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Abstract 

Background. American Indians experience higher stroke morbidity and mortality 

compared to US general population, but are underrepresented in public health research. 

Data on incident stroke in American Indians derive mainly from the Strong Heart Study 

(SHS), a population-based cohort study of cardiovascular disease in 4549 American 

Indians who were 45-74 years old when baseline exams were conducted from 1988-1990. 

The SHS had higher stroke rates than reported for Whites and African Americans in 

external comparisons to other cohorts. These findings suggested similar disparities in 

covert vascular brain injury (VBI), an often asymptomatic form of cerebrovascular 

disease that precedes clinical events. Accordingly, from 2010-2013 the Strong Heart 

Stroke Study (SHSS) used structural cranial magnetic resonance imaging to assess covert 

VBI in 1033 surviving members of the SHS.  

Goals. In this dissertation we addressed three limitations to using SHS and SHSS 

data for analysis of stroke and covert VBI in American Indians: Manuscript 1) lack of 

research that directly compares stroke incidence and mortality in American Indians vs. 

other racial groups, and which limits current knowledge to external comparisons that do 

not account for differences in stroke risk factors; Manuscript 2) potential selection bias in 

SHSS data when survival and participation of cohort members depends on both the 

exposures and outcomes of interest; and Manuscript 3) an inherent limitation in effect 

measures estimates that condition on categories defined by progressively older age or 

longer time since exposure, and which leads to observed point estimates that are 

potentially biased estimates of the true effects. 

Manuscript 1. Methods: We pooled data from the SHS and the Atherosclerosis 

Risk in Communities Study (ARIC) to compare stroke risk and post-stroke mortality in 

American Indians vs. Blacks and Whites. We used Cox regression to estimate hazard 

ratios (HR) with attained age as the time scale to account for differences in baseline age 

at enrollment, and adjusted estimates for baseline factors that included prevalent 

hypertension and diabetes. Due to effect modification, analyses were stratified by birth 

year tertile (1914-1930, 1931-1937, and 1938-1947). We used logistic regression to 

compare 30-day and 1-year post-stroke mortality among participants from both studies 
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who experienced stroke during follow-up. Results: Stroke risk among American Indians 

in the SHS was lower than among Blacks for all birth year tertiles (1914-1930: HR = 0.9 

(95% CI = 0.7, 1.1); 1931-1937: HR = 0.9 (95% CI = 0.7, 1.2); 1938-1947: HR = 0.9 

(95% CI = 0.7, 1.2)), but higher than among Whites (1914-1930: HR = 1.6 (95% CI = 

1.3, 2.0); 1931-1937: HR = 2.2 (95% CI = 1.7, 2.8); 1938-1947: HR = 2.7 (95% CI = 2.0, 

3.6)) in ARIC. Adjusting for risk factors including prevalent diabetes at baseline resulted 

in strengthening of associations compared to Blacks (oldest to youngest tertile HR = 0.8 

(95% CI = 0.6-1.0); 0.7 (95% CI = 0.5-1.0); and 0.6 (95% CI = 0.4-0.8)), and attenuation 

of associations compared to Whites (oldest to youngest tertile HR = 1.1 (95% CI = 0.9-

1.5); 1.2 (95% CI = 0.9-1.6); and 1.1 (95% CI = 0.8-1.5)). American Indians had higher 

risk of 30-day and 1-year mortality compared to Blacks (relative risk = 2.2 (95% CI = 

1.4-3.0) and 1.4 (95% CI = 1.1-1.8), respectively) and Whites (relative risk = 1.8 (95% 

CI = 1.2-2.3) and 1.5 (95% CI = 1.1-1.8), respectively). These comparisons persisted 

after adjusting for risk factors. 

Manuscript 2. Methods: We used marginal structural models with inverse 

probability weighting to adjust for selection bias in the SHSS, applied to the analysis of 

prevalent hypertension and covert VBI as measured by white matter hyperintensities. 

Predicted probabilities of survival from 1988-2010 and participation of survivors were 

estimated and inverted to create weights, and stabilized using conventional methods to 

reflect the distribution of hypertension in cohort participants. In addition, we computed 

novel stabilized weights that account for each person’s probability of meeting the 

inclusion criterion of remaining stroke-free up to their SHSS exam. These weights 

allowed us to avoid over-correcting for attrition of individuals who would have 

subsequently gone on to experience clinical stroke. We applied these weights to estimate 

the prevalence difference (PD) for the association of hypertension with a binary indicator 

of abnormal VBI, as well as the mean difference (MD) for a continuous variable 

reflecting the ratio of white matter/total intracranial volume; the ratio estimates were 

multiplied by 1000 to simplify presentation of results. Hypertension was evaluated as 

both a cross-sectional risk factor and accounting for longitudinal trends in prevalence 

since baseline. Results: In the cross-sectional analysis, hypertension was associated with 
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higher prevalence of abnormal VBI in unweighted models (PD = 7.9% (95% CI = -2, 

17)). The point estimate increased 13% after selection weighting (PD = 8.9% (95% CI = 

0, 18)). Prevalent hypertension was likewise associated with a higher proportion of white 

matter volume compared to the total intracranial volume in unweighted models (MD = 

0.8 (95% CI = -0.4, 2.0)) and after selection weighting (MD = 0.9 (95% CI = -0.3, 2.1)). 

Adjusting weights to account for the stroke-free inclusion criterion did not change results 

compared to the conventional stabilized estimates. In the analysis treating hypertension as 

a longitudinal exposure, prevalent hypertension at all three study exams was associated 

with higher prevalence of abnormal VBI (PD = 8.0% (95% CI = -6, 22)) and higher ratio 

of white matter/total intracranial volume (MD = 1.7 (95% CI = 0.0, 3.4)) compared to not 

having hypertension at any exam. Selection weighting had no appreciable impact on 

point estimates in the longitudinal analysis. 

Manuscript 3. Methods: We used Mathematica software with constrained 

optimization to identify bounds for the risk difference (RD) when conditioning on event-

free survival to some minimum age or time since exposure. Bounds were identified 

assuming only causative exposure effects in the target population, and allowing for 

exposure to prevent disease in some individuals so long as the causative effects were 

proportionally greater in the overall population. We applied these bounds to the analysis 

of post-stroke survival from Manuscript 1, with follow-up time divided into 0-30 days, 

31-180 days, and 181-365 days after the stroke event. Results: The RD attenuated across 

follow-up periods for American Indians vs. Blacks (0-30 days: RD = 14% (95% CI = 6, 

23); 31-180 days: RD = -1% (95% CI = -7, 4); 181-365 days: RD = -3% (95% CI = -7, 

2)) and Whites (0-30 days: RD = 12% (95% CI = 3, 21); 31-180 days: RD = 1% (95% CI 

= -5, 6); 181-365 days: RD = -2% (95% CI = -6, 3)). With assumptions of only causative 

exposure effects, bounds on the the conditional risk difference for American Indians vs. 

Blacks were 0-16% for 0-30 days post-stroke event, and 1-13% for 181-365 days post-

stroke. For American Indians vs. Whites the bounds were 0-14% for 0-30 days post 

stroke, and 0-13% for 31-180 days post-stroke. Allowing for preventive effects that were 

equal to or less than causative effects yielded bounds that were too wide for meaningful 

interpretation (all lower bounds = 0; all upper bounds ≥ 30).  
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Conclusions. We found that American Indians in the SHS had lower stroke risk 

than Blacks, but not than Whites, in ARIC after adjusting for risk factors that included 

prevalent diabetes. These findings suggest that diabetes may be a factor behind stroke 

disparities in some American Indian communities. American Indians had higher post-

stroke mortality than Blacks and Whites especially in the first 30 days after stroke onset, 

but cumulative risk comparisons and analyses using bounds for conditional effects were 

consistent with elevated risk persisting for at least 1 year. Among long-term survivors of 

the SHS who participated in the SHSS assessment of covert VBI, selection bias may be 

of concern for some analyses. Although adjusting selection weights for the stroke-free 

inclusion criterion did not change results in this example, other studies with inclusion 

criteria that result in excluding larger proportions of the study population may wish to 

include sensitivity analyses with similar adjustments. 
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A.  Introduction 

American Indians experience substantial stroke morbidity and mortality but are 

underrepresented in research on stroke and covert vascular brain injury (VBI), such as 

white matter hyperintensities (WMH) or silent infarcts that often precede clinical events. 

Data on incident stroke in American Indians derive mainly from the Strong Heart Study 

(SHS), a population-based cohort study of cardiovascular disease in 4549 American 

Indians from three geographic regions who were 45-74 years old at baseline.1 From 1988-

2004 the SHS documented stroke rates in men and women exceeding those for Whites 

and Blacks in other large cohort studies.2 Thirty-day and 1-year mortality were also 

unexpectedly high among SHS participants who experienced incident stroke, though it 

was unclear whether this finding was driven primarily by disparities in short-term risks 

that attenuated among longer term survivors. No longitudinal cohorts exist that allow 

direct comparison of stroke incidence or post-stroke survival in American Indians with 

other racial groups.  

The Atherosclerosis Risk in Communities (ARIC) Study is a prospective cohort 

study that enrolled 15,792 participants from four locations across the US.3 Recruitment 

and baseline exams were conducted from 1987-1989, with cardiovascular events and 

stroke ascertained through 2011. Analyses documented higher risk in Black participants 

than in Whites,4 and ARIC was among the cohorts to which SHS investigators made 

external comparison of stroke rates for American Indians. ARIC and the SHS shared 

many similarities in study design and timing of enrollment for baseline exams, and 

together represent an opportunity for pooling data to include American Indians in racial 

comparisons of stroke incidence and survival. 

High stroke incidence observed in SHS participants suggests similarly elevated 

burdens of covert VBI. Accordingly, from 2010-2013 the ancillary Strong Heart Stroke 

Study (SHSS) used cranial magnetic resonance imaging to investigate covert VBI and its 

risk factors in 1033 SHS members. Because the SHSS comprised long-term survivors of 

the SHS cohort, selection bias could arise from differential mortality or attrition 

associated with the exposures and outcomes of interest.5 In this context, selection bias 

would likely result in underestimating magnitudes of associations between risk factors 
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and covert VBI, and analyses to address the SHSS scientific aims may need to adjust for 

potential selection bias in the data. 

The SHSS analytic plan includes estimating effect measures for the cohort as a 

whole, and separately by age category (65-74, 75-84, and ≥ 85 years old). Age-specific 

estimates can suffer from a special form of selection bias that renders effects 

fundamentally unidentifiable, which means they cannot be directly estimated from 

observed data.6 This type of selection bias also applies to effect estimates that condition 

on surviving some minimum time since start of treatment or exposure, such as 1-year 

survival among people who survive at least 30 days after their stroke event. In older age 

groups or longer-term survivors this “conditional effects bias” can lead to observing 

effect estimates that are diminished or even qualitatively reversed compared to the true 

associations. In randomized controlled trials cumulative effects are estimated without 

bias, in expectation, but no methods currently exist that guarantee unbiased estimation of 

conditional effects even for prospective studies with perfect randomization, large sample 

size, and no missing data or attrition. For scientific questions that necessitate estimating 

conditional effects measures, methods to place bounds around unobservable parameters 

would facilitate sensitivity analyses and contextualize interpretation of results. 

This dissertation comprises three papers that address the questions described above. 

In Manuscript 1: Comparing stroke incidence and survival in American Indians, Blacks, 

and Whites: the Strong Heart Study and Atherosclerosis Risk in Communities Study, we 

pooled longitudinal data from the SHS and ARIC to evaluate racial differences in stroke 

outcomes with and without adjusting for stroke risk factors. Manuscript 1 expands on 

previous findings in the SHS, and is the first population-based longitudinal analysis to 

directly compare stroke incidence and survival in American Indians to any other racial 

group.  

In Manuscript 2: Inverse probability weighting for selection bias tailored to 

inclusion criteria in the target population: covert vascular brain injury among American 

Indians in the Strong Heart Stroke Study, we used marginal structural models with 

inverse probability weighting (IPW) to adjust for selection bias in the analysis of 

prevalent hypertension and covert VBI in the SHSS. Manuscript 2 extends traditional 
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applications of IPW for selection bias to account for correlation between equations used 

to predict selection and the probability of meeting inclusion criteria, in this case absence 

of prevalent stroke.  

In Manuscript 3: A bounding method to for effect estimates conditioned on age or 

time since exposure, we expanded on a previous publication6 to develop a simple 

bounding method for conditional effects based on identifiable parameters that can be 

estimated from observed data. Manuscript 3 provides a practical tool that can be applied 

to conditional effects in analyses using SHS and SHSS data, and which can be more 

broadly applied to other longitudinal or cross-sectional studies that are focused on 

quantifying effects conditioned on age or time. 
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B.  Background 

B.1 Stroke 

Stroke is the general term used to describe clinical symptoms resulting from 

restriction of blood flow to (ischemic stroke) or bleeding from (hemorrhagic stroke) 

blood vessels in the brain.7 Stroke is strongly associated with older age and biological or 

vascular aging, especially in developed countries but also increasingly in the developing 

world.8,9 A conventional, albeit arbitrary, diagnostic criterion requires symptom duration 

of at least 24 hours to distinguish stroke from transient ischemic attack.10 In recent years 

some researchers and clinicians have advocated for the term “brain attack” to reflect 

mechanistic similarities between ischemic stroke and heart attack, and to emphasize the 

need for acute emergency treatment as soon as possible after symptom onset, though this 

terminology is criticized for insufficient focus on post-stroke disability and 

rehabilitation.11,12 Stroke has also been called a “cerebrovascular accident,” although this 

terminology has been criticized as implying chance events that are not preventable.  

Vascular aging and stroke are caused by deterioration in the health and functioning 

of vascular endothelial cells that line the walls of blood vessels.13 Oxidative stress and 

inflammation contribute to this vascular endothelial dysfunction,14 which in turn 

contributes to atherosclerosis and increased risk of ischemic and hemorrhagic strokes via 

plaque formation, plaque rupture, and weakened blood vessels.15-19 Relative burdens of 

stroke subtypes vary between countries.20 In the US about 85% of strokes are ischemic, 

and 15% are hemorrhagic.7 The US also exhibits geographical variation in stroke risk, 

with the highest burdens found among residents of the “stroke belt” across the 

Southeastern states.21 

There are three main causes of ischemic stroke. Cerebrovascular blood flow can be 

restricted by clots that form in the brain, clots that travel to the brain from other parts of 

the body, or narrowing of the blood vessels.22 About 30% of strokes are cryptogenic, with 

unknown cause.23 Normal cerebrovascular blood flow in the cortex is approximately 50 

ml/100 mg/minute, but reduction by as much as 60% can occur without causing 

noticeable symptoms.11 Blockage that reduces blood flow below 10 mL/100 mg/minute 

causes rapid membrane failure and cell death in an area of affected tissue known as the 
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infarct core. The core is surrounded by a region of less obstructed blood flow in which 

neuronal function is impaired but the cells are still intact. This region, known as the 

ischemic penumbra, is the target for acute thrombolytic treatment and subsequent 

rehabilitation therapy.24 In general, treatment within 3 hours of symptom onset is 

essential for restoring full or partial function to the penumbra. Approximately one-fourth 

of ischemic stroke victims die within one year of the event.25 

Hemorrhagic stroke occurs when blood leaks from weakened or damaged blood 

vessels in the brain. Intracerebral hemorrhage occurs when a diseased blood vessel leaks 

or bursts within the brain, and accounts for about two-thirds of hemorrhagic stroke.26 The 

remaining one-third reflect sub-arachnoid hemorrhage, which is bleeding between the 

layers of tissue that cover the brain and is usually caused by aneurism rupture or physical 

trauma. Depending on the location and extent of the lesion, hemorrhagic stroke can result 

in cell death due to oxygen deprivation downstream from the bleeding, as well as damage 

to surrounding tissue from the extravascular hematoma. Hemorrhagic stroke can occur in 

the absence of previous ischemia, or as the so-called “hemorrhagic transformation,” in 

which bleeding occurs at the site of a primary ischemic stroke.27 Hemorrhagic stroke is 

more lethal than ischemic stroke; about half of all victims die within one year of the 

event.28 

Risk factors for stroke are similar to risk factors for other cardiovascular diseases. 

In general, risk factors can be subdivided into modifiable and unmodifiable categories, 

with both informing general assessment of an individual’s risk profile while the latter can 

also serve as targets for preventive intervention.25 Unmodifiable risk factors include older 

age; male sex, although females have higher risk for some age categories; Black, 

American Indian, or Hispanic race/ethnicity; genetic predisposition; and low birth weight, 

although this may be considered modifiable from a primordial prevention perspective.29 

Major modifiable risk factors include high blood pressure; diabetes; cardiac arrhythmias, 

especially atrial fibrillation; left ventricular hypertrophy; dyslipidemia; smoking; physical 

inactivity; depression; and obesity.25,30-33 Current understanding of stroke risk factors has 

been largely shaped by US-based cohort studies, including ARIC.34-41 Unfortunately, the 
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prevalence of many risk factors is increasing, with ominous implications for public 

health.42,43 

For decades stroke was the 3rd leading cause of death in the US after heart disease 

and cancer, but in the last few years it has dropped to 4th, after chronic lower respiratory 

disease.44 This change is generally attributed to improved management of chronic disease 

risk factors, most notably hypertension and atrial fibrillation,45 although the decreased 

mortality could be due in part to improved specificity of stroke diagnosis.46 Most strokes 

occur in middle-aged and elderly adults, thus most clinical and epidemiologic research 

has focused on this population. In recent years the decline in stroke mortality has 

plateaued,47,48 however, and evidence increasingly suggests rising stroke incidence 

among people younger than 45 years old and in some racial minority populations.49-52 

B.2 Racial Disparities 

Stroke incidence and survival varies by race and ethnicity. According to the Centers 

for Disease Control and Prevention, in 2013 stroke prevalence was higher in people 

reporting American Indian (4.6%) or Black (4.0%) race than in people identifying as 

White (2.5%).7 Black stroke survivors also report more disability than their White 

counterparts, such as difficulty walking 10 steps without resting (42% vs. 29%), using 

fingers to grasp small objects (18% vs. 11%), or participating in social activities (24% vs. 

