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Abstract 

Lignocellulosic biomass is one of the largest sources of organic carbon on Earth with the 

potential to replace fossil fuels for the production of transportation fuels and chemicals. 

The two biggest challenges facing biosynthesis is the limited natural metabolic capacity 

of microorganisms and the effective utilization of lignocellulosic biomass. To overcome 

the first obstacle, over the past several decades researchers have successfully expanded 

the natural metabolic pathways of microorganisms to allow biosynthesis of a wide array 

of compounds with applications as advanced biofuels, industrial chemicals, and 

pharmaceuticals. Most industrial fermentations convert glucose, the major sugar present 

in biomass, into a value added chemical but are unable to utilize pentose sugars which 

make up ~30% of a typical biomass feedstock. To improve the overall economics of 

fermentation process, it is important to ensure that all major sugars present in the 

feedstock are efficiently converted to target chemicals. This work addresses both these 

challenges by establishing a novel alterative pathway called nonphosphorylative pathway 

in Escherichia coli which enables the utilization of underutilized pentose sugars such as 

D-xylose and L-arabinose using fewer steps and with higher theoretical yields than 

conventional glycolysis and pentose phosphate pathways (PPP). This nonphosphorylative 

pathway can convert D-xylose and L-arabinose to 2-ketoglutarate (2-KG), an important 

TCA cycle intermediate, using less than 6 steps. A growth selection platform based on 2-

ketoglutarate (2-KG) auxotrophy was designed in E. coli to confirm the functionality of 

nonphosphorylative metabolism in host organism. The growth selection platform was 

also used to mine nonphosphorylative gene clusters from other organisms  
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with improved activity. The pathway was then expanded to allow biosynthesis of two 

commercially important chemicals, 1,4-butanediol (BDO) and γ-aminobutyric acid 

(GABA). To improve production titers and yields of the process, protein engineering was 

used to reduce by-product formation and metabolic engineering was used to eliminate 

competing pathways and increase carbon flux towards the target compound. Furthermore, 

to improve uptake of pentoses by E. coli, pentose transporter was overexpressed to allow 

better carbon utilization. This nonphosphorylative metabolism serves as an efficient 

platform for biosynthesis and can be extended to produce a variety of compounds derived 

from TCA cycle including, but not limited to, L-glutamate, mesaconate, 5-aminolevulinic 

acid, and glutaconate. While the nonphosphorylative pathway has been successfully used 

for conversion of simple pentose sugars into important chemicals like BDO and GABA, 

the breakdown of biomass into these pentoses is the bigger challenge. This work also 

briefly addresses this challenge by comparing different acid hydrolysis treatment 

conditions to breakdown arabinoxylans in wheat bran into sugars - glucose, D-xylose, 

and L-arabinose - which can then be used in fermentation via nonphosphorylative 

metabolism.  
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Chapter 1 

Introduction  

 

 

1.1 Motivation 

Energy is essential in our daily lives and most of our energy comes from burning fossil 

fuels like petroleum, coal, and natural gas. According to the US Energy Information 

Administration (EIA), fossil fuels meet 81% of the U.S. energy demand.1 Fossil fuels 

take millions of years to form within the Earth and scientists around the world estimate 

we will run out of fossil fuels within the next 50 to 120 years.2 Although the United 

States is the world’s largest producer of natural gas today, these resources are limited in 

supply and with the current explosion in global population and energy demand, we will 

soon run out of these non-renewable sources of energy. We currently consume 90 million 

barrels of oil each day and this will keep rising with the growing population. Our 

dependence on fossil fuels has led to many environmental problems including climate 
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change, air pollution, oil spills, and acid rain. The World Bank estimates that 5.3 trillion 

cubic feet of natural gas, making up 25% of US total consumption, is flared annually 

worldwide, generating 400 million tons of unnecessary carbon dioxide emissions.3 Of the 

many environmental damages, the most serious and potentially irreversible consequence 

of burning fossil fuels is global warming. In 2014, approximately 78% of US global 

warming emissions were energy-related emissions of carbon dioxide.4 Furthermore, 

while US was once self-sufficient in oil, in 2015 24% of the oil consumed in the US was 

imported from foreign countries.1 These rising environmental and national security 

concerns are the major drivers for the search for alternative, renewable and green energy 

sources.  

 One of the most promising alternatives to fossil fuels is lignocellulosic biomass, 

generated from atmospheric CO2, water, and sunlight through photosynthesis. It is 

considered to be the only sustainable source of organic carbon on Earth with potential to 

replace fossil fuels for the production of transportation fuels and fine chemicals with net 

zero carbon emission. The worldwide production of lignocellulosic biomass is estimated 

to exceed 220 billion tons, which can support global oil consumption for more than 15 

years.5  While lignocellulosic biomass is an inedible feedstock, there has been a lot of 

debate on the use of edible biomass such as corn, sugarcane and other starch and sugar 

crops for the production of fuels and chemicals. The limited supply of these crops could 

lead to competition with food production resulting in increasing food prices. This “food 

versus fuel” debate has moved the focus of researchers towards using agricultural waste 

products as feedstocks for biosynthesis of sustainable chemicals and fuels. Disposal of 
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these forestry and agricultural residues causes severe environmental problems and from 

an economic point of view, lignocellulosic biomass is produced more quickly and is 

cheaper than food crops such as corn starch and sugar cane.  

 The biggest challenge that limits the applicability of biosynthesis for production 

of chemicals and fuels is that most of the target compounds are not part of the natural 

metabolism of microorganisms. To address this challenge, researchers use metabolic 

engineering, systems and synthetic biology strategies to expand the natural metabolic 

capacity of microorganisms by introducing artificial pathways and heterologous enzymes. 

My thesis work is aimed at designing novel biosynthetic pathways in E. coli for the 

synthesis of sustainable chemicals and polymers using artificial pathway design, 

metabolic engineering, and protein engineering techniques to improve production titers 

and yields.  

1.2 Engineering artificial biosynthetic pathways 

Efficient and sustainable microbial production is a promising alternative to help the 

transition from a fossil-based economy to an economy based on renewable feedstocks. 

By 2020, biomanufacturing is predicted to provide cheaper and more sustainable 

synthetic routes for a wide array of diverse products in sectors such as cosmetics, 

polymers, flavors, and pharmaceuticals. According to the goals set by the U.S. 

Department of Energy, by 2025 30% of the transportation fuels should be replaced with 

biofuels and 25% of industrial chemicals will be derived from biomass.6 Recent advances 

in metabolic engineering, systems and synthetic biology has enabled the production of 

advanced biofuels with properties similar to petroleum-derived fuels in industrial host 
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organisms such as Escherichia coli and Saccharomyces cerevisiae. There has also been a 

tremendous increase in the number of key building block chemicals and fine chemicals 

produced microbially from biomass feedstocks.  

 Biosynthesis, in the form of fermentation, has been around for centuries and in 

fact natural fermentation precedes human history. The earliest evidence of an alcoholic 

drink made from fruit, rice, dates back to 7000 B.C. in the village of Jiahu, China. Over 

the centuries, scientists have understood the fermentation process, identified the enzyme 

responsible for ethanol production, and have expanded the application of fermentation for 

the production of bread, cheese, vinegar, organic acids, amino acids, and pharmaceutical 

compounds such as penicillin and other drugs and antibodies. Traditionally, biosynthesis 

was limited to compounds found in nature and metabolic engineering efforts were used to 

manipulate the natural metabolic pathways of host organisms to improve production titers 

of metabolites such as ethanol7-9, lactic acid10-13, citric acid, and amino acids including 

lysine14-15 and glutamic acid.16 With progress in recombinant DNA technology, today the 

focus of metabolic engineering has shifted to produce almost any desired compound 

ranging from a small molecule drug such as artemisinin17-19 to large complex polymers 

like spider silk.20 This vast potential of metabolic engineering has resulted in an 

explosion in the diversity of molecules produced by engineered microbes and has enabled 

sustainable production of polymers, fuels, pharmaceuticals, and industrial chemicals. 

 In this section, some of the most widely used biosynthetic pathways for advanced 

biofuels and chemical production has been discussed. The four main pathways are 2-

ketoacid pathway, fatty acid biosynthesis pathway, reverse β-oxidation pathway, and 
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isoprenoid pathway. All of these pathways allow carbon chain elongation and have been 

engineered to produce various commercially relevant compounds and several studies 

have also compared the efficacy of these different pathways for the production of same 

compound.   

1.2.1 2-keto acid pathways 

Amino acid biosynthesis is vital for every living organism and L-amino acids have an 

annual market volume of over 5 million tons. 2-ketoacids are key intermediates of the 

amino acid biosynthetic pathways organic compounds with a ketone group adjacent to the 

carboxyl group. The successes in fermentative production of natural amino acids such as 

glutamic acid and lysine14, 21-22 , opened up the possibility to artificially expand these 

pathways for the production of higher-chain alcohols, carboxylic acids, pharmaceuticals, 

and other chemicals.   

 Higher alcohols are great substitutes for gasoline but natural metabolic pathways 

for higher alcohol production are not optimum. To improve production, a synthetic 

approach was developed where 2-ketoacid intermediates of branched aliphatic amino 

acids were first decarboxylated to aldehydes by ketoacid decarboxylase (KDC) and then 

reduced to alcohols by the action of alcohol dehydrogenase (ADH). Alcohols with 

naturally existing 2-ketoacid precursors such as isobutanol and C5 alcohols such as 2-

methyl-1-butanol and 3-methyl-1-butanol were overproduced by expressing appropriate 

KDC and ADH enzymes (Figure 1.1). After screening several different KDCs and 

ADHs, KivD from Lactococcus lactis and Adh2 from Saccharomyces cerevisiae were 

chosen as the best combination of enzymes for the synthesis of 1-propanol, 1-butanol,  
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Figure 1.1 Expanding 2-ketoacid pathways for the production of alcohols. Deacrboxylation of 2-ketoacid is 

catalyzed by 2-ketoacid decarboxylase (KDC) followed by reduction of aldehyde by aldehyde 

dehydrogenase (ADH). 

isobutanol, 2-methyl-1-butanol, 3-methyl-1-butanol, and 2-phenylethanol.23-26 

Overexpression of 2-ketoisovalerate biosynthetic genes, deletion of pyruvate 

consumption pathways, and the use of B. subtilis acetolactate synthase enzyme with 

higher specificity for pyruvate resulted in 22 g/L of isobutanol in E.coli.23 Higher 

alcohols with more than 5 carbon atoms do not have naturally occurring 2-ketoacid 

intermediates since the amino acid biosynthetic pathway is limited by carbon length. To 

enable the production of these compounds, a “+1” elongation pathway was developed to 

extend the carbon chain of existing 2-ketoacid intermediates and produce non-natural C6-
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C9 2-ketoacids.27-28 The LeuABCD gene cluster was employed for elongation of the 

carbon backbone and protein engineering was used to enlarge the binding pocket of 2-

isopropylmalatesynthase (LeuA) to expand its substrate range allowing the production of 

alcohols such as 3-methyl-1-pentanol, 4-methyl-1-pentanol, 4-methyl-1-hexanol and 5-

methyl-1-hexanol.27-28  These studies demonstrate the importance of protein engineering 

and pathway optimization for the successful biosynthesis of commodity chemicals and 

biofuels.  

 In addition to alcohols, the 2-ketoacid pathway has also been used for the 

production of carboxylic acids where aldehydes produced by decarboxylation of 2-

ketoacids are oxidized to acids. The E.coli enzyme, phenylacetaldehyde dehydrogenase 

(PadA)29, was used to produce isobutyrate30 and isovalerate31-32 at high titers and 

Burkholderia ambifaria α-ketoglutaric semialdehyde dehydrogenase was used for 

isocaproate production.32  

 Apart from these aliphatic compounds, aromatic 2-ketoacids, phenylpyruvate (PP) 

and 4-hydroxyphenylpyruvate (HPP), have been used for biosynthesis of polymer 

building blocks33, flavonoids34, coumarins35, stilbenes36, and aromatic polyketides37, 

using transamination chemistry.   

1.2.2 Fatty acid biosynthetic pathway   

Fatty acids are the basic components of cell membranes and constitute a major portion of 

cell mass. Free fatty acids (FFAs) are non-esterified carboxylic acids containing acyl 

chains from 4 to 18 carbons and are produced in cells through enzymatic cleavage of 
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lipids and acyl-thioesters.38 FFAs can be converted to petroleum-derived diesel 

compounds using a single step acid-catalyzed esterification step and can also be 

catalytically decarboxylated to linear alkanes in the diesel range.39 Fatty acid metabolic 

pathway is an attractive route for the production of high-energy density liquid 

transportation fuels and higher value oleochemicals. In the oleochemical industry, free 

fatty acids (FFAs) are precursors for agrochemicals, biocidal agents, soaps, surfactants, 

and polymer additives.38 Overproduction of fatty acids in engineered microorganisms 

such as E. coli has been demonstrated for several decades and the use of this pathway for 

production of a plethora of microbial fuels and fatty acid derivatives including fatty acid 

esters, fatty alcohols, alkanes, alkenes, and long-chain dicarboxylic acids have been 

elucidated in many reviews. 

 The first step in type II fatty acid biosynthesis pathway (Figure 1.2a) in E. coli is 

the conversion of acetyl CoA to malonyl CoA catalyzed by acetyl-CoA carboxylase 

enzyme (AccABCD). Acetyl-CoA carboxylase, AccABCD is a 4-subunit enzyme that 

requires biotin as a co-factor and uses ATP for transfer of bicarbonate to the substrate. 

Malonyl CoA, the donor for two carbon extender units for chain elongation, is 

subsequently transferred to ACP (acyl carrier protein) by malonyl-CoA: ACP 

transacylase (FabD).  Malonyl-ACP and acetyl-CoA are condensed in the first cycle of 

the pathway by β-ketoacyl-ACP synthase III (FabH) in a Claisen condensation reaction to 

form a β-ketoacyl-ACP. For successive iterations of the cycle, malonyl-ACP is 

condensed with acyl-ACP using different condensing enzymes, FabB and FabF. The 

second step of pathway is reduction of the β-keto group in β-ketoacyl-ACP to produce β- 
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Figure 1.2 (a) Fatty acid biosynthesis pathway (FAB) for the production of fatty acids, fatty alcohols, fatty 

acid ethyl esters (FAEE), alkanes, and alkenes. (b) Reverse β-oxidation pathway for the biosynthesis of 

fatty acids, β-ketoacids, β-hydroxyacids, trans-2- enoic acids, and alkanes.   

hydroxyacyl-ACP using the NADPH-dependent β-ketoacyl-ACP reductase (FabG). This 

β-hydroxyacyl-ACP is then dehydrated by β-hydroxyacyl-ACP hydratase (FabA or FabZ) 

to enoyl-ACP which is finally reduced to a saturated acyl-ACP by action of NADH-

dependent enoyl-ACP reductase (FabI). This cycle continues until long-chain acyl ACPs 

(C16, C18) are incorporated into the phospholipids by acyltransferases or converted to 

other useful metabolites. Thioesterases (TesA and TesB) present in E. coli can convert 

acyl-ACPs to free fatty acids.38-40  
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 The two critical steps for overproduction of FFAs is blocking FFA consumption 

by eliminating the β-oxidation pathway and optimizing thioesterase expression to 

eliminate feedback inhibition of key FAB pathway enzymes by accumulation of long 

chain acyl ACPs.  Overexpression of acetyl-CoA carboxylase in E. coli resulted in a 5-

fold improvement in FFA titer.41 Using four distinct genetic changes, E.coli was 

engineered to produce 2.5 g/L total fatty acids with 50% being in the free fatty acid form 

and <10% excreted into the fermentation medium. Glycerol, a waste-product of plant-

derived biodiesel, was used as the carbon source for fatty acid production and a 

conversion efficiency of 4.8% and a linear productivity of 0.024 g/h/g of dry cell mass 

was achieved.42 The choice of thioesterase is critical in fine-tuning the FAB pathway for 

a specific carbon chain length. By overexpressing E. coli thioesterase TesA, which 

exhibits a preference for C14 fatty acids, and by eliminating key enzymes of the β-

oxidation pathway, ~1.2 g/L free fatty acids was obtained corresponding to 14% of the 

theoretical yield.43 In the same study, ~400 mg/L of fatty acid ethyl esters (FAEE), a 

major component of biodiesel, was produced with a composition ranging from C12-C18 

by overexpressing wax-ester synthase (atfA). In addition to FFAs and FAEEs, fatty 

alcohols, a potential biofuel has been produced at 60 mg/L by overexpressing an acyl-

CoA synthase to activate fatty acids to acyl-CoAs followed by reduction by an acyl-CoA 

reductase.43 The FAB pathway can also be used to synthesize alkanes by cleaving the 

thioester bond of acyl-ACP using an acyl-ACP reductase to generate an aldehyde. This 

fatty acid aldehyde is converted to an alkane by the action of an aldehyde deformylase 

which uses oxygen and NADPH to generate the alkane, formate, and water. The 
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overexpression of these two enzymes in E. coli allowed production of ~300 mg/L 

pentadecane, pentadecene, and heptadecene.44-45 Apart from E. coli, S. cerevisiae has also 

been used for fatty acid-derived oleochemical and biofuel production46-47 resulting in the 

accumulation of 10.4 g/L FFA in a fed-batch cultivation. The strain was also engineered 

to produce 0.8 mg/l alkanes and 1.5 g/L fatty alcohols by screening pathway enzymes, 

alcohol dehydrogenases and aldehyde reductases.46 The FAB pathway has also been used 

for synthesis of terminal alkenes in E. coli by expressing a functionally promiscuous 

P450 enzyme from Jeotgalicoccus spp. (OleT) to decarboxylate free fatty acids to 

alkenes.48 An industrial yeast strain, Candida tropicalis, was engineered for the 

production of long-chain dicarboxylic acids and ω-hydroxyfatty acids by extending the 

FAB pathway using a P450 enzyme capable of hydroxylating fatty acids at the ω-

position. For ω-hydroxyfatty acids, the β-oxidation pathway and the enzymes capable of 

oxidizing the alcohol group were eliminated and for the production of α,ω-hydroxyfatty 

acids, a fatty alcohol oxidase was used to catalyze the further oxidation of ω-

hydroxyfatty acids.49 

1.2.3 Reverse β-oxidation pathways 

While both 2-ketoacid pathway and fatty acid biosynthesis pathway have been used for 

the production of long chain compounds, both of these pathways have low theoretical 

yields and are not very efficient. Due to additional need for energy and cofactors in chain 

elongation pathways there is a need to develop pathways that are carbon and energy 

efficient to improve overall product yields.  The engineered reverse β-oxidation pathway 

shows great promise as a platform for the production of long chain alcohols, acids, ω-



1.2 Engineering artificial biosynthetic pathways  12 
 

 
 

hydroxy acids, alkenes, and alkanes at high yields. It is much more efficient than the FAB 

pathway since it does not involve any ATP consuming reaction and it uses acetyl-CoA 

for acyl-CoA elongation enabling product synthesis at very high carbon and energy 

efficiency. Furthermore, the cyclic and modular nature of this pathway allows flexibility 

to produce compounds with different structural and chemical functionalities. Engineering 

this pathway as a platform for biosynthesis of advanced fuels and chemicals requires the 

reversal of β-oxidation in the presence of a non-fatty acid substrate such as glucose. The 

reversal of β-oxidation for efficient fuel and chemical synthesis was first demonstrated in 

E. coli and has been recently extended to eukaryotic systems such as S. cerevisiae.50-51 

 The pathway involves four main steps - (i) condensation of acetyl-CoA with an 

acyl-CoA molecule catalyzed by a thiolase enzyme to yield a ketoacyl-CoA; (ii) a 

hydroxyacyl-CoA dehydrogenase (HCADHs) that reduces ketoacyl-CoA to hydroxyacyl-

CoA; (iii) an enoyl-CoA hydratase (ECHs) that dehydrates hydroxyacyl-CoA to generate 

trans-enoyl-CoA; and (iv) an acyl-CoA dehydrogenase/trans-enoyl-CoA reductase that 

reduces trans-enoyl-CoA to an acyl-CoA with 2 more carbon atoms than the initial acyl-

CoA (Figure 1.2b).52 Finally, product synthesis is obtained by the action of termination 

enzymes such as acyl-CoA thioesterases (ACTs) or aldehyde-forming acyl-CoA 

reductases (ACRs) and alcohol dehydrogenases (ADHs).53 The simplest operation of this 

pathway involves condensation of two acetyl-CoA molecules to butyryl-CoA and the 

operation of multiple cycles of this pathway using a long-chain thiolase allows the 

synthesis of longer (C>4) chain length compounds. After screening several candidate 

enzymes for each step and eliminating competing pathways, 500 mg/L 3-ketobutyric 
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acid, ~150 mg/L of 3-hydroxybutyric acid and ~200 mg/L of trans-2-butenoic acid was 

obtained.50 A bioreactor experiment using high glucose concentration and an engineered 

E. coli strain allowed the production of ~7 g/L extracellular long chain fatty acids which 

is higher than titers reported using FAB pathway.50 Since this pathway only requires 

acetyl-CoA for its initiation, it is feedstock independent and this was demonstrated by 

using glycerol as the carbon source for biosynthesis.54-55 The modular feature of this 

pathway has enabled multi-entry and multi-exit biosynthesis of various odd-chain 

compounds such as propionate, trans-2-pentenoate, valerate, and pentanol at high 

efficiencies.54  In another study, a ten step de novo pathway was developed using 

enzymes from nine different organisms to biosynthesize 4-methyl pentanol using CoA-

dependent chemistry and the highest titer observed was 192 mg/L.56 The reverse β-

oxidation pathway has also been used for the biosynthesis of alkanes by converting free 

fatty acids using a broad specificity carboxylic acid reductase and a cyanobacterial 

aldehyde dehydrogenase (AD).57 The product distribution of different alkanes are 

controlled by using upstream (thiolase) and intermediate (thioesterase) enzymes as 

control points for chain-length specificity. In a more recent study, the β-oxidation cycle 

was engineered to accept a wide variety of ω- and ω-1- functionalized primers and α-

functionalized extender units to allow biosynthesis of ω-phenylalkanoic, α,ω-

dicarboxylic, ω-hydroxy, ω-1-oxo, ω-1-methyl, 2-methyl, 2-methyl-2-enolic and 2,3-

dihydroxy acids, β-hydroxy-ω-lactones, and ω-1-methyl alcohols.53 

 The engineered β-oxidation pathway has the potential to achieve a maximum 

theoretical yield of 66.7% (C-mole basis) of n-alcohols on glucose with generation of 1 
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ATP molecule per two-carbon unit incorporated into the n-alcohol molecule. The high 

efficiency of this pathway is because it directly uses acetyl-CoA as the donor of two-

carbon units during elongation. On the other hand, fatty acid biosynthesis pathway has a 

net consumption of 1 ATP per n-alcohol molecule due to the consumption of ATP in the 

synthesis of malonyl-ACP, the donor of two-carbon unit for chain elongation. The acyl-

ACP intermediates in the fatty acid biosynthesis pathway also need to be converted to 

free acids and acylated in an ATP-consuming step before their reduction to alcohols. The 

third pathway used for alcohol synthesis is the 2-keto acid pathway which is also less 

efficient than β-oxidation pathway with a maximum theoretical yield of n-hexanol (the 

highest chain linear alcohol reported with 2-ketoacid pathway) of 50% C-mole (versus 

66.7% for β-oxidation pathway).50  

1.2.4 Isoprenoid pathways 

Isoprenoids are the largest class of natural products with >50,000 compounds used 

widely as flavors and pharmaceuticals.58-60 They also have the potential to serve as 

advanced biofuels due to the branches and rings in their hydrocarbon chains. The 

isoprenoid-based alcohol, isopentanol, is a potential gasoline alternative, C15 

isoprenoids, farnesane and bisabolane, are great substitutes for diesel, and pinene dimers 

with constrained ring structures are great for jet-fuel replacements given their high energy 

density.60  

 Isoprenoid pathway is another pathway used for carbon chain elongation, in 

which the carbon backbone increase by multiples of five through the addition of 

pyrophosphate-activated isopentenyl pyrophosphate (IPP) to dimethylallyl pyrophosphate 
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(DMAPP) (Figure 1.3). Both IPP and DMAPP are derived either from the mevalonate 

pathway (MEV) or the methylerythritol pathway (MEP). DMAPP primes the sequential 

head-to-tail condensations of IPP molecules by prenyltransferases to generate prenyl 

diphosphate precursors geranyl diphosphate (GPP, C10), farnesyl diphosphate (FPP, 

C15), and geranyl geranyl diphosphate (GGPP, C20). These precursors are then modified 

through cyclization or rearrangement catalyzed by terpene synthases to generate the final 

carbon skeletons found in isoprenoid natural products.  

 Isopentenol production was developed in E. coli through over-expression of key 

enzymes of the MEP pathway, improving precursor and NADPH supply by activating the 

pentose phosphate pathway (PPP), and the over-expression of codon-optimized genes 

nudF and yhfR from Bacillus subtilis resulting in 61.9 mg/L isopentenol from 20 g/L 

glucose.61 The MVA pathway has also been engineered for the production of isoprenoid 

based C5 alcohols producing 2.23 g/L of 3-methyl-3-buten-1-ol, 150 mg/L of 3-methyl-

2-buten-1-ol, and 300 mg/L of 3-methyl-1-butanol, in E. coli.62 Bisabolene, with 

properties similar to D2 diesel fuel, has been produced in both E. coli and S. cerevisiae at 

titers higher than 900 mg/L by screening for bisabolene synthase.63 The jet fuel 

replacement, pinene (C10H16) has been produced in E. coli at 28 g/L using GPP as an 

intermediate.64 Farnesane is the only isoprenoid-based biofuel being commercialized and 

it has been produced in S. cerevisiae by overexpressing the native yeast MVA pathway 

and the farnesene synthase from Artemisia annua.59, 65 This olefin is then chemically 

hydrogenated to produce farnesane, a high-performance advanced biofuel.60 Apart from 
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Figure 1.3 Isoprenoid pathway for the biosynthesis of advanced biofuels and pharmaceutical precursor 

molecules. MVA: Mevalonate; MEP: Methylerythritol pathway; IPP:Isopentenyl pyrophosphate; DMAPP: 

Dimethylallyl pyrophosphate; GPP: Geranyl diphosphate; FPP: Farnesyl diphosphate; GGPP: Geranyl 

geranyl diphosphate   

biofuels, the isoprenoid pathway has also been exploited for the production of two 

important drug precursors – taxadiene, the first committed intermediate to Taxol, an 

anticancer drug, and amorphadiene, precursor to artemisinin, an anti-malarial drug. 

Engineering the MVA pathway by replacing yeast HMG-CoA synthase and HMG-CoA 

reductase with genes from Staphylococcus aureus has resulted in 27 g/L amorphadiene in 

E. coli 18 and overexpressing every enzyme of the MVA pathway produced 40 g/L 

amorphadiene in S. cerevisiae.19 For taxadiene production, an E. coli strain was 

engineered using a multivariate modular approach to balance the two pathway modules – 
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upstream MEP pathway generating IPP and a heterologous downstream terpenoid-

forming pathway, allowing production of 1 g/L taxadiene.66  

1.3 Thesis overview  

This thesis details the design and engineering of an alternate nonphosphorylative 

metabolic pathway in E. coli to convert underutilized lignocellulosic sugars – D-xylose, 

L-arabinose, and D-galacturonate – into sustainable chemicals and polymers such as 1, 4-

butanediol (BDO) and γ-aminobutyric acid (GABA). Several strategies including gene 

knockouts, protein engineering, gene mining and transporter engineering have been used 

to improve production titers and yields of the target compounds. The goal of this work is 

to establish a novel metabolic platform for biosynthesis that is orthogonal to the intrinsic 

metabolism of E. coli. This nonphosphorylative pathway has fewer steps, lesser feedback 

regulation and is capable of converting pentoses and sugar acids present in biomass into 

valuable chemicals with potentially higher theoretical yields. The pathway can be used 

for the biosynthesis of a wide array of chemicals and polymers derived from the TCA 

cycle including, but not limited to, 1,4-butanediol (BDO), mesaconate, L-glutamate, γ-

aminobutyric acid (GABA), and 5-mainolevulinic acid (ALA).  

 Chapter 2 is a literature review describing the use of 2-ketoacid pathway for the 

biosynthesis of a wide array of industrially relevant compounds including aliphatic 

alcohols and acids, polar compounds such as diols, diamines, and diacids, and aromatic 

compounds such as styrene, phenolic acids, and polyphenols. Chapter 3 discusses semi-

synthetic production of three complex pharmaceuticals – simvastatin, artemisinin, and 

warfarin – and two commodity chemicals, β-methyl-δ-valerolactone and butadiene, using 
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a combination of chemical and biological approaches. Chapter 4 presents a broad review 

on the recent advances made in the production of three promising bio-based and 

biodegradable polymers – polylactic acid (PLA), polyhydroxyalkanoate (PHA), and 

polybutylene succinate (PBS).  

 Chapter 5 demonstrates the design and successful engineering of 

nonphosphorylative metabolism in E. coli and expansion of the pathway for the 

biosynthesis of 1, 4-butanediol (BDO). This chapter also describes the design of a growth 

selection platform to establish the functionality of this heterologous pathway in E.coli 

and to mine more active nonphosphorylative gene clusters from different organisms. 

Chapter 6 shows the expansion of the nonphosphorylative pathway for the biosynthesis of 

γ-aminobutyric acid (GABA), an important chemical in food and pharmaceutical 

industry, from pentoses D-xylose and L-arabinose. To improve titers of GABA several 

competing pathways were eliminated, different nonphosphorylative operons were 

screened, and pentose transporter was overexpressed to improve sugar uptake by cells. 

Finally, chapter 7 focuses on the acid hydrolysis of lignocellulosic biomass specifically 

wheat bran for direct fermentation into chemicals such as BDO or GABA. In this chapter, 

different acid hydrolysis conditions are compared for breakdown of the polymers like 

arabinoxylans into simple sugars. These sugars derived from hydrolysis of biomass 

polymers are then used directly for fermentation.  
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Chapter 2 

Novel pathways and products from 2-keto acids* 

 

 

2.1 Introduction  

Crude oil is the world’s primary energy source and also a major source for the production 

of important chemicals. However, it is a non-renewable and the usage of fossil resources 

has been causing irreparable harm to the environment. To address the environment and 

sustainability issue of petroleum, biosynthesis emerges as a promising alternative to fuels 

and chemicals. Metabolic engineering of micro-organisms has enabled the production of 

various fuels23, 43, 50, 67-68 and chemicals69-72  from renewable resources. However, one of 

the major challenges of biosynthesis is that majority of the useful industrial chemicals are 

* Adapted with permission from Jambunathan, P., & Zhang, K. (2014). Novel pathways and products 

from 2-keto acids. Current opinion in biotechnology, 29, 1-7.                                                         
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not metabolic intermediates in a production organism such as E. coli. This necessitates 

the introduction of biosynthetic production pathway that is compatible with the host 

organism in order to achieve high yields and rates of target compounds.  

Amino acid biosynthetic pathway is one such universal pathway. L- Amino acids 

are one of the most important industrial products derived from fermentation of 

microorganisms and their annual market volume is over 5 million tons.73 In particular, 

fermentation of L-glutamate, L-lysine and L-threonine has been engineered to reach titers 

over 100g/L and yields close to theoretical maximum.73 With successes in natural amino 

acid production74-75, it opens the possibility to expand amino acid pathways for 

production of higher-chain alcohols, carboxylic acids, pharmaceuticals and other 

chemicals.   

