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Abstract

In this dissertation, we study and characterize the networks as the medium and sub-

strate for communications, interactions, and �ows by addressing various crucial problems

under the general topics of cascade, reachability, and routing. These are general problem

domains common in several applications and from a variety of networks. We address

these problems in a uni�ed way by a theoretical platform that we have developed in this

research, which we call Markov Tensor Theory.

How does a phenomena, in�uence, or a failure cascade in a network and what are

the key factors in this cascade? We study the in�uence cascade in social networks and

introduce the Heat Conduction (HC) Model which captures both social in�uence and

non-social in�uence, and extends many of the existing non-progressive models. We then

prove that selecting the optimal seed set of in�uential nodes for maximizing the in�u-

ence spread is NP-hard for HC, however, by establishing the submodularity of in�uence

spread, we tackle the in�uence maximization problem with a scalable and provably near-

optimal greedy algorithm. We also study failure cascade in inter-dependent networks

where we considered the e�ects of cascading failures both within and across di�erent

layers. In this study, we investigate how di�erent couplings (i.e., inter-dependencies)

between network elements across layers a�ect the cascading failure dynamics.

How failures or disruptions a�ect the network in terms of reachability of entities from

each other, how to identify the reachabilities e�ciently after failures, and who are the

pivotal players in the reachabilities? We develop an oracle to answer dynamic reachabil-

ities e�ciently for failure-prone networks with frequent reachability query requirement.

Founded on the concept of reachability, we also introduce and provide a formulation for

�nding articulation points, measuring network load balancing, and computing pivotality

ranking of nodes.

Once the reachabilities are determined, how to quickly and robustly route a �ow from

a part of network to the other part of network under the failures? To avoid solely

relying on the shortest path and generate alternative paths on one hand, and to correct

the degeneracy of hitting time distance on the other hand, we develop a novel routing

continuum method from shortest-path routing to all-path routing which provides both a

iv



closed form formulation for computing the continuum distances and an e�cient routing

strategy. We also devise an oracle for e�ciently answering to single-source shortest path

queries as well as �nding the replacement paths in the case of multiple failures.

For these studies, we develop Markov Tensor Theory as a platform of powerful theo-

ries and tools founded on Markov chain theory and random walk methods which supports

the general weighted and directed networks.
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Introduction
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The world is surrounded by an immense variety of complex networks; from infras-

tructure networks which are more recognizable as network, such as power grid, water

distribution network, computer networks, and Internet, to interpretative networks whose

links represent some form of relationships and interactions rather than real physical

means, such as protein-protein interaction networks in biochemistry, networks of �ights

and airports, social networks in online social media like Facebook, and cause-and-e�ect

networks in our daily life where the nodes model the events and links are the causality

relations between the events. In all these sorts of networks, the essence of network is to

play as a medium for connectivity of entities such that they can communicate and inter-

act with each other and to have units of in�uence �ow from some parts of the network

to other parts in the network.

In this dissertation, we study and characterize the networks as the medium and sub-

strate for communications, interactions, and �ows by addressing various crucial questions

and problems under the general topics of cascade, reachability, and routing : How does a

phenomena, in�uence, or a failure cascade in a network and what are the key factors in

this cascade? How failures or disruptions a�ect the network in terms of reachability of

entities from each other, how to identify the reachabilities e�ciently after failures, and

who are the pivotal players in the reachabilities? Once the reachabilties are determined,

how to quickly and robustly route a �ow from a part of network to the other part of

network under the failures?

To address such questions, we have developed Markov Tensor Theory which is a

platform of powerful theories and tools founded on Markov chain theory and random

walk methods, and supports the general weighted and directed networks.

In the following, we provide the outline of thesis: Markov Tensor Theory is brie�y dis-

cussed in 0.1 and the applications of these theories are overviewed in Sections 0.2,0.3,0.4.

The related work is presented later in each related chapter.

0.1 Markov Tensor Theory

Markov Tensor Theory is a layered-structure initiated from fundamental tensor, ad-

vanced to the next layer of avoidance fundamental tensor, and completed by the last

layer of avoidance fundamental tensor in evaporation paradigm. By adding each layer,



3

we provide more �exibility and creativity in designing the Markov chain metrics to cap-

ture and model more advanced cases in network problems. Markov Tensor Theory is

also a uni�ed basis for generating the other Markov chain metrics, including hitting time

and absorption probability, which have been also shown to be very e�ective in network

analysis. We establish the e�ectiveness of Markov Tensor Theory in �nding the most

in�uential people in a social network for in�uence maximization 0.2.1, devising an or-

acle to e�ciently answer dynamic reachability queries 0.3, computing the articulation

points of directed networks 0.3, proposing a pivotality metric to rank the importance

of nodes in reachabilities 0.3, developing a generative model for a routing continuum

from shortest path to (random walk) all path 0.4.1, and devising a distance oracle which

answers to single-source shortest path (SSSP) queries 0.4.2 and �nds replacement paths

in multiple failures e�ciently0.4.3.

Random walk methods and Markov chain, which are in close relationship, shown to

be powerful tools in many �elds from physics and chemistry to social sciences, economics,

and computer science [80, 81, 136, 1, 23]. For network analysis, too, they have shown

promises as e�ective tools [99, 29, 121, 50, 24, 79]. Chapter 1 provides the preliminary

background on Markov chain, harmonic functions, and networks.

In Chapter 2, we review certain Markov chain classical metrics, including funda-

mental matrix, hitting time, hitting cost, and hitting (absorption) probability, and their

diverse forms of de�nitions under a respective and consonant framework. We reveal and

prove theoretically the connections between these metrics as well as the connections be-

tween their di�erent de�nitions. We propose the fundamental tensor as a generalization

of fundamental matrix and show how all the mentioned metrics can be computed from

the fundamental tensor in a uni�ed way. We also review and prove a library of useful

relations, lemmas, and theorems on the Markov chain classical metrics.

In Chapter 3, we develop Markov chain avoidance metrics as an extension of Markov

chain classical metrics. While the Markov chain classical metrics are the results of

imposing only the stopping criteria, i.e. hitting the target state for the �rst time, and has

no control or conditions on the visiting states in the middle of the transition, the Markov

chain avoidance metrics provide more �exibility in the design of Markov chain and impose

new conditions on the transition to avoid (or transit) a speci�c state (or a set of states)

before the stopping criteria. In particular, we introduce avoidance fundamental tensor,
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avoidance hitting time, transit hitting time, and avoidance hitting cost and establish

that all of them can be computed from the fundamental matrices associated with the

appropriately de�ned transition probability matrices. We also introduce the evaporation

paradigm in this chapter, but defer the complete de�nition of avoidance fundamental

tensor in evaporation paradigm to Chapter 7 where the related application makes it

easier to understand the metric.

0.2 Cascade

We are witnessing cascades happening all over real networks when a phenomena is ini-

tiated from a part of network and propagates to the rest of network. This phenomena

could be a news or publicity of a product where people are in�uencing each other toward

the promotion of this cascade, or could be a failure of entities where failing in function-

ality of some entities can cause further failures in the network. In this dissertation, we

study the cascade of in�uence and the cascade of failure in networks, in the context of

social networks and cyber-physical interdependent networks respectively 0.2.10.2.2.

0.2.1 In�uence Cascade

A social network plays a key role as a medium for the spread of information, ideas,

and in�uence among its members. The In�uence maximization problem is about �nding

the most in�uential persons who can maximize the spread of in�uence in the network.

This problem has applications in viral marketing where a company may wish to spread

the publicity and eventually the adoption of a new product via the most in�uential

persons. A social network is modeled by a graph where nodes represent the users, and

edges represent relationships and interactions between the users. An in�uence cascade

over a network can be modeled by a di�usion process, and the objective of in�uence

maximization problem is to �nd k most in�uential persons as the initial adopters who

will lead to largest number of adoptions.

In Chapter 4, we �rst propose the Heat Conduction (HC) model as a di�usion pro-

cess which has favorable real-world interpretations and can capture the reversibility of

choices. We then prove that selecting the optimal seed set of in�uential nodes is NP-hard

for HC, however, by establishing the submodularity of in�uence spread, we can tackle
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the in�uence maximization problem with a scalable and provably near-optimal greedy

algorithm. In sharp contrast to the other greedy in�uence maximization methods, our

fast and e�cient C2Greedy algorithm bene�ts from two analytically computable steps:

closed-form computation for �nding the in�uence spread and the greedy seed selection.

Through extensive experiments on several and large real and synthetic networks, we

show that C2Greedy outperforms the state-of-the-art methods, under HC model, in

terms of both in�uence spread and scalability.

0.2.2 Failure Cascade

Many real-world (cyber-)physical infrastructure systems are multi-layered, consisting

of multiple inter-dependent networks/layers. Due to this interdependency, the failure

cascade can be catastrophic in an inter-dependent multi-layered system and even leads

to the break-down of the entire system. The 2003 blackout of the Italian power grid was

reportedly the result of a cascading failure due to the inter-dependency of the power

grid and the communication network that it relied on [114].

In Chapter 5, we propose a theoretical framework for studying cascading failures

in an inter-dependent multi-layered system where we consider the e�ects of cascading

failures both within and across di�erent layers. The goal of the study is to investigate

how di�erent couplings (i.e., inter-dependencies) between network elements across layers

a�ect the cascading failure dynamics. Through experiments using the proposed frame-

work, we show that under the one-to-one coupling, how nodes from two inter-dependent

networks that are coupled together play a crucial role in the �nal size of the resulting

failure cascades: coupling corresponding nodes from two networks with equal impor-

tance (i.e., �high-to-high� coupling) result in smaller failure cascades than other forms

of inter-dependence coupling such as �random� or �low-to-high� coupling. Our results

shed lights on potential strategies for mitigating cascading failures in inter-dependent

networks.

0.3 Reachability

Network reachability analysis is of great importance for several applications [129, 26,

137, 75, 104]. When it is said that node v is reachable from node u, it means that there
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exists at least one path from u to v. Reachability information of di�erent parts and

entities in the network from each other, retrieve of such information after failures and

disconnectivities in networks, and identi�cation of the key nodes who play more pivotal

roles in these reachabilities are some instances of reachability analysis which we address

in Chapter 6.

Many networks are dynamically changing and prone to failures. However, it is in-

e�cient to use the regular reachability methods in large and dense networks with high

volume of reachability queries whenever a failure occurs in the network. We present a

dynamic reachability method in the form of a pre-computed oracle which is cable of an-

swering to reachability queries e�ciently both in the case of having failures or no failure

in a general directed network. Founded on the notion of reachability, we also extend

the de�nition of articulation points to the directed networks which is originally de�ned

for undirected networks, known as cut vertices as well. We also provide a formulation

to compute the articulation points of a network and show that a similar formulation

can quantify the load balancing over nodes of a network. Load balancing is important

for network robustness against targeted attacks. Through extensive experiments, we

evaluate the load balancing in several speci�c-shaped networks and real-world networks.

We also study the additional information associated with reachability such as how

long (e.g., in terms of number of intermediate nodes to be traversed or some other

measures of time or cost) or how many possible ways (e.g., in terms of paths) for node

s to reach node t. Such information is essential for selecting paths for packet routing

or information/commodity delivery, �ow scheduling, power management, tra�c control,

load balancing and so forth in communication and computer networks, power grids

and transportation networks. We propose a pivotaility metric which characterizes how

pivotal a role that a node k or a subset of nodes S may play in the reachability from

source node s to target node t in a given network. Through simulated and real-world

network examples, we demonstrate that our metric provides a powerful ranking tool for

the nodes based on their pivotality in the reachability.
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0.4 Routing

After determining which entities are reachable from other entities, the next question is

how to route a �ow via a sequence of links and medial entities. Routing is the process

of selecting a path for a �ow in a network and is considered as one of the most essential

decision making tasks in di�erent types of networks, from computer networks to trans-

portation networks. We study the routing problem under three di�erent subjects: 1-

Routing continuum as a generative model to generate a continuum from shortest path

to (random walk) all path by tuning a control parameter, 2- Distance oracle to answer

single-source shortest path (SSSP) queries in large networks e�ciently, 3- Distance sen-

sitivity oracle to �nd the replacement paths after some failures in the network e�ciently.

Theses theories have been developed consecutively and each subject is founded up on

the previous one.

0.4.1 Routing Continuum

Shortest path is the most well known routing scheme which is desirable in many applica-

tions. However, having alternative paths is bene�cial in many cases such as congestion

reduction in data networks, avoiding complete predictability of the routing strategy, and

increasing the robustness of the network. Hence, there is a growing literature on propos-

ing strategies to generate multiple paths and avoid solely relaying on the shortest path

[17, 54, 91, 108].

In Chapter 7, we develop a routing continuum method which generates a continuum

from shortest path to all path by tuning a parameter. Our method provides a closed form

formulation for computing the distances and an e�cient routing strategy at the same

time, unlike the existing routing continuum methods that either propose a formulation

for computing the distances but no routing strategy, or suggest a routing strategy to

determine the edge usages but no e�cient formulation for computing the distances, . In

addition, it generalizes the routing for cases with multiple targets. The other advantage

of our method is building a unifying framework for network measure computations such

as centrality measures, distance measures, and topological index. This method also

proposes a novel shortest path method with the same complexity of existing shortest

path methods but with the advantage of additional features such as e�ciently providing
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a distance oracle to address SSSP and replacement path problems 0.4.20.4.3.

0.4.2 Distance Oracle

Single-source shortest path (SSSP) and all-pair shortest path (APSP) form two main

types of shortest path problems in which the shortest path from one source node to all

the other nodes and between all the pairs of nodes are computed, respectively. However,

particular applications might require something in the middle: answering several SSSP

queries but not APSP. In such cases, an algorithm with prepossessing time faster than

APSP and query time faster than SSSP is obviously superior compared with the existing

SSSP and APSP algorithms. In Chapter 8, we propose an oracle which is precomputed

once and is capable of answering to SSSP queries very e�ciently.

0.4.3 Distance Sensitivity Oracle

When a network is prone to failures, it is very expensive to compute the shortest paths

every time from scratch. Distance sensitivity oracle provides a solution for �nding the

new shortest paths faster and with lower cost by one-time pre-computation of an oracle.

However, almost all of the solutions presented in the literature are supporting only

the case of single failure and devising an e�cient oracle for the case of multiple-failure

was still considered an open problem. In Chapter 9, we present a novel oracle and

replacement path method which addresses the multiple-failure case with complexity

equal or comparable to that of single-failure case.

0.5 Summary of Contributions

• We develop a theoretical framework founded on Markov model theories and in-

troduce new Markov metrics whose e�ectiveness are demonstrated in di�erent

applications in the rest of the thesis [60, 59].

• We propose the Heat Conduction (HC) in�uence model to capture the in�uence

cascades in social networks which has favorable real world interpretations, and

uni�es, generalizes, and extends the existing non-progressive models. We develop

a scalable and provably near-optimal solution for in�uence maximization problem
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under HC. We are the �rst to present a scalable solution for in�uence maximization

under non-progressive LT model, as a special case of HC model. We demonstrate

high performance and scalability of our algorithm via extensive experiments on

large networks and present the �rst ever real non-progressive cascade dataset [56].

• We investigate potential strategies for mitigating failure cascade in inter-dependent

multi-layered networks in terms of di�erent coupling structures between the layers

of network [62].

• We develop a dynamic reachability oracle to answer e�ciently to reachability

queries in failure-prone networks with no update required and O(1) query time

[60].

• We extend the notation of articulation point to directed network which also sup-

ports the de�nition of cut-vertex for undirected networks as a special case, and

provide formulation to �nd the articulation points as well as load balancing of

networks. We illustrate the load balancing across the nodes in several synthetic

and real networks [60].

• We develop the pivotality metric for assessing pivotality of nodes in the reachability

of a source node to a target node and demonstrate its superiority over the similar

metrics. We also show the e�ectiveness of the metric in a few real network examples

[61].

• We develop a novel generative model to generate a continuum from shortest-path to

all-path routing by tuning a control parameter with additional nice properties such

as generalizablity to multi-target routings and a unifying framework for computing

the existing network measures [58, 59].

• We devise a distance oracle and a distance sensitivity oracle to e�ciently answer

to SSSP queries in networks with no failures and (multiple) failures respectively

[59].
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We have developed Markov Tensor Theory as a platform of powerful theories and

tools founded on Markov chain theory and random walk methods which are very e�ective

in complex networks analysis and provide e�cient solutions to the network problems.

Markov Tensor Theory is a layered-structure initiated from fundamental tensor as a

generalization of fundamental matrix in Markov chain theory [120], advanced to the next

layer of avoidance fundamental tensor by adding the option of avoiding (or transiting)

a set of nodes on the paths, and completed by the last layer of avoidance fundamental

tensor in evaporation paradigm in which the random walk can be evaporated on its

way with di�erent choices of evaporation intensity and not reaching the target (Fig.

1). By adding each layer, we provide more �exibility and creativity in designing the

Markov chain metrics to capture and model more advanced cases in network problems.

Note that the fundamental tensor is a special case of avoidance fundamental tensor

when the avoiding set F is empty, and avoidance fundamental tensor is a special case of

avoidance fundamental tensor in evaporation paradigm when the probability of following

the original transition probabilities is equal to 1 and the evaporation probability, i.e.

1−α, becomes 0 (Fig. 1). Markov Tensor Theory is also a basis for generating the other

Markov chain metrics, including hitting time and absorption probability, in a simple

and uni�ed way. We establish the e�ectiveness of Markov Tensor Theory in �nding the

most in�uential people in a social network for in�uence maximization 4, devising an

oracle to e�ciently answer dynamic reachability queries 6, computing the articulation

points of directed networks 6, proposing a pivotality metric to rank the importance of

nodes in reachabilities 6, developing a generative model for a routing continuum from

shortest path to (random walk) all path 7, and devising a distance oracle which answers

to single-source shortest path (SSSP) queries 8 and �nds replacement paths in multiple

failures e�ciently9.



12

Figure 1: Layered structure of Markov Tensor Theory which has been proposed as an e�ective

tool for complex network analysis in this dissertation.

In this Part of the dissertation, Chapter 1 overviews a preliminary on Markov chain

theory, potential theory, and network theory, and provides a table of key notations used

throughout this dissertation. Chapter 2 covers the developed theories on fundamental

tensor and shows how the other well-known Markov chain classical metrics, such as

hitting time and absorption probability, are related to fundamental tensor. This chapter

also provides a complete library on Markov chain classical metrics theories and relations.

In Chapter 3, we develop the avoidance fundamental tensor and a few other Markov chain

avoidance metrics and present a reach set of theorems and relations on these metrics.

We also introduce the evaporation paradigm in this chapter, but defer the complete

de�nition of avoidance fundamental tensor in evaporation paradigm to Chapter 7 where

the related application makes it easier to understand the metric. The e�ectiveness of

Markov Tensor Theory in complex network analysis is elaborated in three forms of

applications: 1) cascade, 2) reachability, and 3) routing, in the next three Parts of the

dissertation.



Chapter 1

Preliminaries

1.1 Markov Chain

Discrete-time �nite-space Markov chain is a sequence of random variables (Xk)k>0 with

values in countable and �nite set V , i.e. X : Ω → V . Each i is called a state and V

forms the state-space, i ∈ V . Random state X takes value i with probability P(X = i).

The probability that in time k the Markov chain be in state j, i.e. Xk = j, given that

it has been in state i at time k − 1, i.e. Xk−1 = i, is called the transition probability

from state i to j and is denoted by Pij , i.e. P(Xk = j|Xk−1 = i) = Pij . According

to Markov property, given the state of Markov chain at time k − 1, Xk is independent

of the states prior to time k − 1: P(Xk = ik|Xk−1 = ik−1, Xk−2 = ik−2, ..., X0 =

i0) = P(Xk = ik|Xk−1 = ik−1) = Pik−1ik . Therefor, a Markov chain is fully described

by its transition probability matrix P = {Pij}. Note that Markov chains are mostly

considered to be time-homogeneous, thus the transition probability matrix P is the

same after each step (or transition). In other words, a �nite Markov chain is a �nite

Markov process such that the transition probabilities do not depend on time k [72].

The m-step transition probability can be computed as the m-th power of the transition

matrix Pm, e.g. P(Xk+m = j|Xk = i) = [Pm]ij is the probability of being in state j

after m steps starting from state i.

State j is reachable from state i if there exists some m that [Pm]ij 6= 0. Also if

this reachability is mutual, i and j fall in the same communication or equivalence class

of states. Each Markov chain is composed of these smaller pieces, namely equivalence

13
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classes, which yield a partial ordering of the chain indicating the possible directions of

proceeding the process. The equivalence classes are referred as transient or recurrent

sets. The former, once left, are never entered again. The latter, once entered, are never

left again. If a chain is composed of only one equivalence class, it is called irreducible.

In a irreducible Markov chain all the states are reachable from each other. Finite-state

irreducible Markov chains have unique stationary distribution π. A Markov chain that

is both irreducible and aperiodic is called ergodic and has a limiting distribution as well

(which is its stationary distribution). For further details please refer to [72].

If a recurrent set is composed of only one state, it is called absorbing state. The

corresponding row of an absorbing state in transition probability matrix is a vector of

all 0's but its diagonal entry which is 1. A Markov chain is called absorbing if it has at

least one absorbing state such that from each transient state at least one absorbing state

is reachable. This condition requires that the states be either transient or absorbing,

and there should be no recurrent class which contains more than one state. Assuming

that states are ordered in the way that set of transient states T come �rst and set of

absorbing states A come last, the transition matrix for an absorbing Markov chain takes

the following block matrix form:

P =

[
PT T PT A

0 IAA

]
, (1.1)

where IAA is an identity matrix and P is row-stochastic.

The expected number of steps required that starting from state i the Markov chain

hits state j for the �rst time is called (expected) hitting time, and the probability of ever

hitting j is referred as the hitting probability. If j is absorbing this probability is called

absorption probability. These two quantities can be computed from the fundamental

matrix whose entries represent the expected number of visits of states. We refer to all

of these quantities as Markov chain classical metrics which are discussed in more details

in next chapter.

1.2 Potential Theory and Harmonic Functions

Potential theory is a mathematical framework shared with several physical theories such

as Newton's theory of gravity, electrostatics, �uid �ow, and the di�usion of heat. The
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focus of this thesis is on potentials associated to a Markov chain and computing them for

Markov chain models. Expected hitting time and absorption probability are examples

of potentials associated to a Markov chain. Potentials, denoted by φ are the solutions

of linear system equations and have the following general form [102]:

φi = Ei(
∑
k<T

c(Xk) + f(XT )1T<∞), (1.2)

where Ei is the expectation of the processes started from state i, 1T<∞ is an indicator

function, and T is the stopping time (hitting time is an example of stopping time). The

state-space V is divided into two disjoint sets of states: interior states I and boundary

states B. Functions c and f are the cost functions de�ned over interior set and boundary

set respectively: (ci : i ∈ I) and (fi : i ∈ B). If these two functions are non-negative

and T is the hitting time, potential φ can be found from the following relation [102]:φ = Pφ+ c in I

φ = f in B
, (1.3)

where P is the transition probability matrix. c for the expected hitting time is a vector

of all 1's, and for absorbing probabilities (known as hitting probabilities as well) is zero.

When c = 0 and φ = Pφ, potential function φ is called harmonic in I. The harmonic

function over interior set is fully determined from potential values over the boundary

set:

φi = Ei(f(XT )) =
∑
j∈B

fjP(XT = j), (1.4)

where i ∈ I.

1.3 Networks

A network can be abstractly modeled as a weighted and directed graph, denoted by

G = (V,E,A). Here V is the set of nodes in the network such as routers or switches in

a communication network or users in a social network; E is the set of (directed) edges

representing the (physical or logical) connections between nodes (e.g., a communication

link from a node i to a node j) or entity relations (e.g., follower-followee relation between

two users). The a�nity (or adjacency) matrix A = [aij ] is assumed to be nonnegative,
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i.e., aij ≥ 0, where aij > 0 if and only if 〈i, j〉 ∈ E. We remark that here aij captures

certain �a�nity� or �closeness� from node i to node j.

A random walk over G is modeled by a Markov chain, where the nodes of G rep-

resent the states of the Markov chain. Walk is a path in G whose nodes/states can

be repeated. The Markov chain is fully described by its transition probability ma-

trix: P = D−1A, where A is the adjacency matrix of network G, D = diag[di], and

di =
∑

j aij (di is often referred to as the (out-)degree of node i and D is the (diagonal)

degree matrix). Throughout the thesis, the words �node" and �state", and �network"

and �Markov chain" are used interchangeably. In addition, the target nodes in G can be

represented as absorbing states in the Markov chain as once being hit, the random walk

stops walking around. If the network G is strongly connected, the associated Markov

chain is irreducible and all the stationary probabilities π are strictly positive according to

Perron-Frobenius theorem [55]. For undirected and connected G, the associated Markov

chain is reversible and the stationary probabilities are a scalar multiple of node degrees:

πi = di∑
i di

.

1.4 Table of Notations

In Table (1.1), the notations used throughout the thesis have been listed for an easier

reference.
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Table 1.1: Table of Notations
Psm sm-th entry of transition matrix P .

= Transition probability from s to m.

[P kT T ]sm sm-th entry belonging to the k-th power of PT T .
= Probability of being in node m in k-th step when starting from node s.

[PT A]mt mt-th entry of PT A, where T is the transient set and A is the
absorbing set.

F Fundamental tensor.

F {t}sm smt-th entry of Fundamental tensor.

F {t} The t-th cross-section of fundamental tensor
= Fundamental matrix for target node t.

F
{t}
sm sm-th entry of Fundamental matrix F {t}.

= Expected number of times the random walk passes
through m when it starts from s and before hitting t.

F {t,F} Avoidance fundamental matrix for target node t and avoiding set F .
F {t,F,o}(α) Avoidance fundamental matrix in evaporation paradigm for target

node t and avoiding set F .
H
{t}
s Expected hitting time from s to t.

= Expected number of steps required to hit t for the �rst time
when starting from s.

U
{t}
s Expected hitting cost from s to t.

= Expected cost required to hit t for the �rst time
when starting from s.

Q
{t,F}
s Absorption probability from s to t avoiding set F .
A General label for absorbing set.

T General label for transient set.

Zsm The set of all walks from s to m. In contrast to paths, the nodes can
be repeated in walks.

Zsm(l) The set of all walks from s to m with total length of l.
Zsm(k, l) The set of all walks from s to m with k number of steps

and total length of l.
In unweighted networks l = k.

ζj ∈ Zsm(k, l) The j-th walk from set Zsm(k, l). Vζj is the set of nodes that ζj passes.
= Walk ζj is speci�ed by its sequence of nodes v0v1...vk,
where vi ∈ Vζj ,0 ≤ i ≤ k, and v0 = s and vk = m.

Prζj Probability of walk ζj , Prζj = Psv1Pv1v2 ...Pvk−1m.∑
ζj∈Zsm(k) Prζj =

{
[P kT T ]sm if m ∈ T
[P k−1T T PT A]sm if m ∈ A

.

lζj Length of walk ζj , lζj =
∑k
i=1 wvi−1vi .

kζj Number of steps in walk ζj .

ZFsm The set of all walks from s to m that avoid the nodes in set F .



Chapter 2

Fundamental Tensor and Other

Markov Chain Classical Metrics

2.1 Introduction

In this chapter, we introduce the fundamental tensor as a generalization of fundamental

matrix and review some of Markov chain classical metrics and their di�erent forms of

de�nitions presented in literature. We show the connections of these metrics to fun-

damental tensor and how they all can be computed from the fundamental tensor in a

uni�ed way. At the end, we present some lemmas and relations for Markov chain classical

metrics which would be useful for applications and following chapters.

2.2 Fundamental Matrix

Expected number of visits metric counts the expected number of passages or visits of a

state in a Markov chain, given the starting (or source) state. In other words, it counts

the expected number of times that the random walk passes through a state when it starts

from a source state. This metric has an implicit stopping criteria for the counts which

is visiting a target state (or a set of target states) for the �rst time. Visiting a state

for the �rst time is called hitting that state as well. This metric depends on the source

state, visiting (medial) state, and the target state. Fundamental matrix is composed of

the expected number of visits for all pairs of source states and medial states, with the

18
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same target state for all the pairs. Di�erent forms of fundamental matrix (or expected

number of visits) de�nition presented in literature [72, 102] are reviewed in the following.

Matrix form: The fundamental matrix of absorbing chain P is de�ned as follows:

F = (I − PT T )−1, (2.1)

where entry Fij represents the expected number of passages through state j, starting

from state i, and before absorption by any of absorbing states [120]. Knowing that the

k-th power of the transient-to-transient part of P , i.e. P kT T , calculates the probability

of being in di�erent transient states in k-th step, and writing Eq. (2.1) as a geometric

series, (I −PT T )−1 = I +PT T +P 2
T T + ... , the concept of expected number of passages

through the transient states would be clear to understand.

Stochastic form: The indicator function 1{Xk=m} is the random variable equal to

1 if Xk = m and 0 otherwise. The number of visits νm to m is written in terms of

indicator functions as νm =
∑∞

k=0 1{Xk=m}. The expected number of times visiting m

when the walk starts at s is denoted by [102]:

Fsm = Es(νm) = Es
∞∑
k=0

1{Xk=m} =

∞∑
k=0

Es(1{Xk=m})

=

∞∑
k=0

P(Xk = m|X0 = s) =

∞∑
k=0

[P kT T ]sm, (2.2)

The stopping criteria is hitting t for the �rst time, so this quantity is denoted by F {t}sm
more precisely. In an irreducible chain, by having such stopping criteria, k cannot be

∞ and F {t}sm =
∑

k<∞ [P kT T ]sm is �nite. Note that in order to have �nite value for F {t}sm ,

it is enough that t be reachable from all the node in network and the irreducibility of

network is not necessary. We call the matrix of F {t}sm values constructed for every pairs

of s,m ∈ T as fundamental matrix for target t. It is easy to see that the fundamental

matrix can be computed from the powers of PT T

F {t} =
∑
k<∞

P kT T = I +
<∞∑
k=1

P kT T = (I − PT T )−1, (2.3)

which is the derivation in Eq. (2.1).
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Recursive form: The expected number of visits of a state is the summation of the

original position's contribution and each of the steps' contribution. The original position

contributes 1 if and only if s = m or X0 = m equivalently.