16%).53 People of color die from stroke at younger ages than Whites,54 and Blacks who 

experience stroke have higher mortality rates than Whites.55-57 Not surprisingly, research 

suggests that disparities in stroke incidence are linked to disproportionate burdens of 

stroke risk factors, though most research has focused on Blacks and the vast majority of 

publications do not include American Indians or Alaska Natives.58-64 Among stroke 

survivors, Blacks and Hispanics report poorer health-related quality of life and more 

stroke-related disability than Whites.65,66  

Several large cohort studies have directly compared stroke incidence in Black and 

White participants. In ARIC from 1987-1995 stroke rates were higher in Black men (53 

per 10,000 person-years (95% CI = 41, 69)) and women (40 per 10,000 person-years 

(95% CI = 31, 51)) than in White men (20 per 10,000 person-years (95% CI = 16, 26)) 
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and women (15 per 10,000 person-years (95% CI = 12, 19)).4 Thirty-day case fatality 

rates were also higher among Black than White stroke victims (13% vs. 9%), although 

the smaller number of fatalities did not allow for precise point estimates. In the 

Cardiovascular Health Study, Black women had higher 5- and 10-year stroke rates (15.7 

and 16.3 per 10,000 person years, respectively) than White men (15.4 and 15.2, 

respectively) or women (9.7 and 13.2, respectively), but interpretation of rates for Blacks 

of both sexes is limited due to relatively small numbers of events.34 Of 390 

Cardiovascular Health Study participants who experienced incident stroke from 1989-

1997, fatalities were 2.9 times higher in Blacks than in Whites.67 

B.3 Covert Vascular Brain Injury 

Covert VBI typically precedes clinical events, manifesting as WMH, hemorrhages, 

infarcts, or atrophy in the absence of stroke. These conditions have been linked to 

behavioral changes, cognitive impairment, dementia, and subsequent stroke and death.68-

72 Small vessel disease is implicated in the etiology of covert VBI,73 as are older age, 

hypertension, and diabetes.74-77 Large cohort studies, including ARIC, that used magnetic 

resonance imaging to quantify covert VBI documented high prevalence of brain 

abnormalities in middle-aged and elderly populations without a history of stroke or 

transient ischemic attack.78-80 Data also suggest that defining cerebrovascular disease 

only by clinical symptoms of transient ischemic attack or stroke dramatically 

underestimates the burden of covert disease.81  

B.4 Stroke in American Indians 

American Indians and Alaska Natives comprise 1.7% of the US population (5.2 

million people),82 and approximately 45% live on rural reservations. Until recently it was 

widely believed that American Indians experienced less stroke-related morbidity and 

mortality than the general population,83 despite disproportionate burdens from many 

chronic diseases and other stroke risk factors, including hypertension, obesity, type 2 

diabetes and cardiovascular disease.84 In an analysis of longitudinal changes 4 years after 

enrollment, the SHS reported unfavorable results for hypertension, blood lipids, diabetes, 

and albuminuria.85 Even among modifiable risk factors that did not show longitudinal 
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differences, the SHS cohort still exhibited disproportionate levels of low physical 

activity, obesity, and smoking compared to the general population. The Indian Health 

Service states that American Indians and Alaska Natives in their service population are 

60% more likely than Whites to experience a stroke, and self-reported stroke is higher for 

American Indians and Alaska Natives than other US racial groups.44 American Indians 

have been excluded or underrepresented from the vast majority of stroke research, 

however, and a 2011 statement from the American Heart Association/American Stroke 

Association concluded that stroke among Native people has not been thoroughly 

examined.52 

The only rigorous data on stroke incidence and mortality in American Indians 

comes from the SHS. Using meticulous community surveillance, 306 strokes were 

prospectively ascertained from 1989-2004 among 4549 participants. In the seminal 

publication on stroke incidence in American Indians, age-adjusted rates in the SHS were 

71 and 65 per 10,000 person-years for men and women, respectively, with 7% cumulative 

incidence from 1988-2004.2 No direct racial comparisons were possible, but the SHS 

incidence rates were higher than for Blacks or Whites of similar ages in the Framingham 

Heart Study,36 Cardiovascular Health Study,34 and ARIC.4 Age-specific incidence rates 

were also consistently higher in the SHS cohort than age-matched rates in Whites from 

Rochester, Minnesota from 1985-198986 and in Blacks in the Greater Cincinnati/Northern 

Kentucky Stroke Study in 1993.87 Stroke mortality in American Indians has been 

reported as being both lower54 and higher55 than Whites. These inconsistencies may in 

part reflect data quality issues, including underestimation of disease due to racial 

misclassification.88,89 Among American Indians in the SHS who experienced stroke, 1-

year case-fatality was 31% for men and 33% for women, compared to 21% for men and 

24% for women in pooled data from multiple cohorts.2 Similarly, in Montana from 1991-

2000, higher proportions of deaths in people younger than 65 years old were due to stroke 

in American Indians compared to Whites for both men (36% vs. 11%) and women (28% 

vs. 7%).90 
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B.5 Covert Vascular Brain Injury in American Indians 

The American Heart Association has cited research suggesting a large, mostly 

unrecognized burden of cerebrovascular disease among the US Native population.91 

Other than the recently completed SHSS for which results are not yet available, however, 

we could find no published research that has evaluated covert VBI in American Indians 

or Alaska Natives. 
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C. Manuscript 1. Comparing stroke incidence and survival in American 

Indians, Blacks, and Whites: the Strong Heart Study and Atherosclerosis Risk in 

Communities Study 

 

Clemma J. Muller, Alvaro Alonso, Jean Forster, David Vock, Rebecca Gottesman, 

Wayne Rosamond, W.T. Longstreth, Jr., Richard F. MacLehose 

 

C.1 Overview 

Background and Purpose. Stroke incidence and post-stroke mortality have been 

reported as being higher in American Indians than other US racial groups, but previous 

cross-study comparisons have been unable to account for risk factors or underlying 

trends. We pooled data from the Strong Heart Study, a longitudinal study of 

cardiovascular disease in American Indians, and the Atherosclerosis Risk in 

Communities Study, a longitudinal study that included both Blacks and Whites, to 

compare stroke incidence and post-stroke survival in these three groups.  

Methods. Both studies launched in the late 1980s, with similarities in study design 

that facilitated pooled analysis. We used Cox regression to compare stroke hazards in 

American Indians (n = 4111) vs. Blacks (n = 3765) and Whites (n = 10,413), with 

attained age as the time scale and stratified by birth year tertile (1914-1930, 1931-1937, 

and 1938-1947) to accommodate effect modification. Among the subset of participants 

who experienced incident stroke during follow-up, we used logistic regression to estimate 

differences in 30-day and 1-year post-stroke mortality for American Indians (n = 310) vs. 

Blacks (n = 416) and Whites (n = 613). All effect estimates are presented before and after 

adjusting for confounding by demographic and risk factor variables. 

Results. In the unadjusted analysis of stroke incidence American Indians had lower 

hazard ratios (HR) than Blacks across all birth cohorts (1914-1930: HR = 0.9 (95% CI = 

0.7, 1.1); 1931-1937: HR = 0.9 (95% CI = 0.7, 1.2); 1938-1947: HR = 0.9 (95% CI = 0.7, 

1.2)). In adjusted models, magnitude of associations increased across tertile (oldest to 

youngest cohort HR = 0.8 (95% CI = 0.6, 1.0); 0.7 (95% CI = 0.5, 1.0); and 0.6 (95% CI 

= 0.4, 0.8)). In the unadjusted analysis American Indians had higher stroke incidence than 
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Whites, with increasing magnitude across tertile (1914-1930: HR = 1.6 (95% CI = 1.3, 

2.0); 1931-1937: HR = 2.2 (95% CI = 1.7, 2.8); 1938-1947: HR = 2.7 (95% CI = 2.0, 

3.6)). Magnitude of associations greatly attenuated after confounder adjustment (oldest to 

youngest tertile HR = 1.1 (95% CI = 0.9, 1.5); 1.2 (95% CI = 0.9, 1.6); and 1.1 (95% CI 

= 0.8, 1.5)), with differences in diabetes prevalence accounting for most of the change. 

Among people who experienced stroke during follow-up, American Indians had higher 

30-day mortality than Blacks and Whites (21% vs. 9% and 12%, respectively). After 

confounder adjustment, American Indians had higher risk ratios (RR) compared to Blacks 

(RR = 2.6 (95% CI = 1.4, 3.9)) and Whites (RR = 2.0 (95% CI = 1.1, 3.0)). American 

Indians had higher 1-year mortality compared to Blacks and Whites (31% vs. 22% and 

21%, respectively), with RRs after confounder adjustment in comparison to Blacks (RR = 

1.4 (95% CI = 0.9, 1.8)) and Whites (RR = 1.4 (95% CI = 0.9, 1.9)) that were attenuated 

compared to the 30-day mortality comparisons. 

Conclusions. In this pooled analysis American Indians had lower stroke risk than 

Blacks and only slightly higher stroke risk than Whites after adjusting for confounders 

that included prevalent diabetes. Post-stroke mortality was substantially higher in 

American Indians than Blacks or Whites, especially within 30 days after the stroke event. 

American Indians are underrepresented in research on stroke incidence and post-stroke 

survival; the latter may be a particularly important focus for future studies to address 

stroke disparities in this population. 
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C.2 Introduction 

Approximately 800,000 strokes occur annually in the US.92,93 Compared to other 

racial groups, American Indians and Alaska Natives have among the highest burdens of 

many stroke risk factors, including hypertension, diabetes, obesity, and smoking.42,85,94 

Data collected in 2013 by the Behavioral Risk Factor Surveillance System showed higher 

self-reported prevalent stroke for American Indians and Alaska Natives ≥ 18 years old 

(4.6%) than for all other racial groups, including Blacks (4.0%) and Whites (2.5%).7 

Stroke mortality for American Indians is generally reported as lower than for other racial 

groups and Hispanics,95,96 but racial misclassification often leads to underestimating 

disease-specific mortality rates in American Indians and Alaska Natives.88,89,97,98 

Although American Indians and Alaska Natives are conventionally treated as a single 

group when reporting national health statistics, heterogeneity in stroke morbidity and 

mortality is evident within the US Native population.83 In spite of these statistics, 

American Indians are underrepresented in public health research on stroke incidence and 

mortality.52,99,100  

Information on stroke incidence in American Indians derives mainly from the 

Strong Heart Study (SHS), a population-based cohort study of cardiovascular disease in 

4549 American Indians from three geographic regions. Data from the SHS suggested that 

American Indians have higher stroke incidence than Whites and Blacks in other 

prospective studies,2 but no longitudinal cohorts exist that allow direct comparison to 

other racial groups. Population-based estimates of stroke disparities in American Indians 

have therefore been restricted to external comparisons between the SHS and other 

studies. Comparison of stroke incidence in this context is difficult, however, due to 

different durations of follow-up and different distributions of other risk factors across 

cohorts. 

The Atherosclerosis Risk in Communities Study (ARIC) is a large, population-

based prospective cohort study that recruited participants from four sites across the US.3 

ARIC enrolled both Blacks and Whites to allow direct comparison of stroke outcomes in 

these two groups.4,101-103 The SHS and ARIC share many similarities in study design and 
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timelines: baseline exams began in 1988 for SHS participants who were then 45-74 years 

old, and in 1987 for ARIC participants who were then 45-64 years old. In this analysis we 

pooled SHS and ARIC data to compare stroke morbidity and mortality in American 

Indians vs. Blacks and Whites. Our aims were to estimate racial differences in stroke 

incidence among people who were free of stroke at baseline, and in post-stroke survival 

among people who experienced stroke during follow-up. Our a priori hypotheses were 

that American Indians in the SHS would have higher stroke incidence and poorer survival 

than their Black and White counterparts in ARIC, even after accounting for age, sex, and 

other influential stroke risk factors. 

C.3 Methods 

Human Subjects Protections 

The Institutional Review Board at the University of Minnesota and publications 

committees for the SHS and ARIC approved these analyses. We obtained all necessary 

tribal approvals prior to submission of the manuscript for publication. 

Study Populations 

The SHS was launched in 1988, funded by the National Heart, Lung, and Blood 

Institute to study longitudinal risk factors for cardiovascular disease in American 

Indians.1 The SHS comprised 13 tribes in three regions: Southwest, Southern Plains, and 

the Northern Plains. All tribal members aged 45-74 years were invited to participate, with 

a total baseline enrollment of 4549 people. Data collection included detailed personal 

history and lifestyle questionnaires, a clinical exam, and laboratory measurements with 

blood samples. The SHS conducted follow-up and community surveillance to adjudicate 

cardiovascular disease events and mortality, most recently through December 31, 2008. 

The ARIC Study was funded by National Heart, Lung, and Blood Institute to 

investigate patterns and causes of atherosclerosis and cardiovascular disease in a cohort 

comprising Black and White adults who were 45-64 years old at the baseline exam 

(1987-1989).3 ARIC included four field sites (Washington County, MD; Forsyth County, 

NC; Jackson, MS; Minneapolis suburbs, MN). Each site used tailored probability-

sampling methods to recruit a population-representative cohort. The final cohort (n = 
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15,792) was 55% female and 27% Black.104 Semi-annual telephone interviews were 

conducted to assess hospitalizations, self-reported events, and overall health status. 

Adjudicated events and mortality are available for ARIC participants through December 

31, 2011.   

Stroke Ascertainment 

The SHS established a rigorous surveillance and adjudication process for stroke, 

with diagnostic criteria based on international standards.1,105 Mortality surveillance was 

conducted by examination of State Health Department death certificate data; Indian 

Health Service, autopsy, or coroner’s report records; and key informant interviews with 

physicians or family members. Morbidity surveillance was based on hospital chart 

abstraction and personal interview of participants. A nosologist reviewed putative events 

for ICD-9 criteria (codes 431-437). Two independent physicians reviewed potential fatal 

and nonfatal strokes, and adjudication by the full SHS Mortality Committee resolved 

disagreements. Two neurologists further reviewed stroke-related events for a final 

diagnosis (not a stroke; possible stroke; definite stroke) and confirmation of ICD-9 

classification. This surveillance protocol may have failed to capture some strokes, 

especially nonfatal events that occurred in cohort members who migrated out of the 

participating SHS communities. Nevertheless, the well-enumerated and relatively closed 

tribal populations in the SHS led to mortality and morbidity follow-up rates generally 

exceeding 99%.2,106,107  

The ARIC protocol for stroke adjudication was conducted in two phases.4 First, 

putative stroke-related hospitalizations or deaths were identified in annual telephone 

contacts with participants or next of kin, or by review of local hospital discharge records 

and death certificates. Hospitalizations were flagged for abstraction if records contained 

ICD-9 codes (430-438) or keywords relevant to cerebrovascular disease. Putative events 

were also identified based on reference to diagnostic magnetic resonance imaging, other 

cerebral imaging, or time spent in a neurovascular intensive care unit. Second, formal 

adjudication began with standardized abstraction of death and hospital records by a single 

trained nurse. Abstracted information was then classified by computer algorithm as 

ischemic stroke (thrombotic or lacunar infarcts, cardioembolic), hemorrhagic stroke 
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(subarachnoid or intracerebral hemorrhage), possible cryptogenic stroke, out-of-hospital 

fatal stroke, or non-stroke using National Stroke Survey criteria.108 Information was 

independently reviewed and classified by an ARIC neurologist or study physician, with 

final event status determined by computer-physician agreement. Disagreement was 

resolved by a second independent physician reviewer.  

Measures 

Cohort and Demographics  

Race (American Indian; Black; White) and cohort (SHS; ARIC) were each defined 

using categorical variables. Other demographic variables included baseline age, sex, and 

years of education.  

Stroke Incidence and Survival  

We classified each person according to his or her first incident stroke (none, any) 

and calculated a variable reflecting age at stroke, death, loss to follow-up, or 

administrative censoring. For each person who experienced incident stroke, we calculated 

binary indicators of 30-day and 1-year post-stroke survival.  

Covariates 

Covariates for the pooled analysis reflect stroke risk factors measured at the 

baseline exams that were assessed similarly enough or could be standardized post hoc to 

minimize study-specific differences across cohorts. Current alcohol consumption in the 

SHS was identified by positive endorsement of drinking at least 12 alcoholic beverages in 

one’s life, drinking alcohol in the past month, and usually drinking ≥ 1 beverage per 

week;109 current alcohol consumption in ARIC was identified by positive endorsement of 

presently drinking alcoholic beverages and of usually drinking ≥ 1 alcoholic beverage 

(wine, beer, or hard liquor) per week.110 Current smoking in the SHS was identified by 

positive endorsement of smoking at least 100 cigarettes in one’s life and smoking 

cigarettes at the time of the exam;109 current smoking in ARIC was identified by positive 

endorsement of smoking at least 400 cigarettes in one’s life and smoking cigarettes at the 

time of the exam.111 Body mass index (kg/m2) was measured during the clinical exams 

for both cohorts. We included blood lipids in the analysis (LDL, HDL) even though they 

have been inconsistently associated with incident stroke in the two cohorts.2,102,112-114 
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Hypertension was defined as systolic blood pressure ≥ 140 mmHg, diastolic blood 

pressure ≥ 90 mmHg, or use of antihypertensive medication. Borderline hypertension was 

defined as systolic or diastolic blood pressure = 120-139 or 80-89 mmHg, respectively, 

without prevalent hypertension. We calculated a variable indicating good blood pressure 

control (≤ 140/90 mmHg) measured at the baseline exam. The SHS defined prevalent 

diabetes as fasting glucose ≥ 126 mg/dL, 2-hour glucose tolerance test blood glucose ≥ 

200 mg/dL, previous physician diagnosis of diabetes, or use of insulin or hypoglycemic 

oral medication. Diabetes was defined similarly in ARIC except that the 2-hour glucose 

tolerance tests were not performed, therefore we standardized prevalent diabetes by 

removing cases in the SHS that were indicated only by glucose tolerance test results. 

Impaired glucose metabolism was defined as fasting glucose = 110-125 mg/dL without 

prevalent diabetes,2 and for all participants we created a variable indicating fasting 

glucose ≤ 125 mg/dL at the baseline exam. Both cohorts assessed prevalent coronary 

heart disease and myocardial infarction, and congestive heart failure at the baseline exam.  

