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Abstract

Observational citizen science is an effective way to supplement the environmental

datasets compiled by professional scientists. Involving volunteers in data collection has

the added educational benefits of increased scientific awareness and local ownership of

environmental concerns. This thesis provides an in-depth exploration of observational

citizen science and the associated challenges and opportunities for HCI research. We

focus on data quality as a key lens for understanding observational citizen science,

and how it differs from the related domains of crowdsourcing, open collaboration, and

volunteered geographic information.

In order to understand data quality, we performed a qualitative analysis of data qual-

ity assurance practices in River Watch, a regional water quality monitoring program.

We found that data quality in River Watch is primarily maintained through universal

adherence to standard operating procedures, rather than through a computable notion

of “accuracy”. We also found that rigorous data quality assurance practices appear to

enhance rather than hinder the educational goals of the program participants.

In order to measure data quality, we conducted a quantitative analysis of CoCoRaHS,

a multinational citizen science project for observing precipitation. Given the importance

of long-term participation to data consumers, we focused on volunteer retention as our

primary metric for data quality. Through survival analysis, we found that participant

age is a significant predictor of retention. Compared to all other age groups, participants

aged 60-70 are much more likely to sign up for CoCoRaHS, and to remain active for

several years. We propose that the nature of the task can profoundly influence the types

of participants attracted to a project.

In order to improve data quality, we derived a general workflow model for observa-

tional citizen science, drawing on our findings in River Watch, CoCoRaHS, and similar

programs. We propose a data model for preserving provenance metadata that allows for

ongoing data exchange between disparate technical systems and participant skill lev-

els. We conclude with general principles that should be taken into consideration when

designing systems and protocols for managing citizen science data.
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Chapter 1

Introduction

1.1 The Domain: Observational Citizen Science

Citizen science, a form of scientific collaboration that engages non-professionals in re-

search, is an increasingly valuable means for collecting robust scientific data sets1 . The

benefits of including volunteers in scientific research include local ownership of environ-

mental concerns, an increased “sense of place”, and improved understanding of scientific

matters, as well as enabling new research that was previously impossible. While ama-

teur science is arguably the oldest form of science, its resurgence in the last two decades

– fueled in a large part by the Internet – has profoundly transformed the scalability of

the scientific enterprise.

Indeed, recent high-profile projects like Galaxy Zoo [82, 84] are largely virtual, taking

advantage of the the web as infrastructure to facilitate data processing via human

computation. These virtual citizen science (VCS) [119] projects share features with

the crowdsourcing style of distributed work [39], in which large contributor bases are

usually required for success. Given the large scale and technical focus, these projects

are also attractive platforms for robust quantitative research in computer science and

related domains.

However, the majority of citizen science projects still focus on collecting observa-

tional data of such phenomena as weather and precipitation, air and water quality, and

1 This section was adapted from the introduction to [103].
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species abundance and distribution. This form of citizen science, which we will here-

after refer to as observational citizen science (OCS), has actively contributed to science

and decision-making for over 100 years [26]. While most such projects now also take

advantage of the web, field-based data collection tasks will always involve a physical

component, leading to interesting tensions in the use of Information and Communica-

tion Technologies (ICT) for citizen science.

In contrast to the near universal scale of VCS, the geographic and human scale of

OCS projects can vary widely. On one end of the spectrum are large-scale projects like

the Community Collaborative Rain, Hail & Snow Network (CoCoRaHS) [14], a network

of precipitation observers across North America; and eBird, which collects global bird

abundance and distribution data [108]. Approximately 150,000 active participants gen-

erate around 5 million observations of birds per month for eBird, with a total data set

size of around 140 million records in mid-2013. The data are used for scientific research

as well as policy and land management decisions. CoCoRaHS data are requested nearly

3,000 times a day; as of early 2017, the largest of several data sets includes 35 million

data points, each representing daily precipitation for a specific location. Notable data

users for CoCoRaHS include the U.S. National Weather Service, National Climatic Data

Center, and other climate and weather organizations.

On the other end are local scale projects, sometimes referred to as community-based

monitoring [123]. These projects are often organized by local community leaders who

are generally experts in the topic area, but may or may not have prior professional expe-

rience. Projects like River Watch [101] and Mountain Watch [118] usually have specific

conservation or social justice goals. These projects benefit from working with support

from, and exchanging data with, government entities and other related organizations.

For example, River Watch data is shared with the Minnesota Pollution Control Agency

and becomes a part of the official state record for the rivers monitored by the program.

Mountain Watch data were used in testimony to lawmakers to demonstrate the value

of maintaining Clean Air Act protections.

In addition to differences in scale, there are profound differences in task structure

in OCS versus VCS. While VCS projects can often verify results by having multiple

volunteers complete the same classification task, OCS data are much more individual,
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Figure 1.1: Commonly referenced “Dimensions of Data Quality”[112]

time and location-sensitive2 . OCS data are often unique observations of changing

natural phenomena; as such, they may not be directly verifiable. An eBird project

leader described the act of observation as “the intersection of a person, a bird, a time,

and a place,” emphasizing that for these data, the observation is never repeatable.

How do these differences play out in practice? Observational citizen science involves

a number of physical constraints that directly affect the contribution workflow, the

structure of the data, and the metrics available to measure success. There is relatively

little quantitative research evaluating these unique aspects of observational citizen sci-

ence. This gap can potentially lead to faulty assumptions about the applicability of

system design recommendations made in related domains [118].

This thesis provides a significant step toward closing that gap.

1.2 The Lens: Data Quality

There are a number of possible ways to characterize OCS, as well as to situate it among

other application domains that receive more attention in the computer science literature.

However, we propose that data quality provides a uniquely powerful lens with which to

understand this domain, as well as the opportunities for computers to support it.

Data quality is notoriously domain-dependent, and it is difficult to define a universal,

easily computed operationalization. Figure 1.1 shows a number of common dimensions

2 The location-dependent nature of field observations can also lead to complex privacy issues, which
fall outside of the scope of this thesis.
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of quality, derived from a literature review by Wand and Wang [112]. While “accuracy”

is the most commonly referenced dimension, it is hard to operationalize without under-

standing the context in which it is being applied. Most research disciplines thus define

data quality simply as “fitness for its intended purpose” [43].

In OCS, data quality is often critical to achieving project goals, especially when the

data may be used by resource managers and government agencies to make assessments

of the environment and resulting policy decisions [103, 121, 66]. Without an assurance

of data quality, domain experts may question the quality of the information, since it

is maintained by volunteers with unknown and varying levels of knowledge and skill.

Further, OCS contributions consist of highly individualized data that is difficult to

independently verify. Data quality in OCS is often maintained via training and standard

protocols (“get it right the first time”), rather than the iterative improvement workflows

in Wikis and similar systems that deal in externally verifiable facts.

“Improving data quality” is the goal of the technical approach proposed in the last

chapters of this thesis. But in order to improve quality we first need to measure it, and

in order to measure it we need to understand how it is operationalized. These questions

touch at nearly every aspect of how OCS projects are organized. In fact, we argue

that most of what is needed to fully understand an OCS project can be learned from

knowledge of how that project manages data quality concerns.

Thus, data quality is the primary lens that connects all of the chapters in this thesis.

1.3 Related Domains

This thesis builds on related work in the domains of crowdsourcing, open collaboration

(peer production), and volunteered geographic information. At a high level, all of these

domains involve community-maintained artifacts of lasting value created via shared web-

based repositories [6, 17]. For this reason, all of these domains regularly grapple with

the same key questions addressed in this thesis: How can we understand, measure, and

improve the quality of data contributed by volunteers? Thus, while there are important

differences, these domains are useful for grounding and situating this work.

In some sense, citizen science overlaps with and could be considered just another
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Figure 1.2: Spectrums of task design in citizen science and related domains.

term for these domains. However, relatively unique to citizen science is a focus on sci-

entific inquiry (often toward environmental questions), and usually a more hierarchical

approach than peer production models. Citizen science is most often used to describe

projects with highly domain-specific tasks, defined by expert scientists and executed by

volunteers. This unique relationship between professional scientists and volunteers in

citizen science means that domain-specific research is needed to understand, for exam-

ple, how participant motivations change over time [93].

Using data quality as a lens, we can plot these domains out along a number of

spectrums that characterize the nature of project work in each domain. These spectrums

are shown in Figure 1.2. The key differences relate to the structure of the data collection

task, the primary quality control mechanism, and the “localness” of the data being

collected [36].

1.3.1 Crowdsourcing (Virtual Citizen Science)

Crowdsourcing is a vague term, used to describe both paid microtasking work (e.g. Me-

chanical Turk [9, 91]), as well as large-scale unpaid image classification [60]. This second

definition is often used interchangeably with virtual citizen science [119]. Throughout

this thesis, we use crowdsourcing to refer primarily to large-scale VCS projects, and not

paid microtask work.

VCS crowdsourcing projects typically do not require any local knowledge or in-

depth training. The data collection task is typically defined in such a way that it can

be performed in a short time by anyone with an internet browser. The archetypal VCS

project is Galaxy Zoo, which was originally created to facilitate the classification of a



6

large collection of galaxy images. Galaxy Zoo has since expanded into a number of

similar classification projects, collectively known as the Zooniverse [87]. In Galaxy Zoo

and most VCS projects, the key QC mechanism is consensus - when multiple people

provide the same classification for the same image, it is likely to be correct.

1.3.2 Open Collaboration / Peer Production

Open collaboration, or peer production, is a process for involving a large number of

contributors in the generation of useful content. One of the most prominent and suc-

cessful examples of an open collaboration website is Wikipedia. A guiding principle of

Wikipedia is that anyone in the world can edit nearly any article without establishing

relationships with existing contributors 3 . While some articles are location-based, most

involve general knowledge.

Like VCS, peer production relies on a form of consensus as the primary quality con-

trol mechanism. However, while consensus in VCS is well-defined (typically by project

administrators as a numeric threshold), in Wikipedia it is more nuanced and relies on

community norms and discussion.

Previous work on Wikipedia has confirmed that, like other forms of peer produc-

tion, the majority of content is created by a minority of contributors. This has been

characterized by the power law comparing the number of distinct authors per article

[110] and the number of revisions per article [1]. While Kittur et al. noted a decrease

over time in the relative proportion of contributions by power users [48], Priedhorsky

et al. found that the contributions by top contributors are more likely to stick around

long enough to be viewed and that this effect has been increasing over time [79].

1.3.3 Volunteered Geographic Information

Volunteered geographic information, or VGI [31], is the term most commonly used in the

geospatial community to describe geo-referenced contributions from volunteers. While

VGI systems come in many forms, the implementations most relevant to this discussion

are geowikis. Like text wikis, geowikis rely on a collaborative refinement model. The

most prominent geowiki is OpenStreetMap [32].

3 In practice, the Wikipedia community has evolved into a hierarchy of administrators and core
contributors with more power than other users [10].
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OpenStreetMap is a community-based effort, and there are numerous real-world

opportunities for participants to meet each other. Hristova et al. found that mapping

parties have a positive impact on both recruitment and retention [41]. Palen et al.

found that key crisis events served as a catalyst for better community organization

[74]. Hristova et al. found that the unequal contributions found in the power law are

somewhat attenuated within local communities of OpenStreetMap participants working

together [40].

1.3.4 Observational Citizen Science

Wiggins and Crowston list five exhaustive categories of citizen science projects [119]. For

the purposes of this discussion, we contrast Virtual projects with the four non-virtual

categories (Action, Conservation, Investigation, and Education) which we consider vari-

ations of observational citizen science. Depending on the context, OCS can also be

referred to as participatory sensing, participatory action research, volunteer monitor-

ing, or community based monitoring [16]. We use observational to draw attention to

two key aspects: the structure of the task - which requires physical presence at the

phenomena being observed, and the structure of the data - which is typically a time

series of observations.

Like VCS, observational citizen science projects are typically commissioned by sci-

entific experts and executed by volunteers. These projects are often designed to engage

non-professionals in a rich shared appreciation of the natural environment and the sci-

entific method. This leads to research focusing on participant motivations and learning

outcomes [5, 52, 61, 94, 125].

Other projects are more similar to open collaboration communities, in that citi-

zen volunteers are treated not only as collectors of data but as fellow scientists [51]

and participate in defining scientific goals as well as executing them [58]. Conrad and

Hilchey [16] differentiate between a number of approaches to citizen science with vary-

ing levels of participation, ranging from traditional, centralized “consultative” programs

to grass-roots, bottom-up “transformative” communities, while noting that the various

approaches to citizen science are not necessarily mutually exclusive (c.f. [54]).

Regardless of the approach, OCS projects are centered around the generation of

knowledge that is highly localized. This means that consensus-based QC mechanisms are
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often secondary to training, which often is structured around personal relationships with

organizers and other volunteers. These characteristics provide a unique opportunity for

CSCW and HCI to explore the design space that addresses the tensions, tradeoffs and

synergy between the relational and data collection goals in OCS [7, 23, 42, 99, 53, 101].

1.4 Thesis Overview

The primary outcome of this research is a thorough examination of the unique charac-

teristics of observational citizen science, with a goal of better informing the design of

data management platforms for this domain. This includes three contributions:

• Understanding data quality via a qualitative description of data management

practices and perceptions of quality control, derived via interviews and partici-

pant observation within the River Watch community-based monitoring program

(Chapter 2)

• Measuring data quality via a quantitative model for participant retention that

integrates demographics, geographical constraints, initial participation habits -

statistically derived from millions of observations submitted to a national-level

citizen science program (Chapter 3)

• Improving data quality via the design and implementation of a data model

for retaining provenance, derived from an exhaustive overview of the general OCS

workflow (Chapter 4)

In the remainder this thesis, I discuss each of these three studies before concluding

with a summary of design implications and directions for future work.



Chapter 2

Understanding Data Quality:

Task Structure in River Watch

2.1 Introduction

As discussed in the last chapter, citizen science and open collaboration are both effective

ways to generate valuable repositories of information by spreading the effort out across

communities of volunteers. However, domain experts in both fields often express concern

about the quality of the contributed data.

Open collaboration communities tackle these quality concerns in different ways. One

approach is developing a set of best practices that participants are encouraged to follow,

such as Wikipedia policies [10]. These practices promote quality by formalizing the work

needed to maintain it. However, rigorous enforcement of policies can become a detriment

to community relationships and potentially come into tension with other project ideals,

such as openness and ease of contribution [90, 122]. For example, Halfaker et al. have

demonstrated that the increasingly strict enforcement of quality control by power users

has become a deterrent to would-be newcomers to the community [33]. Among other

things, this means that the coverage of various topics in Wikipedia is biased towards

the interests of its most active contributors.

In contrast with Wikipedia, the level of rigor required in an observational citizen sci-

ence community can depend on its emphasis. More interpretive approaches may accept

that data will have lower quality, emphasizing instead awareness, participation, and

9
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educational aspects [97]. However, many projects do have a primary goal of collecting

high-quality environmental data, in which case these projects must define precise and

straightforward data collection protocols to encourage quality while not discouraging

participation or subverting educational goals [66].

In this chapter, we investigate data quality concerns in the context of River Watch,

an OCS community with both data collection and educational emphases based primarily

in northwest Minnesota. We attempt to answer the following general research questions

in that context.

RQ1. How is quality defined in an OCS community? How is it measured and opera-

tionalized – both by volunteers within the community and by “experts” on the

periphery?

RQ2. How is quality maintained – i.e. how is community work organized to maintain

quality? What kinds of errors might occur and how are they addressed?

RQ3. How is quality balanced among other community goals? Can the strictness that

high quality requires come into tension with those goals?

To answer these questions, we interviewed River Watch participants, ranging from

high school students to the staff of local government agencies. In the rest of this chapter,

we will first discuss related work and the background of River Watch, then present

results from the interviews and implications for the measurement and improvement of

data quality in OCS communities like River Watch.

2.2 Related Work

2.2.1 Defining Quality

With the abundance of data and information resources available to organizations, quality

is of critical importance. Low quality data can lead to inefficiencies and poor decisions

that can have severe financial and social impacts. Thus, the field of data and information

quality1 is an active area of research [112]. While data quality may seem to be an

1 Throughout this thesis, “data quality” is used to refer to both data and information quality.
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intuitive concept (e.g. “correctness”), it is impossible to propose a precise, universally

meaningful definition [106, 112, 114]. The concept of data quality must instead be

understood in the context of the domain in which it is being applied and the purpose

for the data.

As discussed in Chapter 1, Wand and Wang identify a number of common dimensions

used in data quality research [112]. These consist both of internal dimensions (such

as accuracy, reliability, and consistency) and external dimensions (such as timeliness,

relevance, and interpretability). Internal dimensions are focused on the design and

processes for producing data products, and can be understood from the perspective of

the individuals responsible for producing the data. External dimensions are focused on

the uses (or usefulness) of data, and can be understood from the perspective of data

consumers.

Strong et al. assert that quality must be understood primarily from the perspective

of the consumer [105]. Wang and Strong investigated quality from this external per-

spective, by conducting surveys of consumers of data [113]. In this chapter, we focus

primarily on the processes and individuals responsible for collecting data. Therefore,

we discuss the contextual definition of data quality primarily along the line of the in-

ternal dimensions discussed by Wand and Wang. We justify this approach based on the

particulars of this domain, as discussed below.

2.2.2 Quality in Wikipedia

In Wikipedia, quality has investigated from the external perspective, as in Giles’ well-

known study [29] that investigated the quality of articles by having independent review-

ers evaluate them. However, because in open collaboration the line between producer

and consumer is blurred [106], it is also valuable to study data quality from the per-

spective of the community itself.

Stvilia et al. [106] analyzed Wikipedia logs to understand how work is organized to

promote quality, with the goal of finding how the Wikipedia community understands

quality, and what quality assurance practices are present. We intend to answer similar

questions in River Watch, and this work is in part a response to the call to extend

their work to other open collaboration communities. A challenge in doing so is that

the quality assurance practices in River Watch largely happen offline, so there is not



12

currently a robust repository of data available to track those practices quantitatively as

there is in Wikipedia. We propose such a system in Chapter 4.

Our approach is more similar to that of Riehle [90], who investigated quality (among

other concerns) by interviewing key contributors to Wikipedia. A common theme in

Riehle and in Stvilia et al. is the discussion of various identifiable roles for maintaining

quality in Wikipedia. Similarly, we have identified a number of specific roles in River

Watch and have made a point to interview representatives from each of those roles.

There have also been various attempts to compute quality in Wikipedia automati-

cally, for example in Halfaker et al.[34]. The metric proposed in that work relies on the

key assumption that the editors of Wikipedia are the best judges of the quality of contri-

butions to Wikipedia. Similarly, our work assumes that quality in River Watch is best

understood by those actively involved in the program, and the quality improvements

we propose are designed to leverage their existing knowledge.

2.2.3 Quality in OCS

The quality of data in OCS programs has been evaluated from both external and in-

ternal perspectives. Nicholson et al. compared volunteer and professionally-collected

monitoring data statistically, finding that the data quality is comparable for certain

parameters [66]. Hochachka et al. describe the robust statistical techniques used to

accurately estimate species distributions based on observations submitted by eBird vol-

unteers [37]. Sullivan et. al describe how these filters in combination with robust human

computation processes help ensure a high quality dataset that can be used by a num-

ber of external agencies [107]. By contrast, Nerbonne and Nelson [63] operationalized

data quality in community-based monitoring groups based on an understanding of the

procedures used by each group and the quality assurance plans in place. We found this

latter, primarily internal approach to be more valuable in the context of River Watch.

Citizen science has long been recognized for its educational benefits [66, 97], and is

often incorporated in school settings as part of the curriculum or as an extra-curricular

activity. Depending on the approach, there can be a tension between emphasizing data

quality and promoting educational goals. River Watch prioritizes both education and

data quality, so in this study we explore how those priorities interact.
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2.2.4 About River Watch

River Watch is a community-based monitoring program that collects water quality data

in the basin of the Red River of the North2 . The program started in 1995 with 4

high schools, and now consists of 35 schools monitoring more than 200 sites on the Red

River and its tributaries. As stated on the website3 , River Watch is designed to help

students:

• Develop a “sense of place” and connection to the local watershed.

