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Abstract

Crowd platforms are increasingly geographic, from the sharing economy to

peer production systems like OpenStreetMap. Unfortunately, this means that

existing geographic advantages or disadvantages (e.g. by income, urbanness, or

race) may also impact these crowd systems. This thesis focuses on two primary

themes: (1) how these geographic advantages and disadvantages interact with

crowd platform services, and (2) how people’s geographic behavior within these

platforms may lead to these biases being reflected. The first chapter in my the-

sis finds that sharing economy services fare less well in low-income, non-white,

and more suburban areas. This chapter introduces the spatial Durbin model

to the field of HCI, and shows that geographic factors like distance, socioeco-

nomic status and demographics inform where sharing economy workers provide

service. The second chapter in my thesis provides focuses on people in peer

production communities contribute geographic content. By considering peer

production as a spatial interaction process, this study finds that some kinds of

content tend to be produced much more locally than others. Finally, my third

contribution focuses on individual contributor behavior, and shows geographic

“born, not made” trends. People tend to be consistent in the places, and kinds

of places (urban, and non-high poverty counties) they contribute. The findings

of this third study help identify mechanisms for how geographic biases may

come about. Looking forward, my work helps inform an exciting agenda of fu-

ture work, including building systems that provide individual crowd members

sufficient geographic context to counteract these worrying geographic biases.
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Chapter 1

Introduction

Many prominent online platforms depend heavily on the work of individual crowd

members. Wikipedia is consistently in the top five most popular websites every month

and OpenStreetMap data underpins some of the most prominent map technologies

[181,182]. Neither platform could exist without crowd members’ contributions. Uber

is one of the largest sharing economy services, with forty million active monthly users,

and a presence in over 663 countries. But without crowd members, no one would be

available to provide on-demand rides. The citizen science platform eBird produces

the largest biodiversity dataset of its kind, but this dataset could not exist at its

current scale without citizen scientists crowd members.

Despite the apparent success of these crowd platforms, prior work has also shown

that these platforms exhibit systemic biases in their service. One example of these

systematic biases is the content ‘gender gap’. Lam et al. [92] found disparities in

content quality in Wikipedia articles about movies oriented toward women, versus

those oriented toward men. Menking et al. [114] show that more generally, there is

less content in Wikipedia about topics that are perceived to be of interest to women.

Just as the success of these platforms hinges on crowd members, these biases

manifest based on who participates as crowd members and the behavior they ex-

hibit. The simplest example of this was shown by Panciera et al. who found that

a small group of people do an outsize proportion of the work [128] in these crowd
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platforms, and that this this behavior manifests as soon as they join. Others have

shown that differences in the gender makeup of crowd workers leads to disparities

in gender-oriented content [92]. With regard to crowd members’ behavior, there is a

misalignment between what Wikipedia readers seek out, and what crowd members

work on (e.g. to increase the quality of content)[168]. Further, a recent study [63]

identifies concrete ways in which individual autonomy and behavior are at odds with

achieving globally standardized structured data.

Incorporating spatial context is another fundamental part of what makes these

platforms successful. Sharing economy platforms like Uber and TaskRabbit promise

on-demand rides between places or help with chores at a customer’s home or office.

In Wikipedia, geotagged articles are among the most popularly read articles on the

platform. OpenStreetMap data could not exist without a concept of spatial context,

and geotagged bird sightings in eBird have proven to be an invaluable resource for

science. In some cases, the volunteered geographic information (VGI) [58] from these

crowd platforms serves secondary purposes as well. For instance, algorithms are

increasingly learning from VGI to understand the world [81], and scientists use VGI

for scientific discovery in epidemiology [53] and earthquake prediction [145].

Platforms like Uber, OpenStreetMap, and eBird could not exist without this

geospatial component, but this spatial context also paves the way for systemic geo-

graphic biases. For instance, Johnson et al. [80] found that most of the content in

rural Wikipedia articles is generated automatically. Most of the content in Wikipedia

about sub-Saharan Africa is written by westerners [150], and contributions by non-

locals tend to be lower quality [38], or more superfical [80]. Haklay [61] found that

low-socioeconomic status regions have lower quality content in OpenStreetMap.

While many forms of systemic biases exist, my thesis here focuses on one particular
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Figure 1.1: A diagram demonstrating the conceptual relationship between individual-level
behavior and system-level geographic biases

dimension: understanding and mitigating systemic geographic bias. My thesis speaks

to this topic by weaving together two distinct threads of prior work: identifying

systemic geographic biases in crowd platforms, and understanding the impact of

individual crowd member behavior. Holistically, my work shows that crowd members’

geographic behavior impacts how well crowd platforms fare in low-income, non-white,

and non-urban areas, and points to reasons for how, and perhaps why, these kinds of

geographic biases come about.

Prior work in these previously distinct threads tends to follow two conceptual

approaches, both of which I use here. First, as noted above, many studies take a

‘system-level’ view on identifying biases. Second, a different body of work focuses

on ‘individual-level’ behavior that impact systemic results. Figure 1.1 illustrates

the relationship between geographic behavior at the ‘individual-level’, and ‘system-
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level’ biases that manifest in these platforms. In Chapter 3 and Chapter 4, I take

a ‘system-level’ view, and use robust geostatistical methods to measure biases, and

identify some of the underlying geographic processes at play. In Chapter 5, I turn my

focus to individual behavior, and describe how, and perhaps why, these biases occur

over time. Throughout Chapters 3, 4 and 5 my work suggests that the principles from

human geography (discussed in more detail in Chapter 2) manifest in the system-level

biases of crowd platforms, and impact individual-level crowd member behavior. I now

discuss each of these chapters in turn.

My first contribution, in Chapter 3, is a set of two studies on the availability of

sharing economy service across different geographic and socioeconomic dimensions.

I use robust, system-level geostatistical methods – and introduce the spatial Durbin

model to HCI – to show that the the sharing economy disadvantages areas that tend

to be low-income, non-white, and non-urban. Further, the evidence suggests that

this disparity is due to geographic trends in who sharing economy crowd members

are and the individual-level geographic decisions crowd members make. My findings

suggest troubling implications for the sharing economy as it exists today, and identifies

implications for the geographic design of these sociotechnical systems.

Chapter 4 represents the second contribution of my thesis. In this chapter, I

study the effect of distance on contribution behavior, across hundreds of types of

peer produced content (in eBird, Wikipedia, and OpenStreetMap). I formalize peer

production as a spatial interaction process where contributions flow between regions.

This study finds that (a) distance plays a different role depending on the type of con-

tent, and (b) that some types of content tend to be produced much more locally than

others. Prior work has shown that locally-produced content tends to be richer and

higher-quality than content produced by non-locals. My findings suggest implications
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for recruitment within these platforms.

Chapter 5 comprises the third contribution of my thesis, and focuses on individual

geographic behavior of crowd members over time. Prior work [128] has found that

contributors in Wikipedia tend to be ‘born, not made’ – that is, individuals begin

participating in Wikipedia a certain way, and are consistent in that behavior over

time. My research shows that individuals’ geographic behavior tends to be ‘born,

not made’ as well. Contributors in OpenStreetMap tend to be consistent in the

places they contribute, as well as the kinds of places (non-rural and non-high poverty

counties) they contribute. As noted above, prior work has shown that there tends to

be more, and higher-quality OpenStreetMap content in urban and wealthier areas.

My research points to how, and perhaps why, these geographic biases occur in crowd

platforms like OpenStreetMap.

Taken together, these three chapters point to clear directions in the future. I

discuss this research agenda in more detail later, but one particularly interesting

direction is research towards mitigating these geographic disparities that occur. A

common theme within my findings is that crowd members rely on their prior con-

text when making decisions their geographic behavior. For instance, in Chapter 3,

TaskRabbit crowd members defined entire sections of the city where they were un-

willing to work, based on their generalized heuristics about safety. Further still, in

Chapter 5, crowd members in OpenStreetMap were consistent in both the places, and

kinds of places they contribute content. The concrete instantiations may be different

for the sharing economy and peer production platforms, but one strong direction for

future work is clear: developing tools to provide individual crowd members more,

and better geographic context about underserved areas. I discuss this idea, among

others, in more detail below.
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Below, I first contextualize my work, and discuss how prior work informs my

studies here. I then discuss each of the three contributions of this thesis in turn.

Finally, I take stock of the findings of each of my there contributions, and discuss a

set of holistic implications and directions of future research.
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Chapter 2

Related Work

2.1 Principles from Human Geography

All of the work presented in this thesis is informed by geography, and specifically

the large branch of geography known as human geography (c.f. [14]). My work here

builds on four key principles from human geography: (1) residential clustering (i.e. the

“Big Sort”), (2) structured geographic variations in population density, (3) distance

decay, and (4) mental maps. It is likely that other principles from human geography

also play a role in crowd platforms, but I focused on these four principles because (1)

they have been found to figure into similar geographic processes (e.g. transportation

geography or communication) and (2) they have been observed to play a role in other

online social systems that have geographic footprints (see below). Below, I describe

each of these four principles in more detail.

Residential clustering – in which people of similar characteristics reside close to

one another – is a key property of the human geography of nearly all places around the

world, and has been well-known in human geography and related fields for decades

(e.g. [14,112]). For those familiar with the social networks literature, residential

clustering can be understood as a type of “spatial homophily”, and indeed this term

has been used to describe similar phenomena (e.g. [113,174]). Within North America,

residential clustering occurs along racial, ethnic, and socioeconomic lines, among
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other dimensions [18,112]. As I note below, clustering in some North American cities

has become somewhat extreme, with tremendous socioeconomic (and other) gradients

occurring across a metropolitan area. For instance, as of 2010, in the New York City

metropolitan area, 78 percent of black residents would have to move to match the

geographic distribution of white residents of the metropolitan area [45,46]. The same

is true for 62 percent of those of Latino descent. Residential clustering in the United

States (along with its concordant challenges) was the subject of the prominent book

“The Big Sort” by Bill Bishop [178], which has led to the widespread use of the term

“Big Sort” to refer to residential clustering. As such, I adopt this terminology in this

thesis.

A longstanding subject of interest in the economic and urban geography commu-

nities has been understanding and modeling variations in population density across

urban (and rural) areas (see [18] for an introduction and overview). These variations

occur in structured – but diverse – patterns in cities and regions around the world.

In North America, due to the character of local transportation networks, work/life

behaviors and other factors, areas with very high population density tend to occur

in city centers, which can have high socioeconomic and low socioeconomic status re-

gions (as per the “Big Sort” phenomena). Outside city centers, density nearly always

decreases, and in the suburban areas around cities (prior to entering rural areas),

one usually finds low density, high-SES regions. It is important to note that outside

of North America, population density patterns (and related SES patterns) can vary,

resulting in different impacts on the sharing economy. While I briefly address impli-

cations for non-North American cities below, future work should seek to extend my

research to the other metropolitan (and rural) structures that exist around the world.

Brunn et al. [18] provides an overview of different metropolitan area structures that
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may be useful for this investigation.

The third major geographic principle in my work is distance decay, or the ten-

dency for interaction between two places to decrease as the distance between the

places increases [14,31,140,155]. Distance decay plays a role in a tremendous vari-

ety of human geographic process (and many processes from physical geography as

well), with trade patterns [34] (trade declines with distance), transportation behav-

ior [140] (destination choice is often largely defined by distance), and information

dissemination [124,159,169] being some of the most well-known processes in which

distance decay is a primary factor. Closely related to distance decay is the modeling

of distance as a cost function in economic geography, leading to location-allocation

problems [42] (e.g. what’s the optimal place to put my Coca-Cola bottling plant given

transportation costs of water, syrup, etc.). As I will show below, distance decay –

when coupled with Big Sort processes along SES dimensions – suggest that distance

may be an indirect agent of structural geographic bias in crowd platforms.

Finally, mental maps are, broadly speaking, the representations of the world that

each individual has in their minds, both in terms of the geometry of the world and

the attributes of those geometries. Work on mental maps dates back at least to

Lynch’s well-known 1960 book The Image of the City [104], and has continued for

many decades, including prominent works by Gould and White [59] and Matei et al.

[109]. Matei et al. focused on how communication infrastructures (e.g. mass media),

coupled with “Big Sort” phenomena, has resulted in dramatically varying “comfort”

levels across metropolitan areas. Namely, people from one type of area – e.g. high-SES

areas that tend to be populated by people of certain races and ethnicities – feel unsafe

and otherwise “uncomfortable” in other types of areas, and vice versa. Critically, the

mental maps literature also points to a certain degree of ignorance associated with
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these comfort contours. That is, people tend to be less knowledgeable about places

they feel less comfortable, both in terms of important attributes of these areas like

crime rates [109], but also in terms of the geometries of these areas [91]. Mental maps

and distance decay also have overlap, with knowledge about an area being in general

inversely associated with the area’s distance from one’s home region [59]. my findings

below point to mental maps – especially the associated knowledge and comfort factors

– as playing a key role in crowd member behavior.

A key theme present in my human geographic principles is that socioeconomic

status plays an important role: SES is one of the primary dimensions on which a

“Big Sort” occurs in most cities around the world, SES and population density have

important interplay (especially with respect to low-density suburbs), and people’s

mental maps and corresponding comfort and knowledge levels tend to vary across

neighborhoods of differing SES [91,109]. As such, below, I adopt SES as a primary

query mechanism with which to explore these geographic factors, using SES as an

independent variable in both studies. As we will see, SES indeed sheds light on the

impact of our human geographic properties in the sharing economy. I augment SES

as an independent variable with other variables of interest, particularly targeting

distance to capture a detailed picture of distance decay and population density to

understand how its variation affects the sharing economy.

It is important to note that there are also other themes present in our geographic

principles, most notably ethnicity and race, which are also important “Big Sort”

dimensions and mental map determinants. Indeed, a number of factors in North

America’s history and present have led SES and race and ethnicity to be strongly

correlated. In my studies below, in addition to using SES, I also discuss implications

for race and ethnicity where I have sufficient data to support this analysis.
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2.2 Geography in Social Computing Platforms

The broader body of literature studying geography in social computing platforms in-

cludes studies of geowikis, citizen science projects, and geotagged social media. This

work tends to be focused on more traditional social computing topics like develop-

ing geographic platforms (e.g. [105,119,133]) and contributor behavior within these

platforms (e.g.[129,162]).

By contrast, my work focuses on the geographic facets of these crowd platforms.

That is, I focus on the geographic nature of these platforms, the geography of their

participants, and the crowd members’ geographic behavior. Below, I discuss contex-

tualize my work within the body of research that focuses on the geographic aspects

of these crowd platforms. Many of these geographic HCI [71] studies fall into three

broad categories: (a) geographic variations by socioeconomic status and population

density, (b) localness, and (c) geographic behavior of individual crowd members.

2.2.1 Variations by Socioeconomic Status, and Population Density

Prior research has shown that crowd platforms can have substantial geographic vari-

ations in the service they provide (e.g. [61,108,118,136,177]). One example of this

is can be found in the research on volunteered geographic information (VGI) crowd

platforms. A growing body of work shows that demographic factors are often associ-

ated with geographic variations in the quantity and quality of VGI contributions (e.g.

[61,80,99]). Two demographic factors that are particularly linked to VGI content vari-

ations are socioeconomic status (SES) and the rural/urban divide. In short, low-SES

and rural areas have been found to have fewer and lower-quality VGI contributions

than wealthier and more urban areas [61,80,99]. For instance, Quattrone et al. show
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that more egalitarian (measured as a lower Power Distance) countries with higher

incomes (GDP) have better geographic coverage in OpenStreetMap [136]. Similarly,

Haklay finds that within Britain, the most disadvantaged areas (according to the In-

dex of Deprivation, an aggregate metric of SES factors) tend to have worse coverage

than those areas that are less disadvantaged [61]. Similarly, in Wikipedia, Johnson

et al. [80] reported a similar trend concerning the rural/urban divide, observing that

Wikipedia content about rural areas is often little more than bot-written template

articles.

In a different domain, these geographic variations have been found in social media

platforms as well. Li and Goodchild [99] found fewer tweets and photos submitted

from low-SES regions of California. Similarly, researchers have found that found that

people from rural areas produce less geotagged social media (e.g. posts to Twitter,

Flickr, or Foursquare) per capita than their urban counterparts [70] and that this

information is less likely to be produced by locals [82], and Johnson et al. identified

that peer production crowdsourcing is less effective at describing urban areas than it

is rural areas [80]. Even location-based games with social components (e.g. Pokémon

GO) have been found to have similar coverage issues [24]. As I discuss in more

detail later, it is likely that many of these findings can be attributed to the same

geographic principles discussed above. Exploring this in more detail is an important

direction of future work.

This research aligns with two geographic principles mentioned above: variations

associated with residential clustering and population density. These trends suggest

that these crowd platforms are geographically biased, and prior work has quantified

these biases in many different social media and crowd platforms. However, little

work has been done to understand the mechanisms behind these biases. My work
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below seeks to fill this gap in the literature by focusing on both system-level and

individual-level geographic behavior within these crowd platforms.

2.2.2 Localness

‘Localness’ is another topic of particular interest in the “geographic HCI” literature,

focused on content from both crowd platforms like OpenStreetMap and social me-

dia. This content has been considered a largely local phenomenon since the term

“volunteered geographic information” was coined a decade ago [58]. As a result, the

extensive and interdisciplinary literature in this space tends to presume that this

VGI content is contributed by locals. Studies and systems that make a VGI “local-

ness assumption” [82] range from studies of crowd members’ “spatial footprints” (e.g.

[101,122] to epidemiological analyses (e.g. [53]) to applications of sentiment analysis

algorithms (e.g. [117]). Johnson et al. [82] provides a summary of applications of the

localness assumption in VGI research and practice.

Implicit in this ‘localness assumption’ is a conception that the content producer

resides in the region associated with the content (e.g. geotagged tweets). Put another

way, assuming content is local implicitly assumes that the content is produced very

near to where the producer lives. Under this ‘localness assumption’, the variations

in content coverage discussed above would be directly attributable to the degree of

local participation in these crowd platforms.

However, recent work has begun to call this localness assumption into question.

This work has found that a substantial proportion of this VGI is in fact, non-local.

For instance, Hecht and Gergle [69] observed that between 75 and 93% of edits to

geotagged Wikipedia articles by anonymous (non-registered) editors were non-local,

depending on the language edition (77% for English). Similar findings were observed
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by Hardy et al. [65], who modeled the relationship between IP-geolocated anony-

mous Wikipedia editors and the locations of their geotagged contributions (with an

approach similar to my baselines, discussed in Chapter 4). Hecht and Gergle also

observed that geotagged Flickr photos tended to be more local – although far from

exclusively so – with around 50% of photos being taken by people outside their home

region (100km). Sen et al. [150] found that geotagged Wikipedia articles about cer-

tain areas are significantly more local than others, with, for instance, articles about

sub-Saharan Africa being written almost entirely by foreigners in most language edi-

tions. Finally, with respect to social media VGI (e.g. geotagged tweets), Johnson

et al. [82] also observed a substantial degree of non-local contribution, averaging

roughly around 25% depending on the definition of local.

The above work robustly establishes that the localness assumption in VGI is prob-

lematic. A substantial amount of VGI content is created outside of the producer’s

‘local’ region, or ‘from a distance’. The pervasiveness of non-local VGI content sug-

gests that VGI content production is likely subject to another geographic principle

discussed above: distance decay patterns. Put another way, geographic principles

suggest that people are less likely to make contributions as the distance from a con-

tributor increases. Indeed, some prior work has found this to be the case. Researchers

have shown that Wikipedia contributions are subject to distance decay, with the like-

lihood of an editor contributing to an article about a place being a function of distance

to the place [65,69]. On the social media side, Liben-Nowell established that roughly

two-thirds of friends on Live Journal in 2004 could be attributed to a notion of ge-

ographic distance [100], and similar phenomena have been observed in other social

networks [49,147,159].

Of particular note, one preliminary study suggests that the rate of this distance
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decay may differ by the type of content being produced. Hecht and Gergle [69]

compared different ‘spatial content production models’ for generating volunteered

geographic information [58] and found that Flickr contributions tended to be much

closer to a contributors’ ‘home location’ than was the case with Wikipedia. I present

a much more detailed discussion of this topic in Chapter 4, where my work is first to

systematically measure how these differences change between content types.

2.2.3 Geographic Behavior of Individual Crowd Members

Within the social computing literature, a number of different Finally, the geographic

principle of mental maps, discussed in detail above, another body of literature in

the social computing literature that The final geographic principle that manifests in

social computing platforms, Much of the work in social computing spaces has focused

on crowd member behavior, rather than formalizing this process as one stemming

from mental maps.

Contributors’ Geographic Patterns

The literature examining contributor geographic patterns falls broadly into two cat-

egories: the geographic ranges of contributors’ work, and where contributors focus.

The former largely overlaps with the body of research focused on ‘localness’, discussed

above. With regard to the latter, I discuss this in more detail below.

Several different studies have sought to understand and characterize the geo-

graphic focus of contributors to peer production platforms. For instance, Panciera et

al. [130] examined geographic trends in the Cyclopath platform, an early bicycling-

centered community. In particular, they found that “Cyclopaths” (defined as the top

5% of contributors) had geographically constrained contribution regions, even within
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the relatively small area in which Cyclopath operated. Zielstra et al. [176] described

the geographic extents of 13 OpenStreetMap contributors and show a method of

characterizing which contributions are a part of a contributors’ ‘home location’, and

which are not. They found that the contribution ranges of these 13 people do not gen-

erally exceed approximately 50 square kilometers. Lieberman et al. [101] conducted

a similar study, exploring the geographic extent of Wikipedia editors’ contributions.

2.3 Temporal Evolutions of Individual Behavior

Whereas the work described above focused on geographic behavior, there has also

been some research focused on the evolution of individual crowd member behavior

over time. Much of this work is non-geographic in nature, despite occurring in VGI

crowd platforms like Wikipedia, and OpenStreetMap.

In one of the seminal studies in this space, Priedhorsky et al. [134] took a temporal

approach to understanding how value is created in Wikipedia and by whom. Panciera

et al. [128] built on this paper with a study of ‘Wikipedian’ lifecycles and found

that ‘Wikipedians’ (the term they use to describe those who contribute most of the

Wikipedia content) begin contributing at a high level and maintain this trend over

time, resulting in distinctive differences in contribution behavior between different

classes of users. In other words, “Wikipedians are born, not made” [128].

Other work uses temporal evolution as a way to characterize the status of a

geographic region (versus focusing on contributors and their behavior). One example

of such a study is work by Gröchenig et al [60], who computationally estimated

the ‘completeness’ of twelve urban areas, based on identifying three temporal stages

(‘start’, ‘growth’, and ‘saturation’), and modeling the development of a region through
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these stages.

More recently, others have begun to explore what roles contributors play in peer

production communities, and how that changes over time. Arazy et al. [6] described

‘career paths’ of Wikipedia editors. Rehrl et al. [139] took a similar approach,

and considered the different roles that people have in OpenStreetMap. Dittus et

al. [35] explored the activation of newcomers and reactivation of previously dormant

contributors during disaster events on Humanitarian OpenStreetMap (HOT).

