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Multilevel Modeling of Item Parameter Drift 

Item response theory (IRT) models are based, in part, on the assumption that the model 

parameters are invariant over examinee group. This assumption may be violated when examinees 

of the same ability but of different group membership (e.g., ethnicity, gender) differ in 

performance across one or more items. Such differential item functioning (DIF) across cohorts, 

groups of people categorized by time of administration, is referred to as item parameter drift 

(IPD; Goldstein, 1983). IPD reflects variability in item parameters over time, a variability which 

can lead to bias in item and person parameter estimates and instability in a measurement scale 

(Babcock & Albano, 2011). 

IPD may occur for a variety of reasons. For example, difficulty estimates may vary over 

time as item content becomes more or less relevant to the construct measured (Bock, Muraki, & 

Pfeiffenberger, 1988). Item difficulty may also change with increased item exposure, where an 

item becomes easier as it is administered more frequently. As a result, IPD can be especially 

problematic for testing programs which rely on IRT anchor-item equating to create a single 

measurement scale that spans multiple test forms and years. A variety of methods for detecting 

and assessing IPD in such situations have been demonstrated in the literature. Two studies are 

reviewed here in terms of the IPD modeling techniques used. 

Wu, Li, Ng, and Zumbo (2006) modeled IPD across three administrations of the Third 

International Mathematics and Science Study using a separate logistic regression for each item. 

Logistic regression was highlighted for its ability to include grouping variables with more than 2 

categories and interactions between groups and ability, where models of increasing complexity 

could be tested for significance sequentially against one another. Though the majority of items 

were flagged for IPD, the logistic-regression based effect sizes were found to be negligible. 
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Bock, Muraki, and Pfeiffenberger (1988) proposed a system for managing IPD and 

thereby maintaining a stable IRT scale.  Using data from five administrations of the College 

Board Physics Achievement Test, they estimated the effects of IPD using a series of time-

dependent IRT models. These included a base model, with all item parameters constant across 

examinee groups; a linear drift model, with item difficulty changing linearly across time or 

examinee groups; a quadratic drift model, with a second-order polynomial term for the item 

difficulty by group term; a model with a separate item difficulty estimated for each group; and a 

model with separate item discriminations and difficulties estimated for each group. Based on 

likelihood ratio chi-square tests, the linear item difficulty drift model fit the data best. 

These studies demonstrated two related modeling approaches that have proven to be 

useful in detecting and estimating the impact of IPD. The purpose of the present study is to build 

on this work by demonstrating a logistic regression model for estimating the impact of IPD 

within a multilevel framework. The model is formulated as a hierarchical generalized linear 

model (HGLM), one which is able to accommodate nested data structures while incorporating 

covariates at the item, person, and other grouping levels (e.g., Kamata, 2001; Pastor, 2003). The 

IPD HGLM is demonstrated using data from three administrations of a statewide survey of 

middle school and high school students. 

Method 

Data 

Item-level data were obtained from the 2004, 2007, and 2010 administrations of the 

Minnesota Student Survey. Table 1 contains sample sizes for each cohort (i.e., year). Percentages 

across grades are for each year’s cohort; thus, percentages sum to 100 across rows. Gender was 

split roughly evenly between females and males, and the mean age at each year was 14 years. 
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As the survey was administered to 6
th

, 9
th

, and 12
th

 graders, many of the participants were 

likely present across more than one administration; however, the data were deidentified, making 

it impossible to link across time by people. Similarly, many of the items were either dropped or 

revised across administrations as the survey was updated, making it impossible to link the 

majority of scales across time by items. 

