Σc,p) +

αTr(Σc,c) − Pp − αPc). (2.43)

g1(Rp, Rc,Σp,Σc,p,Σc,c, α) = inf
λ≥0

L1(Rp, Rc,Σp,Σc,p,Σc,c, λ, α). (2.44)

We define the following optimization problem

V = sup
((Rp ,Rc),Σp,Σc,p,Q,Σc,c)∈Rpart,conv,rate

inf
α∈R+∪{0,∞}

g1(Rp, Rc,Σp,Σc,p,Σc,c, α).

(2.45)

Lemma 2.6.4.The optimum value of optimization problem (2.42), N is equalto the

optimum value of the optimization problem (2.45), V.

Proof. The proof of the lemma is along the same lines as the proof of Lemma

2.6.1. We show that for any set of covariance matricesΣp, Σc,p andΣc,c that do

not satisfy the power constraintTr(Σp) + αTr(Σc,p) + αTr(Σc,c) ≤ Pp + αPc,

g1(Rp, Rc,Σp,Σc,p,Σc,c, α) = −∞. This is because,Tr(Σp) + αTr(Σc,p) +

αTr(Σc,c) − Pp − αPc is positive, and hence,λ takes an arbitrarily high value to

drive g1(Rp, Rc,Σp,Σc,p,Σc,c, α) to −∞. Hence, the outer supremization prob-

lem ensures that the power constraint is satisfied.

Moreover, when the power constraints are satisfied with inequality, then

Tr(Σp)+αTr(Σc,p)+αTr(Σc,c)−Pp−αPc is negative. Therefore, for anyλ > 0,

we haveL1(Rp, Rc,Σp,Σc,p,Σc,c, λ, α) > L1(Rp, Rc,Σp,Σc,p,Σc,c, 0, α). Hence,
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λ will take the value zero. When the power constraint is satisfied with equality,

thenTr(Σp) + αTr(Σc,p) + αTr(Σc,c) − Pp − αPc = 0. Then,λ will take some

non negative real number. Hence, the complementary slackness condition is sat-

isfied. Hence, the optimal solution of the optimization problem satisfy the power

constraint and the objective function reduces to that of (2.42). It follows that, the

optimum value of the optimization problem (2.42),N is the same as the optimum

value of the optimization problem (2.45),V .

Next, we show that the optimum value of the optimization problem (2.28),

U is an upper bound on the optimal value of the optimization problem (2.45),V .

Lemma 2.6.5. The optimal value of (2.28),U is an upper bound on the optimal

value of (2.42),V .

Proof. Both the optimization problems aresup min problems. For anyλ1 ≥ 0 and

λ2 ≥ 0, we can chooseλ = λ1 andα = λ2/λ1 so thatL1(Rp, Rc,Σp,Σc,p,Σc,c, λ, α) =

L(Rp, Rc,Σp,Σc,p,Σc,c, λ1, λ2). Hence, for any((Rp, Rc),Σp,Σc,p,Σc,c),

inf
λ≥0,α∈R+∪{0,∞}

L1(Rp, Rc,Σp,Σc,p,Σc,c, λ, α) ≤

inf
λ1≥0,λ2≥0

L(Rp, Rc,Σp,Σc,p,Σc,c, λ1, λ2). (2.46)

Also, Rpart,conv,rate = Rach,rate. Hence, it follows thatV ≤ U .

We can now prove Theorem 2.3.4.

Proof of Theorem 2.3.4 : Let µ ≥ 1. The proof of the theorem follows

directly from Lemmas 2.6.1, 2.6.4 and 2.6.5. From Lemma 2.6.1, we have that the
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optimum value of the optimization problem (2.25),M equals the optimum value

of optimization problem (2.28),U . From Lemma 2.6.4, we have that the optimum

value of optimization problem (2.42),N equals the optimum value of the opti-

mization problem (2.45),V . M is the solution of the optimumµRp + Rc over the

achievable region andN is the solution of the optimumµRp + Rc overRα
part,out

described in (2.12). Hence if the condition given by (2.13) is satisfied forα∗ given

by (2.31),M ≤ N . From Lemma 2.6.5, we also haveV ≤ U . Hence, we have

that the optimal value of the original optimization problem(2.25),M is equal to

the optimal value of the optimization problem described by (2.42),N . Hence, the

achievable regionRin is µ-sum optimal.

2.7 Numerical Results

In this section, we provide some numerical results on the capacity region

of the MIMO cognitive channel. We consider a MIMO cognitive system where

the licensed and cognitive transmitters have one antenna each, and the licensed and

cognitive receivers have one and two antennas respectively. We assume that the

channel coefficients are real and also restrict ourself to real inputs and outputs. We

generate the channel values randomly

Hp,p = 1.4435, Hp,c =

[
−0.3510
0.6232

]
, Hc,p = 0.799, Hc,c =

[
0.9409
−0.9921

]
.

We assume a power constraint of5 at the licensed and cognitive transmitters. In

Figure2.8, we plot the achievable region,Rin and partial outer boundsRα
part,out for

different values ofα. Figure2.8 shows howRα
part,out intersects withRin at different
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Figure 2.8: Plot of Achievable RegionRin and partial outer boundsRα
part,out for

different values ofα

points for different values ofα.

Next, we find the maximum value of rate than can be supported bythe

licensed user in the example we considered. In both the achievable region and the

outer bound, this corresponds to maximizing theµ-sumµRp + Rc whenµ → ∞.

This would correspond to using all the power to support the licensed user. Note

that the maximum value ofRp in the set described byRα
part,out is an upper bound

on the maximum value ofRp in the setRin for all values ofα > 0, irrespective of

the channel parameters.

Maximizing Rp overRin : The cognitive transmitter uses all its power for
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helping the licensed user. That isTr(Σc,p) = Pc. This then reduces to a MIMO

channel with channel matrix given byG =
[

Hp,p Hc,p

]
. The licensed transmit-

ter has a power constraint ofPp and the cognitive transmitter has a power constraint

of Pc. Applying this to our example channel, we haveG =
[

1.4435 0.799
]
. The

optimum covariance matrix is of the form

Σp,net =

[
5 5ρ
5ρ 5

]
,

whereρ is the correlation between the two transmitters. Therefore, the rate achieved

by the licensed user is

Rp(ρ) =
1

2
log(1 + GΣp,netG

†).

The maximum rate is attained atρ = 1 and the maximum value ofRp is 2.3542.

Maximizing Rp overRα
part,out : For a givenα, this reduces to a single user

MIMO channel withGα =
[

Hp,p Hc,p/
√

α
]

and a sum power constraint of

Pp + αPc. Note that, there is a significant difference between the twosingle user

MIMO channels. The MIMO channel that we considered when solving the maxi-

mum value ofRp in the achievable region had individual power constraints at the

licensed and cognitive transmitters. However, the MIMO channel we obtain when

solving for the maximum value ofRp over Rα
part,out has a sum power constraint.

This is a conventional MIMO channel and the optimum covariance matrix is ob-

tained by water-filling. For a givenα, the bestRp is got by

max Rp(α) = 1
2
log |I + GαΣp,netGα|

such thatTr(Σp,net) ≤ Pp + αPc.
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It is easy to solve this problem if we look at the flipped channel G†
α. The capacity

of the flipped channel is given by

Rp(α) =
1

2
log
∣∣I + G†

α(Pp + αPc)Gα

∣∣

=
1

2
log
(
1 + (Pp + αPc)GαG

†
α

)
.

Note thatRp(α) is an outer bound on the maximum value ofRp. The best upper

bound is got by minimizing over all possible values ofα. The optimum value ofα

is got by solving a cubic equation2(0.799)2α3 +(0.799)2α2 − 1.44352 = 0, and its

approximate value is0.9689.

2.8 Conclusions

In this chapter, we derived an achievable region,Rin given by (5.35) and an

outer bound,Rα,Σz

out given by (2.8) for the MIMO cognitive channel. We describe

conditions when the achievable region isµ-sum optimal for anyµ ≥ 1. In par-

ticular, for anyµ ≥ 1, there existsα∗ ∈ (0,∞), such that if the region given by

Rα∗

part,out optimizes theµ− sum rate of the SMBC (for that particularα∗), then the

achievable region achieves theµ-sum capacity of the MCC.
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Chapter 3

Cognitive Radio in Multiple Access Networks

In this chapter, we look at cognitive radio channel in a multiple access

(MAC) network. Specifically, this is an interference network with three transmitters

and two receivers. Transmitters1 and2 are the licensed transmitters transmitting

messages in a multiple access manner to a common licensed receiver. We also

have a cognitive transmitter-receiver pair communicatingin the same spectrum as

the licensed users. It is assumed that the cognitive transmitter knows the messages

transmitted by both the licensed transmitters apriori. Therest of the chapter is or-

ganized as follows. In Section 3.1, we describe the problem statement, prior work

and contributions. We describe the system model in Section 3.2. In Section 3.3, we

describe an outer bound on the capacity region of cognitive radio in MAC network.

We describe an achievable region in Section 3.4. In Section 3.5, we show the opti-

mality of the achievable region when the channel gain from cognitive transmitter to

licensed receiver≤ 1. We conclude in Section 3.6.

3.1 Introduction

The cognitive radio channel has been studied as a special form of inter-

ference channel where one of the transmitter (the “cognitive” transmitter) gains
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some knowledge about the transmissions of the other transmitter. Networks with

cognitive users are gaining prominence with the development of cognitive radio

technology, which is aimed at improving the spectral efficiency and the system per-

formance by designing nodes which can adapt their strategy based on the network

setup. The information theoretic model for the cognitive radio channel models the

channel as a two user interference channel, where one transmitter (the cognitive

transmitter) knows apriori the message transmitted by the other transmitter. Prior

work on this channel model include [39–45,57,66]. More recently, the interference

channel with a cognitive relay has been studied in [49–52,65].

In this chapter, we study the performance limits of a cognitive radio channel

in a multiple access setting. In particular, we consider a system where two primary

transmitters communicate their messages to a primary receiver in a multiple access

setting, and one cognitive transmitter transmits its message to a cognitive receiver.

We assume that the cognitive transmitter knows apriori the messages of both the

primary transmitters. We derive an outer bound on the capacity region of the cog-

nitive radio channel in a multiple access setting (MACRC). We first derive an outer

bound for the discrete memoryless channel and then show thatGaussians maximize

the outer bound for the Gaussian channel when the channel gain from the cognitive

transmitter to the primary receiver is “weak” (≤ 1). We also derive an achievable

region for the MACRC which combines superposition and dirtypaper coding tech-

niques [22]. We show that the achievable region meets the outer bound when the

cross channel gain from the cognitive transmitter to the primary receiver is weak

(≤ 1). The contributions of this chapter have been presented in [53] [54].
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Throughout the chapter, we denote random variables by capital letters, their

realizations by lower case and their alphabets by calligraphic letters (eg.X, x andX

respectively). We denote vectors of lengthn with boldface letters (e.g.xn), and the

ith element of a vectorxn by xi. For any setS, S denotes the closure of the convex

hull of S respectively.

3.2 System Model

In this section, we describe the system model for the cognitive radio channel

in a multiple access setting (MACRC). In this system, we havetwo primary trans-

mitters communicating their messages to a primary receiverin a multiple access

manner, and one cognitive transmitter communicating its message to a cognitive

receiver. We assume that the cognitive receiver knows apriori the messages of both

the primary transmitters. The system model is described in Figure3.1. The channel

is described by(X, X, X, Y, Y, p(y1, yc|x1, x2, xc)) whereX1, X2 denote the input

alphabets of the primary transmitters,Xc denotes the input alphabet of the cogni-

tive transmitter, andY1 andYc denote the output alphabets of the primary and the

cognitive receiver.

Transmitteri, i ∈ {1, 2} has messagemi ∈ {1, 2, . . . , 2nRi} that it wishes to

communicate with receiver1 in a multiple access manner. The cognitive transmitter

has messagemc ∈ {1, 2, . . . , 2nRc} that it wishes to communicate to the cognitive

receiver. The cognitive transmitter has non-causal accessto messages of both the

primary transmitters. LetX1, X2, Xc andY1, Yc denote the variables representing

the respective channel inputs and outputs. Note that the channel input from the
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Message m1 → X1

Primary Transmitter 1

Primary Transmitter 2

Message m2 → X2

Cognitive Transmitter

Message m1, m2, mc → Xc

Primary Receiver

Cognitive Receiver

1

1

a1

a2

1

b

N1

Y1 = X1 + X2 + bXc + N1

N2

Yc = a1 X1 + a2 X2 + Xc + N2

Figure 3.1: System Model of Cognitive Radio in Multiple Access Networks

cognitive transmitter (Xc) is a function of all the three messages. For the Gaussian

channel, the input-output relationship can be expressed bythe system equations

given below:
Y1 = X1 + X2 + bXc + N1

Yc = a1X1 + a2X2 + Xc + Nc.
(3.1)

wherea1, a2, andb represent the channel gains as shown in Figure 3.1. Throughout

the chapter, we assume that the channel gains are positive, and the results can be

readily extended when the channel gains are negative.N1i andN2i denote the addi-

tive noise at the two receivers which are i.i.d. Gaussian random variables distributed

asN(0, 1). The channel inputs must satisfy the following power constraints:

1

n

n∑

i=1

E[X2
j,i] ≤ Pj, j ∈ {1, 2, c}. (3.2)

A (2nR1, 2nR2 , 2nRc, n, P e) code consists of message setsM1 = {1, . . . , 2nR1},

M2 = {1, . . . , 2nR2} andMc ∈ {1, . . . , 2nRc}, three encoding functions

f1 : M1 → Xn
1 , f2 : M2 → Xn

2 ,

fc : M1 × M2 × MC → Xn
c ,

(3.3)
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and two decoding functions

g1 : Yn
1 → M1 × M2, g2 : Yn

c → Mc, (3.4)

such that the transmitted codewordsXn
1 ,X

n
2 andXn

c satisfy the power constraints

given by (4.2) and the overall decoding error probability atboth the receivers is

≤ Pe.

A rate tuple(R1, R2, Rc) is achievable if there exists a sequence of

(2nR1, 2nR2 , 2nRcn, Pe(n)) codes such thatPe(n) → 0 asn → ∞. The capacity re-

gion of the MACRC is then the set of all rate tuples(R1, R2, Rc) that are achievable,

and is denoted byCMACRC .

3.3 Outer Bound on the Capacity Region of MACRC

In this section, we derive an outer bound on the capacity region of the

MACRC when the cross channel gain from the cognitive transmitter to the primary

receiver,b ≤ 1.Let Po denote the set of all probability distributionsPo(.) given by

Po(q, x1, x2, u, v, xc) = p(q)p(x1|q)p(x2|q)p(u, v|x1, x2, q)
p(xc|u, v, x1, x2, q).

(3.5)

Let Rout(Po) denote the set of rate tuples(R1, R2, Rc) given by

R1 ≤ I(X1, U ; Y1|V, X2, Q)
R2 ≤ I(X2, V ; Y1|U, X1, Q)

R1 + R2 ≤ I(X1, U, X2, V ; Y1|Q)
Rc ≤ I(Xc; Yc|X1, U, X2, V, Q)

R1, R2, Rc ≥ 0

(3.6)

Let Rout denote the set of rate tuples given by

Rout =
⋃

Po(.)∈Po

Rout(Po) (3.7)
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Then, the following theorem describes an outer bound on the capacity region

of the discrete memoryless MACRC.

Theorem 3.3.1.The capacity region of the discrete memoryless cognitive radio

channel in a multiple access setting (MACRC) satisfies

CMACRC ⊆ Rout. (3.8)

Proof. We fix a probability distributionPo(.) ∈ Po. Then, we have

nR1
(a)
= H(W1|W2)

(b)

≤ I(W1; Y
n
1 |W2) + nǫ1

n

(c)
=

∑n
i=1 H(Y1i|W2, Y

i−1
1 , X2i) + nǫ1

n−∑n

i=1 H(Y1i|W2, Y
i−1
1 , W1, X1i, X2i)

=
∑n

i=1 I(Ui, X1i; Y1i|Vi, X2i) + nǫ1
n

(3.9)

whereVi = W2, Y
i−1
1 andUi = W1, Y

i−1
1 . Here, (a) follows from the independence

of W1 andW2, (b) follows from Fano’s inequality and (c) follows from thefact that

X2i is a function ofW2.

A similar set of inequalities can be derived to show that

nR2 ≤ (Vi, X2i; Yli|Ui, X1i) + nǫ2
n (3.10)
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Subsequently, we can show that

n(R1 + R2) = H(W1, W2)

≤ I(W1, W2; Y
n
1 ) + nǫ1,2

n

≤
n∑

i=1

H(Y1i) + nǫ1,2
n − (3.11)

n∑

i=1

H(W1, W2, Y
i−1
1 , X1i, X2i)

≤
n∑

i=1

I(Ui, X1i, Vi, X2i; Y1i) + nǫ1,2
n

and

nRc

(d)
= H(Wc|W1, W2, X

n
1 , Xn

2 )

(e)

≤ I(Wc; Y
n
c |W1, W2, X

n
1 , Xn

2 ) + nǫc
n

(f)

≤
n∑

i=1

H(Yci|Y i−1
c , W1, W2, X

n
1 , Xn

2 )

−
n∑

i=1

H(Yci|Xci, X1i, X2i) + nǫc
n (3.12)

(g)
=

n∑

i=1

H(Yci|Y i−1
c , Y i−1

1 , W1, W2, X
n
1 , Xn

2 )

−
n∑

i=1

H(Yci|Xci, X1i, X2i) + nǫc
n

≤
n∑

i=1

H(Yci|Y i−1
1 , W1, W2, X

n
1 , Xn

2 )

−
n∑

i=1

H(Yci|Xci, X1i, X2i) + nǫc
n

=

n∑

i=1

I(Xci; Yci|X1i, Ui, X2i, Vi) + nǫc
n
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where (d) follows from mutual independence betweenWc, W1 andW2, (e)

follows from Fano’s inequality, (f) follows from the memoryless nature of the chan-

nel and (g) follows from the degraded nature of the channel (with the assumption

thatb < 1).

Defining Q to be the time-sharing random variable that is distributed uni-

formly over{1, 2, ..., n} and defining

(Q, X1, X2, U, V, Y1, Yc) = (Q, X1,Q, X2,Q, UQ, VQ, Yl,Q, Yc,Q)

yields the desired outer bound.

3.4 Achievable Region for MACRC

In this section, we describe an achievable region for the MACRC. The cod-

ing strategy combines superposition and dirty paper codingtechniques. LetPi de-

note the set of probability distributionsPi(.) given by

Pi(q, x1, u, x2, v, xc, t) = p(q)p(u, x1|q)p(v, x2|q)
p(t, xc|u, v, x1, x2).

(3.13)

Let Rin(Pi) denote the set of rate tuples(R1, R2, Rc) given by

R1 ≤ I(X1, U ; Y1|V, X2, Q)

R2 ≤ I(X2, V ; Y1|U, X1, Q)

R1 + R2 ≤ I(X1, U, X2, V ; Y1|Q) (3.14)

Rc ≤ I(T ; Yc|Q) − I(T ; X1, U, X2, V |Q)

R1, R2, Rc ≥ 0.
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Let Rin denote the set of rate tuples(R1, R2, Rc) given by

Rin =
⋃

Pi(.)∈Pi

Rin(Pi). (3.15)

Then, the following theorem describes an achievable regionfor the MACRC.

Theorem 3.4.1.The capacity region of the MACRC satisfies

Rin ⊆ CMACRC . (3.16)

Proof. For simplicity, we shall present the coding-scheme for the degenerate case

where the time-sharing random variableQ is deterministic. It should be kept in

mind that the introduction of time-sharing may increase theregion by convexifica-

tion. We fix aPi(.) ∈ Pi and show that the regionRin(Pi) is achievable. First, we

describe codebook generation at the transmitters.

Codebook Generation:Transmitter 1 generates2nR1 vector pairsXn
1 , Un ∼

∏n

i=1 p(x1i, ui)

and index them usingj ∈ {1, . . . , 2nR1}. Similarly, transmitter 2 generates2nR2

vector pairsXn
2 , V n ∼

∏n

i=1 p(x2i, vi) and index them usingk ∈ {1, . . . , 2nR1}.

The cognitive transmitter generates2nRc T n ∼
∏n

i=1 p(ti) and places them uni-

formly in 2nRc bins. We next describe the transmission strategy at the three trans-

mitters.