Analysis  

Stroke Incidence 

To create the pooled data set we excluded ARIC participants with race other than 

Black or White (n = 48), participants with prevalent stroke in SHS (n = 36) or ARIC (n = 

286), and ARIC participants with unknown baseline stroke status (n = 362). We then 

excluded participants with missing data for any variable used in the analysis (402 

American Indians, 399 Blacks, 519 Whites). We estimated race- and sex-specific stroke 

rates in two ways. First, we estimated stratified rates per 10,000 person-years, with years 

since baseline as the time scale and with baseline age standardized to the 1990 US 

Census as was done for the previous analysis in the SHS.2 Second, we estimated stratified 

rates per 10,000 person years for successive attained age thresholds (≥ 45, ≥ 55, ≥ 65, and 

≥ 75 years old). Cox regression was used to compare stroke hazards with attained age as 

the time scale, so that each participant entered the model at his or her baseline age. We 

truncated attained age at 90 years old, which was the maximum attained age in ARIC. 

Only 44 SHS participants were older than 90 as of the most recent adjudication ending 

December 31, 2008. Cox regression models were specified in three ways: 1) unadjusted, 
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2) adjusting for sex and birth year, and 3) additionally adjusting for lifestyle and health 

factors measured at baseline (education, alcohol consumption, smoking, body mass 

index, hypertension, diabetes, and cardiovascular disease). Because study site was 

colinear with race for all SHS and most ARIC locations, this variable was not included as 

a covariate in the pooled analysis. Models adjusting for health factors treated 

hypertension as a 3-category ordinal variable and included an indicator of poor blood 

pressure control. Diabetes was similarly modeled as an ordinal variable including an 

indicator of high fasting glucose. We tested for effect measure modification between race 

and sex as well as race and birth year. Analyses were stratified if effect measure 

modification was present. Results are presented as point estimates with 95% confidence 

intervals, and we tested the proportional hazards assumption for all models.  

Post-Stroke Survival 

This analysis was restricted to the subset of participants who experienced incident 

stroke during follow-up. We used logistic regression to estimate racial differences in 30-

day and 1-year post-stroke mortality. Similar to the analysis of incident stroke, we 

estimated three specifications: 1) unadjusted; 2) adjusted for sex, birth year, and age at 

stroke event; and 3) additionally adjusted for lifestyle factors and prevalent disease. We 

tested for effect measure modification between race and sex, and between race and birth 

year. We used marginal standardization to report risk differences (RD) and risk ratios 

(RR) for American Indians compared to Blacks and Whites.115 We used Stata version 

13.1 (StataCorp, College Station, TX) for all analyses. 

C.4 Results 

Table C.1 gives descriptive statistics for the 18,289 stroke-free participants of the 

SHS and ARIC who were included in the analysis. American Indians in the SHS had far 

lower percentages of people with post-secondary education than Blacks and Whites in 

ARIC, and higher percentages with self-reported current smoking. American Indians and 

Whites had lower prevalence of hypertension than Blacks, but American Indians had the 

highest prevalence of borderline hypertension. American Indians also had much higher 

percentage of people with prevalent diabetes.  
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Although American Indians in the SHS had lower prevalence of hypertension than 

Blacks in ARIC, among people with hypertension American Indians had higher mean 

systolic blood pressure than both Blacks and Whites (Table C.2, top). Hypertensive 

American Indians were also less likely than their Black and White counterparts to be 

medicated and in good control at the baseline study exam. Among participants with 

diabetes, American Indians had higher mean fasting glucose and lower percentages of 

people with fasting glucose ≤ 126 mg/dL than their Black and White counterparts in 

ARIC  (Table C.2, bottom).  

American Indians had fewer mean years elapsed between the baseline exam and 

stroke onset than Blacks and Whites (Table C.3). American Indians and Blacks had 

similar mean age at stroke onset and both had younger mean age than Whites; however, 

American Indians had younger mean age than Blacks when SHS data were restricted to 

the baseline ages represented in ARIC. When baseline age data were standardized to the 

1990 US Census and with years since baseline exam as the time scale, American Indians 

had lower stroke rates than Blacks and higher rates than Whites for both women and men. 

Using attained age as the time scale, stroke rates were generally lower for American 

Indian women and men compared to Blacks, though differences were smaller among 

people with older attained age. Rates for both American Indians and Blacks were 

consistently higher than for Whites regardless of attained age.  

In the Cox regression analysis for the total sample (Table C.4), American Indians 

had similar stroke risk compared to Blacks (unadjusted HR = 0.9 (95% CI = 0.8, 1.1)) 

and higher stroke risk than Whites (unadjusted HR = 2.0 (95% CI = 1.8, 2.3)). Covariate 

adjustment resulted in larger magnitude of effect estimates for the former comparison and 

smaller magnitude for the latter. Models that were unadjusted or adjusted only for sex 

and birth year showed violation of proportional hazards between American Indians and 

Whites, and both covariate-adjusted models indicated significant interaction between race 

and birth year (p < 0.001). We estimated all subsequent stroke incidence models 

separately by birth year tertile (1914-1930; 1931-1937; and 1938-1947) and verified no 

residual interactions or violations of the proportional hazards assumption. In the stratified 

models American Indians had lower stroke risk than Blacks before and after covariate 
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adjustment in all three birth cohorts, with highest magnitude of difference in the youngest 

birth cohort after accounting for prevalent hypertension and diabetes. American Indians 

had higher stroke risk compared to Whites in all unadjusted models, with differences of 

larger magnitudes in younger birth cohorts. HRs attenuated dramatically after full 

covariate adjustment, however, with nearly equal incidence when accounting for 

prevalent hypertension and diabetes regardless of birth year. HRs for covariates are 

shown in the Appendix. 

Univariate confounder adjustment (results not shown) revealed that the change in 

HRs after adjusting for confounding by lifestyle and health factors was almost entirely 

driven by the higher prevalence of diabetes in American Indians than in Blacks and 

Whites, though the impact for comparisons to Blacks was slightly offset by the higher 

prevalence of hypertension in the latter. Diabetes prevalence declined from oldest to 

youngest birth cohorts for all three racial groups (data not shown), but the relative 

prevalence increased across tertiles for American Indians vs. both Blacks (prevalence 

ratios = 2.0, 2.4, and 2.9 from oldest to youngest tertile) and Whites (prevalence ratios = 

4.1, 6.3, and 7.4 from oldest to youngest tertile).  

Among the 1339 people who experienced incident stroke during follow-up, 

cumulative mortality and mean age at death in American Indians were similar to Blacks 

and higher than Whites (Table C.5). Compared to both Blacks and Whites, however, 

American Indians had fewer mean years from stroke to death as well as higher 30-day 

and 1-year mortality. In fact, 30-day mortality in American Indians was strikingly similar 

to 1-year mortality estimates in Blacks and Whites. Mortality RDs persisted after 

covariate adjustment (Table C.6). Differences attenuated for 1-year mortality 

comparisons, although American Indians continued to show higher risk on the absolute 

and multiplicative scales. Covariate adjustment had little impact on comparisons for 1-

year mortality. 

C.5 Discussion 

We found that American Indians in the SHS had slightly lower stroke risk than 

Blacks, and higher risk than Whites in ARIC before adjusting for lifestyle and health 
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covariates. When stratified by birth year tertile, HRs for American Indians vs. Whites 

increased substantially from the oldest to youngest birth year tertiles. This finding is 

congruent with research showing that Whites benefitted more than other racial groups 

from recent declines in stroke morbidity and mortality.95 Among people who experienced 

incident stroke, American Indians in the SHS had higher 30-day mortality than Blacks or 

Whites in ARIC. Differences were less striking for 1-year mortality, although American 

Indians still showed higher risk than Blacks or Whites.  

In the only previous publication on incident stroke in American Indians using SHS 

data through 2004, the authors reported rates for women (653 per 100,000 person years) 

and men (707 per 100,000 person years) that were higher than rates for Blacks and 

Whites in other studies.2 In our analysis, age-standardized rates for American Indian men 

and women using stroke events through 2008 were lower than in the previous 

publication, but were still higher than rates for Blacks and Whites (288 and 179 per 

100,000 person-years, respectively) used for external comparisons by the previous 

study’s authors.87 Rates from both analyses of SHS data were also higher than previously 

reported for Blacks and Whites in ARIC,4 but the latter were not age-standardized and 

external comparisons are problematic given the differences in baseline ages between the 

two cohorts. By specifying attained age as the time scale for the Cox regression analysis 

of incident stroke, we attempted to minimize concerns of bias from the older baseline age 

range for American Indians in the SHS. Our analysis also expanded previous 

comparisons to include direct estimation of HRs and standardization of definitions for 

key risk factors such as diabetes and hypertension.  

Not surprisingly, research suggests that racial disparities in stroke incidence are 

linked to disproportionate burdens of stroke risk factors, though most studies have 

focused exclusively on Blacks and very few publications include American Indians or 

Alaska Natives.59,61,62,116,117 After adjusting for covariates including diabetes and 

hypertension, HRs were greatly attenuated for comparisons between American Indians 

and Whites but were magnified for comparisons between American Indians and Blacks. 

Also notable was the larger impact of covariate adjustment in younger birth cohorts for 

comparisons to both Blacks and Whites, patterns which mirrored the steep increase in 
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diabetes prevalence ratios across birth year tertiles—especially for comparisons between 

American Indians and Whites. To some extent, then, trends we observed across birth 

cohorts may reflect the emerging diabetes epidemic among American Indians during the 

20th Century.   

Declining stroke incidence since the 1960s also coincided with declining mortality, 

leading to stroke being downgraded from 3rd to 4th most common cause of death in the 

US.47 In recent years the decline in stroke mortality has plateaued,47,48 and as with stroke 

incidence racial and ethnic minorities may have not experienced the same improvements 

as Whites. In our analysis 30-day mortality in American Indians resembled 1-year 

estimates in Blacks and Whites, clearly showing that American Indians in the SHS who 

experienced stroke tended to die much sooner than their Black and White counterparts in 

ARIC. This striking disparity could reflect barriers to timely access of acute healthcare 

services in the primarily rural, reservation communities of the SHS; greater stroke 

severity or poorer underlying health status in American Indian stroke patients; disparities 

in healthcare quality or rehabilitation services; or some combination of these and other 

explanations. Among people who survived at least 30 days, however, the difference in 

death rates was markedly lower as shown by the smaller racial differences in 1-year 

mortality.  

The inferential implications of adjusting for risk factors depend on one’s view of 

race as an exposure for disease.118 Two opposing perspectives have historically been 

pitted against each other with strong proponents and detractors on both sides.119 In one, 

race is an innate biological construct that directly acts to cause disease, such as genetic 

differences in response to certain medications. In the other, race is an externally imposed 

label that affects other people’s decisions or actions, such as physicians providing 

differential treatment to patients based on race. Although some debate persists,120-125 race 

as a biological construct has been debunked in the genetic, clinical, and epidemiologic 

literature.126-131 If race is viewed as an innate cause of stroke, adjusting for other health 

conditions can be viewed as conditioning on intermediate factors.132 If race is viewed as a 

socially invented caste system, then adjusting for other health conditions can be viewed 

as appropriately controlling for confounding due to discrimination directed at certain 
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racial groups that in itself causes higher burdens of stroke risk factors.133 In either 

scenario, adjusting for mediating factors requires assumptions of no uncontrolled 

confounding between the mediators and the outcome. Some epidemiologists have 

recently proposed a causal model within which racial “effects” can be identified by 

articulating interventions on factors such as socioeconomic status that overlap with 

race,134 or an etiologic model in which a temporal cascade of causes and effects could 

bring about associations between two factors (race and stroke) that may not by 

themselves satisfy conventional criteria for causal inference.135 The latter especially 

facilitates placing epidemiologic study of racial disparities in a social justice context.136 

In this analysis, we opted to present results both with and without covariate adjustment. 

The raw data are useful for demonstrating disparities in the lived experience of American 

Indians, while covariate adjustment may help elucidate targets for intervention to reduce 

disproportionate burdens of stroke morbidity and mortality, such as diabetes prevention 

or improved access to emergency healthcare, even while acknowledging unresolved 

questions about exact causal relationships. 

C.6 Limitations 

This analysis has several limitations. First, because American Indian race is colinear 

with the SHS we cannot know with certainty the extent to which comparisons to Blacks 

and Whites in ARIC are influenced by differences in study design. By restricting the 

pooled analysis to the SHS and ARIC cohorts, however, we attempted to mitigate this 

limitation by combining data sets with similar designs, timelines, and ages of 

participants. Although the SHS enrolled older participants (45-74 years old at baseline) 

than ARIC (45-64 years old at baseline), setting attained age as the time scale allowed 

comparisons between all participants who reached any given age during follow-up. 

Nevertheless, differences in stroke ascertainment cannot be ruled out as a partial 

explanation for differences in stroke outcomes between SHS and ARIC participants, 

especially since ARIC adjudication did not include out-of-hospital fatal strokes. Second, 

it is unclear to what extent our results can generalize to broader statements about stroke 

incidence or post-stroke mortality in the larger populations of American Indians, Blacks, 
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and Whites across the US. Nearly all of the Black participants in ARIC were enrolled at 

the Mississipi (89%) or North Carolina (10%) field sites; both states are located in the so-

called “stroke belt” of the US,21 and we cannot evaluate stroke incidence in Blacks from 

outside this region. Similarly, our study should not be interpreted as reflecting stroke 

disparities in Alaska Natives, although American Indians and Alaska Natives are 

frequently grouped together in public health research. Third, as described in the previous 

section the covariate-adjusted analysis must be interpreted as potentially adjusting for 

intermediates between race and stroke incidence or post-stroke mortality. Fourth and 

relatedly, the inferential analysis relies on untestable assumptions of no uncontrolled 

confounding; no bias from sparse data in some combinations of covariates; correct 

specification of the Cox and logistic regression models; and consistency of exposure, 

meaning that any given race label confers the same health effects on everyone to whom it 

is applied. Under the sociocultural cause model of racial disparities this assumption is 

unlikely to be met. Instead, the meaning of race and its impact on health likely varies 

across culture, geography, and time. In this paper, racial disparities must be interpreted as 

reflecting overall associations while acknowledging the likelihood that the population-

level differences may not apply equally to all individuals.  

C.7 Summary and Conclusion 

American Indians in the SHS had lower stroke risk than Blacks and higher risk than 

Whites in ARIC. After adjusting for confounders including hypertension and diabetes, 

differences were strengthened for comparisons to Blacks and attenuated for comparisons 

to Whites. The strongest impact of covariate adjustment was observed in the youngest 

birth years tertile. American Indians who experienced stroke had at least 2-fold higher 

risk of 30-day post-stroke morality than both Blacks and Whites, with elevated risks of 

smaller magnitude for 1-year post-stroke mortality.  

 American Indians and Alaska Natives comprise 1.7% of the US population, or 5.2 

million people.137 American Indians have higher stroke prevalence than any other racial 

or ethnic group;51 die from stroke at younger ages than Whites;90 and have among the 

highest burdens of stroke risk factors.42,83 Nevertheless, multiple reports have concluded 
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that Native people are underrepresented in stroke research.52,99,100,138 Our analysis 

suggests that the diabetes epidemic in American Indians may be a strong factor in the 

high stroke rates among SHS participants, and that targeting diabetes prevention and 

treatment is critical to reducing stroke disparities in this population. Our analysis also 

highlights profound disparities in post-stroke survival, especially in the month 

immediately following the event. Further epidemiologic and experimental studies are 

needed to understand and intervene on the causes for earlier post-stroke death risk in 

American Indians. 
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Table C.1. Baseline characteristics by age, study, and race among cohort participants who were 

stroke-free at baseline.  

 
SHS ARIC 

 American 

Indian 

Black White 

 (n = 4111) (n = 3765) (n = 10,413) 

Age:    

45-54 50% 58% 51% 

55-64 33% 41% 48% 

65-74 18% 1%* 1%* 

Female 60% 61% 53% 

Education:    

0-11 47% 41% 17% 

12-16 50% 28% 46% 

17+ 3% 31% 38% 

Current alcohol consumption 42% 32% 65% 

Current smoking 34% 30% 25% 

Body mass index, kg/m2 31 (6) 30 (6) 27 (5) 

Waist:Hip ratio 0.95 (0.07) 0.92 (0.08) 0.93 (0.08) 

Blood lipids:    

LDL, mg/dL 117 (34) 137 (43) 137 (38) 

HDL, mg/dL 46 (13) 55 (18) 51 (17) 

Congestive heart failure 3% 7% 4% 

Coronary heart disease (includes myocardial 

infarction) 

3% 4% 5% 

Systolic blood pressure, mmHg 127 (19) 129 (21) 118 (17) 

Diastolic blood pressure, mmHg 77 (10) 80 (12) 72 (10) 

Hypertension:    

None 29% 21% 45% 

Borderline 32% 22% 23% 

Hypertensive 39% 57% 32% 

Fasting glucose, mg/dL 148 (73) 117 (55) 104 (28) 

Diabetes:    

None 43% 69% 81% 

Impaired fasting glucose 16% 13% 11% 

Diabetic 41% 18% 8% 

SHS = Strong Heart Study; ARIC = Atherosclerosis Risk in Communities Study 
* 97 ARIC participants were 65-66 years old at baseline 
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Table C.2. Blood pressure measured at the baseline exam and antihypertensive medication 

among hypertensive cohort members (top), and fasting glucose among diabetic cohort members 

(bottom). 