Table 1 

Sample Sizes Across Grades for Each Year (Cohort) 

Year N Grade 6 Grade 9 Grade 12 

2004 19,471 34% 38% 27% 

2007 20,666 36% 37% 27% 

2010 19,863 35% 36% 29% 

 

Five survey scales contained the same item sets across all three time points. These were 

each examined in terms of relevance to educational outcomes and likelihood of containing items 

with drifting parameters. A set of eight items assessing safe/unsafe experiences at school and 

perceptions of school safety was chosen for further analysis. The eight survey items are included 

in Table 2. Students responded to the first four items using a 4-point rating scale, containing the 

options strongly agree, agree, disagree, and strongly disagree. A dichotomous yes/no response 

was given for the next three items. The eighth item included a 5-point scale, with the following 

options: 0 times, 1 time, 2 or 3 times, 4 or 5 times, and 6 or more times. The polytomous 

responses were dichotomized to a 0/1 scale, with items 1 through 4 collapsed as 1, 2 = 0 and 3, 4 

= 1, and item 8 as 1 = 0 and 2, 3, 4, 5 = 1. Item responses were then recoded so that positive 

values indicated higher safety ratings, and lower values indicated lower safety ratings.  
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Table 2 

Eight School Safety Items 

Item # Item content 

  

 How much do you agree or disagree with the following statements? 

1 I feel safe going to and from school 

2 I feel safe at school 

3 Bathrooms in this school are a safe place to be 

4 Illegal gang activity is a problem at this school 

 

  

During the last 12 months, which of the following has happened to you on school 

property? 

 Has a student… 

5 threatened you? 

6 pushed, shoved, or grabbed you? 

7 kicked, bitten, or hit you? 

 

8 During the last 12 months, how many times has someone stolen or deliberately 

damaged your property such as your car, clothing, or books on school property? 

 

 

HGLM 

The traditional Rasch (1960) model, written in terms of the probability of correct 

response to item   for person  , 

  (           )  
 

     (     )
  (1) 

can also be described as a logistic regression model, in terms of the log-odds of correct response: 

    
 

   
             (2) 

Here,     represents the log-odds that      ,    represents the difficulty of item  , and    

represents the ability or trait level for person  .     is modeled as a summation of item difficulty 

and person ability, rather than a difference, which means that the item effect is expressed as an 

item easiness, where a higher value indicates an easier item. For the survey items analyzed in this 
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study,    would be interpreted as an average log-odds of endorsement for item  , where higher 

values indicate that the item was easier to endorse. 

The HGLM extends (2) to a hierarchical framework which is applied to all     item 

responses at level 1 across   people at level 2: 

 

         ∑        

   

   

  

             

         

  

                  

(3) 

In this base model (M0), the intercept     is the easiness parameter for a selected reference item, 

here item N, and the terms     are parameters for the remaining items expressed as differences 

from the reference, where the item indicator variable        when     and        

otherwise (for additional details see Kamata, 2001; Kamata, Bauer, & Miyazaki, 2008). 

To center the scale at the mean item difficulty, or easiness, rather than the easiness of the 

reference item, the item indicators   could be grand-mean centered (Raudenbush & Bryk, 2002; 

Cheong, 2006). Since all items were seen by all people, this would be equivalent to coding 

             when     and           otherwise. Reduced to a single item q, model 

M0 then becomes 

                  (4) 

which is equivalent to the Rasch model, where the item difficulty is expressed as        , the 

mean item easiness parameter and the item q deviation from the mean. As in (3), an indicator for 

the reference item is not included in the model. However, with mean-centering, the coefficient 
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    no longer represents the easiness for the reference item. The reference item parameter must 

be obtained indirectly, either by combining the remaining item effects and the mean as described 

below, or by rerunning the model with a different item as the reference. 