My study in [Chapter #sec:chptbnm] is deeply informed by the work of Panciera

et al. [128], and the studies mentioned above. Whereas prior work has focused

on understanding geographic behavior or the temporal evolution of behavior, my

study sits at the intersection. A spatiotemporal lens helps inform our understand-

ing how contributors’ geographic behavior evolves at the individual-level, and how

these individual geographic behaviors may impact the geographic variations seen in

OpenStreetMap.
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Chapter 3

A Geographic Understanding of the Sharing Economy:

System-Level Biases in TaskRabbit and UberX

In this chapter, I discuss two studies on different crowd platforms within the shar-

ing economy, TaskRabbit and UberX. These studies make one clear conclusion: the

sharing economy biases towards wealthier, more population dense regions. The first

of these two (labeled Study 1 below) studies the decision making process of TaskRab-

bit crowd members – where are they available to provide service, and how much do

they want to earn? To make sense of this individual-level decision process, I use

geostatistical models to understand the system-level trends in this decision making

process, to understand the geographic availability of TaskRabbit service. These find-

ings are further informed by qualitative findings as to why individual TaskRabbit

crowd members made the decisions they did. These responses point reasons rooted

in the geographic principles discussed in Chapter 2.

The second of these two studies (Study 2, below) extends my TaskRabbit findings

to UberX, a different sharing economy platform. For reasons discussed in more detail

below, this study takes an exclusively system-level perspective on where UberX crowd

members make their service available. To do so, this study introduces the HCI com-

munity to a robust geostatistical approach known as the spatial Durbin model. This

modeling method provides important interpretive value, providing insight into how a
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locations’ surrounding geographic region influences the spatial patterns described by

the model.

3.1 Why the Sharing Economy?

While much attention has been paid to the economics and labor conditions of UberX,

Airbnb, TaskRabbit and similar services (e.g. [33,77,120,138,144]), there has been

much less focus on a topic that is critical in nearly all sharing economy platforms:

geography. Regardless of whether we consider ride-hailing services (e.g. UberX, Lyft),

peer-to-peer rental services (e.g. Airbnb), mobile crowdsourcing services (e.g. TaskRab-

bit), or even non-commercial sharing economy platforms (e.g. CouchSurfing), geog-

raphy plays a key role. For instance, in the case of ride-hailing, a driver must travel

from his or her current location to the location of the ride requester and drive the

requester to a desired destination. For Airbnb, customers must decide where to stay,

and prices are in part defined by the geographic context of each option. In TaskRab-

bit – a well-known platform that allows people to “outsource household errands and

skilled tasks” [160] – a crowd member (“tasker”) commutes to the task requester’s

location and/or to the locations involved with the specific errand.

The goal of this chapter is to better understand the role of geography in the

sharing economy. I work towards this goal through two studies that provide evidence

that the four principles from the field of human geography (established in Chapter

2) are key factors in the relative success of the sharing economy.

Through my consideration of these four principles, I demonstrate the critical im-

portance of a geographic lens when examining the sharing economy, showing that

this lens can reveal structural inequalities that would be otherwise invisible. Focus-
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ing on TaskRabbit and UberX in the Chicago region, I find that the four geographic

principles lead to structural geographic biases in which the sharing economy is more

effective in some types of areas than other types of areas. Namely, sharing econ-

omy platforms appear to succeed in areas with high socioeconomic status (SES) and

population density and struggle in areas with low-SES and low population density.

My evidence, for instance, shows that people in poor neighborhoods and outer-ring

suburbs in the Chicago region wait longer for UberX cars and will have a harder time

finding a TaskRabbit worker (“tasker”) to complete a given errand.

Additionally, as in many parts of the world, population density and SES in my

study region (the Chicago area) are correlated strongly with membership in certain

protected classes, in particular those defined by race and ethnicity. This relationship

results in an unfortunate corollary to my findings: in some cases, the sharing economy

appears to be most effective in areas with fewer minorities and much less effective in

black and Latino neighborhoods.

The work in this chapter triangulates my high-level findings across multiple,

system-level, methodological approaches. These approaches include controlled ex-

periments, the analysis of qualitative survey responses, and (to my knowledge) the

first use of an advanced geostatistical technique known as spatial Durbin modeling in

the human-computer interaction literature. Spatial Durbin models are emerging as a

best practice in the social and natural sciences, and are an approach that I believe can

be broadly useful for studying the sharing economy and in the growing “geographic

human-computer interaction literature” [71] more generally.

While this chapter focuses on the descriptive analysis of the geography of sharing

economy platforms, my studies also provide evidence for potential solutions to the

challenges I identify. For instance, I observe that very few TaskRabbit crowd mem-
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bers live in low-SES neighborhoods and that large crowd member-to-job distances

contribute to the higher prices and decreased willingness to accept jobs in these

neighborhoods (a manifestation of distance decay). Since in TaskRabbit, UberX,

and most other sharing economy services, low-SES individuals have a harder time

satisfying crowd member enrollment requirements (e.g. crowd members must have a

bank account in many cases), this likely reduces crowd member participation in low-

SES neighborhoods and thereby diminishes the effectiveness of the overall platforms

in these neighborhoods. Below, I discuss how my results – in combination with a

geographic perspective on the sharing economy – suggest that removing or relaxing

some of these crowd member requirements may address some of the problems raised

by my findings.

In summary, this chapter makes the following contributions to the literature on

the sharing economy:

1. I present a broad examination of the role geography plays in the sharing econ-

omy and solidify the importance of a geographic perspective in the sharing

economy literature. In particular, my results point to the influence of four key

principles from human geography: “Big Sort” residential clustering, geographic

variation in population density, distance decay, and mental maps.

2. I present evidence that the interaction between common sharing economy plat-

form design decisions and these four geographic principles lead to structural

geographic biases in the sharing economy, biases that reinforce existing ad-

vantages. Specifically, my results suggest that high-population density, high-

income neighborhoods receive the largest benefits from the sharing economy

and poor urban neighborhoods and outer-ring suburbs receive fewer benefits.
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3. I find evidence that, due to the pervasive correlation between poverty and

race/ethnicity in the United States and many other parts of the world, in many

cases, black and Latino neighborhoods tend to be less well-served by the sharing

economy.

4. I discuss the design implications of my research, including evidence from my

studies that points to means by which the benefits of the sharing economy may

be more widely distributed.

5. Finally, this work makes a lower-level, methodological contribution: this chap-

ter introduces spatial Durbin models to the human-computer interaction liter-

ature and discusses why spatial Durbin modeling is important for robustly un-

derstanding many sharing economy geospatial processes (and many geographic

HCI processes more generally).

Below, I describe in detail prior work that is focused on the sharing economy.

I then present my methods and results for my TaskRabbit study. Next, I describe

my geographic analysis of UberX, introduce spatial Durbin modeling, and show how

Durbin modeling can robustly identify structural geographic biases in UberX wait

times. I conclude with a summative discussion that cuts across both studies and

provide an overview of design implications for the sharing economy.

3.2 Sharing Economy Related Work

Sharing economy platforms (e.g. TaskRabbit, Uber, and Airbnb) have become a sub-

ject of intense public discussion, which has led to increased attention from researchers

(e.g. [33,39,40,51,76,77,97,105,163]). Initial work has focused on addressing non-

spatial issues, usually involving the adaptation of research questions from the virtual
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crowdwork literature (e.g. [10,11,78,87]) to the sharing economy context. For exam-

ple, Teodoro et al. [162] conducted a qualitative study to investigate the motivations

of workers in TaskRabbit and Gigwalk (a platform broadly similar to TaskRabbit but

with different primary use cases). They found that monetary compensation and con-

trol of working conditions (time of day, rate of pay, the tasks they do) were primary

factors in workers’ motivation to participate in these platforms as crowd members.

Alt et al. [2] independently developed an experimental system similar to TaskRabbit.

They asked people to complete tasks using a smartphone and observed their behav-

ior. They found that workers were more willing to do tasks that were, for example,

relatively straightforward (e.g., taking photos) and that could be done before and

after business hours. Ikkala and Lampinen [77] explored the social role that payment

plays in an Airbnb study, and discuss how payment modifies the social relationship

between hosts and guests.

One thread of sharing economy work has focused on non-commercial “peer-to-

peer exchange” platforms (a term used instead of “sharing economy”, which some

have problematized [148,149]). One prominent example in the HCI community is

the body of work on timebanking, or time-based currency made possible through

technological support (e.g. [8,151]). A thread of work related to these non-commercial

systems focuses on the social dimension of the commercial sharing economy. This

thread suggests that even in commercial systems, there is a social ‘economy’ between

the worker and the person receiving service, and that this dimension is a critical

attribute of what people like about and expect from these systems [73]. While my

work here focuses on large, commercial sharing economy platforms, examining the

role of geography in non-commercial peer-to-peer-exchange platforms is an important

direction of future work.
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Another major focus of sharing economy research has involved examining the

challenges associated with being a sharing economy crowd member. Lee et al. [97]

found that tensions arise between supervisory task assignment algorithms and crowd

members in ride-hailing systems like UberX and Lyft. Rosenblat and Stark [144]

consider the power structures that arise from the reputation system in UberX, and

what effect his has on drivers. In a similar vein, Raval and Dourish [138] find that

part of what sets “good” drivers apart in UberX is the emotional labor they carry

out, and argue for the importance of recognizing this labor. Glöss et al. [57] compare

the differences in work and perspectives between taxi and Uber drivers. Ahmed

et al [@ SyedIshtiaqueAhmedPeertopeerworkplaceview2016] consider a very similar

juxtaposition to Glöss et al., but focus on a different, international context: the Ola

ride-hailing platform in India. Ola connects passengers to rickshaw rides, similar to

UberX. Ahmed et al. explore the differences between auto-rickshaw drivers who do

not use a sharing economy platform, and those who do.

Recent work has examined the relationship between demographics and worker

participation in sharing economy platforms, and this research played a major role in

informing the research present in this chapter. For instance, Lee et al. [97] found that

UberX drivers often turned off ‘driver mode’ in the Uber app when they are near areas

where they feel unsafe or avoided unsafe areas entirely, a finding that provides key

context to some of my results below. Dillahunt and Malone [33] identified that there

are barriers to participation in the sharing economy for people who live in low-SES

areas. Dillahunt and Malone’s work, in particular, provides important scaffolding for

my design implications as I discuss below. Along the same lines, Edelman and Luca

[39] found that black Airbnb hosts systemically earn less than non-black hosts, and

that users with stereotypically African American names Airbnb are less likely to be
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accepted as guests compared to identical profiles with stereotypically white names

[40]. A similar preliminary set of results was recently identified in UberX in Seattle

and Boston by Ge et al. [52] with respect to wait times and cancellations.

My research is most directly motivated by recent work on the sharing economy

that has begun to identify geographic phenomena as potential factors of interest. For

instance, Teodoro et al. and Alt et al. (as well as others) observed that how far

people would need to travel to a task appears to influence their attitude toward the

task. This is a finding that I both replicate and formalize in a controlled experiment

on TaskRabbit, identifying this phenomenon as a manifestation of distance decay.

Through modeling and qualitative analysis, I are also able to provide the first evidence

that distance decay in the sharing economy – coupled with “Big Sort” residential

self-selection – has substantial effects on the availability of sharing economy services

and the price of these services (and, subsequently on the bias in the geographic

effectiveness of these services).

Similarly, Quattrone et al. [137] explore the geographic and demographic fac-

tors that contribute to Airbnb growth and penetration in London. Through this

study, they make policy recommendations based on their findings that would allow

regulators to be more responsive to the changing attributes of Airbnb. Expanding

on Diakopoulos’s past work on UberX surge pricing [32] (variable prices based on

demand) in a recent blog post for the The Washington Post, Stark and Diakopou-

los [153] describe initial explorations of UberX availability (with a particular focus

on surge pricing) with regard to socioeconomic and demographic attributes of the

Washington, D.C. area. Hughes and MacKenzie [76] performed a similar analysis in

Seattle. Among other extensions of this work (see below), I am also able to repli-

cate and formalize the findings from both of these studies using a robust statistical
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framework (spatial Durbin modeling) that can provide new insight given the spatial

properties of relevant data.

Critically, I also show how these principles interact with design decisions in sharing

economy platforms to create important structural geographic biases that disadvantage

people living in low-density and poor areas. The robustness of these contributions is

supported by this work being the first to examine multiple sharing economy platforms

(and multiple types of platforms) with a geographic lens and by my adoption of a new

statistical framework from the domain of spatial statistics (spatial Durbin modeling).

I believe this framework will prove useful for other researchers in future examinations

of the sharing economy. Overall, this chapter, supported by the previous work in

this space, paints a clear two-part picture: (1) when it comes to the sharing economy,

geography matters and (2) one way it matters is that key human geography principles

interact with sharing economy design decisions to create structural geographic biases.

3.3 Study 1: TaskRabbit (Mobile Crowdsourcing Sharing Econ-

omy Platform)

I begin the discussion of my empirical work with my analysis of TaskRabbit. TaskRab-

bit is a canonical example of the mobile crowdsourcing branch of the sharing economy.

As noted above, it is used by task requesters for the completion of physically-situated

tasks such as delivering flowers, building IKEA furniture, and helping task posters

move large items [157].

The goal of my TaskRabbit study [163] was to understand the effectiveness of

the TaskRabbit platform in different regions with respect to our four geographic

principles. To address this goal, I first had to define effectiveness within a TaskRabbit
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context. I did so by decomposing the notion of TaskRabbit effectiveness into two

basic dimensions: (a) the ability to find a crowd member to complete a task (i.e. the

willingness of a worker to do a task) and, if a crowd member is willing to do the task,

(b) the price at which the crowd member will complete the task. These dimensions

led directly to my two research questions for this study, each of which I explicate in

turn immediately below.

Research Question #1: RQ-Willingness: Where will participants in

TaskRabbit be willing to go to complete tasks?

As noted above, SES plays a key role in three of our human geographic principles:

the “Big Sort” (i.e. people of similar SES cluster together), population density varia-

tion (i.e. some parts of metropolitan areas like the suburbs tend to be wealthier than

others), and mental maps (e.g. people who live in higher SES areas tend to know less

about low-SES areas and have low comfort levels in these areas). As such, in this

study and in the UberX study below, I used SES as a straightforward probe into the

function of these principles in the sharing economy. This was a decision that turned

out to be supported in my results (see below). In particular, the human geography

literature on our principles suggests that workers would be less willing to complete

tasks in low-SES areas, which amounted to my first hypothesis: H-Willingness-SES.

The one principle that is not directly addressed through an investigation of SES

in this context is distance decay. As such, I also included distance to a task (from a

worker’s frequently visited areas) as an independent variable. Distance decay suggests

that as this distance increases, willingness to complete a task should go down: H-

Willingness-Distance.

Research Question #2: RQ-Price: How does geography affect how

much participants in TaskRabbit request in payment?
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At the time of data collection, TaskRabbit had a straightforward auction system

for tasks in which workers would bid on tasks posted by users. As such, I believed

that the amount workers would charge for a task would be subject to similar processes

as their willingness to do the task. Specifically, I hypothesized that distance and task

price would be positively correlated (indeed, cost can be a primary mechanism for

distance decay, e.g. [23]) (H-Price-Distance) and SES and price would be inversely

correlated (H-Price-SES).

It is important to note that TaskRabbit’s pricing model is subject to frequent iter-

ation, as is the case with many aspects of most sharing economy platforms. As of this

writing, TaskRabbit’s model has changed to a more complex approach that involves

several options for workers and requesters. However, the model still incorporates rel-

atively significant user input in some cases, making it more liable to principles from

human geography, something that is in theory not the case with UberX (although

driver behavior with respect to surge pricing problematizes this notion [32]). I high-

light the role of pricing model design, the differences between UberX and TaskRabbit

with respect to pricing, the relationship between willingness and pricing, and inno-

vation in this area in my Discussion section below.

3.3.1 TaskRabbit study design

To address the above research questions and evaluate the corresponding hypotheses,

I developed an experiment and recruited TaskRabbit workers as participants. This

recruitment was done in an organic fashion by posting tasks to TaskRabbit’s Chicago

metropolitan area site just as a typical task requester would post a task. Only

TaskRabbit workers local to the Chicago area could participate in my experiment,

for which I paid participants $5 in 15-minute intervals, capped at an hour (e.g. a
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Figure 3.1: An example of what participants saw in my TaskRabbit experiment. The
green census tract is the worker’s self-reported home tract and the blue tracts are those
that the worker reported visiting at least once a month. The red tract is the tract about
which the worker is currently being questioned (Note: the image is cropped for space and,
for privacy reasons, the figure does not depict an actual worker’s responses).

person who took more than 15 minutes but less than 30 would receive $10).

To add context to my results, I first asked participants a number of questions

about themselves, covering topics such as gender, preferred mode of transportation,

and activity level on TaskRabbit. I also asked participants to select their home census

tract on a map I provided, and to do the same for census tracts that they visited at

least once a month.

After participants answered questions about themselves, they began the main

portion of the experiment. This portion of the experiment involved prompting par-

ticipants with census tracts in Cook County, Illinois, which contains Chicago and

many of its suburbs . For each census tract, the participant had the option to either

check a box labeled “I would not do this task at this location” (RQ-Willingness) or to

name what they felt would be a fair price to complete the task (RQ-Price). I did not

ask TaskRabbit workers to complete the tasks, only to say if they would complete

them and at what price. Figure 3.1 shows an example of the experiment interface.
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Table 3.1: Experiment Tasks and Their Hypothesized En-

gagement Level

Task

Engagement

Level

Task 0: Suppose you were asked to travel to an intersection in

the region shown (in red) on the map, and photograph all of the

signs at that intersection. This should take no more than 5

minutes.

Low

Task 1: Suppose you were asked to travel to the region shown

(in red) on the map, and take close-up photos of leaves and bark

of a tree in the area. This should take no more than 5 minutes

Medium

Task 2: Suppose you were asked to travel to the region shown

(in red) on the map, visit someone’s home, and ask the owners

to respond to a single question about local politics. This should

take no more than 5 minutes

High

Each tract was randomly assigned one of three hypothetical tasks designed to

vary the level of engagement with the local area (Table 3.1), an important variable

considering the mental maps literature and its findings relating to geographically-

variable comfort levels (e.g. [109]). These tasks ranged along an engagement spectrum

from a task that could be done without leaving a vehicle to a task that required

interaction with a person in the area. Tasks were designed so that they would not

take more than five minutes.

Each participant received 20 census tracts. Fourteen of the tracts were randomly
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selected (without replacement), and these tracts were the tracts that were considered

in my quantitative analysis below. In order to enrich our qualitative understanding

of the geography of mobile crowdsourcing markets, I also considered four special-case

tracts: the highest-income and the lowest-income tracts in my study area and, in

according with Matei et al.’s work on mental maps [109], the highest-crime and the

lowest-crime tracts. The remaining two tracts were repeated from the randomly cho-

sen set of 14 tracts to verify intra-rater reliability. Each repeated tract was presented

no fewer than 5 tracts after the original.

Upon seeing and responding to all 20 of the tracts with either a price or by

stating that they would not complete the task, I asked participants several open-

ended questions whose answers were entered into text boxes. Specifically, I asked

participants about how they made their pricing decisions and why they would not

complete certain tasks (if they checked that box at least once).

3.3.2 TaskRabbit Results

Forty participants completed the experiment (20% of active TaskRabbit workers in

Chicago at the time of the study), which I ran during Spring 2014. 57.5% of partici-

pants identified as women (42.5% men), which aligns well with gender distribution in

the platform overall [160]. The median participant performed a task on TaskRabbit

between once a week and once every two weeks. 30% of participants indicated that

they complete multiple tasks per week, while only 20% of participants indicated that

they complete a task once a month or less.
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RQ-Willingness.

Because price is irrelevant if a worker will not complete a task, I first sought to

understand the geography of worker willingness. To do so, I built a logistic mixed

effects model with three fixed effects:

• Distance to task from the closest census tract visited by the participant at least

once a month (as indicated in the experiment) [This helped us understand the

role of distance decay].

• Median household income of the task tract, as an indicator of socioeconomic sta-

tus (e.g. [99,154]). As noted above, many other socioeconomic variables are well

known to be correlated with income (e.g. educational attainment, occupation).

To reduce the effect of the long-tailed distribution of wealth, I log-transformed

this variable. Median household income data was gathered from the United

States Census’ American Community Survey 2006-2010 dataset. [This helped

us see the effect of the “Big Sort”, population density effects, and mental maps]

• Task ID, to make sure I understand the effect of distance and median income

in the context of a given task.

The model’s random effects were intercepts for participant and by-participant

slopes for the effects of income and distance. The model’s dependent variable was

whether the participant had checked the “I would not do this task at this location”

box for a given tract. It is important to note that this model used standard mixed

effects techniques rather than my more advanced spatial Durbin modeling approach,

which is employed in my analysis of UberX data. I discuss the relationship between

these two models and their appropriateness for each setting in Section 3.4.
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To operationalize distance, I used travel time rather than Euclidean distance

to better match actual mobility in Chicago. I used the Google Distance API to

calculate the off-peak travel time between the centroid of the task tract and the

centroid of the nearest tract (to the task tract) that the participant indicated visiting

frequently (more than once a month). The API supports multiple transportation

modes, and I calculated travel time with participants’ self-reported preferred mode

of transportation.

Overall, participants indicated that they would not do 34% of the tasks. The few

census tracts that had a reported median income of zero (e.g. the tract that consists of

O’Hare International Airport and a few hotels ) were excluded from further analysis.

Table 3.2: The Results of my Willingness Model

Fixed Effect Estimate p-value

Travel time (in hours) -3.15 (0.99) 0.001

log2[Task tract income in $10] 0.87 (0.36) 0.014

Task ID (baseline = Task 0) 1: 0.37 (0.40), 2: -0.92 (0.40) 0.003

Constant 1.81 (0.82) 0.028

Table 3.2 shows the results of my model. All fixed effects are significant and I find

that both H-Willingness-Distance and H-Willingness-SES are supported. Socioeco-

nomic status of the task location and distance to the tract both have an effect on

whether a worker is willing to complete a task, with SES having a significant positive

relationship and distance having a significant negative one.

The effect sizes are relatively large. According to the model, for every doubling

of task area median income, there is a 2.38x increase in likelihood that a worker
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Figure 3.2: Experiment participants’ self-reported home census tracts and median income
in Cook County, Illinois. Very few participants live in low-income tracts. Note that the
low-SES “South Side” of Chicago (Chicago is outlined in black) has only one participant,
and no participants live in the poorest parts of the South Side. Median income color classes
are determined via the quantile method, meaning each class represents a quintile of the
household income dataset. Participant are displayed at the centroid of their home census
tract.

will accept a task. In other words, holding the other variables constant, my model

suggests that the likelihood of a worker accepting a task will more than double if the

task is in a tract with a median income of, for instance, $60K rather than a tract

with a median income of $30K. As shown in Figure 3.2, $60K is a relatively standard

median household income in northern Chicago and the Chicago suburbs, with $30K

median household incomes common on the “South Side” (as the southern part of

Chicago is commonly known).