 American Indian Black White 

People with hypertension (n = 1583) (n = 2155) (n = 3298) 

Blood pressure at exam:    

Systolic, mean mmHg (SD) 142 (20) 137 (23) 130 (20) 

Diastolic, mean mmHg (SD) 82 (11) 84 (13) 76 (11) 

Medication and control:**    

No medication 40% 25% 22% 

Medicated, poor control 27% 28% 17% 

Medicated, good control 33% 47% 61% 

People with diabetes (n = 1703) (n = 680) (n = 811) 

Fasting glucose at exam, mean mg/dL (SD) 211 (76) 200 (87) 172 (66) 

Fasting glucose ≤ 125 mg/dL 3% 10% 11% 
** Medication = antihypertensive drugs; good control = blood pressure < 140/90 mmHg at 

baseline exam; poor control = blood pressure ≥ 140/90 at baseline exam 
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Table C.3. Descriptive statistics for incident stroke by race for American Indians in the Strong 

Heart Study and Blacks and Whites in the Atherosclerosis Risk in Communities Study 

 American Indians Blacks Whites 

 Women Men Women Men Women Men 

 (n = 2447) (n = 1664) (n = 2309) (n = 1456) (n = 5532) (n = 4881) 

Number of strokes 189 121 243 173 280 333 

Age at stroke*, mean 

(SD) 
69 (9) 67 (9) 68 (8) 66 (8) 71 (8) 70 (7) 

Years from baseline to 

stroke, mean (SD) 
10 (5) 8 (5) 12 (6) 11 (6) 14 (7) 13 (6) 

Stroke incidence** (95% CI)  

Age-standardized† 
58 (43, 88) 

60 (41, 

102) 

61 (45, 

73) 

76 (50, 

92) 

30 (20, 

31) 

41 (27, 

41) 

Attained age‡       

≥ 45 years old 
30 (21, 42) 

23 (15, 

37) 

36 (28, 

47) 

52 (39, 

69) 
10 (7, 14) 

16 (12, 

22) 

≥ 55 years old 
48 (39, 59) 

42 (32, 

56) 

54 (47, 

63) 

70 (58, 

84) 

22 (19, 

25) 

30 (26, 

34) 

≥ 65 years old 
72 (59, 88) 

77 (60, 

100) 

75 (64, 

88) 

85 (70, 

104) 

38 (33, 

43) 

52 (46, 

59) 

≥ 75 years old 105 (79, 

139) 

113 (76, 

169) 

107 (81, 

142) 

99 (66, 

148) 

65 (53, 

79) 

71 (58, 

87) 
* Mean age for American Indians with same baseline ages (45-64 years old) as Blacks and 

Whites = 65 (7) for both women and men 
** Per 10,000 person-years 
† Using 1990 US Census; time scale = years elapsed since baseline exam 
‡ Time scale = attained age up to 90 years old 
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Table C.4. Hazard ratios from Cox regression of incident stroke by race and birth cohort 

tertile. 

 American Indians vs. 

Blacks 

 American Indians vs. 

Whites 

 Hazard Ratio (95% CI)  Hazard Ratio (95% CI) 

Total Sample    

Unadjusted 0.92 (0.78, 1.06)  2.01 (1.76, 2.31) 

Adjusted for sex and birth year 0.88 (0.76, 1.02)  2.01 (1.75, 2.31) 

All covariates* 0.75 (0.64, 0.88)  1.15 (0.98, 1.35) 

Stratified by Birth Cohort Tertile    

Birth years 1914-1930    

Unadjusted 0.86 (0.69, 1.08)  1.60 (1.32, 1.95) 

Adjusted for sex and birth year 0.84 (0.66, 1.07)  1.60 (1.30, 1.98) 

All covariates* 0.79 (0.61, 1.01)  1.14 (0.90, 1.45) 

Birth years 1931-1937    

Unadjusted 0.89 (0.68, 1.18)  2.15 (1.65, 2.80) 

Adjusted for sex and birth year 0.89 (0.67, 1.17)  2.22 (1.70, 2.90) 

All covariates* 0.73 (0.54, 0.98)  1.15 (0.85, 1.55) 

Birth years 1938-1947    

Unadjusted 0.90 (0.68, 1.20)  2.66 (1.97, 3.60) 

Adjusted for sex and birth year  0.94 (0.70, 1.26)  2.83 (2.08, 3.86) 

All covariates* 0.60 (0.44, 0.84)  1.08 (0.76, 1.53) 
* Adjusted for sex, birth year, education, alcohol consumption, current smoking, body mass 

index, and prevalent cardiovascular disease, hypertension, diabetes. 
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Table C.5. Post-stroke mortality by race. 

 American 

Indian 
 Black  White 

 (n = 310)  (n = 416)  (n = 613) 

Cumulative mortality 63%  62%  54% 

Age at death, mean (SD) 70 (9)  71 (8)  75 (7) 

Years to death, mean (SD) 2.9 (4)  3.8 (4)  4.1 (5) 

30-day mortality 21%  9%  12% 

1-year mortality 31%  22%  21% 

 

 

 

Table C.6. Racial differences in 30-day and 1-year mortality after primary stroke. 

 Unadjusted  Fully adjusted* 

 RD (95% 

CI) 

RR (95% 

CI) 
 

RD (95% 

CI) 

RR (95% 

CI) 

30-day mortality      

American Indians vs. 

Blacks 
11 (6, 17) 2.2 (1.4, 3.0)  14 (6, 23) 2.6 (1.4, 3.9) 

American Indians vs. 

Whites 
9 (4, 14) 1.8  (1.2, 2.3)  12 (3, 21) 2.0 (1.1, 3.0) 

1-year mortality       

American Indians vs. 

Blacks 
9 (3, 16) 1.4 (1.1, 1.8)  8 (-1, 17) 1.4 (0.9, 1.8) 

American Indians vs. 

Whites 
10 (4, 16) 1.5 (1.1, 1.8)  8 (-1, 17) 1.4 (0.9, 1.9)  

RD = Risk difference; RR = Risk ratio; CI = confidence interval 
* Adjusted for sex, age at stroke event, birth year, education, alcohol consumption, smoking, body 

mass index, and prevalent cardiovascular disease, hypertension, and diabetes. 
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D. Manuscript 2: Inverse probability weighting for selection bias tailored to 

inclusion criteria in the target population: covert vascular brain injury among 

American Indians in the Strong Heart Stroke Study 

 

Clemma J. Muller, Alvaro Alonso, David Vock, Jean Forster, Astrid Suchy-Dicey, 

Richard F. MacLehose 

 

D.1 Overview 

Background and Purpose. Covert vascular brain injury (VBI) is a risk factor for 

stroke and cognitive dysfunction. The Strong Heart Stroke Study used structural cranial 

magnetic resonance imaging to assess VBI and its risk factors in 1033 surviving members 

of the Strong Heart Study, a longitudinal cohort study of cardiovascular disease in 

American Indians. All participants were ≥ 62 years old, and data may be affected by 

selection bias if exposures and outcomes are both correlated with differential survival 

over time. Marginal structural models with inverse probability weighting (IPW) are 

commonly used to adjust for selection bias, but may inadvertently introduce bias when 

weights are correlated with presence of inclusion criteria that require excluding a 

subgroup from the analysis. In this case, evaluating covert VBI requires excluding 

participants with clinical stroke. We describe a modification of traditional IPW methods 

that tailors weights to account for correlation with inclusion criteria, with analysis of 

hypertension and covert VBI (white matter hyperintensities grade and volume) presented 

as an example.  

Methods. We used logistic regression to estimate the association between prevalent 

hypertension and a binary indicator of VBI (white matter hyperintensity grade ≥ 3), and 

linear regression to estimate the same association for white matter hyperintensity volume 

as a proportion of total intracranial volume (ratio multiplied by 1000 to simplify 

presentation of results). Estimates reflected cross-sectional associations and longitudinal 

trends in hypertension from previous Strong Heart Study visits, with IPW to adjust for 

confounding and selection bias. Weights were stabilized to reflect the distribution of 
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prevalent hypertension in the target population. In addition, we tailored weights to 

account for each participant’s probability of meeting the stroke-free inclusion criterion.  

Results. After covariate adjustment the cross-sectional prevalence difference was 

7.9% (95% CI = -2, 17) for the unweighted analysis, and 8.9% (95% CI = 0, 18) using 

IPW for selection bias with stabilized weights and for weights tailored to probability of 

being stroke-free. Estimates for the mean difference in white matter hyperintensity 

volume were 0.8 (95% CI = -0.4, 2.0) for the unweighted analysis; 0.9 (95% CI = -0.2, 

2.1) with stabilized selection weights; and 0.9 (95% CI = -0.3, 2.1) with selection weights 

tailored to the stroke-free target population. In the analysis using longitudinal 

hypertension patterns, being hypertensive at all previous study visits was positively 

associated with covert VBI, but there was no apparent impact of using IPW to adjust for 

selection bias.  

Conclusions. Among elderly American Indians in the SHSS, hypertension was 

positively associated with covert VBI as measured by abnormal WMH grade and higher 

white matter/intracranial volume ratio. By tailoring selection weights proportional to 

stroke risk in the cohort, our point estimates relate to a target population aligned with 

SHSS inclusion criteria. 
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D.2 Introduction 

Covert vascular brain injury (VBI) is pathology in the brain characterized by white 

matter hyperintensities (WMH), asymptomatic hemorrhages or infarcts, and cerebral 

tissue atrophy in the absence of overt clinical symptoms.68 Covert VBI is typically 

diagnosed via magnetic resonance imaging, although it is increasingly recognized as 

comorbid with detectable changes in cognition, physical function, and mood.73,139-141 

Covert VBI predicts high risk of future stroke,142,143 and is understudied in most racial 

and ethnic minority groups. American Indians are particularly underrepresented in 

magnetic resonance imaging studies, despite notable disparities including higher stroke 

incidence and prevalence, younger age at onset and death from stroke, and higher 

burdens of VBI risk factors such as hypertension and diabetes compared to the general 

US population.2,51,83,94,144-148  

The Strong Heart Stroke Study (SHSS) was funded to evaluate covert VBI and its 

comorbidities in American Indians,149 with exams conducted from 2010-2013. The SHSS 

examined 1033 surviving members of the Strong Heart Study, a longitudinal population-

based cohort study of American Indians from three geographic regions who were 45-74 

years old when baseline exams were conducted in 1988-1990.1 The SHSS goals include 

identifying correlates of prevalent covert VBI using cross-sectional data collected at 

SHSS exams and longitudinal data previously collected by the Strong Heart Study. 

Because the SHSS comprises elderly long-term survivors of the original cohort who were 

healthy enough to undergo magnetic resonance imaging, study results could be affected 

by selection bias.150 Specifically, if covert VBI and a potential risk factor are each 

associated with lower probability of survival or participation in the SHSS, the observed 

point estimate could be biased towards showing a null or even a negative association 

between the two conditions.5  

Marginal structural models with inverse probability weighting (IPW) were 

originally used by epidemiologists to adjust for time-varying confounding in longitudinal 

data,151,152 but are commonly applied to adjust for selection bias.153-155 IPW functions by 

weighting observations based on the inverse of their predicted probabilities of being in 

the study to generate a data set in which there is no statistical association between 
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exposure and selection. The default target population usually reflects the covariate 

distribution in the total study population, but weights can be tailored for inference to the 

exposed, unexposed, or other specialized target populations.156 When studies involve 

inclusion criteria that may themselves correlate with prediction equations for constructing 

weights, such as SHSS analyses that require absence of prevalent clinical stroke, special 

care should be taken to ensure appropriate statistical inference. We constructed weights 

for IPW models to adjust for selection bias in the SHSS and tailored weights to a stroke-

free inclusion criterion. We demonstrate the method for evaluating the association 

between hypertension and covert VBI as manifested by WMH. Our aims were to 1) 

evaluate the cross-sectional association between hypertension and covert VBI measured 

by the SHSS, and 2) evaluate the association for longitudinal patterns of hypertension 

measured from 1988-2013 by the Strong Heart Study and the SHSS. Our second aim also 

included use of IPW to adjust for time-varying confounding between hypertension and 

other VBI risk factors.  

D.3 Methods 

Human Subjects Protections 

The Institutional Review Board at the University of Minnesota and publications 

committees for the Strong Heart Study and SHSS approved these analyses. We obtained 

all necessary tribal approvals prior to submission of the manuscript for publication. 

Study Population  

The Strong Heart Study was launched in 1988, funded by the National Heart, Lung, 

and Blood Institute to study longitudinal risk factors for cardiovascular disease in 

American Indians.1 Investigators partnered with 13 tribes in three geographic regions: 

Southwest, Southern Plains, and Northern Plains. All tribal members aged 45-74 years 

were invited to participate, and 4549 people were ultimately enrolled. The Strong Heart 

Study collected data in three phases over 12 years: 1988-1991 (baseline), 1993-1995, and 

1998-2000. Study visits included extensive clinical exams with electrocardiogram 

assessment of cardiac function, and laboratory analysis of blood and urine samples. At 
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each phase, follow-up was conducted to track cardiovascular disease events and 

mortality.  

Also funded by the National Heart, Lung, and Blood Institute, the SHSS was 

launched in 2010 to examine covert VBI and its correlates in all surviving members of 

the Strong Heart Study cohort.149 The SHSS was a cross-sectional study, although 

participants were drawn from the longitudinal cohort and previously collected data could 

be included in analyses of prevalent covert VBI at the SHSS exam. Exclusion criteria 

were prior surgery for cerebral aneurysm; implanted cardiac pacemaker, defibrillator, or 

artificial heart; contraindicating metal prostheses; internal electrical device such as 

cochlear implant; history of employment as a metal worker; weight exceeding 350 

pounds; and physical or cognitive inability to complete study procedures. Of the 1664 

Strong Heart Study members who were still alive at the start of SHSS recruitment, 201 

were ineligible, 261 died or were otherwise incapacitated before they could be recruited, 

and 169 chose not to participate. Data collection on the remaining 1033 participants was 

completed in December, 2013. SHSS clinic visits comprised an extensive physical exam 

and personal interview, fasting blood and urine collection, neurocognitive and 

neuropsychological testing, physical performance assessment, and structural cranial 

magnetic resonance imaging. Of the 1033 enrolled participants, 998 completed all 

components of the study visit. For SHSS analyses focused on covert VBI in the absence 

of clinical events, an additional inclusion criterion requires analyzing data only for the 

934 participants who did not have prevalent stroke. 

Measures  

Demographic data collected at the Strong Heart Study and SHSS exams included 

field site (Southwest, Southern Plains, Northern Plains), date of exam, age, sex, 

education, marital status, percentage of one’s life lived on a federal reservation, and self-

rated fluency in one’s Native language (fluent, speaks some but not fluent, none). 

Cigarette smoking was assessed by the following questions: “During your lifetime have 

you smoked 100 cigarettes or more total?”, “Do you smoke cigarettes now?”, and “On 

the average, how many cigarettes do/did you usually smoke per day?” Alcohol 

consumption was similarly assessed: “Have you ever consumed alcoholic beverages?”, 
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“If yes, when was your last drink?”, “How many alcoholic drinks do you have in a typical 

week?” and “How many days in a typical month do you have at least one drink?” Based 

on answers to these questions, smoking and alcohol use were classified as current, 

former, or never. Body mass index (kg/m2) was calculated based on measurements taken 

at the exam; obesity was defined as body mass index ≥ 30 kg/m2. High and low density 

lipoproteins (mg/dL) were measured after overnight fasting. Systolic and diastolic blood 

pressure (mmHg) reflected the average of the second and third measurements taken 

during the clinic exam. Urine samples were assayed to quantify the albumin-creatine ratio 

and categorized to indicate microalbuminuria (30-299 mg/g) or macroalbuminuria (≥ 300 

mg/g). Prevalent diabetes was defined as fasting plasma glucose ≥ 126 mg/dL, 2-hour 

glucose challenge plasma glucose ≥ 200 mg/dL (this criterion was not assessed by the 

SHSS), or use of insulin or hypoglycemic oral medication. Prevalent transient ischemic 

attack was assessed by self-report using a form developed by the Atherosclerosis Risk in 

Communities Study.157 Formal adjudication protocols were used to identify prevalent and 

incident stroke and cardiovascular disease (myocardial infarction, coronary heart disease, 

congestive heart failure).1,105 Prevalent atherosclerosis was assessed by carotid ultrasound 

during the Strong Heart Study phase 3 exams.158 

At each Strong Heart Study and SHSS exam, continuous blood pressure measures 

were combined with medical history information to create binary indicators of prevalent 

hypertension based on systolic blood pressure ≥ 140 mmHg, diastolic blood pressure ≥ 90 

mmHg, or use of antihypertensive medication (ACE inhibitor, alpha 2 agonist, 

angiotensin II receptor agonist, beta blocker, calcium channel blocker, vasodilator, 

thiazide diuretic, or dihydropyradine). For the cross-sectional analysis, the exposure of 

interest was prevalent hypertension at the SHSS exam. For the longitudinal analysis, we 

created a multi-category variable for each combination of prevalent hypertension status 

across baseline, 10-year follow-up, and the SHSS (eight categories total). 

In the SHSS, cranial magnetic resonance imaging scans were conducted using 

General Electric 1.5T Signa scanners at the Southwest and Southern Plains sites, and a 

Siemens 1.5T Symphony scanner in the Northern Plains.149 For each participant, 

investigators obtained six series of images: a sagittal T1-weighted localizer, coregistered 
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5mm axial T1, T2, and T2* (susceptibility)-weighted images in the anterior 

commissure/posterior commissure plane, 3mm axial FLAIR images, and 1.5mm sagittal 

T1-weighted volumetric gradient echo images. Scans were read at the University of 

Washington by two trained neuroradiologists using established scoring criteria.78,159 

Volumetric measures included gray matter (total brain, intracranial, left and right 

hippocampus) and white matter as a proportion of total intracranial volume. For this 

analysis we multiplied the white matter volume/intracranial volume ratio by 1000 to 

simplify presentation of results. For WMH, grade was quantified on a 10-point scale by 

SHSS neuroradiologists, with covert VBI defined as abnormal WMH grade ≥ 3. 

Missing Data 

Even small amounts of missing data in variables used to estimate inverse 

probability weights can lead to large numbers of observations dropped from a complete-

case analysis, especially when predicted probabilities are measured for two selection 

mechanisms (death and non-participation) over multiple phases of data collection. To 

preserve sample size, we used multiple imputation by chained equations with 100 

repetitions to impute missing values for all variables used in the IPW analysis.160 Missing 

values for variables from the 10-year follow-up exam were only imputed for people who 

participated in the 10-year follow-up, and missing values for the SHSS exam were only 

imputed for SHSS participants. We used all 100 imputed data sets to estimate predicted 

probabilities for the IPW analysis, with each person’s average value retained to calculate 

weights in the final data set. For descriptive statistics of individual variables in the SHSS 

we used the mean values of each variable across all 100 imputed data sets, rounded to the 

nearest integer for ordered categorical factors (education and albuminuria).  

