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Preface 
 
We live in a world that is highly structured and contains many kinds of different 

environments, e.g., schools, offices, parks, gyms, forests, beaches, etc. Each of 

these has its own statistical regularities, including the types and frequency of 

objects that can be found within, lighting conditions, environment size, location 

relative to other environments, etc. These regularities, in turn, translate to 

statistical regularities in the sensory input one is likely to experience when 

present in that environment. For example, in a “car” environment, one is likely to 

repeatedly see a variety of traffic signs and experience highly regular patterns of 

optic flow, which may correlate with the type of encountered traffic signs. One 

may further hear common types of sounds, including the “sound textures” 

generated by surrounding traffic, as well as occasional honking, all of which may 

be subject to stereotypical transformations (e.g. muffling) of sound passing 

through the body of the car towards the driver and the passengers. Finally, 

through the acceleration and deceleration of the car, one may feel stereotypical 

patterns of vestibular sensations. 
 

Taking advantage of these structural regularities is undoubtedly highly useful in 

our lives, as they, among other benefits, help us better interact with the world 

through guiding our attention, expectations, and selection of actions that are most 

likely to be rewarding. However, besides these relatively high-level cognitive 

effects of knowing the structure of visual environments, it is also possible that the 

knowledge of these regularities could be used by our sensory systems to 

optimize their function within these known environments. As of now, the extent to 

which the dynamics of sensory processing are modulated by knowledge of visual 

environments remains poorly understood.   

 

In this dissertation, I explore the possibility that repeated experience with visual 

input containing statistical regularities, which I refer to as “contexts”, can change 
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how the visual system adjusts its responsiveness to such input. Environmentally-

driven rapid changes in neural responsiveness are known as “adaptation” (e.g., 

Webster, 2011), and Chapter 1 is dedicated to providing the reader with the 

background knowledge about adaptation necessary to appreciate the 

experimental work discussed in the remaining chapters. Chapter 1 also reviews 

past work on adaptation, some of which appears to be consistent with the notion 

that our visual systems may utilize prior knowledge to influence how we adapt. 

Chapters 2 and 3 discuss novel experiments that were specifically designed to 

test the hypothesis that repeated experience with adaptation to visual input 

containing statistical regularities may speed or otherwise change how we adapt 

when those statistics are later re-encountered, a phenomenon we term “context-

specific adaptation”. Whereas Chapter 2 discusses experiments that use a more 

traditional adaptation to oriented gratings, Chapter 3 outlines experiments in 

which participants adapted to a video feed of their surroundings, whose 

orientation statistics were altered so as to create previously unexperienced 

adapting conditions. Although both sets of experiments address the same 

common question, their distinct methodologies allowed us to manipulate a range 

of variable that may or may not influence whether the visual system engages in 

learning required for context-specific adaptation to take place. 

 

Although as a whole the experiments provide a mixed pattern of results, they 

provide some evidence that context-specific adaptation is a genuine 

phenomenon, and further exploration may be warranted. To this end, Chapter 4 

outlines a number of possible directions that future work may pursue, as well as a 

range of hypotheses about variables that may be crucial for inducing context-

specific adaptation, which I was unable to test in the experiments presented in 

Chapters 2 and 3.  
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Chapter 1 
 
Context-specif ic adaptation in visual and motor systems: the 
common themes 
 
 
Introduction 

Humans and other animals experience frequent changes in their surrounding 

environments. For example, on a typical day, a person may wake up in a house, 

go on a jog through a park, and then spend time in a variety of indoor 

environments, including offices, gym, and restaurants. Because these structural 

changes can significantly alter both the statistics of the visual input reaching the 

eyes, and the demands placed upon the motor system, the nervous system 

needs to continuously adjust its sensory responses and motor commands.  

 

This rapid re-calibration, formally known as neural adaptation, is thought to 

enhance the efficiency of sensory processing (Fairhall, Lewen, Bialek, & de 

Ruyter Van Steveninck, 2001; Sharpee et al., 2006; Wainwright, 1999), and the 

accuracy of motor commands (see reviews by Shadmehr, Smith, & Krakauer, 

2010; Wolpert, Diedrichsen, & Flanagan, 2011). For example, neurons in the 

primary visual cortex adapt to the orientation, motion, and color statistics of the 

visual input, flexibly changing their sensitivity to optimize encoding of visual 

information (see reviews by Clifford et al., 2007; Webster, 2011). Similarly, to 

maintain high accuracy of movements, the motor system dynamically adjusts the 

strength, or gain, of its efferent commands to cope with muscle fatigue and 

miscellaneous physical forces exerted on one’s body (Wolpert et al., 2011, 

Shadmehr et al., 2010).   

 

Because adaptation is thought to be a universal property of neural processing, it 

has received a great deal of attention in research of both sensory and motor 

systems. However, the vast majority of these studies have treated adaptation as 
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a process that depends almost exclusively on the recent history of sensory input 

or motor commands. Although taking this perspective has led to many advances 

in our understanding of adaptation, it is important to consider how adaptation 

may function over the long term. More specifically, due to one’s extensive 

experience within the real world, the adult brain has a great deal of predictive 

knowledge about the spatio-temporal structure of visual and motor statistics 

encountered throughout the day. For example, as people navigate through the 

streets on their morning commutes to work, they have accurate expectations 

about what objects and patterns they are likely encounter at each stage of their 

journey, as well as the motor demands required to successfully complete the 

commute.   

 

In the relatively unecological setting of laboratory experiments, adaptation has 

often been found to be a relatively slow and gradual process, extending over 

minutes, and even hours (Bao & Engel, 2012; Haak, Fast, Bao, Lee, & Engel, 

2014; Kwon, Legge, Fang, Cheong, & He, 2009; Mesik, Bao, & Engel, 2013). 

However, given the extensive experience we have with functioning in the real 

world, it is conceivable that our sensory and motor systems may store 
information about the statistical structures of different real-world environments, or 
contexts, and later use this information to adapt more rapidly when these 
contexts are re-encountered. For example, the morning commute scenario could 

be split into several statistically distinct contexts that the commuter encounters. A 

particular person may initially need to navigate through their home, then pass 

through a nearby park into the downtown area of their city, and finally access 

their office in one of the buildings. Each of these contexts may contain statistical 

regularities, which could, through experience, be stored and later used to adapt 

more effectively. For example, visual input experienced in the “home” context, 

may contain energy concentrated predominantly in horizontal and vertical 

orientations, compared to the “park” context, which will likely have relatively less 
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energy in vertical and horizontal orientations, and will have vastly different color 

and luminance statistics. Similarly, motor demands in the “home” context may be 

different from the other context in its statistics of ground slants, whether a person 

is wearing shoes, etc. If our visual and motor systems can recognize these 

distinct contexts and extract their statistical regularities, then adaptation in the 

real world may function in a more flexible fashion than has been observed in 

traditional studies.   

 

Is there any evidence that our sensory and motor systems can learn to adapt in a 

way that selectively utilizes previous knowledge of the statistical regularities in 

the currently experienced environment? In the rest of this chapter, I will refer to 

this form of adaptation as context-specific adaptation. The purpose of this 
chapter is to survey existing literature examining whether motor and visual 
systems are capable of context-specific adaptation.  These two neural systems 

were selected not only because neural adaptation is prominent, and well-studied 

component in both systems, but also because the scientific fields studying the 

two domains have conducted their research largely in isolation from one another. 

As such, bringing findings from these two fields together provides a unique 

opportunity to both look for common themes in these bodies of literature, as well 

as to draw inspiration from research designs employed in one, but not the other 

field.  

 

Lessons from animal learning 
 

Although this review focuses on the visual and motor systems, it is important to 

note that the idea that context in which behavior occurs may play an important 

role has a long history in the domain of classical and instrumental conditioning 

(see reviews by Bouton, 1993, 2004). For example, extinction of conditioned 

behaviors can be made context-specific by conditioning a behavior under one 
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context and extinguishing the behavior under another context (Bouton & King, 

1983). After such a procedure, conditioned responses are renewed when animal 

is tested in a different context than where the behavior was extinguished. Similar 

results have also been observed in instrumental conditioning (Bouton, Todd, 

Vurbic, & Winterbauer, 2011), where an additional finding has been that learning 

itself does not transfer fully when a behavior is learned in one context, but tested 

in another.   

 

Besides demonstrating the viability of context-specific learning, the animal 

conditioning literature has addressed two important issues in studying context-

specific learning. First, it emphasizes the difficulty of defining what constitutes a 

context. Because context can generally be seen as “that which surrounds” a 

performed task (Smith, 2007), there is an extensive set of possible contextual 

features that the brain can use for encoding context-specific memories. In 

addition to obvious contexts, such as the physical location where learning takes 

place, context can also refer to the time of day, or even internal variables, such 

as the animal’s mood, hunger level, behavioral goals, or past experiences  

(Rosas, Todd, & Bouton, 2013).  

 

Second, the animal conditioning literature emphasizes the importance of 

prediction error in acquiring context-specific memories. That is, associations 

between the learning context and the learned behavioral responses appear to be 

formed when an animal experiences outcomes (e.g. not receiving a shock) that 

do not match their expectations (e.g. receiving a shock). Under these 

circumstances, the animal may incorporate contextual information into learning in 

order to better characterize the structure of outcomes. In other words, learning is 

encoded in a context-specific fashion only when context is useful for predicting 

outcomes, while uninformative contexts lead to more context-general learning.   
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Like in animal learning, error signals are also deemed to have critical importance 

in driving sensory and motor adaptation. For example, the error-correcting 

functions of motor adaptation depend on one’s ability to continuously track the 

degree to which motor performance matches the intended actions. Large 

mismatches lead to strong error signals, which in turn lead to large changes in 

the gain of motor commands. In visual adaptation, computation of error signal is 

complicated by the fact that an observer may not have access to “intended” 

visual signal, and thus the error signal may be computed relative to some internal 

pattern of desired population activity (Benucci, Saleem, & Carandini, 2013).  

Contextual adaptation in vision 

As stated above, visual adaptation has historically been studied as a very rapid 

process that continuously adjusts neural sensitivities so as to maintain the visual 

system’s capacity to extract meaningful visual information in an efficient fashion 

(Clifford et al., 2007; Webster, 2011). As such, relatively little work has touched 

on the question of how adapting context may influence adaptation dynamics, and 

whether experience alters these dynamics. However, even though this question 

has not been the center of attention in adaptation research, results from many 

related studies can be evaluated from this perspective, and can be informative 

about whether the visual system does, in fact, use contextual information to alter 

how it adapts. 

McCollough Effect and visual-visual contingent aftereffects  
 
The visual adaptation phenomenon that has, historically, been most discussed as 

potentially reflecting context-specific processes is the McCollough Effect (ME). In 

ME generating paradigms, prolonged inspection of a color-orientation 

combination (see Figure 1) induces a color aftereffect that is only experienced 

when looking at an achromatic (i.e. grayscale) grating with the same, but not 
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orthogonal, orientation (McCollough, 1965; for review see Howard & Webster, 

2011). In other words, the experience of the aftereffect is orientation-contingent: 
It is experienced only for a particular orientation, namely the one that has been 

used to induce adaptation. For example, if one adapts to a green vertical grating, 

a physically achromatic vertical grating will appear pinkish, while a horizontal 

grating will maintain its achromatic appearance.  

 

 
Because the aftereffects in the ME are only experienced under very specific 

circumstances, it can be interpreted as being a context-dependent adaptation 

aftereffect. More specifically, if one thinks of orientation as a visual context, then 

the fact that ME is only experienced for the orientation that was used during 

	

Figure 1. The McCollough Effect. Prolonged viewing of colored, oriented gratings 
(middle column) induces adaptation effects that change the perception of black-and-
white gratings from veridical pre-adaptation percept (left column) to illusory tinted 
percept (right column). This aftereffect is contingent on orientation, such that 
adaptation to one orientation-color combination causes a color aftereffect just for that 
orientation. Note: figure reprinted from Howard & Webster (2011) under the CC BY-
NC-SA 3.0 license.  
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adaptation can be interpreted as context-specific adaptation. Indeed, different 

MEs can be simultaneously induced for multiple color-orientation “contexts,” so 

that one color aftereffect can be experienced while inspecting a grating of one 

orientation, while another color is observed when viewing the orientation of a 

different adaptor. 

 

The question of whether the ME reflects genuine context-specific processes has 

been extensively debated (Dodwell & Humphrey, 1990; Siegel, Allan, & 

Eissenberg, 1992; Skowbo, 1984), but even so, the current state of the research 

does not clearly resolve the true nature of the neural mechanisms involved. The 

proponents of the contextual account of the ME have used two main arguments 

in supporting their context-dependent interpretation of the ME. First, as stated 

above, the ME has a strong intuitive resemblance of being contextual in that the 

experience of the ME is gated by whether or not the stimuli used to test the 

aftereffect belong to the adapting context (i.e. the orientation used during 

adaptation). If the orientation of the test stimulus matches the orientation of the 

adaptor, the context is interpreted to be identical, and the color aftereffect is 

experienced. When different orientation is shown, visual system infers a distinct 

context, and the adaptation is not generalized to this new context.  

 

Second, unlike other forms of visual adaptation, the ME does not fully decay for 

an extended period of time (Jones & Holding, 1975; Vul, Krizay, & MacLeod, 

2008) unless it is actively erased by inspection of the adaptor orientation without 

the original color pairing. This can be interpreted as the ME being subserved by a 

memory-like mechanism, which stores the appropriate gains for color-tuned 

neurons, and which can subsequently be re-used and further updated whenever 

the orientation context used in ME induction is re-encountered.  
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In fact, the buildup and decay of the ME can be characterized as a combination 

of two mechanisms, one of which adapts and decays quickly, and one that is 

acquired at a slower rate, but appears to have semi-permanent duration (Vul et 

al., 2008). This long-lasting mechanism could potentially be a signature of the 

context-specific component of the ME that allows the visual system to store the 

color-orientation association of the adaptor gratings. On the other hand, 

aftereffects from classical, non-contextual forms of adaptation involving single 

visual feature (e.g. orientation or spatial frequency) are not expected to last over 

a very long duration, because these features are commonly encountered across 

many visual contexts and thus non-contextual adaptation mechanisms need to 

continuously re-adapt to the currently prevalent amount of a given feature. The 

quickly adapting and decaying component of adaptation reported by Vul et al. 

may, then, potentially reflect a non-contextual aspect of the ME. 

 

The neural mechanisms underlying the McCollough effect remain unknown 

(Howard & Webster, 2011). One mechanism of implementing the ME (and other 

contingent aftereffects) as context-specific adaptation has been proposed by 

Barlow and Foldiak (1989). In their view, neural populations with highly correlated 

firing (such as correlated activity in color and orientation selective neurons 

elicited by colored gratings) form mutual inhibitory connections that serve to de-

correlate their activities (see Figure 4.4 in Foldiak and Barlow, 1989). 

Subsequently, when just one of these populations is stimulated (e.g. by viewing a 

grayscale grating), the non-stimulated population receives inhibitory input that 

distorts the population response, leading to the percept of a contingent aftereffect 

(e.g. tinted grating). Hence, contingent aftereffects may be an emergent property 

of efficient sensory encoding, rather than an “intended” feature. Nevertheless, 

this implementation can be considered a kind of context-specific adaptation given 

that the aftereffect is caused by experience-dependent changes in the way 

distinct populations of neurons interact.  
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While the context-specific view of the ME is intuitively appealing, there are a 

number of reasons for caution in concluding that it is indeed implemented in such 

a way. Most importantly, studies of monkey V1 electrophysiology have identified 

so-called double-opponent neurons, which jointly encode color-orientation 

combinations (Johnson, Hawken, & Shapley, 2008). These neurons are tuned 

such that each neuron only responds to particular combinations of color and 

orientation, e.g. red vertical gratings, but not to other combinations. Although the 

nature of neural implementation of the ME remains unclear (Howard & Webster, 

2011) it could quite conceivably be caused by adaptation within these neurons. 

Specifically, perception of chromatic (i.e. colored) contrast may be implemented 

such that for each orientation the range of colors is encoded by neurons jointly 

coding that orientation and one of the colors within the range (see Fig. 2). For 

any color-orientation combination, then, the perceived color would depend on the 

peak in the population response within these jointly tuned neurons. In an 

unadapted state (Fig. 2a), a black and white vertical grating should be perceived 

correctly as black and white and vertical. However, if one adapts to, e.g., a red 

vertical grating (Fig. 2b), the sensitivity of red-vertically tuned neurons will be 

reduced, and hence the peak population response to a gray vertical grating will 

be shifted away from red-selective neurons towards ones selective to greenish 

hues.  
 
The existence of these double-opponent neurons highlights the important 

possibility that the neural substrates of the ME could be pre-wired, as opposed to 

resulting from associative plasticity between orientation and color-selective 

populations. In fact, it is worth considering that even simple cells in V1 are 

selective for specific combinations of orientation, spatial frequency, and location, 

and thus traditional orientation-selective adaptation of V1 neurons is contingent 

on these jointly encoded features. If the McCollough effect is, in fact, 
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implemented in this pre-wired fashion, then it does not reflect the kind of learned 

context-specific adaptation that this review is concerned about.  

 

 

Figure 2: Double-opponent neuron implementation of the McCollough effect. Oriented 
bars in a) and b) represent population of visual neurons tuned to different colors and 
orientations. The size of the bars represents neural sensitivity. a) In an unadapted 
state, black and white gratings generate population responses that are centered on 
black and white. b) When vertically tuned neurons are adapted using a red vertical 
grating and horizontally tuned neurons using a horizontal green grating, sensitivity of 
the red vertical neurons and green horizontal neurons decreases (see smaller bar 
size). Population response to black and white vertical and horizontal gratings in 
subsequently shifted away from the color of the adaptor orientation. i.e. the vertical 
grating appears greenish, and the horizontal grating reddish.  Note: figure reprinted 
from Howard & Webster (2011) under the CC BY-NC-SA 3.0 license.  
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Another reason for skepticism about the ME reflecting context-specific adaptation 

is that the aftereffect cannot be made contingent on arbitrary visual patterns. 

While a considerable number of contingent aftereffects akin to the ME have been 

identified (for review see Durgin, 1996), only relatively basic visual features such 

as orientation, motion direction, spatial frequency, and color have been 

successfully used to produce contingent aftereffects. Attempts to elicit a ME 

contingent on more complex visual patterns such as meaningful objects and 

scenes have generally failed (e.g. Yamashita, Hardy, De Valois, & Webster, 

2005), or induced MEs that could be accounted for based on the low-level 

features of the inducing and test patterns (Broerse & O’Shea, 1995; McCollough, 

2000). These findings lend support to the notion that perhaps contingent 

aftereffects are restricted to combinations of features that are jointly encoded 

within pre-existing mechanisms in the visual system.   

 

Overall, while the contextual interpretation of the McCollough effect is intuitively 

appealing, the current evidence remains inconclusive about its neural 

implementation (see review by Howard & Webster, 2011). More specifically, 

while considerable effort has been exerted to determine where in the brain the 

ME may arise (e.g. Barnes et al., 1999; Humphrey, James, Gati, Menon, & 

Goodale, 1999; Savoy & Gabrieli, 1991; Vul & MacLeod, 2006), relatively little 

experimental work has been done to elucidate how it is implemented. Given that 

double-opponent neurons with joint color-orientation selectivity are known to exist 

in the visual cortex (Johnson, Hawken, & Shapley, 2008), the most parsimonious 

explanation of the ME is that adaptation in these neurons causes the perception 

of the ME. Alternately, the ME may be implemented through a genuine context-

specific mechanism, such as inhibitory interaction between color- and orientation- 

tuned neurons (Barlow & Foldiak, 1989).  
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In order to disentangle between these possibilities, an electrophysiological 

experiment (e.g. in a monkey) of the ME may be needed to determine how 

correlated the ME perception is with patterns of activity in double-opponent 

neurons. For example, if inspection of a ME inducing stimuli elicits robust 

activation in these double-opponent neurons, and if the peaks in population 

activity within them while inspecting grayscale test stimuli corresponds to the ME 

percept, then they are likely responsible for the ME perception. Furthermore, if 

these neural populations subserve the ME, then their electrical stimulation should 

be capable of modulating the ME percept. Alternately, conducting functional 

magnetic resonance imaging (fMRI) studies of the ME may also be a fruitful 

direction given the recent advances in decoding analysis techniques (see review 

by Haxby, Connolly, & Guntupalli, 2014). Such approaches can successfully 

distinguish patterns of neural activity elicited by conjunctions of color and form 

(Seymour, Clifford, Logothetis, & Bartels, 2010), and may therefore be suitable to 

provide insights into the neural basis of the ME.  

 

Gaze-contingent aftereffects 
 

Despite the insufficient evidence regarding the neural implementation of 

contingent aftereffects, it can be informative to consider the types of feature 

combinations that can elicit contingent aftereffects, and the likelihood of their joint 

encoding. More specifically, if there are pairs of features that can cause 

contingent adaptation, but are unlikely to be encoded jointly, then the mechanism 

of adaptation may likely involve some form of associative learning, such as 

formation of inhibitory connections between the neurons encoding these features.   