Transmission strategy: Given messagem1 ∈ {1, . . . , 2nR1}, transmitter 1 deter-

minesXn
1 (m1) and transmits it. Similarly, for messagem2 ∈ {1, . . . , 2nR2}, trans-

mitter 2 transmitsXn
2 (m2). As the cognitive transmitter has access to messagesm1

andm2, the cognitive transmitters determinesXn
1 (m1), U

n(m1), X
n
2 (m2), V

n(m2).
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For messagemc ∈ {1, . . . , 2nRc}, the cognitive transmitter determines a sequence

T n in bin mc such that(T n(wc), X
n
1 (m1), U

n(m1), X
n
2 (m2), V

n(m2)) is jointly

typical. If such aT n is located, then anXn
c is generated according to the condi-

tional
∏n

i=1 p(xci|x1i, ui, x2i, vi) is generated and transmitted. We next describe the

decoding strategy at the two receivers.

Reception: The primary receiver determines indices(m̂1, m̂2) such that

(Xn
1 (m̂1), U

n(m̂1), X
n
2 (m̂2), V

n(m̂2), Y
n
1 ) is jointly typical. The cognitive receiver

determines aT n such that(T n, Y n
c ) is jointly typical. The cognitive receiver then

determines the bin index ofT n and declares that as the decoded message. We next

describe the probability of error of encoding and decoding process.

Decoding Error at Primary Receiver: LetEj,k denote the decoding error

event that(Xn
1 (j), Un(j), Xn

2 (k), V n(k), Y n
1 ) is jointly typical. We assume that the

transmitters transmitted messagesm1 andm2. Then the probability of decoding

error is given by

Pe = Pr



Ec
m1,m2

∪
⋃

(j,k)6=(m1,m2)

Ej,k



 .

The probability of decoding error can be upper bounded by

Pe ≤ Pr(Ec
m1,m2

) +
∑

j 6=m1

Pr(Ej,m2) +
∑

k 6=m2

Pr(Em1,k)+

∑

j 6=m1,k 6=m2

Pr(Ej,k).

For anyǫ > 0, there existsn large enough such that the first termPr(Em1,m2) ≤ ǫ.
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The other three terms can be made smaller thanǫ if

R1 ≤ I(X1, U ; Y1|X2, V ) − 3ǫ
R2 ≤ I(X2, V ; Y1|X1, U) − 3ǫ

R1 + R2 ≤ I(X1, U, X2, V ; Y1) − 4ǫ.
(3.17)

Encoding Error at Cognitive Transmitter: An encoding erroroccurs at the

cognitive transmitter if noT n in bin indexmc can be found such that the sequence

(T n, Xn
1 (m1), U

n(m1), X
n
2 (m2), V

n(m2) is jointly typical. The probability of this

happening can be upper bounded by

Pe ≤ (1 − 2−nI(T ;X1,U,X2,V ))2n(Rc−Rc)

.

The probability of encoding error can be made arbitrarily small if

Rc ≥ Rc + I(T ; X1, U, X2, V ) (3.18)

Decoding Error at Cognitive Receiver: The cognitive receiver determines a

bin indexm̂c and a sequenceT n from that bin such that(T n, Y n
c ) is jointly typi-

cal. To analyze the probability of error, we assume that the transmitter wished to

communicate messagemc and no error occurred at the cognitive encoder. Then,

a decoding error occurs if noT n in bin mc is jointly typical with Y n
c , or if a T n

from a different bin is jointly typical withY n
c . The probability that noT n in bin mc

is jointly typical with Y n
c can be made arbitrarily small for suitably largen. The

probability that aT n from a different bin is jointly typical withY n
c can be made

small if

Rc ≤ I(T ; Yc) − 3ǫ (3.19)
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ChoosingRc = Rc + I(T ; X1, U, X2, V ) + ǫ, we get

Rc ≤ I(T ; Yc) − I(T ; X1, U, X2, V ) − 4ǫ. (3.20)

Hence the region described byRin is achievable.

3.5 Optimality of the Achievable Region

In this section, we show that for the Gaussian MACRC, when thecross

channel gain from the cognitive transmitter to the primary receiver,b ≤ 1, the

achievable region described by Theorem 3.4.1 meets the outer bound described in

Theorem 3.3.1. Letρ1, ρ2 ∈ [0, 1] such thatρ2
1 + ρ2

2 ≤ 1. Define∆ = 1 − ρ2
1 − ρ2

2.

Define the functionL : R+ → R by L(x) = 1
2
log(1 + x). Let R(ρ1, ρ2) denote the

set of rate tuples(R1, R2, Rc) ∈ R3
+ given by

R1 ≤ L

((√
P1 + b

√
Pcρ1

)2

1 + b2Pc∆

)

R2 ≤ L

((√
P2 + b

√
Pcρ2

)2

1 + b2Pc∆

)
(3.21)

R1 + R2 ≤ L

((√
P1 + b

√
Pcρ1

)2
+
(√

P2 + b
√

Pcρ2

)2

1 + b2Pc∆

)

Rc ≤ L (Pc∆)

Let R denote the set of rate tuples(R!, R2, Rc) described by

R =
⋃

ρ1,ρ2∈[0,1]:ρ2
1+ρ2

2≤1

R(ρ1, ρ2). (3.22)

Then, the following theorem describes the capacity region of the MACRC

when the cross channel gainb ≤ 1.
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Theorem 3.5.1.When the cross channel gainb ≤ 1 in a MACRC, the capacity

region of the channel is given by

CMACRC = R. (3.23)

3.5.1 Proof of Inner Bound

Consider the achievable region given by (5.35). Take in (3.14), (X1, X2, Xc)

jointly Gaussian with zero means and variances(P1, P2, Pc) respectively and where

E(X1X2) = 0 andE(XcXi) = ρi

√
PiPc for i = 1, 2. ChooseU andV to be

deterministic random variables.

The random variableT is defined as follows

T = Xc + α1X1 + α2X2,

whereα1 andα2 are constants to be specified. It is evident that for this choice of

random variables we have,

Rc = I(T ; Yc) − I(T ; X1, U, X2, V )
= I(T ; Yc) − I(T ; X1, X2)
= I(T ; Yc|X1, X2) − I(T ; X1, X2|Yc)
= I(Xc; Yc|X1, X2) − I(T ; X1, X2|Yc)

(3.24)

From [55, Lemma 1], there existsα∗
1, α

∗
2 such thatI(T ; X1, X2|Yc) = 0. We choose

α1 = α∗
1 andα2 = α∗

2. Therefore, we get

Rc = I(T ; Yc) − I(T ; X1, U, X2, V )
= I(T ; Yc) − I(T ; X1, X2)
= I(Xc; Yc|X1, X2, U)
= L (Pc(1 − ρ2

1 − ρ2
2)) .

(3.25)
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With these choice of random variables, we observe that

h(Y1|X2) = 1
2
log (2πe (1 + P1 + 2bσ1 + b2Pc(1 − ρ2

2)))

h(Y1|X1) = 1
2
log (2πe (1 + P2 + 2bσ2 + b2Pc(1 − ρ2

1)))

h(Y1) = 1
2
log (2πe (1 + P1 + P2 + 2b(σ1 + σ2) + b2Pc))

h(Y1|X1, X2) = 1
2
log (2πe (1 + b2Pc(1 − σ2

1 − σ2
2))) .

Substituting the above expressions and (3.25) into the achievable region in

(5.35), it is easy to see that the achievable region matches the rate region given by

R.

3.5.2 Outer Bound

In this section, we show that Gaussians maximize the outer bound derived

in Section 3.3. From Section 3.3, we have the outer bound as the union over all the

rate tuples that satisfy

R1 ≤ h(Y1|V, X2, Q) − h(Y1|X1, U, X2, V, Q)

R2 ≤ h(Y1|U, X1, Q) − h(Y1|X1, U, X2, V, Q)

R1 + R2 ≤ h(Y1|Q) − h(Y1|X1, U, X2, V, Q)

Rc ≤ h(Yc|X1, U, X2, V, Q) − h(N2)

for somePQ,X1,U,X2,V whereY1 = X1+X2+bXc+N1, Yc = Xc+a1X1+a2X2+N2

andX1 andX2 are independent givenQ. In this section, we derive the outer bound

for a degenerateQ (that is, we assume thatX1 andX2 are independent). The overall

outer bound is in fact the convex hull over the entire obtained region.

Since0 ≤ I(Xc; Yc|X1, U, X2, V ) ≤ 1
2
log (1 + Pc), there exists someγ ∈
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[0, 1] such that

I(Xc; Yc|X1, U, X2, V ) =
1

2
log (1 + γPc) ,

and consequently

h(Yc|X1, U, X2, V ) =
1

2
log (2πe(1 + γPc)) . (3.26)

Let J be a Gaussian noise with variance1 − b2. Using the Entropy Power

Inequality, we obtain

22h(Y1|X1,U,X2,V ) = 22h(bXc+N1|X1,U,X2,V )

= 22h(bYc+J |X1,U,X2,V )

≥ 22h(bYc|X1,U,X2,V ) + 22h(J) (3.27)

= 2πe
(
b2(1 + γPc) + 1 − b2

)

= 2πe
(
1 + γb2Pc

)
.

Next, we recall that for a given covariance matrix of(X1, X2, Xc, U, V ),

the conditional entropiesh(Y1|V, X2), h(Y1|U, X1) and h(Y1) are maximized if

(X1, X2, Xc, U, V ) is a Gaussian vector. Also, we have that

h(Y1|X1, U) ≤ h(Y1|X1) andh(Y1|X2, V ) ≤ h(Y1|X2)

Finally, for GaussianX1, X2, Xc such thatX1 andX2 are independent andE[XiXc] =
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ρi

√
PiPc, we observe that

1

2
log (2πe(1 + γPc)) = h(Yc|X1, U, X2, V )

= h(Xc + N |X1, U, X2, V )

≤ h(Xc + N |X1, X2) (3.28)

=
1

2
log (2πe(1 + ∆Pc)) .

Hence, we haveγ ≤ ∆ = 1 − ρ2
1 − ρ2

2.

Hence, the outer bound reduces to

R1 ≤ 1

2
log

(
1 + P1 + 2bσ1 + b2Pc(1 − ρ2

2)

1 + b2Pcγ

)

R2 ≤ 1

2
log

(
1 + P2 + 2bσ2 + b2Pc(1 − ρ2

1)

1 + b2Pcγ

)
(3.29)

R1 + R2 ≤ 1

2
log

(
1 + P1 + P2 + 2b(σ1 + σ2) + b2Pc

1 + b2Pcγ

)

Rc ≤ 1

2
log (1 + γPc) .

where the outer bound is optimized over allρ1, ρ2 ∈ [0, 1] such thatρ2
1 + ρ2

2 ≤ 1

andγ ≤ ∆.

We note that if one substitutesγ = ∆ into (3.30), we get the desired region

(3.22). The following lemma concludes the proof of the outerbound of Theorem

3.5.1, by showing that it is sufficient to considerγ = ∆.
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Lemma 3.5.2.The region of all rate triples(R1, R2, Rc) such that

R1 ≤
1

2
log

(
1 + P1 + 2bσ1 + b2Pc(1 − ρ2

2)

1 + b2Pcγ

)

R2 ≤
1

2
log

(
1 + P2 + 2bσ2 + b2Pc(1 − ρ2

1)

1 + b2Pcγ

)

R1 + R2 ≤
1

2
log

(
1 + P1 + P2 + 2b(σ1 + σ2) + b2Pc

1 + b2Pcγ

)

Rc ≤
1

2
log (1 + γPc) ,

for some(σ2, σ1) = (
√

P2Pcρ2,
√

P1Pcρ1) such that0 ≤ ρ2
1 + ρ2

2 ≤ 1 and some

γ ∈ [0, ∆], ∆ = (1 − ρ2
1 − ρ2

2) remains the same if one takesγ = ∆ (and therefore

equal to the region (3.22)).

Proof. Fix Rc = 1
2
log(1 + dPc). To obtain this rate,∆ cannot be smaller thand.

Consider therefore∆ ∈ [d, 1]. Denote

c(∆) = L(b2∆Pc)
f1(ρ1, ρ2) = L(P1 + 2bσ1 + b2Pc(1 − ρ2

2))
f2(ρ1, ρ2) = L(P2 + 2bσ2 + b2Pc(1 − ρ2

1))
f3(ρ1, ρ2) = L(P1 + P2 + 2b(σ1 + σ2) + b2Pc)

(3.30)

Forγ = ∆ and the rateRc we fixed, the region becomes

R1 ≤ f1(ρ1, ρ2) − c(∆)
R2 ≤ f2(ρ1, ρ2) − c(∆)

R1 + R2 ≤ f3(ρ1, ρ2) − c(∆)
Rc = 1

2
log(1 + dPc)

(3.31)

whereρ2
1 + ρ2

2 = 1 − ∆ and∆ ∈ [d, 1].

If we allow γ ≤ ∆, it is obvious that the optimalγ is d and the region
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becomes
R1 ≤ f1(ρ1, ρ2) − c(d)
R2 ≤ f2(ρ1, ρ2) − c(d)

R1 + R2 ≤ f3(ρ1, ρ2) − c(d)
Rc = 1

2
log(1 + dPc)

(3.32)

whereρ2
1 + ρ2

2 = 1 − ∆ and∆ ∈ [d, 1].

The regions (3.31) and (3.32) would coincide iff the optimal∆ in (3.31) as

well as in (3.32) isd. We show that this is indeed the case and this establishes that

the optimalγ is equal to∆.

The optimal ∆ in (3.31) isd: First, we observe that the sum of the bounds

on the individual ratesR1, R2 in (3.31) is never smaller than the sum-rate bound,

that is, we establish the inequality

f1(ρ1, ρ2) − c(∆) + f2(ρ1, ρ2) − c(∆) > f3(ρ1, ρ2) − c(∆).

This implies that region (3.31) is basically determined by the vertex points of pen-

tagons. Hence, a vertex point of interest in (3.31) is determined either by the bounds

onR1 +R2 andR1, or by the bounds onR1 +R2 andR2 (but not simultaneously by

the two bounds on the individual ratesR1 andR2). First, assume that the determin-

ing bounds are those ofR1 + R2 andR2. Let ρ̃1 ∈ [0,
√

1 − d] be the correlation

coefficient that achieve this vertex point, and letσ̃1 be the corresponding correla-

tion. It is easy to realize that for fixedρ1 the functionsf2, f3 are decreasing with

∆ and therefore the minimal possible∆ for this vertex point is the optimal, i.e.,

∆ = d.

Similarly, if the determining bounds are those ofR1 + R2 andR2 we no-

tice that for fixedρ2, the functionsf1, f3 are decreasing with∆, and therefore the
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optimal∆ for this vertex point is the minimal, i.e.,∆ = d.

The optimal ∆ in (3.32) isd: We observe that the sum of the bounds on the

individual ratesR1, R2 is never smaller than the sum-rate bound in (3.32) too. That

is, we have the following inequality:

f1(ρ1, ρ2) − c(d) + f2(ρ1, ρ2) − c(d) > f3(ρ1, ρ2) − c(d).

Hence, similarly to (3.31), a vertex point of interest in (3.32) is determined

either by the bounds onR1 +R2 andR1, or by the bounds onR1 +R2 andR2. And,

similarly, the arguments

• for fixedρ1 the functionsf2, f3 are decreasing with∆

• for fixedρ2 the functionsf1, f3 are decreasing with∆,

are sufficient to prove that the optimal∆ is d.

This concludes the proof of Lemma 3.5.2 and Theorem 3.5.1.

In Figure 3.2, we depict the capacity region of MACRC whenP1 = P2 =

Pc = 10 and the channel gainb = 0.5.

3.6 Conclusions

In this chapter, we analyzed the capacity of the cognitive radio channel in

a multiple access setting. We derived an outer bound on the capacity region of the

MACRC when the cross channel gain from the cognitive transmitter to the primary
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receiver,b ≤ 1. We also show that Gaussians maximize the outer bound. We derive

an achievable region using superposition and dirty paper coding at the cognitive

transmitter. Finally, we show that when the cross channel gain b ≤ 1, the achievable

region achieves the entire capacity region.
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Chapter 4

Interference Networks with Cognitive Relay

In this chapter, we analyze the capacity region of an interference network

with cognitive relay. Relay nodes serve to assist the transmitters in communicat-

ing their messages to their receivers. In this model, it is assumed that the relay

nodes know the message of all the transmitters apriori. The chapter is organized

as follows: The problem statement, prior work and our contributions are discussed

in Section 4.1. In Section4.2, we describe the system model. In Section4.3, we

describe a transmission strategy and a corresponding achievable region for the in-

terference network with cognitive relay. We derive an outerbound on the capacity

region of the interference network with cognitive relay in Section4.4. We provide

numerical results in Section4.5. We conclude the chapter in Section4.6.

4.1 Introduction

Networks with cognitive users are gaining prominence with the develop-

ment of cognitive radio technology, which is aimed at improving the spectral effi-

ciency and the system performance by designing nodes which can adapt their strat-

egy based on the network setup. Much recent work has been focused on the two

user interference channel with a cognitive transmitter [39–42, 57]. In this channel
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setting, one of the transmitters has non-causal access to the message transmitted

by the other transmitter. In this chapter, we study a two userGaussian interference

channel in the presence of a cognitive relay (see Figure4.1). This channel model is

different from the one used in [39–42,57] in that, each transmitter has access to only

their respective messages. However, we assume that there isa cognitive relay node

which has non-causal access to the messages of both the transmitters. This relay

node serves only to assist the two transmitters in communicating their messages to

their respective receivers. An achievable region for this system is described in [49].

Other work on this channel model include [50–52].

In this chapter, we present a new achievable region for the Gaussian interfer-

ence channel with a cognitive relay. This region is a generalization of the achievable

region given in [49]. The coding scheme used in this chapter is a combination of the

Han-Kobayashi coding scheme for the general interference channel [4] and Costa’s

dirty paper coding [22]. The Han-Kobayashi coding scheme was also used for the

interference channel with a normal (non cognitive) relay in[51]. We perform dirty

paper coding simultaneously for both the users instead of time sharing between the

two users as was done in [49]. We also derive an outer bound on the capacity re-

gion of the Gaussian interference channel with a cognitive relay. The outer bound

is obtained by allowing transmitter co-operation to obtaina MIMO cognitive radio

channel [57]. We use the outer bound of the MIMO cognitive radio channel as the

outer bound for the capacity region of the interference channel with cognitive relay.

We also derive the degree of freedom (d.o.f.) region of the interference channel

with cognitive relay. We show that we can achieve the full degrees of freedom of
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a two user no-interference channel for a large range of channel parameters. The

contributions of this chapter were presented in [65].

Throughout the chapter, we denote random variables by capital letters, their

realizations by lower case and their alphabets by calligraphic letters (eg.X, x andX

respectively). We denote vectors of lengthn with boldface letters (e.g.xn), and the

ith element of a vectorxn by xi. For any setS, S andCH(S) denote the closure and

convex hull ofS respectively. For any vector or matrixA, A
′

denotes its transpose.

Tr(A) denotes the trace of a matrixA. We define the functionL : R+ → R as

L(x) = 1
2
log(1 + x).