Fsm = 1{X0=m} +
∑
j∈T

PsjFjm

⇒ F = I + PT T F

⇒ F = (I − PT T )−1 (2.4)

2.2.1 Fundamental matrix for a Set of Targets

Let T = {t1, ..., tc} be a set of targets. Fundamental matrix entry F {T}sm for this set of

targets represents the expected number of visits to m before hitting either of the states

in T for the �rst time. It is a simple generalization of fundamental matrix for single

target:

F {T} = I +

<∞∑
k=1

P kT T = (I − PT T )−1, (2.5)

where T = V \ T .

2.2.2 Fundamental Tensor

Fundamental tensor F is a generalization of fundamental matrix by stacking up the

fundamental matrices constructed for each node t as the target node in a strongly con-

nected network. In other words, the fundamental tensor exists for any triplets of nodes

(s,m, t) in a strongly connected network and the t-th cross section of fundamental tensor

is computed from the corresponding fundamental matrix F {t}:

F smt =

F
{t}
sm if s,m 6= t

0 if s = t or m = t
(2.6)

2.3 Hitting Time

The (expected) hitting time, also known in the literature as the �rst transit time or �rst

passage time, has the concept of distance (or delay). This metric counts the expected
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number of steps (or time steps) required to hit or visit the target state for the �rst time,

so is called the expected hitting time (or hitting time in brief). This metric depends on

both the source state that the random walk starts from and the target state which is

the stopping criteria.

Matrix form: Expected absorption time, which is also known as (expected) hitting

time or �rst passage time in literature, is calculated as follows:

h = F1, (2.7)

where h is a column vector of length |T | representing the expected number of steps

before absorption by either of the absorbing nodes and for each starting state.

Stochastic form: Let G = (Xk)k>0 be a discrete-time Markov chain with transition

matrix P . The hitting time of a node t ∈ V is the random variable κt : Ω→ {0, 1, 2, ...}∪
{∞} given by κt = inf {κ ≥ 0 : Xκ = t}, where we agree that the in�mum of the empty

set ∅ is ∞. The hitting time κt represents the number of steps that the walk takes until

it hits t for the �rst time, and its expected value when the walk starts at s is denoted

by [102]: H{t}s = Es[κt] =
∑

k<∞ kP(κt = k|X0 = s) +∞P(κt =∞|X0 = s). Assuming

that the target node t is reachable from all the other nodes in the network, case κt =∞
does not occur. Note that in our cases, node t is visited only once and at the end of the

walk so it can be considered as an absorbing node, where A = {t} and transient nodes

are T = V \ {t}. Source node s is usually considered to be any node other than t, i.e.

s ∈ T and the number of steps to reach t is k > 0. Consequently, the following form is

commonly used:

H{t}s = Es[κt] =
<∞∑
k=1

kP(κt = k|X0 = s)

=

<∞∑
k=1

kP(Xk = t|X0 = s) =

<∞∑
k=1

k
∑
m∈T

[P k−1
T T ]sm[PT A]mt, (2.8)

where [P 0
T T ]sm = 1 for m = s and it is 0 otherwise.
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Recursive form: The recursive relation of H{t}s , which is presented in many refer-

ences, is proved in the following:

H{t}s =
∑
k=1

kP(Xk = t|X0 = s) =
∑
k=1

k
∑

m∈Nout(s)

P(Xk = t,X1 = m|X0 = s)

=
∑
k=1

k
∑

m∈Nout(s)

P(Xk = t|X0 = s,X1 = m)P(X1 = m|X0 = s)

=
∑
k=1

k
∑

m∈Nout(s)

P(Xk = t|X0 = s,X1 = m)Psm

=
∑

m∈Nout(s)

∑
k=1

(1 + (k − 1))P(Xk = t|X0 = s,X1 = m)Psm

=
∑

m∈Nout(s)

∑
k=1

(1 + (k − 1))P(Xk−1 = t|X0 = m)Psm (2.9)

=
∑

m∈Nout(s)

∑
k=1

P(Xk−1 = t|X0 = m)Psm + (k − 1)P(Xk−1 = t|X0 = m)Psm

=
∑

m∈Nout(s)

Psm
∑
k=1

P(Xk−1 = t|X0 = m) +
∑

m∈Nout(s)

Psm
∑
k=1

(k − 1)P(Xk−1 = t|X0 = m)

=
∑

m∈Nout(s)

Psm +
∑

m∈Nout(s)

Psm
∑
k′=1

k′P(Xk′ = t|X0 = m)

= 1 +
∑

m∈Nout(s)

PsmH
{t}
m ,

where (2.9) is due to two properties of Markov chains that networks are modeled by: 1)

First order Markov chain and 2) Time-homogeneous Markov chain.

Relation between fundamental matrix and hitting time: The expected hitting

time H{t}s and the expected number of visits F {t}sm are in close relation with each other

H{t}s =
∑
k=1

k
∑
m∈T

[P k−1
T T ]sm[PT A]mt =

∑
k=1

k
∑
m∈T

[P k−1
T T ]sm(1−

∑
j∈T

[PT T ]mj)

=
∑
k=1

k(
∑
m∈T

[P k−1
T T ]sm −

∑
j∈T

[P kT T ]sj) =
∑
m∈T

∑
k=1

k([P k−1
T T ]sm − [P kT T ]sm)

=
∑
m∈T

[P k−1
T T ]sm =

∑
m

F {t}sm , (2.10)

which is the same as the relation in (2.7).
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2.3.1 Hitting Time for a Set of Targets

Let T = {t1, ..., tc} be a set of targets. Hitting time for this set of targets is de�ned to

be the expected number of steps to hit either of the states in T for the �rst time. In the

following we de�ne it mathematically.

The hitting time of a set T ⊂ V is the random variable κT : Ω→ {0, 1, 2, ...} ∪ {∞}
given by κT = inf {κ ≥ 0 : Xκ ∈ T}, where we agree that the in�mum of the empty set

∅ is ∞. The expected value of κT when the walk starts at s is denoted by: H{T}s =

Es[κT ] =
∑

k<∞ kP(κT = k|X0 = s) +∞P(κT =∞|X0 = s). Assuming that the target

set T (at least one of its states) is reachable from all the other nodes in the network,

case κT = ∞ does not occur. Since in our cases, set T is visited only once and at the

end of the walk so it can be considered as an absorbing set, where A = T and transient

nodes are T = V \ T . Source node s is usually considered not to belong to set T , i.e.

s ∈ T and the number of steps to reach T is k > 0. Consequently, the following form is

commonly used:

H{T}s = Es[κT ] =
<∞∑
k=1

kP(κT = k|X0 = s) (2.11)

=

c∑
i=1

<∞∑
k=1

kP(Xk = ti|X0 = s) (2.12)

=
<∞∑
k=1

k
∑
m∈T

[P k−1
T T ]sm

c∑
i=1

[PT A]mti , (2.13)

where [P 0
T T ]sm = 1 for m = s and it is 0 otherwise. Note that the second line of

equalities is due to the fact that being in states t1, ..., tc are mutually exclusive events

and the union turns to a summation: P(κT = k|X0 = s) = ∪ti∈TP(Xk = ti|X0 = s) =∑c
i=1 P(Xk = ti|X0 = s).

Relation between fundamental matrix and hitting time for a set of targets:

The expected hitting time H{T}s and the expected number of visits F {T}sm are in close
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relation with each other

H{T}s =
∑
k=1

k
∑
m∈T

[P k−1
T T ]sm

c∑
i=1

[PT A]mti =
∑
k=1

k
∑
m∈T

[P k−1
T T ]sm(1−

∑
j∈T

[PT T ]mj)

=
∑
k=1

k(
∑
m∈T

[P k−1
T T ]sm −

∑
j∈T

[P kT T ]sj) =
∑
m∈T

∑
k=1

k([P k−1
T T ]sm − [P kT T ]sm)

=
∑
m∈T

[P k−1
T T ]sm =

∑
m

F {T}sm , (2.14)

2.3.2 Commute Time

Commute time is the summation of the hitting time from source to target and vice versa:

Cst = H{t}s +H
{s}
t (2.15)

It is obvious that Commute time is a symmetric quantity while Hitting time is generally

not, whether the underlying graph is directed or undirected.

2.4 Absorption Probability

The absorption probability matrix Q is de�ned as [120]:

Q = FPT A, (2.16)

where its dimension is |T | × |A|. The ij-th entry of Q is the probability of absorption

by the absorbing state j when the chain starts from state i. The rows sum up to one,

since starting from any state the chain (or random walker) will end up being absorbed

by one of the absorbing states. The formulation above simply says that to obtain the

probability of getting absorbed by a given absorbing state, we add up the probabilities of

going there from all of the transient states, weighted by the number of times we expect

to be in those transient states [120].

2.4.1 Normalized Fundamental Matrix

We de�ne the normalized fundamental matrix as the fundamental matrix whose entries

are normalized by corresponding diagonal entry:

F̂ {t}sm =
F
{t}
sm

F
{t}
mm

(2.17)
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In Theorem (2) we show that the sm-th entry of normalized fundamental matrix for

target t is in fact the absorption probability by node m sooner than node t (starting

from s).

2.5 Hitting Cost

The (expected) hitting cost, also known as average �rst-passage cost generalizes the

(expected) hitting time by assigning a cost to each transition. Hitting cost from s to t

denoted by U{t}s is the average cost incurred by the random walker starting from state

s to hit state t for the �rst time. The cost of edge eij transition is given by wij . Notice

that hitting time H{t}s is a special case of hitting cost U{t}s obtained when wij = 1 for

all eij edges. The hitting cost was �rst introduced by Fouss et al. [50] along with an

intuitive recusrsive formulation for it. In this part, we �rst provide a fundamental and

rigorous de�nition for hitting cost in stochastic form and then derive the recursive form

as well as the matrix form (which is a closed form formulation useful for applications)

from this de�nition.

Stochastic form: Let G = (Xk)k>0 be a discrete-time Markov chain with transition

matrix P and weight matrix W . The hitting cost of a node t ∈ V is a random variable

ηt : Ω→ C given by ηt = inf {η ≥ 0 : ∃k,Xk = t,
∑k

i=1wXi−1Xi = η}. C is a countable set
and we agree that the in�mum of the empty set ∅ is ∞. The hitting cost ηt represents

the total length of steps that the walk takes until it hits t for the �rst time, and its
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expected value when the walk starts at s is denoted by:

U{t}s = Es[ηt] =
∑
l∈C

lP(ηt = l|X0 = s)

=
∑
l∈C

l
<∞∑
k=1

P(Xk = t,
k∑
i=1

wXi−1Xi = l|X0 = s)

=
∑
l∈C

l

<∞∑
k=1

∑
vk−1∈

Nin(t)∩Nout(vk−2)

...
∑
v1∈

Nin(v2)∩Nout(s)

P(Xk = t,Xk−1 = vk−1, ..., X2 = v2, X1 = v1,
k∑
i=1

wXi−1Xi = l|X0 = s)

=
∑
l∈C

l

<∞∑
k=1

∑
ζj∈Zst(k,l)

Prζj (2.18)

=
∑
l∈C

l
∑

ζj∈Zst(l)

Prζj (2.19)

=
∑
l∈C

lPrl, (2.20)

where Prl is the probability of hitting t in total length of l when starting from s, and is

obtained from the aggregation of walk probabilities with length l. Therefor, the following

three quantities are all the same: Prl =
∑

ζj∈Zst(l) Prζj = P(ηt = l|X0 = s).

We can also continue (2.18) as follows to achieve another form of hitting cost:

U{t}s =
∑
l∈C

l
<∞∑
k=1

∑
ζj∈Zst(k,l)

Prζj (2.21)

=
∑
l∈C

<∞∑
k=1

∑
ζj∈Zst(k,l)

lζjPrζj

=
∑
ζj∈Zst

lζjPrζj (2.22)



27

Matrix form: Hitting cost can be computed from the following closed form formu-

lation:

U{t}s =
∑
ζj∈Zst

lζjPrζj =
∑
ζj∈Zst

Prζj

kζj∑
k=1

wvk−1vk (2.23)

=
∑
ζj∈Zst

kζj∑
k=1

[
k∏
i=1

Pvi−1vi .(Pvkvk+1
wvkvk+1

).

kζj∏
i=k+2

Pvi−1vi ] (2.24)

=
∑
exy∈E

Pxywxy(
∑

ζj∈Zsx

Prζj ).(
∑
ζi∈Zyt

Prζi) (2.25)

=
∑
exy∈E

Pxywxy(
∑
k

∑
ζj∈Zsx(k)

Prζj ).(
∑
k

∑
ζi∈Zyt(k)

Prζi) (2.26)

=
∑
exy∈E

Pxywxy(
∑
k

[P kT T ]sx).(
∑
k

[P k−1
T T PT A]yt) (2.27)

=
∑
exy∈E

PxywxyF
{t}
sx Q

{t}
y (2.28)

=
∑
exy∈E

PxywxyF
{t}
sx (2.29)

=
∑
x

F {t}sx
∑

y∈Nout(x)

Pxywxy (2.30)

=
∑
x

F {t}sx rx, (2.31)

where rx =
∑

y∈Nout(x) Pxywxy is the average out-going cost of node x. In the equations

above, (2.25) is concluded from multiplication principle, (2.27) can be found in Table

(1.1), and (2.29) is due to the fact that Q{t}y = 1 when having t as the only absorbing

node in the network (which is assumed to be reachable from all the other nodes in the

network). Therefore, the following matrix form is obtained:

U{t} = F {t}r, (2.32)

where r is the vector of rx's.

Recursive form: the recursive computation of U{t}s which was suggested by Fouss
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et al. [50] as well can be derived from the stochastic form of U{t}s :

U{t}s =
∑
l∈C

lP(ηt = l|X0 = s) =
∑
l∈C

l
∑

m∈Nout(s)

P(ηt = l,X1 = m|X0 = s)

=
∑
l∈C

l
∑

m∈Nout(s)

P(ηt = l|X0 = s,X1 = m)P(X1 = m|X0 = s)

=
∑
l∈C

l
∑

m∈Nout(s)

P(ηt = l|X0 = s,X1 = m)Psm

=
∑

m∈Nout(s)

∑
l∈C

lP(ηt = l|X0 = s,X1 = m)Psm

=
∑

m∈Nout(s)

∑
l∈C

(wsm + (l − wsm))P(ηt = l − wsm|X0 = m)Psm

=
∑

m∈Nout(s)

∑
l∈C

wsmP(ηt = l − wsm|X0 = m)Psm

+(l − wsm)P(ηt = l − wsm|X0 = m)Psm

=
∑

m∈Nout(s)

wsmPsm
∑
l∈C

P(ηt = l − wsm|X0 = m)

+
∑

m∈Nout(s)

Psm
∑
l∈C

(l − wsm)P(ηt = l − wsm|X0 = m)

=
∑

m∈Nout(s)

wsmPsm +
∑

m∈Nout(s)

Psm
∑
l′∈C

l′P(ηt = l′|X0 = m)

= rs +
∑

m∈Nout(s)

PsmU
{t}
m (2.33)

2.5.1 Commute Cost

Commute cost Yst is de�ned as the expected cost required to hit t for the �rst time and

get back to s. Commute cost is a symmetric metric and is obtained from the following

relation:

Yst = U{t}s + U
{s}
t (2.34)

2.6 Relations, Lemmas, and Theorems

Lemma 1 ([18]). Let

[
L11 l12

l′21 lnn

]
be an n×n irreducible matrix such that nullity(L)=1.

Let M = L+ be the pseudo-inverse of L partitioned similarly and (u′, 1)L = 0, L(v; 1) =
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0, where u, v are (n − 1)-vectors, and u′ and v′ are their transposes respectively. Then

the inverse of the (n− 1)× (n− 1) matrix L11 exists and is given by:

L−1
11 = (In−1 + vv′)M11(In−1 + uu′), (2.35)

where In−1 denotes the (n− 1)× (n− 1) identity matrix.

Note that node n in the Lemma above can be substituted by any other node (index).

Lemma 2. Fundamental matrix can be computed from the pseudo-inverse of Laplacian

matrix L = Π(I − P ):

F {t}sm = (L+
sm − L+

tm + L+
tt − L

+
st)πm, (2.36)

Proof. Substitute L = Π(I − P ) and v = u = 1 in Lemma (1).

Corollary 1. The entire fundamental tensor F of a strongly connected network can be

computed in O(n3) complexity.

Proof. The nullity of matrix I−P for a strongly connected network is 1, so according to

Eq. (2.36) all n3 entries of fundamental tensor F can be computed from L+ in constant

time: F smt = (L+
sm − L+

tm + L+
tt − L

+
st)πm.

Corollary 2. ∑
st

F {t}sm = Kπm, (2.37)

where K is a constant independent of m.

Proof. ∑
st

F {t}sm =
∑
st

(L+
sm − L+

tm − L
+
st + L+

tt)πm (2.38)

= 0− 0− 0 + (n
∑
t

L+
tt)πm (2.39)

= Kπm, (2.40)

where the second equality is proved due to the property that the column sum of L+ =

(Π(I − P ))+ is zero. K is in fact the Kirchho� index which will be discussed in Sec.

(7.7.4).
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Corollary 3. Hitting time and commute time in terms of Laplacian matrix L = Π(I−P )

are as follows:

H
{j}
i =

∑
m

(L+
im − L

+
jm)πm + L+

jj − L
+
ij , (2.41)

Cij = L+
ii + L+

jj − L
+
ji − L

+
ij , (2.42)

Proof. Use Eq. (2.7) and (2.36).

Note that we can also write the metrics in terms of random walk Laplacian matrix

LR = I − P by simply the following substitution: L+
im − L

+
ij =

LRim
+

πm
− LRij

+

πj
.

Corollary 4. Hitting cost and commute cost in terms of Laplacian matrix L = Π(I−P )

are as follows:

U
{j}
i =

∑
m

(L+
im − L

+
jm + L+

jj − L
+
ij)bm, (2.43)

Yij = (L+
im − L

+
jm + L+

jj − L
+
ij)
∑
m

bm, (2.44)

where bm = rmπm and rm =
∑

k∈Nout(m) Pmkwmk.

Proof. Use Eq. (2.32) and (2.36).

From Eq. (2.42) and (2.44) it can be seen that commute cost is a multiple scalar of

commute time.

Theorem 1 (Incremental Computation of Fundamental Matrix). The fundamental ma-

trix for target set of S1 ∪S2 can be computed from the fundamental matrix for target set

S1:

F
{S1,S2}
im = F

{S1}
im − F {S1}iS2 (F

{S1}
S2S2 )−1F

{S1}
S2m , (2.45)

where the subscripts represent the rows and columns selected from the matrix respectively,

e.g. F
{S1}
iS2 denotes the row i and the columns corresponding to set S2 of the fundamental

matrix F {S1}.

Proof. Consider matrix M = I − PT T where the absorbing set is A = S1 and the

transient set T = V \ S1. The inverse of M yields fundamental matrix F {S1}, and the

inverse of its sub-matrix obtained from removing rows and columns corresponding to
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set S2 gives fundamental matrix F {S1,S2}. The following equations show how to �nd a

sub-matrix's inverse from the original matrix's inverse:

If A is invertible, we can factor matrix M =

[
A B

C D

]
as follows

[
A B

C D

]
=

[
I 0

CA−1 I

][
A B

0 D − CA−1B

]
(2.46)

Inverting the both sides of the equation yields[
A B

C D

]−1

=

[
A−1 −A−1BS−1

0 S−1

][
I 0

−CA−1 I

]
(2.47)

=

[
A−1 +A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

]
(2.48)

=

[
X Y

Z W

]
, (2.49)

where S = D−CA−1B. Therefor, A−1 can be computed from A−1 = X−YW−1Z.

Corollary 5. The simpli�ed form of (1) for single target is as follows:

F
{j,k}
im = F

{j}
im −

F
{j}
ik F

{j}
km

F
{j}
kk

(2.50)

Lemma 3.

PT T F
{S} = F {S}PT T = F {S}, (2.51)

where T ∪ S = V

Proof. It is a simple derivation from Eq. (2.1).

Corollary 6 (The relation of fundamental matrix value at a node and its in-going

neighbors).

F
{j}
im =

∑
k 6=j

F
{j}
ik Pkm, if i 6= m

F
{j}
im = 1 +

∑
k 6=j

F
{j}
ik Pkm, if i = m (2.52)
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Proof. It is a special case of Lemma (3).

Theorem 2 (Absorption probability and normalized fundamental tensor). The absorp-

tion probability for absorbing set {j} ∪ S can be found from the fundamental matrix for

absorbing set S:

Q
{j,S}
i =

F
{S}
ij

F
{S}
jj

(2.53)

Proof.

Q{y,S}x = u′xF
{y,S}PT Auy

=
∑
i

F
{y,S}
xi Piy

=
∑
i

(F
{S}
xi −

F
{S}
xy F

{S}
yi

F
{S}
yy

)Pi,

=
∑
i

F
{S}
xi Piy −

F
{S}
xy

F
{S}
yy

∑
i

F
{S}
yi Piy

= F {S}xy −
F
{S}
xy

F
{S}
yy

(F {S}yy − 1)

=
F
{S}
xy

F
{S}
yy

,

where the third equation and the �fth equation are direct results of Theorem (1) and

Corollary (2.52) respectively.

Relation 1 (Complementary relation of absorption probabilities).

Q
{j,k}
i = 1−Q{k,j}i (2.54)

Proof. Based on the de�nition of Q, when having two absorbing nodes, the random walk

eventually ends up in either of them.
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Relation 2 (Four relations between fundamental matrix and commute time).

(1) F
{j}
ii = πiCij (2.55)

(2)
F
{j}
im

πm
+
F
{j}
mi

πi
= Cij + Cjm − Cim (2.56)

(3)
F
{j}
im

πm
+
F
{m}
ij

πj
= Cjm (2.57)

(4) F
{j}
im + F

{i}
jm = πmCij (2.58)

Proof. Use (2.36) and (2.42).

Relation 3 (The hitting time detour overhead in terms of other metrics).

(1) H
{j}
i +H

{m}
j −H{m}i =

F
{j}
im

πm
(2.59)

(2) H
{j}
i +H

{m}
j −H{m}i = Q

{m,j}
i Cmj (2.60)

Proof. For the �rst equation use (2.36) and (2.41), and for the second one use the

previous equation along with (2) and (2.55).

Relation 4 (The hitting time for two target nodes in terms of hitting time for single

target).

H
{j,k}
i = H

{k}
i −Q{j,k}i H

{k}
j = H

{j}
i −Q{k,j}i H

{j}
k , (2.61)

reforming the terms, we have: H
{j}
i = H

{j,k}
i +Q

{k,j}
i H

{j}
k .

Proof. Sum two sides of equation (1) over m and substitute (2) in it.

Relation 5 (Three inequalities for hitting time).

(1) H
{m}
i +H{j}m ≥ H{j}i (triangular inequality) (2.62)

(2) H
{j}
i ≥ H{j,m}i (2.63)

(3) H
{m}
i +H{j,k}m ≥ H{j,k}i (2.64)

Proof. For the �rst equation use (2.41) and (2.68). For the second one use the aggregated

form of (1) over m and the fact that F 's entries are always non-negative. (I have not

proved the third equation analytically, but based on (2.62) it seems to be correct!)
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Relation 6 (Two inequalities for fundamental matrix).

(1) F
{j}
im F

{j}
kk ≥ F

{j}
ik F

{j}
km (2.65)

(2) F
{j}
kk ≥ F

{j}
ik (2.66)

Proof. For the �rst inequality use (1) and the fact that F 's entries are always non-

negative. For the second one use (2.55), (2.59), and (2.62).

Relation 7 (Inequality for absorption probability).

Q
{m,j}
i ≥ Q{k,j}i Q

{m,j}
k (2.67)

Proof. use (2) and (2.65).

Relation 8 (Inequality for Laplacian matrix).

L+
im + L+

kk ≥ L
+
ik + L+

km (2.68)

Proof. use (2.36) and the fact that F 's entries are always non-negative.

Relation 9 (Three relations for undirected networks (reversible Markov chain)).

(1)
F
{S}
im

πm
=
F
{S}
mi

πi
(2.69)

(2) Q
{m,j}
i C{j}m = Q{i,j}m C

{j}
i (2.70)

(3) H
{m}
i +H{j}m +H

{i}
j = H{i}m +H

{m}
j +H

{j}
i (2.71)

Proof. For the �rst equation use (2.36) and the fact that L+ is symmetric in undirected

case. For the second one use (2), (2.36), (2.42) and the fact that L+ is symmetric

in undirected case. The third one is proved by using (2.41) and the fact that L+ is

symmetric in undirected case.



Chapter 3

Avoidance Fundamental Tensor and

Other Markov Chain Avoidance

Metrics

3.1 Introduction

The existing theory on classical random walk metrics, including fundamental matrix,

hitting time, hitting cost, and hitting (absorption) probability, is the result of imposing

only the stopping criteria on the random walk, which is hitting the target node for the

�rst time, and has no control or conditions on the visiting nodes in the middle of the

walk. In this paper, we introduce the �avoidance� and �transit� random walk metrics

which provide more �exibility in the design of random walk and impose new conditions

on the walk to avoid or transit a speci�c node (or a set of nodes) before the stopping

criteria. In particular, we introduce avoidance fundamental matrix, avoidance hitting

time, transit hitting time, and avoidance hitting cost and establish theories which show

the relation of the introduced metrics with each other.

3.2 Avoidance Hitting Time

We introduce the avoidance (expected) hitting time as the conditional expectation of

hitting time conditioned on avoiding a subset of nodes. Recall that the hitting time

35
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of a node t ∈ V is the random variable κt : Ω → {0, 1, 2, ...} ∪ {∞} given by κt =

inf {κ ≥ 0 : Xκ = t}, where we agree that the in�mum of the empty set ∅ is ∞. The

hitting time κt represents the number of steps that the walk takes until it hits t for the

�rst time. The avoidance (expected) hitting time from s to t conditioned on avoiding F
is de�ned as follows

H{t,F}s = Es[κt|Xi≤κt /∈ F ] =
∑
k=1

kP(Xk = t|Xi≤κt /∈ F , X0 = s) (3.1)

=
∑
k=1

k
P(Xk = t,Xi≤k /∈ F|X0 = s)

P(Xi≤κt /∈ F|X0 = s)
(3.2)

=

∑
k=1 kP(Xk = t,Xi≤k /∈ F|X0 = s)

P(Xi≤κt /∈ F|X0 = s)
(3.3)

=

∑
k=1 kP(Xk = t,Xi≤k /∈ F|X0 = s)∑
k=1 P(κt = k,Xi≤k /∈ F|X0 = s)

(3.4)

=

∑
k=1 kP(Xk = t,Xi≤k /∈ F|X0 = s)∑
k=1 P(Xk = t,Xi≤k /∈ F|X0 = s)

(3.5)

=

∑
k=1 k[P k−1

T T PT A]st∑
k=1[P k−1

T T PT A]st
, (3.6)

where T here is T = V \ (F ∪ {t}).

3.3 Avoidance Fundamental Tensor

We introduce the avoidance fundamental tensor as the conditional expectation of number

of visits from an state while avoiding a subset of nodes F . The indicator function

1{Xk=m} is the random variable equal to 1 if Xk = m and 0 otherwise. The number of

visits νm to m is written in terms of indicator functions as νm =
∑∞

k=0 1{Xk=m}. Recall
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that κt is the stopping criteria for the walk.

F {t,F}sm = Es(νm|Xi≤κt /∈ F) =
∑
k=0

Es(1{Xk=m}|Xi≤κt /∈ F) (3.7)

=
∑
k=0

P(Xk = m|Xi≤κt /∈ F , X0 = s) (3.8)

=

∑
k=0 P(Xk = m,Xi≤κt /∈ F|X0 = s)

P(Xi≤κt /∈ F|X0 = s)
(3.9)

=

∑
k=0 P(Xk = m,Xi<k /∈ F , Xk<i≤κt /∈ F|X0 = s)

P(Xi≤κt /∈ F|X0 = s)
(3.10)

=

∑
k=0 P(Xk = m,Xi<k /∈ F|X0 = s)P(Xk = m,Xk<i≤κt /∈ F|X0 = s)

P(Xi≤κt /∈ F|X0 = s)

=

∑
k=0 P(Xk = m,Xi<k /∈ F|X0 = s)P(X0<i≤κt /∈ F|X0 = m)

P(Xi≤κt /∈ F|X0 = s)
(3.11)

=

∑
k=0[P kT T ]sm

∑
k=1[P k−1

T T PT A]mt∑
k=1[P k−1

T T PT A]st
(3.12)

=
F
{t,F}
sm

∑
k=1[P k−1

T T PT A]mt∑
k=1[P k−1

T T PT A]st
, (3.13)

Note that we use terms avoidance fundamental tensor and avoidance fundamental matrix

interchangeably throughout the dissertation since we usually deal with a cross section

of the tensor at a time.

3.4 Transit Hitting Time

Closely related to the avoidance hitting time is the notion of transit hitting time. For

any third node k, the transit hitting time H{t,ǩ}s is the expected number of steps taken

by a random walk which starts at node s and always traverse node k before hitting

target node t for the �rst time. Using the avoidance hitting time, we can express H{t,ǩ}s

as follows:

H{t,ǩ}s = H{k,t}s +H
{t}
k . (3.14)

Using the avoidance and transit hitting times, we can now divide the paths (or walks)

between a source node s to a target node t into two groups with respect to an arbitrary

third node k: those paths that exclude or avoid node k and those that include or transit

node k. The probability that a random walk takes either a path/walk from the �rst

group vs. that from the second group is given by Q{t,k}s and Q{k,t}s .
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3.5 Avoidance Hitting Cost

We introduce the avoidance hitting cost as the conditional expectation of the hitting

cost from source to target conditioned on avoiding a subset of nodes. In the following,

we de�ne it more rigorously in the stochastic form.