• Learn field-based physical and biological ambient water quality monitoring skills.

• Establish connections to scientists engaged in watershed science.

• Become active contributors to the scientific community.

• Develop workplace skills.

• Provide important services to their local watershed.

While these educational aspects of River Watch are important, the data collected

by the schools are also a valuable resource for the Minnesota Pollution Control Agency

(MPCA) and local watershed districts in the basin. Due to limited staff at these agen-

cies, many of the sites monitored by River Watch would not otherwise be monitored.

Data collected through River Watch are combined with data collected by professional

monitors and used to determine whether a particular water body is impaired, and even

to identify specific sources of pollution. Because of the potential consequences of this

process, it is critical that the data be of good quality.

There are a wide variety of water quality4 parameters measured by River Watch

teams, and a detailed discussion is beyond the scope of this chapter. However, they can

be broadly categorized in the following different types:

2 “River Watch” is not a unique name for a program of this kind. There are similarly named
programs around the world and even within the state of Minnesota [21]. However, for the purposes of
this thesis, River Watch refers specifically to the citizen monitoring program operating in the Red River
basin under the auspices of the International Water Institute.

3 http://iwinst.org/education
4 Note that water quality is an environmental concept altogether different than the issues of data

quality being addressed in this chapter. In effect, we are studying the quality of water quality data.

http://iwinst.org/education
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• Subjective descriptions of the state of the river (appearance, recreation suitability,

field observations)

• Measurements taken by lowering an electronic probe into the water (pH, Dissolved

Oxygen)

• Measurements taken by sending a sample of the water to a lab for analysis.

This process presents a number of additional quality concerns, including chain-

of-custody forms, holding times, and lab quality control. River Watch data is

primarily field-based, so we will not address lab concerns in this chapter.

2.3 Methodology

I have been working with the project for about ten years as the designer and maintainer

of the project’s central data management platform 5 . Therefore, a practical goal of

this project was to identify quality concerns in the River Watch data collection process,

in order to address them through technological means where possible. We first explored

how data quality is operationalized by the River Watch participants and leadership, by

conducting a qualitative study of the River Watch program, involving both observation

and interviews, as in Ribes and Finholt [89].

River Watch does not consist only of individual teams collecting data in isolation and

submitting it to a central repository. It is a geographically localized community project,

and there are multiple occasions for interaction with other participants. I attended at

least one of each of the following activities:

• Annual River Watch Forums, in which representatives from nearly all of the schools

gather for a day to share ideas and present posters detailing the lessons they gained

from the previous monitoring year.

• Monthly curriculum committee and student leadership meetings, involving a sub-

set of River Watch schools and coordinators meeting to set educational goals.

• Annual training and certification for River Watch and other water quality moni-

toring programs in the Red River basin.

5 https://river.watch/

https://river.watch/
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• Monitoring Advisory Committee meetings, where coordinators meet with agency

staff and other water quality monitors to discuss and refine common procedures.

• Data collection field trips with River Watch schools and coordinators.

I also interviewed 15 participants from a number of distinct roles (see Table 2.1).

Most of the individuals interviewed are actively involved in River Watch or otherwise

supportive of it. We discuss the results of our study below.

N Description

Students 7 Teams of high school students form the primary volunteers in
River Watch, and are usually responsible for doing the actual
monitoring activities.

Teachers 3 Each River Watch team has an adult adviser, most often a
natural science teacher. Teachers are generally responsible for
making sure the students “stay on task” during monitoring
trips, and work to integrate River Watch into curriculum goals
where possible.

Coordinators 3 River Watch coordinators form the primary leadership of the
program, and are responsible for training volunteers and pro-
moting the program. While they are quite knowledgeable in
their own right, they work closely with agency staff to define
monitoring goals and procedures. They also work closely with
schools and local universities to define and promote the educa-
tional and scientific goals of the program. Coordinators play a
key “gatekeeper” role in that they are directly accountable to
the MPCA for ensuring the quality of the data collected.

Agency Staff 2 MPCA and watershed district staff are responsible for setting
monitoring goals and formalizing standard operating proce-
dures. These are the “experts” in the domain, and while those
we interviewed are supportive of River Watch they are not
involved in the day-to-day operation of it.

Table 2.1: Roles in River Watch
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2.4 Results

2.4.1 How is quality defined?

RQ1. How is quality defined in an OCS community? How is it measured and opera-

tionalized – both by volunteers within the community and by “experts” on the periphery?

Before designing systems for improving data quality, it is critical to understand how

quality is understood by those responsible for maintaining it [112]. Our initial goal in

studying this issue was to define metrics that could be computed on individual pieces of

data. However, through the interviews it became clear that a “data-centric” approach

to quality was incomplete.

At the start of each interview, participants were asked to define “data quality” in

their own words. While the question was intended with the assumption that “quality”

is a property of “data”, a plurality of participants responded by describing quality

assurance practices in River Watch, essentially answering the question “how is data

quality maintained?” (our second RQ) rather than “what is quality?”. As one teacher

put it:

“When I think of data quality, I think of protocols – someone monitoring

the students while they’re conducting the tests so that those protocols are

followed.”

This participant went on to describe other aspects of data quality - data integrity,

accurate transcription, and correct interpretation, before concluding:

“Data quality seems to me then to encompass a wide range of things – from

the sampling procedures all the way to explaining what it means; and doing

it as accurately as you can.”

Quality in River Watch is operationalized in the methods used to collect and under-

stand the data, rather than merely being a computable attribute of the data. Thus, the

measurement of quality in River Watch is inseparable from the actions used to maintain

it. Quality is not a static attribute but a set of actions; it is not just an adjective but

also a verb.
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Dimensions of Data Quality. This perspective can be further examined by ex-

ploring data quality in the context of the dimensions identified by Wand et al. [112].

While these dimensions were not used explicitly to frame the interview questions, they

serve as useful lenses for discussing how data quality is perceived. Reliability, accuracy,

and consistency in particular were concepts that came up often. The definitions of some

of these terms are not universal (even within data quality research), so it is important

to define what these mean in the context of River Watch.

Reliability

Reliability refers to the trustworthiness of the data, and its usefulness for answering

pertinent questions about the watershed6 . Implicit in the term is that there is someone

that is relying on the data. River Watch data is relied on by the MPCA and others

to make assessments of water quality and to make decisions that can cost millions

of dollars. One teacher in particular described how their team had identified severe

issues with turbidity in their watershed. The reliability of their data was particularly

important due to the potential political implications of their findings.

“If you’re trying to tell people that we have a lot of sediment, and a lot of

runoff – and maybe we don’t have as much as what we’re saying – that might

create some hard feelings. Because a lot of it gets pointed at the agriculture

and if our data would not be correct, maybe we’re pointing fingers where we

shouldn’t be. But we feel that our data is consistent, and has been correct

in that particular area.”

Unreliable data would hurt the reputation of the program, as another teacher noted.

“If it’s going to be reliable, and River Watch is to be respected among the

professionals, I think data quality has to be right at the top. Because you

want credibility with other professionals.”

On a more practical level, the longevity of the program is at stake, according to one

coordinator:
6 Strictly speaking, reliability is typically defined in data quality research as an internal dimension

describing the process for generating data. In this sense, it is closely related to consistency, as discussed
later in this chapter.
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“If you don’t have good quality data why bother even doing the project –

that was the selling point for the funders from watershed districts to support

the program.”

Participants were also generally concerned with the effect poor data could have on

the conclusions drawn by others. As one student put it:

“Other people look at it, and base their research and stuff off our data we

collect, so it kind of has to be right, or else their stuff will be messed up.”

The importance of producing data that agencies and scientists can rely on is clear to

River Watch participants at all levels. To understand what factors affect the reliability

of River Watch data, we turn to the other two lenses.

Accuracy

Accuracy in this context means how well the values reported represent the actual state

of the stream. With our initial data-centric approach, accuracy initially stood out to us

as the “obvious” key lens for representing and measuring data quality, and this view is

common in the literature [112].

Accuracy seemingly provides an obvious metric for computation: given a known

ground truth, it is relatively simple to operationalize the accuracy as the minimization

of error between the measured value and the ground truth. For example, Nicholson

et al. [66] computed relative accuracy by comparing the average of volunteer-collected

data with that of professionals. However, there are a couple of key challenges that

significantly reduce the usefulness of such an approach when evaluating the quality of

individual values.

You can’t measure the truth. Many of the sites monitored by River Watch

teams have no one else monitoring them, so there is often no other data available to

make comparisons against. When sites do have multiple monitors, they will usually visit

at different times or for different reasons. For example, River Watch teams typically

sample at a regular monthly interval, while professional monitors may have a specific

purpose for their sampling, such as going out immediately after a rain event. In this

case, one might expect River Watch data to actually be more representative of average

stream conditions than the data collected by professionals.
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This brings up a broader concern with metrics that attempt to demonstrate the accu-

racy of volunteer-collected data versus professionally-collected data by simply comparing

them numerically. A numeric difference can be computed, but it has no directionality,

unless one assumes a-priori that professional data is always more accurate. One agency

staffperson, while admitting that their view was not universally shared among fellow

experts, had this to say:

“I don’t believe that I can take any better sample than a student – if we’re

both trained exactly the same way and it’s something that they are physi-

cally able to perform.”

Truth is unattainable. More significantly, in order to measure the accuracy of an

individual data point, it is necessary to have a clear definition of the “actual value” [114].

In the field of water quality sampling this is not as straightforward as it may seem. One

coordinator noted that monitoring data consists basically of point samples in a contin-

uum of values. Fluctuations for various parameters (such as Dissolved Oxygen) happen

throughout the day and continuous monitoring is needed to have a complete picture.

With measurements being taken from a relatively small cross-section of space-time, it’s

hard to say that any single value is completely representative of stream conditions.

Accuracy is certainly important to River Watch and its partners, but it is difficult

to operationalize for the reasons given above. Perhaps because of these difficulties,

agencies that rely on River Watch data have a different basis for their trust. This basis

can be discussed under the lens of consistency.

Consistency

Consistency in River Watch is best understood in terms of the practices used to collect

the data. In order to compare data collected at two different times or by two different

people, it is critical that the data is collected in exactly “the same way, every time” so

that any differences that are found are real and not due to inconsistent procedures. The

goal is to minimize “variables” as much as possible, so that data can be meaningfully

compared.

Follow the SOPs. Consistency in River Watch is maintained through standard

operating procedures (SOPs) that cover everything from equipment calibration to taking
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the actual reading. In spite of the name, it is not uncommon for various monitoring

groups to create SOPs specific to their project goals. This means that while data within

each project may be consistent, it cannot be easily be compared with data from other

projects. This means the data is effectively useless for any large-scale analysis.

To avoid this scenario, nearly every water quality monitor in the Minnesota portion

of the Red River basin, from River Watch volunteers to paid watershed district staff,

have agreed since 2001 to follow a standardized set of SOPs [86] throughout the basin.

These SOPs are defined and maintained by an advisory committee with representatives

from River Watch, multiple local watershed management agencies, and the MPCA.

While students are usually the ones doing the actual sampling, the teacher is always

observing to make sure that everyone “stays on track” and follows the SOPs. Occasion-

ally a coordinator will come along to observe how well SOPs are being followed, but they

will try to avoid directly participating in the process. To further promote consistency,

each student may be assigned a specific role on the team. One student may be assigned

to run the Sonde, another will make a reading from the transparency tube, and a third

will take notes. One teacher noted that “We try to let the kids do what they enjoy, I

think that helps with quality.”

Consistency vs. Accuracy. Consistency in River Watch is certainly emphasized

in order to promote accuracy, but the concepts could theoretically come into conflict.

One could imagine a particular SOP that ends up “consistently” over-estimating or

under-estimating a particular parameter. This hypothetical scenario was brought up to

one student, who responded:

“It could be consistently wrong, but at least it’s all consistently wrong I

guess. I mean as long as – if someone that knows what they’re doing, like

a qualified person knowing ‘Well, this is the steps that you need to take’,

I think it’s safe to say that as long as you follow those steps to your best

ability, and everyone does the same, that you’re gonna get good test results.”

We noted above how an accuracy-based approach to quality might evaluate data by

comparing values collected by different teams. Instead, a consistency-focused approach

requires SOPs to be followed so that data from different teams can be meaningfully

compared.
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Measuring consistency. How can consistency be operationalized in River Watch?

One of the standard procedures provides a metric. Each monitoring team generally

visits several sites on the same day. At least once out of every 10 visits the team is

expected to take a field duplicate measurement immediately after their first sample.

Consistency can then be measured by computing the relative percent difference between

the sample and its duplicate. If the RPD is consistently outside a given range (30% for

some parameters), monitors are encouraged to “evaluate your sampling procedures and

think of ways to make improvements” [86].

River Watch participants in all roles appreciate the value of SOPs and the consis-

tency they provide. Students and teachers alike emphasized the importance of doing

everything the “same way, every time”. River Watch coordinators partially base their

assessment of the quality of each school’s data on their knowledge of how good that

school is at following SOPs. Agency staff, in turn, base their trust in River Watch data

on the assurance from the coordinators that SOPs are in place.

Summary

In order for data collected through River Watch to be reliable, it must provide an accu-

rate assessment of stream conditions. The primary way accuracy is enforced is through

consistency ; by following standard operating procedures. Based on our findings, it seems

consistency is the most effective lens through which data quality can be operationalized

in the context of River Watch and similar citizen science projects.

Significantly, official agencies trust River Watch data because of the plans in place

to ensure quality, not because of quality-ensuring computations they perform on the

data directly. The question that coordinators and agency staff seem to be asking is

not so much “Is this data completely accurate?” (hard to answer) as “Did you follow

consistent procedures when collecting this data?” (easier to answer). However, in order

for agencies to use River Watch data it must be provided to them. We discuss the

current process for managing and submitting data in the next section.

2.4.2 How is quality maintained?

RQ2. How is community work organized to maintain quality? What kinds of errors

might occur and how are they addressed?
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The end-to-end process of collecting and submitting River Watch data to the MPCA

has a number of steps, many of which involve data entry or manipulation and are not

explicitly covered by SOPs. We wanted to identify any potential deficiencies in the

current process that could be addressed by technological means. We therefore asked

participants how errors occur, how they are identified, and how they are resolved.

Potential Sources of Error

From the interviews, we learned that essentially all potential errors in the data fall into

these two categories:

• Data Collection Errors. These are errors “at the source” due to miscalibrated

equipment or incorrect methods. As noted above, these errors are broadly pre-

vented by following standard operating procedures.

• Data Entry Errors. These are errors that can happen at any point after the

data is collected, including errors in writing on the field sheet and errors copying

data from the field sheet into the computer.

As soon as the values are measured, they are recorded on a standardized field sheet.

Typically one student calls out the measured value while another records it. Potential

errors include illegible handwriting, or misheard numbers. Included in the data are field

notes – observations of the surrounding area, such as weather and even if there are birds

around. These notes can seem to be arbitrary and unimportant, but they play a critical

role for explaining anomalous values.

Later on, data is copied from field sheets into a standardized Excel spreadsheet.

During this transition there is a potential for typos (such as misplaced decimal points),

incorrect column usage, or incorrect site identifiers. Teachers noted that ideally data

should be transcribed as soon as possible after making a trip, in case there are any

questions about the field sheet that need to be addressed by the person who filled it

out. However, they also noted that in practice students and teachers are busy, so this

is usually only done at the end of the sampling season.

Submitting data. Once a year the coordinators merge all of the River Watch data

for the year and submit it to a centralized database used by the MPCA. In years past,



23

the coordinators did this by manually combining data from all of the schools into a

single master spreadsheet. Now, teachers (or students) can upload their spreadsheet

data directly into the web-based database system, from which coordinators can export

a merged spreadsheet for submittal to the MPCA.

Once data is successfully submitted and accepted by the MPCA, it becomes a part

of the official record. Since data considered to be of poor quality does not usually

make it this far, saying that data “gets submitted” is roughly equivalent to saying it is

considered to be of good quality in the parlance of River Watch participants.

Identifying Errors

Because of the potential for data entry errors and data collection errors to affect the

quality of the dataset, we also asked participants what practices were in place for catch-

ing errors after they occurred.

Domain knowledge. River Watch participants and coordinators said they could

often tell when a data value is likely to be suspect. This knowledge is based on experience

working with the equipment and with previous data at the same site. Errors that occur

while sampling can be caught by those familiar with the data; even students said they

were capable of “just knowing” when a particular value is wrong and might need to be

re-taken.

The coordinators also mentioned double-checking data by looking at the expected

correlation between related values. For example, there are a number of subjective and

objective parameters related to the clarity of the stream with a high level of correlation.

If one is high and another is low, the coordinators would suspect those values.

Outlier detection. River Watch participants and coordinators discussed various

technological means for catching errors in the data. A rudimentary but effective ap-

proach cited by coordinators and agency staff was to put all values into a spreadsheet

and sort them - making it easy to see which values were outliers.

In addition, the web-based database system used to manage River Watch data in-

corporates mechanisms for validating data when it is uploaded. This process includes

both rejecting values that fall outside the valid range of a parameter (such as a nega-

tive pH value), and drawing attention to values that are legal but outside the expected

historical range for a particular site.
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Recovering From Errors

The mechanism for addressing errors once they are found depends on whether or not

they are recoverable. We learned that data entry errors are generally recoverable, while

data collection errors are generally not recoverable.

Recoverable errors are usually data entry errors that happened somewhere along

the way after the initial value was recorded. They can usually be fixed by updating

the electronic data to match what is written in the field sheet. The web-based system

supports the ability to correct values after they are submitted, though this was not

always the case.

“No data > bad data?”. If the data matches the field sheet but still seems to be

out of the expected range for a value, then it is possible that SOPs were not followed

correctly. If there is no reasonable explanation for an outlier, the data is usually simply

thrown out and not submitted - since “no data is better than bad data” - at least

according to one organizer.

Of course, there may be cases where there are genuine outliers, and it is important

not to throw them out. Anomalous events such as recent rainfall or upstream beaver

dams can also cause outliers. In that case field notes provide some idea of what was

going on. Field notes therefore play a critical role in helping the coordinators determine

whether a data point is a genuine outlier or a data collection error that needs to be

thrown out.

The decision of when to throw out unexplained (though theoretically valid) outliers

in the data seems to be largely a judgment call, based on the coordinators’ experience

working with the sites in the past. Partially due to the design of the original web system,

the data is often deleted from the Excel spreadsheet before it gets uploaded, so there

is currently no robust mechanism for tracking when data values are thrown out or for

what reason. This means that it is not easy to measure how often this occurs or if there

are lessons that could be learned from the situation.

More significantly, unrecoverable errors are a sunk cost. The automated metrics for

identifying errors are valued by River Watch teams, since they can help prevent incorrect

data from being relied on. However, they also can be a source of disappointment, as

one teacher noted.
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“If you goof up, your data gets spit back out again by the website (thank

goodness) and – it’s not usable. It’s like you wasted your time.”

The best way to prevent this from happening, this teacher said, was to “know the

norm” for a site so that data collection errors would be caught when they happen, at

the source rather than months later when there’s “nothing you can do about it”.

Summary

The quality of data can be compromised when data is collected or when it is entered.

SOPs serve to prevent data collection errors, while domain knowledge and automated

tools serve to identify errors that do occur. While data entry errors can be fixed by

reviewing the field sheet, data collection errors usually cannot be unless they are noticed

immediately. In general, the more time passes after a sample is taken, the harder it is to

recover from errors. This differentiates OCS projects from open collaboration projects

like Wikipedia, where article quality can theoretically be improved at any point in time.

2.4.3 How is quality balanced?

RQ3. How is quality balanced among other community goals? Can the strictness that

high quality requires come into tension with those goals?

Between the rigorous enforcement of SOPs and the somewhat tedious process of

entering and submitting data, it seemed possible that there might a tension between

the “data collection” and “educational” goals of River Watch. We therefore wanted to

determine which of the goals was more important to participants, if any, and if there

was a perceived tension between the two.