The key intermediates of the amino acid biosynthetic pathways are 2-ketoacids 

that can be converted to a wide range of chemically diverse compounds. 2-keto acids are 

organic compounds that have a ketone group adjacent to the carboxylic acid group. This 

review will focus on the various biochemical reactions of 2-ketoacids – (i) 

decarboxylation, (ii) reduction, (iii) chain elongation, and (iv) transamination – and the 

wide range of products obtained from this diverse chemistry. The compounds have been 

divided into three classes – aliphatic, polar and aromatic – depending on the amino acid 

pathway from which they are derived. 
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2.2 Aliphatic compounds  

Aliphatic amino acids such as isoleucine, leucine and valine contain hydrophobic side 

chains. If their corresponding ketoacids undergo decarboxylation, they can be converted 

to aldehydes that can further be either reduced to alcohols or oxidized to acids. These 

reactions are utilized in the last two steps of the natural Erhlich pathway for fusel alcohol 

production.76 The decarboxylation chemistry of aliphatic 2-keto acid intermediates has 

been expanded to synthesize higher chain alcohols and industrially important carboxylic 

acids (Figure 2.1). 

Higher alcohols are considered better gasoline substitutes, but they are not 

produced in significant quantities by natural microorganisms. A synthetic approach was 

developed to produce these alcohols using the 2-ketoacid intermediates of branched-chain 

amino acid biosynthetic pathways.23 C4 alcohol isobutanol pathway was successfully 

designed by engineering the valine pathway. First, the natural Erhlich pathway 2-ketoacid 

decarboxylase (KDC), KIVD from L. lactis77, was introduced into E. coli to convert 2-

ketoisovalerate to isobutyraldehyde. Then an alcohol dehydrogenase (ADH), ADH2 from 

S. cerevisiae, was introduced to convert isobutyraldehyde to isobutanol. The fermentation 

titer of isobutanol reached 22 g/L in shake flask experiments.23 In a scale-up study, 

isobutanol titer was raised to 50 g/L in a bioreactor.78 The isobutanol pathway has also 

been successfully implemented in other organisms such as cyanobacteria79 and yeast.80 

Besides isobutanol, longer chain C5-C8 alcohol pathways are designed by 

employing protein engineering and pathway engineering strategies. C5 alcohols such as 

2-methyl-1-butanol and 3-methyl-1-butanol have naturally existing 2-keto acid  
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Figure 2.1 2-Ketoacid pathways for the production of aliphatic alcohols and carboxylic acids. KDC: 2-

ketoacid decarboxylase; ADH: alcohol dehydrogenase; AldH: aldehyde dehydrogenase. 

precursors, 2-keto-3-methylvalerate (isoleucine pathway) and 2-ketoisocaproate (leucine 

pathway) respectively, and have been produced by over-expressing KIVD and ADH2 in 

E. coli.81-83 Higher-chain alcohols with more than 5 carbon atoms do not have naturally 

occurring 2-ketoacid intermediates since the amino acid biosynthetic pathway is limited 

by carbon length. To overcome this problem, the leuABCD gene products were used to 

extend the carbon chain of existing keto-acid intermediates.84-85 To synthesize 2-ketoacid 

precursors for higher alcohols (C5-C8), protein engineering strategies were used to 

enlarge the binding pocket of LeuA by directed mutagenesis and consequently expand its 

substrate range. These precursors were then converted to respective alcohols by the 

action of two heterologous enzymes - a 2-ketoacid decarboxylase KIVD (from L. lactis) 

followed by an alcohol dehydrogenase ADH6 (from S. cerevisiae) to synthesize a variety 
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of alcohols, including 3-methyl-1-pentanol, 4-methyl-1-pentanol, 4-methyl-1-hexanol 

and 5-methyl-1-hexanol.84                                                                                                         

Aliphatic carboxylic acids have broad industrial applications. Isobutyric acid, a 

C4 acid, was metabolically produced via the 2-keto acid pathway from 2-ketoisovalerate. 

Similar to isobutanol production, 2-ketoisovalerate was first decarboxylated into 

isobutyraldehyde by the ketoacid decarboxylase KIVD from L. lactis.77 To oxidize 

isobutyraldehyde, seven aldehyde dehydrogenases from different organisms were chosen 

and screened for their activities. Phenylacetaldehyde dehydrogenase (PadA86) from E. 

coli  produced a high titer of isobutyrate at 4.8 g/L.30 By eliminating the competing 

reduction reaction from the alcohol dehydrogenase, YqhD in E. coli, isobutyrate titer in 

shake flask fermentation was increased to 12 g/L from 40 g/L glucose. Based on the 

successful production of isobutyrate via keto acid pathway, various C5-C6 acids were 

synthesized using similar metabolic engineering approaches. C5 acids such as valeric 

acid and 2-methylbutyric acid have been produced from a common 2-ketoacid 

intermediate, 2-ketobutyrate.87 For increasing the specificity of KIVD towards larger 

substrates such as 2-ketomethylvalerate, mutations were performed to replace bulky 

residues with small hydrophobic residues in key locations.84 Another C5 acid, isovalerate 

was produced in E. coli from the 2-ketoacid intermediate, 2-ketoisocaproate, which was 

obtained from 2-ketoisovalerate by the action of leuABCD gene products through the 

carbon chain elongation process.88 Isocaproate, a C6 acid, was also produced via the 2-

ketoacid pathway from 2-ketohomoleucine that is derived from 2-ketoisocaproate by the 

2-ketoacid elongation process using a mutant LeuA enzyme.88  
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2.3 Polar bifunctional compounds  

Amino acids such as lysine and glutamate contain polar groups (amino and carboxyl) and 

the conversion of the 2-ketoacid precursors of these amino acids can generate chemicals 

with bifunctional groups such as diamines, dicarboxylic acids and diols (Figure 2.2). 

These compounds can be used as building blocks for synthesis of important polymers 

such as Nylon 5 or as monomers for biodegradable polyesters.89-91 They are high-volume 

industrial chemicals: for example, both 1,4-Butanediol and adipic acid have an annual 

market of over 5 billion pounds.92 

Dicarboxylic acids such as glutaconate and adipate have been produced from 2-

ketoglutarate, the 2-ketoacid precursor of the glutamate. The pathway to glutaconate 

utilized the reduction chemistry of 2-ketoacids.91 First, 2-ketoglutarate was reduced to 2-

hydroxyglutarate in a NADH-dependent reaction catalyzed by a dehydrogenase enzyme 

(HgdH). Then this hydroxy-acid underwent a series of biochemical reactions, including 

activation by CoA, dehydration and isomerization catalyzed by GctAB and HgdCAB. 

The designed synthetic pathway enabled the production of 350 mg/L glutaconate in E. 

coli. Adipate, on the other hand, was produced using the ketoacid elongation enzymes 

AksADEF involved in coenzyme B synthesis. These “+1” chain elongation reactions are 

similar to the LeuABCD catalyzed elongation used for production of long chain alcohols 

and acids.85, 93 2-Ketoglutarate was elongated by 2 units to produce 2-oxopimelate (C7) 

which could be decarboxylated and further oxidized to adipate.94  

Apart from dicarboxylic acids, diols including 1,4-butanediol has been produced 

in E. coli from 2-ketoglutarate.92 In this work, 2-ketoglutarate was first decarboxylated to  
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Figure 2.2 2-Ketoacid pathway for the production of polar bifunctional compounds – 1,4-butanediol, 

adipic acid and glutaconic acid. I: Butanediol pathway; II: Adipate pathway; III: Glutaconate pathway. 

SucA: a-ketoglutarate decarboxylase; 4HBd: 4-hydroxybutyrate dehydrogenase; Cat2: 4-hydroxybutyryl- 

CoA transferase; AdhE: Alcohol dehydrogenase; AksA: homocitrate synthase; AksD: Homoaconitase a 

subunit; AksE: homoaconitase b subunit; AksF: threo-isohomocitrate dehydrogenase; KDC: ketoacid 

decarboxylase; AldH: aldehyde dehydrogenase; HgdH: 2-hydroxyglutarate dehydrogenase; GctAB: 

glutaconate CoA transferase; HgdCAB: 2-hydroxyglutaryl-CoA dehydratase. 

succinyl semialdehyde by a decarboxylase (SucA). Then 4-hydroxybutyate was produced 

by reduction of succinyl semialdehyde enabled by 4-HBd from P. gingivalis. 4-

Hydroxybutyate was activated to 4-hydroxybutyryl-CoA by a CoA transferase (Cat2) 

from P. gingivalis. Finally, 4-hydroxybutyryl-CoA was converted to 1,4-butanediol after 
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two reduction steps catalyzed by C. acetobutylicum AdhE dehydrogenase. Further 

metabolic engineering on this designed pathway enabled the production of 18 g/L of 1,4-

butanediol from carbohydrate feedstocks.92  

2.4 Aromatic compounds  

Amino acids such as tyrosine, tryptophan and phenylalanine have aromatic side chains 

and these can form the backbone of several pharmaceuticals, dyes, flavor compounds, 

organic solvents and polymers that are currently derived from petroleum-based sources. 

The two aromatic 2-ketoacids, phenylpyruvate (PP) and 4-hydroxyphenylpyruvate (HPP) 

are converted to amino acids, phenylalanine and tyrosine, respectively by the action of an 

endogenous transaminase TyrB (Figure 2.3). Recently, the transamination chemistry of 

2-ketoacids has been used to develop novel pathways for the production of polymer 

building blocks95, flavonoids96-98, coumarins99-100, stilbenes101-103, pharmaceuticals104-107 

and aromatic polyketides.108  

An ammonia lyase enzyme (PAL/TAL) could catalyze the conversion of aromatic 

amino acids to respective phenylpropanoic acids including cinnamic acid and p-coumaric 

acid.109 These acids are key intermediates of the phenylpropanoid pathway and are used 

in the synthesis of various aromatic compounds.  For example, Niessen et al. developed a 

pathway to produce styrene from glucose.95 Phenylalanine was converted to cinnamic 

acid by action of ammonia lyase which was further decarboxylated to styrene. Over-

expression of PAL2 from A. thaliana and ferulate decarboxylase (FDC1) from S. 

cerevisiae in an L-phenylalanine overproducing strain led to the production of 0.26 g/L of 

styrene.95 The hydroxylation and methylation chemistry of phenylpropanoic acids have  
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Figure 2.3 2-Ketoacid biosynthetic pathway for aromatic products. TyrB: tyrosine aminotransferase; PAL: 

phenylalanine ammonia lyase; TAL: tyrosine ammonia lyase; FDC: ferulate decarboxylase; C3H: p-

Coumarate-3-hydroxylase; COM: caffeate O-methyl transferase; 4CL: 4-coumarate ligase; CHS: chalcone 

synthase; CHI: chalcone isomerase; STS: stilbene synthase; C20H: p-coumaroyl-CoA o-hydroxylase; 

F60H: feruloyl-CoA o-hydroxylase. 

been used to produce caffeic acid and ferulic acid respectively.97, 106 Endogenous 4-

hydroxyphenylacetate 3-hydroxylases (4HPA3Hs) and TAL from R. capsulatus were co-

expressed in E. coli to produce 12 mg/L of caffeic acid from simple sugars.106 Hong et al. 

over-expressed Sam5 from S. espanaensis that is a bacteria-compatible p-coumarate 3-

hydroxylase (C3H) enzyme to produce 150 mg/L of caffeic acid from glucose.109 In the 
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same paper, ferulic acid was produced via the 3-O-methylation of caffeic acid catalyzed 

by O-methyltransferase (OMT). Co-expression of Sam5 from S. espanaensis and OMT 

from Arabidopsis thaliana resulted in 196 mg/L of ferulic acid.109   

The phenylpropanoic acids can also be acylated by acetyl CoA to produce 

phenylpropanoyl-CoA esters. The hydroxylation of these CoA esters followed by 

spontaneous lactonization has resulted in the de novo biosynthesis of simple coumarins 

including umbelliferone and scopoletin in E. coli.99-100 These CoA esters can also be used 

to produce flavonoids (naringenin, pinocembrin, eriodictyol) and stilbenes (reseveratrol, 

piceatannol) by condensation with malonyl CoA molecules in a Claisen cyclization 

reaction catalyzed by a polyketide synthase97-98, 101-103, 110-111. The details of these 

compounds have been reviewed by Yan et al..112   

2.5 Conclusion  

Recent advances in metabolic engineering have resulted in the development of natural 

amino acid over-producing strains. 2-keto acid are the key intermediates of the amino 

acid biosynthetic pathway and the chemically diverse nature of 2-ketoacid compounds 

has been exploited to produce fuels, chemicals and pharmaceuticals in metabolically 

engineered organisms. One of the biggest challenges in using the 2-ketoacid pathway is 

to search for enzymes with high activities towards the designed metabolic routes. To 

address this challenge, both bioprospecting on naturally existing enzymes in different 

organisms or protein engineering have been performed to discover biocatalysts with the 

desired activity. So far, some 2-ketoacid derivatives are still at low production titers and 

there is a need to make these 2-ketoacid processes industrially feasible. Several metabolic 
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engineering strategies including elimination of competing pathways30, re-directing carbon 

and energy flux through desired pathway83, use of feedback resistant enzymes84, 

increasing precursor pool23, and coupling complementary driving forces between two 

pathways113 are suitable to increase the titers and production rates of various 2-ketoacid 

derived compounds.  
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Chapter 3 

Combining biological and chemical approaches 

for green synthesis of chemicals* 

 

 

3.1 Introduction 

Over the past several years, there have been numerous reports of semi-synthesis of 

important pharmaceuticals and other commodity chemicals that combines biological and 

chemical pathways to achieve the final products.114-118 In most of these cases, biological 

fermentation allows the production of an important precursor/intermediate using 

renewable biomass-derived sugars, following which the precursor is transformed using 

single or multi-step chemical reactions to yield the final compound. This hybrid process 

* Adapted with permission from Jambunathan, P., & Zhang, K. (2015). Combining biological and 

chemical approaches for green synthesis of chemicals. Current Opinion in Chemical Engineering, 10, 

35-41. 
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can convert bio-derived precursors into useful commodity chemicals, thus establishing a 

more sustainable and greener route for the production of these high-volume compounds. 

This approach is also useful for the synthesis of chiral drug precursors since biological 

enzymes offer much better stereoselectivity as compared to chemical catalysts at milder 

reaction conditions.119  

In this review, we have divided target compounds into two categories: 

pharmaceuticals and commodity chemicals. In the first section, we discuss the most 

recent advancements in the semi-synthesis of three widely prescribed drugs – simvastatin, 

artemisinin and warfarin. In the second section, we focus on chembiosynthesis of 

commodity chemicals including monomers for industrially relevant polymers such as β-

methyl-δ-valerolactone and butadiene. For few of the compounds discussed in this 

review, a direct total biosynthetic120 or chemical synthetic121-122 pathway has been 

established, but the titers obtained are very low for industrial relevance, making semi-

synthesis an attractive option at this stage. 

3.2 Synthesis of Pharmaceuticals 

In the past, there have been several successful stories in the pharmaceutical industry 

where biological route has been used to synthesize an optically pure precursor which is 

subsequently subjected to chemical reactions to yield the target drug. Examples include 

the biosynthesis of the taxol precursor, taxadiene114, and Tamiflu precursor, shikimic 

acid123, in engineered E. coli. This semi-synthetic approach reduces dependence on 

isolation of relevant metabolites from natural resources and also significantly improves 

process economics and sustainability of drug production. In case of drugs such as 
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Lipitor124 and Sitagliptin125-126, while pure chemical synthetic routes exist, biosynthesis 

has been used to replace some of the chemical reactions with the objective of reducing 

waste and eliminating use of hazardous catalysts. Over the past few years there have been 

significant advancements in the synthesis of other drugs, some of which are covered in 

detail in this section. We have reviewed the recent progress made in the field for semi-

synthesis of three widely used drugs – (i) simvastatin, a cholesterol-lowering drug, (ii) 

artemisinin, an antimalarial drug, and (iii) warfarin, an anticoagulant used for prevention 

of thrombosis.  

3.2.1 Simvastatin 

As a derivative of lovastatin, simvastatin has a 2, 2-dimethylbutyroloxy side chain at C8 

position as against a 2-methylbutyroloxy side chain in its natural counterpart. 

Traditionally, the semi-synthetic process for producing simvastatin involves isolation of 

lovastatin from A. terreus fermentation, hydrolysis to yield monacolin J, protection of 

free alcohol to allow subsequent regioselective esterification of C8 alcohol with 

dimethylbutyryl chloride.127-129 In an effort to improve the overall efficiency of the 

process, Xie et al. demonstrated the ability to use the acyl transferase homolog, LovD, 

which catalyzes the last step of lovastatin biosynthesis, to selectively acylate monacolin J 

for the single-step synthesis of simvastatin using chemically synthesized α-

dimethylbutyryl-S-methyl mercaptopropionate (DMB-S-MMP) as the acyl donor130-131 as 

shown in Figure 3.1. This one-step process significantly reduces the number of chemical 

transformations needed, improves process efficiency and also reduced the cost of 

manufacturing of simvastatin. In a more recent report, a variant of LovD with 29  
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Figure 3.1 Conversion of lovastatin to simvastatin using LovD. Biologically produced lovastatin is first 

hydrolyzed in a reaction catalyzed by LovD, followed by an acylation reaction catalyzed by LovD mutant 

(LovD9 obtained after nine rounds of evolution). Chemically synthesized α-dimethylbutyryl-S-

methylmercaptopropionate (DMB-SMMP) acts as an acyl donor for the reaction.  

mutations was identified by directed evolution, which is 1000-fold more efficient in 

synthesizing simvastatin than the wild type enzyme. The authors used microsecond 

molecular dynamics (MD) in solution to explain how distant mutations could improve 

catalytic efficiency of the active site by lowering the free energy of catalytic 

conformation of active site.115  

3.2.2 Artemisinin 

Artemisinin is a potent antimalarial drug which is naturally produced by the plant 

Artemisia annua and has a long history of use in Chinese medicine. Due to tremendous 

fluctuations in the price and supply of this drug as a consequence of inconsistent 

weather132-133, the semi-synthetic artemisinin project was started which involved 
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microbial production of artemisinic acid, a chemical precursor of artemisinin, followed 

by a chemical transformation step to produce artemisinin. After studying the artemisinin 

pathway in A. annua134, E. coli was originally chosen as the chassis organism to produce 

artemisinic acid135, but due to the problem of expression of eukaryotic enzymes in E. coli 

136, the pathway was transferred into a S. cerevisiae CEN.PK2 strain137.  Over-expression 

of mevalonate pathway genes along with expression of the P450 enzyme (CYP71AV1) 

and its cognate reductase (CPR1) allowed the production of 40 g/L of amorphadiene, but 

artemisinic acid production was still very low.138-139 Expression of cytochrome b5140 and 

the aldehyde and alcohol dehydrogenase (ADH1 and ALDH1)141 from A. annua 

improved P450 activity and increased artemisinic acid titer to 25 g/L as shown in Figure 

3.2, which was the starting goal of the semi-synthetic artemisinin project.142 Artemisinic 

acid was extracted from the fermentation medium with isopropyl myristate (IPM) at high 

purities and was subsequently used as a substrate for chemical transformation to 

artemisinin.142  

The chemical process for converting artemisinic acid to artemisinin involves the 

following steps: 1) hydrogenation of artemisinic acid (AA) to dihydroartemisinic acid 

(DHAA); 2) esterification of DHAA to avoid formation of by-products; and 3) generation 

of a singlet oxygen by chemical or photochemical means to convert DHAA methyl ester 

to artemisinin.142 For stereoselective conversion of AA to DHAA, several catalysts have 

been screened142-143 to achieve high diastereoselectivities, and recently, work performed 

by researchers at Sanofi provided RuCl2 [(R)-DTBM-Segphos] (DMF)n catalyst which 

yielded 95:5 selectivity.144-145 The conversion of DHAA ester to artemisinin involves  
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Figure 3.2 Semi-synthetic pathway for production of artemisinin. Biological route in S. cerevisiae for 

synthesis of the precursor, artemisinic acid using the mevalonate pathway. Chemical conversion of 

artemisinic acid to artemisinin developed by Sanofi which includes diastereoselective hydrogenation of 

artemisinic acid to dihydroartemisinic acid, followed by its esterification to mixed anhydrides and finally a 

Schenck ene reaction and Hock cleavage cyclization to produce artemisinin.  

regioselective Schenck ene reaction between a singlet oxygen (either derived by chemical 

reaction or photochemically) and the double bond of DHAA, followed by a Hock 

cleavage catalyzed by a strong Lewis acid and a subsequent addition of triplet oxygen 

and cyclization.146 Sanofi designed a one-pot synthesis route to convert a DHAA 

derivative (mixed anhydride) to artemisinin and they obtained an overall yield of 55% of 

artemisinin starting with artemisinic acid. This semi-synthetic route has capacity to 

produce 60 tons of artemisinin annually, which corresponds to a third of the global 

annual need for the drug.146   

3.2.3 Warfarin  

Warfarin is one of the most commonly prescribed 4-hydroxycoumarin (4HC) type 

anticoagulant used in the prevention of thrombosis or thromboembolism, which is one of 

the leading causes of morbidity and mortality worldwide. Recently, a de novo  
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Figure 3.3 Chemoenzymatic pathway for warfarin production. 4-hydroxycoumarin (4HC) is first 

biologically produced in E. coli from chorismate, derived via the shikimic acid pathway. 4HC is then 

converted to warfarin by a Michael addition reaction with benzylideneacetone. 

biosynthetic pathway was designed in E. coli for the production of 4HC147 as shown in 

Figure 3.3 by employing a biphenyl synthases (BIS) to catalyze the decarboxylative 

condensation of salicoyl-CoA with malonyl-CoA to form a diketide intermediate which 

undergoes intracellular cyclization and enolization to form 4HC.148 The pathway used 

EntC from E. coli and PfPchB from P. fluorescence as isochorismate synthase (ICS) and 

isochorismate pyruvate lyase (IPL) respectively, to convert chorismate to salicylate and a 

salicylate: CoA ligase (SCL) SdgA from Streptomyces sp. to convert salicylate to 

salicoyl-CoA, the substrate for BIS enzyme.147 After identifying BIS catalyzed step as the 

bottleneck of the pathway, they identified 4-hydroxy-2 (1H)-quinolone synthase (PqsD) 

by function-based bioprospecting and this enzyme allowed > 99% yield for 4HC 
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synthesis and with further engineering they achieved ~483 mg/L 4HC, a ~11 fold 

increase compared to their parent strain.147   

The synthesis of warfarin proceeds via Michael addition reaction of 4HC and 

benzylideneacetone149 and while most of the studies involve the use of harmful organic 

solvents , Rogozinska et al. carried out the reaction on water using commercially 

available amines ((S,S)-diphenylethylenediamine) and achieved 70% ee with reasonable 

yield (~30%).150 When ultrasound bath was applied to the reaction yields were 

significantly improved and this method was later used by Lin et al. to demonstrate in situ 

semi-synthesis of warfarin using biologically derived 4HC.147 In more recent reports, a 

novel chiral porous metal organic framework (MOF)151 and a novel polystyrene bound 

1,5,7- triazabicyclo[4.4.0]dec-5-ene (TBD)152 , was used for Michael addition of 4HC to 

α,β-unsaturated ketones to synthesize (S)-warfarin and its analogues.  

3.3 Synthesis of commodity polymers 

Apart from pharmaceuticals, semi-synthesis has also been used successfully for the 

industrial production of high-volume commodity chemicals such as polyethylene, acrylic 

acid and butanediene, by adopting a biological route for synthesis of their precursors – 

ethanol117, 3-hydroxypropionic acid153 and 1,4-butanediol154-155 respectively from 

biomass-derived sugar. This approach addresses the growing concern associated with use 

of fossil-based feedstocks and helps to establish a sustainable and more environment-

friendly route for the production of these compounds. In this section we will discuss the 

recent work done in establishing a semi-synthetic pathway for two monomers - β-methyl-
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δ-valerolactone (βMδVL) and butadiene – both of which can be polymerized to produce 

bio-based high-performance polymers.  

3.3.1 β-methyl-δ-valerolactone (βMδVL) 

Polymer industry is the third largest manufacturing industry in US with an annual market 

of nearly $400 billion. The stiff nature of current biodegradable polyesters such as 

polylactic acid (PLA) and polyhydroxybutyrate (PHB) have limited their applications in 

the polymer industry.  It is envisioned that this challenge can be addressed by developing 

ABA type triblock polymers with a rigid, glassy end block A (such as PLA) and a soft, 

rubbery block B in center with low glass transition temperature. However, there is no 

biobased soft block available, and to this end, Xiong et al. recently developed a 

biosynthetic route to produce β-methyl-δ-valerolactone followed by block 

copolymerization of βMδVL with lactide (LA) to yield P(L)LA-PβMδVL-P(L)LA with 

mechanically tunable properties120 (Figure 3.4). They designed a semi-synthetic 

approach to βMδVL, which included a biological pathway to synthesize the key 

intermediate, mevalonate, followed by its chemical conversion to βMδVL. The authors 

employed the endogenous enzyme AtoB of E. coli to produce acetoacetyl-CoA and the 

HMG-CoA synthase (MvaS) and HMG-CoA reductase (MvaE) from Lactobacillus casei 

to produce 88 g/L mevalonate from acetyl-CoA with a productivity of 2 g/L/h in a 1.3 L 

fermentor.120 Mevalonate was dehydrated to anhydromevalonolactone using sulfuric acid 

and the unsaturated lactone was hydrogenated to βMδVL using Pd/C as catalyst. The 

polymerization of βMδVL was carried out in bulk monomer at room temperature using 

triazabicyclodecene (TBD) as organocatalyst and subsequently chain extension with  
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Figure 3.4 Semi-synthetic pathway for production of branched lactone, β-methyl-δ-valerolactone 

(βMδVL), and its copolymerization with lactide. Mevalonate was first produced in E. coli, followed by 

sulfuric acid catalyzed dehydration and hydrogenation to βMδVL. βMδVL and lactide were then 

copolymerized using ring-opening transesterification polymerization (ROTEP) to produce a triblock 

polymer P(L)LA-P(βMδVL)-P(L)LA with mechanically tunable properties. 

lactide yielded triblock P(L)LA-P(βMδVL)-P(L)LA whose mechanical and thermal 

properties could be tuned by controlling molar mass, architecture and end block 

tacticity.120  

3.3.2 Butadiene  

1, 3-butadiene is used as feedstock for synthetic rubbers and for Nylon production, 

making it one of the most important conjugated dienes in the petrochemical industry.118 

Due to the recent shale gas revolution, there has been lightening of the feedstock156 and 

this has resulted in an increased interest in exploring catalytic conversion of bio-derived 

ethanol and C4 alcohols and diols to butadiene. Recently there have been several studies 
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investigating the use of different metal catalysts to carry out the conversion of ethanol to 

BD157-158 and in 2013, Axens, IFPEN and Michelin launched a joint research program to 

develop an economically competitive process for bio-synthetic rubber from bioethanol.118 

Apart from ethanol, bio-derived C4 alcohols could also be used for sustainable BD 

production. The biological production of n-butanol is via ABE fermentation (acetone-

butanol-ethanol) of biomass-derived sugars in Clostridia species159-160, and subsequent 

dehydration using acid-catalyzed gas phase reaction produces 1-butene which can further 

be dehydrogenated to yield BD.161-162 Due to prior commercialization of ABE 

fermentation159 and dehydrogenation of butenes163, this route shows great potential for 

production of bio-based BD. Butanediols (1, 4-BDO, 2, 3-BDO and 1, 3-BDO) could also 

be used as substrate to produce BD through double dehydration reactions. Recently, 

Genomatica developed a bio-based route for the synthesis of 1, 4-BDO from biomass-

derived sugars154 and this process has been tested to produce 5 million pounds of BDO in 

2012. Additonally, 2, 3-BDO production has also been reported in Clostridia species 

from CO-containing industrial waste gas or syngas via Wood-Ljungdahl pathway164-165 

and this has been commercialized by LanzaTech and INVISTA. The final BDO isomer, 

1, 3-BDO is an intermediate of the old BD synthesis pathway based on acetaldehyde. 

Although there are several groups focusing on fermentative production of this diol from 

biomass sugars, none of the pathways have been commercialized or licensed for 

industrial production. All three BDOs undergo double dehydration reactions to produce 

BD, but they have different by-products owing to different dehydration mechanisms.118  
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3.4 Conclusion 

Merging chemical and biological methods has improved overall efficiency and allowed 

production of much higher yields of certain compounds by reducing the total number of 

steps involved in synthesis.115 In some cases, it has also made some processes more 

environment friendly by reducing waste and use of hazardous chemicals.147 Furthermore, 

when biosynthesis is used for the production of a chiral precursor from biomass-derived 

sugar, it allows high enantioselectivities and regioselectivities, important in case of drugs, 

and also eliminates dependence on fossil-based feedstocks. In this review, we have 

covered the recent developments in the semi-synthesis of three widely prescribed 

pharmaceutical drugs – simvastatin, artemisinin and warfarin- and two commodity 

chemicals - βMδVL, which shows great potential in production of high-performance 

ABA-type bio-based polyesters and butadiene with wide applications in synthetic rubber 

industry. 
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Chapter 4 

Engineered biosynthesis of biodegradable 

polymers* 

 

 

4.1 Introduction  

The worldwide annual production of plastics was 311 million tonnes in 2014 which is 

expected to triple by 2050, when it would account for 20% of global annual oil 

consumption.166 The production of these conventional petrochemical plastics involves 

consumption of large amounts of fossil fuel resources and releases hundreds of millions 

of tons of CO2 into the atmosphere. Due to the non-renewability and non-

biodegradability of petrochemical feedstocks and the environmental concerns of plastic  

* Adapted with permission from Jambunathan, P., & Zhang, K. (2016). Engineered biosynthesis of 

biodegradable polymers. Journal of industrial microbiology & biotechnology, 1-22. 



4.1 Introduction  43 
 

 
 

Table 4.1 Summary of different microorganisms and fermentation modes used for production of different 

sustainable monomers 

Product Substrate Microorganism Fermentation 

mode 

Lactic 

acid 

yield/titer

/producti

vity 

Reference 

L-lactic 

acid 

Glucose C. glutamicum Cell-recycle 

continuous 

reactor 

43 g/L/h 167 

Xylose B. coagulans  Fed-batch  216 g/L 

4 g/L/h 

168 

Cellobiose S. cerevisiae  Batch 2.8 g/L/h 169 

Liquid 

stillage from 

ethanol plant 

L. rhamnosus Cell 

immobilizatio

n  

42 g/L 

1.69 g/L/h 

170 

Glucose L. rhamnosus Membrane 

cell-recycle 

bioreactors 

92 g/L 

57 g/L/h 

171 

Wheat straw 

hydrolysates 

B. coagulans Membrane 

integrated 

repeated batch 

2.4 g/L/h 172 

Wood 

hydrolysate 

E. facecalis Batch 24 - 93 

g/L 

1.7 – 3.2 

g/L/h 

173 

Cassava 

starch 

hydrolysate 

L. casei Solid state 

fermentation  

0.97 g/g 

of 

reducing 

sugar 

174 

Cellulose L. bulgaricus Simultaneous 

saccharificatio

n and 

fermentation  

0.45 g/L/h 175 

Glucose R. oryzae Cell 

immobilizatio

n 

93.2 g/L 176 

PHB Glucose R. eutropha Fed-batch 121 g/L 

2.42 g/L/h 

177 
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Glucose E. coli Fed-batch 80 g/L 

2 g/L/h 

178 

Saccharified 

potato starch 

R. eutropha Fed-batch  1.47 g/L/h 179 

Beet 

molasses 

A. vinelandii Two-stage 

fed-batch 

36 g/L 

1 g/L/h 

180 

Waste 

glycerol 

C. necator Fed-batch 1.1 g/L/h 181 

Succinic 

acid  

 

Glucose A. 

succiniciproduce

ns  

Continuous  83 g/L 

10.4 g/L/h  

182 

Glucose S. cerevisiae  Batch 12.97 g/L 183 

Cane 

molasses 

A. succinogenes Fed-batch  55.2 g/L 

1.15 g/L/h 

 

184 

Corn straw 

hydrolysates 

A. succinogenes Fed-batch 53.2 g/L 

121 g/L/h 

185 

Sugarcane 

bagasse 

hydrolysates 

E. coli Repetitive 

fermentations  

83 g/L  186 

Wheat flour A. 

succiniciproduce

ns 

Batch 16 g/L 187 

pollution, bioplastics are fast emerging as a promising alternative. Bioplastics include 

bio-based plastics (derived from biological resources) and biodegradable plastics (derived 

from fossil resources but degradable by microorganisms in nature). The global production 

of bioplastics is expected to grow at an annual rate of 30% in the coming decade, and 

expected to reach 3.45 million metric tonnes in 2020.188 Some of the important biobased 

polymers include polyhydroxyalkanoates (PHA), polylactic acid (PLA), polybutylene 

succinate (PBS), polyethylene (PE), and polytrimethylene terephthalate (PTT), all of 

which contain at least one monomer synthesized via bacterial fermentation.  
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This review focuses on the recent advances in biotechnological production of 

three major biodegradable polymers – polylactic acid (PLA), polyhydroxyalkanoate 

(PHA) and polybutylene succinate (PBS). While PHA is produced completely by a 

biosynthetic process in microbes, industrial production of PLA and PBS involves 

microbial production of its monomer precursors, lactic acid and succinic acid and 

butanediol, respectively, followed by chemical transformation and polymerization. In 

addition to the biosynthetic pathways involved in the production of these compounds, the 

article covers the different lignocellulosic substrates used to lower raw material cost, 

various fermentation technologies and downstream recovery operations used to obtain 

pure monomer precursors and polymers. A summary of different microorganisms, 

fermentation modes and product titers for different monomers is given in Table 1.  