Let G = (Xk)k>0 be a discrete-time Markov chain with transition matrix P and

weight matrix W . Recall that the hitting cost of a node t ∈ V is a random variable ηt :

Ω→ C given by ηt = inf {η ≥ 0 : ∃k,Xk = t,
∑k

i=1wXi−1Xi = η}. Avoidance (expected)
hitting cost from s to t conditioned on avoiding F is de�ned as follows:

U{t,F}s = Es[ηt|Xk = t,Xi≤k /∈ F ] =
∑
l∈C

lP(ηt = l|Xk = t,Xi≤k /∈ F , X0 = s)

=

∑
l∈C lP(ηt = l,Xk = t,Xi≤k /∈ F|X0 = s)

P(Xk = t,Xi≤k /∈ F|X0 = s)
(3.15)

=

∑
l∈C l

∑<∞
k=1 P(

∑k
i=1wXi−1Xi = l,Xk = t,Xi≤k /∈ F|X0 = s)∑<∞

k=1 P(Xk = t,Xi≤k /∈ F|X0 = s)

=

∑
l∈C l

∑<∞
k=1

∑
ζj∈ZFst(k,l)

Prζj∑<∞
k=1

∑
ζj∈ZFst(k)

Prζj
(3.16)

=

∑
l∈C l

∑
ζj∈ZFst(l)

Prζj∑
ζj∈ZFst

Prζj

=

∑
l∈C l

∑
ζj∈ZFst(l)

Prζj∑
l∈C
∑

ζj∈ZFst(l)
Prζj

=

∑
l∈C lPr

F
l∑

l∈C Pr
F
l

(3.17)

where Pr{F}l is the probability of hitting t in total length of l when starting from s

and avoiding set F . It is obtained from the aggregation of walk probabilities with

length l which avoid set F . Therefor, the following three quantities are all the same:

Pr{F}l =
∑

ζj∈ZFst(l)
Prζj = P(ηt = l|Xi≤k /∈ F , Xk = t,X0 = s).

We can also continue (3.16) as follows to achieve another form of avoidance hitting
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cost:

U{t,F}s =

∑
l∈C l

∑<∞
k=1

∑
ζj∈ZFst(k,l)

Prζj∑<∞
k=1

∑
ζj∈ZFst(k)

Prζj
(3.18)

=

∑
l∈C
∑<∞

k=1

∑
ζj∈ZFst(k,l)

lζjPrζj∑<∞
k=1

∑
ζj∈ZFst(k)

Prζj

=

∑
ζj∈ZFst

lζjPrζj∑
ζj∈ZFst

Prζj
(3.19)

3.6 Avoiding an External Node

The avoiding node can be an external (imaginary) node which is added to the network

to model some phenomena in the network. Then the Markov chain avoidance metrics

introduced in this chapter can be applied to avoid the external node instead of the real

nodes. In the following, we present a few applications of adding an external state:

• The exterior e�ect: If the nodes in a network do not present all the sources of

cascades or in�uences in the network, an external node (or state) can be added to

model exterior e�ects. Then if the external node is avoided, the interior in�uence

of network nodes is evaluated exclusively. Chapter (4) presents the cascade in social

networks, where the activeness of nodes is de�ned to be adopting a product: a node

is called active if she adopts product x and inactive otherwise. The activeness of

nodes in a social network is a function of activeness of her friends (neighbors) in

the network plus some exterior (or non-social) e�ect. We model the non-social

(exterior) e�ect by an external node and compute the social (interior) e�ects by

avoiding the external node.

• Evaporation paradigm: An evaporation paradigm corresponding to a network

is formed by multiplying an evaporation factor αwij into the transition probability

of edge eij , i.e. Pij(α) = αwijPij for all the edges in the network, where wij is

the weight of the edge. To make the out-going probability of each node equal to 1

and the new transition probability matrix row-stochastic, one external node, called

evaporation node o, is added to the network to which every node i is connected by a

transition probability of Pio(α) = 1−
∑

j∈Nout(i) Pij(α) = 1−
∑

j∈Nout(i) α
wijPij . In
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Chapter (7), we show that the avoidance hitting cost on the evaporation paradigm,

where the evaporation node is avoided, yields a continuum from the shortest path

distance to all-path distance when α ranges from 0 to 1.

3.7 Relations, Lemmas, and Theorems

Theorem 3 (Avoidance hitting time and avoidance fundamental matrix closed form

formulation). In an unweighted network with F as the avoiding set, if t is reachable

from s, the avoidance hitting time and the avoidance fundamental matrix are calculated

from the following closed form formulation:

H{t,F}s =

∑
m F

{t,F}
sm Q

{t,F}
m

Q
{t,F}
s

, (3.20)

F {t,F}sm =
F
{t,F}
sm Q

{t,F}
m

Q
{t,F}
s

, (3.21)

otherwise Q
{t,F}
s is zero and t is not reachable from node s.

Proof. ∑
k

k[P k−1
T T PT A]st

= u′s(I + 2PT T + 3P 2
T T + ...)PT Aut

= u′s(I − PT T )−2PT Aut

= u′sF
2PT Aut

= u′sFQ
{t,F}

=
∑
m

F {t,F}sm Q{t,F}m ,

where ui is a column vector of all 0's but its i-th entry which is equal to 1, u′ is its
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transpose, and T = V \ (F ∪ {t}).∑
k

[P k−1
T T PT A]st

= u′s(I + PT T + P 2
T T + ...)PT Aut

= u′s(I − PT T )−1PT Aut

= u′sFPT Aut

= u′sQ
{t,F}

= Q{t,F}s

=⇒ H{t,F}s =

∑
k k[P k−1

T T PT A]st∑
k[P

k−1
T T PT A]st

=

∑
m F

{t,F}
sm Q

{t,F}
m

Q
{t,F}
s

(3.22)

=⇒ F {t,F}sm =
F
{t,F}
sm

∑
k[P

k−1
T T PT A]mt∑

k[P
k−1
T T PT A]st

=
F
{t,F}
sm Q

{t,F}
m

Q
{t,F}
s

(3.23)

In the theorem above, the fundamental matrix F {t,F} and the absorption probability

Q{t,F} are simply derived from (2.1) and (2.16) respectively: F {t,F} = (I −PT T )−1 and

Q{t,F} = F {t,F}PT A, where A = {t}∪F , and T encompasses the rest of the nodes. Note

that if set F is empty, Q is a column vector of all 1's and (3.20) reduces to (2.7), i.e.

calculates the classical hitting time distance from s to t. The same happens for (3.21)

by being reduced to classical fundamental matrix. It can be seen from (3.20) and (3.21)

that the same relation of classical hitting time and classical fundamental matrix (2.7)

holds for the avoidance hitting time and the avoidance fundamental matrix too:

Corollary 7.

H{t,F}s =
∑
m

F {t,F}sm = F {t,F}s: 1, (3.24)

where F
{t,F}
s: is the s-th row of avoidance fundamental matrix.

Theorem 4 (Avoidance hitting cost closed form formulation). In a weighted network

with transition probability P , weight (cost) matrix W , and F as the avoiding set, if t is
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reachable from s, the avoidance hitting cost is calculated from the following closed form

formulation:

U{t,F}s =

∑
m F

{t,F}
sm Q

{t,F}
m r

{t,F}
m

Q
{t,F}
s

, (3.25)

where r
{t,F}
m =

∑
j

Q
{t,F}
j

Q
{t,F}
m

Pmjwmj. If t is not reachable from s, Q
{t,F}
s is zero.

Proof. For transient set equal to T = V \ F ∪ {t} we have:

U{t,F}s =

∑
ζj∈ZFst

lζjPrζj∑
ζj∈ZFst

Prζj

=

∑
ζj∈ZFst

Prζj
∑kζj

k=1wvk−1vk

Qt,Fs

=

∑
ζj∈ZFst

∑kζj
k=1[

∏k
i=1 Pvi−1vi .(Pvkvk+1

wvkvk+1
).
∏kζj
i=k+2 Pvi−1vi ]

Qt,Fs

=

∑
exy∈E,x∈T ,y∈T ∪{t} Pxywxy(

∑
ζj∈ZFsx

Prζj ).(
∑

ζi∈ZFyt
Prζi)

Qt,Fs

=

∑
exy∈E,x∈T ,y∈T ∪{t} Pxywxy(

∑
k

∑
ζj∈ZFsx(k)

Prζj ).(
∑

k

∑
ζi∈ZFyt(k)

Prζi)

Qt,Fs

=

∑
exy∈E,x∈T ,y∈T ∪{t} Pxywxy(

∑
k
[P kT T ]sx).(

∑
k
[P k−1
T T PT A]yt)

Qt,Fs

=

∑
exy∈E,x∈T ,y∈T ∪{t} PxywxyF

{t,F}
sx Q

{t,F}
y

Qt,Fs

=

∑
x∈T F

{t,F}
sx Q

{t,F}
x

∑
y∈Nout(x)\F pxy

Q
{t,F}
y

Q
{t,F}
x

wxy

Q
{t,F}
s

=

∑
x∈T F

{t,F}
sx Q

{t,F}
x r

{t,F}
x

Q
{t,F}
s

(3.26)

Note that the avoidance fundamental matrix is the same as the unweighted case. For

understanding the notations please refer to Table (1.1).
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Corollary 8.

U{t,F}s =
∑
m

F {t,F}sm r{t,F}m = F {t,F}s: r{t,F}, (3.27)

Theorem 5 (Generalization of avoidance fundamental matrix and avoidance hitting

time for a set of targets). Let T = {t1, ..., tc} be a set of targets. The expected number of

steps to hit and the expected number of visits to m before hitting any state in T avoiding

set F are computed from the following formulation respectively:

H{T,F}s =

∑
m F

{T,F}
sm Q

{T,F}
m

Q
{T,F}
s

, (3.28)

F {T,F}sm =
F
{T,F}
sm Q

{T,F}
m

Q
{T,F}
s

, (3.29)

where Q
{T,F}
m is the summation of absorption probabilities over the columns corresponding

to set T .

The proof is very similar to proof of Theorem (3) and we do not repeat it here.

Lemma 4. Decomposing the classical hitting time for two target nodes in terms of

avoidance hitting time yields:

H{t,k}s = Q{t,k}s H{t,k}s +Q{k,t}s H{k,t}s (3.30)

Proof. This is proved according to (2.14) for T = {t, k}, (3), and (2.54).

Theorem 6 (Hitting Time Decomposition). The hitting time from node s to node t can

be decomposed into an �avoidance" hitting time component and a �transit" hitting time

component with respect to any node k as follows:

H{t}s = Q{t,k}s H{t,k}s +Q{k,t}s H{t,ǩ}s . (3.31)

Proof. Taking sum over m for both sides of Eq. (2.50) and substituting F
{j}
ik

F
{j}
kk

by Q{k,j}i

(Theorem (2)), the following equation is obtained:

H
{j,k}
i = H

{j}
i −Q{k,j}i H

{j}
k (3.32)
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Substituting Lemma (4), which is H{j,k}i = Q
{k,j}
i H

{k,j}
i + Q

{j,k}
i H

{j,k}
i , in Eq. (3.32)

yields the following relation:

H
{j}
i = Q

{j,k}
i H

{j,k}
i +Q

{k,j}
i (H

{k,j}
i +H

{j}
k ) = Q

{j,k}
i H

{j,k}
i +Q

{k,j}
i H

{j,ǩ}
i ,

where H{j,ǩ}i = H
{k,j}
i +H

{j}
k .

The transit and avoidance hitting times can be generalized to an arbitrary (sub)set

of nodes, H{t,Š1}
s , H{t,S̄2}

s , and combined, H{t,Š1,S̄2}
s , where the last term represents the

hitting time from node s to node t conditioned on traversing any node in S1 while

avoiding all nodes in S2.

Theorem 7. (Avoidance Paradigm to Classical Paradigm Transformation)

Network G with avoiding node o and target set T can be transformed to network G�

without node o and target set T such that the avoidance metrics in the former network

turn into the classical metrics in the latter network, i.e. F
{T,o}
sm = F�

{T}
sm , H

{T,o}
s = H�

{T}
s ,

and U
{T,o}
s = U�

{T}
s . The transformation function between transition matrix P� belonging

to G� and P belonging to G is as follows:

P� ij = Pij
Q
{T,o}
j

Q
{T,o}
i

(3.33)

Proof. We �rst prove that P� is a transition probability matrix, namely is row stochastic:

∑
j∈N (i)

P� ij =
∑

j∈N (i)

Pij
Q
{T,o}
j

Q
{T,o}
i

=
1

Q
{T,o}
i

∑
j∈N (i)

PijQ
{T,o}
j =

Q
{T,o}
i

Q
{T,o}
i

= 1, (3.34)

where the third equality is resulted because of Q is a harmonic function. Now we

show that with the transformation in eq. (3.33) these equalities hold: F {T,o}sm = F�{T}sm ,
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H
{T,o}
s = H� {T}s , and U{T,o}s = U� {T}s .

F� {T} =
∑
k=0

P�kT T =
∑
k=0

(Diag(QT,o)−1PT TDiag(QT,o))k

=
∑
k=0

Diag(QT,o)−1P kT TDiag(QT,o)

= Diag(QT,o)−1(
∑
k=0

P kT T )Diag(QT,o)

= Diag(QT,o)−1F {T,o}Diag(QT,o)

= F {T,o}

For the hitting times we have H� {T}s = F� {T}1 and H{T,o}s = F {T,o}1, so H{T,o}s = H� {T}s .

The following relations also hold for hitting costs:

U{T,o}s =
∑
m

F {T,o}sm r{T,o}m

=
∑
m

F {T,o}sm

∑
j

Q
{T,o}
j

Q
{T,o}
m

Pmjwmj

=
∑
m

F {T,o}sm

∑
j

P�mjwmj

=
∑
m

F {T,o}sm r�m

=
∑
m

F� {T}sm r�m

= U� {T}s ,

where the �rst and third equalities are based on (3.27) and (3.33) respectively.

Relation 10. For a �xed avoiding node k, the following formulation is useful to �nd the

avoidance hitting time for any pairs of source s and target t from matrix F {k}:

H{t,k}s =
∑
m

F
{k}
mt (

F
{k}
sm

F
{k}
st

− F
{k}
tm

F
{k}
tt

) (3.35)

Proof. Use (3) and (1).

Relation 11. For a �xed target node t, the following formulation is useful to �nd the
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avoidance hitting time for any pairs of source s and avoiding node k from matrix F {t}:

H{t,k}s =
1

F
{t}
kk

∑
m((F

{t}
kk F

{t}
sm − F {t}sk F

{t}
km )(F

{t}
kk − F

{t}
mk ))

F
{t}
kk − F

{t}
sk

=
1

F
{t}
kk − F

{t}
sk

(F
{t}
kk H

{t}
s − F {t}sk H

{t}
k −

∑
m

F {t}sm F
{t}
mk +Q{k,t}s

∑
m

F
{t}
kmF

{t}
mk )

Proof. Use (3) and (1).

Relation 12. Avoidance fundamental matrix in terms of F {k}:

F {t,k}sm = F
{k}
mt (

F
{k}
sm

F
{k}
st

− F
{k}
tm

F
{k}
tt

) (3.36)

Proof. Use (3) and (1)

Relation 13. Avoidance fundamental matrix in terms of F {t}:

F {t,k}sm =
1

F
{t}
kk

(F
{t}
kk F

{t}
sm − F {t}sk F

{t}
km )(F

{t}
kk − F

{t}
mk )

F
{t}
kk − F

{t}
sk

=
F
{t}
kk F

{t}
sm − F {t}sk F

{t}
km − F

{t}
sm F

{t}
mk +Q

{k,t}
s F

{t}
kmF

{t}
mk

F
{t}
kk − F

{t}
sk

(3.37)

Proof. Use (3) and (1).
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Chapter 4

In�uence Maximization in Social

Networks

4.1 Introduction

Motivated by viral marketing and other applications, the problem of in�uence maximiza-

tion in a social network has attracted much attention in recent years. Given a social

network where nodes represent users in a social group, and edges represent relationships

and interactions between the users (and through which they in�uence each other), the

basic idea of in�uence maximization is to select an initial set of �most in�uential� users

(often referred to as the seeds) among all users so as to maximize the total in�uence

under a given di�usion process (often referred to as the in�uence model) on the social

network. In the context of viral marketing, this amounts to by initially targeting a set

of in�uential customers, e.g., by providing them with free product samples, with the

goal to trigger a cascade of in�uence through �word-of-mouth� or recommendations to

friends to maximize the total number of customers adopting the said product. Domin-

gos and Richardson [40] introduced this algorithmic problem to the Computer Science

community and Kempe et al. [74] made the topic vastly popular under the name of

in�uence maximization. They studied two in�uence models, the independent cascade

(IC) model and the linear threshold (LT) model, and applied a greedy method to tackle

the in�uence maximization problem [74]. Unfortunately Kempe et al.'s approach [74]

for calculating the in�uence spread is based on Monte Carlo simulations which does not

48
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scale to large networks [31, 30]. As the result, it motivated researchers to either improve

the scalability [31, 30] or study more tractable in�uence models [63, 43].

The focus of almost all of these earlier studies are, however, progressive in�uence

models, including LT and IC models, in which once a costumer adopts a product or

a user performs an action she cannot revert it. Retweeting news and sharing videos in

online social network websites, are examples of progressive, i.e. irreversible actions. Nev-

ertheless, there are numerous real world instances where the actions are non-progressive

especially in technology adoption domain. For example, adopting a cell phone service

provider, such as AT&T and T-mobile, is a non-progressive action where a user can

switch between providers. The objective of in�uence maximization in this example is

to persuade more users to adopt the intended provider for a longer period of time. To

capture the reversibility of choices in real scenarios, we present Heat Conduction (HC)

model which has favorable real-world interpretation. We also show that HC uni�es, gen-

eralizes, and extends the existing non-progressive models, including non-progressive LT

(NLT) [74] and Voter model [48] (see Section 6.5). In contrast to the Voter model, HC

does not necessarily reach consensus, where one product dominates and extinguishes the

others after �nite time, so the proposed HC model can explain the coexistence of multiple

product adoptions, which is a typical phenomena in real world. In addition, HC model

incorporates both �social� and �non-social� factors, e.g., intrinsic inertia or reluctance of

some users in adopting a new idea or trying out a new product, external �media e�ect�

which exerts a �non-social� in�uence in promoting certain ideas or products.

We tackle the in�uence maximization problem under HC in�uence model with a

scalable and provably near-optimal solution. Kempe et al.'s approach [74] for in�uence

maximization under NLT model, is to reduce the model to (progressive) LT by replicat-

ing the network as many as time progresses and compute the in�uence spread by the

same slow Monte Carlo method for the resulted huge network. This approach is practi-

cally impossible for large networks, specially for the in�nite time horizon. We also prove

that contrary to the Voter, for which the in�uence maximization can be solved exactly

in polynomial time [48], the in�uence maximization for HC is NP-hard. We develop an

approximation (greedy) algorithm for in�uence maximization under HC for in�nite time

horizon with guaranteed near-optimal performance. Exploiting probability theory and
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novel Markov chain metrics, we are able to provide closed form solution for both com-

puting the in�uence spread and greedy selection step which entirely removes the need to

explicitly evaluate each node as the best seed candidate; our fast and scalable algorithm,

C2Greedy, for in�uence maximization under HC removes the computational barrier

that prevented the literature from considering the non-progressive in�uence models.

Our extensive experiments on several and large real and synthetic networks val-

idate the e�ciency and e�ectiveness of our method which outperforms the state-of-

the-art in terms of both in�uence spread and scalability; we show that the most in-

�uential nodes under progressive models not necessarily act as the most in�uentials

under non-progressive models and a designated non-progressive algorithm is necessary.

Moreover, we present the �rst real non-progressive cascade dataset which models the

non-progressive propagation of research topics among network of researchers. We are

planning to make this data publicly available. Our contribution in this work is summa-

rized as follows:

• We propose HC in�uence model that has favorable real world interpretations, and

uni�es, generalizes, and extends the existing non-progressive models and .

• We show HC has three noble key properties which enables us solving in�uence maxi-

mization e�ciently.

• To the best of our knowledge, we are the �rst to present a scalable solution for in�uence
maximization under non-progressive LT model.

• We demonstrate high performance and scalability of our algorithm via extensive ex-

periments and present the �rst ever real non-progressive cascade dataset.

The rest of this chapter is organized as follows. After a brief review on the related

work, we introduce our HC model in Section 4.3. Next, we show how to compute the

in�uence spread for HC in closed form in Section 4.4. In Section 4.5, we present our

e�cient algorithm C2Greedy for in�uence maximization under the HC model. Section

6.5 explains how HC uni�es other non-progressive models and provides a more complete

view of the HC model. Finally we conduct comprehensive experiments in Section 4.7 to

illustrate performance of our algorithm.
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4.2 Related work

After the debut of in�uence maximization as a data mining problem [40], it is formu-

lated as a discrete optimization problem based on progressive in�uence models (LT and

IC) from social and physical sciences [74]. Kempe et al. [74] show that in�uence max-

imization is NP-hard under LT and IC models but the in�uence spread is submodular

for the models which enables them to use the greedy method. Although the algorithm

is greedy it usually does not scale, because it needs to compute in�uence spread many

times in each iteration while in�uence spread has no known closed form and is estimated

by Monte Carlo simulation. The follow-up studies [89, 31, 30, 65, 63, 43] attempt to

speed up this process by avoiding or decreasing the need for the MC simulation (for fur-

ther details of the studies on progressive in�uence model please refer to Supplementary).

Kempe et al. [74] also introduce a non-progressive version of the LT in�uence model

(NLT) and try to tackle the in�uence maximization problem under NLT by reducing the

model to (progressive) LT, discussed in Section 4.1.

Voter model, as the most well-known non-progressive model, is originally introduced

in [34, 68] and adopted for viral marketing in [48]. Even-Dar and Shapira show that

under Voter model, highest degree nodes are the solution of in�uence maximization [48].

Unfortunately since the Voter model reaches consensus, i.e. one product remains in long

term, it can not explain the coexistence of multiple product adoptions, which is a typical

case in many real product adoptions.

• In�uence maximization under progressive model: A brief review

CELF method of Leskovec et al. [89] attempts to speed up the original greedy method,

proposed by Kempe et al. [74], by reducing the number of calls to Monte Carlo routine for

spread computation. CELF lazy method is based on the submodularity of the in�uence

spread and can be applied to any submodular maximization problem. Although lazy

evaluation improves the running time of the original greedy method by up to 700 times

[89], it still does not scale to large graphs [31].

Recently heuristics have been proposed to approximate in�uence spread for LT [31]

and IC [30] which enables the greedy method to scale for large networks. Chen et

al. [31] suggest to use a local directed acyclic graph (LDAG) per node, instead of

considering the whole graph, to approximate the in�uence �owing to the node. Goyal et
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al. propose SIMPATH method [65] under the LT model which is built on CELF method

[89]. They approximate the in�uence spread by enumerating the simple paths starting

from the seeds within a small neighborhood. Both of these methods have parameters

to be tuned which control the trade-o� between running time and accuracy of in�uence

spread estimation. Methods presented in [31, 65] accelerate the greedy method [74]

substantially and achieve high performance in in�uence maximization.

Gomez-Rodriguez et al. [63] propose a progressive continuous time in�uence model

with dynamics similar to IC and show that in�uence maximization is NP-hard for this

model as well. They show submodularity of in�uence spread and exploit the same greedy

algorithm. In contrast to all other progressive models, in�uence spread has a closed form

for this model but the computation is not scalable for large scale networks. A recent

work [43] has scaled in�uence computation by developing a randomized algorithm for

approximating it.

4.3 Heat Conduction In�uence Model

The heat conduction (HC) in�uence model is inspired by the resemblance of in�uence

di�usion through a social network to heat conduction through an object, where heat is

transferred from the part with higher temperature to the part with lower temperature.

We provide a simple description of HC in this section and defer the complete view of it

as well as its uni�cation property to Section 6.5.

Considering directed graph G = (V, E) which represents the social (in�uence) net-

work, the directed edge from node i to node j declares that i follows j (or equivalently j

in�uences i). Edge weight ωij indicates the amount that i trusts j and unless speci�ed

0 ≤ ωij ≤ 1. The set of i's neighbors, representing the nodes that in�uence i, is denoted

by N (i). The in�uence cascade can be assumed as a binary process in which a node

who adopts the �desired� product is called active, and inactive otherwise. Note that

this assumption holds for the cases with multiple products as well, where the objective

is to maximize the in�uence (publicity) of the �desired� product, and the rest are all

considered �undesired�. Seed is a node that has been selected for the direct marketing

and remains active during the entire process. In HC model, the in�uence cascade is

initiated from a set of seeds S and arbitrary values for other nodes. The choice of node
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i to become active or inactive at time t + 1 is a linear function of the choices of its

neighbors at time t as well as its intrinsic (or non-social) bias toward activeness:

Pr
(
δi(t+ 1) = 1|N (i)

)
= βib+ (1− βi)

∑
j∈N (i)

ωijδj(t), (4.1)

where βi ∈ (0, 1), b ∈ [0, 1], and
∑

j∈N (i) ωij = 1. Indicator function δi(t) is 1 when

node i adopts the desired product at time t and 0 otherwise. We refer to (4.1) as the

choice rule. The dependence on neighbors in (4.1) represents the �social" in�uence and

the bias value b accounts for �non-social" in�uence which comes from any source out of

the neighbors, e.g. media. The �non-social" in�uence can explain the cases where the

�social" in�uence alone fails to model the cascades [25]. We discuss further interpretation

and extensions of HC in Section 6.5.

Replacing the choice rule (4.1) in Pr
(
δi(t + 1)

)
=
∑
Pr(δi(t + 1)|N (i))Pr(N (i))

results in the following probabilistic interpretation of the original binary HC model.

Each node i has a value at time t denoted by u(i, t) which represents the probability that

she adopts the desired product at time t:

u(i, t+ 1) = βib+ (1− βi)
∑

j∈N (i)

ωiju(j, t), (4.2)

Simple calculation shows that the bias value b can be integrated into the network by

adding a bias node n (assuming that the network has n− 1 nodes) with adoption prob-

ability b. Therefore, HC dynamics converts to the following:

u(i, t+ 1) =
∑

j∈EN (i)

Piju(j, t), (4.3)

where EN (i) = N (i) ∪ {n} is the extended neighborhood, Pin = βi, u(n, t) = b, and

∀j 6= n : Pij = (1 − βi)ωij . Rewriting (4.3) in the following form shows that HC

follows the discrete form of Heat Equation [82], which reveals the naming reason of

HC in�uence model: u(:, t+1)−u(:, t) = (P−I)u(:, t), where L = I−P is the Laplacian

matrix, u(i, t) is the temperature of particle i at time t, and �:� denotes the vector of all

entries.
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4.4 HC In�uence Spread

In�uence spread of set S for time t is de�ned as the expected number of active nodes

at time t of a cascade started with S. Knowing that u(i, t) is the probability of node i

being active at time t, in�uence spread (or function) σ(S, t) is computed from:

σ(S, t) =
∑
i∈V

u(i, t). (4.4)

Motivated by the classical heat transfer methods, the initial and the boundary conditions

should be speci�ed to solve the heat equation and �nd u(i, t) uniquely. In HC, the seeds

S and the bias node are the boundary nodes and the rest are interiors. Assuming

S = {n − 1, n − 2, ..., n − |S|} and n as the bias node, HC is de�ned by the following

heat equation system:

Main equation : u(:, t+ 1)− u(:, t) = −Lu(:, t)

Boundary conditions : u(n, t) = b,

u(s, t) = 1 ∀s ∈ S (4.5)

Initial condition : u(:, 0) = z + [0, ..., 0, 1, ..., 1︸ ︷︷ ︸
|S|

, b]′,

where, as indicated in this formula, initial value u(:, 0) is the sum of two vectors: the

initial values of the interior nodes (z) and the initial values of boundaries (the second

vector). The corresponding entries of boundaries in z are zero. In the continue, exploiting

probability theory and novel Markov chain metrics, we provide a closed form solution

to this heat equation system.

Social network G can be interpreted as an absorbing Markov chain where the ab-

sorbing states (boundary set B) are the seeds and bias node, B = S ∪ {n}, and Pij is
the probability of transition from i to j. The adoption probability of the nodes at time

t, i.e. u(:, t), can be written as a linear function of initial condition (4.3):

u(:, t) = P tu(:, 0), (4.6)

where P is row-stochastic and has the following block form: P =

[
R B

0 I

]
. The

superscript indicates the time here. The boundary set by de�nition have �xed values
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over time and do not follow any other nodes which leads to the zero and identity blocks

I(|S|+1)×(|S|+1). Blocks R and B represent transition probabilities of interior-to-interior

and interior-to-boundary respectively. Note that di�erent boundary conditions in (4.5),

like di�erent seed set, result in a di�erent P . Therefore both P and u(:, t) implicitly

depend on S.
When t goes to in�nity, transient part of u vanishes and it converges to the steady-

state solution v = u(:,∞), which is independent of time and is Harmonic, meaning that

it satis�es Pv = v [41]. Assume v =
(
vI , vB)T where I = V \ B is the set of interior

nodes, then the value of interior nodes is computed from boundary nodes [41]:

vI = (I −R)−1BvB = FBvB = QvB. (4.7)

where F = (I − R)−1 is the fundamental matrix and Fij indicates the average number

of times that a random walk started from i passes j before absorption by any absorbing

(boundary) nodes [41]. Also, the absorption probability matrix Q = FB is a (n− |S| −
1)× (|S|+ 1) row-stochastic matrix, where Qij denotes the probability of absorption of

a random walk started from i by the absorbing node j [41].