More than one coordinator discussed the possibility of extending into other types

of monitoring where the emphasis would be primarily on educational aspects and that

“maybe some of that data would not be submitted to the powers that be.” This could be

important for extending River Watch to other schools less interested in data collection.

Impact of Data Quality on Education

An obvious question then, is whether or not an emphasis on rigorous data quality is seen

as a burden or a distraction by those interested primarily in the educational aspects of
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the program. Interestingly, the teachers that we interviewed did not see any tension

between education and data quality. There seemed to be two primary reasons for this.

Data is part of the lesson. River Watch teams do not merely collect data and

forward it to others – they use it themselves to learn about their local environment.

Every year at the annual forum, River Watch teams present posters detailing what they

have found about their watershed through the data they collected. The lessons learned

about the status of their streams would be effectively meaningless if the data was not

correct, so teams are internally motivated to ensure quality.

Data quality is the lesson. Even more interestingly, the rigorous process of

collecting scientific data is a core part of what teachers want to teach their students. In

the words of each of the teachers:

“I think what River Watch does is it gives us an opportunity for real-life

things, and when kids get out in the real world they’ve got to make sure

that what they do is good, it’s got quality. So I think it goes hand-in-hand

with the educational experience that we’re trying to provide.”

“I think that you learn by doing things the right way, not ‘in spite of’.”

“Science is supposed to be a process of discovering how the world works

based upon a certain set of protocols and procedures, the scientific method

. . . If you want to teach people in general the value of science, I think you

have to emphasize that how you get those numbers is important.”

Students also appreciated this aspect of the program.

“It can help you in the long run, just making sure that when you do some-

thing you do it right.”

To be sure, there are many other lessons in River Watch that teachers and students

find valuable, such as an appreciation for the natural world, an awareness of environ-

mental concerns – even just a chance to get outside and have fun. However, it was

very clear for those we interviewed that data quality itself forms an integral part of the

scientific education provided by River Watch.



27

Impact of Education on Data Quality

It seems then, that the emphasis on data quality in River Watch enhances its educational

value, rather than limits it. One then wonders then if the inverse is also true - is data

quality in River Watch improved by its educational focus? While more research is

needed, we identified a number of potential advantages of the River Watch model.

• The educational basis of the program lends itself naturally to ongoing training.

The coordinators maintain an ongoing relationship with each school to ensure

equipment is maintained and SOPs are followed.

• River Watch teams span several high school grades and students generally stay

in the program until they graduate. While there is constant turnover as students

graduate and new students come in to replace them, older students generally

(though not in every case) enjoy passing their knowledge to the newcomers.

• The funding opportunities provided through the educational environment provide

an additional stability to the program that helps to ensure its longevity.

• While taking an entire class out actually tended to lower quality, teachers noted

that having a small group of 3-4 motivated students with clearly defined roles

allows each person to focus on their task. At least one teacher even requires

students to submit an essay explaining why they want to participate before joining

the team.

Summary

After talking to participants, we found that it was problematic to attempt to clearly

delineate between the educational and data collection aspects of the program. As one

coordinator put it, “it all kind of blends together”. We instead learned that an emphasis

on data quality is itself an integral part of the River Watch educational process, rather

than a competing goal. Students learn how to do good, rigorous science, and to collect

and use hard data to quantify environmental issues in their region.
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2.5 Discussion

River Watch is an example of a successful community-based monitoring program. By

fully integrating the data collection and educational aspects of the program, it has a

unique robustness that it might not have by prioritizing either aspect alone. Data quality

in OCS programs like River Watch is much more than a computational attribute of the

data itself – it is a qualitative process that involves a number of human factors that

cannot all be easily mitigated through computational means. Nevertheless, technological

interventions can support the quality assurance process by leveraging the vast amount

of domain knowledge and intuition already held by participants themselves.

In the context of River Watch, accuracy is a key dimension of data quality that

initially appeared promising. However, accuracy is difficult to operationalize due to the

nature of the data. While statistical validation and absolute range limits help enforce

data quality, there is a more important metric in this context: consistency.

Consistency in following standard operating procedures appears to be the key to

understanding data quality in River Watch. Thus, I learned that the full answer to

RQ1 lies in RQ2: data quality in River Watch (and indeed, many observational citizen

science projects) is inherently tied to the practices and procedures for measuring and

reporting the data. This led to the paper’s title: quality is a verb [101]. With this

process-centric (rather than data-centric) view of data quality in mind, I noted the

potential value of process-recording mechanisms (such as wiki-style revision logs). I

also noted that much of the data was not being uploaded to the repository until the

end of the year, when there is little that can be done to repair data that is obviously

incorrect. In Chapter 4, we discuss potential technical interventions for these challenges.

I was pleasantly surprised to find that there is not a perceived tension between edu-

cational goals and data quality practices. Instead, both teachers and students indicated

that they felt that rigorous quality control was a key part of the River Watch experience.

That said, there may have been a selection effect in play: I only interviewed participants

from active schools, so any schools that had dropped out were not represented in my

limited dataset. More broadly, I was interested in better understanding the factors that

promote volunteer retention in OCS. To better understand these questions, I turned to

CoCoRaHS, a much larger project.



Chapter 3

Measuring Data Quality:

Volunteer Retention in

CoCoRaHS

3.1 Introduction

In the last chapter, we examined how data quality and participant engagement are

intertwined in observational citizen science. We focused particularly on internal dimen-

sions of data quality, as reflected in the processes and procedures used to create the

data. This qualitative focus was partly due to the nature of the domain, but also to the

relatively small scale of the River Watch project. In order to extend and validate the

work quantitatively, I began looking at a much larger project, both in geographic scale

and in the number of observations. I also wanted to focus more on external dimensions

of data quality as understood by the users of the data.

I shifted my focus to CoCoRaHS, or the Community Collaborative Rain, Hail, and

Snow Network. CoCoRaHS volunteers submit daily observations that are used as nearly

real-time input into the meteorological outputs of the U.S. National Weather Service

and other organizations. While every CoCoRaHS contribution is useful, not every con-

tribution is included in aggregate datasets like those published by the Global Historical

Climatology Network (GHCN).

29
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Figure 3.1: Kaplan-Meier survival curve for CoCoRaHS participants. 50% of partic-
ipants drop out by the end of their first year, including 28% of accounts that never
submit an observation. However, those who make it past the first year often stay for
many more (c.f. [88]). Confidence intervals are indistinguishable until 10 years.

To evaluate data quality in CoCoRaHS, I began by comparing the computationally

filtered GHCN dataset with the original CoCoRaHS dataset. While the rules for in-

clusion in GHCN include a number of statistical factors, the strongest quality signal

– by far – is simply the number of contributions. Specifically, participants who have

contributed 100 or more daily observations are usually included in the dataset, while

those with fewer contributions are not. Thus, I found that even in a large-scale OCS

project like CoCoRaHS, data quality is focused on characteristics of the data generation

process, versus a computable notion of “accuracy” per se. I also found that, as in River

Watch, this understanding of data quality is directly tied to questions of participant

motivation and engagement.

With this in mind, this chapter focuses on volunteer retention, a directly computable

metric that measures both the data quality and participant engagement goals of OCS.

As Figure 3.1 shows, 50% of CoCoRaHS participants drop out by the end of their first

year. As it turns out, this is also the ratio of CoCoRaHS participants who contribute

100 records or more, and the two metrics are highly correlated1 . While user activity

patterns are well-studied in fully online systems like Wikipedia [33] and Galaxy Zoo [60],

little quantitative work to date has measured activity and retention in OCS. A better

understanding of the predictors of retention would help inform recruitment strategies as

1 92% of those who make it past the first year also pass the 100 contribution threshold, vs. 14% of
those who drop out sooner.



31

well as potential interventions [93]. We are interested in the following research questions:

RQ4. How well do participant characteristics, task characteristics, and early

activity predict retention?

RQ5. How does retention relate to other measures of data quality?

This chapter provides three contributions toward understanding these questions.

1. We find that participant age at signup is a particularly good predictor of retention

and (to a lesser extent) several other measures of data quality. Since very few

studies have directly compared participant demographics to actual activity levels,

this is the primary contribution of this chapter.

2. We find that exposure to more below-freezing days positively correlates with re-

tention. This is counterintuitive given that cold weather presumably increases

CoCoRaHS task difficulty.

3. Finally, we show that activity within the first month after signup is one of the

strongest predictors of long term retention. While this finding largely replicates

previous work in online peer production communities, it leads to important im-

plications for the design of citizen science and crowdsourcing projects.

In the remainder of this chapter, we review related work in volunteerism and ana-

lytical methods, before turning to discuss the design of our survival analysis. We then

explore the results showing how our measured characteristics correspond to volunteer re-

tention and data quality. We discuss potential explanations for why our results contrast

with earlier work and intuition, before concluding with recommendations and directions

for future work.

3.2 Related Work

3.2.1 Volunteer Characteristics

While crowdsourcing and computer-aided citizen science are relatively new phenomena,

they are related to much older fields of study such as volunteerism. It is known that
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retirees are generally less likely to volunteer than younger age groups, with volunteerism

peaking at around 40-45 [76]. However, the difference in volunteering rates is much

smaller in recent years than it was a few decades ago [12], and retirees who do volunteer

tend to spend more actual time per month than younger volunteers [13]. There are

also large differences in peak age depending on activity type, and some evidence that

motivations for volunteering change as participants age [70, 71].

Several studies have explored factors that influence retention and other measures

of commitment to volunteering. Participant motivations, attitudes, and beliefs are

often the primary focus of research [8, 94, 95]. Cnaan et al. studied demographic,

personality, and situational factors, noting that volunteerism is qualitatively different

than paid work and that different theoretical models should be used [15]. They found

that age was positively correlated with self-reported duration of volunteering. Komp et

al. found that chronological age by itself is a poor predictor of time spent volunteering,

at least for the oldest age groups [50]. By contrast, we found that numeric age was

useful as a predictor in our model.

In addition to age, gender is also known to influence the types and duration of

volunteer activity [76]. While not directly related to volunteerism, models for technology

adoption also incorporate both age and gender. Most relevant to our work, age and

gender are known to interact to influence habit forming, with the effect being strongest

for older men [109]. Research on online social networks has shown that perceptions of

existing gender imbalances can create a self-perpetuating skew toward one gender or

the other [62].

Raddick et al. studied demographic patterns in Galaxy Zoo, finding that older

participants are slightly over-represented in surveys (versus what would be expected

from the general internet population) [83]. However, Cox et al. found no significant

effect of age on retention or activity [18]. Kobayashi et al. found that seniors remained

more active in contributing to an experimental OCR proofreading system [49]. Similarly,

Baruch et al. found that the most active participants in the Tomnod platform tend to

be over 50 [3], based on the results of several surveys. However, they do not report

quantitative differences in the actual number of contributions or in participant retention.
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Figure 3.2: While there is a long tail of CoCoRaHS contributors, the power law for any
given year is truncated due to the maximum contribution rate of once per day.

3.2.2 Analytical Methods

Traditionally, research on volunteerism has relied on self-reported surveys to determine

activity levels and duration [124]. Relatively recently, studies of online systems have

been able to combine theory-backed survey results with actual activity logs [27, 68].

A common finding is that small number of participants often perform the bulk of the

work. Ma et. all characterized this “power law” distribution in OpenStreetMap, finding

significant skew in user contribution rates as well as in the size and number of edits for

each geographic element [59]. As Figure 3.2 shows, CoCoRaHS has a similar distribu-

tion, though it is truncated due to a maximum contribution rate. Panciera et al. found

that the most active Wikipedia contributors distinguish themselves almost immediately

after signup [75]. Yasseri et al. evaluated temporal activity patterns in OSM, noting

important differences with Wikipedia [127].

Survival analysis has been used to study retention outcomes in both Wikipedia

and OSM. Ortega et al. describe the use of survival analysis to characterize median

dropout times in several Wikipedia languages as well as open source projects [73]. Zhang

et al. further characterize the distinct survival functions for two main categories of

Wikipedia editors [128]. Zhu et al. showed how survival analysis could be used to

predict the survival of wiki communities themselves [129]. Dittus et al. evaluated

participation in three Humanitarian OSM Team initiatives, comparing early activity

with long-term retention [19]. Like our study, they leveraged actual contribution history

with an inactivity buffer to measure survival, and they incorporated task difficulty and
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early activity as predictor variables. However, they did not explore how participant

demographics affect outcomes.

Relatively little work to date has explored participant contribution and retention

patterns in OCS. Sullivan et al. briefly characterize participation patterns in eBird,

noting that activity peaks in May and drops during the summer [107]. Wood et al. note

that 90% of contributions come from the most active 10% of eBird contributors [126].

Wiggins and He explore the use of technology and its affect on data validation practices

in iNaturalist [120].

We are unaware of published research that characterizes the demographics of eBird

and iNaturalist contributors, or quantifies factors that lead to increased participation

and retention. Together with CoCoRaHS, we believe that these are among the largest

OCS projects, making the relative lack of quantitative research particularly striking. We

fill a gap in this research by applying techniques from peer production and crowdsourcing

to study participation patterns in observational citizen science.

3.2.3 About CoCoRaHS

The Community Collaborative Rain, Hail, and Snow Network, or CoCoRaHS, is a multi-

national citizen science project engaging volunteers in daily precipitation monitoring.

The network started in Colorado, USA in 1998 after an underpredicted flash flood, and

has since expanded to all 50 US states, as well as Canada and the Bahamas [88]. As of

March 2017, over 50,000 participants have contributed over 33 million daily observations.

CoCoRaHS participants are asked to empty a rain gauge daily and report the total

precipitation during each 24-hour period. During winter months, participants can either

melt snow to report the equivalent rain amount, or take a break and rejoin in the spring.

Like many citizen science projects, CoCoRaHS tries to balance data collection with the

equally important goal of public outreach toward scientific awareness.

Reges et al. describe the demographics and participation patterns in CoCoRaHS,

noting a skew toward older participants in surveys and providing an overview of sea-

sonal activity patterns [88]. However, they do not measure whether the skew is due to

differences in recruitment or in retention rates, or directly measure the relationship be-

tween age and actual contribution activity. We build on their work by measuring actual

activity levels, and controlling for initial signup skew when computing retention rates.
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We demonstrate that both recruitment and retention are skewed toward older partici-

pants in CoCoRaHS, and that the relationship between age and retention is effectively

monotonic.

In addition to a skew toward retirement age, the majority of CoCoRaHS participants

are white and male. Given the project’s dual purpose of data collection and scientific

awareness, CoCoRaHS has set an explicit goal to expand the diversity of project partic-

ipants [88]. This is important for expanding climate literacy among a broader segment

of the population, but also for expanding geographic coverage in the dataset (since

different regions have different demographic makeup). From a practical standpoint, ap-

plications for additional project funding often require a discussion of how the resources

will be used to serve underrepresented populations.

Almost since its inception, CoCoRaHS has had a website2 to support participant

registration and online data entry. Since 2014, CoCoRaHS has also provided data entry

apps for Android and iOS. The provenance and editing history is stored in the database

with each observation, providing a unique opportunity to apply analysis techniques from

crowdsourcing and open collaboration platforms to observational citizen science.

3.3 Hypotheses

While parts of this research were exploratory in nature, we drew heavily from prior

work and theoretical foundations, which we present as hypotheses below.

The most active participants in Wikipedia and other large peer production systems

have tended to be younger [30]. However, domain-specific citizen science projects have

attracted middle-age and even older participants [83, 3], and Reges et al. [88] describe a

skew toward middle and retirement age participants in CoCoRaHS survey respondents.

We hypothesize that this skew will pan out in activity levels and retention as well.

H1: Age positively correlates with retention in observational citi-

zen science.

A critical component of participant retention in citizen science relates to the struc-

ture of the actual task being performed [119, 103]. In theory, participants in a citizen

2 https://cocorahs.org

https://cocorahs.org
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science project all follow the same protocol for collecting and reporting data. In prac-

tice, the experience of task completion may vary significantly for different participants

depending on how often they experience the phenomena of interest. For example, in

Galaxy Zoo, participants who see fewer interesting photos of galaxies are more likely to

end their session early [60]. Thus, our second hypothesis is as follows.

H2: Frequent encounters with the monitored phenomena improve

retention.

With field-based citizen science projects, the design of the data collection protocol

is particularly important [101]. In some cases, participants may need to use a more

complex protocol to adapt to changing external conditions. This may lead to increased

task difficulty. We hypothesize that as task difficulty increases, so does the likelihood

of participants dropping out. This could be due to exhaustion, or due to reduced

participation levels. In particular, when the task difficulty changes based on geographic

and seasonal factors, we would expect this to be reflected in retention patterns as well.

H3: Increased task difficulty leads to lower retention.

In many open collaboration systems, long-term participants differentiate themselves

within a short period after signing up [75]. However, in Galaxy Zoo and OpenStreetMap,

high initial activity is sometimes associated with early burnout [19, 77, 96]. Given the

upper limit on CoCoRaHS participation of one record per day, we expect a relatively

straightforward relationship between early activity and retention.

H4: Participants who are more active during their first month stay

longer.

Finally, we expect that highly motivated participants will not only participate longer,

but also contribute higher quality data than less active participants [2].

H5: Participants who are more active during their first month

contribute higher quality data throughout their first year.
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3.4 Methodology

Our primary dataset was the full archive of 35,581,914 CoCoRaHS daily observations

from June 1998 to February 20173 . We excluded multi-day observations, which make

up a relatively small fraction of the dataset and are considered less useful by meteorolog-

ical analysts. Since the CoCoRaHS database incorporates data from other monitoring

networks, we limited our analysis to participants marked as being members of CoCo-

RaHS. We also incorporated information entered in the account registration form on

the CoCoRaHS website, which includes information about each participant and the

geographic location of their rain gauge.

Our dependent variables were volunteer retention and data quality, as defined below.

We operationalized 10 characteristics of the participant, the task, and early activity as

independent variables. All independent variables were defined using only information

that would be known within a month after a participant signed up.

3.4.1 Dependent Variables

Volunteer Retention

To test hypotheses 1-4, we conducted a survival analysis using the Cox proportional

hazards model. Survival analysis has an advantage over other statistical methods in

that it can handle “censored” dropout events (i.e. for participants who remain active

past the end of the study window). In addition, the use of survival analysis allows us

to separate the outcomes of various predictor variables from any biases in their initial

distribution.

Since participants do not announce when they are leaving, we determined dropout

based on the period of inactivity after the last contribution. While Dittus et al. use

180 days as a cutoff [19], Karumar et al. use 365 days [44]. Given the large seasonal

variability in CoCoRaHS participation, we limited our choice of time periods to multiples

of a year. We settled on a one year cutoff, which corresponds to CoCoRaHS’ internal

inactivity determination rule [88]. As it turns out, about 8% of participants who we

counted as having dropped out rejoined again after a break of over one year. For these

participants, we excluded the second activity period from our analysis.

3 As determined by observation date, which is not always the same as data entry date.
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We used the account creation date as the start date for our analysis, unless the

participant submitted an observation for an earlier date (about 8.5% of accounts). We

necessarily excluded any participants who signed up after February 2016. We counted

participants who signed up and never contributed anything (about 28% of accounts) as

having dropped out on their first day.

We conducted our exploratory analysis with Kaplan Meier curves using the lifelines

survival analysis library for Python [22]. We used pandas and matplotlib to create the

graphics in this chapter. We used R’s survival package to run the final Cox analysis

due to its support for frailty terms in the model (see the subsection on control variables).