 

One sub-class of feature pairs that cause contingent aftereffects, yet appear less 

likely to be encoded jointly, are ones involved in gaze-contingent visual 

aftereffects. In this paradigm, the perceived aftereffect depends on the direction 
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in which one is looking. For example, Mayhew (1973) reported gaze-contingent 

motion aftereffect (MAE) in which the perceived direction of illusory motion 

depended on the direction in which a person was looking. When subjects fixated 

static patterns presented in the gaze direction where they previously observed 

clockwise motion (e.g. on a display position to subject’s left), they perceived a 

counter-clockwise MAE, while fixating in the direction that previously contained 

counter-clockwise motion (e.g. display to subject’s right) lead to clockwise MAE. 

Importantly, the retinotopic location (i.e. the position within the visual field) of the 

adaptors, as well as test stimuli used to quantify the aftereffect strength was the 

same in each condition, with only difference being the direction in which the 

subjects were looking. Similar gaze-dependent aftereffects have more recently 

been also demonstrated with depth (Nieman, Hayashi, Andersen, & Shimojo, 

2005), and both the magnitude of MAE and, to a lesser degree, the tilt aftereffect 

(TAE) were shown to be parametrically modulated by the difference in the gaze 

direction during adaptation and testing of the aftereffects (Knapen, Rolfs, Wexler, 

& Cavanagh, 2010; Nishida, Motoyoshi, Andersen, & Shimojo, 2003). 

 

Gaze-contingent aftereffects are a relatively likely candidate for engaging 

context-specific adaptation mechanisms, as opposed to joint feature encoding. 

One reason for this is that although neurons sensitive to gaze direction have 

been identified in visual areas (e.g. Galletti & Battaglini, 1989), the odds that all 

pairwise combinations of gaze directions and the variety of  simple visual 

features that can be used in gaze-contingent adaptation could be represented 

with dedicated neurons appears unlikely. In particular, the number of neurons 

required to encode all pairwise combinations of features grows exponentially as 

more features are added into mix, a phenomenon more generally known as the 

combinatorial explosion. This is even more apparent when one considers the fact 

that all combinations of retinotopic locations, orientations, and spatial frequencies 

are already represented through joint encoding, and hence adding an array of 
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gaze directions as another jointly encoded variable would require an enormous 

number of additional neurons.   

 

The background similarity effect  
 

In recent years, a phenomenon known as the background similarity effect has 

hinted at the existence of context-specific adaptation mechanisms (N. Qian & 

Dayan, 2013; Wu, Xu, Dayan, & Qian, 2009). In this phenomenon, an aftereffect 

is perceived more strongly when the visual statistics of the test patterns 

background match the ones in the preceding adaptor stimulus. For example, 

Qian & Dayan (2013) showed that although tilt adaptation from second-order 

oriented contours generally does not transfer to first-order oriented test lines, 

when background statistics between the two stimuli are matched, the adaptation 

does transfer (see Figure 3). In other words, whether the tilt aftereffect (TAE) is 

perceived is, at least partially, contingent upon visual information that surrounds 

the adaptor and the test stimuli.  
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A potentially related effect has been reported by Nakashima & Sugita (2014), 

who reported a TAE contingent on the geometrical shape that surrounded the 

adaptor and test stimuli. When one adaptor (e.g. leftward tilted grating) was 

consistently surrounded by a circle, and another adaptor (e.g. rightward tilted 

grating) by a square, then the TAE elicited by a vertically oriented test grating 

depended on the shape of the co-presented surrounding pattern. That is, when 

the test stimulus was surrounded by a circle, the perceived TAE reflected 

adaptation to the adaptor with the circular surround and when the test had a 

square surround, TAE reflected adaptation to adaptor with square surround.  

 

Both the background similarity effect and the surround-contingent aftereffect 

appear to be strong candidates for engaging context-specific adaptation 

mechanisms for several reasons. First, these effects capture the intuitive appeal 

of context specific adaptation, namely that the statistical structure of an entire 

	
Figure 3.  The background similarity effect. Illusory perception of tilt, or the tilt 
aftereffect (TAE), can be induced by adaptation to first-order oriented lines (b) or 
second-order oriented contours (a).  E.g. After adapting to first-order stimulus (b), the 
first-order test pattern (c) appears tilted slightly clockwise. Adaptation induced by 
second-order stimuli (a), however, usually does not elicit TAE in first-order test stimuli 
(c). Qian & Dayan (2013) showed that when the background statistics between the 
second-order adaptor and first order test stimulus are similar (compare a and d), the 
aftereffect does transfer, an effect they term “background similarity effect.” Figure 
reprinted from Qian & Dayan (2013) under the CC BY 3.0 license. 
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environment may be informative about the appropriate states of adaptation for 

processing that environment. For example in a given context, information such as 

the characteristic scents, sounds, or colors associated with the context may be 

useful for inferring the identity of that context and retrieving the relevant context-

specific adaptation states for optimal processing of these sensory features. In 

both phenomena discussed above, the perception of the central stimulus 

depends on the content of the surrounding patterns. This suggests that the visual 

system may indeed be able to use statistics in one set of features (e.g. ones in 

the surround) to infer the adaptation state appropriate for processing another set 

of features (e.g. ones in the stimulus center). 

 

In a related vein, the fact that the perceived aftereffects depend on the 

information that spatially surrounds the test stimuli, rather than information that 

overlaps them, suggests that the effects are unlikely to stem from joint feature 

encoding (Note: although the test stimulus in Fig. 3d intersects its surround, Qian 

& Dayan showed that the effect persist when a gap is introduced between the 

center and the surround). In order to test this, however, it is important to show 

that the effect does not occur at late stages of visual processing where receptive 

fields are relatively large and joint encoding of central and surrounding features is 

theoretically possible. Nakashima & Sugita (2014) tested the spatial transfer of 

their surround-contingent aftereffect and found that it is retinotopically specific, 

such that adapting at one location in the visual field and testing at another does 

not elicit the aftereffect. This suggests that at least in the case of their findings, 

the effect is subserved by neural populations at relatively early stage of cortical 

processing, where receptive fields are quite small. In other words, the effect likely 

depends on formation of some type of associative connections between the 

central and surrounding features. 
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Though the above phenomena offer promising hints of context-specific 

adaptation, more work will be required to explore the nature of their neural 

implementation. In particular, while they appear to engage context-specific 

mechanisms, it will be important to show that the neural mechanisms that 

subserve them are truly contextual in nature. For example, although the 

McCollough effect can also be elicited with colors that surround, rather than 

overlap, the adaptor gratings (Siegel et al., 1992), this effect may likely depend 

on a retinal mechanism that allows color-evoked activity to spread into 

surrounding retinotopic regions (Pöppel, 1986). As such, it will be important to 

assess whether some analogous mechanism could somehow account for these 

phenomena. Furthermore, since there is apparent similarity between background 

similarity effect and surround-contingent aftereffects in their dependence on 

visual patterns that surround the test stimuli, future work should also test the 

extent to which they engage common neural mechanisms.   

 

 

 

Cross-sensory aftereffects 

 

Given the multisensory nature of human perception, another possible subclass of 

contingent aftereffects unlikely to be subserved by joint feature encoding includes 

aftereffects where responses to sensory features in one sensory system become 

contingent on features in another sensory system. Recently, a number of such 

effects have recently been reported (e.g. Hidaka, Teramoto, Kobayashi, & Sugita, 

2011; Kuang & Zhang, 2014; Teramoto, Kobayashi, Hidaka, & Sugita, 2013). For 

example, Hidaka et al. (2011) reported a motion aftereffect that was contingent 

upon sound. In their experiment, they repeatedly exposed subjects to sounds 

with high pitch accompanied with visual presentation of rightward apparent 

motion, and low-pitched sounds accompanied with leftward apparent motion. 
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Following an exposure period, subjects became more likely to perceive displays 

with ambiguous (i.e. undirected) motion as containing rightward motion when the 

high pitch sound was played, and leftward motion when the low pitch was played.  

 

However, a distinctive feature of these studies is that the reported contingent 

effects do not manifest themselves as the repulsive aftereffects seen in traditional 

sensory adaptation literature, but rather as attractive perceptual shifts. That is, 

repeated presentation of a particular visual feature generally induces sensitivity 

reduction. If the above experiment with pairings of pitch and motion direction 

reflected traditional contingent adaptation, then the sound associated with 

rightward motion should have caused the ambiguous motion to appear to move 

leftward. This is because the context (i.e. sound pitch) during which the rightward 

motion was presented should be associated with reduced sensitivity of motion 

sensitive populations tuned to rightward motion (since that direction was 

repeatedly presented in that context), and hence the population response of 

motion-selective neurons to ambiguous motion should be shifted towards 

leftward motion.  

 

These context-specific phenomena therefore appear to engage learning 

mechanisms that are distinct from traditional contingent adaptation. In fact, these 

effects are likely related to a broader category of cue combination phenomena in 

which the brain learns to combine multiple sources of related, yet noisy, sensory 

evidence to improve the fidelity of the perceptual inference (Haijiang, Saunders, 

Stone, & Backus, 2006; Knill & Pouget, 2004). While these phenomena can be 

interpreted as involving context-specific learning, due to their lack of clear 

relationship with sensory adaptation, they are beyond the scope of this chapter. 

 

Contingent aftereffects: summary 
 



	

	 21	

Given the relatively limited amount of evidence for contingent aftereffects elicited 

by feature combinations that are unlikely to be encoded jointly, the question of 

whether context-specific visual adaptation can be learned through experience 

remains open. Importantly, even though psychophysical data discussed above 

has failed to differentiate between adaptation in populations of neurons that 

jointly encode multiple features, and more genuine context-specific adaptation 

(such as via cross-feature mutual inhibition), either implementation could still be 

possible. As such, more electrophysiology and neuroimaging is needed to 

elucidate how these contingent aftereffects are implemented.  

 

Aftereffects from adapting to glasses  

The vast majority of adaptation literature discussed thus far exposed subjects to 

highly unnatural visual patterns (e.g. sine-wave gratings) and measured their 

effects on perception using simple detection and discrimination tasks. Although 

such paradigms may be excellent for studying many aspects of vision, it is 

possible that context-specific adaptation may be used predominantly in situations 

where the visual system has evidence that it is functioning poorly, such as when 

viewing more natural visual input distorted by a new pair of glasses. For this 

reason, as well as because they permit long adaptation durations comfortably, 

studies that examine adaptation to glasses can be highly informative. Because of 

this potential, I will review them in somewhat more detail than other studies. 

In perhaps the most direct and informative investigation related to context-

specific visual adaptation to date, Yehezkel et al. (2010) tested whether 

experience with adapting conditions can change how quickly one adapts. They 

asked subjects to wear glasses that induced oriented blur (akin to what people 

with astigmatism may experience), and measured how they adapted in 2 and 4 

hours sessions repeated 1-3 times per subject.  The average results across 

sessions revealed that although adapting for just 2 hours led to minimal reduction 
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in the perceptual distortion caused by the lenses, as well as a strong aftereffect 

after taking the lenses off, 4 hours were sufficient to significantly reduce both the 

distortions and the aftereffect. Strikingly, 4 hours of adaptation completely 

eliminated the aftereffect experienced after taking the glasses off. This suggests 

that the visual system may have processed the input under the two contexts 

(glasses on vs. off) differently, and was able to switch between these modes of 

processing very fast.  

Furthermore, the authors tested whether there was any learning across the 

repeated sessions in a subset of the subjects who completed multiple sessions of 

the experiment (4 out of 9 subjects). This analysis revealed that on session 1, 

subjects adapted only partially, but this adaptation carried over to session 2, so 

that the degree of adaptation started where it left off on the previous session, and 

continued to improve. In other words, these results suggest that there may be 

learning processes in visual adaptation that allow consolidation and storage of 

adaptation states. Although the long-lasting aftereffects seen in the McCollough 

effect (Jones & Holding, 1975; Vul et al., 2008) hinted at this possibility, learning 

effects of this sort have previously not been seen with more traditional, non-

contingent types of adaptation.  

While Yehezkel’s results are promising, there are reasons for caution in making 

strong conclusions about context-specific adaptation. For example, Yehezkel’s 

result showing learning across sessions only used data from 4 subjects who 

completed multiple sessions of the experiment, and the data from remaining 5 

subjects (who, for unstated reasons, only completed a single session) were not 

included in the estimate of the effects of the first adaptation session. Given the 

fact that data for 4 hours of adaptation showed significant reduction in perceived 

distortion across sessions (i.e. an apparent learning effect), inclusion of the data 

from these 5 subjects would potentially render the learning effect across sessions 

non-significant. In other words, if these 5 subjects were included in the estimate 
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of the degree of adaptation in session 1, it is likely that the average amount of 

adaptation on this session would be much greater, possibly comparable to that 

on session 2, washing out any apparent changes between sessions.  

The authors furthermore omitted showing whether the aftereffect from taking the 

glasses off changed across days in a similar fashion as the adaptation effect. 

This is an important piece of evidence that could shed some light on what the 

learning effect across the sessions actually meant. For example, if the learning 

across sessions involved learning to distinguish contexts (glasses on vs. off) in 

order to use separate adaptation mechanisms under each context, then one 

would perhaps expect that the aftereffect when taking glasses off should be 

significantly stronger on session 1 compared to session 2. That is, on session 1, 

subjects may have been less capable of recognizing contextual changes, and 

may have, therefore, generalized the adaptation from the “glasses on” context to 

the “glasses off” one, leading to a perceived visual aftereffect. On the other hand, 

it is also possible that the visual system was able to distinguish the contexts 

quickly (i.e. within the 1st session), and the learning effect was simply a matter of 

optimizing the neural gains of the adaptation mechanism for the “glasses on” 

context. As a speculation, although Yehezkel et al. did not show aftereffects for 

each session separately, the size of the error bar in the figure showing mean 

aftereffect across sessions appears quite small, suggesting that perhaps the 

visual system could employ contextual adaptation quite quickly, and simply 

needed multiple sessions to calibrate the “glasses on” adaptation mechanism. 

Finally, Yehezkel el al. did not test whether subjects could retain the ability to 

adapt quicker beyond the initial “learning” sessions. As discussed in the 

introduction section above, the utility of context-specific adaptation lies in the 

ability to store and reinstate gains that are optimal for processing inputs in 

various contexts. As such, a key goal in studying context-specific adaptation 

should be testing whether it can, in fact, be stored and re-used over extended 
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periods of time. Yehezkel’s results showing learning across sessions could, for 

instance, simply be that the blur adaptation induced by the lenses never decayed 

between sessions, possibly because the neurons that adapted while wearing the 

lenses were not engaged sufficiently while not wearing the lenses. Future work 

should therefore attempt to replicate the experiment with a more standardized 

paradigm (e.g. all subjects should participate in several sessions), and include 

additional tests assessing the properties of the adaptation storage, including a 

longer-term follow-up to assess the duration of the storage. 

 

Another potentially interesting approach to finding evidence of context-specific 

adaptation is studying visually impaired populations whose members may have 

developed distinct ways of processing visual input when they are wearing their 

correction compared to when they are not. One such population is people with 

astigmatism, which is a visual impairment that induces blur along a particular 

orientation axis (i.e. astigmats naturally experience the kind of blur similar to what 

Yehezkel et al. induced using lenses in their subjects). Since most astigmats 

have long-term experience with both uncorrected oriented blur seen when they 

are not wearing glasses, as well as with clear input seen when wearing glasses, 

it is possible that they may be capable of flexibly switching between different 

context-dependent adaptation states.  

 

Although, somewhat amazingly, no study that I could find has rigorously tested 

this possibility thus far, several relevant studies comparing habitually corrected 

astigmats and newly corrected astigmats have been reported. Because the 

former populations have ample experience with both corrected and uncorrected 

contexts, while the later population does not, comparing how these populations 

adapt may reveal hints of context-specific adaptation.  
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In one study, blur adaptation states of newly corrected astigmats were assessed, 

over a period of 6 months, as they gained experience with their glasses, and 

were compared to identical measures in habitually-corrected astigmats (Vinas, 

Sawides, de Gracia, & Marcos, 2012).  Adaptation to astigmatic blur shifts the 

neutral point of what blur level appears sharp. For example, adapting to a blurry 

image will make a physically sharp image look sharper than normal. Vinas et al. 

used adaptive optics, a technique used for precise projection of images onto 

retina, to measure shifts in this neutral blur point as subjects gained experience 

with their correction. To do this, authors projected focused images of visual noise 

onto subjects’ retinas, and found how much added (or subtracted) blur along 

each subject’s axis of astigmatism was needed in the images for the visual noise 

to appear unoriented.  

 

As expected, for previously uncorrected astigmats, a significant amount of 

oriented blur was needed for the images to appear unoriented; subjects 

apparently had adapted so that the blur their astigmatism produced appeared 

unoriented. As the subjects gained experience with their correction over the 

course of 6 months, this neutral point shifted to the same value found in non-

astigmatic control subjects. Strikingly, however, habitually corrected astigmats, 

who would be expected to have the same neutral point as the control subjects 

(since their correction provides them with equally sharp input as seen by 

controls), exhibited a chronic state of blur adaptation despite long-term usage of 

glasses (see Fig. 4 in the citation).  In other words, throughout the 6 months of 

the experiment, habitually-corrected astigmats required extra blur in the test 

stimuli, indicating that the physically sharp stimuli projected onto their retinas 

were perceived to be sharper than normal. 

 

Why would habitually corrected astigmats show such a bias? One possible 

reason is that because the level of adaptation was tested using adaptive optics 
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technique, when subjects were not wearing glasses, habitually-corrected subjects 

may have utilized context-specific adaptation mechanism intended for seeing 

without glasses. More specifically, the visual systems of these subjects may have 

inferred that because they were not wearing glasses during the measurements, 

the visual input would be blurry along their axis of astigmatism, and hence they 

used adaptation state intended to compensate for this anticipated blur. Newly 

corrected astigmats, on the other hand, may have utilized a non-contextual, 

general-purpose adaptation mechanism that was still adapted to the glasses 

worn prior to the testing sessions, and hence their visual systems were adapted 

for processing sharp input. In other words, habitually corrected subjects may 

have identified the contextual transition when they took their glasses off for 

testing and used a context-specific adaptation mechanism, whereas the newly 

corrected astigmatism did not.  

 

Another potential hint of context-specific adaptation from the astigmatism 

literature is that both habitually corrected and uncorrected astigmats suffer 

weaker reduction in acuity when blur is induced along their axis of astigmatism, 

compared to other orientations (Vinas et al., 2013). Similar to Vinas et al. (2012), 

subjects in this experiment took their glasses off prior to testing, allowing subjects 

to detect a contextual switch. As such, it is possible that these results reflect 

subjects utilizing context-specific adaptation to oriented blur they experience 

when not wearing glasses. That is, by utilizing neural gains intended to 

compensate for the blur they typically experience when not wearing glasses, 

subjects were able to tolerate extra blur along their axis of astigmatism compared 

to orientations along which they typically do not experience blur. However, the 

fact that both habitually- and newly-corrected astigmats exhibited a similar effect 

appears to conflict with findings of Vinas et al. (2012), discussed above, based 

on which one would expect newly-corrected astigmats to switch between 

adaptation states optimal for wearing and not wearing glasses at a slower rate. In 



	

	 27	

other words, based on Vinas et al. (2012), it would be expected that during the 

experiment, newly corrected astigmats would be still adapted to their glasses, 

worn prior to the experiment, and hence would not be adapted to compensate for 

their astigmatic blur. 

 

Because Vinas et al. (2013) did not design their experiment to look specifically for 

context-specific adaptation, there is an alternative explanation for their results. 

Specifically, it is possible that astigmats have improved acuity along the axis of 

astigmatism because of perceptual learning from extensive experience 

functioning with astigmatic blur, or due to some other form of permanent 

plasticity. These possibilities would also predict benefits of coping with blur along 

the axis of astigmatism independent of wearing glasses, and the results of Vinas 

(2013) therefore cannot be interpreted as strong evidence of context-specific 

adaptation. 

 

Besides the positive findings hinting at the existence of context-specific 

adaptation mechanisms, two other studies have failed to find evidence for 

context-specific adaptation to glasses (Khan, Dawson, Mankowska, Cufflin, & 

Mallen, 2013; Pesudovs & Brennan, 1993). In one such study, Pesudovs & 

Brennan (1993) showed that myopes have worse visual acuity (VA) without their 

glasses immediately following a period of wearing their glasses, compared to a 

period of not wearing them. In both cases, VA was measured in the same context 

of not wearing glasses, and hence if context-specific adaptation for “no glasses” 

context was available to subjects, one would expect that the adaptation states, 

and hence the VA measures, should be equal in both experimental conditions. 

The difference in VA between the conditions thus suggest that despite their 

extensive experience with both blurry and clear visual input, myopes cannot fully 

and immediately switch between optimal states for seeing with and without 

glasses. While this result suggests that instantaneous switching between 
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adaptation states, at least for blur adaptation, may not be possible, it 

nevertheless leaves a possibility that context-specific adaptation could allow 

switching between such states to be faster. To assess this, it would be important 

to compare acuities under these conditions between habitually- and newly- 

corrected myopes. It is possible that while acuity is worse after wearing a 

correction, the effect could be much more pronounced in someone not 

experienced with seeing both with and without glasses, or that re-adaptation 

when switching between the glasses “on” and “off” contexts would be slower. 

 

Another piece of evidence against context-specific adaptation can be found in a 

study by Khan et al., who compared blur adaptation rates of myopes and normal 

vision subjects (Khan et al., 2013). Because myopes have extensive experience 

seeing under blurry conditions, one would perhaps expect that they should be 

quicker at adapting to blur than normal vision subjects. However, Khan et al. 