4.2 System Model

We study a Gaussian interference channel with two transmitters, two re-

ceivers and a cognitive relay. The system model is describedin Figure4.1. The

interference channel is described by(X1, X2, Xr, Y1, Y2, p(y1, y2|x1, x2, xr)), where

X1, X2, Xr are the input alphabets associated with the two transmitters and the re-

lay, Y1, Y2 are the two output alphabets. For the Gaussian channel, we assume

that all the alphabets are the entire realsR. Sourcei, i = 1, 2 has message

mi ∈ {1, . . . , 2nRi} to be communicated to destinationi overn channel uses. The

relay has non-causal access to both the messagesm1 andm2 and assists the two

sources. LetX1, X2, Xr andY1, Y2 denote the random variables representing the

respective channel inputs and outputs. Then, the input-output relationship can be
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Figure 4.1: System model for Gaussian Interference Channelwith Cognitive Relay.

represented by the system equations

Y1 = X1 + bX2 + c1Xr + Z1

Y2 = aX1 + X2 + c2Xr + Z2,
(4.1)

wherea, b, c1 andc2 represent the channel gains as shown in Figure4.1. Z1 andZ2

denote the additive noise which are i.i.d. Gaussian random variables distributed as

N(0, 1). The channel inputs must satisfy the following power constraints:

1

n

n∑

i=1

E[X2
j,i] ≤ Pj , j ∈ {1, 2, r}. (4.2)

A (2nR1, 2nR2, n, P e) code consists of message setsM1 = {1, . . . , 2nR1} andM2 =

{1, . . . , 2nR2}, three encoding functions

f1 : M1 → Xn
1 , f2 : M2 → Xn

2 ,

fr : M1 × M2 → Xn
r ,

(4.3)
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and two decoding functions

g1 : Yn
1 → M1, g2 : Yn

2 → M2, (4.4)

such that the transmitted codewordsXn
1 ,X

n
2 andXn

r satisfy the power constraints

given by (4.2) and an error probability≤ Pe = max(Pe,1, Pe,2). For t = 1, 2, we

have

Pe,t =
1

2n(R1+R2)

∑

(m1,m2)

Pr[g(Yn
t ) 6= mt|(m1, m2) sent]. (4.5)

A rate pair(R1, R2) is achievable if there exists a sequence of(2nR1 , 2nR2, n, P e(n))

codes such thatPe(n) → 0 asn → ∞. The capacity region of the interference chan-

nel with cognitive relay is then the set of all rate pairs(R1, R2) that are achievable,

and is denoted byCIC. The d.o.f. region of the Gaussian interference channel with

cognitive relayD is defined as

D =






(d1, d2) ∈ R2
+ : ∀w ∈ R+,

wd1 + d2 ≤ lim supP1+P2+Pr→∞
sup(R1,R2)∈CIC

wR1+R2

log(P1+P2+Pr)




 . (4.6)

4.3 Achievable Region and Transmission Strategy

In this section, we describe an achievable region for the interference channel

with cognitive relay and describe the corresponding transmission strategy.

Let P denote the set of(P11, P12, P21, P22, Pr11, Pr12, Pr21, Pr22, Pr3, Pr4)
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described by




(
P11, P12, P21, P22, Pr11, Pr12,

Pr21, Pr22, Pr3, Pr4

)
:

P11 + P12 = P1

P21 + P22 = P2

Pr11 + Pr12 + Pr21 + Pr22 + Pr3 + Pr4 = Pr





. (4.7)

Let P ∗ ∈ P. Let α1, α2, β1, β2 ∈ {−1, 1}. We denoter11, r12, r21, r22 as follows :

r1j = (
√

P1j + αjc1

√
Pr1j)

2, j ∈ {1, 2},
r2j = (b

√
P2j + βjc1

√
Pr2j)

2, j ∈ {1, 2}.
(4.8)

Let RP ∗

i1 (α1, α2, β1, β2) denote the set described by




(R11, R12, R21) : R11 ≥ 0, R12 ≥ 0, R21 ≥ 0

R11 ≤ L

(
r11

1+r22+c21(Pr3+Pr4)

)

R12 ≤ L

(
r12

1+r22+c21(Pr3+Pr4)

)

R21 ≤ L

(
r21

1+r22+c21(Pr3+Pr4)

)

R11 + R12 ≤ L

(
r11+r12

1+r22+c21(Pr3+Pr4)

)

R11 + R21 ≤ L

(
r11+r21

1+r22+c21(Pr3+Pr4)

)

R12 + R21 ≤ L

(
r12+r21

1+r22+c21(Pr3+Pr4)

)

R11 + R12 + R21 ≤ L

(
r11+r12+r21

1+r22+c21(Pr3+Pr4)

)





. (4.9)

We denotes11, s12, s21, s22 as follows :

s1j = (a
√

P1j + αjc2

√
Pr1j)

2, j ∈ {1, 2},
s2j = (

√
P2j + βjc2

√
Pr2j)

2, j ∈ {1, 2}.
(4.10)
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RP ∗

i2 (α1, α2, β1, β2) denotes the set described by




(R12, R21, R22) : R12 ≥ 0, R21 ≥ 0, R22 ≥ 0

R12 ≤ L

(
s12

1+s11+c22(Pr3+Pr4)

)

R21 ≤ L

(
s21

1+s11+c22(Pr3+Pr4)

)

R22 ≤ L

(
s22

1+s11+c22(Pr3+Pr4)

)

R12 + R21 ≤ L

(
s12+s21

1+s11+c22(Pr3+Pr4)

)

R12 + R22 ≤ L

(
s12+s22

1+s11+c22(Pr3+Pr4)

)

R21 + R22 ≤ L

(
s21+s22

1+s11+c22(Pr3+Pr4)

)

R12 + R21 + R22 ≤
(

s12+s21+s22

1+s11+c22(Pr3+Pr4)

)





. (4.11)

Let α = (α1, α2) andβ = (β1, β2). Let RP ∗

in,1(α, β) andRP ∗

in,2(α, β) be the

set of rate pairs(R1, R2) described by
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RP ∗

in,1(α, β) =





(R1, R2) : R1 ≥ 0, R2 ≥ 0
R1 = R11 + R12 + R13

R2 = R21 + R22 + R23

(R11, R12, R21) ∈ RP ∗

i1 (α, β)

(R12, R21, R22) ∈ RP ∗

i2 (α, β)

R13 ≤ L

(
c21Pr3

1+c21Pr4

)

R23 ≤ L(c2
2Pr4)





, (4.12)

RP ∗

in,2(α, β) =





(R1, R2) : R1 ≥ 0, R2 ≥ 0
R1 = R11 + R12 + R13

R2 = R21 + R22 + R23

(R11, R12, R21) ∈ RP ∗

i1 (α, β)

(R12, R21, R22) ∈ RP ∗

i2 (α, β)
R13 ≤ L(c2

1Pr3)

R23 ≤ L

(
c22Pr4

1+c22Pr3

)





. (4.13)

Let Rin be the set of rate pairs described by

Rin = CH

( ⋃

P ∗∈P

⋃

α,β

(
RP ∗

in,1(α, β) ∪ RP ∗

in,2(α, β)
))

. (4.14)

Then, the following theorem describes an achievable regionfor the Gaussian inter-

ference channel with cognitive relay.

Theorem 4.3.1.The capacity region of the Gaussian interference channel with cog-

nitive relayCIC satisfies

Rin ⊆ CIC . (4.15)

Proof of Theorem 4.3.1:We fix a P ∗ ∈ P whereP is described in (4.7).

We also fixα1, α2, β1, β2 ∈ {−1, 1}. We show thatRP ∗

in,1(α, β) is achievable.

We assume thatP11, P12, P21, P22 > 0. The proof for the case when some of
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P11, P12, P21, P22 are equal to zero is identical to the one presented here and is

hence omitted.

For i = 1, 2, sourcei splits its messagemi ∈ {1, . . . , 2nRi} into 3 indepen-

dent parts(mi1, mi2, mi3) ∈ {1, . . . , 2nRi1}× {1, . . . , 2nRi2}× {1, . . . , 2nRi3} such

thatRi1 + Ri2 + Ri3 = Ri.

Encoding Scheme : Fori = 1, 2, transmitteri encodes messagemi1 into

Xn
i1, such thatp(xn

i1) = Πn
j=1P (xi1,j), andXi1,j ∽ N(0, Pi1). Messagemi2 is

then encoded intoXn
i2, such thatp(xn

i2) = Πn
j=1P (xi2,j), andXi2,j ∽ N(0, Pi2).

Transmitteri transmitsXn
i = Xn

i1 + Xn
i2.

The relay encodes message(m11, m12) into Xn
r1 = α1

√
(Pr11/P11)X

n
11 +

α2

√
(Pr12/P12)X

n
12, and message(m21, m22) into Xn

r2 = β1

√
(Pr21/P21)X

n
21 +

β2

√
(Pr22/P22)X

n
22. The relay node encodes messagem13 into Xn

r3 treating(b +

c1β2

√
(Pr22/P22))X

n
22 as non-causally known interference at receiver1. That is,

Xn
r3 is formed using Costa’s dirty paper coding [22], and is distributed asp(xn

r3) =

Πn
i=1P (xr3,i) andXr3,i ∽ N(0, Pr3). Finally, the relay encodes messagem23 into

Xn
r4 treating(a + c2α1

√
(Pr11/P11))X

n
11 + c2X

n
r3 as non-causally known inter-

ference at receiver2. Xn
r4 is distributed asp(xn

r4) = Πn
i=1P (xr4,i) andXr4,i ∽

N(0, Pr4). The relay transmitsXn
r = Xn

r1 + Xn
r2 + Xn

r3 + Xn
r4. It is to be noted that

this coding scheme uses the result that the capacity region of a Gaussian broadcast

channel with additive state known non-causally at the transmitter is the same as the

capacity region of the same broadcast channel with no state [59].

Decoding : Receiver1 decodes(m11, m12, m21) jointly by treating(b +
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c1β2

√
(Pr22/P22))X

n
22+c1(X

n
r3+Xn

r4)+Zn
1 as Gaussian noise. Hence,(m11, m12, m21)

can be successfully decoded at receiver1 if (R11, R12, R21) ∈ RP ∗

i1 (α, β). Receiver

1 then decodes messagem13 by treatingc1X
n
r4 + Zn

1 as Gaussian noise.

Receiver2 decodes(m12, m21, m22) jointly by treating(a+c2α1

√
(Pr11/P11))X

n
11+

c2(X
n
r3 + Xn

r4) + Zn
2 as Gaussian noise. Hence,(m12, m21, m22) can be success-

fully decoded at receiver2 if (R12, R21, R22) ∈ RP ∗

i2 (α, β). Finally, messagem23 is

decoded by treatingZn
2 as noise.

Hence, it follows thatRP ∗

in,1(α, β) is achievable. Similarly,RP ∗

in,2(α, β) is also

achievable. Hence, the region described byRin is achievable for the interference

channel with cognitive relay.

Remark4.3.1. The coding scheme used to achieve the region given byRin is a

combination of Han-Kobayashi coding scheme for an interference channel [4] and

Costa’s dirty paper coding [22].

Remark4.3.2. There are two main differences between the achievable region pre-

sented in this chapter and the one given in [49]. The first one is that, we incorporate

message splitting and partial interference cancelation atthe receiver. This strat-

egy is motivated by the Han-Kobayashi coding scheme for the general interference

channel [4]. The second major difference is, we perform dirty paper coding for both

the users simultaneously and time share the order in which weperform dirty paper

coding. In [49], the authors perform dirty paper coding for only one user at a time

and time share between the two dirty paper coding regions.
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4.4 Outer Bound on the Capacity Region of Interference Chan-
nel with Cognitive Relay

In this section, we derive outer bounds on the capacity region of the inter-

ference channel with cognitive relay. we also derive the degree of freedom region

of the interference channel with cognitive relay. Letγ > 0 be any positive real

number. We define the following3 × 1 matrices:

G1γ =
[

1 c1√
γ

b√
γ

]
, H1γ =

[
0 c2√

γ
1√
γ

]
,

G2γ =
[

1√
γ

c1√
γ

0
]
, H2γ =

[
a√
γ

c2√
γ

1
]
. (4.16)

Consider the two2-user Gaussian MIMO broadcast channels given in Figures4.2

and4.3 with three transmit antennas and one antenna at each receiver. We denote

G1γ

Co-operating Transmitters

P1 + γP2 + γPr

X(m1, m2)

Z2

Z1

Y1

Y2

Receiver 2

Receiver 1

H1γ

Figure 4.2: Broadcast Channel 1.
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H2γ

Co-operating Transmitters

X(m1, m2)

Z2

Z1

Y1

Y2

Receiver 2

Receiver 1

γP1 + P2 + γPr
G2γ

Figure 4.3: Broadcast Channel 2.

the two broadcast channels asBCγ
1 andBCγ

2 respectively. Let their capacity re-

gions be denoted byCγ
BC,1 andC

γ
BC,2 respectively.Rγ

BC,1 represents the closure of

the convex hull of the set of rate pairs described by





(R1, R2) : R1 ≥ 0, R2 ≥ 0

R1 ≤ L

(
G1γΣ1G

′

1γ

1+G1γ(Σ1+Σ2)G
′

1γ

)

R2 ≤ L(H1γΣ2H
′

1γ)
Σ1 � 0, Σ2 � 0

Tr(Σ1 + Σ2) ≤ P1 + γP2 + γPr






. (4.17)
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R
γ
BC,2 represents the closure of the convex hull of the set of rate pairs described by






(R1, R2) : R1 ≥ 0, R2 ≥ 0

R1 ≤ L(G2γΣ1G
′

2γ

)

R2 ≤ L

(
H2γΣ2H

′

2γ

1+H2γ(Σ1+Σ2)H
′

2γ

)

Σ1 � 0, Σ2 � 0

Tr(Σ1 + Σ2) ≤ γP1 + P2 + γPr






. (4.18)

Then, we have the following lemma.

Lemma 4.4.1.For anyµ ≥ 1, we have

max
(R1,R2)∈R

γ
BC,1

µR1 + R2 = max
(R1mR2)∈C

γ
BC,1

µR1 + R2 (4.19)

max
(R1,R2)∈R

γ
BC,2

R1 + µR2 = max
(R1mR2)∈C

γ
BC,2

R1 + µR2. (4.20)

The proof of the lemma follows directly from the results of [58] and is

omitted here. The following theorem describes an outer bound on the capacity

region of the Gaussian interference channel with cognitiverelay.

Theorem 4.4.2.Letµ ≥ 1. The capacity region of the Gaussian interference chan-

nel with cognitive relay,CIC satisfies

max
(R1,R2)∈CIC

µR1 + R2 ≤ min
γ>0

max
(R1,R2)∈R

γ
BC,1

µR1 + R2 (4.21)

max
(R1,R2)∈CIC

R1 + µR2 ≤ min
γ>0

max
(R1,R2)∈R

γ
BC,2

R1 + µR2. (4.22)

Proof of Theorem 4.4.2: The outer bound is obtained by allowing trans-

mitter co-operation. We allow transmitter2 to fully co-operate with the relay. This

is done by providing transmitter2 with messagem1 non-causally. This reduces
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the channel to a Gaussian MIMO cognitive channel studied in Chapter2 [57]. Let

the capacity region of the corresponding MIMO cognitive channel be denoted by

CMCC,1. Then, for anyµ ≥ 1, it is shown in [57, Theorem 3.2 and Lemma 5.6] and

Chapter 2 (Theorem 2.3.2 and Lemma 2.5.6) that

max
(R1,R2)∈CMCC,1

µR1 + R2 ≤ min
γ>0

max
(R1,R2)∈R

γ
BC,1

µR1 + R2. (4.23)

It follows that for anyµ ≥ 1,

max
(R1,R2)∈CIC

µR1 + R2 ≤ min
γ>0

max
(R1,R2)∈R

γ
BC,1

µR1 + R2.

By allowing transmitter1 to co-operate fully with the relay node, we obtain the

other bound. That is, for anyµ ≥ 1,

max
(R1,R2)∈CIC

R1 + µR2 ≤ min
γ>0

max
(R1,R2)∈R

γ
BC,2

R1 + µR2.

Remark4.4.1. It is to be noted that the outer bound is not obtained by merely

letting all the transmitters co-operate with a sum power constraint. In the broadcast

channel in Figures2 and3, it can be seen that one of the channel gains is made zero.

Also, the outer bound is obtained by minimizing over a seriesof broadcast channel

with different sum power constraints and channel gains. Theouter bound obtained

is in general not tight, even with respect to the cognitive radio channel [42] [57],

because, the non cognitive transmitter in the cognitive radio channel cannot transmit

any information with respect to the message of the other transmitter.

Let ρ1, ρ2 ∈ [−1, 1]. Let A(ρ1, ρ2) be given by

A(ρ1, ρ2) =




P1 0 ρ1

√
P1Pr

0 P2 ρ2

√
P2Pr

ρ1

√
P1Pr ρ2

√
P2Pr Pr


 . (4.24)
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We define the functionsF1(ρ1, ρ2) andF2(ρ1, ρ2) as

F1(ρ1, ρ2) = L(P1 + c2
1Pr(1 − ρ2

2) + 2c1ρ1

√
P1Pr)

F2(ρ1, ρ2) = L(P2 + c2
2Pr(1 − ρ2

1) + 2c2ρ2

√
P2Pr).

(4.25)

The following theorem describes another outer bound on the capacity region

of the interference channel with cognitive relay,CIC .

Theorem 4.4.3.Let (R1, R2) ∈ CIC . Then for any0 ≤ µ < ∞, we have

µR1 + R2 ≤ max
ρ1,ρ2∈[−1,1]

µF1(ρ1, ρ2) + F2(ρ1, ρ2) (4.26)

such thatA(ρ1, ρ2) � 0.

Proof of Theorem 4.4.3:The proof follows from a sequence of information
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theory inequalities:

n(µR1 + R2) = µH(W1|W2) + H(W2|W1) (4.27)

≤ µI(W1; Y
n
1 |W2) + I(W2; Y

n
2 |W1) + nǫ (4.28)

= µh(Y n
1 |W2) − µh(Y n

1 |W1, W2) + h(Y n
2 |W2) (4.29)

−h(Y n
2 |W1, W2) + nǫ

= µh(Y n
1 |W2, X

n
2 ) − µh(Y n

1 |Xn
1 , Xn

2 , Xn
r , W1, W2) + (4.30)

h(Y n
2 |W1, X

n
1 ) − h(Y n

2 |Xn
1 , Xn

2 , Xn
r , W1, W2) + nǫ

≤ µh(Y n
1 |Xn

2 ) − µh(Y n
1 |Xn

1 , Xn
2 , Xn

r ) + h(Y n
2 |Xn

1 ) − (4.31)

h(Y n
2 |Xn

1 , Xn
2 , Xn

r ) + nǫ

= µh(Xn
1 + c1X

n
r + Zn

1 |Xn
2 ) − µh(Zn

1 ) + (4.32)

h(Xn
2 + c2X

n
r + Zn

2 |Xn
1 ) − h(Zn

2 ) + nǫ

≤
n∑

i=1

µh(X1i + c1Xri − µZ1i|X2i) −
n∑

i=1

h(Z1i) (4.33)

+

n∑

i=1

h(X2i + c2Xri − Z2i|X1i) −
n∑

i=1

h(Z2i) + nǫ

where(4.28) follows from Fano’s inequality and(4.31) follows because removing

conditioning increases entropy. LetQ be a random variable uniformly distributed
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in the set{1, 2, . . . , n}. Therefore, we have

R1 + R2 ≤ µh(X1Q + c1XrQ + Z1Q|X2Q, Q) − µh(Z1Q|Q) (4.34)

+h(X2Q + c2XrQ + Z2Q|X1Q, Q) − h(Z2Q|Q) + ǫ

≤ µh(X1Q + c1XrQ + Z1Q|X2Q) − µh(Z1Q) (4.35)

+h(X2Q + c2XrQ + Z2Q|X1Q) − h(Z2Q) + ǫ

= µh(X1 + c1Xr + Z1|X2) − µh(Z1) (4.36)

+h(X2 + c2Xr + Z2|X1) − h(Z2) + ǫ

where(4.35) follows fom removing conditioning increase entropy and i.i.d. distri-

bution of noise.

Let Σ denote the covariance matrix of(X1, X2, Xr). Σ is of the form

Σ =




P1 0 ρ1

√
P1Pr

0 P2 ρr2

√
P2Pr

ρr1

√
P1Pr ρ2

√
P2Pr Pr



 . (4.37)

whereρ1 denotes the correlation betweenXr andX1, andρ2 denotes the correlation

betweenX2 andX1. The theorem follows from the result that conditional entropies

with covariance constraint is maximized by Gaussian randomvariables.

The following theorem characterizes the d.o.f. region of the Gaussian inter-

ference channel with cognitive relay.

Theorem 4.4.4. If c1 a 6= c2 and c2 b 6= c1, the d.o.f. region of the Gaussian

interference channel with cognitive relay is

D1 =

{
(d1, d2) ∈ R2

+ :
d1 ≤ 1, d2 ≤ 1

}
. (4.38)
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If c1a = c2 and/orc2b = c1, then the d.o.f. region of the cognitive relay is

given by

D2 =

{
(d1, d2) ∈ R2

+ :
d1 + d2 ≤ 1

}
. (4.39)

Proof of Theorem 4.4.4: We first consider the case whenc1a 6= c2 and

c2b 6= c1. We describe an outer bound on the d.o.f. region. We allow allthe three

transmitters to co-operate and obtain a two user broadcast channel with3 antennas

at the transmitter and1 antenna at each receiver. The d.o.f. region of the broadcast

channel is equal to the region described by (4.38). Hence, the region described by

D1 is an outer bound on the d.o.f. region of the Gaussian interference channel with

cognitive relay.