With respect to travel time, my model indicates that for every hour of travel

time there is a substantial decrease in willingness to complete a task. In this case,
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the geographic interpretation is clear: this result directly validates a rather large

presence of distance decay. Specifically, TaskRabbit workers are about 4.3% as likely

to complete a task an hour away than they are tasks in their immediate vicinity.

Examining my willingness results in more detail, I found an interesting result with

regard to gender. While 78% of women said they would not complete at least one

task, the equivalent number for men was 53%. In addition, the grand mean willingness

(mean of the means for each participant) for women was 57.1% but for men it was

77.7%. my qualitative results below suggest that both distance and crime factors

play a role in willingness decisions by women (in part mediated by mental maps),

but these are the same factors also indicated by men. Although further research is

needed, it is likely that women have a lower threshold for one or both of these factors.

RQ-Price.

I now turn my attention to my analysis of the price participants indicated that they

would charge for a task (assuming they were willing to complete the task). I began

this analysis by ensuring that it had sufficiently high intra-rater reliability. I did so

by calculating the Pearson’s correlation coefficient between the first and second price

judgments for the repeated tracts. The coefficient was r =0.96 across all participants,

indicating that participants’ pricing decisions were very consistent. To understand

the effect geography has on task prices in TaskRabbit, we built a linear mixed effects

model with identical independent variables as my willingness model but with reported

task price as the dependent variable.
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Table 3.3: The Results of my Price Model

Fixed Effect Estimate p-value

Travel time (in hours) 10.10 (2.27) < 0.001

log2[Task tract income in $10] 0.40 (0.52) n.s.

Task ID (baseline = Task 0) 1: -1.73 (0.85), 2: 0.28 (0.87) 0.024

Constant 16.92 (2.90) < 0.001

The results of this price model can be seen in Table 3.3. This table reveals that

travel time was positively associated with price, supporting H-Price-Distance and

the distance-as-cost-function view of distance decay. Indeed, the model suggests that

for every hour of travel time, the price goes up at a rate of $9.97/hour. Task tract

income, on the other hand, was not significant; the median household income of the

tract does not have a significant effect on price. In other words, H-Price-SES was

not supported.

This, however, is where the important role of “Big Sort” phenomena becomes

clear: due to these phenomena, even though SES is not a significant predictor of

price, I found that people who live in large low-income areas are indeed likely to be

charged more for the same task. To understand how this works, consider Figure 3.2,

which shows the self-reported home tracts of all 40 participants on top of a map of

income by census tract in Cook County. Immediately visible in Figure 3.2 is that

very few participants live in the heart of low-income areas. Indeed, most participants

seem to live in middle-income areas next to the very high-income portions of northern

Chicago (the “North Side”). Only a single participant lives well within the lower-

income South Side of Chicago. As a result, low-income residents on the South Side
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are almost always a large distance away from any given TaskRabbit worker, making

distance an agent of higher prices for these low-income neighborhoods. In other words,

a low-income resident of the South Side would have to pay more to receive a given

TaskRabbit service, for instance someone to take care of errands to make time for

longer-term goals [15,167]. Moreover, as per my findings above, South Side residents

also likely have a harder time finding a TaskRabbit worker to accept a request for

services in the first place.

This result suggests a specific character for the effect of the Big Sort on the sharing

economy. I found that most sharing economy workers live near (but not in) high-

SES regions. If this result generalizes, people who live in large, low-income districts

like the South Side will need workers to travel greater distances to get to their task

locations, resulting in longer travel times, and, ultimately, higher prices. Where

low-SES pockets are much smaller (e.g. the lower income pockets in the suburbs just

north of Chicago), the effect on travel time, and therefore price, will be more minimal.

However, these smaller pockets may get rarer and rarer in a “Big Sort” world.

It is also important to point out that these “Big Sort” effects also play a role

in willingness decisions. Since distance and willingness were found to be inversely

associated, the fact that TaskRabbit workers live far away from large low-SES areas

means that this inverse association will disproportionately affect people who live in

these areas. Moreover, since I identified a separate effect in which willingness and

SES are positively associated (as SES goes up, willingness goes up), the distance

effects and SES effects likely compound each other to make the task willingness in

large low-SES areas particularly low.

Lastly, although my consideration of population density largely lies in my UberX

study, we do see an important effect for population density here. Figure 3.2 shows
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that workers are concentrated in the high-density city of Chicago rather than the low-

density suburbs. As such, distance not only reduces availability of TaskRabbit and

increases the price of TaskRabbit in lower SES areas, but does the same in suburbs.

However, the situation in suburbs is generally quite different: as can be seen in

Figure 3.2 (and is discussed in related work), suburban people have higher incomes

than people on the South Side of Chicago, and thus they can potentially afford the

increased costs. In addition, in some cases, even people in somewhat remote suburbs

are closer to one of my participants than a person in southern Chicago. That said,

while United States suburbs tend to be relatively wealthy, the opposite is true in

many cities around the world (e.g. France and Latin America [14,18]). Where this is

the case, services like TaskRabbit will likely be drastically more expensive and less

available in these areas. As I note above, investigating these phenomena in cities

with different socioeconomic segregation patterns is an important direction of future

work.

3.3.3 TaskRabbit Qualitative Results

Thus far, my quantitative models have revealed evidence for the importance of dis-

tance decay, “Big Sort” phenomenon and, to a lesser extent, structured variations

in population density, when considering the effectiveness of TaskRabbit. I have also

seen these principles manifest in structural geographic biases in TaskRabbit, biases

that lead TaskRabbit to be both more expensive and less available in low-SES regions

in my study area. I now turn to my qualitative results to attempt to help understand

why these dynamics exist. To do so, a single investigator looked for themes in the

textual survey responses, focusing on ideas related to my four geographic principles.

Below, I outline the results of this analysis, which identified qualitative data relevant
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to mental maps (and their interactions with “Big Sort” phenomenon) and distance

decay.

Mental Maps.

A theme that was very clear in my participants’ answers to why they ticked the “will

not do [a task]” box is the importance of mental maps, and specifically a large region

of low comfort levels in their mental maps corresponding to Chicago’s South Side (and

to a certain degree the “West Side”). Participants reported that these low comfort

levels were driven mostly by perceptions of high crime. Indeed, some participants’

responses read as if they came directly out of Matei et al.’s study that examined

the role of crime in neighborhood-level comfort assessments in mental maps. For

example, consider this response from P27:

“I think the high incidence of gang-related crime makes many Chicagoans

too nervous to visit some parts of the city. We always refer to Chicago as

being a”city of neighborhoods” but the truth is that many Chicagoans feel

uncomfortable visiting a huge portion of our city. The nature of the crimes

that occur on the South and West Sides (gang-related) makes me particu-

larly nervous because there’s nothing you can do to prepare/protect your-

self. I realize that I might have some biases but it’s less about location

for me and more about crime rate. I do wish Chicagoans (and visitors)

could feel more comfortable exploring and enjoying more neighborhoods

without worrying about crime.” (P27)

P9 is a member of the TaskRabbit Elite. This is a designation one can earn

within TaskRabbit after earning an average rating of 4.9 stars (ratings are given
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by task requesters upon completion), completing a large number of tasks, and not

violating any of TaskRabbit’s policies. P9 offered similar feedback to P27:

“I am an Elite member of TaskRabbit and I do a lot of tasks. I do not do

tasks anything below the loop of Chicago [i.e. the South Side] so it has

to be on the north side for me to work. It is purely for safety concerns.”

(P9)

P4, a relatively new resident of Chicago, wrote that the comfort level overlay in

her mental map also led to similar decisions about whether or not to accept a task.

In this case both poverty and crime are mentioned:

“I only moved to Chicago last May, so I don’t know much about the city

except that there are large pockets of poverty, inequality and high crime.

In terms of general areas of the city I understand that large swaths of the

south side and west side include these pockets of poverty and high crime.

Without specifics about which neighborhoods/blocks/streets are safe I

essentially ruled out anything on the south or west side of the city. For

the most part, I think the western suburbs are safe but I know nothing

about the southern suburbs so I erred on the side of safety and avoided

those areas as well.” (P4)

P39 specifically addressed her gender as part of the reason she did not consider

certain tasks, saying:

“I wouldn’t feel safe in some areas as a female by herself.” (P39)
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P16 was very explicit about how he makes decisions between the contradictory

signals from his comfort layer and the desire to increase his income:

“Whether or not my assumptions of lack of safety were correct, I wouldn’t

put myself in danger for a few dollars” (P16)

The quotes above make it clear that a key sharing economy decision-making pro-

cess – whether or not a crowd member agrees to accept a task – is subject to classic

mental map effects. These are effects that have been observed in geography and

related fields for decades (e.g. [59,109]). As has been observed by Gould and White

[59], Matei et al.[109], and others, humans tend to ascribe large regions of their men-

tal maps with positive and negative emotions, with Matei et al. [109] specifically

focusing on comfort levels assigned to neighborhoods in mental maps as a function of

perceived crime in those areas. My qualitative results suggest that this is a primary

driver behind the results of my willingness model.

These findings also dovetail with recent findings by Lee et al., who, as noted

above, did qualitative work with UberX drivers. Lee et al. identified that UberX

drivers often manually disable their availability to the UberX platform when they

are traveling through what they perceive to be unsafe neighborhoods, a finding that

can be easily understood through a mental maps lens. This is also the direct UberX

analogy to a TaskRabbit worker not accepting tasks in specific neighborhoods, and

is a point to which I return in my UberX study.

Another theme in the above responses that is also present in Gould and White’s

and Matei et al.’s results is a lack of geographic nuance in mental maps. While the

South and West sides do indeed experience much higher levels of crime than other

parts of Chicago, there are pockets of these areas that are quite safe [165]. However,
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“Big Sort” processes have driven most people of higher SES out of the South Side and

the West Side (as well as many people of White, non-Latino descent; see below), likely

leading to large regions that are unknown to people who do not live there, both in

terms of geometry and personal comfort levels. This is roughly analogous to a finding

observed in mental maps of another major urban city, Boston [91]. The mental maps

of my participants clearly are not sufficiently nuanced to support knowledge of the

lower crime pockets on the South and West side.

Before moving on to my analysis of the presence of distance decay themes in my

qualitative results, it is important to point out that prior work (e.g. [109]) suggests

that, even though SES and crime are the only two attributes directly cited by my

participants in their willingness decisions, race and ethnicity may also be involved.

This is a point I address in my discussion below.

Distance Decay.

Participants’ qualitative feedback supports the finding from my quantitative mod-

eling exercise that proximity of the task location is a very important factor in task

willingness and pricing decisions. Here, P4 explicitly discusses the role of distance

decay in her pricing decisions:

“Mostly how much of a pain it was going to be to get there. If it was a

place I could stop by on my way to or from work or the gym= cheap. If

it required getting in my car=more. If it required an extensive drive to a

far flung suburb=more.” (P4)

My qualitative data also shed some of light on the specific form of distance de-

cay in TaskRabbit pricing and willingness decisions. Distance decay can take many
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and multiple forms (e.g. gravity models (e.g. [44,140,155]), thresholds (e.g. [1]), and

my qualitative results suggest that distance decay in this context contains a thresh-

old component. Four participants explicitly or implicitly mentioned thresholds in

explaining why they said they would not complete a specific task:

“The distance was too far to justify any fair price for completing task.

The price would have to be higher/greater than 25 dollars to justify it.”

(P31)

“Getting there would take me longer than actually completing the task.”

(P39)

“Other areas were too far from the Metra [the commuter rail system in

Chicago] to make it worth my while. Others were still close to the Metra

but far enough away where the ticket round trip would be a bit pricy.”

(P16)

“I didn’t think any price would be worth the commute and risk while still

offering even a marginally fair price.” (P23)

More specifically, these participants suggested that when the cost of commute time

(either in raw time or money) rises above a certain level (in two cases the financial or

temporal cost of the task), they would no longer be willing to accept the task. This

feedback should help guide future work involving modeling distance decay’s role in

willingness decisions in the sharing economy.
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3.3.4 Summary of TaskRabbit study

Above, we have seen that three of our human geographic principles – the “Big Sort”,

distance decay, and mental maps – play a key role in the effectiveness of the sharing

economy. I have also shown that these principles manifest in structural geographic

biases in TaskRabbit, in which people who live in high-SES regions in the urban core

gain most of the benefits of TaskRabbit’s rendition of the sharing economy (at least

in the Chicago area). These biases also mean that TaskRabbit is both more expensive

and less accessible to people in low-SES areas. I have also observed a smaller role for

our fourth geographic principle, structured variation of population density, observing

that prices are also higher (and to a lesser extent, service is less available) in high-

SES, low-density suburbs as well. Below, I explore whether these same trends persist

in an entirely different rendition of the sharing economy: the well-known ride-hailing

platform, UberX.

3.4 Study 2: UberX (Ride-Hailing Sharing Economy Platform)

As noted above, the goal of my UberX study is to identify whether the key findings

from my TaskRabbit study – the importance of the four geographic principles and

their manifestation through specific geographic biases – generalize to UberX. Most

(if not all) studies of the sharing economy thus far have focused on a single sharing

economy platform. By taking this multi-platform approach, I aimed to gain a more

general understanding of the role of geography in the sharing economy (rather than

a platform-specific understanding).

I focus my attention in this section on an analysis of UberX wait times, a di-

mension of effectiveness related to my willingness variable in TaskRabbit. In UberX,
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drivers can show their willingness to pick up a passenger by accepting or rejecting a

fare, by avoiding (or spending time in) certain areas or by selectively turning on and

off their availability as they approach certain areas (as was mentioned above). All of

these expressions of willingness manifest in the amount of time a potential customer

has to wait before an UberX driver arrives at her/his location. Moreover, these wait

times can be automatically obtained, affording a quantitative understanding of geo-

graphic effectiveness just as was the case with TaskRabbit. It is important to note

that I do not analyze price in UberX, as this is determined automatically by a basic

formula in all cases (a point to which I return below).

More specifically, I structure this investigation of UberX wait times around the

following research question:

Research Question #3: RQ-Wait Times: How does human geography

affect UberX wait times?

Motivated by the geographic principles considered in this paper and in analogy

to my TaskRabbit study, I made two hypotheses with respect to this question. First,

I hypothesized that, all other factors being equal, wait times would be higher in low-

SES areas than in high-SES areas (H-Wait Times-SES). Secondly, I also hypothesized

that structured variations in population density would be a significant factor in wait

times, with denser areas having more convenient access to UberX (H-Wait Times-

Population Density).

In addition to highlighting the similarities and differences in the geography of

UberX versus that of TaskRabbit – as we will see, there are far more similarities than

differences – this section also makes a methodological contribution to the sharing

economy literature. Specifically, to test my hypotheses, I adapt spatial Durbin mod-

eling, an advanced spatial statistical technique from the natural and social sciences,
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and show how it is often critical for conducting robust geographic sharing economy

analyses. To my knowledge, this study represents the first use of spatial Durbin mod-

eling in the human-computer interaction community , and I expect that this work can

provide statistical assistance for other sharing economy researchers and researchers in

other domains who encounter similar types of spatial data. As such, I dedicate a sig-

nificant portion of the methods section below to explaining the character, intuition,

and proper execution of spatial Durbin modeling.

The remainder of this section will proceed as follows: I first introduce the datasets

I utilize in the analysis of UberX wait times. Next, I describe spatial Durbin modeling

and explain why it is essential for understanding the geography of the sharing economy

in many cases. Following my discussion of methods, I then present the results of

my models, highlighting similarities and differences with my TaskRabbit results and

discussing connections to my four geographic principles.

3.4.1 Datasets

In every metropolitan area where UberX provides service, there is a defined region

where the service is available. At the time this analysis was performed (late 2014),

this region did not encompass all of Cook County. Specifically, there are 275 census

tracts (shown in Figure 3.3) on the southern end of Cook County that were outside of

UberX’s operating area. Thus, I excluded these tracts from my study. It is important

to note that UberX’s service area has since expanded. I return to this issue in the

Discussion section, in which I highlight potential “early access” benefits provided to

certain types of areas over others in geographic social computing systems.

The tracts in which UberX did not provide service at the time of analysis are

systematically poorer than the tracts in which it did offer service. This provides my
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Figure 3.3: Average UberX wait times in Cook County, Illinois. In grey are tracts excluded
from my analysis because (a) they were not within UberX’s operating area (the large block
to the south) as of time of data collection or (b) the Uber API did not provide a single
ETA value for these tracts.

first evidence that some of the factors associated with effectiveness in TaskRabbit –

particularly the “Big Sort” along the SES dimension – play the same role in UberX.

More specifically, tracts excluded from UberX’s service area had an average median

household income of $53,122 (sd = $19,247), whereas the tracts served by UberX

have an average median income of $56,369 (sd = $29,761).

I used Uber’s Time Estimate API (available through their developer website)

to measure wait times in the 1,041 Cook County census tracts within the UberX

operating area. I sampled the centroid of each census tract every hour for a period

of 7 days, leaving us with 168 samples per tract in the ideal case. Uber’s API never

provided wait times for the three census tracts containing the Chicago area airports,
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which is likely due to Chicago city ordinances that prohibited Uber from providing

service at airports at the time [74]. Thus, I excluded these tracts from my data,

leaving us with 1,038 census tracts for my analysis.

In some cases, Uber’s API did not provide a wait time every time a tract was

sampled, the reasons for which are unclear. However, ninety-eight percent of tracts

in my sample received a wait time more than 80% of the time, and the census tract

with the fewest samples received valid responses approximately 60% of the time (100

of 168). I compute the mean of all wait times for each census tract, and use this

average wait time as the core dependent variable in my analysis of UberX.

To examine H-Wait Times-SES, I used the same SES data as I did for the

TaskRabbit study: median household income (MHI) (in $10K increments) from the

United States Census’ American Community Survey 2006-2010 dataset. Again, I

log-scaled this variable to reduce the effect of a long-tailed wealth distribution. To

examine H-Wait Times-Population Density, I utilized United States census data on

the number of people per square kilometer in each tract. I also log-scaled this variable,

again to reduce the skew of a long-tailed population density distribution.

Finally, I note that while the methods I used to study TaskRabbit enabled us to

compute a “distance from home region” variable, this was not the case for my UberX

work: UberX’s API does not give a regular starting point for a given UberX driver. As

such, in this study, my ability to speak to distance decay directly is limited (although,

as is discussed below, my results below do suggest several indirect findings).

3.4.2 Spatial Modeling

If the datasets I considered in this study had not been not geospatial, my modeling

task would have been straightforward. Specifically, using standard regression model-
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ing techniques like ordinary least squares (OLS), I could have assessed whether there

were significant relationships between MHI and population density (independent vari-

ables) and UberX wait times (dependent variable), as well as determined the effect

sizes of these relationships.

However, the geospatial nature of my datasets demand that my methods be con-

siderably more sophisticated. For instance, let us consider a wealthy census tract

that is surrounded by less wealthy census tracts (e.g. as is the case near the Univer-

sity of Chicago on the “South Side”). One might imagine that this tract’s UberX

wait times may be affected by the fact that its neighbors are less wealthy. After

all, UberX drivers might not want to drive through poorer areas to get to this tract,

which they may perceive to be less safe (as we saw in the case of TaskRabbit), or

they may prefer to stay in an area that has consistent and widespread high incomes.

Conversely, a poorer tract near richer tracts may see opposite effects. However, tra-

ditional regression modeling assumes that all samples (tracts) are independent and

cannot incorporate potentially critical information about a tract’s neighbors’ income

in its estimates of wait times for the tract. In other words, one can think of traditional

regression modeling as failing to account for Big Sort effects when applied in many

types of sharing economy analyses (and other types of analyses in geographic HCI).

More generally, when a dataset consists of specific geographic locations associated

with attributes – which is the case for UberX wait times – it is common for individual

data points to be affected by other nearby data points, or to be spatially autocorre-

lated [4]. The Big Sort is an instance of spatial autocorrelation in which the variables

of interest are demographic in nature.

The presence of spatial autocorrelation, including in the Big Sort case, means

that the data from one location often is not independent of data from neighboring
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locations, violating a core assumption of traditional regression modeling techniques

like OLS. The output of these techniques – significance, effect sizes, etc. – are all con-

ditioned on the assumption of independence of observations in the independent and

dependent variables, something that often will not be true with geographic sharing

economy data. As such, specialized techniques are needed, not just to acquire more

statistical power and understanding, but also simply to gain reliable insight on the

associations in question and the role of spatial relationships in these associations.

When engaging in spatial statistics, a frequent first step is to model the spatial

structure of the study area. A common approach to generating a representation of

this structure – and the approach I use in this work – is called a Queen’s weights

matrix (there are also other distance-based schemes, e.g. k-nearest-neighbors). With

a Queen’s matrix, the neighbors of a given census tract (or polygon more generally)

are assumed to be all the tracts (or polygons) that are directly adjacent through

either an edge or a vertex (similar to the moves available to a queen in chess).

Once the spatial structure has been encoded, we can turn my attention to mod-

eling spatial effects between neighbors. These effects can be of three distinct types

[107]:

1. A correlated spatial relationship: unknown factors lead to similar outcomes

(e.g. wait times) between two neighboring locations.

2. An endogenous spatial relationship: an outcome (e.g. wait time for a given

census tract) for one location is dependent on the outcomes (e.g. wait times) of

neighboring locations.

3. An exogenous spatial relationship: an outcome (e.g. wait time for a given census

tract) for one location is associated with the predictors of neighboring locations
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(e.g. the median income of its neighboring tracts).

In the context of my modeling exercise, this means that a given census tract’s

UberX wait time may be (1) similar to its neighbors because of some unmeasured

factors, and/or (2) dependent on the wait times of its neighbors, and/or (3) depen-

dent on the population density and median income of its neighbors (my predictors /

independent variables).

Until recently, the majority of the focus in geostatistical modeling has fallen into

two camps: modeling the correlated relationships (#1 above) by accounting for any

spatial relationships using the error term (known as a spatial error model), and mod-

eling the endogenous spatial relationship (#2 above) using the weights matrix to

lag (or spatially weight) the dependent variable (known as a spatial lag model).

The third type of spatial relationship – exogenous spatial relationships – had un-

til recently largely been ignored in the natural and social sciences, let alone in the

human-computer interaction literature. While most treatments of spatial data in the

human-computer interaction literature do not consider spatial autocorrelation at all

and instead utilize standard regression techniques for spatial data, to the extent that

spatial models have been used, they have been the more traditional spatial lag and

spatial error models (e.g. [80,82,106]).