4.2 Polylactic acid (PLA)  

Polylactic acid (PLA) is a thermoplastic polyester derived from renewable resources such 

as corn starch, sugarcane, wheat and tapioca roots. The global PLA market is projected to 

reach $5.2 billion by 2020 and it is one of the largest bioplastics in terms of consumption 

volume.189 Currently, Nature Works LLC is the leader in PLA technology and market 

with an annual capacity of 150,000 tons in 2013, holding a market share of 45.2%. The 

company has developed two lactic acid based products – a) polydilactide-based resins 

(Nature-Works PLA®), used for packaging and b) Ingeo™ polydilactide-based fibers that 

are used in textile applications. Growing environmental concerns and limited fossil fuel 

resources are the major factors that drive the utilization of PLA by both consumers as 

well as manufacturers. Conventionally, PLA is synthesized using a two-step process 
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which includes fermentative production of lactic acid followed by a chemical process to 

polymerize the lactic acid monomer. Industrially, companies such as Natureworks, use 

ring opening polymerization of the lactide intermediate to synthesize PLA biopolymer.175, 

190  

4.2.1 Fermentative production by lactic acid bacteria (LAB) 

An optically pure L- or D- lactic acid is preferred over a racemic DL-lactic acid to 

synthesize highly crystalline PLA that can be used commercially.12 Since chemical 

synthesis of lactic acid from petrochemical sources always produces the racemic mixture, 

industrial production of lactic acid is predominantly carried out by microbial 

fermentation process. 

LAB are one of the possible hosts for commercial lactic acid production since 

they produce lactic acid as the main fermentation product thus yielding maximum 

productivity. LAB are anaerobic and have two major pathways for assimilation of 

glucose and xylose – Embden-Meyerhof-Parnas (EMP) pathway and the pentose 

phosphoketolase (PK) pathway. Based on the nature of fermentation and the assimilation 

pathway used, LAB can be homofermentative or heterofermentative. Homofermentative 

bacteria produce lactic acid as the only fermentation product via EMP pathway whereas 

heterofermentative bacteria use PK pathway to produce a mixture of products including 

lactic acid, ethanol, diacetyl formate, acetic acid and carbon dioxide.191  

Although a high lactic acid concentration is desired, most organisms cannot grow 

and produce lactic acid at a pH below 4 due to their low acid tolerance.192 Several studies 



4.2 Polylactic acid (PLA)  47 
 

 
 

have focused on engineering the acid tolerance of LAB and other microorganisms to 

prevent product inhibition. One of the successful approaches is genome shuffling in 

which classical methods such as chemostat adaptation, UV radiation and 

nitrosoguanidine (NTG) mutations are used to generate improved populations and 

genome shuffling of these generates a new strain with improved acid tolerance.  Stemmer 

et al. used this approach to generate a genome shuffled Lactobacillus strain that grew 

faster and produced two times more lactic acid than the wild type, lowering the pH of 

broth to 3.5.193 At such low pH, most of the product exists as free acid (pKa of lactic acid 

3.78) and it can be purified by direct extraction of the fermentation broth, thus avoiding a 

wasteful and expensive purification. Although this is very promising, realistic sugar 

concentrations were not used in this study. Similar methods were also used to improve 

the glucose tolerance of Lactobacillus rhamnosus to avoid substrate inhibition at high 

glucose concentrations resulting in a dramatically enhanced lactic acid production.194-195  

4.2.2 Alternative cheaper substrates for lactic acid production  

One of the other challenges in large-scale fermentative production of lactic acid is the 

cost of raw materials. Substrate cost accounts for almost 30-40% of the total production 

costs.196 Although the use of refined carbohydrates or pure sugars such as glucose, 

sucrose, lactose etc. would reduce downstream product purification cost, they would 

result in an increased overall production cost given the high cost of pure sugars. 

Approximately 3.5 billion tonnes of agricultural residues are produced per annum 

globally197, and some alternate cheaper agricultural residues that have been used for lactic 

acid production include lignocellulose/hemicellulose hydrolysates198, wood 
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hydrolysates199, corncob, corn stalks200, cassava bagasse201-203, cellulose204-205, paper 

sludge206, defatted rice bran207, waste cardboard208, unpolished rice209, carrot processing 

waste197, corn fiber hydrolysates174 and wheat bran.203, 210  

In order to achieve maximum yields and productivity, it is important that the 

mixed sugars present in lignocellulosic hydrolysates be utilized simultaneously without 

carbon catabolite repression. But in many LAB, sugars are sequentially metabolized and 

the utilization of glucose represses the utilization of other sugars.178 A few LAB strains 

have demonstrated simultaneous consumption of lignocellulose-derived sugars e.g. 

Lactobacillus brevis211-212, L. plantarum211 and novel isolated LAB strain Enterococcus 

mundtii.213 Thus, it is essential to isolate novel strains or develop engineered 

microorganisms that are capable of using lignocellulose directly for the production of 

high yields of lactic acid with high productivity. 

4.2.3 Lactic acid production by other engineered microorganisms 

Due to the low-pH tolerance and complex nutritional requirements of LAB, several other 

micro-organisms have been studied for their ability to ferment different sugars to lactic 

acid in a cost-efficient manner. A competitive commercial process requires robust, fast-

growing, acid tolerant, and high yielding strains that have simple nutritional 

requirements.214  

4.2.3.1 Filamentous fungi 

Filamentous fungi such as Rhizopus sp. have shown great potential as suitable candidates 

for the production of lactic acid using simple, low-cost nutrients.215-217 They have several 
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advantages over LAB including use of chemically defined medium simplifying product 

separation, their ability to effectively use pentose as well as hexose sugars, low-cost 

downstream separation of biomass due to their filamentous and pellet forms, and the 

production of L-lactic acid as the sole isomer.216 Rhizopus oryzae is the best known 

fungal source of lactic acid and there have been several studies using submerged 

fermentation, immobilized cells or pellets and different reactor configurations including 

pneumatic and stirred tank reactors for the production of enantiomerically pure L-lactic 

acid. However, since they are aerobic in nature, fermentation requires significant 

agitation and aeration which increases energy cost. Also, due to the production of by-

products such as ethanol and fumaric acid, lactic acid production using Rhizopus sp. 

suffers from low yields and productivity. Production of lactic acid using filamentous 

fungi has been covered extensively by Zhang et al..216 

4.2.3.2 Bacteria 

Escherichia coli, the workhorse of biotechnology industry, can easily metabolize hexose 

and pentose sugars using a simple mineral salt medium. But under anaerobic conditions, 

it produces a mixture of organic acids including D-lactic acid, acetic acid, succinic acid, 

formic acid and ethanol which reduces the yield of lactic acid and also makes product 

separation difficult. Several combinations of gene knockouts have been attempted to 

avoid formation of these by-products but most of them result in very long fermentation 

times due to significantly slower growth of microorganism.185, 218-219  Zhou et al. 

successfully engineered E. coli to produce 48.6 g/L of D-lactic acid with high yield of 

0.98 g/g of xylose by knocking out pflB, frdBC, adhE and ackA genes involved in the 
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production of fumaric acid, succinic acid, ethanol and acetic acid respectively. Thus, the 

resultant strain SZ63 produced negligible by-products but had a long fermentation time of 

168 hours resulting in low productivity.218 Additionally, the same strain, SZ63 was also 

used for the production of L-lactic acid from xylose in mineral salt medium, by replacing 

a part of D-LDH gene of E. coli (ldhA) with L-LDH gene of Pediococcus acidilactici 

(ldhL) and afforded 40 g/L of L-lactic acid with yield of 0.93 g/g xylose in 312 h.185 

Despite the advantages of being able to use simple mineral salt medium to achieve high 

yields of optically pure L-and D-lactic acid from hexoses and pentoses, lactic acid 

fermentation using E. coli suffers from low productivity and low acid tolerance requiring 

fermentation to be carried out at pH~7.220 

Corynebacterium glutamicum is another aerobic bacterium that has been 

genetically engineered to produce lactic acid from hexose and pentose sugars. Under 

oxygen-limited conditions, cell growth is arrested but it retains its ability to produce 

mixed organic acids such as L-lactic acid, acetic acid and succinic acid from glucose 

using mineral salt medium.221 Cells are first grown aerobically to a very high density and 

this high density culture is used for the anaerobic production of lactic acid resulting in a 

high-throughput process.222 C. glutamicum has been used for the production of L-lactic 

acid with high volumetric productivity of 42.9 g/l/h along with significant succinic acid 

production.223 The same strain was also used for the production of D-lactic acid by 

expressing D-LDH gene from Lactobacillus delbrueckii in the C. glutamicum ΔldhA 

strain.167 Due to the inability of the bacterium to use pentoses such as xylose and 

arabinose, the corresponding genes for xylose and arabinose metabolism from E. coli 
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were expressed under a constitutive promoter trc in C. glutamicum allowing production 

of L-lactic acid from mixture of glucose and xylose and glucose and arabinose 

respectively.224-226 Sasaki et al. developed a C. glutamicum strain capable of utilizing 

glucose, xylose and cellobiose simultaneously to produce lactic acid.226 Although very 

high volumetric productivities using simple mineral salt medium can be obtained by 

using C. glutamicum strain, the bacterium has extremely low acid tolerance and the lactic 

acid fermentation operates at pH of 7.0 and it produces a mixture of lactic acid, succinic 

acid and acetic acid giving low yields of lactic acid. 

More recently, a thermophilic lactic acid producer, Bacillus coagulans, has been 

isolated and identified as an efficient lactic acid producer capable of using a wide variety 

of substrates. This organism has shown a remarkable capability of fermenting pentoses, 

hexoses and cellobioses and is also resistant to inhibitors present in lignocellulosic 

hydrolyzates. Dilute acid biomass pretreatment followed by simultaneous 

saccharification and co-fermentation (SSCF) of B. coagulans IPE22 allowed production 

of 46 g of lactic acid from 100 g wheat straw.227 In a different study, cost-effective lactic 

acid production with high optical purity was obtained when excess sludge was used as a 

nutrient source instead of yeast extract in a repeated batch fermentation using B. 

coagulans strain.228 Another strain, B. coagulans C106, was isolated from the 

environment and was used for lactic acid production from xylose at 50 oC and pH of 6 in 

a mineral salts medium containing 1-2% (w/v) of yeast extract. A fed batch fermentation 

using this strain resulted in lactic acid titer and productivity of 215.7 g/L and 4 g/L/h, 

respectively, which are one of the highest values on xylose reported so far.229  
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4.2.3.3 Yeast 

Yeasts such as Saccharomyces cerevisiae and Kluyveromyces sp. are much more tolerant 

to low-pH conditions compared to bacterial species; this significantly reduces overall 

lactic acid production cost by simplifying the product recovery and purification stage. 

But yeasts do not natively produce significant amounts of lactic acid. Under anaerobic 

conditions, yeasts produce ethanol from pyruvic acid but they can be metabolically 

engineered to produce lactic acid by expressing heterologous LDH gene from 

Lactobacillus sp..230-231 Several pyruvate decarboxylase (pdc) mutants were generated to 

inhibit ethanol production during anaerobic fermentation and genome integration of 

heterologous LDH gene into PDC1 locus was used for improved lactic acid 

production.192, 232-236 Tokuhiro et al. developed a pdc1 adh1 double mutant that had much 

better growth rates allowing production of 71.8 g/L of lactic acid with yield of 0.74 g/g of 

glucose in 63 hours.237 Similar studies were done using Kluyveromyces lactis for the 

production of L-lactic acid by using a strain lacking pyruvate decarboxylase (KlPDC1) 

and pyruvate dehydrogenase (KlPDA1) genes  and expressing bovine LDH gene under 

KlPDC1 promoter, but fermentation time to produce 60 g/L L-lactic acid was 500 

hours.238 S. cerevisiae was also engineered to produce lactic acid from cellobiose by 

integrating eight copies of bovine LDH genes and two copies of BGL1 gene from 

Aspergillus aculeatus into its genome, resulting in 2.8 g/l/h of lactic acid from 95 g/L of 

cellobiose with yield of 0.7 g/g of Cellobiose.239 Cargill screened 1200 yeast strains and 

developed a novel yeast strain CB1 capable of producing lactic acid at pH of 3.240 

Replacing lactic acid bacteria with a genetically engineered yeast strain and the low pH 
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fermentation technology made the process more cost competitive and also significantly 

reduced environmental footprint.  

4.2.4 PLA copolymers with improved properties 

Despite several advantages of PLA, one of the biggest disadvantages of PLA is that it is 

very stiff and brittle with high glass transition temperature which impedes its applications 

in high mechanical strength fields. One of the approaches to achieve a good toughness-

stiffness balance is to copolymerize PLA with rubbery polymers. Plasticizers such as 

polyethylene glycol (PEG) can be copolymerized with PLA to improve polymer process-

ability.241-242 One strategy that has been used to expand the applicability of PLA is the use 

of PLA-containing block copolymers, particularly ABA triblock thermoplastic elastomers 

(TPE) with rigid PLA as end blocks and soft, rubbery midblocks. Although several PLA-

containing block polymers with favorable properties have been reported, the starting 

materials used for the synthesis of these polymers are either derived from fossil fuels or 

prohibitively expensive natural products. Recently, Xiong et al. developed an efficient 

biosynthetic route for the production of a branched lactone, β-methyl-δ-valerolactone 

(βMδVL), which can be transformed into a rubbery polymer with low glass transition 

temperature.243 The artificial pathway expands the mevalonate pathway in E. coli, to 

convert mevalonate to βMδVL (Figure 4.1). For the production of the mevalonate 

precursor, the E. coli endogenous acetyl-CoA acetyltransferase (AtoB) enzyme was over-

expressed and the heterologous enzymes, HMG-CoA synthase (MvaS) and HMG-CoA 

reductase (MvaE), from Lactobacillus casei were cloned into E. coli. To biosynthesize 

anhydromevalonolactone, mevalonate was first converted to mevalonyl-CoA using acyl- 
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Figure 4.1 Biosynthetic pathway in E. coli for the production of lactic acid and β-methyl-δ-valerolactone 

(βMδVL). LdhA: lactate dehydrogenase; AtoB: acetyl-CoA acetyltransferase; MvaS: HMG-CoA synthase; 

MvaE: HMG-CoA reductase; SidI: acyl-CoA ligase; SidH: enoyl-CoA hydratase; Oye2: enoate reductase; 

YqjM: enoate reductase. 

CoA ligase (SidI) of Aspergillus fumigatus, which was further transformed to 

anhydromevalonyl-CoA by enoyl-CoA hydratase (SidH) from A. fumigatus, and finally 

spontaneous cyclization produced anhydromevalonolactone. In the last step, enoate 

reductases, Oye2 from S. cerevisiae and YqjM mutant from B. subtilis, were used to 

convert the unsaturated lactone to βMδVL.243  This bio-derived monomer, βMδVL, was 

converted to a rubbery polymer using controlled polymerization techniques at ambient 

temperature, and the addition of lactide to poly (β-methyl-δ-valerolactone) midblocks 

resulted in the first scalable biobased soft polyester block with mechanically tunable 

properties and a low glass transition temperature of -50 oC.243   
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4.2.5 Fermentation technologies used for lactic acid production 

While batch fermentation is the most common mode used for lactic acid production, 

numerous other studies have used fed-batch, repeated batch, and continuous 

fermentation. Batch and fed-batch cultures allow higher lactic acid concentrations and 

yields as compared to continuous cultures due to complete utilization of substrate, 

whereas the productivities are generally much higher in continuous fermentation due to 

operation at high dilution rates.244 These fermentation modes have been reviewed by 

Abdel-Rahman et al..12 To further improve lactic acid production in batch fermentation 

mode, it has been observed that use of mixed cultures of LAB may be more effective than 

single cultures. Garde et al. showed that use of mixed cultures of Lactobacillus brevis and 

Lactobacillus pentosus for lactic acid production from hemicellulose hydrolysate allowed 

almost complete utilization of substrate components and a lactic acid yield of 95%, which 

was higher than yields obtained by pure Lb. pentosus culture (88%) and pure Lb. brevis 

culture (51%).245 Mixed cultures of different microorganisms have also been used where 

one organism breaks down the polymeric substrate while the other carries out the 

fermentation. One such study involved the use of mixed cultures of Aspergillus niger and 

Lactobacillus sp. to produce lactic acid directly from Jerusalem artichoke tubers in a 

simultaneous saccharification and fermentation (SSF) process.246 Aspergillus produces 

the enzymes, inulinase and invertase, required to break down inulin present in artichoke 

tubers, which cannot be metabolized by Lactobacillus sp.. These studies look promising 

for the use of mixed cultures for industrial lactic acid production from cheap polymeric 

substrates or under nutrient-limiting conditions, without compromising on yield and 
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productivity. Using high cell densities in fermentative production systems is another way 

to improve lactic acid production by allowing high productivities and reduced 

contamination problems. Two methods used for achieving high cell densities, which will 

be discussed in this paper, are cell immobilization in continuous cultures and membrane 

cell recycling.  

4.2.5.1 Cell immobilization 

Immobilization of cells allows increased cell concentrations in continuous fermentors by 

preventing cell washout at high dilution rates, thus resulting in higher lactic acid 

productivity. One of the most common methods used for immobilization is adsorption (or 

attachment) on solid carrier surfaces where the cells are held to the surface by physical 

forces (van der Waals forces) or electrostatic forces or covalent binding between the cell 

membrane and the carrier.12 The advantage of this method is its simplicity but the relative 

weakness of adsorptive binding force is one of the biggest disadvantages. Several 

supports have been used for lactic acid production including activated carbon247, 

aluminum beads248, glass and ceramics249 and zeolites170 amongst others. In a recent 

study, powdered zeolite molecular sieves 13X were used for immobilization of L. 

rhamnosus for lactic acid production from liquid stillage from bioethanol production. The 

study was performed without mineral or nitrogen supplementation and the maximal 

process productivity was 1.7 g/L/h with maximum lactic acid concentration of 42.2 

g/L.170 Another method used for cell immobilization is physical entrapment of cells in the 

core of beads. One of the most common materials used for entrapment is polysaccharide 

gels like calcium alginate gel beads.179 Some of the limitations of this method include 
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slow leakage of cells during long operations and diffusional resistance of the gel matrix 

resulting in insufficient oxygen supply and reduced fermentation efficiencies. Tanyildizi 

et al. used this method to immobilize R. oryzae cells in open pore matrix of polyurethane 

foam to reduce diffusional resistance to substrate transfers.215  Lactic acid production was 

55% higher when immobilized R. oryzae was used as compared to free cells. Other 

methods of immobilization include containment250, where cells are entrapped behind a 

barrier such as membrane filters, and self-aggregation251, which a natural immobilization 

technique observed in molds and fungi.  

4.2.5.2 Cell recycle 

Membrane cell-recycle bioreactors (MCRB) are also used to achieve high cell densities 

and can enhance volumetric productivity of lactic acid up to 160 g/L/h, which is twenty 

times higher than that obtained in batch fermentations.252 But the lactic acid 

concentration obtained in MCRB is significantly low (less than 60 g/L in most studies) 

when compared to batch processes which can easily achieve lactic acid concentrations 

above 120 g/L, thus increasing downstream energy cost of water removal.253 To improve 

the economic advantage of MCRB by increasing lactic acid concentration, Kwon et al. 

used two MCRBs in series to produce 92 g/L lactic acid with a productivity of 57 g/L/h 

by Lb. rhamnosus.253 One of the types of membrane used for MCRBs is polymeric 

membranes that have very low tolerance to high temperatures, and undergo membrane 

fouling which necessitates frequent cleaning procedures, thus weakening the membrane. 

Ramchandran et al. investigated the use of submerged polymeric membranes for lactic 

acid production and used fresh nutrient-rich medium as backwash to reduce membrane 
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fouling.254 This not only improved performance of membrane module but also increased 

lactic acid production by more than 2-fold by replacing growth medium containing 

inhibitory fermentation products with fresh medium. Ceramic membranes offer several 

advantages over polymeric membranes including thermal stability, easier cleaning and 

higher abrasive and mechanical resistance. Lu et al. used a pilot scale bioreactor for lactic 

acid production comprising of 3000 L fermentor and an external ceramic microfiltration 

membrane to perform cell recycle. With repeated feeding medium used to alleviate 

substrate inhibition, pilot system with cell recycle was able to achieve lactic acid yield of 

157 g/L and productivity of 8.8 g/L/h.184 Recently, Zhang et al. used Bacillus coagulans 

IPE22 to produce lactic acid from wheat hydrolysates and to eliminate sequential 

utilization of sugars and product inhibition, they used membrane integrated repeated 

batch fermentation (MIRB). Using MIRB system, the lactic acid productivity was 

increased from 1 g/L (batch 1) to 2.4 g/L (batch 6) by repeated batch fermentation.255  

4.2.6 Downstream processing of lactic acid 

Conventional lactic acid fermentation produces calcium lactate, due to pH neutralization, 

which is treated with concentrated sulphuric acid to give free lactic acid and calcium 

sulphate (or gypsum). This traditional recovery method is a major economic hurdle in the 

lactic acid production process due to the use of large quantities of expensive chemicals 

which account for 50% of the production cost and generation of gypsum waste. Some 

alternative technologies used for the recovery of lactic acid, which will be discussed later 

in more detail , include adsorption256, reactive distillation257, solvent extraction183, 

electrodialysis with bipolar membranes258, nanofiltration259-260 and ion exchange261-262, all 
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of which avoid the formation of large quantities of insoluble salts and are more cost and 

energy efficient compared to traditional chemical separation processes.191, 260 In bipolar 

membrane electrodialysis, water splitting reaction occurs at the bipolar membrane which 

generates protons for conversion of lactate salt to lactic acid and hydroxide ion for 

sodium cation to form sodium hydroxide which can be recycled back to the fermentor. Li 

et al. used this method for lactic acid recovery and pH control and improved the lactic 

acid yield from 0.46 g/g glucose (without electrodialysis) to 0.61 g/g glucose.260 

Furthermore, to improve the efficacy and capacity of electrodialysis, nanofiltration has 

been used as a pretreatment method to remove Mg-, Ca- and sulphate ions from lactate 

fermentation broth.191 In one such study, cross-flow nanofiltration was used to retain 94% 

of sugar and this membrane module was integrated with a downstream bipolar 

electrodialysis unit that allowed continuous lactic acid production with an optical purity 

of 85.6%.263 Although electrodialysis is an expensive technology owing to large energy 

consumption, the recycling of unconverted sugars can significantly reduce raw material 

consumption making it economically feasible. Resin adsorption has also been used to 

recover lactic acid from fermentation broth in a study by Wang et al., where 

microfiltration membrane integrated with fermenter was used to relieve product 

inhibition and to extend cell growth period from 4 h to 120 h.264 Reactive liquid-liquid 

extraction is another promising technology that has been studied for lactic acid recovery 

and recently, a new extractant , N,N- didodecylpyridin-4-amine, was developed that has 

the highest distribution coefficient of lactic acid and back extraction was feasible at 
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elevated temperatures with single stage recoveries up to 80% using heptane as an anti-

solvent.265  

4.3 Polyhydroxybutyrate (PHB)   

Polyhydroxyalkanoates (PHAs) are microbial polyesters containing 3-, 4-, 5- and 6- 

hydroxycarboxylic acids that accumulate as intracellular carbon/energy storage granules 

in a wide variety of microorganisms usually when there is a growth limiting nutrient such 

as O, N, P, S or trace elements in the presence of excess carbon source. They are 

completely biosynthetic and biodegradable with zero toxic waste since microorganisms 

present in the soil, sea and sewage degrade them into carbon dioxide and water under 

aerobic conditions and into methane under anaerobic conditions.186, 266-267 In addition to 

their biodegradability, these polymers are biocompatible and they have properties similar 

to thermoplastics such as polypropylene, making them an ideal substitute for 

conventional petrochemical plastics.268-269 Depending on the number of carbon atoms, 

PHAs are divided into two groups – short chain length (SCL), which consist of 3-5 

carbon atoms and have thermoplastic properties similar to polypropylene, and medium 

chain length (MCL), which consist of 6-14 carbon atoms and have elastomer like 

properties.270 In this review, we will mainly focus polyhydroxybutyrate (PHB) and its 

copolymers with higher acyl CoAs. The biosynthetic pathway for production of short 

chain PHAs from sugars is shown in Figure 4.2.  
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Figure 4.2 Biosynthetic pathway for the production of short chain polyhydroxyalkanoates (PHAs). SSA: 

succinic semialdehyde; 3-HB-CoA: 3-hydroxybutyryl-CoA; 3-HV-CoA: 3-hydroxyvaleryl-CoA; 4-HB-

CoA: 4-hydroxybutyryl-CoA; Ac-CoA: acetyl CoA; P (3HB): poly (3-hydroxybutyrate); P (3HV): poly (3-

hydroxyvalerate); P (4-HB): poly (4-hydroxybutyrate)  

PHB was the first PHA to be discovered.271 It is accumulated in bacteria at up to 

80% of the dry cell weight and it has material properties very similar to conventional 

plastics like polyethylene and polypropylene. But, PHB is a brittle and rigid polymer with 

low flexibility and it has high melting temperature (170 oC) making polymer processing 

difficult.272-273 On the other hand, medium chain length-PHAs made up of longer 

monomers, are typically elastomers having high flexibility. Thus, copolymerization of 

3HB with longer monomers such as HV (hydroxyvalerate), HH (hydroxyhexanoate) or 

HO (hydroxyoctanoate) can result in more flexible and tougher plastics with reduced 
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melting point such as poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)], 

poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)], poly(3-

hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)], and poly(3-

hydroxybutyrate-co-3-hydroxyalkanoate) [P(3HB-co-3HA)].274-277 PHB was first 

industrially produced by Imperial Chemical Industries ltd. (ICI/Zeneca Bioproducts, 

Bellingham, UK) in 1970 under the trade name BiopolTM. In 1996, the technology was 

sold to Monsanto and then to Metabolix in 2001. In 2010, Telles, a joint venture company 

between Archer Daniel Midlands Company (ADM) and Metabolix, Inc. opened the first 

commercial plant to produce corn-syrup based PHA resin, MirelTM, in Clinton, Iowa, 

U.S.A at a capacity of 50,000 tons per year. Another example of a successful copolymer 

is P(3HB-co-3HHx) that is produced on an industrial scale.278 Furthermore, U.S.A. based 

Procter & Gamble has trademarked scl and mcl PA copolymers of C4 and C6-C12 as 

NodaxTM.176  

4.3.1 PHA production by bacteria 

The two most widely studied bacteria for PHB production are Ralstonia eutropha and 

Alcaligenes latus. R. eutropha accumulates PHB when nitrogen and phosphorous is 

completely depleted in the medium. ICI used fed-batch culture of R. eutropha for the 

industrial production of PHB from glucose and P (3HB-co-3HV) from a mixture of 

glucose and propionic acid under phosphate limiting conditions. The strain produced 121 

g/L of PHB with 76% polymer content in 50 hours resulting in a high productivity of 2.4 

g/L/h using an automatic fed-batch culture technique where glucose concentration was 

maintained at 10-20 g/L.279  Unlike R. eutropha, A. latus can accumulate PHA during 
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growth and does not require nutrient limitation thus allowing use of complex nitrogen 

sources such as corn steep liquor and yeast extract to support cell growth as well as PHA 

synthesis.   

Although natural producers, such as R. eutropha and A. latus, are well adapted to 

PHB accumulation and can store up to 90% of its weight in PHA granules, they show 

very poor growth during fermentation, they can depolymerize PHB and use it as a 

secondary energy source and the extraction of PHA polymers from these cells is very 

difficult. To address this issue, the PHA biosynthetic pathway can be expressed in non-

PHA producers with more robust central metabolic pathway for more efficient production 

of PHA using inexpensive carbon sources. An example of one such host organism is E. 

coli which offers several advantages including fast growth, accumulation of large 

amounts of PHA due to the absence of intracellular depolymerases, ability to use several 

inexpensive carbon sources and easy recovery of PHA granules.280 Synthesis of PHB by 

recombinant E. coli is dependent on the amount of acetyl-CoA available and does not 

require nutrient limitation. Slater et al. was the first to introduce pha genes into E. coli in 

1988 and after several efforts to improve PHB production using recombinant E. coli, a 

PHB concentration higher than 80 g/L with productivity greater than 2 g/L/h was 

obtained using pH-stat fed-batch culture.177 A recombinant E. coli strain with R. eutropha 

PHB biosynthetic genes was used to produce 80% (w/w) of PHB after 35 hours of 

fermentation using molasses as carbon source.281 In addition to P (3HB), recombinant E. 

coli was also used to produce 4.4 g/L of P (4HB) after 60 hours of pH-controlled fed-

batch fermentation from glucose and 4-hydroxybutyric acid as carbon sources.282 
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Recombinant E. coli strain was also used to synthesize copolymers such as terpolymer P 

(3HB-co-3HV-co-3HHx) from dodecanoic acid plus odd carbon number fatty acid using 

Aeromonas PHA biosynthetic genes.283  

Several studies have attempted to evolve PHA synthases to broaden their 

substrate specificities and to enable them to accept both scl- and mcl- monomers into the 

growing polymer chain to efficiently produce PHB copolymers. One of the earliest 

studies was to evolve a PHA synthase capable of accepting both 3HB-CoA and 3HHx-

CoA to efficiently produce P (3HB-co-3HHx), a tough and flexible polymer. In vitro and 

in vivo evolution of PHA synthases from Aeromonas sp. was performed by random 

mutagenesis to screen for an enzyme with enhanced activity.284-285 In one of the studies, 

random mutagenesis of A. caviae PHA synthase gene (PhaCAc) resulted in two single 

mutants (N149S and D171G), both of which had increased in vitro activities resulting in 

a 6.5 fold increase in PHA accumulation and a concomitant increase in the 3HHx fraction 

from 10% to 18%.285 The double mutant of A. caviae PHA synthase (N149S and 

D171G), was expressed in recombinant R. eutropha and it resulted in incorporation of 0.4 

mol% of 3-hydroxyocatnoate (3HO) and 18 mol% of 3HHx in the PHA copolymer from 

octanoate as carbon source.169, 286 The PHA synthase of Pseudomonas sp. 61-3 accepts 

both scl- and mcl- monomers but has very weak activity towards scl-monomers. In vitro 

evolution of this PHA synthase by PCR-mediated random mutagenesis resulted in a 

quadruple mutant with increased substrate specificity towards 3-HB without lowering its 

activity towards MCL-HA-CoAs resulting in 340-400 times higher production of P 

(3HB). This has also allowed the production of P (3HB-co-3HA) copolymer with over 95 
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mol% 3HB and a small amount of MCL-3HA.287-294  Several other studies of evolution of 

PHA synthases using site-saturated mutagenesis (allowing the substitution of 

predetermined protein sites against all twenty possible amino acids at once) and random 

mutagenesis has been reviewed in detail by Park et al..295  

4.3.2 PHA production in yeast  

In order to develop more cost-effective systems for PHA synthesis, eukaryotic cells 

including yeast and insect cells and transgenic plants have been studied for their ability to 

produce PHA. Synthesis of PHB has been demonstrated in eukaryotic cells such as 

Saccharomyces cerevisiae by expression of PHB synthase gene from R. eutropha, but 

this resulted in very low PHB accumulation of 0.5% of dry cell weight possibly due to 

low activities of endogenous β-ketoacyl-CoA-thiolase and acetoacetyl-CoA reductase 

enzymes.296 Kocharin et al. engineered the acetyl-CoA supply in S. cerevisiae by over-

expressing the genes of ethanol degradation pathway along with PHB pathway genes. 

