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Exploration into the use of aptamers as cross-reactive receptors was the focus of 

this work. Cross-reactivity is of interest for developing assays to identify complex targets 

and solutions.  By exploiting the simple chemistries of aptamers, we hope to introduce a 

new class of receptors to the science of molecular discrimination.  This manuscript first 

addresses the use designed aptamers for the identification of variants of HIV-1 reverse 

transcriptase.  In this research aptamers were immobilized on a platform and were used to 

discriminate four variants of HIV-1 reverse transcriptase. It was found that not only could 

the array discriminate HIV-1 reverse transcriptase variants for which aptamers were 

designed,  it would also discriminate variants for which no aptamers exist.  

           A panel of aptamers was used to discriminate four separate cell lines, which were 

chosen as examples of complex targets. This aptamer panel was used to further explore 

the use of aptamers as cross-reactive sensors. Forty-six aptamers were selected from the 
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literature that were designed to be specific to cells or molecules expected to be in the 

surface of cells.  This panel showed differential binding patterns to each of the cell types, 

displaying cross-reactive behavior.  

            During the course of this research, we also developed a novel ratiometric method 

of using aptamer count derived from next-generation sequencing as a method for 

discrimination. This is in lieu of the more commonly used fluorescent signals.    

            Finally the use of multiple signals for pattern recognition routines was further 

explored by running various models using artificial data. Various situations were applied 

to replicate different possible situation which might arise when working with 

macromolecular interactions. The purpose of this was to advance the communities 

understanding and ability to interpret results from the pattern recognition methods of 

PCA and LDA. 

  

 

 

 

 

 

 

 

 

 

 



  

VIII 
 

 

 

Table of Contents 

 

List of Tables ………………………………………………………………….. xiii  

List of Figures …………………………………………………………….......... xiv  

 

Chapter 1:  The Science of Receptors and Their Uses in Chemistry and Biology  

 1-Introduction……………………………………………………………………..1 

 2-Specific vs. cross reactive receptors…………………………………………….3 

  2.1-Specific receptors……………………………………………………..4 

  2.2-Naturtal receptors……………………………………………………..5 

  2.3-Unnatural receptors……………………………………………………6 

  2.4-Non-specific receptors………………………………………………...6 

  2.5-Taste and Smell………………………………………………….……7 

 3-Sensor arrays………………………………….………………………………..10 

  3.1-Specific arrays……………………………………………………….10 

  3.2-Cross-reactive arrays………………………………………………...11 

  3.3- Cross-reactive arrays based on biologic and quasi-biologic molecules 

……………………………………………………………………14 

 

Chapter 2. Identifying Protein Variants with Cross-reactive Aptamer Arrays 

1 Introduction…………………………………………………………………….20 



  

IX 
 

2 Experimental methods…………………………………………………………23 

 2.1 Preparation of aptamers……………………………………………...23 

 2.2 Preparation of reverse transcriptase……………………………….…27 

 2.3 Preparation of slides………………………………………………….29 

 2.4 Slide assay……………………………………………………………30 

 2.5 Data analysis…………………………………………………………31 

3 Rationale for use of LDA………………………………………………………33 

 3.1 Rationale for normalization.............................................................…36 

4 Results………………………………………………………………………….39 

4.1 Initial aptamer analysis with 96 aptamers…………………………...39 

4.2 AZT study…………………………...……………………………….43 

4.3 30 Aptamer study……………………………………………………47 

4.4 Truncated aptamer set……………………………………………….53 

5 Discussion……………………………………………………………………...55 

6 Author contributions………………………………………………………..….58 

 

Chapter 3: Exploring the use of Aptamers as Non-specific Biomolecular Receptors  

 1 Introduction……………………………………………………………………59 

 2 Materials and methods…………………………………………………………64 

  2.1 Aptamer selection……………………………………………………64 

  2.2 Aptamer generation………………………………………………….68 

  2.3 Cell assay…………………………………………………………….68 

  2.4 FACs analysis………………………………………………………..70 

  2.5 Real-time analysis……………………………………………………71 



  

X 
 

  2.6 Analysis of NGS data………………………………………………...71 

 3 Results………………………………………………………………………….72 

  3.1 Preliminary Real-time results………………………………………..72 

  3.2 Analysis of a single cell line, A431………………………………….75 

  3.3 Positive control selection…………………………………………….78 

  3.4 Analysis of two cell lines, A431 and MDA-MB-435………………..83  

3.5 Analysis of four cell lines, A431, MDA-MB-435, Hek, and     
U87MGvIII………………………………………………………...89 

3.6 Validation of model………………………………………………….93  

3.7 Exploration of aptamer behavior as a panel and alone………………96 

 4 Discussion…………………………………………………………………….100 

 

Chapter 4:  Studies in the application of PCA and LDA to organic chemistry 

 1 Introduction…………………………………………………………………...105 

 2 Background…………………………………………………………………...106 

 3 Model setup…………………………………………………………………...117 

 4 Exploration of DA and PCA………………………………………………….118  

  4.1 Lock and key array versus cross-reactive array…………………….118  

  4.2 Choosing the best number of hosts for an array……………………122 

  4.3 When to add hosts to an array………………………………………126 

  4.4 High Dimensionality in an Array and Determining Host Performance 
     
…………………………………………………………………..………133  

 4.5 Obtaining the best visually representative plot……………………..138 

 4.6 Including blank or control responses in an array…………………...141  



  

XI 
 

4.7 Circumstances where arrays may not be necessary…………………144 

5 Practical Application of PCA and DA..............................................................147 

5.1 Using PCA an DA togthers as a validation techniques...............147  

5.2 Preprocessing data........................................................................149  

 6 Experimental set up...........................................................................................151  

 7 Discussion.........................................................................................................152 

 8 Author Contributions....................................................................................153  

References ……………………………………………………………………………...154   

Vita ………………………………….……………………………………….................167  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

XII 
 

 

 

 

 

List of Tables 

Table 2.1.  List of constant regions and variable regions for each aptamer used……26 

Table 2.2.  Location and Amino acid identity for proteins used (Rhee, 2003)………28 

Table 2.3. Cross validation results…………………………………………………..52 

Table 3.1.  List of aptamers and their targets……………………………………66-67 

Table 3.2. Sum of the difference between blocked / unblocked aptamers and between 
blocked aptamers / non-binder…………………………………………...83 

 
Table 3.3.  Significance of the distance between blocked and unblocked aptamers..83  

Table 3.4. List of aptamers with a correlation value of at least ±0.75 across the F1 
axis for sample concentrations: 0.1pmols, 1pmols, 2pmols. The consensus 
Colum contains the aptamers which have a correlation value of at least 
±0.75 for all concentrations……………………………………………...88 

 
Table 3.5. List of aptamers with correlation values ±0.75 for the first three axes. The 

values with the highest and lowest correlation values for each of the 
columns are in bold………………………………………………………92  

 
Table 3.6.  Pairwise Fischer distances………………………………………………95 

Table 3.7.  Pairwise Fischer distance tests……………………………………….......95 

Table 3.8.  Results or cross-validation……………………………………………….96 

Table 3.9.   List of aptamers used for classification by the DA……………………...99  

 

 



  

XIII 
 

 

 
 

 

List of Figures 
 
Figure 1.1. Section A represents a “lock and key” model where a single receptor binds 

a single target.  Section B represents a cross-reactive model where 
receptors can bind more than one target and targets can bind to more than 
one receptor. Figure adapted from Lavigne and Anslyn, 2001……………4 

 
Figure 1.2. Taste locals on the tongue. Figure adapted from Chandrashekar, et al. 

2006………………………………………………………………………..9 
 
Figure 1.3. Example of differential colorometric patterns generated for 18 different 

organic molecules.  Figure adapted from Zhang and Suslick, 2005……..13 

Figure 1.4. Representation of how various molecules non-specifically bind serum 
albumin. Figure adapted from Adams and Anslyn, 2009………………..16 

 
Figure 2.1. A biotinylated LNA anchor complementary to the 5’ end of the aptamer, 

securing the aptamer to the Nutravidin coated slide. A second LNA 
conjugated to the 3’ end of the aptamer acts as a probe for detection of 
bound aptamer. Figure courtesy of Angel Syrett………………………...24 

 
Figure 2.2. For data analysis the foreground signal represented the spot where the 

aptamer material was printed. Background was a circular region 
surrounding each spot……………………………………………………31   

Figure 2.3. PCA of unnormalized data from 30 aptamer set, 87.53% explained and the 
Mahalanobis distance…………………………………………………….35 

Figure 2.4. LDA of unnormalized data from 30 aptamer set, 94.48% variance 
captured, and Mahalanobis distance……………………………………..37 

Figure 2.5. LDA of with-in normalized from 30 aptamer set, 91.21% variance 
captured and Mahalanobis distance……………………………………...38  



  

XIV 
 

Figure 2.6. Layout of slides and reaction wells. Each name represents a triplicate 
printed on the slide……………………………………………………….39 

Figure 2.7. Cy3 channel of scanned image for wild-type RT and RT mutant M3, 
showing differential binding to aptamers. Courtesy of Angel Syrett……40 

 

Figure 2.8. Cy3 channel of scanned image for RT mutants M5 andM9, showing 
differential binding to aptamers. Courtesy of Angel Syrett……………...41  

Figure 2.9. PCA of within- and between-slide normalized, 61.93% variance captured, 
and Mahalanobis distance………………………………………………..41 

Figure 2.10. PCA of 15 selected aptamers, 70.52% variance captured, and Mahalanobis 
distance………………………………………………..…………………42 

Figure 2.11. Structures of azidothymadine and thymidine……………………………44 
 
Figure 2.12. Array of 96 aptmaers with only WT reverse transcriptase, with 850 nmols 

of AZT and 850 nmols of thymadine…………………………………….45 
 

Figure 2.13. PCA plot of wild-type reverse transcriptase under various conditions: 
unheated RT, heated RT, 850 nmols AZT, 850 nmols thymadine, and a 
negative control…………………………………………………………..46 

 
Figure 2.14. LDA plot of wild-type reverse transcriptase under various conditions: 

unheated RT, heated RT, 850 nmols AZT, 850 nmols thymadine and a 
negative control…………………………………………………………..47 

 
Figure 2.15. Slide treatment. Each small square represents a single reaction well, 16 per 

slide. Each well was identical and consisted of 30 aptamers printed in 
replicates of 6.  The aptamer’s position is a representation of where each 
aptamer was positioned relative to the others; each name represents a set 
of six replicates. Each slide was separated into three groups of wells.  The 
top eight wells correspond to the treatment group; where one of the four 
HIV-RT variants was applied. The next four wells correspond to negative 
controls and the final four wells correspond to the positive controls……48  

 



  

XV 
 

Figure 2.16. GenePix scan of the 30 aptamer set. Red corresponds to the Cy5 channel 
and the signal intensity is proportional to the amount of aptamer bound to 
the slide.  “Black” spots indicated locations where little or no aptamer was 
deposited. If the background intensity exceeded the foreground intensity in 
either channel, the spots were excluded. Green corresponds to the Cy3 
channel where the signal intensity is proportional to the amount of protein 
bound to the aptamer. a) Wild-type b) M3 c) M5 d) M9 e) negative 
control…………………………………………………………..………..49 

Figure 2.17. LDA plot of normalized 30-aptamer dataset. Ellipses represent 95% 
confidence intervals. Table represents a leave-one-out cross-validation...50  

Figure 2.18. LDA plot of normalized 30-aptamer data set including the third 
component………………………………..………………………………51  

Figure 2.19. LDA of 15 selected aptamers and results of leave one out cross validation. 

  ……………………………………………………………………………54 

Figure 2.20.  LDA plot of 15 selected aptamers with third component 
included…………………………………………………………...……...55  

Figure 3.1. Preliminary real-time results for 4 selected aptamers. Aptamers D10, E12 
and F7 show enrichment for A431 and depletion for MDA-MB-435. D11 
show enrichment for both. Error bars represent standard error………….75 

Figure 3.2. PCA comparing various staring panel concentrations to the naïve panel. 
The F1 axis captures the majority of the variance (33.02%) and accounts 
for the separation of the panel from the naïve panel. The F2 axis accounts 
for the separation of the 0.01pmol sample from the others……………...76 

 
Figure 3.3. PCA plot comparing panel to naïve panel, showing F1 and F3 axis. The F3 

axis is dominated by increasing concentration from 1pmol to 2pmols….77  
 
Figure 3.4. Fold change of each aptamer as compared to the naïve panel for the A431 

cell line. Fold change is calculated by the log2 ratio of the abundance of 
an aptamer from an experimental sample over the abundance of an 
aptamer from the naïve panel…………………………………………….78 

 
Figure 3.5. Fold change of real time (ΔCt) for representative aptamers, D10, E11, 

E12, C7, F7 across all concentrations. The fold change is calculated as the 
log2 ratio of the Ct a single aptamer from the experimental samples over 
the Ct of the same aptamer from the naïve panel………………………...79  

 



  

XVI 
 

Figure 3.6. Results of FACS analysis of 4 possible positive control aptamers. Cell 
only, probe only and C36 are negative controls and are not expected to 
show fluorescence. Figure courtesy of Michelle Byrom………………...81 

 
Figure 3.7. Real time PCR analysis. Each aptamer, otter, C1, e07, min e07, j18, and 

36, was tested with either the 5’ constant region, the 3’ constant region, 
both or neither region blocked by complementary oligonucleotides.  
Aptamers with a strong affinity for the target will be more abundant in 
each of the samples and have a lower Ct………………………………...81   

 
Figure 3.8. A PCA plot comparing two cell lines A431 and MDB-MB-435. The F1 

axis is dominated by the starting concentration with low concentrations 
being on the left and high concentrations being on the right, . The F2 is 
dominated by the between cell line differences. Most of theMDA-MB-435 
cells are above the axis while most A431 cells are below the axis………84 

 
Figure 3.9. Correlation plot relating the significance of each variable to the position of 

the cells on the plot. Note that D10 (the EGFR specific aptamer) seems to 
behave in a concentration dependent manner and contributes more to the 
separation based on concentration rather than cell type. Aptamers G4 and 
F11 seem to play the most important role in discriminating the two cell 
lines………………………………………………………………………85 

 
Figure 3.10. PCA analyses of each sample concentration independent from all others. 

In each case, save 0.01pmols, the F1 axis is the axis of separation 
separating the A431 cell line of the right from the MDA-MB-435 cell line 
on the left.  For the 0.01pmol sample the axis of discrimination is the F2 
axis separating A431 on the bottom from MDA-MB-435 on the top……86 

 
Figure 3.11. PCA of the two cell lien data, using only the consensus values recorded in 

Table 3.1, excluding data from the 0.01pmol sample. In this figure the F1 
axis contains data relevant to cell type, all A431 samples are found on the 
right and all MDA-MD-435 samples are found on the left. Concentration 
remains as a significant source of variation……………………………...89 

 
 
Figure 3.12. This plot shows that each cell line has a unique pattern also shows that 

negative values (as the case in F11 and G4) can also be significant.  To 
include or not to include that is the question…………………………….90   

 
Figure 3.13 PCA of four cell line experiment. Four distinct groupings are observed, 

HEK, MDA-MB-435, A431 and U87MGvIII.  The F1 axis represents the 
variation which separates MDA-MB-435, U87MGvIII and HEK cell lines. 



  

XVII 
 

The F2 axis represents the variation that separates the A431 cell line from 
the other lines. Additional separation of the U87MGvIII is found on the 
third axis (not shown)……………………………………………………91  

 
Figure 3.14 Discriminant analysis of 4 cell lines. Each group is clearly separated from 

each other group across the F1 axis.  98.64% of the data in the model 
exists across the F1 axis; this is the between group scatter.  Data relating 
to within group scatter is found on the F2 axis and only accounts for 
0.88% of the data in this model………………………………………….94 

 
Figure 3.15. Fold change of aptamer D10 calculated from sequencing data for the A431 

and MDA-MB-435 cell lines…………………………………………….97   
 
Figure 3.16 Fold change of aptamer C7 calculated from sequencing data for the A431 

and MDA-MB-435 cell lines…………………………………………….98 
   
Figure 3.17 FACs analysis of aptamer D10 under various conditions for each of the 

cell types. In all cases, save for the A431 cell line, aptamer D10 shows 
greater affinity for the cell line as part of a panel that alone…………….99  

 
Figure 3.18. FACs analysis of aptamer C7 under various conditions for each of the cell 

types. In all cases aptamer C7 shows a very slight increase in affinity for 
the cell lines as part of a panel that alone.  It should be noted however that 
much of this data is not above background and should be viewed with that 
in mind………………………………………………………………….100  

 
Figure 4.1. PCA plot of the antibody-like scenario and mean Ka values for the 

“antibody like” scenario.  In this example, each host:guest behaves in a 
very specific manner.  For example, Guest 1 (G1) and Host 1 (H1) have a 
very high affinity for each other relative to the other host:guest pairs (0.5 
standard deviations)……………………………………………………..120 

 
Figure 4.2. PCA plot of the cross-reactive scenario and mean Ka values for the cross-

reactive scenario. In this example, each host:guest behaves in a very 
unique  manner.  For example, Guest 1 (G1) and Host 1 (H1) have lower 
affinity for each other than the affinity of H1 for any of the other guests, 
whereas Host 2 (H2) has the lowest affinity for G2 relative to the other 
host:guest pairs (2 standard deviations)………………………………...121 

 

Figure 4.3. PCA plot of antibody-like scenario with four hosts and mean Ka values. 
This is the same data sets as presented in Figure 4.1, however one of the 
hosts has been omitted (0.5 standard deviations)……………………….123 

 



  

XVIII 
 

Figure 4.4. PCA plot of cross- reactive scenario with four hosts and mean Ka values. 
This is the same data set as presented in Figure 4.2, however, one of the 
hosts has been omitted (2 standard deviations)…………………………125 

 
Figure 4.5. A) PCA plot of overlapping data set with 5 hosts and mean Ka values (x 

100) for each host guest pair (5 standard deviations)…………………...127 
 
Figure 4.6. DA plot overlapping data set with 5 hosts……………………………...128 
 
Figure 4.7. PCA plot of overlapping data set with ten hosts………………………..130 
 
Figure 4.8. LDA plot of over lapping data set with ten hosts………………………131   

Figure 4.9. PCA of overlapping data with 20 hosts. The data has been “over-fitted”. 
  …………………………………………………………………………..132 

Figure 4.10. DA plot of 15 hosts with co-linear variable and high variance and the 
mean Ka values for unique host behavior data set (2 standard deviations). 

  ..................................................................................................................136 
 
Figure 4.11. Loading plot of the DA plot in 6A, identifying the contribution of each 

host to an axis…………………………………………………………...137 
 
Figure 4.12. PCA plot with a large variance data set and the mean Ka values of 

inconsistent variance data (Data for G1 contains 0..5 standard deviations, 
data for G2-G5 with Ka values of 10 contains 0.5 standard deviations, data 
for G2-G5 with Ka values of 20 contains 1 standard deviation, data for G2-
G5 with Ka values of 30 contains 1.5 standard deviations, data for G2-G5 
with Ka values of 40 contains 2 standard deviations)…………………...139 

 
Figure 4.13. Three-dimensional PCA plot of the data set……………………………140 
 
Figure 4.14. A) DA plot of low variance data with blank included in the data set. And 

the mean Ka values of low variance data (0.5 standard deviations)…….143 

Figure 4.15. DA plot with blank excluded from data set……………………………..144 

Figure 4.16. A PCA plot of data where an array is not needed and the mean Ka values 
for a plot where an array is not needed (0.5 standard deviations)............145 

 
Figure 4.17  An LDA plot of data where an array is not needed…………………….146 



  

1 
 

Chapter 1:  The Science of Receptors and Their Uses in 
Chemistry and Biology 

 

1. Introduction 

 The ability to detect something tiny, beyond our scope of vision, is indispensable 

to the study of the world around us.  Early scientists, like the alchemist Robert Boyle, 

sought, among other pursuits, to identify the composition of common compounds.  Boyle 

is even credited with coining the term “analysis” as a method of detecting ingredients in 

complex mixtures (Debus, 1962).   

In the early days of science, the microscope was the powerhouse of detecting and 

identifying small targets.  Marcello Malpighi is attributed the discovery of many small 

anatomical structures through his use of microscopy. Henry Sorby developed the science 

of petrography, the study of rock and mineral characteristics, through his desire 

understand physical geology (Nutall, 1981).  Even in those nascent years, scientists knew 

there were particles smaller than what could be seen with a microscope.  The challenge 

faced by the early scientist was how to detect those tiny particles.  

This challenge was addressed in part by using receptors, molecules capable of 

transducing a binding event into another form information.  Perhaps the most widely 

recognized class of receptors is biomolecules.  For example, the epidermal growth factor 

receptor, EGFR, is a trans-membrane receptor which binds to a singling molecule from 

an extracellular source. Upon binding, the extra cellular domain undergoes dimerization 

resulting in autophosphorylation of two receptor molecules. These phosphorylated 
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receptors are capable of providing a new binding site for an intracellular molecule, thus 

initiating a signaling cascade directing cellular behavior.  What has fundamentally 

happened is detection of a binding event and transduced into cellular activity; cell 

differentiation for example (Fischer et al., 2003).  

Receptors however, are not limited to just biomolecules.  Any binding event 

which can be transduced to a different signal can be considered a receptor.  Erythrolitmin, 

a compound found in Litmus paper, is a very early example of a colorometric receptor.  

In this case,  surplus H+ ions protonate the molecule altering the excitation wavelength of 

the molecule thus resulting in a color shift (Horobin and Bennion, 1972).  

Today colorimetric receptors are ubiquitous.  The home pregnancy test detects 

human chorionic gonadotropin (hCG) in urine.  In the lateral flow version of the home 

pregnancy test, the experimental sample flows along a capillary membrane to the reaction 

zone where a monoclonal antibody to hCG is deposited but not immobilized.  If hCG is 

present in the sample the antibody will bind to the hCG. The sample and antibody 

mixture then travels down the strip until it encounters an immobilized hCG antibody in 

the test zone, it will then binds any hCG / antibody units and holds them in an discreet 

location.  Free hCG antibody from the reaction zone continues still further on until it 

encounters an immobilized antibody that targets the constant region of the anti-hCG 

antibody in the control zone. The free antibody will then be immobilized in the control 

zone.  The initial hCG antibody from the reaction zone also has a visible latex particle or 

colloid metal such as gold copper or silver, covalently attached.  When the anti-hCG 

antibody accumulates at the test region due to the presence of hCG or in the control 
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region because of capture by anti-constant region antibody, a band becomes visible at one 

or both of those location (Ehrenkranz, 2002).  

 

2. Specific vs. cross reactive receptors.  

In the model of the home pregnancy test, researchers are striving to develop new 

and effective receptor systems to detects and or quantify various molecules of interest.  

There are two general approaches to this: the use of highly specific receptors and the use 

of cross-reactive receptors.  In one approach this specific shape of the target must match 

that if the receptor. This is called the “lock and key” hypothesis and is illustrated under A 

in Figure 1.1. Antibodies are frequently considered to follow this model.  The alternative 

approach is the use of cross-reactive receptors. Section B in Figure 1.1 illustrates how 

this model recognized receptors.  Rather than having a single receptor for a target, the 

target my bind to one or more receptors and each receptor may bind one or more targets.  
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Figure 1.1. Section A represents a “lock and key” model where a single receptor binds 

a single target.  Section B represents a cross-reactive model where 
receptors can bind more than one target and targets can bind to more than 
one receptor. Figure adapted from Lavigne and Anslyn, 2001. 