Spatial error models may be sufficient when model interpretation is unimportant

and addressing independence assumptions while maximizing predictive power is the

only consideration [41]. However, recent work in the spatial statistics literature has

argued that both endogenous and exogenous relationships need to be examined when

using spatial modeling to shed light on the underlying spatial processes [41,173], as

I am doing here (and as is common in the HCI community’s consideration of spatial
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data more broadly). In this vein, a more generalized modeling approach – the spatial

Durbin model – that accounts for both endogenous and exogenous relationships has

begun to be recommended as best practice [41,98].

A spatial Durbin model can be understood as having multiple versions of each

variable corresponding to the endogenous and exogenous spatial relationships dis-

cussed, supporting better interpretation of the spatial relationships in the data. In

my case, a spatial Durbin approach models the average UberX wait time for a given

tract as a linear combination of (1) the values of the independent variables in that

tract (as is typical in OLS regression), (2) the average of the values of each inde-

pendent variable (MHI and population density) in neighboring tracts according to

the Queen’s matrix (spatially exogenous relationships), (3) the average of the wait

times in neighboring tracts calculated in the same fashion (spatially endogenous re-

lationships, i.e. spatial lag term), and (4) an error term, which functions similarly to

the error term in a traditional OLS. So, in other words, whereas a traditional OLS

regression for my experiment would involve two independent variables and an error

term, a spatial Durbin approach applied to my problem would have 2 + 2 (spatially

exogenous) + 1 (spatially endogenous) = 5 independent variables and an error term.

In light of the tremendous interpretative advantages of spatial Durbin modeling –

none of the key distinctions between the “direct” and “indirect” effects below would

be possible without Durbin modeling – I employed spatial Durbin modeling as my

primary analytical tool for understanding my UberX data. I was not able to ap-

ply spatial Durbin modeling to my TaskRabbit analysis for one critical reason: my

TaskRabbit experiment required the employment of mixed effects models and, to my

knowledge, mixed effects models have not yet been integrated with spatial Durbin

approaches. Indeed, spatial Durbin approaches have only recently become feasible;
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up until several years ago, they were too computationally demanding for common

practice [41]. In the TaskRabbit case, mixed effects models were required to control

for the lack of independence between observations gathered from the same individ-

ual. In concert with my university’s statistical consulting center, I determined that

the violations of independence that are due to observations coming from the same

participant (which are handled by mixed effects modeling) were more serious than

those due to spatial autocorrelation (thanks in large part to the fact that I was not

considering many immediate neighbors in my TaskRabbit observations). Because no

existing modeling approach (to my knowledge) allows us to account for both types of

independence assumption violations, I used the mixed effect models discussed above.

As we will see below, I found nearly identical high-level results in my TaskRabbit

and UberX analyses, adding credence to both the high-level results and the modeling

choices in each.

The majority of future geographic sharing economy research will likely not face

the challenges I did with TaskRabbit and will be able to gain the advantages of spatial

Durbin modeling as I do here with UberX. Indeed, the two studies that most directly

resemble my research – Quattrone et al. [137] and Stark and Diakopoulos [153] – did

not face the statistical challenges associated with my TaskRabbit study.

Interpreting Spatial Durbin Models.

In general, when examining the results of Durbin models, traditional outcome metrics

like the value and significance of coefficients (betas) are far less useful for interpre-

tation than a series of specialized metrics, in particular the Rho term, indirect effect

values, and direct effect values.

The Rho term captures the effect of spatial diffusion in the dependent variable
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(wait times) as one neighbor’s value affects another neighbor’s value, which then

affects another neighbor’s value, and so on. More specifically, the Rho term encapsu-

lates endogenous spatial relationships and in the context of my work, describes how

a given tract’s wait time should be affected by the wait times of its neighbors (en-

dogenous spatial relationships). This term is not interpreted like a traditional model

coefficient, but instead is multiplied by the spatially-weighted average of neighbors’

measured wait times.

The need for direct and indirect effect values arises out of the fact that spatial

dependence invalidates the interpretive benefits of model coefficients in traditional

regression (e.g. OLS). Traditional approaches compute regression coefficients through

partial derivatives of the regression formula with respect to each independent variable.

Because of spatial dependence, however, when these partial derivatives are computed

in a spatial model that incorporates data from the neighboring area, any given partial

derivative will in turn be dependent on the values of the neighboring tracts’ partial

derivatives. These feedback loops, caused by the spatial structure, get built into

the models. This means that the variable coefficients in a spatial model cannot be

interpreted directly because the partial derivatives are not orthogonal [41].

On the surface, these feedback loops seem like a challenge to the interpretative

power of spatial Durbin modeling. However, LeSage and Pace [98] introduced direct

effects and indirect effects to explicitly address this issue. Indirect and direct effects

are calculated by averaging across all of the relevant partial derivative values at

every location (calculated based on the lagged value of the variable in question). I

follow Yang et al. [173] and use a Markov Chain Monte Carlo (MCMC) approach to

randomly permute input data in order to estimate the average effects and generate

an average over the permuted output .
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Direct effects describe average relationships between the dependent and indepen-

dent variables that are analogous to the relationships modeled in traditional regression

approaches. Specifically, a direct effect for a given independent variable describes the

average impact the value of that variable at a specific location has on the value of

the dependent variable at that location. In the context of my work, this means, for

instance, the effect the median household income of a given tract has on the wait

times of that specific tract. Each independent variable has its own direct effect.

Conversely, indirect effects model the relationship between the value of a depen-

dent variable at a given location and the values of independent variables at neigh-

boring locations (spatially exogenous relationships). In my analysis, indirect effects

capture, for instance, the effect of the average median household income of neigh-

boring census tracts on a given census tract’s wait time. Like is the case with direct

effects, each independent variable has its own indirect effect value (so each inde-

pendent variable in my model has both a direct effect value and an indirect effect

value).

When describing the results of a spatial Durbin model, it is considered best prac-

tice [98] to present the Rho term (endogenous effect), the modeled coefficients, and

the direct and indirect effects (exogenous effects), but interpret only the endoge-

nous and exogenous spatial relationships. This is due to the unclear meaning of the

standard modeled coefficients. I follow this best practice below.

3.4.3 UberX SES Results
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Table 3.4: The Results of my Cook County UberX Spatial

Durbin Model.

Fixed Effect Estimate p-value

Rho (Weighted effect of neighbors’ wait times) 0.92 < 0.001

log2[people/km2] (population density) -0.37 n.s.

lagged log2[people/km2] (population density) -5.63 0.002

log2[Tract income in $10,000] (median income) 6.09 0.09

lagged log2[Tract income in $10,000] (lagged median income) -10.21 0.02

Intercept 114.88 < 0.001

Table 3.4 shows the model coefficients for my UberX wait times model. In my model,

the endogenous relationship between a tract and its neighboring wait times is quite

strong: 92% of the average wait time of immediate neighbors is contributed to the wait

time of a given tract. This is intuitive: a tract should not have drastically different

UberX wait times than its neighboring tracts due to the nature of wait times. For

instance, if a tract has five neighbors and the sum of their average wait times is 1,500

seconds (mean = 300 seconds), the neighboring tracts would contribute 259 seconds

(92% of the 300 second mean) to the predicted wait time of the tract in question.

Coefficients in grey are commonly reported, but not interpreted.

Table 3.5: The Direct Effects of my Cook County Model

Direct Effects Estimate p-value

log2[people/km2] (population density) -3.01 0.03

log2[Task tract income in $10,000] (median income) 4.02 n.s.
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Table 3.6: The Indirect Effects of my Cook County Model

Indirect Effects Estimate p-value

log2[people/km2] (population density) -69.09 < 0.001

log2[Task tract income in $10,000] (median income) -53.68 0.08

Tables 3.5 and 3.6 show the direct and indirect effects of my independent variables.

The tables reveal that, when examining the entirety of UberX’s service area across

Cook County, population density is significant in both its direct and indirect effects

(supporting H-Wait Times-Population Density). The indirect effects for population

density suggest a strong and inverse relationship between population density and

wait times (note that the indirect effect for population density in Tables 3.5 and 3.6

is both large and negative). Specifically, if the average population density across all

of a tract’s neighbors were to double, we would expect a decrease in average wait

time of approximately 70 seconds for that tract. This is not an extreme scenario: the

mean population density in my study region is 6,183 people/km2 and the standard

deviation is 7,616 people/km2. This means that tracts in a very dense area should

expect much lower wait times than areas where there are fewer people per km2.

While significant, the direct effects of population density – i.e. the role played by

the population density of the tract in consideration itself – had a much smaller effect

size. A doubling of a specific tract’s density would only lead to an average decrease in

wait time of approximately 3 seconds, for that tract. This is a trend that we will see

repeated below: the characteristics of a tract’s region appears to matter more than

the characteristics of the tract itself.

More generally, the results in Tables 3.5 and 3.6 substantiate the importance of
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the principle of structured variation of population density that I observed in the

TaskRabbit study. Specifically, the sharing economy seems to be significantly less

effective in the suburbs relative to the central city. For UberX, this finding is quite

visible in Figure 3.3, where we see wait times of over 10 minutes in the very-low-

density distant suburbs and under 3 minutes in dense urban cores.

While Tables 3.5 and 3.6 strongly suggest that structured variation in population

density is a prominent factor in UberX wait times, they display less clarity about in-

come’s role. Tables 3.5 and 3.6 show no significant direct effects for income and only

marginally significant indirect effects (providing little support for H-Wait Times-SES

at this stage). With regard to these indirect effects, it appears that if a tract’s neigh-

boring region became more wealthy, UberX wait times would decrease in that tract.

However, at least at this point, I only have marginal confidence in this relationship.

Table 3.7: The Results of my Cook County UberX Spatial

Durbin Model.

Fixed Effect Estimate p-value

Rho (Weighted effect of neighbors’ wait

times)

0.95 < 0.001

log2[people/km2] (population density) -0.07 n.s.

lagged log2[people/km2] (population

density)
0.52 n.s.

log2[Tract income in $10,000] (median

income)
5.29 0.04
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Fixed Effect Estimate p-value

lagged log2[Tract income in $10,000]

(lagged median income)
-14.55 < 0.001

Intercept 33.29 0.05

Table 3.8: The Direct Effects of my Chicago Model

Direct Effects Estimate p-value

log2[people/km2] (population density) 0.19 n.s.

log2[Task tract income in $10,000] (median income) -0.41 n.s.

Table 3.9: The Indirect Effects of my Chicago Model

Indirect Effects Estimate p-value

log2[people/km2] (population density) 8.95 n.s.

log2[Task tract income in $10,000] (median income) -190.61 <0.001

Tables 3.5 and 3.6 show results for a model that considered the entirety of Cook

County. However, many sharing economy decisions and debates occur at the munic-

ipal (city) level (e.g. [22,37,48]), where there tends to be less variation in population

density. To understand the relationships between income, population density, and

wait times within a central city itself – rather than an entire metropolitan area that

includes suburbs and exurbs – I re-ran my model focusing only on census tracts that

fall within the borders of the city of Chicago. I present the coefficients of this model in
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Table 3.7 and the average direct and indirect effects in Tables 3.8 and 3.9. Table 3.7

shows that, as expected, in my Chicago model, the endogenous interaction between

a tract’s wait time and its neighboring wait times is quite high, just as it was for my

Cook County model. A tract’s immediate neighbors contribute 95% (Rho = 0.95) of

the average of the neighboring wait times to the predicted wait time (as opposed to

92% in the Cook County model).

Tables 3.8 and 3.9 show that I identified no statistically significant direct effects in

my Chicago-only model. That is, the income and density values of a specific tract in

Chicago do not seem to play a role in that specific tract’s wait time. However,

we do see a significant and substantial indirect effect for median income: if the

income of an area goes up, wait times go down by a large margin (supporting H-Wait

Times-SES). To be more specific, my model suggests that if a Chicago census tract’s

neighbors experienced a doubling in their average median household incomes, I would

expect to see that tract’s UberX wait time decrease by over 3 minutes and 10 seconds

(190.6 seconds) on average. This suggests that while individual poor census tracts

surrounded by higher-income tracts should benefit from the wealth of their neighbors,

UberX is less effective in regions of Chicago where there is more widespread poverty.

This can be seen in Figure 3.3, in which the low-income neighborhoods in the southern

and western areas of Chicago have much higher wait times. I discuss how this may

be related to mental maps in Section 3.5 below.

The results in Tables 3.8 and 3.9 can be read as strong support for the Big

Sort’s influence on the sharing economy within regions of similar population density

(e.g. within the city limits of Chicago). While the SES of a specific tract does not

seem to have an impact on sharing economy effectiveness in that tract (as instantiated

by UberX wait times), the SES of a tract’s neighborhood has a substantial impact
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the tract’s wait times. This leads to high wait times in large low-SES areas (e.g. the

South Side) and low wait times in large high-SES regions (e.g. northern Chicago).

This also means that even if a neighborhood in a low-SES area begins to improve

its SES, there will likely continue to be a damper on sharing economy effectiveness

in this neighborhood. If those who argue that the sharing economy will become a

dominant economic paradigm are correct, this is a troubling implication.

In the section that follows immediately below, I provide further discussion of these

results in the context of my TaskRabbit results and four geographic principles.

3.5 Discussion

In my investigation of the geography of the sharing economy, I examined two different

sharing economy platforms using diverse methodologies that ranged from quantita-

tive and qualitative analyses of survey results to the application of spatial Durbin

autoregressive models on data gleaned from APIs. In both cases, however, I found

very similar high-level findings regarding the geography of the sharing economy: the

sharing economy is more effective in dense, wealthy neighborhoods and significantly

less effective in suburbs and low-income urban neighborhoods. Moreover, my results

pointed to the underlying geographic principles responsible for these structural ge-

ographic biases: the Big Sort, structured variations in population density, distance

decay, and mental maps.

In this section, I discuss the implications of these findings along several key di-

mensions: the role of race/ethnicity, suggested improvements to the design of sharing

economy platforms, and directions for future work.
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3.5.1 Examining my findings with a lens informed by race and ethnicity

As noted above, due to the tremendous economic inequalities that occur across racial

and ethnic lines in the United States (and elsewhere), SES and race and ethnicity

tend to be closely linked. Indeed, I observed that the percent of the population that

self-identifies as white (non-Latino) has a strong correlation with income in my study

area (r = 0.67). White (non-Latino) is a demographic variable provided by the U.S.

census whose inverse (the percent of the population that does not identify as white

or Latino) is often interpreted as the percent of the population that identifies as a

racial or ethnic minority [19].

Because of this correlation, I hypothesized that many of the patterns I saw with

SES and the Big Sort would also occur with race and ethnicity and the Big Sort. To

test this hypothesis, I replaced SES as an independent variable in both the TaskRabbit

and UberX models. For TaskRabbit, I found that the percentage of the population

that is white (non-Latino) was a marginally significant predictor of willingness (p

= 0.06). As was the case with SES, I did not observe an explicit effect for white

(non-Latino) with respect to price. However, due to the correlation above, poor

neighborhoods tend to be minority neighborhoods in Chicago (and in many other

places in the world), so I also observed the same distance decay effects with respect

to white (non-Latino) as I did with SES.

I identified a similar finding for UberX wait times as I did for TaskRabbit willing-

ness: in a version of my Chicago-only spatial Durbin model with SES replaced by the

percent of the population that is white (non-Latino), I saw a significant indirect effect

for percent white (non-Latino). If the area around a given tract changed from 0%

white (non-Latino) to 100% white (non-Latino), we would expect to see that tract’s
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UberX wait time decrease, on average, by 317 seconds (5 minutes and 17 seconds).

In other words, if an entirely non-white area in the city of Chicago were to see a com-

plete demographic shift towards being entirely white, my results suggest that tracts

in that area may see UberX wait times decrease drastically, making the UberX ser-

vice much more effective. This suggests that while individual non-white census tracts

surrounded by white neighbors should benefit from better UberX service, UberX is

less effective in regions of Chicago where there are large minority populations. Inter-

estingly, these results dovetail with very recent findings by Ge et al. [52] that suggest

that people with African American-sounding names wait longer for UberX service in

Seattle.

It is important to note that in the above results, the core geographic principles at

work are no different than is the case with SES, they are simply manifest in race and

ethnicity rather than SES. For instance, just as was the case for low-SES neighbor-

hoods, many minority neighborhoods also see reduced TaskRabbit effectiveness due

to the Big Sort and due to distance decay interacting with the Big Sort (with respect

to the location of TaskRabbit workers’ residences, which tend to be farther away from

large minority districts than from large white (non-Latino) districts). Similarly, the

Big Sort has the same effect on large minority neighborhoods in UberX as it does

on large low-SES neighborhoods. Indeed, as per the correlation mentioned above,

many minority neighborhoods and low-SES neighborhoods are one and the same and

thereby suffer from identical lower sharing economy effectiveness. More generally, a

sharing economy platform that does not serve low-income people will, in general, also

fail to serve non-white populations, at least in North America (a key concept in the

sociological theory of intersectionality [29]). Similarly, it is likely that investigating

sharing economy effectiveness across other demographic properties affected by the
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Big Sort (e.g. educational attainment, religion, age, political affiliations), this would

show similar findings.

However, regardless of the geographic mechanisms at work, just as was the case

for SES, the structural racial and ethnic biases in the sharing economy identified in

this section are quite important in their own right. Groups defined by race and/or

ethnicity are protected classes in the United States [27]. If these results are found

to generalize across other cities – with sharing economy systems working better in

white (non-Latino) neighborhoods than minority neighborhoods – this could become

an important data point in the ongoing debate about the sharing economy occurring

across the U.S. and around the world.

3.5.2 Additional Relevant Geographic Principles

In this chapter, I have discussed how four geographic principles (introduced in Chap-

ter 2) play a key role in the sharing economy and result in structured geographic

biases along SES lines (and those defined by race and ethnicity). However, these

four principles are almost certainly not the only aspects of human geography that

are important to consider when examining the sharing economy. For instance, two

human geography principles worthy of exploration are border effects and edge cities.

Border effects are a well-known human geography principle that describe what

occurs when two neighboring places that are on the opposite sides of an administrative

boundary have tremendously different circumstances with respect to a variable of

interest. My results suggest that as some municipalities like Austin, Texas begin

to place restrictions on sharing economy services (especially Uber and Lyft) [21,125],

border effects will become increasingly important in the sharing economy. Specifically,

I (unsurprisingly) found that a census tract’s wait times were highly dependent on
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neighboring tracts’ wait times. This means that adjoined municipalities will likely

suffer reduced sharing economy effectiveness when one municipality places restrictions

on sharing economy services. For instance, my results suggest that Austin’s suburbs

are going to be severely affected by Austin’s sharing economy-related decisions, even if

they have no say in these decisions. Examining the effect of differing sharing economy

regulations within the framework of border effects is an important direction of future

work.

My results also suggest that if and when the sharing economy becomes prominent

in suburbs, “edge cities” [50] will lead the way and become secondary sharing economy

hubs. An “edge city” is a concentration of work and leisure resources in a suburb that

has good vehicle accessibility with respect to the rest of the metropolitan area, usually

due to a nearby intersection of multiple freeways (e.g. a “ring road” and an intersecting

highway) [50]. Common examples include Tyson’s Corner, VA, Bloomington, MN,

and the Rosslyn-Ballston Corridor in the Washington, D.C. metro area. Edge cities

emerged in the second half of the twentieth century, becoming competitors with

central business districts for shopping, employment, and entertainment services. The

vehicle accessibility advantages that led to the agglomeration of traditional services

in edge cities should also apply to sharing economy services.

Namely, relative to other suburbs, edge cities will be significantly less affected

by the negatives associated with distant decay due to these accessibility advantages.

Moreover, in the ride-hailing space, there is reason to believe that the limited avail-

ability of mass transit options in edge cities makes them even more suited to the

sharing economy. Another more uncomfortable potential advantage for edge cities

in the sharing economy is that they and their surrounding residential areas tend

to be relatively high -SES and populated by non-minority racial and ethnic groups.
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Overall, given the numerous properties of edge cities that interact with properties of

the sharing economy, many branches of sharing economy research – e.g. work on im-

proving sharing economy effectiveness in new regions, work seeking to understand its

long-term impact on urban areas – should likely consider edge cities as in important

near-term direction of inquiry.

3.5.3 Implications for “Geosociotechnical” Design

As noted above, in almost every case, the structural geographic biases that are the

result of the four geographic principles are not destiny for the sharing economy: they

are the outcome of interactions between these principles and the “geosociotechnical”

design of existing sharing economy platforms. In other words, given the design choices

in these platforms and the inherently geographic nature of the sharing economy, it

is not a surprise that these principles manifest in the biases I observed. Indeed,

awareness of these principles led us towards my SES-related hypotheses.

Fortunately, the important role of geosociotechnical design in the structural biases

identified in this chapter means that there is an opportunity to address these biases

with design changes. In the remainder of this sub-section, I outline a number of

geosociotechnical improvements that could lead to the reduction of the SES, racial,

and ethnic biases I identified in the sharing economy.

Using Design to Improve the Geographic Distribution of crowd members

My results suggest that the Big Sort residential geography of sharing economy work-

ers – coupled with distance decay – is a primary causal factor behind the geographic

variation in the effectiveness of sharing economy systems that I observed. For in-

stance, in my TaskRabbit study, I found that workers were not willing to travel long
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distances for a task. This would not result in geographic disparities in the effective-

ness of TaskRabbit if TaskRabbit workers were evenly distributed across the Chicago

area. However, as noted above, TaskRabbit workers are heavily clustered in rela-

tively wealthy and dense parts of the region (as per Big Sort processes), leading to

higher prices and fewer jobs accepted in other types of areas. One might call these

‘(commercial) sharing economy deserts’ as an analogy to ‘food deserts’ [17], which

tend to occur in similar types of areas. Along the same lines, with respect to UberX,

Dillahunt and Malone [33] found that few participants in a workshop on the sharing

economy for job-seekers were even aware of sharing economy services.

These results suggest that recruiting new sharing economy workers in areas that

suffer from the wrong end of the structural biases I identified would go a long way

to eliminating these biases. For instance, it is likely that a relatively small number

of TaskRabbit crowd members who live on the South Side of Chicago could have

substantially diminished any price and willingness disadvantages in these areas. With

respect to Dillahunt and Malone’s findings, the same may be true for UberX wait

times. Moreover, service quality improvements in disadvantaged areas could lead to

a larger (and more diverse) customer base, increasing the incentive to recruit more

workers from disadvantaged areas.

The question then becomes: how can sharing economy platforms do such re-

cruitment? Making different design choices can likely contribute to the answer. For

instance, TaskRabbit requires that workers have a bank account to participate on

their platform, with low-income and minority neighborhoods having a much greater

percentage of the population that is “unbanked” [156], inherently reducing the po-

tential working population in these places. UberX additionally requires workers to

own a car and have active insurance, among other requirements , which likely has a
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similar effect (Dillahunt and Malone [33] found that two-thirds of people in a sharing

economy workshop for disadvantaged communities did not have a car that met Lyft’s

requirements). Other worker restrictions may also play a role: both TaskRabbit and

UberX require that workers pass a background check, and it is unclear if minor prior

offenses would result in rejection (e.g. a minor drug possession arrest). Low-income

neighborhoods have a higher rate of these minor offenses [67].