This increased acetyl-CoA supply improved the productivity of PHB by 16 times 

indicating that availability of acetyl-CoA precursor has an effect on PHB production.297 

In a different study, the same group over-expressed the phosphoketolase pathway of 

Aspergillus nidulans to increase acetyl-CoA supply and improved PHB production in S. 

cerevisiae.298    

4.3.3 PHA production in plants  

PHA production in plants is considerably less expensive than bacterial and yeast systems 

as they do not require an external energy source such as electricity to carry out 
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fermentation. In addition to being cost-effective, plant production systems are 

environmentally friendly since they only require photosynthetically fixed CO2 and water 

to produce PHA which is degraded back to CO2 and water and they also provide a useful 

tool to study plant metabolism.299 PHA production in plants can be achieved in different 

subcellular compartments. Acetyl-CoA, required for PHB synthesis, is present in the 

cytosol, plastid, mitochondrion and peroxisome of the plant, and thus PHB production 

can theoretically be achieved in any of these compartments. PHB production in plants 

was first demonstrated in 1992 in the cytoplasm of cells of Arabidopsis thaliana by over-

expressing the genes – phaB, encoding acetoacetyl-CoA reductase and phaC, encoding 

PHB synthase  – from R. eutropha under a constitutive cauliflower mosaic virus 35S 

(CaMV35S) promoter.300 In order to use transgenic plants for commercial production of 

PHAs, there is an urgent need to improve the yields of PHA obtained using these plants. 

One of the reasons for low productivity may be attributed to the adverse effects of phaB 

or phaA genes on plant growth.300-301 Constitutive expression of PHA synthesis genes 

(phaA) significantly reduced the transformation efficiency in potato and tobacco.302 To 

solve this problem, an inducible promoter was used to express phaA gene and, although 

this resulted in two-fold increase in PHB production in Arabidopsis lines, there was no 

increase in PHB amount (<1% dwt.) in potato and tobacco.303 One of the strategies used 

to improve PHB synthesis in plants was to increase the acetyl-CoA pool for PHB 

synthesis. This was achieved by using specific enzyme inhibitors to suppress the 

competing anabolic pathways involved in acetyl-CoA consumption. Use of Quizalofop 
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(herbicide), which inhibits the conversion of acetyl-CoA to malonyl-CoA, increased PHB 

content in cytosol by 170% and in the cytosol by 150%.304  

4.3.4 PHA production on alternate carbon source 

Despite its several advantages of being biodegradable and biocompatible, high 

production cost of PHA makes it 5-10 times more expensive than petroleum-derived 

polymers such as polypropylene and polyethylene (US $0.25-0.5 kg-1).305 One of the 

biggest factors contributing to high production cost of PHA is the cost of substrate 

(mainly carbon source) which accounts for 30-40% of total production cost. Apart from 

glucose, several other carbon sources including lactic acid306, acetic acid307, oleic acid187, 

carbon dioxide, plant oils308 and waste glycerol309 have been used as the sole carbon 

source to produce PHB using fed-batch cultures of R. eutropha. R. eutropha was 

engineered to produce 94 g/L of PHB with productivity of 1.5 g/L/h from saccharified 

potato starch when grown under phosphate limitation.310 Industrial by-products such as 

beet molasses and sugarcane molasses have been used for PHB production using different 

microorganisms.180, 281, 311-312 A two-stage fed-batch culture of A. vinelandii UWD mutant 

was used to produce 36 g/L of PHB with productivity of 1 g/L/h from beet molasses.180 

In order to reduce raw material cost, methanol was used as carbon source for PHB 

production using an automatic fed-batch culture of Methylobacterium extorquens 

resulting in a high PHB concentration (149 g/L) but a very low productivity of 0.88 

g/L/h.313 Methylotrophic bacteria have been used to synthesize PHBV copolymer with 

3HV content up to 91.5 mol% using methanol and n-amyl alcohol as carbon sources 

under nitrogen limiting conditions.314 The advantage of using alcohols as carbon sources 
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is the reduced chance of contamination given that they are sterile carbon sources. Fatty 

acids and vegetable oils are also promising substrates for PHA production since the 

theoretical yield of PHA from fatty acids is 0.65 g g-1 173 whereas that from glucose is 

0.3-0.4g g-1.315 C. necator H16 was used for the production of PHA from soybean oil and 

yield obtained was 0.72 - 0.76 g g-1.316 A recombinant strain of R. eutropha transformed 

with the PHA synthase of Aeromonas caviae was used to produce terpolymers of poly(3-

hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyheptanoate) using odd numbered 

alkanoic acids.317 Recently, waste glycerol was used for PHB production using C. 

necator strain and the productivity of the process was 1.1 g/L/h with PHB content of 

50%.181 Tanaka et al. recently reviewed the production of PHB using C1 carbon 

substrates such as methanol, methane and carbon dioxide.273 

4.3.5 Recovery of PHA 

High production costs of PHB and other PHAs have adversely affected their market 

penetration and one of the major cost drivers is the downstream recovery and purification 

of PHA. Since the polymer is produced intracellularly, the recovery methods focus on 

either solubilizing the PHA granules or dissolution of the non-PHA biomass. Different 

recovery methods used for PHA have been reviewed in great detail by Kunasundari and 

Sudesh.318  

Solvent extraction is the most widely used technology for recovery of PHA from 

cell biomass which involves solubilization of PHA followed by non-solvent precipitation. 

The most commonly used solvents include chlorinated hydrocarbons and cyclic 

carbonates and typical non-solvents used for precipitation include methanol and 
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ethanol.319 Although these methods give the best recovery yields and purity, the solvents 

used are very toxic to the environment and the process becomes lengthy when PHB 

concentration exceeds 5% (w/v) due to high viscosity of the polymer solution. 1,2-

propylene carbonate is relatively less toxic than chlorinated solvents and maximum PHA 

yield of 95% and purity of 84% was reported during recovery of PHA from Cupriavidus 

necator cells which is comparable to the values obtained from chloroform extraction.320 

Another recovery method for PHA involves solubilization of non-PHA biomass using 

chemical or enzymatic digestion. In the case of chemical digestion, sodium hypochlorite 

and surfactants are the two most commonly used chemicals. Surfactant-chelate digestion 

was also studied using Triton X-100 and EDTA system which isolated PHA with 90% 

purity from enzymatically hydrolyzed Sinorhizobium meliloti cells.171 Another method 

involves selective dissolution of non-PHA cell mass by protons to enhance PHA 

recovery. The PHB granules recovered using this method were highly crystalline and it 

also lowered recovery cost by using cheaper chemicals with higher recovery 

efficiencies.168 In case of enzymatic digestion, proteases have been used to lyse cells 

followed by filtration of PHA granules using chloroform extraction resulting in 94% 

purity as against 66% purity obtained using undigested cells.171 

Recently, two new solvents –dimethyl carbonate (DMC) and ammonium laurate - 

were investigated as novel green alternatives for recovery of PHA from C. necator cells 

and both methods were directly applied to concentrated microbial slurries without any 

pre-treatment to allow high recovery yields and purity of PHB and other copolymers.321 
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4.4 Polybutylene succinate (PBS) 

Polybutylene succinate (PBS) is a biodegradable thermoplastic polymer synthesized by 

polycondensation of succinic acid and butanediol. These monomers can be either derived 

from fossil fuels or from renewable resources and currently commercially available PBS 

is synthesized from chemically derived monomers. Butanediol (BDO) can be derived 

from glucose using a total biosynthetic route154 which was further optimized using a 

rational approach to strain engineering322 and a computational framework ORACLE 

(Optimization and Risk Analysis of Complex Living Entities) to identify metabolic 

engineering targets for improved BDO production323, leading to commercial-scale 

production by Genomatica within 5 years of project start-up. The GENO BDOTM process 

by Genomatica has been commercial since 2012 and has been licensed for commercial 

plants by both BASF and Novamont.  In a more recent study, a novel, 

nonphosphorylative pathway was used to convert biomass sugars – D-xylose, L-

arabinose and D-galacturonate - to BDO with a 100% theoretical maximum molar 

yield.324 The pathway allowed assimilation of sugars into the TCA cycle in less than 6 

steps and further built artificial biosynthetic pathways to BDO using downstream 

enzymes, 2-ketoacid decarboxylases and alcohol dehydrogenases. The titers, yields and 

rates reported were higher than those previously reported for BDO production and the 

nonphosphorylative platform could also be extended for other TCA-cycle derivatives.324 

For bio-based succinic acid, Bioamber built the first plant in 2008 with an initial annual 

capacity of 2000 metric tons. The plant uses Escherichia coli as host microorganism with 

wheat-derived glucose as a substrate for succinic acid production. In 2015, Bioamber will 
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start production of 30,000 tonnes/year of succinic acid in its Sarnia facility, which is 

predicted to result in 100% reduction in greenhouse gas emissions and 60% reduction in 

total energy consumption as compared to petroleum process. In December 2012, 

Reverdia, a joint venture between DSM and Roquette, started a 10,000 tonnes/year plant 

for production of bio-based succinic acid from starch using low-pH yeast technology. 

Myriant technologies received $50 million grant from the US Department of Energy 

(DOE) and set up a succinic acid plant with production capacity of 30 million pounds 

from unrefined sugars as feedstock using E. coli as host organism.325  

4.4.1 Natural producers of succinic acid 

Succinic acid is an important intermediate of TCA cycle and is produced by several 

microorganisms as a fermentation product under anaerobic conditions (Figure 4.3). Some 

natural producers of succinic acid include Anaerobospirillum succiniciproducens, 

Actinobacillus succinogenes, Mannheimia succiniciproducens and Basfia 

succiniciproducens.  

4.4.1.1 A. succiniciproducens 

A. succiniciproducens is a microorganism which produces succinic acid and acetic acid 

as major fermentation products, and ethanol and lactic acid as minor by-products under 

strictly anaerobic conditions.326-327 In spite of being one of the most extensively studied 

microorganisms for succinate production, the genome sequence of A. succiniciproducens 

is not available. Thus metabolic engineering of this strain is difficult and researchers have 

instead focused on optimizing process conditions to improve succinate yields. This  



4.4 Polybutylene succinate (PBS)  72 
 

 
 

 

Figure 4.3 Biosynthetic pathway for production of succinic acid from glucose under anaerobic conditions 

microorganism uses the phosphoenolpyruvate (PEP) carboxylation pathway for succinic 

acid production327 and the final succinic acid yield is limited by the availability of 

reducing equivalents. With the addition of an external electron donor such as H2 (H2/CO2 

at 5:95 v/v), an increased succinic acid yield of 0.91 g/g and a volumetric productivity of 

1.8 g/L/h was obtained, which could be attributed to the increased NADH availability in 

the cell.327 The optimal pH range for succinic acid production using A. 
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succiniciproducens is 5.8 to 6.4  and the pH is maintained by the addition of alkaline 

carbonates or alkaline earth hydroxides.328  

4.4.1.2 A. succinogenes 

A. succinogenes produces succinate, acetate, formate and ethanol as major fermentation 

products when glucose is used as the substrate.329 Similar to A. succiniciproducens, this 

microorganism also uses PEP carboxylation pathway for succinic acid production, and 

increasing CO2 concentration enhances cell growth as well as succinic acid production. 

When electrically reduced neutral red, a redox dye which serves as an electron donor for 

fumarate reductase, was used in glucose medium, glucose consumption, cell growth and 

succinic acid production were all increased by 20% and acetate production was reduced 

by 50%.330 Only a few metabolic engineering studies for A. succinogenes have been 

reported due to limited genetic information and lack of appropriate genetic tools. One 

such study to improve succinate production used directed evolution to isolate several 

variants of A. succinogenes 130Z strain (FZ 6, 9, 21, 45 and 53), all of which were 

resistant to 1-8 g/L of fluroacetate.331-332 These strains produced more succinic acid and 

were more tolerant to high succinic acid concentrations, with one of the mutants 

producing 106 g/L succinate, which is the one of the highest reported titers.  These 

mutants also produced less acetate and formic acid compared to the parent 130Z strain. 

There have been several efforts focused on replacing expensive nitrogen sources such as 

yeast extract with cheaper sources such as corn steep liquor.333 McKinlay et al. used 

chemically defined medium for succinic acid production and since this eliminates the use 
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of complex medium, downstream separation and purification processes are much cheaper 

and simpler.334 

4.4.1.3 M. succiniciproducens 

Another promising succinic acid producing bacterium is M. succiniciproducens, which 

produces succinic acid, acetic acid and formic acid in the ratio of 2:1:1 under 100% CO2 

saturation and in the pH range of 6-7.5.335-336 Unlike A. succinogenes, this microorganism 

has a complete TCA cycle and can efficiently grow in both aerobic as well as anaerobic 

conditions.336 Similar to the aforementioned natural succinate producers, M. 

succiniciproducens can also metabolize a wide variety of substrates and hydrolysates but 

exhibits many auxotrophies. In order to reduce cost of the medium, whey and corn steep 

liquor were used and anaerobic batch cultures resulted in a succinic acid yield of 71% 

and a productivity of 1.2 g/L/h while continuous culture using the same medium resulted 

in yields of 69% and a maximum productivity of 3.9 g/L/h.337 According to a study, 

focused on optimizing CO2 concentrations, a medium containing 141 mM of dissolved 

carbon dioxide resulted in a succinic acid yield that was 1.5 times higher than that 

achieved by a medium containing 8.74 mM of dissolved CO2.
338-339 The compete genome 

sequence of this bacterium was determined by Hong et al.336, and based on the genome 

sequence, gene knockout studies were performed and PEP carboxykinase (PEPCK) was 

identified as the major succinate producing pathway under anaerobic conditions. Lee et 

al. developed a gene knockout method to delete the genes ldhA, pflB, pta and ackA 

involved in by-product formation and the resulting strain designated LPK7 was able to 

produce 52.4 g/L of succinic acid in 29 h, although cell growth stopped after 19.5 h when 
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the succinic acid titer reached 36 g/L.340 In order to reduce pyruvate and malate 

production, malic enzyme was over-expressed in LPK7 strain and although malate 

excretion was reduced by 37%, pyruvate excretion increased. Furthermore, after glucose 

depletion, pyruvate was used to produce acetate in the cells.341 Availability of genome 

sequence of this bacterium also helped to develop a chemically defined medium (CDM) 

and use of this medium allowed 17% increase in final succinic acid concentration, 36% 

increase in productivity and 15% increase in succinic acid yield as compared to complex 

medium. Additionally, by-product formation was reduced by 30%.342  

4.4.2 Recombinant engineered succinic acid producers 

Although all the natural producers produce succinic acid as a major fermentation product, 

none of them can tolerate high succinic acid concentrations and they all require complex 

media for their growth due to their numerous auxotrophies. Additionally, most of these 

natural producers require anaerobic conditions for succinic acid production which has 

several disadvantages including poor cell growth, slow carbon throughput and limited 

NADH availability.  In order to be cost-competitive with the current chemical process, 

fermentative production should produce 150 g/L succinic acid with a productivity of 5 

g/L/h.343 To achieve these targets it is important to develop more efficient producers that 

can produce succinic acid at high titers and tolerate high substrate and product 

concentrations while utilizing simple media. 
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4.4.2.1 C. glutamicum 

C. glutamicum, under an oxygen-deprived condition, produces lactic and succinic acids 

as major products and acetate as minor fermentation product. Addition of bicarbonate to 

the medium resulted in 3.6 fold increase in succinic acid production rate, implying that 

bicarbonate was used for succinic acid synthesis.222 Over-expression of pyruvate 

carboxylase (pyc) gene in lactate dehydrogenase (ldhA) deficient strain resulted in the 

production of 146 g/L of succinate in 46 hours with a molar yield of 1.4 mol/mol.344 This 

is one of the highest concentration of succinic acid achieved on a laboratory scale. 

Succinate production under aerobic conditions using C. glutamicum was explored due to 

advantage of faster cell growth in presence of oxygen and the capability to use minimal 

media for succinic acid production, which significantly reduces downstream purification 

costs.345-346 Despite its several advantages, C. glutamicum cannot metabolize pentose 

sugars, and to overcome this challenge, E. coli xylose-catabolizing enzymes - xylose 

isomerase and xylulokinase – were over-expressed in C. glutamicum which allowed 

concomitant use of glucose and xylose and the titer and productivity of succinate 

obtained with mixed sugars was comparable to that obtained with glucose alone.224  

4.4.2.2 Escherichia coli 

Under anaerobic conditions, E. coli converts glucose to ethanol, formic, lactic and acetic 

acids and only a trace amount of succinic acid is produced. One approach to improve 

succinic acid production in E. coli is to eliminate competing pathways to reduce by-

product formation. One of the earliest efforts in this direction was to develop E. coli 

NZN111 strain with lactate dehydrogenase (ldhA) and pyruvate formate lyase (pflB) 
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genes knocked out.8, 347 Although this strain increased succinic acid yield at the expense 

of ethanol and acetic, formic and lactic acids, large amounts of pyruvic acid was excreted 

and cell growth was severely inhibited resulting in very low succinic acid productivity. A 

spontaneous chromosomal mutation in NZN111, mapped to the ptsG gene, resulted in a 

mutant, AFP111, which increased PEP pool  and restored cell growth on glucose, was 

found to increase the yield and productivity of succinic acid. Furthermore, inactivation of 

ptsG gene allows simultaneous utilization of sugars.348 Dual phase fermentations using E. 

coli AFP11, in which an aerobic growth phase is followed by an anaerobic succinic acid 

production phase, demonstrated the activation of glyoxylate shunt as a succinate 

producing pathway under aerobic conditions.349 In one study, the glyoxylate shunt was 

activated by disrupting the iclR gene, which codes for transcriptional repressor of the 

glyoxylate shunt, and competing fermentative pathways were eliminated by knocking out 

ldhA, adhE and ack-pta, resulting in a metabolically engineered E. coli strain 

SBS550MG.  SBS550MG was transformed with the pyruvate carboxylase (pyc) gene 

from L. lactis to divert flux from pyruvate to OAA and the resulting strain, 

SBS550MG/pHL413, increased succinic acid yield from glucose to 1.6 mol/mol.350 

Although glyoxylate pathway reduced NADH requirement, a major drawback of this 

pathway is that it wastes carbon through CO2 or formate production. Balzer et al. reduced 

formate production by over-expressing NAD+- dependent formate dehydrogenase (fdh) 

gene of Candida boidinii in SBS550MG/pHL413. This new pathway produced 1 mole 

NADH from 1 mole of formate, thus retaining the reducing power of formate and 

resulting in enhanced succinic acid production and reduced formate concentration (0-3 
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mM).351 Jantama et al. developed a strain KJ134 (ldhA, adhE, pta-ackA, focA-pflB, mgsA, 

poxB, tdcDE, citF, aspC, sfcA) which produced nearly theoretical maximum yields of 

succinic acid during anaerobic batch fermentation using mineral salt medium. This strain 

may be useful for cost-effective succinic acid production at a commercial scale due to 

significantly lower cost of medium required for fermentation.352  

4.4.2.3 Saccharomyces cerevisiae 

All of the above mentioned prokaryotic microorganisms have very low acid tolerance and 

exhibit poor cell growth under high glucose concentrations. S. cerevisiae, on the other 

hand, is a well-characterized industrial production organism which exhibits good growth 

characteristics and has an extraordinarily high acid and osmo-tolerance. Succinate is one 

of the major components produced during sake fermentation by yeast and thus, most of 

the early studies focus on increasing succinic acid production in sake yeast strains. 

Disruption of succinate dehydrogenase subunits (SDH1 and SDH2) and isocitrate 

dehydrogenase isoenzymes (IDH1 and IDP1) of S. cerevisiae resulted in succinic acid 

titer of 3.6 g/L which is 4.8 fold higher than the titer obtained using wild type S. 

cerevisiae.353 Another huge advantage of using yeast for succinic acid production is that 

these eukaryotic organisms quantitatively export succinic acid into the culture broth, thus 

reducing end-product inhibition and eliminating the need of disrupting the cells, 

simplifying downstream processing. Since S. cerevisiae is a well-known glycerol and 

ethanol producer, the main by-products were ethanol, glycerol and acetate.  In a later 

study, a S. cerevisiae strain was developed which produced 8.5 g/L succinic acid with no 

glycerol formation and it used all ethanol for acetate production.354 In silico metabolic 
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engineering strategy was used to develop a multiple deletion S. cerevisiae strain 8D, that 

required glycine supplementation to grow. By using directed evolution, a mutant 8D 

strain was isolated that did not require glycine supplementation and also exhibited 60-

fold improvement in biomass-coupled succinic acid production (0.6 vs 0.01 g succinic 

acid/ g biomass) and 20-fold improvement in succinic acid titer (0.6 vs 0.03 g/L) with 

respect to reference strain under aerobic conditions.355  

4.4.3 Alternative cheaper substrates for succinic acid production 

In order to reduce overall fermentation costs, it is important to look into alternative 

inexpensive substrates including agricultural residues and industrial by-products instead 

of refined carbohydrates as a carbon source and corn steep liquor instead of yeast extract 

as nitrogen source in the medium. Studies have used untreated wood hydrolysate356,  

NaOH treated wood hydrolysate, glycerol357, and non-treated whey358 as substrates for 

economical succinic acid production. Straw hydrolysates (corn, rice and wheat) were 

used as substrates for succinic acid production in A. succinogenes and at substrate 

concentrations greater than 60 g/L, both cell growth and succinic acid production were 

inhibited.172 To address this problem, simultaneous saccharification and fermentation 

(SSF) technique was used for succinic acid production from corn stover in a 5L 

bioreactor and the maximum succinic acid concentration and yield achieved was 47.4 g/L 

and 0.72 g/g substrate, respectively.359  SSF could eliminate both end-product and 

substrate inhibition since the reducing sugars formed by cellulose hydrolysis were 

quickly utilized by A. succinogenes maintaining very low glucose and xylose 

concentration throughout fermentation period. In another study using glycerol as 
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substrate, an E. coli strain (pck*, ΔptsI, ΔpflB) achieved succinic acid yield of 0.8 

mol/mol glycerol, which is 80% of the maximum theoretical yield for glycerol, in 

anaerobic fermentation using mineral salts medium.360 To utilize sucrose or sucrose-

containing substrates, sucrose-utilizing genes (cscKB and cscA) from E. coli KO11 were 

expressed in an engineered E. coli KJ122 strain, followed by growth-based selection, to 

enable high succinic acid production and reduced by-product accumulation using a low-

cost simple medium. succinic acid concentrations of 47 g/L and 56 g/L were obtained 

from sucrose and sugarcane molasses respectively, in simple batch fermentation in 10L 

bioreactor using simple low-cost medium.361 In a different study, sugarcane bagasse 

hydrolysate was used as a substrate for succinic acid production using E. coli strain 

BA305 (ΔpflB, ΔldhA, Δppc, ΔptsG), over-expressing PEP carboxykinase from B. 

subtilis 168, and produced 39.3 g/L succinic acid in a fed-batch fermentation after 120 

h.362 The same strain, E. coli BA305 over-expressing PEPCK from B. subtilis, was used 

to efficiently ferment lignocellulose hydrolysate by employing repetitive anaerobic 

fermentations. This method of fermentation enhanced ATP supply with every stage and 

allowed production of 83 g/L succinic acid with a high yield of 0.87 g/g in 36 h of three 

repetitive anaerobic fermentations.363  

4.4.4 Fermentation technologies  

Many different fermentation strategies have been investigated for the large scale 

fermentative production of succinic acid. In addition to the common batch and 

continuous cultivations, Meynial-Salles et al. used a continuous cell recycle bioreactor 

for anaerobic fermentation of A. succiniciproducens which resulted in a high succinate 
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volumetric productivity of 14.8 g/L/h which is 20 times higher than that obtained using 

batch culture under same fermentation conditions.364 Urbance et al. carried out a 

continuous and repeat-batch biofilm fermentation of A. succinogenes to increase succinic 

acid productivities through high cell densities and biofilm formation. Although a high 

succinic acid productivity of 8.8 g/L/h was reported, yield of succinic acid was less than 

50% and specific productivity was also very poor.365-366 Recently, Yan et al. determined 

the optimum operating conditions for succinic acid production using continuous 

fermentation in fibrous bed bioreactor employing A. succinogenes and achieved succinic 

acid concentration of 55.3 g/L with a productivity of 2.8 g/L/h.367 A novel external-

recycle, biofilm reactor was used recently to carry out continuous anaerobic fermentation 

using A. succinogenes and glucose and CO2 as carbon source. The highest succinic acid 

titer obtained was 48.5 g/L and succinic acid yield on glucose was 0.91g/g.368 Apart from 

continuous fermentations, an immobilized fermentation system was studied by Shi et al. 

using C. glutamicum strain immobilized in porous polyurethane filler and using cassava 

bagasse hydrolysate (CBH) as substrate for succinic acid production. To regulate pH of 

fermentation medium, mixed alkalis (NaOH and Mg(OH)2) were used instead of 

NaHCO3 and a succinic acid productivity of 0.4 g/L/h was achieved from 35 g/L glucose 

of CBH.369  

4.4.5 Recovery and purification of succinic acid 

Condensation polymerization of PBS requires succinic acid of high purity (above 98%) 

and this is the biggest obstacle facing use of bio-succinic acid in industrial PBS synthesis. 

Downstream processing remains a major challenge for cost-effective microbial 
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production of succinic acid and purification costs account for 60% of the total production 

costs.370  

4.4.5.1 Precipitation 

The traditional method for isolation of carboxylic acids including succinic acid from 

aqueous fermentation broth is precipitation with calcium hydroxide or calcium oxide, 

resulting in generation of large quantities of low-quality gypsum which cannot be used 

commercially. Alternatively, ammonia371-372 and magnesium hydroxide373 have also been 

used recently as a titrant for recovery of succinic acid from fermentation broth and in 

both cases, reagents can be fully recycled and salt produced can be sold commercially.  

4.4.5.2 Membrane separation 

Membrane filtration (including microfiltration, ultrafiltration and nanofiltration) has been 

used widely for the separation of solids from liquids and has several advantages including 

low operating cost and low energy consumption. Recently, a study showed that while 

ultrafiltration can remove 100% cells and 92% proteins from fermentation broth, 

centrifugation could only remove 92% cells and 53% protein.374 In a different study, to 

overcome product inhibition, a mono-polar electrodialysis pilot was coupled to the cell 

recycle reactor to continuously remove succinate and acetate from the permeate and 

recycle an organic acid free solution back into the fermentation medium. Use of this 

integrated membrane-bioreactor-electrodialysis enhanced the cell growth, productivity 

and final concentration, allowing a maximum productivity of 10.4 g/L/h, a molar yield of 

1.35 and a final succinic acid concentration of 83 g/L.364 In another study, ultrafiltration 
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membrane was integrated with fermentation to produce 99.4% pure succinic acid which 

was recovered from broth and directly used for the synthesis of PBS.375   

4.4.5.3 Liquid-liquid extraction 

Liquid-liquid extraction (LLE) is used extensively due to its simplicity, ease of scale-up, 

high output and low energy consumption. In order to improve the yield and selectivity of 

liquid-liquid extraction of organic acids from aqueous phase, extractants including 

aliphatic amines have been used in reactive extraction.376-378 In a recent study, a hollow 

fiber membrane contactor (HFMC) was operated in liquid-liquid extraction (LLE) mode 

for extracting succinic acid from an aqueous feed.182 Two different extractant solutions 

were used – a) a 30% (v/v) tripropylamine (TPA) dissolved in 1-octanol and b) 30% 

trioctylamine (TOA)-TPA mixture in a 1:4 weight ratio dissolved in 1-octanol. Operating 

conditions such as feed flow rate, organic phase flow rate, and initial succinic acid-water 

concentration were varied and removal efficiencies of more than 95% were obtained in 

most cases.  

4.5 Conclusion  

Recent advances in metabolic engineering have allowed commercial production of some 

biobased polymers and monomers from renewable feedstocks using engineered 

microorganisms. The growing environmental concerns over use of non-biodegradable 

plastics and the limited fossil fuel resources are the major drivers for the emerging 

bioplastics industry. Many biopolymers are already in industrial production including 

PHA, PLA, PBS, PE and PPC. In this paper, we reviewed the recent developments in the 
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biotechnological production of three bio-based polymers –PLA, PHB and PBS. Some of 

the common problems of fermentative production of these monomers include substrate 

inhibition, end-product inhibition, inability of microorganisms to metabolize pentose 

sugars, and low pH tolerance of host organism. To overcome these limitations, 

recombinant microorganisms were used and several metabolic engineering strategies 

such as over-expression of heterologous genes, deletion of competing pathways, 

enhancing pool of precursors, were employed to improve product titers. Apart from 

batch, fed-batch and continuous fermentation, other fermentation technologies that have 

been investigated recently include cell immobilization and cell membrane recycling, both 

of which employ high cell densities to enhance productivities. Although the bioplastics 

industry is growing rapidly, there are several challenges that need to be addressed in the 

coming years to make them competitive with their petrochemical counterparts which 

include the low performance of some biobased plastics, low efficiency of microbial 

fermentation processes and their relatively high cost of production and downstream 

processing.188, 379  
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Chapter 5 

Engineering Nonphosphorylative Metabolism of 

Biomass Sugars to TCA Cycle Derivatives  

 

 

5.1 Introduction 

The use of edible biomass such as corn or sugarcane for biomanufacturing has affected 

food supply on a global scale and elevated food prices380. In an effort to circumvent the 

contention of resources for “food versus chemical” purposes, lignocellulosic feedstock 

presents a promising solution. Lignocellulosic feedstock is the most abundant inedible 

biomass with an annual output of around 2×1011 metric tons381. Common sources of 

lignocellulose include corn stover, switchgrass, sugar beet pulp, and citrus peel. 

* Adapted with permission from Tai, Y. S. ‡, Xiong, M. ‡, Jambunathan, P. ‡, Wang, J., Wang, J., 

Stapleton, C., & Zhang, K. (2016). Engineering nonphosphorylative metabolism to generate 

lignocellulose-derived products. Nature chemical biology, 12(4), 247-253. (‡ Contributed equally) 
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Utilization of D-xylose, L-arabinose, and D-galacturonate is critical for the economic 

viability of lignocellulosic fermentation, as they constitute more than 1/3 of the sugars in 

lignocellulose382-383. Over the past several years, there has been remarkable progress in 

lignocellulosic ethanol production384-387. However, the low price of ethanol has led other 

studies to focus on producing more valuable compounds, such as xylitol and biodiesel388-

390. The development of new metabolic platforms with an expanded chemical repertoire 

will promote the applications of cellulosic processes. 