Inverse Probability Weighting for Confounding 

As outlined in a recent overview,161 IPW for control of time-varying confounders is 

accomplished in four steps: 1) for each time point at which data were collected, fit a 

model to predict exposure given current and past covariates; 2) for each time point, use 

the model to estimate each individual’s predicted probability of experiencing his or her 

observed exposure status; 3) for each individual, create a weight that is proportional to 
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the inverse of the product of his or her predicted probabilities from step 2; and 4) use the 

product of estimates from step 3 as probability weights in the inferential analysis. Step 4 

creates a pseudopopulation in which there is no association between confounders and 

exposure. IPW models can become unstable when very large weights arise from very low 

predicted probabilities, so weights are typically stabilized by replacing the numerator 

with the predicted probability of each individual having their observed exposure status 

conditioned on previous exposure. Final effect measures estimate the overall difference in 

the outcome that would be observed if the entire target population were exposed 

compared to if the entire target population were unexposed. In its simplest application, 

IPW can be used to control for confounding at a single time point using cross-sectional 

data.162 

We used IPW to adjust for confounding in the analysis of hypertension and covert 

VBI in the SHSS. For the cross-sectional analysis we estimated unstabilized weights as 

the inverse of the predicted probability of each SHSS participant’s observed hypertension 

status, conditioned on potential confounders (study site, age, sex, baseline education, 

marital status, body mass index, smoking status, high- and low-density lipoproteins, 

prevalent diabetes, and prevalent cardiovascular disease) measured during the SHSS 

exam. These weights were stabilized by replacing the numerators with the overall 

prevalence of each person’s observed hypertension status:  

 
[1] 

Where Pr(HSHSS = hSHSS) is the mean predicted probability of observed hypertension 

status using imputed data for the SHSS. Because we restricted the cross-sectional 

analysis to data collected during the SHSS exams, stabilized numerators did not condition 

on previous hypertension status. 

We estimated weights for the longitudinal analysis using the same variables in a 

similar manner as described for the cross-sectional analysis, except that weights were 

estimated separately for baseline, 10-year follow-up, and the SHSS. We calculated the 

predicted probability of each person’s observed hypertension status at phase i conditioned 
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on selection into phase i, time-varying covariates at phase i, hypertension and time-

varying covariates at the previous phase (phase i – 1) for 10-year follow-up and the SHSS 

only, and time-invariant covariates (field site, sex, baseline education) measured at 

baseline. The inverse of these predicted probabilities generated unstabilized confounding 

weights for that phase. We stabilized the confounding weights by replacing the numerator 

with the overall probability of observed hypertension status (for baseline) or the predicted 

probability of observed hypertension status at phase i conditioned on hypertension at 

phase i – 1 (for 10-year follow-up and the SHSS): 

 
[2] 

where Pr(Hi = hi|Sel = 1, Hi-1) is the probability of observed hypertension status at phase i 

conditioned on participation in phase i and hypertension at phase i – 1, if applicable. In 

the denominator of equation 2 Ci, Ci-1 and CB are confounders measured at phase i, phase 

i – 1 if applicable, and at baseline, respectively. The product of phase-specific 

confounding weights comprised the final time-varying confounding weight for 

longitudinal analysis: 

 [3] 

Inverse Probability Weighting for Selection Bias 

IPW can be used to adjust for selection bias when sufficient data are available to 

estimate predicted probabilities of attrition over time.155 Statistical models are weighted 

so individuals contribute information proportional to their predicted probability of being 

in the study, creating a pseudopopulation in which there is no association between 

exposure and selection. Predicted probabilities for IPW can be structured to separately 

account for attrition by death and non-participation of survivors; these estimates are then 

inverted and multiplied to generate weights in which final selection probabilities are 

balanced within each covariate stratum. As with IPW for confounding, selection weights 

are typically stabilized by setting the numerator equal to the predicted probability of 

selection conditioned only on exposure status.  
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We used data from the baseline and 10-year follow-up exams to predict survival 

and participation of survivors in the SHSS. The 10-year follow-up was approximately 

midway between baseline and the SHSS, and we chose this approach as a compromise 

between only using baseline data to estimate selection weights (simpler, but more prone 

to bias from time-varying confounding) and using all available Strong Heart Study data 

including the 5-year follow-up exams (less risk of bias from time-varying confounding, 

but more risk of bias from model misspecification and heavier reliance on imputation). 

With the exception of magnetic resonance imaging outcomes collected at the SHSS 

exam, all variables listed in Measures were considered for models predicting survival and 

participation of survivors.  

For the 10-year follow-up and the SHSS visits we first used imputed data to 

estimate the mean predicted probability of survival to that phase, conditioned on 

observed hypertension status, time-varying predictors at the previous phase (Ci-1), and 

fixed predictors measured at baseline (CB): Pr(Survi = 1|Hi-1, Ci-1, CB). Note that CB was 

only included as a vector separate from Ci-1 for the SHSS visit. Next we restricted the 

data to survivors at phase i and used imputed data to estimate the mean predicted 

probability of participation in phase i, conditioned the same factors as for survival 

probabilities: Pr(Parti = 1| Survi = 1, Hi-1, Ci-1, CB). Each person’s unstabilized weight for 

selection at phase i was calculated as the product of the inverse of predicted probabilities 

for survival and participation, stabilized by replacing numerators with the predicted 

probabilities of selection conditioned on previous exposure and a subset of baseline 

predictors (field site, sex, age, prevalent diabetes, and prevalent cardiovascular disease):  

 
[4] 

The product of these interval-specific weights (baseline to phase 3, phase 3 to the SHSS) 

constituted the final stabilized selection weights from baseline through the SHSS: 

 [5] 
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Tailoring weights for inclusion criteria 

The population of interest for studies of covert VBI is often limited to people who 

have not experienced overt clinical events, namely strokes, but who may have 

asymptomatic pathology that could benefit from medical intervention. Therefore, 

although all living Strong Heart Study cohort members were invited to participate, 

analysis of covert VBI in the SHSS will often require excluding observations with 

prevalent stroke. We were concerned about the potential for correlation between 

predicted probability of attrition and risk of experiencing stroke prior to the SHSS. If 

covariate profiles associated with low probability of selection into the SHSS were also 

associated with high risk of stroke, then the resulting large selection weights could over-

correct for the missing observations people with these combinations of risk factors are 

assumed to represent. Conceptually, in this scenario the pseudopopulation generated by 

IPW would not reflect the desired stroke-free target population. We therefore tailored the 

numerators of selection weights from equation 5 to jointly account for each person’s 

predicted probability of selection and of being stroke-free at their SHSS exam.156  

If selection probability and stroke risk were independent of each other, then their 

joint probability in the numerator of stabilized weights could be easily estimated as the 

product of the individual probabilities: Pr(Sel = 1, Stk = 0) = Pr(Sel = 1) × Pr(Stk = 0). 

Because people with higher stroke risk are likely to have low probability of survival, 

however, the probabilities are not independent and so instead we modeled their joint 

association. For all 1031 SHSS participants who were stroke-free at baseline, we used 

imputed baseline data to estimate the predicted probability of remaining stroke-free until 

their SHSS exam, conditioned on the same variables (field site, sex, age, prevalent 

diabetes, prevalent cardiovascular disease) as used to estimate the predicted probability of 

selection for stabilized weights in equation 4. Selection weights tailored to the stroke-free 

target population were then estimated as follows: 

 

[6] 
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The tailored weights reduced each person’s influence on the final data analysis in 

proportion to his or her estimated stroke risk, creating a pseudopopulation better aligned 

with inclusion criteria for studying covert VBI. 

Statistical Analysis 

We analyzed the cross-sectional association between hypertension and covert VBI 

using logistic regression models with the binary indicator of WMH score ≥ 3 as the 

outcome. Marginal risk differences were estimated from the fitted logistic models.163 

Mean differences in the continuous measure of white matter volume were estimated using 

linear regression. In both regression models, exposure was the binary indicator of 

prevalent hypertension in the SHSS. 

For the longitudinal analysis, exposure was measured using the multi-category 

variable reflecting each combination of prevalent hypertension status across the all three 

exams (baseline, 10-year follow-up, and SHSS). Because of sparse data for non-

monotonic “recovery” patterns in which people changed from being classified as 

hypertensive at baseline and/or 10-year follow-up to being classified as not having 

hypertension and one or more subsequent exams, we dropped participants in these 

categories (n = 59) from the longitudinal analysis and only considered monotonic 

exposure patterns for which people who were: 1) normotensive at all three exams 

(reference group), 2) normotensive at baseline and 10-year follow-up but hypertensive at 

the SHSS exam, 3) normotensive at baseline and hypertensive at both the 10-year follow-

up and SHSS exams, or 4) were hypertensive at all three exams. For each analysis we 

estimated unweighted crude associations, associations weighted for covariate 

confounding, and associations simultaneously weighted for covariate confounding and 

selection bias. The latter used “master” weights calculated as the product of individual 

weights for confounding and selection.164 Table D.1 summarizes the combination of 

weights for each analysis. Point estimates are reported with 95% confidence intervals. 

We used Stata version 13 (StataCorp, College Station, TX) for all analyses. 
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D.4 Results 

Of the 4549 cohort members who enrolled in the Strong Heart Study from 1988-

1991, 36 had prevalent stroke at baseline and were excluded from this analysis. Of the 

4513 cohort members without prevalent stroke at baseline, 1031 survived and 

participated in the SHSS from 2010-2013. On average SHSS participants were younger, 

better educated, more likely to be female, more likely to be obese, and either healthier 

than or similar to Strong Heart Study cohort members who did not participate (Table 

D.2). In particular, fewer SHSS participants than non-participants had prevalent 

hypertension, diabetes, cardiovascular disease, and albuminuria at baseline.  

Of the 1031 SHSS participants with no stroke at baseline, 934 were also stroke-free 

at the SHSS exam. Before multiple imputation, WMH grade and white matter volume 

were missing for 34 and 59 of these individuals, respectively. After imputation (Table 

D.3), people with abnormal WMH grade tended to be older, have lower educational 

attainment and were less likely to be currently married than people with normal WMH 

grade. Although body mass index on the continuous scale appeared similar between 

groups, people with abnormal WMH had lower prevalence of obesity. People with 

abnormal WMH also tended to have higher prevalence of microalbuminuria, self-

reported myocardial infarction, and self-reported congestive heart failure. As expected, 

people with abnormal WMH grade had more white matter expressed both as total volume 

and as proportion of intracranial volume. Prevalent hypertension at the SHSS exam was 

only slightly more common in people with abnormal WMH. Descriptive statistics for the 

longitudinal hypertension variable was restricted to the subset of 878 participants who 

attended all three study visits (Strong Heart Study baseline and 10-year follow-up, and 

the SHSS). Of these, a lower percentage of people with severe WMH had no 

hypertension or hypertension only at the SHSS, and a higher percentage had hypertension 

at all three study visits.  

Table D.4 shows descriptive statistics for confounding and selection weights by 

hypertension and WMH grade. Among the 934 stroke-free SHSS participants, 81% (n = 

756) had prevalent hypertension and 36% (n = 336) had abnormal WMH grade. Only 56 

(6%) were normotensive and had abnormal WMH. Mean values for stabilized weights 
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centered slightly below 1.0, reflecting the lower average weights for SHSS participants 

vs. non-participants. Weights tailored to the stroke-free population were smaller than 

stabilized weights, with differences approximately proportional to the 91% overall 

probability of remaining stroke free from baseline to the SHSS. 

Approximately one-third of participants without hypertension had abnormal WMH 

grade. Prevalence difference estimates increased after incorporating confounding weights 

regardless of adjustment for differential selection (Table D.5). As expected, point 

estimates also increased in models incorporating selection weights, with similar results 

for stabilized and tailored target populations. In the analysis for the ratio of white matter 

and intracranial volume, covariate adjustment resulted in substantially higher point 

estimates regardless of selection weighting. Selection weighting had little or no impact on 

unadjusted models, but led to approximately 20% higher point estimates in covariate-

adjusted models. 

Table D.6 shows results for the longitudinal analysis comparing prevalence of 

abnormal WMH by the joint distribution of hypertension status at the Strong Heart Study 

baseline and 10-year follow-up exams, and the SHSS exam among cohort members who 

completed all three visits. Due to sparse data for categories in which 59 people with 

hypertension at baseline or 10-year follow-up were classified as normotensive at a 

subsequent visit (Table D.3), these categories were dropped from the analysis (final n = 

819). Having hypertension at all three study visits was consistently associated with higher 

prevalence differences compared to people with no hypertension at any study visit, 

though the magnitude of point estimates decreased in models weighted for time-varying 

confounding. Table D.7 shows results for the longitudinal analysis comparing white 

matter volume as a proportion of intracranial volume. People with hypertension at all 

three study visits consistently showed higher mean values compared to people with no 

hypertension at any visit. In contrast to the binary outcome, magnitude of point estimates 

increased after covariate adjustment. Selection weighting had no apparent impact on 

analyses for the longitudinal analysis. 
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D.5 Discussion 

We found that hypertension correlated with more severe VBI among elderly 

American Indians in the cross-sectional SHSS analysis. In the longitudinal analysis, joint 

patterns of hypertension over 20 years suggested that people with the longest duration of 

hypertension were more likely to have prevalent covert VBI in the SHSS than people 

without hypertension at any exam. After covariate adjustment there was little or no 

difference between people who developed hypertension after the Strong Heart Study 

baseline exam compared to cohort members who remained free of hypertension at all 

visits. These findings are consistent with biological models that view covert VBI as 

arising from cumulative effects of long-term vascular disease,165 and with research in 

other populations.75,77,166-170 Cross-study comparisons are complicated, however, by other 

studies’ reliance on odds ratios for binary outcomes and log-transformation for 

continuous outcomes. We opted for prevalence-based effect measures because prevalence 

is more interpretable than odds and because odds ratios overestimate prevalence ratios 

when outcomes are common,171 as was the case for abnormal WMH. For the continuous 

volume ratio we were interested in overall mean differences at the population level for 

each longitudinal hypertension comparison. These estimates are more easily interpreted 

when adhering to the original scale, and the SHSS sample size was sufficiently large to 

invoke the Central Limit Theorem for unbiased inference.172 In spite of these limitations 

to external comparisons, our results contribute to the growing body of evidence 

supporting a vascular etiology of covert VBI, evidence which is strengthened by the 

similar qualitative conclusions across studies despite variation in design and analytic 

methods. 

In the cross-sectional analysis point estimates increased in models incorporating 

selection weights, as expected if selection bias is affecting SHSS data. In reality the 

assumptions behind IPW models are unlikely to be perfectly satisfied, and so our analysis 

should be interpreted as mitigating, rather than eliminating, selection bias for the cross-

sectional association between hypertension and severe WMH in the SHSS. Contrary to 

our expectations, however, there was no strong evidence that IPW adjusted for selection 

bias in the longitudinal analysis. A possible explanation pertains to the two additional 
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exclusions of participants compared to the cross-sectional models. First, we dropped 

people who did not participate in the 10-year follow-up. Because this subgroup went on 

to enroll in the SHSS, it might comprise disproportionately younger, healthier individuals 

who had temporarily migrated out of the Strong Heart Study communities or who did not 

participate due to work or other obligations as opposed to people who did not participate 

for reasons related to subsequent poor health or mortality. Second, we dropped 59 people 

who had hypertension at the Strong Heart Study baseline and/or 10-year follow-up but 

who did not have hypertension at one or more subsequent exams, and it is highly likely 

this group comprised people with less severe disease and lower risk of hypertension-

related morbidity or mortality compared to their counterparts with monotonic 

hypertension prevalence.  

Tailoring weights to account for inclusion criteria is an important strength of our 

IPW analysis, and departs from conventional applications that stabilize weights to the 

exposure distribution observed in the study cohort. By further tailoring numerators to 

account for stroke risk, we estimated results for a target population aligned with SHSS 

inclusion criteria. This is needed for valid inference because many variables predicting 

higher mortality risk in the selection models (e.g., male sex, higher blood pressure, 

prevalent diabetes and cardiovascular disease) are also well-established risk factors for 

clinical events. Stroke-free SHSS participants with low predicted probabilities of 

selection—and therefore large selection weights—due to the presence of these risk 

factors would simultaneously have high predicted probabilities of clinical stroke. 

Upweighting these individuals without further adjustment could then overcorrect for 

missing observations who would have experienced subsequent stroke. The extent to 

which failing to account for inclusion or exclusion criteria would bias an IPW analysis 

depends on the magnitude of stroke risk in people with high selection weights, and the 

prevalence of stroke in the target population. In our case fewer than 10% of SHSS 

participants had prevalent stroke and it is possible that bias would be less problematic 

than if a more highly prevalent condition were cause for exclusion.  

For investigators who are comfortable estimating stabilized weights, modeling the 

predicted probability of being in a specific target population conditioned on selection and 
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exposure status is a straightforward extension of a familiar method.156 If inclusion criteria 

correlate with selection, it is important to appropriately model their joint distribution 

rather than estimating separate predicted probabilities as if each factor were independent 

of the other(s). The main caveat is that care must be taken to ensure appropriate 

temporality in the conditional model, Pr(Factor1 = f1|Factor2 = f2), if one factor is 

potentially a downstream effect of the other. Flexible specification of the target 

population can facilitate sensitivity analyses, for example by weighting to a population 

that is free of comorbidities or in which no one is taking certain medications. This could 

allow for more nuanced interpretation of effect measure estimates compared to the 

frequent practice of dropping sick or medicated individuals from a data set. 

D.6 Limitations 

Our analysis has limitations that should also be considered when interpreting 

weighted point estimates. First, due to limitations in the SHSS data we adjusted the target 

population based on self-reported prevalent stroke rather than a more rigorous 

adjudicated determination as was available for previous phases of the Strong Heart Study. 

Adjudication for the SHSS is currently underway, however, and it will be a trivial matter 

to adjust the relevant predicted probability estimates once this information is available. 