(2013) found that the two groups adapted at the same rate, suggesting that 

experience with blurry vision does not alter the dynamics of blur adaptation. At 

the same time, it is possible that even if myopes are faster at adapting to blurry 

visual input, this advantage would likely be observable for blur levels close to 

ones caused by their refractive error. In Khan et al. (2013), all subjects were 

tested with same two levels of myopic defocus, which likely did not match 

refractive errors that the myopic subjects experienced in daily life.  

 

Overall, although studies of visual impaired subjects have strong potential to 

shed light onto whether context-specific adaptation does exist, the research done 

thus far is inconclusive. It will be important to design studies explicitly geared 

towards assessing context-specific adaptation by testing different ways in which 

such adaptation could manifest itself.  The key directions include conducting 

more thorough comparisons between experienced and non-experienced wearers 

of corrective lenses, as well as experiments comparing adaptation dynamics to 
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visual distortions before and after subjects gain extensive experience with these 

distortions. 

 

Summary: context-specific adaptation in vision 

Because the human visual system possesses a large amount of knowledge 

about the statistical structure of various visual contexts, an interesting question in 

the study of visual adaptation is whether the visual system utilizes such 

knowledge when it adapts to familiar contexts. The literature reviewed here 

shows that although this possibility has received some limited attention, only 

relatively weak support for context-specific adaptation has been found thus far. 

Importantly, most of the reviewed work did not test for context-specific adaptation 

explicitly, but instead provided informative “hints” about the existence of 

contextual adaptation mechanisms, which need to be interpreted with caution.  

As such, the key future direction is to conduct experiments that explicitly test for 

context-specific adaptation. Because the most suggestive evidence in favor of 

context-specific adaptation thus far has emerged from an experiment utilizing 

blur-inducing glasses (Yehezkel et al., 2010), a natural starting point for future 

work is to employ similar experimental approaches. Paradigms employing free-

viewing of the world while wearing glasses may be especially useful in studying 

context-specific adaptation, as the visual distortion of the world may provide the 

visual system with strong evidence that visual processing is functioning sub-

optimally. Because the poor fidelity of visual information can disrupt one’s ability 

to perform basic visual tasks such as object recognition and localization, 

adapting more quickly may be incentivized in these paradigms, maximizing the 

odds of discovering evidence for context-specific adaptation.  

 

Designing better tests of context-specific adaptation in vision may further be 

accomplished by drawing inspiration from other fields of research that have 

devoted more effort and attention to exploring related questions. The next section 
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will review evidence from research of context-specific adaptation in the motor 
system, and will attempt to uncover useful principles and directions that vision 

studies should draw inspiration from. 

 

Lessons from contextual plasticity in motor adaptation 

Like the visual system, the motor system also adapts, continuously calibrating its 

efferent commands to cope with changes in muscle properties (e.g. fatigue) and 

external forces applied to one’s body. These adaptation processes have been 

studied extensively through a variety of paradigms (e.g. Pélisson, Alahyane, 

Panouillères, & Tilikete, 2010; Shadmehr et al., 2010; Wolpert et al., 2011), which 

typically measure how limb movements adjust to compensate for externally 

applied forces. To accomplish such adaptation, the motor system changes the 

strength of motor commands, known as the motor gain, to minimize error 

between the performed and intended motions. 

 

In order to produce identical movements in different contexts (i.e. physical states 

or environments), it is often necessary to use distinct patterns of motor gains. For 

example, producing equal swimming strokes in an oceanic current and in a calm 

lake will require much stronger muscle gain in the former situation. Context-

specific motor adaptation may therefore be a possible strategy to quickly adapt 

when a particular situation is reencountered. Unlike the relatively limited scrutiny 

of context-specific adaptation in vision, the field of motor adaptation has actively 

studied these effects for the past several decades.  As such, this section will 

survey a narrower, but more focused body of research on context-specific motor 

adaptation, with the goal of finding principles potentially applicable to vision. 
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In one of the most widely used paradigms for studying context-specific motor 

adaptation, force fields in opposing directions are used on different trials to 

disrupt subject’s attempted limb movements towards a target (see Figure 4). On 

each trial, the subject grasps a mechanical tool, attempts to reach with it towards 

the target, and observes the mismatch between the performed and intended 

motions. This mismatch, termed the error signal, is then used by the motor 

	
Figure 4. Force field adaptation paradigm. Subjects perform reaching movements 
towards a target (top, green circle), while being subjected to one of two force fields 
(light blue arrows; brown and dark blue frames show conditions with and without a 
contextual cue, respectively). As subjects adapt, accuracy of movements gradually 
improves, which is reflected in declining error distance between reach end point and 
the target (bottom left) as well as increased compensation for the force field (bottom 
right). The dark blue trace represents a condition where learning does not occur (no 
contextual cue), whereas the brown trace (with contextual cue) shows robust learning. 
Figure reprinted from Howard, Wolpert, & Franklin (2015) under the CC BY 4.0 
license. 
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system to adjust movements on subsequent trials, allowing the subject to slowly 

learn to compensate for the force fields and accurately reach the target (Wolpert 

et al., 2011). The degree of adaptation is usually quantified by measuring the 

distance between the reach end point and the target, or the force exerted onto 

the mechanical tool used during the reaching. Furthermore, at the end of the 

experiment, “error-clamp” trials may be performed, in which the subject reaches 

towards the target while his or her movement is constrained to reach directly 

towards the target, leading to a zero error signal. Nevertheless, given the 

preceding adaptation, subjects continue to exert forces in anticipation of the 

perturbing forces. These error-clamp trials are intended to quantify the natural 

decay of adaptation in the absence of error signals, providing an additional 

measure of the adaptation aftereffect. 

 

Because performing identical movements under oppositely directed force fields 

requires using opposite patterns of motor gains, a single adaptation mechanism 

cannot be used to be simultaneously adapted to both force fields. For example, 

to compensate for a force field directed leftward, motor gains need to adapt to 

generate muscle force in the rightward direction. If these gains are then used in 

the context of a rightward force field, the resulting movement will be biased 

significantly rightward away from the target. Consequently, for simultaneous 

adaptation to both force fields, the motor system needs to adjust and store two 

separate sets of motor gains, and flexibly switch which mechanism is utilized on 

a trial-by-trial basis. On each trial, the motor system needs to correctly recognize 

the current force field context and select the appropriate set of gains to 

compensate for it.  

 

In this task, failure to process the context correctly will result in interference 

between the contexts, which will greatly limit improvement in the task.  If, for 

example, only one context is inferred, then the error signals on different trials will 
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produce gain changes in opposite directions. This in turn will cause the net gain 

change to remain around zero, yielding no visible improvement in performance.  

Alternatively, if the motor system incorrectly infers the context on some 

proportion of trials, then the gains will be updated based on performance in a trial 

from the wrong context, and again performance will not improve (or improve at a 

slower rate).   

Studies with no contextual cues 

Using paradigms similar to the one above, two major classes of studies have 

been conducted that are informative about context-dependent motor adaptation. 

In the first type, subjects are given no contextual cues about the condition they 

are in, other than the proprioceptive cues from the force field felt during the 

completion of each trial. Perhaps unsurprisingly, under these conditions no 

adaptation occurs to either of two contexts if they are randomly intermixed on a 

trial-by-trial basis (Karniel & Mussa-Ivaldi, 2002). Lack of explicit contextual cues 

may prevent the motor system from inferring the correct contexts in this case.  

 

However, when trials from the two contexts are presented in blocks, such that a 

run of trials in one force field is followed by a run in another, robust adaptation to 

each of the contexts does occur (Criscimagna-Hemminger & Shadmehr, 2008; D. 

Lewis, Smith, & McAllister, 1952; Pekny, Criscimagna-Hemminger, & Shadmehr, 

2011). In this paradigm, each contextual switch is followed by a pattern of re-

adaptation, where initially large motor errors gradually reduce over the course of 

the block. Whether the ability to compensate for both force fields in these blocked 

paradigms engages contextually-tuned or some other type of mechanisms has 

been debated extensively (Karniel & Mussa-Ivaldi, 2002; Lee & Schweighofer, 

2009; Pekny et al., 2011; Smith, Ghazizadeh, & Shadmehr, 2006; Wolpert & 

Kawato, 1998).  
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Traditionally, results of force field adaptation paradigms have been modeled 

using fast-adapting and slow-adapting temporally-tuned mechanisms (Smith et 

al., 2006) similar to ones reported in visual adaptation (Bao & Engel, 2012; Mesik 

et al., 2013; Vul et al., 2008). These models have been influential due to their 

ability to account for a wide array of motor phenomena.  However, under this 

model of adaptation, each force field context engages the same set of non-

contextual mechanisms, so that adaptation in each block necessarily interferes 

with the effects of previous blocks. In other words, under this model it is 

impossible to be simultaneously adapted to opposite force fields in a way that 

allows one to successfully compensate for both of them. 

 

This non-contextual model has been challenged with a competing model 

containing both a non-contextual fast adapting, and contextual slow adapting 

mechanisms (Lee & Schweighofer, 2009; Pekny et al., 2011; Wolpert & Kawato, 

1998), which can also account for the range of phenomena explained by the non-

contextual model. In this model, whenever force field context switches, the motor 

system can infer a change in context through changes in the patterns of error and 

reward signals, even in the absence of explicit cues, and use this knowledge to 

switch into using a new contextual mechanism. For example, if context switches 

from a leftward to a rightward force field, then the first several trials in the new 

context will result in large magnitude of motor errors, as well as a sudden loss of 

the reward signals (such as “Great job!” messages) due to unsuccessful 

performance on these trials. According to the model, these signals are used by 

the motor system to recognize a change in context, and switch from using the 

mechanism that led to success in previous context to utilizing and updating a new 

mechanism intended to produce successful behavior in the new context. A 

Bayesian version of this model allows for multiple contextual mechanisms to be 

simultaneously expressed as a combination weighted by motor system’s pattern 

of uncertainties about the currently active context (Berniker & Kording, 2008).  
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Pekny et al. (2011) tested this model by reasoning that if one sequentially adapts 

to opposite force fields A and B, and the motor system does store adaptation 

states for both contexts, then it should be possible to cue the motor system into 

expressing both mechanisms. To assess whether this is possible, they adapted 

subjects in long blocks of trials (384 trials/block) in context B, followed by A, and 

a brief (20 trial) re-exposure to B. They reasoned, that if by the time of the re-

exposure, one has separate mechanisms adapted to each context, then brief re-

exposure to context B (whose mechanism should at that time be masked by 

adaptation to A) should give the motor system a cue to re-express the 

mechanism for that context. To measure whether this was the case, the BAB 

block sequence was followed by a block of error-clamped trials, which are used 

to deprive the motor system of error signals, allowing for the measurement of 

adaptation uncontaminated by trial-by-trial recalibration. If the mini-block induced 

re-expression of the adaptation mechanism for B, then the resulting movements 

in the error-clamped trials should be strongly biased towards the ones observed 

in the initial adaptation to B. Indeed, when results from this BAB procedure were 

compared to identical procedure in which the initial B block was replaced by 

adaptation to null force field (NAB), the movements in error clamped trials were 

significantly more biased towards B in BAB than in the NAB condition. In other 

words, although behavior in sequential adaptation to different contexts reflects 

adaptation to just the most recent context, effects of previous contexts appear to 

nevertheless be stored, and can be re-expressed when appropriate contextual 

cues are encountered. 

 

Additionally, Pekny et al. (2011) further showed that gains associated with one 

context could be reinstated, after being masked by adapting to another context, 

merely by withholding reinforcement signals, such as the visual feedback 

associated with successful trials. When adaptation to context B was masked by 
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prolonged adaptation to null force field, subjects re-expressed adaptation to 

context B in error-clamp trials if the visual feedback for trial success was withheld 

in a small number of error-clamp trials. In contrast, the same procedure in which 

all error-clamp trials provided “success” visual feedback did not elicit re-

expression of adaptation to context “B.” In other words, by virtue of providing 

subjects with visual feedback associated with unsuccessful trials, previously 

learned contextual mechanisms can be recovered, presumably due to the motor 

system’s inference that the old context’s mechanism may lead to more 

successful performance. This suggests that context-specific adaptation not only 

depends on error signals used to update adaptation mechanisms, but it can also 

be influenced by more abstract reward signals (e.g. rewarding pictures) similar to 

those used in classical conditioning literature.   

Effects of contextual cues on limb movement adaptation 

The second major class of motor adaptation studies are ones in which different 

contexts are accompanied by explicit cues. These studies have shown that 

whether or not the motor system can acquire context-dependent motor 

“memories” crucially depends on the type of contextual cues used to distinguish 

between the contexts (Hirashima & Nozaki, 2012; Howard, Wolpert, & Franklin, 

2013, 2015; Imamizu et al., 2007; Wada et al., 2003). Randomly intermixing trials 

from two contexts can elicit robust adaptation to both contexts quickly (within a 

single experimental session) and reliably when the contextual cues allow the 

motor system to infer that in different contexts, the subject’s body is in distinct 

physical states.  

 

For example, Howard, Wolpert, & Franklin (2013) showed that it is possible to 

adapt to two oppositely directed force fields when the different force field 

directions are associated with different apparent locations of the task. More 

specifically, when the visual depiction of the starting position, target, and the 
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cursor representing the arm position were offset to one side of the screen for one 

context and the opposite side of the screen for the other context (while 

maintaining the same physical arm position), subjects were able to distinguish 

between contexts on a trial-by-trial basis and rapidly learned to compensate for 

both contexts. Similar effects were also observed when the limb is physically 

placed in different locations in the workspace (Howard et al., 2013; Hwang, 

Smith, & Shadmehr, 2006), or when contexts are linked to movements that 

subject performs following each trial (Howard et al., 2015; e.g. moving arm 

leftward after each trial in one force field context, and rightward in the other 

context). 

 

On the other hand, the use of more arbitrary contextual cues, such as the color of 

a fixation point, or peripherally presented motion has yielded more conflicting 

results. Shorter, single session experiments have shown virtually no context-

specific adaptation with these cues (Gandolfo, Mussa-Ivaldi, & Bizzi, 1996; 

Howard et al., 2013), whereas experiments with many blocks or multiple 

sessions have elicited context-dependent adaptation (Addou, Krouchev, & 

Kalaska, 2011; Imamizu et al., 2007; Krouchev & Kalaska, 2003; Wada et al., 

2003) that is relatively weak. The slower rate of learning with these cues 

suggests that trials from each context significantly interfere with adaptation in the 

other context’s adaptation mechanism, possibly due to motor system’s failure to 

consistently attribute the observed motor errors to the appropriate context.  

 

Although the reasons for the discrepancy between the efficacies of different cues 

are unclear, a possible explanation is that the two classes of contextual cues 

engaged distinct mechanisms of context-specific adaptation. On the one hand, 

cues that provide the motor system with evidence that in each context the body is 

in a different state may engage mechanisms that map body states to actions 

appropriate for those body states. As such, this type of context-dependent 
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adaptation may be better thought of as state-dependent adaptation, which likely 

has tremendous importance in everyday life.  

 

Although the physiological substrates of state-dependent adaptation remain 

unclear, it could potentially be implemented through prewired circuitry dedicated 

for association of body states to appropriate gains. Such circuitry could possibly 

be located in the cerebellum, which has a crucial role in production of accurate 

movements, and which has been shown to be involved in motor learning 

(Raymond, Lisberger, & Mauk, 1996). Lesioning of the monkey cerebellum has 

been shown to disrupt the ability to learn associations between different contexts 

and arm movements (Lewis & Tamargo, 2001), and electrical stimulation of 

cerebellum in humans can modulate acquisition and retention of motor 

adaptation to force fields (Herzfeld et al., 2014). 

 

Contextual cues that are more arbitrary and elicit slower, less efficient contextual 

adaptation may, on the other hand, engage some kind of associative mechanism 

capable of mapping patterns of motor gain to arbitrary contextual cues. This may 

reflect a more classical type of learning mechanism similar to ones seen in the 

classical conditioning literature. More work is, however, needed to determine 

whether the slow contextual adaptation with arbitrary cues is, in fact, subserved 

by an associative learning mechanism, or whether it simply reflects a slowly 

devised cognitive strategies for compensating for the force fields (Addou et al., 

2015;  Howard et al., 2013).  

 

Contextual cues in saccadic adaptation 
 

In addition to adaptation of limb movements, context-specific adaptation has also 

been investigated with adaptation of saccadic eye movements. Adaptation in eye 

muscles is induced by shifting the saccadic target during the saccade either 
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closer to, or farther away from the initial point of fixation. The former perturbation 

causes the saccade to over-shoot the target and hence induces gain reductions 

on subsequent saccades, whereas the latter manipulation induces gain increases 

(Pélisson et al., 2010). Contextual effects in saccade adaptation have been 

investigated by measuring whether one can simultaneously acquire two sets of 

saccadic gain patterns appropriate for opposite saccadic perturbations, and 

switch between them in a context-specific manner. 

 

Analogous to arm movement adaptation, the ability to induce context-specific 

adaptation depends on the type of contextual cue used.  Cues that influence the 

body state, such as the pre-saccade eye position or head tilt (Alahyane & 

Pélisson, 2004; Havermann, Zimmermann, & Lappe, 2011; Shelhamer & 

Clendaniel, 2002) are effective for contextual adaptation. One could argue that 

this kind of context-specificity is likely pre-wired given that each context 

corresponds to different initial muscle states, which means that different muscle 

groups may be utilized under distinct contexts. This is not the kind of context-

specificity this chapter is concerned with. However, the motor system has the 

flexibility to use eye position such that if it is not informative about the 

experienced perturbation, then adaptation acquired at one eye position transfers 

to other eye positions (e.g. Albano, 1996; Frens & van Opstal, 1994; Semmlow, 

Gauthier, & Vercher, 1989). In other words, the motor system can, but does not 

necessarily have to, utilize eye position for usage of separate contextual 

mechanisms.   

 

Visual cues that are informative for saccade planning, such as pre-saccade 

target motion direction and velocity, are likewise effective for inducing context-

specific adaptation (Azadi & Harwood, 2014). For example, when a saccade 

shortening perturbation is linked with high pre-saccade target velocity, and 

saccade lengthening perturbation with low target velocity, robust context-specific 
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adaptation is observed. Because Azadi & Harwoord had subjects fixate prior to 

making the saccades, the muscle states were identical between contexts, and 

hence the ability to adapt to both perturbations cannot be explained as simple 

recalibration of distinct groups of eye muscles.   

 

Instead, these results suggest that the motor system learns and uses the 

associations between target features (e.g. velocity or motion direction) that are 

informative about perturbations, and the appropriate compensatory saccadic 

gains. Importantly, these target features may be special, because they are 

necessary for saccade planning. That is, pre-saccade target velocity or direction 

informs the visual system about where the target will be in the next time point, 

and hence they are crucial target properties for motor planning. As such, in order 

for a contextual cue to capable of supporting context-specific adaptation, it may 

be important for the cue to have pre-existing relevance in motor planning. Indeed, 

more arbitrary visual features such as target color and shape, which do not have 

obvious a priori utility in motor planning, have generally failed to induce context-

specific adaptation (Azadi & Harwood, 2014; Bahcall & Kowler, 2000; Deubel, 

1995; but see Herman, Harwood, & Wallman, 2009 for a positive result). 

Context specificity in visuo-motor adaptation 

Besides saccade and force field adaptation, adaptation to sensory-motor 

manipulations, such as when visual input is shifted or inverted using prism 

goggles, provides further evidence for context-specific motor adaptation. In visuo-

motor adaptation, a subtype of the larger class of sensory-motor adaptation, the 

motor system adapts to compensate for distortions in the mapping between 

motor and visual coordinates. For example, prisms that invert the visual world 

render information coming from above to appear in the lower visual field, and the 

motor system needs to learn that to interact with objects in lower visual field, one 

needs to reach upwards. Like in limb movement and saccadic adaptation studies, 
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adaptation to multiple contexts has been studied in visuo-motor adaptation (e.g. 

Cunningham & Welch, 1994; Fogt & Henry, 1999; Ghahramani & Wolpert, 1997; 

Kravitz & Yaffe, 1972; Martin, Keating, Goodkin, Bastian, & Thach, 1996; Tuan & 

Jones, 1997; Welch, Bridgeman, Anand, & Browman, 1993).  

 

In one such study, Tuan and Jones (1996) used a combination of contact lenses 

and spectacle lenses to induce prismatic shifts in the visual input, and measured 

how subjects adapted to this distortion. Using a behavioral task that tracked the 

errors in pointing towards a target, the authors found that pointing accuracy 

improved over the course of the experiment. This improved accuracy remained 

high when the glasses were removed, and the adaptation state appeared to be 

stored and re-used when the glasses were put on again after several minutes. In 

other words, the subjects appeared to maintain two separate adaptation states 

that were used selectively, depending on whether or not the subject was wearing 

the glasses. Fogt and Henry (1999) replicated these findings and further showed 

that such adaptation can be stored for at least 4 days, and hence can 

accommodate people who use multiple different prescriptions. 