From here on, without loss of generality, we assume b to be zero in equation (4.5).

Using (4.6) and (4.7), the in�uence spreads for in�nite time can be computed in closed

form:

σ(S,∞) =
n∑
i=1

v(i) = |S|+
∑
i∈I

∑
s∈S

QSis. (4.8)

The superscript in QS and PS explicitly indicates that they are functions of seed set

S. Note that in fact they are depending on the total boundary set, B = S ∪ {n}, but
since the bias node is always a boundary, throughout this chapter we discard it from the

superscripts to avoid clutter.

4.5 In�uence Maximization for HC

In this section we solve the in�uence maximization problem for in�nite time horizon

under HC model, formulated as follows:

S∗ = arg max
S⊆V

σ(S,∞), s.t. |S| ≤ K. (4.9)
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4.5.1 In�uence Maximization for K = 1

Based on (4.8) and (4.9), the most in�uential person (MIP) is the solution of the following

optimization problem: arg maxV\{n}
∑

i∈V\{s,n}Q
{s}
is . This equation states that to �nd

the MIP, we need to pick each candidate s and make it absorbing and compute the new

P as P {s} which in turn changes Q to Q{s}, and repeat this procedure n−1 times for all

s. This procedure is problematic because for each Q{s} we require to recompute matrix

F {s} which involves matrix inversion. But, in the following theorem we show that we

are able to do this by only one matrix inversion instead of n− 1 matrix inversions, and

having matrix F ∅ is enough to �nd the most in�uential person of the network (∅ sign
indicated no seed is selected):

Theorem 8. MIP under HC (4.1) when t → ∞ can be computed in closed form from

the following formula:

MIP = arg max
s∈V\{n}

∑
i∈V\{n}

F ∅is
F ∅ss

= arg max1′F̆ ∅, (4.10)

where F̆ ∅ is F ∅ when each of its columns is normalized by the corresponding diagonal

entry. Note that left multiplication of all ones row vector is just a column-sum operation.

4.5.2 In�uence Maximization for K > 1

Although the in�uence maximization can be solved optimally for K = 1 , the general

problem (4.9) under HC for K > 1 is NP-hard:

Theorem 9. Given a network G = (V, E) and a seed set S ⊆ V, in�uence maximization
for in�nite time horizon (4.9) under HC de�ned by (4.1) is NP-hard.

In spite of being NP-hard, we show that the in�uence spread σ(S,∞) is submodular

in the seed set S which enables us to �nd a provable near-optimal greedy solution. A set

function f : 2V → R maps subsets of a �nite set V to the real numbers and is submodular

if for T ⊆ S ⊆ V and s ∈ V\S, f(T ∪{s})−f(T ) ≥ f(S∪{s})−f(S) holds, which is the

diminishing return property. Following theorem presents our established submodularity

results.

Theorem 10. Given a network G = (V, E), in�uence spread σ(S,∞) under HC model

is non-negative monotone submodular function.
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The greedy solution adds nodes to the seed set S sequentially and maximizes a

monotone submodular function with (1−1/e) factor approximation guarantee [95]. More

formally the (k+1)-th seed is the node with maximummarginal gain: (k+1)th-MIPt =

arg maxs∈V\{Sk∪{n}} σ(Sk ∪ {s}, t)− σ(Sk, t), where Sk is the set of k seeds which have

been picked already. Although we can compute the above objective function in closed

form, for selecting the next seed we have to test all s to solve the problem which is the

approach of all existing greedy based method in the literature. Previously a lazy greedy

scheme have been introduced to reduce the number testing candidate nodes s [89]. In

the next section we go one step further and show that under HC model and for in�nite

time horizon we can solve the marginal gain in closed form.

4.5.3 Greedy Selection

An important characteristic of the linear systems, like HC when t→∞, is the �superpo-

sition" principle. We leverage this principle to calculate the marginal gain of the nodes

e�ciently and pick the one with maximum gain for the greedy algorithm. Based on this

principle, the value of each node in HC for in�nite time, and for a given seed set S, is
equal to the algebraic sum of the values caused by each seed acting alone, while all other

values of seeds have been kept zero. Therefore, when a node s is added to the seed set

Sk, its marginal gain can be calculated as the summation of values of the nodes when all

of the values of Sk have been turned to zero and node s is the only seed in the network,

whose value is 1 − vSk(s). In this new problem, the vector of boundary values vSk∪{s}B

is a vector of all 0's except the entry corresponding to the node s with value 1− vSk(s),

and the value of interior node i is obtained from (4.7):

v
Sk∪{s}
I (i) = Q

Sk∪{s}
is (1− vSk(s))

Substituting Q from lemma 3 result (see Supplementary), the k+1-th seed is determined

from the following closed form equation:

(k + 1)th-MIP

= arg max
s∈V\{Sk∪{n}}

∑
i∈V\{Sk∪{n}}

FSkis

FSkss

(
1− vSk(s)

)
,

= arg max(1− vSk)′F̆Sk (4.11)
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Note that vector vSk is obtained in step k and is known, and matrix FSk can be calculated

from FSk−1 without any need for matrix inversion (see Supplementary, lemma 1). One

may observe that equation (4.11) is the general form of Theorem 8, since vS0 = v∅ = 0.

Notice that equation (4.11) intuitively uses two criteria for selecting the new seed: its

current value should be far from 1 (higher value for (1−vSk(s)) term) which suggests that

it is far from the previously selected seeds, and at the same time it should have a high

network centrality (corresponding to the FSkis /F
Sk
ss term). Algorithm 1 summarizes our

C2Greedy method for t→∞: a greedy algorithm with 2 closed form steps. Operator

⊗ in step 10 denotes the Hadamard product.

Algorithm 1 C2Greedy

input: extended directed network G = (V, E) with bias node n, maximum budget K.

output: seed set SK ⊆ V with cardinality K.

compute matrix P from G.

S0 := ∅
FS0 := (I − PS0)−1

s = arg max1′F̆ ∅, and S1 = S0 ∪ {s}
vS1 = F̆S0(:, s)

for k = 1 to K − 1 do

∀i, j ∈ I : F
Sk∪{s}
ij = FSkij −

F
Sk
is F

Sk
sj

F
Sk
ss

s = arg max(1− vSk)′ ⊗ 1′F̆Sk , and Sk+1 = Sk ∪ {s}
vSk+1 = vSk + (1− vSk(s))F̆Sk(:, s)

end for

4.6 Discussion

In this section, we present the comprehensive view of HC model and elaborate its (uni-

fying) relation to the other models by providing multiple interpretations.

Social interpretation. HC can be simply extended to model many real cases that

the other in�uence models fail to cover. As brie�y mentioned in Section 4.3, the original

HC (4.1), models both �social" and �non-social" in�uences which cover the observations

from the real datasets [25]. The extension of HC which is more �exible in modeling real
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Table 4.1: Specifying the equal heat system for existing non-progressive in�uence models.

Model
Non-Social
in�uence

Weighted
edges

Boundary Init. Cond. Physical Heat
Conduction SystemHigh

T = 1
Low
T < 1

= 0 6= 0

NLT1
√ √ √ √ Circular ring

with a �xed-temp.

NLT2
√ √ √ √ √ A rod with two

ends, one high one low,
and �xed-temp

NLT3
√ √

(Isolated) circular ring

NLT4
√ √ √ Circular ring

with a �xed-temp.
Voter

√
(Isolated) circular ring

GLT
√ √ √ Circular ring

with a �xed-temp

world cascades is as follows:

u(i, t+ 1) = mαi + rγi + (1− γi − αi)
∑

j∈N (i)

ωiju(j, t), (4.12)

where,
∑

j∈N (i) ωij = 1, γi, αi ∈ [0, 1], m = 1, and r = 0. Factor r models the �dis-

couraging" factor like intrinsic reluctance of customers toward a new product, and m

represents �encouraging" factor like media that promotes the new product. These two

factors can explain cases where all neighbors of a node are active but the node remains

inactive, or when a node becomes active while none of her neighbors are active [25].

Note that all of the formulas and results stated so far is simply applicable to the general

HC model (4.12).

Uni�cation of existing non-progressive models. HC (4.1) uni�es and extends

many of the existing non-progressive models. In the Voter model, a node updates its

choice at each time step by picking one of its neighbors randomly and adopting its

choice. In other words, the choice rule of node i is the ratio of the number of her active

neighbors to her total number of neighbors. Thus, Voter's choice rule is the simpli�ed

form of HC's choice rule (4.1) where ωij is equal to 1
di

(di is the out-degree of node i)

and all βis are set to zero. Also, note that having βi = 0 indicates that the Voter does

not cover the �non-social" in�uence.

In the non-progressive LT (NLT) [74], each node is assigned a random threshold θ



60

at each time step and becomes active if the weighted number of its active neighbors

(at previous time step) becomes larger than its threshold:
∑

j∈N (i) ωijδj(t) ≥ θi(t+ 1),

where the edge weights satisfy
∑

j∈N (i) ωij ≤ 1. Thus, the choice rule of node i at time

(t+ 1) under the NLT is obtained from the following equation:

Pr
(
δi(t+ 1) = 1|N (i)

)
= Pr

(
θi(t+ 1) ≤ ΣωNLTij δj(t)

)
= ΣωNLTij δj(t), (4.13)

where the second equality is the result of sampling θi(t+1) from the uniform distribution

U(0, 1). Equation (4.13) is the simpli�ed form of HC's choice rule (4.1), where b = 0

and (1 − βi)ωHCij = ωNLTij . Note that since in the NLT b accepts only zero value, this

in�uence model also cannot cover encouraging �non-social" in�uence. Moreover, if the

edge weights' gap in NLT, i.e. gi = 1−
∑

j∈N (i) ω
NLT

ij , is zero for all the nodes, it cannot

model the �non-social" in�uence at all, since the corresponding βi's in (4.1) would be

equal to zero in that case.

Generalized linear threshold (GLT) is another non-progressive model proposed in

[106] to model the adoption process of multiple products. Assigning a color c ∈ C to

each product, a node updates its color, at each time step, by randomly picking one of its

neighbors based on its edge weights and adopts the selected neighbor's color. For binary

case |C| = 2, where we only distinct between adoption of a desired product (active)

and the rest of products (inactive), GLT's choice rule reduces to the following equation:

Pr
(
δi(t+ 1) = 1|N (i)

)
= β

2 + (1− β)
∑

j∈N (i) ωijδj(t). It is easy to see that this is the

restricted form of HC's choice rule (4.1), where nodes are all connected to the bias node

with equal weight of β and bias value b has to be β
2 .

Physical interpretation. We showed that the existing non-progressive models are

special cases of HC, and in this part we describe their equal heat conduction system which

are uniquely speci�ed by the initial and boundary conditions. Table 4.1 summarizes the

heat interpretation of the in�uence models. We introduce four variants of non-progressive

LT, based on two factors: seed and gap gi. NLT1 and NLT2 support non-zero gaps, and

NLT2 and NLT4 allows seeds, i.e. nodes in the network that always remain active. The

non-progressive LT model presented in [74] is equivalent to NLT2. Reluctance factor

and seeds in all models are equivalent to the low and high temperature boundaries

respectively, and initial condition addresses the interiors' initial values (z in (4.5)). The
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non-social in�uence and edge weights factors appear in the Laplacian matrix calculation

of (4.5). The equivalent physical heat conduction systems are easy to understand, here

we just brie�y point out the equivalence of the Voter model and the isolated circular

ring. Circular ring is a rod whose ends are connected to each other and do not have

any energy exchange with outside [69] which explains why the Voter conserves the total

initial heat energy, and reaches to an equilibrium with an equal temperature for all of

the nodes, i.e., consensus.

Random walk interpretation. Beside the heat conduction view, the random

walk prospect helps to gain a better understanding of the models and their relations.

Assume that active and inactive nodes are colored black and white respectively. Consider

the original view of any in�uence model which is the actual process that unfolds in time,

so we look at the time-forward direction. We take a snapshot of the colored network

at each time step t. Putting together the sequence of snapshots, the result is a random

walk in the �colored graphs� state space with 2n states. On the other hand, the dual view

looks at the time-reverse direction of in�uence models. It is known for both IC-based

models (like IC [74] and ConTinEst [43]) and LT-based models (Table 4.1 as well as HC

and LT) that a single node from N (i) is responsible for i's color switch, which we name

it as the parent of i. Now assuming that the process has advanced up to the time t, we

reverse the process by starting from each node i and follow its ancestors. Here is the

point where IC and LT based models separate from each other: due to
∑

j∈N (i) ωij ≤ 1

constraint, ancestors of i in the LT-based models form a random walk starting from node

i, which is not the case in IC-based models. Note that we have n random walks that can

meet and merge, thus they are known as coalescing random walks [8]. This view also

helps us to demonstrate the essential di�erence between progressive and non-progressive

models. Dual view of progressive LT model is a coalescing self-avoiding walks which is

the outcome of randomizing the threshold θ only once at the beginning of the process

for the nodes in each realization. This bounds the number of �live" edges [74] connected

to each node by one which prevents the creation of �loop" in the in�uence paths. Note

that both counting and �nding the probability of self-avoiding walks are #P hard [31].



62Table 4.2: List of networks used in experiments.

|V| |E| Params

Synthetic
Networks

Random 1024 - [0.5, 0.5; 0.5, 0.5]

Hier. 1024 - [0.9, 0.1; 0.1; 0.9]

Core. 1024 - [0.9, 0.5; 0.5, 0.3]

ForestFire 1K-300K 2.5|V| [0.35, 0.25]

Real
Networks

KClub 34 501 -
PBlogs 1490 19087 -
WikiVote 7115 103689 -
MLWFW 10604 168918 -

4.7 Experiments

In this section, we examine several aspects of C2Greedy and compare it with state-

of-the-art methods. Experiments mainly focus on in�uence maximization and timing

aspects. Finally, we present one example of real non-progressive data and illustrate the

result of C2Greedy.

4.7.1 Dataset

Table 4.2 summarizes the statistics of the networks that we use throughout the experi-

ments. We work with both synthetic and real networks which we brie�y discuss next.

Synthetic network generation. We consider the following types of Kronecker net-

work for extensive performance comparison of our method with the state-of-the-art meth-

ods: random [46] (parameter matrix [0.5, 0.5; 0.5, 0.5]), hierarchical [33] ([0.9, 0.1; 0.1; 0.9]),

and core-periphery [85] ([0.9, 0.5; 0.5, 0.3]). We generate 10 samples from each network

and report the average performance of each method. Edge weights are drawn uniformly

at random from [0, 1] and weights of each node's outgoing edges is normalized to 1.

For timing experiment, we use ForestFire [33] (Scale-free) network with forward and

backward burning probability of 0.35 and 0.25, respectively, and set the outgoing edge

weights of node i to 1/|N (i)|. The expected density, i.e., number of edges per node, for

the resulted ForestFire networks is 2.5.

Real Networks. Zachary's karate club network (KClub) is a small friendship net-

work with 34 nodes and 501 edges [139]. The political blogs network (PBlogs) [2], is a

moderate size directed network of hyperlinks between weblogs on US politics with 1490

nodes and 19087 edges. Wikipedia vote network (WikiVote), is the network of who-vote-

whom from wikipedia administrator elections [87] with 7115 nodes and 103689 edges.

Finally, MLWFW is the network of who-follow-whom in the machine learning research
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community which we extract from citation networks of combined ACM and DBLP ci-

tation network which is available as a part of ArnetMiner [125]. For more information

about MLWFW refer to Section 4.7.4.

For all synthetic and real networks, after constructing the network, we add the bias

node to the network and connect all nodes to it with weight βi = 0.1 and re-normalize

the weight of the other edges accordingly.

4.7.2 In�uence Maximization

In this section we investigate the performance of C2Greedy in the main task of in�uence

maximization i.e., solving the set function optimization (4.9). Since �nding the optimal

solution for (4.9) is NP-hard, we compare C2Greedy with optimal solution only for a

small network, then for a large network we show that C2Greedy result is close to the

online bound [89]. We also compare the performance of C2Greedy with the state-of-

the-art methods proposed for solving (4.9) under di�erent (mostly progressive) in�uence

models.

C2Greedy vs. optimal. For testing the quality of C2Greedy method, we

compare its performance with the best seed set (determined by brute force) on a small

size network. We work with the KClub network for the brute-force experiment with

K = 5. As Figure 4.1a shows C2Greedy selects nodes that match the performance of

the optimal seed set. In the next step, on a larger network, we show that the performance

of C2Greedy is close to the known online upper bound [89]. We compute the online and

o�ine bounds of greedy in�uence maximization [89] with K = 30 for PBlogs network.

Figure 4.1b illustrates that C2Greedy result is close to the online bound and therefore

close to the optimal solution's performance.
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Figure 4.1: For small network (a) shows C2Greedy matches the optimal performance. For a

larger network (b) compares performance of C2Greedy with online and o�ine bounds.

C2Greedy vs. state-of-the-art. Next, we compare C2Greedy with the state-

of-the-art methods of in�uence maximization over three aforementioned synthetic net-

works and WikiVote real network. Among baseline methods PMIA [30] and LDAG [31]

are approximation for IC and LT models respectively and SP1M [77] is a shortest-path

based heuristic algorithm for in�uence maximization under IC. ConTinEst [64] is a recent

method for solving continuous time model of [63] and PageRank is the well-known in-

formation retrieval algorithm [20]. Finally, Degree selects the nodes with highest degree

as the most in�uential and Random picks the seed set randomly.

The comparison results are depicted in Figure 4.2. Interestingly, our algorithm out-

performed all of the baselines. Strangely, ConTinEst performs close to Random (except

in the random network). A closer look at the results for three synthetic networks reveal

that except ConTinEst's odd behavior all other methods have persistence rank in per-

formance. C2Greedy is the best method and is followed by PMIA and LDAG, both

in second place, which are closely followed by SP1M. PageRank, Degree and Random

are next methods in order. In WikiVote real network of Figure 4.2d surprisingly most

of the state-of-the-art methods perform terribly poor and Degree (as the KMIP solu-

tion to Voter model) is the only competitor of C2Greedy. Result of experiment with

WikiVote shows that most in�uential nodes in a progressive models are not necessary in-

�uential in non-progressive ones, and designing non-progressive-speci�c algorithms (like
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C2Greedy) is required for in�uence maximization under non-progressive models.
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(a) Random network

0 10 20 30 40 50
0

50

100

150

200

250

300

350

Seed size |S|

In
flu

en
ce

 fu
nc

tio
n 
(

S
, 

)

 

 

Degree
SP1M
PageRank
Random
PMIA
LDAG
ConTinEst
C2Greedy

(b) Hierarchical network
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(c) Core-periphery network
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(d) Real network (WikiVote)

Figure 4.2: Comparing performance of C2Greedy with state-of-the-art in�uence maximization

methods. Networks of (a), (b), and (c) are synthetic and (d) is a real network.

4.7.3 Speed and Scalability

In this part we illustrate the speed bene�ts of having two closed form updates in

the greedy algorithm and also deal with the required single inverse computation of

C2Greedy to prove the scalability of our method.

Closed form bene�ts. As discussed in Section 4.5, our main algorithm C2Greedy

bene�ts from closed form computation for both in�uence spread (4.8) and greedy selec-

tion (4.11). To show the gain of these closed form solutions, we run the greedy algorithm
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in three di�erent settings. First without using any of (4.8) and (4.11) which we call

Greedy and uses Monte Carlo simulation to estimate the in�uence spread. Second we

only use (4.8) to have the closed form for in�uence spread without closed form greedy

update of (4.11) which results in C1Greedy, and �nally C2Greedy which uses both

(4.8) and (4.11). Note that we can add lazy update of [89] (see Supplementary) to

Greedy and C1Greedy to get LGreedy and LC1Greedy respectively. Finally we

include the original greedy method [74] of solving LT model (progressive version of our

model) and its lazy variant, with 100 iteration of Monte Carlo simulation. Note that for

having a good approximation of in�uence spread in LT model, simulations are run for

several thousand iterations, but here we just want to illustrate that the greedy algorithm

for HC is much faster than LT, for which 100 iterations is enough. Figure 4.3a illustrates

the speed in log-scale of all seven algorithms for K = 10 over the Pblogs dataset [2].

Note that the required time of inverse computation (4.7) is also included. The results

con�rm that both closed forms decrease the timing signi�cantly (1 sec vs. 461 sec for

the next best variation) and help the greedy algorithm far more than the lazy update.

Per-seed selection time. The major computational bottleneck of our algorithm

is the inverse computation of (4.7). But fortunately this is needed once and at the

beginning of the process. Here assuming o�ine inverse computation, we are interested

in the cost of adding each seed. Figure 4.3b compares the cost of selecting k-th seed

for the �ve variation of our algorithm, plus LT and LazyLT all described previously. As

expected C2Greedy requires the lowest computation time per seed. Also, the timing

per seed for C2Greedy is strictly decreasing over the size of S, because the matrix N

shrinks, while per seed selection time of LT is increasing on average, because more seeds

probably lead to bigger cascades.
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Figure 4.3: In (a) we compare the total timing of seven algorithms to investigate the e�ect of

closed updates on speed and in (b) we show the per-seed required time for the same experiment.
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Figure 4.4: Timing for inf. max. in large scale networks by exploiting (a) inverse approximation

and (b) parallel programming. Results of (b) are on FF networks with edge density 2.5.

Inverse approximation. Going beyond networks of size 104 makes the inverse

computation problematic, but fortunately we have a good approximation of the inverse

through the following expansion: F = (I − R)−1 ≈ I + R1 + R2 + ... + RT . Since

all eigenvalues of R are less than or equal to 1 contribution of (R)i to the summation

drops very fast as i increases. The question is how many terms of the expansion, T ,
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is enough for our application. Heuristically we choose the (e�ective) diameter of the

graph as the number that provides us with a good approximation of F−1. Note that

the ith term of the expansion pertains to the shortest paths of size i between any pair

of nodes. Since the graph diameter is the longest shortest path between any pair of

nodes, having that many terms gives us a good approximation of F−1. This is also

demonstrated by the experimental result of Figure 4.4a where we compare the result of

the in�uence maximization on the WikiVote network with diameter 15, with actual F−1

and its approximation for di�erent T 's. As discussed when T reaches to the diameter,

the result of the algorithm that uses inverse approximation coincides with the algorithm

that uses the exact inverse.

Scalability. Finally to show the scalability of C2Greedy we perform in�uence

maximization on networks with sizes up to 3 × 105. For speeding up the large scale

matrix computation of the Algorithm 1 we developed an MPI version of our code which

allows us to run C2Greedy on computing clusters. Figure 4.4b shows the running time

of C2Greedy for ForestFire networks of sizes varying between 1K to 300K with edge

density 2.5 (i.e. ratio of edges to nodes) and e�ective diameter of 10. The MPI code

was run on up to 400 cores of 2.8 GHz. As Figure 4.4b indicates even for the largest

tested network with 0.3 million nodes and 0.75 million edges C2Greedy takes less than

10 minutes for K = 10.

To give a sense of our achievement in scalability we brie�y mention the result of one

of the state-of-the-art methods: The scalable ConTinEst [43] runs with 192 cores for

almost 60 minutes on ForestFire network of size 100K and edge density of 1.5 to select

10 seeds, where our C2Greedy �nishes in less than 2 minutes for the similar ForestFire

network (100K nodes and density 1.8) with 200 cores.
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Figure 4.5: In (a) we show the existence of non-progressive cascade of ML research topic where

white means all papers of the author is about ML. In (b) we compare C2Greedy result with

other baselines such as most cited author.

4.7.4 Real Non-Progressive Cascade

Collaboration and citation networks are two well-known real networks that have been

studied in social network analysis literature [74, 124]. Here we introduce a new network

that represents who-follows-whom (WFW) in a research community. Note that the nodes

in the collaboration and citation networks are authors and papers respectively but in

WFW network nodes are authors and edges are inferred from citations. A directed edges

(u, v) means that author u has cited one of the papers of author v which reveals that

u follows/reads papers of v. Here we investigate the �research topic adoption� cascade.

Researchers adopt new research topics during their careers and in�uence their peers

along di�erent research communities. The process starts with an arbitrary research

topic for each author and they are in�uenced by the research topic of those they follow

and switch to another topic. For example a data mining researcher that follows mostly

the papers of machine learning authors is probably going to switch his research topic to

machine learning.

For illustration, we consider only the authors who have published papers in Machine

Learning (ML) conferences and journals in a given time period. For the list of ML related
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conferences and journal we use resources of ArnetMiner project [125]. We consider each

time step a year and study the years 2001 - 2012. An author is an active ML author in

a given year if at least half of his publications in that year was published in ML venues.

Figure 4.5a shows the change in the percentage of ML publication of ML authors who

has more than 70 publication in years between 2001 and 2012. As Figure 4.5a suggests,

cascade of ML research topic is a non-progressive process and researcher switch back

and forth between ML and other alternatives. Among 1049 authors of Figure 4.5a about

400 of them are core ML authors who have rarely published in any other topic, but the

non-progressive nature of the process is more visible in the rest (bottom part of Figure

4.5a).

Next we perform in�uence maximization on the inferred WFW network which we

call MLWFW network. We extract the MLWFW network from the combined citation

network of DBLP and ACM which is publicly available as a part of ArnetMiner project

[125] and learn the edge weights similar to the weighted cascade model of [74]. The

MLWFW network of 2001 - 2012 time frame consists of 10604 authors and 168918

edges. Figure 4.5b compares the result of in�uence maximization using C2Greedy

and other baselines. Note that other than regular baselines in this speci�c domain we

have another well-known method which is �most cited author� that is equal to selecting

authors with highest weighted in-degree in MLWFW network. As Figure 4.5b illustrates,

C2Greedy outperforms all of the other methods. Note that the list ofK most in�uential

authors in this experiment means that �if� those authors were switching to the ML topic

completely (becoming a member of seed set S) they would make the topic vastly popular.

Therefore, although the seed set contains the familiar names of well-known ML authors

(e.g., Michael I. Jordan and John La�erty in �rst and second places), sometimes we

encounter exceptions. For example, in the list of top 10 authors selected by C2Greedy

we have �Emery N. Brown� who is a renowned neuroscientist with publications in �Neural

Computation� journal.

4.8 Proof of Theorem

Proof of Theorem 8. Proof of Theorem 8 is simply an instantiation of Lemma 2 for the

case that we add node s as the �rst seed to the network and get Q{s}is =
F ∅is
F ∅ss

, where ∅
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emphasizes that the bias node is the only boundary. Note that this lemma is general in

a sense that absorbing set can contain any type of boundary points, including zero-value

node like the bias node and one-value node like a seed node.

Proof of Theorem 9. Consider an instance of the NP-complete Vertex Cover problem

de�ned by an undirected and unweighted n-node graph G = (V, E) and an integer k;

we want to know if there is a set S of k nodes in G so that every edge has at least

one endpoint in S. We show that this can be viewed as a special case of the in�uence

maximization (4.9). Given an instance of the Vertex Cover problem involving a graph

G, we de�ne a corresponding instance of the in�uence maximization problem under HC

for in�nite time horizon, by considering the following settings in (4.1): (i) ωij = ωji = 1,

if edge (i− j) ∈ E , otherwise ωij = ωji = 0, (ii) bias node's value is zero b = 0, and (iii)

βi for all i's are equal to a known β. Note that since each interior node is connected

to the zero-value bias node with edge weight β it cannot have value larger than 1 − β.
Hence, if there is a vertex cover S of size k in G, then one can deterministically make

σ(A,∞) = k + (n− k)(1− β) by targeting the nodes in the set A = S; conversely, this
is the only way to get a set A with σ(A,∞) = k + (n− k)(1− β).

Proof of Theorem 10. As mentioned in Section 4.5.3 when t→∞ superposition principle

applies for HC model. We exploit this fact to prove the submodularity of in�uence

spread. First note that σ(S,∞) computed from (4.8) is the sum of node values and

since the conic combination of submodular functions is also submodular it is enough to

show that each node value, i.e., v(i) is submodular to proof Theorem 10. Here we need

to work with the general set of bias nodes (compare to single bias node b) which we call

ground set G. We introduce a new notation where the value of node i is shown with

vS,G(i). Also seed nodes can have arbitrary value of ≥ b instead of all 1 values. For

proving the submodularity of v(i) we should prove:

vT ∪{s},G(i)− vT ,G(i) ≥ vS∪{s},G(i)− vS,G(i), T ⊆ S (4.14)

We invoke superposition to perform the subtraction:

v{svL},G∪T (i) ≥ v{svR},G∪S(i), T ⊆ S (4.15)
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where vL and vR emphasize that the value of the new seed node is di�erent in left and

right hand side and is qual to vL =
(
1 − vT ,G(s)

)
and vR =

(
1 − vS,G(s)

)
. Note that

vL ≥ vR since T ⊆ S. We can not compare the value of nodes in two di�erent networks

unless they share same grounds and seeds with possibly di�erent values for each seed.

Therefore, we try to make the grounds of both sides of (4.15) identical by expanding the

LHS of (4.15) using superposition law [4]:

v{svL},G∪T (i) = v{svL},G∪S(i) + vD,G∪S∪s,(i) (4.16)

where D = S − T . Although second term of (4.16) is complicated but for our analysis

it is enough to note that it is a non-negative number α ≥ 0. Now the submodularity

inequality (4.14) reduces to:

v{svL},G∪S(i) + α ≥ v{svR},G∪T (i) (4.17)

Now both sides have the same set of sources and grounds and we now vL(u) ≥ vR(u)

and α ≥ 0 which completes the proof.



Chapter 5

The E�ect of Di�erent Couplings on

Mitigating Failure Cascade in

Interdependent Networks

5.1 Introduction

We now live in an increasingly connected world which hinges critically on many inter-

dependent cyber-physical infrastructure systems. These systems include (smart) power

grids, intelligent transportation systems, communication networks and the global Inter-

net. These infrastructures rely on computer and control systems as well as communica-

tion networks to sense, collect, estimate the system state, environment and other infor-

mation, invoke and execute appropriate computations and control strategies to adjust

and adapt to changes in the system state and to actuate the physical system components

to respond to such changes. The cyber system components also serve as a crucial inter-

face between the physical system components and human operators (as well as end users

who are ultimate producers/consumers of much of the information, services or goods

that the cyber-physical infrastructures provide).

