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Abstract

Guidance and navigation in unknown environments requires learning of the task

environment simultaneous to path planning. Autonomous guidance in unknown envi-

ronments requires a real-time integration of environment sensing, mapping, planning,

trajectory generation, and tracking. For brute force optimal control, the spatial en-

vironment should be mapped accurately. The real-world environments are in general

cluttered, complex, unknown, and uncertain. An accurate model of such environments

requires to store an enormous amount of information and then that information has

to be processed in optimal control formulation, which is not computationally cheap

and efficient for online operations of autonomous guidance systems. On the contrary,

humans and animals are in general able to navigate efficiently in unknown, complex,

and cluttered environments. Like autonomous guidance systems, humans and animals

also do not have unlimited information processing and sensing capacities due to their

biological and physical constraints. Therefore, it is relevant to understand cognitive

mechanisms that help humans learn and navigate efficiently in unknown environments.

Such understanding can help to design planning algorithms that are computationally

efficient as well as better understand how to improve human-machine interfaces in par-

ticular between operators and autonomous agents. This dissertation is organized in

three parts: 1) computational investigation of environment learning in guidance and

navigation (chapters 3 and 4), 2) investigation of human environment learning in guid-

ance tasks (chapters 5 and 6), and 3) autonomous guidance framework based on a graph

representation of environment using subgoals that are invariants in agent-environment

interactions (chapter 7).

In the first part, the dissertation presents a computational framework for learn-

ing autonomous guidance behavior in unknown or partially known environments. The

learning framework uses a receding horizon trajectory optimization associated with a

spatial value function (SVF). The SVF describes optimal (e.g. minimum time) guidance

behavior represented as cost and velocity at any point in geographical space to reach

a specified goal state. For guidance in unknown environments, a local SVF based on
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current vehicle state is updated online using environment data from onboard extero-

ceptive sensors. The proposed learning framework has the advantage in that it learns

information directly relevant to the optimal guidance and control behavior enabling op-

timal trajectory planning in unknown or partially known environments. The learning

framework is evaluated by measuring performance over successive runs in a 3-D indoor

flight simulation. The test vehicle in the simulations is a Blade-Cx2 coaxial miniature

helicopter. The environment is a priori unknown to the learning system. The disserta-

tion investigates changes in performance, dynamic behavior, SVF, and control behavior

in body frame, as a result of learning over successive runs.

In the second part, the dissertation focuses on modeling and evaluating how a hu-

man operator learns an unknown task environment in goal-directed navigation tasks.

Previous studies have showed that human pilots organize their guidance and perceptual

behavior using the interaction patterns (IPs), i.e., invariants in their sensory-motor pro-

cesses in interactions with the task space. However, previous studies were performed in

known environments. In this dissertation, the concept of IPs is used to build a modeling

and analysis framework to investigate human environment learning and decision-making

in navigation of unknown environments. This approach emphasizes the agent dynamics

(e.g., a vehicle controlled by a human operator), which is not typical in simultane-

ous navigation and environment learning studies. The framework is applied to analyze

human data from simulated first-person guidance experiments in an obstacle field. Sub-

jects were asked to perform multiple trials and find minimum-time routes between pre-

specified start and goal locations without priori knowledge of the environment. They

used a joystick to control flight behavior and navigate in the environment.

In the third part, the subgoal graph framework used to model and evaluate humans

is extended to an autonomous guidance algorithm for navigation in unknown environ-

ments. The autonomous guidance framework based on subgoal graph is an improvement

to the SVF based guidance and learning framework presented in the first part. The lat-

ter uses a grid representation of the environment, which is computationally costly in

comparison to the graph based guidance model.
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Chapter 1

Introduction

Humans are capable of learning complex unknown environments in a variety of guidance

tasks and use the knowledge to determine near-optimal (e.g., minimum-time) perfor-

mance and remain versatile and adaptive to unexpected changes in the environment.