Data Quality

To test Hypothesis 5, we also incorporated several additional metrics of data qual-

ity, building on our prior work with River Watch. In addition to the three internal

metrics discussed in Chapter 2 (accuracy, reliability, and consistency), we introduce a

fourth external metric, timeliness, given the particular focus CoCoRaHS has on getting

observational data to the National Weather Service in near real-time. We can view

participant retention as a measure of reliability, though this is somewhat different than

the operationalization discussed in Chapter 2. We can operationalize the other three

metrics as follows:

• timeliness: the proportion of observations entered in the system on the same day

they were observed

• consistency: the proportion of observations that immediately followed a previous

day observation (i.e. without multi-day gaps, which are less useful for analysis)

• accuracy: the proportion of observations that were never edited4

4 While an edited record is likely higher quality than the unedited version, we take the act of editing
as a proxy for an accuracy issue in the original data. This is based on prior work on Wikipedia which
treats the persistence (i.e. non-editing) of each word as an indicator of article quality (c.f. [34]). However,
note that in CoCoRaHS, editing is relatively rare and usually done by the contributors themselves. In
addition, as discussed in Chapter 2, it is challenging to define a universally meaningful notion of quality
and accuracy [101]. We consider this particular operationalization of accuracy to be good enough for
this particular use as one of several proxies for participant data quality.
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Since we are already measuring retention (reliability) separately, we designed the

three other metrics as percentages to minimize the effect of the total number of con-

tributions. However, even with this factoring, the metric for consistency is necessarily

correlated with higher contribution rates. We computed these metrics for each partici-

pant’s first year of contributions, excluding participants who never contributed anything.

We then conducted a separate linear regression for each metric.

3.4.2 Participant Characteristics

Age

To test Hypothesis 1, we included participant age in the model. Fortunately, we were

able to obtain this without a survey, as participants can optionally provide their age in

years to CoCoRaHS when creating an account. However, only around 30% of partici-

pants actually provide their age. Since the Cox PH model does not support null values

in predictor variables, we used multiple imputation to fill in plausible random values

for age [11]. We validated our results by running a second model containing only the

participants who entered age, and by comparing the actual median survival for partic-

ipants who entered ages versus those who did not. As we discuss in the next section,

the results for each method were compatible.

Gender

As noted previously, gender has also been shown to influence volunteerism and technol-

ogy adoption. Participants are not asked for their gender when signing up for CoCo-

RaHS, but they do enter their full name5 . We were able to estimate gender using the

relative frequencies of participants’ first names in the United States, using the equation
M(x)−F (x)
M(x)+F (x) as proposed by Liu et al. [56]. While they use U.S. Census data for their

name corpus, we used birth names as registered with the U.S. Social Security service

between 1950 and 2016.

We used 0.5 as the association threshold for our analysis. 86.6% of accounts met this

threshold and were assigned a gender, with an average absolute score of 0.97. This means

5 While most CoCoRaHS data is open to the public, full name and address are protected by privacy
policy. We used only first names for this analysis.
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that, on average, fewer than 1 / 75 people with each given name had the opposite gender

than our assignment, at least based on the U.S. Social Security dataset. While this does

not guarantee a correct assignment in every case (particularly for group accounts), we

believe the accuracy is high enough that our results will not be affected. The 13.4% of

accounts with a score less than 0.5 were assigned to the Unknown / Other group.

Table 3.1: First Name Gender Association

score assigned gender n %

< -0.9 Female 12,618 23.4%

-0.9 to -0.5 Female 1,167 2.2%

-0.5 to 0.5 Unknown / Other 7,260 13.4%

0.5 to 0.9 Male 1,692 3.1%

> 0.9 Male 31,285 57.9%

3.4.3 Task Characteristics

The CoCoRaHS experience may be different for participants depending on how often

they experience rain or snow. We can take the number of rain days as a measurement

of phenomena frequency, and the number of below-freezing days as a proxy for task

difficulty.

Rain Days (year before signup)

Participants are regularly reminded that reporting a zero is highly preferred to not

reporting at all. Nevertheless, we expected to find that participants from drier climates

would have more trouble with consistent data entry, per Hypothesis 2.

We spatially joined each CoCoRaHS participant’s reported latitude and longitude

to the PRISM climate grid of historical daily rainfall and temperature data [81]. Due to

the nature of the PRISM dataset, we limited our analysis to participants with locations

that were within the 48 continental U.S. states. We counted any daily grid cell with

more than 0mm of precipitation as a rainy day. We used the 365 days before signup in

order to avoid measuring the effect of rainy days that occurred after participants may

have already dropped out. Ideally we would have included the rain they experienced
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Figure 3.3: CoCoRaHS monthly contribution rates; note the pronounced seasonal effect.
The right axis is scaled to about 16000x31 contributions per month

after signing up, but this is highly correlated across years.

Freezing Days (year before signup)

Per Hypothesis 3, we expected to find that participants who experienced more below-

freezing days would drop out sooner, either due to the increased difficulty of the snow

protocol, or to forgetting about the project during the break. As Figure 3.3 shows,

there are substantial drops in activity levels during the winter months.

We calculated freezing days using the same technique as for rain days, but instead

counted days where the average temperature was less than zero degrees Celsius. Given

that precipitation itself changes when temperatures are below zero, we included an

interaction term combining rain and freezing days.

3.4.4 Early Activity

First Month Observations

To test Hypothesis 4, we counted the number of observations each participant submitted

during their first 30 days of activity. While previous work has used sessions measured

in minutes or hours as a metric for activity, a timespan of a month made more sense for

CoCoRaHS given the maximum contribution rate of once per day. Due to differences

in signup time, some participants were able to submit 31 records during their first 30

days; we counted these participants as having submitted 30. We included an interaction

term combining age and first month observations, since habit-forming is known to be

stronger for older adults [109].
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3.4.5 Control Variables

U.S. State (Fixed/Frailty)

CoCoRaHS is organized into separate leadership structures for each U.S. state. Each

state joined at different times, with Colorado starting in 1998 and Minnesota joining in

2009. In addition, each local organization is given considerable flexibility in recruiting

and participation methods, particularly during the annual March Madness recruitment

drives. Some state coordinators offer free rain gauges, others create YouTube videos,

while others put out press releases or letters to the editor. Some coordinators are paid

to work with CoCoRaHS as part of their official responsibilities, while others are purely

volunteer based. Finally, the level of enthusiasm for project recruitment differs between

coordinators.

To reduce the risk of misattributing differences to climate that were instead due

to differences in the local CoCoRaHS leadership structure, we included participants’

U.S. state of residence as a frailty (fixed effect) term in the model. This may have

overcorrected for effects that were in fact due to climate differences.

Timing & Other Factors

We also included a few variables to control for various factors related to the timing and

nature of participant signup and early activity. We controlled for an early adopter effect

by including participant signup rank within their state. We also flagged March signups

since they are likely to be part of an annual recruitment drive (March Madness). We

accounted for participants who had a rain gauge when signing up6 , since we expected

them to be more intrinsically motivated to start reporting right away. We also included

a variable for daily internet access, since participants without it presumably need to

call to submit their observations. Finally, we measured relative use of the CoCoRaHS

observer mobile app for first month data entry. The apps were only available for two

years of our study period, and the effects were nuanced. We hope to investigate the

effects of mobile usage more fully in future work.

6 Technically, this flag can also be set after signup, if the contributor interacts with a coordinator
who has access to update their account.
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3.4.6 Correlation

To ensure accurate model specification, we verified that none of our independent vari-

ables were strongly correlated by evaluating Spearman’s for each pair of coefficients.

The only correlation stronger than 0.15 was between Signup rank within state (log) and

Rain days (year before signup), which are slightly negatively correlated (-0.21).

3.5 Results

The results of the Cox proportional hazards model are shown in Table 3.2. For the

purpose of evaluating effect size, we compare the median survival day, i.e., the day by

which 50% of participants have dropped out. For continuous variables, we compare the

mean value (shown at right) and the median baseline survival (295 days) with the effect

of an increase of one standard deviation in the predictor. For logistic variables, the

effect size shows the difference between the false and true conditions.

We also generated figures 3.4-3.8 to further explore the effect of certain predictors

on measured retention rates. We computed these by generating small bins for each

continuous variable and then extracting the median dropout date and 95% confidence

intervals from the Kaplan-Meier curve for each bin. While this approach loses informa-

tion about the actual shape of each curve, it makes it feasible to interpret differential

outcomes for continuous variables.

To provide insight into the differences between initial and long-term skews in the

data, we also plot the initial distribution (as measured at or shortly after account

creation) as a histogram under the retention chart for each figure. Since this is essentially

the n for each measurement, it is inversely correlated with the confidence interval for the

median outcome shown on the upper chart. There is no necessary correlation between

the initial n and the outcome, other than potential shared underlying mechanisms.
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Table 3.2: Volunteer Retention - Survival Analysis (n=52154)

Predictor hazard ratio 95% CI effect size mean stdev

First Month Observations 0.488 **** 0.482 - 0.495 +1334 days 10.6 obs. 11.28

% Submitted via Mobile App 0.936 *** 0.920 - 0.953 +52 days 1.6% 11.6%

Age (imputed, see discussion) 0.867 **** 0.844 - 0.892 +117 days 48.3 yrs 10.44

Rain Days (year before signup) 1.027 ** 1.007 - 1.047 -24 days 71.6 days 26.4

Freezing Days (“ ”) 0.948 *** 0.922 - 0.975 +43 days 99.1 days 57.1

Signup rank within State (log) 1.082 **** 1.065 - 1.099 -66 days 6.37 1.31

Had gauge at signup (or later) 0.662 **** 0.636 - 0.690 +441 days 8.2%

Daily internet access 0.961 ** 0.938 - 0.986 +34 days 75.3%

Signup during March Madness 1.043 ** 1.012 - 1.073 -36 days 14.5%

Female (guess from name) 1.009 0.975 - 1.043 25.5%

Male (guess from name) 0.928 *** 0.900 - 0.956 +61 days 61.3%

First Month Obs. × % via Mobile 1.020 * 1.002 - 1.040 -18 days

Age × Female 0.964 * 0.932 - 0.998 +27 days

Age × Male 0.973 0.944 - 1.002

Age × First Month Obs 0.972 *** 0.960 - 0.984 +21 days

Rain Days × Freezing Days 0.992 0.977 - 1.007

U.S. State (frailty) ****

Concordance: 0.772

Median Retention: 295 days

p-values: *<0.05 **<0.01 ***<0.001 ****<2e-16
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3.5.1 Participant Characteristics

CoCoRaHS is heavily skewed toward older participants: the average age at signup is

48, while the median is 52 and the mode is 60. Compared to all other age groups,

participants aged 60-70 are more likely to sign up - and even more likely to stay for

several years. As Table 3.2 shows, the model effect size is quite large: an additional 10

years of age corresponds to 117 additional days of participation in the program. Since

the age used in Table 3.2 contains a large number of imputed values, we also ran a

second model with only the participants who entered an age. The results are shown in

Table 3.3. In the smaller model, the hazard ratio for older participants is even smaller

and the effect is larger (+247 days).

Table 3.3: Volunteer Retention for known age (n=16196)

Predictor hazard ratio effect

First Month Observations 0.4710 **** +1164d

Age 0.7578 **** +247d

Female (guess from name) 0.9384 * +41d

Male (guess from name) 0.8720 *** +105d

Age × Female 0.9561

Age × Male 0.9614

Age × First Month Obs 0.9559 *** +40d

Concordance: 0.781

Median Retention: 278 days

This striking result can be explored further by examining the actual median survival

for different ages, as shown in Figure 3.4. Between the ages of 20 and 70, and in par-

ticular between 45 and 65, there is an almost perfectly monotonic relationship between

age and retention. The median dropout for participants aged 19-20 is 13 days, while the

median dropout for ages 69-70 is 3.12 years. Thus, Hypothesis 1 is strongly confirmed.

Interestingly, the age with the highest retention (65-66) appears to be older than the

peak signup age (59-60).

We also computed the median survival for participants who did not enter an age, to

verify that the results could be generalized between the groups. If age was truly missing
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Figure 3.4: Retirement age participants are the largest group and participate for the
longest. (Bin size=2 years)

at random, we would expect the median survival for unknown age to be roughly equal

to the survival for all known ages (253 days). Instead, we found that the median

survival for participants who did not provide an age is 405 days, which is close to the

survival for participants aged 53-54. A plausible explanation is that older participants

are less comfortable providing their age, and are thus are even more over-represented in

CoCoRaHS participation than these results show.

In Table 3.2, each identified gender is separately contrasted with accounts for whom

a gender could not be automatically determined (e.g. group accounts). Compared to

women and other accounts, men are much more likely to sign up for CoCoRaHS, and

participate for 61 days longer (according to the model). The actual median survival for

men is 444 days, while the median survival for women is 207 days.

While a full analysis of motivations for participation in CoCoRaHS is beyond the

scope of this chapter, one key question is whether the skews in age and gender are due

to inherent interest in the task, or due to biases in the recruitment process (c.f. [62]).

Upon account creation, CoCoRaHS participants are provided an opportunity to enter

the method by which they were referred to the project. We analyzed this free-form text

to determine which words were used most often.
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Figure 3.5: Participants who experience more rain drop out a bit sooner. (Bin size=3
rainy days)

Out of the 37,438 participants who entered referral information, the five most com-

mon words used were “NWS” (12.0%), “weather” (8.6%), “newspaper” (8.6%), “friend”

(5.5%), and “NOAA” (4.9%). NOAA and NWS both refer to the U.S. National Weather

Service, as do most instances of “weather”. While not conclusive, this corresponds with

CoCoRaHS’ internal estimation that a large subset of active CoCoRaHS participants

find the project through interaction with National Weather Service programs, such as

in-person severe weather training or online weather analysis tools. Thus, it is likely that

the largest driver behind CoCoRaHS participation is inherent interest in the domain

and/or task, rather than relationships with existing contributors7 .

3.5.2 Task Characteristics

Contrary to our expectations, increased precipitation appears to be correlated with a

slight decrease in retention. According to the model results, an additional 26 days of rain

during the year before signup corresponds to a median dropout date 24 days earlier.

This relationship bears out in Figure 3.5, which shows that the actual effect is even

stronger when not adjusting for state differences. The median dropout for participants

7 Certainly, there may be demographic biases in NWS program participation that then transfer to
CoCoRaHS. For what it’s worth, CoCoRaHS regional coordinators (many of whom are NWS staff) are
younger, but more likely to be male, than the average CoCoRaHS contributor.
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Figure 3.6: The upward trend for cold days is less apparent in this chart, which does
not account for state organizational differences. (Bin size=5 freezing days)

who experienced 60-62 rainy days is 448 days, while the median dropout for participants

who experienced 90-92 rainy days is 274 days. This contradicts Hypothesis 2, which

proposed that more exposure to rain would improve retention.

Also contrary to our expectations, more cold weather does not appear to negatively

correlate with retention. According to the model, 57 additional freezing days corre-

sponds to a moderate increase in retention of 43 days. Interestingly, when running

the model without controlling for U.S. state, the effect for freezing days is to decrease

retention by 17 days, which is more in line with Hypothesis 3.

To further understand this discrepancy, we wanted to explore if the state-normalized

result was being skewed by one or two geographically unique states that just happened

to have more registered CoCoRaHS accounts. To check this, we analyzed the effect of

freezing days on retention outcomes in each of the 48 continental states. Within each

state, we split participants into those who had more or less than the average freezing

days for all participants in that state. For the sake of completeness, we performed the

same calculation for rain. We used a logrank test to compare the statistical significance

between each pair of populations.
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Table 3.4: Between-State Differences (n=51969)

Statistical Effect States % Volunteers

Cold ⇑ Retention CO,TX,NC,KS,NY,OH,NJ,NH,VT 37%

Cold ⇓ Retention MN,WY 4%

Cold Not Signif. 37 states 59%

Rain ⇓ Retention NC,FL,TN,MO,WA,GA,AL,IA 22%

Rain ⇑ Retention NY,MN,AZ,ME,NH,VT 9%

Rain Not Signif. 34 states 69%

The results are shown in Table 3.4. We found that in 9 states (representing 37% of

CoCoRaHS participants8 ), participants in colder areas remain active longer. These

include Colorado and Texas, the two most active CoCoRaHS states with over 5,000 reg-

istered accounts each. Only 2 states see an opposite trend: Minnesota and Wyoming.

As it turns out, these two are among the coldest states in the U.S - though New Hamp-

shire and Vermont are almost as cold. While more work is needed, it would appear

that the positive effect of cold on retention only holds to a point. Still, the plurality of

evidence points to freezing days being an indicator of improved retention, disconfirming

Hypothesis 3.

3.5.3 Early Activity

CoCoRaHS participants submit an average of 10.6 records during their first month. As

Figure 3.7 shows, the actual distribution is bimodal: the two largest groups are those

who submit nothing during their first month (38.9%), followed by those who submit

every day (5.2%). As is common with many collaborative projects, this early activity is

a very strong predictor of eventual longevity. According to the model, an additional 11

contributions during the first month corresponds to an additional 4 years of participation

in the program. In actuality, participants who do not contribute during their first month

often never do, while the median survival for those who submitted reports for all 30

days is 5.4 years. Thus, Hypothesis 4 is confirmed.

8 The percentage of volunteers that live in one of the listed states. Note that this does not necessarily
correspond to the actual population of each state.
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Figure 3.7: Initial activity is highly predictive of retention. (Bin size=1 daily contribu-
tion)

3.5.4 Data Quality

We also measured the effect of each predictor on the three supplemental data quality

metrics, to contrast with the primary metric of reliability measured as retention. The

full results are listed in Table 3.5. Note that the goal of this research is to test the

effect of the predictors on several alternative formulations of data quality, not to find

the best fitting model per se9 . Also, note that the coefficients for the three models

are not directly comparable. For example, the effective range of the accuracy metric is

about one fifth that of consistency and timeliness, since fewer than 4% of records are

ever edited.

9 As discussed previously, the total number of contributions is a particularly strong signal for data
quality in this domain. Since the number of contributions is directly tied to retention, the survival
analysis itself is likely already the best model for measuring data quality. We defined the other three
metrics as ratios to factor out the total number of contributions, to see if the primary results would
hold up under alternative operationalizations of quality. Even with this factoring, participants who
contribute more records overall will still necessarily score higher on the consistency metric, since there
will be fewer gaps between submissions. Thus, the consistency model has the best fit, since the total
contribution signal shows up both in the predictors and (indirectly) in the dependent variable.
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Table 3.5: Data Quality Linear Models (n=37491)

Predictor Timeliness Consistency Accuracy

First Month Observations -2.39 **** 16.16 **** 0.93 ****

% Submitted via Mobile App 1.41 **** -0.62 *** 0.30 ***

Age 1.48 *** 3.08 **** 0.78 ***

Rain Days (year before signup) 1.58 *** 0.45 * 0.13

Freezing Days (“ ”) -0.31 -0.09 0.28 **

Signup rank within State (log) 2.29 **** -2.11 **** -0.45 ***

Had gauge at signup (or later) -1.65 *** 3.54 **** -0.16

Daily internet access 2.62 *** 0.80 ** -0.09

Signup during March Madness 0.83 * 2.39 *** 0.44 ***

Female (guess from name) 0.55 2.45 *** 0.47 **

Male (guess from name) 2.37 *** 0.82 * 0.17

First Month Obs. × % via Mobile -0.40 ** 0.46 *** -0.08

Age × Female 0.16 -0.31 -0.40 **

Age × Male 0.07 -0.32 -0.25

Age × First Month Obs. 1.50 *** -1.71 *** -0.21 ***

Rain Days Freezing Days -0.10 0.47 ** 0.07

U.S. State (fixed) **** (fixed) **** (fixed) ****

Linear model fit (Adjusted R2) 0.02 0.32 0.02

Mean score for metric 69.9% 69.3% 96.9%

p-values: *<0.05 **<0.01 ***<0.001 ****<2e-16
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Figure 3.8: Older participants are more timely, consistent, and accurate in their data en-
try, though the effect is small. The smoothed line is a Lowess curve with zero iterations,
with squares for the 25th and 75th percentiles used to compute Cohen’s d.

Interestingly, age positively correlates with retention / reliability and all three of

the other quality metrics, though the effects for the latter were relatively small. Older

participants are not only more reliable, but are also more likely to enter their data in

a timely, consistent, and accurate manner. These effects are further explored in Figure

3.8. We calculated effect size by computing Cohen’s d as m2−m1
S where m1 and m2

the smoothed average scores for participants aged 39 and 63 (representing the 25th and

75th percentile ages, respectively) and S is the standard deviation of all scores. The

effect sizes for consistency (d=0.32) and timeliness (d=0.21) are small while the effect

for accuracy (d=0.13) is very small (c.f [98]).