 

 

2.1 Specific receptors 

A highly specific receptor is a molecule which will consistently bind to a single 

target and show very little affinity for non-target molecules.  As a general rule of thumb, 

these highly specific receptors show high sensitivity as well as high specificity though 

this is not always the case.  The GP IIb/IIIa integrin agonist Eptifibatide, is a drug that 

actively competes with ligands at the site of bridging for platelet aggregation.  This 

particular drug has been shown to bind exclusively to GP IIb/IIIa and not to other 

integrins.  Despite this high specificity, this drug shows a dissociation constant of around 

120nM.  In contrast, this drug’s counterpart Abciximab, has a dissociation constant of 

around 5nM (Karsten and Weber 2003). 
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2.2 Natural receptors 

As previously mentioned the natural world holds many examples of specific 

receptors.  Frequently these receptors are considered “lock and key” type receptors. In 

this paradigm, the unique tertiary structure of the molecule allows only for interaction 

with the unique tertiary structure of another molecule (Koshland 1995).  Interactions with 

molecules that are not well suited for the binding pockets of these sorts of molecules are 

particularly unfavorable; like fitting square peg in a round hole.  Antibodies are often 

considered lock and key type receptor and can show exquisite sensitivity with very little 

cross reactivity (Branden et al. 1995).  It is important to note here that another model of 

antibody antigen binding exists; the induced fit model.  In this model, target binding 

deforms the receptor structure forcing a “fit” to occur (Koshland, 1995).  This is 

primarily due to residue specific interactions between the antibody and its target. 

Monoclonal antibodies are routinely generated with dissociation constants in the 

subnanomolar range, while maintaining their specificity (Vaughan et al., 1996; 

Hoogenboon 2005; Edwards et al.,2003).  

Antibodies are not the only proteins that display lock and key binding behaviors.  

Lectins are proteins often found in the surface of cells and are hugely specific to sugar 

moieties (Weis and Drickamer 1996).  While there are many characterized lectins, 

perhaps the most recognizable is the toxin ricin.  Ricin is composed of two chains, A and 

B, with differing function.  The A chain is an N-glycoside hydrolase that is well-known 

to cleave glycosidic bonds in ribosomes (Lord et al 2003).  This is the well-known 

mechanism of toxicity ricin. Ricin chain B, however, shows a characteristic model of 
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lock and key binding structure.  Studies of the bonding affinity of ricin B chain shown the 

chain has 3 times the affinity for lactose than that of galactose.  The position of hydroxyl 

units on the sugar interact with residues in the protein, specifically Asn46, Lys40, Gln31, 

and Asn355.  Sugars which do not have a conformation amiable to binding to these 

residues, do not show high affinity for ricin B chain (Rivera-Sagredo et al., 1991).  

 

2.3 Unnatural receptors  

Receptors with high specificity are not limited to molecules of biological origin.  

Like ricin B chain, receptors containing boronic acid units are known to specifically bind 

saccharides and have been researched for over 50 years.   

 Boronic acid units are arranged with particular orientations in order to match the 

specific confirmation of the saccharide in question.  In aqueous media, the hydroxyl 

groups of the boronic acids are exposed and accessible to coordinate with the axial or 

equatorial hydroxyl groups in a saccharide. This method has shown the ability to clearly 

distinguish between isomers of the same sugar.  This is a pinnacle example of a lock and 

key sensor – only those sugars, whose confirmation is an exact fit for the boronic acid 

sensor, will bind and therefore be detectable (James et al., 1996).  

 

2.4 Non-specific receptors.  

Molecule specific detection certainly has great significance in many branches of 

science; however, there is also a need for methods to detect many different molecules 

simultaneously.  The detection of ions in solution has particular relevance to chemistry 
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and biology, but due to their small size, it is quite difficult to build a receptor that 

exclusively detects a single type of ion. Rather, several approaches rely on some 

differential response in an assay to detect one or several types of ions.  

Cation heavy metals can have significant impacts on public health and the 

environment (Gadd and Griffiths. 1997; Alloway and Ayers 1997).  On the other hand, 

many anions are responsible for acid rain and the decay of manmade structures (Alloway 

and Ayers, 1997).  Rapid assays for the detection of these compounds could play a 

pivotal role in managing their presence in the environment.  

 Functionalized gold nanoparticles can be designed in such a way to yield a 

colorometric response to aggregation.  Kim et al., functionalized gold nanoparticles with 

11-mercaptoundecanoic acid (MUA).  In the absence of a heavy metal the nanoparticles 

could not aggregate and yield a red color.  When a heavy metal cation was added, it 

coordinated with the carboxylic acid groups between two nanoparticles allowing for 

aggregation.  Once the nanoparticles aggregated, the nanoparticle solution shifted from 

red to blue.   

 The Prodi et al. has designed a tripodal ligand, tris[5-(dimethylamino)-N-(2-

aminoethyl)-1-naphthalenesulphonamide], incorporating the dansyl chromophore, a 

commonly used fluorescent label (Geddes, 2010).  This molecule is capable coordinating 

a metallic ion resulting in differential fluorescent spectra for several different ions (Prodi 

et al., 1999).  

 Another approach, dedicated to the detection of anions, was put forth by the 

Suslick group.  Rather than relying on a fluorescence output, the Suslick group used 
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anthraquinone, a ubiquitous dye and pigment precursor, as the signal to indicate ion 

binding.  The athraquinone was conjugated to a calix[4]pyrrole,  which includes a 

coordination pocket for accepting anions (Gale et al., 2001). Upon the addition of an 

anion, a substantial colorometric shift was observed whose magnitude was dependent on 

the specific ion (Miyaji et al., 2000).  

 

2.5 Taste and Smell 

 Molecules more complicated than simple ions are much more difficult to 

discriminate with single receptors than ions are.  Instead, researchers have turned to the 

biological senses of taste and smell for inspiration.  Both of these senses are examples of 

chemoreception; the process of transducing a chemical binding event into an interpretable 

signal.  In the case of olfaction, a sensor neuron extends cilia in to the mucus of the nasal 

passages.  Theses cilia express an olfactory odorant receptor protein capable of binding a 

subset of different chemical odorants such as amino acids, aliphatic alcohols, terpenes, 

camphor derivatives, and thiols, just to name a few.  In the cilia, each cell is capable of 

detecting just one general group of odorants yet many different members of a group may 

bind to a single type of receptor (Doty 2001; Holley et al., 1974; Rhien 1983; Gilles and 

Holley 1984). 

 The sense of taste, or gustation, is generally thought of as being segregated among 

4 (or 5) different tastes: sweet, sour, salty, bitter, and sometimes savory (umami) is also  
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Figure 1.2 Taste locals on the tongue. Figure adapted from Chandrashekar, et al. 
2006. 

 

 

included.  This is, however, a somewhat over-simplified view.  Each taste bud is 

comprised of up to 200 separate cells covered with receptors capable of transducing a 

chemical into the sensation called taste.  On the tongue and the inside of the mouth, 

groups of taste buds are localized into regions where most tastes are detected to greater or 

lesser degrees. (Figure 1.2) Unlike the taste maps learned in grade school, there is little 

discreet separation in the where individual tastes are perceived (Chandrashekar, et al. 

2006).  Within each of these regions there are cells which express certain types of 

receptors, and which broadly recognize certain categories of tastes.  The T1R group of 

receptors, for example, broadly recognizes “sweet” compounds, not all of which are 

sugars (Nelson et al., 2001, Zhao et al., 2003).  However, one member of this family 

exhibits strong selectivity for a single compound; the T1R1 receptor seems to bind almost 

exclusively to monosodium glutamate (MSG) (Li et al., 2001).   

 Chemoreception in humans and other animals is an example of how a panel of 

diverse receptors can work in concert to detect and discriminate single molecules, like 

MSG, or can categorized a group of molecules into a distinct taste/smell.  
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3. Sensor arrays  

In order to replicate these powerful discriminator mechanisms of olfaction and 

gustation, researchers have begun developing panels of receptors. Some receptor arrays 

have used specific molecules such as antibodies, aptamers or lectins.  

 

3.1 Specific arrays 

Mor et al. demonstrated that a panel of 4 biomarkers for ovainan cancer, leptin, 

prolactin, osteopontin (OPN), and insulin-like growth factor-II (IGF-II), are potentially 

capable of discriminating between clinical and cancer free patients.  They used an 

enzyme-linked immunosorbent assay to detect the various proteins in the serum of sick 

and diseased patients.  With the assay, they were able to correctly classify 95% of sick 

population with a very low false positive rate.  While these results were promising, the 

assay showed poor prognostic value between different cancer types ( Mor et al., 2005). 

McCauley et al. performed a similar analysis using aptamers specifically selected 

for clinically relevant biomarkers, inosine-5’-monophosphate dehydrogenase (IMPDH), 

thrombin, basic fibroblast growth factor (bFGF), and vascular epidermal growth factor 

(VEGF).  They immobilized the aptamers on a glass substrate and were able to detect and 

quantitate levels of thrombin in human serum. They were further able to detect all 4 

proteins in bacterial cell lysate, though they were unable to effectively identify the 

protein concentration, possibly due to degradation of the RNA aptamers (McCauley et al. 

2003).  
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Cell surface saccharides play a role in cell to cell communication, cell adhesion 

and cell motility.  Aberrant expression of cell surface saccharides has been found to be 

associated with various tumors and may be significant for tumor growth and metastasis. 

(Orntoft et al., 1990).  To assess this idea and to assist in developing lectin based cancer 

assays, Zhang et al. developed an assay of six lectins immobilized on gold films to study 

cell surface carbohydrate expression.  They found that two cell types, BHK-1 and Caco-

2, bound to the array differentially, indicating the presence or absence of certain 

carbohydrates on the cell surface (Zheng et al. 2005).  

While these methods have shown some promise in classifying disease states or 

identifying cell types, their mechanism of discrimination is not particularly close to that 

of olfaction or gustation.  The previously described methods rely on having (or 

generating); very specific molecules capable of binding to a very specific target.  As 

mentioned in the discussion of olfaction and gustation, the chemoreception in the human 

body bind to a variety of different targets with differing levels of affinity.  

 

3.2 Cross-reactive arrays 

An array that shows behavior more similar to that of natural chemoreceptors is 

one explored by John Lavigne.  In this work, an array was developed by positioning resin 

beads in micromachined wells formed in Si/SiN wafers.  Each bead was functionalized 

with fluorescein, o-cresolphthalein, alizarin complexome or a boronic acid ester of 

resorufin-derivatized galactose. These receptors were able to detect variations in pH 

(fluorescein, o-cresolphthalein and alizarin complexome), Ce3+ and Ca2+ ions (o-
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cresolphthalein and alizarin complexome) or simple sugars (boronic acid ester if 

resorurin-derivatized galactose).  Upon exposure of the chip to solution containing 

various ions, sugar, and pH concentrations, differential patterns of color response were 

observed in each of the wells (Lavigne et al., 1997).   

Another early approach that mimics the sense of smell is the use of tin oxide 

receptor for the detection of gasses.  This is the principle behind the Warwick nose, one 

or the earlier attempts at an electronic nose (Albert et al., 2000)   In this platform  a film 

of SnO2 inside a ceramic tube, is doped with various precious metals.  Upon exposure to 

various gasses the conductance of the receptors are modulated depending on the metal 

doped in and the gas itself.  This results in a pattern of different conduction peaks over 

time which are diagnostic of the exact gas compositions (Shurmer and Gardener 1992).  

An approach that uses an indicator displacement assay (IDA) was developed to 

distinguish between ATP and GTP, two very similar molecules.  In this study, resin beads 

immobilized in a Si/SiN wafer were functionalized with guanidinium groups displaying a 

poly peptide library.  A fluorescein was located between the two “arms” of the 

polypeptides to act as an indicator.  When the array was exposed to either ATP or GTP, 

the fluorescein was displaced from the polypeptide pockets, resulting in a modulation of 

the fluorescent signal generated by the fluorescein.  Using pattern recognition algorithms 

ATP and GTP were effectively discriminated ( McCleskey  et al., 2003).  

Dyes that display a color response under various conditions have been used for 

the detection of organic compounds in water.  This is advantageous because many 

detection strategies for such compound are performed in non-aqueous media, thus they 
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are not readily generalizable.  In this scheme, metaloporphyrins, traditional pH dyes with 

low aqueous solubility, and solvatochromic dyes were immobilized on a substrate and 

exposed to solution with various organic molecules.  In each cases, a distinctive pattern 

was generated which was distinguishable with the use of hierarchical clustering (Figure 

1.3) (Zhang and Suslick 2005). 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Example of differential colorometric patterns generated for 18 different 
organic molecules.  Figure adapted from Zhang and Suslick, 2005. 

 

 Small molecules are not the only targets of cross reactive sensor arrays.  Rotello 

has developed a method using gold nanoparticles to distinguish between various cell 

types including isogenic cells.  Each of the nanoparticles was functionalized with a 

catioinic nitrogen bound to a cyclohexane, a benzyl group or a propanol.  These particles 

were electrostatically coated with a fluorescent polymer and were used to discriminate 

          1                                2                              3                           4                                5                              6  

          7                              8                              9                             10                          11                             12  

          13                         14                          15                            16                            17                             18  



  

14 
 

cells.  Each cell showed a different affinity of each type of nanoparticle resulting in a 

different fluorescence profile.  Using a canonical discriminate analysis, the Rotello group 

was successful in grouping similar cell types, though in many cases there was very little 

difference between the lines.( Bajaj et al., 2009).  

 

3.3 Cross-reactive arrays based on biologic and quasi-biologic molecules  

 Of all of the platforms previously describe nearly every one relied on non-natural 

synthetic molecules.  Antibodies, lectins, and aptamers have been used in array platforms, 

but they have very little utility in cross-reactive systems by virtue of their high levels of 

selectivity for target molecules.  However, there is growing interest in biological 

molecules for use in differential sensing routines.  It is not uncommon for non-biological 

receptor molecules to be complicated to synthesize.  While there has been great strides in 

rational synthetic receptor design, it is still difficult to predict (and screen) the behavior 

of synthetic molecules.  Instead, biologic molecules may offer improved insights into 

receptor target interactions.  There has been a wealth of research into the structure and 

function of biologic molecules and with the advent of high throughput methods such as 

next-generation sequencing, the amount of available knowledge is expanding rapidly 

(Howe et al., 2008).  By exploring novel application for biological molecules as 

differential receptors, there is the potential to simplify the creation of receptor arrays 

while simultaneously increasing their repertoire of targets.  

The endogenous receptors found in the nose and on the tongue could potentially 

be interesting targets for use in cross reactive sensing platforms.  However, at this time, 
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the precise nature of the receptors are only just coming to light.  This is not to say that 

there are no other proteins which could be used for differential sensing.  Albumin is the 

most abundant plasma protein and is involved in the transport of many compounds 

including ions, hormones and various other hydrophobic compounds (Peters, 1995).  It 

has been postulated that the extreme high level of cross reactivity displayed by albumin 

could be exploited to discriminate molecules in vitro.   

 Adams and Anslyn exploited the use serum albumin (SA) as a method for 

discriminating terpenes (hydrophobic molecules present in many varieties of plants) in 

perfume samples.  The fluorophore PRODAN was used as an indicator for the assay.  It 

remained absorbed in the hydrophobic pockets of the SA, along with a hydrophobic 

additive, until it was displaced by a terpene in ethanol or as part of a perfume sample.  

The fluoresces of the sample was modulated differentially based on the terpene (Adams 

and Anslyn 2009) (Figure 1.4).  
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Figure 1.4 Representation of how various molecules non-specifically bind serum 
albumin. Figure adapted from Adams and Anslyn, 2009.  

 

While antibodies and lectins are complex, relatively large molecules comprised of 

many amino acids, peptides are small structures that can be synthesized de novo and can 

be bound by various proteins.  The immobilization of peptides on arrays has been  

researched for some time.  However, this method is typically used for identifying protein 

substrates and epitope mapping (Uttamchandani, et al., 2008).  Because of the small size 

of peptides, they show more cross reactivity than full sized proteins.  Robinsen et al. used 

arrays comprised of peptides, proteins and oligonucleotides to characterize and 

distinguish several class of autoimmune disease from healthy individuals (Robinson et 

al., 2002).  

 Similar to peptides, peptoids are oligo N-subsitited glycines that are synthesized 

to express side groups on the N of the peptide backbone rather than just the α-carbon.  

The side group also need not be a natural side group.  The Kodadek group explored using 

as array of 7680 peptoids immobilized on a glass substrate for protein discrimination.  

They found a unique fingerprint for each of the proteins used: ubiquitin, maltose binding 
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protein, goat ant-moujse IgG, and anto-glutathione transferase.  While limited in scope, 

their work has shown the utility of peptiods for biomolecular discrimination. (Reddy et 

al., 2005)   

 Aptamers were developed in the late 80’s early 90’s as potential alternatives to 

antibodies. They were inspired by naturally occurring catalytic ribozymes and the protein 

RNA complex; the ribosome (Ellington and Stozak 1990; Tuerk and gold 1990).  Today 

aptamers are a popular topic of research and have been generated to target a wide range 

of substrates such as ATP; aminoglycosides, metallic ions, and porphyrins ( 2001; Sazani 

et al., 2004; Walter et al, 1999;  Li et al. 1996; Zhang et al, 2011).  For the most part 

aptamers are considered to be highly specific molecules, but there is evidence that this 

may not always be the case.  Some aptamers have been designed to express cross-

reactivity such as the “toggle” aptmer for thrombin. This aptamer was specifically 

selected from a standard pool of aptamers to bind both human and porcine thrombin 

(White et al. 2001).   

 Other aptamers have been found to bind to a family of proteins. This is the case 

for RNA-1 an aptamer put forth by Weiss et al.  This aptamer was derived from a pool of 

aptamers designed to target TFIIIA.  However, rather than showing specificity to just 

TFIIIA as its counterpart RNA22 from the same panel did, this aptamer showed high 

sensitivity to all tested zinc finger proteins (Weiss et al., 2010).  

Even aptamers purported to be very specific to their targets have been shown to 

have at least some off target   cross-reactivity.  A study performed by Na Li showed that 
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some aptamers, one to CEM cells (Shangguan et al., 2006) in particular, show binding to 

unexpected targets (Li et al., 2009).  

 Some aptamers, however have been designed to show broad cross-reactivity to 

several different targets.  Inspired by previous work on the detection of molecules in a 

three-way junction binding pocket of an oligonucleotide (Kato et al., 2000), the 

Stojanovic group developed a thiol modified aptamer capable of discriminating cocaine 

and various other hydrophobic ligands.  Like the previously discussed work by Adams, 

this method relies on the displacement a fluorophore in the three way junction by the 

molecule of interest.  Upon binding, modulation of fluorescence identifies the exact 

compound located in the three-way junction.  (Stojanovic et al., 2003). 

 This aptamer work has led to the idea that aptamers may show much more cross 

reactivity than previously thought.  This manuscript will discuss two separate studies in 

aptamer cross reactivity and the significance to aptamer cross-reactivity to biomolecular 

sensor arrays.  The second chapter will focus on an aptamer microarray technique 

employing aptamers specifically selected for wild type HIV-1 RT and a mutant variant 

M3.  It will show that this array of aptamers can not only discriminate between the 

proteins the aptamers were selected for, but also proteins the aptamers had never been 

exposed to.  Chapter 3 will discuss a panel of 46 aptamers selected from the literature 

known to bind various molecules expected to be found on the surface of cells.  These 46 

aptmers will be used to discriminate between 4 separate cells lines.   A novel ratiometric 

method of using aptamer count derived from next-generation sequencing will be used as 

a signal in lieu of a fluorescent label.  Chapter 4 will discuss the computational 
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techniques employed throughout these two studies and modeling work done in order to 

better facilitate the community’s understanding of the pattern recognition techniques used 

here.  
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Chapter 2: Identifying Protein Variants with Cross-reactive 
Aptamer Arrays 

This chapter is derived from “Identifying Protein Variants with Cross‐Reactive Aptamer Arrays.”  by Stewart, S., Syrett, A., 

Pothukuchy, A., Bhadra, S., Ellington, A., & Anslyn, E. ChemBioBhem, 12.13(2011) 2021-2024. 

 

1. Introduction 

Aptamers are structured DNA or RNA molecules selected from random sequence 

pools (Ellington and Stozak, 1990; Tuerk and Gold 1990).  Through an iterative process, 

aptamers are generated that can show a range of sensitivities and specificities to target 

analytes, and that are frequently able to cross-recognize protein variants.  For example, 

different aptamers selected against single amino acid variants of bacteriophage MS2 coat 

protein (Hiaro et al., 1998) were found to exhibit a range of activities, from binding to 

only one protein variant, to avoiding only one variant, to generally binding each of the 

protein variants. Recently, aptamer microarrays have been used by biological researchers 

to identify the presence of relevant biomarkers from a fluid of interest (Miller et al., 

2003). In this regard, aptamers have previously been used for biosensing (Kirby et al., 

2004; McCauley et al., 2003; Nieet al., 2007; Stadtherr et al., 2005; Li et al., 2007; 

Stefaha al., 2009). In general, theses arrays rely on aptamers with a high affinity to a 

single target and very low affinity to non-targets (Conroy et al., 2009; Luppa et al., 2001; 

Goodey et al, 2001; Haab et al., 2001).  In order to create such aptamers, a substantial 

amount of time and effort must be invested to identify aptamer candidates. Our 

hypothesis was that an array of potentially cross-reactive aptamers might be able to more 

broadly recognize a series of protein variants than a similar set of highly specific 
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receptors (Lavine et al., 2001; Dickenson et al., 1996; Albert et al., 2000, Lewis et al., 

2004). Aptamers that recognize families of proteins rather than a single member have 

been generated. One such example is RNA-1, isolated from a selection against Xenopus. 

Strikingly, this aptamer was found to bind broadly to a variety of different zinc finger 

proteins (Weiss et al., 2010).  Stojanovic has shown aptamers’ affinity for a target can be 

perturbed by introducing single mismatches near the binding pocket and varying the 

position in the aptamer to which a fluorophore was conjugated (Stojanovic et al., 2003).  

They were able to generate a panel of modified aptamers capable of discriminating 

between cocaine and various cocaine analogs. Pei et al. describes an assay in which 

systematic variations in aptamer sequence, with both natural and unnatural nucleic acids, 

were used to discriminate 12 different alkaloids (Pei et al., 2009).  Rather than relying on 

systematically varying a single aptamer, we hoped that the aptamers normally generated 

by in vitro selection would serve as a set of semi-specific receptors.  

This principal of using an array of semi-specific receptors has been extensively 

exploited using synthetic receptors for a wide variety of compounds, thus eliminating the 

need for a unique receptor for each target (Shangguan et al., 2008; Fitter et al. 2004).  

Suslik et al. has developed a sensor array using metalloporphyrin dyes coordinated with 

different ions (Suslik et al., 2004). These dyes readily undergo a colorimetric shift upon 

binding of a ligand. The group was able to generate unique patterns of binding for 14 

different compounds in vapor (Rakow et al., 2000).  The Anslyn group popularized the 

use of indicator displacement assay (IDA) through their use of various cross-reactive 

sensors based on peptide-based receptors derived from combinatorial library synthesis 
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(reviewed by Nguyen, 2006; Umali et al., 2010). We have illustrated this approach by 

using a hexasubstituted aryl core decorated with guanidinium groups which were 

appended to combinatorially-generated tripeptide arms.  This approach has also been to 

discriminate protein targets.  We generated a library derived from appending variable 

peptide arms to a tridentate core, along with different metallic ions and counterions 

chelated into the tridentate core.  An 18-receptor ensemble was used to effectively 

discriminate α-neurokinin, substance P, and tachykinin (Wright et al., 2007). This 

approach has been further expanded to classify complex targets. In this example small 

peptidic sensors, 6 to 9 amino acids in length, were used to discriminate flavonoids and 

red wine varietals (Umali et al., 2011). 

Previous work performed by Drs. Angel Syrett  and Na Li generated a number of 

aptamers with various affinities to wild-type HIV-1 reverse transcriptase and a mutant 

variant of HIV-1 reverse transcriptase called M3 (Li et al., 2009; Syrett 2010).  We 

wished to use these aptamers in differential sensing protocols to distinguish between 

wild-type and several drug resistant variants of HIV-1 reverse transcriptase.  The ability 

to effectively discriminate various mutant strains of HIV-1 reverse transcriptase could 

have significant implications on the appropriate course of treatment. Certain mutations, 

such as substitutions at RT codons 41, 67, 70, 210, 215, and 219 allow reverse 

transcriptase to resist inhibition from nucleic acid analogs such as AZT, a common drug 

used to treat HIV infection (Coffin et al., 1997). HIV infected infants can have a 50% 

mortality rate before the age of 2 if left untreated. Swift, appropriate medical intervention 

can reduce the mortality of these children significantly, but only if begun early in the 
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infection (Pennazato et al., 2012).  While some current assays can detect drug resistant 

mutations, they are time consuming, taking between 1 and 4 weeks to complete (Sen et 

al., 2006).  An immobilized aptamer array might be capable of directly identifying the 

drug resistance profiles of circulating viruses.   