The inter-dependence of critical cyber-physical infrastructure systems is perhaps best

exempli�ed by the relations between power grids and communication networks where

power grids rely on communication networks to deliver the state information of the

73
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power system to the control system and relay control back to the power system, while the

communication networks depend on the same power grids for the electrical supply. Due

to such interdependence, element faults in one network, e.g., crashes of a few switches

in the communication network that are used to relay information and control to a smart

grid, can induce failures in the other, i.e., the power grid, which would in turn lead to

additional failures in the communication network, thereby triggering a cascade of failures

in these two inter-dependent networks. It has been reported that a number of electrical

blackouts, such as the one in Italy on 28 September 2003 [114], have in fact been caused

by such inter-dependency induced cascading failures.

We note that the phenomenon of cascading failures can occur in a single network.

For example, cascading failures occur frequently in a power grid due to the physical

nature of the system as failures of transmission lines or power generators can trigger

additional node or line failures due to load imbalance or thermal e�ect. In a commu-

nication network, network element (router or link) failures will trigger network control

elements to exchange route control messages and re-compute paths to re-route tra�c

around failed links/nodes; cascading failures may be triggered due to excessive route re-

computation overloads at surviving network elements, which lead to further failures. In

a multi-layered system of inter-dependent networks, failures of network elements in one

constituent network (also simply referred to as one layer of the multi-layered system)

may not only trigger cascades with the same layer, but also trigger failures of net-

work elements in other constituent networks (layers) of the system. Inter-dependencies

across the constituent networks of a multi-layered system can induce cascading failures

with very di�erent characteristics and dynamics than those occurring within only one

layer, often causing wider and more severe damages to the overall system. To assess

and enhance the resiliency of a multi-layered systems of inter-dependent networks, it

is therefore imperative to understand how inter-dependencies a�ect cascading failures

within and across constituent networks in a multi-layer system.

In this chapter, we propose a theoretical framework for studying cascading failures

in an inter-dependent, multi-layer system, where we consider the e�ects of cascading

failures both within and across di�erent layers. The goal of the study is to investigate

how di�erent couplings (i.e., inter-dependencies) between network elements across layers
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a�ect the cascading failure dynamics. For simplicity of exposition, we consider a two-

layer system with two constituent networks of equal size, and adopt a simple one-to-one

coupling map across the two layers. Cascading failures within each layers are modelled

using the standard linear threshold model1 . We examine how coupling of nodes of

di�erent �importance� or �criticality� (as measured by various metrics e.g., by node

degree) from the two constituent networks a�ect the cascading failure dynamics under

varying initial failure sizes and cascading thresholds within each layer. We show that

under the one-to-one coupling map, that how nodes from two inter-dependent networks

are coupled together plays a crucial role in the �nal size of the resulting failure cascades:

coupling corresponding nodes from two networks with equal importance (i.e., �high-to-

high� coupling) results in smaller failure cascades than other forms of inter-dependence

coupling such as �random� or �high-low� coupling. In particular, given a two-layered

system with two identical networks, �high-to-high� coupling produces a mirror e�ect in

that the coupling exactly mirrors the cascade within each layer and does not produce

additional failures than when the two networks are independent.

5.2 Related Work

Due to its increasing importance, resilience of inter-dependent networks has attracted

a �urry of interest from a broad and diverse array of research communities. Using

a percolation theory-based framework with random graph models, Buldyrev et al [22]

demonstrate that interdependent networks can behave very di�erently from each of their

constituents. In their work � and those of many others, the �robustness� of interdepen-

dent networks is quanti�ed in terms of asymptotic statistical properties such as the

existence of giant connected components under random failures. It is well known from

the theory of complex networks that (an ensemble of random) power-law networks are

more resilient to random node failures, as there is a phase transition in the fraction

of random node failures, below which the giant connected component exists with high

probability. In [22] Buldyrev et al show that when nodes from two �robust� power-law

networks are randomly coupled together one-to-one, they become more vulnerable to
1 We remark that our theoretical framework can be applied to (or generalized to) multi-layer systems

with more than two networks with more complex coupling functions and cascading failure models.



76

random failures in the sense that no giant connected component exists with high prob-

ability under any fraction of random node failures. In a follow-up work, Parshani et al.

[105] show that decreasing the interdependency of the layers, by decoupling some nodes

(as are called autonomous) which do not require any resource from the other layers,

the failure cascade can be mitigated. In this work, the nodes were picked randomly to

become autonomous nodes. Schneider et al. [118] suggest a centrality based method for

picking the autonomous nodes and show how e�ectively this method reduces the number

of required autonomous nodes by a factor of �ve compared with the random method.

In another work, Brummit et al. [21] pursue the Bak�Tang�Wiesenfeld sandpile model

[10] to study failure cascades in inter-dependent networks. They show that adding a few

interconnections between the layers of the network is bene�cial, but it becomes destruc-

tive if the number of interconnections are too many. They �nd the optimal degree of

interdependency in which the failure cascade is minimized.

As in the case of robustness of single networks, the aforementioned characterizations

of inter-dependent networks based on random graph models/percolation theory provide

useful insight into the general statistical properties of interdependences over ensembles

of random graphs/networks. In practice, however, real networks are deterministic and

�nite. In particular, engineered infrastructure networks such as power-grids and com-

munication networks, are designed to perform certain speci�c functions, many of which

arguably do not follow the �power-law� degree distribution. Furthermore, although the

degree of interdependency is important in controlling failure cascades in interdependent

networks, it is not always the case to be able to determine the number of autonomous

nodes and in some applications this number is given (the resources are limited). In those

cases, designing the way that non-autonomous nodes from di�erent layers are coupled

together is another e�ective solution to control and mitigate failure cascades. Rosato

et al. [114] conduct a focused study of the inter-dependency between the Italian power

grid and Italian communication network, where they demonstrate that line failures in the

Italian power grid network can severely a�ect the Italian communication network even in

the case of moderate interconnection of these two networks. In their study, the authors

assume that the nodes in the Italian communication network draw power supply from

the geographically close nodes in the Italian power grid network. In [109] Ranjan and

Zhang propose a graph-theoretical �nite network model for representing inter-dependent
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networks and extend the structural/topological centrality measure [110] to develop a ro-

bustness metric of inter-dependent networks. Using this robustness metric, they show

that both the number of coupled nodes from two inter-dependent networks and how

they are coupled together can play a critical role in determining the overall robustness

of inter-dependent networks. In [100] Nguyen et al study the Interdependent Power

Network Disruptor (IPND) optimization problem to identify critical nodes in an inter-

dependent power network whose removals maximally destroy its functions. Our work

di�ers from these existing studies in that we not only consider the e�ects of cascading

failures both within and across di�erent layers, but also investigate how di�erent ways

of interdependency (�coupling�) a�ect failure cascades in inter-dependent network. We

evaluate the results on both real and synthetic networks.

Figure 5.1: Bijective inter-connection of layer 1 to layer 2

5.3 Failure Cascade Model

Consider a network G(V,E), where V is the set of nodes and E is the set of edges. A

failure cascade is initiated from a subset of nodes and yields a (larger) set of failed nodes.

The failure cascade can be modeled as follows:

F : P(V )→ P(V ), (5.1)

where P(V ) is the power set of nodes and F is the failure function in this network.

F depends on the connectivity of the nodes (network topology) and how the failure
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cascades through the network. In most real networks, when a node losses a majority

of its connections to other nodes, the node practically becomes nonfunctional, thus

�fails". The linear threshold (LT) model [73] captures this phenomenon in which node i

is considered to have failed when the portion of its neighboring nodes N(i) which have

failed is larger than some threshold θ:

Σj∈N(i)wjiδ(j) ≥ θ, (5.2)

where wij 's are importance weights assigned to the neighboring nodes. In the case of

uniform weighting, wij = 1. Considering the LT model as the cascading function, the

failure in one network starts from a set of failed nodes and cascades through the network

in accordance with eq. (5.2). Note that the failure is considered to be progressive,

namely when a node fails it does not recover throughout the process [73]. (For the

non-progressive LT model, please refer to [57].) In a progressive cascading model, F is

de�ned deterministically for a �xed θ and a given network G.

Real systems are not always as simple as a single layer network described above.

They possess more complex structures, comprised of more than one network (or layer),

where nodes in one layer require resources (i.e., power) from nodes in other layers, and

in turn supply resources (e.g., control) to nodes in other layers. Such networks, in which

the layers are inter-connected to each other, are referred to as interdependent networks.

In an interdependent network, a node failure in one layer causes its dependent nodes in

other layers (i.e., those relying on the resources supplied by the failed node to function)

also to fail. For example, in Fig. (5.1) if node x2 fails, its dependent nodes in the other

layer, i.e. y2 and y3 fail as well. Thus, in interdependent networks an initial failure

in one layer may not only cause a failure cascade within the same layer, but also can

trigger failure cascades in other layers. The failure cascades in other layers in turn trigger

further failures in the original layer, creating a �vicious cycle� which may lead to the

break-down of the entire system. While interdependency in such networks is inevitable,

it is sometimes possible to carefully �design� the inter-connections between the layers so

as to mitigate the e�ects of failure cascades.

For this purpose, in this work we propose a theoretical framework to model and study

failure cascades in interdependent networks. Unlike a single layer network, we argue that

in modeling inter-dependent networks, it is important to distinguish the functionality of
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�inter-connecting links� (interdependencies) between nodes across layers from the regular

links between nodes within a single layer, as the failure cascading processes within a single

failure and across layers are general very di�erent. For example, failure of a node in

general does not automatically leads to the failure of its neighboring nodes within the

same layer (unless a large portion of neighboring nodes fail under the LT model discussed

earlier). On the other hand, failure of a node (i.e., a power supply node) will cause its

dependent nodes (e.g., communication or control nodes) in other layers to become non-

functional, thus �fail� (with high probability), unless certain protection mechanisms (e.g.,

backup power) are provisioned. Even in the latter case, such protection mechanisms are

often temporal and simply delay the potential failure if the failed nodes are not restored

and recovered in time. We present the following general failure cascade model for an

interdependent network with two layers G1(V1, E1) and G2(V2, E2), where F represents

the function modeling the failure cascade within a layer and T the function modeling

the failure cascade across the layers:

F1 : P(V1)→ P(V1),

F2 : P(V2)→ P(V2),

T1 : V1 → P(V2),

T2 : V2 → P(V1). (5.3)

Functions T1 and T2 are not necessarily injective or surjective. Fig. (5.1) illustrates a

bijective function T1 from layer 1 to layer 2 (T2 is not shown).

In this work, we show how a proper choice of the functions which model failure

cascades across the layers can have a signi�cant impact on (triggering/mitigating) the

overal failure cascades across the layers. For the ease of exposition, we consider only a

bidirectional T instead of two separate uni-directional T1 and T2. In other words, we

assume that every node in each layer is served by a unique node (in the other layer)

on which it relies for its resources but also for which it supplies the required resources.

To have the bijective property in both directions, T is a �one-to-one" node mapping (or

coupling) between the two layers, i.e. T : V2 ↔ V1.
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Figure 5.2: Failure cascade in Italian
power grid interdependent network for a
�xed threshold and three di�erent cou-
pling.

Figure 5.3: Failure cascade in Esnet in-
terdependent network for a �xed thresh-
old and three di�erent coupling.

Figure 5.4: Failure cascade in Italian
power grid interdependent network for
a range of thresholds and high-to-high
coupling.

Figure 5.5: Failure cascade in Italian
power grid interdependent network for
a range of thresholds and low-to-high
coupling.

5.4 Experiments and Results

In this section, we investigate the e�ect of failure cascade modeling functions, i.e. T and

F in eq. (5.3), on failure cascades across the layers of an interdependent network. Using

the LT model as the cascading function within a layer, F is a function of the threshold θ.

For the interdependency (�coupling�) function T , we study three representative ways of

coupling: 1)�high-to-high" degree coupling, in which the nodes in each layer are sorted

based on their degree and are coupled to their corresponding (the same rank) nodes in

other layers, 2)�high-to-low" degree coupling with pairing the node in a reverse ordering

of their degree, and 3)�random" coupling.
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Figure 5.6: Failure cascade in Italian
power grid interdependent network for
a range of initial failure size and high-
to-high coupling

Figure 5.7: Failure cascade in Italian
power grid interdependent network for
a range of initial failure size and low-to-
high coupling.

Figure 5.8: Failure cascade in Italian
power grid interdependent network for
a targeted attack and �xed threshold.

Figure 5.9: Mirroring e�ect of failure
cascade in Italian power grid interde-
pendent network.

We conduct a number of experiments for a wide range of the LT threshold values

(θ ∈ [0.1, 0.9]) and initial failure sizes (sinit ∈ [1, n], n is the number of nodes in each

layer). For a �xed size sinit of an initial failure, we pick a random sinit number of nodes

as the initiators of the failure. However, nodes possess di�erent topological importance

(centrality), the failure of which can lead to varying sizes of failure cascades (within

each layer). Therefor, for each sinit we simulate the failure cascades for 10,000 random

instance initiators and report the average failure size. Fig. (5.2) shows the results of

failure cascades in the Italian power grid network [114] (n = 68), when it is coupled with

a copy of its own. The experiments are conducted for a �xed threshold of θ = 0.7 in
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Figure 5.10: Failure cascade in an inter-
dependent network with Italian power
grid network as one layer and Esnet as
the other.

Figure 5.11: Failure cascade in an inter-
dependent network with two layers gen-
erated by preferential attachment,

both layers and the results are reported in terms of number of nodes failed in one layer

at the end of the cascade process (due to one-to-one coupling, the number of failed nodes

are equal in two layers at the end of the cascade). We also perform the exact same set

of experiments on the Esnet network, the US DoE energy science network with n = 68

number of nodes. The results are reported in �g. (5.3). From �gs. (5.2) and (5.3),

we see that �high-to-high" coupling show enormously better performance in mitigating

the failure cascade than the �low-to-high" and �random" coupling; while �high-to-high"

curve is very close to the line sfin = sinit, two other couplings result in 150% increase

in the �nal failure size over the initial size in some instances for the Italian power grid

case (even worse for the Esnet case). The line sfin = sinit (not shown in the �gures)

represents the case where the failure does not cascade and the �nal failure size is equal

to the initial failure size. We also present further failure results for a range of thresholds

θ ∈ [0.1, 0.9] for the Italian power grid interdependent network in �gs. (5.4) and (5.5) for

the cases of �high-to-high" and �low-to-high" couplings respectively. Comparing these

two �gures, it can be inferred that �high-to-high" coupling outperforms �low-to-high"

coupling for every θ. Furthermore, increasing θ results in smaller failure cascade sizes,

while increasing the initial failure size leads to larger failure cascades. (Due to space

limitation, we omit reporting the corresponding results for the case of Esnet, which are

very similar.)

Figs. (5.6) and (5.7) re�ect the same experiment results explained above, but have

been depicted in di�erent way. To avoid making the �gures crowded, we have presented
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the curves for every three other value of sinit from 16 to 34. It can be seen that for every

sinit, sfin follows a sigmoid-like function in terms of 1 − θ: there exists one transition
point before which the rate of growth is increasing (convex function) and after which

the rate of growth is decreasing (concave function). The sigmoid behavior of failure

cascades implies that decreasing the threshold up to some transiting point accelerates

the failure cascade, but passing that point the rate of cascade slows down. The �gures

suggest that the transition point is independent of sinit; it happens around θ ' 0.55 for

�high-to-high" coupling and around θ ' 0.65 for �low-to-high" coupling. The following

general function captures the sigmoid behavior of the �nal failure size:

sfin =
n− g1(sinit)

1 + exp(−g2(sinit)(g3(θ)))
+ g1(sinit), (5.4)

where g1, g2, and g3 are linear functions. For example, for �high-to-high" coupling in

the Italian power grid network, these g functions are best �tted with the following linear

functions: g1(x) = 1.25x − 2, g2(x) = 1
9x + 2

9 , and g3(x) = −10x + 5. The closed form

formulation presented in eq. (5.4) can be useful in predicting the failure size for the

large real networks where the simulation is costly or even infeasible in some cases.

Up to now, all the experiments presented in this section have been designed for initial

random failure. Fig. (5.8) shows the failure result when the initial failure is targeted :

namely, the failures of more important and central nodes are the results of a targeted

attack. In these experiments, the nodes with higher degree are considered to be the initial

set of failed nodes. Studies [7] show that the targeted attacks in real networks, where

the degree distribution follows a power law distribution, are more harmful than random

attacks. Our experiment results show that the �high-to-high" coupling in interdependent

network outperforms the other two couplings in targeted attacks as well and assures

higher resilience to failure cascades. The failure results obtained for �random" coupling

are the average of 10,000 experiments of randomly coupling nodes in the two layers.

As discussed in the previous section, without the interdependency the failure cascade

may be minimum in each layer, which is the result of some initiated failure in that layer

(i.e., only F1). Failures in interdependent networks, on the other hand, can cause a

�vicious� cycle: when a failure occurs in one layer, besides cascading through the same

layer (F1 in eq. (5.3)), it triggers failures in other layers (T1); These failures in turn cause

further failures in the original layer (F2 and then T2) � this cycle continues. To investigate
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the e�ects of di�erent couplings in triggering/mitigating failure cascades, they should be

compared against the failure cascade in a single layer network. In �g. (5.9) we compare

the failure cascade for the three coupling cases against the failure cascade in one-layer

network. This experiment is the same as the experiment in �g. (5.2) but adding the

result of the least possible failure cascade as well, i.e. failure cascade in one-layer Italian

power grid network. It can be seen that, interestingly, the �high-to-high" coupling is

in fact equal to having no interdependency at all. This happens due to the mirroring

e�ect in which the coupling exactly mirrors the cascade in the two layers and does not

lead to further failure than the one is already happening in each of the layers. Thus,

leveraging the mirroring e�ect we are able to design the interdependency functions to

minimize the failure cascade in interdependent networks. In the case of identical layers

(i.e. layers with the same topology), the best coupling is to pair congruent (equivalent)

nodes of the two layers which is the same thing done in �high-to-high" coupling in our

experiment �g. (5.9). However, when the layers are not identical, it is more complicated

to �nd the optimum solution. In this case, we should �nd the best alignment of the

layers to bene�t from the mirror e�ect the most possible. We have conducted two

experiments on two interdependent networks with non-identical layers: 1) Italian power

grid network coupled with Esnet network (�g. (5.10)), and 2) two networks generated by

preferential attachment model [11] with the same size of n=68 nodes (�g. (5.11)). The

�gures indicate that the �high-to-high" coupling outperforms the other two couplings,

suggesting that �high-to-high" coupling is more successful in imitating the mirror e�ect,

i.e., coupling the congruent nodes of the layers in these experiments.
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Chapter 6

Dynamic Reachability

Computations and Pivotality

Ranking of Nodes

6.1 Introduction

The reachability information is crucial for a wide range of applications from gene in-

teractions in bioinformatics [129] to XML query processing [26], and for many type of

infrastructure networks, be them communication and computer networks, power grids,

transportation networks or social networks [137][75][104]. In general, a reachability query

R(s, t) has a binary answer with 1 indicating that target node t is reachable from source

node s, and 0 representing that it is not. Although several studies have been devoted

to devise an e�cient and fast algorithm for responding to reachability queries when

the network is static, fewer solutions are proposed for dynamic networks with changes

and failures in nodes or edges where a quick recalculation to reachability relationships

is needed. Dynamic computation of reachabilities is important for various applications

where the network is prone to changes. For example, quick recalculation of reachabilities

is required for programming languages garbage collection to balance the reclamation of

memory, which might be reallocated, with the performance concerns of the running ap-

plication [94]. In this chapter, we show that the fundamental matrix of extended network
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Go provides the reachability information of G; more importantly, it answers very e�-

ciently to more advanced reachability queries of R(s, t,∼ F) for the cases that network

is changing by a set of failures F happening in the network, where the size of failures is

in O(1) compared to the size of network |V |. Our method provides a solution with no

update time requirement and O(1) query time, in contrast to state-of-the-art which all

need for an update whenever a change (deletion and insertion) happens in the network.

Founded on the notion of reachability, we also extend the de�nition of articulation points

to the directed networks which is originally de�ned for undirected networks. We also

provide a formulation to compute the articulation points of a network and show that

a similar formulation can quantify the load balancing over nodes of a network. Load

balancing is important for network robustness against targeted attacks. Through exten-

sive experiments, we evaluate the load balancing in several speci�c-shaped networks and

real-world networks.

More often than not, however, it is not su�cient simply to know that a node s

can reach another node t in the network. Additional information is associated with

reachability such as how long (e.g., in terms of number of intermediate nodes to be

traversed or some other measures of time or cost) or how many possible ways (e.g., in

terms of paths) for node s to reach node t. Such information is essential for selecting

paths for packet routing or information/commodity delivery, �ow scheduling, power

management, tra�c control, load balancing and so forth in communication and computer

networks, power grids and transportation networks. In this chapter, we analyze another

piece of important information associated with reachability � which we call pivotality.

Pivotality captures how pivotal a role that a third node k or a subset of nodes S may play

in the reachability from node s to node t in a given network by quantifying how many

(and how long) paths from s to t go through k or S, and how many do not. We quantify

this role by exploiting relationships between the hitting time and transit hitting times

and examine how much of detour cost k or S can cause. In particular, we propose the

avoidance-transit hitting time pivotality metric (ATH). Finally, we use several simulated

and real-world network examples to illustrate the advantages and utility of avoidance

and transit hitting times, especially in comparison with existing metrics proposed in the

literature.
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6.2 Related Work

Several studies have been devoted to e�cient reachability computations in static net-

works [32, 93, 71, 131] and a few have addressed the reachability computations in net-

works with changes and dynamic [113, 38]. The studies on dynamic reachability problem

propose an oracle, which if be updated after each change (node or edge deletion and in-

sertion), can answer to reachability queries very fast. In one extreme, the query time

can become as low as O(1) at the cost of higher amortized update time O(n2) [112, 38].

Later studies attempted to lower the update time but their suggested query time is non-

constant: [66, 113]. In this work, we propose a dynamic reachability oracle to support the

changes in the form of (only) deletion with no update required as well as constant query

time O(1). This method is useful for failure prone networks with frequent reahcability

query requirement where a fast investigation of several reachabilities and connectivity

of entities after failures are of great importance.

Closely related to our pivotality metric, Ranjan and Zhang [110] introduce the notion

of (forced) detour cost of a random walker from a source s to a target t with respect

to a third node k, which is de�ned as ∆Ht
s(k) := Hk

s + Ht
k −Ht

s. Namely, the (forced)

detour cost is the additional steps incurred when a random walker starts at source node

s and is forced to �rst visit the third node k, and then starts from node k to reach target

node t vs. the number of the steps it takes starting at source node s and hitting target

node t for the �rst time. Ranjan and Zhang show [110] that aggregated over all pairs of

sources and targets,
∑

s

∑
t ∆Ht

s(k) = L+
kk. Here L

+
kk is the diagonal entries of L+, the

Penrose-Moore pseudo-inverse of the graph Laplacian L = D−A, where A = [aij ] is the

adjacency matrix of a graph (network) and D = diag[di], di =
∑

j aij , is the diagonal

degree matrix. Based on this (forced) detour cost as well as several other interpretations

of the diagonal entries L+
kk of L+, Ranjan and Zhang advocate C∗(k) := 1/L+

kk as a

new node centrality measure � referred to as the structural or topological centrality, and

demonstrate that C∗(k) := 1/L+
kk indeed better captures the structural/topological roles

that node k plays in a network than existing centrality metrics, in particular in terms

of their roles in the overall network robustness. Motivated by the results in [110], in

this paper we aim to provide a more precise characterization of how pivotal a role a

third node k may play in the random walks from a source node s to a target node
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t by probabilistically quantifying the number of paths from source s to target t that

circumvent node k vs. those that traverse node k that the random walker is likely to

take. This leads us to introduce two inter-related metrics, avoidance and transit hitting

times, to measure the pivotality of node k in the random walks from source s to target

t.

6.3 Fast Computation of Network Reachabilities After Fail-

ures

We construct network Go by adding an external node o to network G and connecting

all the other nodes to it (node o has no out-going link). Notice that by this operation,

the reachabilities of G remains untouched and can be inferred from the reachabilities

in Go. But the merit of Go is that it has only one recurrent equivalence class and so

F
{o}
s,t exists for any pairs of s and t. Recall that F {o}s,t is non-zero i� t be reachable from

s, since random walk touches every node that are reachable from it before hitting the

target node. Therefor, by computing fundamental matrix F {o} once, any reachability

query R(s, t) can be answered in constant time and F {o} simply performs as a look-up

table.

Statement 1. In the extended network Go, F
{o}
s,t is non-zero if and only if t is reachable

from s in the original network G. Speci�cally, if set F of nodes fail and become inacces-

sible, F
{S}
s,t , where S = F ∪ {o}, is non-zero if and only if t is still reachable from s in

network G after failures.

Note that network G does not need to be strongly connected, otherwise all nodes

were reachable from each other and reachability queries R(s, t) were meaningless.

For an e�cient solution to the advanced reachability query R(s, t,∼ F) with node

failures in the network, we leverage from the incremental computation of fundamental

matrix in Theorem (1). According to this theorem, matrix F {S} can be easily computed

from F {o} in O(|F|) time, where S = F ∪ {o}. Thus, F {S}s,t that is needed to answer

reachability R(s, t,∼ F) can be computed from F {o}:

F
{S}
s,t = F

{o}
s,t − F

{o}
s,F (F

{o}
F ,F )−1F

{o}
F ,t , (6.1)
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Note that sub-matrix (F
{o}
F ,F )−1 in the formulation above is always non-singular since

F {o} is an inverse M-matrix and hence each of its principal sub-matrix is also an inverse

M-matrix. Inverse M-matrix is de�ned to be a matrix whose inverse is an M-matrix.

Hence, if F {o} is precomputed once, all the reachability queries, i.e. both regular R(s, t)

and advanced R(s, t,F), can be answered in constant time. This method for answering

the reachability queries is summarized in Algorithm (2). Function 1{b} is an indicator

function which is equal to 1 if b = True and 0 if b = False.

Algorithm 2 Answering to reachability query

query: R(s, t,∼ F)

input: transition matrix P of the extended network Go

precomputed oracle: F {o} = (I − P\o)−1

output: answer to reachability queries.

if F = ∅ then
R(s, t) = 1{F{o}s,t >0}

else

R(s, t,∼ F) = 1{F{o}s,t −F
{o}
s,F (F

{o}
F,F )

−1F
{o}
F,t >0}

end if

We remark that the reachability queries after edge failures, or even a mixture of

node and edge failures, can also be answered with the same proposed method. The only

requirement is to add one node in the center of each edge and split the edge into two

edges. The failure of this added node now models the failure of the corresponding edge

in the original network.

6.4 Articulation Points in Directed Networks

An articulation point, or a cut vertex, is de�ned to be a node whose removal increases

the number of connected components in an undirected network. As an extension to

directed networks, Italiano et al. [70] introduced the strong articulation point which is

de�ned for strongly connected networks and refer to a node whose removal increases the

number of strongly connected components. In this section, we extended the notion of

articulation point to general directed networks and de�ne it as a node whose removal

decreases the number of reachabilities in the network. For instance, if t is reachable from
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s and removing node m makes this impossible, node m is an articulation point for the

network. Note that the original de�nition of articulation point for undirected networks

complies nicely with our generalized de�nition. In this section, we provide a formulation

to �nd the articulation points in a general directed networks. We also suggest a similar

formulation to quantify the load balancing over nodes of a network.

Recall that the fundamental matrix represent the expected number of visits from

nodes before hitting the target (absorbing) node. For example, entry F {t}s,m denotes the

expected number of visits from m when starting from s and before hitting t for the �rst

time. Note that F {t}s,m is strictly greater than 0 for all m that are reachable from s. We

use a modi�ed version of fundamental tensor, which we call normalized fundamental

tensor (2.4.1), to �nd the articulation points:

F̂ {t}s,m =


F
{t}
s,m

F
{t}
m,m

if s,m 6= t

0 if s = t or m = t,
(6.2)

if F {t}s,m exists. Normalized fundamental matrix has the following properties: a) has

values between 0 and 1: 0 ≤ F̂
{t}
s,m ≤ 1, and b) represents the absorption probabilities:

F̂
{t}
s,m = Q

{m,t}
s . The second property was proved in Theorem (2) and the �rst one is

a direct result of the second property. Recall that Q{m,t}s = 1 means that m is hit by

probability 1 sooner than t when starting from s which implies that m is a gateway for

getting to t from s.

Statement 2. Normalized fundamental tensor captures the articulation points of a net-

work: node m is an articulation point if F̂
{t}
s,m = 1 which indicates that node m is located

on all paths from s to t. On the other extreme, F̂
{t}
s,m = 0 indicates that m is not located

on any path from s to t and plays no role for this reachability.

Figure 6.1 shows two networks, one undirected and one directed, and the correspond-

ing normalized fundamental tensors. The articulation points can be inferred from 1's

in the tensor. Note that each node is an articulation point for the reachability of itself

to the rest of network and so the diagonal entries are 1. It is interesting to see that

counting number of 1's in each column m over the entire tensor represents the number

of reachabilities that node m is an articulation point for. The larger the number is, the

more critical node m is for network reachabilities. Node 3 in both networks of �gure 6.1
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is the most critical node by being articulation point for ten and eight reachabilities in

the undirected and directed network respectively, ignoring the self-reachbilities.