The effects for other predictors are not as consistent as those for age. While men are

somewhat more reliable and timely, women are more consistent and accurate in their

reports. This illuminates the importance of understanding the multifaceted nature of

data quality. There were generally limited interaction effects between age and gender,

other than minimal evidence that older women are slightly more reliable and slightly

less accurate than would be expected from their age and gender separately.

While participants who experience more rain drop out slightly sooner, they are more

timely in their reports (d=0.31 for participants with 89 versus 50 days of rain). It is

likely that rain prompts a more immediate response, while those who get no rain may
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consistently report the 0 but not in a timely manner.

As expected, there is a high correlation between the number of records entered

during the first month and overall consistency for the first year. The effect size is

large (d=1.13 for participants with 25 versus 3 submissions). However, timeliness is

somewhat decreased for the highest contributors (d=-0.12). Thus, Hypothesis 5 is not

fully confirmed.

3.6 Discussion

3.6.1 Participant Characteristics

There is a definite skew toward older participants in CoCoRaHS, not only in terms of

initial sign-up rates, but also in terms of retention and (to a lesser extent) other mea-

sures of data quality. This is in line with our first hypothesis. While this finding may

not be surprising to those familiar with CoCoRaHS and similar observational citizen

science programs, it is relatively unheard of in the broader domains of crowdsourcing

and peer production. For example, Wikipedia is heavily skewed toward younger contrib-

utors, with half of survey respondents being younger than 22 [30]. Within volunteerism

research, the general consensus is that that volunteer activity peaks at age 45 [76].

With this in mind, what makes CoCoRaHS different than Wikipedia and many other

forms of volunteerism? We propose three key mechanisms that may be responsible for

this finding:

• First, CoCoRaHS is designed to be incorporated as a daily routine, and the

strength of habit-forming is known to increase with age [109]. Several elderly

participants (and their spouses) have sent messages to CoCoRaHS thanking the

project for providing a stable routine and a reason to get up early every morn-

ing (c.f. [8]). Many elderly CoCoRaHS participants remain active until they are

physically unable to check their gauge.

• Second, CoCoRaHS is structured around repeated monitoring at a single location,

usually in the participant’s own backyard. From a purely practical standpoint,

this means it is more accessible to individuals with a backyard, and those who

spend more time at home.
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• Third, the task itself is relatively intuitive and structured around a topic of im-

mediate general interest and applicability - local rainfall.

We suggest that further quantitative research is needed to measure the effect of dif-

ferent task designs on demographic interest in participation in peer production systems

and citizen science. With regard to age distribution, Wikipedia and CoCoRaHS appear

to be opposite ends of a spectrum, while Galaxy Zoo appears to be near the middle (c.f.

[18]). We predict that the peak retention age in eBird is older than Galaxy Zoo, but

younger than CoCoRaHS, given that birding often requires travel.

While increased diversity is a goal, CoCoRaHS’ skew toward older participants could

also be seen as an opportunity - e.g., to promote broader scientific literacy among an

influential demographic.

3.6.2 Task Structure

More rainy days correspond with slightly decreased retention, while more freezing days

correspond with a moderate increase, meaning Hypotheses 2 and 3 were not supported.

The result for freezing days is particularly counterintuitive, as we intended it to be a

measure of task complexity. As Dittus et al. and others have found, task complexity

is generally known to negatively affect retention [19]. One plausible explanation is that

the complexity of the CoCoRaHS task is well known and relatively stable. Participants

from moderately cold locations who decide to join CoCoRaHS are already likely highly

motivated and self-selecting, which would correspond to our findings related to early

activity. It would be helpful for future work to quantify the geographic disparity in

CoCoRaHS signups - both in terms of population and in terms of climatology.

3.6.3 Early Activity

First month contributions are this strongest predictor of long-term retention, which

confirms Hypothesis 4 and replicates prior work on Wikipedia [75]. A key follow-up

question, then, is whether early interactions with a project extrinsically influence re-

tention, or whether both early activity and retention merely reflect existing intrinsic

participant motivation. In Wikipedia, at least, the latter, “intrinsic” view seems to be

more applicable [75].
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Indeed, the majority of CoCoRaHS participants appear to join with an existing in-

terest in the project, and early intervention efforts to date have shown mixed results. In

addition, CoCoRaHS staff report encountering certain “personality types” that simply

enjoy the daily routine and data management aspects of the project - sometimes even

without a particular interest in the weather. With this in mind, one potential appli-

cation of this research might be to recruit a wide range of participants and then focus

follow up efforts on the highest-contributing participants.

However, this approach is complicated by the importance of diversity and inclusivity

to the goals of CoCoRaHS and other citizen science projects. If project resources are

devoted only to engaging the most active contributors, existing biases may become

more entrenched and opportunities for growth may be missed (c.f. [62]). Broader

recruitment activity can help expand the project’s demographic base, but it may be

just as important to understand why certain participants leave, as why they are less

likely to sign up. In addition, research on Wikipedia has shown that there is value in

using targeted interventions to promote the retention of newcomers [33].

The requirement of a rain gauge is a potential barrier to entry in CoCoRaHS, which

is why many citizen science projects do not require any equipment at all [103]. On the

other hand, CoCoRaHS staff note that asking participants to spend at least the cost of

shipping on a gauge can help participants gain a sense of commitment that they might

not have if the gauge is given for free.

It is still possible to promote early data entry while waiting for equipment to ar-

rive. CoCoRaHS staff occasionally encourage participants to submit their initial record

on a dry day (since the value is sure to be zero). However, there is no place in the

CoCoRaHS database for rain measurements made without an official gauge. As an al-

ternative, CoCoRaHS has an informal relationship with mPING, an independent mobile

app for reporting precipitation that does not require an established site or any custom

equipment [20]. Participants unable to commit to the full CoCoRaHS protocol can start

by contributing to mPING instead.

We suggest that these types of partnerships provide a rich opportunity to engage a

broad range of participants in the projects that best suit their interests and abilities. In

addition, centralized volunteer recruitment platforms like SciStarter [38] can facilitate

these relationships while also tracking participant demographics and activity across
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multiple citizen science projects.

3.6.4 Data Quality

While age consistently correlated with higher scores on all quality metrics, first month

activity did not, so Hypothesis 5 was not fully supported. This may in part be due to the

challenges in operationalizing data quality; our efforts to factor out the strongest signal

(number of contributions) caused the remaining metrics to be quite noisy. Nevertheless,

some interesting patterns arose from the data. Participants who contributed more data

were more consistent but less timely than other participants. There is likely a moderate

subset of users who consistently make observations every day but only occasionally enter

them in the website en masse. This would confirm previous work noting that data entry

is not considered a desirable task by many citizen science participants [103].

3.6.5 Limitations

This project focused only on predictors that could be determined within one month of

signup. This simplified the model at the expense of some practical applicability. In

future work, it would be valuable to use time-dependent covariates: e.g. how likely are

you to drop out this month, given the number of rainy days last month? It would also be

informative to examine the 10% or so of participants who did not contribute anything

during their first month, but later became active (perhaps after obtaining a rain gauge).

Further, while median retention was useful as a comparative metric, it also masked a

large variability in individual outcomes.

This project focused only on a descriptive analysis of existing data, and our hy-

potheses were not fully formed prior to starting the exploratory analysis. A next step

to continue this work would be to experimentally evaluate the effect of one or more

interventions on retention and data quality. Another next step would be to interview

a number of CoCoRaHS participants to shed more light on the differences we found in

activity levels.

To simplify our analysis, we assumed that each CoCoRaHS reporting station was

run by a single observer, accounting for group accounts only in our treatment of gender.

In fact, a small but sizeable subset of accounts belong to school teams and other groups.
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Future work could examine other indicators of group accounts and evaluate differences

between groups and individuals. In addition, we did not account for the possibility

of participants remaining active after moving to another house, which would require

establishing a new monitoring site and account.

Finally, we focused on factors that predict individual outcomes, without fully mea-

suring the effect of organizational structure on retention. We included a term for U.S.

state, but only as a fixed effect. In future work, it would be valuable to quantitatively

measure the effect of specific organizational factors and recruitment strategies.

3.6.6 Conclusion

As is often the case for citizen science, the implications of this study depend on the goals

of each particular project. Some predictors of retention are amenable to intervention,

while others are not. But more fundamentally, there is a potential tension between

different intervention strategies. If robust data collection is prioritized, a project might

focus on recruiting and retaining participants who demonstrate an ability to remain

active long term. On the other hand, if educational and inclusion goals are prioritized,

projects might focus recruitment and intervention strategies toward students and under-

represented groups. Projects that focus on both goals (like CoCoRaHS) will need to

carefully weigh the benefits of each approach.

While crowdsourcing and peer production are often dominated by younger contrib-

utors, OCS projects like CoCoRaHS appear to have very different demographic char-

acteristics. This is likely due to the unique structure of the data collection workflow

in OCS. In the next chapter, we generalize and elaborate on this workflow and draw

implications for the design of systems for improving data quality in these projects.



Chapter 4

Improving Data Quality:

Workflow and Provenance

Models for OCS

4.1 Introduction

As discussed in the previous chapters, there are a number of mechanisms for measuring

and ensuring data quality in observational citizen science. VCS projects can often verify

results by having multiple volunteers complete the same task. However, in OCS, the

data are much more individualized, containing time and location-sensitive information.

These data are often unique observations of changing natural phenomena and may not

be directly verifiable. The distributed nature of participation means that supervision

is often minimal and organizers must trust volunteers to follow instructions accurately.

Thus, there is a strong emphasis on precise task definition and training to reduce error

and maintain the comparability of data points, and expert review to validate the data.

Expert review is perhaps the most popular and broadly used mechanism for data

validation in OCS projects [121]. The experts conducting data quality review may

be volunteers, staff, or affiliated scientists who evaluate incoming data. Among other

approaches, data review may take the form of a project leader reviewing data summaries

for outliers (e.g., The Great Sunflower Project), an intern entering hard copy data sheets

58
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into a database (e.g., Mountain Watch), or a global network of expert volunteer data

reviewers using an integrated, customized, distributed data review tool (e.g., eBird).

One might assume that observational data remain unchanged as long as they are

recorded as intended by the original observer. In practice, however, some data do

change, usually through the review process. A common procedure is checking for and

flagging or removing outliers. This is not as simple as just marking a record as “invalid”,

because the initial data review may not be the final word. For example, in some data sets

that include species for whom range shifts are observed, outliers might be judged invalid

upon initial review. If additional evidence of a range shift accrues over time, however,

the original records would be re-reviewed and marked as valid. Where supported, data

may also be changed by the individuals who submit it, e.g., due to post hoc development

of further expertise, or after communication with a reviewer clarifies an uncertainty.

In addition to tracking changes, it is important to explicitly track the review status

of data. Has it been reviewed and approved by the coordinators? Has it been submitted

to and accepted by official third parties (like the MPCA in the case of River Watch)?

Tracking this information would allow OCS platforms to provide options for using all

data or only data that has been fully verified and submitted, and would also encourage

participants to upload data as soon as possible, without needing to worry about people

relying on it before it has been reviewed.

Finally, the task definition (protocol) itself can change, or multiple protocols may

be supported; knowing which protocol and which “version” of the task was in place is

necessary for accurate data interpretation. This is particularly important during the

early stages of project development, as establishing workable procedures and quality

control mechanisms can take several iterations, each of which may require a full field

season.

With this in mind, it is clear that projects should ideally track changes to data for

a number of reasons:

• for accurate provenance;

• in case future reversal is needed;

• to facilitate process improvement;

• to support participant skill development; and



60

• to demonstrate scientific rigor through appropriate data documentation.

A number of recent developments in ICT for citizen science have led to promising

approaches for managing data. However, the complexity of the data management task

means that familiar general-purpose tools like Excel may still be preferred by partic-

ipants. Even if a project has the resources to build or contract custom ICT for data

management, important revisions to the data can and do continue to occur externally.

In this chapter, we explore a general workflow common to many field-based moni-

toring projects. We discuss five citizen science projects as examples and identify aspects

of data management important to each step of the workflow process. We then present

a new data model for field monitoring workflows that handles some of the complexities

inherent in managing these kinds of data.

4.2 Related Work

Technologies supporting public participation in scientific research are swiftly advancing,

but with little consideration for the complexities of data management processes. To

date, general-purpose ICT rarely support quality control processes such as data review

outside of simple moderator approval. Metadata standards focus on documenting data

rather than facilitating retention of provenance, and while wikis might seem a suitable

solution to some key concerns, most citizen science projects violate the assumptions

upon which wikis are built.

4.2.1 General-purpose ICT for citizen science

Despite the centrality of data in these projects, scientific data management is not a skill

that project coordinators necessarily bring to the table, nor do partnering scientists or

participants. Therefore, guidelines for data management plans, policies, and practices

for these projects have only recently begun emerging [117, 57]. Persistent challenges in

storing project data and metadata include suboptimal ICT for smaller projects [118].

Cumulative data sets, such as those produced by ongoing, long-term projects, also defy

some of the usual practices in data management because there is no “finished” data

product to archive as a standalone object.
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Given these challenges, several tools have been developed to make it easier for new

projects to get started. Online systems like CitSci.org [64], Sensr [46], and CrowdMap by

Ushahidi [69] provide platforms to launch new projects with little or no programming

knowledge. However, these systems are also harder to customize for more complex

workflows; project leaders must either adapt their workflow to fit the software, pay

someone to make modifications to meet their needs, or both.

Other projects like Open Data Kit [35] and wq [100] offer customizable, open source

software platforms for field data collection. These platforms provide an alternative to

both “from scratch” development and hosted solutions. wq’s modular codebase is de-

signed to support project-specific customization, and the framework did not previously

support the complex data management workflow common to many field-based projects.

4.2.2 Provenance Models

There have been a number of efforts to create and standardize models for describing

the provenance of citizen science and other types of monitoring data. Some prominent

examples include Ecological Metadata Language (EML) [25], the Federal Geographic

Data Committee’s Content Standard for Digital Geospatial Metadata [24], and the

Darwin Core [116] - as well as a number of other field-specific metadata standards.

More general provenance models for the semantic web include the PROV standard by

the W3C [28], and the conceptual W7 model [85], designed to address the “7 W’s” of

provenance: what, how, when, where, who, which, and why.

These models can be useful for describing the provenance of monitoring data sets,

but they do not fully address the data management challenges we explore in this work.

At a superficial level, the goals are slightly different: these models standardize ways to

document provenance, while the model proposed in this work is intended to facilitate

recording and retaining provenance data throughout the project workflow. In this re-

spect, the model proposed in this work has more in common with FilteredPush [115],

as a platform for tracking and incorporating revisions from third parties into scientific

datasets.

However, there is a more serious underlying concern. We have observed that in

practice, not every party involved in a data exchange can be expected to utilize the

recommended metadata standards and software tools. Thus, the model proposed in
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this work is intended to facilitate the incorporation of revisions to data received from

multiple parties, whether or not those parties are actively tracking and reporting those

revisions internally.

4.2.3 Wikis

Wikis are a well studied method for maintaining online repositories of community knowl-

edge, with built-in mechanisms for versioning and some provenance tracking. Wikis

generally incorporate a timeline or revision history, tracking changes to data with times-

tamps and usernames. Importantly, old values are preserved and changes can be re-

verted, supplemented by log messages to explain why data were changed. Previous

research has explored the usefulness of revision logs for provenance [55, 72], and as a

way to evaluate the quality control process [33, 106]. Other efforts work to extend wikis

with additional provenance tracking features, for example the Shortipedia project [111].

The geowiki model [80] extends wikis with concepts useful for some citizen science use

cases, including the ability to track changes to interdependent objects and fine-tune

permissions on a per-user basis.

With these affordances, it may appear that wikis would be ideal for maintaining

repositories of citizen science data. However, there are a number of assumptions that

limit the usefulness of the wiki model for this case. First, most wiki models assume that

once data are in the system, all further editing will happen within the system, so there is

generally limited support for offline editing and reintegration. As we will demonstrate,

many important review tasks for field monitoring data are accomplished using external

systems.

Second, the basic wiki model generally assumes the artifacts being described are

relatively stable, and can be objectively described in increasingly better detail through

iteration by additional contributors. As noted above, field data collection results in

individualized, first-hand observations of changing natural phenomena.

Wikis generally have poor support for time series data because the main timeline

most wikis track is their own revision history. Handling time-sensitive data effectively

is a general challenge given the multiple potential interpretations of time and history

[92].

Wiki rules and norms are interactively worked out within the wiki and versioned
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like other wiki objects. Citizen science protocols, by contrast, are well-defined in or-

der to support scientific rigor, with the primary data collection tasks usually occurring

offline. These procedures change only when necessary, and with careful consideration.

The quality of an individual observation must be evaluated according to the task defi-

nition in place at the time of observation, as opposed to the task definition currently in

place (which may differ). Data entry is typically a secondary task, separate from data

collection, sampling, and other field-based tasks, which can reduce the rates of data

submission. Finally, wikis frequently are not adequately usable for project participants,

many of whom struggle with fairly simple UI-driven sites [118].

4.3 The OCS Workflow

In this section, we explore aspects of the data management workflow common to many

field-based monitoring projects. We give examples of each step in the process and draw

general conclusions about ICT requirements for these projects.

Table 4.1: OCS Projects Studied

Project Focus Geographic Range Organizational Sector

CoCoRaHS Precipitation U.S.A. & Canada NGO

eBird Birds Global NGO partnership

Great Sunflower Project Bees North America Academic

Mountain Watch Alpine plants New Hampshire NGO

RRB River Watch Water quality Red River Basin NGO partnership

4.3.1 Methodology

The empirical data informing the inductive model development presented here were col-

lected for prior studies, combining my analyses of River Watch [101] and CoCoRaHS

[102]1 with Andrea Wiggins’ research on three similar projects [118]. These inde-

pendently conducted studies employed qualitative field research methods and shared a

primary focus on data management processes and ICT infrastructures in citizen science

1 Note that the CoCoRaHS analysis was still in early stages when this paper was written. This
thesis is organized thematically rather than chronologically.

http://www.cocorahs.org
http://www.ebird.org
http://www.greatsunflower.org
http://www.outdoors.org/conservation/mountainwatch
http://riverwatch.umn.edu
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Figure 4.1: The Observational Citizen Science Workflow

projects. Data sources included interviews with project organizers, internal documents

such as database schemata, and longitudinal participation and observation documented

via field notes. Each study included standard procedures for ensuring research quality;

for example, project leaders were invited to review and correct the penultimate drafts

of analyses.

As such, the data sources and thematic focus of these studies were highly compatible.

Further, the combined cases are reasonably representative of the known population of

North American citizen science projects that focus on field-based data collection [118].

From a theoretical sampling standpoint, they also maximize diversity across several

key project characteristics, while remaining comparable due to similar participation

structures and levels of project maturity. As shown in Table 4.1, the projects discussed in

the current work originated from diverse scientific domains in a variety of organizational

structures. They operated at geographic scales ranging from local to global, with average

contribution rates ranging from well under 7,000 data points per year to over 7,000 data

points per hour.

The process of collecting and processing field data in a citizen science project is

summarized in Figure 4.1. We describe a general workflow, noting that each citizen

science project has its own specific variations to accommodate.
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4.3.2 Task Execution

Definition. The monitoring task is usually defined by a project coordinator/domain

expert, sometimes with participant input. Precise task design is critical for data quality

and meaningful evaluation metrics [101]. Task definitions generally include step-by-step

protocols for collecting data and explanations of targeted parameters.

For example, the CoCoRaHS task includes reading a rain gauge and (in winter

months) melting snow samples to measure snow water equivalent. The River Watch task

follows a more complex protocol based on professional monitoring processes, including

readings with a chemical probe (sonde). Ideally, the task definition is digitized and

stored in the project archive. In practice, it is documented primarily in the form of

instructions to participants.

Assignment. Once volunteers agree to participate and have completed any nec-

essary training, task assignment usually includes selecting the location(s) for collecting

data. Participants typically make observations in areas near their home or school due

to the practical constraint that volunteers must be able to readily access observation

sites.