 

2. Experimental methods 
 

2.1 Preparation of aptamers 
 

Aptamers were selected against either wild-type (WT) reverse transcriptase (RT) 

or a drug resistant variant (M3) (Roland et al., 2009; Burke et al., 1996; Tuerk et al., 

1992).  All DNA and primers were acquired from Integrated DNA Technologies 

(Coralville, IA).  LNAs were obtained from Molecular Probes (Eugene, OR). The 

forward primer sequence was  

5’-GATAATACGACTCACTATAGGGAATGGATCCACATCTACGGGG-Constant1-

3’ where the underlined region corresponds to the region that will be complementary to a 

Cy-5 labeled LNA probe, and the sequence of the constant region can be found in table 

S1.  The purpose of the Cy-5 labeled LNA was to allow for approximate quantitation of 

the amount of aptamer bound to the slide. Constant1 was the region complementary to 

the primer region found on the experimental aptamers. The reverse primer was 5’-

TTCTCGTGATGTCCAGTCGC-Constant2-3’ where the underlined region corresponds 

to the sequence of a biotinylayted LNA anchor. The purpose of the biotinylated LNA was 

to bind the aptamer complex to the Strepavidin slide. Constant2 is a region 
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complementary to the reverse primer region of the experimental aptamers. The general 

structure of the aptamer complex was LNAProbe-Constant1-Active region-Constant2-

LNA anchor. Figure 2.1 shows a graphical representation of how the biotinylated anchor, 

aptamer, and labeled probe come together on the slide to form the sensor.   

It should be noted that there are different constant regions present in the  

aptamers, derived from different initial selections, as detailed in was a Table 2.1, located 

at the end of this section.  

 

 

 

 

 

 

 

Figure 2.1. A biotinylated LNA anchor complementary to the 5’ end of the aptamer, 
securing the aptamer to the Nutravidin coated slide. A second LNA 
conjugated to the 3’ end of the aptamer acts as a probe for detection of 
bound aptamer. Figure courtesy of Angel Syrett. 
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RNA aptamers were generated from DNA templates by Epicenter’s (Madison, 

WI). Ampliscribe kit RNAs were purified on an 8% PAGE gel followed by elution, 

ethanol precipitation, and suspended in water. RNA concentrations were measured using 

a NanoDrop at A260 nm. In order to generate the full construct in preparation for 

printing, each aptamer was hybridized at the 5’ end to the Cy-5 conjugated LNA probe 

and at the 3’ end to the biotin-conjugated LNA anchor.  The hybridization of 2 µM 

aptamer to 5 µM of each LNA was carried out in 1X reverse transcriptase buffer (RTB; 

100 mM NaCl, 20 mM Tris-HCl, 5 mM MgCl2, 1 mM DDT) at 70 °C for 3 min, 

followed by a drop to 4 °C at 0.1 °C/sec. After hybridization, 3 µl of 50% glycerol was 

added to 30 µl of the aptamer solution. 
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Table 2.1.  List of constant regions and variable regions for each aptamer used. 

 
 

Name Sequnce Protein Selected For

Costant R AAGTGACGTCTGAACTGCTTCGAA
Constant B GGGAAAAGCGAATCATACACAAGA
Constant L GGGTTACCTAGGTGTAGATGCT

e13 AGAGCGUCGAUGAUAGUUUGGAAGGCGUCC L,R Wild-Type

e18 CUGGGCUCUAGAAGUUCUGCAACUUCGAAU L,R Wild-Type

e19 AUCCUGGAACGUACAGCCGGACGUAUAAAU L,R Wild-Type

e24 GUACUGGAGCGUCGACAACGGCUUCGUAGC L,R Wild-Type

e31 ACAUGUAGAGCGUCGACGUGCUACCACGUU L,R Wild-Type

e32 GUGGCGUAGAACGUUCUGUGGCCUUCGAAC L,R Wild-Type

e37 CACAUAGCCGCCAGAAACGUUCCGUCACCG L,R Wild-Type

m306 UAACAUAGUUCUCGAAGUCCUUUGUAAGUGGGCUUCCAGAGCUACCAUUU L,R M3

m307 UAACAUAGUUCUCGAAGCCCUUUGUAAGUGGGCUUCCAGAGCUACCAUUU L,R M3

m318 GAUAUUCGCAUUGGCUUCGUCUCAUUUUUAAAUUUUCUGCGGAUCGCAAGC L,R M3

m321
GGGUUACCUAGGUGUAGAUGCUCACUUACACAAACCUGUAGUUUUAUGCUUCACAU
AUCGCACAGGACGCUUAAGUGACGUCUGAACUGCUUCGAA L,R M3

m324
UCAGGAAACAGCUAUGACCAUGAUUACGCCAAGCUUGGUACCGAGCUCGGAUCCAC
UAGUAACUGCCGCCAGUGUG L,R M3

m326 UUUCAGAUUCAUCUAUAAGAUCNGACAACCGGUUNNUUAGUNGNCNCGAUU L,R M3

12.01 UCAGAUUCAUUUAUAAGAUCCGACAACCUGUCUAUUAGUUGCGCCGAUU L,R M3

c1
UGCUGACGGCGUGAUAUAAUAAUAACCUACAUGCUCUUCGGCCUUCGGAAGAAUCA
CGCUAGAGUAGCGAGUCAGCGAACACGCAUCUAUGACCAGGUUAU L,R M3

c2
CUGCCAUAAUAUUUCAAACUUUCUAAUCAUUUUCCUGUUCUUAUUCUGCCGGAAUC
UUUUCACGCAUUUUCUCUUAUUCCGGCUCCUG L,R M3

c3
UGAUGCUGUAAUUGGCAUCCAAUCUGCGCCAACAGCCUUUUUAGUCGUUACUUGAG
UAGCGUGCGAUUUGUGAAACCGCUCAAUACGACUAGGUAGAG L,R M3

c5
AAUGUAUAAGGAGAGCUCCGUAAGGACUGUCCCGCCUAUGACUGUCGACUCAGGUC
GUAAAACUGCCUCUCAGGAUACAAGUAUCACCUAGUGUUGGCA L,R M3

c9
ACCCCGACUCGUGUUAGCACAUAGGACGGGUGCUGACCCCCUGCAACUAACUCCUC
AAGGGAUACAAGCGCGGAGUCUGGCACUAACCAAGUACCGGG L,R M3

c20
AUUUUCGUUGAUGCGGAUACCUGAACCAUGGACUUGGUCGACCUCAAUGUAAAACA
GGUGAAUCGCUAACUUAGGAUUGCACCACGCUAUGAGAGGUCGUC L,R M3

c24
UGCCGCAGCCUCUAAGUGUAAGCAUCAAUCUGGGUAAACCCGUAGACGAAAUAUGG
CUCUCGAUCCGUUAGGGAGGCAAGACUACGGACCCAGUUUUGCG L,R M3

c30
AACACAGGGUGGCUAACCCCUCAAAGUAGACUGUUAAGGACUUCACGGUCGUAAAA
CCAACUCCACGGGUGUCUCCUGAUGGCGUUG L,R M3

c31
GCAAUUUAAGGCAUGAAAAUCGUACACAUAACAUGGCCUAUCUACGACCGUACGUC
AAUCACUGUCAACCCACAACUGUGGUUACUUGGUUUCC L,R M3

c35
AUAACAAUAAUAAUAUUCGUACAGUGCUGCCGCCUUUGAAGAUAACCGCUCACUUG
UAAGCGGGGAAGUUCGGCUACGGGGUUAGCAAGGUGCGG L,R M3

c39
CUAGCCUACGCUUUCUAUUAUAACAUAAACAUAUACCACGUGUAACUUGGGCCAAA
CCCUAGUCUUUGUCCGUUUAGGCCCUCUGGUGCAGCUCCG L,R M3

70.01 AAGAAAUAUCCGUUACCAUUCGGGAAAAAAUGGGUUGGUG B, R Wild-Type

70.04 AUGCGACUUCCAAAAGAGAUCCAGGGAGCAGGCGCACUGGGAGAAAACU B, R Wild-Type

70.08 AAAAGAGAUCUGGCAGUGUCACAACCAGGAAAAAGACACGACGAAC B, R Wild-Type

70.12 ACAAGAUAUCCGAGCCAAAACGGGAAAAGAUGGGAAAAAU B, R Wild-Type

Consants used 1, 2
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2.2 Preparation of mutant reverse transcriptase 
 

M3, M5 and M9 HIV-1 RTs were prepared as previously described (Hou, 2004; 

Li 2009) with some minor modifications and obtained from our collaborators at Accacia, 

L.L.C. (Austin, TX). Briefly, two subunits, p51 and p66, were cloned into the vectors 

pET30 and pET21a, respectively. The subunits were expressed in BL21(DE3) codon plus 

RIL Escherichia coli strain (Novagen, Gibbstown, NJ). Cells expressing each subunit 

separately were disrupted using a flow-through, high-pressure homogenizer and 

centrifuged at 28,000g for 45 min. at 4 °C. The supernatant was loaded onto a DEAE-

Sepharose column (Promega, Madison, WI) equilibrated with buffer A (50 mM Tris-HCl 

pH 7.9, 60 mM NaCl, 8% glycerol v/v, 1 mM DTT).  The flow-through was 

supplemented with NaCl to 500 mM and imidazole to 10 mM, and loaded onto a Ni-NTC 

column (Qigen, Valencia, CA) that was equilibrated with buffer B (50 mM Tris-HCl pH 

7.9, 500 mM NaCl, 8% glycerol v/v, 1 mM DTT) and imidazole to 10 mM. The column 

was washed with 12 column volumes of buffer B supplemented with NaCl to 1M. This 

was followed by 12 column volumes of buffer B supplemented with imidazole to 5 mM 

and 12 column volumes of buffer B supplemented with imidazole to 10 mM.  Each of the 

RT variants was eluted with buffer B supplemented with imidazole at 40 mM, 60 mM, 

100 mM, and 200 mM (used sequentially). Each fraction was assayed for purity on an 8% 

SDS-polyacrylamide gel and dialyzed overnight into 2X storage buffer (50 mM Tris-HCl 

pH 7.5, 150 mM NaCl, 20% glycerol v/v, 1 mM DTT) using 3-ml Slide-a-lyzer cassettes 

with a 3500 molecular weight cut-off (MWCO) (Pierce, Rockford, IL). All of the proteins 

used, whether purchased or prepared by collaborators, were tested for activity via a  
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Table 2.2.  Location and Amino acid identity for proteins used. (Rhee, 2003) 

 

polymerase extension activity assay. Briefly, 5 nM of a 100bp RNA 

template:primer mix was incubatedwith 50 µM of dNTPs and RT (15, 50, 500 nM) at 37 

oC for 10 min.  Reactions were quenched with EDTA.  The products were run on an 8% 

denaturing polyacrylamide gel and activity was assessed by determining that the products 

AA 
number 

WT M3 M5 M9 

41 M L M M 

44 E D E E 

67 D N N D 

69 T D D T 

70 K K R K 

75 V V V I 

77 F F F L 

116 F F F Y 

118 V I V V 

151 Q Q Q M 

184 M V V M 

210 L W L L 

215 T Y Y T 

219 K K Q K 
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were of the correct length. Protein concentration was determined using the Bradford 

assay. 

 

2.3 Preparation of slides 
 

  Neutravidin slides were obtained from Pierce Biotechnology (Rockford, Il). The 

aptamer preparation was printed on Neutravidin-coated slides by a capillary action 

arrayer at 75% humidity.  10 µl of each aptamer was loaded into a distinct set of wells in 

a 384 well plate.  The DeRisi capillary action arrayer is equipped with a tandem print 

head to allow for the printing of up to 16 arrays on a single slide. Each aptamer was 

drawn into the pinheads through capillary action and spotted either in triplicate or in 

sextuplets.   Between the printing of each aptamer the pins used for printing were washed 

in a sonicator filled with 1X SSC buffer (150 mM sodium chloride, 15 mM sodium 

citrate).  The pins were dried for 10 seconds 3 times under vacuum prior to retrieval of 

the next aptamers. After printing, each slide was incubated in the humidity chamber for 

thirty minutes to allow for maximum capture of the biotinylated aptamer complex by the 

streptavidin on the slide.  After incubation, 150 µl of Blocking Buffer (1:1 RTB, Roche 

western blocking buffer) was added to each well and incubated overnight at 4 ºC.  After 

incubation, the buffer was removed and the slides were washed 3X with RTB.  As a 

result of the printing method each slide was printed with 16 identical arrays. In order to 

isolate each array from the others, FlexWell partioning pads (Grace Biolabs) were 

applied to the slides. The precise location of each aptamer and the treatment of each well 
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on each slide varied from experiment to experiment; this information will be found in 

later sections.  

 

2.4 Slide assay 

In order to detect the HIV-1 reverse transcriptase variants, a sandwich assay 

strategy was used.  Wild-type reverse transcriptase was acquired from Ambion (Austin, 

TX). The mutant variants were produced in-house though a collaboration with Accadia 

(details are found in the section titled “2.2 preparation of mutant reverse transcriptase”). 

Rabbit anti-RT was use as the primary antibody and obtained from NIH AIDS Research 

and Reagents program (Stuart Le Grice). Cy-5-labeled anti-rabbit was used as the 

secondary antibody to detect the rabbit anti-RT (Amersham). A blocking buffer 

consisting of a propriety protein blend including milk casein was obtained from Roche 

(Indianapolis, Il).  

In order to limit nonspecific binding, each slide was blocked overnight with 1X 

Blocker (1:9 Roche buffer:RTB). An aliquot of 850 pM reverse transcriptase in RTB was 

prepared for each of the mutants. 100 µl of the protein solution was incubated in each 

well for 30 min. In order to limit evaporation of the protein solution during this step and 

each subsequent step, a plastic film was applied to the FlexWell partioning pads and the 

slides were kept in a humidity chamber of at least 70% RH.  The protein solution was 

removed from the wells and the slides were rinsed 6x times with 1X Blocker. 100 µl of a 

1:10000 dilution in 1X blocker of rabbit anti-RT antibody was incubated in each well for 
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2 hr. The antibody solution was removed from the wells and then washed 6x times with 

1X Blocker. Finally 100 µl of a 1:10 dilution of goat anti-rabbit antibody was incubated 

in each well for 1 hr. After removing the secondary antibody solution the slides were 

washed for 5 min. in RTBT (1:1 RTB: 10% Tween-20), then 5 min. in RTB, and finally 5 

min. in Nanopure water and allowed to air dry. 

 

2.5 Data analysis 

Immediately after being treated with the proteins, the fluorescence intensity was 

measured with a GenePix 4000a fluorescence imager.  Foreground and background 

(Figure 2.2) values for Cy-5 (bound to the secondary antibody) and Cy-3 (bound to each 

aptamer) were measured. The rationale for measuring the relative abundance of both the  

 

 

 

 

 

 

Figure 2.2. For data analysis the foreground signal represented the spot where the 
aptamer material was printed. Background was a circular region 
surrounding each spot.   
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protein and aptamer concentration was to normalize the amount of protein captured to the 

amount of aptamer bound to the slide. For each spot and each channel, the background 

was subtracted from the foreground. Spots where the Genepix automated spot locator was 

unable to find signals were excluded from analysis.  Spots where the background 

intensity exceeded the foreground intensity in a single channel were excluded as this 

would result in a negative signal value. Each slide was median-normalized using local 

background intensity and positive and negative control spots.  The average of the 

replicates in the Cy3 and Cy5 channel were calculated; if, for a single group of replicates, 

there were no acceptable spots, that value was flagged as missing.  Depending on the 

number of missing values for that aptamer or well, the data was either estimated or 

excluded. The number of missing data points was calculated for each well on a slide, and 

if more than 15% of the data was missing, the well as a whole was excluded from 

analysis.  The log2 ratio of Cy5/Cy3 was calculated and was passed to XLStat for PCA 

(Pearson) or LDA analysis. Missing values were estimated by the XLstat package 

through the K nearest neighbors (KNN) method based on values observed in other wells 

from the same treatment group (Troyanskaya et al., 2001). Background subtraction and 

normalization was carried out by the marray microarray statistics package 

(Bioconductor) (Gentlemen et al., 2004) of R. PCA and LDA were carried out by XLStat, 

and  3D plots were generated in the commonly used statistics package SPSS. 
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3. Rationale for use of LDA  
 

 Linear discriminant analysis (LDA) is referred to as a supervised learning method, 

as opposed to principal component analysis, which is an unsupervised method. It is 

referred to as supervised because the method takes in to account group membership when 

building the model. Fundamentally the LDA algorithm rotates the data in n-dimensional 

space such that the within-group scatter (if scatter is the parameter being used) is 

minimized and the between-group scatter is maximized (Equation 2.1). 

  

 

Equation 2.1 The criterion for LDA analysis. 

This criterion is ultimately maximized as an eigenvalue problem (Martinez et al., 2001). 

Early approaches to solving eigenvalue problems involve diagonalization of a matrix to 

find the underlying eigenstructure. This is the case for Eigenvalue Decomposition (EVD) 

equation 2.2, where A is a symmetric matrix (typically a covariance matrix), E is the 

matrix of eigenvectors and D is the diagonalized matrix of eigenvalues (Shlens, 2009). 

This approach, while valid, is very computationally taxing and thus is no longer 

preferred.  

 

 

Equation 2.2. Formula for eigenvalue decomposition. 
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However, other methods for solving for the underlying structure do exist. Singular Value 

Decomposition (SVD) is one of the more commonly used approaches and is quite similar 

to EVD in some ways. The general form of SVD is found in equation 2.3. 

  

 

Equation 2.3 Formula for singular value decomposition.  

 

Like EVD, V is a matrix of eigenvectors and Ʃ is a diagonalized matrix. In this case 

however, U and V are termed the left and right singular vectors and the diagonal of Ʃ are 

the singular values which are the square roots of the eigenvalues. Unlike EVD which 

requires a symmetrical matrix to compute, SVD has no such limitation. Thus the X in 

SVD is the original data itself and creating a covariance matrix is unnecessary.  

 When using LDA one must be wary of the risk of artificial segregation induced by 

the use of supervised learning methods. Since information regarding class membership is 

used to build the model there is a potential for the model to simply predict itself. A model 

which is not at risk for spurious segregation is Principle Component Analysis (PCA). 

This method, like LDA, is an eigenvector problem, but it does not use class membership 

to build the model. Instead, this method finds the axis with the greatest variance. This, of 

course, makes the assumption that variance in the variables is important information and 

is relevant to the differences in the groups.  
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 It was decided to first determine if any differential signal could be detected 

through PCA. In the plot (Figure 2.3) we observed a separation of the wild-type protein 

from the mutant proteins and negative controls across the first principal component,  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. PCA of unnormalized data from 30 aptamer set, 87.53% explained and the 
Mahalanobis distance. 

  M3 M5 M9 WT Neg 

M3 0 1.869 0.343 2.578 2.344 

M5 1.869 0 1.581 2.339 0.478 

M9 0.343 1.581 0 2.291 2.059 

WT 2.578 2.339 2.291 0 2.561 

Neg 2.344 0.478 2.059 2.561 0 
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while the mutants and negative control formed two separate groups across the second 

component. From the PCA plot, it appears that there is indeed separation of the various 

reverse transcriptases, albeit very poor separation in the cases of M5/neg and M3/M9. 

Because was there appeared to be at least some grouping based on treatment group and 

there does not appear to be any distinct artifact discrimination, it was decided that LDA 

could be used to improve the segregation of the data.  

 

3.1 Rationale for normalization 

 An essential part of developing any model is to correctly account for undesierable 

variance. For these experiments, one major source variation is the fact that different 

slides were used. Furthermore, it is possible that the position of each well on the slide 

could alter its characteristics. In order to account for this, a number of wells on each slide 

were treated as positive or negative controls. These controls should show the behavior 

across all slides. It was also assumed that the median value in the Cy5 and Cy3 channels 

should be the same for a single treatment group. To eliminate extraneous variation, each 

slide was median-centered, such that the median values of signal intensity were the same 

for each well treated with the same antibody on a single slide (within-slide). This was 

followed by a scale normalization of the entire set of slides using the positive and 

negative control wells (between-slide). This made the median absolute deviation (the 

median of the absolute deviations from the data's median) for all the control wells equal.  

Figure 2.4 shows the unnormalized LDA plot for the full set of 30 aptamers. Figure 2.5 

shows LDA of the set after only “within-slide” normalization. The unnormalized data  
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Figure 2.4. LDA of unnormalized data from 30 aptamer set, 94.48% variance 
captured, and Mahalanobis distance. 

 

appears to capture 94.48% of the variance. However there are several points that cluster 

with the incorrect group, leading to a confusion matrix (a matrix expressing the 

probability of correctly classifying all samples) result of 99.4%. When only within-slide 

normalization is performed, the confusion matrix result is reduced to 98.75%. When both  

  M3 M5 M9 WT neg 

M3 0 333.604 20.175 419.382 516.726 

M5 333.604 0 256.243 104.177 71.381 

M9 20.175 256.243 0 352.367 426.451 

WT 419.382 104.177 352.367 0 162.482 

neg 516.726 71.381 426.451 162.482 0 

Observations (axes F1 and F2: 94.48 %)
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Figure 2.5. LDA of with-in normalized from 30 aptamer set, 91.21% variance 
captured and Mahalanobis distance.  

 

 

 

 M3 M5 M9 WT Neg 

M3 0 108.181 16.549 254.236 201.540 

M5 108.181 0 95.144 162.185 50.700 

M9 16.549 95.144 0 210.890 155.709 

WT 254.236 162.185 210.890 0 171.747 

Neg 201.540 50.700 155.709 171.747 0 

Observations (axes F1 and F2: 92.09 %)
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“within-slide” and “between-slide” normalization is performed, we observe a confusion 

matrix score of 100%. It is also noted that the Mahalanobis distance between M9 and M3  

is lowest for both the unnormalized and within-slide only normalized, 20.2 and 16.6 as 

opposed to 24.1. As a result both within-slide and between-slide normalization was used. 

4.  Results 

4.1 Initial aptamer analysis with 96 aptamers 

 Ninety-six of the anti-RT aptamers previously selected by Dr. Angel Syrett were 

screened for binding to the WT and the M3 enzymes. On a single slide there were 16 

wells in which binding reactions could take place (Figure 2.6).  Eight of the reaction  

 

 

 

 

 

 

 

Figure 2.6. Layout of slides and reaction wells. Each name represents a triplicate 
printed on the slide. 

 

Treatment 
Group

replicates

Negative 

Controls
Aptamer position

e1 e2 e3 e4 e5 e6
e7 e8 e9 e10 e11 e12
e14 e15 e16 e17 e18 e19
e20 e21 e22 e23 e25 e26
e27 e28 e30 e31 e32 e33
e34 e36 e37 e38 e39 e40
m305 m303 m309 m324 m314 m316
m321 m304 m307 m310 m313 m325
m326 m318 m322 m302 m308 m311
m317 m319 m323 12.01-1 m306 m312

12.01-2 m315 m320 c1 c2 c3
c4 c5 c7 c9 c11 c13
c14 c16 c20 c24 c27 c28
c30 c31 c34 c35 c39 70.12

70.69 70.63 70.01 80.54 70.08 70.04
70.55 70.28 70.22 80.55 80.01 80.77
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wells, called treatment groups, were treated with either 850 pM wild-type RT or a mutant 

variant (M3, M5 or M9), while eight were treated with RT buffer only as a negative 

control. In total, there were 4 slides, one for each type of protein. Preliminary results 

indicated that at least some of the selected aptamers appeared to be semi-specific (Figure 

2.7), we hypothesized that the arrays might allow recognition of the novel analytes M5 

and M9 based on pattern recognition. It was found that a subset of the aptamers which  

 

 

 

 

 

Figure 2.7. Cy3 channel of scanned image for wild-type RT and RT mutant M3, 
showing differential binding to aptamers. Courtesy of Angel Syrett. 