Figure 6.1: Two networks, one undirected and one directed, and the corresponding

normalized fundamental tensor

We remark that larger values of F̂ {t}s,m also implies higher accessibility and/or critical-

ity of node m for the reachability of s to t in the network. The following metric expresses
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the overall load that node m carries for connectivity of entities in the network:

Load(m) =
1

(n− 1)2

∑
s,t

F̂ {t}s,m (6.3)

Calculating the load metric for all nodes in the network, more uniform distribution of

loads implies better load balancing. This metric also sheds an insightful light on better

understanding of network robustness against targeted failures. More balanced networks

have higher robustness against the attacks which are targeting a few critical nodes of the

network for destructing the connectivity and functionality of the network. Therefore,

networks with fairly uniform distributions which are also lower in load value (lower height

in y-axis in Figure (6.2)) are the most balanced and reliable networks. Figure (6.2)

illustrates the load balancing in speci�c-shaped networks (a) and real-world networks

(b). It can be seen that in the speci�c-shaped networks with the same number of nodes,

complete graph is the most balanced and reliable one followed by cycle graph, where both

has completely uniform distribution. It is interesting to see that chain network which

lacks only one edge between the �rst node and the last node compared to cycle graph,

experiences a huge di�erence in the load balancing. Grid has also a �at distribution

which implies that load distribution is fairly uniform. In star graph, the central node

carries an enormous load which makes the network very vulnerable to targeted attack or

failure. It is also interesting to compare the load balancing of 3-ary fat tree [83] against

the binary tree. As the real-world networks, the load distribution has been computed

for Arxiv High Energy Physics - Phenomenology collaboration network (CAHepPh) [88],

Facebook [90], coauthorship network of scientists (netSci) [97], Preferential attachment

generative model (PA) [12], Italian power grid [115], protein-protein interaction network

[111], and Erdos Renyi random network generative model [45] with two di�erent initial

links of 8 (random) and 40 (random2). It can be seen that random2 and random networks

followed by Italian power grid have the most uniform load balancing , while PA network

shows properties like star network where a few portion of nodes carries the most of

the loads. The �gure shows that the variance in load size across the nodes is high

(skewed load balancing) for Arxiv High Energy Physics - Phenomenology collaboration,

Facebook, and Protein-protein interaction networks as well.
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(a) (b)

Figure 6.2: Load balancing in a) speci�c-shaped networks and b) real-world networks

6.5 Node Pivotality in Network Reachability

Figure 6.3: Network Example 1

In this section, we examine and quantify how pivotal a role a node k plays in reachability

from a source node s to a target node t using our proposed avoidance and transit hitting

metrics. In particular, we propose the avoidance-transit hitting time pivotality metric

(ATH). For a given node k with respect to a pair of source and target nodes s and t, it

is de�ned as follows:

eATH(k) = H{t}s −H{t,ǩ}s = H{t}s − (H{k,t}s +H
{t}
k ). (6.4)

Note that if all paths from node s to node t go through a node k∗, then eATH(k∗) = 0.

In this case, k∗ is the most �pivotal� point of any path from s to t in that all paths

rely on k∗. We claim that in such a case, for any other node k, eATH(k) ≤ 0; due to

space limitation, we will omit the proof here. In general, eATH(k) can be either positive,
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indicating that paths going through node k are overall shorter than an �average� path

from node s to node t; or negative, indicating that paths going through node k are

overall longer that an �average� path from node s to node t.

For comparison, we also consider other metrics proposed in the literature. We de�ne

the shortest-path pivotality metric (SHP) to measure the pivotality of node k using the

shortest paths only: eSHP (k) = shpst − (shpsk + shpkt). The maximum �ow pivotality

metric (MF), eMF (k), measures the amount of the maximum �ow from s to t that goes

through node k in a �ow network, where the weight of edges indicate their capacity. The

(classical) hitting time pivotality metric (CH) is de�ned as the negative of the (forced)

detour cost de�ned in [110],

eCH(k) := −∆Hs,t(k) = H{t}s − (H{k}s +H
{t}
k ). (6.5)

Notice the similarity between eATH(k) and eCH(k), except the terms H{k,t}s and H{k}s .

Due to the triangle inequality of the shortest path distance and the hitting time, eSHP (k) ≤
0 and eCH(k) ≤ 0 whereas by de�nition, eMF (k) ≥ 0 for all k and all pairs of source

and target nodes, s and t. Despite these di�erences, in terms of ranking of nodes based

on their pivotality using each metric, what matters is their relative values: as long as

e(k1) < e(k2), node k2 is more �pivotal� than k1 in terms of reachability from s to t.

6.5.1 Understanding Pivotality Metrics: Examples

Using several simple network examples, in this section we illustrate and compare the

behavior of the pivotality metrics de�ned above. First consider the simple network

example shown in Fig. 6.3 where the weight of all edges is 1, i.e., aij = 1. With node

1 being the source and node 4 the target, it is intuitively apparent that node 5 is more

�pivotal� than node 2 or node 3, given that it is on the shorter path. The pivotaliy

metrics computed using the four methods are shown in Table 6.1. We say that both

the MF and CH metrics fail to rank the nodes correctly in that they are not able to

recognize the higher pivotality of node 5 over nodes 2 and 3.
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Figure 6.4: Network Example 2

Figure 6.4 provides a more general network example which can help illustrate the

di�erent behaviors of the pivotality metrics under study. In this network, there exists

a shortest path of length 2 from source s to target t (gray-colored path) interconnected

to two groups of (blue-colored) paths passing through k1 and k2: a three-hop path from

source s via node k1 to target t, whereas there are N2 parallel paths going through node

k2, the length of which are L2 + 1. If L2 = 2 and N2 = 1 the network is symmetric with

respect to k1 and k2 and yields equal pivotality for k1 and k2 in reachability from s to

t (second row of Table 6.2). However, if N2 ≈ 1 and L2 � 2, intuitively node k1 plays

a more pivotal role than k2. On the other hand, as the number N2 of parallel paths

going through k2 increases while their length L2 + 1 is not signi�cantly much longer

than 3, say, L2 = 3, node k2 will play an increasingly more pivotal role in delivering

tra�c, information or other commodity from node s to node t. Intuitively, there is a

trade-o� between N2 and L2: more parallel paths going through node k2 will increase

its pivotality as it enhances the overall �capacity� from node s to node t; however larger

L2 will diminish its pivotality as longer paths increase the �cost� of using these parallel

paths. Despite such intuitions regarding the relative pivotality values of node k1 and

node k2, if L2 > 2 the SHP pivotality metric will always rank node k1 higher than k2

independently of N2 (for L2 = 2 gives the same ranking to them). Whereas, as long

as N2 > 1, the MF pivotality metric will always rank node k2 higher than node k1

independently of L2. Hence both these two metrics fail to capture the di�ering roles of
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Table 6.1: Pivotality metrics in Network Example 1: source node 1 and target node 4

nodes 2 3 5
eSHP -1 -1 0
eMF 0.5 0.5 0.5
eCH -3.5 -3.5 -3.5
eATH -0.5 -0.5 0.5

Table 6.2: Pivotality metrics (CH and ATH only) in Network Example 2 for various
choices of N2 and L2

eCH eATH
k1, k2 k1, k2

L2 = 1, N2 = 2 -7,-2.5 -0.75,0.36
L2 = 2, N2 = 1 -5.14,-5.14 -0.14,-0.14
L2 = 2, N2 = 2 -8.17,-2.92 -0.17,-0.06
L2 = 20, N2 = 2 -29.17,-10.42 10.33,-7.56
L2 = 20, N2 = 1 -15.14,-15.14 7.86,-10.14

node k2 with varying N2 and L2. To evaluate the performance of CH and ATH pivotality

metrics in capturing the di�ering roles of node k2 with varying N2 and L2, some example

values are shown in Table 6.2. Based on these results, the CH pivotality metric ranks

node k2 higher than node k1 as long as N2 > 1, and ranks them the same when N2 = 1

no matter how large is L2, behaving the same as the MF pivotality metric. However,

the ATH pivotality metric ranks successfully node k1 higher than node k2 when N2 is

close to 1 and L2 is quite larger than 2.

Figure 6.5: Network example 3

The subtle di�erence in the behaviors of the CH and ATH pivotality metrics lies

in the term H
{k}
s in eq.(6.5) vs. the term H

{k,t}
s in eq.(6.4). Namely, in accounting



98

Figure 6.6: Node pivotality ranking
in a Fat-tree network for the reacha-
bility of the source node s to target
node t: red indicates highest pivotal-
ity and black shows non-pivotality.

Figure 6.7: Node pivotality ranking
in the ESNet network for the reach-
ability of the source node s to target
node t: red indicates highest pivotal-
ity and black shows non-pivotality.

for the (forced) detour cost, the CH method allows and includes paths/walks from the

source node s to the third node k that may have already traversed the target node t; in

network example 2, increasing L2 has a destructive e�ect on the CH pivotality metric

of k1 by accounting the paths passing through t before hitting k1, such as the walk

(s− k2 − t− s− k2 − t− ...− s− k1), and increasing the term H
{k1}
s in eq.(6.5) as the

result. In contrast, the ATH method excludes such paths/walks in accounting for the

detour cost. As a result, the ATH provides a more precise quanti�cation of the detour

cost when a random walker is �forced� to transit a third node k, and thereby how pivotal

a role node k plays in the reachability from a source to a target.

The ATH metric allows us to identify nodes that are �super�uous� with respect to

the reachability of a source to a target. This can be best illustrated by the two simple

examples shown in Fig. 6.5. In both examples, consider node 1 as the source and node 2

as the target. It is obvious that node 3 is �super�uous� with respect to this source-target

pair in that node 3 plays no part in the reachability from node 1 to node 2. In other

words, if node 3 fails or is removed from the network, the reachability from node 1 to

node 2 (and the associated �capacity�) is not a�ected at all. This can be captured by
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the fact that in both networks in Figs. 6.5 (a) and (b), the probability of hitting node

3 before node 2 is zero, i.e., Q{3,2}1 = 0. Thus the denominator of the term H
{3,2}
1 in

eq.(??) becomes zero and thus H{3,2}1 =∞. This renders eATH(3) = −∞ (see eq.(6.4)),

indicating the non-pivotality of node 3. In contrast, the CH metric and SHP metric yield

eCH(3) = −3 and eSHP (3) = −3 for Fig. 6.5(a) and eCH(3) = −4 and eSHP (3) = −2

for Fig. 6.5(b) respectively.

6.5.2 Node Pivotality Ranking using the ATH Metric

Lastly, we apply the node pivotality ranking using our ATH metric to two real-world

networks: Fat-Tree [84] and the ESNet [47]. Fat-tree is a special h-ary (h ≥ 2) �tree-

shaped� structure �rst proposed in [84] for e�cient communication with uniform bi-

section bandwidth, and for this reason it has been adopted in data center networks [5].

Fig. (6.6) shows 3-ary fat-tree structure with 99 nodes, where the node colors are shaded

based on their ATH pivotality measures with respect to the reachability from the source

s to the target node t. In the �gure, the color spectrum from red to white and then to

black shows the range of the ATH value from high to low: the nodes with the larger

ATH value, are more pivotal to the reachability from s to t are represented with red and

�reddish� colors; in contrast, the nodes that play no part in the reachability from s to

t are represented with black color. The results for the ESNet, the DoE energy science

network with 68 nodes [47] are shown in Fig. (6.7). Both examples illustrate the e�cacy

of the ATH metric in correctly capturing and ranking the pivotality of nodes in the

reachability from a source node to a target node. Due to space limitation, we do not

elaborate on them.
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Chapter 7

Routing Continuum from Shortest

Path to All Path

7.1 Introduction

While in applications like routing in computer networks, the shortest path is the main

choice, having alternative paths is bene�cial in many cases such as congestion reduction

in data networks, avoiding complete predictability of the routing strategy, and increasing

the robustness of the network. In wireless networks, using only the �shortest" path is

not reliable, because the channels are not stable and their characteristics vary over time.

Hence, there is a growing literature on proposing strategies to generate multiple paths

and avoid solely relaying on the shortest path [17, 54, 91, 108]. On the other hand, the

degeneracy of expected hitting time and failing to measure any notion of distance was

shown in [130]. An interpolation or a continuum between expected hitting time and

shortest path distance can correct the issue.

In this chapter, we present a novel method for generating a continuum from shortest-

path to all-path which is made possible by the concept of random walk avoidance metrics

in an evaporation paradigm. By tuning the evaporation parameter α from 0 to 1 a

continuum of routing paths from �only the shortest one� to �all possible ones� is yielded.

Note that in contrast to the shortest-path scheme that only the shortest path from

source node to target node is traversed, in the random walk all-path scheme any path

from source node to target node has a non-zero probability to be traversed, and hence

101
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its expected length is equal to classical hitting time. The proposed continuum method,

in contrast to previous related work, is not limited to merely generating a continuum of

paths or computing the distances, but provides more comprehensive insight and analysis

about the network and can be generalized to more complicated cases by addressing the

following capabilities all under one framework:

1. Provides a closed form formulation for computing the continuum distances,

2. Provides an e�cient routing strategy,

3. Is generalized to support cases with multiple targets,

4. Has a �exible design to generate logical �ow instead of stochastic �ow,

5. Suggests a novel shortest path method

6. Builds a unifying framework for network measure computations such as centrality

measures, distance measures, and topological index.

7.2 Related Work

Generating a continuum from shortest-path to all-path has attracted attentions in recent

years. Li et al. [92] proposed a theoretical framework based on mixed (weighted) L1/L2-

norm optimization as a trade-o� between latency and energy dissipation to generate

a routing continuum from all-path to shortest-path when a tuning parameter ranges

from 0 to large values. For each choice of tuning parameter and source-target pair,

this optimization computes the distribution of �ows on every edge in the network to

determine the edges for the routing purposes. A similar algorithm, called p-resistance,

was suggested by Alamgir and Luxburg [6] where a parameter tunes the preference

toward L1 or L2 norms. Although these two algorithms [92, 6] provide a practical

routing strategy based on their continuum generative model, they lack a tractable and

closed form formulation for computing all the pairwise distances; a separate optimization

of order O(n3) is required for each pair of source-target which makes the algorithm

computationally expensive O(n5). In addition, they cover only undirected networks.

On the other hand, there are a class of works which suggest tractable expressions for
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computing continuum distances, but no routing strategy is provided. Tahbaz-Salehi and

Jadbabaie [123] proposed a continuum over a one-parameter family of algorithms based

on Log-Sum-Exp function which converges to Bellman-Ford iterations (shortest-path

distance), as one extreme and to mean hitting time iterations (all-path distance), as the

other extreme. In another work, logarithmic forest distances proposed by Chebotarev

[27] generates a family of distances based on matrix forest theorem. It computes a

matrix of distances tuned by parameter α after a sequence of processes. Francoisse et

al. [51] form an optimization problem over the path probabilities to minimize the total

expected cost subject to a relative entropy constraint. They show that the solution is a

Boltzmann distribution over all set of paths and derive a closed form formulation which

yields the distances. However, they do not propose any method for �nding the paths

and the usage portion of each edge in routing purposes. In other words, no routing

information and method to pick the edges for di�erent values of tuning parameter are

provided in these works.

7.3 Theoretical Framework for Generating the Continuum

We �rst explain how to form an evaporation paradigm Gα from network G, and then

show that a continuum from shortest path to all path over G can be generated by using

the avoidance metrics over Gα and tuning α from 0 to 1.

Evaporation paradigm Gα is obtained by multiplying factor αwij into transition

probability Pij of G for all edges ∀eij ∈ E, where 0 < α < 1, and adding one (imaginary)

node to network, denoted by o, to which every other node i is connected with transition

probability 1−
∑

j∈N (i) α
wijPij .

Pij(α) =



Pijα
wij if i, j 6= o

1−
∑

k∈N (i) α
wikPik if i 6= o and j = o

0 if i = o and j 6= o

1 if i, j = o

(7.1)

Thus the new transition probability matrix P (α), belonging to Gα, is an (n+1)×(n+1)

row-stochastic matrix whose main principal n × n submatrix is P11(α) = P � αW ,

where � is the element-wise product. Now with the new transition probability matrix
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P (α), we compute the avoidance metrics U{t,o}s (α) and F {t,o}sm (α) (from (3.25) and (3.21)

respectively), and generate the routing continuum based on the following theorems.

Theorem 11 (Routing Continuum: Path Distances). Consider weighted network G

with at least one path from node s to node t. Varying parameter α from 0 to 1 in the

avoidance hitting cost of the corresponding evaporating network Gα yields a continuum

from the shortest-path distance to all-path distance (hitting cost distance) from node s to

node t in G:

a) If α→ 0, U
{t,o}
s (α) converges to the shortest-path distance from s to t in G,

b) If α→ 1, U
{t,o}
s (α) converges to the hitting time distance from s to t in G; More

precisely, U
{t,o}
s (α) is exactly equal to the hitting cost distance for α = 1,

c) If α1 < α2, U
{t,o}
s (α1) ≤ U{t,o}s (α2).

The intuition behind Theorem (11) is that decreasing α, the probability of evapora-

tion in paths increases and when α goes to zero, the probability of longer paths become

negligible compared to the probability of the shortest path, and only the shortest path

survives. In addition, the non-zero entries of matrix F {t,o}(α) become the indicators of

the involved nodes lying on the shortest path when α goes to zero, which is demonstrated

in the next theorem.

Theorem 12 (Routing Continuum: Node Flows). Consider weighted network G with

at least one path from node s to node t. For α → 0 in the corresponding evaporating

network Gα, the entries of s-th row of the avoidance fundamental matrix, i.e. F
{t,o}
sm (α)

for ∀m ∈ T , determine the following information regarding the shortest path from s to t

in network G:

a) If limα→0 F
{t,o}
sm (α) = 0, no shortest path from s to t passes through node m.

b) If limα→0 F
{t,o}
sm (α) = 1, node m is located on all of the shortest paths from s to t.

c) If 0 < limα→0 F
{t,o}
sm (α) < 1, a fraction of the shortest paths from s to t pass

through node m.

d) As an immediate result of part (c), there exists more than one shortest path from

s to t if and only if ∃m, 0 < limα→0 F
{t,o}
sm (α) < 1.

According to this theorem, computing the s-th row of the avoidance fundamental

tensor for α→ 0, we can �nd all of the nodes located on the shortest path(s) from s to
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t. In addition, we can compute the shortest path length Lst by summing up over this

row (3.24). In addition, we can �nd routing continuum edge probabilities (aka how to

choose the next edge in a routing) from matrix P� based on the following theorem:

Theorem 13 (Avoidance Paradigm to Classical Paradigm Transformation 7). Network

G with avoiding node o and target node t can be transformed to network G� without node

o and the same target t such that the avoidance metrics in the former network turn

into the classical metrics in the latter network, i.e. F
{t,o}
sm = F�

{t}
sm, H

{t,o}
s = H�

{t}
s , and

U
{t,o}
s = U�

{t}
s . The transformation function between transition matrix P� belonging to G�

and P belonging to G is as follows:

P� ij = Pij
Q
{t,o}
j

Q
{t,o}
i

(7.2)

Corollary 9 (Routing Continuum: Edge Probabilities). The probabilities assigned to

edges for the routing strategy and each choice of α can be obtained from:

P� ij(α) = Pijα
wij

Q
{t,o}
j (α)

Q
{t,o}
i (α)

= Pijα
wij

F
{o}
jt (α)

F
{o}
it (α)

, (7.3)

where Q{t,o}(α) is computed from (2.16) and over evaporation transition probability

matrix (7.1). The second equality is resulted from Lemma (2). Algorithm (3) summarizes

our method for computing these three metrics to �nd the continuum information for each

choice of α.

Algorithm 3 Computing continuum path information for every choice of

α
input: Probability transition matrix P , weight matrix W , tuning parameter α

output: Path lengths indicated by U{t,o}(α), node �ows indicated by F {t,o}(α), and routing

edge probabilities indicated by P�{t}(α)

initialization: P11(α) = αW � P
F {o}(α) = (I − P11(α))−1

compute P�
{t}
ij (α) for every target t and every edges eij: P�

{t}
ij (α) = Pij(α)

F
{o}
jt (α)

F
{o}
it (α)

compute F
{t,o}
sm (α) for every triplet (s,m, t), s,m 6= t: F

{t,o}
sm (α) = F

{o}
mt (α)(

F{o}sm (α)

F
{o}
st (α)

−
F
{o}
tm (α)

F
{o}
tt (α)

)

compute U
{t,o}
s (α) for every pair (s, t), s 6= t: r

{t,o}
m (α) =

∑
j∈N (m) wmjP�

{t}
mj (α),

U
{t,o}
s (α) =

∑
m F

{t,o}
sm (α)r

{t,o}
m (α)
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In this algorithm, the equations for computing P� {t}ij , F {t,o}sm , and U
{t,o}
s come from

Eq. (7.3), relation (3.36), and Eq. (3.27) respectively. It can be seen that the worst

complexity of computing all pair-wise paths and distances for any choice of α is O(n3).

7.3.1 Network Example

The routing continuum for the network displayed in Fig. (7.1a) is described through

main indicators of paths, i.e. P� {t}(α), F {t,o}(α), U{t,o}(α), which are computed for �ve

di�erent values of α and target t = 6, and presented in Table (7.1). The routing strategy

in terms of edge probability P� {t}(α) for these �ve di�erent values of α are depicted in

Fig. (7.1b-f).

(a) directed weighted network

example (weights on the edges)

(b) α = 0.0001 (c) α = 0.3

(d) α = 0.6 (e) α = 0.9 (f) α = 1

Figure 7.1: Routing continuum: (b)-(f) show routing edge probabilities for network example

in (a) and for di�erent values of α which generate a continuum from shortest path to all path.

The weights on the edges in (a) represent the cost of edges and in (b)-(f) indicates the routing

edge probabilities. Target is node 6.
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α P� {6}(α) F {6,o}(α) U{6,o}(α)

0.0001

0.3

0.6

0.9

1

Table 7.1: Continuum path indicators for target node t = 6 and di�erent choices of α

for network example in Fig. (7.1a)

U{6,o}(α) indicates the vector of distances from all nodes to node 6. It can be seen
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for α close to zero (α = 0.0001 in Table (7.1)) these distances are the same as shortest

path distances. For larger α's these distances grow monotonically until α = 1 where the

classical hitting cost distances are obtained U{6,o}(α = 1) = H{6}.

F {6,o}(α) represents the stochastic �ow of nodes to target node 6. It is specially

meaningful for two extreme cases of α = 0.0001 and α = 1; e.g. F
{6,o}
1j (α = 0.0001)

indicates the stochastic portion of shortest paths from node 1 to 6 that pass through

node j, which is 0.4 for j = 4, 0.6 for j = 5, 1 for j = 2 which implies that all of the

shortest paths from 1 to 6 pass through node 2, and 0 for j = 3 indicating no shortest

path from 1 to 6 pass through node 3. Existence of any value larger than 0 and smaller

than 1 in i-th row of F {t,o}(α→ 0) indicate the existence of multiple shortest paths from

i to t.

For the other extreme α = 1, F {6,o}(α = 1) is representing the expected visit times in

regular random walks, i.e. classical fundamental matrix F {6}.

P� {6}(α) is the matrix of edge probabilities for routing purposes. In other words,

when a packet arrives at node i it is forwarded over edge eij with probability P� {6}ij (α).

Thus P� {6}ij (α) indicates the usage portion of edge eij for routing packets from i to t = 6

and for parameter α. For α = 0.0001 (shortest path case), it can be seen that edges not

belonging to shortest paths have zero probability (and so not shown in the �gure), and

the non-zero-probability edges form the shortest DAG from all the nodes to target node

6 (Fig. (7.1b)).

7.4 Generalization for Multiple Targets

The advantage of the proposed method is that the routing continuum can be easily

extended to a set of targets. In terms of random walk, this means that the stopping

criteria is the moment that random walk hits the �rst node in the target set. For

the case of α → 0 where the continuum converges to the shortest path, this target

generalization in fact picks the shortest one among the set of shortest paths to nodes

in the target set, i.e. for target set T the following equations hold U
{T,o}
s (α → 0) =

mint∈T U
{t,o}
s (α → 0) = mint∈T Lst. Hence, our method automatically reports the

minimization result when the objective is to �nd the shortest path to a set of nodes

with no need to do the computations separately for every target. Note that in general,
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however, this target generalization does not perform as a minimization operation for

larger α's: U{T,o}s (α) 6= mint∈T U
{t,o}
s (α). Algorithm (4) provides the general form of

the continuum method presented in Algorithm (3). Fig. (7.2) displays the survived

paths for three choices of α and target set T = {5, 6}, and the corresponding edge

probabilities for the routing strategy. α values.

Algorithm 4 Computing continuum path information for every choice of

α for target set T
input: Probability transition matrix P , weight matrix W , tuning parameter α, target set T

output: Path lengths indicated by U{T,o}(α), node �ows indicated by F {T,o}(α), and routing

edge probabilities indicated by P�{T}(α)

initialization: PT T (α) = αW � P
F {T,o}(α) = (I − PT T (α))−1

Q{T,o}(α) = F {T,o}(α)
∑
j [PT A(α)]:j

compute P�
{T}
ij (α) for every edge eij: P�

{T}
ij (α) = Pij(α)

Q
{T,o}
j (α)

Q
{T,o}
i (α)

compute F
{T,o}
sm (α) for every pair (s,m), s,m /∈ T : F {T,o}sm (α) = F

{T,o}
sm (α)

Q{T,o}
m (α)

Q
{T,o}
s (α)

compute U
{T,o}
s (α) for every s, s /∈ T : r{T,o}m (α) =

∑
j∈N (m) wmjP�

{T}
mj (α),

U
{T,o}
s (α) =

∑
m F

{T,o}
sm (α)r

{T,o}
m (α)

(a) α = 0.0001 (b) α = 0.5 (c) α = 1

Figure 7.2: Routing continuum for target set {5, 6}: routing edge probabilities P�{5,6}(α) for

network example in Fig. (7.1a) for three di�erent values of α which generates a continuum from

shortest path to all path.
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α P� {5,6}(α) F {5,6,o}(α) U{5,6,o}(α)

0.0001

0.5

1

Table 7.2: Continuum path indicators for multiple target nodes T = {5, 6} and di�erent

choices of α for network example in Fig. (7.1a)

7.5 Logical Flow

The transition probability matrix P used in routing algorithm (3) is derived from

P = D−1A. This transition probability yields F {t,o}sm which represents the aggregated

stochastic �ow of paths passing through node m (we call it stochastic �ow of node m).

In the stochastic �ow of a path the degree of nodes located on paths matters: the paths

composed of only low degree nodes dedicate higher stochastic �ow to themselves than

the ones including high degree nodes as well, since the transition probability of their

edges are higher. This property has the advantage of picking paths with lower bottle-

necks and reducing congestion in routing purposes.

However, if we set P to be a uniform distribution over the edges, namely Pij =
Aij
dmax

where dmax is the maximum out-degree in the network, we can assign logical �ows to
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paths in which the probability of a path is only a function of its length not the degree of

nodes located on that path. In this case, a node's �ow represents the fraction of short-

est paths passing through that node. For example, F {6,o}2,4 (α = 0.0001) = 0.5 in table

(7.3) implies that half of the shortest paths from node 2 to node 6 pass through node 4.

Table (7.3) and Fig. (7.3) show the continuum for logical �ows (setting a uniform P in

the continuum algorithm). Note that for uniform P , since the probability of edges are

restricted to 1
dmax

, even in the case of α = 1 the path lengths U{6,o} are not very large

and still close to shortest paths distances (and far from hitting time distances).

α P� {6}(α) F {6,o}(α) U{6,o}(α)

0.0001

0.5

1

Table 7.3: Continuum path indicators for logical �ow, target node t = 6, and di�erent

choices of α for network example in Fig. (7.1a)
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(a) α = 0.0001 (b) α = 0.5 (c) α = 1

Figure 7.3: Routing continuum for logical �ow: routing edge probabilities P�{6}(α) for network

example in �g. (7.1a) with the same edge weights but uniform edge probabilities P , for di�erent

values of α which generates a continuum from shortest path to all path. Target is node 6.

7.6 A Novel Shortest Path Method

According to Theorem (11), once α goes to zero, the paths are pruned to shortest ones

and U
{t,o}
s converges to shortest path distance from s to t. In the next chapter, we

elaborate the behavior of proposed method for small α and how it can be exploited to

devise a novel method for �nding the shortest paths.

7.7 Network Measures Uni�cation

Many network measures have been proposed in the literature for network analysis pur-

poses [19], such as distance metrics for measuring the similarity (or diversity) between

the nodes or entities of the network, centrality measures to assess a node's involve-

ment or importance in the connectivity or communication between network entities, and

topological indices to measure the compactness or resilience of the network against the

failures. Commonly, these measures are founded based on either shortest path distances

or hitting time distances. In this section, we show that the avoidance fundamental ten-

sor in evaporation paradigm can yield a continuum of these metrics along with a more

comprehensive view of them and provide a unifying framework for them.

We learned that the avoidance fundamental matrix in evaporating network F {t,o}(α)

is a general form of avoidance fundamental matrix which simpli�es to classical funda-

mental matrix when α = 1. It represents the expected number of passages through nodes

before reaching target t, for each choice of walk which is determined by α. Stacking up
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avoidance fundamental matrices for all choices of target nodes forms the avoidance fun-

damental tensor F smt(α) (= F
{t,o}
sm (α)) with three dimensions: source node s, medial

node m, and target node t (Fig. (7.4)). Aggregation of this tensor over its dimensions

provides a uni�ed framework for generating network measures. We particularly show

that how the well-known measures can be written in terms of the avoidance fundamental

tensor. Each of these network measures have their own implications and �t to di�erent

applications depending on the objective of the problem. Moreover, by other choices of

α, we can generate di�erent network de�ned on middle-length paths, i.e. paths that nei-

ther are con�ned to solely the shortest ones nor encompass all the random-walk paths.

Fig. (7.4) visualizes the derivation of network measures from the avoidance fundamental

tensor.