Some sharing economy platforms have begun to make design changes in this di-

rection. For instance, recent efforts by Uber to provide banking services to its drivers

[94] and to make obtaining car leases easier for potential drivers [171] could poten-

tially address some of the problems that I identified in this chapter. Of course, these

initiatives could also lead to new problems, including the serious risk of exacerbating

debt-related challenges in disadvantaged areas, and these leases have been accused of

being predatory [123]. My results suggest that research into these and other mech-

anisms for increasing worker participation rates in ‘sharing economy deserts’ should

be a top priority for future work.

Addressing Workers’ Mental Maps

My TaskRabbit results showed that comfort levels in workers’ mental maps played a

key role in their willingness to accept tasks and specifically made them less likely to

accept tasks in wide swaths of southern and western Chicago. A similar finding was

identified by Lee et al. [97], who found that UberX drivers turned off their availabil-

ity when they were in neighborhoods they perceived as undesirable. In both cases,

workers cited perceptions of crime as the reasons for their discomfort in certain areas.

The mental maps literature, however, suggests that in many cases perception does

not match reality. For instance, Matei et al. [109] showed that comfort levels associ-
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ated with regions in the Los Angeles metropolitan area were effectively uncorrelated

with crime levels. Additionally, as noted above, our mental maps generally struggle

to incorporate sufficient detail to be able distinguish pockets of low-crime areas in

unfamiliar high-crime districts.

The gap between perception and reality in mental maps presents a potentially

powerful opportunity for geosociotechnical design. One straightforward design im-

provement would be to provide workers with geographically-linked crime statistics in

an easily-digestible format that would allow for design-making on-the-fly. In most

areas, crime statistics are public information and could be surfaced via a map in an

app for crowd members quite easily. A more interesting and likely more useful ap-

proach would be to provide this information in the context of a given task, e.g. when

a TaskRabbit worker is deciding whether to accept a task or when an UberX driver

is driving through a specific neighborhood. This information could take the form

of basic crime statistics or, matching the norms of the sharing economy, could be

reported as a “geographic reputation score”. This score could take into account both

public crime information as well as geographically-linked incident reports privately

held by a sharing economy platform. Based on the work of Matei et al., it is likely

that many areas that currently are associated with high discomfort would have high

geographic reputation scores (and perhaps vice versa). If this information were made

available to workers, it could address some of the TaskRabbit willingness and UberX

wait time bias that I observed in this study .

A Role for “Sociotechnical Auditing”

My results add to evidence that auditing has an important role to play in protecting

the sharing economy from bias, just as has been argued in more explicitly algo-
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rithmic domains (e.g. [85]) and for other sociotechnical platforms (e.g. [3,146]).

Fortunately, the geographic techniques I developed and adopted here – especially my

spatial Durbin modeling approach – can provide a useful lens in this process. The

relative geographic effectiveness of sharing economy platforms in a given adminis-

trative district likely would be a valuable data point for the many sharing economy

debates that are occurring around the world. My experiments outlined above should

be replicable in most (if not all) areas in which TaskRabbit and UberX are active,

and my techniques should relatively easily generalize to similar platforms (e.g. Lyft).

To make repeating my work in other areas as straightforward as possible, I am

releasing my UberX data collection and spatial Durbin statistical framework under an

MIT license . This package should allow someone with technical training to quickly

repeat my UberX experiment in their area with relatively little effort. Moreover,

it should be relatively straightforward to adapt my code to other outcome metrics

besides wait time and to other similar sharing economy platforms.

Additionally, my approach here has been to examine system-wide effects, but

the auditing of the sharing economy should also likely occur at the worker-specific

level. By examining the geographic history of a given worker, it should be possible to

determine if that person is exerting implicit or explicit bias in their pricing and will-

ingness decisions. If the worker has a long enough history with a platform, techniques

similar to those I described above can be employed (e.g. adapting wait times to job

history-specific attributes). In more traditional workplaces, “substantive oversight of

decision making” is one facet of minimizing workplace gender and racial bias [13],

and it is intuitive that the sharing economy could learn from this body of literature.

Correcting for implicit bias may sometimes be as simple as making decisions more

legible, e.g. “98% of your completed jobs have been in areas that are at least 95%
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white (non-Latino)”.

Lastly, while the term “algorithmic auditing” has been adopted for doing this type

of auditing work in a technological context, this term is not ideal for the sharing econ-

omy. Algorithms play a role – especially in the case of UberX – but sharing economy

platforms are sociotechnical, not just technical. As we have seen, it is human biases

– in the form of the Big Sort, mental maps, etc. – that are the drivers of many of the

structural geographic disadvantages that we observed in this study. As such, auditing

in the sharing economy is “sociotechnical” auditing (and even perhaps “geosociotech-

nical auditing”) and needs to adopt approaches from both the algorithmic auditing

literature and the large literature on detecting bias in human decision-making, e.g. the

implicit bias reduction technique mentioned immediately above.

Task-specific vs. Global Pricing

My results above suggest that UberX’s decision to fix prices globally as a function of

distance may have reduced pricing-related bias in its platform relative to TaskRabbit,

which at the time of my analysis allowed for per-task pricing. Namely, whereas in

TaskRabbit both price and willingness were entirely dependent on human decision-

making processes that are subject to bias, in UberX, this is only true of willingness

(manifest in wait times). TaskRabbit’s pricing model has changed since my study

and now more closely aligns with that of UberX. Specifically, in most cases, workers

now define hourly wages for categories of tasks, and are algorithmically presented to

task requesters. As such, it is likely that the price-related biases I identified above

are either reduced or manifest differently in the design of the TaskRabbit platform

that is current as of this writing (like many sharing economy platforms, TaskRabbit

is frequently changing its pricing structure).
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However, basic economics tells us that price and willingness are not independent,

and the relationship between the two was specifically addressed by a number of my

TaskRabbit participants above. Specifically, when price controls are employed, short-

ages can emerge [161]. As such, if a sharing economy platform uses fixed pricing, and

these prices are set too low for tasks in a specific area for whatever reason (e.g. dis-

tance, mental maps), willingness will likely drop in this area. This could, indeed,

be a factor behind some of the relatively large wait time effect sizes observed in my

UberX models. Better understanding the relationship between price and willingness

in the context of the geosociotechnical design of pricing models is an important area

of future work. Reimagining my work under a variety of different pricing models

would be a good place to start.

3.5.4 Other Areas of Future Work

Gender and the Sharing Economy

One critical area of future work highlighted by this research is further examination of

the relationship between gender and the sharing economy. I found in the TaskRabbit

research that women were significantly less likely to be willing to do a task than

men (willingness rates were about 20% lower). While I hypothesized that the effects

associated with discomfort and mental maps may be exacerbated for women, resulting

in the 20% difference, future studies will be necessary to (1) confirm this difference in

other sharing economy contexts and (2) isolate its cause. The import of investigating

these two points cannot be understated: if willingness is lower for women, it could

have important effects on women’s ability to earn comparable amounts as men in

the sharing economy: with less competition in areas perceived to be unsafe, men
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could charge higher rates. There have also recently been high-profile developments

associated with the relationship between gender and the sharing economy that are

worth studying and that may provide key sources of qualitative and quantitative data

with regard to these issues, e.g. a ride-sharing service designed explicitly to serve the

safety needs for women passengers by specifically hiring women drivers [43].

Temporal Bias in Access to Sharing Economy Services

In my UberX analyses, I observed that UberX was launched in a higher SES portion

of the Chicago region before it became available to the metropolitan area more widely.

This is a pattern we see at a more global geographic scale as well, with many sharing

economy platforms launching first in relatively high-SES, high-density metropolitan

areas (e.g. San Francisco, New York) before their developers open them up to other

metropolitan areas.

Relative to some of the other challenges associated with the sharing economy

identified in this chapter, this ‘temporal bias’ is likely less significant, assuming wide

launches eventually occur. However, one concern I have is that this temporal pattern

may lead to higher SES individuals gaining first mover advantages both as consumers

and crowd members, e.g. with regard to reputation scores. Better understanding the

launch patterns of sharing economy platforms (and other geographic technologies,

more generally) and their possible follow-on effects could be a valuable direction of

future work.

Putting Sharing Economy Bias into Context

This chapter is interested in understanding the relative effectiveness of the sharing

economy in different areas and the geographic mechanisms behind this variation, not
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in comparing the effectiveness of sharing economy platforms with their traditional

economy equivalents. It may be, for instance, that UberX has significantly lower

wait times than traditional cab companies in all areas of Chicago, regardless of the

demographic makeup of a neighborhood. Similarly, TaskRabbit may open up new

opportunities for acquiring low-cost paid help in small low-SES areas near high-SES

regions.

Given that it is widely believed that sharing economy services will substantially

displace their traditional economy equivalents in the near- and mid-term future

[12,115], understanding the geographic variation in the effectiveness of these ser-

vices is critical. However, many sharing economy-related debates have been framed

as a comparison with traditional economy competitors. As such, it is important that

future work provide much-needed robust data points with respect to this comparison.

The methodological frameworks I developed above can be used for studies of this type.

For instance, one could adopt my TaskRabbit experiment to collect data from taxi

drivers. Similarly, my spatial Durbin modeling approach could be used with large-

scale trip data collected by taxi companies and obtained by municipal governments

[102]. Indeed, I have completed early work comparing UberX to New York City’s

green and yellow cabs. This research suggests that UberX provides better service to

areas with large minority populations compared yellow cabs. However, green cabs,

which serve outer boroughs, significantly outperform UberX in this respect.

Of the comparisons between sharing and traditional economy services that have

been made [7,103,143], one important factor has tended to be excluded: the informal

economy services that often arise to address limitations in traditional economy ser-

vices (e.g. [95,142,158]). For instance, ‘vernacular cabs’ [158] – ride-hailing services

that are informally organized and have “fares based on negotiations or ‘gentlemen’s
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agreements’ ” – have existed in many low-income areas in the United States for years

[158]. In many ways, vernacular cabs (and related systems like sluglines [110]) can be

considered “peer-to-peer UberX” and their relationship to (digital) sharing economy

services and traditional economy services should be a consideration in any compara-

tive analysis of the sharing and traditional economies.

Vernacular cabs also present several intriguing possibilities for sharing economy

researchers and practitioners. Can we develop technologies to support these networks

in addition to (or instead of) attempting to adapt centrally-run commercial sharing

economy platforms to be more effective in low-SES areas? What would be the effect

of having separate platforms for low-SES and high-SES areas? Would a peer-to-peer

model work well in high-SES areas? Given the limited amount of information about

vernacular cabs, likely the first step in this research direction is formative qualitative

work on vernacular cab networks with an eye towards implications for design.

3.6 Conclusion

In this chapter, I have demonstrated how four geographic principles – the “Big Sort”,

variation in population density, distance decay, and mental maps – result in structural

geographic biases in the effectiveness of the sharing economy. These biases lead

sharing economy services to be both more expensive and less available in low-SES

areas and suburban areas than in high-SES and high-density urban areas. Moreover,

SES and race/ethnicity are often strongly correlated in many parts of the world, and

I observed that, at least in the city of Chicago itself, areas in which the population

is more white (non-Latino) have better access to sharing economy services.

Overall, this chapter provides evidence that (1) in the sharing economy, geog-
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raphy matters, and geographic principles should be strongly considered in examina-

tions of the sharing economy and (2) one way in which the importance of geography

manifests is that key geographic principles interact with common design decisions

in sharing economy platforms to create important biases in the effectiveness of the

sharing economy. As discussed above, engaging with both of these takeaways can

lead to ‘geosociotechnical’ design improvements in sharing economy platforms that

reduce these biases, among other benefits.
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Chapter 4

Geographic Behavior as Spatial Interaction: A

System-Level View

One of the key findings from the previous chapter found was that distance plays an

important role in where sharing economy crowd members are willing to provide service

(e.g. perform TaskRabbit tasks, or pick up rides). Put another way, crowd members

in the sharing economy incorporate the distance to the task in their decision-making.

Based on what is known about distance decay, this finding is intuitive. After all, a

TaskRabbit crowd worker cannot help build IKEA furniture without being ‘local’ to

where the furniture is.

Similarly, VGI content production has also been broadly assumed to be local.

That is, despite not needing to travel to e.g. edit geotagged Wikipedia articles, the

assumption is that people contribute information nearby. This idea was so funda-

mental to Goodchild’s [58] initial conception of VGI that he suggested that “the most

important value of VGI may lie in what it can tell about local activities in various

geographic locations”. Goodchild’s intuition is logical. It is probably easier to con-

tribute nearby, both because of proximity and because someone is more likely to be

knowledgeable about their home area.

However, as I discussed in detail in [Chapter #sec:chptrw], recent work suggests

that this ‘localness assumption’ [82] is largely untrue for peer-produced VGI. While
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the localness assumption postulates that people make all of their VGI contributions

nearby, these findings in from prior work suggest that there is a lot more variabil-

ity in people’s local contribution behavior. This tension between common localness

assumptions and the reality of peer-produced VGI – as well as how this variability

influences our understanding of VGI content and VGI production behavior – calls for

an alternative model of how VGI is produced.

In this study, I propose and evaluate such an alternative model. My approach

is based on ‘spatial interaction models’, long used as a means of understanding geo-

graphic interaction patterns in the social sciences. I compare these models against two

baselines that evaluate opposing perspectives on VGI production. The first (my local

production baseline) directly models the localness assumption, i.e. that where people

contribute is decided by distance alone. The second (my distance is dead baseline)

represents the complete inverse of the localness assumption, i.e. that people merely

contribute based on the attractiveness of the contribution location, and distance has

absolutely no effect. Conceptually, gravity models merge the ideas of both these

two baselines – distance impacts where contributions occur, but attractiveness of the

location also informs where contributions occur, and may counteract the effect of dis-

tance. As a fundamental part of this evaluation, I follow recent calls to increase the

ecological validity of social computing research by moving beyond single-community

analyses to studies that simultaneously consider multiple communities (e.g. [5,93]).

Specifically, I look at three different VGI platforms: Wikipedia, OpenStreetMap, and

eBird.

My gravity models yield an important theoretical insight: I find that spatial

interaction models perform meaningfully better than either baseline and describe

more than 90% of the ‘VGI flows’ from one region to another in some cases. I see
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strong performance of these models across hundreds of different types of content from

my three peer-produced VGI platforms. My results show a large degree of variation in

how local content is, and suggest that distance does play a role – people’s contribution

rates decrease as the places they contribute about get further away. However, the

effect of distance clearly varies between different content types, and some are much

more local than others.

My results also have implications for multiple types of VGI stakeholders and

suggest important areas of future work. In particular, I discuss how my findings

problematize some approaches to VGI “editathons”, might suggest mechanisms for

understanding demographically-linked coverage biases in VGI, and help to define

where local perspectives may be present in VGI and where they may be absent.

4.1 Related Work

Beyond two of the topics discussed in [Chapter #sec:chptrw] – localness in VGI, and

geographic variations by socioeconomic status and population density – my research

here is also informed by applications of gravity models in the social sciences and the

various ways VGI content is used. Below, I describe these two latter areas and how

they informed my work.

4.1.1 Spatial Interaction Models in the Social Sciences

Modeling spatial interactions between regions has a long history in the social sci-

ences, particularly in the field known as economic geography. Gravity models, which

date back to 1948 [141], are the most common approach. Gravity models aim to

capture the interaction between two regions based on the ‘gravitational’ pull of each
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region and the friction of distance between the two regions. In the almost 70 years

of their existence, gravity models have been used to effectively model a wide variety

of spatial phenomena, primarily in two domains: (1) transportation of goods and

people (e.g. international wheat transactions [88], inter-state gun trades [84], inter-

national meat trades [89]) and (2) communication patterns (e.g. inter-city [90] and

international phone calls [36]).

My research is directly motivated by the effectiveness of gravity models in explain-

ing these phenomena. As I describe below, I hypothesized that a contribution to one

region by a VGI contributor based in another region could be modeled similarly to a

product (e.g. meat, wheat) being exported from one region and imported to another.

In other words, even with the complex dynamics associated knowledge production

in online communities, I believed the spatial dynamics of VGI contribution can be

thought of as transfers of units of information from one region to another. My results

indicate that this hypothesis was supported.

Beyond the critical implicit value of better understanding VGI production pro-

cesses, my work also highlights that gravity models may be useful in computing

domains further afield from their typical applications in transportation and com-

munication. In this case, I identify that gravity models are surprisingly effective at

capturing a knowledge production relationship between a person and a place as medi-

ated by complex online community dynamics. I return to this point in the Discussion

section.

4.1.2 Applications of VGI Stakeholders

There are three main types of applications of VGI: (1) direct consumption by read-

ers/users, (2) scientific studies, and (3) intelligent technologies and other systems.
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The success of these applications tends to be closely tied to the coverage and quality

of their underlying VGI datasets. This raises the stakes of the applied implications

of my work, in which I help to explain geographic variation in VGI coverage and

quality.

With regard to direct consumption, geotagged articles are some of the most per-

sistently popular articles on Wikipedia [72] and OpenStreetMap powers many promi-

nent mobile maps applications like Apple Maps [80]. In this case, VGI coverage and

quality have a direct impact and one that is highly visible to the public. Scientific

applications of VGI that rely on the coverage and quality of VGI include the effects

of tourism on water quality [86], detecting the epicenter of earthquakes [145], and

others discussed in more detail by Venerandi et al. [166] and Wood et al. [172].

VGI has also become a key input to many intelligent technologies, like geolocation

inference techniques (e.g. [26,83]), among many others [25,47]. Indeed, geolocation

inference (e.g. of users and documents), is a domain in which coverage and quality

has verified importance [81]. Further still, there is some evidence [75] that VGI can

impact economic growth.

4.2 Methods

4.2.1 Datasets

One of the key findings in previous work is that the spatial interaction dynamics in

VGI may differ based on the community (e.g. OSM vs. Wikipedia, [69,122]). There-

fore, to more robustly evaluate spatial interaction dynamics in VGI production, I

examined three VGI platforms: Wikipedia, OpenStreetMap, and eBird.

Further, contribution in each of these communities is a heterogeneous process; that
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is, some types of content in a given community may support different types of spatial

interaction behavior than other types of content. For example, editing Wikipedia

articles about national parks (which are globally known) may have a different spatial

interaction profile than editing Wikipedia articles about elementary schools (for which

information is more locally concentrated). A similar dynamic may exist in OSM with

respect to, for example, encoding state borders versus tracing and labeling (“tagging”)

specific buildings.

Therefore, within each of my three platforms, I systematically examine contribu-

tions at the level of the content type. I analyze the effect of spatial interaction for

each content type individually, as well as at the overall platform level. Example con-

tent types include articles about schools for Wikipedia (as defined by WikiProjects),

residential buildings for OSM (as defined by tags), and bald eagles (Haliaeetus leu-

cocephalus) for eBird (as defined by species). In total, we have 561 different content

types, with 101 content types in Wikipedia, 192 content types in OpenStreetMap,

and 268 content types in eBird.

As is common in VGI research (e.g. [81,99,116,137]), I focus on data from a

single study area: the continental United States. I explore how my research can be

expanded to other study areas in my discussion of future work below.

I next describe in more detail the datasets I developed for each of my three VGI

platforms.

Wikipedia

My Wikipedia dataset focused on contributions to geotagged Wikipedia articles. A

contribution can be anything from creating new article text to fixing a typo. I queried

the English Wikipedia public database for all contributions by registered users to geo-
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tagged articles that were saved in the year between Oct 2015 and Oct 2016 (resulting

in 3.5 million edits). I then limited the data to articles located within the continental

United States, leaving 644,480 total contributions.

For each edit, I used its associated WikiProject as the content type (approxi-

mately 4% of the contributions had no WikiProject assigned and were excluded). A

WikiProject is a self-organized group of people working to improve Wikipedia content

on a certain topic. For instance, WikiProject Schools is a group of contributors who

work to curate school-related content in Wikipedia. Each content type served as an

independent dataset in my analyses. I excluded the smallest WikiProjects (with fewer

than 1,000 contributions) in order to ensure sufficient data to fit a model, resulting

in 101 Wikipedia content types.

OpenStreetMap

MyOpenStreetMap dataset focused on node (point) contributions. An OpenStreetMap

node may be a tree, a traffic circle, or a label point for a building. Entities like build-

ings or roads are normally represented by ‘ways’, logical groups of nodes. However,

attributes of the way (e.g. height of the building) are not associated with individual

nodes, and therefore they would not be included in my dataset. I used the full history

of OpenStreetMap nodes in the continental USA through February 2014. I excluded

nodes that did not have one of the 1,000 most-popular tags (e.g. to eschew typos).

From this set of nodes, I than randomly sampled 2,000,000 nodes for analysis.

I used the tags of a node to define its content type(s). A tag consists of a key-value

pair, with only one value allowed per key. For example, a ‘natural=tree’ tag on a

node denotes that this node represents a tree and ‘junction=roundabout’ denotes a

traffic circle node. As such, all tree contributions were defined as one content type, all
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traffic circles as another, and so on. As noted above, I excluded the smallest content

types (with fewer than 1,000 contributions) in order to successfully fit my models,

resulting in 192 total OSM content types.

eBird

eBird is an observational citizen science project in which a contribution is a bird

sighting. As opposed to Wikipedia and OSM, in which one does not need to be

physically present in order to contribute, eBird contributors need to be at or near the

location of their contributions. This geographic proximity requirement makes eBird

an interesting comparison point to Wikipedia and OpenStreetMap. As is shown in

the Results section, this comparison point will prove to be a valuable reference for

understanding contributions in OSM and Wikipedia.

To gather an eBird dataset, I began with the full history of eBird observations

through April 2015. I then randomly sampled 2,000,000 observations from this data

set, and again limited this data to the continental United States, resulting in 1,573,798

total observations. To understand spatial interaction by content type, I defined con-

tent type by sightings of a particular bird species. Again, I excluded the smallest

species (with fewer than 1,000 observations) to ensure successful model fitting, re-

sulting in 268 eBird content types.

4.2.2 Defining The Geographic Origin of Contributions

Prior to modeling spatial interaction processes in peer-produced VGI, I first had to

verify my three datasets actually are largely non-local. To do so, I needed to define

two properties for each contribution: (1) the local (home) region of its contributor (i)

and (2) the region in which the contribution was made (j). I also had to determine
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the spatial scale at which a region would be defined. For this, I used the scale of U.S.

counties, a common choice in VGI analyses [80].

Determining the county where a contribution is made (j) is straightforward: I use

the geotag attached to each contribution and perform a reverse geocoding operation.

Determining the home region of a contributor (i), on the other hand, is significantly

more complex. Unlike social media user profiles, contributors to my VGI repositories

have no widely-used means by which they state their home location. Although some

contributors do so voluntarily in venues like Wikipedia user pages, participation is low

and available only in certain repositories. Similarly, prior work has used IP address

geolocation [66,69] when studying Wikipedia, but contributor IP is not available

in all of my repositories (and would likely suffer accuracy problems at the county

scale [131]). Moreover, even within Wikipedia, IP addresses are only available for

anonymous editors [150].