 

These studies along with a number of others demonstrate that context-specific 

adaptation to multiple distinct distortions of visuo-motor mapping is possible 

(Cunningham & Welch, 1994; Ghahramani & Wolpert, 1997; Kravitz & Yaffe, 

1972; Martin, Keating, Goodkin, Bastian, & Thach, 1996; Welch, Bridgeman, 

Anand, & Browman, 1993). Although this rich body of literature is certainly 

valuable to our understanding of context-specific adaptation, its closer review is 

beyond the scope of this chapter.  

 

Lessons for visual studies 

Given that context-dependent adaptation has received much more attention in 

the motor adaptation field than in vision research, there are a number of lessons 
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from motor literature that can be applied to vision. Most importantly, in future 

work it will be important to design studies that explicitly test whether context-

dependent visual adaptation mechanisms do exist. The paradigms used in motor 

literature can quite easily be “adapted” to vision studies. For example, adaptation 

to one type of distortion in visual statistics (e.g. reduction in oriented contrast) 

can be used as one visual context, and opposite distortion (i.e. contrast 

enhancement for same orientation) can be used as the second context. 

Periodical switching of these distortions while measuring the degree of 

adaptation through both behavioral and neural measures can then be used to 

assess whether, over time, the visual system learns to maintain and switch 

between multiple contextually-tuned adaptation mechanisms. 

 

Secondly, a key take-home from motor literature is that the type of contextual 

cues used to give the motor system predictive information about the current 

context is crucially important. Specifically, as shown in saccadic and limb 

adaptation, some cues are much better for acquisition of context-dependent 

adaptation, while with others, the different contexts may significantly interfere 

with each other’s mechanisms (Azadi & Harwood, 2014; Howard et al., 2013). As 

such, selection of appropriate contextual cues may also be critical for whether the 

visual system can utilize context-specific adaptation mechanisms. In the motor 

system, contextual cues that indicate to the motor system that the body is in 

different states in each context appear to be the most effective cues for 

contextual adaptation. Analogously the visual system may also respond strongly 

to cues that inform it of its “visual state.” However, what these states may be in 

vision is somewhat unclear. 

  

One intuitive possibility is that these “visual states” could correspond to being 

situated in distinct physical locations, which is often associated with distinct 

visual statistics. Adapting to one visual distortion in one location and an opposite 
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distortion in another location may thus allow for adaptation and expression of 

distinct contextual mechanisms. On the other hand, the results showing gaze-

contingent visual aftereffects (Mayhew, 1973; Nieman et al., 2005; Nishida et al., 

2003) suggest that visual states may possibly correspond to spatial locations 

encoded in an ego-centric coordinate system. That is, rather than context-specific 

adaptation as a function of physical locations, these mechanisms may be 

encoded relative to one’s own body. Finally, the mere presence of some 

consistent visual feature in the visual field, such as the frame of the glasses, may 

be sufficient to signal to the visual system that it should be functioning under a 

different set of contextual mechanisms. Yehezkel’s (2010) experiment showing 

that experience wearing blur-inducing glasses can lead to increases in adaptation 

rate are consistent with this view, and suggest that context-specific adaptation 

may be implemented through neither world- nor ego-centric coordinate systems. 

One of the goals of future research should be to elucidate the nature of context-

specific adaptation mechanisms by testing which of these possibilities, if any, is 

most effective for inducing contextual adaptation. 

 

The third lesson, albeit somewhat speculative, is that behaviorally relevant error 

signals may be important for inducing context-specific adaptation. In motor 

adaptation, subjects consciously perceive the mismatch between their intended 

and actual movements and use this information to re-calibrate their movements. 

Additionally, reward signals indicating trial success have been shown to have 

influence on expression of contextual mechanisms that previously led to trial 

successes (Pekny et al., 2011). The nature of error signals in vision is currently 

poorly understood, and especially in traditional adaptation studies utilizing simple 

patterns such as sine-wave gratings and plaids, it is non-obvious how the visual 

system determines the mismatch between the “optimal” and “actual” visual 

response. In these situations, the error signal may be quite abstract, such as the 

difference between the population activity at a given moment and some “optimal” 
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pattern of activity, perhaps one that is equalized across the population (Benucci, 

Saleem, & Carandini, 2013). However, studies that induce adaptation in natural 

viewing conditions, such as through blur-inducing glasses, allow subjects to 

perceive that the world is distorted, and may therefore incentivize learning how to 

adapt to such distortions in a context-specific fashion. Indeed, the success of 

Yehezkel et al. (2010) in finding evidence suggestive of context-specific 

adaptation may potentially be due to their use of such naturalistic visual input. 

Therefore, in future studies, it may be crucial to provide subjects with behaviorally 

relevant error signals in order to elicit context-specific visual adaptation.  

 

In addition to the use of various blurring lenses, behaviorally relevant error 

signals may also be generated through the use of altered reality systems similar 

to one utilized by Bao & Engel (2012). This approach has an advantage in that it 

allows for more customized way to alter visual statistics, and hence can be used 

to study adaptation to wide array of visual distortions. Using altered reality, 

context-specific adaptation may be incentivized, for example, through the 

reduction of visual information available to the subjects through attenuation or 

scrambling of visual features such as orientations, colors, or spatial frequencies. 

The relatively large difficulty in perceiving the world under such conditions may 

drive the visual system to learn and store context-specific adaptations for each 

type of distortion to which the subject is exposed.  

 

Finally, it should be acknowledged, that despite the similarities between visual 

and motor adaptation, it is entirely feasible that context-specific adaptation 

mechanisms may not exist in vision, or may only exist in some limited form. One 

reason for this is that due to the highly dynamic nature vision, the visual input 

may not be sufficiently predictable to make context-specific adaptation 

mechanisms desirable. This may be especially true for low-level visual features 

such as orientations, spatial frequencies, and colors. In other words, although 
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there may be underlying statistical regularities for these features in different 

environments, the moment-to-moment variability of the visual input may be too 

high for the storage of gain patterns for different contexts to be desirable. Due to 

input variability, context-specific visual adaptation would, at best, be a kind of a 

“best guess,” or a heuristic, for the visual system to set the neural gains at a 

reasonable starting point, from which it would nevertheless need to deviate on a 

moment-to-moment basis.  

 

Higher-level visual features, such as objects and faces, may, on the other hand 

be predictable enough to warrant context-specific adaptation mechanisms. For 

example, it is possible to adapt separately to male and female faces, or faces of 

different ethnicities (Jaquet, Rhodes, & Hayward, 2007; Little, DeBruine, & Jones, 

2005), and obtain gender- or ethnicity-contingent face aftereffects. These 

aftereffects can be seen as being context-specific in that they are only 

experienced when a face of a given gender or ethnicity is observed. However, 

these high level contingent-aftereffects are thought to be implemented through 

neurons with complex joint-encoding profiles that are sensitive to high-level 

characteristics like gender and ethnicity. As such, while context-specific 

adaptation with high-level visual objects may be possible, it is likely that these 

aftereffects do not reflect the type of context-specific adaptation explored in this 

dissertation. Nevertheless, given that processing of high-level visual features is 

still not understood thoroughly, further exploration of these high-level context-

specific aftereffects may likewise be a worthy future direction.  

 

In conclusion, this chapter has addressed the possibility that visual and motor 

systems may be able to learn and retain neural adaptations for optimal 

functioning in distinct environments, or contexts. This kind of learning may 

potentially be very useful in everyday life, as it allows the visual and motor 

systems to rapidly adapt whenever a given context is re-encountered. The 
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possibility that such adaptation mechanisms exist is particularly interesting, 

because it would suggest that even low-level neural phenomena such as 

adaptation may be subject to memory-like effects, which are, at least in vision, 

thought to operate at later stages of neural processing.  Here, I have reviewed a 

body of evidence that hints that such mechanisms may exist, suggesting that 

further exploration of this possibility is warranted. Furthermore, I reviewed 

evidence from motor adaptation literature, which suggests that the motor system 

does use context-specific adaptation mechanisms. I argue that due to the 

similarities between visual and motor adaptation, the field of vision research 

should draw inspiration from the paradigms and findings reported in motor 

adaptation literature, and design experiments that utilize what has been learned 

form that field.    
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Chapter 2 
 
Repeated experience with adapting to biased orientation ensembles 
does not alter contrast adaptation dynamics 
 
Introduction 
 
The visual system continuously adjusts its sensitivity so as to optimize its 

performance (see Chapter 1, and reviews by Clifford et al., 2007; Webster, 2011; 

note that overlap between this and previous chapter are to aid publication of this 

chapter as a paper). This process, known as neural adaptation, is a fundamental 

property of sensory processing, and thus its thorough characterization is 

important for our system-level understanding of the brain.  

 

The majority of work on visual adaptation has used a contrast adaptation 

paradigm (e.g., Blakemore & Campbell, 1969), where high contrast sinusoidal 

gratings are used to induce robust, orientation-selective reduction in neural gain 

(See Chapter 1 for more detail). Adaptation is quantified behaviorally by 

measuring, e.g., elevation of detection thresholds, or repulsive shifts in the 

perception of orientations around the adapted orientation.   

 

Although past work has addressed a wide range of important questions, it has 

generally assumed that neural adaptation is a process with relatively hard-wired 

properties. That is, aside from the observation of some modulatory effects of 

attention (Lankheet & Verstraten, 1995; Ling & Carrasco, 2006; Rhodes et al., 

2011), adaptation is seen largely as a “bottom-up” or stimulus-driven process 

unaffected by experience (but see Yehezkel et al., 2010; Dong, Gao, Lv, and 

Bao, 2016). 

 

However, different environments in the real world are filled with statistical 

regularities (Torralba & Oliva, 2003) that could, in theory, be detected and 
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recognized by the visual system to adapt faster. For example, forests tend to 

have relatively large amounts of contrast energy along vertical orientations, and 

are generally green in color, while cities contain both vertical and horizontal 

energy and are comparatively more grayish and bluish in hue. With sufficient 

experience, the visual system could learn these statistical regularities and use 

them to adapt more quickly when the familiar environment is encountered. This 

may be advantageous, because the moment-to-moment visual input is variable 

and thus purely bottom-up adaptation may be relatively slow in reaching a state 

that is optimal for the average statistical structure of the environment. As such, 

having prior knowledge of the environmental structure may provide a good 

starting point from which the optimal gain for the current circumstance may be 

achieved at a faster rate.  

 

In this chapter, we report the results of two experiments that address the 

question of whether the dynamics of contrast adaptation can change with 

experience. Specifically, we test whether repeated experience with orientation 

statistics induces some form of learning that speeds adaptation dynamics when 

the same adaptors are re-encountered.  

 

In contrast to the standard usage of a single oriented grating as an adaptor, we 

used statistically defined adaptors to emulate the fact that different visual 

environments (e.g. forests, cities, or mountains) all have different visual statistical 

structures. Although the moment-to-moment visual input in these environments 

may be variable, on average the overall input statistics contain stable biases. We 

term these statistically defined analogues of visual environments “contexts,” and 

our hypothesized effects of experience-dependent changes in adaptation 

dynamics “context-specific adaptation.”  
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Participants viewed rapid sequences of sinusoidal luminance gratings whose 

orientations were, in different conditions, sampled from distributions biased 

towards either clockwise or counterclockwise orientations (Figure 2.1.1). 

Adaptation to biased ensembles like these reduces neural gain in the population 

of neurons tuned to the dominant orientation (Benucci, Saleem, and Carandini, 

2013). This gain reduction can, in turn, be quantified behaviorally by measuring, 

e.g., shifts in orientation perception near the dominant orientation, a phenomenon 

known as the tilt aftereffect (TAE). For example, in one of our conditions 

participants viewed grating ensembles with 15 deg clockwise orientation bias, 

which induces a small repulsive shift in perception of orientations around 0 deg, 

causing test gratings to appear slightly more counter-clockwise (e.g., 0 deg may 

appear to be -2 deg).  

 

The most common interpretation of this effect is that following adaptation to a 

clockwise bias, a 0 deg vertical grating elicits an activation pattern across the 

orientation-selective population that is slightly weaker in clockwise-tuned 

neurons, and hence the peak of this activity pattern occurs at slightly counter-

clockwise-tuned neurons. This pattern of activation is, then, “read-out” or 

interpreted by later stages of visual processing as a counter-clockwise tilt, 

leading to the perception of the TAE. In contrast, adapting to an ensemble of 

gratings with no orientation bias leads to an unbiased symmetric activation 

pattern when a vertical grating is presented. This results in a veridical perception 

of a 0 deg stimulus, because the entire orientation-selective neural population is 

adapted evenly, leading to no shifts in the peak of the activation pattern. 

 

To aid the visual system in identifying and distinguishing contexts from one 

another (e.g. +15 deg vs -15 deg context), we simultaneously presented adaptors 

and “contextual cues,” which were peripherally presented images defined by 

either low-level orientation features (Exp. 2.1) or meaningful natural scenes (Exp. 
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2.2). These cues were uniquely temporally linked with each context such that the 

visual system could, in theory, learn to infer the statistical structure of the context 

based on the cue alone.  

 

We measured adaptation to these visual contexts in an hour-long session on 

each of four consecutive days, and assessed whether the buildup and decay of 

TAE changed across sessions. If the visual system can learn the structure of 

adapting contexts through repeated experience with them, and is capable of 

using this knowledge to more rapidly adjust its gain, then we should observe 

across-session increases in adaptation speed and/or strength. 

 

Experiment 2.1  

 

In this experiment we tested whether relatively short but repeated exposure to 

sequences of gratings with biased orientation statistics, can lead to changes in 

contrast adaptation dynamics.  

 
Methods 
 

Eight observers participated in Experiment 2.1. All gave informed consent in a 

protocol that was approved by the University of Minnesota IRB. Two participants 

were excluded from analyses due to their data not showing TAE in any condition 

or session.  

 

Observers participated in four sessions on consecutive days, each of which 

consisted of 20 task blocks split into 4 runs. During each 2 min task block (Fig 

2.1.1), subjects fixated while attending a pair of rapid sequences of adaptor 

gratings (33 ms / grating, 85% contrast, 3 cycles per deg, 3.25 deg diameter, 

random phase), presented on opposite sides of the fixation (left-right or above-
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below, counterbalanced across participants). The sequence on one side of the 

fixation always served as a neutral sequence, and its orientations were sampled 

from a uniform distribution over 12 evenly spaced orientations between 15-180 

deg. The other sequence was the adaptor sequence, and its orientations were 

sampled either from the neutral distribution, or from one of two biased 

distributions where either +15 or -15 deg had a probability of 66.6%, while the 

remaining probability mass was split evenly among the other 11 orientations (Fig 

2.1.2). In total, there were three adapting distributions (contexts) in different 

blocks of this experiment: Neutral, -15 deg, and +15 deg.  

 
 

 

	
Figure 2.1.1 Trial structure 
In each block, two sequences of 85% contrast gratings were presented 
simultaneously to the left and right of the fixation at a rate of 33 ms / grating. Each 
750 ms “top-up” period was followed by a blank ISI period of 200 ms, and a 250 
ms presentation of a pair of 35% contrast gratings. One of these gratings, on the 
same side as the adaptor sequence, was a “test,” and had an orientation of either 
-2, 0, or +2 deg (chosen randomly on each trial), while the other was a “match” 
grating, whose orientation the subject adjusted using a mouse to perceptually 
match the test. The matching could take place over several top-up periods. Once 
a satisfactory match was achieved, subject clicked the mouse, and the next trial 
automatically began. 
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The adaptor and neutral grating sequences were interleaved with an orientation 

matching task to quantify effects of adaptation. After a 750 ms period of “top-up” 

grating sequences, there was a 200 ms blank period, followed by a 250 ms 

period in which a near-vertical test stimulus appeared in the location of the 

adaptor sequence, and a match stimulus, initially randomly selected to be 

between ±45 deg appeared in the location of the neutral sequence. Both of the 

test and match stimuli had same parameters as the adaptor sequence, except 

their size was 2.5 deg and contrast was 35%. The purpose of the smaller size 

was both to make the task stimuli easy to distinguish from the adaptors, and to 

make our measures of adaptation robust to small changes in gaze direction, i.e., 

microsaccades. We used lower contrast to minimize the amount of adaptation 

decay caused by the test and match stimuli. Subjects moved the mouse leftward 

	
Figure 2.1.2 Statistical structure of adaptor and neutral sequences. 
Orientations in the “Adaptor sequence” (top row) were sampled either from a 
uniform distribution (left), distribution biased towards -15 deg (middle), or 
distribution with a +15 deg bias (right). The “Neutral sequence” (bottom row) was 
always sampled from a uniform distribution  
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and rightward to adjust the orientation of the match stimulus to replicate the 

perceived orientation of the test stimulus. This process continued over as many 

top-up periods as needed to produce a satisfactory match, at which point 

participants clicked the mouse to submit the response and begin the next trial. 

 

Because trial completion was self-paced, the number of submitted responses 

varied from block to block. To minimize the time required to complete each trial, 

subjects heard real-time auditory feedback for each 1 deg orientation step taken 

during the matching, allowing them to continue with adjustments during the top-

up periods despite the test/match stimuli not being on the screen.   

 

In order to encourage subjects to use their perception of the test stimulus, rather 

than memorizing a generic match response (e.g. “vertical”), the test orientation 

was randomly selected on each trial to be -2, 0, or +2 deg (relative to vertical). 

	
Figure 2.1.3 Run structure 
During each task run, there were five 2-minute blocks. Color in the plot depicts the 
proportion of each orientation (y-axis) as a function of time (x-axis) for sample adaptor 
sequences. The run always began with a neutral condition and then the adaptor 
sequence alternated between biased and neutral conditions. The neutral sequence 
(not pictured) was always sampled from a uniform distribution, i.e. same as the 
neutral blocks in the diagram. The order of biased conditions was counter-balanced 
across subjects, and alternated both across runs and days.  
	



	

	 54	

Prior to the beginning of the main sessions, each subject performed four to five 

brief practice sessions to train them on the task and verify that they were able to 

perform it quickly, consistently, and that their responses indeed tracked the 

different test orientations.  

 

To differentiate the adapting contexts, and hence facilitate the hypothesized 

contextual learning, the side of the screen with the adaptor sequence contained a 

contextual cue (Fig 2.1.1) consisting of a spatial array of 250 gratings (15% 

contrast, 3.5 deg) whose orientation statistics matched the probability distribution 

(Fig 2.1.2) used to sample the adaptor sequence The center of each grating was 

randomly positioned, but to ensure homogeneous spatial distribution, the portion 

of the screen containing the array was divided up into 5 sectors, each of which 

received a number of gratings proportional to the area of the sector. There was a 

2.5 deg gap between the adaptor sequence location and the contextual cue to 

minimize the magnitude of center-surround interactions between the adaptors 

and the cue. Additionally, in order to reduce low-level retinal adaptation induced 

by the contextual cue, the cue changed every 5 sec and was replaced by one of 

nine arrays with the same orientation statistics. The same cue exemplar could 

appear multiple times / block, but never twice in a row. 

 

Each of the 4 runs in a session consisted of 5 blocks (Fig 2.1.3). The adapting 

contexts began with neutral one, and then alternated between -15 or +15 deg 

and neutral, with each biased context appearing once per run. This sequence 

allowed us to obtain a clean, relatively adaptation-free baseline measure in the 

beginning of a run, and then measure both the buildup and decay of TAE through 

the pairings of biased sequences followed by neutral sequences. The initial 

biased context (i.e. whether the bias was +15 or -15 deg) was counterbalanced 

across subjects, and alternated both across runs and sessions (e.g. On session 
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1, the initial bias in run 1 may have been +15 deg, but for run 2 it was -15 deg, as 

was the case in run 1 on session 2). 

 

Following each run, subjects were given a one minute break. Five seconds prior 

to the beginning of the next run, a brief beep was played to notify the subject to 

get ready for the upcoming block. The total duration of each experimental 

session was 44 minutes.  

 

For each participant, we computed within-block TAE buildup and decay dynamics 

for each context by interpolating match responses for each of the 3 test 

orientations, and then averaged across these curves together. This was 

motivated by the observation that the TAE magnitude was comparable for the 3 

test orientations, making the average of these curves a more accurate estimate 

of the overall dynamics. The TAE curves were then averaged across participants 

for each day to compare the dynamics across days, and to perform group-level 

statistical analysis. 

 
Results 
 
Adaptation to the biased contexts induced a robust tilt aftereffect whose direction 

was repulsively shifted away from the most common orientation of the adaptor 

sequence (Fig. 2.1.4A), i.e. clockwise TAE from counter-clockwise bias, and vice 

versa (15 deg context: P < 0.005, 1 – 2.4 deg 95% CI; -15 deg: P < 0.001, -1.3– -

2.4 deg 95% CI). The TAE then decayed back towards baseline in the ensuing 

neutral blocks (Fig. 2.1.4B). 
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However, we observed no indication of experience-dependent changes in the 

dynamics of adaptation. First, we tested whether the overall strength of the TAE 

induced by the two adapting contexts changed across days (Fig. 2.1.5).  For 

each day we computed each participant’s asymptotic level of TAE in both 

conditions by taking the mean TAE in the final 30 sec of the growth curves, and 

then computed the slope of a linear fit across days for both conditions. These 

slopes did not differ significantly from zero (P > 0.5 and P > 0.2 for -15 and +15 

deg contexts, respectively), indicating that with 4 days of experience, our 

adaptors became no more (or less) potent at inducing TAE than they were at the 

beginning of the experiment. A simpler analysis where we compared the peak 

TAE on first and last days of the experiment showed similar results. 