Figure 7.4: Network measures uni�cation by avoidance fundamental tensor in a contin-

uum framework

7.7.1 Distance Measure

As discussed earlier in this chapter, the avoidance hitting time in evaporating paradigm

H
{t,o}
s (α) yields a continuum from the shortest-path distance to all-path (hitting time)

distance when α ranges from 0 to 1. Recall that H{t,o}s (α) is in fact the aggregation

of avoidance fundamental matrix in evaporating paradigm over the medial node m:
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H
{t,o}
s (α) =

∑
m F

{t,o}
sm (α). Hence, aggregating tensor F smt(α) over the medial nodes

dimension returns a matrix of distance measures, ranging from shortest-path distance to

hitting time distance with di�erent choice of α, for any ordered pair of the nodes (Fig.

(7.4)): distancest(α) =
∑

m F smt(α). In the case of weighted network, this aggregation

would be weighted (Eq. (3.27)).

7.7.2 Closeness Measure

The centrality measures are categorized into two main types: Type I) based on volume

measures, and Type II) based on distance measures [19]. Closeness measure is the

closeness centrality of a node, which is from Type II (distance-based), is de�ned as

the total distance of a node from the other nodes of the network. This implies how

easily/closely the node is accessible/reachable from the other parts of the network and

in brief how much in center of the network it is located.

Freeman's closeness centrality (or shortest-path closeness centrality) is the total

shortest-path distance from a given node to all other nodes [52]. It can be represented as

the aggregation of avoidance fundamental tensor in evaporating paradigm F smt(α) over

the medial and target nodes dimensions, when α→ 0: closenesss(0) =
∑

m,t F smt(α→
0). Since the closeness centrality technically has to measure closeness rather than far-

ness, it is common to use the reciprocal form of the de�ned centrality measures, i.e.
1

closenesss(0) . On the other extreme, the random walk closeness centrality is proposed by

Noh and Rieger [101] which is the inverse of the average hitting time distance to a given

node from all other nodes. Ignoring the scalar factor of n, it is in fact the reciprocal

form of aggregation of tensor F smt(α) over the source and medial nodes dimensions when

α = 1: closenesss(1) = n∑
s,m F smt(α=1) . Note that Noh and Rieger's closeness centrality

measures the reachability of a given node from all other nodes which is an �authority"

type of closeness. Equivalent �hub" type of closeness can be de�ned as the accessibility

of a given node to all other nodes and be formulated as: closenesss(1) = n∑
m,t F smt(α=1) .

7.7.3 Betweenness Measure

Betweenness measure is a Type I (volume-based) centrality measure which quanti�es

the number of times a node acts as a bridge along the paths between di�erent parts of
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the network. The larger volume of these paths crossing that node, the more central the

node is.

Recall that F {t,o}sm (α → 0) computed from a uniform transition probability matrix

P indicates the fraction of shortest-paths from s to t that pass through m (Sec. 7.5).

Therefore, aggregation of this metric over s gives the fraction of total shortest-paths

from all the nodes to target t that m is located on. To �nd m's share of all shortest-path

tra�c between any pair of source and target, we aggregate avoidance fundamental tensor

over the source and target nodes dimensions: betweennessm(0) =
∑

s,t Fsmt(α → 0).

Metric betweennessm(0) is in fact the Freeman's betweenness centrality measure, called

as shortest-path betweenness centrality too [53]. It measures the importance of node m

in connectivity/bridging di�erent parts of a network.

Di�erent applications have inspired variations on betweenness centrality measures

in literature. For instance, while inter-city trade might take only shortest paths for

minimizing the costs, information usually �ows across all possible paths. Thus modifying

the betweenness centrality for random-walk (all-path), we obtainm's share of all possible

walk between any pair of source and target: betweennessm(1) =
∑

s,t Fsmt(α = 1).

Newman [99] proposed a variation of random walk betweenness which is de�ned as the

electrical (net) current �ows through a medial node in an undirected network when a

unit current �ows through the network and aggregated over all pairs of vcc (source) and

ground (target). We show that Newman's betweenness (Nbetweenness) can also be

written as a function f(.) of avoidance fundamental tensor aggregated over source and

target nodes:

Nbetweennessm =
∑
s,t

I(s→ m→ t)

=
∑
s,t

∑
k

1

2
|Fsmt(α = 1)Pmk − Fskt(α = 1)Pkm|

=
∑
s,t

f(Fsmt(α = 1)) (7.4)

We remark that if the network is directed and uni-directional, i.e. if eij ∈ E then eji /∈ E,
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Newman's random walk betweenness centrality reduces to stationary probability:∑
s,t

I(s→ m→ t) =
∑
s,t

∑
k∈N (m)

|Fsmt(α = 1)Pmk|

=
∑
s,t

Fsmt(α = 1)
∑

k∈N (m)

Pmk

=
∑
s,t

Fsmt(α = 1) = Kπm, (7.5)

where N (m) denotes the out-going neighbors of node m, K is the Kirchho� index, and

the last equation is based on Eq. (2.38).

Degree centrality can also be considered as a betweenness centrality in two ways:

1- enumerating only the 2-hop-length paths [19] and 2- enumerating total random walk

paths between all pair-wise nodes. In the later case, the number of times that node m is

crossed when going from node s to node t via a random walk path, aggregated over all s

and t, is proportional to the degree of node m in an undirected network and proportional

to the stationary probability of node m for the directed networks (Eq. (7.5)). Note that

for the undirected networks the stationary probability is proportional to the degree:

πm = dm
2|E| , where dm is the degree of node m.

7.7.4 Topological Index

Topological indices are invariants calculated from graphs and express some information

about the topology of the graphs. Topologocial indices are particularly important in

mathematical chemistry since they can re�ect some physical and chemical properties of

the underlying molecular graph [117][116].

Wiener index is one of the well-known topological indices which has correlation to

some important parameters of chemical species such as density, viscosity, surface tension,

boiling point and other thermodynamic parameters [135]. Wiener index is de�ned as

the summation of all pair-wise shortest path distances distancest(α→ 0) which can be

represented as the aggregation of avoidance fundamental tensor for α→ 0 over all three

dimensions:

W (G) =
∑
s,t

distancest(α→ 0) =
∑
s,m,t

Fsmt(α→ 0) (7.6)

Kirchho� index is another well-known topological indices which is de�ned as the

summation over the resistance distances of entire pairs of the nodes in the network [78]:



117

K(G) = 1
2

∑
s,t Ωst. Kirchho� index provides a measure of compactness (or robust-

ness) of the network: the lower the value of K(G) is the more compact the network G

is. Kirchho� index has an extensive application in molecular strength modeling in the

mathematical chemistry literature [140, 103] as well as in linear algebra [14].

Tetali [126] showed that E�ective resistance can be computed from commute time:

Ωst = 1
|E|Cst, where undirected edges are considered as bidirectional edges and counted

twice. Therefor, Kirchho� index can be written in terms of commute time and be

extended to directed networks as well: K(G) = 1
2|E|
∑

s,tCst. The following relations

show that how aggregation over all dimensions of fundamental tensor yields the Kirchho�

index:

K(G) =
1

2|E|
∑
s,t

Cst =
|V|
|E|
∑
t

L+
tt =

1

|E|
∑
s,m,t

Fsmt(α→ 1), (7.7)

where the second equality comes from (2.42).

7.8 Proof of Theorems

Proof of Theorem 11. Let li's from countable set C be the length of walks from s to

t such that Lst = l1 < l2 < l3 < ..., and Prli 's be the corresponding probabilities,

where
∑

i=1 Prli = 1. The avoidance hitting cost (3.17) in evaporation network �nds the

following form:

U{t,o}s (α) =

∑
i=1 liα

liPrli∑
i=1 α

liPrli
, (7.8)

Proof of part (a)

When α → 0, the �rst term of numerator (and denominator) which is for l1 = Lst

dominates the subsequent terms and U{t,o}s (α) converges to LstαLstPrLst
αLstPrLst

= Lst.

Proof of part (b)

For α = 1, there is no evaporation and network Gα splits into two disconnected

subgraphs: the original network G with node t as its only absorbing node, and one

isolated node which is node o. Then U{t,o}s (α) reduces to the regular hitting cost from

s to t in the original network G:

U{t,o}s (α = 1) =

∑
i=1 liPrli∑
i=1 Prli

=
∑
i=1

liPrli = U{t}s (7.9)

Proof of part (c)
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We prove that if α1 < α2 then U{t,o}s (α1) ≤ U{t,o}s (α2), i.e.:∑
i=1 liα

li
1Prli∑

i=1 α
li
1Prli

≤
∑

i=1 liα
li
2Prli∑

i=1 α
li
2Prli

(7.10)

Cross-multiplying the fractions in (7.10), we compare the corresponding terms from

the left-hand-side and right-hand-side polynomials. Without loss of generality assume

that i ≤ j:

(αli2Prli)(ljα
lj
1 Prlj ) + (α

lj
2 Prlj )(liα

li
1Prli) ≤ (αli2Prli)(ljα

lj
1 Prlj ) + (α

lj
2 Prlj )(liα

li
1Prli)

⇒ PrliPrlj (ljα
li
2α

lj
1 + liα

lj
2 α

li
1 ) ≤ PrliPrlj (ljα

li
1α

lj
2 + liα

lj
1 α

li
2 )

Notice that for this inequality in two cases of: 1) Prli or Prlj being zero, and 2) i = j

the equality holds; otherwise:

(lj − li)αli2α
lj
1 < (lj − li)αli1α

lj
2 =⇒ α

lj−li
1 < α

lj−li
2 ,

where the last inequality is obviously correct.

Proof of Theorem 12. The avoidance fundamental matrix in evaporation network when

the network is weighted �nds the following form:

F {t,o}sm (α) =
(
∑

li=Lsm
αli
∑

ζj∈Zsm(li)
Prζj ) · (

∑
li=Lmt

αli
∑

ζj∈Zmt(li) Prζj )∑
li=Lst

αli
∑

ζj∈Zst(li) Prζj
(7.11)

When α → 0, the �rst terms with lowest exponent of α dominate the subsequent

terms and the equation above reduces to:

lim
α→0

F {t,o}sm (α) = lim
α→0

αLsm+Lmt(
∑

ζj∈Zsm(Lsm) Prζj ).(
∑

ζj∈Zmt(Lmt) Prζj )

αLst
∑

ζj∈Zst(Lst) Prζj
(7.12)

Proof of part (a)

If m is not located on any shortest path from s to t, then αLsm+Lmt > αLst and the limit

in Eq. (7.12) converges to zero.

Proof of part (b)&(c)

If m is located on at least one of the shortest paths from s to t, then αLsm+Lmt =

αLst and the limit (7.12) has non-zero value: limα→0 F
{t,o}
sm (α) > 0. On the other

hand, we know that
∑

ζj∈Zst(Lst) Prζj ≥ (
∑

ζj∈Zsm(Lsm) Prζj ) · (
∑

ζj∈Zmt(Lmt) Prζj ) if
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Lsm + Lmt = Lst. In the case that m is located on all of the shortest paths from

s to t, it should be in Lsm distance from s and in Lmt distance to t on all of these

paths (otherwise we can �nd a shorter path by connecting two shorter pieces) and thus

we have:
∑

ζj∈Zst(Lst) Prζj = (
∑

ζj∈Zsm(Lsm) Prζj ) · (
∑

ζj∈Zmt(Lmt) Prζj ) which results to

limα→0 F
{t,o}
sm (α) = 1. However, if m is not located on all of the shortest paths from s

to t, then we have
∑

ζj∈Zst(Lst) Prζj > (
∑

ζj∈Zsm(Lsm) Prζj ) · (
∑

ζj∈Zmt(Lmt) Prζj ) and so

limα→0 F
{t,o}
sm (α) < 1.

Proof of Theorem 7. We �rst prove that P� is a transition probability matrix, namely is

row stochastic:

∑
j∈N (i)

P� ij =
∑

j∈N (i)

Pij
Q
{T,o}
j

Q
{T,o}
i

=
1

Q
{T,o}
i

∑
j∈N (i)

PijQ
{T,o}
j =

Q
{T,o}
i

Q
{T,o}
i

= 1, (7.13)

where the third equality is resulted because of Q is a harmonic function. Now we

show that with the transformation in eq. (3.33) these equalities hold: F {T,o}sm = F�{T}sm ,

H
{T,o}
s = H� {T}s , and U{T,o}s = U� {T}s .

F� {T} =
∑
k=0

P�kT T =
∑
k=0

(Diag(Q{T,o})−1PT TDiag(Q{T,o}))k

=
∑
k=0

Diag(Q{T,o})−1P kT TDiag(Q{T,o})

= Diag(Q{T,o})−1(
∑
k=0

P kT T )Diag(Q{T,o})

= Diag(Q{T,o})−1F {T,o}Diag(Q{T,o})

= F {T,o}

For the hitting times we have H� {T}s = F� {T}1 and H{T,o}s = F {T,o}1, so H{T,o}s = H� {T}s .
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The following relations also hold for hitting costs:

U{T,o}s =
∑
m

F {T,o}sm r{T,o}m

=
∑
m

F {T,o}sm

∑
j

Q
{T,o}
j

Q
{T,o}
m

Pmjwmj

=
∑
m

F {T,o}sm

∑
j

P�mjwmj

=
∑
m

F {T,o}sm r�m

=
∑
m

F� {T}sm r�m

= U� {T}s ,

where the �rst and third equalities are based on (3.27) and (3.33) respectively.



Chapter 8

SSSP Queries and Distance Oracles

8.1 Introduction

Shortest path algorithms are of great importance in many �elds and applications. Single-

source shortest path (SSSP) and all-pair shortest path (APSP) form two main types of

shortest path problems in which the shortest path from one source node to all the other

nodes and between all the pairs of nodes are computed respectively. However, particular

applications might require something in the middle: answering several SSSP queries but

not APSP. In such cases, an algorithm with prepossessing time faster than APSP and

query time faster than SSSP sounds more attractive than the existing SSSP and APSP

algorithms. Computing the shortest distance from national airports to reach to main

international hubs and �nding the shortest sequence of friends to connect to celebrities in

social networks are examples of need for faster and less complex algorithms than APSP.

We have developed an algorithm that answers SSSP queries in general directed and

weighted networks (without negative cycles) in O(m+n) time with O(n2) space require-

ment and O(nω) preprocessing time, where n is the number of nodes, m is the number

of edges, and ω < 2.376 is the current exponent for the fast matrix multiplication. The

best time complexity for directed and weighted networks belongs to Bellman-Ford algo-

rithm with O(mn) for SSSP [49, 13] and to Pettie's [107] with O(mn + n2loglogn) for

APSP. The query time of our algorithm is enormously faster than SSSP algorithms and

the prepossessing computations requires lower time complexity than APSP algorithms

for dense network with m > n1.376. We elaborate our method in Section (8.3).
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8.2 Related work

Single-source shortest path (SSSP) and all-pair shortest path (APSP) are two well-

known shortest path problems which have been studied vastly over 60 years. In the

most general types of network, i.e. directed and real weighted networks, the best time-

complexity algorithm belongs to Bellman-Ford algorithm with O(mn) for SSSP [49, 13]

and to Pettie's [107] with O(mn + n2loglogn) for APSP. However, the idea of pre-

computing a distance oracle which is faster than APSP to answer to shortest path

queries with time-complexity lower than SSSP, was �rst proposed by Thorup and Zwick

[128]. Their distance oracle supports the weighted and undirected networks and returns

an approximated distance with a stretch of 2k−1, a preprocess time of O(mn1/k), space

requirement of O(n1+1/k), and query time of O(1) for every �xed integer k ≥ 1. In a

follow-up work, Yuster and Zwick [138], proposed an algorithm for answering distance

queries in directed and integer-weighted network with absolute value at most M using

fast matrix multiplication. By preprocessing time of Õ(Mnω), where ω is the exponent

of fast matrix multiplication, and space requirement of O(n2), their algorithm answers

to a single distance query in O(n) time. In our algorithm, we improve the query time

to O(m) for an SSSP query which consists of n− 1 distance queries.

8.3 Method Overview

According to Theorem (11), once α goes to zero, the paths are pruned to shortest ones

and U
{t,o}
s converges to shortest path distance Lst. However, we didn't mention how

to �nd the shortest path and how small α should be in practice. In this chapter, we

propose an algorithm to answer shortest path distance queries e�ciently and a method

to determine α accordingly.

First, the error εst(α) = U
{t,ō}
s (α)− Lst is formulated in terms of α in Section (8.4)

to provide a better understanding of convergence behavior of avoidance hitting cost to

shortest path distance when α decreases. Afterwards in Section (8.5), we prove that if the

errors become all smaller than δ/d, our algorithm in (14) �nds the shortest paths from all

nodes to a single target t (SSSP). Here, δ is the largest value by which all the edge weights

are divisible and d is the out-degree of nodes. We derive a theoretical bound for α to make

errors smaller than δ/d and demonstrate that the bound is tight for special designed
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networks (Sections (8.6.1),(8.6.2)). However, for real-world networks and generative

models the required α is not that restricted and can be picked considerably larger than

the theoretical bound (Section (8.6.3)). Therefore, Section (8.7) is dedicated to devising

a high performance machine learning method to recommend the required α for real

networks. This method uses network local features, such as node degrees, clustering

coe�cient, and network assortativity, to train a boosted decision tree and yields an α

as a global feature for the network. For this training we have used 55 real networks and

generative models.

8.4 Convergence Behavior and the Corresponding Error

In this section, we formulate error εst(α) = U
{t,ō}
s (α) − Lst in terms of α to study the

convergence behavior of avoidance hitting cost to shortest path distance when α goes to

0. This formulation enables us later in this chapter to �nd a bound for α and make the

error be smaller than δ/d.

Let li's from countable set C be the length of walks from s to t such that Lst = l1 <

l2 < l3 < ..., and Prli 's be the corresponding probabilities (if there are more than one

walk with the same length, the Pr is the aggregated probability of the walks). Since δ

is divisible by all walk lengths li, we can assume that any two consecutive walk lengths

di�er by δ, i.e. li+1 = li + δ, otherwise we can always add a walk length with zero-

probability, i.e. Prli = 0. For unweighted networks δ = 1. In the evaporating network,

every edge eij is assigned a multiplicative factor of αwij and so walks with length of li
have the total probability of αliPrli . Recall that 0 ≤ Prli ≤ 1 and

∑
li
Prli = 1. Then,

the avoidance hitting cost can be decomposed into the shortest path distance plus an

error term:
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U{t,o}s (α) =

∑
i=1 liα

liPrli∑
i=1 α

liPrli

=
Lst
∑

i=1 α
liPrli +

∑
i=2(li − li−1)

∑
k=i α

lkPrlk∑
i=1 α

liPrli

= Lst + δ

∑
i=2

∑
k=i α

lkPrlk∑
i=1 α

liPrli

= Lst + δ
∑
j=1

αjδ
∑

i=1 α
liPrli+j∑

i=1 α
liPrli

= Lst + δ
∑
j=1

αjδγj

= Lst + εst(α), (8.1)

It can be seen that εst(α) is a non-negative function of α and so always U{t,o}s (α) ≥
Lst, meaning that avoidance hitting cost converges to shortest path distance from above.

In the next part, we show that by putting εst(α) < δ/ds and computing the inverse

function, a bound for α can be found.

8.5 Finding the Edges on the Shortest Path

Beside �nding the shortest path distance by computing U{t,o}s (α) for small enough α, we

need to �nd the path itself. In the following theorem, we show how to �nd the successor

of each node in the shortest path tree and specify the edges located on the shortest path.

Theorem 14 (Shortest Path Routing Strategy). Let εst(α) < δ/ds, where ds is the

number of out-going neighbors of s and δ is the largest value by which all the edge

weights are divisible. s's out-going edge with highest probability, i.e. P� sj = maxm P� sm,

is located on the shortest path from s to t.

Corollary 10. In an unweighted network, if εst(α) < 1/ds, then node j with maximum

Q among the neighbors, i.e. Q
{t,o}
j = maxm∈Nout(s)Q

{t,o}
m , is located on the shortest path

from s to t.

Since, �nding the shortest path is a recursive process, the whole path can be obtained

by �nding the successor of each node via the highest edge probability P� sj = maxm P� sm
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in each step, starting from s and until getting to t. The following algorithm summarizes

the shortest path routing strategy based on the proposed method

Algorithm 5 All pair shortest path

input: Probability transition matrix P , weight matrix W , and α

output: Shortest paths

P (α) = αW � P
F {o}(α) = (I − P (α))−1

for each target t do

∀eij ∈ E : P�
{t}
ij (α) = Pij(α)

F
{o}
jt (α)

F
{o}
it (α)

∀i ∈ V : successor{i} = arg maxj P�
{t}
ij (α)

shortest-path tree rooted at t = ∪i∈V ei,successor{i}
end for

8.6 Bound for α

8.6.1 Theoretical bound

We �nd a bound for α to make distance error ε smaller than δ/dmax. For this purpose,

we �rst �nd an upper bound for γ to obtain an upper bound for distance error. Recall

that ε = δ
∑

j=1 α
jδγj :

γj =

∑
i=1 α

liPrli+j∑
i=1 α

liPrli
≤
αl1
∑

i=1 Prli+j∑
i=1 α

liPrli
≤
αl1(1− (

∑j
i=1 Prli))

αl1Prl1

≤ αl1(1− Prl1)

αl1Prl1
=

1− Prl1
Prl1

≤
1− ( 1

dmax
)Lmax

( 1
dmax

)Lmax
, (8.2)

where Lmax = max(s,t) Lst is the diameter of the network and dmax = maxi di is the

maximum out-degree in the network. The last inequality is resulted from the worst case

scenario in which the shortest path probability Prl1 is composed of multiplication of

least edge probabilities, i.e. 1
dmax

, and for the longest distance of network diameter. The

upper bound for distance error εst is obtained as follows:

εst ≤ δ
∑
i=1

αiδ(
1− ( 1

dmax
)Lmax

( 1
dmax

)Lmax
) = δ

αδ

1− αδ
(
1− ( 1

dmax
)Lmax

( 1
dmax

)Lmax
) (8.3)
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To guarantee that the distance error is smaller than δ/dmax, we can make its upper

bound (8.3) be lower than δ/dmax, i.e. δ αδ

1−αδ (
1−( 1

dmax
)Lmax

( 1
dmax

)Lmax
) < δ

dmax
. Now, we can �nd

a bound for α in terms of δ, network diameter Lmax, and maximum out-degree dmax to

have distance error ε smaller than δ/dmax:

α ≤ (
1

(dmax)Lmax+1 − dmax + 1
)1/δ ≈ (

1

dmax
)(Lmax+1)/δ (8.4)

A similar bound can be achieved with a completely di�erent approach for the special

case of unweighted networks which is presented in (8.8).

8.6.2 Tightness of the bound

We show that the bound in (8.4) is not a loose bound and can be actually achieved

for a general network. According to Theorem (14), edge with max P� being located on

shortest path is the necessary condition for having ε < δ/d. To con�rm the tightness

of α's bound (8.4), we design a network to challenge this necessary condition. The idea

is to build a chain of nodes with maximum possible Q and one chain with minimum

possible Q. Now if a node has two neighbors, one from maximum-Q-chain but further

from target and one from minimum-Q-chain but closer to target, the neighbor closer to

target node should have higher Q.

Small example

In �gure (8.1) the upper row of blue nodes form the maximum-Q-chain whose Q values

are labeled above the nodes. The lower row form the minimum-Q-chain whose values

are answers of the following linear system of equations. Recall that Q is a harmonic

function and the Q value of each node is the (weighted) average of its neighbors' values.

In these �gures, the target node is represented by green color, the source node by orange
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color, and the evaporation node is omitted to avoid cluttering.

(Tier 1): q1 =
α

d
+ α

d− 1

d
q4 (8.5)

(Tier 2): q2 =
α

d
q1 + α

d− 1

d
q4

(Tier 3): q3 =
α

d
q2 + α

d− 1

d
q4

(Tier 4): q4 =
α

d
q3 + α

d− 1

d
q4,

where d is 3 in this example and tiers represent the distance to target (diameter L is

equal to 4 here).

In order that the necessary condition for ε < δ be satis�ed (10) for all the three cases

in �gure (8.1), the following inequalities should hold:

q1 > α2 (8.6)

q2 > α3

q3 > α4

Solving linear system (8.5) and substituting the answers in inequalities (8.6) the

following bounds for α are obtained:

α

3
> α2 → α .

1

3
(8.7)

(
α

3
)2 +

2(α3 )5 − 2(α3 )6

1− α+ 2(α3 )5
> α3 → α . (

1

3
)2

(
α

3
)3 +

2(α3 )5 − 2(α3 )7

1− α+ 2(α3 )5
> α4 → α . (

1

3
)3,

where the last inequality is the most restrictive bound for α.
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(a) case 1 (b) case 2 (c) case 3

Figure 8.1: Three designed networks with dmax = 3 and L = 4 to challenge the necessary

condition in (10) and con�rm the tightness of α's bound (8.4).

General form

We can generalize this design for a network with d as its maximum out-degree, L as the

diameter (number of tiers), and any number of nodes and edges. The linear system of

minimum Q's (8.5) �nds the following look:

q = Mq + b→ q = (I −M)−1b, (8.8)

where q =



q1

q2

q3

...

qL−1

qL


, M =



0 0 0 ... 0 αd−1
d

α
d 0 0 ... 0 αd−1

d

0 α
d 0 ... 0 αd−1

d
...

...
...

. . .
...

...

0 0 0 ... 0 αd−1
d

0 0 0 ... α
d αd−1

d


, and b =



α
d

0

0
...

0

0


. Therefor,

the necessary condition (10) is satis�ed if:

q1

q2

q3

...

qL−2

qL−1


>



α2

α3

α4

...

αL−1

αL


, (8.9)

where the inequality is entry-wise.
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Preposition 1. The solution of (8.8) is qj = (αd )j +
(d−1)(α

d
)L+1−(d−1)(α

d
)L+j

1−α+(d−1)(α
d

)L+1 which if

substituted in (8.9) results in the bound of α . (1
d)L−1 for α.

Proof. To compute (I −M)−1, we split matrix M into two matrices:

M = M1 +M2 =



0 0 0 ... 0 0
α
d 0 0 ... 0 0

0 α
d 0 ... 0 0

...
...

...
. . .

...
...

0 0 0 ... 0 0

0 0 0 ... α
d 0


+



0 0 0 ... 0 αd−1
d

0 0 0 ... 0 αd−1
d

0 0 0 ... 0 αd−1
d

...
...

...
. . .

...
...

0 0 0 ... 0 αd−1
d

0 0 0 ... 0 αd−1
d


, (8.10)

where M1 is a Nilpotent matrix with index L (i.e. Mk
1 = 0 for k ≥ L) and M2 is a rank

1 matrix. Due to the Nilpotent property [96] of M1 we can easily write (I −M1)−1 as

the expansion of powers of M1 up to L, and the rank 1 property of M2 enables us to

bene�t from Sherman-Morrison formula [119]:

(I −M)−1 = ((I −M1)−M2)−1 = (I −M1)−1 +
(I −M1)−1uv′(I −M1)−1

1− v′(I −M1)−1u
. (8.11)

The components of (8.11) are computed as follows:

(I −M1)−1 = I +M1 +M2
1 + ...+ML−1

1 (8.12)

=



1 0 0 ... 0 0
α
d 1 0 ... 0 0

(αd )2 α
d 1 ... 0 0

...
...

...
. . .

...
...

(αd )L−2 (αd )L−3 (αd )L−4 ... 1 0

(αd )L−1 (αd )L−2 (αd )L−3 ... α
d 1


(8.13)

M2 = uv′ =



1

1

1
...

1

1


[

0 0 0 ... 0 αd−1
d

]
(8.14)
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(I −M1)−1u =



1 0 0 ... 0 0
α
d 1 0 ... 0 0

(αd )2 α
d 1 ... 0 0

...
...

...
. . .

...
...

(αd )L−2 (αd )L−3 (αd )L−4 ... 1 0

(αd )L−1 (αd )L−2 (αd )L−3 ... α
d 1





1

1

1
...

1

1



=



1

1 + α
d

1 + α
d + (αd )2

...∑L−2
i=0 (αd )i∑L−1
i=0 (αd )i


(8.15)

v′(I −M1)−1 =
[

0 0 0 ... 0 αd−1
d

]


1 0 0 ... 0 0
α
d 1 0 ... 0 0

(αd )2 α
d 1 ... 0 0

...
...

...
. . .

...
...

(αd )L−2 (αd )L−3 (αd )L−4 ... 1 0

(αd )L−1 (αd )L−2 (αd )L−3 ... α
d 1


= (d− 1).

[
(αd )L (αd )L−1 (αd )L−2 ... (αd )2 α

d

]
(8.16)
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v′(I −M1)−1u

=
[

0 0 0 ... 0 αd−1
d

]


1 0 0 ... 0 0
α
d 1 0 ... 0 0

(αd )2 α
d 1 ... 0 0

...
...

...
. . .

...
...

(αd )L−2 (αd )L−3 (αd )L−4 ... 1 0

(αd )L−1 (αd )L−2 (αd )L−3 ... α
d 1





1

1

1
...

1

1


= (d− 1)

L∑
i=1

(
α

d
)i (8.17)

(I −M)−1b = (
α

d
)(



1
α
d

(αd )2

...

(αd )L−2

(αd )L−1


+

(d− 1)(αd )L

1− (d− 1)
∑L

i=1(αd )i



1

1 + α
d

1 + α
d + (αd )2

...∑L−2
i=0 (αd )i∑L−1
i=0 (αd )i


) (8.18)

=⇒ q =



α
d

(αd )2

(αd )3

...

(αd )L−1

(αd )L


+

(d− 1)(αd )L+1

1− α+ (d− 1)(αd )L+1



1− α
d

1− (αd )2

1− (αd )3

...

1− (αd )L−1

1− (αd )L


(8.19)

≈



α
d

(αd )2

(αd )3

...

(αd )L−1

(αd )L


, (8.20)
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Substituting q in (8.9): 

α
d

(αd )2

(αd )3

...