 

were selected for specific binding to wild-type HIV-1 reverse transcriptase and the 

mutant variant M3 did indeed bind to mutant variants M5 and M9 (Figure 2.8). This is 

significant in that these aptamers had never previously been exposed to these variants.  

 The images presented in Figures 2.7 and 2.8 represent one of eight wells on a 

single slide treated with a particular reverse transcriptase variant. It was important to 

determine if all eight replicates in a single slide showed similar responses to the reverse  
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Figure 2.8. Cy3 channel of scanned image for RT mutants M5 andM9, showing 
differential binding to aptamers. Courtesy of Angel Syrett.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9. PCA of within- and between-slide normalized, 61.93% variance captured, 
and Mahalanobis distance.  

  M3 M5 M9 WT Neg 

M3 0 0.574 2.163 2.347 0.494 

M5 0.574 0 1.758 1.925 1.018 

M9 2.163 1.758 0 2.814 2.656 

WT 2.347 1.925 2.814 0 2.538 

Neg 0.494 1.018 2.656 2.538 0 
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Figure 2.10. PCA of 15 selected aptamers, 70.52% variance captured, and Mahalanobis 
distance. 

 

transcriptases.  Initial analysis of the data was unable to effectively discriminate the 

different RT variants using either the entire set of 96 aptamers (Figure 2.9). The fourth 

quadrant contains the entire set of wild-type arrays. However, the mutant arrays and 

  M3 M5 M9 WT Neg 

M3 0 0.778 2.414 2.199 0.173 

M5 0.778 0 1.742 2.423 0.786 

M9 2.414 1.742 0 2.719 2.482 

WT 2.199 2.423 2.719 0 2.371 

Neg 0.173 0.786 2.482 2.371 0 
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negative control arrays are spread over the first and second components, and there was 

significant overlap. In an attempt to improve the quality of discrimination, a subset of 15 

aptamers predicted to be best at discriminating between proteins were used. The 15 

aptamers were selected via a direct comparison method as described in Kitamura et al. 

(2009). However, like the full set of 96 aptamers, effective separation was not observed. 

Figure 2.10 shows that the discrimination was only moderately improved by using the 

selected aptamers. In the truncated set, both the wild-type and M9 points move away 

from the central cluster while M3, M5, and the negative control remain in the center. The 

Mahalanobis distance is a metric that measures the dissimilarity between clusters of data, 

and was used to give us a quantitative measurement of how similar or dissimilar each of 

the groups are. The percent of variance captured by the first two components increased 

from 61.95% to 70.52%. The inability to effectively discriminate the mutants may have 

been due to noise arising from non-specific, charge-based interactions with immobilized 

aptamers, irreproducible preparations of the large numbers of aptamers and slides, or an 

insufficient number of replicates. 

 

4.2  AZT study 
 

Azidothymidine (AZT) is a drug commonly used to treat HIV infection. It is an 

analog of thymidine and has a very strong affinity for HIV reverse transcriptase . When 

AZT is incorporated into an elongating DNA strand, it effectively terminates reverse 
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transcription (Meyer et al., 1999). Furthermore, when a nucleotide docks into the correct 

position of the reverse transcriptase and small conformational shift is induced 

 

 

 

 

 

 

Figure 2.11. Structures of azidothymidine and thymidine. 

 

(Spence et al., 1995). This leads to the question of whether or not an aptamer array can 

detect the presence of thymadine or AZT. Potentially the small conformational changes 

induced by the docking of AZT or thymidine into the active site of the reverse 

transcriptase  could affect the way the reverse transcriptase interacts with some of the 

aptamers, thus generating unique patterns.  To test this, 850 nmols of AZT or thymidine 

was incubated with wild-type HIV-1 reverse transcriptase. Each slide was set up such that 

there were eight wells which contained the enzyme solution, 4 wells as positive controls, 

and 4 wells as negative controls. There were two slides for each condition. The slides 

were treated and prepared as described previously. The enzyme mixtures were heated for 

30 minutes at 37 °C in order to facilitate docking of the nucleotides in the active site of  

the enzyme. The enzyme alone was also incubated at 37 °C for 30 minutes to act as a 

control to determine if heating alone changed the binding profile. Figure 2.12 shows the 
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Cy3 binding patterns for enzyme with AZT, enzyme with thymadine and enzyme alone. 

It is not clear that there is any discrimination between the three samples, but it is possible  

 

 

 

 

 

Figure 2.12. Array of 96 aptamers with only WT reverse transcriptase, with 850 nmols 
of AZT and 850 nmols of thymidine. 

 

that the variations were too small to be distinguished. Figure 2.13 shows a PCA plot of 

the results of this experiment. There does appear to be some grouping relative to 

treatment group; the AZT treated enzymes predominantly occupy the lower right 

quadrant of the plot while the positive controls, enzyme-only, and thymidine-treated 

groups occupy the top half of the plot. The negative controls occupy the bottom left 

quadrant and the heated enzyme occupies the top right quadrant. Unfortunately there is a 

large amount of scatter present in this data, indicating that there is very little difference in 

each of the treatment groups.  
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Figure 2.13. PCA plot of wild-type reverse transcriptase under various conditions: 
unheated RT, heated RT, 850 nmols AZT, 850 nmols thymidine, and a 
negative control. 

 

In order to attempt to better discriminate the data, LDA was performed, and the results 

are found in Figure 2.14. In this case the scatter of the data has been significantly 

improved. Again, there does seem to be some grouping based on treatment group. While 

all the enzymes are in a single cluster the thymidine group is toward the bottom, the AZT 

group is toward the right, the heated enzyme is in the middle, and the unheated/positive 

controls are at the left. The grouping of all of the enzymes, along with the poor 

performance of the PCA, indicates that while it may be possible to detect the presence of 

AZT or thymidine with an aptamer array, substantial optimization would need to be done. 

It was decided not to pursue this route of research.  
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Figure 2.14. LDA plot of wild-type reverse transcriptase under various conditions: 

unheated RT, heated RT, 850 nmols AZT, 850 nmols thymidine and a 
negative control. 

 

4.3  30-aptamer study  
 

 In order to more quickly generate more reproducible data, a more limited set of 30 

aptamers was chosen for immobilization on new slides.  Fifteen of the aptamers were 

selected because they were predicted to be the most useful in discriminating different 

protein variants. These aptamers in many instances were found to still be able to bind to 

several of the variants at once. Fifteen additional aptamers were included that appeared to 

be sensitive to the addition of AZT to RT, and thus that might also be sensitive to 

conformational changes in either the wild-type or mutant enzymes (Rekharsky et al., 

2002).   

 The thirty selected aptamers were printed in 16 discrete locations on the slide; this 

formed 16 reaction wells that were independently probed with protein mixtures. Each 
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aptamer within each well was printed in sextuplet in order to better estimate statistical 

deviations in protein binding. Of the 16 wells, 8 were treated with either 850 pM WT RT 

or one of the three mutant variants (Table 2.1), four were treated with 850 pM RT as a 

positive control, and four were treated with buffer only as a negative control (Figure 

2.15).  In total, there were eight slides, two for each type of protein.  

 

 

 

 

 

 

 

 

Figure 2.15. Slide treatment. Each small square represents a single reaction well, 16 per 
slide. Each well was identical and consisted of 30 aptamers printed in 
replicates of 6.  The aptamer’s position is a representation of where each 
aptamer was positioned relative to the others; each name represents a set 
of six replicates. Each slide was separated into three groups of wells.  The 
top eight wells correspond to the treatment group; where one of the four 
HIV-RT variants was applied. The next four wells correspond to negative 
controls and the final four wells correspond to the positive controls.  
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 Visual observation showed differential binding between the mutants, as seen in 

Figure 2.16. Spots which appear red indicate there is little protein captured by the 

aptamer, as only the Cy3 bound to the aptamer is visible. Spots which appear green  

indicate a large amount of protein capture as the Cy5 labeled secondary antibody 

obscures the Cy3 labeled aptamer. Black spots indicate little to no aptamer was deposited 

on the slide. All remaining spots have captured some amount of protein. As previously 

indicated, it was important to ensure that each of the eight replicates was measurably 

different from the others. Because of the highly multivariate nature of the data and noise 

 

 

 

 

 

Figure 2.16. GenePix scan of the 30 aptamer set. Red corresponds to the Cy5 channel 
and the signal intensity is proportional to the amount of aptamer bound to 
the slide.  “Black” spots indicated locations where little or no aptamer was 
deposited. If the background intensity exceeded the foreground intensity in 
either channel, the spots were excluded. Green corresponds to the Cy3 
channel where the signal intensity is proportional to the amount of protein 
bound to the aptamer. a) Wild-type b) M3 c) M5 d) M9 e) negative 
control. 
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Observations (axes F1 and F2: 91.21 %)
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inherent to microarray experiments, a supervised learning algorithm, linear discriminant 

analysis (LDA), was selected for the data analysis.  Figure 2.17 shows the results of the 

LDA on the within-slide normalized data.  There are four distinct clusters of data.  One 

cluster corresponds to the wild-type protein, which is separated from the mutant proteins 

and negative controls across the first and second components. The buffer-only negative 

control and M5 mutants are separated from the WT, as well as M3 and M9 proteins, 

primarily across the second component.  However, there is minimal separation of the 

 

 

 

 

 

 

 

 

Figure 2.17. LDA plot of normalized 30-aptamer dataset. Ellipses represent 95% 
confidence intervals.  

 

negative control from M5, and of M3 from M9. As might be expected based on these 

analyses, the visual pattern of binding for M5 is similar to that of the negative control, 
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and the visual patterns for M3 and M9 are similar (Figure 2.16). By examining the factor 

scores for the first, second, and third components it became apparent that clusters are 

separated across the third component as well as the first two (Figure 2.18).  By including 

a third component, one can see that mutant M5 was primarily separated from the others 

across the third component.  

 

 

 

 

 

 

 

 

 

 

Figure 2.18. LDA plot of normalized 30-aptamer data set including the third 
component.  
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Table 2.3 Cross validation results. 

 

Furthermore, there was also modest improvement in the visual discrimination between 

M9 and M3. In order to estimate the extent to which the model was predicting itself, a 

leave-one-out cross-validation test was performed (Table 2.3).  In this analysis each 

sample was removed from analysis and the remaining points were used to build the 

model. The model then attempted to predict which grouping the omitted point belonged 

to. M9, wild-type, and the negative control were correctly predicted 100% of the time. 

However 7.15% of the time a M5 well was incorrectly predicted to be M9 and 7.15% of  

the time it was predicted to be a negative control. This resulted in an overall accurate 

prediction for M5 85.71% of the time. Interestingly, while M9 was never incorrectly 

predicted to be M3, M3 was mistaken for M9 26.67% of the time. This implies that there 

from \ 
to M3 M5 M9 WT Neg Total 

% 
correct 

M3 15.98667 0 5.813333 0 0 21.8 73.33% 

M5 0 18.68571 1.557143 0 1.557143 21.8 85.71% 

M9 0 0 21.8 0 0 21.8 100.00% 

WT 0 0 0 21.8 0 21.8 100.00% 

neg 0 0 0 0 21.8 21.8 100.00% 

Total 15.98667 18.68571 29.17048 21.8 23.35714 109 91.81% 
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is insufficient difference between the patterns generated by M3 and M9 to effectively 

separate the two.  

 
4.4  Truncated aptamer set 

 

Previously, modest improvement was observed when only a subset of the 

aptamers printed on a slide was used to build a model.  It was hypothesized that 

improvement could be achieved by using only the aptamers which were found to be best 

for discriminating the mutant variants; selected as previously described. In this situation, 

the resolving power would be expected to improve by limiting extraneous signals from 

irrelevant aptamers. The results are shown in Figure 2.19. As with the full set of 

aptamers, there exist four separate data clusters. However, M3 and M9 remain so close as 

to be indistinguishable, though M5 and the negative control have separated somewhat. 

Wild-type remains well separated from the mutant variants. When the third component is 

considered, very little improvement is observed (Figure 2.20). This is to be expected as 

the first two components account for 94.90% of information used to segregate the groups. 

This leads to the conclusion that all 30 aptamers are indeed required for optimal 

discrimination with this method. 
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Figure 2.19. LDA of 15 selected aptamers and results of leave one out cross validation. 

 

 

  

  M3 M5 M9 WT neg 

M3 0 72.921 6.472 163.179 144.487 

M5 72.921 0 55.482 89.621 27.754 

M9 6.472 55.482 0 131.939 119.262 

WT 163.179 89.621 131.939 0 93.740 

neg 144.487 27.754 119.262 93.740 0 
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Figure 2.20. LDA plot of 15 selected aptamers with third component included.  

 

5. Discussion 

Taken together, these results support the hypothesis that aptamers can be used as 

semi-specific receptors for identifying protein variants. The idea that an aptamer 

microarray can detect proteins is not a new notion, nor is the use of semi-specific 

receptors a new strategy. However, the utilization of aptamers as semi-specific receptors 

on a microarray is a new application. Perhaps the most significant revelation from this 

work is the ability of the array to effectively discriminate proteins to which they had not 

previously been exposed to.  This indicates that an array of aptamers could potentially be 

used to create unique fingerprints for a wide variety of targets. However, it is not 
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immediately obvious what parameters should be used for the construction of arrays that 

provide broad recognition.  For example, even though aptamers that recognized M3 were 

also somewhat related to aptamers that recognized M9, these proteins do not share any 

amino acid substitutions. It is unclear what characteristics are driving the affinity in this 

case. It is possible that aptamers that bound both of these proteins recognized 

conformational changes induced by the mutations rather that the mutations themselves.  

This notion is supported by the work done to identify enzymes that were associated with 

a nucleotide. In this situation, the only possible variation in the enzymes used was 

conformational change. Despite only limited discrimination being achieved, there does 

seem to be some support that conformation is important to the affinity between enzyme 

and aptamer.  

Finally, limiting the array to those 15 aptamers predicted to provide the best 

discrimination of the mutant variants did not improve discrimination. It is probable that at 

least some of the aptamers selected for mutant discrimination were specifically affected 

by the amino acids substitutions, while some were more driven by conformational 

changes. However, 15 aptamers which may or may not have been sensitive to 

conformational changes did not prove to be sufficient in this experiment. Rather, 

including those aptamers thought to be most influenced by shape were also required for 

success.  

Despite the promising results from this study, it was decided not to pursue 

aptamer microarrays as a semi-specific array platform. Significant variation between 

experimental replicates severely limited the power of this assay. Furthermore, the 
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complex system devised for detection - anchor, aptamer, probe, enzyme, primary 

antibody, secondary antibody - proved to be cumbersome and required a significant 

amount of work (a large portion of two graduate students’ work) to achieve success.  

Despite the difficulties this work encountered, it can still be considered a success 

in the advancement of aptamers as semi-specific receptors.  We have shown that a panel 

of aptamers immobilized in a microarray format can be used to discriminate between 

similar proteins based on chemometric methods.  Furthermore, these aptamers could 

distinguish proteins that differed by as few as 4 amino acid substitutions, even when the 

aptamers were not specifically selected against a given target protein.  Because aptamers 

combine complex recognition features with synthetic tractability, they may prove to be 

particularly useful for the production of cross-reactive arrays for biomedical testing, bio-

defense applications, and food quality monitoring (Peng et al., 2010; Phillips et al., 2008; 

Taitt et al., 2002; Zhang et al., 2007).  

The problem with this work applies only to the microarray platform, but not to the 

performance of the aptamers themselves. Eliminating the need for immobilization 

strategies and visual signals for aptamer target interactions could significantly simplify 

the use of aptamer panels for biomolecular discrimination. The elimination of visual 

signals could further advance the use of aptamers in these sorts or routines. Inherently 

visual signals are limited by the ability to interrogate the signal itself. Certainly there are 

methods where fluorescence is measured across many wavelengths to create a unique 

pattern (Kitamura et al., 2009), but these methods are still limited by the optical 
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resolution of the instrument. In the following chapter, we will explore using aptamer 

sequencing as method of signal interrogation for complex target discrimination. 
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Chapter 3: Exploring the use of Aptamers as Non-specific 

Biomolecular Receptors 

This chapter is being adapted for a manuscript to be submitted to Nature Chemical 
Biology 

 

1 Introduction  

Literature often touts aptamers as being highly specific, alternatives to antibodies 

(Ellington and Szostack, 1990; Tuerk and Gold, 1990; Jayasena, 1999; Proske et al., 

2005; Strehlitz et al., 2008; Long et al., 2008; Xiao et al., 2008).  Additionally, aptamers 

have the unique ability to be rapidly selected for a wide range of targets, many of which 

are not compatible with antibodies.  Certainly, there are a number of aptamers that do 

display antibody-like behavior and perform quite well under any number of different 

conditions (Geiger et al., 1996; Jellinek et al., 1993, Osborne et al., 1997).  However, as 

the number of aptamers developed has expanded, it is becoming apparent that aptamers 

will not unseat antibodies as the champions of sensitivity and selectivity. This is 

evidenced by there being only one FDA approved therapeutic aptamer (Ni et al., 2011), 

while there are dozens of FDA approved antibody based therapeutics. Like antibodies, 

aptamers are subject to cross reactivity, which limits their utility in very complex 

environments. Additionally, because of limited chemical interactions, an oligonucleotide 

can carry out as opposed to an antibody, antibodies outperform aptamers when it comes 

to affinity (Keefe et al., 2010). This is why so few aptamers have found a future outside 

of the research lab- for most applications, antibodies simply perform better.  
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However, the limited chemical interactions carried out by aptamers can be used as 

an advantage.  In complex solution sensing routines, which use highly specific receptors, 

one can only detect and discriminate as many compounds as there are receptors.  The 

number of unique binding patterns which can be generated (when concentration data is 

not considered) from such a routine is defined by the equation 2n. While technically this 

formula is mathematically limited only by the number of receptors available, it would be 

impossible to generate a receptor for all possible targets in a complex solution.  Rather, 

patterning all compounds in a complex solution can be more readily achieved with cross 

reactive receptors (Albert et al., 2000; Anslyn, 2007).  This type of routine is a more 

realistic approach to detection and discrimination of complex targets as it does not rely on 

highly specific receptors, which can be difficult the generate on a large scale. Instead, 

each receptor binds differentially to each possible target in the complex sample.  This 

allows for the generation of a unique pattern, or fingerprint, for each different sample.  

Aptamers, by virtue of their simple chemistries, make ideal candidates for cross-reactive 

receptors. However, to date, there has been very little work in developing aptamers for 

cross-reactive sensing routines.  

There are currently a number of cross-reactive platforms, dedicated to 

discriminating a wide variety of different targets, including the use tin oxide (SnO2) 

sensors to detect toxic gasses, aptamer microarrays to discriminate protein variants, 

hydrophobic dyes to detect organic compounds in water, and functionalized gold 

nanoparticles for cell discrimination (Mishra and Agarwal, 1998; Bajaj et al., 2009; 

Zhang and Suslick, 2005; Stewart et al., 2011).  With-in the field of cross reactive 
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sensors, there are a number of platforms dedicated to discriminating biological targets. 

This is driven by thriving research into biomarkers. Biomarkers for disease states have 

become commonplace in today’s modern medicine. A patient can go to their physician, 

and with a quick blood draw find out their levels of medically significant molecules such 

as c-reactive protein, prostate specific antigen or interleukin-1b (Yeh and Willerson, 

2003; Barry, 2001; Li et al., 2004).  Many of these markers have proven to be invaluable 

to the detection and discrimination of numerous chronic diseases. Recently the number of 

biomarkers available for disease state detection and discrimination has increased 

substantially. Unfortunately methods for discriminated disease states with biomarkers 

have not kept up. 

Approaches to this problem historically have been dominated by the use of 

immunoassays , which utilize one or more antibodies to act as receptors for the molecule 

of interest. Perhaps the most important immunoassay is the ELISA or enzyme-linked 

immunosorbent assay. In this approach antibodies are immobilized in a well plate and 

incubated with the fluid of interest. However, traditional ELISAs in well plates, while 

powerful, are limited by the sample volumes needed and  the number of targets that can 

be interrogated simultaneously.  Antibody microarrays, where antibodies are immobilized 

on functionalized glass slides, use much smaller sample volumes and allow for 

significantly more targets to be analyzed in a single experiment; high density antibody 

microarrays, for example, have been shown to detect tens of thousands of targets 

(LeBaron et al.,2005). 
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Each of these approaches, however, are limited by the detection strategy. 

Frequently, for both ELISA and microarray experiments, antibodies are paired together 

such that one antibody captures the target molecule and another antibody, carrying a 

fluorescent molecule, binds the target to allow for detection.  Substantial screening and 

time must be dedicated to creating two non-competitive antibodies for this type of 

application.  Alternately, the target itself may be modified to carry a fluorescent signal, 

however there is no guarantee the antibody receptor will still bind the modified target.  

Perhaps the most significant issue with an assay reliant on fluorogenic signals is the 

limited color space they are subject to. There are only a limited number of dyes which 

generate sufficiently unique emissions to be used concurrently. Furthermore, current 

instrumentation can detect only a limited number of emissions concurrently (Waggoner, 

2006). Thus, the logistics of generating antibodies in addition, to limitations in color 

space, negatively impact the utility of immunoassays for highly multiplexed detection 

schemes.  

An approach to biomolecular detection that does not directly involve the use of a 

fluorogenic, signal has been to amplify a nucleic acid sequence somehow associated with 

the target. The bio-bar-code method uses DNA functionalized gold nanoparticles to target 

sequences of interest.  The gold nanoparticles carry a unique identifier oligonucleotide (a 

bar code) that can be amplified and detected via a microarray or amplification (Nam et 

al., 2004). The bio-bar-code method was extended to aptamers in order to alleviate the 

need for gold nanoparticles. Instead, the aptamer itself binds to the target and its presence 

can be detected through amplification (Lau et al., 2010).  Sequencing is also a method 
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which has been used to detect the presence aptamers as an alternative to fluorogenic 

signals.  Turner et al. used next generation sequencing (NGS) to measure the 

concentrations of four different proteins using four specific aptamers (Turner et al., 

2010).  All of the previous approaches share one major limitation; none of them are truly 

compatible with a highly complex system. In each case a specific molecule of some sort 

was dedicated to a specific target.  As previously discussed, this approach is simply too 

technically complicated to be realistic.  Instead, we propose the use of cross-reactive 

aptamers for the discrimination of complex targets.  The complex composition of the cell 

surface and the availability of validated cell surface aptamers made cells an ideal choice 

for a model complex target.  

Theses aptamers will constitute a panel of cross-reactive sensors for cellular 

discrimination.  In this panel each aptamer will be present as a discrete proportion of the 

whole.  After the panel has been allowed to bind to the cell surface and non-binders 

removed, what will remain is a unique distribution of aptamers whose abundance is 

dictated but each aptamer’s affinity of the surface. Next generation sequencing (NGS) 

technology allows for the sequencing of an enormous number of sequences 

simultaneously.  By amplifying and sequencing the aptamers collected from the assay, a 

characteristic distribution of aptamers can be used to discriminate the targets.  

In this study we outline a method for discriminating four different cancerous and 

normal cell types.  It shows that using NGS technology to interrogate a panel of 46 cross-

reactive aptamers gleaned from the literature (Madsen et al., 2010; Chauveau et al., 2007; 

Cerchia et al. 2009; Chu 2006; Lee 2007; Li 2011; Hicke et al., 2001; Dollins et al., 2008; 
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Lupold et al., 2002; Daniels et al., 2002; Jeong et al., 2001; Cerchia et al., 2005; Davis et 

al., 1998; Kraus et al., 1998; Mi et al., 2005; McNamara et al., 2008; Barfod et al. 2009; 

Biesecher et al., 2005; Liu 2009; Magalhães et al., 2012) is indeed an effective approach 

to complex target discrimination.  Theoretically this panel of aptamers, paired with the 

immense data collection power of NGS, could effectively generate a unique pattern for 

any cell type; thus eliminating the need for unique assays for each cellular target. 