Furthermore, self-reported stroke has been shown to be a reasonable surrogate for 

adjudicated stroke in other populations.173-178 No publication has specifically compared 

self-reported vs. adjudicated stroke in elderly American Indians, but these studies provide 

some support for the internal validity of our analysis. Second, currently available Strong 

Heart Study data only include adjudicated clinical events and mortality through 

December, 2008. Therefore our prediction models conflate attrition from death and non-

participation of survivors beginning in January, 2009. However, proportionally more 

attrition was due to death as the cohort aged and became less mobile, and SHSS field 

staff have reported that the majority of non-participation was due to excessive frailty or 

other health problems that correlate with mortality. Therefore we are likewise confident 

that selection weights and IPW results will not change dramatically when fully 

adjudicated mortality data become available. Third, we did not use data collected at the 5-
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year follow-up of the Strong Heart Study for estimating time-varying confounding or 

selection weights. Estimates using all available data might be more accurate, but the 

tradeoff is additional complexity and potential for bias to increase exponentially due to 

repeated misspecification of the imputation or prediction models. We therefore 

compromised by estimating weights for two intervals of approximately equal (10 years) 

duration.  

D.7 Summary and Conclusion 

Among elderly American Indians in the SHSS, covert VBI as measured by 

abnormal WMH grade and higher white matter/intracranial volume ratio was correlated 

with prevalent hypertension and with being hypertensive at three study exams conducted 

over 20 years. People with hypertension first detected at the 10-year follow-up or SHSS 

exam did not have substantially worse outcomes than their normotensive peers, 

suggesting a dose-response model with covert VBI developing after long-term exposure 

to hypertension and other vascular diseases. By tailoring selection weights proportional to 

stroke risk in the cohort, our results relate to a target population aligned with SHSS 

inclusion criteria. When variables predicting selection into an analysis also correlate with 

eligibility, investigators might want to consider using tailored weights, especially when a 

large proportion of the study population fails to qualify for inclusion.  
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Table D.1. Weighting scheme for marginal structural models with inverse probability weighting 

 Selection Bias 

Confounding Unweighted Stabilized selection* Tailored selection** 

Crude association: None s_wtfinal t_wtfinal 

Covariate adjusted† cross-

sectional: 
c_wtXS  c_wtXS × s_wtfinal c_wtXS × t_wtfinal 

Covariate adjusted† 

longitudinal: 
c_wtlong c_wtlong × s_wtfinal c_wtlong × t_wtfinal 

* s_wtfinal = stabilized to the predicted probability of selection conditioned on previous 

hypertension status and baseline covariates (field site, sex, age, prevalent diabetes, prevalent 

cardiovascular disease) 
** t_wtfinal = tailored to the predicted probability of being stroke-free in the Strong Heart Stroke 

Study conditioned on selection, baseline hypertension status, and the same baseline covariates as 

for stabilized weights 
† Adjusted for field site, age, sex, baseline education, marital status, body mass index, current 

smoking, current alcohol consumption, high and low density lipoproteins, prevalent diabetes, and 

prevalent cardiovascular disease  
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Table D.2. Strong Heart Study cohort members who did and did not participate in the Strong 

Heart Stroke Study. All variables were measured at baseline exams from 1988-1991; results 

exclude 36 participants with prevalent stroke. 

 Did not participate in SHSS  Participated in SHSS 

 (n = 3482)  (n = 1033) 

 Mean (SD) or %  Mean (SD) or % 

SHS site:    

Southwest 34%  30% 

Southern Plains 34%  34% 

Northern Plains 33%  36% 

Age, years 58 (8)  52 (6) 

Female 57%  69% 

Married 47%  56% 

Education:    

11th grade or less 52%  34% 

High school graduate 25%  29% 

Any post-secondary 23%  37% 

Percent of life spent on a 

reservation 

85 (20)  82 (22) 

Current smoking 34%  34% 

Current alcohol consumption 41%  43% 

Body mass index, kg/m2 31 (6)  31 (6) 

Blood lipids:*    

HDL 46 (14)  46 (13) 

LDL 116 (33)  121 (32) 

Blood pressure:    

Systolic, mmHg 130 (21)  122 (15) 

Diatolic, mmHg 77 (10)  77 (10) 

Prevalent hypertension 43%  26% 

Diagnosed diabetes 54%  33% 

Prevalent cardiovascular disease:    

Myocardial infarction 3%  1% 

Coronary heart disease* 4%  1% 

Congestive heart failure 5%  1% 

Albuminuria:    

None 66%  86% 

Micro (30-299 mg/g) 21%  13% 

Macro (≥ 300 mg/g) 13%  1% 

SHSS = Strong Heart Stroke Study 
* Coronary heart disease includes myocardial infarction 
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Table D.3. Variables collected at the SHSS exam and selected baseline factors for 934 stroke-free 

SHSS participants, stratified by the binary indicator of abnormal white matter hyperintensities. 

 White Matter Hyperintesities 

 Normal: grade 0-2  Abnormal: grade 3-8 

 (n = 598)  (n = 336) 

 Mean (SD) or %  Mean (SD) or % 

SHS site:    

Southwest 31%  30% 

Southern Plains 35%  31% 

Northern Plains 34%  39% 

Age, years 71 (5)  75 (6) 

Female 68%  69% 

Education:*    

11th grade or less 28%  41% 

High school graduate 31%  28% 

Any post-secondary 41%  31% 

Married 37%  26% 

Percent of life spent on a reservation* 81 (23)  83 (21) 

Body mass index, kg/m2 32 (7)  31 (7) 

Obese (BMI ≥ 30 kg/m2) 63%  46% 

Blood lipids:    

HDL 50 (13)  52 (16) 

LDL 98 (35)  91 (32) 

Prevalent diabetes 57%  59% 

Current smoking 19%  18% 

Current alcohol consumption 24%  21% 

Blood pressure:    

Systolic, mmHg 135 (20)  138 (23) 

Diatolic, mmHg 69 (11)  68 (12) 

Prevalent cardiovascular disease:**    

Myocardial infarction 9%  15% 

Congestive heart failure 5%  8% 

Albuminuria:    

Micro (30-299 mg/g) 15%  22% 

Macro (≥ 300 mg/g) 7%  8% 

Brain volume    

White matter, cm3 4.1 (3)  12.1 (8) 

Intracranial, cm3 1204 (128)  1205 (140) 

White matter / Intracranial 0.0033 (0.002)  0.0099 (0.007) 

Cross-sectional exposure    

Prevalent hypertension 80%  83% 

Longitudinal exposure (n = 557)†  (n = 321) † 

No hypertension at any visit 17%  15% 

Hypertensive at SHSS only 36%  32% 

Hypertensive at 10-year follow-up and 

SHSS 
22%  22% 
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Hypertensive at all three visits 17%  26% 

Hypertensive at 10-year follow-up only  2%  2% 

Hypertensive at baseline only  < 1%  < 1% 

Hypertensive at  baseline and 10-year 

follow-up 
< 1%  0% 

Hypertensive at baseline and SHSS only 5%  3% 
* Baseline variable collected by Strong Heart Study (1988-1990) 
** Self-report (adjudication in progress) 
† Only evaluated for participants who attended all three exams 
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Table D.4. Selection weights by hypertension and white matter hyperintensities grade for 934* 

stroke-free Strong Heart Stroke Study participants. 

 No hypertension Hypertension 

 WMH grade 0-

2 

WMH grade 3-

8 

WMH grade 0-

2 

WMH grade 3-

8 

 (n = 122) (n = 56) (n = 476) (n = 280) 

 Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Confounding 

weights: 
    

Cross-sectional 1.09 (1.4) 0.99 (0.7) 1.00 (0.1) 1.00 (0.2) 

Longitudinal* 0.90 (1.1) 1.03 (0.9) 1.03 (0.5) 1.07 (0.7) 

Selection weights:**     

Stabilized 0.96 (0.2) 0.98 (0.4) 0.96 (0.6) 0.99 (0.5) 

Stabilized and 

tailored 0.89 (0.2) 0.88 (0.3) 0.88 (0.5) 0.88 (0.5) 

WMH = white matter hyperintensities; SD = standard deviation 
* Longitudinal weights restricted to 878 cohort members who attended all three exams (baseline, 

10-year follow-up, and Strong Heart Stroke Study)  
** Stabilized to overall hypertension distribution and tailored to the stroke-free target population  
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Table D.5. Cross-sectional effect estimates comparing white matter hyperintensity measures in 

people with vs. without prevalent hypertension among 934 stroke-free Strong Heart Stroke Study 

participants. 

 Selection Weighting 

 Unweighted Stabilized Stabilized + 

Tailored 

 Estimate (95% CI) Estimate (95% CI) Estimate (95% CI) 

Prevalence difference*    

Unadjusted 5.6 (-2, 13) 6.0 (-2, 14) 6.0 (-2, 14) 

Covariate-adjusted† 7.9 (-2, 17) 8.9 (0, 18) 8.9 (0, 18) 

Prevalence ratio*    

Unadjusted 1.2 (0.9, 1.5) 1.2 (0.9, 1.5) 1.2 (0.9, 1.5) 

Covariate-adjusted† 1.3 (0.9, 1.7) 1.3 (0.9, 1.7) 1.3 (0.9, 1.7) 

Mean difference**    

Unadjusted 0.25 (-0.7, 1.2) 0.23 (-0.9, 1.4) 0.24 (-0.9, 1.4) 

Covariate-adjusted† 0.80 (-0.4, 2.0) 0.87 (-0.4, 2.1) 0.87 (-0.3, 2.1) 

Stabilized = overall hypertension distribution; Tailored = stroke-free target population; CI = 

confidence interval 
*  Prevalence of white matter hyperintensity grade ≥ 3 
** Mean difference of white matter volume/intracranial volume, multiplied by 1000 to simplify 

presentation of results 
† Adjusted using inverse probability weighting for confounding by field site, age, sex, education 

at  baseline exam, marital status, body mass index, current smoking and alcohol consumption at 

each exam, high and low density lipoproteins, prevalent diabetes, prevalent cardiovascular 

disease 
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Table D.6. Longitudinal effect estimates comparing prevalence of white matter hyperintensity 

grade ≥ 3 across categories defined by the joint distribution of hypertension at baseline, 10-year 

follow-up, and the SHSS. Reference group for all comparisons is participants who were 

normotensive at all three visits. Analysis was restricted to participants who participated all 

three exams, and 60 participants with “recovery” patterns depicted by gray rows in Table 1 

were dropped from the analysis due to sparse data. Final n = 819. 

 Selection Weighting 

 Unweighted Stabilized Tailored 

WMH grade ≥ 3 Estimate (95% CI) Estimate (95% CI) Estimate (95% CI) 

Prevalence difference, unadjusted 

Not hypertensive Ref Ref Ref 

Hypertensive at SHSS -0.2 (-10, 9) -0.2 (-10, 10) 0.0 (-10, 10) 

Hypertensive at 10 years & SHSS 2.4 (-8, 13) 5.2 (-6, 17) 5.4 (-6, 17) 

Hypertensive at all exams 12.6 (2, 23) 11.6 (0, 23) 11.4 (0, 23) 

Prevalence difference, covariate-adjusted* 

Not hypertensive Ref Ref Ref 

Hypertensive at SHSS 0.3 (-13, 14) 0.4 (-12, 13) 0.7 (-11, 13) 

Hypertensive at 10 years & SHSS -2.1 (-16, 12) 0.5 (-13, 14) 0.9 (-12, 14) 

Hypertensive at all exams 8.0 (-6, 22) 7.8 (-6, 22) 8.1 (-6, 22) 

Prevalence ratio, unadjusted 

Not hypertensive Ref Ref Ref 

Hypertensive at SHSS 1.0 (0.7, 1.3) 1.0 (0.7, 1.3) 1.0 (0.7, 1.3) 

Hypertensive at 10 years & SHSS 1.1 (0.8, 1.4) 1.2 (0.8, 1.5) 1.2 (0.8, 1.5) 

Hypertensive at all exams 1.4 (1.0, 1.8) 1.3 (0.9, 1.7) 1.3 (0.9, 1.7) 

Prevalence ratio, covariate-adjusted* 

Not hypertensive Ref Ref Ref 

Hypertensive at SHSS 1.0 (0.7, 1.4) 1.0 (0.7, 1.4) 1.0 (0.7, 1.4) 

Hypertensive at 10 years & SHSS 0.9 (0.6, 1.3) 1.0 (0.6, 1.4) 1.0 (0.6, 1.4) 

Hypertensive at all exams 1.2 (0.8, 1.7) 1.2 (0.8, 1.6) 1.2 (0.8, 1.7) 

WMH = white matter hyperintensity; Stabilized = overall hypertension distribution; Tailored = 

stroke-free target population; CI = confidence interval 
*  Adjusted using inverse probability weighting for confounding by field site, age, sex, 

education at  baseline exam, marital status, body mass index, current smoking and alcohol 

consumption at each exam, high and low density lipoproteins, prevalent diabetes, prevalent 

cardiovascular disease 
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Table D.7. Longitudinal effect estimates comparing white matter volume/total intracranial 

volume across categories defined by the joint distribution of hypertension at baseline, 10-year 

follow-up, and the SHSS. Reference group for all comparisons is participants who were 

normotensive at all three visits. Analysis was restricted to participants who participated all 

three exams, and 60 participants with “recovery” patterns depicted by gray rows in Table 1 

were dropped from the analysis due to sparse data. Final n = 818. Results are presented as ratio 

x 1000. 

 Selection Weighting 

 Unweighted Stabilized Tailored 

WMH volume/Intracranial 

volume 

Estimate (95% 

CI) 

Estimate (95% 

CI) 

Estimate (95% 

CI) 

Mean difference, unadjusted 

Not hypertensive Ref Ref Ref 

Hypertensive at SHSS 0.07 (-1.0, 1.2)  -0.07 (-1.5, 1.3) -0.05 (-1.4, 1.3) 

Hypertensive at 10 years & 

SHSS 
0.11 (-1.1, 1.3) 0.01 (-1.4, 1.5) 0.04 (-1.4, 1.5) 

Hypertensive at all exams 1.16 (0.0, 2.4) 1.02 (-0.6, 2.6) 1.06 (-0.6, 2.7) 

Mean difference, covariate-adjusted* 

Not hypertensive Ref Ref Ref 

Hypertensive at SHSS 0.68 (-0.7, 2.0) 0.49 (-0.9, 1.9) 0.54 (-0.9, 1.9) 

Hypertensive at 10 years & 

SHSS 
0.30 (-1.0, 1.6) 0.10 (-1.3, 1.5) 0.16 (-1.2, 1.6) 

Hypertensive at all exams 1.69 (0.0, 3.4) 1.57 (-0.2, 3.3) 1.65 (-0.2, 3.4) 

WMH = white matter hyperintensity; Stabilized = overall hypertension distribution; Tailored = 

stroke-free target population; CI = confidence interval 
*  Adjusted using inverse probability weighting for confounding by field site, age, sex, 

education at  baseline exam, marital status, body mass index, current smoking and alcohol 

consumption at each exam, high and low density lipoproteins, prevalent diabetes, prevalent 

cardiovascular disease 
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E. Manuscript 3: A bounding method for effect estimates conditioned on age or 

time since exposure 

 

Clemma J. Muller, Alvaro Alonso, David Vock, Jean Forster, Richard F. MacLehose 

 

E.1 Overview 

Background and Purpose. Effect estimates that are calculated separately for 

categories conditioned on age (e.g., 45-54, 55-64, or 65-74 years old) or time since 

exposure (e.g., < 1 year, 1-2 years, and > 2 years after starting treatment) can suffer from 

a type of selection bias which leads to observing effects that are diminished or even 

qualitatively reversed compared to the true effect in the target population. This 

“conditional effects bias” cannot be avoided by study design, nor can it be fixed by 

statistical analysis. We present a method for estimating bounds around the conditional 

risk difference (RD) based on observed data. Formulae are presented for bounds 

assuming that exposure can only have causative effects on the outcome, and allowing for 

the possibility of both preventive and causative effects in the target population. We 

demonstrate the bounding method for analysis of racial differences in post-stroke 

survival. 

Methods. Using population response types and potential outcomes theory, we 

explain conditional effects bias in the context of RD. We used constrained optimization 

to derive bounds around the true conditional RD, first assuming only causal effects 

(monotonicity) and then relaxing monotonicity to allow for the possibility that exposure 

could prevent the outcome in some people while causing it in others. We applied the 

bounds to an analysis of post-stroke mortality in American Indians vs. Blacks and 

Whites. We estimated the RD for three time periods: 0-30 days, 31-180 days, and 181-

365 days after the stroke event. Estimates for the later two periods were conditioned on 

survival to the end of the preceding period. 

Results. Under the assumption of monotonic causal exposure effect, we identified 

bounds around the conditional RD based on observed data. We were unable to identify 

bounds when we allowed for unrestricted magnitude of preventive effects relative to 
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causative effects in the target population. Instead, we identified bounds for the partial 

constraints in which preventive effects were assumed to be equal to or less than causative 

effects. In the example, observed RDs for American Indians vs. Blacks were 14% (95% 

CI = 6, 23) for 0-30 days; -1% (95% CI = -7, 4) for 31-180 days; and -3% (95% CI = -7, 

2) for 181-365 days after stroke onset, respectively. For American Indians vs. Whites, 

analogous observed RDs were 12% (95% CI = -6, 3); 1% (95% CI = -5, 6); and -2% 

(95% CI = -6, 3). Applying the equation for monotonic causal effects for comparisons to 

Blacks yielded bounds of 0%-16% and 0%-13% for 31-180 and 181-365 days after the 

stroke event, respectively. Analogous bounds for comparisons to Whites were 0%-14% 

and 0%-13%. 

Conclusions. Conditional effects suffer from a type of selection bias that can 

compromise the scientific integrity of public health and clinical trials research. We 

describe simple formulae to estimate bounds when conditional comparisons are either 

unavoidable or are of primary interest to investigators. Failure to consider conditional 

effects bias could lead to reporting effects that are attenuated or even reversed across 

categories defined by age or time, when in fact those trends are not conclusively 

supported by the data. 
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E.2 Introduction 

In observational studies and randomized trials, effects are often calculated 

separately for categories defined by participant age (e.g, 45-54, 55-64, and 65-74 years 

old) or time since exposure (e.g., < 1 year, 1-2 years, and > 2 years after initiating 

treatment). In both scenarios the goal is to estimate effects for the age or time period 

represented in each category, conditional on having survived to that age or time period. 