 

	
Figure 2.1.4 Dynamics of orientation matching in Exp 2.1 
(A) Adaptation to each orientation bias produced robust, repulsive 
shifts in the perception of the test stimuli.  On all 4 days, this effect built 
up over the course of the block to about 1.5-2 deg TAE. (B) During the 
subsequent neutral blocks, the TAE decayed back towards the 
baseline level of 0 deg TAE.  
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Second, we tested whether the speed of TAE buildup changed across days. To 

this end, we computed the time required to reach 80% of the peak TAE for each 

day and condition, determined as the median of time points that came within 0.25 

deg of this TAE value. We then computed slopes for the linear fit to these 

durations across days. These slopes, again, did not significantly differ from zero 

(P > 0.35 and P > 0.6 for the two contexts) indicating that experience did not 

affect the rate at which participants adapted.  

 

Third, because the neutral context is also an adaptor in its own right (albeit one 

that equalized gain across orientation-selective populations), one could expect 

repeated experience with it to lead to faster decay of TAE accrued in the 

preceding biased conditions. In fact, the neutral context was experienced three 

times as frequently as each biased context, making it arguably the most likely 

condition to show behavioral changes. We tested for changes in the rate of TAE 

	
Figure 2.1.5 TAE asymptotes across days 
The figure plots asymptotes (average of last 30 sec of the block) as a function 
of days for all conditions. The large circles are group averages ±1 SE, while 
the smaller symbols are results for individual subjects (small x-axis offsets 
were applied for better visibility). The data reveals no systematic shifts in this 
TAE asymptote metric. 
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decay following switches from biased to neutral contexts by computing the slopes 

over the time required for TAE to decay to 20% of its peak magnitude and 

compared these slopes against zero. Again, we observed no changes (P > 0.8 

and P > 0.35, for -15 and +15 deg, respectively), consistent with experience not 

altering adaptation dynamics. We also tested whether there was any change in 

the rapid decay occurring in the first 10 sec following a contextual switch to 

neutral condition (Fig. 2.1.6). The slope of this quantity across days, likewise, did 

not differ from zero (P > 0.9 and P > 0.6). 

 

 
 

In an additional series of analyses, we tested for much shorter-term changes in 

adaptation dynamics, occurring on the timescale of a single session (i.e. across 

	
Figure 2.16 Rapid decay across days 
The graph shows rapid TAE decay occurring during the transitions from the biased 
conditions to neutral condition, as a function of testing day. This rapid decay was 
quantified as the difference between the mean TAE in the initial 10 sec of the 
unbiased condition and the mean TAE in the final 30 sec of the preceding biased 
condition. This metric reveals no systematic changes across days. Given the 
pattern across the 4 days, the lack of fast decay in the -15 deg to neutral condition 
transition on day 3 is likely an outlier.	
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runs). For these analyses, we averaged data across days for each of the 4 runs 

(Fig 2.1.7), and computed the same statistical tests as described above for 

across-days changes. Similar to the across-days analyses, we found no 

significant changes in any of the metrics of adaptation dynamics. These analyses 

suggest that adaptation dynamics tend to be unaffected by experience on both 

shorter (tens of minutes) and longer (days) timescales.    

 
 
 
 
 

	
	
Figure 2.1.7 Timecourse of TAE over runs 
The adaptation growth (A) and decay (B) curves are plotted separately for each of 
the four runs, averaged across the 4 sessions (see plot color legend). In all runs, 
adaptation produced robust TAE. The growth and decay patterns, however, did not 
change in a systematic way over the course of the session, in line with our analyses 
of change over days. 
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Discussion 
 

In experiment 2.1, we tested whether repeated experience adapting to different 

contexts led to changes in the buildup and/or decay of the tilt aftereffect. We 

found no changes in these dynamics, consistent with the hypothesis that 

adaptation is not modulated by prior knowledge.  

 

Nevertheless, it is possible that we failed to find an effect of experience for 

methodological reasons, rather than the null hypothesis being true. One 

possibility is that there was interference between our three adapting 

contexts(Qian, Jaeger, & Aslin, 2012). Specifically, in order to learn the statistical 

structure of our adapting contexts, the visual system needs to be able to 

differentiate between the three conditions: That is, the visual system needed to 

accumulate moment-to-moment orientation statistics separately from each 

context, so that over time it could learn and use this knowledge to appropriately 

compensate for the biases via gain changes in its orientation-selective neural 

populations.  

 

However, such learning will not be possible if the visual system either fails to 

recognize that there are three contexts in our experiment, or fails to reliably 

detect contextual transitions. In such a case the learning process may continue 

accumulating evidence across multiple contextual transitions, for example 

arriving at the conclusion that there is a single context with a bimodal distribution 

with peaks at both +15 and -15 deg (or some other incorrect distribution). 

Alternatively, failure to detect some changes in the input statistics could have led 

the visual system to infer that the adapting context is unpredictable or unstable, 

and hence its structure is not worth learning. Whatever the case, it is possible 

that our failure to observe contextual learning may have been caused by poor 
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detectability of contextual transitions leading to the failure of the visual system to 

build appropriate internal models for the three contexts.  

 

Note that we included two biased contexts, rather than just one, to make sure 

that any change in adaptation dynamics would be due to some type of learning, 

rather than the engagement of previously observed temporally tuned adaptation 

mechanisms (Bao, Fast, Mesik, & Engel, 2013; Bao & Engel, 2012; Mesik et al., 

2013). The reasoning for this is that with one adapting context, an adaptation 

mechanism with long time constant could become adapted and stay adapted 

between sessions, while a fast mechanism with short time constant could be 

used to rapidly adjust to transient changes in the input statistics. In this case, 

adaptation on subsequent sessions could appear to be faster due to lingering 

effects of the already adapted slow mechanism. Inclusion of two orientation 

biases producing opposite, but equally strong TAE thus provides a stronger test 

of whether the learned adaptor statistics can actually be used to alter adaptation 

dynamics, since slow temporally-tuned mechanisms would, in this case, cancel 

each other’s effects out. As such, any changes in dynamics across days are 

unlikely to be explained via such temporally-tuned mechanisms.  

 

We attempted to help subjects distinguish contexts by including a contextual cue 

in the surround of the adaptor sequence. However, because these cues were 

essentially a spatial analogue of the temporal statistics of the adaptor sequence, 

the cues may have been too “low level” for visual system to pick up on.  It is 

possible that a different, semantically meaningful, cue may allow for learning to 

occur. Indeed, in motor learning literature where context-specific adaptation has 

been repeatedly demonstrated, such learning critically depends on the cues used 

to differentiate between trials for different adapting contexts (Howard et al., 

2013).  
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Another reason we may have failed to find contextual adaptation is that both our 

adapting contexts had very strong bias, since each orientation sample had a 66% 

probability of being the dominant orientation. As such, the bottom-up drive from 

these adaptors may have been so strong that there was little need for top-down, 

experience-driven image to speed the already rapid adaptation dynamics. We 

chose this adaptor strength in order to increase our signal-to-noise ratio (SNR) 

for detecting the TAE, but paradoxically, we may have reduced our SNR for 

finding experience-driven effects. 

 

Finally, although our paradigm tried to loosely mimic the real world in that the 

adapting contexts were stochastic, yet contained statistical regularities, it differed 

from real-world experience in a potentially very important way. Specifically, in real 

world, contexts are generally encountered one by one and the visual input thus 

reflects the structure of a single environment. However, in our experiment 

whenever participants were in a biased context, they viewed two adaptor 

sequences that differed in their statistical structure, one on each side of the 

screen. Because the neutral sequence was always sampled from a uniform 

distribution, input on half of the screen corresponded to one context, while the 

other half reflected a different context. It is possible that for contextual learning to 

take place, the visual system may need a clear signal that the statistical structure 

of the current context applies to the entirety of the visual world.     

 

Experiment 2.2 

 
In the second experiment, we addressed some of the possible reasons, 

discussed above, for our failure to find changes in adaptation dynamics.  

 

It is possible that learning of context in the previous experiment was difficult 

because the adapting contexts were only present on half the screen, and most 
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enduring contexts in real life may be more global. To add this real world feature 

to Exp 2.2, the statistics of each context were applied to a larger portion of the 

screen by using a single, centrally presented sequence of gratings (vs two 

sequences in Exp 2.1). As before, the orientations in the central sequence were 

drawn from one of three distributions (-22 deg bias, Neutral, and +22 deg bias), 

each corresponding to a different adapting context. 

 

In order to further facilitate contextual learning of the orientation distributions, 

each condition was associated with a semantically meaningful image category 

(cities, beaches, and mountains), images from which were presented in the 

background of the adaptor sequences as a contextual cue. This made it more 

likely that participants would notice contextual transitions, as the changes in the 

background image category are more salient than the comparatively subtle 

changes in orientation statistics of the background textures in Exp 2.1.  

 

This experiment also used orientation distributions with greater orientation 

variability than in Exp 1, with the goal of slowing down the buildup of TAE. As a 

result, we hypothesized that learning the orientation distributions associated with 

each context would be more useful for the visual system, since there is greater 

potential for significant time saving in reaching the optimal adaptation state.  

 

Methods 
 
Experiment 2.2 was run on 6 participants (3 females), all of whom gave informed 

consent in a protocol that was approved by the University of Minnesota IRB.  

 

To make contexts more similar to the real world (see above), we used just one, 

centrally presented adaptor sequence that covered the retinotopic location of 

both the test and match stimuli (Fig 2.2.1). The adapting gratings were 11 deg in 
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size, had a spatial frequency of 0.75 cpd, and were presented in 1.6 sec top-up 

periods at a rate of 9.44 Hz. As in the previous experiment, the orientation 

statistics of these sequences were neutral (i.e. sampled from a flat orientation 

distribution) in odd blocks and biased in even blocks. To minimize transfer of 

adaptation to the match stimulus, the spatial frequency of the match was 3 cpd, 

i.e. 2 octaves higher than that of adaptor and test stimuli (Shapley & Lennie, 

1985).  
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To make our adaptors weaker and more variable (see discussion above), we 

sampled orientations in the two biased conditions from von Mises distributions 

(i.e. roughly Gaussian on a circular domain), as opposed to a combination of 

	
Figure 2.2.1 Trial structure in Exp 2.2 
(A) Participants performed the same matching task as in Exp 2.1, except the 
“match” grating had a higher spatial frequency than the “test” (3 vs 0.75 cpd). The 
surrounding area contained a natural image, which served as contextual cue 
about the adaptor statistics. Central stimuli were separated from the background 
image by a 15 deg central aperture to minimize center-surround interactions 
between the contextual cues and the grating stimuli. (B) Contextual cues were 
sample image of beaches, cities, or mountains (overall 5 per category).  (C) Trials 
were interleaved with 1.6 sec top-up periods, during which a large 0.75 cpd 
adaptor was presented at 9.44 Hz. Following each top-up, there was a 350 ms 
ISI, followed by a concurrent presentation of the test and match gratings. As in 
Exp 2.1, each trial could last through multiple top-up periods, and was terminated 
by subject submitting their match response via a mouse click.		
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uniform and impulse distributions used in Exp 2.1 (Fig 2.1.2). The new 

distributions were centered at ±22 deg and had a concentration parameter of 

7.64 (a standard deviation of approximately 7.5 deg). This change made the 

variability of the presented orientations considerably higher than in Exp 2.1, and 

consequently reduced the detectability of the bias. To accommodate for this 

intended weakening of adaptation, we increased the block duration from 120 to 

150 sec.  

 

Since the orientation matching task does not require paying attention to the 

adaptor sequence, we attempted to direct participants’ attention to the adaptor 

via a secondary task. In addition to performing the matching task, participants 

also were asked to detect spatial frequency shifts from 0.75 to 0.3 cpd in the 

adapting grating, lasting 212 msec (i.e., duration of two samples in the adaptor 

sequence). Shifts occurred every 4-8 adaptor top-up periods. Observers 

indicated detection via a button press.    

 

Because the contextual cues, consisting of oriented patterns of gratings, used in 

Exp 2.1 did not appear to attract participants’ attention, and because real-world 

contexts are generally more semantically meaningful (e.g. different locations 

have different statistics), we decided to use more high-level contextual cues (Fig. 

2.2.1A-B). To this end, we presented the grating sequences embedded in 

background natural images (in a gray 15 deg circular aperture). We used three 

different natural image categories, each of which had 5 different image samples 

and was associated with one of the three contexts (including the neutral context). 

The image categories included pictures of cities, mountains, and beaches, and 

the association between image categories and conditions was counterbalanced 

across participants.  
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Note that while in real world environments the contextual category (e.g. forest) 

and biased statistics (e.g. more vertical energy) are tightly linked, our cue-bias 

pairings were arbitrary. Although this is a potential weakness of our contextual 

cues, we chose to do so because finding real context categories with ±22 deg 

orientation biases is unlikely to be possible, and more importantly because the 

usage of such categories could be disadvantageous due to contextual learning 

effects being already complete from participants’ prior experience with those 

contexts.   

 

We attempted to increase participants’ awareness of these semantically 

meaningful contextual cues in two ways: First, prior to the beginning of each 

block, sample natural images from the current category were presented for 5 sec 

at a rate of 2 images per second. These images were shown in isolation, i.e., in 

the absence of adaptor gratings, and participants were instructed to freely look at 

them. Second, every 4-8 test-match presentations, the test-match stimuli were 

omitted, and instead the full background image (i.e. without the central gray 

aperture that normally underlay the gratings) of the current context cue sample 

was shown for the same duration. Participants were instructed to freely look at 

the natural image during these brief periods so that over time, they would 

become more aware of the contextual cues.  Although the efficacy of these two 

manipulations is unclear, we implemented them to maximize the odds that the 

contextual cues would be associated with the statistics of our adaptor sequences.  

 

Based on participant feedback that the experiment was tiring, we introduced a 

longer break in the middle of each experimental session. The duration of this 

break was determined by the participant, but was forced to be at least 1 minute 

long. The other two inter-run periods (i.e. after runs 1 and 3) contained a 1 

minute break, as in Exp 2.1 
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Observers participated in several practice sessions to become proficient in the 

orientation matching and spatial frequency change detection tasks. All 

participants completed three practice sessions with 10 neutral blocks each. 

Halfway through each practice session, participants received feedback about 

their speed, average accuracy, and response variability. This way, they had an 

opportunity to adjust their strategy and see the outcome at the end of the practice 

session. To be eligible to participate in the main experiment, participants needed 

to meet performance criteria by the last session: 1) Complete 10+ trials per block, 

2) Have across-block mean error range of 1 deg or less, and 3) Have within-block 

response variability (mean absolute deviation) of 1 deg or less.  

 

All other paradigm details were identical to Exp 2.1.  

 

Results  
 
As in Exp 2.1, adaptation produced reliable tilt-aftereffects. Whereas neutral 

adaptors maintained the orientation matches around the veridical test stimulus 

orientation (with a small, statistically significant counter-clockwise bias, P < 0.05, 

-0.002 – -0.70 deg 95% CI; see Fig 2.2.3), the two biased conditions (Fig 2.2.2A) 

induced a robust, repulsive TAE that grew over the course of the block, reaching 

an average size of 0.9 deg (-22 deg context: P < 0.005, 0.42 – 1.28 deg 95% CI; 

+22 deg context: P < 0.001, -0.6 – -1.28 deg 95% CI). This effect then decayed 

back towards baseline in the following neutral block (Fig 2.2.2B).  
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However, consistent with our previous results, we failed to observe changes in 

adaptation dynamics over the 4 sessions of the experiment. First, we tested for 

across-day changes of peak TAE induced by each condition (Fig 2.2.3). Slopes 

of the linear fit to the peak TAE as a function of day did not differ significantly 

from zero (P > 0.27 and P > 0.66 for -22 deg and +22 deg contexts, respectively), 

suggesting that the overall strength of adaptation stayed constant across days. 

We found parallel results in an alternative analysis comparing only the difference 

of peak TAE between days 1 and 4. 

 

	
Figure 2.2.2 Dynamics of orientation matching in Exp 2.2  
(A) During the biased blocks, perception of test stimuli was subjected to the TAE, 
which grew stronger over the course of the block. (B) In the subsequent neutral 
blocks, responses TAE gradually decayed back to baseline.  
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Second, we tested for changes in the speed of TAE buildup. For each context 

and day, we computed the time to reach 80% of the peak TAE strength and fitted 

the values for all four days with a linear function. The slope of this fit did not differ 

significantly from zero for either context (P > 0.4 and P > 0.5), indicating that the 

shape of TAE growth did not change over the course of the experiment. 

 

Finally, we tested for changes in the TAE decay following contextual switches 

from biased to neutral contexts. We compared the time required for TAE to decay 

to 20% of its peak strength across days, but found the slope of the fit to these 

values indistinguishable from zero (P > 0.9 and P > 0.1 for the two contexts). We 

also tested for rapid decay of TAE following switches from biased to neutral 

conditions (Fig 2.2.4). This was computed as the difference between the mean of 

the first 10 sec of the decay function in the neutral condition and the mean of the 

last 30 sec in the preceding biased context. Linear fits to these decay values as a 

	
Figure 2.2.3 TAE asymptotes across days  
TAE values for each session reflect the average the final 30 sec of each 
condition. Error bars indicate ±1 SE. Data from individual participants is plotted 
in smaller font (✕: -22 deg, □: Neutral, ▷: +22 deg), with small x-axis offsets for 
de-cluttering purposes.   
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function of test day did not differ from zero (P > 0.46 and P > 0.79 for -22 deg 

and +22 deg). These results all support the hypothesis that experience does not 

affect adaptation dynamics  

 

 

 

 

 
Informal post-experiment debriefing revealed that participants did notice the 

different natural image categories in the experiment, but did not explicitly 

associate them with different adaptor sequence biases. As such, it is unclear if 

explicit awareness of adaptor biases would produce different pattern of results, 

for example via conscious expectation of tilted percepts of the test gratings.   

 

In addition to comparing adaptation dynamics across testing sessions, we also 

tested for changes in adaptation occurring on a much shorter, within-session 

timescale. For these analyses, we averaged each of the four runs in a session 

	
Figure 2.2.4. Rapid decay of TAE across days.  
(Same as Fig 2.1.6 above) 
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across days, and repeated the identical statistical tests as above to test for 

changes over the course of individual session. We found no within-session 

changes in adaptation dynamics. Together, these results suggest that repeated 

experience with adapting to visual contexts does not alter adaptation dynamics at 

shorter (~50 min) nor longer (days) timescales.   

 

General discussion 

 

If knowledge of the statistical structure of the adapting environment influences 

adaptation dynamics, then one should observe changes in these dynamics as 

experience is gained with said statistical structure. In the two experiments 

described here, we tested this hypothesis by repeatedly adapting participants to 

three sets of low-level statistical regularities, i.e. contexts, and comparing the 

buildup and decay of TAE across sessions. We found no evidence of either 

between-, or within-session changes in adaptation dynamics, consistent with the 

null hypothesis, i.e., that adaptation processes operate largely in a bottom-up 

fashion, with the moment-to-moment input dictating the buildup and decay of 

adaptation.  

 

However, there are several important limitations to our results. First, learning of 

contexts may happen on a different timescale than the one tested in our 

experiment. In the real world, the visual system is often re-exposed to the same 

environments over the course of days, months, and even years, and extracting 

their statistics could potentially happen on any one of these longer timescales. In 

our experiment, we tested subjects on a relatively short timescale, where each of 

four experimental sessions contained ~50 minutes of visual stimulation split 

between the 3 orientation distributions. It is conceivable that these timescales are 

insufficient to induce learning. Indeed, it appears that habitual, long-term wearing 

of colored spectacles leads to faster chromatic adaptation when putting the 



	

	 73	

spectacles on or taking them off (Engel, Wilkins, Mand, Helwig, & Allen, 2016). 

Speculatively, one reason why long timescales may be needed for experience-

dependent changes in adaptation to take place is that the visual system needs to 

acquire evidence that the adapting environment has long-term relevance, 

justifying the devotion of neural resources to storing its parameters.  

 

On the other hand, Dong et al. found changes in the strength of both motion and 

contrast adaptation to be occurring at timescales comparable to ones in our 

experiments (Dong, Gao, Lv, & Bao, 2016). In their study, participants adapted to 

either coherent random dot motion or a high contrast grating in multiple short 

sessions, which, in their case was sufficient to reveal weakening adaptation 

effects across days. Although their paradigm contained a higher number of 

sessions (6 or more, depending on the experiment), the weakening aftereffect 

strength was already apparent during the early sessions of the experiment. While 

our results are, on their face, inconsistent, it is possible that the timescale 

required to induce contextual learning is proportional to the complexity of the 

adapting environment. For learning to take place in our experiment, a longer 

timescale could be necessary since we utilized multiple contexts, each with a 

statistical structure much more complex than in the study of Dong et al.  

  

Another reason for our null results could be that learning comes at a cost of 

neural resources, and the visual system may only employ it when it is deemed 

necessary. In the case of a psychophysical experiment like ours, there is little 

explicit incentive for the visual system to devote resources to learn the statistics 

of the adaptors. After all, adapting slowly does not pose any behaviorally relevant 

cost such as a risk of injury, or a failure to obtain rewards. Hence, in line with the 

principle of least effort, in the absence of incentives, it may be advantageous to 

simply adapt in a purely bottom-up fashion. On the other hand, in somewhat 

higher-level visual memory and search tasks (e.g., Chun & Jiang, 1998; Fiser & 
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Aslin, 2001; Jiang, Swallow, Rosenbaum, & Herzig, 2013), learning of statistical 

structures of visual ensembles has been widely demonstrated to occur 

involuntarily and without incentives exceeding the compensation provided by our 

experiment.  