We now show that the d.o.f. regionD1 is achievable by interference can-

celation. Fori = 1, 2, transmitteri chooses its transmit codewordXi according to

the distributionXi ∽ N(0, Qi), Qi ≤ Pi. The relay transmitsXr = λ1X1 + λ2X2.

Hence, we must haveλ2
1Q1+λ2

2Q2 ≤ Pr. We chooseambda2 = − b
c1

andλ1 = − a
c2

,

to cancel out the interference at each receiver. To satisfy the power constraints, we

chooseQi = min( Pr

2λ2
i

, Pi), i = 1, 2. We then achieve the point(d1, d2) = (1, 1).

Hence, the regionD1 is achievable.

Next, we consider the case whenc1a = c2 and/orc2b = c1. The region given

by D2 is achievable by time sharing. Whenc1a = c2, using arguments similar

to those used in [18], we can show that receiver2 can decode both the messages

m1 andm2 successfully, and that is the optimal strategy for receiver2. Hence,

d1 + d2 ≤ 1 is an upper bound on the d.o.f. region. The proof is similar for the case
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whenc2b = c1.

4.5 Numerical Results

In this section, we provide some numerical results on the capacity region of

the two user Gaussian interference channel with a cognitiverelay. We consider an

example system, wherea = b = 2, c1 = 1.5, c2 = 0.75. We take all power con-

straints to be equal to10 (i.e.,P1 = P2 = Pr = 10). Figure4.4 plots the achievable

regionRin described in (4.14), and the outer bounds in Theorem2 and Lemma2.

The plot shows the performance improvements over the achievable region by [49]

and the gap between the achievable region and the outer bounds.

4.6 Conclusions

In this chapter, we derived a new achievable region for the two user Gaus-

sian interference channel with a cognitive relay. The achievable region is a gener-

alization of the region given in [49]. In Theorems4.4.2 and4.4.3, we derive outer

bounds on the capacity region of the interference channel with cognitive relay. We

also derive the d.o.f. region of the channel setting and showthat we can achieve the

full degrees of freedom of a two user no-interference channel for a large range of

channel parameters.
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Chapter 5

Cognitive Radio Channel with Partial Cognitionl

In this chapter, we study the cognitive radio channel when the cognitive (or

secondary) transmitter has only a partial knowledge of the message transmitted by

the licensed (or primary) transmitter. This models a much more practical model of

cognitive radio. We restrict the amount of information thatthe cognitive radio can

possess. The rest of the chapter is organized as follows: In Section 5.1, we describe

the problem statement and our contributions. We describe the system model in

Section 5.2. In Section 5.3, we describe an outer bound on thecapacity region of

partial cognitive radio channel. We describe an achievableregion in Section 5.4.

We conclude in Section 5.5.

5.1 Introduction

The cognitive radio channel has been studied by several researchers over the

past decade. Most of the work has focused on two scenarios :

1. Underlay model where the cognitive transmitter has no information on the

transmissions of the licensed transmitter and has to satisfy an interference

constraint at the licensed receiver using either channel knowledge or spectrum

information.
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2. Overlay model where the cognitive transmitter has full knowledge of the

transmissions of the licensed transmitter and it uses this side information to

design its transmit strategy.

For more background on the cognitive radio models and prior work, we re-

fer the readers to earlier chapters. This chapter considersa cognitive radio channel

model where the cognitive transmitter is not fully cognitive of the other transmit-

ter’s message set. In this setting, the cognitive radio has access only to a portion of

the message. As this portion varies from nothing to everything, the channel model

includes the interference channel (IFC), and IFC with fully-degraded message set as

special cases. This channel is referred to as an interference channel with a partially

cognitive transmitter. Note that this channel model is motivated by practical con-

straints, where the cognitive transmitter is only able to garner limited information

about the legitimate transmitter’s message.

The interference channel with a partially cognitive transmitter has already

been studied in [76] with a specific focus on strong interference settings. Results on

degree of freedom and sum capacity of symmetric channel is available in [77, 78].

This chapter focuses on the weak interference settings. Specifically, we derive an

outer bound on the capacity region of this channel for both the discrete memoryless

and Gaussian cases when the interference from the cognitivetransmitter to the legit-

imate receiver is “weak”. Subsequently, we show for the Gaussian case that Gaus-

sian distributions satisfying the constraints on the inputs/auxiliary random variables

optimizes the outer bound. We also derive an achievable region for the Gaussian
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partially cognitive-radio channel using a combination of superposition and dirty pa-

per coding. Note that the achievable region described in this chapter can be readily

extended to discrete memoryless channel. The results in this chapter are presented

in [79] [80]. The results of this chapter are joint work with Goochul Chung, a Ph.D.

student in the Department of Electrical and Computer Engineering. Goochul Chung

derived the outer bound on the capacity region of partial cognitive radio channel and

I derived the acievable region for the partial cognitive radio channel. For the sake of

completeness of the chapter, we present the outer bound along with the achievable

region.

5.2 System Model and Preliminaries

Throughout this chapter, random variables are denoted by capital letters, and

their realizations by the corresponding lower-case letters. Xn
m denotes the random

vector(Xm, ..., Xn), Xn denotes the random vector(X1, ..., Xn), andXn\m denotes

the random vector(X1, ..., Xm−1, Xm+1, ..., Xn). Also, for any setS, S denotes the

convex hull ofS, andS̃ means the complementary set ofS. Finally, the notation

X ⇒ Y ⇒ Z is used to denote thatX andZ are conditionally independent given

Y .

5.2.1 Discrete Memoryless Partially Cognitive Radio Channels

A two user interference channel as in Figure5.1 is a quintuple(X1, X2, Y1, Y2, p),

whereX1, X2 are two input alphabet sets;Y1, Y2 are two output alphabet sets;

p(y1, y2|x1, x2) is a transition probability. Since we confine channel to be mem-
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Figure 5.1: The discrete memoryless partially cognitive radio model

oryless, the transition probability ofyn
1 , yn

2 givenxn
1 , xn

2 is

p(yn
1 , yn

2 |xn
1 , x

n
2 ) =

n∏

i=1

p(y1,i, y2,i|x1,i, x2,i).

This channel model is similar to that of an interference channel with the

difference being the message sets at each transmitter. Transmitter 1 is the legit-

imate user, who communicates messages from the setsW0 ∈ {1, ..., M0} and

W1 ∈ {1, ..., M1} to Receiver 1, the legitimate receiver. Transmitter 2, the cognitive

transmitter communicates a messageW2 ∈ {1, ..., M2} to Receiver 2, the cognitive

receiver. The unique feature of this channel is that the realization ofW0 is known to

both transmitters 1 and 2, which allows partial and unidirectional cooperation be-

tween the transmitters. An(R0, R1, R2, n, Pe,0, Pe,1, Pe,2) code is any code with the

rate vector(R0, R1, R2) and block sizen, whereRt , log(Mt)/n bits per usage for

t = 0, 1, 2. As discussed above,W0 andW1 are the messages that Receiver 1 must

decode with (average) probabilities of error of at mostPe,0, Pe,1 respectively, and

W2 is the message that Receiver 2 must decode with an error probability of at most

Pe,2. Rate triplet(R0, R1, R2) is said to be achievable if the error probabilitiesPe,t
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for t = 0, 1, 2 can be made arbitrarily small as the block sizen grows. The capacity

region of the interference channel with partially cognitive transmitter is the closure

of the set of all achievable rate triplets(R0, R1, R2).

Throughout this chapter, we have a restriction on the pair(R0, R1), such

thatR1 ≥ µR0 for some positive numberµ. This restriction is to ensure that opti-

mization of rate regions does not drive the rateR1 to zero, which results in a fully

cognitive solution. This goal and restriction apply to bothdiscrete memoryless and

gaussian channel which follows.

5.2.2 Gaussian Partially Cognitive Radio Channel

In the Gaussian IFC, input and output alphabets are the realsR, and out-

puts are the linear combination of the inputs and additive white Gaussian noise. A

Gaussian IFC model in Figure5.2 is characterized mathematically as follows:

Y1 = X1 + bX2 + Z1,

Y2 = aX1 + X2 + Z2, (5.1)

wherea andb are real numbers andZ1 andZ2 are independent, zero-mean, unit-

variance Gaussian random variables. Further, each transmitter has a power con-

straint

1

n

n∑

i=1

E[X2
t,i] ≤ Pt, t = 1, 2.

In the next section, we describe the outer bound on the capacity region for

these channels under “weak” interference.
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Figure 5.2: The Gaussian partial cognitive radio channel

5.3 The Outer Bound region

We first derive an outer bound on the capacity region of the discrete memo-

ryless partial cognitive radio channel under a weak interference condition.

5.3.1 Discrete Memoryless Partially Cognitive Radio Channels

For a discrete memoryless channel, under the condition

X2|X1 ⇒ Y2|X1 ⇒ Y1|X1, (5.2)

we say that the legitimate receiver is observing weak interference [42]. In this

setting, we present the outer bound in the following theorem:

Theorem 5.3.1.The convex closure of the following inequalities defines an outer
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bound on the capacity region of “weak” partially cognitive radio channels:

R0 ≤ I(U, X1; Y1|V ), (5.3)

R1 ≤ I(X1; Y1|X2), (5.4)

R0 + R1 ≤ I(U, X1; Y1), (5.5)

R2 ≤ I(X2; Y2|U, X1), (5.6)

R1 ≥ µR0, (5.7)

for anyp(u, v)p(x1|u, v)p(x2|u) such that:

1. V andX2 are independent.

2. X1 is a function ofU andV .

3. (U, V ) ⇒ (X1, X2) ⇒ (Y1, Y2).

Proof: First, we borrow the lemma from [81] which is used in constituting the outer

bound.

Lemma 5.3.2( [81]). The following forms a Markov chain for the partially cogni-

tive radio channel:

(W0, Wt) ⇒ (W0, Xt) ⇒ Yt, (5.8)

wheret = 1, 2.

We start the main proof by verifying the outer bound forR0, R1, andR2.
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We have

nR0 = H(W0|W1)

≤ I(W0; Y
n
1 |W1) + nǫ0

=

n∑

i=1

[H(Y1,i|Y i−1
1 , W1) − H(Y1,i|Y i−1

1 , W0, W1)] + nǫ0

≤
n∑

i=1

[H(Y1,i|W1) − H(Y1,i|Y i−1
1 , X

n\i
1 , W0, W1, X1,i)] + nǫ0

(a)

≤
n∑

i=1

[H(Y1,i|W1) − H(Y1,i|Y i−1
2 , X

n\i
1 , W0, W1, X1,i)] + nǫ0

(b)
=

n∑

i=1

[H(Y1,i|Vi) − H(Y1,i|Ui, Vi, X1,i)] + nǫ0

=

n∑

i=1

I(Ui, X1,i; Y1,i|Vi) + nǫ0,

where(a) results from the conditional Markov chain for the weak interference chan-

nel, X2|X1 ⇒ Y2|X1 ⇒ Y1|X1 in (5.2). (b) results from identifying auxiliaries

Ui = (Y i−1
2 , X

n\i
1 , W0) andVi = W1.

nR1 = H(W1)

≤ I(W1; Y
n
1 ) + nǫ0

= I(W1; Y
n
1 |Xn

2 ) + nǫ0

=

n∑

i=1

[H(Y1,i|Y i−1
1 , Xn

2 ) − H(Y1,i|Y i−1
1 , Xn

2 , W1)] + nǫ0

≤
n∑

i=1

[H(Y1,i|X2,i) − H(Y1,i|X1,i, X2,i)] + nǫ0

=

n∑

i=1

I(Y1,i; X1,i|X2,i) + nǫ0,
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and

nR2 = H(W2|W0)

≤ I(W2; Y
n
2 |W0) + nǫ2

≤ I(W2; Y
n
2 , Xn

1 |W0) + nǫ2

(a)
= I(W2; Y

n
2 |Xn

1 , W0) + nǫ2

= H(Y n
2 |Xn

1 , W0) − H(Y n
2 |Xn

1 , W0, W2) + nǫ2

(b)

≤ H(Y n
2 |Xn

1 , W0) − H(Y n
2 |Xn

1 , W0, X
n
2 ) + nǫ2

(c)

≤
n∑

i=1

[H(Y2,i|Ui, X1,i) − H(Y2,i|Ui, X1,i, X2,i)] + nǫ2

=
n∑

i=1

I(X2,i; Y2,i|Ui, X1,i) + nǫ2,

where(a) is due to the independence ofW2 andXn
1 , (b) is from Lemma 5.3.2

(W0, W2) ⇒ (W0, X
n
2 ) ⇒ (Y n

2 ), and(c) comes from the same definition above of

Ui = Y i−1
2 , X

n\i
1 , W0.
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Next, we prove the outer bound for the sum rateR0 + R1. We have

nR0 + nR1 = H(W0, W1)

≤ I(W0, W1; Y
n
1 ) + nǫ1

= H(Y n
1 ) − H(Y n

1 |W0, W1) + nǫ1

(a)
= H(Y n

1 ) − H(Y n
1 |W0, X

n
1 ) + nǫ1

=
n∑

i=1

[H(Y1,i|Y i−1
1 ) − H(Y1,i|Y i−1

1 , X
n\i
1 , W0, X1,i)] + nǫ1

(b)
=

n∑

i=1

[H(Y1,i|Y i−1
1 ) − H(Y1,i|Y i−1

2 , X
n\i
1 , W0, X1,i)] + nǫ1

(c)

≤
n∑

i=1

[H(Y1,i) − H(Y1,i|Ui, X1,i)] + nǫ1

=

n∑

i=1

I(Ui, X1,i; Y1,i) + nǫ1.

(a) results from(W0, W1) ⇒ (W0, X
n
1 ) ⇒ (Y n

1 ) (Lemma 5.3.2),(b) results from

X2 ⇒ Y2 ⇒ Y1, givenX1 in (5.2), and(c) results from the definition above ofUi =

Y i−1
2 , X

n\i
1 , W0. Note that the choice of auxiliary random variables automatically

satisfies the constraints imposed on them in Theorem 5.3.1.

5.3.2 Gaussian Partially Cognitive Radio Channel

For the Gaussian case, the weak interference constraint canbe interpreted as

the requirement ofb < 1 in (1). With the condition,b < 1, the conditional Markov

chain for the weak interference channel,X2 ⇒ Y2 ⇒ Y1, given X1 in (5.2) is

satisfied. Thus, similar proof ensures the outer bound for the rate region defined in

Theorem 5.3.1 to be valid for the Gaussian partially cognitive radio channel. Next,
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we establish three lemmas that is essential in proving the optimality of a jointly

Gaussian input distribution for the region defined in Theorem 5.3.1.

Lemma 5.3.3(Lemma 1 in [82]). LetX1, X2, ..., Xk be arbitrarily distributed zero-

mean random variables with covariance matrixK, and X∗
1 , X

∗
2 , ..., X

∗
k be zero

mean Gaussian distributed random variables with the same covariance matrixK.

LetS be any subset of{1, 2, ..., k} andS̃ be its complement. Then,

h(XS|XeS) ≤ h(X∗
S|X∗

eS
). (5.9)

Lemma 5.3.4.LetX1, X2, V be an arbitrarily distributed zero-mean random vari-

ables with covariance matrixK, whereX2 andV are independent of each other.

Let X∗
1 , X

∗
2 , V

∗ be the zero mean Gaussian distributed random variables withthe

same covariance matrix asX1, X2, V . Then,

E[X1X2] = E[X∗
1X∗

2 |V ∗]. (5.10)

Without loss of generalityX∗
1 can be written asX∗

1 = W ∗ + cV ∗, where

W ∗ is the zero mean Gaussian random variable independent ofV ∗. Then

E[X1X2] = E[X∗
1X

∗
2 ]

= E[E[X∗
1X∗

2 |V ∗]]

= E[E[(W ∗ + cV ∗)X∗
2 |V ∗]]

= E[E[W ∗X∗
2 |V ∗]] + cE[E[V ∗X∗

2 |V ∗]]

(a)
= E[X∗

1X∗
2 |V ∗] + cE[V ∗E[X∗

2 ]]

(b)
= E[X∗

1X∗
2 |V ∗],
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where(a) results from the independence ofX∗
2 andV ∗. And, (b) results from the

fact thatX∗
2 is zero mean.

Lemma 5.3.5.Random variables in Lemma 5.3.4,X∗
1 , X

∗
2 , andV ∗ satisfy the fol-

lowing equation:

E[X∗
1X∗

2 |V ∗] ≤ (E[(X∗
1 )2|V ∗])

1
2 (E[(E[X∗

2 |X∗
1 ])2])

1
2 .

Proof: Note that

E[X∗
1X∗

2 |V ∗]
(a)
= E[E[X∗

1X∗
2 |V ∗, X∗

1 ]]

(b)
= E[X∗

1E[X∗
2 |V ∗, X∗

1 ]|V ∗]

(c)

≤ (E[(X∗
1 )2|V ∗])

1
2 (E[(E[X∗

2 |V ∗, X∗
1 ])2])

1
2

(d)

≤ (E[(X∗
1 )2|V ∗])

1
2 (E[(E[X∗

2 |X∗
1 ])2])

1
2 ,

where(a) comes from the law of iterated expectations,(b) from the independence

of X∗
2 andV ∗, (c) from the Cauchy-Schwartz inequality, and(d) from the fact that

entropy can only be reduced by conditioning.

Definition 5.3.1. Define the rate regionRα,β1,β2
out to be the convex hull of all rate

triplets(R0, R1, R2) satisfying

R0 ≤ 1
2
log

(
1 +

β1P1+b2(1−α)P2+2b
√

(β2(1−α)P1P2)

(1+b2αP2)

)
,

R1 ≤ 1
2
log (2πe (1 + (1 − β2(1 − α))P1)) ,

R0 + R1 ≤ 1
2
log

(
1 +

P1+b2(1−α)P2+2b
√

(β2(1−α)P1P2)

(1+b2αP2)

)
,

R2 ≤ 1
2
log(αP2 + 1),

R1 ≥ µR0,

(5.11)

for someα ∈ [0, 1], β1 ∈ [0, 1], andβ2 ∈ [0, β1].
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Definition 5.3.2. Define the rate regionRout to be convex hull of the union of rate

regionR
α,β
out :

Rout ,
⋃

0≤α,β1≤1,0≤β2≤β1

R
α,β1,β2
out . (5.12)

We denoteC to be the capacity region of the Gaussian weak partially cog-

nitive radio channel. An outer bound forC is obtained as follows.

Theorem 5.3.6.Rout is an outer bound of the capacity region for the Gaussian

weak partially cognitive radio channel:

C ⊂ Rout.

Proof: We start from the rate region in Theorem 5.3.1.

R0 ≤ I(U, X1; Y1|V ) = h(Y1|V ) − h(Y1|V, U, X1)

= h(Y1|V ) − h(Y1|U, X1), (5.13)

R1 ≤ I(X1; Y1|X2) = h(Y1|X2) − h(N1), (5.14)

R0 + R1 ≤ I(U, X1; Y1) = h(Y1) − h(Y1|U, X1), (5.15)

R2 ≤ I(X2; Y2|U, X1) = h(Y2|U, X1) − h(N2). (5.16)

(5.13) follows from the Markov chain,V ⇒ (U, X1) ⇒ Y1. First, we set

h(Y2|U, X1) =
1

2
log(2πe(1 + αP2)), (5.17)

without loss of generality for someα ∈ [0, 1]. Note that

Y1 = b(X2 + Z1) + X1 + Z ′,

h(Y1|U, X1) = h(b(X2 + Z1) + Z ′|U, X1), (5.18)
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whereb < 1 because legitimate receiver faces a weak interference, andZ ′ is a Gaus-

sian distributed random variable with variance1− b2. By entropy power inequality

(EPI) [67], we have,

22h(Y1|U,X1) ≥ 22h(bY2|U,X1) + 22h(Z′).