This is accomplished by restricting analyses to the subset of people who have not yet 

experienced the outcome as of the start of the category. Effects conditioned on remaining 

event-free for successively older ages or longer time intervals are widespread in the 

literature and have generated conclusions that are entrenched in public health and clinical 

practice. For example, studies have found that the higher risk of death associated with 

obesity appears to diminish among older people in analyses stratified by age 

category.179,180 This is a conditional effect comparison because subgroups only include 

people who survived to the minimum age for each category, which may be years after a 

person becomes obese. Analyses of racial health disparities frequently condition on age, 

with decreasing magnitudes of effect commonly observed in older groups. In an analysis 

using data from the National Health Interview Survey, hazard ratios comparing mortality 

in Black versus White respondents tended to attenuate among older age categories, 

ranging from 1.3 and 1.5 among women 35-44 and 45-54 years old, respectively, to 0.9 

among women 85 and older.181 Similar patterns were observed in men. 

It is not widely recognized that conditional effect estimates are prone to a type of 

selection bias which can make them unestimable. In one example, observational studies 

repeatedly showed cardiovascular benefits associated with post-menopausal hormone 

replacement therapy,182-185 but a large randomized controlled trial found that hormone 

replacement therapy actually led to increased incidence of coronary heart disease.186 

Conditional effects bias may have contributed to the discrepancy because women in 

observational cohorts typically started using hormone replacement therapy months or 

years before enrolling in the study, whereas women in the randomized trial were under 

observation from the beginning of treatment.187 
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Unfortunately, conditional effects bias cannot be accounted for by study design or 

statistical analysis; even large clinical trials with perfect randomization and no loss to 

follow up are susceptible to the problem.188 If treatment or exposure (used 

interchangeably throughout) causes some people to experience the outcome in earlier age 

categories or time periods than if they had been unexposed, then these more susceptible 

individuals will drop out of the target population but will still be present in the control 

population for subsequent conditional comparisons. This means the control population 

can progress to having higher underlying disease risk than the target population, which in 

turn can lead to observing apparently protective conditional effects even if the exposure 

never prevents disease.6 Although some exposure effects may truly diminish over time, 

conditional effects bias can also obscure the magnitude of change. 

Some authors have advocated avoiding the conditional effects conundrum by 

instead estimating unconditional alternatives such as cumulative effect measures, in 

which comparisons reflect all events occurring since the start of exposure for an age or 

time interval and for which all members of the target population are at risk for the 

outcome. In practice, however, data may not be available to implement this solution or 

the scientific question of interest may require estimating conditional effects. The latter 

scenario, for example, could occur if an insurance company wanted to know whether a 

medication benefit persisted beyond some fixed duration of treatment, or when clinicians 

want to know whether female sex becomes a risk factor for cardiovascular disease after 

some age threshold. In this manuscript we expand on a previous description of 

conditional effects bias6 to derive formulae for estimating bounds around the conditional 

risk difference (RD). Bounds are defined using unconditional risk and RD estimates that 

can be identified from observed data, and generate an interval of possible true RD values. 

We demonstrate the bounds with an applied example.  

E.3 Potential Outcomes, Response Types, and Exchangeability 

Conditional effects bias can be explained using a potential outcomes 

framework.189,190 With a binary exposure and binary outcome, for any given individual 

there is an outcome that would be observed if the person were exposed, and another—
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possibly different—outcome that would be observed if she or he were unexposed. A 

difference between the two potential outcomes reflects a causal effect of exposure for that 

individual. In reality, only one exposure status per person is possible at any given time, 

and only one potential outcome can be observed. The hypothetical outcome for the other 

exposure status is labeled counterfactual. Within this framework, a population can be 

divided into four different groups depending on response to exposure: 1) “doomed” 

people who will experience the outcome regardless of exposure status, 2) “causative” 

people in whom the exposure causes the outcome, 3) “preventive” people in whom the 

exposure prevents the outcome, and 4) “immune” people who will not experience the 

outcome regardless of exposure status. Proportions of each response type in a target 

population can be written as PD (doomed), PC (causative), PP (preventive), and PI 

(immune).191,192 In this population the proportion of people who would experience 

disease if exposed is PD + PC, while the proportion that would experience disease if not 

exposed is PD + PP.  Thus, the RD of exposure is (PD + PC) – (PD + PP) = PC – PP.  

For any given target population, the counterfactual response types that do not 

correspond to actual exposure status must be estimated from a substitute population. We 

will denote the proportions of people with each response type in the substitute population 

as QD, QC, QP, and QI. The substitute population can provide unbiased information to 

estimate a causal effect if we assume it is exchangeable with the target population. 

Exchangeability implies the two groups could have swapped exposure status and we 

would still have observed the same average causal effect. Full exchangeability, meaning 

that all Pj = Qj, satisfies this condition and allows unbiased estimation of causal effects.193 

Full exchangeability is guaranteed for a randomized trial, but must be assumed in 

observational studies after controlling for confounding.194 In some scenarios weaker 

exchangeability assumptions are also sufficient to estimate unbiased effects.195 

Potential outcomes are more complicated when there are multiple time periods 

during which an outcome could occur. In these scenarios, we want to know whether 

exposure leads to some people getting the disease in earlier or later periods than if they 

had been unexposed. Table E.1 summarizes potential outcomes response types for a 

target population in a study with age or follow up time divided into two periods. For all 
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population proportions Pk,l and Qk,l, subscript k indicates in which period the outcome 

would occur with no exposure, and subscript l indicates in which period the outcome 

would occur with exposure. Omega (Ω) denotes people for whom the outcome does not 

occur during any study period. Thus, there is only one immune response type (PΩ,Ω) 

reflecting people who would not experience the outcome during the study period 

regardless of exposure status. Whether or not these individuals would eventually 

experience the outcome after period 2 is not relevant to estimating the effect of exposure 

during periods 1 and 2. Other response types are subdivided according to when the 

outcome would occur for each exposure condition. Doomed people would experience the 

outcome in the same period regardless of exposure status (P1,1 + P2,2 = PD). Proportions 

for the three causative response types reflect all people for whom exposure causes the 

outcome to occur earlier than if they had instead been unexposed (P2,1 + PΩ,1 + PΩ,2 = PC), 

and similarly for preventive types (P1,2 + P1,Ω + P2, Ω = PP). Analogous proportions in the 

unexposed population that provide substitute information for counterfactual data can be 

denoted by QΩ,Ω, Q1,1, Q2,2, and so on. 

In the sections that follow we explain conditional effects bias and develop bounds 

for the conditional risk difference that can be estimated from observed data. For these 

sections, the exposed group is the target population for all comparisons. We begin by 

assuming causative monotonicity of exposure effect: that exposure cannot prevent the 

outcome for anyone in the target population (PP = 0). For the two-period scenario shown 

in Table E.1, causative monotonicity means that only the first six response types are 

relevant for estimating causal effects. We relax the monotonicity restriction later in this 

manuscript.  

E.4 Unconditional Effects 

Unconditional effects do not require outcome-free survival to any minimum age or 

time since exposure. Cumulative effects are the most common unconditional comparisons 

used in epidemiology and clinical trials research, with comparisons reflecting overall 

disease risk in exposed vs. unexposed groups (because our target population is people 

who were exposed) for some interval beginning at the time when exposure status was 
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initially experienced, chosen, or assigned. Using the population proportions in Table E.1 

and the causative monotonicity assumption, the desired cumulative RD for period 1 is 

(P1,1 + P2,1 + PΩ,1) – (P1,1) = P2,1 + PΩ,1. Because we cannot identify P1,1 from the exposed 

target population, we invoke the exchangeability assumption and substitute the risk in 

period 1 (Q1,1) from the unexposed population to estimate the cumulative RD: 

 [1] 

Note that the individual population proportions P2,1 and PΩ,1 cannot be individually 

estimated. The cumulative RD for period 2 compares the sum of all proportions in the 

exposed target population that experience the outcome in periods 1 or 2 to the sum of all 

proportions that experience the outcome in the unexposed substitute population: 

 [2] 

A less common specification for the unconditional RD focuses on risk within a 

given period for the entire target population, without conditioning on remaining event-

free to the start of the period. Thus all members of the population are represented in the 

risk calculations, but people who already experienced the outcome in a previous period 

are not counted as events. For period 1, the period-specific unconditional RD and 

cumulative RD are identical, and hereafter we use RD1 for these period 1 effects. For 

period 2, the period-specific unconditional RD reflects only population proportions that 

would experience disease in period 2, with substitute information used for the 

counterfactual unexposed condition: 

 [3] 

Although the RD depicted in equation 3 is not frequently reported in public health 

research, it is used in the bounding method described below. The key feature of all 

unconditional risk comparisons is that they can be directly estimated from observed data, 

with the assumption that exchangeability between the target and substitute populations is 

achieved by randomization or covariate adjustment.  
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E.5 Conditional Effects 

Conditional effects are estimated when the RD for period 2 is restricted to people 

who survived event-free to the end of period 1.6,188 Conditional effects could be of 

interest in a randomized trial, for example, if investigators want to know whether 

preventive benefits persist beyond some minimum duration of treatment. Conditional 

effects are also estimated in observational studies that enroll people after they were 

initially exposed, such as a cohort study that enrolls people starting at age 55 but wishes 

to evaluate exposures that began prior to study enrollment.  

Depicting conditional effects using potential outcomes response types requires 

defining the population at risk as people who have not yet experienced the outcome at the 

start of the period. With the notation in Table E.1, the proportion of people in the exposed 

target population who survive past period 1 is PΩ,Ω + P2,2 + PΩ,2. The subgroup of these 

individuals who will experience the outcome in period 2 is P2,2 + PΩ,2, whereas the 

subgroup that would experience the outcome if they had instead been unexposed is P2,2. 

Therefore, the desired counterfactual RD for the surviving exposed population in period 2 

is: 

 
[4] 

When we rely on the substitute population to provide counterfactual information for 

equation 4, the analogous proportion of people surviving past period 1 is QΩ,Ω + Q2,2 + 

Q2,1 + QΩ,1 + QΩ,2 and the proportion who experience the outcome in period 2 is Q2,2 + 

Q2,1. Therefore, the observed conditional risk difference is: 

 
[5] 

Clearly, the observed conditional RD in equation 5 does not match the desired 

conditional RD from equation 4. Because we cannot isolate Q2,1 from the numerator or 

(Q2,1 + QΩ,1) from the denominator of the substitute population, it is not possible to 

directly estimate the desired RD in equation 4 without imposing additional assumptions. 
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E6 Conditional Effects Bias 

The inequality between equations 4 and 5 arises from fundamental differences in 

who survives past period 1 among the target and substitute populations. The surviving 

exposed subgroup in period 2 is likely to be inherently less susceptible to the outcome 

than the original exposed population, because people with an underlying susceptibility for 

whom exposure caused disease to occur in period 1 (P2,1 + PΩ,1) are no longer considered 

at risk. The desired conditional RD in period 2, therefore, pertains to possible delayed 

exposure effects among these more resilient individuals who were not susceptible to 

exposure in period 1. The surviving unexposed subgroup, on the other hand, still contains 

the people for whom exposure would have caused disease to occur in period 1 (Q2,1 + 

QΩ,1) and who should not be included in the resilient subgroup of interest for estimating 

the conditional RD.  

Conditional effects bias means the desired conditional effect measure cannot be 

estimated from observed data. The unexposed population cannot provide unbiased 

substitute information for the counterfactual data in equation 4 unless we impose 

additional assumptions, such as no exposure effect in period 1 (Q2,1 + QΩ,1 = 0). This 

assumption is also known as a lag effect and may be reasonable for some scenarios, such 

as the multiple years that elapse between asbestos exposure and developing cancer,196 but 

it is not believable for many others. Over long enough time and with ongoing attrition of 

susceptible people from the exposed group, higher underlying disease risk in unexposed 

survivors can lead to observing a diminished or apparently preventive effect of exposure 

in later periods, even when only neutral or causative response types are present in the 

population. Unfortunately, conditional effects bias cannot be avoided even with infinite 

sample size, perfect exchangeability between groups at baseline, and complete follow up 

for the entire population. The problem is that we cannot conclusively distinguish P2,1 

from PΩ,2,
6 and there will always be multiple combinations of response type proportions 

that could explain any observed conditional RD.  
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E.7 Bounding Conditional Effects 

When desired effects cannot be identified, an alternative option is to articulate a 

range of possible true values given the observed data.197 A previous publication 

describing conditional effects bias gave bounds for the unobservable proportion PΩ,2, but 

bounds around response types are not very useful for applied analyses estimating 

conditional effects.6 In this section we describe bounds around the conditional RD for 

period 2, first assuming monotonic exposure effects and only two periods in the study. 

Next we relax the monotonicity assumption, and discuss implications for studies with age 

or follow up time divided into three or more periods.  

We used Wolfram Mathematica software (version 10.3)198 to implement constrained 

optimization for identifying bounds around conditional effects. Mathematica has been 

previously used for bounding effects with uncontrolled confounding, mediation analysis, 

and imperfect treatment compliance,199-207 and can be used to define minimum and 

maximum possible values for the conditional RD, subject to a list of constraints 

expressed as equations (e.g., 0 ≤ x ≤ 1). Mathematica translates these constraints to 

matrix notation that reflects a multi-dimensional space of possible true values for the 

unidentified parameter. Conceptually, Mathematica then uses the simplex algorithm208 to 

“move” along the outer edges of the multi-dimensional shape until it identifies the global 

minimum or maximum value that satisfies all constraints. For the six response types 

present in a population with monotonic causative exposure effects (Table E.1), we 

specified that each population proportion, the sum of all proportions, and the cumulative 

risk difference through period 2 must all lie between [0,1]; RDunconditional,2 between [-1,1]; 

and that RD1 and the conditional surviving exposed population PΩ,Ω + P2,2 + PΩ,2 must be 

greater than 0. The non-zero constraints are necessary because RD1 = 0 implies no 

exposure effect in period 1, and PΩ,Ω + P2,2 + PΩ,2 = 0 implies that no exposed individuals 

survived to the start of period 2. Within these constraints, we the following bounds for 

the conditional RD: 

 

[6] 
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where  is the unconditional risk observed in period 1 for the exposed population. 

Note that equation 6 is also a reformulation of previously described bounds around 

response type PΩ,2.
6 

E.8 Relaxing Monotonicity 

Many exposures can harm some individuals while benefitting others, and conditional 

effects in these contexts can have important public health or clinical relevance. Allowing 

for all preventive and causative response types in Table E.1, the RD for period 1 in the 

exposed target population is RD*1 = (P1,1 + P2,1 + PΩ,1) – (P1,1 + P1,2 + P1,Ω), where the 

asterisk indicates risk estimates allowing for non-monotonic exposure effects. The RD*1 

is the population proportion in which exposure causes disease minus the proportion in 

which exposure prevents disease that would otherwise have occurred in period 1. With an 

exchangeable unexposed substitute population providing the counterfactual data (Q1,1 + 

Q1,2 + Q1,Ω), RD*1 can be estimated without bias. The same is true for the unconditional 

RD* in period 2, written as RD*unconditional,2 = (P2,2 + PΩ,2 + P1,2) – (P2,2 + P2,1 + P2,Ω).  

Allowing for non-monotonic exposure effects adds an additional layer of 

complexity to the conditional RD. If exposure delays some events that would have 

occurred in period 1 (P1,2 + P1,Ω > 0), then the surviving target population in period 2 is 

P2,2 + PΩ,Ω + PΩ,2 + P1,2 + P1,Ω + P2,Ω, and conditional disease risk for this subgroup in 

period 2 is (P2,2 + PΩ,2 + P1,2)/( P2,2 + PΩ,Ω + PΩ,2 + P1,2 + P1,Ω + P2,Ω). The counterfactual 

disease risk in period 2 for this same subgroup if they had instead been unexposed is 

metaphysical, however, because the proportions P1,2 and P1,Ω would have already 

experienced disease in period 1 and therefore would not be included in the counterfactual 

denominator. The same phenomenon prevents defining an appropriate counterfactual 

comparison for estimating the conditional RD with an unexposed target population under 

assumptions of causative monotonicity.6 Instead, defining conditional effects with non-

monotonic exposures requires more restrictive conditions: among the subset of the target 

population who would have survived to the end of period 1 regardless of exposure status, 

what is the effect of exposure in period 2? This restriction conceptually eliminates P1,2 
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and P1,Ω from the target population so that the desired conditional effect can be defined 

as: 

 

[7] 

The observed conditional RD* in the absence of monotonic exposure effects is defined 

using population response types as:  

 

[8] 

The observed RD* in equation 8 does not pertain to any real-world counterfactual effect 

measure. Furthermore, without monotonicity assumptions it not possible to estimate the 

restricted RD* in equation 7.6,209  

Fortunately, many scientific questions in public health are focused on overall 

outcomes in the target population, with some a priori expectation about directionality of 

the net exposure effect. In these cases it may be sufficient to adopt weaker monotonicity 

assumptions than mutual exclusivity of causation and prevention, by instead assuming 

“marginal monotonicity” of exposure effects at the population level.206 For causative 

marginal monotonicity this means the population proportion of each causative type is 

equal to or greater than the proportion of the preventive type for the same two periods. 

Specifically, causative marginal monotonicity assumes the three inequalities (P2,1 > P1,2), 

(PΩ,1 > P1,Ω), and (PΩ,2 > P2,Ω) are true. With these weaker assumptions, bounds around 

the conditional RD* restricted to the subset of people who would survive past period 1 

regardless of exposure status are defined as follows:  

 

[9] 

where  is the unconditional risk in period 1 observed in the substitute population. 

These bounds are wider than estimates assuming no preventive response types, because 
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the relative magnitudes of causative and preventive response types for  are 

unrestricted within the other linear programming parameters, whereas for the bounds in 

preventive types P1,2 and P1,3 are implicitly set to 0.  