As the metabolic hub of the cell, the TCA cycle leads to a variety of high value 

bioproducts, including amino acids and industrial chemicals (Figure 5.1). The 

conventional metabolic routes for carbon feedstocks to enter the TCA cycle are 

glycolysis and pentose phosphate pathways (PPP). These traditional metabolisms, 

however, involve lengthy reaction steps (>10 steps to TCA cycle) and complex 

regulations that limit the production yield and rate. For example, one reported pathway to 

produce 1,4-butanediol (BDO) requires 21 reaction steps, imposing significant difficulty 

on feasible metabolic engineering92. Moreover, after several decades of industrial 

practices, the fermentation yields of amino acids are still much lower than their 

theoretical maxima391.  

An attractive alternative exists in an unconventional metabolism that converts 

lignocellulosic materials directly into 2-ketoglutarate (2-KG) in less than 6 steps (Figure 

5.1). In this proposed mechanism, D-xylose is first converted into D-xylonolactone by D-

xylose dehydrogenase (XDH), followed by hydrolysis to D-xylonate by D-

xylonolactonase (XL). D-xylonate is subsequently dehydrated to 2-keto-3-deoxy-D- 
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Figure 5.1 Assimilation pathways of lignocellulosic sugars through the nonphosphorylative metabolism. 

The pathway for D-xylose metabolism consists of D-xylose dehydrogenase (XDH), D-xylonolactonase 

(XL), D-xylonate dehydratase (XD), and 2-keto-3-deoxy-D-xylonate dehydratase (KdxD). The L-arabinose 

assimilation pathway is comprised of L-arabinose dehydrogenase (ADH), L-arabinolactonase (AL), L-

arabonate dehydratase (AD), and 2-keto-3-deoxy-L-arabonate dehydratase (KdaD). The pathway for D-

galacturonate metabolism was designed by using uronate dehydrogenase (UDH), D-galactarate dehydratase 

(GD), and 5-keto-4-deoxy-D-glucarate dehydratase (KdgD). The DOP produced from these feedstocks is 

then converted into 2-KG by 2-ketoglutarate semialdehyde dehydrogenase (KGSADH) which is a key 

intermediate of the TCA cycle. 

xylonate by D-xylonate dehydratase (XD), which is then converted to 2,5-

dioxopentanoate (DOP) by 2-keto-3-deoxy-D-xylonate dehydratase (KdxD). This D-

xylose oxidation pathway was first discovered in 1960392 and the xylose-inducible 

xylXABCD operon (CC0823—CC0819) was later annotated in Caulobacter crescentus393. 

Through a similar metabolism, L-arabinose can be converted to DOP by L-arabinose 

dehydrogenase (ADH), L-arabinolactonase (AL), L-arabonate dehydratase (AD), and 2-
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keto-3-deoxy-L-arabonate dehydratase (KdaD). The intermediate, DOP, produced from 

D-xylose and L-arabinose can be further oxidized to 2-KG, a key intermediate of the 

TCA cycle, by 2-ketoglutarate semialdehyde dehydrogenase (KGSADH)394. This L-

arabinose degradation pathway has been discovered in Pseudomonas fragi392, and later 

demonstrated in Azospirillum brasilense395.  

A comparable metabolism for the assimilation of uronic acids, such as D-

galacturonate, has also been identified. Uronate dehydrogenase (UDH) can catalyze the 

transformation of D-galacturonate into D-galactaro-1,4-lactone396; the lactone ring is then 

hydrolyzed either spontaneously or with the aid of a lactonase to form D-galactarate397. 

D-Galactarate can be converted to 5-keto-4-deoxy-D-glucarate by D-galactarate 

dehydratase (GD) and then to DOP by 5-keto-4-deoxy-D-glucarate dehydratase 

(KdgD)398 . The DOP produced can again be further oxidized to 2-KG using a KGSADH 

described earlier. This alternative metabolism does not involve any phosphorylating 

reactions, making it more energy-efficient than the conventional pathways such as 

glycolysis and PPP. This nonphosphorylative pathway can be utilized as a shortcut to the 

TCA cycle, potentially accelerating the production of TCA cycle derivatives. In addition, 

the theoretical yield of 2-KG from these pentoses and uronic acids is 100 mol% through 

this metabolism, which is notably higher than that from pentose phosphate pathway (83 

mol%).  

 Nonphosphorylative metabolism has been known for over fifty years392; however, 

the full reconstitution of this pathway from sugars to 2-KG has not been demonstrated in 

the workhorse microorganism, E. coli. Recently, several reports have partially 
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reconstituted and applied the nonphosphorylative pathway from D-xylose399-402, but the 

utilization of L-arabinose and D-galacturonate for chemical synthesis via this pathway 

has not been explored. Here we describe our selection platform to discover 

nonphosphorylative gene clusters that are functional in E. coli. We first tested the 

platform using a previously identified gene cluster from C. crescentus393-394, and then 

subsequently used the platform for gene mining to assemble novel, putative gene clusters 

from various microorganisms that allow the nonphosphorylative assimilation of D-

xylose, L-arabinose, and D-galacturonate. We purified the corresponding enzymes and 

determined their kinetic parameters to validate their in vivo activities. The establishment 

of this alternative metabolism in E. coli provides a novel metabolic platform for 

biosynthesis of a variety of chemicals such as succinate, glutaconate, and the “glutamate 

family” of amino acids. Furthermore, it enables biotransformation of pharmaceutically 

important natural products catalyzed by 2-ketoglutarate-dependent dioxygenases91, 403. 

 In particular, we designed a new synthetic pathway to 1,4-butanediol (BDO)404, a 

raw material for many commercial products such as Spandex. This pathway uses a 2-

ketoacid decarboxylase (KDC) to convert DOP into butanedial. Butanedial is then 

transformed into BDO by an alcohol dehydrogenase (ADH). The total biosynthetic 

pathway starting from the pentoses to BDO requires only 6 steps, which is less than 1/3 

of the previously reported pathway92. Additionally, we utilized protein engineering 

techniques to reduce the accumulation of the byproduct, 1,2,4-butanetriol (BTO), by 

improving the selectivity of KDC towards DOP. The engineered KDC improved BDO 

titer from 1.83 to 3.8 g/l at a yield of 63% of the theoretical maximum.  
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Based on this nonphosphorylative platform, we also expanded the sugar repertoire 

to produce 5.6 g/l BDO from L-arabinose and 2.3 g/l BDO from D-galacturonate, which 

has not been reported before. We then examined the scale-up feasibility for each substrate 

in 1.3 L bioreactors, where engineered strains were able to produce 12 g/l of BDO from 

D-xylose in 30 hours, 15.6 g/l BDO from L-arabinose in 75 hours, and 16.5 g/l of BDO 

from D-galacturonate in 90 hours.  

5.2 Results 

5.2.1. Establishing the nonphosphorylative metabolism in E. coli 

To facilitate the discovery and engineering of nonphosphorylative gene clusters, we 

developed a selection platform based on cell growth (Figure 5.2a). Here, we knocked out 

the E. coli isocitrate dehydrogenase gene, icd, so the oxidation of isocitrate to 2-KG was 

interrupted. Thus, the cells required an exogenous supply of 2-KG to grow. Since the 

alternate nonphosphorylative pathway can convert pentoses (such as D-xylose and L-

arabinose) and uronic acids (such as D-galacturonate) to 2-KG, the activity of the 

pathway was coupled to cell growth. This platform can thus be used to screen for active 

gene clusters in E. coli. Gene clusters can also be further optimized by using directed 

evolution on the introduced pathway and identifying cells with improved growth.  

To build the selection platform, we cloned the gene cluster xylBCDX (Figure 

5.2a) from C. crescentus into plasmid pBDO-1 (Table 5.S1) where xylB encodes the 

XDH; xylC encodes the XL; xylD encodes the XD and xylX encodes the KdxD (Figure 

5.1). We cloned the gene xylA of the C. crescentus xylose operon, annotated as the  
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Figure 5.2 The growth platform to test functional nonphosphorylative gene clusters in E. coli. (a) The 

growth assay was designed based on the supply of 2-KG, a TCA cycle intermediate. Isocitrate 

dehydrogenase gene (icd) was knocked out to cut off 2-KG production through glycolysis/TCA cycle. The 

nonphosphorylative pathway plasmids (pBDO-1 and pBDO-2 for the D-xylose pathway, pBDO-3 for the 

L-arabinose pathway, pBDO-4 (a synthetic operon) and pBDO-2 for the D-galacturonate pathway) were 

then transformed into cells to compensate the production of 2-KG. (b) Strains BDO03 (BW25113 ΔxylA 

ΔyjhH ΔyagE), BDO04 (BW25113 ΔxylA ΔyjhH ΔyagE Δicd), and BDO04 transformed with plasmids 

pBDO-1 and pBDO-2 were grown in M9 minimum media supplemented with 5 g/l glucose and 5 g/l D-

xylose. (c) Strains BDO05 (BW25113), BDO06 (BW25113 Δicd), and BDO06 transformed with plasmid 

pBDO-3 were grown in M9 minimum media supplemented with 5 g/l glucose and 5 g/l L-arabinose. (d) 

Strains BDO07 (BW25113 ΔuxaC ΔgarL), BDO08 (BW25113 ΔuxaC ΔgarL Δicd), and BDO08 

transformed with plasmids pBDO-4 and pBDO-2 were grown in M9 minimum media supplemented with 5 

g/l glucose and 5 g/l D-galacturonate. All error bars shown in (b), (c), and (d) represent SD (n=3). 

KGSADH, into a separate plasmid pBDO-2. Furthermore, to maximize the flux of D-

xylose through the nonphosphorylative pathway, we knocked out the endogenous D-

xylose (xylA) and D-xylonate (yagE, yjhH) consuming pathways in E. coli, generating 

strain BDO03. We also deleted icd gene to generate strain BDO04, a 2-KG auxotroph 

that is incapable of producing 2-KG. While strain BDO03 showed exponential growth in 
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minimal media containing glucose and D-xylose, strain BDO04 showed almost no 

growth due to the disruption of the TCA cycle. We then transformed BDO04 with 

plasmids pBDO-1 and pBDO-2, and the resulting strain showed growth on mixed sugars 

with OD reaching ~1.0 after 50 hours (Figure 5.2b).This could be attributed to the 2-KG 

produced from D-xylose via the nonphosphorylative pathway (pBDO-1 and pBDO-2).  

Similar gene clusters encoding the L-arabinose assimilation pathway have been 

identified in several species of soil bacteria including Burkholderia spp.405, Pseudomonas 

saccharophilia406 and Rhizobium spp407. In this work, we discovered a novel L-arabinose 

assimilation gene cluster from Burkholderia multivorans using BLAST based on the 

previously identified L-arabinose gene cluster of Burkholderia thailandensis394. To 

demonstrate the platform, we cloned this putative L-arabinose gene cluster from B. 

multivorans araCDABE (BmulJ 5323-5321-5320-5316-5314), responsible for L-

arabinose degradation to 2-KG, into plasmid pBDO-3 (Table 5.S1). The gene araA 

encodes the ADH; araB codes the AL; araC codes the AD; araD was annotated as the 

KdaD and araE encodes the KGSADH (Figure 5.1). To eliminate the L-arabinose 

consumption pathways in E. coli, we used strain BDO05 with araA gene knocked out, 

which served as the positive control for the growth assay (Table 5.S1).  Strain BDO05 

showed exponential growth in media containing both glucose and L-arabinose, but when 

icd gene was knocked out (strain BDO06), cells could not grow in the same media due to 

the disruption of the TCA cycle. When BDO06 strain was transformed with plasmid 

pBDO-3 containing the L-arabinose assimilation gene cluster, growth on glucose and L-

arabinose media was restored due to the supplementation of 2-KG through the 
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nonphosphorylative pathway. The BDO06 strain transformed with pBDO-3 grew to an 

OD of ~1.7 in 50 hours (Figure 5.2c), thus establishing the in vivo activity of the novel 

B. multivorans L-arabinose gene cluster in E. coli.  

Gene clusters with an analogous function for the hexuronic acid degradation have 

been found in Bacillus species398 and Pseudomonas putida408. To establish D-

galacturonate pathway, we designed a synthetic operon consisting of the following genes: 

udh from P. putida encoding the GDH, garD from E. coli encoding the GD, and ycbC 

from Bacillus subtilis encoding the putative KdgD (Figure 5.1). We cloned this operon 

into plasmid pBDO-4 (Table 5.S1). We used the plasmid pBDO-2 with xylA gene of C. 

crescentus to convert DOP to 2-KG. In order to maximize the flux of galacturonate via 

the heterologous pathway, we knocked out the genes encoding the pathways involved in 

consumption of either the substrate (∆uxaC) or intermediates  (∆garL) resulting in strain 

BDO07 (Table 5.S1). BDO07 grew exponentially after induction in the media containing 

both glucose and D-galacturonate. Similar to the D-xylose and L-arabinose pathways, 

when icd was knocked out (strain BDO08), cells could not grow since the strain is a 2-

KG auxotroph. When we transformed strain BDO08 with plasmids pBDO-2 and pBDO-

4, 2-KG was produced from D-galacturonate using the nonphosphorylative pathway, thus 

allowing cells to grow to an OD of ~1.25 in 50 hours (Figure 5.2d).  

5.2.2. Validating the enzymatic activities by in vitro assays 

After demonstrating that the putative gene clusters could function in vivo using a growth-

based selection platform, we sought to further confirm key enzymatic functions and 

identify in vitro activities of the nonphosphorylative pathways. All the kinetic parameters  
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Table 5.1 Kinetic parameters of key pathway enzymes. Data is presented as mean ± SD (n=3). 

          

a Enzyme activity was determined using a coupled assay 
b Data represent mean ± SD (n=3)  

 

are shown in Table 5.1. In the D-xylose pathway from C. crescentus, D-xylose 

dehydrogenase (XylB) and xylonate dehydratase (XylD) have kcat values of 12.1 s-1 and 

7.6 s-1, respectively. However, the enzyme 2-keto-3-deoxy-D-xylonate dehydratase 

(XylX) has a relatively low kcat of 0.53 s-1. Since XylX is also the enzyme with the 

highest Km (1.9 mM) in the pathway, its specific constant (kcat/Km) is therefore the lowest 

(0.26 s-1mM-1) among the three enzymes. This indicates that XylX is the bottleneck 

enzyme in the D-xylose degradation pathway. 

In the L-arabinose pathway from B. multivorans, the first enzyme, L-arabinose 

dehydrogenase (AraA), has the highest kcat value of 101.4 s-1 while the downstream 

enzymes, L-arabonate dehydratase (AraC) and 2-keto-3-deoxy-L-arabonate dehydratase  



5.2 Results  95 
 

 
 

(AraD) have relatively low kcat values of 0.17 s-1 and 0.23 s-1, respectively.  The enzyme 

AraD has the highest Km (9.7 mM) and a low kcat, making it the rate-limiting step of the 

L-arabinose pathway.  

  For the D-galacturonate pathway, uronate dehydrogenase (Udh) from P. putida 

has the highest kcat (24.1 s-1) and lowest Km (0.15 mM) among the three enzymes. 

Galactarate dehydratase (GarD) from E. coli has the highest Km (0.76 mM) in the pathway 

but a much higher kcat (18.9 s-1) than the 5-keto-4-deoxy-D-glucarate dehydratase (YcbC) 

from B. subtilis. Similar to D-xylose and L-arabinose pathway, the last enzyme (YcbC) in 

the D-galacturonate pathway that produces DOP has the lowest specific constant and is 

considered the bottleneck enzyme in the D-galacturonate degradation. These bottleneck 

enzymes from the three substrates could explain why transformants harboring these 

nonphosphorylative pathways did not grow as well as the wild type cells.  

5.2.3. Identification of enzymes to convert DOP into BDO 

With the establishment of the nonphosphorylative metabolism, we explored its 

biosynthetic applications by designing new synthetic pathways to BDO. We hypothesized 

that DOP can be converted to BDO by a 2-ketoacid decarboxylase (KDC) and an alcohol 

dehydrogenase (ADH) (Figure 5.3a). We designed the BDO producing pathways using 

the following steps: (1) introducing the nonphosphorylative metabolism to convert the 

pentoses and hexuronic acid into a pool of DOP, (2) screening for the best KDC that can 

convert DOP to butanedial, and (3) screening for the best ADH that can reduce 

butanedial into BDO.  
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Since the D-xylose pathway of C. crescentus has been partially established in E. 

coli399, we selected it for enzyme screening. First, to convert DOP to butanedial, we 

screened three KDCs, 2-ketoacid decarboxylase (Kivd) from Lactococcus 

lactis409,  indolepyruvate decarboxylase (IpdC) from Salmonella typhimurium410, and 

benzoylformate decarboxylase (BFD) from P. putida411 and cloned them into plasmids 

pBDO-5, pBDO-6, pBDO-7, respectively (Table 5.S1). These plasmids also carried a 

promiscuous alcohol dehydrogenase YqhD  from E. coli, for screening based on BDO 

production. To maximize the carbon flux towards the desired pathway, we transformed 

strain BDO03 with these plasmids individually along with the DOP producing plasmid, 

pBDO-1. It is important to note that all the strains used for BDO production do not have 

icd inactivation, and can thus utilize glucose for growth. In the shake flask experiment, 

we used 20 g/l of D-xylose and the strains carrying Kivd, IpdC and BFD produced 1.83, 

1.20 and 0.63 g/l BDO, along with 3.56, 1.06 and 0.03 g/l BTO, respectively (Figure 

5.3b). It is notable that all of these enzymes are promiscuous enough to catalyze the 

decarboxylation of DOP to BDO. Overall, the data (Figure 5.3b) indicated that Kivd, 

amongst the three set of investigated enzymes, was the best KDC towards DOP.  

Besides KDC, we also investigated ADHs from different organisms to see which 

combination would produce maximal titer of BDO. Other than YqhD, we chose the 

following ADHs as candidate enzymes: L. lactis alcohol dehydrogenase AdhA412; 

Saccharomyces cerevisiae alcohol dehydrogenase Adh6413; E. coli putative alcohol 

dehydrogenase YahK (PDB ID: 1UUF); and E. coli putative alcohol dehydrogenase 

YgjB414. We cloned these enzymes individually after Kivd to build an expression cassette  
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Figure 5.3 BDO production using different combinations of 2-ketoacid decarboxylase (KDC) and alcohol 

dehydrogenase (ADH) and different Kivd mutants. (a) BDO production pathway from DOP catalyzed by 

KDC and ADH. (b) Shake-flask production of BDO from D-xylose. Three KDC (Kivd, IpdC, and BFD) 

and five ADH (YqhD, AdhA, Adh6, YahK, and Yjgb) were examined. (c) Shake-flask production of BDO 

from L-arabinose and D-galacturonate using Kivd + YqhD. There was no BTO production using these 

substrates. (d) Shake-flask production of BDO using Kivd mutants from D-xylose. Ten Kivd mutants, 

S286Y, S286L, S286F, V461I, V461L, V461M, I465F, I465H, I465L, and I465M, were tested for BDO 

production. (e) The binding pocket of Kivd (PDB ID: 2VBG). Residues S286, V461, and I465 were 

mutated to larger residues to improve the substrate specificity. Error bars in (b), (c) and (d) represent SD 

(n=3). 



5.2 Results  98 
 

 
 

on a high copy plasmid as pBDO-8, pBDO-9, pBDO-10, and pBDO-11, respectively 

(Table 5.S1). Strains carrying AdhA, Adh6, YahK, and YgjB could produce 1.15, 1.51, 

1.36 and 1.36 g/l BDO together with 3.11, 2.92, 3.19 and 3.43 g/l BTO, respectively 

(Figure 5.3b). Overall, the best combination was Kivd with YqhD allowing a yield of 

0.15 g/g, which is only 25% of the theoretical maximum.  However, the byproduct BTO 

yield from D-xylose was 0.28 g/g, which was around two times higher than BDO. The 

apparent Km and kcat of Kivd towards DOP is 4.8 mM and 4.8 s-1, respectively, and the 

apparent kinetic parameters of YqhD towards butanedial is 1.9 mM (Km) and 45.0 s-1 

(kcat) (Table 5.1).  

Based on the screening results of the D-xylose pathway, we applied Kivd and 

YqhD (pBDO-5) for the L-arabinose and D-galacturonate pathways. For L-arabinose, we 

cloned the putative B. multivorans cluster araCDAB (BmulJ 5323-5321-5320-5316) that 

can convert L-arabinose to DOP, into plasmid pBDO-12. The strain BDO05 transformed 

with plasmids pBDO-12 and pBDO-5, was able to produce 5.65 g/l of BDO from 20 g/l 

L-arabinose in production experiments. For D-galacturonate, we transformed strain 

BDO07 with plasmids pBDO-4 and pBDO-5 and the engineered strain was capable of 

producing 2.34 g/l of BDO from 20 g/l D-galacturonate (Figure 5.3c). Both L-arabinose 

and D-galacturonate pathways did not result in BTO production.  

5.2.4. Optimization of BDO production by protein engineering 

While the discovery of Kivd and YqhD allowed for the production of BDO, the 

promiscuous nature of Kivd did not provide a good selectivity for the decarboxylation 

step in the D-xylose pathway. BTO is produced by decarboxylation of the D-xylose 
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intermediate, 2-keto-3-deoxy-D-xylonate (Figure 5.S7). This suggests that compared to 

DOP, Kivd prefers to bind to the intermediate 2-keto-3-deoxy-D-xylonate as a substrate 

leading to a much higher titer of BTO than our target product. Conversely, there was no 

accumulation of BTO using L-arabinose as the substrate, indicating that Kivd is not 

active on the stereoisomer, 2-keto-3-deoxy-L-arabonate. To increase the production of 

BDO, we examined the effect of protein engineering on improving Kivd selectivity 

towards DOP. According to the crystal structure415 (PDB ID: 2VBG), amino acid 

residues S286, V461 and I465, in combination with the cofactor thiamine diphosphate 

(ThDP), delineate the active site of Kivd (Figure 5.3d&e) . Since 2-keto-3-deoxy-D-

xylonate, with its extra hydroxyl group, is a bulkier substrate than DOP, we attempted to 

shrink the binding site of Kivd to enhance its selectivity towards the smaller substrate. 

We constructed ten mutants of Kivd, including S286Y, S286L, S286F, V461I, V461L, 

V461M, I465F, I465H, I465L and I465M, and tested them in shake flask experiments.  

The fermentation results indicated that the best mutant, V461I, produced 3.83 g/l 

BDO with only 0.99 g/l BTO, which represents a yield of 0.37 g/g D-xylose which is 

63% of the theoretical maximum. Compared with wild type Kivd, BDO production titer 

with V461I mutant increased over 2-fold.  This can be attributed to the extra methyl 

group in isoleucine compared to valine, which shrinks the Kivd binding pocket, making it 

more selective towards DOP. Enzymatic assays also showed that the mutant V461I on 

Kivd notably reduces the specific constant (kcat/Km) towards BTO substrate, 2-keto-3-

deoxy-D-xylonate, from 7.7 to 0.5 mM-1s-1 (Table 5.1), while improving the activity 
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towards BDO substrate (DOP) from 1.7 to 2.5 mM-1s-1. Therefore, the enzyme 

characterization data was consistent with the fermentation results (Figure 5.3d). 

5.2.5. Fermentation scale-up 

We tested the scale-up feasibility of these BDO biosynthetic pathways by fed-batch 

fermentations in 1.3-L bioreactors. For the D-xylose pathway, we used the recombinant 

strain BDO03 transformed with plasmids pBDO-1 and pBDO-16 and fed a mixture of 

glucose and D-xylose as substrates during the fermentation process. The engineered 

strain produced 9.21 g/l BDO in 36 hours and consumed 42.1 g/l of D-xylose (Figure 

5.4a). Glucose was fed to support cell growth. To further exploit glucose for the 

production of value-added chemicals, we introduced another plasmid pMEV-1416 into the 

engineered strain for the co-production of BDO and mevalonate (MEV). MEV is an 

important intermediate in the production of the branched lactone, β-methyl-δ-

valerolactone, which could be used as building blocks for high-performing biobased 

polymers416. We used the BDO03 strain transformed with pBDO-1, pBDO-16, and 

pMEV-1 for the fed-batch fermentation and the engineered strain produced 12.0 g/l BDO 

by consuming 46 g/l of D-xylose in 30 hours after induction (Figure 5.4b). Not only was 

glucose efficiently utilized (20.2 mol% of glucose was converted into MEV), but the 

yield of BDO from D-xylose was also improved from 36% to 43% of the theoretical 

maximum by introducing MEV production pathway. Acetate started to accumulate to a 

final concentration of 11 g/l when cells entered stationary phase and inhibited further 

production of both BDO and MEV. 
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Figure 5.4 Production of BDO from D-xylose, L-arabinose, and D-galacturonate in 1.3-l bioreactors. (a) 

Production of BDO from D-xylose. (b) Co-production of BDO and mevalonate from D-xylose and glucose. 

(c) Production of BDO from L-arabinose. (d) Production of BDO from D-galacturonate. Abbreviations: D-

Xyl, D-xylose; MEV, mevalonate; L-Ara, L-arabinose; D-Gal, D-galacturonate. Bioreactor experiments 

were performed in at least triplicates for each substrate and results for one representative experiment are 

shown. 

We used the L-arabinose recombinant strain, BDO05 transformed with pBDO-5 

and pBDO-12, in the fed-batch fermentation with a mixture of glucose and L-arabinose 

as the feed. The engineered strain produced 15.6 g/l BDO in 72 hours and consumed 70.5 
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g/l of L-arabinose which resulted in a yield of 37% of the theoretical maximum. The final 

acetate concentration was 8.9 g/l, inhibiting further production of BDO (Figure 5.4c). 

Similarly, we tested the D-galacturonate strain BDO07 transformed with pBDO-4 and 

pBDO-5 in a 1.3-L bioreactor. We fed a mixture of glucose and D-galacturonate to the 

bioreactor and the engineered strain produced 16.5 g/L of BDO from 50.5 g/L of D-

galacturonate (70% of the theoretical maximum) in 90 hours (Figure 5.4d). 

5.2.6. Identification of new gene clusters 

After successfully demonstrating the use of the nonphosphorylative metabolism of D-

xylose, L-arabinose, and D-galacturonate for BDO production, we wanted to identify 

putative nonphosphorylative operons from other organisms that may show higher 

activities in E. coli. Therefore, we used the growth based selection platform that employs 

a 2-KG auxotroph to perform gene mining. Using BLAST, we identified a putative 

operon from Burkholderia xenovorans LB400 (DR64_8447—DR64_8450, DR64_8452) 

for nonphosphorylative assimilation of D-xylose to 2-KG. (Figure 5.S8). We cloned 

genes for converting D-xylose to DOP (DR64_8447—DR64_8450) into plasmid pBDO-

23 and cloned DR64_8452 to convert DOP to 2-KG into plasmid pBDO-24. To test the in 

vivo activity of this gene cluster in E. coli, we transformed the 2-KG auxotroph BDO04 

with plasmids pBDO-23 and pBDO-24. The B. xenovorans D-xylose gene  
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Figure 5.5 Growth platform to mine putative nonphosphorylative clusters in E. coli and BDO production 

using these novel operons. (a) Strains BDO03 (BW25113 ΔxylA ΔyjhH ΔyagE), BDO04 (BW25113 

ΔxylA ΔyjhH ΔyagE Δicd), BDO04 transformed with C. crescentus operon (pBDO-1 and pBDO-2) and 

BDO04 transformed with B. xenovorans operon (pBDO-23 and pBDO-24) were grown in M9 minimum 

media supplemented with 5 g/l glucose and 5 g/l D-xylose. (b) BDO production using newly identified B. 

xenovorans D-xylose operon and previous C. crescentus operon with Kivd and YqhD as downstream 

enzymes. (c) Strains BDO05 (BW25113), BDO06 (BW25113 Δicd), BDO06 transformed with B. 

multivorans operon (pBDO-3), BDO06 transformed with B. ambifaria operon (pBDO-25 and pBDO-26) 

and BDO06 transformed with B. thailandensis operon (pBDO-27 and pBDO-28) were grown in M9 

minimum media supplemented with 5 g/l glucose and 5 g/l L-arabinose. (d) BDO production using 

previously identified B. thailandensis and novel B. multivorans and B. ambifaria L-arabinose operons with 

Kivd and YqhD as downstream enzymes. All error bars shown in (b) and (d) represent SD (n=3). 

cluster rescued the growth of E. coli with OD reaching ~1.8 in 50 hours (Figure 5.5a). 

We further investigated the production of BDO using the newly identified B. xenovorans 

operon. The recombinant strain, BDO03 transformed with plasmids pBDO-23 and 

pBDO-5, was able to produce 2.73 g/l BDO with no BTO accumulation (Figure 5.5b). 
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To further corroborate this production profile, we characterized the in vitro enzyme 

activities of the new operon (Table 5.S2). The 2-keto-3-deoxy-D-xylonate dehydratase of 

B. xenovorans (DR64_8450) has a 9-fold higher kcat (4.7 s-1) compared to the 

corresponding dehydratase (XylX) of C. crescentus (0.53 s-1). This can explain why there 

was no BTO accumulation using B. xenovorans operon. Thus the selection strategy could 

be used to discover highly active enzymes from different microorganisms. These 

enzymes could be combinatorially assembled into synthetic operons for potential 

biosynthesis.  

For L-arabinose, we tested operons from two other Burkholderia species—an 

uncharacterized, putative Burkholderia ambifaria gene cluster (Bamb_4925—4918, 

Bamb_4915) and a previously identified, uncharacterized Burkholderia thailandensis 

gene cluster (BTH_II1632—1625)394, both of which had high sequence similarity 

(Figure 5.S8) to B. multivorans L-arabinose operon. We cloned the putative B. ambifaria 

genes Bamb_4918, Bamb_4922, Bamb_4923, and Bamb_4925 converting L-arabinose to 

DOP into plasmid pBDO-25. We cloned gene Bamb_4915 that converts DOP to 2-KG 

into plasmid pBDO-26. Similarly, we cloned the B. thailandensis genes responsible for 

DOP production—BTH_II1625, BTH_II1629, BTH_II1630, and BTH_II1632—into 

plasmid pBDO-27, and BTH_II1631, that converts DOP to 2-KG, into plasmid pBDO-

28. Both gene clusters rescued the growth of the 2-KG auxotroph, BDO06, to an OD of 

~1.5 in 50 hours (Figure 5.5c) via the nonphosphorylative pathway. After establishing 

the in vivo activities of both L-arabinose gene clusters, we used both clusters for BDO 

production. The strain carrying B. ambifaria genes (BDO05 with plasmids pBDO-25 and 
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pBDO-5) produced 4.3 g/l BDO; and the B. thailandensis gene overexpression strain 

(BDO05 with plasmids pBDO-27 and pBDO-5) produced 5.0 g/l BDO in production 

experiments (Figure 5.5d). Similar to B. multivorans operon, both B. ambifaria and B. 

thailandensis gene clusters did not produce any BTO.  

5.3. Discussion 

The nonphosphorylative metabolism allows assimilation of lignocellulosic sugars or 

sugar acids into the important TCA cycle intermediate, 2-KG, in fewer than 6 steps. This 

work is the first to demonstrate the complete nonphosphorylative metabolism of D-

xylose, L-arabinose, and D-galacturonate to 2-KG in the workhorse microorganism, E. 

coli. To discover gene clusters that are functional in E. coli, we developed a selection 

platform utilizing a 2-KG auxotroph. In particular, we applied the platform to identify a 

new nonphosphorylative D-xylose operon from B. xenovorans that has a more active 2-

keto-3-deoxy-D-xylonate dehydratase than the previously reported one from C. 

crescentus. The discovery of more active enzymes/operons will enable further 

optimization of these pathways. The establishment of these pathways can serve as a new 

biosynthetic platform for TCA cycle derivatives which have extensive applications. Here 

BDO production is used as an example.  