This capability is not unique to spatial environment navigation but is also essential to

other spatial tasks involving interactions with the environment such as pertaining to

surgery. The general goal of this research is to understand how humans achieve efficient

environment learning and path-planning capabilities despite their limited sensing, infor-

mation processing, and memory capabilities. Such understanding can help to improve

planning algorithms to be computationally efficient and adaptive to changes in the task

environment as well as better understand how to improve human-machine interfaces in

particular between operators and teleoperated or autonomous agents.

An agile guidance task in an unknown environment primarily involves three steps.

The first step is environment sensing and assimilating the sensed environment infor-

mation into global knowledge. The second step is path planning, i.e., trajectory opti-

mization, using the known/learned knowledge and planning an immediate trajectory.

The last step is tracking the planned trajectory. The three steps are repeated online.

An autonomous guidance operation requires a mechanism for sensing and learning the

environment and representing the learned environmental information in computation-

ally efficient ways, in order to process online trajectory planning. Given the limited

sensing and information processing capabilities of autonomous guidance systems, it is

challenging to develop efficient learning and representation methods for real-world tasks
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in spatial environments.

Humans have constraints on their memory, sensing, and information processing ca-

pabilities. Human limitations are limited field of view and visual attention, limited

information processing (e.g., working memory), and perceptual guidance at sensing,

planning, and control levels, respectively. Despite these limitations, they can navigate

complicated unknown environments, exhibit efficient behavior in agile guidance tasks,

and given enough trials, learn near-optimal solutions (e.g., minimum-time route between

two places). Strengthening the knowledge base about environment learning in humans

could be a key to overcoming computational complexities in autonomous guidance sys-

tems that arise from having to process enormous amount of information available in

real-world task environments. This research investigates principles that underlie ro-

bust human guidance, learning process/mechanism, and memory structure in dynamic

spatial behavior/navigation of unknown environments.

Humans and other animals have evolved a system of processes to navigate and inter-

act with their environments. Gibson [1] introduced the idea that spatial behaviors are

mediated by affordances, available through the interaction with task and environmental

elements. For example, Lee [2, 3, 4] showed how principles like time-to-closure of a gap,

e.g., distance, angle, force, etc., and optical flow can be used to regulate motion, rather

than requiring complex models and computations. Tau-control and optical flow show

how humans and animals use limited cues from the environment, which help them over-

come their perceptual and information processing constraints. Inspired by the concept

of affordances and limited cues, this research investigates cues and affordances used by

humans to navigate unknown environments.

The central concept this research is based on is “invariants”. Simon [5] quoted

“The fundamental goal of science is to find invariants”. An invariant can break down a

complex problem into smaller subproblems such that a similar solution can be used for a

set of subproblems. For guidance tasks in spatial environments, previous studies [6, 7, 8]

with human pilots operating remote-control miniature rotorcraft showed that pilots

organize spatial behavior by using invariants in their sensory-motor behavior (guidance,

control, and perceptual processes) in interaction with the spatial environment and task

elements. The invariants in sensory-motor behavior are called interaction patterns (IPs)

as these emerge from interactions between the agent and the task environment. IPs are
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transferable to similar task domains via symmetry transformations such as rigid-body

transformation (translation, rotation, and reflection), which mitigates a guidance task

complexity. Mettler et. al [8] proposed that IPs function as units of organization for

planning spatial behavior in guidance tasks. Previously, IPs have been studied and

used for modelling human guidance behavior in known environments. This dissertation

investigates what functions IPs play in human learning during goal-directed guidance

tasks in unknown environments. The dissertation builds on IPs to propose a framework

that allows to formally investigate human environment learning in agile guidance tasks.

1.1 Preceding Work

This section briefly reviews the concepts of spatial value function (SVF), interaction

patterns (IPs), and hierarchical model of human pilots’ guidance and perceptual be-

havior. The study of autonomous and human environment learning presented in this

dissertation is based on the concepts of SVF, IPs, and hierarchical model of human

guidance behavior.

1.1.1 Spatial Value Function (SVF)

For a trajectory optimization problem in which a vehicle has to reach a specified goal

state xg from a start state, spatial value function (SVF) [9] describes optimal cost-

to-go (CTG) and velocity vector field (VVF) over a geographical space. A detailed

mathematical formulation of SVF is given in Chapter 3.