 

2 Materials and Methods 

 2.1 Aptamer selection  

2’-fluoro modified RNA oligonucleotides have proven to be exceptionally 

resistant to nuclease activity (Kawasaki et al., 1993).   Furthermore, mutant T7 

transcriptases have been developed capable of incorporating the modified nucleotides in 

to a new RNA strand form a standard DNA template.  This makes this particular type on 

unnatural nucleic acid particularly well suited for use as aptamers. 

 There are hundreds if not thousands of published sequences for 2’-F RNA 

aptamers targeting a huge variety of different targets.  In order to explore the utility of an 

aptamer panel for complex target discrimination, cancer cells were selected to represent 

the complex target.  Many 2’-F aptamers exist for targets that could be expected to be 

express on a cell surface and the panel used for this study draws on that knowledge base. 

 There were three broad categories of nuclease resistant aptamers used in this 

study:  aptamers selected to directly bind cells, aptamers selected to bind molecular 

targets found on the cell surface, and aptamers not expected to bind cells (Table 3.1).  
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The first category included aptamers selected to targeted to the U87MG glioma 

line, PC3 prostate cancer line, H358 non-small cell lung carcinoma (NSCLC) line, and 

H562 a small cell lung carcinoma (SNLC) line. Many of these aptamers were selected to 

show broad target ranges.  For example the aptamer “GL44” was originally selected 

against U87MG cells, but also bound to the U87MG, LN-18, LN-229, U87MGΔEGFR, 

and TB10 cell lines.  

 The second category included aptamers selected against  targets that are generally 

found at the cell surface, including the  extracellular matrix proteins, TN-C and PAI-1; 

receptors such as the RET kinase, EGFR, EGFRΔIII, OX40, VCAM-1 CD4, NTS-1, 

PfEMP-1, and αvβ3;   the glycoproteins PSMA, and 4-1BB and the carbohydrate Sialy 

lewis X. While not all of the selection targets were human proteins, cross-binding to 

human proteins had been demonstrated in many instances.  

 Finally two aptamers were included as negative controls.  Aptamers “nt” and 

“G31” were known not to bind cells and were scrambled versions of the NTS-1 and αvβ3 

aptamers.  
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Type Target  Name Working 

name  

Citation  

Cell U87MG GL17 C9 Cerchia et al., 2009 

Cell U87MG GL44 C10 Cerchia et al., 2009 

Cell U87MG GL56 C11 Cerchia et al., 2009 

Cell PC3 PC301 C12 Chu, 2006 

Cell PC3 PC304 D1 Chu, 2006 

Cell Clone 2 H526 D2 Lee, 2007 

Cell Clone 4 H526 D6 Lee, 2007 

Cell Clone 7 H526 D5 Lee, 2007 

Cell Clone 9 H526 D3 Lee, 2007 

Cell Clone 10 H526 D4 Lee, 2007 

Cell A6 H358 D7 Lee, 2007 

Cell E5 H358 D9 Lee, 2007 

Cell E7 H358 D8 Lee, 2007 

Cell D4 PC12/MEN2B E12 Cerchia et al., 2005 

Cell D24 PC12/MEN2B F1 Cerchia et al., 2005 

Cell E9P2-1 U251 D12 Hicke et al. 2001 

Cell-Surface Protein  12.11 VCAM-1 fragment C7 Chauveau et al., 2008 

Cell-Surface Protein 12.23 VCAM-1 fragment  C8 Chauveau et al., 2008 

Cell-Surface Protein E07 EGFR D10 Li et al., 2011 

Cell-Surface Protein E-9 TN-c D11 Hicke et al. 2001 

Cell-Surface Protein TN-9 TN-C E1 Hicke et al., 2001  

Table 3.1  List of aptamers and their targets. 
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Cell-Surface Protein 9.4 OX40 E3 Dollins et al., 2008 

Cell-Surface Protein 9.8 OX40 E2 Dollins et al., 2008 

Cell-Surface Protein A9 recombinant PSMA E4 Lupold et al., 2002 

Cell-Surface Protein A10 recombinant PSMA E5 Lupold et al., 2002 

Cell-Surface Protein P19 NTS-1 E6 Daniels et al., 2002 

Cell-Surface Protein P112 NTS-1 E7 Daniels et al., 2002 

Non-binder G31 Scramble  E8 Daniels et al., 2002 

Other 5(9) SLeX E9 Jeong et al., 2001 

Other 2(2) SLeX E10 Jeong et al., 2001 

Other  5 PAI-1 C5 Madsen et al., 2010 

Other 40 PAI-1 C6 Madsen et al., 2010 

Other C1 Ubiquitous internalizer   E11 Magalhães et al., 2012 

Cell Surface protein  9-I CD4 F2 Davis et al., 1998 

Cell Surface protein 12-II CD4 F3 Davis et al., 1998 

Cell Surface protein 8-I CD4 F6 Krause et al., 1998 

Cell Surface protein 33-III CD4 F7 Krause et al., 1998 

Cell Surface protein avB3 αvβ3 F8 Mi et al., 2005 

Other E05 PfEMP-1 F11 Barfod et al., 2009 

Other B2 PfEMP-1 F12 Barfod et al., 2009 

Cell Surface Protein  M12-23 4-1BB F10  McNamara et al., 2008 

Cell Surface Protein C6 Complement C5 G1 Biesecker et al., 1999 

Cell Surface Protein H2 Complement C5 G2 Biesecker et al., 1999 

Cell Surface Protein E27 Unglycosylated EGFRvIII G3 Liu et al., 2009 

Cell Surface Protein E17 Unglycosylated EGFRvIII G4 Liu et al., 2009 

Table 3.1, cont.  
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 2.2 Aptamer generation 

 For this study, all aptamers were selected from the literature or obtained from 

members of the Ellington lab. Each aptamer template sequence was modified to remove 

the original T7 promoter region and add forward and reverse constant primer regions 

which were compatible with next generation sequencing platforms. Each template 

sequence was synthesized using the MerMade 192 synthesizer (Bioautomation, Plano, 

TX), and diluted to 100µM in TE buffer.  One µl of each synthetic aptamer template was 

amplified though PCR in order to maintain a double stranded stock solution. One µg of 

each template was transcribed to generate the 2’-F modified RNA aptamer using the 

Dura-scribe reverse transcription kit (Epicenter, Madison, WI) and treated with DNAse to 

remove any residual template. The product of each transcription reaction was purified on 

an 8% SDS page gel with 7M urea. The 2’-F RNA was eluted from the acrylamide in 

water over night and precipitated using ethanol precipitation. Each aptamer was diluted to 

10nM in binding buffer (PBS supplemented with 5mM MgCl2).  Just prior to each 

experiment, each aptamer was folded alone or with oligonucleotides complementary to 

the 5’ and 3’ constant regions by at 75ºC for 3 minutes, followed by a ramp down of 1ºC 

a second to 25ºC.  After folding, each aptamer was mixed at equimolar proportion to 

create the aptamer panel. 

 

2.3 Cell assay  

 Each cell culture was grown in Dulbeccos modified eagles medium (DMEM) 

(Life Technologies Grand Island , NY) in 6 or 12 well culture plates to ~80% confluence. 
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U87MGvIII cells carry a plasmid allowing for the expression mutant EGFRvIII.  In order 

to maintain the plasmid, the cells were grown in the presence the antibiotic G418 at 400 

µg/ml.  The media was removed and each well was washed 3x with binding buffer.  One 

(6 well plate) or two (12 well plate) wells on each plate were treated with trypsin and the 

resultant cells were counted to determine the approximate number of cells in each well. 

4.6 µl (0.01pmols of each aptamer), 46 µl (0.1pmols), 460 µl (1pmol) or 920 µl (2pmols) 

of the mixed aptamer panel was mixed with binding buffer to a total volume of 1 ml. One 

ml of this solution was added to each experimental well for each 1x106 cells. One to two 

wells on each plate were reserved as negative control wells and were incubated with 1ml 

of binding buffer per each 1x106 cells.  The cells were incubated at room temperature 

with agitation for 30 minutes.  At the end of the incubation period, the aptamer solution 

was removed and each well was washed 3X with binding buffer.  The cells were lysed 

and total nucleic acids were collected using the MasterPure total nucleic acid system 

(Epicenter, Madison, WI).  Aptamers in 5µg of the total nucleic acid solution from the 

cells were reverse transcribed using the Superscript III first stand synthesis system (Life 

Technologies Grand Island, NY). For each cell line used, 1µl of the naïve panel was 

mixed with 5µg of total nucleic acid solution obtained from negative control wells.  This 

solution was also reverse transcribed.  From each reaction, 2µl were passed to PCR to 

regenerate dsDNA templates compatible for NGS.  The dsDNA templates were separated 

from primers, which can lower NGS results, through excision from a 2% TAE agarose 

gel. The dsDNA was purified from the agarose using the Wizard DNA clean-up system 

(Promega, Madison, WI).  Aliquots of each of the purified samples were submitted to the 
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University of Texas NGS facilities for sequencing on either the SOLiD (Life 

Technologies Grand Island, NY) platform or the Illumina HiSeq platform (Illumina, San 

Diego, CA).  

 

 2.4 FACs analysis 

 Fluorescence activated cell sorting (FACs) was used to identify the best positive 

control choices and to explore the behavior of individual aptamers alone and as a panel. 

One pmol of an aptamer was mixed with 1pmol of a biotin capture probe or capture probe 

and oligonucleotides complementary to the 3’ constant regions and mixed 1:1 with 

binding buffer.  The mixture was incubated at 75ºC for 3 minutes and ramped down 1ºC a 

second to 25ºC, to allow the capture probe to anneal the probe/oligonucleotides and allow 

the aptamer to refold. Equimolar streptavidin/phycoerythrin was added to the aptamer 

and incubated at room temperature for 3 minutes.  Cells grown to ~80% confluence were 

trypsanized and washed in binding buffer; the cells were resuspended in 100µl of binding 

buffer.  For each 100,000 cells, either 1pmol or 10pmol of the labeled aptamer was 

added. In experiments where the aptamer panel was also included, each unlabeled 

aptamer was folded independently from the panel and added to the cells separately from 

the remaining panel at a concentration of 1pmol per 1x106 cells. 450µl (1pmol of each 

aptamer) per 1x106 cells of unlabeled panel was then added to the cells. The cell/aptamer 

solution was allowed to incubate for 30 minutes at room temperature with agitation. After 

incubation the cells were pelleted and unbound aptamer was removed. The cells were 
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washed 2x with binding buffer and analyzed with the LSR Fortessa cell analyzer (BD 

Biosciences San Jose, CA). 

 

 2.5 Real time analysis  

 Real time analysis was used to identify the best positive control choice and verify 

sequencing and real time results. Applied Biosystems SYBR green RT-PCR kit was used 

for these experiments (Life Technology Grand Island, NY). Five µl of total nucleic acid 

solution (prepared as described in 3.2.2) was mixed with SYBR green master mix and 

primers were added to a final concentration of 300nM. In some case a standard reference 

curve, between 1amol and 1pmol, was included to allow for quantitation of an aptamer’s 

abundance.  The instrument used for analysis was the Viia7 Real-Time PCR system (Life 

Technologies, Grand Island, NY). 

 

 2.6 Analysis of NGS data 

 For the single cell line experiments the SOLiD sequencer platform was used, 

(Life Technologies, Grand Island, NY).  For all remaining analyses the HiSeq sequencer 

platform was used (Illumina, San Diego, CA).  For SOLiD applications a reference 

library containing all possible aptamers was generated and converted to colorspace. All 

reads were done using a paired end 50/35/10 (forward, reverse, barcode) protocol. For the 

HiSeq platform all reads were done using a paired end barcode + 2x100 (100 reads 

forward and reverse) and a native reference library was used.  The reads were aligned and 

mapped using BWA to the reference library and the number of hits for each aptamer in 
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each sample was recorded.  Sequences which did not align, aligned to multiple aptamers 

or where unexpectedly long were excluded from analysis. The abundance of each 

aptamer was expressed as a ratio of the number of hits for a single aptamer over the total 

number of hits for all aptamers in a single sample.  For the PCA plot each aptamer was 

normalized to the naïve panel by taking the ratio of the aptamer abundance in an 

experimental sample over the abundance of the aptamer in the naïve panel.  The data was 

mean centered and passed to XLstat for PCA analysis (Pearson).  The fold change of each 

aptamer was calculated as the log2 ratio of the abundance of an aptamer in an 

experimental sample over the abundance of an aptamer in the naïve panel.   

  

3 Results 

 3.1 Preliminary real time results 

 Since we anticipated that chemometric data from deep sequencing might 

be skewed by sequencing biases, we performed preliminary experiments with real-time 

PCR that could serve as a guide for interpreting the sequencing data.  Two cell lines were 

chosen for this study, A431 and MDA-MB-435.  A431 is an epidermoid carcinoma that is 

often used in studies because of its abnormally high levels of epidermal growth factor 

receptor (EGFR), (Ullrich et al., 1984) an ErbB receptor family member whose 

overexpression is frequently found to be a biomarker for tumors (Zhang et al., 2007). In 

contrast, MDA-MB-435 is a breast carcinoma line that is frequently paired with the A431 

line as it demonstrates 4 times lower expression of EGFR (Kempiak et al., 2003).  We 

anticipated that these cell lines might be distinguished using an anti-EGFR aptamer (D10, 
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Table 3.1) and real-time PCR analysis, since this aptamer had already demonstrated 

differential binding via FACS analyses (Li et al., 2011).  

Three other aptmers were also chosen for initial real-time PCR analysis of 

differential binding:  F7, E11, C7, and E12.  Aptamer F7 binds to CD4, a glycoprotein 

that is predominantly found on the surface of leucocytes (Maddon et al., 1985). CD4 is a 

member of the Immunoglobulin super family (IgSF) which includes similar members 

express on many different cell lines. There is no evidence that CD4 is expressed on A431 

or MDA-MB-435 cell lines, though other members of the superfamily, such as ICAM are 

(Teixeira, 1999).  Aptamer E11 is known to bind to and be internalized by a wide variety 

of cell lines (Magalhães et al., 2012). Aptamer E12 was selected against the RET kinase 

expressed on the surface of PC12 cells.  RET is a ubiquitous receptor that is known to be 

expressed on many different cell lines (Robinson 2000). 

To carry out these experiments a panel of 46 aptamers at various concentrations, 

suspended in PBS supplemented with 5uM MgCl2 (0, 0.01, 0.1, 1, or 2 pmols of each 

aptamer per 1x106 cells) were incubated with adherent cells in six well plates at room 

temperature for 30 minutes. Unbound aptamer was washed away and the cell lysate 

containing the bound aptamers was collected.  The recovered aptamers were reverse 

transcribed and then subjected to real-time PCR analysis.   In addition 1nmol of a pure 

panel of the same aptamers was mixed with 5ug of untreated lysate and reverse 

transcribed and analyzed by real-time PCR as well. Each of the experimental aptamers 

was amplified in the real time analysis with primers specific to the random region of each 

aptamer. This allowed the amplification of a single aptamer out of the panel. The 
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abundance of each aptamer isolated from treated cells was measured and well as the 

abundance of each aptamer amplified from the naïve panel suspended in untreated lysate 

was measured. The ratio between the abundance from the treated cells over the naïve 

panel was used to determine differential binding. Those values with a higher ratio value 

were indicative of better aptamer affinity, while low ratio values indicated low aptamer 

affinity for the cell line  

As expected, D10 showed enrichment on the A431 cell line and depletion on the 

MDA-MB-435 line (Figure 3.1). This is seen as a fold increase over panel (positive 

values) for A431 and fold decrease below panel (negative values) for MDA-MB-435. 

The error bars represent cumulative standard deviation from the triplicate technical 

replicates and the duplicate experimental replicates.  Like D10, aptamer F7  showed some 

enrichment of the aptamer on the A431 line.  Conversely aptamers E11 and E12 (seemed 

to show preference for the MDA-MB-435 line. Overall, these data revealed expected 

differences between aptamer binding to cellular targets, and provided a touchstone for the 

eventual interpretation of deep sequencing analyses.  
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Figure 3.1 Preliminary real-time results for 4 selected aptamers. Aptamers D10, E12 
and F7 show enrichment for A431 and depletion for MDA-MB-435. D11 
show enrichment for both. Error bars represent standard error.  

 

 

 3.2 Analysis of a single cell line, A431 

Forty-six 2’-F modified RNA aptamers, that target either cells or proteins 

expected to be expressed on the surface of cells, were selected from the literature.  While 

these aptamers do not cover the entire repertoire of possible targets, they do represent a 

substantial portion of the available modified RNA aptamers expected to target cancer 

cells.  Preliminary experiments were run to determine if there was a significant change in 

the aptamer distribution before and after exposure to cells. The panel of aptamers was 

mixed in an equimolar proportion and applied to A431 cells at 4 different concentrations, 
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in duplicate: 0.01pmol, 0.1pmols, 1pmol, and 2pmol per 1x106 cells. Nonbinding 

aptamers were rinsed off and the cell lysate was collected.  Each sample was reverse 

transcribed then amplified to concentrate the aptamers remaining in the cell lysate.  The 

naive panel, which had not been exposed to cells, was also reverse transcribed and 

amplified. Each sample was then gel purified to remove unincorporated primers and 

submitted for next generation sequencing. A principal component (PCA) was performed 

to determine if the variance in the proportion of each aptamer from the cell lysate was 

distinguishable from the naïve panel. The results indicated that a distinct difference was 

observed between the panel and the samples derived from the cell lysate (Figure 3.2). In 

this plot, is the first component, i.e. the axis that explains the most variance, is the axis 

that represents this difference. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2. PCA comparing various staring panel concentrations to the naïve panel. 
The F1 axis captures the majority of the variance (33.02%) and accounts 
for the separation of the panel from the naïve panel. The F2 axis accounts 
for the separation of the 0.01pmol sample from the others. 

 
 

Panel 
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1pmol 

0.1pmol 

0.01pmol 
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In this case, 33.02% of the variance in the model is captured by the first component.  It 

was also observed that starting concentration of the aptamer panel contributes 

significantly to the variance observed in the aptamer proportions from sample to sample.  

This is indicated in Figure 3.3, a plot of the first components vs. the third component.  

Here, 6.34% of the total variance in the data is captured by the third component. While 

not a large value, it accounts for 10% of the total variance captured by the first three 

components.  In this plot all the samples, save one, are ordered by their concentration.   

 

 

 

 

 

 

 

 

Figure 3.3. PCA plot comparing panel to naïve panel, showing F1 and F3 axis. The F3 
axis is dominated by increasing concentration from 1pmol to 2pmols.  

 

The exception to this the 0.01pmol sample.  This sample seems to behave differently than 

the other samples derived from cell lysate.  This sample is consistently oriented closer to 

the panel on the first component, than to the cell lysate samples.  This may indicate that 

the concentration is below what could be considered the limit of detecting and what is 

Panel 
2pmol 
1pmol 
0.1pmol 
0.01pmol 
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being isolated is residual unbound panel, which would, as observed, be more similar to 

the naive panel than to the cell lysate panel. 

 

3.3.  Positive control selection 

An examination of the fold change of each of the aptamers revealed that the 

positive control was not behaving as predicted.  Figure 3.4 shows the fold change of each  

 

Figure 3.4. Fold change of each aptamer as compared to the naïve panel for the A431 
cell line. Fold change is calculated by the log2 ratio of the abundance of an 
aptamer from an experimental sample over the abundance of an aptamer 
from the naïve panel. Error bars represent standard error. 

 
 

aptamer as compared to the naïve panel. Aptamers with a positive fold change indicate 

that the aptamer is more abundant in the panel isolated from the cell lysate than in the 

naïve panel.  Aptamers which show a negative fold change are aptamers which are less 

abundant in the panel isolated from the cell lysate compared to the naïve panel.  These 
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fold changes are correlated with the relative affinity of each aptamer to the target, A431 

cells. Aptamer D10 is an aptamer known to target epidermal growth factor receptor 

(EGFR). The rationale for selecting A431 cells as an initial analysis tool was because 

they are known to over express EGFR (Ulrich et al., 1984), thus aptamer D10 should 

show substantial enrichment.  

Figure 3.5 shows that the unusual behavior seen for aptamer D10 in not a 

sequencing error.  In a real time PCR experiment, done to verify sequencing results, D10 

still showed very little enrichment in the samples. In fact, at the lower concentrations of 

0.1 and 0.01pmol D10 actually showed depletion.  

 

 

 

 

 

 

 

 

 

 

 
Figure 3.5. Fold change of real time (ΔCt) for representative aptamers, D10, E11, 

E12, C7, F7 across all concentrations. The fold change is calculated as the 
log2 ratio of the Ct a single aptamer from the experimental samples over 
the Ct of the same aptamer from the naïve panel.  Error bars represent 
standard error. 
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We predicted that the anomalous behavior seen in aptamer D10 may be due to the 

modifications made to the sequence of the aptamer to make them compatible with NGS. 

Forward and reverse primer regions were concatenated to the aptamers in order to 

facilitate NGS.  It is conceivable that these regions perturbed the tertiary structure of the 

aptamer, thus altering its affinity for the A431 cell line.  In order to investigate this, both 

FACs and real time experiments were performed to estimate the affinity of various 

aptamers known to bind A431 cells.  The aptamers selected to use were, D10 (called e07 

in the literature), a minimized version of e07, c1 a ubiquitous internalizing binder 

developed by Levy, otter an internalizing aptamer developed by the Ellington lab, and 

C36 a negative control aptamer (Magalhães et al., 2012).  

For the FACs study each aptamer was folded with one or two oligonucleotide 

complementary to the concatenated primer regions. The complementary oligonucleotide 

at the 5’ end was conjugated through biotin to phycoerythrin to allow visualization of the 

aptamer bound to a cell.  Figure 3.6 shows the results of this analysis.  Minimized e07 

and otter showed little signal of over background; their mean fluorescence is only 

modestly higher than that of C36, the negative control.  C1 and e07 clearly show affinity 

for the cell line and in each case having both the 5’ and 3’ primer regions blocked by 

complementary oligonucleotides shows superior affinity.  Because this FACs analysis 

relied on a reporter conjugated to a complementary oligonucleotide to show signal, it was 

not possible to test having only the 3’ region blocked.  In order to test this, real time 
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Figure 3.6. Results of FACS analysis of 4 possible positive control aptamers. Cell 
only, probe only and C36 are negative controls and are not expected to 
show fluorescence. Figure courtesy of Michelle Byrom. 

 

 

 Figure 3.7. Real time PCR analysis. Each aptamer, otter, C1, e07, min e07, j18, and 
36, was tested with either the 5’ constant region, the 3’ constant region, 
both or neither region blocked by complementary oligonucleotides.  
Aptamers with a strong affinity for the target will be more abundant in 
each of the samples and have a lower Ct. Error bars represent standard 
deviation.  
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PCR was used to estimate the abundance of various aptamers after cell binding. As with 

the FACS experiment, each aptamer was folded with an oligonucleotide complementary 

to either the 5’ region, 3’ region, both or neither.  J18 an EGFR RNA aptamer developed 

by the Ellington lab (Li et al. 2010) was tested in addition to the aptamers tested in the 

FACS experiment.   

Figure 3.7 shows the results of this study. As previously observed, minimized e07 

and otter showed the lowest affinity for the A431 cell line; as evidenced by the high Ct 

for each of the samples.  J18 also displayed poor performance. In nearly all cases, 

blocking both the 3’ and 5’ regions shows superior binding affinity.  Furthermore, 

blocking only the 5’ region showed better affinity than blocking only the 3’ region, which 

implied that the 5’ constant region has more effect on the structure than the 3’ region 

though both play a roll.  Table 3.2 shows the difference between the Ct for the unblocked 

aptamer and the Ct for each of the blocking strategies plus the difference between the 

blocked aptamer and a non-binding aptamer, the largest values correlate with the most 

improvement over the unblocked aptamer. The largest values are for 5’ blocked e07, 3’5’ 

blocked e07, 3’5’ blocked otter and 3’5’ C1.  Table 3.3 shows a statistical of the 

significance of the difference between the blocked and unblocked aptamers. All of the 

aptamers that show the largest values in Table 3.2 show a significant difference. 