In Equations (1) through (4) it is assumed that no other characteristics of item i, beside its 

difficulty, and no other trait or ability for person j, beside     are necessary to describe the 

relationship between the two in terms of the probability that      . IPD violates this 

assumption by requiring an additional parameter, a cohort effect, in the linear component 

      . In order to separate the IPD effect of cohort on an individual item from the overall 

change in safety by cohort, the intercept     is first conditioned on the cohort covariate  : 

 

         ∑        

   

   

  

                   

         

  

                  

(5) 

Reduced to a single item  , this model (M1) becomes: 

                        (6) 

With   coded as  0, 1, 2, M1 models the log-odds as a function of the grand mean log-odds 

safety rating     at cohort 0, the average change in log-odds for a 1 unit change in cohort    , the 

additional effect     associated with item  , and the safety level     for person  . Controlling for 

the average change in safety rating associated with cohort is equivalent to controlling for ability 

differences across groups in a DIF framework. The term     is referred to as a main effect for 

cohort. 
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To estimate bias introduced by IPD, model M2 includes the cohort covariate   within 

the remaining level-2 models: 

 

         ∑        

   

   

  

                   

               

  

                            

(7) 

Reduced to a single item  , M2 becomes 

                              (8) 

The term     estimates the expected linear change in item location    , on the logit metric, for a 

one point change in cohort  , after controlling for the average cohort effect    . IPD for item   

is thus expressed as a difference from the mean IPD effect, just as the item easiness for item   is 

expressed as a difference from the average easiness    . A significant cohort effect suggests that 

an item parameter is not invariant over different cohorts (see Rupp & Zumbo, 2006, for further 

discussion of IPD and IRT parameter invariance). 

Analysis 

Models M0, M1, and M2 were estimated with the statistical software HLM6, using a 

Laplace approximation to maximum likelihood. Item 8 was set as the reference item. The models 

were first compared based on fit statistics AIC, BIC, and    likelihood ratio. These served as 

omnibus tests of the appropriateness of the main effect for cohort in M1, compared to M0, and 

the item-cohort interaction terms in model M2, compared to M1. Next, individual item cohort 

effects were examined for significance. Results are reported below for each model. 
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Results 

Table 3 contains the model fit results for M0 versus M1 and M1 versus M2. The 

likelihood ratio tests were both statistically significant (M1,          , p-value < .0001; M2, 

        , p-value < .0001). AIC and BIC were smaller for the more complex models in both 

comparisons. 

Table 3 

Model Fit Results Comparing M0 and M1 

Model df AIC BIC Deviance logLik         p-value 

M0 9 1285818 1285918 1285800 -642900    

M1 10 1285555 1285665 1285535 -642767 265.42 1 < .0001 

M2 17 1285469 1285658 1285435 -642718 99.42 7 < .0001 

 

 Table 4 contains the item and item-cohort IPD effects for models M0, M1, and M2. 

Because each item indicator X was mean-centered, the following equation was used to obtain the 

non-reference item effects, i.e., the non-reference item mean log-odds: 

         
 

 
    

 

 
∑     

      

  (9) 

where     . The reference item effect was not directly estimated in M2, and was obtained by: 

         
 

 
∑   

 

   

  (10) 

Similarly, the non-reference IPD effects for M2 were obtained using 

         
 

 
    

 

 
∑     

      

  (11) 

and the reference item IPD was obtained with 
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∑   

 

   

  (12) 

Since Equations (9) and (10) exclude the cohort effects, they represent item effect 

estimates at    , and they are thus reduced for M1 and M2 in comparison to M0. Statistical 

tests for the item and item-cohort effects were not considered, since the test statistics and p-

values returned by HLM6 are designed to test for differences from zero, which were not of 

interest. Instead, the main interest was to examine the magnitude of the main effect for cohort, 

   , from M1 and M2, and the IPD effects from M2, which were obtained using Equations (11) 

and (12). As indicated by the main effects for cohort (0.17 for M1, and 0.15 for M2), students’ 

average perceived safeness at school was estimated to increase by an average of 0.17 and 0.15 

logits per survey administration. Were the cohort covariate W instead coded as year (e.g., 2004, 

2007, 2010), this would result in a logit change per year of 0.05 for M2. These estimates indicate 

that students are, on average, rating their schools as safer in later years. 