As such, it was necessary to do home location inference to determine the county i

of each contribution. Fortunately, this is common, and numerous solutions exist [82].

I adopted the home location inference technique known as plurality, which defines a

contributor’s home region (county) as the region (county) in which s/he has made

the plurality of their contributions; this technique has been used in a number of VGI

and VGI-related studies (e.g. [70,82,120]). I excluded contributors with fewer than 5

contributions, in order to be confident in the inferred county. Following recent calls for

researchers to validate home location results across multiple inference techniques [82],

I also calculated the home location of each contributor using the geographic median

approach [26,82,83]. I found that well over 90% of identified home counties were

identical across the two approaches, giving us high confidence that both approaches

would lead to very similar results in a spatial interaction model. Therefore, I used
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the plurality approach in my analysis.

To verify that my datasets violate the assumption of being local, I examined the

percentage of contributions in which the contributor’s home county i is not equal to

the contribution county j. The results of this simple analysis made clear that the large

degree of non-local contributions identified in prior work is replicated in my datasets:

only 26% of Wikipedia contributions, 23% of OSM contributions, and 57% of eBird

contributions occurred in the plurality-defined home county of their contributor.

These findings justified my further exploration of spatial interaction as an alter-

native model of VGI production. Below, I describe how I performed these analyses

using gravity models.

4.3 Gravity Modeling

4.3.1 Intuition

Spatial interaction models seek to explain the relationship between two locations (i

and j) using the distance between them and their individual attributes. More formally,

they ask the following: how does location i interact with location j, based on the

attributes of i, the attributes of j, and the distance between i and j? Gravity models

specifically assume that these relationships can be modeled through an analogy to

the basic formula for gravity in the physical world [155]:

Fij =
Mi Mj

D2
ij

When considering the physical gravitational pull two objects have on one another,

the mass of each object describes their attraction to one another, which is moderated

by the distance between them. The gravity model takes this intuition, and applies it
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to interaction between two regions (i, and j) across space. The amount of interaction

– the dependent variable – is commonly represented as Fij (or ‘flow between regions’).

The ‘mass’ variables (Mi for region i, and Mj for region j) are typically the population

of the area, GDP of the area, or other ‘attraction’ attributes (e.g. [16,84,88,89]).

Because gravity models are intended to help understand interaction, it is critical

that the mass variables incorporate both potential outflow (leaving i) and potential

inflow (entering j). For instance, using GDP for both mass variables (Mi and Mj)

is common for physical processes like international meat trading [89], because it

accounts for both exports (potential outflow from i) and imports (potential inflow

to j). The final variable in a gravity model, distance (Dij), is often operationalized

as geodesic (straight-line) distance between two regions.

Airline travel is a common intuitive example for understanding how these variables

relate to one another. Consider the case of three cities: New York City, Los Angeles,

and Bangor, Maine (a city of about 33,000 residents), with the mass variables set

to the population of each city. In this case, population operationalizes both the

potential outflow from a city and the potential inflow to a city (more people usually

means more business and personal travel, etc.). New York City and Los Angeles are

on opposite coasts of the United States, and thus have a large Dij. However, many

people fly back and forth between New York City and Los Angeles due to the large

‘attraction’ (i.e. large product of masses) between the two cities, which overcomes the

large distance (large Dij). On the other hand, despite the much smaller Dij between

Bangor and New York City, the tiny mass of Bangor counteracts the shorter distance,

and many fewer people fly between Bangor and New York City.
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4.3.2 Applying Gravity Models to My Datasets

In the traditional formulation of the gravity model (above) the friction of distance is

defined as -2, and the weights of Mi and Mj are held constant, predefining the degree

to which they affected Fij. Because of this, the traditional form was generalized and

transformed to a log-linear OLS model (below) [44]. The friction of distance was no

longer held constant (at -2) , and Mi, Mj, and Dij all became independent variables,

predicting the dependent variable Fij.

Fij =
Mβ1

i  Mβ2
j

Dβ3
ij

ln(Fij) = β0 + β1 lnMi + β2 lnMj − β3 lnDij

This straightforward approach, however, causes problems when the variables con-

tain zeroes. After all, the natural log of zero is undefined. Further, the common

practice of adding a small constant (such that there are no zeroes) produces biased

estimates [44]. To address this problem, I employ one of the most common solutions

(recommended by [44]): fitting a Poisson linear regression, which does not risk biased

estimates in the scenario mentioned above. It is common to take the natural log of

all independent variables, so I use this strategy in my models [44].

The first step in operationalizing gravity models is defining i and j. I use the

same definitions as before: i is the ‘home’ region of a contributor, and j is the region

in which a contribution is made. Every inter-county interaction is thus modeled as

someone based in county i contributing information about county j, aggregated over

all contributions in a content type. In other words, if i = Wayne County, Michigan

and j = Baltimore County, Maryland, the goal of the models is to accurately predict
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the number of contributions about places in Baltimore County made by people whose

home county is Wayne County (Fij). To make these predictions, I define Mi to be the

number of contributors from county i (e.g., Wayne County) that make contributions

elsewhere (potential outflow), andMj to be the number of contributors from anywhere

that make contributions (potential inflow) into county j, (e.g. Baltimore County. I

follow common practice, and consider Dij to be the geodesic distance between i and

j. I make these predictions separately for each content type in each repository. In

other words, I run a separate gravity model for each of my 561 (101 Wikipedia + 192

OSM + 268 eBird) content types.

Traditionally, predictions for intra-regional flow are excluded when constructing

gravity models, for two primary reasons. First, intra-regional flows are not intuitive

for many physical processes, e.g., we don’t speak of a country trading wheat with

itself. Second, it is not intuitive what the distance from a region to itself ought to

be, and using zero can be problematic for reasons mentioned above.

However, for my purposes, these reasons do not hold. First, in my data, non-trivial

quantities of VGI content is locally produced (intra-regional) – as much as 43% in the

case of eBird. Second, because I follow more recent common practice and implement

my gravity models as Poisson regressions, defining a small intra-regional distance

will not cause biased estimates. Therefore, I adopt two approaches for intra-regional

distances defined in the literature [55,64]:

• constant 1 km for every region, and

• 1
2
 
√
regionalArea.

Below, I compare results from these approaches, which I term constant-distance

and regional-distance, respectively. I evaluate both options in any models that include
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distance as a variable – my baselines, and my gravity models.

Because I build so many models, statistical intuition suggests that a small portion

of any significant results would be due to chance. However, as I will see below,

my overall results are sufficiently widespread that they are quite robust against the

occasional Type I error.

4.3.3 Contextualizing Gravity Models

To provide context for my evaluation of how well gravity models describe VGI pro-

duction, I also construct two baselines against which to compare my gravity models.

To make sure my baselines and my gravity models are comparable, I construct both

baseline approaches with a Poisson regression. As I do in my gravity models, I ensure

that all variables I include in these models are log-scaled.

My first baseline is a set of distance is dead models. This represents an alternative

interpretation of VGI production, and postulates that the distance between i and j

is irrelevant. This model seeks to predict Fij with only Mi and Mj as independent

variables, for each content type. If indeed these models perform better than my

gravity models, it will indicate that distance is unimportant in VGI production.

Second is my local production baseline, which is composed of two different sets of

models, one for each approach to intra-regional distances I discuss above. This base-

line represents a second alternative interpretation of VGI production, that Goodchild

is correct and contributions only happen nearby. More formally, this baseline postu-

lates that distance between i and j is the only meaningful factor in why contributions

flow between i and j. This model seeks to predict Fij using only Dij as an indepen-

dent variable, for each content type. If these models perform better than my gravity

models, it will indicate that attributes of i and j have no bearing on VGI production.
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To properly evaluate if gravity models are even effective at characterizing VGI

production, and because the literature suggests two alternatives for incorporating

intra-zonal predictions into gravity models, I construct five separate models, across

hundreds of different content types. Specifically, I construct one distance is dead

baseline, two instances of my local production baselines, and two instances of gravity

models. I then compare all five, and evaluate which are most successful at describing

peer-produced VGI.

4.4 Summary of Methods

To summarize: - Mi is the number of contributors from county i, Mj is the number of

contributors who contribute in county j, and Dij is geodesic distance between i and j.

- I construct all models as Poisson regressions, following the recommendations of 9.

- Because some VGI contributions occur in the same county where their contributor

lives, I evaluate two approaches for defining Dij when i and j are the same county: 1

km, and 1
2
 
√
regional_area. This is true for both my local production baseline, and

my gravity models. - I construct five different models for each of the 561 different

types of content.

4.5 Results

I now turn to results, first evaluating if my gravity models are even a reasonable ap-

proach to understanding VGI production, and then engaging in a deeper exploration

into the effect of distance in spatial interaction models.
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Figure 4.1: On the x-axis, each plot shows the model fit (pseudo-R2). The y-axis shows
each of the five models I are evaluating. Each distribution excludes outliers. The top three
are baseline models, and the bottom two are gravity models.

4.5.1 Evaluating Model Fit

Informed by their long history and theoretical underpinnings, I believed that gravity

models would likely be effective descriptors of VGI production, though this was by

no means guaranteed. Therefore, my first task was to evaluate this conjecture. I did

so by comparing the pseudo-R2 values from each content type, across my two local

production baselines, my distance is dead baseline, and both instances of my gravity

models.

Figure 4.1 shows the distributions of pseudo-R2 values along the x-axis (as mea-

sured by the pseudo-R2 metric suggested in [28]). The y-axis lists each of my five

models, and each chart indicates a different platform. The top three models are

baselines, and the bottom two show my two different instantiations of gravity models

.

To evaluate differences between distributions, I use a notched boxplot. When

the notches do not overlap, the differences can be considered statistically significant

[111]. However, because I are testing the significance of differences between groups

92



of model output, the distributional assumptions are unclear and significance should

be interpreted with some caution. Effect sizes, on the other hand, do not have this

issue.

Figure 4.1 shows that all eight gravity models perform better than the distance

is dead or local production baselines (seven of them significantly so). Examining the

medians of each distribution, the general trend is clear: spatial interaction models are

very successful at describing VGI contributions with median pseudo-R2s as high as

0.99 in some cases. eBird has the lowest median pseudo-R2s, at 0.74 and 0.72 for the

constant-distance gravity models and regional-distance gravity models respectively.

Wikipedia content types show better fits than eBird content types, with median

pseudo-R2s of 0.82 and 0.1 for the constant-distance and regional-distance gravity

models. OpenStreetMap content types tend to show the highest median pseudo-R2s,

at 0.99 and 0.98 (for constant-distance and regional-distance, respectively).

Focusing on the baseline model distributions in more detail, I noticed some striking

differences between platforms. In eBird, a platform where contributors must travel

to make contributions, the distance is dead and local production baselines tend to be

much more similar in terms of model fit. This is in contrast to OpenStreetMap and

Wikipedia, where the distance is dead models fit substantially better than the local

production models.

Comparing the pseudo-R2s of the baselines to those of the gravity models provides

additional insight into how the mass and distance affect the model fit of my gravity

models. My gravity models fit quite well, and in OpenStreetMap and Wikipedia, the

distance is dead baseline models also fit quite well. This suggests that in the ‘wiki’

platforms (Wikipedia and OpenStreetMap) where “armchair editing” is possible, the

mass variables drive a substantial portion of the gravity model fit. Put another
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way: in OpenStreetMap and Wikipedia, the content type and its attraction dynamics

between regions matters much more than geographic distance for how contributions

flow between regions. However, in eBird both distance and content type matter for

where people contribute. Someone may contribute to Wikipedia about golf courses

in Florida, regardless of where they live. Conversely, but while some bird species may

be more interesting, any bird-sighting still requires travel in order to contribute.

The high-level conclusions of my results at this stage are clear. First, distance is

a substantial factor in how well gravity models perform in systems like eBird, where

contributions are inherently a physical process. Second, even in OpenStreetMap and

Wikipedia – where contribution is not an obviously physical process – most of my

gravity models still have more explanatory power than my distance is dead baselines.

Further still, while the distance is dead baseline indicates that the mass variables play

a substantial role in model fit for OpenStreetMap and Wikipedia, the addition of a

distance variable does improve model performance. This means in spite of fact that a

contributor does not need to move at all to edit Wikipedia or OpenStreetMap, there

is a degree to which contributions in these platforms are impacted by how far away

they are from a contributor. Holistically, these findings suggest that VGI production

in these platforms indeed can be understood as a gravity model spatial interaction

process.

4.5.2 Interpreting My Models

My results in the previous subsection indicate that my gravity models perform better

than my baselines , and effectively explain a large portion of the spatial contribution

decisions of VGI contributors. Therefore, I now limit my discussion of results to

my gravity models. While I present both my constant-distance and regional-distance
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Figure 4.2: These plots show my friction coefficients for each platform. On the left are my
constant-distance models, and the right shows my regional-distance models. Both exclude
outliers.

models, I will focus this discussion of results around constant-distance gravity mod-

els, because all three perform significantly better than the distance is dead baseline

(whereas only two regional-distance models outperform the distance is dead baseline).

I exclude 22 types of content with variables that are not significant (predominantly

from OSM), to ensure all distributions are comparable.

I focus specifically on the Dij (friction) coefficient , in order to shed light on the

degree to which contributions are likely to be local. Recall that the more negative a

friction coefficient is (further left in Figure 4.2), the stronger friction effect exists.

Figure 4.2 shows the distributions of my Dij coefficients. On the left are the

coefficients from my constant-distance instance of a gravity model, and on the right

are the coefficients from my regional-distance models. Each boxplot represents a

different platform. eBird is on top, OpenStreetMap is in the middle, and Wikipedia

on the bottom.

Immediately visible in Figure 4.2 is that there are clear differences in the friction

coefficients between eBird and Wikipedia. Content types from both Wikipedia and

eBird are quite clustered together, and the platforms themselves center around differ-

ent points on the friction of distance spectrum. In some cases, eBird has species that

have similar friction coefficients to some Wikipedia content types, but the overlap be-
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tween these distributions is small. Surprisingly, content types from OpenStreetMap

have a much wider overall distribution – some are much closer to eBird content types,

and others are much closer to Wikipedia content types. Put simply, distant contribu-

tions are much more expensive in eBird than Wikipedia, and OpenStreetMap contains

some types of content that have similar friction coefficients to fundamentally physical

processes like eBird.

To explore these friction coefficients in more detail, I now discuss some examples

from each platform, moving from left to right, and from top to bottom (highest

friction coefficient to lowest, eBird to Wikipedia).

eBird

Near the high-friction end of the spectrum is the purple finch (Haemorhous pur-

pureus) sighting content type, with a friction coefficient of -1.45. Succinctly, many

contributions of this bird would be highly ‘local’, or nearby the contributors’ home.

One hypothesis for why this might be the case is that the purple finch has a very large

range, spanning most of the eastern United States. This means that while eBird con-

tributors might upload reports of purple finch sightings on an everyday basis, while

traveling it perhaps might be somewhat boring to continue to upload sightings of the

same species when there are novel species available.

On the low end of the friction spectrum for eBird we see the ladder-backed wood-

pecker (Picoides scalaris) with a friction coefficient of -0.85. The ladder-backed wood-

pecker has a range that contains very popular tourist areas in the United States

(e.g. Las Vegas, the Grand Canyon). As such, one hypothesis is that this bird is

often reported while eBird users are on vacation in these areas, thereby making these

reports distinctly non-local (i.e. having a small friction of distance).
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OpenStreetMap

The OpenStreetMap content types are much more heterogeneous, and have a much

wider distribution than either of the other two platforms. Near the left-hand side

of the OSM distribution is ‘addr:city=San Diego’, which has a friction coefficient of

-2.58. Because San Diego is a city of 1.5 million people (has a large mass), it is likely

that this friction coefficient reflects a highly-local bulk import done by a resident of

San Diego. This would cause a large number of highly local contributions, and thus a

high friction of distance. Another interesting example is ‘building=residential’ with

a friction coefficient of -1.63. This tag might have a strong friction of distance for

a simple reason: it is quite difficult to determine whether a building is a residential

building or a commercial building from far away in many cases; one must know the

area (especially in large cities, where there might be mixed-use development).

Wikipedia

What is initially clear is that the Wikipedia friction coefficients tend to be quite simi-

lar to one another. Starting from the left-hand side of the distribution is WikiProject

Politics, with a friction coefficient of -1.05. Contributions to WikiProject politics

decrease nearly linearly as the places they contribute about get further away. Intu-

itively, it seems likely that people are less interested or less aware of the details of

politics that are further away from them – as the common saying goes: “all politics

is local”. On the other end of the spectrum is WikiProject Golf, with a friction coef-

ficient of -0.1. This friction coefficient is quite low. One reason this may be the case

is the topic itself – to participate in WikiProject Golf, a contributor would likely be

highly motivated by Golf as a topic, and may treat golf courses as vacation destina-
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tions as well. The combination of being highly motivated and traveling to play Golf

would lead to a quite low friction coefficient.

Summary and Generalizable Conclusions

To summarize my results, I found that in all of my content types, gravity models are

very effective at describing VGI production. Additionally, I found that contributions

in Wikipedia and OpenStreetMap are largely driven by attraction between regions,

whereas distance is much more important when describing eBird contribution trends.

Further, in two of my platforms (eBird and Wikipedia), the friction coefficients are

quite consistent, indicating that some platforms facilitate a specific ‘style’ of spatial

interaction. In contrast, in OpenStreetMap the content types span a large range of

friction coefficients.

4.6 Discussion

My results have implications for a number of constituencies and research areas. Below,

I outline these implications in more detail.

4.6.1 Implications for VGI Contributors and Platform Managers

My model fits align well with an idea implicit in the editing ethos of some large

VGI communities – the belief that distance has minimal impact on VGI contribu-

tion. For instance, Wikipedia states “anyone can edit almost every page” [170], and

OpenStreetMap’s introductory documentation says “You can map from your arm-

chair” [126]. From a purely technical perspective, it is just as easy for a person

who lives in e.g. Montreal to log into Wikipedia or OSM and contribute information
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about McGill University as it is for that person to contribute information about, for

instance, Nazarbayev University in Kazakhstan.

This raises a key question: what limits some content types from being advan-

taged by the affordances to map anywhere or write articles about anywhere from

“armchairs”? A number of factors likely are responsible. For example, physical world

processes are still highly correlated with knowledge about a region, and knowledge

about a region can help one more easily write a Wikipedia article, do OSM mapping,

or see and recognize a specific bird. Regional boosterism may also be at play, causing

people to build up information about known locations. However, future work should

seek to examine the presence and strength of these and other factors. One approach

might be a qualitative study to understand where people choose to contribute, and

why. This would help shed light on some of the mechanisms that underpin the large

attraction processes we see in the results.

My work has several implications for the design of VGI communities and plat-

forms. My results present challenges for a particularly common means by which

VGI communities attempt to address coverage issues: “editathons”. Editathons are

usually in-person events and are typically held in urban areas where many poten-

tial new contributors can attend. My results show that for high-friction content

types, these types of in-person contribution drives will not affect the variations in

coverage. To do so requires localized contributors, and it is unlikely that editathons

occur in places where contributors are needed most. This is especially troubling as

editathons are often funded by the cash-strapped organizations that operate VGI

platforms (e.g. the Wikimedia Foundation). My results suggest that organizations

like the OpenStreetMap Foundation may want to redirect some of their resources

towards efforts that work towards these goals.
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4.6.2 Implications for Coverage Biases

More generally, my work may help to reveal mechanisms for the coverage biases

linked to socioeconomic status, the rural/urban spectrum, and other demographics.

One hypothesis as to the mechanisms for this coverage variation is that “self-focus

bias” is playing a role [68]. That is, people are contributing about places where they

have lived, and, given the demographics of VGI contributors (e.g. [56]), it is likely

that they will have lived in higher-SES areas and urban areas. My results provide

a direct means of testing this hypothesis: If this is true, then content types for

which the friction of distance is high should exhibit more coverage bias then content

types for which armchair mapping is more common. Evaluating this hypothesis is an

immediate opportunity for future work.

My results also highlight a hypothesis for a potential second cause of these bi-

ases: preferential attachment. It may be that high-SES areas and urban areas were

some of the first areas to be covered in these datasets, thereby making them more

“attractive”. Because of this attraction – and the importance of attraction shown

in my baseline models more generally – these areas’ early leads in coverage became

effectively permanent. More generally, my baseline models suggest that, at least for

OpenStreetMap and Wikipedia, preferential attachment may be a particularly po-

tent force. Testing this “geographic preferential attachment” hypothesis is also an

excellent direction of future work.

4.6.3 Implications for Algorithms

Hecht and Gergle showed that AI systems that use VGI for world knowledge can adopt

the perspectives of their underlying VGI datasets [54]. Since my results suggest that

certain VGI content types will innately contain more local perspectives than others,
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this suggests that VGI-based AI systems that rely on certain types of data may

innately be biased towards local or non-local perspectives.

This is particularly an issue for Wikipedia-based systems given the number of

AI systems that use Wikipedia data. My results suggest that these systems will

adopt “local perspectives” for high-friction topics like politics and “armchair mapper

perspectives” for low-friction topics like golf. Investigating this hypothesis in well-

known Wikipedia-based AI systems would be a fruitful direction of future work.

4.6.4 Implications for Human Consumers

The exact same biases that may affect algorithms with respect to non-local and

local perspectives will also affect human consumers of VGI. For instance, my results

suggest that Wikipedia content about golf courses will be less local than its content

about politics. This highlights a number directions of future work. Two of the most

interesting might be (1) building tools that can surface the fact that local perspectives

may not be present for certain content types and (2) using this surfacing to perhaps

incentivize more contributions from the local area (e.g. using a prompt like “This

article about your local golf course was written entirely by non-locals. Do you have

any local expertise to add?”)

4.6.5 Implications for Gravity Models and Social Computing

As discussed above, the predominant use of gravity models have in HCI and social

computing contexts have tended to be in the traditional gravity model domains of

transportation and communication (using datasets of interest to the HCI and social

computing communities). My results suggest that gravity models are also quite useful

for understanding processes further afield from transportation and communication.
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At the very least, this work suggests that researchers who are examining the role of

distance in a geographic HCI [71] process consider utilizing gravity model techniques.

The primary challenge of moving beyond simple distance involves operationalizing

the mass variables, and my discussion of my implementation of mass can provide a

reference point along these lines.

4.7 Conclusion

This work established the value, both theoretical and practical, of understanding

non-local contributions in VGI repositories. I showed that VGI contributions can

be modeled effectively using spatial interaction techniques, and gravity models in

particular. I also explored the implications of these findings for my understanding

of VGI, for stakeholders currently managing large VGI communities, and for the

development of future VGI platforms.
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Chapter 5

Geographic Biases are “Born, Not Made”: Individual

Spatiotemporal Behavior

In the previous two chapters of this thesis, I have presented two studies that predom-

inantly focus on geographic behavior from the system-level, using robust geostatisti-

cal analysis approaches. However, establishing crowd members’ geographic behavior

trends is distinct from understanding geographic crowd behavior at an individual-

level.