 

It also remains possible that our contextual cues were not strong enough. That is, 

although participants generally noticed that we used three image categories in 

the surround of the adaptor sequences, their lack of awareness that these 

categories carried information about the orientation biases may have led to the 

visual system not using them to differentiate between contexts. As such, it is 

possible that a learning mechanism was engaged, but the failure to detect 

transitions between contexts prevented effective learning from taking place.  

 

It is also possible that increases in adaptation strength over days were masked 

by perceptual learning whose effect was to reduce the perceptual consequences 

of adaptation, i.e. aftereffects. Specifically, although adaptation is behaviorally 

measured by quantifying aftereffects, it is important to remember that aftereffects 

reflect undesirable perceptual errors (i.e. the “coding catastrophe”; Schwartz, 

Hsu, & Dayan, 2007; Seriès, Stocker, & Simoncelli, 2009), and thus one 

conceivable goal of learning could be to correct these errors. As such, weakening 

aftereffects could be an indicator that later stages of visual processing are 

learning to reinterpret adaptation-induced shifts in population activity at earlier 

stages of processing, leading to error correction at the perceptual level. 

Weakening aftereffects over the course of multiple adapting sessions observed 

by Dong et al. (2016) could potentially be an example of such perceptual 

learning.  Thus, although we observed neither strengthening nor weakening of 

TAE, this could potentially be a consequence of a balance of both an increase in 

adaptation rate and reduction in the susceptibility to perceptual aftereffects. While 

seemingly unlikely, it may be a fruitful future direction to test this possibility by 
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comparing simultaneously acquired measures of behavioral and neural effects of 

adaptation. 

 

Our experiments demonstrate the viability of rapidly presenting samples from 

orientation distributions to induce robust, measurable behavioral aftereffects. 

While such stimuli have previously been used in electrophysiology (e.g., Benucci, 

Saleem, & Carandini, 2013; Zavitz, Yu, Rowe, Rosa, & Price, 2016), their use in 

human psychophysics is more limited (but see, e.g., McGovern, Roach, & Webb, 

2014, for adapting to motion direction distributions). This type of stimulus allows 

for investigation of questions that would be difficult to study with the traditional 

approach that uses single grating adaptors. For example, using orientation 

distributions, one can assess how the width of the adaptor distribution, i.e. the 

stability, affects the adaptation dynamics. Using stimuli sampled from statistical 

distributions over a variety of visual features may, therefore, prove to be fruitful 

for future work. 

 

Adaptation can be a rapid process and as such, characterization of the precise 

shape of its buildup and decay is non-trivial. We chose to use a trial-based 

orientation-matching task using a computer mouse to obtain relatively densely 

sampled measures of the current adaptation state. However, in practice our 

approach may not have been sensitive enough for quantifying changes in 

dynamics. Specifically, it is possible that neither the rate of trial completion (~10-

12 sec on average), nor the amount of response variability (~1 deg mean 

absolute deviation) were sufficient to capture small changes in speed of 

buildup/decay or magnitude of TAE. Notably, the flat portions at the beginning of 

the TAE buildup and decay curves (Figs. 2.1.4, 2.1.6 2.2.2, 2.2.3) are artifacts 

arising from nearest-neighbor extrapolation from 0 sec to the time of the first trial 

completion, which often took ~10-12 sec. Consequently, the fine-grained patterns 
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of TAE buildup and decay at block start, which could potentially contain evidence 

for across-session changes in adaptation, were not captured by our paradigm.  

 

An additional methodological change that could help the signal to noise of our 

experiments is spatial multiplexing of the adaptors. That is, under the assumption 

that adaptation builds up homogeneously across the retinotopic space, a task 

could be performed at one of multiple locations, while continuing to adapt at the 

others. allowing for a multi-fold increase in the amount of collected data per unit 

time. If the noise introduced by shifting participants’ attention to multiple locations 

is small, then the reliability of the TAE estimates over time could be improved, 

allowing revelation of smaller changes in the shape of these functions. 

 

Finally, it is also arguable that the incorporation of neural measures of 

adaptation, e.g. via EEG, could prove to be important for capturing changes in 

adaptation dynamics. Neural measurements are appealing because they directly 

capture the process of interest (i.e. neural adaptation) and thus eliminate the 

noise stemming from the task behavior. Moreover, the effects of adaptation could 

manifest in neural changes that are not straightforwardly reflected in behavioral 

measures (e.g. equalization or decorrelation across orientation channels, see 

Benucci, Saleem, and Carandini, 2013), but which could be apparent in neural 

changes. On the other hand, neural measures such as EEG come with noise of 

their own, and can require many or long trials (ERPs and SSVEPs, respectively) 

to allow for computing reliable estimates of neural activity. This is a 

methodological challenge when trying to measure experience-dependent 

changes like those investigated by our study, since increases in trial repetitions 

and duration both constitute experience. In other words, experience effects could 

already be contaminating the “pre-learning” measures, obscuring the effect of 

interest. Note, however, that this issue affects any paradigm that requires 
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multiple task repetitions for denoising purposes, which includes both of our 

behavioral experiments.  

 

In sum, the two experiments discussed in this chapter showed that repeated 

adaptation to biased distributions of orientations induces robust TAE, but the 

dynamics of this effect are relatively unaffected by experience. It remains 

possible that stronger manipulations or more sensitive measures could still, in the 

future, find some evidence for these effects. However, our current data make 

clear that context effects in adaptation are not pervasive. Furthermore, we 

believe that our work may serve as a useful methodological lesson for both 

measuring dynamics of adaptation, and using statistical distributions as adaptors.  
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Chapter 3 
 
Effects of repeated adaptation to biased orientation statistics in 
altered reality 
 
Introduction 
 

Our surroundings are composed of an array of distinct natural environments, 

each of which contains different structural regularities that translate into statistical 

regularities in the sensory inputs they generate (Torralba & Oliva, 2003). 

Knowledge of these regularities is potentially very useful, as it can guide one’s 

expectations about what objects may be encountered in a given environment, or 

what actions may most likely lead to desirable outcomes. It also helps guide 

one’s attention in the interaction with the environment. However, beyond these 

relatively high-level cognitive benefits, it is possible that environmental 

regularities could also be used to enhance the efficiency of early visual 

processing, by allowing it to more quickly adjust its neural sensitivities to match 

the statistics of the current environment.  

 

Visual adaptation, the process though which the visual system calibrates itself to 

the current environment is a well-studied neural phenomenon (Chapter 1, see 

also reviews by Clifford et al., 2007; Webster, 2011; again, please forgive the 

overlap with previous chapters as this will facilitate publishing this chapter as a 

paper). However, the extent to which it is malleable by one’s familiarity with the 

input statistics is presently unknown. Generally, adaptation is thought of as a 

“bottom-up” process whereby the sensitivity to a visual feature is adjusted based 

on the degree to which that feature is present in the visual input. For example, 

viewing a high-contrast vertical grating for a prolonged period leads to a 

reduction of perceptual sensitivity to orientations near vertical axis, while 

orientations around the horizontal axis remain relatively unaffected.  
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Knowledge of structural regularities present in real-world environments could be 

useful for aiding the visual system in selecting the appropriate feature 

sensitivities, making the adaptation process faster and/or more efficient. For 

example, the knowledge that forest environments contain large amounts of 

contrast at and around vertical orientations could be used by the visual system to 

reduce its vertical gain immediately upon entering a forest. It is possible that 

through repeated experience with the statistical regularities present in real world 

environments, the visual system may learn these regularities and exploit this 

knowledge to adapt more efficiently whenever that environment is re-

encountered. In this chapter, we refer to distinct sets of input statistics as 

“contexts,” and the speeding of adaptation dynamics by knowledge of these 

statistics as “context-dependent adaptation.” 

 

In the experiments described here, we test for such context-dependent 

adaptation. We did this by repeatedly exposing participants to a video feed of 

their surroundings that was filtered in real time to alter its orientation statistics, 

generating visual input with statistical regularities not previously experienced by 

our participants. Comparing behavioral measures of adaptation to these statistics 

across 3 successive days gave us a unique opportunity to quantify adaptation 

dynamics as a function of experience with the adapting statistics. We used these 

data to test whether experience can alter how we adapt.  

 
Experiment 3.1: Speeded contrast adaptation fol lowing repeated 
viewing of vertically deprived visual input. 
   
Introduction 
 

In the first experiment, participants repeatedly viewed a video feed of their 

surroundings, which was filtered to remove the majority of contrast energy 

around the vertical orientation axis, for 2 hrs at a time on 3 consecutive days. 
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Prolonged viewing of visual input with this type of contrast deprivation has 

previously been shown to induce orientation-specific contrast adaptation; 

neurons tuned to the deprived orientation raise their gain as manifested through 

a robust tilt aftereffect (TAE, see Bao & Engel, 2012; Haak, Fast, Bao, Lee, & 

Engel, 2014). We tested whether the strength of TAE changed from day 1 to day 

3 of the experiment. We hypothesized that the adaptation effects in the final 

session of the experiment should be stronger than effects in the initial session, if 

repeated experience with viewing novel statistical regularities can result in faster 

adaptation to those regularities. 

 
Methods 
 
Each participant (n=12, one excluded due to not showing reliable adaptation 

effects) completed three identical, two and a half hour long sessions of adapting 

to alterations in visual statistics with which they had no prior experience. Subjects 

viewed their surroundings via a head-mounted display (HMD; nVis Inc. nVisor 

SX60, 40 deg field of view) that presented them with a live video feed from a 

camera attached to the top of the HMD (640 x 480 resolution, 30 frames per 

second; Fig 3.1.1A). Each frame of the black-and-white video was filtered using a 

Butterworth filter to attenuate its contrast energy along the vertical axis (± 53.45 

deg) by 99%, effectively removing vertical contours from the visual input (Fig 

3.1.1B).  

 

To maintain an engaged attentional state, participants watched videos of their 

choice on an online streaming platform. We restricted them to watching live-

action content without subtitles, and encouraged watching videos with 

predominantly daylight scenes so as to keep contrast energy high.  
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We chose this adaptor, rather than traditional adaptation with high contrast 

gratings, for several reasons: First, adaptation to this type of filtered input is 

slower, leaving room for detectable experience-driven changes in adaptation 

dynamics. Secondly, the repeated, long-duration exposure to the filtered input 

may provide the visual system with evidence that the visual distortion introduced 

by the filter has long-term relevance, and is likely to be re-encountered at a later 

time. We reasoned that this would incentivize learning the input statistics, as this 

knowledge would be expected to be useful. Finally, the error signals introduced 

within the filtered natural input are semantically meaningful in that the objects do 

not appear the way they should, which may further push the visual system to 

adapt faster to correct the distortions.  

 

Each of the three experimental sessions began with a baseline period during 

which subjects viewed 5 min of unfiltered videos and then completed a 

behavioral task block to measure a baseline level of contrast adaptation. 

Afterwards, participants began viewing filtered input, and the strength of 

adaptation was measured twice, after 30 min and 2 hours of adaptation.  
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We quantified adaptation by measuring the TAE using the “plaid task” (Fig 

3.1.1C; adapted from Meese & Georgeson, 1996). In each trial, participants 

viewed brief presentations (200 ms with 2000 ms ISI) of 5 deg plaid patterns 

consisting of two superimposed 25% contrast, 1.5 cpd sine wave gratings, each 

tilted by the same amount clockwise and counter-clockwise from vertical. 

Subjects pressed arrow keys to increase or decrease the tilt of the component 

gratings in 0.5 or 1 deg steps until the subjective appearance of the pattern 

corresponded to a square checkerboard (as opposed to one with horizontally or 

vertically elongated rectangles). Once this percept was reached, subjects 

confirmed their response by pressing the space bar, triggering the start of the 

next trial with new, randomized component angles. Blocks of TAE measurement 

lasted 150 sec each, during which time participants completed as many trials as 

they could.   

	
	
Figure 3.1.1 Experimental setup 
(A) Participants wore a head-mounted display with an attached camera. (B) The 
video feed from the camera was filtered in real time to remove 99% of contrast 
energy along the vertical orientation axis. Prolonged viewing of this input induced 
contrast adaptation measured behaviorally with the TAE. (C) The magnitude of TAE 
was measured using a plaid task. Stimuli were checkerboard patterns consisting of 
two sinusoidal gratings mirror-symmetric around vertical axis. Participants judged 
the appearance of the plaid pattern and adjusted the orientation of the component 
gratings to maximize perceived “squareness” of the pattern. 
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Because deprivation of vertical contrast induces gain increases in vertically-tuned 

neurons in the visual cortex (Bao & Engel, 2012; Haak et al., 2014), neural 

population responses to the plaid patterns in our task changed systematically 

with subjects’ adaptation state. Specifically, whenever one views, e.g., a ±45 deg 

plaid, this generates a pattern of activation across orientation-tuned neurons, 

which is thought to be interpreted by later stages of visual processing to estimate 

the pattern’s orientations (see, e.g., Schwartz, Hsu, & Dayan, 2007). In an 

unadapted state, the two components of a plaid should elicit peak responses in 

neurons tuned to the component orientations, i.e., +45 deg and -45 deg, and 

systematically weaker responses in neurons with dissimilar tuning. This leads to 

veridical orientations estimates for the component gratings, and hence a square 

appearance of the plaid pattern. However, following adaptation to vertically-

deprived input, vertically-tuned neurons respond more strongly to a ±45 deg 

plaid, shifting the distribution of the activation pattern slightly closer towards 

vertical (e.g. ±43 deg). This results in a percept of orientations closer to vertical, 

and so checks that are slightly taller than they are wide. Since the goal in our 

plaid task is to adjust the plaid to appear square, the participant in this case, 

would likely move the physical orientation of the plaid components towards 

horizontal (e.g. to ±47 deg) to bring the peak activation back to ±45 deg tuned 

neurons, achieving a square percept. 

 

In order to minimize response variability unrelated to adaptation, all subjects 

completed several practice sessions consisting of 5 task blocks with no 

preceding adaptation. Participants qualified for the main experimental sessions if 

they were able to complete 10 or more trials per block, their mean task 

responses varied by less than 1 degree across blocks, and their within-block 

mean absolute deviations did not exceed one degree.  Most participants met 

these criteria within 4-5 practice sessions.  
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To test whether any change in adaptation dynamics occurred, we first generated 

TAE decay curves for each participant by taking each day’s raw data for both the 

30 and 120 min test times and subtracting that day’s mean baseline response. 

Afterwards, we computed the difference in the decay curves between days 1 and 

3, and binned these timecourses into three 50-second bins for statistical analysis. 

Finally, we used a one-sample t-test to determine whether the data in each time 

bin came from a distribution centered at 0 (i.e. no difference in TAE between 

days).    

 

To more completely test the nature of the hypothesized changes in adaptation 

dynamics, we performed alternative analyses where we fit exponential functions 

to the timecourses. For these tests, we used bootstrapping methods, since 

individual curves were too noisy to achieve satisfactory fits. We resampled our 

data pool with replacement in 1000 iterations. For each iteration, we fitted the 

mean TAE decay curves of each day with an exponential decay function 

augmented with a vertical offset term (3 parameters): 

 
(1) 𝑦 𝑡 = 𝐴𝑒!!" + 𝐶  
 

Here the A term corresponds to the peak TAE at the start of the decay function, B 

is the time constant of the decay, representing the rate of decay, and C is a 

vertical offset from 0. The C parameter was needed due to occasional 

observation of TAE reaching an asymptotic state with an opposite sign than the 

initial peak. Although this type of undershoot was not expected to occur in Exp 

3.1, it can be observed, for example, if the internal template for square percept 

shifts over the course of the experiment. Because of this, we quantified the peak 

TAE as the difference between the A and C parameters, rather than as just the A 
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parameter alone. Finally, we also computed the total TAE as the integral over the 

entire decay function.  

 

For each iteration of the resampling analysis, we computed the change of these 

fitted quantities between days 1 and 3, and afterwards examined whether the 

distribution of these differences was reliably different from 0 (i.e. whether 95% of 

the values had the same sign).  Note that this analysis performed group level (as 

opposed to single subject) fitting, which allowed us to overcome the noisiness of 

single subject TAE decay curves.    

 

Results 
 

Viewing of vertically deprived video content induced a robust TAE at all test times 

and sessions (Fig 3.1.2). Over the course of each block, the TAE was initially 

stronger, and then decayed over time, reflecting deadaptation from the repeated 

viewing of the test plaid patterns. We tested the strength of TAE at both 30 and 

120 min test times by splitting the decay curves into three 50 sec wide time bins, 

and computed statistics on these bins.   

 

The initial peak strength of the TAE (first bin) was higher at 120 min than 30 min, 

as adaptation slowly grew in strength (P < 0.05, 0.1-0.66 deg increase 95% CI). 

However, we did not observe growth in the residual TAE at the middle and tail 

end of the test block (P > 0.14 and P > 0.9, respectively).  
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We tested for changes in adaptation dynamics by comparing the decay curves 

from sessions 1 and 3 (Fig 3.1.3). We observed a significant increase in TAE at 

the 30 min, but not 120 min time point (Fig 3.1.3, blue vs green line). This 

difference was significant in 2 out of 3 time bins for the former test time (P < 

0.05), and none for the latter (all bins P > 0.4).  Furthermore, although the TAE in 

the first 50 sec bin grew reliably from 30 min to 120 min on day 1 (P < 0.05, right-

tailed), this difference was no longer significant on day 3 (P > 0.22). This 

suggests that experience with vertically deprived visual input allowed the visual 

system to approach an asymptotic state of adaptation at a faster rate.   

 

In an alternative, bootstrapping analysis, we resampled our data 1000 times and 

fitted the average curve of each sample with an exponential decay function (see 

Eq. 1 in methods above). While peak TAE and decay time parameters at the 30 

min time point both showed trends towards larger values on day 3 (vs day 1), 

	
Figure 3.1.2. TAE decay over days 
Plots depict average TAE decay at the three within-session test points (sub-plots), 
for day 1 and day 3 (red vs blue curves) of the experiment. At both 30 min and 120 
min test times, we observed robust TAE. 
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neither of these trends reached statistical significance. However, the total TAE 

over the course of the decay curve (i.e. the area under the curve) was reliably 

larger on day 3 than day 1; this increase was visible in 97.9% of resamplings. 

We, again, only found such a change for the 30 min, but not 120 min time point. 

In other words, while there was no evidence for any one specific parameter of the 

exponential decay function changing at the 30 min time point, the overall pattern 

of the decay function suggests a reliably stronger TAE on day 3 than day 1.  

 
 
Discussion 
In this experiment, we observed that repeatedly adapting to vertically deprived 

visual input over the course of 3 sessions strengthened adaptation. This 

difference manifested itself at our earlier, 30 min time point, suggesting that the 

visual system may have learned to reach an asymptotic state of adaptation 

	
Figure 3.1.3 TAE on day 1 vs 3 
The curves depict the average difference between day 3 and 1 of the experiment 
binned into 10 time bins (15 sec each) for the 30 and 120 min test times (green vs 
blue). Positive difference reflects stronger TAE on day 3. The error bar depicts ±1 
SE. We found significantly stronger TAE at 30 min time point during the first and last 
50 sec of the decay curve. For illustration purposes, the timecourse is divided into 
15 sec bins, while statistics were computed using coarser 50 sec bins. 
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faster. However, since we only tested at the 30 and 120 min points, it is unclear 

how much quicker the visual system actually adapted.  

 

Furthermore, because participants always adapted to vertically deprived input, it 

is unclear whether our results reflect genuine learning, or slow decay of 

temporally-tuned mechanisms observed in previous work (Bao & Engel, 2012; 

Bao, Fast, Mesik, & Engel, 2013; Mesik et al., 2013). These studies have shown 

that prolonged adaptation engages multiple mechanisms tuned to different 

timescales of adaptation, allowing the visual system to remain adapted to slow-

changing input regularities via a mechanism with long time constant, while also 

compensating for transient changes in input statistics using a mechanism with 

short time constant. One possible reason why we may have found seemingly 

faster adaptation on day 3 compared to day 1 is that a slow adaptation 

mechanism became strongly adapted during the initial session, and remained 

partially adapted across sessions. As such, the faster adaptation may have 

resulted from the summed effect of the already adapted slow mechanism and a 

quickly adapting fast mechanism. While this residual adaptation may predict 

systematic changes in the performance in the baseline plaid task (which we did 

not observe in our data), this is complicated by the fact that a fast mechanism 

can be adapted in opposite direction from the slow mechanism, making their 

effect cancel out and produce seemingly unadapted behavior.  

 

Although we cannot rule out this account for our results completely, it is relatively 

unlikely. First, relative to the ~22 hour inter-session interval, the 2 hr session 

duration is relatively short, making it difficult for effects to last between sessions. 

Presumably, a 2 hr adaptation period should be unlikely to engage a mechanism 

with a decay time constant that’s an order of magnitude greater than the 

induction period. Furthermore, the slow mechanism should become re-engaged 

by the natural, non-deprived input that the participants experience between 
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sessions (although one could argue that the chromatic differences in the input 

could cause different neural populations to be engaged by the input during the 

experiment vs between sessions).  