To establish the downstream pathway to BDO, we screened several different 

decarboxylases and dehydrogenases. The best enzyme combination for BDO production 

was the 2-ketoacid decarboxylase (Kivd) from L. lactis and the endogenous alcohol 

dehydrogenase (YqhD). We identified a Kivd mutant V461I by protein engineering 

which successfully improved BDO titer from D-xylose by more than 100% and reduced 
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BTO accumulation. In a previous report, a different Kivd mutant V461A has been shown 

to improve 3-methyl-1-pentanol production417 by expanding the binding pocket to 

accommodate a bulkier substrate. Conversely, in this work we shrank the binding pocket 

of Kivd to decrease the selectivity towards the bulkier and undesired substrate, 2-keto-3-

deoxy-D-xylonate. In the future, directed evolution strategy can be combined with this 

rational design to further improve the selectivity.  In a recent report, the 

nonphosphorylative D-xylose operon from C. crescentus has been used to produce 0.44 

g/l BDO, utilizing a different downstream pathway. We validated the distinction and 

efficacy of our pathway by extensive enzymatic assays (Table 5.1) and in vitro 

production experiments (Figure 5.S1). In addition, the higher production titer and yield 

(3.88 g/l BDO with a yield of 0.37 g/g D-xylose) indicates that our pathway has a higher 

in vivo efficiency. 

 Furthermore, we tested the C. crescentus D-xylose gene cluster, B. multivorans 

L-arabinose operon and D-galacturonate synthetic operon, in a 1.3-L bioreactor to study 

the scale-up feasibility. Acetate accumulation and inefficient co-utilization of sugars 

caused by carbon catabolite repression418 were two important limiting factors in the 

processes. The strains could thus be further improved by knocking out acetate producing 

pathways or relieving carbon catabolite repression with the overexpression of D-xylose, 

L-arabinose, or D-galacturonate transporters418. Fermentation process engineering or 

strain evolution can also be applied for optimization.  

While the results reported in this work demonstrate the production of a 

commodity chemical, BDO, the nonphosphorylative platform can also be extended to 
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produce several TCA cycle derivatives including glutamate, glutaconate and 1-butanol, 

among others. The growth selection platform provides an effective and robust tool to 

screen better enzymes or identify nonphosphorylative pathways for other substrates. 

Compared to conventional metabolism such as glycolysis and PPP, these fewer-step and 

higher theoretical yield nonphosphorylative pathways are of critical importance to make 

lignocellulosic bioproducts more economically feasible.  

5.4. Materials and Methods 

5.4.1 Bacterial strains and growth conditions  

The E. coli strains used in this study are listed in Table 5.S1. XL10-Gold was used for 

cloning and BL21 was used for protein expression and purification. Most of the other 

strains were derived from the wild-type E. coli K-12 strain BW2511370. P1 phages of 

xylA, yjhH, yagE, icd, uxaC, and garL were obtained from the Keio collection. The 

phages were used to transfect the corresponding strain for the construction of targeted 

knockout strains. All the knockout strains were then transformed with pCP20 plasmid to 

remove the kanamycin marker. The correct knockouts were verified by colony PCR. 

Unless otherwise stated, these E. coli strains were grown in test tubes at 37 °C in 2×YT 

rich medium (16 g/l Bacto-tryptone, 10 g/l yeast extract and 5 g/l NaCl) supplemented 

with appropriate antibiotics (ampicillin 100 mg/l and kanamycin 50 mg/l). 

5.4.2 Plasmids construction  

All the primers used in this study were ordered from Eurofins MWG Operon and are 

listed in Table 5.S3 in supporting information. PCR reactions were carried out with 
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Phusion High-Fidelity DNA polymerase (New England Biolabs) according to the 

manufacturer’s instructions. The sequences of all the plasmids produced were verified by 

restriction mapping and DNA sequencing.  

To construct plasmid pBDO-1, five fragments of xylB, xylC, xylD, and xylX were 

amplified from C. crescentus genomic DNA by using primer pairs of xylBAcc-

F/xylBBamHI-R, xylCBamHI-F/xylCNhe-R, xylDNheI-F/xylDHind-R, xylXHind- 

F/xylXBlpRem-R and xylXBlpRem-F/xylXBlpI-R, and then the fragment of xylX was 

amplified with primer pairs of xylXHind-F/xylXBlpI-R by using xylX-1 and xylX-2 as 

template. The four fragments of xylB, xylC, xylD, and xylX were digested with 

Acc65I/BamHI, BamHI/NheI, NheI/HindIII and HindIII/BlpI, and then ligated with 

linearized pZAlac vector23 digested with Acc65I and BlpI to form the plasmid, pBDO-1. 

To make the plasmid pBDO-2, the coding region of xylA was PCR amplified by oligos of 

CC0822Acc-F and CC0822Xba-R using genomic DNA of C. crescentus as template, and 

then this coding region was inserted into the site between Acc65I and XbaI of vector 

pZElac23 after digestion. To construct the plasmids pBDO-3 and pBDO-12, the gene 

fragments of araC (BmulJ 5323), araD (BmulJ 5321), araA (BmulJ 5320), araB (BmulJ 

5316) and araE (BmulJ 5314) were amplified from Burkholderia multivorans genomic 

DNA using primer pairs of araC-Acc65I-F/araC-NheI-R, araD-NheI-F/araD-remBlpI-R, 

araD-remBlpI-F/araA-HindIII-R, araA-HindIII-F/araB-NdeI-R and araB-NdeI-F/araE-

BlpI-R respectively. The two fragments of araD-araA were then used as templates for 

overlap PCR using primer pair araD-NheI-F/araA-HindIII-R. The fragments araC, araD-

araA, araB and araE were double-digested with enzymes Acc65I/NheI, NheI/HindIII, 
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HindIII/NdeI and NdeI/BlpI respectively and these were ligated with linearized pZA-lac 

vector digested with Acc65I/BlpI to form the plasmid pBDO-3. To construct pBDO-12, 

fragment araB was amplified from B. multivorans genomic DNA using different primer 

pair araB-HindIII-F/araB-BlpI-R and the resulting PCR product was digested with 

HindIII/BlpI. The fragments araC Acc65I/NheI digest, araD-araA NheI/HindIII digest 

and araB HindIII/BlpI digest were ligated with linearized pZA-lac vector digested with 

Acc65I and BlpI to construct pBDO-12. To make plasmid pBDO-4, one fragment of 

vector from pBDO-1 plasmid, one fragment of ycbC from B. subtilis, two fragments of 

garD-1 and garD-2 from E. coli, and two more fragments from P. putida KT2440, were 

amplified using primer pairs of pZA-F/pZAAcc-R, KdaBS-F/KdaBS-R, GarD-F/GarD-

Acc-R, GarD-Acc-F/GarD-R, udh-F/udh-Bsa-R, and udh-Bsa-F/udh-R, respectively. 

These six fragments were assembled by the golden gate method130 to form plasmid 

pBDO-4. Four fragments of BFD, kivd, ipdC and yqhD were amplified from genomic 

DNA of P. putida, L. lactis, S. typhimurium and E. coli, respectively, by using primer 

pairs of BFDAcc-F/BFDSphI-R, KIVDAcc-F/KIVDSphI-R, IPDCAcc-F/IPDCSphI-R 

and YqhDSphI-F/YqhDXbaI-R, respectively. Kivd and yqhD were digested with 

Acc65I/SphI and SphI/XbaI, and then inserted into the corresponding site of pZElac to 

form plasmid pBDO-5. Kivd in pBDO-5 was replaced by ipdC and BFD to build 

plasmids, pBDO-6 and pBDO-7. Two fragments of adhA and adh6 were amplified from 

L. lactis and S. cerevisiae genomic DNA, respectively by using primer pairs adhA-SphI-

F/adhA-XbaI-R and Adh6-SphI-F/Adh6-XbaI-R, another two fragments of yahK and 

yjgB were amplified from E. coli genomic DNA with primer pairs of yahK-SphI-F/yahK-
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XbaI-R and yjgB-SphI-F/yjgB-XbaI-R. These four fragments were used to replace yqhD 

in plasmid pBDO-5 to make plasmids of pBDO-8, pBDO-9, pBDO-10 and pBDO-11.  

Twenty Kivd mutant fragments of S286Y-1, S286Y-2, S286L-1, S286L-2, 

S286F-1, S286F-2, V461I-1, V461I-2, V461L-1, V461L-2, V461M-1, V461M-2, I465F-

1, I465F-2, I465H-1, I465H-2, I465L-1, I465L-2, I465M-1 and I465M-2 were amplified 

from plasmid pBDO-5 by using primer pairs of KIVDAcc-F/S286Y-R, S286Y-

F/KIVDSphI-R, KIVDAcc-F/S286L-R, S286L-F/KIVDSphI-R, KIVDAcc-F/S286F-R, 

S286F-F/KIVDSphI-R, KIVDAcc-F/V461I-R, V461I-F/KIVDSphI-R, KIVDAcc-

F/V461L-R, V461L-F/KIVDSphI-R, KIVDAcc-F/V461M-R, V461M-F/KIVDSphI-R, 

KIVDAcc-F/I465F-R, I465F-F/KIVDSphI-R, KIVDAcc-F/I465H-R, I465H-

F/KIVDSphI-R, KIVDAcc-F/I465L-R, I465L-F/KIVDSphI-R, KIVDAcc-F/I465M-R 

and I465M-F/KIVDSphI-R, respectively. Ten fragments of S286Y, S286L, S286F, 

V461I, V461L, V461M, I465F, I465H, I465L and I465M amplified with primers 

KIVDAcc-F, KIVDSphI-R by using PCR templates of S286Y-1 and S286Y-2; S286L-1 

and S286L-2; S286F-1, and S286F-2; V461I-1 and V461I-2; V461L-1 and V461L-2; 

V461M-1 and V461M-2; I465F-1 and I465F-2; I465H-1 and I465H-2; I465L-1 and 

I465L-2; and I465M-1 and I465M-2; replaced the wild type kivd of pBDO-5 to form 

plasmids of pBDO-13, pBDO-14, pBDO-15, pBDO-16, pBDO-17, pBDO-18, pBDO-19, 

pBDO-20, pBDO-21, and pBDO-22. 

 To construct the plasmid pBDO-23, the gene fragments of DR64-8447, DR64-

8448, DR64-8449 and DR64-8450 were amplified from B. xenovorans LB400 genomic 

DNA using primer pairs of DR64-8447-F/DR64-8447-R, DR64-8448-F/DR64-8448-R, 
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DR64-8449-F/DR64-8449-R and DR64-8450-F/DR64-8450-R respectively. The 

fragments DR64-8447, DR64-8448, DR64-8449 and DR64-8450 were double-digested 

with enzymes Acc65I/NheI, NheI/HindIII, HindIII/NdeI and NdeI/BlpI respectively and 

these were ligated with linearized pZA-lac vector digested with Acc65I/BlpI to form the 

plasmid pBDO-23. To make the plasmid pBDO-24, the DR64-8452 gene was PCR 

amplified by oligos DR64-8452-F and DR64-8452-R using genomic DNA of B. 

xenovorans as template, and then this coding region was inserted into the site between 

Acc65I and XbaI of vector pZElac23 after digestion. To construct the plasmid pBDO-25, 

the gene fragments of Bamb4925, Bamb4923, Bamb4922 and Bamb4918 were amplified 

from B. ambifaria genomic DNA using primer pairs of Bamb4925-Acc-F/Bamb4925-

Nhe-R, Bamb4923-Nhe-F/Bamb4922-HindR, and Bamb4918-Hind-F/Bamb4918-Nde-R, 

respectively. The fragments Bamb4925, Bamb4923-4922 and Bamb4918 were double-

digested with enzymes Acc65I/NheI, NheI/HindIII and HindIII/NdeI respectively and 

these were ligated with linearized pZA-lac vector digested with Acc65I/NdeI to form the 

plasmid pBDO-25. To make the plasmid pBDO-26, the Bamb4915 gene was PCR 

amplified by oligos Bamb4915-Acc-F/Bamb4915-Xba-R using genomic DNA of B. 

ambifaria as template, and then this coding region was inserted into the site between 

Acc65I and XbaI of vector pZElac23 after digestion. To construct the plasmid pBDO-27, 

the gene fragments of BTH_II1632, BTH_II1630, BTH_II1629 and BTH_II1625 were 

amplified from B. thailandensis genomic DNA using primer pairs of BTH1632-Acc-

F/BTH1632-BamHR, BTH1630BamHF/BTH1629-Hind-R, and BTH1625-Hind-

F/BTH1625-Blp-R respectively. The fragments BTH_II1632, BTH_II1630-1629 and 
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BTH_II1625 were double-digested with enzymes Acc65I/BamHI, BamHI/HindIII and 

HindIII/BlpI respectively and these were ligated with linearized pZA-lac vector digested 

with Acc65I/BlpI to form the plasmid pBDO-27. To make the plasmid pBDO-28, the 

BTH_II1631 gene was PCR amplified by oligos BTH1631-Acc-F/BTH1631-Xba-R using 

genomic DNA of B. thailandensis as template, and then this coding region was inserted 

into the site between Acc65I and XbaI of vector pZElac23 after digestion.  

To characterize enzyme activities, hexahistidine (His6)-tagged xylB, xylD, xylX, 

araA, araC, araD, udh, garD, ycbC, DR64_8447, DR64_8449, and DR64_8450 were 

amplified from pBDO-1, pBDO-3, pBDO-4, and pBDO-23 using primers His-xylB-F and 

His-xylB-R; His-xylD-F and His-xylD-R; His-xylX-F and His-xylX-R; His-araA-F and 

His-araA-R; His-araC-F and His-araC-R; His-araD-F and His-araD-R; His-udh-F and 

His-udh-R; His-garD-F and His-garD-R; His-ycbC-F and His-ycbC-R; His-DR64_8447-

F and His-DR64_8447-R; His-DR64_8449-F and His-DR64_8449-R; and His-

DR64_8450-F and His-DR64_8450-R, respectively. These fragments were then ligated 

with the ColE1 ori backbone to create pBDO-29, pBDO-30, pBDO-31, pBDO-32, 

pBDO-33, pBDO-34, pBDO-35, pBDO-36, pBDO-37, pBDO-38, pBDO-39, and pBDO-

40. All plasmids in this work were sequenced using appropriate primers to confirm 

sequence fidelity. 

5.4.3. Growth assay  

For the D-xylose, L-arabinose and D-galacturonate growth assays, the Δicd strains 

(BDO04 for D-xylose, BDO06 for L-arabinose and BDO08 for galacturonate) were 

transformed with 2-ketoglutarate producing plasmids (pBDO-1 and pBDO-2 for C. 
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crescentus D-xylose; pBDO-3 for B. multivorans L-arabinose; pBDO-2 and pBDO-4 for 

D-galacturonate, pBDO-23 and pBDO-24 for B. xenovorans D-xylose, pBDO-25 and 

pBDO-26 for B. ambifaria L-arabinose; and pBDO-27 and pBDO-28 for B. thailandensis 

L-arabinose). Three freshly transformed colonies were inoculated overnight in 2 ml 

2×YT containing appropriate antibiotics. The optical density (OD) of all strains were 

measured using a spectrophotometer at 600 nm and the cell densities were normalized 

before starting the assays. M9 minimal media containing 5 g/l of each carbon source 

(glucose and D-xylose/L-arabinose/D-galacturonate), appropriate antibiotics and 0.2 mM 

IPTG was used for all assays. Optical density was measured every few h using a 

spectrophotometer. 

5.4.4. Protein expression and purification  

His-tagged proteins were transformed into BL21 strain. The transformed cells were 

inoculated from an overnight pre-culture at 1/100 dilution and grown in 200 ml of 2×YT 

medium containing 100 mg/l ampicillin. When the OD600 reached 0.6, 0.5 mM IPTG 

was added to induce protein expression, followed by incubation at 30°C overnight. Then 

the cells were pelleted by centrifuging at 3,220 rcf for 15 minutes. The supernatants were 

discarded and the pellets were stored at -80 °C. All the following steps were carried out at 

4 °C to prevent protein degradation. For lysis, the cell pellets were first thawed on ice-

water mixture and re-suspended in 15 ml lysis buffer. The lysis buffer (pH=7.6) 

contained 50 mM Tris-HCl, 100 mM NaCl, 10 mM imidazole, 5% glycerol, 1 mM DTT. 

Cell lysis was performed by sonication using the Heat Systems Ultrasonics W-225 

Sonicator in a continuous mode set at 50% duty cycle and output control 5. Each sample 
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was sonicated for 6 cycles of one-minute sonication with intermittent one-minute cooling 

on ice-water mixture. The cell lysates were centrifuged at 10,733 rcf for 15 minutes. The 

supernatant was collected for purification. 4 ml of HisPur Ni-NTA resin solution 

(Thermo Scientific) was loaded in a column and the storage buffer was allowed to pass 

through by gravity to get a 2 ml final resin bed volume. The resin was equilibrated with 

10 ml of lysis buffer and drained. The supernatant was then loaded in the column and 

allowed to pass through by gravity. The column was then washed twice with 10 ml of 

wash buffer (50 mM Tris-HCl, 100 mM NaCl, and 25mM imidazole, pH=7.6). The 

bound protein was eluted with 15 ml of elution buffer (pH=8.0) which contained 50 mM 

Tris-HCl, 250 mMNaCl, and 250 mM imidazole. The final protein sample was then 

buffer-exchanged using Amicon Ultra centrifugal filters (Millipore) with the storage 

buffer (50M Tris-HCl, 2mM MgSO4, 20% glycerol, pH=8.0). The concentrated protein 

stored at -80°C. Purified protein concentration was determined by Quick Start Bradford 

protein assay kit purchased from Bio-Rad Laboratories. 

5.4.5. Enzymatic assays  

D-Xylose dehydrogenase (XylB/DR64-8447), L-arabinose dehydrogenase (AraA), and 

uronate dehydrogenase (Udh): Enzyme activities of XylB/DR64-8447, AraA and Udh 

were assayed by monitoring initial NADH generation at 340 nm at 30 °C using D-xylose, 

L-arabinose, and D-galacturonate as substrates, respectively120. Kinetic assays were 

carried out using 0 to 10 mM D-xylose/L-arabinose/D-galacturonate and 1 mM NAD+ in 

100 mM Tris-HCl and 5 mM MgCl2, pH 7.5. A series of enzymatic assays were 
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conducted to estimate the initial activity as a function of starting substrate concentration. 

This data was used to fit the parameters of the Michaelis-Menten kinetic model, kcat and 

KM, by nonlinear least-squares regression using the intrinsic nlinfit function of the 

Matlab software program. Kinetic constants (kcat/KM) for following enzymes were 

calculated with the same method. 

Xylonate dehydratase (XylD/DR64-8449), L-arabonate dehydratase (AraC), and D-

galactarate dehydratase (GarD): Enzymatic activities of the three dehydratases were 

assayed according to a modified procedure of MacGee and Doudoroff using the 

semicarbazide method131. Kinetic assays were carried out using 100 nM of D-xylonate 

dehydratase/L-arabonate dehydratase/D-galactarate dehydratase in 100 mM Tris-HCl and 

5 mM MgSO4, pH 7.5. The reaction was initiated by the addition of D-xylonate/L-

arabonate/D-galactarate and stopped after 0, 1, 2, 3, 5, and 10 min with 2% (v/v) 

hydrochloride (containing 1.5% sodium acetate trihydrate) and incubated at room 

temperature for 30 min. Finally, the 2-ketoacids produced were quantified by detection of 

their semicarbazone absorbance at 250 nm. 

2-Keto-3-deoxy-D-xylonate dehydratase (XylX/DR64-8450), 2-keto-3-deoxy-L-

arabonate dehydratase (AraD), and 5-keto-4-deoxy-D-glucarate dehydratase (YcbC): 

Enzymatic activities of XylX, DR64-8450, AraD, and YcbC were assayed 

spectrophotometrically in a coupled assay with the corresponding previous dehydratase 

and 2-ketoglutaric semialdehyde dehydrogenase (KGSADH)131. The assay was 

performed in 100 mM Tris-HCl buffer (pH=7.5) with 5mM MgSO4 containing 0-20 mM 
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D-xylonate/L-arabonate/D-galactarate and 1mM NAD+. After the addition of 100 nM D-

xylonate dehydratase (XylD/DR64-8449)/L-arabonate dehydratase (AraC)/D-galactarate 

dehydratase (GarD) and 100 nM of the KGSADH, the mixture was incubated at 25 °C for 

15 min. No change in absorbance at 340 nm was observed in this stage. The reaction was 

initiated by the addition of an appropriate amount of 2-keto-3-deoxy-D-xylonate 

dehydratase (XylX/DR64-8450)/2-keto-3-deoxy-L-arabonate dehydratase (AraD)/5-keto-

4-deoxy-D-glucarate dehydratase (YcbC), and the increasing absorbance at 340 nm 

caused by NADH produced in the reaction was monitored. 

2-Ketoacid decarboxylase (Kivd) and alcohol dehydrogenase (YqhD): The 

decarboxylase activity of Kivd was measured by a coupled enzymatic assay with AraC, 

AraD, and YqhD132. Excess AraC, AraD, and YqhD was used and the oxidation of 

-10 mM L-arabonate in assay buffer (100 

mM Tris-HCl buffer, pH=7.5, 5 mM MgSO4, 0.5 mM ThDP) with a total volume of 0.1 

ml. The mixture was incubated at 30 °C for 1 h and 10 nM Kivd was added. The 

dehydrogenase activity of YqhD was assayed according to NADPH initial consumption 

rates in a coupled assay. The assay mixture contained 1mM NADPH, 100 nM Kivd, 1 

-10 mM L- -HCl 

buffer (pH=7.5) with 5 mM MgSO4. The mixture was first incubated at 30 °C for 1 h. 

Afterwards, 10 nM YqhD was added and the NADPH consumption rate was monitored. 
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5.4.6. Shake flask batch fermentation  

125 ml conical flasks with 0.2 g CaCO3 were autoclaved and dried to perform all small-

scale fermentations. The flasks were filled with 5 ml M9 medium supplemented with 5 

g/l yeast extract, 20 g/l glucose, 20 g/l D-xylose/L-arabinose/D-galacturonate and the 

corresponding antibiotics. 200 µl of overnight cultures incubated in 2×YT medium were 

transferred into the flasks and placed in a shaker at a speed of 250 rpm. After adding 0.1 

mM isopropyl-β-D-thiogalactoside (IPTG), the flasks were screw-capped and sealed by 

parafilm and the fermentation was performed for 48 h at 30 °C. The fermentation 

products were measured by HPLC. 

5.4.7. Fed-batch fermentation in bioreactors  

Fermentation media for bioreactor cultures contained the following composition, in 

grams per liter: glucose, 10; yeast extract, 10; K2HPO4, 7.5; citric acid monohydrate, 

2.0; MgSO4·7H2O, 2.0, ferric ammonium citrate, 0.3; thiamine hydrochloride, 0.008; D-

(+)-biotin, 0.008; nicotinic acid, 0.008; pyridoxine, 0.032; ampicillin, 0.1; kanamycin, 

0.05; spectinomycin, 0.1 (for BDO and MEV co-production only); 95—98% H2SO4, 0.8 

mL; and 1 ml trace metal solution. Trace metal solution contained, in grams per liter: 

NaCl, 10; citric acid, 40; ZnSO4·7H2O, 1.0; MnSO4·H2O, 30; CuSO4·5H2O, 0.1; 

H3BO3, 0.1; Na2MoO4·2H2O, 0.1; FeSO4·7H2O, 1.0; CoCl2·6H2O, 1.0. The feed 

solution contained, in grams per liter: glucose, 600; K2HPO4, 7.4; antifoam, 10 ml. 

Fermentation experiments were performed in 1.3-l Bioflo 115 Bioreactors 

(Eppendorf) using an initial working volume of 0.5 l. The bioreactor was inoculated with 
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10% of overnight pre-culture with 2×YT medium. The culture condition was set at 37 °C, 

20% dissolved oxygen level (DO), and pH 6.8. After OD600 reached 6.0, 0.2 mM IPTG 

and 20 g/l D-xylose/L-arabinose/D-galacturonate was added. Temperature was changed 

to 30 °C and DO was set to 10%. The pH was controlled at 6.8 by automatic addition of 

26% ammonium hydroxide solution. Air flow rate was maintained at 1 vvm during the 

whole process and DO was controlled by the agitation rate (from 300 to 800 rpm). The 

feeding rate of glucose was manually adjusted according to the glucose consumption rate 

of cells to meet metabolic balance. D-Xylose, L-arabinose, or D-galacturonate was added 

in batches. Fermentation culture was sampled every few h to determine cell density and 

production level. 

5.4.8. Metabolite analysis  

Fermentation products were analyzed using an Agilent 1260 Infinity HPLC equipped with 

an Aminex HPX87H column and a refractive-index detector (RID). The mobile phase was 

0.01 N H2SO4 with a flow rate of 0.6 ml/min. The column temperature and RID 

temperature were 35 °C and 50 °C, respectively. 
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5.5. Supplementary Information  

Table 5.S1. Strains and plasmids used in this study. 

Name Relevant genotype Reference 

Strains   

BW25113 rrnBT14 ΔlacZWJ16hsdR514 ΔaraBADAH33 ΔrhaBADLD78 419 

XL10-Gold TetRΔ (mcrA)183 Δ (mcrCB-hsaSMR-mrr)173 endA1supE44 
thi-1 recA1 

Stratagene 

BL21 E. coli B F- dcmompThsdS(rB- mB-) gal [malB+]K-12(λS) 420 

BDO01 BW25113 ΔxylA This work 

BDO02 BW25113 ΔxylAΔyjhH This work 

BDO03 BW25113 ΔxylAΔyjhHΔyagE This work 

BDO04 BW25113 ΔxylAΔyjhHΔyagEΔicd This work 

BDO05 BW25113  419 

BDO06 BW25113 Δicd This work 

BDO07 BW25113 ΔgarLΔuxaC This work 

BDO08 BW25113 ΔgarLΔuxaCΔicd This work 

Plasmids   

pBDO-1 P15A origin,KanR, PLlacO1: xylB-xylC-xylD-xylX This work 

pBDO-2 ColE1 origin, AmpR, PLlacO1:xylA(CC) This work 

pBDO-3 P15A origin, KanR, PLlacO1:araC-araD-araA-araB-araE This work 

pBDO-4 P15A origin, KanR, PLlacO1:udh-garD-ycbC This work 

pBDO-5 ColE1 origin, AmpR, PLlacO1: kivd -yqhD This work 

pBDO-6 ColE1 origin, AmpR, PLlacO1: ipdC -yqhD This work 

pBDO-7 ColE1 origin, AmpR, PLlacO1: BFD-yqhD This work 

pBDO-8 ColE1 origin, AmpR, PLlacO1:kivd-adhA This work 

pBDO-9 ColE1 origin, AmpR, PLlacO1:kivd-adh6 This work 
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pBDO-10 ColE1 origin, AmpR, PLlacO1:kivd-yahK This work 

pBDO-11 ColE1 origin, AmpR, PLlacO1:kivd-yjgB This work 

pBDO-12 P15A origin, KanR, PLlacO1:araC-araD-araA-araB This work 

pBDO-13 ColE1 origin, AmpR, PLlacO1:kivd(S286Y)-yqhD This work 

pBDO-14 ColE1 origin, AmpR, PLlacO1:kivd(S286L)-yqhD This work 

pBDO-15 ColE1 origin, AmpR, PLlacO1:kivd(S286F)-yqhD This work 

pBDO-16 ColE1 origin, AmpR, PLlacO1:kivd(V461I)-yqhD This work 

pBDO-17 ColE1 origin, AmpR, PLlacO1:kivd(V461L)-yqhD This work 

pBDO-18 ColE1 origin, AmpR, PLlacO1:kivd(V461M)-yqhD This work 

pBDO-19 ColE1 origin, AmpR, PLlacO1:kivd(I465F)-yqhD This work 

pBDO-20 ColE1 origin, AmpR, PLlacO1:kivd(I465H)-yqhD This work 

pBDO-21 ColE1 origin, AmpR, PLlacO1:kivd(I465L)-yqhD This work 

pBDO-22 ColE1 origin, AmpR, PLlacO1:kivd(I465M)-yqhD This work 

pBDO-23 P15A origin,KanR, PLlacO1: DR64_8447-8448-8449-8450 This work 

pBDO-24 ColE1 origin, AmpR, PLlacO1: DR64_8452 This work 

pBDO-25 P15A origin,KanR, PLlacO1: Bamb_4925-4923-4922-4918 This work 

pBDO-26 ColE1 origin, AmpR, PLlacO1: Bamb_4915 This work 

pBDO-27 P15A origin,KanR, PLlacO1: BTH_II1632-1630-1629-1625 This work 

pBDO-28 ColE1 origin, AmpR, PLlacO1: BTH_II1631 This work 

pBDO-29 ColE1 origin, AmpR, PLlacO1: 6xhis-xylB This work 

pBDO-30 ColE1 origin, AmpR, PLlacO1: 6xhis-xylD This work 

pBDO-31 ColE1 origin, AmpR, PLlacO1: 6xhis-xylX This work 

pBDO-32 ColE1 origin, AmpR, PLlacO1: 6xhis-araA This work 

pBDO-33 ColE1 origin, AmpR, PLlacO1: 6xhis-araC This work 

pBDO-34 ColE1 origin, AmpR, PLlacO1: 6xhis-araD This work 

pBDO-35 ColE1 origin, AmpR, PLlacO1: 6xhis-udh This work 
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pBDO-36 ColE1 origin, AmpR, PLlacO1: 6xhis-garD This work 

pBDO-37 ColE1 origin, AmpR, PLlacO1: 6xhis-ycbC This work 

pBDO-38 ColE1 origin, AmpR, PLlacO1: 6xhis-DR64_8447 This work 

pBDO-39 ColE1 origin, AmpR, PLlacO1: 6xhis- DR64_8449 This work 

pBDO-40 ColE1 origin, AmpR, PLlacO1: 6xhis- DR64_8450 This work 

pMEV-1 pUC origin, SpecR, PLlacO1: atoB-mvaS-mvaE 416  

 

 
Table 5.S2. In vitro enzymatic activities of B. xenovorans and C. crescentus D-xylose operon 

 