= b222h(Y2|U,X1) + 2πe(1 − b2)

= 2πe(1 + b2αP2),

which yields

h(Y1|U, X1) ≥
1

2
log(2πe(1 + b2αP2)). (5.19)

Next, we need to boundh(Y1), h(Y1|V ), and h(Y1|X2). Note that, by setting

h(Y2|U, X1) = 1
2
log(2πe(1 + αP2)), we have the following result.

h(Y2|U, X1) ≤ h(X2 + Z2|X1)

≤ h(X∗
2 + Z2|X∗

1 )

=
1

2
log(2πe(1 + (X∗

2 |X∗
1 ))), (5.20)

where(·|·) denotes the conditional covariance. Combining (5.17) with(5.20), we

obtain the bound

(X∗
2 |X∗

1 ) ≥ αP2. (5.21)

Also,

(X∗
2 |X∗

1 ) = E[(X∗
2 )2] − E[(E[X∗

2 |X∗
1 ])2]. (5.22)
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From (5.21) and (5.22), we obtain,

E[(E[X∗
2 |X∗

1 ])2] ≤ (1 − α)P2. (5.23)

Note that

E[(X∗
1 )2|V ∗] ≤ P1, (5.24)

since conditioning only reduces the entropy. Again, we setE[(X∗
1 )2|V ∗] = β1P1 for

someβ1 ∈ [0, 1] without loss of generality. Now combining Lemma 5.3.4, Lemma

5.3.5, and the above result, (5.23),

E[X1X2] ≤
√

β1P1

√
(1 − α)P2. (5.25)

We can set

E[X1X2] =
√

β2P1

√
(1 − α)P2, (5.26)

whereβ2 ∈ [0, β1]. Therefore, we obtain the bound forh(Y1) as

h(Y1) ≤
1

2
log

(
2πe

(
1 + (X1) + b2(X2)
+2bE[X1X2]

))

=
1

2
log

(
2πe

(
1 + P1 + b2P2

+2b
√

β2(1 − α)P1P2

))
. (5.27)

Forh(Y1|V ), note that(Y ∗
1 , V ∗) has the same covariance matrix as(Y1, V ) if Y1 =

X∗
1 + bX∗

2 . Also,Y1 is a mean zero Gaussian distributed random variable. Thus,

h(Y1|V ) ≤h(Y ∗
1 |V ∗)

=h(X∗
1 + bX∗

2 + Z1|V ∗)

=
1

2
log



2πe




1 + (X∗

1 |V ∗)
+b2(X∗

2 |V ∗)
+2bE[X∗

1X∗
2 |V ∗]









≤1

2
log

(
2πe

(
1 + β1P1 + b2P2

+2b
√

(β2(1 − α)P1P2)

))
. (5.28)
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Forh(Y1|X2),

h(Y1|X2) =h(X1 + bX2 + Z1|X2)

=h(X1 + Z1|X2)

≤h(X∗
1 + Z1|X∗

2 )

=
1

2
log (2πe (1 + (X∗

1 |X∗
2 ))) (5.29)

=
1

2
log

(
2πe

(
1 + P1 −

E[X∗
1X

∗
2 ]2

P2

))
(5.30)

=
1

2
log (2πe (1 + (1 − β2(1 − α))P1)) , (5.31)

which gives the desired outer bound for the capacity region.Rate regionRα,β1,β2
out

shows that outer bound can be obtained by havingβ1 set to 1.

5.4 Achievable Region for the Gaussian Channel

In this section, we describe an achievable region for the Gaussian channel

model described in (5.1). In deriving the achievable region, we combine superposi-

tion coding, dirty paper coding [22], and Han and Kobayashi coding [4]. The reason

for using this combination is to cope with the channel statuswith differentµ’s. We

have more strict restriction on how much data can be shared between cognitive and

legitimate transmitters with largeµ. Thus, asµ increases, the channel becomes

more close to an interference channel. Han and Kobayahi coding is known to have

best achievable rate region to date for the general interference channel. Also, asµ

decreases, the channel becomes more similar to cognitive radio with full knowledge

of legitimate transmitters message sets. In such a case, dirty paper coding is known
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Figure 5.3: The Gaussian partial cognitive radio channel

to be optimal [41] [42]. By combining superpositon coding, dirty paper coding,

and Han and Kobayashi coding, achievable scheme can cope with the best possi-

ble strategy in two extremes. Figure5.3 shows the messages sets that encoded and

decoded at each transmitter and receiver.

The legitimate transmitter encodes messagesW0, W11, andW12 using Gaus-

sian codebooks and superimposes them to form its final codeword. W0 is the mes-

sage set that is shared between legitimate and cognitive transmitters.W11 andW12

correspond to the individual message set for legitimate message, which isW1 in

Fig. 1 and Fig. 2.W12 is a public message set which is intended to be decoded in

both legitimate and cognitive receivers.W11 is a private message set which is de-

coded only in the legitimate receiver. The cognitive transmitter allocates a portion

of the power in communicating messageW0 to the legitimate receiver. The remain-

ing power is used in encoding its own messageW2. Again, W2 is divided into a

public message set,W21, and a private message set,W22. The cognitive transmitter

encodes messageW22 using dirty paper coding treating the codewords fromW0 as
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non-causally known interference.

Let α1, α2, α3, β1, β2, β3 > 0 such that

α1 + α2 + α3 = 1, β1 + β2 + β3 = 1.

We define functionL : R+ → R+ as L(x) = 1
2
log(1 + x). Let Q =

(
1 +

√
β1P2

α1P1

)2

α1P1 andS =
(
a +

√
β1P2

α1P1

)2

α1P1.

We define the constantsr0, r1, r2, . . . r17 as follows:

r0 = L
(

Q

1+β3P2

)
r1 = L

(
α2P1

1+β3P2

)

r2 = L
(

α3P1

1+beta3P2

)
r3 = L

(
b2β2P2

1+β3P2

)

r4 = L
(

Q+α2P1

1+β3P2

)
r5 = L

(
Q+α3P1

1+β3P2

)

r6 = L
(

Q+b2β2P2

1+β3P2

)
r7 = L

(
(α2+α3)P1

1+β3P2

)

r8 = L
(

α2P1+b2β2P2

1+β3P2

)
r9 = L

(
α3P1+b2β2P2

1+β3P2

)

r10 = L
(

Q+(α2+α3)P1

1+β3P2

)
r11 = L

(
Q+α2P1+b2β2P2

1+β3P2

)

r12 = L
(

Q+α3P1+b2β2P2

1+β3P2

)
r13 = L

(
(α2+α3)P1+b2β2P2

1+β3P2

)

r14 = L
(

Q+(α2+α3)P1+b2β2P2

1+β3P2

)
r15 = L

(
a2α3P1

1+S+a2α2P1+beta3P2

)

r16 = L
(

β2P2

1+S+a2α2P1+β3P2

)
r17 = L

(
a2α3P1+β2P2

1+S+a2α2P1+β3P2

)

r18 = L
(

β3P2

1+a2α2P1

)

(5.32)

Define the rate regionRα1,α2,α3,β1,β2,β3

i to be the convex hull of all rate
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triplets(R0, R1, R2) satisfying

R0 ≤ r0

R1 ≤ min(r7, r1 + r15)

R2 ≤ min(r3 + r18, r16 + r18)

R0 + R1 ≤ min(r10, r4 + r15)

R0 + R2 ≤ r6 + r18

R1 + R2 ≤ min(r13 + r18, r8 + r15 + r18, r+r17 + r18)

R0 + R1 + R2 ≤ min(r14 + r18, r11 + r15 + r18, r4 + r17 + r18)

2R0 + R1 ≤ r4 + r5

R1 + 2R2 ≤ min(r8 + r9 + 2r18, r8 + r17 + 2r18)

2R0 + R1 + R2 ≤ min(r5 + r11 + r18, r4 + r12 + r18)

R0 + R1 + 2R2 ≤ min(r9 + r11 + 2r18, r8 + r!2 + 2r18, r11 + r17 + 2r18)

2R0 + R1 + 2R2 ≤ r11 + r12 + 2r18

(5.33)

Define the rate regionRi to be convex hull of the union of rate region

R
α1,α2,α3,β1,β2,β3

i :

Ri ,
⋃

α1 + α2 + α3 = 1
β1 + β2 + β3 = 1

R
α1,α2,α3,β1,β2,β3

i . (5.34)

Theorem 5.4.1.For the Gaussian channel with partially cognitive radio as de-

scribed in (5.1), the region described by

Rin = {(R0, R1, R2) ∈ Ri : R1 ≥ µR0} (5.35)

is achievable.

In proving the theorem, we use an encoding strategy that combines superpo-

sition coding, dirty paper coding, and Han and Kobayashi coding. We first describe
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the encoding strategy at the two transmitters. We fixα1, α2, α3, β1, β2, β3 such that

α1 + α2 + α3 = 1 andβ1 + β2 + β3 = 1.

Encoding Strategy at legitimate transmitter: For every messageW0 ∈ {1, . . . , M0},

the legitimate transmitter generates a codewordXn
10(W0) from the distributionp(Xn

10) =

Πn
i=1p(X10(i)), whereX10(i) ∼ N(0, α1P1). For every messageW11 ∈ {1, . . . , M11},

the legitimate transmitter generates a codewordXn
11(W1) from the distributionp(Xn

11) =

Πn
i=1p(X11(i)), whereX11(i) ∼ N(0, α2P1). For every messageW12 ∈ {1, . . . , M12},

the legitimate transmitter generates a codewordXn
12(W2) from the distributionp(Xn

12) =

Πn
i=1p(X12(i)), whereX12(i) ∼ N(0, α3P1). The legitimate transmitter then super-

imposes these codewords to form the net codewordXn
1 as

Xn
1 = Xn

10 + Xn
11 + Xn

12.

Encoding strategy at cognitive transmitter: The cognitive transmitter allo-

cates a portion of its power in communicating the messageW0 to the legitimate

receiver. For messageW0, the cognitive transmitter generates a codewordXn
20(W0)

as follows:

Xn
20(W0) =

√
β1P2

α1P1
Xn

10(W0).

That is, the cognitive transmitter uses the same codeword for encoding message

W0 as used by the legitimate transmitter except that it is scaled to powerβ1P2.

Next, the cognitive transmitter encodes messageW21 to codewordXn
21. The cog-

nitive transmitter generates a codewordXn
21(W1) from the distributionp(Xn

21) =

Πn
i=1p(X21(i)), whereX21(i) ∼ N(0, β2P2). Then, the cognitive transmitter en-

codes messageW22 to codewordXn
22 using dirty paper coding treatingaXn

10 + Xn
20
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as non-causally known interference.Xn
22 is independent of the interference,aXn

10 +

Xn
20, and is distributed asp(Xn

22) = Πn
i=1p(X22(i)) andX22(i) ∼ N(0, β3P2). The

cognitive transmitter superimposes the three codewordsXn
20, Xn

21, andXn
22 to form

its net codewordXn
2 . That is,

Xn
2 = Xn

20 + Xn
21 + Xn

22.

Next, we describe the decoding strategy and the rate constraints associated

at the two receivers.

Decoding strategy at legitimate receiver: The legitimate receiver obtains the

signal

Y n
1 = Xn

10 + Xn
11 + Xn

12 + bXn
20 + bXn

21 + bXn
22 + Zn

1 .

The licensed receiver decodes the messagesW0, W11, W12, W21 jointly treatingXn
22

as noise. The decoding is successful if the rates satisfy theconstrainst given by

R0 ≤ r0 R11 ≤ r1

R12 ≤ r2 R21 ≤ r3

R0 + R11 ≤ r4 R0 + R12 ≤ r5

R0 + R21 ≤ r6 R1 ≤ r7

R11 + R21 ≤ r8 R12 + R21 ≤ r9

R0 + R1 ≤ r10 R0 + R11 + R21 ≤ r11

R0 + R12 + R21 ≤ r12 R1 + R21 ≤ r13

R0 + R1 + R21 ≤ r14.

(5.36)

Decoding strategy at cognitive receiver: The cognitive receiver obtains the

signal

Y n
2 = aXn

10 + aXn
11 + aXn

12 + Xn
20 + Xn

21 + Xn
22 + Zn

2 .
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The cognitive receiver decodes messagesW12 andW21 jointly treatingXn
10, Xn

20,

Xn
11 andXn

22 as Gaussian noise. The receiver can decode messageW12 andW21

successfully if
R12 ≤ r15

R21 ≤ r16

R12 + R21 ≤ r17

(5.37)

Finally, the cognitive receiver decodesW22 using Costa’s dirty paper decod-

ing. In decodingW22, Xn
10 andXn

20 do not appear as noise as they were canceled

out at the encoder side using Costa’s dirty paper coding. Thedecoding is successful

if

R22 ≤ r18. (5.38)

Using Fourier-Motzkin elimination, we can easily show thatthe region given

by R
α1,α2,α3,β1,β2,β3

i is achievable. By taking the closure of the convex hull over the

set ofα’s andβ’s, we show that the region given byRi is achievable,. This com-

pletes the achievability proof.

Remark5.4.1. As µ grows to infinity, transmission of the shared message sets are

not allowed, which means that channel becomes more close to the interference

channel with no cognitive message sets. Our achievable scheme enforcesβ1 and

α1 to be fixed at 0, and use regular Han and Kobayashi coding. In the other ex-

treme, the channel becomes cognitive radio channels with full message sets of the

legitimate user. In this case,α2, α3 are fixed to zero, and cognitive user make the

dirty paper coding with the transmission support to legitimate user, which is opti-

mal.
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Figure 5.4: Achievable region and Outer bound

Achievable region and outer bound are compared in Fig. 5.4. Both transmit

powers,P1 andP2, are set to 10, and interference gaina andb are fixed to 2 and 0.5

respectively. For the licensed user, we use the total rateR0 + R1.

Notice that as the valueµ grows, achievable region asymptotically approaches

the outer bound.

5.5 Conclusion

In this chapter, we investigated the capacity region of interference chan-

nel with partially cognitive transmitter. For the general discrete memoryless IFC

setting, we obtained the outer bound for the capacity regionwhen the legitimate re-
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ceiver observes the weak interference. We also derived an outer bound and achiev-

able region for the Gaussian partial cognitive-radio channel.
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Chapter 6

K User Gaussian Interference Channel

In this chapter, we deviate from cognitive radio channel models and study

theK user interference channel withK transmitter-receiver pairs. The goal of this

chapter is to understand the capacity behavior of such largenetworks and to deter-

mine if the capacity scales with the number of users in the network and to derive

transmission strategies that help in understanding capacity behavior at all power

levels. We use lattice coding as an interference alignment transmission strategy and

derive capacity results for theK user Gaussian interference channel.

6.1 Introduction

Determining the capacity region of large Gaussian interference network has

been a long standing open problem. Several capacity resultshave been derived for

the two user interference channel [17–21]. Recently, it hasbeen shown in [13] that

the gap between the Han-Kobayashi achievable region [4] anda genie aided outer

bound for the two user Gaussian IC is at most one bit per channel use. In [14]– [16],

the sum capacity of the two user Gaussian IC has been determined for a range of

“very weak” or “noisy” interference cases where treating interference as noise is

optimal. While the results of [14]– [16] are generalizable to more than two users,
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other capacity results such as [13, 18, 19] do not extend to interference channels

with more than two transmitter-receiver pairs.

For interference networks with more than two transmitter-receiver pairs, de-

grees of freedom characterization (capacity approximations within o(log(SNR)))

have been found for a class of time or frequency varying channels in [68]– [72].

These results do not apply to interference networks with constant channels, i.e.,

channels that are not time or frequency varying. In [73], theauthors compute the ap-

proximate capacity of constant many-to-one Gaussian interference channels (where

only one receiver sees interference from the other transmitters, and the other re-

ceivers see no interference) by building and using an approximate deterministic

model for the channel. In [74], the generalized degrees of freedom (GDOF) of the

symmetricK user Gaussian interference channels are derived. However,this result

holds only in the high SNR regime for channels where the channel gains scale with

power. In [7], some examples ofK user interference channels are presented which

come close to achieving the outer limit ofK/2 degrees of freedom.

Very recently, it has been shown that for the interference channel with real

and rational coefficients, total degrees of freedom is bounded away fromK/2 [75].

In the same work, authors present an achievable scheme for a class of interference

channel with a mix of rational and algebraic irrational channel gains channel gains

to achieveK/2 degrees of freedom. For the case of complex channel gains, [83]

show that at least6/5 total degrees of freedom are achievable for almost all values

of channel coefficients.

Note that the main emphasis of a majority of previous work on this topic has
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been on the degrees of freedom characterization for a K user interference network.

The primary difference between prior work and the work in this thesis is that our

aim is to determine new achievable regions for the fully connected, symmetric K

user interference channel at any SNR. To this end, we utilizestructured transmission

schemes based on lattice codes. Note that the use of lattice codes to effect an

interference alignment can also be found in [73] where it is applied to the many-to-

one Gaussian interference channel.

Lattice coding has also been used as an effective transmission strategy in

achieving the capacity of several other channels. It is used(along with lattice de-

coding) on an AWGN channel in [84]– [86] to achieve a rate equal to 1
2
log( SNR).

In [87, 88], lattice coding, along with simplified maximum likelihood decoding, is

shown to achieve the capacity of the AWGN channel. Lattice coding has also been

used to determine the approximate capacity of two-way relaychannels in [89, 90].

Some other relevant results on lattice coding include [91]–[97].

In this chapter, we study a class ofK user Gaussian interference channels

(see Figure 6.1) from a capacity and a degree of freedom perspective. The pri-

mary tool we use in deriving achievable rates is lattice coding. Lattice coding helps

in aligning the interference at each receiver and enables usto decode thetotal in-

terferencewithout decoding each individual interference signal or each message.

Note that, for two user Gaussian interference channels, decoding the net interfer-

ence is equivalent to decoding each interfering signal/message (as there is only one

interferer), but there is a clear distinction between “total interference” and “each

interfering transmitter’s signal” for channels with more than two users. First, we
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derive a “very strong” interference regime for symmetricK user Gaussian inter-

ference channels and extend the result to a class of non-symmetric channels. A

“very strong” interference regime is one in which the capacity region of the inter-

ference channel is the same as the capacity region of the interference channel with

no interference. That is, the interference can be completely canceled out first by

each receiver without incurring a rate penalty. This extends the work in [17] where

the “very strong” interference regime is derived for two user interference channels.

Note that there is a fundamental difference between the “very strong” interference

channels in [17] and those in this chapter. In [17], each receiver decodes all the

messages from all the transmitters. In our work, each receiver decodes only its

message and afunctionof the other signals. Second, we use this “very strong” in-

terference result to propose a layered lattice coding scheme for a class ofK user

Gaussian interference channel beyond the very strong interference regime. We use

this layered lattice coding strategy to show that we can achieve more than one de-

gree of freedom for a large range of channel parameters. In particular, we also

show that there exist channels which achieve degrees of freedom arbitrarily close

to K/2. We also numerically compare the layered lattice coding strategy with a

coding/decoding scheme that resembles Han-Kobayashi scheme in [4] with code-

books that are generated i.i.d Gaussian, to show that significant rate benefits can

be achieved by decoding the interference instead of part (orwhole) of undesired

messages from the interfering transmitters. The main contributions of this work are

summarized below:

• We derive a “very strong” interference regime for a class ofK user Gaussian
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interference channels,

• We propose a layered lattice coding strategy for any SNR. This coding scheme

is also shown to achieve more than one degree of freedom for a large range

of channel parameters (in the class of interference channels considered),

• We show numerically that significant rate benefits can be achieved by the

layered lattice coding strategy when compared with the extension of the Han-

Kobayashi style strategy with Gaussian codebooks.

It is to be noted that the results presented in this chapter are joint work with

Amin Jafarian, a Ph.D. student at the Department of Electrical and Computer Engi-

neering. Amin Jafarian derived the “very strong” interference regime for symmetric

K user interference channels. This dissertation applies thevery strong interference

result to develop a layered lattice alignment scheme for interference networks and

analyzes the degree of freedom of such networks. The layeredlattice alignment

scheme also presents a very effective transmission strategy that works at any signal

power levels. For the sake of completeness of the chapter, wepresent the “very

strong” interference result for interference networks in Section6.4.