Participants may be assigned specific individual sites to monitor (River Watch); or

they may report on data for established shared observation sites, such as permanent

plots for plant species (Mountain Watch); or they may select a location in their yard

(CoCoRaHS, The Great Sunflower Project); or they may make observations anywhere

the phenomenon of interest is present (eBird and numerous others). In most cases,

observation locations chosen by participants are resolved to a latitude and longitude

based on a street address or a pin dropped on an online map.

The assignment step may also include training and/or distribution of equipment,

where appropriate. In some projects, training is self-paced using online materials; in

others, in-person workshops provide opportunities to learn more complex participation

processes. For a few projects, training is limited to instructions for data entry: through

self-selection, eBird participants are typically already “trained” in key skills for bird

detection and identification, and need only learn the conventions of the eBird system.

Completion. Once protocols are defined and locations assigned, it is up to the

volunteers to head out into the field to collect data. This results in time series of

sampling events or observations. As noted in Chapter 1, an observation is is “the
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intersection of a person, a bird, a time, and a place” for eBird. Similarly, a River Watch

sampling event is the combination of a sampling team, a time, and a predetermined site

along a stream.

While CoCoRaHS and River Watch incorporate measurements from specialized sen-

sors into their workflow, eBird, the Great Sunflower Project, and Mountain Watch

each require nothing more than field observations written down on paper. Very sim-

ple task definitions are increasingly common among citizen science projects, because

most organizers report a direct tradeoff between task complexity and volume of data

contributions.

4.3.3 Data Management

Digitization. Ideally, all information for each observation would be uploaded into

a centralized system immediately as a single report for instant validation and change

tracking. In practice, the conversion of data from field notes into digital form often

does not happen instantly. Data entry is sometimes substantially delayed because par-

ticipants consider it an unpleasant or undesirable task; this is a universal challenge for

projects that require a separate data entry step. In some cases, participants intention-

ally delay data submission due to concerns over data visibility for sensitive species and

breeding animals.

It might seem that replacing paper-based data entry with a mobile app would stream-

line the process and facilitate instant validation and provenance tracking, but there are

some notable barriers to consider. Some contributors will always be more comfortable

manually recording data in the field, or hard copy record retention may be required for

quality assurance or legal purposes, making mobile entry an unwanted extra step. Not

all contributors own smartphones or other technologies such as GPS devices. In some

projects, the primary contributor group is older adults, the demographic with lowest

smartphone adoption [104]. Under a variety of circumstances, bulk upload can be the

most feasible way to entice volunteers to contribute larger volumes of data.

Collecting data in the field is subject to the conditions of the field. Technical con-

straints can limit the usefulness of smartphones (e.g., off-grid usage must be accom-

modated), but sometimes using electronics is simply impractical due to screen glare,

inclement weather, or incompatibility with the flow of activities. In addition, most
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projects are poorly positioned to manage an additional platform (or three) for mobile

data entry. Although the use of HTML5 can facilitate cross-platform deployment [100],

the mobile workflow adds complexities that can be challenging to address. Further,

external partners may not be able to adapt to new technologies.

Even when new technologies can be incorporated, integrating the collected data into

a single submitted record is still challenging. Unannotated digital photos may require

later manual matching to field data. For measurement projects like River Watch, chem-

ical sensor readings must be transcribed manually (though newer sensors will support

direct data transfer). When lab samples are involved, the original field report must be

associated with a lab report created after the fact.

Review. In order to ensure the quality of the project results, incoming data is often

reviewed to the extent feasible. Large projects like eBird may use algorithmic flagging

of outliers – as defined by the data themselves, where possible [45] – to automatically

identify data points that require expert review. Review is conducted by domain experts;

for example, eBird’s network of approximately 650 volunteer reviewers use both online

and offline tools and resources for data review. Most reviews are readily completed

within the custom review interface, but during spring migration, when an especially

high number of records are flagged each year due to early movement of some species,

bulk review is more feasible. Reviewers sift through data in Excel to manage these large

batches or identify more nuanced data problems, and then update records via eBird’s

online review interface (re-upload of edited records is not supported.)

In smaller projects without resources for such systems, data filtering algorithms are

enacted by hand, often with Excel. These manual procedures are rarely adequately

documented to make the data processing itself repeatable.

For example, River Watch data is reviewed by a core team of 3-4 staff. While

the project’s custom ICT does support some simple range validation checking, making

corrections to bulk data while importing it has been a cumbersome task. Thus, most

of the review to identify and remove outliers still happens in Excel, and reviewers

generally prefer to wait to import anything until after they have fully reviewed the data

they receive. As a result, potentially valuable information about the review process is

lost, as is the ability to easily reverse a decision to discard an outlier when reversal is

warranted.
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Exchange. An important part of enabling data use is facilitating exchange with

third parties. Data are often exchanged using a standard or agreed-upon format. For

example, River Watch monitoring data is sent annually for incorporation in the Min-

nesota Pollution Control Agency’s master database, using an Excel spreadsheet with a

layout based on the STORET standard. In addition to less formally structured down-

load files, eBird data packages are made available in Bird Monitoring Data Exchange

(BMDE) format, an extension of Darwin Core metadata standards, which was collabo-

ratively developed with the Avian Knowledge Network to permit data exchange among

partners.

In some cases, third parties may comment on or even modify data within their

systems as part of an ongoing review process. This is certainly true for River Watch,

and it has traditionally been difficult to ensure that these changes are replicated across

databases. This challenge is addressed in the new data model proposed in this chapter.

4.3.4 Task Refinement

Finally, as the project evolves, the core tasks will often be refined. A new measuring

tool may become available, for example, or a task is simplified to make it accessible

to a larger audience. Data users and contributors often request modifications to pro-

tocols to better fit their needs. For example, in 2012 River Watch (and other similar

programs in Minnesota) switched from measuring water clarity with T-Tubes to using

Secchi tubes. The protocol and data structure is nearly the same, but Secchi data is

treated as a different parameter for provenance purposes. Although eBird’s three pri-

mary protocols remain unchanged since the project launched, 20 additional protocols

appear in the data set, most of which address specific needs for projects coordinated by

partner organizations.

Coordinators may also find that the way volunteers execute tasks differs from their

expectations, leading to a retooling of procedural details to support more consistent

task completion. For example, The Great Sunflower Project switched from 30-minute

sampling on Lemon Queen (Helianthus annus) sunflowers exclusively (2008), to 15-

minute sampling (2009), to 15-minute sampling on Lemon Queens plus a selection of

common garden species (2010), to 5+ minute sampling for any flowering garden species

(2013). This is neither atypical nor slow development for a new participation protocol
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in field-based citizen science.

Supporting changing task definitions is a common challenge for ICT in citizen sci-

ence. Without careful planning, project development can be stymied by static platforms

that cannot adapt to changing project needs without additional (often unavailable) pro-

gramming effort. Even more flexible data models typically fail to retain the information

necessary to evaluate historical data properly. This can lead to erroneous assumptions

about data and misinterpretations that can have serious consequences, e.g., inappro-

priate land use recommendations for managing endangered species habitat. Managing

changes to task definitions is another challenge addressed by our proposed data model.

4.3.5 Key observations

Field monitoring data often starts its life “offline” and may also be reviewed and edited

offline. Despite evolving ICT capabilities, it is not reasonable to expect that all con-

tributors will use a custom system for all editing and review practices. Especially when

third parties are involved, there is simply no way to ensure that every important revision

to the data will happen inside of a project’s ICT system.

With this in mind, we suggest that rather than building a custom platform that

supports every conceivable data review operation, it may be more valuable to build a

system that is robust against multiple imports and exports to and from external formats.

That is to say, data import is more than just a bootstrapping feature until developers can

implement a full-featured data management platform, then train contributors to perform

all data modification within it, where changes can be directly monitored. Instead, the

ability to import new and modified data from external formats is, and will remain, a

core part of the workflow. This can be due to contributor preferences, and to parts of

the workflow not fully under project control, like data exchange with third parties.

In particular, the good old spreadsheet is how many scientific project contributors

prefer to work with data [89]. Normalized data models and sophisticated apps are not

necessarily seen as useful, even if there is a demonstrable overall benefit. Volunteers

are rarely eager to learn new software, and data management tasks are a hurdle to

participation for many individuals. Generally, our internal data model should account

for the needs of contributors who are unconcerned about internal data models and just

want to participate in science.
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Certainly, there is great potential for mobile devices to be harnessed as a way to

improve data quality and submission rates2 . For River Watch, allowing on-the-spot

data entry via a mobile application would eliminate a couple of data transferring steps

and opportunities for data entry errors from the process. In addition, a mobile app

could provide feedback as soon as data is collected - while there is still an opportunity

to take another measurement.

However, mobile technology is not a panacea, and in many projects, mobile entry

should not be the only contribution option. For example, Kim et al. found that barriers

to mobile adoption persist even when projects are provided with a free user-friendly

campaign authoring tool [47]. Wiggins and He studied iNaturalist community logs and

found that data submitted through the mobile app often had lower quality along some

dimensions than data submitted through the website [120]. A more holistic approach

should incorporate new technologies where appropriate (and possible), but also allow

for more traditional ways of handling data, with the understanding that technology is

just one part of the larger process [118]. Toward that end, we propose a new data model

that flexibly integrates data from both bulk import and mobile field entry workflows.

4.4 Proposed Data Model

As we have discussed, data management for field-based observation is a nontrivial task.

Most existing general-purpose platforms do not track changes to data, and wikis are not

particularly well suited for field observation data. Even tailor-made platforms struggle

with adequately maintaining history. An ideal data model would track changes to data

and task definitions, allowing accurate analysis of historical data. Importantly, the

model must handle the data import task robustly and repeatedly, by matching incoming

records to data already in the database.

We propose a novel data model that has these characteristics, and hope that it

will be useful to implementers of ICT for citizen science projects. We demonstrate the

derivation of the new model by way of example. As a starting point, Figure 4.2 shows

a simple “single-table” model for storing incoming observations.

2 For example, the eBird team have noted that the BirdLog mobile app has dramatically increased
submissions by core contributors.



71

Location:
Observed:
Contributor:
Entered:
Modified:
Status:
Appearance:
Temperature:

E. Creek
2013-05-29

Alex
2013-05-30
2013-05-31

Valid
2

15

Observation

Observation Metadata

Provenance Metadata

Data

Figure 4.2: Example single-table model for representing an observation. Note that
“single-table” here refers only to the structure of the observation data, as there would
typically be separate Contributor and Location entities, which are represented here as
text values for simplicity.

The model contains a number of metadata attributes that are important for prove-

nance, as well as the actual recorded values for the observation. Note that there are

three different types of data being stored: Observation metadata, describing when and

where the observation took place (Location, Observed); Provenance metadata, track-

ing the process of entering and maintaining the record within the ICT (Contributor,

Entered, Modified, Status); and Data, or the actual values being reported per the task

definition.

The single-table model conceptually matches an intuitive understanding of the task

definition, and could easily be implemented in web and paper forms for entering the

data. This database model is used by a number of projects, including CoCoRaHS, but

can be inflexible to evolving project needs.

For example, a subset of River Watch participants now collect both precipitation

and frost depth information during the winter months when streams are frozen [100].

The precipitation data is a natural fit for CoCoRaHS and so is shared with the program.

However, there is currently no place in the CoCoRaHS database to record frost depth,

which falls outside of the original scope of the project. Asking CoCoRaHS staff to add

additional database columns and interface elements for the sake of one subcommunity is

not reasonable, so as a workaround, these additional data were submitted to CoCoRaHS

in the “comments” field, limiting its usefulness.
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Location:
Observed:
Contributor:
Entered:
Modified:
Status:

E. Creek
2013-05-29

Alex
2013-05-30
2013-05-31

Valid

Entity AttributeValue
Name:
Units:
Protocol:

Appearance
Rating Scale

Visual

Name:
Units:
Protocol:

Temperature
°C

Sonde

2

15

(Observation)

Figure 4.3: Simplified Entity-Attribute-Value model for field observations. Each rect-
angle represents a row in a table. Arrows represent parent-child relationships; some
primary and foreign key columns are not shown.

In general, whenever a project task definition expands to include additional data

fields, the project will need to have a developer add additional columns to the database

and update hard-coded application logic. If an existing parameter definition changes in

a way that will affect the meaning of the associated values, old data is either “upgraded”

via computational means, or a subtle break in the data between the “old” and the “new”

data is created.

4.4.1 EAV: Tracking Changes to the Task Definition

The entity-attribute-value model (shown in Figure 4.3) is a common way to address

these flexibility issues. The EAV model is necessarily used by general-purpose platforms

like Ushahidi to support custom task definitions. However, it is also useful for project-

specific ICT systems.

For example, eBird’s internal database model includes a Checklist (Entity), Species

name (Attribute), and Observation (Value)3 , the latter being the number of birds seen

for a given species at the date and place represented by the checklist. Similarly, River

Watch and other water quality projects’ data are typically structured as a series of Sam-

pling Events (Entities), each containing Results (Values) for a number of predetermined

(but flexible) Parameters (Attributes).

By managing attribute definitions in their own table, systems designers can allow

3 Note that “observation” as used elsewhere in this work refers to the entity (or checklist in eBird’s
case).
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more flexibility to customize and maintain the task definition as needed. This table can

also store useful metadata about each parameter (e.g., units and sampling methods)

rather than hard-coding it in the application. When implementing EAV generally, it

can sometimes be a challenge to determine which items to implement as attribute-

values and which to leave as “normal” fields on the entity. In this case the distinction

is relatively simple: metadata should generally be defined as part of the entity, while

the observation or measurement data should be implemented as attribute-value pairs.

The EAV approach can also be applied as a simple but effective way to “version”

task definitions, simply by creating additional attributes, though this capability is rarely

exploited. New incoming observations could be associated with new attribute defini-

tions, while leaving the existing data as-is. Where possible, it may be useful to define a

mapping from the old values to the new values, but this can be done without actually

changing prior data.

For example, when River Watch switched from T-Tubes to Secchi Tubes, one of the

project coordinators was able to create a “Secchi Tube” parameter definition without

developer intervention. While there was general agreement that the parameters should

be kept separate in the database, River Watch organizers and participants wanted to

evaluate their Secchi and T-Tube data on the same chart, as if they were the same

parameter. This was facilitated by defining a relationship between the old and new

parameters, indicating that they were numerically equivalent and could be graphed on

the same scale.

4.4.2 ERAV: Tracking Changes to Observation Data

The EAV model is useful for supporting and tracking changes to the task definition.

However, as we noted, individual observation records can also be changed during the

review process, and these changes should ideally be tracked as well. With the model

in Figure 4.3, if data is modified, the only indication that anything has changed is the

modified column; the replaced data is lost entirely.

In a wiki or similar versioning system, a version field on the observation could

be incremented whenever data change, automatically marking the previous version as

deleted on each new save.4 However, this assumes that revisions are done sequentially,

4 Note that deleted is really just a value for the status field; an actual SQL DELETE would cause
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Figure 4.4: The Entity-Record-Attribute-Value Model

within the system, and that there is always only one active (non-deleted) version of the

observation. As noted earlier, there can be two or more records created for the same

observation, especially if there is lab work involved. We need a way to group these into

a single entity for analysis, while maintaining the separate provenance information for

each record.

To accomplish this, we propose a new model, ERAV, which separates the event entity

(the actual observation) from its provenance record. The entity retains metadata about

the observation (e.g., site, date observed), while the metadata about provenance (e.g.,

observer id, date/time entered, review status) is moved to a separate record table. This

approach enables maintaining multifaceted provenance data for the same monitoring

event.

As Figure 4.4 shows, whenever a record is changed within the system, a new version

is created and the prior one is marked as deleted, much like in a typical wiki. Note that

an explicit last modified column is no longer needed, as it can be derived from the entered

date of the most recent record. As with EAV, the actual observations/measurements

are recorded as attribute-value pairs. Importantly, these attribute-values are internally

associated with each record, rather than the entity.

To the casual data user and for most data analysis purposes, the entity/record

distinction is unimportant. For many common use cases, the attribute-values can be

displayed as if they were directly associated with the entity. This trick allows provenance

metadata for various attribute values to be maintained internally as part of each record,

while presenting a single conceptual event entity for analysis purposes.

historical data to be lost, contrary to the goals of the versioning system.
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Figure 4.5: Resolving record information into a single “event” entity view. Some of the
event data was imported from Excel more than once, leading to ambiguity. (For clarity,
only currently active records are shown.)

4.4.3 Practical Concerns

“Merging” Records & Handling Conflicts

When information about an entity is created or modified outside of the system and then

imported again, we cannot necessarily assume that any existing records for the entity

should be deleted. For example, the incoming record may contain only supplemental

data or a single additional attribute that was previously missed by mistake. Records can

also contain lab data associated with corresponding field observations, which would pre-

viously have been manually merged, obfuscating provenance metadata in the process. In

the new model, the contributor can simply upload the new file; if the observation meta-

data matches, new records are generated with the additional attribute-values, which

are displayed together with the previously entered values as though all were directly

associated with the entity. This feature can be thought of as “merging” records, though

the actual data is not combined internally.
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Even when the new data contains complete observation records, automatically dep-

recating older records may not be desirable. Certainly, when reviewers have already

validated a bulk dataset offline, they prefer to avoid manually confirming each change,

and instead want the system to re-import and accept their new values without question.

On the other hand, if a third party conducted the review, the person responsible for

re-importing the data may want to “re-review” each change separately. The main point

here is that the appropriate time to resolve differences between versions is context, task,

and contributor-dependent, so the model must allow for ambiguities.

This allowance can lead to discrepancies between attribute values for active records,

particularly if the incoming data set is an update to existing entities incorporating

data that was reviewed offline. The terminology of the conceptual model provides a

convenient way to describe this situation: conflicting reports. This term can be used to

alert contributors of the situation, where appropriate, but forcing contributors to deal

with conflicts as soon as they are discovered is not always practical. Instead, the system

may need to allow for ambiguities remaining in the dataset indefinitely. This is the key

difference between this model and traditional wiki models.

Figure 4.5 demonstrates a number of possible outcomes when multiple imported

records describe the same entity. If two active records for an entity contain values for

different attributes, the data is merged without issue. Even if the records contain values

for the same attributes, the data can be merged as long as the values are also the same.

However, conflicting records must be handled differently according to the use case and

skill level of each contributor.

For those only interested in using the data for analysis, conflicts can be smoothed

over with a simple heuristic, as demonstrated by the Temperature value in Figure 4.5.

By assigning a relative authoritativeness value to each record (e.g., the most recently

entered record can often be treated as most authoritative), we can defer to the value

from the most authoritative active record containing that attribute whenever there is

a conflict. More complex workflows might assign priorities to different record status

values (e.g. Provisional, Verified), allowing for more fine-tuned ordering and conflict

resolution. This would also permit greater transparency for data use by third parties.
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Identifying the Relevant Entity for an Incoming Record

So far, we have not dealt with the issue of matching incoming records to their associated

entities. The ideal approach would be to include each entity’s unique ID in exported

files, and require that only appropriately annotated files be used for offline editing.

Then, when a batch of records was (re-)imported, the embedded entity IDs could be

used to match those records to the existing entities.

However, we cannot always control the format of batch files for upload, nor can

we always ensure that updated files will contain the entities’ unique identifiers used

within our system. This is especially true for file formats controlled by third parties

and standard exchange formats. Fortunately, there is usually a workable natural key for

each entity we can use to match incoming records to entities. For example, assuming

only one individual is monitoring a given site once a day, we can assume that any records

for the same site and date should be associated with the same event entity5 . The actual

natural key used would project-specific, but the concept can be applied generally. It is

important to be able to identify a usable natural key: if the key is too general, unrelated

records will be inappropriately merged as if they were the same entity, but an overly

specific key will prevent merging.

Obviously, this strategy works only as long as none of the fields in the natural key

need to be updated. If an entity is entered with e.g. the wrong date, uploading a

spreadsheet with the correct date would simply create another entity unassociated with

the old data. One possible workaround might be to step back and compare the entire

date range of the contributors’ existing data against the date range of the uploaded

file and point out any obvious discrepancies. Similarly, there is no explicit support

for deletion: if a reviewer deletes a row or column from an exported spreadsheet, they

might reasonably expect the same data to be deleted from the associated entities upon

re-import. As Figure 4.5 shows, this action would be instead interpreted as a partial

update by the model.