Table 5.S3. Primers used in this study 

Primer Name Sequence 

xylBAcc-F GGGCCC GGTACC ATGTCCTCAGCCATCTATCCCAGCCT 

xylBBamHI-R GGGCCCGGATCC TTAACGCCAGCCGGCGTCGATCCAGT 

xylCBamHI-F GGGCCC GGATCC 
AGGAGAAATTAACTATGACCGCTCAAGTCACTTGCGTATG 

xylCNhe-R GGGCCC GCTAGC TTAGACAAGGCGGACCTCATGCTGGG 

xylDNheI-F GGGCCC GCTAGC 
AGGAGAAATTAACTATGAGGTCCGCCTTGTCTAACCGCAC 

xylDHind-R GGGCCC AAGCTT TTAGTGGTTGTGGCGGGGCAGCTTGG 
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xylXHind-F GGGCCC AAGCTT 
AGGAGAAATTAACTATGGTTTGTCGGCGGCTTCTAGCATG 

xylXBlpRem-R GCGCAGCTGGCGTTGTTGTCCTTGGCCTTTCTGAGCAGCAGGGCCGAACGAC
CTTCGAA 

xylXBlpRem-F TTCGAAGGTCGTTCGGCCCTGCTGCTCAGAAAGGCCAAGGACAACAACGCC
AGCTGCGC 

xylXBlpI-R GGGCCC GCTCAGC TTAGAGGAGGCCGCGGCCGGCCAGGT 

CC0822Acc-F GGGCCC GGTACC ATGACCGACACCCTGCGCCATTACAT 

CC0822Xba-R GGGCCC TCTAGA TTACGACCACGAGTAGGAGGTTTTGG 

BFDAcc-F GGGCCC GGTACC ATGGCTTCGGTACACGGCACCACATA 

BFDSphI-R GGGCCC GCATGC TTACTTCACCGGGCTTACGGTGCTTA 

KIVDAcc-F GGGCCC GGTACC ATGTATACAGTAGGAGATTACCTATT 

KIVDSphI-R GGGCCC GCATGC TTATGATTTATTTTGTTCAGCAAATA 

IPDCAcc-F GGGCCC GGTACC ATGCAAAACCCCTATACCGTGGCCGA 

IPDCSphI-R GGGCCC GCATGC TTATCCCCCGTTGCGGGCTTCCAGCG 

YqhDSphI-F GGGCCC GCATGC 
AGGAGAAATTAACTATGAACAACTTTAATCTGCACACCCC 

YqhDXbaI-R GGGCCC TCTAGA TTAGCGGGCGGCTTCGTATATACGGC 

Adh6-SphI-F GGGCCC GCATGC AGGAGATATACCATGTCTTATCCTGAGAAATTTGAAGG 

Adh6-XbaI-R GGGCCC TCTAGA CTAGTCTGAAAATTCTTTGTCGTAGC 

yahK-SphI-F GGGCCC GCATGC AAGGAGATATACC 
ATGAAGATCAAAGCTGTTGGTGCATA 

yahK-XbaI-R GGGCCC TCTAGA TTAGTCTGTTAGTGTGCGATTATCGA 

yjgB-SphI-F GGGCCC GCATGC AAGGAGATATACC 
ATGTCGATGATAAAAAGCTATGCCGC 

yjgB-XbaI-R GGGCCC TCTAGA TTAAAAATCGGCTTTCAACACCACGC 

adhA-SphI-F GGGCCC GCATGC AAGGAGATATACC 
ATGAAAGCAGCAGTAGTAAGACACAA 

adhA-XbaI-R GGGCCC TCTAGA TTATTTAGTAAAATCAATGACCATTC 
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pZAAcc-R GGGCCC GGTCTCA ATAG TTTCTCCTCTTTAATGAATTCGGTCA 

KdaBS-F GGGCCC GGTCTCA CTAT GGTACC ATGAGCCGTATCAGAAAAGCACCCGC 

KdaBS-R GGGCCC GGTCTCA TTAC TTAAACCGTCGCGGCTTTTTTCGGAA 

GarD-F GGGCCC GGTCTCA GTAA GCTAGC 
AGGAGAAATTAACTATGGCCAACATCGAAATCAGACA 

GarD-Acc-R GGGCCC GGTCTCA ACCG CCATCAGGCCGTACGGCGTACC 

GarD-Acc-F GGGCCC GGTCTCA CGGT GCCCGTCATTAAAATGGCAACCCG 

GarD-R GGGCCC GGTCTCA CAGG TTAGGTCACCGGTGCCGGGTTAAACA 

udh-F GGGCCC GGTCTCA CCTG AAGCTT 
AGGAGAAATTAACTATGACCACTACCCCCTTCAATCG 

udh-Bsa-R GGGCCC GGTCTCA TGTC TCGATGCCGTAGCGGTCAAAGTAG 

udh-Bsa-F GGGCCC GGTCTCA GACA GTCAGCATTCGCATCGGCTCGTCG 

udh-R GGGCCC GGTCTCA GCGG TTAGTTGAACGGGCCGGCCACGGCGA 

pZA-F GGGCCC GGTCTCA CCGC GCTGAGCTCTAGAGGCATCAAATAAAACGAAAG 

KivdS286Y-R TTTAAATGATGAGTGAAGGCTCCTGTTGAGTAGTCTGTGAGTTTAACTCCAA
GCATCA 

KivdS286Y-F TGATGCTTGGAGTTAAACTCACAGACTACTCAACAGGAGCCTTCACTCATCAT
TTAAA 

KivdS286L-R TAAATGATGAGTGAAGGCTCCTGTTGAGAGGTCTGTGAGTTTAACTCCAAGC
ATCAGG 

KivdS286L-F CCTGATGCTTGGAGTTAAACTCACAGACCTCTCAACAGGAGCCTTCACTCATC
ATTTA 

KivdS286F-R TTAAATGATGAGTGAAGGCTCCTGTTGAGAAGTCTGTGAGTTTAACTCCAAG
CATCAG 

KivdS286F-F CTGATGCTTGGAGTTAAACTCACAGACTTCTCAACAGGAGCCTTCACTCATCA
TTTAA 

KivdV461I-R TTGATTTGGTCCATGAATTTCTCTTTCGATTGTATAACCATCATTATTGATAAT
AAAGC 

KivdV461I-F GCTTTATTATCAATAATGATGGTTATACAATCGAAAGAGAAATTCATGGACC
AAATCAA 
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KivdV461L-R TTGATTTGGTCCATGAATTTCTCTTTCGAGTGTATAACCATCATTATTGATAAT
AAAGC 

KivdV461L-F GCTTTATTATCAATAATGATGGTTATACACTCGAAAGAGAAATTCATGGACC
AAATCAA 

KivdV461M-R TGATTTGGTCCATGAATTTCTCTTTCCATTGTATAACCATCATTATTGATAATA
A 

KivdV461M-F TTATTATCAATAATGATGGTTATACAATGGAAAGAGAAATTCATGGACCAAA
TCA 

KivdI465F-R TCATTGTAGCTTTGATTTGGTCCATGGAATTCTCTTTCGACTGTATAACCATCA
T 

KivdI465F-F ATGATGGTTATACAGTCGAAAGAGAATTCCATGGACCAAATCAAAGCTACAA
TGA 

KivdI465H-R TCATTGTAGCTTTGATTTGGTCCATGGTGTTCTCTTTCGACTGTATAACCATCA
T 

KivdI465H-F ATGATGGTTATACAGTCGAAAGAGAACACCATGGACCAAATCAAAGCTACA
ATGA 

KivdI465L-R TCATTGTAGCTTTGATTTGGTCCATGCAGTTCTCTTTCGACTGTATAACCATCA
T 

KivdI465L-F ATGATGGTTATACAGTCGAAAGAGAACTGCATGGACCAAATCAAAGCTACA
ATGA 

KivdI465M-R TCATTGTAGCTTTGATTTGGTCCATGCATTTCTCTTTCGACTGTATAACCATCA
T 

KivdI465M-F ATGATGGTTATACAGTCGAAAGAGAAATGCATGGACCAAATCAAAGCTACA
ATGA 

Kivd-BamHI-R GGGCCC GGATCC ATGTATACAGTAGGAGATTACCTATT 

Kivd-Xba-R GGGCCC TCTAGA TTATGATTTATTTTGTTCAGCAAATA 

YqhD-BamHI-R GGGCCC GGATCC ATGAACAACTTTAATCTGCACACCCC 

YqhD-XbaI-R GGGCCC TCTAGA TTAGCGGGCGGCTTCGTATATACGGC 

XylA-BamHI-F GGGCCC GGATCC ATGACCGACACCCTGCGCCATTACAT 

XylA-XbaI-R GGGCCC TCTAGA TTACGACCACGAGTAGGAGGTTTTGG 

XylX-BamHI-F GGGCCC GGATCC ATGGTTTGTCGGCGGCTTCTAGCATG 
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XylX-XbaI-R GGGCCC TCTAGA TTAGAGGAGGCCGCGGCCGGCCAGGT 

AraC-Acc65I-F CCGAATTCATTAAAGAGGAGAAAGGTACCATGTCGGCAACGAAACCCAGGC
TGCGCTCC 

AraC-NheI-R GATCCTGCGTCAGTCAAACGGCGGGCTAGCTCAGTGCGAGTGGCTCGGCAC
CTCCGCGCC 

AraD-NheI-F GAGGTGCCGAGCCACTCGCACTGAGCTAGCCCGCCGTTTGACTGACGCAGG
ATCCGAACC 

AraD-remBlpI-R GGCTCATCGTGCGCTCCTTGGTTCGTTGCTCACCGTGCCCAGCGCAGCACGA
GCGGATCG 

AraD-remBlpI-F CGATCCGCTCGTGCTGCGCTGGGCACGGTGAGCAACGAACCAAGGAGCGCA
CGATGAGCC 

AraA-HindIII-R TCGATGCTCAGGCGGCGCGCACGCAAGCTTTCAGCGGCCGAACGCTTCGGT
GTCGACGCG 

AraA-HindIII-F GACACCGAAGCGTTCGGCCGCTGAAAGCTTGCGTGCGCGCCGCCTGAGCAT
CGATTATCG 

AraB-NdeI-R TTGCGCCGCGTCGCCGCCATATGTCAGGTTCCGACGCCGCGCTTCAGTGCGA
ATCGCGCG 

AraB-NdeI-F CTGAAGCGCGGCGTCGGAACCTGACATATGGCGGCGACGCGGCGCAACCCG
ACCTGGGCC 

AraE-BlpI-R TCGTTTTATTTGATGCCTCTAGAGCTCAGCTCAGATCGGGTAATGCCGCGGC
GCGGTCTG 

AraB-BlpI-R CCAGGTCGGGTTGCGCCGCGTCGCCGCGCTCAGCTCAGGTTCCGACGCCGC
GCTTCAGTG 

His-xylB-F GGGCCCGGATCCATGTCCTCAGCCATCTATCCCAGCCT 

His-xylB-R GGGCCCTCTAGATTAACGCCAGCCGGCGTCGATCCAGT 

His-xylD-F GAGAGGATCGCATCACCATCACCATCACGGATCCATGAGGTCCGCCTTGTCT
AACCGCAC 

His-xylD-R GACTGAGCCTTTCGTTTTATTTGATGCCTCTAGATTAGTGGTTGTGGCGGGG
CAGCTTGG 

His-xylX-F GGGCCCGGATCCATGGTTTGTCGGCGGCTTCTAGCATG 

His-xylX-R GGGCCCTCTAGATTAGAGGAGGCCGCGGCCGGCCAGGT 
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His-udh-F GGGCCCGGATCCATGACCACTACCCCCTTCAATCGCCT 

His-udh-R GGGCCCTCTAGATTAGTTGAACGGGCCGGCCACGGCGA 

His-garD-F GGGCCCGGATCCATGGCCAACATCGAAATCAGACAAGA 

His-garD-R GGGCCCTCTAGATTAGGTCACCGGTGCCGGGTTAAACA 

His-ycbC-F GGGCCCGGATCCATGAGCCGTATCAGAAAAGCACCCGC 

His-ycbC-R GGGCCCTCTAGATTAAACCGTCGCGGCTTTTTTCGGAA 

His-araA-F GGATCGCATCACCATCACCATCACGGATCCATGAGCCAAGTCGTTTCGCTGG
GTGTCGTC 

His-araA-R GAGCCTTTCGTTTTATTTGATGCCTCTAGATTAGCGGCCGAACGCTTCGGTGT
CGACGCG 

His-araC-F GGATCGCATCACCATCACCATCACGGATCCATGTCGGCAACGAAACCCAGGC
TGCGCTCC 

His-araC-R GAGCCTTTCGTTTTATTTGATGCCTCTAGATTAGTGCGAGTGGCTCGGCACCT
CCGCGCC 

His-araD-F GGATCGCATCACCATCACCATCACGGATCCATGACATCGAGCCGTACGCCGC
GTTACCGC 

His-araD-R GAGCCTTTCGTTTTATTTGATGCCTCTAGATTAGCGTGCCCAGCGCAGCACGA
GCGGATC 

DR64-8447-F AATTCATTAAAGAGGAGAAAGGTACCATGTCGTACGCAATCTATCCCAGCCT 

DR64-8447-R ACAGGGGGATGAATTTTCATAGTTAATTTCTCCTGGATCCTTATTCTCCGTAC
CACCCGG 

DR64-8448-F CCGGGTGGTACGGAGAATAAGGATCCAGGAGAAATTAACTATGAAAATTCA
TCCCCCTGT 

DR64-8448-R CGCGGTGTGGATGCTGACATAGTTAATTTCTCCTGCTAGCTTATTGCGCGAA
GCCCCATT 

DR64-8449-F AATGGGGCTTCGCGCAATAAGCTAGCAGGAGAAATTAACTATGTCAGCATCC
ACACCGCG 

DR64-8449-R GATGGAGAAGTTGCGGACATAGTTAATTTCTCCTAAGCTTTTAGTGCGAATG
CCTCGGAT 

DR64-8450-F ATCCGAGGCATTCGCACTAAAAGCTTAGGAGAAATTAACTATGTCCGCAACT
TCTCCATC 
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DR64-8450-R CGTTTTATTTGATGCCTCTAGACATATGTTAGGCCGACGCAAGCAGCCCGCG
TGCG 

DR64-8452-F TTAAAGAGGAGAAAGGTACCATGAGCCAGTTTGCGAACTA 

DR64-8452-R TTTTATTTGATGCCTCTAGATTAAACCGCGCCCGGACTCA 

HisDR64-8447-F GCATCACCATCACCATCACGGATCCATGTCGTACGCAATCTATCCCAGCC 

HisDR64-8447-R TTTCGTTTTATTTGATGCCTCTAGATTATTCTCCGTACCACCCGGCGTCG 

HisDR64-8449-F GCATCACCATCACCATCACGGATCCATGTCAGCATCCACACCGCGCCGGC 

HisDR64-8449-R TTTCGTTTTATTTGATGCCTCTAGATTAGTGCGAATGCCTCGGATTGCCG 

HisDR64-8450-F GCATCACCATCACCATCACGGATCCATGTCCGCAACTTCTCCATCCAGTT 

HisDR64-8450-R TTTCGTTTTATTTGATGCCTCTAGATTAGGCCGACGCAAGCAGCCCGCGT 

Bamb4925-Acc-F ACTGACCGAATTCATTAAAGAGGAGAAAGGTACCATGTCGGCAACAAAACC
CAGGCTGCG 

Bamb4925-Nhe-
R 

CTGCTCGATGTCATAGTTAATTTCTCCTGCTAGCTCAATGCGAATGGCTCGGC
ACGTCCG 

Bamb4923-Nhe-
F 

GCCATTCGCATTGAGCTAGCAGGAGAAATTAACTATGACATCGAGCAGCACA
CCGCGCTA 

Bamb4922-Hind-
R 

CAATCTGTTGCATGGGTTTTTTCTCCTGAAGCTTTCAGCGGCCGAACGCGTCG
GTCCCGA 

Bamb4918-Hind-
F 

GTTCGGCCGCTGAAAGCTTCAGGAGAAAAAACCCATGCAACAGATTGATCC
GGCCGCGTC 

Bamb4918-Nde-
R 

TCGTTTTATTTGATGCCTCTAGAGCTCACATATGTCAGCCGCGCGGCGCGCCC
ATGAATC 

Bamb4915-Acc-F ACTGACCGAATTCATTAAAGAGGAGAAAGGTACCATGACCGACAGACGGAT
GCTGATCGC 

Bamb4915-Xba-R GACTGAGCCTTTCGTTTTATTTGATGCCTCTAGATCATATCGGGTAATGCCGC
GGCGTGG 

BTH1632-Acc-F ACCGAATTCATTAAAGAGGAGAAACCACGGTACCATGTCGGCATCGAAACC
CAAGCTGCG 

BTH1632-BamHR GGCTCGTATTCATGGGTTTTTTCTCCTGGGATCCTCAGTGCGAATGCCGCGG
CACCGCGG 
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BTH1630-BamHF GCATTCGCACTGAGGATCCCAGGAGAAAAAACCCATGAATACGAGCCGTTC
GCCGCGCTA 

BTH1629-Hind-R TTCGATGATTCCATAGTTAATTTCTCCTAAGCTTTCAGCGCTGAAACGGGTCG
GCCGCGA 

BTH1625-Hind-F CGTTTCAGCGCTGAAAGCTTAGGAGAAATTAACTATGGAATCATCGAATCGG
CCGGCGCG 

BTH1625-Blp-R GTTTTATTTGATGCCTCTAGAGCTCAGCCATATGTCACGCGTTGCGCGCGAG
CGCGAACC 

BTH1631-Acc-F ACTGACCGAATTCATTAAAGAGGAGAAAGGTACCATGAACGGGCCCACGGG
CGAACTCCT 

BTH1631-Xba-R GACTGAGCCTTTCGTTTTATTTGATGCCTCTAGATCACGTTCGCGCACCCGCG
CTCGCCT 

 

 

 

 

 

Figure 5.S1 HPLC peak of in vitro BDO production using purified enzymes. Reaction was carried out in 

100 mM Tris-HCl buffer (pH ~ 7.5) with 5 mM MgSO4 using 5 mM L-arabonate, 1 µM purified L-

arabonate dehydratase (AraC), 1 µM purified L-KDA dehydratase (AraD), 1 µM purified Kivd, 1 µM 

purified YqhD, 5 mM thiamine diphosphate (ThDP) and 1 mM NADPH as co-factor. This reaction mixture 

was allowed to stand at room temperature for 30 mins and HPLC was performed on the resulting mixture. 

HPLC results showed that 2.5 mM L-arabonate was consumed and 1.7 mM BDO was produced after half 

hour. This validates the in vitro functionality of our proposed BDO pathway.  
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Figure 5.S2 Butanedial oxidation by endogenous E. coli enzymes. In vitro enzyme assay was performed 

using cell extract. The reaction was carried out in 100 mM Tris-HCl buffer (pH ~ 7.5) with 5 mM MgSO4 

containing 1 µM L-arabonate dehydratase (AraC), 1 µM L-KDA dehydratase (AraD), 1 µM Kivd with 5 

mM thiamine diphosphate (ThDP) and 1mM NAD+ as co-factor. The reaction was initiated by adding 1 

mM L-arabonate and 0.1 mg/ml of cell lysate and the absorbance was immediately measured at 340 nm 

using a spectrophotometer. A steady rise in absorbance was observed at 340 nm indicating oxidation of 

butanedial using NAD+ by endogenous E. coli enzymes. A reaction mixture containing 1 mM L-arabonate, 

0.1 mg/ml cell lysate and 1mM NAD+ without purified AraC, AraD and Kivd was used as negative control. 

This sample did not show any increase in absorbance at 340 nm. 

 
Figure 5.S3 LC-MS data for 2-keto-3-deoxy-D-xylonate 
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Figure 5.S4 LC-MS data for 2-keto-3-deoxy-L-arabonate 

 

 

Figure 5.S5 LC-MS data for 5-keto-4-deoxy-D-glucarate 
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Figure 5.S6 LC-MS data for 2, 5-dioxopentanoate. 
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a) 

  

b) 

 

Figure 5.S7 Accumulation of 1,2,4-butanedtriol (BTO). a) HPLC signal showing BTO accumulation with 

C. crescentus D-xylose operon. b) Mechanism showing BTO formation due to promiscous nature of 2-

ketoacid decarboxylase (Kivd). 
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Figure 5.S8 Sequence identities of different D-xylose and L-arabinose operons. Sequence identities of B. 

ambifaria and B. thailandensis L-arabinose operons with respect to B. multivorans L-arabinose operon. 

Sequence identity of B. xenovorans D-xylose operon with respect to C. crescentus D-xylose operon. 

Enzymes are color coded- green: D-xylose/L-arabinose dehydrogenase; orange: D-xylonolactonase/L-

arabinolactonase; blue: D-xylonate/L-arabonate dehydratase; purple: 2-keto-3-deoxy-D-xylonate/2-keto-3-

deoxy-L-arabonate dehydratase; yellow: 2-ketoglutarate semialdehyde dehydrogenase. 
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Chapter 6 

Engineering Nonphosphorylative Metabolism for 

the production of γ-amino butyric acid (GABA) 

 

 

6.1 Introduction 

γ-amino butyric acid (GABA) is a 4-carbon non-protein amino acid widely found in 

microorganisms, plants, and animals.421 Its potential to serve as a major inhibitory 

neurotransmitter in mammalian central nervous system along with its hypotensive, 

antidiabetic, and diuretic effects has found wide applications in the pharmaceutical and 

food industry.422-424 Furthermore, it is used in the chemical industry as a precursor for the 

synthesis of 2-pyrrolidone and a promising novel biodegradable polymer, Nylon-4.425-427 

Nylon-4 is a linear polyamide with repeating GABA units having excellent physical 

properties due its high melting point of 260oC and it is biodegradable in soil 428 and 
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activated sludge.429 GABA represents a new building block for bio-plastics and the 

synthesis of GABA from abundantly available lignocellulosic biomass can enable the 

production of new bio-plastic materials at a low cost. Thus, the development of an 

economic biosynthetic process for sustainable production of GABA is important to meet 

its increasing demand in pharmaceutical, food, and bioplastics industry.  

GABA is produced by the irreversible decarboxylation of glutamate catalyzed by 

glutamate decarboxylase (GAD), a pyridoxal-5’-phosphate-dependent enzyme.430-431 The 

glutamate/GABA antiporter pumps out GABA into the extracellular environment while 

bringing in more glutamate. The decarboxylation reaction converts an acidic substrate 

(glutamate) into a neutral compound (GABA) via the incorporation of free protons (H+), 

thus controlling the acidification in the cytosolic environment.432 When the transporter 

pumps out GABA, it results in a local alkalization of the extracellular medium, and thus 

GAD and the GABA antiporter constitute the GAD acid resistance system. Three main 

strategies have been employed to enable the biological production of GABA. The first 

process involves the use of purified GAD enzyme for the conversion of glutamate 

monosodium salt (MSG) to GABA. While this approach has advantages of high 

conversion yield and purity, use of a purified enzyme makes the downstream processing 

difficult and expensive.433-435 To address these challenges, some studies have attempted 

reversible immobilization of GAD enzyme to allow catalyst recycle and to ease 

downstream separation.436 The second approach for GABA production is to use whole 

cells as catalyst for the conversion of glutamate to GABA using natural GABA producers 

such as lactic acid bacteria (LAB)437-438 or by overexpressing GAD enzymes in 
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recombinant hosts such as Escherichia coli.426  The overexpression of glutamate 

decarboxylase and glutamate/GABA antiporter in a GABA aminotransferase mutant of E. 

coli resulted in 5.46 g/L of GABA from 10 g/L MSG.439 In a subsequent study by the 

same group, the use of a synthetic protein scaffold to connect the relevant enzymes 

increased the titer to 5.65 g/L GABA, which corresponds to a GABA yield of 93%.440  

Although both these approaches have shown great success in producing GABA, use of 

MSG as a substrate necessitates the need for additional processes to link MSG and 

GABA production processes in the industry. This leads to the third process for GABA 

production which uses biomass-derived sugars like glucose as starting material making it 

more economical than other approaches that use MSG. Being a major glutamate 

producing microorganism, recombinant C. glutamicum has been used widely for 

producing GABA directly from glucose.441-442 In one such study, recombinant C. 

glutamicum expressing E. coli glutamate decarboxylase (GadB) was cultivated in 

medium with 50 g/L glucose and 0.1 mM pyridoxal 5’-phosphate (PLP), a co-factor for 

GadB, resulting in production of over 12 g/L GABA in 72 h.441 E. coli has also been 

engineered for direct GABA production from glucose by using synthetic protein scaffolds 

to co-localize the GABA pathway enzymes and GABA shunt enzymes resulting in ~1.1-

1.3 g/L GABA from 10-20 g/L glucose.443  

With growing concern of the environmental damage of using fossil-based 

feedstocks and the debate of “food versus fuel” with edible feedstocks like corn, there is a 

pressing need to search for renewable and low-cost feedstocks. Lignocellulosic biomass, 

with an annual output of 2 x 1011 tons, presents a promising solution. Most industrial 
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fermentations convert glucose to value-added chemicals but other pentoses like D-xylose 

and L-arabinose, which are the most abundant sugars in hemicellulose, are being wasted. 

Thus, efficient utilization of these pentoses, which make up 30 % of plant biomass, is 

important to ensure an economically viable biosynthetic process.444 While wild-type E. 

coli can utilize these sugars, simultaneous utilization of D-xylose or L-arabinose in the 

presence of glucose is inhibited due to carbon catabolite repression (CCR).445 

Furthermore, it was recently reported that both D-xylose and L-arabinose can repress the 

utilization and metabolism of the other sugar through the action of regulatory proteins 

XylR and AraC, respectively.446-448 Apart from this challenge of simultaneous utilization 

of pentoses, the conventional pathways for pentose metabolism (pentose phosphate 

pathway and glycolysis) requires at least 10 steps to enter the TCA cycle. To avoid these 

numerous tightly regulated steps and the problem of simultaneous sugar utilization, it is 

important to look for alternative metabolic pathways for biosynthesis which are 

orthogonal to intrinsic metabolism. One such pathway, the nonphosphorylative pathway, 

was recently studied for the biosynthesis of 1,4-butanediol and mesaconate and it only 

involves 5 steps to convert pentoses such as D-xylose and L-arabinose into 2-

ketoglutarate (2-KG), an important TCA cycle intermediate.324, 449  

In this work, we demonstrate the production of GABA from under-utilized 

biomass sugars, D-xylose and L-arabinose, using the nonphosphorylative pathway. 

Considering the importance of glutamate in E. coli metabolism, we knocked out the sucA 

gene encoding 2-KG decarboxylase to increase intracellular glutamate pools. We also 

knocked out GABA aminotransferase (gabT) which redirects GABA back into the TCA 
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cycle. Apart from gene knockouts, we also screened different nonphosphorylative 

operons to choose the best performing nonphosphorylative gene cluster for D-xylose and 

L-arabinose metabolism. Lastly, we overexpressed the glutamate dehydrogenase (GDH) 

enzyme and the arabinose proton symporter (AraE) in order to improve sugar uptake and 

increase GABA titers. The final D-xylose strain produced 1.52 g/L GABA from 20 g/L 

D-xylose in 48 hours with a yield of 0.15 g GABA/g of D-xylose, corresponding to 22% 

of the theoretical maximum yield. The L-arabinose strain produced 1.4 g/L GABA from 

20 g/L L-arabinose in 48 hours with a yield of 0.34 g of GABA/g of L-arabinose, 

corresponding to 50% of the theoretical maximum yield. This work reports the successful 

production of an important commercially relevant chemical GABA from D-xylose and L-

arabinose using nonphosphorylative metabolism. 

6.2 Results  

6.2.1 GABA production from nonphosphorylative metabolism 

To efficiently use pentoses (D-xylose and L-arabinose) as feedstocks for GABA 

production, biosynthetic pathways were designed by expanding the nonphosphorylative 

metabolism (Figure 6.1). In the D-xylose pathway, D-xylose is converted into 2-KG in 

five enzymatic steps enabled by D-xylose dehydrogenase (XDH), D-xylonolactonase 

(XL), D-xylonate dehydratase (XD), 2-keto-3-deoxy-D-xylonate dehydratase (KdxD), 

and 2-ketoglutarate semialdehyde dehydrogenase (KGSADH).450 Similarly, L-arabinose 

is transformed into 2-KG by the action of enzymes L-arabinose dehydrogenase (ADH), 

L-arabinolactonase (AL), L-arabonate dehydratase (AD), 2-keto-3-deoxy-L-arabonate 

dehydratase (KdaD), and 2-ketoglutarate semialdehyde dehydrogenase (KGSADH). 2- 
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Figure 6.1 Metabolic pathways from lignocellulosic sugars to GABA via nonphosphorylative metabolism. 

The pathway for D-xylose consists of D-xylose dehydrogenase (XDH), D-xylonolactonase (XL), D-

xylonate dehydratase (XD), and 2-keto-3-deoxy-D-xylonate dehydratase (XD), and 2-keto-3-deoxy-D-

xylonate dehydratase (KdxD). The L-arabinose assimilation pathway is composed of L-arabinose 

dehydrogenase (ADH), L-arabinolactonase (AL), L-arabonate dehydratase (AD), and 2-keto-3-deoxy-L-

arabonate dehydratase (KdaD). The produced DOP is then converted into 2- ketoglutarate (2-KG) by 2-

ketoglutarate semialdehyde dehydrogenase (KGSADH). 2-KG is then transformed to GABA by glutamate 

dehydrogenase (GDH) and glutamate decarboxylase (GadA).  

KG produced from the nonphosphorylative metabolism is converted into glutamate by 

glutamate dehydrogenase (GDH) which is decarboxylated by glutamate decarboxylase 

(GadA) in a pyridoxal-5’-phosphate (PLP)-dependent reaction to produce GABA. 

Based on the pathway design, we constructed two strains, strain GX-1 (BW25113 

ΔxylAΔyihHΔyagEΔicd) and strain GA-1 (BW25113 Δicd) (Table 6.1), to synthesize  
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Table 6.1 Strains and plasmids used in this study 

Name Relevant genotype Reference 

Strains   

BW25113 rrnBT14 ΔlacZWJ16hsdR514 ΔaraBADAH33 

ΔrhaBADLD78 

451 

XL10-Gold TetRΔ (mcrA)183 Δ (mcrCB-hsaSMR-mrr)173 

endA1supE44 thi-1 recA1 

Stratagene 

GX-1 BW25113 ΔxylAΔyjhHΔyagEΔicd 452 

GA-1 BW25113 Δicd 452 

GX-2 

GA-2 

BW25113 ΔxylAΔyjhHΔyagEΔicdΔsucA 

BW25113 ΔicdΔsucA 

449 
449 

GX-3 BW25113 ΔxylAΔyjhHΔyagEΔicdΔsucAΔgabT This work 

GA-3 BW25113 ΔicdΔsucAΔgabT This work 

Plasmids   

pGABA-1 P15A origin, KanR, PLlacO1: xylB-xylC-xylD-xylX  452 

pGABA-2 ColE1 origin, AmpR, PLlacO1:xylACC-gadA  This work  

pGABA-3 P15A origin, KanR, PLlacO1: araC-araD-araA-araB  453 

pGABA-4 P15A origin, KanR, PLlacO1: DR64_8447-8448-8449-

8450 

452 

pGABA-5 P15A origin, KanR, PLlacO1: xylB-xylC-xylD-

DR64_8450  

449 

pGABA-6 P15A origin, KanR, PLlacO1: Bamb_4925-4923-4922-

4918 

452 

pGABA-7 P15A origin, KanR, PLlacO1: BTH_II1632-1630-

1629-1625 

454 

pGABA-8 pUC origin, SpecR, PLlacO1: gdhA 449 

pGABA-9 pUC origin, SpecR, PLlacO1: gdhA-araE This work 

 

GABA from D-xylose and L-arabinose, respectively. To maximize the flux of D-xylose 

and L-arabinose towards GABA, for strain GX-1, the D-xylose (ΔxylA) and D-xylonate 

(ΔyihHΔyagE) consumption pathways were knocked out and the strain GA-1 was derived 

from the wild-type E. coli K-12 BW25113 which has L-arabinose (ΔaraA) gene already 

knocked out.451 Furthermore, both strains GX-1 and GA-1 had isocitrate dehydrogenase 

(icd) gene of TCA cycle knocked out to ensure that the glucose supplemented in 

fermentation medium was only used for growth and not for the production of GABA. For 
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GABA production from D-xylose, strain GX-1 was transformed with two plasmids: a 

medium-copy plasmid expressing the D-xylose non-phosphorylative operon from 

Caulobacter crescentus pGABA-1 (pZA-xylBCDX) to produce 2,5-dioxopentanoate 

(DOP)324, and a high-copy plasmid expressing the xylACC gene to convert DOP to 2-KG 

and gadA gene to convert glutamate to GABA, pGABA-2 (pZE- xylACC-gadA). The 

conversion of 2-KG to glutamate was catalyzed by the endogenous glutamate 

dehydrogenase (GDH) of E. coli. Similarly for L-arabinose to GABA conversion, the 

strain GA-1 was transformed with L-arabinose gene cluster from Burkholderia 

multivorans araCDAB (BmulJ 5323-5321-5320-5316)453 over-expressed on a medium 

copy plasmid pGABA-3 (pZA- araCDAB) and the same high-copy plasmid pGABA-2 to 

convert DOP to 2-KG and glutamate to GABA. The two strains were then examined for 

the production of GABA using shake flask fermentations. After 48 hours, strain GX-1 

only produced 0.11 g/l GABA from 20 g/l of D-xylose and strain GA-1 produced 0.05 g/l 

of GABA from 20 g/l of L-arabinose (Figure 6.2). Glucose (20 g/l) was supplemented 

for cell growth, but did not contribute to the production of GABA due to the icd deletion. 