 

Overall, our results suggest that repeatedly adapting to stereotypical orientation 

statistics can lead to increased speed of adaptation, although our design does 

not allow us to determine the magnitude of the speed change.  

 

Experiment 3.2: No changes in contrast adaptation dynamics 
fol lowing repeated adaptation to multiple sets of biased orientation 
statistics in altered reality 
 
Introduction 
Exp 3.1 did not provide the strongest test of the hypothesis that the visual system 

extracts environmental statistics and re-applies this knowledge when the same 

environment is later re-encountered. This is because it is possible that the 

increase in adaptation speed that we observed was due to lingering adaptation 

effects from previous sessions, as described above (albeit we note that that this 

possibility is unlikely).  

 

To eliminate this possibility, we designed a pair of followup experiments with two 
contexts that caused opposite gain changes in the same orientation-selective 

neural populations. During each session of these experiments, participants 

gained experience within both contexts by switching back and forth between 

them in regular intervals. Under these circumstances, it should be impossible to 

produce faster adaptation to both contexts that could be explained by lingering 

effects in long-term mechanisms.  This is because lingering gain changes from 

one context would actually interfere with adaptation to the other context. 

Increases in adaptation strength for both contexts would, therefore, constitute 

strong evidence for context-dependent adaptation 
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Methods: Experiment 3.2A 
Participants (n=9, one excluded due to not showing reliable adaptation effects) 

viewed video content in three sessions on consecutive days, as in experiment 

3.1. Two adapting contexts were presented at different points in the session: In 

one context, visual input was deprived of vertical content while the contrast of 

horizontal content was simultaneously enhanced. In the second context the 

filtering was reversed was such that the horizontal content was deprived while 

verticals were enhanced (see Fig 3.2.1, left for example images). In both contrast 

deprivation and enhancement, the contrast energy was reduced/increased by 

99% in a ±25 deg bandwidth around the affected orientation axis. 

 

We chose to use this type of orientation filter for three reasons: First, 

simultaneous deprivation around one orientation axis and enhancement around 

the orthogonal axis should, in theory, magnify the TAE since the responses of 

both the vertically-tuned and horizontally-tuned populations should congruently 

shift in the same direction after adaptation. For example, deprivation along 

vertical orientation axis should lead to an increase in vertical gain, attracting the 

peak in the population-level responses elicited by oblique orientations (e.g. ±45 

deg plaid) towards vertical. Similarly, contrast enhancement around horizontal 

orientations should lead to a gain decrease along horizontal orientations, pushing 

the peak in the population level responses to oblique orientations away from 

horizontal. Together, then, these effects synergistically shift population response 

peak in the same overall direction, leading to theoretically more reliable and 

possibly stronger TAE.   

 

Second, our filter choice allowed us to better balance the adapting contexts such 

that the adaptors were similarly strong in both contexts. If we only altered 

contrast along one axis with contrast reduction in one context and enhancement 
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in the other context, it is unclear that adaptation to the input generated by the two 

filters would affect the gain with similar strength. This is particularly an issue 

because with our naturalistic input contrast enhancement often produced a 

“clipping” distortion whereby the intended contrast was impossible to display due 

to exceeding the maximum display luminance, thus preventing the images from 

accurately reflecting our filter design.  

 

Finally, our two contexts affected the same populations of neurons, but in 

opposite directions, ensuring that if we found changes in adaptation dynamics, 

they would not be attributable to lingering adaptation in long-term mechanisms. 

Specifically, since the second context affects the neural gain in opposite direction 

to the first context and the durations of exposure were matched, any previous 

adaptation within long-term mechanisms should be eliminated during adaptation 

to the next context.  
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The procedures were the same as in experiment 3.1, with several notable 

differences (Fig 3.2.1): 

1. Each experimental session lasted 4.5 hours instead of 2. 
 

2. Each adapting context was experienced for 31 min at a time before 

changing to the other adapting context. Contexts reversed back and forth 

in this A-B-A-B fashion for the entire 4.5-hour period, such that each 

context was seen 4 times for a total of ~2 hours. 

	

	
Figure 3.2.1 Experiment structure 
Each session began with participants viewing 5 minutes of unfiltered video, followed 
by a pair of baseline blocks. Afterwards, video frames were filtered using one of two 
filters that altered vertical and horizontal energy in opposite directions (see example 
images on the left). Adaptation contexts alternated every 31 min, and TAE was 
always tested at 2 min and 30 min time points (circular markers on the timeline).  
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3. The magnitude of TAE was measured at the 2 min and 30 min time points 

in each context to quantify both rapid and slower adaptation.  
 

4. Following the 30 min task block, participants remained in the current 

context for an extra minute so that the contextual transition would occur 

after the participant resumed watching video. We did this, along with 

verbal announcement that we were changing the “distortion,” to make the 

context change more salient.  
 

5. Prior to each task block, participants viewed a 1-minute video clip, which 

was identical for all subjects and blocks. This was done as an attempt to 

reduce response variability due to differences in adaptation to movie 

brightness, stemming from participants viewing different video content 

from one another (since they were able to pick their own movies to watch). 

Although differences in light adaptation may not predict different levels of 

TAE, noise may arise, for example, due to differences in the visibility of the 

plaids.  

 

6. The controls of the plaid task were changed so that lateral mouse 

movements controlled the orientation of the component gratings. This was 

done in an attempt to speed up the task by allowing participants to quickly 

zero in on the square percept by making large movements at the start of 

the trials.  

 

7. The plaid task was done on a background consisting of a screenshot of 

the filtered world (as opposed to gray background used in the previous 

experiment), with image contrast under the plaid stimulus removed using a 

Gaussian window. This was done in order to provide subjects with a 



	

	 94	

contextual cue suggesting that the task is still taking place in the same 

environment as the free-viewing portion of the experiment. 

 

8. A sound cue was added to the task to provide feedback about orientation 

changes. Specifically, for each half-degree of orientation change, a brief 

click sound was played, giving the task an added sense of continuity even 

during the ISIs when the plaids were not seen.  

 

9. The Butterworth filter used for contrast attenuation and enhancement was 

adjusted to have a narrower orientation bandwidth (from ±53.4 deg to ±25 

deg), and lower order (from 6 to 3; making its cutoffs less sharp). The 

purpose of the former change was to prevent overlap in the attenuating 

and enhancing components of the filter, while the latter change was to 

reduce image artifacts (e.g. x-shaped artifacts on object corners, etc.). 

 
Results 
Consistent with the previous experiment, filtered visual input statistics induced 

robust TAE in both adapting contexts (Fig 3.2.2). As expected, these effects were 

opposite in sign for the two contexts. Noting the comparable TAE decay curves 

for the two adapting contexts, we collapsed the results across contexts (flipping 

the sign of the second context to align the TAE decay curves), while keeping 2 

min and 30 min test times separate. The average TAE across the decay curve 

was detectable at both the 2 min and 30 min time points (all sessions, P < 0.05 

for 2 min, and P < 0.001 for 30 min, uncorrected).  

 

To test for effects of adapting time generally, we compared the decay time 

courses for 2 min and 30 min test times.  We divided the time courses into three 

50 sec bins, averaged the TAE within each bin, and performed statistics on the 

differences between corresponding bins at the two test times.  We found that 
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following 30 min of adaptation TAE was both stronger and longer-lasting, with 

significantly higher TAE for the 30 minute test time across the entire time course 

(P < 0.01 in all 3 bins, uncorrected).  

 
 

To examine the effect of experience on adaptation dynamics, we again quantified 

changes in adaptation over days by subtracting the Day 1 curve from the Day 3 

curve (Fig 3.2.3). However, unlike our original results from Experiment 3.1, we 

observed no changes in the induced TAE decay curve for either test time across 

days. That is, the difference between the decay curves from Day 1 and 3 did not 

significantly differ from 0 at any part of the TAE decay function, suggesting that 

repeatedly adapting within our two contexts had no effect on the adaptation 

dynamics (all bins P > 0.25, uncorrected). These results were confirmed using a 

resampling analysis (see Exp 2.1 methods), where none of our measures of 

	
Figure 3.2.2 TAE decay curves 
Curves depict TAE decay on all 3 days (see line style legend on the right) in both 
contexts (see line color legend on the left) at both testing times (2 min on the left 
and 30 min on the right panel). The aftereffect grew stronger and longer lasting 
with increased adaptation duration.	
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adaptation dynamics (peak, decay rate, and total TAE) showed a reliable change 

across days.  

 

 
 
Discussion 
In experiment 3.2A, we failed to observe changes in adaptation dynamics akin to 

those seen in experiment 3.1. Although there are many possible explanations 

(see General Discussion at the end of this chapter), one major difference 

between the two experiments was the duration for which each context was 

experienced continuously. In experiment 3.1, the single adapting context was 

seen for 2 hours, while in experiment 3.2A, contexts alternated every 31 minutes. 

As such, one major possibility for why we failed to observe changes in adaptation 

dynamics was that the rate at which contexts switched was too fast for the visual 

system to engage its learning mechanisms. 

	
Figure 3.2.3 No changes in TAE across days 
The curves depict the average difference between day 3 and 1 of the experiment 
binned into 10 time bins for the two conditions (pink vs blue). Positive difference 
reflects stronger TAE on day 3. The error bar depicts ±1 SE. All time points show no 
difference from 0 (P > 0.25, uncorrected).  For illustration purposes, the timecourse is 
divided into 15 sec bins, while statistics were computed using coarser 50 sec wide 
bins. 
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Introduction: Experiment 3.2B 
In experiment 3.2B, we decided to re-run the dual-context experiment with timing 

parameters closely matched to those used in our initial single-context experiment 

3.1, allowing the visual system to experience each context continuously for two 

hours. 

 

Methods: Experiment 3.2B 
We ran another 8 participants in an alternative version of experiment 3.2A. One 

participant’s data was excluded due to a failure to observe reliable adaptation 

effects. All procedures were the same as in the previous experiment, except that 

participants remained in each context for a period of 2 hours before switching 

conditions. During this period, we measured the strength of TAE at the 2 min, 30 

min, and 120 min time points. At the conclusion of exposure to the 2nd context, 

participants re-entered the initial context for 2 minutes to allow for an additional 

test of within-session re-adaptation.  

 
Results 
Consistent with our previous results, our manipulation of orientation statistics 

induced robust TAE (Fig 3.2.4, P < 0.005 at all test times except “2 min end”, 

uncorrected), and over the session these effects grew stronger and longer 

lasting. This growth was significant for the 2 vs 30 min and 2 vs 120 min 

comparisons, but not between 30 and 120 min. These duration scaling effects 

were somewhat less reliable than in Exp 3.1 (P < 0.05 in 1/3 time bins for 30 vs 2 

min comparison (remaining two bins were P < 0.09), and 3/3 in 120 vs 2 min 

comparison), likely due to the number of daily repetitions per conditions being 

one quarter of the repetition count in Exp. 3.1, leading to noisier decay curves. 
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However, as in experiment 3.2A, when we calculated changes in TAE across 

days (Fig 3.2.5) by subtracting Day 3 curves from Day 1 curves (after averaging 

the curves for the two contexts), we did not observe reliable changes in TAE 

across days at any of the test times (P > 0.05 in all cases, although the first bin of 

the 2 min comparison showed marginal significance at P = 0.0585, with day 3 

showing weaker TAE than day 1). These results were generally confirmed with 

our resampling analysis with exponential fitting (again, see Exp 2.1 methods). We 

found both a reliably lower peak TAE and area under the decay curve on day 3 

compared to day 1, consistent with the 3 bin analysis.  

 

	
Figure 3.2.4 TAE decay curves 
Curves depict TAE decay on all 3 days.  The aftereffect grew stronger and longer 
lasting with increased adaptation duration. 
	



	

	 99	

 
 

These results thus indicate that perceptual experience may alter adaptation 

dynamics, although the time and direction at which we observed changes was 

inconsistent with our results in Exp 3.1.  

 
Discussion 
In experiment 3.2B, we observed a reduction of TAE at the 2 min time point on 

day 3 compared to day 1, in contrast to the absence of changes seen in Exp 

3.2A. However, once again, changes at the 30 min time point seen in Exp 2.1 

were not replicated.  

 

	
Figure 3.2.5 No changes in TAE across days 
The curves depict the average difference between day 3 and 1 of the experiment 
binned into 10 time bins, with the two adaptation contexts collapsed together. The 
color depicts testing time Positive difference reflects stronger TAE on day 3. The error 
bar depicts ±1 SE. For illustration purposes, the timecourse is divided into 15 sec 
bins, while statistics were computed using coarser 50 sec wide bins. 
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What could be the reason for the weakening of TAE at the 2 min test time? One 

possibility is that the filtered input actually became a less potent adaptor, leading 

to a weaker aftereffect; such results have previously been observed (Dong, Gao, 

Lv, & Bao, 2016; see General discussion below for more details). However, it is 

unclear why adaptation would weaken on the very short time-scale, while 

remaining relatively unchanged in the remaining blocks.  

 

Another possibility is that the strength of adaptation at the 2 min point did not, in 

fact, change, but instead the weaker effects may have resulted from the effects of 

the preceding 2 hours of adaptation becoming longer-lasting. In other words, on 

day 3, two hours of adaptation in the initial context may have been stronger than 

on day 1, making adaptation for two minutes in the second context insufficient to 

bring the TAE to the level seen on day 1. Although we did not observe any 

changes for the 2 hour test times, it is noteworthy that TAE decay has not 

reached 0 by the end of the test block, so it remains possible that the overall 

duration of decay could nevertheless differ between days 1 and 3.  

 

While it remains unclear what caused the potentially interesting changes at the 2 

min time point, we again failed to replicate changes in TAE strength at the 30 min 

time point seen in Exp 2.1. Together, the results of experiments 3.2A and 3.2B 

provide little to no evidence that repeated exposure to environments can engage 

mechanisms allowing the visual system to learn to increase its speed of 

adaptation. 

 
Experiment 3.3: Replication of the init ial single-context experiment  

 
Introduction 
Our failure to replicate changes in adaptation dynamics at the 30 min time point 

in our two-context experiments created a concern that the effect found in the 
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original experiment may have been spurious. As such, we decided to run an 

almost identical replication of the initial single-context finding. 

 
Methods 
In an attempt to replicate the result from experiment 3.1, we ran a nearly identical 

paradigm on 11 additional participants, of which 3 were excluded due to not 

showing reliable adaptation effects.  

 

The paradigm differed from the original experiment in several respects: 

1. In addition to testing the TAE strength after 30 min and 2 hrs of 

adaptation, we added a 3rd test time at the 2 min time point. This allowed 

us to test for changes in very rapid adaptation effects, and made the 

paradigm more similar to Exp. 3.2.  

 

2. The paradigm included all task changes from experiments 3.2A-B, 

including the viewing of a fixed 1 minute pre-task video clip, mouse 

controls of the task, sound feedback during orientation adjustment, task 

embedding in the screenshot of participant’s surrounding environment, 

and the use of narrower filter with ±25 deg orientation bandwidth (vs the 

wider ±53.4 deg filter). 

 

3. Since our previous results showed that even at the end of the 150 sec task 

blocks the TAE was greater than zero, we prolonged the 2 hr testing block 

to 450 sec. This allowed us to more thoroughly test whether there were 

any changes in the TAE decay functions.  

 

Results 
The average decay curves for each testing time point are plotted in Fig 3.3.1.  As 

in the original experiment, viewing vertically-deprived visual input induced TAE, 
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although the magnitude was substantially smaller than in the previous 

experiments (~1 deg vs 2 deg in first 15 sec of the decay curve). The TAE 

averaged across days and all times within testing blocks was only reliably greater 

than zero at 120 min (P < 0.005 in the initial 150 sec of decay), and marginally 

significant (P < 0.057) at 30 min. Statistics on binned time courses showed a 

significant TAE in 1/3, 1/3, and 5/9 bins for 2, 30, and 120 min, respectively. As 

before, the TAE strength exhibited duration scaling, although we only observed 

reliable increases in the comparison between 2 min and 120 min test times (P < 

0.05 in all 3 bins). These weaker adaptation effects, and the absence of TAE in 3 

excluded participants, are likely attributable to the narrower filter bandwidth 

compared to the initial experiment.  
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To test for across day changes in adaptation strength, we computed the Day 3 – 

Day 1 difference in TAE for all 3 time bins (each 50 sec wide, 9 bins for the 120 

min block), and compared these against zero. Critically, we observed a slightly 

increased mean TAE on day 3 at the 30 min time point (Fig 3.3.2), significant in 

	
Figure 3.3.1: Average TAE decay curves 
Curves depict TAE decay on all 3 days.  The aftereffect grew stronger and 
longer lasting with increased adaptation duration. 
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the bin corresponding to the final 50 sec of decay (P < 0.05). While weaker, this 

result is consistent with those observed in Exp 2.1. 

 
Additionally, we repeated the day 1 vs 3 comparisons using resampling analyses 

combined with exponential function fitting (see Exp 2.1 methods). Consistent with 

results in Exp 2.1, we found no reliable changes in fit parameters corresponding 

to either the peak TAE strength or the rate of decay, but found significant 

increase in the total TAE (area under the curve) for the 30 min time point (97.7% 

of iterations exhibited such an increase in TAE).   

 

Discussion 
In this final experiment, we attempted to replicate our original finding that 

repeated adaptation to vertically-deprived, naturalistic input speeds adaptation 

	
Figure 3.3.2 Slight changes in TAE across days 
The curves depict the average difference between day 3 and 1 of the experiment 
binned into 10 time bins. The color depicts testing time. Positive difference reflects 
stronger TAE on day 3. The error bar depicts ±1 SE. Results for 150-450 sec in the 
120 min are not depicted, but were similar to the initial 150 sec. For illustration 
purposes, the timecourse is divided into 15 sec bins, while statistics were computed 
using coarser 50 sec wide bins. 
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dynamics. Although our paradigm induced much weaker effects than Exp 2.1, we 

observed a small yet significant increase in TAE strength at the 30 min time 

point, consistent with our original result in Exp 2.1.  

 

It is notable that the narrower orientation bandwidth of the filter used in the 

present experiment produced weaker TAE than the original experiment (compare 

Figs 3.1.2 and 3.3.1). This, in combination with the single-subject TAE decay 

curves being relatively noisy, and the subject sample size being smaller, likely 

translated into lower SNR of the present experiment, which may have played a 

role in a somewhat weaker effect in this replication (i.e., 1/3 vs 2/3 significant 

bins). It is possible that further replication attempts could find more reliable 

effects of experience if the filter bandwidth and sample size were matched to the 

original experiment.   

 

Based on these results, we believe that repeatedly viewing visual input with low-

level statistical regularities may induce small increases in the speed of contrast 

adaptation.  

 
General discussion 

 

In this study, we conducted four experiments testing how repeated exposure to 

natural visual input with particular orientation statistics influences adaptation 

dynamics. In three experiments we observed small, significant changes in 

adaptation dynamics over the course of three sessions, whereas one experiment 

showed no such changes. Taken together, these results suggest that under 

conditions created within our experiments, contrast adaptation may exhibit some 

experience-dependent malleability, albeit these changes appear to be relatively 

small.  
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Across the experiments, the key variable that seemed to matter in inducting 

experience-dependent changes was whether the experiment contained one or 

two adapting contexts. In both single-context experiments, we saw consistent 

changes at the 30 min test time, whereas in the dual-context experiments we 

only saw a significant change at the 2 min test time in one of the two 

experiments. Because of the inconsistent results in the dual-context experiments 

and the opposite direction of the one significant effect relative to our hypothesis, 

we are cautious in interpreting it as a successful demonstration of context-

dependent adaptation. Nevertheless, further work may be warranted to 

investigate the reliability of the effect and its neural mechanisms.  

 

In light of the null effects in dual-context experiments, what do our single context 

results mean? On the one hand, it remains possible that the effects found in the 

single-context experiments may have stemmed from changes in slowly decaying 

adaptation mechanisms lingering across days. The dual context experiments 

were designed to eliminate this possibility since each context caused opposite 

gain changes, making it impossible for one slowly decaying mechanism to 

facilitate next-day adaptation in both contexts. Our failure to observe context-

dependent adaptation in these experiments means our initial concerns cannot be 

ruled out. On the other hand, there are several reasons why the lingering effects 

explanation seems unlikely (see discussion under Exp 3.1). Instead, we believe 

that our single-context results do, in fact, reflect a more profound change in how 

our participants adapted as they gained experience with the adapting 

environment.  

 

While our experiments were designed to test for context-dependent adaptation, it 

is possible our significant results could reflect a context-independent changes in 

the adaptation rate. Specifically, rather than learning the orientation statistics, 

experience with the filtered visual input may have changed how much the visual 
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system was willing to adjust the gain based on the moment-to-moment error 

signals. Increased rate of adaptation may have resulted, for example, from 

learning that the statistics of the filtered input in the single context experiments 

were stable, and did not change unexpectedly. In contrast, the input statistics in 

the dual context experiments went through drastic changes in each session, 

potentially reinforcing the more “cautious” adaptation rate. This type of 

modulation of adaptation rate based on environmental consistency has 

previously been shown in motor adaptation (Gonzalez Castro, Hadjiosif, 

Hemphill, & Smith, 2014). However, if context stability was the key variable in our 

experiments, it is puzzling that we did not observe changes in adaptation rate in 

Exp 3.2B, where each context was observed for the same continuous duration as 

in Exp 3.1 and 3.2.  