Considering the results from the FACs study and the real time study  it was decided to 

consider e07 the positive control.  
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Table 3.2 Sum of the difference between blocked / unblocked aptamers and between 
blocked aptamers / non-binder. 

 

 

 

 

 

 

Table 3.3  Significance of the distance between blocked and unblocked aptamers.  

 

 

3.4 Analysis of cell lines A431 and MDA-MB-435  

 We wanted to determine if the variation observed in the cell lysate samples was 

cell specific. A431 cells and MDA-MB-435 cells were used as the trial cell lines. These 

were selected because A431 over expresses epidermal growth factor receptor (EGFR) 

and MDA-MB-435 is considered to be negative for EGFR.  The panel being used 

 
 3' 5' 3',5' 

Otter 22 22 26 

C1 13 21 25 

e07 14 28 30 

min 12 8 16 

J18 17 9 15 

 
3' 5' 3',5' 

otter 0.02 0.03 0.02 
C1 1 0.02 0.03 
e07 0.7 0.2 0.04 
min 0.04 0.2 0.06 
J18 0.01 0.2 0.003 
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contained an aptamer specifically targeted to EGFR and could be used to lend biological 

rational to the orientation of the cell samples on the PCA plot.   

A431 cells and MDA-MB-435 were incubated with 4 different concentrations of 

the panel, in duplicate: 0.01pmol, 0.1pmol, 1pmol, and 2pmol per 1x106 cells and 

collected the lysate as described above. After NGS it was observed that there did seem to 

be a trend separating the A431 cells from the MDA-MB-435 cells (Figure 3.8).  In all 

cases, save the 0.01pmol sample, the MDA-MB-435 cell lines are higher than the A431 

cells on the F2 axis.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. A PCA plot comparing two cell lines A431 and MDB-MB-435. The F1 
axis is dominated by the starting concentration with low concentrations 
being on the left and high concentrations being on the right, . The F2 is 
dominated by the between cell line differences. Most of theMDA-MB-435 
cells are above the axis while most A431 cells are below the axis. 
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Unfortunately the F1 axis was still dominated by the starting concentration of 

each of the samples. From the loading plot (Figure 3.9) it appears that most of the 

aptamers are important to the F1 axis (indicated by being more parallel with the axis) and 

thus their behavior may be more strongly influenced by concentration rather than cell to 

cell differences.  

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 3.9. Correlation plot relating the significance of each variable to the position of 

the cells on the plot. Note that D10 (the EGFR specific aptamer) seems to 
behave in a concentration dependent manner and contributes more to the 
separation based on concentration rather than cell type. Aptamers G4 and 
F11 seem to play the most important role in discriminating the two cell 
lines. 
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In an attempt to determine which aptamers were most resistant to concentration 

effects, a PCA was rerun for each of the different sample concentrations. Figure 3.10 

shows the results of this analysis. Because concentration is no longer a factor, the F1 axis 

captured information regarding cell to cell differences.   As previously observed, the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. PCA analyses of each sample concentration independent from all others. 
In each case, save 0.01pmols, the F1 axis is the axis of separation 
separating the A431 cell line of the right from the MDA-MB-435 cell line 
on the left.  For the 0.01pmol sample the axis of discrimination is the F2 
axis separating A431 on the bottom from MDA-MB-435 on the top. 
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0.01pmol sample behavior deviates from the behavior of the other samples. In this case 

the F1 axis is dominated by difference between cells of the same type and cell to cell 

differences are captured on the F2 axis. This indicates that while there is some difference 

in the behavior of the aptamer panel due to cell to cell differences, the behavior is 

obscured by background differences in individual cultures. 

The 0.1pmol, 1pmol and 2pmol data was used to identify which aptamers may be 

most important to cell line discrimination. For each PCA analysis a correlation table was 

generated which indicates the level of correlation each aptamers has with each axis. For 

each cell sample, aptamers which had a correlation value of at least ±0.75 were identified 

(Table 3.4). These aptamers were used in a new PCA analysis including all sample 

concentrations.  Figure 3.11 shows the results of this analysis. The F1 axis now relates to 

the cell to cell variation. Nevertheless different starting concentrations did affect the 

behavior of each of the aptamers as indicated by the amount of variance captured by the 

F2 axis, 23.77%   
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Table 3.4. List of aptamers with a correlation value of at least ±0.75 across the F1 

axis for sample concentrations: 0.1pmols, 1pmols, 2pmols. The consensus 
Colum contains the aptamers which have a correlation value of at least 
±0.75 for all concentrations.  

 

 

2pmol 1pmol 0.1pmol 2pmol 1pmol 0.1pmol Consensus  

D2 C12 C12 E9 F6 E2 D2 

D3 D1 C5 E11 F7 E3 D3 

D5 D2 C6 E12 F8 E4 D6 

D6 D3 C8 F1 F11 E5 D7 

D7 D4 D2 F2  E6 D8 

D8 D5 D3 F6  E8 E2 

D9 D6 D4 F8  E9 E3 

D11 D7 D5 F11  E10 E9 

E1 D8 D6 G4  E11 F6 

E2 D10 D7   F3 F11 

E3 D10 D8 

 

 F11  

E5 E1 D9 

 

 G1  

E6 E2 D10 

 

 G2  

E7 E3 D11 

 

 G4  

E8 E9 D12 

 

   

Continued in next columns     
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Figure 3.11. PCA of the two cell lien data, using only the consensus values recorded in 
Table 3.1, excluding data from the 0.01pmol sample. In this figure the F1 
axis contains data relevant to cell type, all A431 samples are found on the 
right and all MDA-MD-435 samples are found on the left. Concentration 
remains as a significant source of variation.  

 

 

3.5 Analysis of four cell lines, A431, MDA-MG-435, Hek and U87MGvIII  
 
In order to overcome noise derived from starting panel concentration and fully 

validate this method, a single concentration was selected for further analysis, 1pmol per 

1x106 cells.  Based on the results seen in Figure 3.10, it appears that the aptamers in the 

1pmol and 2pmol concentrations are more resistant to variations in concentration than the 

aptamers in the 0.1pmol concentration, on account of the proximity of each of the points  
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to each other. Two pmol was not selected in order to conserve reagents.  Four different 

cell lines were selected for this experiment.  The A431 and MDA-MB-435 pair was used. 

A glioma line, U87MGvIII, was selected because its tissue type was very disparate from 

the other lines used and it expresses a mutant strain of EGFR, to which aptamer D10 also 

binds. The HEK line was selected for being a disparate tissue type and  

 

Figure 3.12. This plot shows that each cell line has a unique pattern  also shows that 
negative values ( as the case in F11 and G4) can also be significant.  To 
include or not to include that is the question.   

 

to represent a “normal” cell line.  The experiment was performed as previously described 

in quadruplicate for each of the cell lines.  Figure 3.12 shows the fold change for each of 

the aptamers as compared to the naïve panel.  It is clear from this figure that the aptamers 

behave differently depending on which cell line they are exposed to.  For example very 

few aptamers seem to bind to the MDA-MB-435 cell line. The HEK and U87MGvIII line 
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on the other hand seen to have very similar aptamer binding profiles.  Despite this there 

were subtle differences in the aptamer binding patterns for these two cell lines.   

After performing a PCA, four distinct groupings were observed. (Figure 3.13) 

Each grouping is distinctly separated from the other lines.  The F1 axis is primarily  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13 PCA of four cell line experiment. Four distinct groupings are observed, 
HEK, MDA-MB-435, A431 and U87MGvIII.  The F1 axis represents the 
variation which separates MDA-MB-435, U87MGvIII and HEK cell lines. 
The F2 axis represents the variation that separates the A431 cell line from 
the other lines. Additional separation of the U87MGvIII is found on the 
third axis (not shown).  
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responsible for the separating between the MDA-MB-435 cell line and the Hek cell line.  

A431 is primarily discriminated across the F2 axis. U87MGvIII is primarily 

discriminated across the F3 axis. When the correlations between the aptamers and the 

axis are examined (Table 3.3) several interesting associations are observed.  First, D10 

was found to play a role in the location of the A431 cell line, as expected since A431 

over expresses EGFR and D10 is known to bind EGFR. 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 3.5. List of aptamers with correlation values ±0.75 for the first three axes. The 

values with the highest and lowest correlation values for each of the 
columns are in bold.   

F1  F2 F3 
C12 D4 D2 
C5 D8 

 C7 D9 
 C8 D10 
 D1 E10 
 D11 E5 
 D12 F2 
 D3 F6 
 D5 F8 
 D7 G4 
 E1 

  E12 
  E2 
  E3 
  E6 
  E7 
  F1  
  F12 
  F7 
  G2 
  G3 
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While Hek and U87MGvIII also express EGFR (or the mutant version in the case 

of U87MGvIII), they do so at levels less than that of A431.  C12 had the highest 

correlation value for the F1 axis at 0.98; this aptamer was selected against prostate 

specific membrane antigen (PSMA).  This implies that the cell lines Hek and to a lesser 

extent, U87MDvIII may carry molecules similar to PSMA.  C5, an aptamer selected 

against plasminogen activator inhibitor-1 (PAI-1), had the strongest negative correlation 

of -0.81.  Along the second axis, F2 had the highest correlation of 0.97 and is an aptamer 

selected for cell surface CD4.  Conversely, E5 had the strongest negative correlation of -

0.86 and was selected against G coupled neurotensin receptor (NTS1). Finally, the only 

aptamer which showed high correlation with the F3 axis was D2 with a correlation value 

of 0.80. This aptamer was selected against H526 cells, a small cell lung carcinoma line.   

 

3.6 Validation of model 

To fully validate this model a discriminate analysis (DA) was performed.  This 

analysis will seek the axis of rotation that best maximizes the distance between groups 

while minimizing the distance between members of the same group.  The form of PCA 

used in this manuscript separates the groups based entirely on the variance in the dataset, 

while it is important to know that variance plays a large role in the model, it does not 

mean that variance alone accounts for group separations.  A DA has the ability to groups 

samples based on characteristics other than variance, though it often unclean what those 

characteristics are.  Figure 3.14 shows the results for the DA.  The DA was able to find  
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Figure 3.14 Discriminant analysis of 4 cell lines. Each group is clearly separated from 
each other group across the F1 axis.  98.64% of the data in the model 
exists across the F1 axis; this is the between group scatter.  Data relating 
to within group scatter is found on the F2 axis and only accounts for 
0.88% of the data in this model. 

 

an axis of rotation that grouped members of the same class extremely close to one 

another while maintaining the separation between the groups.  The Fischer distances in 

Table 3.6 underpin the notion that each group is a distinct entity.  The results of a Fischer 

test to assess the uniqueness of the groups shoed a p-value of less than 0.0001 for each 

pair of cell types (Table 3.7).  

 A leave-one-out cross validation analysis excluded each point from the data set 

iteratively and re-analyses the remaining data.  The method then tries to predict the class  
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Table 3.6.  Pairwise Fischer distances. 

 

 

 

 

Table 3.7.  Pairwise Fischer distance tests. 

of the excluded point. For this data set each point was correctly classified (Table 3.7).  

Upon examination of the classification functions, it was found that only 9 aptamers were 

required for classification by this model (Table 3.9).  Aptamers C5, C12 F2 and D2 were 

4 of the 5 aptamers that showed the strongest correlation in the PCA model. Aptamer E5, 

the aptamer with the strongest negative correlation to the F2 axis in the PCA model, was 

not required for classification by the DA. Curiously of the reimaging aptamers, all were 

considered important for classification in PCA, save aptamers E11 and F10. 

 

 

  431 435 Hek u87 
431 0 17599.476 6557.710 11984.413 
435 17599.476 0 2872.844 641.080 

hek 6557.710 2872.844 0 999.721 
u87 11984.413 641.080 999.721 0 

  431 435 Hek u87 
431 1 < 0.0001 < 0.0001 < 0.0001 
435 < 0.0001 1 < 0.0001 < 0.0001 

hek < 0.0001 < 0.0001 1 < 0.0001 
u87 < 0.0001 < 0.0001 < 0.0001 1 
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Table 3.8  Results or cross-validation. 

 

 

 

 

 

 

 

 

Table 3.9 List of aptamers used for classification by the DA.  

 

 

 3.7 Exploration of aptamer behavior as a panel and alone 

 Over the course of these experiments certain trends were observed in aptamer  

behavior as a function of concentration and affinity for a target. For example, D10, the 

EGFR aptamer, seemed to become more enriched in the experimental samples when the 

from \ 
to 431 435 Hek u87 Total 

% 
correct 

431 4 0 0 0 4 100.00% 
435 0 4 0 0 4 100.00% 
hek 0 0 4 0 4 100.00% 
u87 0 0 0 4 4 100.00% 

Total 4 4 4 4 16 100.00% 

Classification 
aptamers 
C5 
C12 
D2 
D3 
E10 
E11 
F2 
F6 
F10 
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total aptamer starting concentration was the lowest. At the highest concentration, 2pmol, 

D10  barely had a 2 fold enrichment over the naïve panel (Figure 3.15). 

 

 

 

 

 

 

 

 

Figure 3.15. Fold change of aptamer D10 calculated from sequencing data for the A431 
and MDA-MB-435 cell lines.   

 

C7 on the other hand is an aptamer selected to target a fragment of mouse VCAM-1.  In 

general, it showed depletion or minimal enrichment at all concentrations for the A431 

and MDA-MB-435 cell lines.  D10, which could be considered a “good” aptamer, 

showed its best affinity for both cell lines at the 2pmol concentration (Figure 3.15). 

 In order to investigate this further it was decided to perform a FACs analysis to 

explore the affinity of each aptamer for each cell line alone or as part of a panel. One 

pmol of labeled aptamers D10 or C7 were incubated with each of the experimental cell 

types, A431, Hek, MDA-MB-435 or U87MGvIII.  Each labeled aptamer was also mixed 

with 1pmol of each other aptamer in the panel and incubated with the various cells.  A 
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Figure 3.16 Fold change of aptamer C7 calculated from sequencing data for the A431 
and MDA-MB-435 cell lines.   

 

10pmol positive control was included for each aptamer, as 10pmol is the standard 

concentration used for FACs with respect the aptamer D10 and the A431 cell line. The 

negative controls included cell only, label only, and H12, a randomly described 

oligonucleotide. Figure 3.17 shows the results of this assay for aptamer D10.  In each 

case the aptamer as part of the panel shows greater affinity for the cell line than the 

aptamer by itself.  As expected in three of the cases the 10 pmol aptamer concentration 

showed high fluorescence than the 1 pmol concentration.  The notable exception to this is 

the MDA-MB-435 cell line.  This line is considered an EGFR negative line (recall that 

D10 binds EGFR) and thus D10 could be considered a “bad” aptamer for this line.  

Though the response seen for this line is only modestly above back ground it is 

interesting to note that the 1 pmol aptamer concentration as a panel performs better than 

the 10 pmol concentration.   
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Figure 3.17 FACs analysis of aptamer D10 under various conditions for each of the 
cell types. In all cases, save for the A431 cell line, aptamer D10 shows 
greater affinity for the cell line as part of a panel that alone.  

 
 
 

C7 is an aptamer which showed very little affinity for any of the cell lines based 

on sequencing fold change (Figure 3.12). Figure 3.18 shows the results of a real time 

analysis for this aptamer.  As expected the response in only marginally over baseline yet 

interesting trend are still observed.  As with D10 the aptamer as part of a panel shows 

greater affinity for the cell line than the aptamer alone, albeit much more modestly than 

for D10. It is also observed that the 1 pmol aptamer concentration as a panel performs 

better than the 10 pmol concentration for the MDA-MB-435 cell line; the cell line that 

showed the greatest depletion in the sequencing results.    
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Figure 3.18. FACs analysis of aptamer C7 under various conditions for each of the cell 
types. In all cases aptamer C7 shows a very slight increase in affinity for 
the cell lines as part of a panel that alone.  It should be noted however that 
much of this data is not above background and should be viewed with that 
0in mind.  

 

4 Discussion 

In this work, the utility of aptamers as non-specific receptors for biomolecular 

discrimination was explored.  We have shown that a modest panel of aptamers can 

accurately discriminate at least four different cell lines.  Unlike other methodologies, this 

approach does not rely on a fluorogenic signal and thus overcomes the limitations of 

fluorescence experiments. Using NGS technology in a novel manner has allowed us to 

utilize relative abundances of aptamer concentration as a receptor signal to create a 
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unique fingerprint of aptamer binding without the need to perform separate experiments 

to assess the affinity of each aptamer for each target.  By exploiting properties of nucleic 

acids which allow simple sequencing, we have functionally created a detecting platform 

bounded only by the number of sequences a researcher choses to use. This is in stark 

contrast to other platforms which rely on multiple visual signals to interrogate results or 

special location on a solid support to increase the dimension of interrogation.  

Aptamers, by virtue of being synthetic nucleic acids, are the ideal choice to 

exploit the power of NGS to generate vast amounts of data.  They are simple to create de 

novo in very large quantities and can be selected or designed to display many different 

chemical behaviors.  In this study, the aptamers used were selected by other researchers 

to target cells or proteins which would be expected to be present on the surface of cells. 

Presumably, one could achieve results similar to those that we have presented here by 

creating one aptamer specific to each cell line.  However, the sheer number of targets that 

one would need to design to discriminate many different cell types,  makes the idea of 

one aptamer, one target untenable.  Rather, the significance of what we have shown here 

is that aptamers need not be specific for a single target in order it achieve discrimination.  

In this study, a number of aptamers behaved in a predictable manner based on the 

targets they were selected for.  D10 for example was selected for EGFR and it played an 

important role in discriminating A431, which highly expresses EGFR, from the other cell 

types.  C5 is an aptamer selected to target PAI-1, a serein protease inhibitor associated 

with tumor malignancy (Madsen 2010).  PAI-1, has a strong correlation with breast 

cancer outcome and when activated, its deposition in the extracellular matrix of cells 
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facilitates cell motility (Rougier et al., 1998, Look et al., 2002).  The correlation of this 

aptamer with the MDA-MB-435 cell line is not surprising as the line is in fact a human 

breast carcinoma.    

The behavior of aptamer C12 is an interesting case where it the aptamer’s 

behavior is strongly correlated with the F1 axis yet there are two cell lines that seem to 

interact with the aptamer in a significant manner. This aptamer was selected against 

PSMA and in the context in which it was selected, seemed to bind in a specific manner 

(Chu, 2006).  Although PSMA is overexpressed specifically in prostate cancers, 

(Horoszewicz et al., 1987) it is nevertheless found to be expressed in other tumor types 

such as kidney, glioma and breast (Chang et al., 1999).  C12 shows enrichment for the 

Hek and U87MGvIII cell lines but its abundance remains steady for the A431 cell line 

and showed depletion for the MDA-MG-435 cell line (Figure 3.11).  It may be that the 

Hek and U87MGvIII cells lines express PSMA at higher levels than A431 and MDA-

MB-435 expresses very little PSMA.  This is an excellent example of how differing 

levels of target expression drive cross-reactive binding of an aptamer.  

While U87MGvIII can be discriminated across the F1 axis the F3 axis also 

explains a fair amount of variance between the U87vIII cell line and the other lines.  The 

only aptamer to show strong correlation to the F3 axis was aptamer D2.  This is an 

unexpected result as aptamer D2 was selected against the H526, a small cell lung 

carcinoma line (Lee, 2007).  While cross reactivity of aptamers was the goal of this 

project it is surprising that two such disparate tissue types should share something in 

common.  
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Another surprising result was the affinity of aptamers F11 and F12.  These 

aptamers were selected against Plasmodium falciparum (malaria) erythrocyte membrane 

protein 1 (PfEMP1) (Barfod et al., 2009). It is striking that an aptamer targeting a protist 

would be able to also target human cell lines.  Aptamer F11 in particular, showed 

enrichment for all cell lines except MDA-MB-435.  In fact was the 4th most enriched 

aptamer behind F6 (targets CD4 antigen (Kraus et al., 1998)), F8 (targets αvβ3 integrin 

(Mi et al., 2005) and D10.  This lends credence to the idea that aptamers can be cross-

reactive with unexpected targets.  Unlike antibodies, which rely on very specific chemical 

interactions between the antibody residues and its target,  aptamers seem to be capable of 

binding many disparate targets, possibly due to their simple chemistries.   

 While the repertoires of chemical interactions which can be carried out by 

aptamers are limited, their simplicity could actually be a significant advantage over other 

receptors.  It can be reasonably expected that the exact composition of a complex target 

would result in slight perturbations of the binding efficiency of each aptamer, thus aiding 

in generating a unique binding profile for each target.  The simplicity of nucleic acids has 

further benefits in that there is a wealth of non-natural modifications which could be used 

to “tune” an aptamer panel to particular molecular targets, for example boronic acid 

modification for saccharide affinity (Edwards et al., 2007).  The great versatility 

displayed by aptamers theoretically can be used for any complex target, including non-

peptide molecules and even those of non-biologic origin.  For example, there are a 

number of aptamers developed molecules like cocaine, ATP; aminoglycosides, metallic 

ions, and porphyrins (Stojanovic et al., 2001; Sazani et al., 2004; Walter et al, 1999;  Li et 
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al. 1996; Zhang et al, 2011)  Furthermore, there is no limit to the number of unique 

patterns which could be generated using aptamer distribution as a signal.  This means this 

method could be a single assay capable of discriminating any complex target.  This opens 

up a new class of receptors for use in differential sensing routines.  When used in 

conjunction with NGS methodologies this technique has the potential to rival mass 

spectroscopy for complex target discrimination.   
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Chapter 4: The Use of Principal Component Analysis and 
Discriminant Analysis in Differential Sensing Routines 

This chapter is derived from “The Use of Principal Component Analysis and Discriminant 
Analysis in Differential Sensing Routines” by Sara Stewart, Michelle Adams-Ivy, and Eric 

Anslyn. Chem. Soc. Rev. 43.1(2013) 70-84 

 

1. Introduction 

Differential sensing has become an increasingly important concept in the field of 

supramolecular chemistry, as trends in research shift from using lock-and-key receptors 

to employing less selective receptors in array sensing (Lavigne, et al., 2001; Anslyn, 

2007; Collins and Anslyn, 2007; Miranda, et al., 2010; Musto and Suslick, 2010; Umali 

and Anslyn, 2010) Modeled after the mammalian olfactory senses, differential sensing 

employs a collection of low selectivity receptors that signal a specific pattern for each 

analyte or complex solution.  In turn, each analyte or solution is discriminated from 

others by a unique fingerprint.  In practice, the fingerprint, consisting of various 

fluorescence, absorbance, or electrode data cannot be easily analyzed by individual 

calibration curves for the purpose of analyte and solution identification and 

differentiation. 

To alleviate such difficulties, chemists have explored the use of statistical analysis 

techniques such as principal component analysis (PCA) and discriminant analysis (DA).  

Although these techniques are becoming particularly important for differential sensing 

purposes,  (Hirsch et al. 2003; Buryak and Sevenn, 2005(2); Zhou et al. 2006; Palacios, 
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2007; Zang and Suslick, 2007; Hughes et al., 2008; Shabbir et al., 2009; Bajaj et al., 

2010(2); Takeuchi et al. 2011) these techniques are sometimes used as a “black box”.  

PCA and DA are widely utilized across multiple fields of academia and industry, thus 

there are numerous reviews and tutorials on these techniques available to study (Klecka, 

1980; Fukunaga, 1990; Coomans and Massart, 1992; Lewi, 1992; Jurs er al., 2000; 

Hardle and Simar, 2003; Iznman, 2008; Theodoridis, 2009).  However, these articles are 

often heavily laden with mathematical symbols and derivations, or with seemingly 

unrelated examples, that are challenging to translate to differential sensing.  For this 

reason, we see the present need for a qualitative explanation of these techniques to help 

chemists interpret PCA and DA plots that result from differential sensing studies.  Our 

aim is to present PCA and DA to chemists in a manner that will shed light on the types of 

receptor arrays that lead to certain plots, and to give a few general criteria for obtaining 

optimal PCA and DA plots.  This information ultimately can be utilized to refine 

differential sensing systems for better analyte and solution discrimination and 

differentiation. 