The rest of the chapter is organized as follows: In Section 6.2, we present

the system model. We describe notations and present some lattice preliminaries in

Section 6.3. In Section6.4, we summarize the “very strong” interference condi-

tions for the two user Gaussian interference channel and state and prove our results

on “very strong” interference regime for theK user Gaussian interference chan-

nel. In Section6.5, we present the layered lattice coding strategy for symmetric
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K user Gaussian interference channels and analyze the total degrees of freedom

achieved by that strategy. In Section6.6, we extend the layered lattice coding ap-

proach to a class of non-symmetric channels. In Section6.7, we present numerical

results comparing our layered lattice coding approach withthe extension of Han-

Kobayashi coding strategy with i.i.d. Gaussian inputs for the symmetric three user

Gaussian interference channels. We conclude with Section6.8.

6.2 System Model

A K user Gaussian interference channel consists ofK transmitter-receiver

pairs andK independent messages such that messagemk originates at Transmitter

k and is intended for Receiverk for all k ∈ {1, 2, . . . , K}. The system model is

described in Figure 6.1 and the channel equations are described by

Yj(i) = Xj(i) +

K∑

k=1,k 6=j

hjkXk(i) + Zj(i), j ∈ {1, 2, . . . , K} (6.1)

whereYj(i) is the received signal at thejth receiver at theith channel use,Xk(i) is

the transmitted signal at thekth transmitter at theith channel use, andhjk denotes

the channel gain from thekth transmitter to thejth receiver. In Equation (6.1), all

the direct channel gains have been normalized to unity.Zj(i) is the zero mean, unit

variance additive white Gaussian noise at receiverj at timei. The Gaussian noise

at each receiver is i.i.d. across time, but the noise at one receiver maybe correlated

with noise at any other receiver, and this correlation does not affect the capacity

region of the system. In this setup, it is assumed that the channel gains are constant

and are known at all the transmitters and receivers. We also restrict the system
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Figure 6.1: System Model forK User Gaussian Interference Channel

model to real channel inputs and channel outputs. The channel inputs are subject to

the following average power constraints:

1

n

n∑

i=1

Xk(i)
2 ≤ Pk, ∀ k ∈ {1, 2, . . . , K}. (6.2)

Let H denote theK × K matrix of channel gains

H =




1 h12 · · · h1K

h21 1 · · · h2K

...
...

. . .
...

hK1 hK2 · · · 1


 .

Let H0, H2 denote the following classes of channel matrices:

H0 =
{
H ∈ RK×K : hii = 1

}

H2 =
{
H ∈ QK×K : hii = 1

}
,
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whereQ is the set of all rational numbers.

The class of channels to which our coding strategy applies isgiven byH1,

whereH2 ⊂ H1 ⊂ H0. For example, in three user case,H3
1 is:

H3
1 =

{
H ∈ Q3×3 :

h12

h21

× h23

h32

× h31

h13

∈ Q

}
. (6.3)

Note that this is a (fairly) non-trivial class of channels which includes the

symmetric interference channel and interference channel with rational gains as spe-

cial cases. In a symmetric interference channel,

hij =

{
1 if i = j
a if i 6= j

.

That is, all the cross channel gains are equal. Moreover, in aK user symmet-

ric interference channel, all the power constraints are equal, i.e.,Pj = P ∀ j ∈

{1, 2 . . . , K}.

We represent the interference to noise ratio of userj caused by transmitter

k as INRj,k. That is,

INRj,k = h2
j,kPk.

A (2nR1 , 2nR2, . . . , 2nRK , n, λ) code for theK user Gaussian interference

channel consists ofK message sets

Mk = {1, 2, . . . , 2nRk}, ∀ k ∈ {1, 2, . . . , K},

K encoding functions

Fk : Mk → Xn
k , ∀ k ∈ {1, 2, . . . , K},
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andK decoding functions

Gk : Yn
k → Mk, ∀ k ∈ {1, 2, . . . , K}

such that the average probability of decoding error is less than or equal toλ. A

rate tuple(R1, R2, . . . , RK) is said to be achievable if there exists a sequence of

(2nR1, 2nR2 , . . . , 2nRK , n, λ(n)) codes such thatλ(n) → 0 asn → ∞. The capacity

region of the channel is the set of all achievable rate tuplesand is denoted byCap.

The degrees of freedom region of theK user Gaussian interference channel

is defined as follows:

D =

{
(d1, . . . , dK) ∈ RK

+ : ∀(µ1, . . . , µK) ∈ RK
+ ,

µ1d1 + . . . µKdK ≤ lim sup
P1+...+PK→∞

sup
(R1,...,RK)∈C

µ1R1 + . . . + µKRK

1
2
log(P1 . . . + PK)

}
.(6.4)

The total degrees of freedom of the three user Gaussian IC is denoted byDsum and

is defined as

Dsum , lim sup
P1+...+PK→∞

max
(R1,...,RK)∈Cap

R1 + . . . + RK

1
2
log(P1 + . . . + PK)

. (6.5)

The total degrees of freedom represents the rate of growth ofsum capacity in terms

of log(SNR) and thus corresponds to the number of non-interfering linksin the

channel. We desire to determine an achievable region for this channel that simulta-

neously has a good performance in terms of degrees of freedom.

In the next section, we provide a brief introduction to lattice coding and

also summarize some known results on lattice coding for a point to point AWGN

channel.

124



6.3 Lattice Coding Preliminaries

A latticeΛ of dimensionn is a discrete subset ofRn described by

Λ = {λ = Gx : x ∈ Zn},

whereG is the generator matrix that describes the lattice. LetΩΛ denote the fun-

damental Voronoi region (as defined in [86]) of the latticeΛ andVΛ denote the

volume ofΩΛ. In this chapter, we use lattices generated using a mechanism known

as Construction-A [86], which we describe below.

For any positive prime integerp, let Zp denote the set of integers modulo

p. Let g : Zn → Zn
p denote the component wise modulop operation over integer

vectors. LetC denote a linear(n, k) code overZp. Then the latticeΛC given by

ΛC = {v ∈ Zn : g(v) ∈ C} (6.6)

is said to be generated using Construction-A with respect tothe linear codeC. In

this work, we consider scaled versions of lattices generated in this construction, that

is, lattices of the formγΛC for someγ ∈ R. The fundamental volume ofγΛC is

equal toγnpn−k.

A set B of linear codes overZp is said to be balanced if every nonzero

element ofZn
p is contained in the same number of codes inB. An example of a

balanced linear code is given in [87, Section VII]. LetLB be the set of lattices

denoted by

LB = {ΛC : C ∈ B}. (6.7)
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We now state here the Minkowski-Hlawka Theorem (as established in [86]) with

some minor modifications.

Lemma 6.3.1(Minkowski-Hlawka Theorem). Letf be a Riemann integrable func-

tion Rn → R of bounded support. For any integerk, 0 < k < n and any fixed

V , let B be any balanced set of linear(n, k) codes overZp. Asp → ∞, γ → 0

such thatγnpn−k = V , at least three-fourths of the lattices in the setLB satisfy the

following relationship

∑

v∈γΛC :v 6=0

f(v) ≤ 4

V

∫

Rn

f(v)dv. (6.8)

The proof of this lemma is similar to the proof of [86, Theorem1] with few

elementary changes, and is therefore omitted.

Next, we consider a point to point additive noise channel

Y = X + Z, (6.9)

whereX is the transmitted signal,Y the received signal andZ is the additive noise

of zero mean and variance equal toσ2 that corrupts the transmitted signal at the

receiver. If the transmitted word over time is a lattice point, then it can be shown

that a suitable lattice and a decoding strategy exists such that the probability of

decoding error can be made arbitrarily small as the number ofdimensions of the

lattice increases. This result is stated formally.

Lemma 6.3.2( [86]). Consider a single user point to point additive noise channel

described in (6.9). LetB be a balanced set of linear(n, k) codes overZp. Averaged
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over all lattices from the setLB given in (6.7), each with a fundamental volumeV ,

we have that for anyδ > 0, the average probability of decoding error is bounded

by

Pe < (1 + δ)
2n 1

2
log(2πeσ2)

V
. (6.10)

for sufficiently largep and smallγ such thatγnpn−k = V . Hence, the probability

of decoding error for at least three fourths of the lattices in LB satisfies

Pe < 4(1 + δ)
2n 1

2
log(2πeσ2)

V
. (6.11)

The proof of Lemma 6.3.2 is also described in [86] and is therefore omitted.

In essence, Lemma 6.3.2 describes the existence of a latticecode with sufficient

codewords. The next lemma summarizes the main result of [88].

Lemma 6.3.3.Consider a point to point additive noise channel in (6.9) where the

noise is AWGN with zero mean and variance equal toσ2. LetΛ be any lattice gener-

ated from Construction A that satisfies (6.11). Then, we can choose the fundamental

volume of the latticeV , shift s and a shaping regionS such that the lattice code

(Λ + s) ∩ S achieves a rateR with arbitrarily small average probability of error if

R ≤ 1

2
log

(
1 +

P

σ2

)
.

The proof of Lemma 6.3.3 is provided in [88]. It is important to note that

Lemma 6.3.3 requires that the additive noise be i.i.d Gaussian distributed. The three

lemmas introduced in this section is used to derive a “very strong” interference

regime for theK user Gaussian interference channel.
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An important point to note is that these three lemmas which originate from

[86] and [88] assume the noise added in the point to point channel is statistically

independent of the transmitted codeword and independent ofthe structure of the

codeword. However, we are often presented with scenarios inthis chapter where

this may not be the case, and the noise may in fact depend on thestructure of

the codeword being transmitted. The following lemma considers a channel where

no assumption is made about the independence of noise and thestructure of the

codebook (or of the codeword being transmitted).

Lemma 6.3.4.Consider a single user point to point additive noise channelin (6.9)

where the noiseZ is zero mean and then- dimensional noise vectorZ satisfies

||Z||2 ≤ nσ2. We assume that the noise is statistically independent of the transmit-

ted signal (it may be dependent on the structure of the transmitted signal). LetB

be a balanced set of linear(n, k) codes overZp. Averaged over all lattices from

the setLB given in (6.7), each with a fundamental volumeV , we have that for any

δ > 0, the average probability of decoding error is bounded by

Pe < (1 + δ)
2n 1

2
log(2πeσ2)

V
. (6.12)

for sufficiently largep and smallγ such thatγnpn−k = V . Hence, the probability

of lattice decoding error for at least three fourths of the lattices inLB satisfies

Pe < 4(1 + δ)
2n 1

2
log(2πeσ2)

V
. (6.13)

Proof. : The proof is a minor modification of the proof of Lemma 6.3.2 asde-

scribed in [86]. LetE denote the typical set of noise vectors. LetE denote the
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sphere of radius
√

nσ2. We assume that the transmitted signalX is an element of

latticeΛ. If the noiseZ ∈ E, an error may occur in decoding ifZ can be expressed

asZ = Z ′ + X∗ whereX∗ ∈ Λ∗ andZ ′ ∈ E. Then the probability of errorPe can

be upper bounded by

Pe ≤ Pamb|E + Pr(Z /∈ E).

In proving the lemma, we work with the setE instead of the typical set of noise

vectorsE as in [86]. We can also upper bound the probability of error by

Pe ≤ Pamb|E + Pr(Z /∈ E).

We can show that averaged over all lattices from the setLB given in (6.7), each

with a fundamental volumeV , we have that for anyδ > 0, we can upper bound

Pamb|E by

Pamb|E ≤ (1 + δ)
V (E)

Vf

.

The remainder of this proof now proceeds along the same linesas [86, Theorems

4,5] and the details are therefore omitted.

6.4 “Very Strong” Interference Regime

An interference channel is said to be in the “very strong” interference regime

if the capacity region of the channel is the same as the capacity region of the channel

obtained by removing all the interfering links. That is, in the “very strong” inter-

ference regime, userj can achieve a rate of1
2
log(1 + SNRj) for j ∈ {1, . . . , K},

where SNRj =
Pj

1
= Pj . Note that this is the maximum rate userj can achieve

given its resource constraints. The essential strategy in the very strong interference
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regime is to decode the net interference first and then decodethe desired message.

In this regime, the interference is so strong that the rate constraints due to decoding

the interference are not binding on the capacity region. In the next subsection, we

briefly summarize the “very strong” interference regime fora two user Gaussian

interference channel and provide a generalization of the result to theK user chan-

nel. In Section 6.4.3, we state the main results on “very strong” interference for the

K user symmetric Gaussian interference channel and for a class of non-symmetric

channels. In Section 6.4.4, we provide the proofs for the results in Section 6.4.3.

6.4.1 Two User Gaussian Interference Channel - Very Strong Interference
Regime

In this section, we describe the “very strong” interferenceregime for the two

user Gaussian interference channel as shown in Figure 6.2. Carleial [17] showed

Z2 ∼ N(0, σ2
2)

+

Receiver 1

Receiver 2

Transmitter 1

Transmitter 2

X2(m2)

X1(m1) Y1

Y2
1

h12

h21

1

PowerP2

PowerP1

Z1 ∼ N(0, σ2
1)

+

Figure 6.2: Two User Gaussian Interference Channel

that for the channel in Figure 6.2, interference does not degrade capacity when it is

very strong, because the interfering signal can be decoded without any rate penalty
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for either the desired or the interfering user’s message. This result is stated formally

in the next lemma.

Lemma 6.4.1.For the two user Gaussian interference channel shown in Figure 6.2,

if the channel parameters satisfy

h2
12 ≥

P1 + σ2
1

σ2
2

, h2
21 ≥

P2 + σ2
2

σ2
1

, (6.14)

then the capacity region of the channel is given by

Cap =

{
(R1, R2) ∈ R2

+ :

R1 ≤ 1
2
log
(
1 + P1

σ2
1

)
, R2 ≤ 1

2
log
(
1 + P2

σ2
2

)
}

.

The proof of this lemma is described in [17]. The essential idea is that

the receivers decode the interfering message first before decoding their message.

If the channel parameters satisfy (6.14), then we can see that the rate constraints

due to decoding the interfering message at receiver 1 (or 2) is non-binding, and

the constraint resulting from decoding the desired messageat each receiver is the

primary rate limiting factor. We now provide a direct extension of the above result

for theK user symmetric Gaussian interference channel as shown in Figure 6.3. A

generalization to the non-symmetric case is similar, but isfairly unwieldy to express

due to the number of parameters and factors involved.

Lemma 6.4.2. Consider aK user symmetric Gaussian interference channel as

shown in Figure 6.3. If the channel parameters satisfy

a2 ≥
((

1 +
P

σ2

)K−1

− 1

)
P + σ2

(K − 1)P
, (6.15)
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Figure 6.3:K User Gaussian Interference Channel

then the capacity region of the channel is given by

Cap =

{
(R1, . . . , RK) ∈ RK

+ :
Ri ≤ 1

2
log
(
1 + P

σ2

)
, i ∈ {1, . . . , K}

}
.

Proof. : The proof of this lemma is similar to the proof of Lemma 6.4.1 and is

described next. Each transmitter encodes it messages by choosing codewords from

a suitable i.i.d. Gaussian distribution. Each receiver first decodes all the interfering

messages by treating its own codeword as noise. After canceling the effect of all

interference, the receiver then decodes its own message. Wenow analyze the rate

constraints imposed by this encoding/decoding strategy atReceiver1. Due to the

symmetry of the channel, the constraints imposed on other receivers are similar.

Receiver1 observes

Y1 = X1 +
K∑

k=2

aXk + Z1.
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As Receiver1 first decodes all the interfering messages, it treats its owncodeword

X1 as noise and hence sees a total noise power ofP + σ2. The receiver can decode

the interfering messagesm2, . . . , mK successfully if the rate tuple(R2, . . . , RK)

satisfies
∑

j∈S

Rj ≤
1

2
log

(
1 +

|S|a2P

P + σ2

)
, ∀ S ⊆ {2, . . . , K}. (6.16)

After decoding all the interfering messages, receiver1 can decode its messagem1

successfully if

R1 ≤
1

2
log

(
1 +

P

σ2

)
.

Hence, we can describe the achievable rate regionR1 as follows:

R1 =





(R1, R2, . . . , RK) ∈ RK
+

Rj ≤ 1
2
log
(
1 + P

σ2

)
∑

k∈S1
Rk ≤ 1

2
log
(
1 + |S1|a2P

P+σ2

)
, ∀ S1 ⊆ {2, . . . , K}

∑
k∈S2

Rk ≤ 1
2
log
(
1 + |S2|a2P

P+σ2

)
, ∀ S2 ⊆ {1, 3, . . . , K}

...
...

...
...

∑
k∈SK

Rk ≤ 1
2
log
(
1 + |SK |a2P

P+σ2

)
, ∀ SK ⊆ {1, . . . , K − 1}





.

(6.17)

We can now see that if the channel parameter satisfy (6.15), then the only constraints

in R1 that are binding are

Ri ≤
1

2
log

(
1 +

P

σ2

)
, i ∈ {1, . . . , K},

and this is the capacity region of the channel as this is the maximum possible rates

that each user can achieve even in the absence of all interference.

Remark6.4.1. From the above lemma, the lower bound ona2 for very strong inter-

ference increases exponentially withK.
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In the next section, we investigate the very strong interference regime for a

deterministicK user symmetric interference channel. We show that the very strong

interference condition remains the same for allK.

6.4.2 Very Strong Interference Regime forK User Interference Channel: A
Deterministic Model

YK

X1

X2

XK

Y1

Y2

Figure 6.4: A DeterministicK User Gaussian Interference Channel

In Figure 6.4, we describe an example of a deterministic channel model of

K user fully connected Gaussian interference channel (as proposed by [73]). In this

example, each user achieves a rate equal to the capacity thathe would achieve in

the absence of all interference. Note that with allK users transmitting at capacity,

a receiver is able to decode the desired message but cannot decode any of the other

interfering messages (as they all add up in the first terminalof each receiver). How-

ever, each receiver is able to decode thesumof the codewords sent by the interfering
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users. For example, Receiver1 cannot decode the messagesm2, . . . , mK , but it can

decode the sum of the interfering codewordsX2 + . . . + XK . In the terminology

of generalized degrees of freedom [73] the “very strong interference” condition for

this symmetric deterministic channel can be stated as:

log(INR)

log(SNR)
≥ 2 (6.18)

or in our notation, the very strong interference condition can be stated asa2 ≥ P .

This shows that the very strong interference condition for adeterministicK user

interference channel is independent ofK. In the next section, we show that the

even for theK user fully connected Gaussian interference channel, the very strong

interference condition is independent ofK. As in [73], we use the determinis-

tic channel model to help us devise a good transmission strategy for the Gaussian

channel. As the receivers decode only the sum of the interference (and not each

interfering message) in the deterministic model, we apply the same principle to the

Gaussian model. Through lattice codes, we “align” the interference at each receiver

so that to cancel out the interference, the receivers do not have to decode all the

interfering messages, but can directly decode the sum of allthe interference.

6.4.3 Very Strong Interference Regime forK User Interference Channel -
Main Results

In this section, we derive a “very strong” interference regime for symmetric

K user Gaussian interference channels and then extend the result to a class of non-

symmetric channels. We use lattice codes to align interference at each receiver in

such a way that the sum of the interfering codewords can be decoded, without re-
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quiring the decodability of the messages carried by the interfering signals. Relaxing

the message decodability constraint produces a much tighter “very strong” interfer-

ence condition for theK user symmetric interference channel. Lattice codes have

previously been used in [73] for interference alignment on themany-to-oneinterfer-

ence channels, leading to capacity characterizations within a fixed number of bits

per channel use for these channels. However, since we are interested in fully con-

nected interference networks, several key aspects of the lattice code constructions

in this section are unique to our setup. The next theorem presents a “very strong”

interference region for the symmetricK user Gaussian interference channel.

Theorem 6.4.3. [99] [101] Consider aK user symmetric Gaussian interference

channel in Figure 6.3 wherea represents the cross channel gain andP is the power

constraint at each transmitter. If the channel gaina satisfies

a2 ≥ (P + 1)2

P
, (6.19)

then the capacity region of the channel, denoted byCap is given

Cap =

{
(R1, . . . , Rk) :

Rk ≤ 1
2
log(1 + P ) ∀ k ∈ K

}
. (6.20)

The region described by (6.20) is an outer bound on the capacity region for

a K user interference channel for any value ofa. This is because1
2
log(1 + P ) is

the maximum rate achieved by any user when there is no interference. To show that

the region described by (6.20) is achievable under “very strong” interference given

by (6.19), we show that the symmetric rate point
(

1
2
log(1 + P ), . . . , 1

2
log(1 + P )

)

is achievable when (6.19) is satisfied. The transmitters uselattice coding to encode
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their messages, while the receivers first decode the total interference and then de-

code their message after canceling all the interference. Weuse the results of the

Lemmas in Section6.3 proved in [86] and [88] in proving Theorem 6.4.3. The

proof is presented in Section 6.4.4.