 

While this possibility is intriguing and deserves further attention, the rest of this 

chapter will discuss our results in light of our original hypothesis, i.e., that 

experience allows the visual system to adapt faster via context-dependent 

adaptation. 

 

The significant single-context results we observed are promising; however there 

are a number of factors that could have played a role in our effects being 

relatively small and mostly absent in the dual-context experiments. 

 

Insufficient learning incentives 
 

One variable that may play an important role in contextual adaptation is the 

extent to which there are incentives to learn. It is possible that the visual system 

requires ample evidence that the adapting context has long-term relevance, and 

thus its learning mechanisms may be engaged only on a slower timescale than 

we were able to test in our experiments. In real life, visual contexts are often 
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encountered hundreds of times over the course of many months, and years. 

Compared to this, the three-day span of our experiment may have been far too 

short to induce learning (especially when having to simultaneously learn statistics 

of two contexts). Consistent with this idea, habitual wearers of colored lenses, 

with years of experience, have recently been shown to not experience chromatic 

aftereffects when taking their glasses off, whereas people without such prolonged 

experience show significantly slower aftereffect decay (Engel et al., 2016).    

 

Another source of evidence that may be used by the visual system to decide 

whether to engage learning processes is the presence of behaviorally relevant 

error signals experienced during adaptation. Specifically, if the visual system is 

put in a situation where being unadapted is disadvantageous, perhaps because 

accomplishing one’s behavioral goals becomes more difficult, then this may 

incentivize learning to more effectively adapt within that environment. Although 

our filtering distorted the appearances of objects in the video feed seen by 

subjects, this may not have provided very strong error signals, particularly 

because participants generally watched videos passively, and did not experience 

any obvious behavioral costs from slow adaptation. Consistent with this, recent 

work by Fulvio and Rokers (2017) shows that explicit feedback about one’s 

behavioral performance in a 3D perceptual task is crucial for learning to use 

sensory cues embedded into the task. As such, a possible future direction may 

be to test whether the addition of stronger error signals into the experimental 

paradigm facilitates experience-dependent changes in adaptation. For example, 

participants could play video games, build puzzles, or do other tasks that induce 

meta-cognitive awareness of their impaired performance.  

 

 

Interference in learning mechanisms 
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In our two context experiments (3.2A and B) we only observed small change at 

the 2 min block in Exp 3.2B, where adaptation showed an apparent weakening 

over days.  The relatively weaker learning may have resulted from destructive 

interference between learning induced in each context. That is, even if the visual 

system has the capacity to create the kind of internal models of the environment 

that allow for rapid context-dependent adaptation, the system needs to know 

when to update each of these contextual models (Qian et al., 2012). If it fails to 

recognize contextual transitions, and hence continues updating a single model, 

then learning accumulated during one context will be eliminated by learning 

induced by the subsequent context.  

 

Although we did explicitly announce contextual changes to our participants, it is 

possible that in the real world, contextual transitions arise in a way we could not 

mimic through these relatively unnatural announcements. For example, real 

world contexts likely generally correspond to different physical locations, and 

hence contextual transitions may be signaled through activity in location-selective 

populations engaged during physical transitions between environments, or simply 

through cognitive awareness that one is transitioning from one environment to 

another. If this were the case, then a more appropriate experimental paradigm 

would involve associating different input statistics (i.e. image filters) with different 

physical or virtual (e.g. different video games) locations.  

 

Insensitive measures 
 

It is possible that in both types of experiments, our behavioral effects may have 

been either too small or too noisy to capture changes in adaptation across days. 

To maximize our sensitivity to small adaptation effects, we trained our 

participants on the plaid task extensively, but the behavioral noise may 

nevertheless have remained large enough to obscure small changes in TAE 



	

	 110	

magnitude. Likewise, subtle changes in the decay rate may have also been 

obscured by relatively long period required to complete each trial (~10 sec). 

Indeed, individual TAE decay curves varied considerably in their shape and 

noisiness. As such, future work on this topic may benefit from new behavioral 

measures of TAE that are less noisy and faster-to-complete, as well as the use of 

other tools for quantifying adaptation effects, such as EEG or fMRI.  

 

When is contextual-learning desirable? 
 
A more general, theoretical consideration arising from this study is the question 

of the circumstances under which context-specific adaptation is desirable. 

Although familiar visual contexts are abundant in one’s natural environment it 

may not be efficient for such knowledge to be used for contrast adaptation. For 

example, it is possible that the neural and energy costs associated with 

maintaining mechanisms for experience-dependent gain changes outweigh their 

benefit of slightly faster adaptation speed. After all, at the neural level, sensory 

adaptation is known to operate very quickly (e.g., Benucci, Saleem, & Carandini, 

2013; Zavitz, Yu, Rowe, Rosa, & Price, 2016). 

 

Additionally, even in highly structured visual environments, the dynamic nature of 

perception stemming from constant eye movements and navigation through the 

environment results in the moment-to-moment visual input falling onto any one 

receptive field being highly variable. As such, the benefits of using the knowledge 

of average input statistics to enhance adaptation efficiency may be negligible.  

 

On the other hand, the intentional nature of perception, whereby one selects 

where to look based on the knowledge of the objects in the surroundings and 

one’s behavioral goals may serve to be a much more powerful source of 

information for altering adaptation dynamics. For example, while navigating 
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around one’s workplace while going to a meeting, the visual input is highly 

predictable due to the knowledge of the building layout, positioning of furniture, 

etc. The input stemming from this kind of active perception within familiar 

environments is often subject to less input stochasticity than more passive visual 

experience (e.g. watching an unfamiliar movie), and hence may benefit from 

contextual adaptation. Indeed, a number of recent studies show that top-down 

expectations have significant perceptual and neural consequences (e.g., Kok, 

Brouwer, van Gerven, & de Lange, 2013; Kok, Failing, & de Lange, 2014; Kok, 

Jehee, & de Lange, 2012), including in the facilitation of contrast adaptation 

(Pinchuk-Yacobi, Dekel, & Sagi, 2016).  

 

While top-down expectations may control some contextual effects in adaptation, 

it is possible that the knowledge of statistical regularities in different environments 

may nevertheless be beneficial for adaptation of other visual features. Color 

(Engel et al., 2016), blur, optic flow, image texture statistics, frequency of 

different facial features, etc., may all be highly predictable in specific situations 

and/or environments, and thus may be good candidates for being subject to 

contextual adaptation. For example, the blur levels experienced when wearing 

spectacles versus not having them on are generally quite predictable, as are 

ambient light levels at different times of day. Thus spectacle-contingent blur 

adaptation and time-of-day-contingent luminance adaptation could both be fairly 

useful types of contextual adaptation.  

 

Consistent with this, Yehezkel et al. (2010) found that following prolonged, 4 hr 

adaptation to anisotropic blur, participants showed no aftereffect when the 

blurring lens was removed, whereas a group adapting for just 2 hours 

experienced a robust aftereffect. Furthermore, when the 4-hr participants were 

brought in for 2 sessions, they showed a progressive increase in the adaptation 

effects across days. These results suggest that extended experience with a 
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predictable geometrical distortion may allow the visual system to learn to rapidly 

switch between functioning in distorted and undistorted contexts, perhaps 

through context-dependent adaptation.  

 

On the other hand, contrast and motion, two arguably less predictable low-level 

features, have been shown to induce weakening adaptation effects as a function 

of repeated experience with them (Dong et al., 2016). It is unclear why our 

pattern of results (including those presented in Chapter 2), with the exception of 

the 2 min block in Exp 2.2B, differs from those of Dong et al., but one possibility 

is that the experimental paradigm of Dong et al. utilized considerably simpler and 

predictable adaptors, leading to different rates of learning. Specifically, their 

adaptors generally contained one level of coherent motion or one orientation at a 

set contrast level, making it easier for the visual system to learn the stimulus 

parameters. In both our grating and naturalistic input experiments, there was a 

much greater degree of stochasticity in the moment-to-moment input, making the 

visual system’s structure learning difficulty significantly greater. Moreover, our 

dual-context experiments made the learning difficulty greater still by introducing 

the need to discriminate between contexts and updating appropriate internal 

models. Nevertheless, it is noteworthy that consistent with Dong et al., our dual-

context experiment, 2.2B, showed weaker TAE at the 2 min time point on day 3 

compared to day 1. As noted earlier, however, this apparent weakening could 

potentially be a consequence of strengthened TAE in the 120 min block of the 

preceding condition, rather than actual weakening of adaptation. 

 

While the results of Dong et al. were highly robust, it is also notable that the 

direction of adaptation changes with experience was opposite to what one may 

expect if the visual system learns to adapt faster. In fact, their results may better 

be interpreted as the visual system learning to correct the coding catastrophe, i.e. 

learning to reinterpret adaptation-induced shifts in the patterns of population 
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activity in early visual areas. That is, one’s visual system may be learning the 

correct mapping between physical features and the activities they generate under 

adapted conditions. Although this kind of perceptual learning may occur in 

tandem with actual changes in adaptation dynamics, disentangling how much of 

each phenomenon takes place is non-trivial. In fact, an apparent no change in 

behavioral effects across days can potentially occur if the adaptation dynamics 

changes and perceptual learning are balanced just right (i.e. stronger neural 

adaptation with partially corrected readout at higher level may appear as no 

change). It is possible that the relatively weak magnitude of the experience-

dependent effects that we observed was, in part, due to this balance between 

adaptation and perceptual learning. 

 

As a final note, it should be acknowledged that our relatively mild effects have a 

positive implication for a sizable body of already published literature. Specifically, 

many adaptation studies (e.g. on animal models) assume that tasks can be 

repeated over many blocks and sessions, and results then be averaged for 

noise-reduction purposes. If adaptation dynamics changed with experience, then 

learning effects could conceivably distort some of the conclusions drawn within 

these studies. The relatively small effects in our results provide evidence that 

perhaps there will not be a need to re-interpret results that rest upon the 

assumption that adaptation is a hard-wired process with fixed dynamics. On the 

other hand, much of animal work requires months of task training during which 

animals view the task stimuli orders of magnitude more frequently than our 

participants did. Our results do not apply to this body of work, as profound 

experience-dependent plasticity may very well be occurring at these very long 

timescales. 
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Chapter 4 
 
Final thoughts 
 

In this dissertation, I explored the hypothesis that the visual system can improve 

the efficiency of its adaptation processes by learning and utilizing the structural 

knowledge of commonly encountered environments, or contexts. Specifically, we 

hypothesized that repeated exposure to adapting contexts would lead to 

adaptation that’s either faster or stronger.  

 

Although contextual-adaptation mechanisms appear intuitively useful, probing 

their existence experimentally is complicated. Not only is it difficult to capture 

rapid adaptation dynamics psychophysically (so as to be able to observe subtle 

changes due to experience), but given the relative scarcity of prior studies of 

contextual adaptation, the conditions under which its mechanisms become 

engaged (if they indeed exist) are poorly understood. In particular, there are 

plethora of variables such as the experiment duration, learning incentives, type of 

contextual cues used to indicate contextual changes, strength of behaviorally 

relevant error signals, and others that may be highly relevant to whether the 

visual system utilizes contextual adaptation. However, due to limited time and 

resources, it is impossible to test and optimize all of these parameters. 

Consequently, null results are difficult to interpret as they may simply reflect poor 

parameter choices. While one could rightly point out that this problem affects all 

behavioral science, it is particularly salient in cases where little prior work exists 

that could be used to constrain parameter choices for new experiments.  

 

The work in this dissertation is a set of attempts to find evidence for context-

specific adaptation while tackling the above issues.  
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Our single-context results in Chapter 3 provide novel evidence that contextual 

adaptation may indeed occur, and extend upon the previous work demonstrating 

interactions between experience and adaptation (Dong et al., 2016; Engel et al., 

2016; Yehezkel et al., 2010). To our knowledge, our results are not predicted by 

current models of visual adaptation, which generally do not consider adaptation 

to be malleable through experience. At the same time, our unsuccessful attempts 

to produce similar results in our dual-context experiments make the interpretation 

of the single-context results somewhat complicated, as it is unclear whether the 

changes in adaptation rate across days reflects the kind of a learning mechanism 

outlined throughout this dissertation. In particular, we were not able to 

demonstrate that the visual system has the flexibility to discriminate between 

different statistical structures of environments and apply appropriate knowledge 

from previous experience. As such, one important goal for future work will be to 

further explore the nature of these experience-dependent changes, both 

behaviorally and through neuroimaging.  

 

While the dual context experiments did not yield significant changes in adaptation 

dynamics (with the exception of the 2 min point in Expt 3.2.2), it may be 

informative to explore the reasons for this by comparing their paradigms. 

 

The importance of contextual cues 
As elaborated in discussion of both Chapter 2 and 3, the most likely theoretical 

lesson from the dual context experiments is that appropriate choice of contextual 
cues may be crucial for successful contextual learning. In our monitor 

experiments, we attempted to use both low level oriented cues that were 

embedded with statistical structures matching the adaptor sequences, as well as 

meaningful natural images with no statistical similarity to the adaptors. On the 

other hand, in the experiments utilizing filtered video, we did not build in explicit 

contextual cues other than a verbal announcement of “distortion” changing 
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whenever we switched the context. However, we reasoned that the stereotypical 

way in which the appearances of objects in participants’ surrounding were 

distorted may have nevertheless served as a powerful cue.  

 

Given that we obtained null results in the monitor experiments, we believe that 

the likely reason was that none of these cues captured the aspects of real world 

environments that the visual system utilizes for differentiating contexts. 

Consequently, contextual switches led to destructive interference with learning 

that may have occurred in the previous context, preventing context-specific 

adaptation from taking place (for detailed discussion, see Chapters 2 & 3).  

Indeed, as outlined in Chapter 1, for successful context-specific motor 
adaptation, the choice of contextual cues is crucially important (Howard et al., 

2013).  

 

Thus, in light of our results a key question is what cues may the visual system be 

able to utilize? To this end, examination of real world contexts may provide likely 

possibilities. For example, real world contexts generally occupy different physical 

locations, making it possible that signals associated with spatial navigation may 

be critical for context-specific adaptation. If this were true, then contextual 

adaptation effects may reveal themselves under conditions where participants 

move, either physically or virtually, to different locations, each associated with 

different adapting statistics.   

 

Secondly, real world contexts are not only meaningful (e.g. forests, restaurants, 

parks, etc.), but they are also tightly linked to the statistical regularities in the 

visual input. That is, forests have high prevalence of near-vertical contrast energy 

because they contain a large quantity of trees. As such, the knowledge (from 

vision, or other senses) that one is in the vicinity of trees may be a powerful cue 

that the vertical gain should be reduced. This aspect of real environments was 
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not fully captured in any of our experiments. In the monitor experiment (2.2), 

associations between adaptors and image categories used as cues were 

arbitrary, violating the logic above. In the filtered video experiments, the objects 

in participants’ surroundings were the vehicle of adaptation, as in the real world. 

However, unlike in the real world, the context identity could be inferred from the 

changes in the appearance of objects not the changes in the distribution of 

objects themselves (which were identical across contexts). As such, perhaps our 

contextual manipulation was implemented at a lower level of processing than it is 

in the real world. One way in which future work could address this hypothesis is 

by measuring effects of experience on adaptation within virtual environments 

where low-level biases in orientation, contrast, or color, would be generated 

through changes in the distributions of objects appearing in each context. 

 

Timescales of contextual exposure 
In addition to an appropriate choice of contexts and their cues, long duration and 

high frequency of exposure to visual contexts are likely also critical factors for 

inducing contextual adaptation. In real life, contexts are usually experienced 

repeatedly, and for long durations. We designed our experiments to include both 

of these features, but due to practical limitations, neither could be closely 

matched the real life experience. In our single context experiments, we saw 

significant changes with 2 hours of adaptation repeated 3 times, suggesting that 

2 hours may be enough for inducing contextual adaptation. However, it is unclear 

if similar results could be obtained with shorter durations (e.g. 30 min). Across all 

the dual context experiments, we utilized 2 min, 30 min, and 2 hour adapting 

durations, but only found one significant effect for the 2 hour duration. Because 

the direction of this significant result was opposite from what we expected, it is 

unclear whether reflects a real phenomenon, or a false positive (but see 

discussion in Chapter 3 for a possible explanation that involves adaptation 

strengthening across days). If it indeed is a real effect, then these results can be 
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interpreted as longer adapting durations being important for contextual 

adaptation. 

 

Unfortunately, although we think that long adapting durations are important, the 

fact that the contextual cues we used in dual-context experiments may have 

interfered with learning (see above) make it hard to draw strong conclusions. In 

fact, the durations and cues in the dual context experiments are confounded such 

that the cause of our null results could be attributed to either or both of them. As 

such, it is possible under appropriate conditions, contextual adaptation could 

arise even with relatively short timescales. Perhaps a more practical approach for 

future work, however, would be to assess the importance of longer timescales 

through attempting to replicate our single-context results with shorter adapting 

durations.  

 

Need for methodological advances 
Besides the more theoretical considerations, we believe that the work in this 

dissertation also taps into some methodological issues related to the 

measurement of adaptation effects. In particular, because adaptation is a rapid 

process that is modulated not only by the adaptor, but also by the test stimuli 

used for measurement, quantifying the dynamics of its buildup and decay is 

complicated. To get a single estimate of the current aftereffect magnitude, 

participants typically require several looks at the stimulus to refine their response. 

However, due to the dynamic nature of adaptation, the stimulus appearance 

often changes from moment to moment within a given trial, diminishing 

participants’ confidence about their responses. This, paradoxically, leads to 

participants often needing more looks at the stimulus convince themselves that 

their response is accurate, which ultimately reduces the temporal resolution of 

the data even further.  
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In the case of our experiments, we were interested in comparing adaptation 

dynamics across days, and thus our goal was to create a procedure to measure 

the shape of its underlying function with dense temporal sampling. For this 

reason, we chose the plaid and orientation matching tasks to be controlled using 

a computer mouse, so that participants could intuitively make both large and fine 

adjustments very quickly. However, perhaps due to the logic outlined above, in 

practice neither of these tasks resulted in a trial completion rate that we hoped for 

(generally for low-noise baseline results, participants needed ~10 sec or more 

per trial).  

 

Our struggle to obtain fast, fine-grained measure of adaptation using a matching 

task poses a question of whether a different task would be more appropriate? 

With their frequent use for measuring adaptation, staircase procedures may be 

the natural candidate (Cornsweet, 1962). In staircases, a perceptual state such 

as the magnitude of TAE is estimated through iterative, step-wise updating of the 

stimulus based on participant’s perceptual judgments. On every trial, the stimulus 

appearance depends on the previous responses (e.g., if counter-clockwise 

response was given, then next stimulus is subjected to a clockwise orientation 

increment) and over time, the procedure converges on (and oscillates around) a 

behavioral threshold, e.g. orientation that subjectively appears vertical.  

 

On one hand, it is undoubtedly true that given their built-in serial dependence, 

staircases should be more robust (than matching tasks) to perceptual 

fluctuations, which likely played a role in our experiment. As such, it is possible 

that staircases may be better suited for capturing small changes in the peak TAE 

strength. At the same time, staircases would arguably be a less trustworthy 

approach to capturing changes in the shape of buildup and decay, since the 

staircase state can only accurately track the true magnitude of an aftereffect if it 

is already near the actual aftereffect magnitude. This is problematic particularly 
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when the tracked process is rapid, like adaptation. Staircases could, 

nevertheless, still be viable for measuring the shape of adaptation if participants 

were provided with multiple step-size options well-matched to the magnitude of 

the measured effect, and the onset of the adaptation buildup or decay began only 

once the staircase caught up with the current perceptual state.  

 

One goal for future work could be to develop better techniques for behavioral 

measures of adaptation dynamics. As discussed in Chapter 2, a possible 

extension of current techniques would be to utilize spatial multiplexing of adaptor 

and test stimuli, such that for each time point in the adaptation buildup or decay, 

multiple measurements are obtained at different locations in the visual field. This 

way, the aftereffect magnitude at each time point can be estimated with lower 

uncertainty, leading to higher fidelity measures of adaptation dynamics.   

 

Another potentially useful goal would be to create novel approaches to analyze 

data from matching tasks (like those used in our experiments) in a way that 

utilizes not only the final response, but also the intermediate within-trial behavior. 

For example, given the stimulus parameters at the start of the trial, the initial 

direction of mouse movement puts an upper/lower bound constraint on the 

adaptation magnitude, as does every within-trial reversal in the stimulus 

adjustment direction. This data, which is generally discarded, could be combined 

in some weighted combination with the actual responses to, again, produce a 

more reliable estimate of the shape of aftereffect buildup and decay.  

 

Conclusions 
All in all, the work in this dissertation demonstrates that, at least under some 

conditions, the visual system has the flexibility to change its adaptation dynamics 

through experience. Although I did not demonstrate these experience driven-

changes in multi-context experiments, I believe that further experimentation with 
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methodological adjustments, some of which are discussed above, may prove to 

be more successful.  

 

Finally, as a more general note, this work was inspired by considerations of how 

vision operates in the real world and integrates bottom up signals with previous 

experience. I believe that although simpler experiments focused on purely 

bottom-up visual processing can be very informative, in the long run the above 

philosophy will be critical for generating hypotheses aimed at understanding the 

flexibility of the visual system. 
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