(αd )L−2

(αd )L−1


>



α2

α3

α4

...

αL−1

αL


, (8.21)

where the most restrictive bound for α is resulted from the last inequality, i.e. α <

(1
d)L−1. Note that all the material in this part can be easily extended to the weighted

case as well.

8.6.3 α in real networks and generative models

In spite of the tightness of α's bound (8.4) for the designed networks in (8.6.2), we show

that α does not require to be that small to achieve ε < δ/d in real networks and is way

larger in practice. Apposite to the designed network (8.1), where maximum out degree d

and diameter L can be independently large, in real networks and generative models these

two network metrics are not independent from each other and topologically it is almost

impossible that both d and L be very large. In addition, the topology of the network

and a�nity of the nodes are in a way that the situations in (8.1) are very rare to happen;

thus, the necessary condition (14) is not much challenged and the required alpha is far

from the bound (8.4). Figure (8.2) illustrates this phenomena that the required α in

real networks and generative models is much larger than the bound (blue line).



133

Figure 8.2: The required α for ε < δ/d in 55 real networks and generative models.

Darker color implies higher size of the network.

For this experiment, we computed the largest possible α for 55 networks consisting of

real networks, such as Facebook [90], western states power grid of the United States [132],

coauthorship network of scientists [97], and political blogs network [3], and generative

models, such as small world model [132], preferential attachment [12], Erdos Reney

random model [45], and Kronecker random and core-periphery [86]. Largest "possible"

α means an α that satis�es ε < δ/d for all pair of shortest paths. We �nd α iteratively

by starting from an initial value and increment it if the inequality ε < δ/d holds and

decrement it if otherwise, until the inequality changes.

8.7 α recommender module

We develop a recommender module to recommend an α for any inputed network based

on the network local features or metrics. For this purpose, we leverage machine learning

methods to learn α from a set of network metrics which are computationally less complex
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than O(nω). The following list is the set of network metrics which have been used as the

features (a mixture of binary-valued, integer-valued, and continuous-valued attributes)

of the machine learning method:

1. Weighted network (1) or unweighted network (0)

2. Directed network (1) or undirected network (0)

3. Strongly connected (1) or not (0)

4. Number of nodes n

5. Number of edges m

6. Maximum out-degree

7. Minimum out-degree

8. Mean of out-degrees d̄ = E(d)

9. Variance of out-degrees σ2(d)

10. Maximum of neighbors' out-degree di�erences ddmax, where degree di�erence for

each node i's neighbors is de�ned as ddi = maxj∈Ni dj −minj∈Ni dj

11. Minimum of neighbors' out-degree di�erences ddmin

12. Mean of neighbors' out-degree di�erences dd

13. Variance of neighbors' out-degree di�erences σ2(dd)

14. Maximum clustering coe�cient Cmax, where local clustering coe�cient for each

node i is de�ned as Ci =
|{ejk:vj ,vk∈Ni,ejk∈E}|

di(di−1) [132]

15. Minimum clustering coe�cient Cmin

16. Mean of clustering coe�cients C̄

17. Variance of clustering coe�cients σ2(C)

18. Maximum core number cnmax [9]
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19. Mean of core numbers c̄n

20. Network assortativity r [98].

We applied boosted decision tree with gradient boosting strategy on data and re-

ceived a prominent performance, which is reported in terms of root mean square error

(RMSE), mean absolute error (MAE), and mean one-sided error (MOSE) in table (8.1).

In MOSE only if predicted α is higher than actual α is counted as an error since as

long as αpredicted ≤ αactual the computed shortest path in our method is error-less. The

boosted decision tree is trained with 500 simple trees. Figure (8.3) illustrates the supe-

riority of the trained boosted decision tree performance compared against the decision

tree trained on the same data.

Table 8.1: Boosted decision tree performance trained on 55 networks data.

RMSE MAE MOSE
Training error 0.2126 0.1071 0.0535

Cross validation error 1.0329 0.7952 0.4048

(a) Decision Tree (b) Boosted Decision Tree

Figure 8.3: The performance comparison of boosted decision tree with gradient boosting strat-

egy against decision tree trained on 55 network data.
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8.8 Proof of Theorems

Proof of Theorem 14. We �rst �nd an expression for distance error εst(α) in terms

of edge costs and probabilities. According to Theorem (7), any avoidance paradigm

can be transformed to a corresponding classical paradigm, and we have: P� ij(α) =

Pij(α)
Q
{t,o}
j (α)

Q
{t,o}
i (α)

, F� {t}sm(α) = F
{t,o}
sm (α), and U� {t}s (α) = U

{t,o}
s (α). In the transformed clas-

sical paradigm, we can write the hitting cost in the recursive form and transform it back

to corresponding avoidance metrics. (Just note that for the rest of the proof, we drop

α's to avoid clutter and make the relations more readable):

U� {t}s = �rs +
∑

m∈Nout(s)

P� smU�
{t}
m

→ U{t,o}s = �rs +
∑

m∈Nout(s)

P� smU
{t,o}
m

=
∑

m∈Nout(s)

P� smwsm +
∑

m∈Nout(s)

P� smU
{t,o}
m

= P� sj(wsj + U
{t,o}
j ) +

∑
m6=j

P� sm(U{t,o}m + wsm)

→ Lst + εst = P� sj(wsj + Ljt + εjt) +
∑
m6=j

P� sm(Lmt + εmt + wsm)

Out-going edge set of node s can be divided into two subset of Je and J Ce , where

Je consists of the edges that are located on the shortest path from s to t, and J Ce
is the complementary set. Let Jv be the corresponding out-going neighbors to Je ,

i.e. Je = ∪i∈Jvesi and |Je| = |Jv|. We prove that the edge with highest probability

P� sj = maxm P� sm belong to Je. If Je includes all of s's out-going edges and J Ce = ∅,
the proof is complete; otherwise, there exists at least one s's out-going edge which is

not located on the shortest path from s to t, i.e. |Je| ≤ ds − 1. Now, we show that the

maximum edge probability in set Je is higher than the maximum edge probability in
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J Ce :

→ εst = (
∑
j∈Jv

P� sj − 1)Lst +
∑
j∈Jv

P� sjεjt +
∑
m/∈Jv

P� sm(Lmt + εmt + wsm)

≥ (
∑
j∈Jv

P� sj − 1)Lst +
∑
m/∈Jv

P� sm(Lmt + wsm)

≥ (
∑
j∈Jv

P� sj − 1)Lst +
∑
m/∈Jv

P� sm(Lst + δ)

= (
∑
j∈Jv

P� sj − 1)Lst + (1−
∑
j∈Jv

P� sj)(Lst + δ)

= (1−
∑
j∈Jv

P� sj)δ (8.22)

Substituting the lower bound of εst (8.22) in the Theorem's assumption of εst < δ/ds,

the following result is obtained:

(1−
∑
j∈Jv

P� sj)δ < δ/ds →
∑
j∈Jv

P� sj >
ds − 1

ds
→

∑
j∈JCv

P� sj <
1

ds
, (8.23)

which proves that the highest edge probability in Je is at least equal to 1
ds
, while the

highest edge probability in J Ce is strictly less than 1
ds
.

Proof of Corollary 10. In unweighted networks δ = 1 and Psj for all j ∈ Nout(s) are

equal. Therefor, according to Theorem (14) edge esj with maximum P� is located on the

shortest path from s to t:

Psj
Q
{t,o}
j

Q
{t,o}
s

= max
m

Psm
Q
{t,o}
m

Q
{t,o}
s

(8.24)

→ j = arg max
m

Q{t,o}m (8.25)

Error bound in terms of α for unweighted networks.

Ã = D−1/2AD−1/2 = D1/2PD−1/2 → ÃT T = D1/2PT TD
−1/2 (8.26)

ÃT T = UΛUT → PT T = D−1/2UΛUTD1/2 (8.27)
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P lT T = D−1/2UΛlUTD1/2 → (P lT T )ij =
∑
k

λlk

√
dj
di
UkiUkj (8.28)

H{t}s (α) =

∑
l=l0

l[P l−1
T T (α)PT A(α)]st∑

l=l0
[P l−1
T T (α)PT A(α)]st

(8.29)

∑
l=l0

l[P l−1
T T (α)PT A(α)]st =

∑
l=l0

lαl[P l−1
T T PT A]st (8.30)

=
∑
k

(
∑
l=l0

lαlλl−1
k )[(D−1/2UkU

T
k D

1/2)PT A]st (8.31)

=
∑
k

(
∑
l=l0

lαlλl−1
k )Zst(k) (8.32)

=
∑
k

∂

∂λk
(
∑
l=l0

(αλk)
l)Zst(k) (8.33)

=
∑
k

∂

∂λk
(

(αλk)
l0

1− αλk
)Zst(k) (8.34)

=
∑
k

(
l0(αλk)

l0−1α

1− αλk
+

(αλk)
l0α

(1− αλk)2
)Zst(k) (8.35)

=
∑
k

(
l0(αλk)

l0−1α

1− αλk
)Zst(k) +

∑
k

(
(αλk)

l0α

(1− αλk)2
)Zst(k) (8.36)

= l0
∑
k

(
∑
l=l0

αlλl−1
k )Zst(k) +

∑
k

(
(αλk)

l0α

(1− αλk)2
)Zst(k) (8.37)

= l0
∑
l=l0

∑
k

αlλl−1
k [(D−1/2UkU

T
k D

1/2)PT A]st +
∑
k

(
(αλk)

l0α

(1− αλk)2
)Zst(k)

= l0
∑
l=l0

[P l−1
T T (α)PT A(α)]st +

∑
k

(
(αλk)

l0α

(1− αλk)2
)Zst(k) (8.38)

→ Hst(α) = l0 +

∑
k(

(αλk)l0α
(1−αλk)2

)Zst(k)∑
l=l0

[P l−1
T T (α)PT A(α)]st

(8.39)
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To bound error H{t}s (α)− l0, we have the following relations:

H{t}s (α)− l0 =

∑
k(

(αλk)l0α
(1−αλk)2

)Zst(k)∑
l=l0

[P l−1
T T (α)PT A(α)]st

(8.40)

=

∑
k(

(αλk)l0α
(1−αλk)2

)[(D−1/2UkU
T
k D

1/2)PT A]st∑
l=l0

[P l−1
T T (α)PT A(α)]st

(8.41)

=

∑
j∈N (t)

∑
k(

(αλk)l0α
(1−αλk)2

)UksUkj

√
dj
ds

ajt
dj∑

j∈N (t)

∑
l=l0

[P l−1
T T (α)]sj [PT A(α)]jt

(8.42)

=

∑
j∈N (t)

∑
k(

(αλk)l0α
(1−αλk)2

)UksUkj

√
dj
ds

ajt
dj∑

j∈N (t) Fsj(α)
αajt
dj

(8.43)

≤ max
j∈N (t)

∑
k(

(αλk)l0α
(1−αλk)2

)UksUkj

√
dj
ds

ajt
dj

Fsj(α)
αajt
dj

(8.44)

= max
j∈N (t)

∑
k(

(αλk)l0

(1−αλk)2
)UksUkj

√
dj
ds

Fsj(α)
(8.45)

≤ max
j∈N (t)

√
dj
ds

∑
k
|αλk|l0

(1−αλk)2
|UksUkj |

Fsj(α)
(8.46)

≤ max
j∈N (t)

√
dj
ds

(αλ1)l0

1−αλ1
∑

k
1

1−αλk |UksUkj |
Fsj(α)

(8.47)

≤ max
j∈N (t)

√
dj
ds

(αλ1)l0

1−αλ1 (
∑

k
1

1−αλkU
2
ks)

1
2 (
∑

k
1

1−αλkU
2
kj)

1
2

Fsj(α)
(8.48)

= max
j∈N (t)

√
dj
ds

(αλ1)l0

1−αλ1 (Fss(α))
1
2 (Fjj(α))

1
2

Fsj(α)
(8.49)

= max
j∈N (t)

√
dj
ds

(αλ1)l0

1−αλ1 (Fss(α))
1
2 (Fjj(α))

1
2

(
dj
ds
Fjs(α))

1
2 (Fsj(α))

1
2

(8.50)

= max
j∈N (t)

(αλ1)l0

1−αλ1

(Gjs(α))
1
2 (Gsj(α))

1
2

(8.51)

≤
(αλ1)l0

1−αλ1
(αPmin)l0−1

(8.52)

=
αλ1

1− αλ1
(
λ1

Pmin
)l0−1 (8.53)

<
α

1− α
(

1

Pmin
)l0−1 (8.54)

=
α

1− α
(dmax)l0−1 (8.55)
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Equation (25) is resulted from the following relation in undirected networks:

Fjs = Fsj
ds
dj

(8.56)



Chapter 9

Replacement Path and Distance

Sensitivity Oracles

9.1 Introduction

Shortest path problem has long been one of the fundamental problems in computer

science and is exploited in many �elds such as shortest path routing in wireless networks,

protein interaction analysis, transportation problems handling, social networks studies,

and VLSI design. Although numerous fast and scalable algorithms have been developed

for static shortest path problem over the past decades, devising low-cost dynamic shortest

path algorithms to e�ciently �nd the shortest paths after the changes in the network is

still considered to be challenging.

Due to this demand for developing more �exible algorithms to support the changes in

the network, several problems have been posed under di�erent names and objectives. In

the replacement paths problem, the objective is to answer to query (s, t, f) by computing

the shortest replaced path e�ciently from a �xed source node s to a �xed target node

t for avoiding each of the nodes (or edges) located on the shortest path denoted by f .

The more general forms of this problem are for multiple sources by answering queries

(∗, t, f) and the all pairs replacement paths format which answers queries (∗, ∗, f) by

e�ciently �nding the shortest replaced path for all pairs of source and target nodes, while

avoiding an arbitrary failed node (or edge) f and by constructing a distance sensitivity

oracle. To be even more advanced is to �nd the replacement path in case of multiple

141
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failures and answer to corresponding query (s, t,F), which is very challenging and is still

considered as an open problem. The main applications for distance sensitivity oracle are

routing in failure-prone networks, Vickrey price problem, and �nding k shortest simple

paths. When a network is prone to failures, it is very expensive to compute the shortest

paths every time from the scratch. Distance sensitivity oracle provides this privilege to

compute the new shortest paths faster and with lower cost. In extension, fault-tolerant

routing protocol is a distributed solution which seeks for the shortest route avoiding

the set of failures while trying to optimize the amount of memory stored in the routing

tables of the nodes (compact routing scheme) [127]. In the Vickrey price problem from

auction theory [67] the edges of a networks are each owned by a sel�sh agent and the

objective is to determine the value of an edge according to how di�cult it gets to route

the information in the network if that edge fails. This can be done by bene�ting from

sensitivity distance oracle to compare the shortest path length before and after deleting

the edge [16]. This problem is closely related to �nd the most damaging or vital node

(or edge) in the network [36]. Moreover, k shortest simple paths can be easily computed

by running k executions of a replacement paths algorithm [44].

In this chapter, we propose a novel and simple-to-implement replacement path al-

gorithm to support multiple failures with arbitrary size and answer to (∗, t,F) queries

e�ciently as long as the size of failure |F| is constant and not growing with the size of

network n. This algorithm is founded upon two developed concepts: avoidance Markov

chain and evaporation paradigm. The advantage of our algorithm is multiple folds:

1. By leveraging from fast matrix multiplication (with exponent ω, which is currently

ω = 2.376 [134]), the sensitivity distance oracle with size O(n2) is constructed in

O(nω) time. This oracle answers to distance and path queries (∗, t,F) in only

O(m) time, where n is the number of nodes and m is the number of edges.

2. In contrast to the existing work, the proposed sensitivity distance oracle does not

depend on failure size and can be exploited for any size of the failure once is

constructed.

3. The algorithm supports the general directed networks with arbitrary weights (with-

out negative cycle).
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4. The algorithm can be simply modi�ed to support edge failures as well as �nd

alternative longer paths.

Therefor, the method presented in this section gives an a�rmative answer to two ques-

tions of Bernstein and Karger [16] in the conclusion part of their paper: �We cannot

really hope to improve upon the static version, but can we make the oracle dynamic: if

we delete a single vertex, can we do better than constructing another oracle from scratch?

Also, can we e�ciently handle more than one vertex failure at a time? �.

9.2 Related work

Sensitivity distance oracle algorithms have been studied vastly for supporting the single

failure case. For weighted and directed networks, Demetrescu et al. [39] proposed an

O(n2 log n)-size oracle which is constructed in O(mn2 + n3 log n) time and answers to

shortest path length queries (s, t, f) in O(1) time. Bernstein and Karger [16] improved

the previous algorithm by lower construction time of O(mn log2 n+n2 log3 n) but space

size of O(n2 log2 n) and the same query time of O(1). The same authors also presented a

randomized algorithm [15] which is improved in construction time and storage size with

a factor of log n compared to their deterministic algorithm and the same query time.

Note that the query time for �nding the shortest path is O(L) in all of these algorithms

where L is the length of the path. The approximate algorithm proposed by Khanna and

Baswana [76] provides a lower storage requirement of O(kn1+1/k log3n
ε4

) for unweighted

and undirected networks. This algorithm returns (2k − 1)(1 + ε)-approximate distance

query in O(k) time for given an integer k > 1 and a fraction ε > 0.

As one of the �rst attempts to support more than one failure, Duan and Pettie

[42] proposed a method for covering the dual-failures (f = 2). Their method re-

quires the storage size of O(n2 log3 n) which is constructed in polynomial time. The

query time for returning the length of shortest path is O(log n) and for returning

the whole path is O(L log n). According to the authors, this method cannot be ex-

tended to cases with f > 2, since it becomes very complex and requires O(nf log3 n)

of space. The other f -sensitivity distance oracle is a (8k − 2)(f + 1)-approximate

algorithm suggested by Chechik et al. [28] to support more than two failures f >

2 for undirected networks. The oracle is constructed in polynomial time and takes
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O(fkn1+1/k log(nW )) of space to answer distance queries. The query time for this algo-

rithm is O(|F|. log2 n. log log n. log logL), where F is the number of failures and F < f ,

W is the weight of heaviest edge, and L is the longest distance in the network. Weimann

and Yuster [134] propose a randomized algorithm for constructing a sensitivity distance

oracle with size of Õ(n3−α) given a trading-o� parameter 0 < α < 1 and conditioned

on the failure order being |F| = O( logn
log logn). Notation Õ indicates that some log n has

been dropped from the order. This algorithm was originally devised for integer-weighted

graphs with edge weights chosen from {−W, ...,+W} [133] and then was extended to

real-weighted graphs in a follow-up work [134]. For the case of integer weights, the

construction time is O(Wn1+ω−α) with query time of Õ(n2−(1−α)/|F|), and the real

weights case has been become possible by construction time of O(n4−α) and query time

of Õ(n2−2(1−α)/|F|). The authors take advantage of the fast matrix multiplication, with

ω as the exponent, in their computations which is currently ω = 2.376 [134]. Note that

both of the reviewed works for supporting multiple failures require to know the size of

failure |F| in advance for their oracle construction.

9.3 Method Overview

The replacement path method is constructed based on the theory developed in past two

chapters. In Chapter (7), we demonstrated that once α goes to zero in an evaporating

network, the paths are pruned to shortest ones and U
{t,o}
s converges to shortest path

distance from s to t in the original network (Theorem 11). Then we showed in Chapter

(8) that how to �nd α to make error εst(α) = U
{t,o}
s (α)−Lst less than δ/d and presented

the corresponding shortest path algorithm (5). The only gap here is that we had those

theories for cases with no failures while here we have to exclude a set of failed nodes

in our shortest path algorithm. In this chapter, we show that this gap is �lled with

a theorem that we prove (15): U{t,F ,o}s (α) converges to shortest path distance from s

to t excluding failure part of the network, i.e. set F , once α goes to zero. Henceforth,

a similar technique can be followed to �nd the replacement path: for each failure set

F , the fundamental matrix F {F ,o} is computed from F {o} e�ciently (Theorem 1) and

the edge probabilities are computed for a single target. Edges with highest probability

resides on the shortest path. We illustrate this replacement path algorithm in Alg. (6)
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and discuss the corresponding complexity time in Section (9.4.1).

9.4 Theoretical Framework and Complexity Discussion

Theorem 15. Assume set F of nodes have failed in weighted network G. If α → 0

in the corresponding evaporating network Gα, the avoidance hitting cost U
{t,F ,o}
s (α) in

Gα converges to shortest-path distance in G where failure set F is discarded from the

network.

lim
α→0

U{t,F ,o}s (α) = L
{F}
st (9.1)

Algorithm (6) �nds the replacement shortest paths e�ciently from all nodes to target

t while there are a set of failure nodes F in the network.

Algorithm 6 Replacement path algorithm for all sources to single target

queries with multiple failures (∗, t,F)

Input:

Probability transition matrix P , weight matrix W , and α

Output:

Shortest paths from all nodes to single target t which do not pass any nodes in failure set F
Preprocess:

P (α) = αW � P
F {o}(α) = (I − P (α))−1

Query: (∗, t,F)

Query response:

M = (F
{o}
F,F (α))−1

∀i ∈ V : F
{F,o}
i,t (α) = F

{o}
i,t (α)− F {o}i,F (α)MF

{o}
F,t (α)

∀eij ∈ E : P�
{t}
ij (α) = Pij(α)

F
{F,o}
jt (α)

F
{F,o}
it (α)

∀i ∈ V : successor{i} = arg maxj P�
{t}
ij (α)

Shortest-path tree rooted at t = ∪i∈V ei,successor{i}

where the second equation in Query response is resulted from Theorem (1) and the

third one is a substitution of (2) in Theorem (14).
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9.4.1 Preprocess time and space

The purpose of preprocess part is to compute and store F{o}(α) which can be used

to answer replacement path queries very e�ciently. The required space for storing

this matrix is n2 where n is the number of nodes. Regarding the complexity time,

the inverse computation is the main costly component with complexity time of O(nω),

where ω = 2.376, and is discussed in the following. Recall that the ReccomenderModule

requires 20 network metrics as input who are all less complex than O(nω).

Matrix Inverse: The computational complexity of matrix multiplication of two

n × n matrices is sub-qubic; according to Strassen algorithm [122] the complexity is

O(n2.807) and later on it reduced even more to O(n2.376) by Coppersmith-Winograd

algorithm [35]. Cormen et al. [37] proved that inversion is no harder than multiplication

(Theorem 28.2). A divide and conquer algorithm that uses blockwise inversion to invert

a matrix runs with the same time complexity as the matrix multiplication algorithm

that is used internally.

9.4.2 Query time

For having a fast query time, we leverage from the incremental computation in The-

orem (1). Based on this theorem, only an O(1)-computation is required to compute

F
{F ,o}
i,t (α) from precomputed matrix F {o}(α) and for any given failure set F , as long

as |F| is constant with respect to network size n. In this case, computation of term

M = (F
{o}
F ,F (α))−1 requires O(|F|ω) time which is still considered O(1). The most costly

component of query computations is computing the new probabilities P� {t}ij (α) for all

edges which takes O(m) time.

9.5 Proof of Theorems

Proof of Theorem 15. Let G be an unweighted network and avoidance hitting time

H
t,{F ,o}
s (α) is de�ned on the corresponding evaporation paradigm Gα, and F is the set

of failure nodes. We write the avoidance hitting time in terms of transition probabilities
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(3.6):

H{t,F ,o}s (α) =

∑
k=k1

k[[P (α)]k−1
T2T2 [P (α)]T2A2

]st∑
k=k1

[[P (α)]k−1
T2T2 [P (α)]T2A2

]st
=

∑
k=k1

kαk[P k−1
T1T1PT1A1 ]st∑

k=k1
αk[P k−1

T1T1PT1A1 ]st
, (9.2)

where P (α) is the transition matrix of evaporation network and P belongs to the original

network. In the original network G the target node t as well as the failure set F form

the absorbing set: A1 = {t} ∪ F and T1 = V \ A1. In the evaporating network Gα, the

evaporation node o is absorbing too: A2 = {o} ∪ A1 and T2 = V \ A2. When α→ 0

lim
α→0

H{t,F ,o}s (α) = lim
α→0

∑
k=k1

kαk[P k−1
T1T1PT1A1 ]st∑

k=k1
αk[P k−1

T1T1PT1A1 ]st
= k1, (9.3)

k1 is the smallest number of steps to take from s to reach t in the transient part of G,

which interprets the shortest path distance from s to t excluding the nodes in F .
For the weighted network, the proof is straightforward following the same idea for

the unweighted network as well as using Theorem (11).



Chapter 10

Conclusion

In this dissertation, we presented our research on complex network analysis under three

subjects of cascade, reachability, and routing. For these studies, we developed a platform

of powerful theories and tools founded on Markov chain theory and random walk methods

which supports the general weighted and directed networks.

In Chapter 2, we reviewed certain Markov chain classical metrics and showed how to

compute them in a uni�ed way. We also collected and proved a library of useful lemmas

and theorems for these metrics and their relations to each other which were used in

applications such as �nding the most in�uential people in a social network for in�uence

maximization, devising an oracle to e�ciently answer dynamic reachability queries, and

computing the articulation points of directed networks in later chapters.

In Chapter 3, we developed and introduced Markov chain avoidance metrics which

provide more �exibility in the design of Markov chain and impose new conditions on the

transition to avoid (or transit) a speci�c state (or a set of states) before the stopping

criteria. We established the usefulness of these theories through applications such as

proposing a pivotality metric to rank the importance of nodes in reachabilities, devel-

oping a generative model for a routing continuum from shortest path to (random walk)

all path, and devising a distance oracle which answers to single-source shortest path

(SSSP) queries, and �nds replacement paths in multiple failures e�ciently presented in

next chapters.

In Chapter 4, we studied the in�uence cascade in social networks and introduced

the Heat Conduction (HC) Model which captures both social in�uence and non-social
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in�uence, and extends many of the existing non-progressive models. We also presented

a scalable and provably near-optimal solution for in�uence maximization problem by

establishing three essential properties of HC: 1) submodulairty of in�uence spread, 2)

closed form computation for in�uence spread, and 3) closed form greedy selection. We are

the �rst to present a scalable solution for in�uence maximization under non-progressive

LT model, as a special case of the HC model. We conducted extensive experiments on

networks with hundreds of thousands of nodes and close to one million edges where our

proposed method runs in a few minutes, in sharp contrast with the long running time

of existing methods. The experiments also certi�ed that our method outperforms the

state-of-the-art in terms of both in�uence spread and scalability.

Chapter 5 was speci�ed to study failure cascade in inter-dependent networks where

we considered the e�ects of cascading failures both within and across di�erent layers.

The goal of the study was to investigate how di�erent couplings (i.e., inter-dependencies)

between network elements across layers a�ect the cascading failure dynamics. Through

experiments using the proposed framework, we showed that under the one-to-one cou-

pling map, how nodes from two inter-dependent networks are coupled together play a

crucial role in the �nal size of the resulting failure cascades: coupling corresponding

nodes from two networks with equal importance (i.e., �high-to-high� coupling) result in

smaller failure cascades than other forms of inter-dependence coupling such as �random�

or �high-low� coupling. In particular, given a two-layered system with two identical

networks, �high-to-high� coupling produces a mirror e�ect in that the coupling exactly

mirrors the cascade within each layer and does not produce additional failures than when

the two networks are independent. Our results shed lights on potential strategies for

mitigating cascading failures in inter-dependent networks.

In Chapter 6, we developed an oracle to answer dynamic reachabilities e�ciently for

failure (deletion) prone networks (and not insertion) with frequent reahcability query

requirement. In contrast to state-of-the-art which require an update after any changes

in the network to answer the queries, our method does not require any update, once it is

computed in O(nω), if the size of failures remain in O(1) compared with the network size

n. Moreover, the query time for our method is O(1) which is not the case for majority of

the art. We also extended the de�nition of articulation points to the directed networks

and provided formulation to �nd the articulation points of a network. Introducing
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a related metric, called load balancing, and conducting experiments on several real

networks and generative models, we showed that random network followed by Italian

power grid re�ect the highest load balancing across their nodes.

In Chapter 6, we also developed the pivotality metric for assessing pivotality of nodes

in the reachability of a source node to a target node. Intuitively, high pivotal nodes are

the ones that make the reachability occur in shorter distance as they are traversed by

a large of (shorter) paths for the reachability of source to target. Using some simple

network examples, we compare our pivotality metric - the avoidance-transit hitting time

(ATH) metric - with other metrics de�ned using the shortest paths, maximum �ow,

and classical hitting time methods and demonstrated that these existing metrics fail to

properly capture and assess the pivotality of nodes in the reachability from a source to a

target while our ATH metric can. Finally, we applied the ATH method to two real-world

network examples to rank the nodes based on their pivotality for the reachability from

a source to a target. We visualized the results to demonstrate the performance of our

proposed method.

In Chapter 7, we developed a generative model to generate a continuum from shortest-

path routing to all-path routing which provides both a closed form formulation for com-

puting the continuum distances and an e�cient routing strategy. We showed that our

model is generalizable for supporting multiple targets and , in addition, it builds a unify-

ing framework for network measure computations such as centrality measures, distance

measures, and topological index.

In Chapter 8, we devised an oracle for answering SSSP queries e�ciently with query

time of O(m), space requirement of O(n2), and pre-processing time of O(nω), where

ω is the exponent of fast matrix multiplication and currently is equal to 2.376. For

this purpose, we derived the required bound for the evaporating parameter α, from

the continuum method in Chapter 7, and developed a shortest path routing strategy

accordingly. We proved that the bound is tight for a special designed network, but

through extensive experiments over 55 real networks and generative models, we showed

that the required α is much more relaxed. We also proposed and trained a machine

learning method (a boosted decision tree) to learn the required α for each inputted

network based on 20 network local features.

In Chapter 9, we proved that the same theory developed in Chapter 8 can be exploited
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to answer replacement path queries in the case of multiple failures which was considered

an open problem. For a fast query time, we leveraged from the incremental computation

of fundamental matrix, the theorem we had developed in Theory chapters.
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