After controlling for average change in perceived school safeness, the M2 cohort effects 

(IPD) were all smaller than 0.10 in absolute value. Item easiness for items 2, 3, and 4 were 

negative and were thus estimated to decrease by 0.03, 0.05, and 0.09 logits respectively for each 

cohort. Easiness for the remaining items were estimated to increase by cohort, with the largest 

increase being 0.09 logits for item 8. Although model M2 seemed to fit the data best, according 

to the results in Table 3, the magnitudes of M2 IPD at the item level were small after controlling 

for average change in safety rating via    . 

 

 

 



Item Parameter Drift     11 

Table 4 

Estimates of Item and Cohort Effects for Models M0, M1, and M2 

 

Item Effect M0 M1 M2 

Mean     2.10 1.77 1.79 

      0.17 0.15 

1     3.87 3.54 3.52 

       0.02 

2     3.44 3.11 3.19 

       -0.03 

3     2.20 1.87 1.99 

       -0.05 

4     2.34 2.01 2.22 

       -0.09 

5     1.84 1.51 1.45 

       0.04 

6     0.54 0.21 0.18 

       0.03 

7     1.57 1.24 1.25 

       0.01 

8     0.98 0.65 0.50 

       0.09 

Note: Mean represents the intercept. Effects for the reference item 8 were not 

estimated, but were obtained using Equations (10) and (12). 

 

 

Figure 1 contains a plot of the combined M2 item difficulty and cohort effects for each 

item across cohorts 1, 2, and 3. Effects are in the log-odds or logit metric on the y-axis. The 

slopes of each line indicate a combination of the average logit change by cohort, captured by    , 

and the item IPD, captured by    . As indicated by the small IPD values in Table 4, all of the 

items appear to share the average positive slope across cohort    , with only slight deviations 

from it in    . 
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Figure 1. M2 item effects and cohort slopes. Each line represents an item and is labeled 

with the item number. 

  

Discussion 

This study demonstrates a unique application of the HGLM to a scenario where 

variability in item parameters may reduce the stability of the measurement scale. The IPD 

HGLM provides estimates of the effect of IPD on each item parameter simultaneously, while 

also controlling for person ability. Additional benefits include the potential for considering a 

third level of nesting, say, students within classrooms or districts, and other covariates and 

grouping variables, for example, to examine differential item functioning across gender or 

ethnicity and interactions between these covariates and the cohort. 

Increases in observed proportion endorsed for these survey items would indicate, overall, 

an increase in student ratings of school safety, and vice versa for decreases. Within the HGLM, 

changes in proportion endorsed, or log-odds endorsed, over time are estimated while controlling 
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for overall differences in safety ratings by cohort. As a result, the slopes represent change in 

responses to the safety items for students having the same overall safety score. These changes 

can be interpreted as bias due to student cohort. 

The model fit results support the inclusion of the interaction terms in the IPD model M2. 

However, investigation of individual effects reveal small IPD estimates. In terms of DIF, 

researchers have identified effects greater than or equal to 0.50 logits as problematic (e.g., 

Cheong, 2006). Still, small logit changes associated with cohort may deserve further 

investigation. 

A confounding factor not addressed in this study is the presence of the same students 

across cohorts. Since three years had passed between administrations it seemed that, should 

students appear in the survey sample at more than one cohort, they would likely not recall their 

previous responses. Thus, in this study responses across time were treated as if they were unique 

at the person level. An additional limitation is the small item set, which is expected to produce 

less reliable estimates of     than would a longer scale. The survey scale used in this study was 

useful for demonstration purposes. However, with educational tests, especially high-stakes ones, 

additional items should be used to provide a more comprehensive and reliable estimate of ability. 

The majority of scales in measurement applications are maintained beyond an initial test 

administration, often across multiple years and many cohorts of examinees. The IPD HGLM has 

practical applications and implications for measurement in education, in that it can be used to 

improve the stability of a measurement scale, and thus improve the accuracy of student ability 

and growth estimates and decisions used in the placement and classification of students. 
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