E.9 Three or More Study Periods 

When age or follow up time is divided into more than two periods, the same 

formulae can be used for bounding conditional effects by simply adjusting the definitions 

of periods 1 and 2. “Period 2” will always be the period in which a conditional RD or 

RD* is being estimated, and “period 1” is always the aggregate of all preceding periods. 

This approach is demonstrated in the applied example that follows. 

E.10 Example: Racial Differences in Post-Stroke Mortality 

The Strong Heart Study (SHS) is a prospective cohort study of cardiovascular 

disease and its risk factors in American Indians.1 At baseline exams from 1988-1990 the 

SHS enrolled 4549 participants ages 45-74 years old, representing 13 tribes from three 

geographic regions. A 2004 publication reported higher stroke rates and post-stroke 

mortality for American Indians compared with Blacks and Whites in other cohort 

studies.2 Recently we pooled data from the SHS and the Atherosclerosis Risk in 

Communities Study (ARIC), a large population-based cohort study that enrolled Black 

and White participants from four geographic sites across the US,3 to compare stroke 

incidence and post-stroke mortality for American Indians vs. Blacks and Whites. The 

statistical analysis used logistic regression with marginal standardization to estimate risk 

differences adjusting for sex; age at stroke event; birth year; education; alcohol 

consumption; smoking; and prevalent hypertension, diabetes, and cardiovascular disease. 

We found that American Indians who experienced stroke had substantially higher risk of 

30-day mortality than their Black or White counterparts (Table E.2), but that the 

magnitude of difference attenuated in the analysis of cumulative risk through 1 year after 

stroke onset. One question with clinical and public health relevance is whether the 

smaller RD for cumulative 1-year mortality reflects temporal change in the magnitude or 

direction of racial differences in survival, for example if American Indians experience 

early barriers to receiving acute stroke-related healthcare but have better access to 
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rehabilitation and other long-term services. This question is best answered by estimating 

conditional effects. 

For this example we divided the first year of post-stroke follow up time into three 

periods (0-30 days, 31-180 days, 181-365 days). We estimated the cumulative RD for 

each period, and the conditional RD for 31-180 and 181-365 days after stroke onset. The 

population at risk for each conditional comparison was restricted to the subset of people 

who survived to the end of the preceding period. Cumulative risks were higher for 

American Indians than for Blacks or Whites in all three periods (Table 2), but magnitudes 

of difference decreased over time. Among the subset of people who survived at least 30 

days, there was no apparent difference in survival from 31-180 days after stroke onset. 

Among the subset of people who survived at least 180 days, American Indians appeared 

to have slightly lower mortality than Blacks and Whites.  

We theorized that although American Indian race could confer long-term survival 

benefits for some individuals, considerations such as the disproportionate burdens of 

many stroke risk factors among American Indians, well-documented barriers to accessing 

high quality healthcare, and chronic underfunding of the Indian Health Service—the 

major healthcare source for most Strong Heart Study communities—suggested causative 

marginal monotonicity for post-stroke mortality at the population level. Note that in this 

context causation reflects indirect effects on mortality from the same sociocultural factors 

that gave rise to modern racial categories, such as the stipulation that only enrolled 

members of federally recognized American Indian tribes are allowed to receive care from 

the Indian Health Service. As shown in Table E.2, using equation 6 with assumptions of 

individual-level causative monotonicity led to bounds around the conditional RDs that 

were consistent with long-term differences of similar magnitude as observed for the first 

30 days following a stroke event. Using equation 9 with assumptions of marginal 

causative monotonicity resulted in substantially elevated upper bounds for the true 

conditional RDs, and would require additional user-specified restrictions, such as limiting 

the relative magnitude of causative and preventive response types in , to provide 

meaningful context for interpreting the conditional effect. 
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E.11 Discussion 

Conditional effects suffer from a type of selection bias that can compromise the 

scientific integrity of public health and clinical trials research. Previous publications 

described the problem6,188 and advised estimating alternative effects, such as cumulative 

risk comparisons, that can be identified from observed data. We have described simple 

formulae to estimate bounds for the true effect measure when conditional comparisons 

are either unavoidable or are of primary interest to investigators. As demonstrated in the 

example, failure to consider conditional effects bias could lead to reporting diminishing 

effects or reversal of directionality beyond some threshold in age or time, when in fact 

those trends are not conclusively supported by the data. 

It can be difficult to understand the difference between conditional effects bias and 

other types of selection bias, the latter of which could theoretically be avoided by 

eliminating loss to follow up or other mechanisms for informative missing data. 

Conditional effects bias, in contrast, is a fundamental identification problem that persists 

even with infinite sample size and no missing data. Conditional effects bias cannot be 

fixed by study design or statistical analysis without imposing additional assumptions such 

as no effect of exposure in specific periods. Conditional effects bounds as described here 

can be used by analysts as a sensitivity analysis to contextualize findings. These bounds 

can also be estimated by consumers of published research, when investigators report 

sufficient descriptive information for estimating period-specific conditional and 

unconditional risks. Such information at minimum would comprise unconditional 

denominators for the target and substitute populations, and event counts for each 

population in each age category or time period. With loss to follow-up or attrition for 

reasons other than experiencing the outcome, this information should also be provided to 

allow accurate enumeration of the conditional denominators. 

Data do not always exist to allow estimation of the unconditional risks needed for the 

bounding equations described above. This problem is common in observational data if 

the original target population cannot be enumerated to calculate denominators for 

unconditional risks, or when follow up begins some length of time after exposure and the 

RD cannot be estimated for period 1. For example, in cohort studies that enroll middle-
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aged adults but evaluate exposures predating enrollment, period 1 risks are not directly 

observable and follow up should be viewed as starting in period 2. Bounding conditional 

effects in these scenarios requires substituting external information for the missing 

unconditional risk values. External information can reflect empirical estimates from other 

studies if such data are available, or the investigator’s best guess based on expert 

knowledge. Alternatively, it might be possible to identify values for unconditional effect 

measures that would lead to qualitative reversal of observed conditional risk 

comparisons. Other analytic methods could also be considered, such as Bayesian models 

that specify prior distributions on unobserved parameters. We hope the bounding method 

described here will increase awareness of conditional effects bias and provide a practical 

tool for quantifying its magnitude in applied research.  
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Table E.2. Post-stroke mortality among participants of the Strong Heart Study and 

Atherosclerosis Risk in Communities study. 

 Counts  Observed Risk Difference*  Conditional Effects 

Bounds 

 Deaths At risk  Cumulative Conditional  Monotonic Relaxed 

0-30 days 

AI 64 310       

Black 39 416  14 (6, 23)     

White 71 613  12 (3, 21)     

31-180 days 

AI 21 246       

Black 33 377  11 (2, 20) -1 (-7, 4)  0, 16 0, 35 

White 35 542  11 (1, 20) 1 (-5, 6)  0, 14 0, 31 

181-365 days 

AI 11 225       

Black 18 344  8 (-1, 17) -3 (-7, 2)  0, 13 0, 20 

White 24 507  8 (-1, 17) -2 (-6, 3)  0, 13 0, 33 
* Risk difference comparing American Indians to Blacks and Whites, adjusted for sex, age at 

stroke event, birth year, education, alcohol consumption, smoking, and prevalent disease 

(cardiovascular disease, hypertension, diabetes). 

 

Table E.1. Potential outcomes response types for binary exposure and binary outcome with age 

or follow-up time divided into two periods. 

 Period in which outcome would 

occur… 

Population proportions* 

Response type If not exposed If exposed Target Substitute 

Immune Ω** Ω PΩ,Ω QΩ,Ω 

Doomed 1 1 P1,1 Q1,1 

Doomed 2 2 P2,2 Q2,2 

Causative 2 1 P2,1 Q2,1 

Causative Ω 1 PΩ,1 QΩ,1 

Causative Ω 2 PΩ,2 QΩ,2 

Preventive 1 2 P1,2 Q1,2 

Preventive 1 Ω P1,Ω Q1,Ω 

Preventive 2 Ω P2,Ω Q2,Ω 

* Target population = exposed; Substitute population = unexposed.  
**Ω = Outcome will not occur in either age category or follow-up period 
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F.  Contribution and Future Directions 

This dissertation addressed three issues relevant to evaluating clinical and 

preclinical cerebrovascular disease in American Indians. In Manuscript 1 we found that 

the higher stroke incidence reported in a previous analysis of American Indians in the 

SHS persisted in a direct comparison to White, but not to Black, participants of ARIC. 

After adjusting for risk factors including prevalent hypertension and diabetes, stroke 

incidence in American Indians was only slightly elevated compared to Whites, whereas 

differences increased in magnitude compared to Blacks. Taken together, these findings 

suggest that diabetes-related disparities in American Indians may be important factors for 

understanding stroke disparities in this population, at least compared to Whites from 

communities represented in ARIC. In contrast to results for stroke incidence, our analysis 

not only supported the previous finding of higher 30-day and 1-year post-stroke mortality 

in American Indians, but suggested larger magnitudes of disparities after covariate 

adjustment compared to both Blacks and Whites. Interpretation of these results is limited 

by the fact that Black race in ARIC was highly correlated with residence in the stroke belt 

region of the US, and it is possible that stroke risk in American Indians would be closer 

to risk in Blacks from similar geographic regions.  

This analysis underscores the need for studies of stroke incidence and survival that 

include American Indians in sufficient numbers to allow for more nuanced evaluation of 

interracial stroke disparities across place and time. Unfortunately, the high costs and 

amount of resources needed to enroll cohorts of sufficient size and with long enough 

follow-up to evaluate stroke outcomes are insurmountable barriers to launching new 

studies in today’s funding environment. Instead, existing cohorts can be combined as 

shown here to expand the literature on multi-racial comparisons of stroke and other 

cardiovascular disease events that includes American Indians. Candidate cohorts could 

include the Cardiovascular Health Study (Blacks and Whites from four locations across 

the US),210 the Multi-Ethnic Study of Atherosclerosis (Blacks, Whites, Chinese-

Americans, and Mexican-Americans),211 or the Reasons for Geographic and Racial 

Differences in Stroke Study (Blacks and Whites).212 The Strong Heart Family Study, 

which recruited and examined about 3800 extended family members of 94 index 
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participants from the SHS, is another potential resource for analyzing stroke outcomes in 

AIs once adjudicated events are available with sufficient follow-up time to evaluate 

stroke incidence and fatality. Lastly, smaller hospital-based studies could feasibly be 

designed and funded to better understand post-stroke survival in Native populations, and 

to identify appropriate targets for public health intervention. 

In Manuscript 2 we addressed the need for a standardized protocol to adjust for 

selection bias in the SHSS. Comprising elderly surviving members of the SHS cohort, the 

SHSS is the only large sample of community-dwelling American Indians with brain 

magnetic resonance imaging, cognitive testing, and longitudinal data on risk factors for 

and incidence of cardiovascular disease. The SHSS therefore represents a unique and 

important opportunity to study not only cerebrovascular disease, but also other aging-

related conditions—such as Alzheimer’s Disease—that require access to brain scans and 

data on cognitive function and which have not been adequately studied in American 

Indians. Many analyses using SHSS data will potentially suffer from selection bias due to 

differential survival associated with exposures and outcomes.  

Marginal structural models using IPW are one method of adjusting for selection 

bias, and we propose a protocol that can be used as a guide for uniform application of 

IPW. Importantly, our approach strikes a balance between capitalizing on the breadth and 

depth of longitudinal data collection and minimizing the potential for introducing bias 

from model misspecification. Furthermore, we propose a slight adjustment to 

conventional stabilized weights that ensure appropriate inference to the desired target 

population when inclusion criteria correlate with predicted probabilities of selection. This 

adjustment is relevant not only to SHSS analyses that require excluding participants with 

prevalent stroke, but to other studies whose designs entail a similar combination of 

inclusion criteria and IPW adjustment for selection bias. In our example, stroke 

prevalence was low (< 10%), and it is not surprising that tailoring weights to account for 

stroke risk did not result in substantially different results than obtained by conventional 

stabilization methods. The proposed tailoring method could be more informative, 

however, when inclusion criteria lead to dropping a larger proportion of observations 

from analysis and if observations that are included in the analysis despite low predicted 
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probabilities of selection (and therefore large weights) simultaneously have high 

probability of failing to meet inclusion criteria.  

The relatively minor impact of IPW weighting for selection bias, however, also 

raises considerations about the relative benefit of this method given the time-intensive 

nature of its application. Designing the modeling approach, imputing data, and 

conducting appropriate analyses are not simple nor are they quickly implemented, and 

unless investigators anticipate strong selection bias in their data it could be more 

expedient and sufficiently informative to use other methods for sensitivity analysis. For 

example, spreadsheet-based adjustments in which investigators can specify possible 

magnitudes of differential selection probabilities take far less time and can quickly 

demonstrate approximately what level of selection bias would be necessary to 

qualitatively alter conclusions.213 Ultimately, a tiered protocol in which investigators only 

proceed to the more complicated IPW analysis if simpler methods indicate that such an 

approach is warranted may be preferable. 

In Manuscript 3 we addressed a pervasive identification problem that is not widely 

appreciated by applied researchers. Our goals were to provide an accessible description 

of conditional effects bias, and to present simple bounding formulae that reflect potential 

magnitude of the bias without requiring additional time-consuming or sophisticated 

statistical analyses. One limitation of Manuscript 3 is the problematic nature of bounds 

allowing for non-monotonic exposure effects in the target population. First, simply 

defining a real-world conditional population requires conceptually excluding individuals 

in whom exposure prevents the outcome from occurring in period 1. In a public health 

setting where overall average effects are of interest, this contortion may still yield 

meaningful results. Because it is impossible to conclusively identify which individuals 

would be excluded from the surviving target population, however, the constrained 

definition would not yield effect estimates that could readily be applied to any given 

individual in a clinical setting. Additional research or analysis would be required to 

predict a given person’s likelihood of being among the population proportions 

corresponding to preventive response types. Second, even if one accepts the conditional 

target population as presented, requiring no restrictions in relative magnitude of 
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preventive vs. causative response types beyond marginal monotonicity resulted in bounds 

that were too wide for useful interpretation. Future research could focus on narrowing 

bounds by directly inputting observed risk data into optimization algorithms, or by 

identifying bounds for a menu of additional user-specified constraints based on subject 

matter knowledge. Presenting a range of subjective, but minimally restrictive, constraints 

could facilitate more meaningful sensitivity analysis without requiring the assumption of 

individual-level monotonicity.  

Another important limitation of Paper 3 is that it only presents formulae for 

bounding RD comparisons on the absolute scale, whereas bounds are not provided for the 

more ubiquitous multiplicative effect measure of relative risk. This choice was partly 

driven by our inability to derive bounds for the relative risk that allow for non-monotonic 

exposure effects in the target population without requiring additional assumptions that are 

not necessarily supported by the data. Future research should explore the use of weak 

assumptions that allow derivation of bounds for the relative risk, for example specifying 

an upper limit that exceeds any value which would reasonably be expected in clinical 

trials or public health research (e.g., less than 10-fold difference). With this approach the 

challenge may be to find a balance between assumptions that aren’t too restrictive but 

still yield bounds are narrow enough to provide a useful estimate of potential conditional 

effects bias. Similarly, future research could focus on Bayesian methods that specify 

weak prior distributions around unidentified parameters and allow for evaluation of 

conditional effects bias under a range of transparent specifications. 

Taken together, these three papers contribute to the scant public health literature on 

stroke and cerebrovascular disease in American Indians, and more generally to the 

methodological toolbox for unbiased identification of effect measures in which estimates 

are conditioned on survival to some threshold defined by age or time since exposure. We 

hope this work will be accessible to applied researchers working to understand and 

remediate public health disparities defined by race and in other underserved populations. 
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G.  APPENDIX 

 

Hazard ratios for all covariates in the fully adjusted Cox regression model of incident 

stroke by race and birth cohort tertile. 

 Birth Years 

1914-1930 
 

Birth Years 

1931-1937 
 

Birth Years 

1938-1947 

 
Hazard Ratio 

(95% CI) 
 

Hazard Ratio 

(95% CI) 
 

Hazard Ratio 

(95% CI) 

Race:      

American Indians vs. Blacks 0.79 (0.61, 1.01)  0.73 (0.54, 0.98)  0.60 (0.44, 0.84) 

American Indians vs. Whites 1.14 (0.90, 1.45)  1.15 (0.85, 1.55)  1.08 (0.76, 1.53) 

Birth year 1.00 (0.97, 1.03)  0.99 (0.94, 1.04)  0.99 (0.93, 1.06) 

Female 0.80 (0.68, 0.94)  0.79 (0.64, 0.97)  0.85 (0.67, 1.08) 

Education (ordinal categories) 0.98 (0.88, 1.09)  0.78 (0.68, 0.90)  0.73 (0.62, 0.87) 

Current alcohol consumption 0.92 (0.78, 1.10)  0.86 (0.69, 1.06)  0.90 (0.70, 1.15) 

Current smoking 1.76 (1.47, 2.10)  1.99 (1.61, 2.45)  2.01 (1.58, 2.57) 

Body mass index 1.00 (0.98, 1.01)  0.99 (0.97, 1.01)  1.01 (0.99, 1.03) 

Congestive heart failure 1.37 (1.01, 1.85)  1.13 (0.75, 1.70)  1.34 (0.81, 2.22) 

Coronary heart disease 1.54 (1.15, 2.05)  2.27 (1.57, 3.27)  1.84 (0.99, 3.42) 

Hypertension* 1.30 (1.14, 1.47)  1.29 (1.11, 1.49)  1.33 (1.11, 1.60) 

Blood pressure ≥ 140/90 

mmHg at baseline 
1.30 (1.07, 1.58)  1.35 (1.04, 1.74)  1.61 (1.17, 2.20) 

Diabetes** 1.19 (0.98, 1.44)  1.13 (0.87, 1.47)  1.39 (1.01, 1.90) 

Fasting glucose ≥ 126 mg/dL 

at baseline 1.27 (0.87, 1.85)  2.01 (1.20, 3.35)  1.63 (0.89, 2.96) 

CI = Confidence interval 
* Ordinal categories (normal, borderline, hypertensive) 
** Ordinal categories (none, impaired fasting glucose, diabetic) 

 

 

 