5 The natural key in this case is analogous to common protocols for generating an “Activity ID” in
professional water quality monitoring databases, but does not require a separate database field.



78

4.5 Reference Implementation

I have provided the source code for a generic implementation of ERAV as vera, which

is available on the Python Package Index and on Github 6 . vera relies on and extends

the wq framework, an open-source suite of Python and JavaScript libraries I built to

support River Watch and other citizen science and crowdsourcing projects [100].

The core of vera is a collection of Django-powered database models. As Figure

4.6. shows, the Event, Report, Parameter, and Result tables directly correspond to

the Entity, Record, Attribute, and Value concepts in ERAV. vera also provides three

additional tables that aren’t critical to the ERAV concept but are still useful:

• The Site model allows for the definition and maintenance of pre-defined monitor-

ing locations. River Watch and CoCoRaHS both make use of pre-assigned sites,

but projects that allow ad-hoc observations may want to store location information

on the Event model instead.

• The ReportStatus model allows for the customization of various valid and invalid

record statuses, as well as their relative priority or “authoritativeness”.

• Finally, the EventResult model provides a denormalized copy of all of the cur-

rently active Result data. Without this model, a query on the database must use

extensive joining and sorting to ensure that the listed Parameters for each Event

are represented by the Result from the highest-priority valid Report. This query

is not practical for interactive data exploration. vera automatically recomputes

and updates the EventResult table whenever an Event, Report, or Result is

modified. vera also provides out-of-the box charts and spreadsheet exports for

the EventResult model via the Django REST Pandas API 7 .

The core concepts of ERAV are provided by the relationships between the tables in

vera, but the tables themselves likely do not capture all of the metadata needed for

most real-world projects. To facilitate use in a variety of domains, each Django model

in vera is designed as an abstract base class with a default implementation that can be

“swapped” for a custom definition without breaking the foreign key relationships8 .

6 https://github.com/wq/vera
7 https://github.com/wq/django-rest-pandas
8 https://github.com/wq/django-swappable-models

https://github.com/wq/vera
https://github.com/wq/django-rest-pandas
https://github.com/wq/django-swappable-models
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        Result    

    id         AutoField     

    report         ForeignKey    

    type         ForeignKey    

    empty        BooleanField    

    value_numeric        FloatField     

    value_text         TextField     

        Report    

    id         AutoField     

    event        ForeignKey    

    status        ForeignKey    

    user        ForeignKey    

    entered        DateTimeField    

report

        Parameter    

    id         AutoField     

    is_numeric        BooleanField    

    name         CharField     

    slug         SlugField     

    units        CharField     

type

        EventResult    

    id         AutoField     

    event        ForeignKey    

    event_site        ForeignKey    

    result         ForeignKey    

    result_report         ForeignKey    

    result_type         ForeignKey    

    event_date        DateField    

    result_empty        BooleanField    

    result_value_numeric        FloatField     

    result_value_text         TextField     

result

        Event    

    id         AutoField     

    site         ForeignKey    

    date        DateField    

event

result_report

        Site    

    id         AutoField     

    geometry        GeometryField    

    name         CharField     

    slug         SlugField     

event_site

result_type

site

event

        ReportStatus    

    id         AutoField     

    is_valid        BooleanField    

    name         CharField     

    slug         SlugField     

status

  User   

user

Figure 4.6: vera database schema with denormalized EventResult table
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Figure 4.7: Example Django Data Wizard Interface

vera would not be complete without robust support for data import from external

formats. This is provided by the Django Data Wizard library 9 , which I recently

refactored to work with or without vera. The unique feature of Django Data Wizard is

that it allows novice users to map spreadsheet columns to “real” database fields or to

ERAV and EAV attribute definitions without needing to know the details behind the

scenes, as Figure 4.7 shows.

The “new” River Watch website 10 makes extensive use of all of the above tech-

nologies. The vera model allows coordinators from multiple independent OCS projects

to define their own monitoring protocols. The model is also robust enough to sup-

port a two-way database synchronization with CoCoRaHS, allowing volunteers who are

members of both projects to enter and explore all of their data in the River Watch site.

4.6 Discussion

As we have demonstrated, the proposed ERAV model facilitates useful data integration

tasks that are difficult or impossible to accomplish in previous data models. The model

is conceptually straightforward, with intuitive underlying concepts. ERAV builds off of

9 https://github.com/wq/django-data-wizard
10 https://river.watch

https://github.com/wq/django-data-wizard
https://river.watch
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the existing EAV model to implement very flexible systems that can adapt to changing

project needs while preserving data provenance.

Like EAV, ERAV is much more complex than a single-table approach. ERAV has

the additional complexity of allowing multiple active versions of the same data, as well

as historical versions, to be present in the database at the same time. This has negative

implications for system performance11 that can be mitigated through various technical

means such as indexing, caching, and denormalization to a warehouse table for analysis.

However, it may also make it more difficult for new developers to quickly understand and

adapt an existing project’s software. In particular, the multi-table database structure

is somewhat less self-documenting, and effectively requires the application software to

properly maintain it. Similarly, the software itself is dependent on the database to

dictate the interface layout - a useful but occasionally befuddling feature familiar to

designers of EAV systems.

Nevertheless, we argue that the flexibility and provenance capabilities ERAV pro-

vides are valuable enough to merit the additional complexity for many, if not most, OCS

projects. More broadly, ERAV is likely to be useful in cases where:

1. Structured data is being exchanged and revised between multiple parties or data

management platforms,

2. The selected (or de facto) exchange format does not include complete provenance

information, and

3. The entities being described (i.e. events) can be uniquely identified with a stable

natural key that does not need to be centrally assigned.

There is a need for more empirical evaluation to better understand the appropriate

interfaces for representing “conflicting reports” to contributors of varying skill levels

and expertise. We also note the potential of leveraging other common uses of Excel for

review that are missed when only reading cell values for import. For example, River

Watch reviewers often use various highlight colors to flag questionable values, but this

information is lost after the spreadsheet is ingested. Finally, more technical work is

needed to address cases like deletion that the existing model does not handle well.

11 Concerns about performance were among the primary reasons CoCoRaHS initially chose not to
utilize an EAV schema.
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Recent advances in ICT can help improve tracking of revisions and retention of

provenance metadata for citizen science projects. However, it is important to keep in

mind that participants’ expectations, skill levels, and preferred software tools may not

match those idealized by computer scientists. For many projects, building complex data

review tools within custom ICT would be over-engineering with minimal benefit. It is

often more appropriate to enable bulk import processes, not only to facilitate ingestion

of historical records, but as part of the ongoing development and improvement of the

quality of the project. Retaining provenance metadata can be a challenge, and our

proposed model is an important step toward enabling that capability.



Chapter 5

Conclusion

5.1 Summary of Contributions

This thesis provides a thorough examination of how data quality can be understood,

measured, and improved in observational citizen science. The projects studied are

reasonably representative samples of a wide range of OCS projects. Many of the lessons

learned are generally applicable to crowdsourcing and peer production platforms, as

well as to professional scientific data workflows. The key contributions of this thesis are

as follows.

Understanding Data Quality. In Chapter 2 and [101], I demonstrated that data

quality in OCS is inherently tied to the practices for maintaining it. This is especially

true for smaller OCS projects like River Watch that do not have the scale necessary for

automated quality control to be viable. But more fundamentally, some notions of quality

are inherently uncomputable. This calls for careful consideration when attempting to

computerize OCS workflows. Computer systems for OCS should be designed with the

understanding that technology is just one part of a broader toolset of practices and

perspectives.

Measuring Data Quality. In Chapter 3 and [102], I showed that volunteer retention

is an effective way to evaluate data quality in OCS. OCS projects appear to attract a

different volunteer population than online projects, perhaps because OCS has a more

83
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salient impact on day-to-day life. This may mean that existing practices for motivating

and sustaining engagement in online peer production are not directly applicable to OCS.

Improving Data Quality. From my experiences with River Watch and CoCoRaHS,

I derived a general description of the OCS workflow and validated it with additional in-

sight from Andrea Wiggins. In Chapter 4 and [103], I describe the technical design and

implementation of a data model that facilitates common “computer science” concerns

(like provenance and revision tracking), while integrating with existing OCS workflows

and remaining conscious of domain scientists’ (relative) disinterest in complex technol-

ogy. I also provide an implementation of the data model and note that it is used to

facilitate exchange between River Watch and CoCoRaHS in particular.

5.2 Design Implications

The studies discussed in the previous chapters give rise to a number of general design

implications for OCS and similar domains. We focus here on the HCI and CSCW

implications, i.e. the design of technical systems for OCS. However, we note that suc-

cessful OCS project design goes well beyond technical systems to include a variety of

components from protocol definition to public outreach [65, 78].

Based on our analysis of River Watch and CoCoRaHS, together with a systemic re-

view of OCS in general, we propose that OCS system implementations should prioritize

the following features:

1. Track the full data quality process

2. Leverage intrinsic participant motivation

3. De-center technology

We elaborate on each of these points below. These implications can be viewed as

layered constraints on the design of ICT systems for OCS data.

5.2.1 Track the full data quality process

Data quality in citizen science projects is a process, not only an attribute, and involves

a number of components which are not necessarily present in the project dataset per



85

se. Therefore it is important to understand quality concerns in context of the entire

process when designing systems for maintaining and validating citizen science data.

Ideally, systems should be built to support to track the entire data quality process

in real time, rather than only serve as append-only repositories for the final dataset.

Tracking the process will give insight into workflow challenges (as discussed in Chapter

2) as well activity patterns and long-term retention trends (as discussed in Chapter 3).

As discussed in Chapter 4, projects should track changes to project data as well as

the protocols in place when the data was collected. Tracking these changes will help

ensure accurate provenance metadata is available for each record, as well as provide a

window into process improvement needs and individual skill development. This implies

use of the ERAV model or a similar revision tracking system, subject to the remaining

two constraints.

5.2.2 Leverage intrinsic participant motivation

Citizen science projects are often approached with the assumption that there is a trade-

off between collecting scientifically useful data, and successfully motivating volunteers.

However, this need not be the case. As Chapter 2 demonstrated, the twin goals of data

collection and natural science education in River Watch are not in tension, and instead

directly support each other. This is in part because the concern for quality data is

itself a core part of the motivation teachers have for participating. Similarly, Chapter 3

demonstrated that many CoCoRaHS participants are intrinsically motivated from the

start and remain active for a long time. This long-term retention is directly correlated

with the definition of data quality in that domain.

Thus, technical systems for OCS should seek to leverage existing participant interest

in the domain. While gamification may be useful for attracting new volunteer types

(c.f. [7]), many OCS participants may not need any additional motivators beyond

those inherent in the same data they are contributing. River Watch participants are

naturally motivated to compare their stream’s water quality against historical records,

while CoCoRaHS participants love being able to look at the day’s precipitation map

to see how much rain their neighbors got. This interest and domain knowledge could

be used to make data entry more robust - for example, by leveraging the ability for

experienced River Watch participants to “just know” when a value is out of the expected
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range for a site.

With this in mind, a focus on data quality need not and should not preclude support-

ing more interpretive aspects of a citizen science project. Instead, directly addressing

the motivations people have for participating in a project can increase interest and data

quality as a consequence. In addition to providing export tools for expert users, sig-

nificant value can be added by providing interpretive tools within the system so that

volunteers can explore their data themselves. In addition, communication tools for

sharing and discussing findings can increase engagement and provide a way to collect

rich contextual information that can be used to improve the process. If volunteers were

made aware whenever others use their data, they would likely be more motivated to

contribute quality data.

Designing a system that explicitly supports interpretive goals will likely result in

better data quality, because there will be more reason to interact with the website and

review data on an ongoing basis. One way to do this is to give prominence to “soft”

data like field notes and photographs in order to make the system more accessible and

interesting, and to encourage teams to take good notes. Another approach is to assign

meaningful URLs to each user-contributed artifact, making it easy to re-share them via

existing social networks while preserving a central repository.

A successful system will engage participants without drawing attention away from

the primary goals of the project, as discussed in the final constraint.

5.2.3 De-center Technology

Participants in OCS come with a wide range of interests and technology skill levels. In

River Watch, most participants are fairly young, while support staff and coordinators are

older. In CoCoRaHS, the dynamics are reversed, with many participants past retirement

age and a (relatively) younger support network. But common to both projects (and

many other OCS) is a strong intrinsic interest in the scientific domain, with an interest

in technology playing a minor role if any.

By contrast, Wiki and OCS platforms are typically designed to center themselves as

the project, sometimes with an explicit recommendation against use for any non-data

entry tasks like social networking and community building. For OCS, however, data

entry is a secondary task, separate from data collection, sampling, and other field-based
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tasks. It would not be too much of a stretch to say that while wikipedia.org and its

subdomains are Wikipedia, cocorahs.org is better viewed as “just” the website for the

CoCoRaHS project.

Thus, it is essential for designers of technical systems for OCS to not try to unnec-

essarily center their technology within a project. Certainly, this is a helpful mindset

for any technology - as Norman himself would say, the ideal computer is invisible to its

user [67]. However, this invisibility is particularly important within the realm of OCS.

5.3 Future Work

Moving forward, it will be important to extend this research in several ways. First, it

would be useful to directly compare demographics, activity levels, and retention between

CoCoRaHS and another large OCS project like eBird. Unlike CoCoRaHS, eBird does

not have a fixed upper contribution limit, nor does it restrict volunteers to reporting

from pre-assigned sites. We expect that these differences will have a measurable effect

on the structure of contributions to the two systems.

While many of the constructs used in this research have clear analogues in peer

production research, a more explicit comparison between the domains would facilitate

broader generality. For example, a standard metric for early activity (i.e. first month

contributions), as well as dropout (i.e. a year-long break in inactivity), would make

it possible to directly compare retention outcomes between a variety of virtual and

observational projects, as well as wikis and other platforms.

In addition, there needs to be more work evaluating the long tail of small, local scale

observational citizen science projects like River Watch. These projects are notoriously

hard to characterize from a computer science perspective, given the small n and the wide

ranges of technologies used. However, they represent a large portion of the observational

citizen science phenomenon, and are an important part of understanding its success.

The workflow model proposed in Chapter 4 could be used to frame subsequent

research in this domain. In particular, we envision future work explicitly identifying

which stages of the workflow are directly affected by proposed technological interven-

tions. Similarly, we hope future projects will leverage and expand on the ERAV data

model and its open-source implementation.

https://wikipedia.org
https://cocorahs.org
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One key challenge I grappled with throughout the research that formed this thesis

was this: How can I implement and validate technology solutions within existing OCS

communities without unnecessarily disrupting their current workflow? Given the need

to de-center technology in OCS, it is worth asking whether computer science per se is

even the right epistomological foundation from which to study this phenomenon. In

this regard, I am mindful of the questions posed by Baumer and Silberman ([4]), who

suggest that the implication is sometimes not to design technology at all.

Given that observational citizen science is very often oriented around environmental

and sustainability concerns, I would that future work in this domain might consider the

field of Sustainable HCI as a starting point. Like other forms of HCI, sustainable HCI

sits on the boundary between computer science and a multitude of related domains,

and has thus grappled extensively with the tensions that future researchers of OCS may

encounter.

5.4 Concluding Thoughts

Observational citizen science is a promising domain for expanding our knowledge of the

natural world. As with other forms of computer-supported collaboration, data quality

is an essential key to OCS project success. As this thesis demonstrates, data quality is

also a powerful lens with which to better understand the intricacies of project work in

this domain.

This research makes a significant first step toward filling the missing parts of our

understanding of how OCS is different than other forms of open collaboration. Under-

standing the commonalities and differences will help more accurately determine which

lessons in related domains apply to OCS and vice-versa. This knowledge contributes to

a broader picture of how (and when) to support these communities with technology.
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[12] Susan M Chambré. Volunteerism by elders: Past trends and future prospects.

The Gerontologist, 33(2):221–229, 1993.

[13] Alice Ming Lin Chong, Tina Louisa Rochelle, and Susu Liu. Volunteerism and

positive aging in Hong Kong: A cultural perspective. The International Journal

of Aging and Human Development, 77(3):211–231, 2013.

[14] Robert Cifelli, Nolan Doesken, Patrick Kennedy, Lawrence D Carey, Steven A

Rutledge, Chad Gimmestad, and Tracy Depue. The community collaborative rain,

hail, and snow network: Informal education for scientists and citizens. Bulletin of

the American Meteorological Society, 86(8):1069–1077, 2005.

[15] Ram A Cnaan and Toni A Cascio. Performance and commitment: Issues in man-

agement of volunteers in human service organizations. Journal of Social Service

Research, 24(3-4):1–37, 1998.



91

[16] Cathy Conrad and Krista Hilchey. A review of citizen science and community-

based environmental monitoring: issues and opportunities. Environmental Moni-

toring and Assessment, pages 1–19, 2010.

[17] Dan Cosley, Dan Frankowski, Loren Terveen, and John Riedl. Using intelligent

task routing and contribution review to help communities build artifacts of lasting

value. In CHI ’06, pages 1037–1046, New York, NY, USA, 2006. ACM.

[18] Joe Cox, Eun Young Oh, Brooke Simmons, Gary Graham, Anita Greenhill, Chris

Lintott, Karen Masters, et al. Doing Good Online: An Investigation into the

Characteristics and Motivations of Digital Volunteers. In 12th International Con-

ference of the International Society for Third Sector Research, 2016.

[19] Martin Dittus, Giovanni Quattrone, and Licia Capra. Analysing volunteer engage-

ment in humanitarian mapping: building contributor communities at large scale.

In Proceedings of the 19th ACM Conference on Computer-Supported Cooperative

Work & Social Computing, pages 108–118. ACM, 2016.

[20] Kimberly L Elmore, ZL Flamig, V Lakshmanan, BT Kaney, V Farmer, Heather D

Reeves, and Lans P Rothfusz. mPING: Crowd-sourcing weather reports for re-

search. Bulletin of the American Meteorological Society, 95(9):1335–1342, 2014.

[21] Environmental Protection Agency. National Directory of Volunteer Monitoring

Programs, 2011. http://yosemite.epa.gov/water/volmon.nsf.

[22] Cameron Davidson-Pilon et al. Camdavidsonpilon/lifelines, June 2017.

[23] Alexandra Eveleigh, Charlene Jennett, Ann Blandford, Philip Brohan, and

Anna L Cox. Designing for dabblers and deterring drop-outs in citizen science. In

Proceedings of the 32nd annual ACM conference on Human factors in computing

systems, pages 2985–2994. ACM, 2014.

[24] Federal Geographic Data Committee and others. FGDC-STD-001-1998. Content

standard for digital geospatial metadata, 1998.

[25] Eric H Fegraus, Sandy Andelman, Matthew B Jones, and Mark Schildhauer. Max-

imizing the value of ecological data with structured metadata: An introduction to

http://yosemite.epa.gov/water/volmon.nsf


92

ecological metadata language (EML) and principles for metadata creation. Bul-

letin of the Ecological Society of America, 86(3):158–168, 2005.

[26] Karen Firehock and Jay West. A brief history of volunteer biological water mon-

itoring using macroinvertebrates. Journal of the North American Benthological

Society, 14(1):197–202, 1995.

[27] Paul Fugelstad, Patrick Dwyer, Jennifer Filson Moses, John Kim, Cleila Anna

Mannino, Loren Terveen, and Mark Snyder. What makes users rate (share, tag,

edit...)?: predicting patterns of participation in online communities. In Proceedings

of the ACM 2012 conference on Computer Supported Cooperative Work, pages

969–978. ACM, 2012.

[28] Yolanda Gil, Simon Miles, Khalid Belhajjame, Henela Deus, Daniel Garijo,

Graham Klyne, Paolo Missier, Stian Soiland-Reyes, and Stephan Zednik. A

Primer for the PROV Provenance Model. W3C, 2012. http://www.w3.org/

TR/prov-primer/.