Note that the “very strong” interference condition for theK user symmetric

Gaussian interference channel is different from the condition for the two user case

given bya2 ≥ P + 1. In fact, we have the following approximate capacity result

for a2 ≥ P + 1 for theK user symmetric Gaussian interference channel.

Theorem 6.4.4. [99,101]

For a K user symmetric Gaussian interference channel with cross channel

gaina and power constraintP , if the channel gaina satisfiesa2 ≥ P +1, then each

user can achieve a rate of1
2
log(P ). Hence, fora2 ≥ P + 1, each user achieves

within half a bit per channel use of his maximum possible rate.

The proof of the theorem is very similar to the proof of Theorem 6.4.3.

In the proof of Theorem 6.4.3, we use the Loeliger framework in decoding the

interference and the Urbanke-Rimoldi framework in decoding the message at each

receiver. However, in proving Theorem 6.4.4, we use the Loeliger framework for

decoding both the interference and the message at each receiver. In this chapter,

we do not prove Theorem 6.4.4 completely as the proof is similar to the proof of

Theorem 6.4.3. However, we provide the essential details ofthe proof in Section

6.4.4.
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Figure 6.5: Comparing Very Strong Interference Conditionsof Lemma 6.4.2, theo-
rems 6.4.3 and 6.4.4

In Figure 6.5, we plot the very strong interference condition of Lemma

6.4.2, Theorems 6.4.3 and 6.4.4 for a three user symmetric Gaussian interference

channel. We can see that the very strong interference condition of Lemma 6.4.2

beats the very strong interference condition of Theorem 6.4.3 for low values of

powerP . This is due to mixing the Urbanke-Rimoldi and Loeliger approach of

decoding. By using only the Loeliger approach for decoding at the receivers, we

get the very strong interference condition of Theorem 6.4.4. But, we get only an

approximate capacity result. If we can use the Urbanke-Rimoldi framework at the

receivers for decoding the interference and the message, then we can get a very
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strong interference condition ofa2 ≥ P + 1 and still get capacity. However, we

have not been able to use the Urbanke-Rimoldi framework for decoding the inter-

ference. This is because when decoding the interference, the receiver observes a

non-Gaussian noise. As the Urbanke-Rimoldi decoding approach works only in the

presence of AWGN noise, we cannot use this approach. But, formoderate and high

values of powerP , the very strong interference condition of Theorem 6.4.3 clearly

outperforms the very strong interference condition of Lemma 6.4.2.

We now generalize the “very strong” interference result to aclass of non-

symmetric channels. For simplicity, we restrict ourselvesto three user interference

channels as shown in Fig 6.6. However, the results can be generalized to anyK

user interference channels satisfying similar channel conditions. In this section, we

Transmitter 3 (P3)

+

+

X1(m1)

X2(m2)

X3(m3)

1

1

1

h31

h13

Z1

Z2

Z3

Y1

Y2

Y3

Receiver 1

Receiver 2

Receiver 3

h23

h21

h12

h32

Transmitter 1 (P1)

Transmitter 2 (P2)

+

Figure 6.6: Three User Non Symmetric Gaussian InterferenceChannel

consider three user Gaussian interference channels whose channel matrixH ∈ R3×3
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is an element ofH3
1 as described in Equation (6.3). That is, we have

h12

h21
× h23

h32
× h31

h13
∈ Q.

Without loss of generality, we assume that

h12

h21
× h23

h32
× h31

h13
=

p

q
(6.21)

wherep andq are co-prime integers. Then, Theorem 6.4.5 describes “verystrong”

interference conditions for such a class of interference channels. This theorem is

the generalization of Theorem 6.4.3 to the class of non-symmetric channels being

considered. The proof of the channel is described in Section6.4.4

Theorem 6.4.5. [101] Consider a three user Gaussian IC, whose channel matrix

H ∈ H1 and whose channel gains satisfy (6.21). We assume that the power con-

straints at the transmitters areP1, P2, P3 and the noise variances at the receivers

areσ2
1, σ

2
2 andσ2

3. If the channel gains satisfy one of the following three conditions

∃Ni ∈ R, Ni ≥ σ2
i for i ∈ {1, 2, 3} :

h2
12N2 = p2h2

13N3, h2
21N1 = q2h2

23N3, h2
31N1 = h2

32N2,

h2
12 ≥ p2P1 + N1

N2
, h2

13 ≥
P1 + N1

N3

h2
21 ≥ q2P2 + N2

N1
, h2

23 ≥
P2 + N2

N3
(6.22)

h2
31 ≥

P3 + N3

N1

, h2
32 ≥

P3 + N3

N2

(or)
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∃Ni ∈ R, Ni ≥ σ2
i for i ∈ {1, 2, 3} :

h2
12N2 = h2

13N3, p2h2
21N1 = h2

23N3, q2h2
31N1 = h2

32N2,

h2
12 ≥

P1 + N1

N2

, h2
13 ≥

P1 + N1

N3

h2
21 ≥

P2 + N2

N1
, h2

23 ≥ p2P2 + N2

N3
(6.23)

h2
31 ≥

P3 + N3

N1
, h2

32 ≥ q2P3 + N3

N2

(or)

∃Ni ∈ R, Ni ≥ σ2
i for i ∈ {1, 2, 3} :

q2h2
12N2 = h2

13N3, h2
21N1 = h2

23N3, h2
31N1 = p2h2

32N2,

h2
12 ≥

P1 + N1

N2

, h2
13 ≥ q2P1 + N1

N3

h2
21 ≥

P2 + N2

N1

, h2
23 ≥

P2 + N2

N3

(6.24)

h2
31 ≥ p2 P3 + N3

N1

, h2
32 ≥

P3 + N3

N2

then, the users can achieve rates given by

Ri ≤
1

2
log

(
Pi

Ni

)
, i ∈ {1, 2, 3}. (6.25)

This theorem is the generalization of Theorem 6.4.4 to the class of non-

symmetric channels considered. The proof of the theorem is described in Section

6.4.4.
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6.4.4 Very Strong Interference Regime forK User Interference Channel -
Proofs

In this section, we give the proofs for Theorems 6.4.3 and 6.4.4. In proving

Theorem 6.4.3, we prove only the achievability portion, as the converse part can

be proved in a straightforward manner by removing all the interference from the

receivers.

Achievability Proof of Theorem 6.4.3:In this proof, we show that in aK

user symmetric Gaussian interference channel (with cross channel gaina and power

constraintP ), each user can achieve a symmetric rateR < 1
2
log(1 + P ) under

very strong interference condition given by (6.19). We firstdescribe the encoding

strategy at the transmitters.

Encoding Strategy: The transmitters employ lattice codingas a transmission

strategy. That is their codewords are elements of a shifted lattice within a shaping

region. Due to the symmetry of the channel, we use the latticeΛ at each transmitter.

We denote the Voronoi region of the latticeΛ by Ω and the volume of the Voronoi

region byV . The transmitters use codebooks of the formC = (Λ + s) ∩ S, where

s is a shift, andS is a shaping region (to satisfy the power constraint). The shaping

region is taken to be ann- dimensional sphere of radius
√

nP . Note that the shifts

is there just to ensure a sufficient number of codewords inside the shaping regionS.

LetVS denote the volume of the shaping regionS. for j ∈ {1, 2, . . . , K}, transmitter

j communicates messagemj ∈ M = {1, . . . , 2nR} to receiverj. For eachmj ∈ M ,

transmitterj assigns a codewordXi(m) ∈ C. We chooseR′, P ′ such that

R < R′ <
1

2
log(1 + P ′) <

1

2
log(1 + P ).
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We denote the interference seen by receiverj asIj and is given by

Ij =
K∑

i=1,i6=j

aXi. (6.26)

Next, we describe the decoding strategy at the receivers.

Decoding Strategy: Forj ∈ {1, 2, . . . , K}, receiverj first decodes its total

interferenceIj and then decodes its messagemj . In decoding the interferenceIj,

receiverj treats its own codewordXj as noise. Hence, the total noise power seen by

receiverj when decoding interferenceIj is upper bounded byP +1. It is important

to note here that, due to the symmetric nature of the channel,the interferenceIj at

receiverj is an element of latticeaΛ. We describe the decoding strategy for receiver

j. The analysis is similar for other receivers and the detailsare omitted here. We

first describe the choice of latticeΛ and the shifts. The latticeΛ is chosen such

that:

• Condition (6.8) (Minkowski-Hlawka condition) is satisfied.

• The volume of the Voronoi regionV = 2−nR′

VS.

• In decoding the interference, the probability of error is upper bounded by

(6.11) withσ2 = 1 + P .

We choose a shifts such that the codebook|C| ≥ 2nR. The existence of such a shift

is guaranteed by [88] for largen.

Decoding Strategy for Receiverj: Receiverj first cancels the sum of the

interference caused by other transmitters and then decodesthe message intended
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for it. The received outputYj is given by

Yj = Xj + a
K∑

i=1,i6=j

Xi + Zj.

As each transmitter uses the same latticeΛ, the interference caused by the

interfering transmitters at receiverj is aligned and is an element ofaΛ. Here, we

use the fact that the receiver knows the shifts used by the interfering transmitter

and cancels them out. We use the Loeliger framework in [86] indecoding the total

interference. The volume of the Voronoi region of the interference lattice is given

by anV . The total noise seen in decoding the interference is given by

Ij = Xj + Zj.

The noise power is limited in power by1 + P and the noise is independent of the

interferenceIj . With the choice of our lattice, the probability of decodingerror

denoted byPe,I is upper bounded by

Pe,I < 4(1 + δ)
2n 1

2
log(2πe(1+P ))

anV
(6.27)

Hence, the probability of error decays if

1

2
log

(
2πe(1 + P )

a2

)
− 1

n
log V < 0. (6.28)

Lemma 6.3.2 guarantees the choice of latticeΛ such that (6.27) is satisfied.

After decoding the total interferenceIj, receiverj decodes its message from the

resulting point to point AWGN channel. In decoding its own message, receiverj

uses the nearest neighbor decoding approach as described in[88]. As the latticeΛ
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satisfies (6.8), we can use the Urbanke - Rimoldi approach to decode the intended

message at the receiver.

Then, from [88], it follows that the average probability of decoding error

decays withn. Hence, receiverj can decode its message successfully if

R′ <
1

2
log(1 + P ) (6.29)

Also by choosing sufficiently largen, the condition for decoding the interference

with decaying probability of error as given in (6.28) reduces to

R′ <
1

2
log

(
a2P

1 + P

)
. (6.30)

The very strong interference condition comes when the rate constraints im-

posed by decoding the interference is less binding than the constraint imposed by

decoding their respective messages at the receivers. Hence, the very strong interfer-

ence condition is given when the constraint onR′ due to (6.30) is less binding than

that due to (6.29), or when

a2 ≥ (P + 1)2

P
. (6.31)

By choosingR′ andP ′ appropriately, we can show that userj can achieve a

rate arbitrarily close to1
2
log(1 + P ) under very strong interference condition. The

decoding strategy for other receivers is identical, and lead to identical constraints

on rates. Hence, each user can achieve a rate arbitrarily close to1
2
log(1 + P ) when

the interference is very strong. This completes the proof ofTheorem 6.4.3.

In Theorem 6.4.3, we derived a “very strong” interference regime for aK

user symmetric Gaussian interference channel. The “very strong” interference con-
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dition we derived is weaker than the “very strong” interference condition for the two

user symmetric Gaussian interference channel. In Theorem 6.4.4, we show that we

can have the same “very strong” interference condition forK user symmetric Gaus-

sian interference channel by compromising on the rate achieved by each user. The

proof of Theorem 6.4.4 is very similar to the proof of Theorem6.4.3. Hence, we

just present the main steps of the proof here.

Proof of Theorem 6.4.4:We show that if the cross channel gaina satisfies

a2 ≥ P + 1,

then each user can achieve a rate given by

Ri ≤
1

2
log(P ), i ∈ {1, . . . , K}.

The encoding strategy is similar to the one we described in Theorem 6.4.3. Each

transmitter encodes its message using lattice coding by choosing the same latticeΛ.

The shaping region used is ann dimensional sphere of radius
√

nP . The codebook

used by each transmitter is of the formC = (Λ ∩ S) + s wheres is the shift used.

The decoding strategy used is also similar to the one used in Theorem thm

: very strong interference symmetric channel. Each receiver first decodes the total

interference seen treating its own signal as noise. After canceling all the interfer-

ence, the receiver decodes its own message. The only difference is that, while in

Theorem 6.4.3, we used the Loeliger framework for decoding the interference and

the Urbanke-Rimoldi framework for decoding the message, inTheorem 6.4.4, we

use the Loeliger framework for decoding the interference and the message. We first

describe the choice of latticeΛ and the shifts. The latticeΛ is chosen such that:
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• Condition (6.8) (Minkowski-Hlawka condition) is satisfied.

• The volume of the Voronoi regionV = 2−nRVS.

• In decoding the interference, the probability of error is upper bounded by

(6.11) withσ2 = 1 + P .

We choose a shifts such that the codebook|C| ≥ 2nR. The existence of such a shift

is guaranteed by [86] for largen.

We describe the decoding strategy at receiverj and the associated rate con-

straints involved. The strategy for other receivers and therate constraints involved

are identical. Receiverj first cancels the total interference caused by other trans-

mitters and then decodes the message intended for it. As the receiver uses the

same Loeliger strategy for decoding the interference, the constraints involved are

the same as in Theorem 6.4.3. Hence, receiverj can decode the total interference if

R ≤ 1

2
log

(
a2P

1 + P

)
.

After decoding the total interference caused by other transmitters, receiver

j decodes the message intended for it. In this theorem, we use the Loeliger strategy

at receiverj for decoding messagemj . From [86], we can show that receiverj can

decode messagemj with vanishingly small probability of error if

R ≤ 1

2
log(P ).

The very strong interference condition comes when the rate constraints imposed by

decoding the interference is less binding than the constraint imposed by decoding
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their respective messages at the receivers. Hence if the channel gaina satisfies

a2 ≥ 1 + P,

then each user can achieve a rate given by

R ≤ 1

2
log(P ).

This completes the proof of Theorem 6.4.4. We showed that we can achieve the

same “very strong” interference condition for theK user symmetric Gaussian in-

terference channel as for the two user symmetric Gaussian interference channel if

we allow for a1
2

bit per channel use rate penalty for each user.

Next, we prove Theorems 6.4.5 which is generalization of Theorem 6.4.4

for a class of three user non symmetric Gaussian interference channels. Note that

equivalence generalization for Theorem 6.4.3 can be statedin a similar fashion.

Main Steps in Proof of Theorem 6.4.5:We show that if the channel gains

satisfy (6.22), then each user can achieve the stated rate. LetΛ1 be a lattice obtained

from Construction A, that the volume of its Voronoi region isequal toN1. Define

Λ2 = h31

h32
Λ1 andΛ3 = h21

qh23
Λ1. Note that this assignment and conditions given by

Equations 6.22 enforce the volume of the Voronoi regions ofΛ2 andΛ3 to beN2

andN3, respectively.

For j ∈ {1, 2, 3}, transmitterj encodes its message by lattice coding using

latticeΛj. The shaping region used by transmitterj is ann dimensional spherical

region of radius
√

nPj . The codebook used by transmitterj is of the formCj =

(Λj ∩ Sj) + sj , wheresj is the shift used by transmitterj.
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The decoding strategy is following: each receiver first decodes the total

interference it sees from all the interfering transmittersand then decodes its own

message. Note that here, similar to that in Theorem 6.4.4, weuse the Loeliger

framework for decoding both the interference and the relevant message. We de-

scribe the rate constraints involved in the decoding process at receiver1.

Rate Constraints at Receiver1: The interference seen by receiver1 is given

by h12Λ2 +h13Λ3. From the choice of lattices, we can see that the interference is an

element of the latticeh13Λ3. Hence the interference can be decoded successfully if

R2 ≤
1

2
log

(
h2

12P2

p2(P1 + σ2
1)

)
(6.32)

R3 ≤
1

2
log

(
h2

13P3

P1 + σ2
1

)
. (6.33)

One can check that the above inequalities hold using the factthatNi > σ2
i .

After decoding the interference, receiver1 decodes its messagem1 using the

Loeliger framework from the remnant point to point AWGN channel. The message

m1 can be decoded successfully if

R1 ≤
1

2
log

(
P1

N1

)
. (6.34)

The rate constraints involved at receivers2 and3 can be similarly derived. From

the rate constraints, we can see that if (6.22) is satisfied, then each user can achieve

a rate within half a bit per channel use of its maximum possible individual capacity.

Similarly, we can prove Theorem4 when (6.23) or (6.24) is satisfied.
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6.5 Layered Lattice Coding forK User Symmetric Gaussian In-
terference Channels

In this section, we use the “very strong” interference result we derived in

Section IV to derive a layered lattice coding approach toK user symmetric Gaus-

sian interference channels. We show that the layered lattice coding scheme can

achieve more than one degree of freedom for a large range of channel parameters.

We also show that significant rate improvements can be obtained using the layered

lattice coding scheme over the extension of the Han-Kobayashi coding scheme to

K user interference channels. The main results of this section are described in the

next theorem.

Theorem 6.5.1. [100, 101] Consider aK user symmetric Gaussian interference

channel with channel parametera and noise variance1 at each receiver. The total

degrees of freedom of the channel satisfies

Dsum ≥






max
(
1, K × log(a2−1)

log((K−1)a4−(K−2)a2)

)
, a2 ≥ 2

1, 1
K

≤ a2 ≤ 2

max

(
1, 3 ×

log
“

1−a2

(K−1)a2

”

log
“

1+(K−2)a2

(K−1)a4

”

)
, a2 ≤ 1

K

(6.35)

Proof. : The proof of the Theorem for1
3
≤ a2 ≤ 2 is obvious, because a simple

time sharing scheme achieves one degree of freedom for anya. Hence, we focus on

the other two cases.

First, we consider the casea2 ≥ 2. As the channel is symmetric and we

are analyzing the total degrees of freedom, we look at only symmetric rate points.

For j ∈ {1, 2, . . . , K}, transmitterj communicates messagemj ∈ {1, . . . , 2nR}
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to receiverj. Transmitterj splits its messagemj into N partsmj1, . . . , mjN , such

that a rateRi is associated with theith sub-message of each message. Fori ∈

{1, . . . , N}, theith sub-message is encoded to codewordXn
ji by thejth transmitter,

which transmitsXn
j =

∑N
i=1 Xn

ji. Also, each transmitter assigns a powerPi for

encoding itsith sub-message. Note that the subscript in rate and power does not

indicate user, but the sub-messages. The powerPi is chosen as

Pi = (a2 − 1)((K − 1)a4 − (K − 2)a2)N−i, i ∈ {1, 2, . . . , N}. (6.36)

We explain the encoding and decoding strategy below in detail.

Encoding Strategy: Each transmitter encodes all its sub-messages using lat-

tice coding, and chooses latticesΛ1, . . . , ΛN , shiftss1, . . . , sN and spherical shap-

ing regionsS1, . . . , SN . The codebook forith sub-message at each transmitters is

denoted byCi = (Λi + s1) ∩ Si.

Decoding Strategy: The received signal at receiverj is

Y n
j =

N∑

i=1

Xn
ji +

K∑

k=1,k 6=j

N∑

i=1

aXn
ki + Zn

j .

We denote the interference at receiverj due to theith sub-message from the other

transmitters byIn
ji given by

In
ji =

K∑

k=1,k 6=j

aXn
ki. (6.37)

The decoding process at receiverj proceeds throughN stages. At stagei, receiver

j first decodes interferenceIn
ji and then decodes messagemji. In decoding the
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interferenceIn
ji, receiverj sees interference plus noise of

N∑

k=i

Xn
jk +

K∑

l=1,l 6=j

N∑

k=i+1

aXn
lk + Zn

j

with an interference plus noise power≤ Pi +
∑N

k=i+1((K − 1)a2 + 1)Pk + 1. In

decoding messagemji, receiverj sees an interference plus noise

N∑

k=i+1

Xn
jk +

3∑

l=1,l 6=j

N∑

k=i+1

aXn
lk + Zn

j

with an interference plus noise power≤
∑N

k=i+1((K − 1)a2 + 1)Pk + 1. Next,

we describe the choice of lattices, shifts and spherical regions, before proceeding

to probability of error analysis and rate constraints at thereceivers.