1.1.2 Spatial Structures (Patterns) in SVF

Kong and Mettler [10] described structural features (subgoals, repelling and attracting

manifolds) in the SVF. They investigated these elements using a toy example based on

the optimal solution for a Dubins vehicle that has to reach a goal in an obstacle field, as

shown in Fig. 1.1 from [11]. Subgoals partition a task space such that optimal solution

in each partition converges to a subgoal. A common boundary of two space partitions

is defined as either repelling or attracting manifold. Velocities converge and diverge

along attracting and repelling manifolds, respectively. These features make it possible

to abstract the solution. The entire solution, i.e., SVF, can be described as a directed
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graph of subgoals. The subgoal graph representation of task space accounts for both

the vehicle dynamics and environment. Trajectory to the goal from any location in the

task space can be represented by a subgoal sequence.

(a)                                                                                          (b)

Figure 1.1: Example of spatial structures in spatial value function (SVF): (a) partition of
the task space for a Dubins optimal solution using spatial structures (subgoals, repelling
and attracting manifolds) and (b) graph representation of the task space based on the
spatial structures. The figures are from [11].

1.1.3 Human SVF

Spatial value function (SVF) describes spatial guidance behavior associated with an

optimal guidance policy (e.g., cost and velocity maps over geographical space). Mettler

and Kong [12] showed that the guidance behavior of a trained operator can be described

as SVF. They described a method to extract SVF maps from experimental trajectories

in a goal interception task. The extracted SVF maps were compared with an optimal

policy based on a mass-point model. The results in [12] showed that guidance behavior

of a trailed pilot was sufficiently stationary in time, and continuous and consistent over

the space. Therefore, the concept of SVF is a valid tool for the analysis of human
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guidance behavior. Kong and Mettler [7] subsequently extended the analysis to investi-

gate the organization of guidance behavior over large task environments with obstacles.

They suggested that humans exploit invariants in the dynamic interactions with the

environment to mitigate complexity, which is discussed next.

1.1.4 Interaction Patterns: Human Pilot

The patterns described in Dubins solution space [10] are a result of interaction between

vehicle dynamics and environment. To account for human operators in human-piloted

guidance tasks, Kong and Mettler [7] used the concept of closed-loop agent-environment

dynamics [13]. The authors applied the concept of “invariances” on closed-loop agent-

environment system and described interaction patterns (IPs), i.e., subgoals and guidance

primitives, that accounts for interactions of human operator’s control, guidance, and

perceptual mechanisms with the environment. A mathematical formulation for IPs is

given in Chapter 5.

1.1.5 Functional Model of Human Guidance

Mettler et. al [8] combined the elements such as IPs and perceptual guidance to propose

a hierarchical multi-loop model explaining organization of human guidance behavior.

The hierarchical model delineates planning, perception, and control as shown in Fig. 1.2.

At the highest-level, i.e. planning, a human pilot decomposes the global task into

subtasks as a sequence of subgoals. To navigate between subgoals, the pilot deploys

a series of guidance primitives. A guidance primitive is an invariant control profile

coupled with particular perceptual processes (e.g., gaze movements). Thus a human

pilot uses IPs as units to organize their guidance behavior in a task space. The goal

of this research is to investigate the functions of planning, perceptual guidance, and

control levels in the hierarchical model of human guidance behavior for learning new

environments.

Mettler et. al [8] also presented a hierarchical model of perceptual behavior that

models visual attention as a function of three levels (planning, perceptual guidance, and

tracking and pursuit) in the hierarchical guidance model. Andersh et. al [14] tested

the hypothesis based on the functional model. The authors investigated visuo-motor
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control in a remote-control goal-interception task. The analysis showed that pilots’ gaze

follow the vehicle. In between, pilots use saccades to rapidly switch gaze to the goal

location and fixate gaze at the goal for a small duration. The smooth pursuit, i.e., gaze

following the vehicle, and saccades provide estimates of vehicle velocity and motion gap

to the goal location, respectively.