[29] J. Giles. Internet encyclopaedias go head to head. Nature, 438(7070):900–901,

2005.

[30] Ruediger Glott, Philipp Schmidt, and Rishab Ghosh. Wikipedia survey–overview

of results. United Nations University: Collaborative Creativity Group, 2010.

[31] Michael F Goodchild. Citizens as sensors: the world of volunteered geography.

GeoJournal, 69(4):211–221, 2007.

[32] Mordechai Haklay and Patrick Weber. Openstreetmap: User-generated street

maps. IEEE Pervasive Computing, 7(4):12–18, 2008.

[33] Aaron Halfaker, R Stuart Geiger, Jonathan T Morgan, and John Riedl. The

rise and decline of an open collaboration system: How Wikipedias reaction to

popularity is causing its decline. American Behavioral Scientist, 57(5):664–688,

2013.

http://www.w3.org/TR/prov-primer/
http://www.w3.org/TR/prov-primer/


93

[34] Aaron Halfaker, Aniket Kittur, Robert Kraut, and John Riedl. A jury of your

peers: quality, experience and ownership in Wikipedia. In Proceedings of the 5th

International Symposium on Wikis and Open Collaboration, page 15. ACM, 2009.

[35] Carl Hartung, Adam Lerer, Yaw Anokwa, Clint Tseng, Waylon Brunette, and

Gaetano Borriello. Open Data Kit: Tools to build information services for devel-

oping regions. In Proceedings of the 4th ACM/IEEE International Conference on

Information and Communication Technologies and Development, page 18. ACM,

2010.

[36] Brent J Hecht and Darren Gergle. On the localness of user-generated content.

In Proceedings of the 2010 ACM conference on Computer supported cooperative

work, pages 229–232. ACM, 2010.

[37] Wesley M Hochachka, Daniel Fink, Rebecca A Hutchinson, Daniel Sheldon, Weng-

Keen Wong, and Steve Kelling. Data-intensive science applied to broad-scale

citizen science. Trends in ecology & evolution, 27(2):130–137, 2012.

[38] Catherine Hoffman, Caren B Cooper, Eric B Kennedy, Mahmud Farooque, and

Darlene Cavalier. SciStarter 2.0: A Digital Platform to Foster and Study Sus-

tained Engagement in Citizen Science. In Analyzing the Role of Citizen Science

in Modern Research, pages 50–61. IGI Global, 2017.

[39] J. Howe. The Rise of Crowdsourcing. Wired Magazine, 14(6):1–4, 2006.

[40] Desislava Hristova, Afra Mashhadi, Giovanni Quattrone, and Licia Capra. Map-

ping community engagement with urban crowd-sourcing. In Proceedings of When

the City Meets the Citizen Workshop, Dublin, Ireland, volume 4, 2012.

[41] Desislava Hristova, Giovanni Quattrone, Afra J Mashhadi, and Licia Capra. The

life of the party: Impact of social mapping in openstreetmap. In ICWSM, 2013.

[42] Caroline Jay, Robert Dunne, David Gelsthorpe, and Markel Vigo. To Sign Up,

or not to Sign Up?: Maximizing Citizen Science Contribution Rates through

Optional Registration. In Proceedings of the 2016 CHI Conference on Human

Factors in Computing Systems, pages 1827–1832. ACM, 2016.



94

[43] Joseph M Juran. Quality control handbook. McGraw-Hill, 1962.

[44] Raghav Pavan Karumur, Tien T Nguyen, and Joseph A Konstan. Early Activity

Diversity: Assessing Newcomer Retention from First-Session Activity. In Proceed-

ings of the 19th ACM Conference on Computer-Supported Cooperative Work &

Social Computing, pages 595–608. ACM, 2016.

[45] Steve Kelling, Jun Yu, Jeff Gerbracht, and Weng-Keen Wong. Emergent filters:

Automated data verification in a large-scale citizen science project. In Proceedings

of Workshops at the Seventh International Conference on eScience, pages 20–27.

IEEE, 2011.

[46] Sunyoung Kim, Jennifer Mankoff, and Eric Paulos. Sensr: Evaluating a flexible

framework for authoring mobile data-collection tools for citizen science. In Pro-

ceedings of the 2013 conference on Computer supported cooperative work, pages

1453–1462. ACM, 2013.

[47] Sunyoung Kim, Jennifer Mankoff, and Eric Paulos. Exploring barriers to the

adoption of mobile technologies for volunteer data collection campaigns. In Pro-

ceedings of the 33rd Annual ACM Conference on Human Factors in Computing

Systems, pages 3117–3126. ACM, 2015.

[48] Aniket Kittur, Ed Chi, Bryan A Pendleton, Bongwon Suh, and Todd Mytkow-

icz. Power of the few vs. wisdom of the crowd: Wikipedia and the rise of the

bourgeoisie. World wide web, 1(2):19, 2007.

[49] Masatomo Kobayashi, Shoma Arita, Toshinari Itoko, Shin Saito, and Hironobu

Takagi. Motivating multi-generational crowd workers in social-purpose work. In

Proceedings of the 18th ACM Conference on Computer Supported Cooperative

Work & Social Computing, pages 1813–1824. ACM, 2015.

[50] Kathrin Komp, Theo Van Tilburg, and Marjolein Broese Van Groenou. Age,

retirement, and health as factors in volunteering in later life. Nonprofit and Vol-

untary Sector Quarterly, 41(2):280–299, 2012.



95

[51] S Lakshminarayanan. Using citizens to do science versus citizens as scientists.

Ecology and Society, 12, 2007. Response 2. http://www.ecologyandsociety.

org/vol12/iss2/resp2/.

[52] Anne M Land-Zandstra, Jeroen LA Devilee, Frans Snik, Franka Buurmeijer, and

Jos M van den Broek. Citizen science on a smartphone: Participants motivations

and learning. Public Understanding of Science, 25(1):45–60, 2016.

[53] Jeffrey Laut, Francesco Cappa, Oded Nov, and Maurizio Porfiri. Increasing cit-

izen science contribution using a virtual peer. Journal of the Association for

Information Science and Technology, 68(3):583–593, 2017.

[54] Anna Lawrence. ’no personal motive?’ volunteers, biodiversity, and the false

dichotomies of participation. Ethics, Place and Environment, 9:279–298(20), Oc-

tober 2006.

[55] Jun Liu and Sudha Ram. Who does what: Collaboration patterns in the Wikipedia

and their impact on article quality. ACM Transactions on Management Informa-

tion Systems (TMIS), 2(2):11, 2011.

[56] Wendy Liu and Derek Ruths. What’s in a Name? Using First Names as Features

for Gender Inference in Twitter. In AAAI spring symposium: Analyzing microtext,

volume 13, page 01, 2013.

[57] Roman Lukyanenko, Jeffrey Parsons, and Yolanda Wiersma. Citizen science 2.0:

Data management principles to harness the power of the crowd. In Service-

Oriented Perspectives in Design Science Research, pages 465–473. Springer, 2011.

[58] Kurt Luther, Scott Counts, Kristin B. Stecher, Aaron Hoff, and Paul Johns.

Pathfinder: an online collaboration environment for citizen scientists. In CHI

’09, pages 239–248, New York, NY, USA, 2009. ACM.

[59] Ding Ma, Mats Sandberg, and Bin Jiang. Characterizing the heterogeneity of

the OpenStreetMap data and community. ISPRS International Journal of Geo-

Information, 4(2):535–550, 2015.

http://www.ecologyandsociety.org/vol12/iss2/resp2/
http://www.ecologyandsociety.org/vol12/iss2/resp2/


96

[60] Andrew Mao, Ece Kamar, and Eric Horvitz. Why stop now? predicting worker

engagement in online crowdsourcing. In First AAAI Conference on Human Com-

putation and Crowdsourcing, 2013.

[61] Adina M Merenlender, Alycia W Crall, Sabrina Drill, Michelle Prysby, and Heidi

Ballard. Evaluating environmental education, citizen science, and stewardship

through naturalist programs. Conservation Biology, 30(6):1255–1265, 2016.

[62] Hannah J Miller, Shuo Chang, and Loren G Terveen. I LOVE THIS SITE! vs.

It’s a little girly: Perceptions of and Initial User Experience with Pinterest. In

Proceedings of the 18th ACM Conference on Computer Supported Cooperative

Work & Social Computing, pages 1728–1740. ACM, 2015.

[63] Julia Nerbonne and Kristen Nelson. Volunteer macroinvertebrate monitoring:

Tensions among group goals, data quality, and outcomes. Environmental Man-

agement, 42:470–479, 2008.

[64] Greg Newman, Jim Graham, Alycia Crall, and Melinda Laituri. The art and

science of multi-scale citizen science support. Ecological Informatics, 6(3):217–

227, 2011.

[65] Greg Newman, Andrea Wiggins, Alycia Crall, Eric Graham, Sarah Newman, and

Kevin Crowston. The future of citizen science: emerging technologies and shifting

paradigms. Frontiers in Ecology and the Environment, 10(6):298–304, 2012.

[66] E. Nicholson, J. Ryan, and D. Hodgkins. Community data - where does the value

lie? assessing confidence limits of community collected water quality data. Water

Science and Technology, 45:193–200, 2002.

[67] Donald A Norman. The invisible computer: why good products can fail, the per-

sonal computer is so complex, and information appliances are the solution. MIT

press, 1998.

[68] Oded Nov, Ofer Arazy, and David Anderson. Technology-Mediated Citizen Sci-

ence Participation: A Motivational Model. In Proceedings of the International

AAAI Conference on Web and Social Media, 2011.



97

[69] Ory Okolloh. Ushahidi, or ‘testimony’: Web 2.0 tools for crowdsourcing crisis

information. Participatory Learning and Action, 59(1):65–70, 2009.

[70] Morris A Okun and Amy Schultz. Age and motives for volunteering: testing

hypotheses derived from socioemotional selectivity theory. Psychology and Aging,

18(2):231–239, 2003.

[71] Allen M Omoto, Mark Snyder, and Steven C Martino. Volunteerism and the

life course: Investigating age-related agendas for action. Basic and applied social

psychology, 22(3):181–197, 2000.

[72] Fabrizio Orlandi and Alexandre Passant. Modelling provenance of DBpedia re-

sources using Wikipedia contributions. Web Semantics: Science, Services and

Agents on the World Wide Web, 9(2):149–164, 2011.

[73] Felipe Ortega and Daniel Izquierdo-Cortazar. Survival analysis in open devel-

opment projects. In ICSE Workshop on Emerging Trends in Free/Libre/Open

Source Software Research and Development, pages 7–12. IEEE, 2009.

[74] Leysia Palen, Robert Soden, T Jennings Anderson, and Mario Barrenechea. Suc-

cess & scale in a data-producing organization: the socio-technical evolution of

openstreetmap in response to humanitarian events. In Proceedings of the 33rd an-

nual ACM conference on human factors in computing systems, pages 4113–4122.

ACM, 2015.

[75] Katherine Panciera, Aaron Halfaker, and Loren Terveen. Wikipedians are born,

not made: a study of power editors on Wikipedia. In Proceedings of the ACM 2009

international conference on Supporting group work, pages 51–60. ACM, 2009.

[76] Jone L Pearce. Volunteers: The organizational behavior of unpaid workers. Rout-

ledge, 1993.

[77] Lesandro Ponciano, Francisco Brasileiro, Robert Simpson, and Arfon Smith. Vol-

unteers’ Engagement in Human Computation for Astronomy Projects. Computing

in Science & Engineering, 16(6):52–59, 2014.



98

[78] Nathan R Prestopnik and Kevin Crowston. Citizen science system assemblages:

understanding the technologies that support crowdsourced science. Proceedings of

the 2012 iConference, pages 168–176, 2012.

[79] Reid Priedhorsky, Jilin Chen, Shyong Tony K Lam, Katherine Panciera, Loren

Terveen, and John Riedl. Creating, destroying, and restoring value in wikipedia.

In Proceedings of the 2007 international ACM conference on Supporting group

work, pages 259–268. ACM, 2007.

[80] Reid Priedhorsky and Loren Terveen. Wiki grows up: Arbitrary data models, ac-

cess control, and beyond. In Proceedings of the Seventh International Symposium

on Wikis and Open Collaboration, page 6371. ACM, 2011.

[81] PRISM Climate Group, Oregon State University, 2017. created 11 Mar 2017.

[82] Jordan Raddick, CJ Lintott, K Schawinski, D Thomas, RC Nichol, D Andreescu,

S Bamford, KR Land, P Murray, A Slosar, et al. Galaxy Zoo: An experiment in

public science participation. In Bulletin of the American Astronomical Society,

volume 39, page 892, 2007.

[83] M Jordan Raddick, Georgia Bracey, Pamela L Gay, Chris J Lintott, Carie Carda-

mone, Phil Murray, Kevin Schawinski, Alexander S Szalay, and Jan Vandenberg.

Galaxy Zoo: Motivations of citizen scientists. Astronomy Education Review, 12(1),

2013.

[84] M Jordan Raddick, Georgia Bracey, Pamela L Gay, Chris J Lintott, Phil Murray,

Kevin Schawinski, Alexander S Szalay, and Jan Vandenberg. Galaxy zoo: Explor-

ing the motivations of citizen science volunteers. arXiv preprint arXiv:0909.2925,

2009.

[85] Sudha Ram and Jun Liu. Understanding the semantics of data provenance to

support active conceptual modeling. In Active conceptual modeling of learning,

pages 17–29. Springer, 2007.

[86] Red Lake Watershed District and Red River Basin Monitoring Advisory Com-

mittee. Standard Operating Procedures for Water Quality Monitoring in the Red



99

River Watershed, 8th edition, March 2011. http://www.redlakewatershed.org/

waterquality/RLWD%20SOP%20Revision%208.pdf.

[87] Jason Reed, M Jordan Raddick, Andrea Lardner, and Karen Carney. An ex-

ploratory factor analysis of motivations for participating in Zooniverse, a collec-

tion of virtual citizen science projects. In 46th Hawaii International Conference

on System Sciences, pages 610–619. IEEE, 2013.

[88] Henry W Reges, Nolan Doesken, Julian Turner, Noah Newman, Antony

Bergantino, and Zach Schwalbe. COCORAHS: The evolution and accomplish-

ments of a volunteer rain gauge network. Bulletin of the American Meteorological

Society, 97(10):1831–1846, 2016.

[89] David Ribes and Thomas A Finholt. Representing community: Knowing users in

the face of changing constituencies. In Proceedings of the 2008 ACM conference

on Computer supported cooperative work, pages 107–116. ACM, 2008.

[90] Dirk Riehle. How and why wikipedia works: an interview with angela beesley,

elisabeth bauer, and kizu naoko. In WikiSym ’06, pages 3–8, New York, NY, USA,

2006. ACM.

[91] Joel Ross, Lilly Irani, M Silberman, Andrew Zaldivar, and Bill Tomlinson. Who

are the crowdworkers?: shifting demographics in mechanical turk. In CHI’10

extended abstracts on Human factors in computing systems, pages 2863–2872.

ACM, 2010.

[92] Mary Roth and Wang-Chiew Tan. Data integration and data exchange: Its really

about time. In Proceedings of the 6th Biennial Conference on Innovative Data

Systems Research. CIDR, 2013.

[93] Dana Rotman, Jen Hammock, Jenny Preece, Derek Hansen, Carol Boston, Anne

Bowser, and Yurong He. Motivations affecting initial and long-term participation

in citizen science projects in three countries. iConference 2014 Proceedings, 2014.

[94] Dana Rotman, Jenny Preece, Jen Hammock, Kezee Procita, Derek Hansen, Cyn-

thia Parr, Darcy Lewis, and David Jacobs. Dynamic changes in motivation in

http://www.redlakewatershed.org/waterquality/RLWD%20SOP%20Revision%208.pdf
http://www.redlakewatershed.org/waterquality/RLWD%20SOP%20Revision%208.pdf


100

collaborative citizen-science projects. In Proceedings of the ACM 2012 conference

on Computer Supported Cooperative Work, pages 217–226. ACM, 2012.

[95] Robert L Ryan, Rachel Kaplan, and Robert E Grese. Predicting volunteer com-

mitment in environmental stewardship programmes. Journal of Environmental

Planning and Management, 44(5):629–648, 2001.

[96] Henry Sauermann and Chiara Franzoni. Crowd science user contribution pat-

terns and their implications. Proceedings of the National Academy of Sciences,

112(3):679–684, 2015.

[97] Beth Savan, Alexis J. Morgan, and Christopher Gore. Volunteer environmental

monitoring and the role of the universities: The case of citizens’ environment

watch. Environmental Management, 31:0561–0568, 2003.

[98] Shlomo S Sawilowsky. New effect size rules of thumb. Journal of Modern Applied

Statistical Methods, 8(2):597–599, 2009.

[99] Avi Segal, Ya’akov Gal, Ece Kamar, Eric Horvitz, Alex Bowyer, and Grant Miller.

Intervention Strategies for Increasing Engagement in Crowdsourcing: Platform,

Predictions, and Experiments. In Proceedings of the Twenty-Fifth International

Joint Conference on Artificial Intelligence, IJCAI’16, pages 3861–3867. AAAI

Press, 2016.

[100] S Andrew Sheppard. wq: A modular framework for collecting, storing, and utiliz-

ing experiential VGI. In Proceedings of the 1st ACM SIGSPATIAL International

Workshop on Crowdsourced and Volunteered Geographic Information, pages 62–

69. ACM, 2012.

[101] S Andrew Sheppard and Loren Terveen. Quality is a verb: the operationaliza-

tion of data quality in a citizen science community. In Proceedings of the 7th

International Symposium on Wikis and Open Collaboration, pages 29–38. ACM,

2011.

[102] S Andrew Sheppard, Julian Turner, Jacob Thebault-Spieker, Haiyi Zhu, and Loren

Terveen. Never too old, cold, or dry to watch the sky: A survival analysis of citizen



101

science volunteerism. Proceedings of the ACM on Human-Computer Interaction,

1(2):94:1–94:21, 2017.

[103] S Andrew Sheppard, Andrea Wiggins, and Loren Terveen. Capturing quality:

retaining provenance for curated volunteer monitoring data. In Proceedings of the

17th ACM conference on Computer supported cooperative work & social comput-

ing, pages 1234–1245. ACM, 2014.

[104] A. Smith. Smartphone adoption and usage. Technical report, Pew Internet &

American Life Project, Washington, DC, 2011.

[105] Diane M. Strong, Yang W. Lee, and Richard Y. Wang. Data quality in context.

Commun. ACM, 40:103–110, May 1997.

[106] Besiki Stvilia, Michael B. Twidale, Linda C. Smith, and Les Gasser. Information

Quality Work Organization in Wikipedia. Journal of the American Society for

Information Science and Technology, 59(6):983–1001, 2008.

[107] Brian L Sullivan, Jocelyn L Aycrigg, Jessie H Barry, Rick E Bonney, Nicholas

Bruns, Caren B Cooper, Theo Damoulas, André A Dhondt, Tom Dietterich, An-
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pedia: Aggregating and curating Semantic Web data. Web Semantics: Science,

Services and Agents on the World Wide Web, 9(3):334–338, 2011.



102

[112] Yair Wand and Richard Y Wang. Anchoring data quality dimensions in ontological

foundations. Communications of the ACM, 39(11):86–95, 1996.

[113] Richard Y. Wang and Diane M. Strong. Beyond accuracy: what data quality

means to data consumers. J. Manage. Inf. Syst., 12:5–33, March 1996.

[114] R.Y. Wang, V.C. Storey, and C.P. Firth. A framework for analysis of data quality

research. Knowledge and Data Engineering, IEEE Transactions on, 7(4):623 –640,

August 1995.

[115] Zhimin Wang, Hui Dong, Maureen Kelly, James A Macklin, Paul J Morris, and

Robert A Morris. Filtered-Push: A Map-Reduce platform for collaborative tax-

onomic data management. In Computer Science and Information Engineering,

2009 WRI World Congress on, volume 3, pages 731–735. IEEE, 2009.

[116] John Wieczorek, David Bloom, Robert Guralnick, Stan Blum, Markus Döring,
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