Choice of Lattices, Shifts and Shaping Regions: Fori ∈ {1, . . . , N}, each

transmitter chooses shaping regionSi to be ann dimensional sphere of radius
√

nPi.

The volume of the shaping regionSi is denoted byVSi
. LatticeΛi is generated using

construction A such that

• the volume of the Voronoi regionVi = 2−nRiVSi
,

• in decoding interferenceIn
ji at receiverj, the probability of error is upper

bounded by (6.11) withσ2 = Pi +
∑N

k=i+1((K − 1)a2 + 1)Pk + 1, and

• in decoding messagemji at receiverj, the probability of error is upper bounded

by (6.11) withσ2 =
∑N

k=i+1((K − 1)a2 + 1)Pk + 1.

Finally, shiftsi is chosen such that the cardinality of the codebookCi satisfies|Ci| =

|(Λi + si)∩ Si| ≥ 2nRi. Next, we describe the probability of error analysis and rate
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constraints at receiver1. The analysis and the rate constraints at other receivers are

the same.

Receiver1 first decodes interferenceIn
11 and messagem11. The interference

plus noise power when decodingIn
11 is given byP1 +

∑N

k=2((K − 1)a2 +1)Pk +1.

With the choice of latticeΛ1, the probability of decoding error is upper bounded by

P int
e1 ≤ 4(1 + δ)

2n 1
2

log(2πe(P1+
PN

k=2((K−1)a2+1)Pk+1))

anV1

, (6.38)

whereanV1 is the volume of the Voronoi region of the latticeaΛ1 (the interference

lattice of messagem21 andm31). Hence, the probability of error decays withn if

R1 ≤
1

2
log

(
a2P1

P1 +
∑N

k=2((K − 1)a2 + 1)Pk + 1

)
. (6.39)

Similarly, in decoding the messagem11, the interference plus noise power seen by

receiver1 is equal to
∑N

k=2((K − 1)a2 + 1)Pk + 1. The probability of decoding

error is upper bounded by

P message
e1 ≤ 4(1 + δ)

2n 1
2

log(2πe(
PN

k=2((K−1)a2+1)Pk+1))

V1

. (6.40)

Hence, the probability of error decays withn if

R1 ≤
1

2
log

(
P1∑N

k=2((K − 1)a2 + 1)Pk + 1

)
. (6.41)

Proceeding along similar lines, at stagei, interferenceIn
1i and messagem1i can be

decoded successfully if

Ri ≤
1

2
log

(
a2Pi

Pi +
∑N

k=i+1((K − 1)a2 + 1)Pk + 1

)
, (6.42)

Ri ≤
1

2
log

(
Pi∑N

k=i+1((K − 1)a2 + 1)Pk + 1

)
. (6.43)
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The power values have been chosen so that the “very strong” interference condition

is satisfied at each stage. The noise plus interference powerseen at stagei in de-

coding interferenceIn
1i and messagem1i is equal to

∑N

k=i+1((K − 1)a2 +1)Pk +1.

From the power assignments in (6.36), we can see that

a2 =
Pi∑N

k=i+1(2a
2 + 1)Pk + 1

+ 1.

With the choice of power values as in (6.36), the rate at each stage is given by

Ri =
1

2
log(a2 − 1). (6.44)

For Ri to be positive, we needa2 ≥ 2. Hence, the total rate achieved by each user

is given by

R =
1

2
log(a2 − 1)N . (6.45)

Also, the total power used by each transmitter is given by

P = P1 + . . . + PN

≤ ((K − 1)a4 − (K − 2)a2)N . (6.46)

TakingN to∞, we get the desired result. That is,

lim
N,P→∞

KR
1
2
log(P )

≥ K × log(a2 − 1)

log((K − 1)a4 − (K − 2)a2)
. (6.47)

Next, we consider the casea2 ≤ 1
3
. The proof for this case is very similar to that of

a2 ≥ 2 with very few modifications. We again focus only on symmetricrates. For

j ∈ {1, 2, 3}, transmitterj splits its messagem ∈ {1, . . . , 2nR} into N sub-parts
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mj1, . . . , mjN such that rateRi and powerPi is associated with theith sub-message.

PowerPi is chosen as

Pi =
1 − a2

(K − 1)a4

(
1 + (K − 2)a2

(K − 1)a4

)N−i

. (6.48)

The encoding strategy is similar to the one described for thecasea2 ≥ 2 in that each

transmitter uses lattice coding to encode all its sub-messages. However, the decod-

ing strategy is slightly different. The decoding process again proceeds throughN

stages. In stagei, receiverj first decodes messagemji and then decodes interfer-

enceIn
ji. This is because decoding interference first leads to rate constraints that are

more binding than the constraints due to decoding the message.

Choice of Lattices, Shifts and Shaping Regions: Fori ∈ {1, . . . , N}, each

transmitter chooses shaping regionSi to be an dimensional sphere of radius
√

nPi.

LatticeΛi is generated using construction A such that

• the volume of the Voronoi regionVi = 2−nRiVSi
,

• in decoding interferenceIn
ji at receiverj, the probability of error is upper

bounded by (6.11) withσ2 =
∑N

k=i+1((K − 1)a2 + 1)Pk + 1, and

• in decoding messagemji at receiverj, the probability of error is upper bounded

by (6.11) withσ2 = (K − 1)a2Pi +
∑N

k=i+1((K − 1)a2 + 1)Pk + 1.

Finally, shiftsi is chosen such that the cardinality of the codebookCi satisfies|Ci| =

|(Λi + si) ∩ Si| ≥ 2nRi. The details of the probability of error analysis are similar
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to the casea2 ≥ 2 and are omitted here. Using the power assignments in (6.48),we

see that each user achieves a rateRi for its ith sub message given by

Ri =
1

2
log

(
1 − a2

(K − 1)a2

)
. (6.49)

ForRi to be positive, we must havea2 ≤ 1
K

. Hence, each user achieves a total rate

R given by

R =
1

2
log

(
1 − a2

(K − 1)a2

)N

. (6.50)

The total power expended by each transmitter is given by

P = P1 + . . . + PN

≤
(

1 + (K − 2)a2

(K − 1)a4

)N

. (6.51)

Taking N to ∞, we get the desired result. This completes the proof of Theorem

6.5.1.

Remark6.5.1. From (6.35), we can see that the achievable total degrees of freedom

tends toK/2 as the channel gaina → ∞, and whena → 0. We should also see that

when the channel gaina = 0, then we can actually achieveK degrees of freedom.

In Figure 6.7, we plot the degrees of freedom that we achieve for a symmet-

ric three user Gaussian IC using the layered lattice coding approach.

In this section, we proposed a layered lattice coding schemefor the symmet-

ric K user Gaussian interference channel and we analyzed the degrees of freedom

that we can achieve using this approach. We showed that we canachieve more than

one degree of freedom for a large range of channel parametersand showed that the
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Figure 6.7: Plot of Achievable Degrees of Freedom versusa2

total degrees of freedom achievable tends toK/2 when the cross channel gain tends

to∞.

6.6 Layered Lattice Coding Scheme for Non-Symmetric Inter-
ference Channels

In this section, we briefly analyze the degrees of freedom of three user non-

symmetric Gaussian ICs. We use the same layered lattice coding scheme that we

used for the symmetric case. To present the main ideas and foranalytical tractabil-

ity, we restrict ourselves to the following class of three user Gaussian IC with chan-

nel matrix given by

H =




1 a1 a1

a2 1 a2

a3 a3 1


 , (6.52)
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wherea2
1, a

2
2, a

2
3 ≥ 2. Without loss of generality we assumea1 ≤ a2 ≤ a3. The

analysis for other channel matrices inH ∈ H1 are similar to the one presented and

is omitted here. We describe the encoding and decoding strategy below:

For j ∈ {1, 2, 3}, transmitterj communicates messagemj ∈ {1, . . . , 2nRj}

to receiverj. Transmitterj splits its message intoN parts -mj1 , mj2, . . . , mjN such

that rateRji is associated with theith sub-message. Fori ∈ {1, . . . , N}, transmitter

j encodes messagemji into codewordXn
ji and transmitsXn

j =
∑N

i=1 XN
ji . Also,

transmitterj assigns powerPji to encode itsith sub-message.

Encoding Strategy: Each transmitter encodes all its sub-messages using lat-

tice coding, and chooses latticesΛ1, . . . , ΛN . Transmitterj chooses shiftssj1, . . . , sjN

and spherical shaping regionsSj1, . . . , SjN . The codebook for theith sub-message

at transmitterj is denoted byCji and is given byCji = (Λi + sji) ∩ Sji.

Decoding Strategy: The received signal at receiverj is given by

Y n
j =

N∑

i=1

Xn
ji +

3∑

l=1,l 6=j

N∑

i=1

ajX
n
li + Zn

j .

We denote the interference at receiverj due to theith sub-message from the other

transmitter byIn
ji and is given by

In
ji =

3∑

l=1,l 6=j

ajX
n
li .

The decoding process at receiverj proceeds throughN stages. At stagei, receiver

j first decodes interferenceIn
ji and then decodes its sub-messagemji. In decoding
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interferenceIn
ji, receiverj sees an effective noise power of

σ2
ji = 1 + Pji +

N∑

l=i+1

Pjl +

3∑

l=1,l 6=j

N∑

k=i+1

a2
jPlk. (6.53)

In decoding messagemji, receiverj sees an interference plus noise power of

σ2
mji

=
N∑

l=i+1

Pjl +
3∑

l=1,l 6=j

N∑

k=i

a2
jPlk. (6.54)

The choice of latticesΛi, shifts sji and shaping regionsSji are similar to those

described in Theorem 6.4.3 and the details are omitted here.We choose the powers

Pji such that the “very strong” interference condition is satisfied at every decoding

stage. That is, at stagei, the rate constraints onRji due to decoding interferenceIn
li

at receiverl is less binding than the constraint imposed due to decoding message

mji at receiverj. Hence, we choose powers such that

P1i = min(a2
1σ

2
m2i

− σ2
m1i

, a2
1σ

2
m3i

− σ2
m1i

)
P2i = min(a2

2σ
2
m1i

− σ2
m2i

, a2
2σ

2
m3i

− σ2
m2i

)
P3i = min(a2

3σ
2
m1i

− σ2
m3i

, a2
3σ

2
m2i

− σ2
m3i

).
(6.55)

The rate achieved by userj at stagei is given by

Rji =
1

2
log

(
Pji

σ2
mji

)
. (6.56)

The total power used by transmitterj is given by

Pj = Pj1 + Pj2 + . . . PjN .

The total degrees of freedom then satisfies

Dsum ≥ lim sup
P1+P2+P3→∞

∑3
j=1

∑N

i=1 Rji

1
2
log(P1 + P2 + P3)

.
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However, unlike the symmetric channel case in Theorem 6.4.3, we have not been

able to derive closed form expressions for the total degreesof freedom achievable

for non-symmetric channels. We illustrate the total degrees of freedom achieved

for an example channel (derived numerically) in Figure 6.8.The degree of freedom
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Figure 6.8: Achievable Degrees of Freedom for an example channel:a1 = 2α, a2 =
3α, a3 = 4α

analysis for other non symmetric three user Gaussian interference channels with

channel matrixH ∈ H1 follows along the same lines as the analysis for the channel

given by (6.52).

6.7 Comparing Lattice Coding with an extension of Han Kobayashi
with i.i.d Gaussian Coding

In this section, we compare our layered lattice coding approach with a cod-

ing scheme that resembles of Han-Kobayashi scheme, extended to the case of a
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three user symmetric Gaussian IC. In the Han-Kobayashi coding scheme for the

two user IC [4], each transmitter splits its message into twoparts, a private part and

a common part. For decoding, each receiver decodes its message and the common

message transmitted by the interfering transmitter. In ourextension of this scheme

to the three user IC, each transmitter splits its message into four parts - one private

part and three common parts. For instance, transmitter1 splits its messagem1 into

four parts - 1)m11, the private part, 2)m12, the common part which is also decoded

by receiver2, 3) m13, the common part which is also decoded by receiver3 and 4)

m123, the common part which is decoded by receivers2 and3. In this extended ver-

sion of the Han-Kobayashi scheme, we restrict ourselves to Gaussian codebooks.

Finally, as the channel is symmetric, we restrict our comparison to the maximum

symmetric rate that can be achieved using the two approaches1. In the next Lemma,

we derive a symmetric rate point that can be achieved using the layered lattice cod-

ing approach for the three user symmetric Gaussian IC with cross channel gaina

and power constraintP . We defineP N
a as follows

P N
a ,






(a2 − 1) (2a4−a2)N−1
2a4−a2−1

, if a2 ≥ 2

1−a2

2a4

“

1+a2

2a4

”N2−1
“

1+a2

2a4

”

−1
, if a2 ≤ 1

3

. (6.57)

Let RHK(P, σ2, a) denote the maximum symmetric rate that can be obtained by

Han-Kobayashi coding scheme in a three user symmetric Gaussian IC with power

constraintP , noise at the receiverσ2 and the cross channel gain equal toa.

1Note that, for asymmetric points on this channel’s achievable region, our comparison does not
hold and the extended Han-Kobayashi style coding may be better in performance.
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Lemma 6.7.1. Consider a symmetric three user Gaussian IC with cross channel

gaina and power constraintP at each transmitter. Then

a) if a2 ≥ 2 andP ≤ a2 − 1, each user can achieve a symmetric rate given by

Rsym =
1

2
log(P ). (6.58)

b) If a2 ≥ 2, and there exists integerN1 > 0 such that

P N1
a < P < P N1+1

a ,

then each user can achieve a symmetric rate given by

Rsym =
N1

2
log(a2 − 1) +

1

2
log

(
1 +

(2a2 + 1)(P − P N1
a )

1 + (2a2 + 1)P N1
a

)
. (6.59)

c) If a2 ≥ 2, and there exists integerN1 > 0 such thatP N1
a = P , then each user

can achieve a symmetric rate given by

Rsym =
N1

2
log(a2 − 1). (6.60)

d) If a2 ≤ 1
3

andP ≤ 1−a2

2a4 , each user can achieve a symmetric rate of

Rsym = RHK(P, a, 1). (6.61)

e) If a2 ≤ 1
3

and there exists integerN2 > 0 such that

P N2
a < P < P N2+1

a

then each user can achieve a symmetric rate of

Rsym = maxi=N2−1:N2

i
2
log
(

1−a2

2a2

)
+

Rhk(P − P i
a, (2a

2 + 1)P i
a, a)

(6.62)
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f) If a2 ≤ 1
3

and there exists integerN2 > 0 such thatP = P N2
a , then each user can

achieve a symmetric rate given by

Rsym =
N2

2
log

(
1 − a2

2a2

)
. (6.63)

The proof of the above Lemma is very similar to the proof of Theorem

6.5.1 and is therefore omitted. It should be noted that for cases (b) and (e) in the

lemma, we use Han-Kobayashi style encoding and decoding forthe first layer of

the codebook. This is because, the power allocated to this level is not sufficient

enough to benefit from lattice coding. Figure 6.9 compares the symmetric rate

point achievable using the layered lattice coding approachwith the maximum sym-

metric rate that can be achieved using Han-Kobayashi schemefor a = 2.5 and

a = 1
3
. Note that in our layered lattice coding approach, we restrict ourselves to

identical power splitting approach by all the transmitters. This can be generalized

to different power splitting schemes and can lead to a higherrate achieved by the

lattice coding scheme. However, it is interesting to note that even a possibly subop-

timal lattice coding scheme significantly outperforms our extended version of the

Han-Kobayashi style scheme with i.i.d. Gaussian codebooks.

This shows that while the Han-Kobayashi coding scheme (message splitting

and random coding) with Gaussian codebooks is optimal to within one bit for a two

user Gaussian IC [13], a natural extension of this scheme optimal even in terms

of degrees of freedom for larger ICs with more than two transmitter-receiver pairs.

Lattice coding, while allowing the interference to be decoded without decoding the

interfering messages places fewer constraints on the ratesof the interfering users.
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In particular, it eliminates the MAC type constraints that arise when decoding the

interfering messages separately.

6.8 Conclusion

In this chapter, we study the impact of using structured codes on aK > 2

user interference channel. We find that it benefits both the characterization of the

achievable rate, and enables us to characterize the channel’s capacity for a class of

very strong interference channels. Lattices enable us to align interference signals,

and thus allow for achievable rate characterizations for a large class of Gaussian

interference channels. Note that extending this work to arbitrary (irrational chan-

nel gains) asymmetric Gaussian interference channels may not be straightforward.

However, there is recent work on determining the DoF of such channels [75,98].
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Chapter 7

Conclusions and Future Work

This dissertation has focused on analyzing the capacity region of a two

broad classes of interference networks - cognitive networks andK user interference

channel. The capacity region of interference networks has been an open problem

for several decades. In this dissertation, we have taken significant steps in under-

standing the capacity behavior of several cognitive radio models. We have also

analyzed theK user interference channel and devised a lattice based interference

alignment scheme to derive significant rate benefits over other traditional transmis-

sion strategies. We summarize the main conclusions of the dissertation and discuss

possible future work.

7.1 Cognitive Radio Networksl

In Chapter2, we studied the MIMO cognitive radio channel and derived an

achievable region and outer bound on the capacity region. The achievable region is

based on lattice coding and is quite similar to the single antenna model. The outer

bound was derived through a series of channel transformations and is significantly

different than the bounds derived for single antenna case. We also derive possible

channel conditions in which the achievable region might meet the outer bound.
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In Chapter3, we extended the cognitive radio channel to multiple access

networks. We considered a three transmitter, two receiver systems with two licensed

transmitters transmitting to a common licensed receiver and a cognitive transmitter

transmitting to a cognitive receiver. We derived outer bounds and achievable region

for the discrete memoryless channel. We also showed that forthe Gaussian channel

model, Gaussian signalling at the transmitters is optimal when the cross channel

gain from the cognitive transmitter to the licensed receiver is weak (≤ 1).

In chapter4, we analyzed the capacity region of cognitive relay networks.

In this channel model, we essentially have a two user interference channel with a

cognitive relay which has access to the messages of the transmitter. We derive an

achievable region based on Han-Kobayashi message splitting and dirty paper cod-

ing for both the messages. We also derive an outer bound on thecapacity region of

such networks. The outer bounds are derived by permitting transmitter and receiver

co-operation. We also derived the degree of freedom region of such networks.

In all the above cognitive radio models, it is assumed that the cognitive node

has access to the messages transmitted by the other nodes. Inchapter5, we study

a more practical model of cognitive radio in which the cognitive transmitter has

access to only a portion of the message of the licensed transmitter. We analyze

the capacity region of partial cognitive radio channel and derive outer bounds and

achievable region for the discrete memoryless and the Gaussian channel model.
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7.1.1 Future Work

While a lot of research has been done on cognitive radios in the last decade,

there are still a lot of open problems. The capacity region ofthe cognitive radio

channel with single antennas has been well understood. However, under multiple

antenna setting, optimal strategies are still unknown. In this dissertation, we ex-

tended the cognitive radio to a two user multiple access network. Extensions to

larger MAC and other network configurations are still possible. A lot of work re-

mains to be done on the field of cognitive radios with partial cognition. Such a

channel model is very practical and and needs to be understood in greater detail.

7.2 K User Interference Channel

In chapter6, we analyzed the capacity region of aK user interference chan-

nel with K transmitter-receiver pairs. use lattice coding as an interference align-

ment transmission strategy to study the channel. We deriveda very strong interfer-

ence regime for theK user symmetric Gaussian channel and extended it to a class

of non-symmetric channels. We used the very strong interference regime to derive

a layered lattice coding scheme. We use the layered lattice coding scheme to ana-

lyze the degrees of freedom of the channel and also to derive aclever transmission

strategy for all power levels. We show that significant rate benefits can be obtained

over other traditional transmission strategies.
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7.2.1 Future Work

Several prominent researchers are currently working on solving the capacity

region of theK user interference channel. Significant advances have been made in

this effort over the last two or three years. It has been shownrecently thatK/2

degrees of freedom can be achieved for almost all channel parameters. Future work

will revolve around characterizing the capacity region of the K user interference

channel to within a finite number of bits. Extending the lattice coding scheme to

any general interference network will also be a challengingproblem.
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