Here, I do turn my focus to the individual. In particular, I take a spatiotempo-

ral view on how contributors choose to focus their contribution efforts. Contributor

choice is a fundamental characteristic of peer production: it differentiates peer pro-

duction from other forms of crowdwork [9] and may even be necessary for the success

of the peer production content generation model [9]. Indeed, the ethos of contributor

autonomy is so foundational in peer production that, for instance, the introduc-

tory documentation of OpenStreetMap, states that “anybody can enter anything she

wishes” [127].

Because of the importance of peer produced content and the role of contributor

autonomy in producing that content, researchers have long sought to understand and

model contributor focus in various peer production contexts (e.g. [35,62,128,134]).

One common thread in this research involves studying how contributor focus evolves
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over the lifespan of a contributor (e.g. [6,128]). In other words, this research examines

contributor focus through a temporal lens.

While a temporal lens is sufficient to understand contributor evolution in many

peer production contexts, in geographic peer production – e.g. contributing to Open-

StreetMap and editing geotagged Wikipedia articles – a purely temporal lens cannot

detect another critical type of potential focus evolution: that which unfolds spatially.

For instance, while it is useful to know that an OpenStreetMap contributor is increas-

ing her/his contribution rate, it is also important to understand where and in which

types of places the user is contributing, and how this changes over time. Among

other applications, such knowledge can provide critical insight into the troubling cov-

erage biases that have been observed in peer produced geographic datasets (e.g. on

socioeconomic and urban/rural lines [61,80,150]).

In this research, I extend the literature on temporal focus evolution to geographic

peer production with an exploratory analysis that examines contributor focus with

a spatiotemporal lens. My work uses OpenStreetMap – the world’s largest peer

produced geographic dataset – as a case study and centers around two basic research

questions adapted from the temporal literature [128]. First, I ask:

(RQ1) How does contributors’ geographic focus change over time?

To address this question, I operationalize four geographic contribution metrics

and explore if and how they change over time. Overall, my results suggest that con-

tributors are broadly consistent in their geographic editing behavior over the course

of their contribution lifespan, although there are some deviations from this trend.

Further, the consistency is of a particular nature: people tend to consistently edit in

relatively specific geographic areas.

These results recall the findings of one well-known GROUP paper that examined
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contributor focus with a temporal lens, finding that Wikipedia power editors have dif-

ferent editing behavior than other users from day one of their editing career, i.e. that

power editors are “born, not made” [128]. In my study, I observed this “born, not

made” dynamic in a very different peer production context: the geographic editing

behavior of OpenStreetMap editors (although I observe a somewhat softer version of

the dynamic).

My spatiotemporal approach also advances understanding of mechanisms behind

a second (and concerning) trend that has been observed in the literature: geographic

biases in peer production. In the face of peer production’s immense success – which is

predicated on the idea that “anyone can enter anything she wishes” – recent research

shows that urban and wealthy areas receive better geographic coverage than rural

and less wealthy areas [80,99]. While prior work characterizes these biases, few have

studied their root causes. Thus, my second research question asks:

(RQ2) Can the spatiotemporal evolution of contributors’ focus help to

explain systemic coverage biases?

My exploratory results suggest that most contributors are “born” urban-focused

and wealthier-focused and stay that way. In other words, for most editors, the pro-

portions of edits in rural and poor areas are consistent and consistently low across

contribution lifespans. I also find that the few editors who do consistently focus in

rural and poorer regions tend to have lower survival rates, exiting OpenStreetMap

sooner than their urban- and wealthier-focused counterparts

My study makes four primary contributions:

• I explore the geographic contribution behavior of OpenStreetMap editors over

time and observe that most editors exhibit similar behavior across their entire
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contribution lifespans. Thus, for many people, I find evidence that geographic

editing behavior is “born, not made”.

• I show how this consistent contribution behavior applies also to the types of

regions people edit. In other words, I find some evidence that geographic biases

also are “born, not made”.

• These focus biases are amplified by a survival bias – people who focus in rural

and high-poverty areas tend to contribute for shorter periods of time.

• While I did observe a small group of people who focus primarily in rural or high-

poverty areas, they produce only a small portion of OpenStreetMap content.

5.1 Related Work

My work here builds primarily on prior work in three areas: (1) peer production

contributors’ geographic contribution behavior, (2) temporal evolution of contributor

behavior, and (3) geographic biases in peer production. Below I situate my work

relative to each of these areas.

5.1.1 Contributors’ Geographic Patterns

The literature examining contributor geographic patterns falls broadly into two cate-

gories: where contributors focus and the geographic ranges of contributors’ work. My

research extends these two categories of prior work by considering the evolution of

these types of geographic trends over time. Below, I describe each category in more

detail and put each in the context of my work.
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5.1.2 Where Contributors Focus

Several different studies have sought to understand and characterize the geographic

focus of contributors to peer production platforms. For instance, Panciera et al. [130]

examined geographic trends in the Cyclopath platform, an early bicycling-centered

community. In particular, they found that “Cyclopaths” (defined as the top 5% of

contributors) had geographically constrained contribution regions, even within the

relatively small area in which Cyclopath operated. Zielstra et al. [176] described the

geographic extents of 13 OpenStreetMap contributors and show a method of charac-

terizing which contributions are a part of a contributors’ ‘home location’, and which

are not. They found that the contribution ranges of these 13 people do not gener-

ally exceed approximately 50 square kilometers. Lieberman et al. [101] conducted a

similar study, exploring the geographic extent of Wikipedia editors’ contributions.

5.1.3 Geographic Ranges of Contribution

Hecht and Gergle [69] compared different ‘spatial content production models’ for gen-

erating volunteered geographic information [58] and found that Flickr contributions

tended to be much closer to a contributors’ ‘home location’ than was the case with

Wikipedia. Hardy et al. [66] considered geographic contribution as a spatial inter-

action process, using an exponential distance decay model for each language edition.

They found that anonymous edits to geotagged Wikipedia articles decay exponen-

tially as the contribution location gets further form a contributor’s ‘home’. I return

to this idea of spatial interaction in the Discussion section.
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5.1.4 Temporal Evolution of Contributor Behavior

Whereas the work described above focused on geographic behavior, others have fo-

cused on the evolution of non-geographic peer production contributor behavior over

time. In one of the seminal studies in this space, Priedhorsky et al. [134] took a tem-

poral approach to understanding how value is created in Wikipedia and by whom.

Panciera et al. [128] built on this paper with a study of ‘Wikipedian’ lifecycles and

found that ‘Wikipedians’ (the term they use to describe those who contribute most

of the Wikipedia content) begin contributing at a high level and maintain this trend

over time, resulting in distinctive differences in contribution behavior between dif-

ferent classes of users. In other words, “Wikipedians are born, not made” [128]. As

noted above, this work strongly informs my study. One of the key takeaways of my

work is that this finding, which describes temporal contribution levels in Wikipedia,

also applies to spatiotemporal contribution behavior in OpenStreetMap. Panciera’s

work also inspired the methodologies in this paper: as described below, the spa-

tiotemporal contributor class-specific analyses are a direct analogue to the temporal

analyses done in Panciera et al.

Other work uses temporal evolution as a way to characterize the status of a

geographic region (versus focusing on contributors and their behavior). One example

of such a study is work by Gröchenig et al. [60], who computationally estimated

the ‘completeness’ of twelve urban areas, based on identifying three temporal stages

(‘start’, ‘growth’, and ‘saturation’), and modeling the development of a region through

these stages.

More recently, others have begun to explore what roles contributors play in peer

production communities, and how that changes over time. Arazy et al. [6] described
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‘career paths’ of Wikipedia editors. Rehrl et al. [139] took a similar approach,

and considered the different roles that people have in OpenStreetMap. Dittus et

al. [35] explored the activation of newcomers and reactivation of previously dormant

contributors during disaster events on Humanitarian OpenStreetMap (HOT).

My study here is deeply informed by the work of Panciera et al. [128], and

the studies mentioned in the subsection above. Whereas prior work has focused on

understanding geographic behavior or the temporal evolution of behavior, my study

sits at the intersection. A spatiotemporal lens helps inform my understanding how

contributors’ geographic behavior evolves, and how this may impact the geographic

variations seen in OpenStreetMap.

5.1.5 Geographic Biases in Peer Production

Geographic coverage biases in peer produced datasets have become a subject of rel-

atively substantial research interest in recent years. For instance, Sen et al. [150]

found that most content in some parts of the world (e.g. sub-Saharan Africa) is not

produced by people from those parts of the world, but instead by Westerners. Other

work shows that these biases manifest along two important human geography vari-

ables: the urban/rural divide, and socioeconomic status variation. As one example,

Johnson et al. [80] found that the quality of Wikipedia and OpenStreetMap con-

tent is much greater in urban areas than in rural areas, a result that informs key

analyses below. Haklay [61] found a similar result when considering socioeconomic

status as well – the quality of OpenStreetMap data is much better in wealthier re-

gions. Informed by these (and other geographic HCI [70,81,99]) studies, I focus one of

my research questions on these two specific dimensions (I discuss this in more detail

below).
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Prior work in this area has quantified and shown the existence of these geographic

biases in peer produced datasets, but little work has been done to understand the

mechanisms behind these biases. As mentioned above, my work takes a spatiotem-

poral approach, at the intersection between studies of temporal contributor behavior

and those characterizing the geographic behavior of contributors. For this reason,

my work is well-situated to shed light on how the temporal evolution of geographic

behavior may (or may not) facilitate the geographic biases that others have found.

5.2 Methods

To study the spatiotemporal evolution of contributors in OpenStreetMap, I needed

to (1) develop my OpenStreetMap dataset, (2) define geographic variables of interest

(i.e. the ‘spatio’ in spatiotemporal), and (3) characterize these variables of interest

over time (i.e. the ‘temporal’). I first provide a brief introduction to how contributions

occur in OpenStreetMap and then discuss each of these three steps.

5.2.1 Introduction to Contribution in OpenStreetMap

Where Wikipedia editors help create articles, OpenStreetMap contributors help cre-

ate a worldwide map (or, more formally, a worldwide spatial database). OSM contri-

butions either add or annotate geographic entities, e.g. bus stops, roads, buildings or

even logical collections of buildings like a university. Nodes (points) are the simplest

geometric unit in OSM, and they may stand alone (e.g. a bus stop), or they may

comprise other types of geometries, namely ‘ways’ (e.g. roads or buildings) and ‘rela-

tions’ (e.g. a university). Early in the life of OpenStreetMap, contributions depended

heavily on “GPS traces” recorded as contributors moved about the world. However,

110



it is now much more common to trace new entities from satellite imagery using a

web-based tool [182].

Similar to Wikipedia, OpenStreetMap records a “version history” for each map

entity. For instance, when the node for a bus stop is first created, it will be version

1. If the location is adjusted later, the version will be incremented to 2. If the bus

stop is then annotated with the available bus lines, the version would be incremented

again.

5.2.2 Dataset

My dataset focuses on OpenStreetMap nodes (points) and consists of the full, ver-

sioned history of OpenStreetMap, through February 2014. Because ways and relations

are made up of nodes, nodes define the underlying geometry of contributions. For

this reason, I limit my analysis to OSM nodes (I discuss implications for ways and

relations later).

I limit my study site to the continental United States so that I can take advantage

of readily-available government census data published by the U.S. Census – a common

practice in geographic human-computer interaction studies (e.g. [70,71,80,81,99,164]).

Because a key contribution of this work is developing an understanding of urban-rural

and socioeconomic biases, it was necessary to ensure that there would be “urbanness”

and socioeconomic census variables for my study site. I discuss how this work may

extend to other geographic contexts in my Discussion section below.

From the broad OSM dataset, I first extracted all nodes in the continental United

States, including every version of every node. I then excluded nodes created in an

automated manner (e.g. large imported road datasets and bot-created geometries)

using the technique in Johnson et al. [80]. Since I was interested in spatiotemporal
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trends, I excluded nodes created by people with fewer than five contributions out

of sparsity concerns that I discuss in more detail below. Finally, I used a standard

reverse geocoding approach to associate each node with the United States county that

contains it. In total, I considered more than 28 million (28,021,802) contributions by

23,329 contributors.

Because contribution rates are so skewed in peer produced datasets (i.e. power-

law dynamics [128,134]) and informed by Panciera et al. [128], I organize my analysis

around three classes of contributors, defined by the number of edits they made:

• 1%ers: The 1% of contributors that produce the most content. In total, “1%ers”

contribute 68% of all OpenStreetMap nodes.

• 9%ers: The “middle” 9% of contributors, i.e. those between the 1%ers and the

90%ers. “9%ers” produce 27% of OpenStreetMap content;

• 90%ers: The bottom 90% of contributors. They produce only 11% of Open-

StreetMap content.

Note that the percentages above refer to statistics once contributors with fewer

than five edits have been removed (these contributors made only 0.07% of edits in

total).

5.2.3 Geographic Variables of Interest

I operationalize four geographic variables using my historical dataset of human-

generated nodes in the United States. These variables were selected because they

had one of two properties: (1) they (or close variants) had been employed in non-

temporal characterizations of geographic contributor focus, or (2) they are metrics

related to observed geographic biases in peer produced geographic data. My first two
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variables meet the first property and describe the geometric characteristics of contrib-

utors: (1) their geographic ranges [117] and (2) where they focus [101]. My second two

variables meet the second property and capture the (1) urbanness [24,70,80,81,135]

and (2) socioeconomic status [24,61,137,164] of where people contribute. Below, I

detail each of my four variables in turn.

Geometric Variables

std_dist: Standard distance is a common point-pattern analysis metric of geo-

graphic dispersion. std_dist is analogous to a standard deviation; it represents the

geometric spread of a set of points relative to the geometric center of the set. Specif-

ically, a std_dist describes the radius of a circle around the mean center point. Like

a standard deviation, 68% of the points fall within this circle.

For my analysis, I computed the std_dist for each contributor simply by finding

the mean center point of their contributions and then computing their dispersion.

Prior to making this calculation, I projected all data points into a 2D reference

system using the Albers’ Equal Area Conic projection.

plurality_focus: While my std_dist variable describes the spatial distributions

of people’s contributions, my plurality_focus variable describes the actual locations

where people focus. Each contributor’s plurality_focus county is simply the county

in which a plurality of their contributions were made (i.e., the mode). Prior work

in geographic HCI [82] often uses this approach to attribute the “home region” of a

contributor, but here I interpret “plurality county” more conservatively: I just take

it as the region where a contributor has focused their contributions.
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Human Geography Variables

My next two variables focus on human geography and describe the kinds of places

people contribute. In other words, while my first two variables describe the locations

and geographic spread of contributions, the next two describe characteristics of the

people who live in the contribution locations. Specifically, I define variables that

describe the biases shown in prior literature: ruralness and poverty. Based on the

county associated with each node, I label each contribution with: (1) a county urban-

ness class (from the National Center for Health Statistics’ Urban-Rural Classification

Scheme [121]), and (2) the percent of the county’s population that is in poverty (from

the US Census’ American Community Survey [20]).

With these labels in place, I compute two variables for each contributor:

pct_rural: This variable describes the percent of a person’s contributions that

occurred in counties with urbanness classes 5 and 6 (the two nonmetropolitan classes

in the classification scheme mentioned above). In Florida, for example, Miami-Dade

County (where the city of Miami is located) is a 1 on this urbanness scale, whereas

Monroe and Hamilton Counties (near the border with the state of Georgia, approx-

imately halfway between the cities of Jacksonville and Tallahassee) are urbanness

classes 5 and 6.

pct_high_poverty: This variable describes the percent of a person’s contribu-

tions that occurred in ‘high-poverty’ counties, where at least 20% of the population

is in poverty. I base this variable on the definition of ‘high-poverty’ provided by the

United States Census American Community Survey [20]. For example, Webb County

in Texas is a high-poverty county. Webb County is home to Laredo, Texas –one of

the largest cities on the United States-Mexico border – and has an average per-capita
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Figure 5.1: A histogram of contributors who participate for each number of quarters.

income of approximately $10,000 (approximately $2,000 below the US poverty line in

2015).

5.2.4 Temporal Units of Analysis

Each of my four variables are a descriptive summary of the geography of contribu-

tors’ focus, but they are not temporal. To understand how these geographic sum-

maries change, I temporally group each person’s contributions into quarters (Jan. 1

- Mar. 31st, April 1 - June 30, July 1 - Sept. 30, and Oct. 1 - Dec. 31). I selected

three-month periods to ensure that (a) there would be sufficient data in each period,

and (b) the temporal periods were granular enough to analyze the evolution of con-

tributors’ behaviors over time. For each contributor-quarter, I computed my four

geographic variables. As I noted above, I excluded contributors with fewer than five

contributions to avoid drawing conclusions from excessively small samples.

Figure 5.1 shows a histogram of the number of quarters that people participate
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in OpenStreetMap. Most people (71%) participate in only one quarter. These con-

tributors are (a) predominantly 90%ers, and (b) account for only about 4% of the

total edits in my dataset. 1%ers participate for a median of thirteen quarters, 9%ers

for a median of five quarters, and 90%ers for a median of two quarters. I discuss the

implications of these medians below.

5.3 Results

I use my two main research questions to frame the presentation of my results. As I

previewed, I generally find that most people are quite consistent throughout their con-

tribution lifespans – contributors’ geographic behavior tends to be ‘born, not made’.

Since this is exploratory work, I approach both research questions by identifying and

characterizing the general trends in the data. I also highlight important deviations

from those trends. I now discuss the results for each of my research questions in turn.

RQ1: How does contributors’ geographic focus change over time?

The spatiotemporal trends in my std_dist and plurality_focus variables tell a rela-

tively clear story: most contributors and contribution groups tend to have consistent

geographic ranges and focus areas. In other words, most (though not all) contribu-

tors’ geographic focus behavior is ‘born, not made’. I now unpack these findings in

more detail.

std_dist: Figure 5.2, which visualizes contributors’ quarterly geographic ranges

over time as defined by std_dist, shows a relatively clear trend: contributor groups

have meaningfully distinct standard distances, and these distinctions are mostly con-

sistent over time. Along the y-axis in Figure 5.2 – following the method used by

Panciera et al. [128] – I plot the mean and 95% confidence interval in each quarter. I
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Figure 5.2: Mean std_dist over time, by user class. Error bars show 95% confidence
intervals.

find that 1%ers’ and 9%ers’ average standard distances do not meaningfully vary over

time. At first glance, Figure 5.2 may suggest that 1%ers and 9%ers increase their

average std_dist over their lifespan. However, a closer inspection of the quarterly

confidence intervals shows that these changes in means are not meaningfully different

from one quarter to the next; the confidence intervals are highly overlapping. By

contrast, I do see a meaningful uptick in 90%ers standard distances as their lifespan

increases. Note that this figure does not show quarters that exceed the 90th percentile

of participation length, because the number of contributors becomes very small.

Although the 95% confidence interval ranges in Figure 5.2 look small and stable

over time, I wanted to ensure that individual contributors do not substantially vary

their std_dist values over time within their group ranges. The potential for this

outcome is most salient for 1%ers for two primary reasons: (1) 1%ers contribute

most of the content in OpenStreetMap so their geographic behavior has a substantial

impact, and (2) in Figure 5.2, 1%ers show the largest confidence interval ranges,

conceivably allowing for more individual variation.

To address this question, I did a targeted analysis of 1%ers to evaluate their
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Figure 5.3: Distributions of each individual 1%ers’ std_dist. Dots indicate medians, and
lines indicate IQR (interquartile range).

consistency over time, the results of which are visible in Figure 5.3. The figure plots

each individual 1%ers’ std_dist distribution, showing the median and interquartile

range (IQR) of their std_dist in each quarter. The IQR is the distance between

the 25th and 75th percentiles of a distribution, or the width of the middle 50%

of std_dist values here. Individuals are ranked by IQR in increasing order along the

x-axis. Critically, shorter lines (smaller IQRs) indicate a higher degree of ‘born, not

made’ behavior with regard to standard distances

The large number of small grey bars on the left side of Figure 5.3 confirms that

most 1%ers exhibit ‘born, not made’ std_dist patterns, i.e. their geographic ranges are

largely consistent in every quarter. Figure 5.3 also reveals that the higher variance we

see in Figure 5.2 is primarily the result of a minority of 1%ers who do not display ‘born,

not made’ std_dist patterns. This non-trivial minority exhibits different geographic

range patterns across quarters.

It is important to note that the IQR values in Figure 5.3 do not appear to be

strongly driven by the number of quarters in which a contributor participates. For

instance, a 1%er’s std_dist IQR and the number of quarters they participate are only

weakly correlated (Pearson’s r=0.2).
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Figure 5.4: Plots the growth of unique plurality_focus counties over time. Each color is
a different user class, and the dashed line represents a new plurality_focus county every
quarter.

plurality_focus: While std_dist characterizes the geographic dispersion of con-

tributor edits, it does not capture where contributors focus. For this, I use plural-

ity_focus.

Figure 5.4 plots the median number of unique plurality_focus counties over time.

Each solid line represents a user class, truncated at the 90th percentile of participation

length. The dashed line shows what would occur if the median contributor had a

new plurality_focus county every quarter.

Figure 5.4 makes one trend clear: while the median contributor does increase

the number of counties in which they focus over time, this increase is gradual and

substantially less than would be the case if the median contributor focused in new

areas each quarter. Intuitively, the median contributor tends to be fairly consistent

in where they focus, returning to the same few counties over time. For instance, the
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Figure 5.5: Mean pct_rural over time, by user class. Error bars show 95% confidence
intervals.

median 90%er participates for two quarters, but has a single plurality_focus county

on average. The median 9%er participates for five quarters, and this contributor has

only three unique plurality_focus counties on average. Strikingly, the median 1%er

participates for 13 quarters (more than 3 years), and on average has five unique plu-

rality_focus counties.

RQ2: Can the spatiotemporal evolution of contributors’ focus facilitate

systemic coverage biases?

I now turn to my second research question, which. uses the pct_rural and

pct_high_poverty variables to investigate patterns in geographic behavior concerning

kinds of places (e.g. poor vs. rich) rather than specific places (i.e. individual counties).

I highlight the general trends in these variables as well as impotant deviations from

the trends.

5.3.1 Overall Trends

Figure 5.5 (pct_rural) shows the mean rate of contributions in counties classified

as 5 or 6 on the National Center for Health Statistics urbanness scale. Figure 5.6
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Figure 5.6: Mean pct_high_poverty over time, by user class. Error bars show 95%
confidence intervals.

Figure 5.7: Distributions of each individual 1%ers’ pct_rural values. The dot indicates
the median, and the line indicates their interquartile range.