Although these preliminary results demonstrate the feasibility of using 

nonphosphorylative metabolism for production of GABA from the two pentoses, D-

xylose and L-arabinose, the titers are extremely low for practical purposes.  

6.2.2 Improving GABA biosynthesis by metabolic engineering 

To improve GABA production from D-xylose and L-arabinose via this 

nonphosphorylative metabolism, we applied metabolic engineering strategies to drive the 

carbon flux towards GABA. The E. coli gene sucA encodes a subunit of 2-KG 
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decarboxylase455 which catalyzes the conversion of 2-KG to succinyl-CoA in the TCA 

cycle and diverts the carbon flux from glutamate production. Therefore, we knocked out 

sucA gene to increase glutamate pools in the production strains GX-1 and GA-1 

generating strains GX-2 (GX-1 ΔsucA) and GA-2 (GA-1 ΔsucA), respectively. The new 

strains GX-2 and GA-2 were transformed with plasmids pGABA-1 and pGABA-3, 

respectively to convert D-xylose and L-arabinose to DOP and plasmid pGABA-2 to 

convert DOP to GABA. After 48 hour shake flask fermentations, the ΔsucA knockout 

improved the GABA titer more than 10-fold resulting in 0.36 g/L GABA from D-xylose 

and 0.40 g/L GABA from L-arabinose (Figure 6.2).  

Another enzyme that diverts carbon flux away from our designed GABA 

production pathway is the GABA aminotransferase enzyme (GabT) in E. coli which 

catalyzes the conversion of GABA to succinyl semialdehyde and directs it back into the 

TCA cycle. We knocked out this gene to improve accumulation of GABA and generated 

strains GX-3 (GX-2, ΔgabT) and GA-3 (GA-2, ΔgabT). The D-xylose strain GX-3 

transformed with plasmids pGABA-1 and pGABA-2 produced 0.59 g/L GABA and L-

arabinose strain GA-3 with plasmids pGABA-3 and pGABA-2 produced 0.50 g/L GABA 

after 48 hours in shake flask fermentations (Figure 6.2). Both ΔsucA and ΔgabT 

knockouts improved GABA titer from D-xylose by 5-fold and from L-arabinose by 10-

fold.   

6.2.3 Screening operons of nonphosphorylative metabolism  

After identifying gene knockouts to improve GABA production from both D-xylose and 

L-arabinose, various operons of the nonphosphorylative metabolism were screened to  
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Figure 6.2 Metabolic engineering strategies to increase GABA titers. GX-1: BW25113 ΔxylA ΔyjhH 

ΔyagE Δicd; GA-1: BW25113 Δicd; GX-2: GX-1ΔsucA; GA-2: GA-1ΔsucA; GX-3: GX-2 ΔgabT; GA-3: 

GA-2 ΔgabT 

further improve GABA production. For D-xylose pathway, three operons were tested for 

the activity of their nonphosphorylative enzymes. Apart from the xylBCDX operon from 

C. crescentus used in the previous section for metabolic engineering studies, the D-xylose 

operon from B. xenovorans LB400 DR64_8447-8448-8449-8450 (pGABA-4) and a 

synthetic operon xylB-xylC-xylD-DR64_8250 (pGABA-5) with the first three genes from 

C. crescentus (xylB-xylC-xylD) and the last gene (DR64_8450) from B. xenovorans 

LB400   were screened for GABA production. The synthetic operon was constructed by 

combining the genes from two organisms since the 2-keto-3-deoxy-D-xylonate 

dehydratase (KdxD) enzyme from the B. xenovorans LB400 operon was reported to have 

a higher in vitro activity (DR64_8250, kcat/Km=0.53 s-1mM-1) than the corresponding 

enzyme from the C. crescentus operon (XylX, kcat/Km=0.26 s-1mM-1).452  On the other 
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hand, C. crescentus operon has more active D-xylose dehydrogenase (XDH) and D-

xylonate dehydratase (XD) enzymes than the B. xenovorans operon. The D-xylose strain 

GX-3 was transformed with the corresponding plasmids pGABA-1 and pGABA-2 for C. 

crescentus, pGABA-4 and pGABA-2 for B. xenovorans, and pGABA-5 and pGABA-2 

for the synthetic operon and shake flask fermentations was performed. The GX-3 strain 

harboring the synthetic operon (pGABA-5 and pGABA-2) had highest GABA titer of 

0.78 g/L from 20 g/L D-xylose (Figure 6.3).  

Three L-arabinose operons were also tested for GABA production via the 

nonphosphorylative metabolism: the B. multivorans operon araCDAB (pGABA-3) used 

in the previous metabolic engineering section, the Burkholderia ambifaria L-arabinose 

operon Bamb_4925-4923-4922-4918 (pGABA-6), and the L-arabinose operon 

BTH_II1632-1630-1629-1625 from Burkholderia thailandensis (pGABA-7).   The L-

arabinose strain GA-3 was transformed with plasmids pGABA-3 and pGABA-2 for B. 

multivorans, pGABA-6 and pGABA-2 for B. ambifaria, and pGABA-7 and pGABA-2 

for B. thailandensis and 48 hour shake flask fermentations were carried out. The GX-3 

strain harboring the B. ambifaria operon produced highest GABA titer of 0.7 g/L from 20 

g/L L-arabinose (Figure 6.3). B. thailandensis operon was the least active and only 

produced 0.21 g/l GABA (Figure 6.3).  

The trends for both D-xylose and L-arabinose operons are consistent with 

previous studies using different nonphosphorylative operons for the production of BDO 

and mesaconate from pentose sugars.324, 449  



6.2 Results  146 
 

 
 

 

 

Figure 6.3 Screening nonphosphorylative operons to improve GABA production for a) D-xylose, and b) L-

arabinose.  
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6.2.4 Overexpression of glutamate dehydrogenase and pentose transporter  

All the experiments mentioned in above sections used the E. coli endogenous glutamate 

dehydrogenase (GDH) enzyme for converting 2-KG to glutamate. To further increase 

intracellular glutamate pool and GABA titers, we overexpressed the E. coli GDH enzyme 

on a low copy plasmid, pGABA-8 (pZS-GDH). When xylose strain GX-3 was 

transformed with plasmids pGABA-5, pGABA-2, and pGABA-8, and subjected to shake 

flask fermentation for 48 hours, it produced 1.3 g/L GABA from 20 g/L D-xylose 

(Figure 6.4). This corresponds to 0.18 g of GABA/g of D-xylose consumed which is 

27% of the theoretical maximum yield. Similarly when L-arabinose strain GA-3 was 

transformed with plasmids pGABA-6, pGABA-2, and GABA-4, it produced 0.96 g/L 

GABA after 48 hours from 20 g/L L-arabinose with a yield of 0.46 g of GABA/g of L-

arabinose corresponding to 67% of the theoretical maximum (Figure 6.4). Thus, 

overexpression of GDH significantly improved GABA titers by increasing glutamate 

pool.  

The above mentioned strains GX-3 (with pGABA-5, pGABA-2 and pGABA-8) 

and GA-3 (with pGABA-6, pGABA-2 and pGABA-8) only consumed 7.2 g/L D-xylose 

and 2.1 g/L L-arabinose respectively after 48 hour fermentations. Glucose was also not 

completely consumed with GX-3 D-xylose strain consuming 6 g/L glucose and GA-3 L-

arabinose strain consuming 7.5 g/L glucose in 48 hours. Since the nonphosphorylative 

metabolism does not involve the endogenous E. coli xylose and arabinose metabolic 

genes which are subjected to glucose repression or reciprocal regulation, we believe that 

pentose sugar consumption can be improved by overexpressing the pentose transporters.    
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Figure 6.4 Overexpression of glutamate dehydrogenase (GDH) and arabinose symporter (AraE) for a) D-

xylose and b) L-arabinose. CC+BX is the synthetic D-xylose operon combining C. crescentus and B. 

xenovorans and BA is B. ambifaria operon for L-arabinose. 
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There are two pentose transporter systems in E. coli. One system contains ATP-

binding cassette (ABC) transporters (XylFGH and AraFGH) which have higher affinity 

but lower capacity. The other system contains pentose/proton symporters (XylE and 

AraE) which shows lower affinity but higher capacity.456-457 It is well known that the low 

affinity symporters are promiscuous and can transport heterologous sugars.458-459 A recent 

study comparing the ATP-binding cassette transporters and pentose/proton symporters of 

D-xylose and L-arabinose showed that the arabinose symporter (AraE) was the most 

effective transporter for both D-xylose as well as L-arabinose.449 Therefore, we 

overexpressed the E. coli arabinose symporter (AraE) on a low-copy plasmid, pGABA-9 

(pZS-GDH-AraE). When D-xylose strain GX-3 was transformed with three plasmids – 

pGABA-5, pGABA-2 and pGABA-9 – it produced 1.5 g/L GABA by consuming 10 g/L 

D-xylose after 48 hours (Figure 6.4). Although it improved xylose consumption the 

GABA yield reduced to 0.15 g of GABA/g of D-xylose. Similarly, L-arabinose strain 

GA-3 with plasmids pGABA-6, pGABA-2 and pGABA-9 produced 1.4 g/L GABA by 

consuming 4.1 g/L of L-arabinose but yield reduced to 0.34 g of GABA/g of L-arabinose  

(Figure 6.4). Overexpression of transporter AraE improved sugar uptake and 

subsequently increased GABA titers but reduced the yields of GABA from both sugars. 

We also did a time course experiment to compare strains with and without AraE 

overexpression to understand how sugar uptake changes with time. From Figure 6.5 we 

can see that while the overexpression of AraE improves both D-xylose and L-arabinose 

consumption and GABA production, it reduces the consumption of glucose. Furthermore, 

the rate of consumption of pentose sugar is highest in first 16 hours for both D-xylose and  
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Figure 6.5 Time-course experiment to study sugar uptake of a) D-xylose and b) L-arabinose with and 

without transporter (AraE) overexpression. Dotted lines is without AraE overexpression and solid lines is 

with overexpression of AraE. 
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L-arabinose after which the rate of uptake decreases significantly as seen from the slope 

of the curve (Figure 6.5). Both the strains consume less than half of the sugars in 

fermentation medium after 48 hours.  

6.3 Discussion 

GABA is an important chemical with applications in the pharmaceutical and food 

industry422-424 and with increasing demand as a building block for biodegradable plastics 

like Nylon-4.425-427 Biosynthesis of GABA has been extensively studied but most of these 

efforts have focused on using MSG as a starting material. To make it more economical 

and viable for industrial production, it is important to explore the biosynthesis of GABA 

from biomass-derived sugars such as glucose, D-xylose, and L-arabinose. While there 

have been recent studies on producing GABA from glucose using protein scaffolds 443, 460 

and other metabolic engineering strategies441-442, there have been no reports using pentose 

sugars for GABA production. This is the first study to successfully demonstrate the 

biosynthesis of GABA from under-utilized pentoses, D-xylose and L-arabinose, derived 

from lignocellulosic biomass. To avoid carbon catabolite repression (CCR) and 

reciprocal regulation, the nonphosphorylative pathway which is orthogonal to E. coli 

intrinsic metabolism was used to convert D-xylose and L-arabinose to GABA.  

 To improve GABA titers, two endogenous E. coli genes – 2-KG dehydrogenase 

(sucA) and GABA aminotransferase (gabT) – were knocked out. The sucA deletion 

helped to significantly improve GABA titers by increasing the intracellular glutamate 

pool and the gabT deletion improved GABA production by eliminating GABA 

consuming pathway in E. coli.  To improve upstream nonphosphorylative enzyme 
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activity, different nonphosphorylative operons for D-xylose and L-arabinose were 

screened to choose the operon with best enzymatic activity. For D-xylose, the synthetic 

operon combining C. crescentus and B. xenovorans enzymes performed the best and for 

L-arabinose the B. ambifaria operon gave highest GABA titers. These two operons were 

subsequently used for all future experiments. To further increase the conversion of 

glutamate to GABA, the E. coli glutamate dehydrogenase (GDH) enzyme was 

overexpressed on a low-copy plasmid which had a significant impact on GABA titer. 

Finally, since the strains only used up 7 g/L D-xylose and 2 g/L L-arabinose after 48 

hours, the arabinose symporter (AraE) was overexpressed to increase sugar uptake and 

GABA titers. The overexpression of AraE increased sugar consumption as well as GABA 

titers but after 48 hours, 10 g/L D-xylose and 16 g/L L-arabinose was still left in the 

fermentation medium. Glucose was also not completely consumed after 48 hours and the 

overexpression of transporter AraE reduced the glucose consumption. This low sugar 

uptake by the strains could be attributed to low pH ~5 of fermentation media (optimum 

pH for glutamate decarboxylase) which inhibits cell growth and sugar metabolism.  

The wild-type glutamate decarboxylases have optimal pH around 4.5 for the 

decarboxylation of glutamate while E. coli has optimum cell growth at pH ~ 7.432 Thus, 

to allow GABA production, calcium carbonate was not added to fermentation flasks to 

maintain lower pH (pH~5) and improve GAD enzyme activity. Due to this discrepancy of 

optimal pH between cell growth and GAD activity, production of GABA is challenging. 

One way to tackle this challenge is to use GAD mutant which exhibits activity over a 

wider pH range (pH~ 6-7) and carry out fermentation at neutral pH to allow optimal cell 
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growth.442 Neutral-pH fermentation could also ensure complete utilization of sugars thus 

improving GABA production significantly.    

6.4 Conclusion 

This work demonstrated the successful conversion of D-xylose and L-arabinose, 

important sugars in hemicellulose, to an important bioplastic monomer GABA via 

efficient nonphosphorylative metabolism. To eliminate competing pathways and improve 

intracellular glutamate pool, metabolic engineering was used to knockout sucA and gabT 

genes. Three nonphosphorylative operons were screened for both D-xylose and L-

arabinose to improve upstream enzyme activity and the best operons – synthetic D-xylose 

operon (xylB-xylC-xylD-DR64_8250) and B. ambifaria L-arabinose operon (Bamb_4925-

4923-4922-4918) – were used for further experiments. Overexpression of glutamate 

dehydrogenase (GDH) enzyme to improve conversion of glutamate to GABA 

significantly improved GABA titers from both D-xylose and L-arabinose. Finally, to 

improve sugar uptake, L-arabinose symporter AraE was overexpressed which increased 

both pentose uptake as well as GABA titer but lowered the yield of GABA from both 

pentoses. The final D-xylose strain produced 1.5 g/L GABA with a yield of 0.15 g of 

GABA/g of D-xylose and the final L-arabinose strain produced 1.4 g/L GABA with a 

yield of 0.34 g of GABA/ g of L-arabinose. Further efforts to screen glutamate 

decarboxylases with broad pH range can allow fermentations to be carried out at pH 6-7 

which can improve cell growth and sugar metabolism and subsequently could increase 

GABA titers and yields. Simultaneous co-utilization of glucose, D-xylose, and L-
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arabinose for GABA production could also be attempted after optimizing fermentation 

conditions.  

6.5 Materials and Methods 

6.5.1 Bacterial and growth conditions 

The E. coli strains used in this study are listed in Table 6.1. XL10-Gold was used for 

cloning and the other strains were derived from the wild-type E. coli K-12 strain 

BW25113.451 The P1 phage of sucA was obtained from the Keio collection.461 Phage was 

used to transfect the corresponding strains for construction of targeted knockout 

strains.462 All the knockout strains were then transformed with pCP20 plasmid to remove 

the kanamycin marker. The correct knockouts were verified by colony PCR. Unless 

otherwise stated, these E. coli strains were grown in test tubes at 37 °C in 2×YT rich 

medium (16 g/l tryptone, 10 g/l yeast extract, and 5 g/l NaCl) supplemented with 

appropriate antibiotics (100 mg/l ampicillin, 50 mg/l kanamycin, and 100 mg/l 

spectinomycin). Chemicals used in the study were purchased from Sigma-Aldrich unless 

otherwise specified. 

6.5.2 Plasmids construction 

All plasmids used in the study are listed in Table 6.1. All primers used in this study were 

ordered from Eurofins MWG Operon and are listed in Table 6.2. PCR reactions were 

carried out with Q5 High-Fidelity DNA polymerase (New England Biolabs) according to 

the manufacturer’s instructions. FastDigest restriction enzymes were purchased from 
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Thermo Scientific. Sequences of all the plasmids constructed were verified by restriction 

mappings and DNA sequencing. 

The recombinant plasmid pZE-xylA-gadA (pGABA-2) was constructed as 

follows: gadA gene was amplified from E. coli BW25113 genomic DNA by PCR using 

gadA-F and gadA-R as primers. The backbone vector for pZE plasmid and xylA fragment 

were amplified from pZE-xylA plasmid using primers pZE-Xba-F and pZE-Acc-R and 

xylA-F and xylA-R, respectively. All three fragments were then assembled using 

NEBuiderHiFi DNA Assembly Master Mix. For construction of pZS-GDH-AraE plasmid 

(pGABA-9), the fragment pZS-AraE and GDH were obtained from plasmids pM-12 449 

and pGABA-8 respectively by digestion using Acc65I and SphI enzymes and ligated 

using Quick ligase.  

6.5.3 Shake flask fermentation 

125-ml conical flasks were autoclaved and dried to perform all small-scale fermentations. 

The flasks were filled with 5 ml fermentation medium (M9 minimal media supplemented 

with 5 g/l yeast extract, 20 g/l glucose, 20 g/l D-xylose (or L-arabinose), 5µM coenzyme 

B12, 100 mg/l ampicillin, 50 mg/l kanamycin, and 100 mg/l spectinomycin). For sucA 

deletion strains GX2, GX-3, GA2, and GA-3, 5 mM succinic acid was supplemented. To 

start fermentation, 200 μl of overnight cultures incubated in 2×YT medium were 

transferred into the flasks. After adding 0.5 mM isopropyl-β-D-thiogalactoside (IPTG), 

the flasks were put into a shaker at 250 rpm and 30 °C, and the fermentation was 

performed for 48 h. The fermentation products were analyzed by HPLC. Error bars 
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indicated the SD of the results obtained from three independent experiments (n=3) by 

picking three different colonies for fermentation. 

6.5.4 Metabolite Analysis 

Fermentation samples were centrifuged at 13000 rpm for 5 minutes and supernatants 

were analyzed using an Agilent 1260 Infinity HPLC instrument (Agilent Technology, 

Palo Alto, CA, USA). Concentration of sugars and acetate were measured using an 

Aminex HPX-87H ion exclusion column (300 x 7.8 mm) (Bio-Rad, Hercules, California, 

USA) and a refractive-index detector (RID) maintained at temperatures 35°C and 50°C, 

respectively. The mobile phase was 5 mM H2SO4, with a flow rate of 0.6 ml/min. For the 

detection of GABA, supernatants were mixed with o-pthaldialdehyde (OPA) (1:10)  and 

analyzed by HPLC using the Zorbax Eclipse plus C18 column (4.6 x 1.50 mm) (Agilent 

Technology, Palo Alto, CA, USA) and a diode array detector (DAD), operating at 40 °C. 

The mobile phase for GABA detection consisted of two solvents: solvent A (10 mM 

Na2HPO4, 10 mM Na2B4O7, 5 mM NaN3, pH 8.2)  and solvent B (45% acetonitrile: 45% 

methanol: 10% water; v: v: v) and a flow rate of 1.5 ml/min. HPLC gradient was set as 

follows: 0.35 min, 98% A and 2% B; 13.4 min, 43% A and 57% B; 13.5-15.7min, 100% 

B; 15.8-18 min, 98% A and 2% B. All chemical reagents and GABA standard were 

purchased from Sigma Aldrich (St. Louis, MO, USA) for determination of metabolite 

analysis. 
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Chapter 7 

Ongoing and Future Work 

  

 

7.1 Introduction 

The research presented in this dissertation demonstrates the successful use of 

nonphosphorylative metabolism for the conversion of under-utilized pentose sugars, D-

xylose and L-arabinose, into value-added chemicals, 1, 4-butanediol (BDO) and γ-

aminobutyric acid (GABA). The work uses several molecular biology techniques for 

process optimization including metabolic engineering, protein engineering, transporter 

engineering, growth-based assays, and gene mining. While these results provide a new 

alternative platform for biosynthesis, they also incite new questions and motivate further 

research into using different feedstocks for fermentation. Although there has been 

extensive research and tremendous progress in biosynthesis of both existing as well as 
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novel chemicals and pharmaceuticals, the feedstocks used in most studies are simple 

sugars such as glucose, xylose, arabinose, and others. With the surge in global 

population, there is an urgent need to switch to agricultural and forest residues for the 

production of bioethanol, other advanced fuels, and commodity chemicals. The 

advantages of using lignocellulosic biomass include value-added utilization of 

agricultural residues, reduced greenhouse gas emissions, and improved security of 

national energy. However, hydrolyzing the cellulose and hemicellulose polymers into 

hexose and pentose sugars is the biggest bottleneck is production of fuels from 

lignocellulosic biomass and this limits its industrial applications. In this chapter, we look 

at one potential feedstock, wheat bran (section 7.2) which has very high content of 

arabinoxylans and its pretreatment methods, specifically acid hydrolysis. We also present 

some preliminary results of hydrolysis of wheat bran feedstock for breakdown into sugars 

(section 7.3).  

7.2 Wheat bran: A promising feedstock 

Lignocellulosic feedstock is the most abundant inedible biomass with an annual output of 

around 2×1011 metric tons.381 Lignocellulose is mainly composed of cellulose, 

hemicellulose, and lignin where cellulose and hemicellulose can be hydrolyzed into 

fermentable sugars and lignin can be used as combined heat and power source. Common 

sources of lignocellulose include corn stover, switchgrass, sugar beet pulp, citrus peel, 

and wheat straw. In order to improve overall economics of fermentation processes, there 

is increasing pressure to ensure complete utilization of these feedstocks. One such 

promising feedstock is industrial wheat bran which makes up 14-19% of the wheat grain 
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and is generated in enormous quantities as a side product of white wheat flour 

production.463-464 Currently, wheat bran is used as an animal feed but the emergence of 

cheaper and more nutritious feed materials makes it necessary to find better uses for 

wheat bran.465 It is a great source of polysaccharides such as hemicellulose and cellulose 

which makes it a very promising low-cost feedstock for the production of renewable fuels 

and chemicals. The United States Department of Agriculture (USDA) estimates the 

worldwide wheat production for 2016-17 will be ~745 million metric tons, which 

corresponds to 100-150 million metric tons of wheat bran.466  

7.2.1 Composition of wheat bran 

Wheat bran consists of the outer coat of the wheat grain and can be separated from the 

other parts of the wheat kernel by milling. It mainly comprises of non-starch 

polysaccharides (NSP) (~38%), starch (~19%), protein (~18%), and lignin (~6%), with 

NSP consisting mainly of ~70% arabinoxylans, ~19% cellulose and ~6% β-(1,3)/β-(1,4)- 

glucan.463 Industrial wheat bran is one of the most hemicellulose rich products with 

arabinoxylan being the main hemicellulose component, which consists of two pentose 

sugars: arabinose and xylose. The arabinoxylan structure is highly branched with β-

(14)-xylan backbone with branching α-L-arabinofuranosyl groups. The physical and 

structural properties of these arabinoxylans is highly dependent on the degree and type of 

branching as well as on the distribution pattern of substitutions along the xylan 

backbone.465, 467  
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7.2.2 Hydrolysis of wheat bran 

While starch can be hydrolyzed by amylase, enzymatic hydrolysis of bran using 

hemicellulolytic and cellulolytic enzymes is not sufficient to degrade them to simple 

sugars which necessitates the use of chemical and physical pretreatment methods. In 

comparison to enzymatic hydrolysis, chemical hydrolysis 468-470 has lower efficiency, but 

requires fewer steps and is often quicker, taking hours rather than days for 

saccharification. In particular, acid hydrolysis can be done directly on raw lignocellulose. 

In most studies, wheat bran is first subjected to liquefaction and saccharification to 

hydrolyze the starch fraction and the remaining solid material, called destarched bran or 

starch-free bran is hydrolyzed in different ways to release simple sugars. Arabinoxylans 

can be fractionated from destarched bran using several methods including 

chromatography 467, alkaline extraction/fractionation using hydrogen peroxide471-472 and 

potassium hydroxide 473-474, acid hydrolysis 9, enzymatic hydrolysis 9, delignification 

followed by extraction 475, and hydrothermal treatments.463 Table 7.1 summarizes the 

sugar composition of different arabinoxylans obtained using different fractionation or 

hydrolysis methods.  

Thus, the high percentages of pentose sugars, xylose and arabinose, in wheat bran 

and the low-cost of feedstock ($100/ton) make it a really great candidate for use in 

nonphosphorylative pathways we have established.324 The successful conversion of 

pentose sugars present in arabinoxylans to value-added chemicals such as 1,4-butanediol 

(BDO), glutamate, 5-aminolevulinic acid, 4-aminobutyic acid (GABA), can significantly 

improve process economics and can address environmental concerns. In this chapter,  
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Table 7.1 Sugar composition and pretreatment methods for different lignocellulosic feedstocks 

Starting 

material 

Glucose 

(%) 

Xylose 

(%) 

Arabinose 

(%) 
Pretreatment method Reference 

Destarched 

wheat bran 
24.7 25.9 18.7 

Hydrolyzed using 72% 

sulfuric acid at 30oC 

for 1 hour followed by 

dilution to 1M at 

100oC for 2 hours 

475 

Water-

soluble 

hemicellulose 

(WSH) 

17.3 50.4 28.7 Two different 

arabinoxylans were 

obtained by 

fractionation of WSH 

using chromatography. 

Acid hydrolysis 

yielded sugars. 

467 
2.4 42.4 45.5 

Starch-free 

bran (SFB)a 

1.8 31.3 17.3 

Acid hydrolysis of 

SFB at 130oC using 

1% H2SO4 for 40 

mins. 

9 

17.7 19.4 8.1 

Non-acid catalyzed 

pretreatment of SFB at 

170oC for 20 min 

followed by enzymatic 

hydrolysis at 50oC for 

72 h 

16.4 23.3 13.3 

Acid catalyzed 

pretreatment with 

0.2% H2SO4 at 160oC 

for 20 min followed 

by enzymatic 

hydrolysis for 72 h 

4.8 13.4 3.8 Enzymatic hydrolysis 

different acid hydrolysis conditions have been compared to break down the arabinoxylans 

into xylose and arabinose. 

7.3 Materials and methods  

Wheat bran was obtained from a local mill company. Concentrated acid hydrolysis was 

used to hydrolyze the lignocellulosic biomass, following the procedure published by Liu 
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et al468. A measured amount of wheat bran was mixed thoroughly with 40 mL of 75% 

sulfuric acid and stirred using a stir bar at 50 oC. After 30 mins, 60 mL of double distilled 

water (ddH2O) was added to dilute the sulfuric acid concentration to 30%. This mixture 

was then stirred on a magnetic stirrer for fixed amount of time at 75 oC. To reduce the 

viscosity of suspension, an additional 40 mL of ddH2O was added to the solution. 

The resulting slurry was vacuum filtered using a vacuum pump and a 0.45 µm 

filter to remove any undissolved residue. The remaining slurry was washed with ddH2O 

and filtered through to collect additional sugars left in the residual biomass. To analyze 

sugar concentration in the hydrolysate, 500 µL of filtrate was neutralized with 1M NaOH 

until pH reached ~7. This neutralized solution was analyzed with the Agilent 1260 

Infinity system (Agilent Technologies, Santa Clara, CA), using the Aminex HPX-87H 

column (Bio-Rad Laboratories, Inc, Philadelphia, PA) and a refractive-index detector. 

The sugar standards used were 1 g/L glucose, 1 g/L xylose, and 1 g/L arabinose. The 

column was kept at 35 oC, while the detector was kept at 50 oC. Samples of hydrolysates 

in the amount of 20.0 µL were injected into the HPLC column for analysis. A mobile 

phase of 5mM H2SO4 was used with a flow rate of 0.6 mL/min. 

7.4 Preliminary Results 

Wheat bran, a feedstock rich in arabinoxylans, was used as substrate for hydrolysis into 

fermentable sugars. When 25 g wheat bran was used in the experiment, the suspension 

was very thick indicating incomplete hydrolysis due to very high feedstock: acid (F: A) 

ratio. The mass fraction of sugars (g/g of wheat bran) obtained was very low (Table 7.2)  
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Table 7.2 Mass fraction of sugars obtained using different acid hydrolysis conditions for wheat bran 

Mass of 

wheat bran 

(g) 

Hydrolysis 

time @ 

75oC (h) 

Mass fraction of sugars (g of sugar/ g of 

wheat bran) 

Glucose Xylose Arabinose 

25 1.5 0.016 0.014 0.009 

15 5 0.02 0.009 0.007 

5 2 0.03 0.015 0.013 

suggesting that lowering the feed: acid (F: A) ratio could help improve the amount of 

sugars obtained.  

 To ensure complete hydrolysis and efficient mixing, the mass of feedstock was 

reduced and F: A ratio was lowered. Both 5 and 15 g of wheat bran was treated using 

same volume and concentration of sulfuric acid. Hydrolysis was carried out for different 

times (2h and 5h) to compare the effect of hydrolysis time on sugar concentration and 

subsequently identify optimal F: A ratio and hydrolysis time. The best condition which 

gave the highest mass fraction of sugars was 5 g of wheat bran subjected to acid 

hydrolysis for 2 hours. However, the mass fraction of pentoses, xylose and arabinose, 

was still very low for purposes of subsequent fermentation (Table 7.2).  

7.5 Future Work 

Wheat bran is produced globally as a by-product of the wheat milling industry and it is an 

underutilized source of pentose sugars. It is an excellent source of hemicellulosic 

arabinoxylan which mainly consists of two pentose sugars, xylose and arabinose. In this 

dissertation, effective utilization of pentose sugars, D-xylose and L-arabinose, has been 

demonstrated via nonphosphorylative metabolism and these sugars have been efficiently 

converted to commercially relevant commodity chemicals, 1, 4-butanediol (BDO) and γ-
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aminobutyric acid (GABA). However, in order to make this process economic and 

competitive with other synthesis routes, it is important to use low-cost and more abundant 

feedstocks such as wheat bran as starting material for nonphosphorylative biosynthesis.  

 Pretreatment of lignocellulosic biomass is the most challenging step in its 

utilization for sustainable production of fuels and chemicals. Pretreatment is essential to 

make the cellulose and hemicellulose polymers more accessible for hydrolysis. It is 

important to utilize both starch and hemicellulose/cellulose part to increase the 

production titers and yields of downstream fermentation processes. Starch can be 

hydrolyzed by amylases but enzymatic hydrolysis of wheat bran using cellulolytic and 

hemicellulolytic enzymes is not enough and may need the use of chemical and physical 

methods. The three types of hydrolysis processes used for the breakdown of polymers 

into fermentable sugars are enzymatic, dilute acid, and concentrated acid hydrolysis. The 

type of pretreatment and hydrolysis method depends largely on the type of lignocellulosic 

biomass, specifically the composition of the feedstock.  

 Future efforts focusing on optimizing pre-treatment of wheat bran, extraction of 

arabinoxylans, and hydrolysis of arabinoxylans into pentoses are crucial to making it a 

promising source for pentose sugars. After hydrolysis, the neutralized hydrolysate can be 

used as a substrate for fermentation to convert the sugars into sustainable chemicals using 

artificial biosynthesis pathways such as nonphosphorylative pathway. This overall 

process including hydrolysis of wheat bran and fermentation of the resulting sugars into 

value-added chemicals could be a very economic process for biosynthesis.   
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