2. Background 

Both PCA and DA are statistical analysis techniques, that produce score plots for 

the analytes or solutions tested.  These score plots consist of a coordinate system utilizing 

axes in a two, three, or higher dimensionality space, with the goal of revealing the 

coordinate system in that the test analytes are best discriminated.  Both PCA and DA 

generate these score plots by decomposing the raw data by a matrix technique, in that the 
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Eigenvectors of the matrix produce axes mentioned above and the eigenvalues give a 

measure of the level of discrimination that exists in the data. However, the manner in that 

each of these techniques arrives at their corresponding Eigenvectors and Eigenvalues is 

slightly different.  

To explore how PCA and DA work, a relevant analogy can be made to a more 

familiar Eigenvalue problem (see Scheme 4.1 for how Eigenvalue problems are written).  

Most chemists know that the Schrödinger equation plays a fundamental role in quantum 

mechanics (Equation 4.1).  This differential equation is usually simplified and reduced to 

a problem involving the Eigenvectors and Eigenvalues of a square matrix (Korn and 

Korn, 1961).  The Eigenvectors of this matrix represent the molecular orbitals with that 

we are all familiar, and the Eigenvalues give the orbital energies that correspond roughly 

to the ionization potentials of the molecules.  This classic equation is just one of many 

examples of Eigenvalue problems, that play roles in fields as diverse as signal processing 

and civil engineering.  Simply stated, when a matrix is multiplied by one of its 

Eigenvectors, the result is proportional to the Eigenvector (it has the same directional 

sense), where the constant of proportionality is the Eigenvalue (Korn and Korn, 1961).   

 

  

Scheme 4.1. Two ways to write the same Eigenvalue problem. 



  

108 
 

Equation 4.1  

What differentiates one Eigenvalue problem from another is the way that the 

elements of the square matrix are defined.  In the Schrödinger equation describing 

electrons in molecules, the matrix elements are complicated integrals involving the basis 

functions (usually atomic orbitals) that describe the problem, and the Eigenvectors are 

linear combinations of the basis functions, giving a mathematical description of the 

molecular orbitals. 

In PCA (Equation 4.2), the matrix C is referred to as the covariance matrix, while 

v is the set of Eigenvectors, and D is the set of the Eigenvalues.  Because the goal of PCA 

is to find the greatest extents of variance in a set of data, the square matrix is a function of 

variance.  Specifically, in PCA, the matrix reflects covariance.  Deriving the covariance 

matrix C is the key to PCA, just like deriving the Hamiltonian matrix is key to solving the 

Schrödinger equation. 

 

Equation 4.2   

 

To generate the covariance matrix, we first take a matrix of experimental 

observations (m) for different samples (n) to make an m x n data matrix.  For example, in 

array sensing, the observations may be absorbances at various wavelengths for different 

receptors mixed with the different analytes.  The samples (number = n) are the individual 

analytes and replicates of the analytes.  If we record 50 absorbance values with 5 
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receptors we would have 250 experimental observations (m = 50 x 5) for every sample. 

Next, for each sample n, the variance in the data (experimental observations) is derived 

from the standard deviation, presented in Equation 4.3, where N equals the number of 

total observations in a group,  is a single observation within a group and  is the mean 

of all the observations in a group.  Variance is the square of the standard deviation 

(Equations 4.3 and 4.4). 

Equation 4.3   

 

Equation 4.4   

 

In our example, the data for that variance is calculated consists of all the 

absorbance values for the series of receptors. So far, this would mean that for each 

sample (n of these), corresponding to potentially a large set of data (m observations), we 

simply have one number – variance.  The goal of PCA is to seek how the variance of one 

sample correlates with the variance of another sample. To do this, the method calculates 

covariance, defined as in Equation 4.5.  In this formula,  is a single observation in a 

group,  is the mean of all the observations in a group,  is a single observation in 

different group and  is the mean of all observations in that group.  
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Equation 4.5   

 

Importantly, there is a covariance value for each sample relative to every other 

sample.  Hence, for n samples there will be n x n covariance values.  These values can 

therefore be arranged into the square covariance matrix (see Scheme 4.2) and this sets the 

stage for an Eigenvalue problem as discussed above.  The matrix is symmetric across the 

diagonal, because the covariance of, for example sample 3 with sample 5, must be the 

same as between 5 and 3.  In Pearson’s covariance method, a specific type of PCA plot, 

that normalizes the data set before running the PCA algorithm, the diagonal of the 

covariance matrix will be equal to 1 (Molinowski, 2002). 

 

  

 

Scheme 4.2:  An n x n matrix used in PCA, where cov = covariance, and the variance of 
the data for each sample samples is labelled with a number up to n 
samples. 
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In the original data matrix, one can define a vector for each sample in an m 

dimensional space. After PCA, each sample consists of a vector in n dimensional space, 

where each dimension reflects decreasing extents of variance between the samples. The 

x, y, z… coordinates for each sample in the new space are called the scores for that 

sample, and the score values along each axis reflect the extent to that the samples differ 

along the variance expressed by that axis. The extent of variance along each principal 

component axis is the Eigenvalue for that axis. 

The above example presents what is generally called eigenvalue value 

decomposition (EVD). We have used it as an example, along with MOT, in order to 

allow the reader to better conceptualize the underlying mechanics of PCA. However this 

is, in fact, only one approach to solve the Eigenvalues and is limited by requiring a square 

matrix. While this is a legitimate method of calculating the Eigenvalues, it is very 

computationally taxing A more generalized approach to the problem would be singular 

value decomposition (SVD).  PCA can be thought of in the general form presented in 

Equation 4.6 where T and P’ are matrices that capture the underlying data pattern of X, 

that is in this case the covariance matrix  (Wold et al. 1987).  

 

Equation 4.6               

 

For the purposes of PCA, T is a matrix where the columns contain the factor 

scores for each component and the P’ is a matrix where the rows contain the loading 
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scores.  Fundamentally the factor scores are the coordinates of each sample and loading 

scores are the coordinates of each variable in a data reduced space. (Wall et al., 2003; 

Klema and Laub, 1980)  SVD has the form presented in Equation 4.7.  In this case the 

columns of V’ are termed the right singular vectors and are equivalent to the columns in 

P. U is  

 

Equation 4.7    

 

equivalent to T except that the length of the vectors have been normalized to 1.  The 

diagonal elements of D are the singular values of X’X that are the square roots of the 

Eigenvalues of X’X.  The example used by MOT solves for V’ and S by diagonalizing 

X’X  and then solving for U.  

Another alternative to EVD for solving for Eigenvectors is Nonlinear Iterative 

Partial Least Squares (NIPALS). In this method possible loading and score values are set 

initially and iteratively modified until convergence between the previous values and new 

values is attained. (Wold et al., 31 and Risvik, 2007) 

More simply, PCA rotates and combines the original data such that each new 

orthogonal axis explains the most possible variance. This is referred to as a change of 

basis.  This results in the apparent shifting of the data points such that they are centered 

around the origin of each axis. It is here where the real strength of PCA arises. It is 
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generally safe to assume that the most important variables are those with the greatest 

variance. However it is not always apparent that combination of variables will yield a 

vector that explains the most variance. Furthermore, when a large data set is generated, 

such as for spectroscopic data, there is a fair amount of redundancy between variables. 

PCA fundamentally reduces the dimensionality of the data by removing redundancy and 

finding collinear variables and expressing them across a single axis. In essence, PCA 

finds the axis that best fits an n dimensional space of data and projects those axes in a 

simpler space (Lavine and Rayens, 2009).   

The Eigenvectors of any matrix, not just with PCA, can be viewed as a 

“coordinate system” that is optimal for the problem under consideration. For example, if 

one does PCA for a set of x,y data points, the Eigenvectors correspond to two lines in the 

x,y plane.  Along one of these lines, the variance of the data points is maximized (the data 

exhibits a wide range of values along that axis), while the other axis has the opposite 

behavior (the data exhibits a narrow range of values).  While it can be quite easy to see 

visually what these axes are in a two-dimensional case, the generalization to more 

dimensions is less easily visualized, but no less straightforwardly amenable to 

computation. 

Discriminant analysis (DA) is another Eigenvalue problem, and has many features 

in common with PCA.  The main difference between DA and PCA is that with PCA there 

is no bias placed on finding the greatest variance between samples.  This means that 

replicates of the same analyte are treated identically as different sets of analytes.  

Therefore, clustering of the samples in PCA means that the variance between these 
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samples is indeed smaller than the variance with other samples.  In DA, the mathematics 

place a bias toward clustering repetitive samples (called a class) and separating them 

from repetitions of a different set of analytes (a different class).  

Unlike PCA, variance is not the parameter used to distinguish data in DA. Instead, 

DA fundamentally finds the best way to organize data in order to maximize class 

discrimination.  For this manuscript, the percent captured values for the PCA plots 

represent variance captured, and the percent captured values for the DA plots is 

discrimination captured.  An important distinction that needs to be made is the precise 

form of DA used here.  For the sake of simplicity, the more general form of DA called 

canonical discriminant analysis (CDA) will be used here.  In the most basic sense, CDA 

identifies some combination of variables that maximize the Euclidean distance between 

groups while minimizing the distance between members of a group.  There are other 

forms of discriminant analysis such as linear discriminant analysis (LDA) and quadratic 

discriminant analysis (QDA).  LDA differs from CDA in that rather than relying on both 

within and between group data to classify data, LDA uses distance from a centroid to 

classify data (Lavine, and Rayens, 2009).  QDA is a more complex application of the 

likelihood classification.  However, rather than finding the linear combination of 

variables it identifies a quadratic surface that minimizes misclassifications (Friedman, 

1989).  CDA is a function that maximizes the difference between the means of differing 

classes, while minimizing the difference within a class.  This is done by defining the 

scatter within a class and the scatter between the classes.  Scatter is defined by matrices 

that ar1e analogous in form to the covariance matrices used in PCA (Fukunaga, 1990). 
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Importantly, two matrices are used in CDA, one for between class scatter (SB) and one 

for within class scatter (SW) (i.e. variance).  Given this, the Eigenvalue problem is 

formulated as in Equation 4.6.  The inverse of the within class scatter matrix multiplied 

by the between class scatter matrix acts to maximize between class scatter while 

minimizing within class scatter. The Eigenvectors (w) represent weighted combinations 

of scatter within and between the samples, while the Eigenvalues (J) represent the extent 

that scatter is best maximized between classes and minimized within classes.  The J 

values are analogous to the extent of variance Eigenvalues found in PCA.  Because DA 

has a bias built into the mathematical approach, it is called a “supervised” routine while 

PCA is “unsupervised”.  Consequently, due to the supervised nature of DA, the resulting 

plots often show better analyte classification than a corresponding PCA plot.    

 

Equation 4.6   

 

 

Now that a summary of the Schrödinger equation and PCA/DA Eigenvalue 

problems has been given, we can draw an analogy between the results of the two kinds of 

problems.  The Eigenvectors of the Schrödinger equation are linear combinations of 

atomic orbitals we interpret as molecular orbitals.  Each value of the Eigenvector is the 

coefficient of the atomic orbital that contributes to the molecular orbital, and it acts as a 

weighting factor for that atomic orbital.  Each element in an Eigenvector for a particular 

Eigenvalue from PCA is the coordinate position of individual samples along different 
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axes in the n-dimensional space.  The dimensions in this new space are orthogonal, and 

are referred to as PC 1, 2, …n, where each PC is associated with an Eigenvalue.  The 

Eigenvalues from the Schrödinger equation are those associated with the HOMO and 

LUMO, meaning the orbitals near the middle of the energies.  In PCA, the Eigenvalues 

are the extent of variance carried by each axis in the n-dimensional space. It is the first 

few principle coordinates that are the most important because they reflect the greatest 

amount of variance between the samples. 

In a PCA or DA plot resulting from differential sensing, the response from 

multiple receptors can contribute to each axis in the plot, although some receptors often 

have a much larger contribution to a particular axis than others.  The power of PCA and 

DA becomes most apparent in the cases that have data sets with a large number of 

receptors, spectral data, or other experimental data where it is nearly impossible to 

comprehensively evaluate the raw data with a few simple calibration curves. 

It is important to note that PCA and DA are not the only algorithms used for 

pattern recognition. Factor analysis (FA), partial least squares (PLS), maximum 

redundancy analysis (MRA), and hierarchical cluster analysis (HCA) are examples of 

alternatives (Molinowski, 2002; Bratchell, 1987; Wold, 1973).  For example, when there 

are many more variables than samples, DA in particular, may not perform well due to an 

issue called “over-fitting” which will be discussed later in this manuscript.   

As already mentioned, PCA and DA are common techniques employed to analyze 

the data that result from differential sensing.  The receptors used in this technique are 

commonly referred to as differential, or cross-reactive.  The terms are often synonymous, 
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and we use them in this manner.  However, for purposes of this discussion, we give them 

slightly different definitions.  Differential receptors simply show distinct individual 

responses to the analytes.  Cross-reactive receptors actually display trend differences in 

their affinities to the analytes, meaning that some receptors have higher affinities to some 

analytes, while the corresponding cross-reactive receptors prefer different analytes.  This 

means that cross-reactive receptors are a subset of differential receptors.  Finally, given 

these definitions, highly selective receptors are clearly both cross-reactive and 

differential. 

3. Model Setup 

In order to illustrate the use of PCA and DA in differential sensing we will present 

a variety of artificial data sets that show behavior similar to what one might see in an 

array-sensing experiment. These data sets were created by the authors to display a few 

typical behaviors observed in these types of analysis.  The analyses in this manuscript are 

model examples, carried out to illuminate certain points. A set of five hosts (receptors) 

and five guests (analytes or mixtures) a were generated where each host-guest 

measurement is modeled as if it was repeated five times.  The measurements are 

host:guest binding constants (Ka values), although they could represent any kind of data 

such as spectral intensities.  However, by using Ka values the discussion naturally has 

lessons related to the selectivity of the receptors. 

For each scenario, values were selected to represent the Ka of each host:guest pair.  

For each pair, five values representing repetitions were randomly generated, following a 
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normal distribution (Samuels and Witmer, 2003). This distribution was set such that the 

mean of the values was equal to the Ka value selected to represent the host:guest pair.  

The 0.5 to 5 standard deviations (σ) of the distributions of Ka values for each host:guest 

pair were used in order to simulate a range of variances within repetitions.  For each 

scenario presented we have included a summary of the mean Ka values used and the σ-

value used. 

 

4. Exploration of PCA and DA  

4.1 Lock-and-Key Array versus Cross-Reactive Array  

Most times when examining DA and PCA score plots, receptor performance may not be 

entirely known.  However, careful examination of the plot results can shed some light on 

how a receptor is performing.  Consider a situation in that there is a panel of antibody-

like receptors that are highly selective, each to different individual guests (Figure 4.1) 

and a very low σ relative to the Ka values.  The resulting score plot shows that each guest 

occupies a distinct location in the PCA plot.  G1, G3, and G4 are discriminated primarily 

across the F1 axis (principal component 1, PC1) while G2, and G5 are discriminated 

primarily across the F3 axis (principal component 3, PC3).  (Note that F1 was plotted 

versus F3. This was chosen in order to better display the visual separation of each of the 

guests. We will be discussing methods and rationale for improving visual discrimination 

later in this PC1) It is important to note that approximately 50% of the variance is found 

in the F2, F4, and F5 axes.  In this particular case all of the guests can be visually 
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discriminated by two axes, though there is still significant discrimination in the remaining 

axes. 

 Similar results can be achieved through lower selectivity but fully cross-reactive 

receptors (Figure 4.2).  Figure 4.2 represents a plot in that each receptor is cross-reactive 

with all other receptors.  In this case, because each of the host:guest pairs behaves in a 

unique manner each guest is separated from the others in both the F1 and F2 axes.  From 

this example, it seems that there is very little difference in using a panel of receptors that  

have antibody-like behavior as opposed to cross-reactive behavior, since discrimination 

of analytes can be effectively achieved in both circumstances.  In these models, each host 

responds in an unambiguously different manner to all the guests.  This situation is ideal 

for optimal discrimination.  However, quality discrimination can still be achieved with 

small differences between responses to guests for an array of hosts, as is the case in most 

cross-reactive arrays, since each receptor behaves in a sufficiently unique manner.  These 

preliminary conclusions support the notion for utilizing cross-reactive arrays, that 

generally require far less synthetic effort to develop than antibody-like highly selective 

receptors. 
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Figure 4.1. A) PCA plot of the antibody-like scenario and mean Ka values for the 
“antibody like” scenario.  In this example, each host:guest behaves in a 
very specific manner.  For example, Guest 1 (G1) and Host 1 (H1) have a 
very high affinity for each other relative to the other host:guest pairs (0.5 
standard deviations). 

 

 

 H1 H2 H3 H4 H5 

G1 1000 10 10 10 10 

G2 10 1000 10 10 10 

G3 10 10 1000 10 10 

G4 10 10 10 1000 10 

G5 10 10 10 10 1000 
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Figure 4.2. PCA plot of the cross-reactive scenario and mean Ka values for the cross-
reactive scenario. In this example, each host:guest behaves in a very 
unique  manner.  For example, Guest 1 (G1) and Host 1 (H1) have lower 
affinity for each other than the affinity of H1 for any of the other guests, 
whereas Host 2 (H2) has the lowest affinity for G2 relative to the other 
host:guest pairs (2 standard deviations). 

 

 H1 H2 H3 H4 H5 

G1 2.5 10 18 13 8 

G2 8 2.5 22 18 13 

G3 13 10 2.5 22 18 

G4 18 10 8 2.5 22 

G5 22 10 13 8 2.5 
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4.2 Choosing the Best Number of Hosts for an Array 

Care must be taken in selecting the correct number of hosts, be it high selectivity or 

cross-reactive array.  Studying the number of receptors needed for discrimination may be 

helpful in such a case.    Figure 4.3 portrays the same data as Figure 4.1 but using four 

hosts instead of five.  This is an example where exploring the number of receptors used 

explain the similarities between the two figures. The analysis reveals that a lack of a 

signal can be just as important as a measurable single in an array setting. In Figure 4.3, 

guest 3 does not respond to any of the hosts. Its behavior is therefore different than the 

other guests and can easily be separated from the remaining guests.  Essentially, in arrays 

where there is high selectivity, fewer hosts can be used to achieve optimal discrimination 

in many cases.  This can be thought of in terms of a combination of 1s and 0s.  An 

antibody-like sensor can be considered “perfect,” when presented with its target, it has 

maximum signal and can be assigned a 1. When presented with a non-target analyte it has 

no signal and can be assigned a 0. A combination of 3 receptors could have the values 

(1,1,1), (1,1,0), (1,0,1), (0,1,1), (1,0,0), (0,1,0), (0,0,1) or (0,0,0) giving eight unique 

combination. However the number of receptors needed to generate all these unique 

patterns is only 3 not 8.  Cross-reactive arrays are not constrained by 1 and 0 values. 

Rather, they are limited only by their ability to create a reproducible and sufficiently 

unique pattern of binding for each target.  
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Figure 4.3. PCA plot of antibody-like scenario with four hosts and mean Ka 
values. This is the same data sets as presented in Figure 4.1, 
however one of the hosts has been omitted (0.5 standard 
deviations). 

 

 

 H1 H2 H4 H5 

G1 1000 10 10 10 

G2 10 1000 10 10 

G3 10 10 10 10 

G4 10 10 1000 10 

G5 10 10 10 1000 

Observations (axes PC1 and PC2: 63.94%) 
Four Hosts 
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When a single host is removed from the cross-reactive data set in Figure 4.2, the score 

plot still retains a high level of discrimination (Figure 4.4).  However, Guests 2 and 4 

begin to show overlap in a two-dimensional plot.  This is due to the lack of a sufficient 

number of hosts behaving in a distinctly unique manner.  Also, in the cross-reactive case 

an increase can be seen in the overall variance of PC1 and PC2, from 69.74% to 75.17%.  

This is due to the properties of the data set itself.  In x,y plots of multivariate data, there is 

variance found in each of the variables but only two dimensions  are  displayed.   

Therefore, in  a  five  variable  array,  the  variance is distributed across five dimensions.  

When a variable is removed from the system, there are fewer dimensions across that the 

variance can be distributed. 
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Figure 4.4. PCA plot of cross- reactive scenario with four hosts and mean Ka values. 

This is the same data set as presented in Figure 4.2, however, one of the 
hosts has been omitted (2 standard deviations). 

 

 

 

 H1 H2 H3 H4 

G1 2.5 22 18 13 

G2 8 2.5 22 18 

G3 13 8 2.5 22 

G4 18 13 8 2.5 

G5 22 18 13 8 

Observations (axes PC1 and PC2: 
75.17%) 
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4.3 When to Add Hosts to an Array 

An array where every host:guest pair generates a signal only marginally 

distinguishable from background noise occurs when different host:guest pair shows very 

similar affinities to analytes, yet the variance in the signal results in some overlap 

between signal derived from back grand and signal derived from the specific target. In 

Figure 4.5 each host has only one “best” guest but there is significant overlap between the 

“best” values and the non-specific interactions.  This can be considered analogous to the 

antibody-like scenario, except with much lower selectivity.  The following section will 

explore a similar situation found in cross-reactive systems where the affinity for each 

host:guest pair varies only slightly.  In Figure 4.5 clustering of the various guests may 

roughly exist, but the groups are not readily distinguishable.  This is due to a high 

standard deviation between the repetitions, relative to the magnitude of the Ka values for 

all the guest groups.  Figure 4.5 is the PCA plot of the data, that appears as total scatter. 

However, even with DA (Figure 4.6), the method falls short of completely discriminating 

the analyte classes. One possible reason for this lack of discrimination has to do with 

what characteristics are being used to classify the data.  
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Figure 4.5. A) PCA plot of overlapping data set with 5 hosts and mean Ka values (x 
100) for each host guest pair (5 standard deviations).  

 

As is typical with PCA, it is assumed that variance between groups of guests is 

sufficient to categorize data. DA on the other hand requires information about class 

membership to group the data.  This situation is hinted at by the difference in variance 

 
 H1 H2 H3 H4 H5 

G1 10 8 8 8 10 

G2 8 10 8 8 8 

G3 8 8 10 8 8 

G4 8 8 8 10 8 

G5 8 8 8 8 10 

Observations (axes PC1 and PC2: 50.67%) 
Five Hosts 
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captured by the PCA in Figure 4.5 and the percent of discrimination captured by the DA 

in Figure 4.6.  If the amount of variance captured by the first few PCs in PCA is  

 

 

 

 

 

 

 

 

 

 

Figure 4.6. DA plot overlapping data set with 5 hosts. 
 

 

low then it is possible that variance is not a good classifier. However, this leads to the 

debate of how many components are appropriate to include in a model. There is some 

sentiment a model with many components each capturing a small amount of variance is 

better that a model with few components each capturing amlarge amount of variance 

(Janzen, 2006).  The counter point to this is that by including many components in the 

analysis, PCA’s main objective to reduce the dimensionality is neglected. To some 

extent, this is a philosophical question we will not be exploring here. However, careful 

Observations (axes F1 and F2: 84.21%) 
Five Hosts 
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consideration of what exactly a researcher wishes to achieve as well as how the data is 

expected to behave may allow one to decide what the best model approach may be.  

While the DA appears to be superior to the PCA in 4.5 due the increased amount 

of discrimination captured, it likely will perform poorly as a predictive model. This is due 

to the model relying on all data points in order to create the classifier model. A leave-

one-out cross validation excludes each data point iteratively and the analysis is performed 

without the omitted point. Each new model is then used to predict the class of the 

excluded point. When this sort of analysis is performed on a data set where the magnitude 

of the variance is such that each sample is essential to discrimination one can see that the 

model loses its predictive power. 