(pct_high_poverty) shows the mean rate of contributions in counties designated as

‘high-poverty’, according to the US Census. As before, these plots show the 90th

percentile number of participation quarters. In both cases, the means of these distri-

butions remain consistent across time for all three user classes, suggesting that most

people consistently contribute a relatively small proportion of their edits in rural and

poor counties. Even 1%ers, who have the largest standard distance (and thus con-

tribute across larger distances) make less than one fifth of their contributions in rural

areas on average, and even fewer in high-poverty areas (and do so consistently across

their lifespans).
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Figure 5.8: Distributions of each individual 1%ers’ pct_high_poverty values. The dot
indicates the median, and the line indicates their interquartile range.

As before, while the community-level trends are consistent over time, I also wanted

to check whether these trends hold at the individual level. I again focused on 1%ers,

who have the widest confidence intervals in Figures 5.5 and 5.6 and who contribute

the most edits. Figures 5.7 and 5.8 confirm that the majority of 1%ers tend to be

quite individually consistent, having persistently low individual median pct_rural

and pct_high_poverty values. The median pct_rural IQR is 0.11 and the median

pct_high_poverty IQR is 0.02, both of which are quite small (on a scale from 0 to

1)1. Moreover, the small variation is centered on mostly urban and mostly-non-poor

regions, as can be seen by the tendency of the grey lines on the left of Figures 5.7

and 5.8 to be at the bottom of the y-axis.

The results in Figures 5.7 and 5.8 indicate that there is a strong ‘born, not made’

signal in my pct_high_poverty and pct_rural variables. In other words, geographic
1As was the case above with std_dist, we see very weak correlation between the number of

quarters a 1%er spends in OpenStreetMap and their IQR (Pearson’s r = 0.09 and 0.06 for pct_rural
and pct_high_poverty, respectively). # Looking Forward Taking a holistic view on the previous
three chapters points to a number of different directions for future work, all of which are motivated
by an over-arching theme: mitigating geographic bias. My research here has developed critical
insights into crowd members’ geographic behavior. I see these studies as laying the groundwork that
informs approaches to ameliorating the geographic biases that pervade [24,61,80,81,99,135,137,164]
geographic platforms. Some of these future work directions are more open-ended, and present
opportunities to develop a new research agenda. In other cases, there are more specific suggestions
for future work that follow directly from one of the three chapters. I discuss each of these – open-
ended research directions, and more direct follow-up studies – in turn.
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biases may be “born, not made’. If contributors start by contributing the large mjaor-

ity of their content in urban areas, this trend typically will persist for their entire time

in OpenStreetMap. My pct_high_poverty variable shows the same result – most con-

tributors (a) do not contribute much content in high-poverty areas, and (b) maintain

this trend over time.

5.3.2 Contextualizing pct_rural and pct_high_poverty values

To put my pct_rural and pct_high_poverty results into context, I now consider three

dimensions against which to compare these results. Specifically I ask if the pct_rural

and pct_high_poverty findings in Figures 5.5, figs. 5.6, 5.7, 5.8 are proportional to

what would be expected given (1) the population of these counties, (2) the number of

rural or high-poverty counties themselves, or (3) the number of contributors focusing

in rural or high-poverty areas.

With regard to county population, according to the United States Census [121],

nearly 15% of the US population lives in rural areas, and approximately 14% live in

high-poverty areas. Comparing these numbers against Figures 5.5 and 5.6 suggests

that the average rate of rural contribution is actually proportional to the population

rate in these counties. However, this is not true for my pct_high_poverty variable.

The average rate of contribution in high-poverty areas is approximately 10%, indi-

cating that high-poverty counties are underrepresented across the board.

Another option to consider is whether these pct_rural or pct_high_poverty rates

are proportional to the number of counties that are rural or high-poverty counties,

i.e. maybe there are just fewer of these counties. 63% of counties are rural (have

urbanness classes 5 or 6), and 24% of counties are high-poverty (at least 20% of their

population is in poverty). Comparing these numbers to the median pct_rural or
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pct_high_poverty rates shown in Figures 5.5 and 5.6, the conclusion is clear: in terms

of the number of counties, OSM contributors in all user classes are undercovering

rural and high-poverty counties. While there may be fewer people in many of these

counties, these counties still have road networks, natural features like lakes and rivers,

and many other entities that are not directly correlated with population [79] and that

typically are mapped in OpenStreetMap.

A third consideration is whether the number of contributors focusing in rural

or high-poverty counties is proportoinal to the population of these regions. One

important reason to consider this dimension is the effect it may have on content

quality. Prior work has shown that people who focus near where they live produce

more diverse [175], richer [80], and higher quality [38] content. Unfortunately, Figures

5.7 and 5.8 suggest concerning trends here too. As noted above, 15% of the US

population live in rural areas, and 14% live in high-poverty areas. However, Figures

7 and suggest substantially fewer 1%ers focus in rural or high-poverty areas – very

few have medians near the top of the y-axis.

Thus far, my results suggest that most contributors – across all user classes –

are consistent across time, and contribute in consistently urban and wealthier areas.

Further still, rural and high-poverty areas are disproportionately undercovered in

comparison to (a) the number of rural and high-poverty counties, and (b) the number

of contributors who focus in these areas. Taken together, my results suggest that (a)

where contributors focus, (b) the kinds of places they focus in, and (c) the consistency

with which this occurs all contribute to the geographic coverage biases shown in prior

literature.
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5.3.3 Additional Mechanisms of Bias

I noted above that 1%ers participate for the longest period of time, which creates a

secondary mechanism facilitating bias – longevity bias. Specifically, people who par-

ticipate longer contribute longer and because of ‘born, not made’ trends, contribute

in the same places (and kinds of places) longer.

While this trend is intuitive when comparing 1%ers and 90%ers (after all, 1%ers

produce most of the content), I wanted to understand how a longevity bias might fa-

cilitate socioeconomic and urbanness focus biases. Therefore, I split contributors into

two groups, those who tend to be rural-focused (have a median pct_rural of at least

50%), and those who tend to be urban-focused (have a median pct_rural below 50%).

I computed how long each contributor participated, and compared the urban-focused

and rural-focused groups. Examining the means of these groups (urban-focused: 1.9

quarters, rural-focused: 1.65 quarters) suggests that urban-focused contributors par-

ticipate longer, on average. Due to a skewed distribution, I conducted a Wilcoxon

Rank-Sum Test which found significant differences between the two groups (z=2.67,

p < 0.01). I ran the same analysis for my pct_high_poverty contributors. Again,

the means (non-high-poverty focused: 1.9 quarters, high-poverty focused: 1.55 quar-

ters) suggest that high-poverty focused contributors participate longer, on average.

A Wilcoxon Rank-Sum Test also found significant differences between the two groups

(z=4.81, p < 0.001).

While these findings are not causal – and future work should examine predictors

of retention in OSM – they do potentially have implications for the evolution of

bias in OSM. Specifically, these results suggest that the bias in where people focus

is perpetuated by who remains a contributor. Most people, across all user classes,
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consistently contribute small amounts of content in rural and high-poverty areas over

the course of their time in OSM. People who do focus in rural and high-poverty areas

stop contributing earlier than people who focus in more urban, or wealthier areas.

This finding potentially has important implications for improving coverage in rural

and high-poverty areas, something to which I return in the Discussion section.

5.3.4 Deviations from Trend

Faced with results that suggest that most people consistently contribute in urban and

non-high-poverty areas, I sought to better understand contributors who do primarily

focus in rural and/or high-poverty areas and the contributions that they make. What

I found aligns strongly with what is shown in Figures 5.7 and 5.8. The majority of

rural and high-poverty content is not contributed by consistently rural or consistently

high-poverty contributors. Figures 5.7 and 5.8 indicate that relatively few 1%ers have

high median pct_rural and pct_high_poverty values, and that many of those who do

also tend to have wider IQRs, indicating that they are less consistent over time in

terms of the types of places they edit than the median 1%er.

To understand these rural and high-poverty focused contributors in more detail,

I use the same metric as above: if a contributors’ median pct_rural and median

pct_high_poverty are at least 50%, I consider them rural-focused and high-poverty-

focused, respectively.

Beginning with rural-focused contributors, I found that 3,126 people tend to con-

tribute in rural areas, and as a group contribute less than 40% of content in rural

areas. There are 27 rural-focused 1%ers (those nearer the top of the Y axis in Figure

5.7), 315 rural-focused 9%ers, and the rest (2,748) are 90%ers. They account for 25%,

11%, and 2% of rural content, respectively (totaling 38% of rural content). Because
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Figure 5.9: All counties for rural focused 1%ers.

1%ers contribute most of the content in OpenStreetMap, I have mapped the plurality

focus counties for the seven most prolific rural-focused 1%ers in Figure 5.9. I selected

only the seven most prolific to aid in map legibility [179].

There are two primary trends in Figure 5.9: (1) people who contribute in national

parks (and national forests), and (2) people who contribute regionally. With respect

to the national parks, (a) prior studies have shown that vacation destinations are

common locations for VGI contribution [132], and (b) very few people live in counties

with national parks. What this suggests is that some of the participants who I

termed rural-focused may instead be ‘national park-focused’, with national parks

serving huge numbers of urban visitors. The second pattern in Figure 5.9 involves

regional contributors. To take one example, consider the person contributing in

northern Maine (in the upper northeast corner of Figure 5.9). This area is very

sparsely populated, and yet a single, consistently rural 1%er contributes most their

content, over multiple quarters, in those counties. Both groups have implications for

recruitment in peer production communities, which I discuss further below.

Turning to high-poverty contributions (Figure 5.10), the trend I observed for rural

areas is even more severe. I found that 2,014 people consistently contribute in high-
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Figure 5.10: All counties for high poverty focused 1%ers.

poverty areas, and as a group contribute slightly more than one-fourth of the content

in high-poverty areas. There are 11 high-poverty-focused 1%ers (those nearer the top

of the Y axis in Figure 5.8), 126 high-poverty-focused 9%ers, and the rest (1,877)

are 90%ers. They contribute 16%, 8%, and 2% of high-poverty content, respectively

(totaling 26% of high-poverty content). I have mapped the plurality focus counties

for the seven most prolific high-poverty focused 1%ers in Figure 5.10. I again selected

only the seven most prolific to aid in map legibility.

The contributors in Figure 5.10 show similar trends to those in Figure 5.9: many

of the counties shown contain national parks and forests and a few are contributors

who contribute regionally. One example of the first trend is the large teal section in

the southwestern section of the map (the area surrounding the Grand Canyon). The

counties that contain the Grand Canyon also contain the Navajo Indian Reservation,

one of the five most impoverished reservations in the United States [180]. This lends

further credence to the idea that some contributors focus in natural parks, and it is

likely that these contributors are not contributing in the very impoverished parts of

this region. However, there are some contributors who are consistently focused in

high-poverty areas. For example, consider Sierra County, New Mexico (reddish), also
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in the southwestern corner of the map. The person primarily contributing here is

focused on high-poverty counties. Residents of Sierra County tend to be quite poor,

with a median household income of $25,583, and a per-capita income of $16,667.

Another example of a high-poverty area is the more northern county in Texas (pink,

central southern section of the map) – Webb County, Texas. Webb County is home

to Laredo, the third largest city on the Mexico-United States border. The median

household income in Webb County is $28,100, and the per-capita income is $10,179.

As before, both examples suggest implications for recruitment that I discuss below.

5.4 Discussion

In this section, I step up a level and discuss the implications of my findings more

broadly. This section follows the same structure as the results section. Specifically,

we first discuss what my findings mean for my understanding of contributor behavior

in peer production systems. Second, I discuss what my findings suggest for the

mitigation of urban and socioeconomic coverage biases in peer production systems.

5.4.1 Implications for Peer Production

Standard Distance and Spatial Interaction Behavior

Closely related to my std_dist variable is a concept from geography called spatial in-

teraction [88,89,152], which is used to describe ‘flow’ between regions, e.g., of physical

goods [88,89] or people [152]. This process often is modeled with gravity models and

characterizes, e.g., the rate at which travel between regions changes as a function of

distance and attributes of the regions. The ‘cost of distance’ aspect of these models

is particularly relevant to my findings here.
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I find that different classes of contributors (e.g. 1%ers vs. 90%ers) have consis-

tently distinct sizes of geographic range, which presents an important opportunity

for future work. Intuitively, these findings suggest that different contributor classes

interact consistently differently across distance. Prior geographic HCI [71] work us-

ing gravity models has not accounted for contributor class, but doing so may provide

for better understanding of the mechanisms behind spatial content production. This

may also help support predictions about which areas would receive contributions if,

for instance, a concerted recruiting effort were made in rural areas (as is discussed in

more detail below).

5.4.2 Mitigating Coverage Biases

My results suggest that ‘born, not made’ dynamics may naturally facilitate the cre-

ation of geographic coverage biases, which are in part enabled by who remains a

contributor over time. I next reflect on how my results suggests mechanisms for

reducing these biases.

5.4.3 Existing Consistently Rural or High-poverty Contributors

The first intuitive approach to mitigating biases is to examine those participants who

do consistently focus in rural and high-poverty areas. After all, these participants are

contributing a non-trivial amount of content in rural and high-poverty areas already.

As noted above, my results suggest that there are two trends in where these rural-

focused or high-poverty-focused 1%ers contribute: national parks and regional areas.

National Parks: Leveraging existing contributors who focus in the counties that

contain national parks and forests to address poverty or urban/rural bias is likely to

be difficult. Prior work suggests that vacation destinations are common locations
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for geographic contributions [132], and that people tend to be more aware of the

geography in places with which they are familiar [59]. Thus, it is likely that the

contributors who focus in counties that contain national parks are not producing

content in the rural or high-poverty sections of those counties (although investigating

this hypothesis in detail is a good targeted direction of future work).

Regional Focus: The other group of rural- or high-poverty-focused 1%ers, how-

ever, may be more promising. These contributors already are focusing their effort in

rural or high-poverty areas. I see two implications for design here. The first is sim-

ple: find ways to keep these contributors in the community! My results suggest that

the longevity of these contributors in OpenStreetMap is less than their peers, and

targeting this issue would be one immediate and effective partial solution to coverage

biases. Second, my results suggest that targeted recruitment of regionally-focused

1%ers in low-coverage areas could be effective.

5.5 Conclusion

In this paper, I performed the first examination of the spatiotemporal behavior of con-

tributors to geographic peer production communities. I observed that contributors’

spatiotemporal behavior is generally consistent throughout their contribution lifes-

pans, both with respect to the geometric structure of contributions and with respect

to the types of places to which contributions are made (e.g. urban places vs. rural

places). In other words, I saw evidence that there is a strong (but not omnipresent)

‘born, not made’ tendency in spatiotemporal peer production behavior. More gener-

ally, this work sheds light on some of the mechanisms by which the coverage (and

coverage biases) of peer produced geographic datasets may occur.
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5.6 Open-Ended Research Directions

The over-arching theme of both directions discussed below is mitigating geographic

biases in crowd platforms. All of the studies presented in this thesis provide impor-

tant insights into how crowd members behave geographically, with an eye towards

understanding how, and perhaps why, these geographic biases come about.

Therefore, an intuitive next step is developing system-level strategies in order

to mitigate disparities in sharing economy availability, or content coverage in VGI

crowd platforms. Each of my studies in this thesis speak to a different aspect of

understanding of the mechanisms that underpin these geographic biases. That said,

developing an understanding of the clear, practicable mechanisms undergirding these

biases is a necessary first step towards mitigating these disparities.

5.6.1 Crowd Member Context and Mental Maps

One of the primary reoccurring themes in the discussions near the end of each chapter

was the role of mental maps and geographic context in crowd member behavior. In

Chapter 3, participants quite clearly discussed how their own mental maps played a

role in where they were available to work. On the other hand, in Chapters 4, 5, the

role of geographic context in crowd member behavior is more implicit. For instance,

in Chapter 4, I noted that there are no technological barriers to VGI crowd members

producing content “from their armchairs”, but given the existence of geographic biases

in coverage, this is clearly not occurring equally. I found that different content types

have varying degrees of localness, and hypothesized that the factors driving crowd

members’ decisions about where to contribute may be self-focus bias [68], or a pattern

of contribution preferential attachment. In Chapter 5 I saw a large degree of regularity
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in the places, and kinds of places, individual crowd members focus their contributions.

Taken together, these three studies show that at an individual-level, crowd members

contribution behavior or work patterns are likely influenced by different facets of their

geographic context (e.g. knowledge, feelings of safety, self-focus bias, topic interest,

etc.). At the system-level, however, this seems to manifest as disparities in content

quality and coverage, or service availability.

If this hypothesis bears out, one clear research agenda focuses on this individual-

level geographic context – can we intervene on the mental maps or context of crowd

workers to help facilitate better sharing economy service or VGI coverage? My work

points to two different instantiations of geographic context: physical travel, and ‘arm-

chair VGI production’. Each of these threads open up a new direction of research.

Context for Physical Travel. The first direction of research to intervene on

crowd members’ geographic context is focused on the sharing economy, where crowd

members do physically travel to perform tasks, or pick up drivers. Among some recent

studies [33,96], my work above points to geographic factors that serve as barriers to

sharing economy availability. While I note above that localized recruitment in low-

SES, suburban, and non-white areas may go a long way towards mitigating geographic

biases, I also discuss some approaches to adjusting crowd members’ mental maps,

predominantly focused on the perceptions of safety my participants discussed. Beyond

this, however, little is known within the HCI literature about what factors drive the

geographic decisions of sharing economy crowd members. In other domains, there is

a wide body of literature about impact that cognitive biases and heuristics have on

human judgement. For instance, Danziger et al. [30] found that judges rulings are

much more lenient immediately after a lunch break, rather than immediately before

– hunger is an important contextual factor in how judges make decisions. What are
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analogous concerns when designing crowd platforms that require physical travel, like

the sharing economy? Are perception of safety and distance the only salient concerns?

What other contextual factors affect the geographic decisions sharing economy crowd

members make? Do these concerns vary by time of day? Building on my work

here, I see a two clear steps of future research. First, developing a more complete

understanding of why sharing economy crowd members make the decisions they do.

This would serve as a stepping stone to build systems and interfaces that intervene

on individual-level behaviors, and in turn mitigate the system-level geographic biases

discussed above. This agenda has implications for the design of tools for sharing

economy crowd members, and may generalize into other forms of ‘physical travel

crowd platforms’ like the observational citizen science platform eBird.

Context for ‘Armchair VGI Production’. The second direction of ‘geographic

context’ research only applies in crowd platforms where the work can be done ‘re-

motely’, like in peer production crowd platforms. The difference between this con-

text and the physical travel context discussed above hinges on a point I mentioned

earlier: there is no technical reason blocking crowd members in OpenStreetMap or

Wikipedia from producing content about any place in the world. That is, unlike

the sharing economy crowd platforms where being physically present in the place is

necessary, OpenStreetMap and Wikipedia have software that facilitates ‘armchair’

content production. This distinction between being physically present or not is fun-

damental – physical presence is an implicit form of context in the sharing economy

crowd platforms. Indeed, my participants in Chapter 3 discuss perception of safety

as one example of these differences. After all, because an ‘armchair’ contributor in

OpenStreetMap is not physically in the place they contribute to, any concerns about

physical safety do not obviously apply.
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My work in Chapters 4 and 5 shows that context has an impact on geographic

behavior, even in ‘armchair VGI’ crowd platforms. Specifically, different contextual

factors like the type of content and familiarity with a (type of) region seem to influence

the way crowd members contribute in VGI platforms. For instance, in Chapter 4, I

saw that the different content types may change the ways in which ‘attractiveness’

and distance affect contribution behavior. In VGI production, geographic behavior

and the type of content seem to be related. In Chapter 5, I found that over time,

OpenStreetMap contributors tend to focus in many of the same places, or other places

that are similar socioeconomically or in terms of population density. Geographic

behaviors in VGI crowd platforms follow ‘born, not made’ [128] patterns.

Taken together, the findings of these two studies suggest that set of contextual

factors impact VGI production behavior differ meaningfully from those that impact

physical travel geographic behavior. Individual geographic behavior tends to be quite

consistent over time, but geographic behavior varies meaningfully as the content

type changes. Can people’s content type preferences be identified? Are people as

consistent in the type of content they contribute as they are in the kinds of places

they contribute to? If so, informing VGI crowd members of topical work to be done in

undercovered regions may be quite fruitful. One fundamental unknown in this space

is whether or not the role of distance and attraction are static, for a given type of

content. If so, some types of content may never reach coverage parity with the current

set of contributors. On the other hand, if not, a clear direction of future work is to

understand how tools can adjust the effect of attraction or distance. Put another way,

if a given content type’s ‘localness’ is not inherent to the type of content, there may

be opportunities to benefit from changing how local the production of that content

must be.
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5.6.2 Localized Recruitment

A second broad research agenda from my work focuses on adjusting the number of

local crowd members, whereas the agenda discussed above focused on using existing

crowd members to mitigate biases. Put another way, rather than get ‘outsiders’ to

provide sharing economy service or produce VGI content, what would it mean to

increase the number of ‘locals’? In Chapter 3, where crowd members lived directly

impacted where the sharing economy was available. In Chapter 4, different content

types are likely to receive different rates of contribution, depending on rate of distance

decay for that type of content. In Chapter 5, individual crowd members tend to be

fairly regular in the places they focus their contributions, indicating a degree of ‘local

focus’ in how the participate in the crowd.

The value of local participation is only beginning to be understood. Some pre-

liminary studies have found that in VGI crowd platforms, content produced by locals

tends to be richer[82], more diverse[176], and higher quality [38]. However, more

work is warranted to understand the impact and value of local contributions. Is local

content actually better in all cases? If so, should crowd platforms make ‘armchair’

participation more difficult to do?

A critical component of this research direction is the question of recruitment – is it

even possible to recruit new crowd members from everywhere these crowd platforms

seek to serve? While I discuss barriers to people from low-SES areas participating in

sharing economy crowd platforms, I am unaware of similar work in the VGI crowd

platform space.

136



5.7 Specific Follow-Up Studies

One immediate study that can directly inform the broader ‘crowd worker context’

agenda described above is a qualitative study focused the reasons that underpin crowd

members’ geographic behavior. For instance, why to OpenStreetMap contributors

decide to contribute in the places they do? Why do UberX drivers focus in some

geographic regions? Developing a deeper understanding of crowd members’ reasons

for their decisions would be quite fruitful.

Further, in all three chapters above, I focus my analyses in a US context, and in

some cases in one particular metropolitan area. There are clear follow-up studies to

be performed exploring the same questions I studied here, but in different geographic

areas (or globally). The geographic principles discussed in Chapter 2 are likely to hold

across different regions and cultures, though their particular instantiations may differ.

The geographic HCI [71] community would benefit substantially from replications

across many different geographic contexts.

With regard to my sharing economy work in Chapter 3, I believe that longitudinal

analyses (akin to the one I ran in Chapter 5) that expand the static snapshots in this

paper are important directions of future work. The sharing economy is an incredibly

fast-moving space: adoption rates are growing both on the consumer and the crowd

member side, policy is shifting, and (as noted above) geosociotechnical designs are

constantly changing. It is unlikely that geography’s role in sharing economy effec-

tiveness will decline. However, the character of geography’s role may change as the

sharing economy develops.
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