In cases like this, adding additional hosts can improve the data discrimination by 

reinforcing patterns in the data sets that are difficult to observe.  Figures 4.7 and 4.8 show 

the PCA and DA plots obtained when ten hosts are considered, rather than the five used 

for Figures 4.5 and 4.6.  The five new hosts were chosen to respond identically to the first 

five.  This could represent additional replicates in the system, or additional hosts where 

the deviation from other hosts is subtle.  In Figure 4.7 we see that each guest is more 

localized in the PCA plot, though overlap still exists.  In the DA plot (Figure 4.8), there 

exists a much tighter clustering of the guests.  The improvement can be further supported 

by considering the jack-knife analysis for the five host data set DA plot (76%), and the 

improved jack-knife analysis for the ten host data set DA plot (84%).  

The reason additional hosts improved the discriminatory power of this system is 

that each host responds to the guests in a specific manner that is not easily observed due  
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Figure 4.7. PCA plot of overlapping data set with ten hosts.  
 

 

 
 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 

G1 10 8 8 8 10 8 8 8 8 8 

G2 8 10 8 8 8 10 8 8 8 8 

G3 8 8 10 8 8 8 10 8 8 8 

G4 8 8 8 10 8 8 8 10 8 8 

G5 8 8 8 8 10 8 8 8 10 8 

Observations (axes PC1 and PC2: 42.41%) 
Ten Hosts 
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Figure 4.8. LDA plot of over lapping data set with ten hosts.   

 

to a high amount of noise in the system.  In such circumstances, differentiation of 

analytes can be achieved by adding additional hosts that either reinforce observed 

patterns by adding additional hosts with similar behavior (as the example presented here 

does), or by adding additional hosts with wholly unique behaviour. This situation, where 

adding hosts to a high noise system increases the discriminatory power of an array, is 

called co-linearity (Bajaj at al., 2010). 

When this data set is expanded to 20 hosts (Figure 4.9) - a situation is created were there 

are many more hosts than guests and the amount of variance captured across the first few 

Observations (axes F1 and F2: 79.70%) 
Ten Hosts 
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PCs decreases. This is not unexpected, as each PC captures a portion of the variance; as 

the number of PCs increases the amount of variance captured by each PC decreases.  

Visual examination of the first 2 PCs appears to show superior grouping of the  samples.  

However  when  a  validation  method is  applied is it is  found that  the  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9. PCA of overlapping data with 20 hosts. The data has been “over-fitted”. 
 

 

model has very poor predictive power, in this case the jack-knife analysis yields a 12% 

correct classification rate.  

This is a situation referred to as over-fitting and is a common trap many 

researchers fall into. Even in the most random data set, it is possible to find an equation 
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that can perfectly group the data by whatever parameter the researcher wants. If too much 

data is used, however, the equation is only relevant to the presently available data. Any 

new data is not likely to follow the lines of discrimination, resulting in a model that only 

predicts itself. When examining the quality of a PCA or DA one must be cognizant that 

adding more variables can appear to make a better fitting model while reducing the 

predictive power of the model (Tobias, 1995).   

 

4.4 High Dimensionality in an Array and Determining Host Performance 

High dimensionality in PCA and DA plots is often a goal for many authors during 

the statistical analysis of their data (Palacioet al., 2007; Zhang and Suslick, 2007; Suslick, 

2004; Suslick and Rakow, 2004).  High dimensionality is defined in PCA and DA as a 

large number of principal components or discriminating axes, all of that carry a 

significant extent of the total differentiation.  High dimensionality is desirable in cases 

where very similar analytes need to be differentiated.  However, in many circumstances 

where high dimensionality exists, a two or three-dimensional plot, while mathematically 

aiding in the differentiation of analytes, may not lead to an optimal pictorial 

representation of discriminated data.  High dimensionality, and thus more principal 

components or discriminating axes, is obtained by adding more cross-reactive or highly 

selective receptors to an array.  This makes sense, as the number of discriminating axes 

possible in a PCA or DA plot is directly correlated to the number of receptor variables.  

The math behind the decomposition of a data set in PCA into its corresponding 

Eigenvectors necessitates that the number of Eigenvectors that emerge from the 
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calculation be equal to the number of receptors in the array or the number of samples, 

whichever of these two numbers is smaller.  In most circumstances of differential 

sensing, the number of receptors in an array will be smaller than the number of analytes, 

and thus the number of Eigenvectors that arise in PCA will be equal to the number of 

receptors (Molinowski, 2002).  Similarly, the number of Eigenvectors that can emerge 

from a DA is equal to the number of classes minus one (Johnson, and Wichern, 1992). 

However, this correlation between the number of Eigenvectors and number of receptors 

often leads to an incorrect conclusion: Each discriminating axis represents one receptor 

(variable).  To further understand why this conclusion is a misconception, we must turn 

to loading plots, which are simultaneously generated when PCA and DA plots are 

produced.  Loading plots show the influence that each receptor, or variable, has on the 

corresponding discriminating axis.  Each receptor is represented by a vector in a loading 

plot.  The x,y coordinates (or higher coordinates) of each vector indicate the extent to that 

each receptor contributes to a discriminating axis.  Vectors of (1,0) or (1,0) most 

influence the discrimination of analytes along the x-axis (F1), with the vector (-1,0) best 

discriminating analytes on the left side of F1 and vector (1,0) best discriminating analytes 

on the right side of F1.  Conversely, vectors (0,-1) or (0,1) most influence the lower half 

of the y-axis or the upper half of the y-axis, respectively.  Receptors with vectors of 

intermediary x,y values indicate contributions to both axes.  Thus, the loading plot is used 

to explore which receptors or variables are most useful for discrimination, thus aiding in 

determining receptor performance. 
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Similar to a loading plot is a biplot.  Biplots are most commonly seen in 

conjunction with PCA plots, where the loading plot is superimposed onto its 

corresponding PCA plot.  In these plots, the receptors that most influence a particular 

data point are located close in vector space to the data point.  The proximity of a receptor 

vector endpoint to a data point allows further analysis of the array system to determine 

whether the receptor is important for discriminating that particular analyte.The loading 

plot and biplots make it clear that the differing principal components can be made up 

from several responses of receptors. Both loading plots and biplots are important plots to 

analyze once PCA or DA results have been generated.  They allow the user to probe the 

importance of the receptors in an array, that in turn provides information to improve and 

modify the array to obtain the best results. The DA plot in Figure 4.10 was derived from 

an array consisting of 15 receptors, and the mean Ka values used for this simulation. 

These values were chosen to maximize the dissimilarity between the behavior of each 

host:guest interaction in order to observe how each receptor can contribute to multiple 

axes.  In the loading plot (Figure 4.11), we see that the first axis (F1) discriminates 

analytes based on the  
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Figure 4.10. DA plot of 15 hosts with co-linear variable and high variance and the 

mean Ka values for unique host behavior data set (2 standard deviations). 
 

 

 

 

 

 

 

 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 

G1 3 23 18 13 8 3 13 13 8 23 23 23 18 3 3 

G2 8 3 23 18 13 13 18 8 3 13 13 8 3 8 8 

G3 13 8 3 23 18 18 8 3 13 3 18 28 23 23 18 

G4 18 13 8 3 23 23 23 18 23 8 8 13 13 13 13 

G5 23 18 13 8 3 8 3 13 18 18 3 3 8 18 23 

Observations (axes F1 and F2: 85.61%) 
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Figure 4.11. Loading plot of the DA plot in 6A, identifying the contribution of each 

host to an axis. 
 
 

data from all the receptors, except H2 that shows a value close to zero as an x-component 

in its line ending vector.  The second axis (F2) discriminates analytes based on the data 

from nearly all the receptors, because most receptors contain a non-zero value as a y-

component in their line ending vector (H3 and H6 are near zero).  Receptors H2, H8, 

H10, and H4 contribute the most to the discrimination seen with the F2 axis because the 

absolute value of their y-component is larger than the absolute value of the y-vector 

components of the other receptors.  Therefore, each discriminating axis contains 

contributions from multiple variables. 
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 Care must be taken not to rely on loading plots and biplots exclusively for 

receptor selection. While it is likely that H2 and H8 are the primary contributors to the 

position of G4 in Figure 4.10, the precise relationships between the host’s influence on 

the guest’s position cannot be determined. Biplots are useful tools for approximating the 

host’s influence however, for a more exact measure and for optimal variable selection A 

factor analysis could be performed. This method uses the loadings and biplots and seen in 

PCA, and applies a set of rules and criterions in order to quantify the relative significance 

each factor has on the data structure of the model (Molinowski, 2002).  This gives a 

quantitative estimation of the importance of each factor. However, in many cases PCA 

will yield equivalent results to a factor analysis (Fabrigar, 1999). 

 The misconception that each discriminating axis represents one receptor in an 

array is most likely a result of the direct correlation seen between the number of receptors 

(variables) in an array and the number of discriminating axes obtained.   Another reason 

for this misunderstanding may be that in high dimensionality systems with a large 

number of receptors, it is often the case that only a few of the receptors have pertinent 

contribution to a particular discriminating axis, while the other variables in the array have 

a very small contribution that can be considered negligible. 

 

 4.5 Obtaining the Best Visually Representative Plot 

After running PCA or DA algorithms, many statistical programs automatically 

generate a two-dimensional plot using the two discriminating axes that contain the 

maximum variance or discrimination.  Oftentimes, this leads to a satisfactory plot, 
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however, there are circumstances where this automatically generated two-dimensional 

PCA or DA plot may not be the best visual representation of the data.  In cases such as 

this, it becomes important to consider all of the components computed by the statistical 

analysis program.  Figure 4.12 shows an example where a two-dimensional  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12. PCA plot with a large variance data set and the mean Ka values of 
inconsistent variance data (Data for G1 contains 0..5 standard deviations, 
data for G2-G5 with Ka values of 10 contains 0.5 standard deviations, data 
for G2-G5 with Ka values of 20 contains 1 standard deviation, data for G2-
G5 with Ka values of 30 contains 1.5 standard deviations, data for G2-G5 
with Ka values of 40 contains 2 standard deviations). 

 H1 H2 H3 H4 H5 

G1 10 10 10 10 10 

G2 9000 800 850 650 1000 

G3 8500 700 800 550 750 

G4 7000 500 750 450 650 

G5 6000 400 700 350 400 

Observations (axes PC1 and PC2: 64.67%) 
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plot of the data shows considerable overlap between the analytes G1 and G5.  The Ka and 

σ values employed in this example (presented in Figure 4.12) were chosen to generate 

this coincidental overlap.  

Once we examine the three-dimensional plot, that takes into account a third 

discriminating component (Figure 4.13), we see excellent discrimination of all the  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13. Three-dimensional PCA plot of the data set. 
 

 

Observations (axes F1, F2, and F3: 
87.3%) 
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analytes.  If any of the other discriminating axes calculated by the PCA or DA algorithms 

hold a substantial discriminating percentage (i.e. >5%), it would be beneficial to further 

examine those axes in addition to the two greatest discriminatory axes.  For instance, 

there may be circumstances where a third and fourth discriminating components are 

important to differentiate a data set.  In this case, an examination of the plots generated 

from all combinations of the first through fourth axes may be necessary (i.e. compare 

plots – 1vs.2, 1vs.3, 1vs.4, 2vs.3, 2vs.4).  Thus, careful consideration of all components 

may lead to the best visual representation of differentiated data. 

To specifically optimize PCA plots, there exist rotation methods that often aid in 

simplifying the discriminating axes for easier interpretation.  Although there are several 

methods, varimax rotation introduced by Kaiser in 1958 is the most common.  Varimax 

works by searching for a rotation of the original discriminating axes that maximizes the 

variance of the squared loading scores (Kaiser, 1958).  The advantage of utilizing 

varimax is that the new plot may be easier to analyse because each axis represents a 

response from one receptor, or only a few receptors (Abdi, 2003).  This tends to lead to 

loading scores (i.e. placements within the PCA plot) that have a wide range of values and 

emphasize clustering (Molinowski, 2002).  

 

4.6 Including Blank or Control Responses in an Array 

Another factor that should be considered when selecting data to be discriminated by PCA 

or DA is whether to include blank or control responses in the data set.  Researchers are 

often eager to show the excellent response that their receptor array shows towards the 
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desired analytes versus a blank or control sample.  However, inclusion of blank or control 

data within the data set evaluated by PCA or DA can lead to artificial discrimination in 

the plot.  The generated plot becomes skewed from the blank or control sample data.  

Take the following example (Figure 4.14), where G1 represents blank or control samples, 

which do not respond to the receptor array.  In this example, the F1 discrimination is 

dominated by the response difference between the blank/control samples and the analytes 

being tested.  Here, a large fraction of the F2 axis instead becomes the differentiation that 

is seen within the analytes tested.  Once we remove the blank/control from our data set, 

the plot shown in Figure 4.15 is generated. It is not necessarily incorrect to include the 

blank or control  in the data set being evaluated by  PCA or DA.   If the researcher’s  

primary goal is to differentiate non-responsive samples (i.e. blanks or controls) from 

response samples, then including the blank/controls in the data set is appropriate. 

However, usually the goal is to differentiate analytes, and thus, an omission of the 

blank/control samples from the PCA or DA data set is generally most sensible. 
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Figure 4.14. A) DA plot of low variance data with blank included in the data set. And 
the mean Ka values of low variance data (0.5 standard deviations). 

 

 

 

 

 H1 H2 H3 H4 H5 

G1 10 10 10 10 10 

G2 9000 800 850 650 1000 

G3 8500 700 800 550 750 

G4 7000 500 750 450 650 

G5 6000 400 700 350 400 

Observations (axes F1 and F2: 97.20%) 
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Figure 4.15. DA plot with blank excluded from data set. 

 

4.7 Circumstances When Arrays May Not Be Necessary 

PCA and DA find their greatest utility in circumstances where data is obtained 

from cross-reactive receptors.  However, in cases where high cross-reactivity is not seen 

within receptors, repetitive data that does not assist in the differentiation of the analytes 

may exist.  In these types of circumstances, an array of receptors may not be necessary. 

Instead, one single receptor is sufficient for analyte discrimination.  Take for example a 

case where there are several receptors that have nearly identical signal response trends, 

with only slight differences between receptors in their intensity of overall response to the 

set of analytes (Figure 4.16).  We see that the corresponding PCA and DA plots (Figures 

4.16 and 4.17) for this example show the data tightly  

Observations (axes F1 and F2: 99.00%) 
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Figure 4.16. A PCA plot of data where an array is not needed and the mean Ka 
values for a plot where an array is not needed (0.5 standard 
deviations). 

 

 

 

 

 

 H1 H2 H3 H4 H5 

G1 9500 10000 9000 8000 11000 

G2 9000 8500 8500 6000 10000 

G3 8500 7500 8000 5000 7500 

G4 7000 4500 7500 4500 6000 

G5 5500 4000 7000 3500 4000 
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Figure 4.17  An LDA plot of data where an array is not needed.  

 

clustered according to analyte identity along the F1 axis. Variance of the F2 axis, 

however, is misleading as the variance arises solely from the noise found within analyte  

groupings for the array.  In this case, both of these plots would be better represented in a 

two dimensional graph (analyte vs. signal) plotted from the data obtained with only one 

of the receptors from the original array.  Thus, the use of an array and corresponding 

multivariate statistical analysis tools are both unnecessary here.  In circumstances like 

this, one receptor is sufficient for the purpose of analyte differentiation.  To prevent such 

a case where unnecessary work and time have been spent planning, engineering, and 

executing an array when only one receptor from the array is needed to accomplish the 

Observations (axes F1 and F2: 98.95%) 
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desired goal of analyte differentiation, it is prudent to always be observant for arrays in 

that receptors give highly similar response trends. 

 

 
5 Practical Application of PCA and DA 

5.1 Using PCA and DA Together as Validation Techniques 

PCA and DA are both methods that are best used in concert  to optimize data 

analysis.  Typically, PCA is run first to assist in uncovering general trends in the data set.  

Once PCA has been run, a DA is run to specifically investigate the classification and 

grouping trends present in the data set.  Although sometimes the graphs obtained for a 

data set with PCA and DA look similar, occasionally the two methods can identify 

different patterns in the data set.  For this reason, we generally recommend using both of 

these methods to simultaneously explore the outcomes of these analyses for trends. 

As already mentioned, it is often very common for a DA plot to appear to have 

better discrimination than its corresponding PCA plot. Therefore, as we have mentioned a 

few times, validation techniques are simultaneously run with trained models to allow 

users to evaluate the validity of the model for their data set.  A common initial validation 

technique for DA is the jack-knife analysis, also known as the “leave-one-out” analysis.  

In this validation technique, data for one or several samples are removed from the data set 

and a new model is constructed.  The classification of this removed analyte is then 

estimated from the new model and compared to its previous classification.  This entire 
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process is completed with every analyte in the data set, and the resulting number is the 

percentage of classifications that were correctly identified (Molinowski, 2002). 

In addition to validation techniques for DA, most computer software programs 

give an option to display confidence ellipses for the grouped data.  These ellipses 

generally represent a 95% confidence limit for a specific analyte group typically 

calculated using the Hotelling T2 statistic.  These confidence ellipses help the user to 

more easily identify how close each sample is to the group centroid.  On this note, 

however, we strongly discourage the incorporation of arbitrarily drawn circles that 

encompass analyte groups, as these may be mistaken for confidence ellipses.   

A more relevant statistic for assessing the quality of classification would be the 

use of bootstrapping in order to approximate the true characteristics of the population. 

Briefly, a bootstrap method resamples data from a sample population in order to create an 

expected distribution of the data. This process is repeated, often several thousands of 

times, until a reasonably accurate distribution is generated. This allows the researcher to 

generate confidence intervals that are directly related to the true distribution of the data 

rather than make assumptions when using the T2 statistic (Wehrens et al., 2000). 

These techniques can be used to validate PCA data as well as DA data. While not 

considered a classification method independent, PCA scores can be used for 

classification.  Most software packages should support validations methods for both DA 

and PCA though the exact title may vary.  One software package may use the term 

“predictive PCA” (Eriksson et al., 2006) while another may call it “principal component 

regression”. 
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If the final goal of these methods is to classify unknown data, an external 

validation data set should be used. This is data for that the researcher knows the class 

(though if possible, blinding the experimenter should be considered) but was not used to 

develop the model. This can include data that was collected as part of an experiment but 

not used in the model, or data collected as part of another experiment. There are a variety 

of methods used to quantify the prediction power of a model using an external data set. 

The precise method used should be selected to best reflect how the model is expected to 

be used and the availability and or quality of external data (Consoni, et al., 2010)  

5.2 Pre-processing Data 

 Pre-processing data is often an important step to take into consideration before 

running multivariate analysis methods. Frequently data is preprocessed by transformation 

in order to achieve certain data structures. Linearity, for example is a requirement for 

many models; log transformation can be used to bring data into this shape. When using 

attributes of the data, such as variance, to identify differences in the data, it is often 

prudent to normalize the data to eliminate variation that does not contribute to 

classification. A common method to achieve this is called centering. This involves setting 

the mean of each variable to some constant number. Frequently this value is zero, 

however it can also be some value that has meaning for the data set. Typically, scaling is 

used in conjunction with centering to further normalize the variables to each other. With 

scaling, variables with large values are fundamentally “shrunk” while variables with 

small variables are “stretched” to put them on the same footing (Eriksson et al., 2006).  
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Without these steps it is often the case that the primary vector of variance is defined by 

the mean of the data. This limits the utility of the model by obscuring latent variables that 

are more powerful for discrimination (Han et al., 2011). 

 Another method commonly used to remove noise from data is referred to as 

smoothing. One of the simplest examples of this is the moving average. In this example a 

window of points is averaged together to generate a single point in their place. The 

window is then shifted through the entire data set point by point until each new point 

represents an average of a subset of points. This method reduces the impact of especially 

high or low values in the data set (Miller and Miller, 1998).  There are many different 

methods used to smooth and remove noise from a data set, such as the Fourier 

transformation or the Savitzky-Golay smoothing filter (Barclay et al. 1997). 

 Additional processing is typically performed as the first step of PCA or DA 

analysis. This involves transforming the initial data matrix into a covariance or a 

correlation matrix. These methods measure how different variables change with respect 

to other variables. This is the underlying structure that PCA and DA determine similarity 

or dissimilarity between samples.  In general, using a covariance matrix is considered to 

be without standardization or normalization, as it does not account for the standard 

deviation of the data. Using correlation (Pearson’s) is considered to be a normalization 

method as the standard deviation is used to scale the data between -1 and +1 (Janzen, 

2006).  Correlation methods are always applied when the data set being used contains 

different units (i.e. absorbance and fluorescence data both contained within a data set).  

There are four main methods of executing these methods: (1) covariance about the origin, 



  

151 
 

(2) covariance about the mean, (3) correlation about the origin, and (4) correlation about 

the mean.  Rozett and Peterson give a detailed analysis of these four methods and their 

advantages and disadvantages (Rozett, and McLaughlin Petersen, 1975).  In the context 

of differential sensing, covariance about the origin is the typical approach.  Using this 

pre-processing method prevents the loss of data around the zero point of the experimental 

scale and avoids the loss of information regarding the relative size and relative error 

associated with the data from different receptors (Molinowski, 2002).  

 It is important to note that because pre-processing of data can be key to obtaining 

the best differentiating model for the data set, some programs that run PCA often include 

a pre-processing step in the program calculations.  In these cases, additional pre-

processing may not be necessary for the user and the raw data can be used directly. 

6 Experimental Setup 

Lastly, it is important to note that researchers must take care in their experimental 

setup to avoid any inherent experimental design flaws that could cause artificial trends.  

Take for example, microarrays.  It has been shown in the literature that if care is not 

taken with the experimental design one can generate spurious discrimination, where the 

differences are due to artifacts, such as the days on that the arrays were performed (Chen 

et al., 2004).. Thoughtful care must be taken to ensure that uniform conditions and 

parameters are applied to each analyte.  In addition, when judging the validity of an array, 

one must also consider the differences between laboratory conditions and real-world 
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conditions.  In order to validate the performance of an array, one must try to replicate 

real-world conditions and variability. 

It is also important to note the difference between technical replicates and 

experimental replicates.  Technical replicates involve replicated data that were derived 

from using the same stock solutions.  These types of replicates help to evaluate pipetting 

accuracy and the homogeneity of the solutions or media being tested.  Experimental 

replicates require the entire experiment to be reproduced including the growing of cells 

and preparation of stock solutions.  These types of replicates are very useful in preventing 

results that discriminate data based on irrelevant variables such as the petri dish in that 

the cells were grown, the well plate in that the array was run, and the conditions in that 

the solutions or media were stored.  Not all systems may require the incorporation of both 

technical replicates and experimental replicates in a data set, but a clear understanding of 

the benefits that arise from each different type of replicate may prevent false or 

unsupported discrimination in a plot, thus avoiding incorrect conclusions. 

7 Discussion 

In this work, the use of statistical analysis tools such as DA and PCA have been 

discussed in the context of differential sensing.  Additionally, a number of key 

observations regarding the relationships between the data in an array and the 

corresponding plots have been presented through model data sets.  (1) Cross-reactive 

arrays have demonstrated high discriminatory power and are particularly advantageous 

over a lock-and-key array when differentiating similar analytes.  (2) Optimizing the 
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number of hosts based on the behavior of an array is an important aspect in designing an 

array; in particular, the presented examples have emphasized how to choose the best 

number of hosts for an array and how to recognize circumstances in that adding 

additional hosts to the array is beneficial.  (3) High dimensionality and the benefits and 

consequences of incorporating high dimensionality into an array were discussed, as well 

as the importance of investigating the data provided by loading plots and biplots for 

analyzing receptor performance.  (4) The model data sets have shown how to analyze 

PCA or DA data to obtain the best visual plot representation possible, assuming that 

visual representation is a goal, and thus learning not to rely exclusively on variance or 

differentiation as a measure for the quality of an array.  (5) The effect of blank or control 

samples on the appearance of the plot, and the circumstances when an array may not be 

necessary for differentiating purposes, were explored.  (6) Lastly, the implementation of 

PCA and DA as statistical analysis tools for working up data obtained by sensing arrays 

was discussed, highlighting the use of validation techniques to probe the effectiveness of 

the model at representing the data and learning how to avoid bias from experimental 

design. 
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