Figure 1.2: Hierarchical multi-loop model of human guidance behavior proposed in [8].

1.2 Research Questions

Previous studies [7, 8] focused on functions of IPs in known environments. They used

humans as a remote pilot, which enables a third-person view for the guidance task. The

task environment was known and in field of view of a pilot. However, in most real-world

tasks, the environment is not fully known and only partially visible (in field of view).

Therefore, the planning of subgoal sequence requires memory, learning, and decision-

making processes. This research investigates the role of IPs in learning and navigation

of unknown environments.
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The general goal is to model cognitive functions that facilitate environment learn-

ing in spatial guidance tasks in humans. Downs and Stea [15] gave a formal definition

of cognitive mapping: “Cognitive mapping is a process composed of a series of psy-

chological transformations by which an individual acquires, codes, stores, recalls, and

decodes information about the relative locations and attributes of phenomena in his

everyday spatial environment.” Following the definition in [15], this dissertation formu-

lates specific questions for environment learning in spatial guidance tasks in humans.

The questions are: 1) what information is extracted from interactions with the environ-

ment?, 2) what is the memory structure for coding and storing the information?, and

3) how the information is represented to support planning and decision-making?

1.3 Hypothesis

The hypothesis for guidance tasks in unknown environments is that interaction patterns

serve as units of organization for learning the task (e.g., learning an optimized such as

time-optimal behavior in the environment). A human pilot uses IPs to abstract the task

environment as a graph network of subgoals. A skilled pilot learns guidance primitives

that represent trajectory maneuvers optimized for a given cost function (e.g., time).

For the guidance primitive of the skilled pilot, perceptual and control policies are linked

in a way that allows the pilot to focus his/her attention at task-relevant features of

the environment. The optimal guidance primitives are required for the learning of the

optimal subgoals and their network. The subgoal graph enables the pilot to layout the

global plan as a sequence of subgoals and implement control as a series of guidance

primitives.

1.4 Approach Overview

This section briefly describes the approach and experiment systems, used in this dis-

sertation, for studying the learning of new environments in autonomous and human

guidance tasks.
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1.4.1 Autonomous Guidance

The mathematical formulation and details of the guidance framework and experiment

system are given in Chapter 3. This section gives only a brief overview.

The autonomous guidance framework is based on a receding horizon trajectory op-

timization with SVF [9]. The framework consists of an online planning cycle that has

three primary steps as follows. First, a local (in a neighborhood of vehicle’s current

position) SVF is updated online using the environment data sensed from exterocep-

tive sensors. Second, the updated SVF map is used to compute an intermediate goal

point in the local neighborhood. Third, an online planner uses a numerical trajectory

optimization method to travel to the intermediate goal.

For simulations, the dissertation uses a detailed 3-D indoor environment that is un-

known to the guidance system a priori. Successive runs are simulated between specified

start and goal states. The approach in this research is based on trajectory optimization,

therefore the quality of the solution depends on how close the solution is to the optimal

trajectory. In this research, time-to-go is used as objective function. Therefore, an opti-

mal trajectory corresponds to the minimum time trajectory. Other cost functions such

as path length, energy, or a function of them, can also be used, which will be mentioned

in an overview of SVF computation using quantized state-space in Chapter 3. The

simulations presented in this dissertation uses a discrete-time linear state-space model

of a Blade-Cx2 coaxial miniature helicopter.

1.4.2 Human Guidance

The details of the analysis framework and experiment system to study human learning

of new environments in agile guidance tasks are given in Chapter 5. This section gives

only a brief overview.

The hypothesis is that the interaction patterns provide the mechanisms needed to

abstract a task environment. The task space is modeled as a graph network of subgoals

(IPs). The graph model is applied to investigate how subjects learn the task structure

and optimal behavior. The solution from a Dijkstra’s shortest path formulation is used

as a baseline to evaluate decision-making (subgoal selection) process in human subjects.

The framework applies a hierarchical clustering method on trajectory data to identify
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guidance primitives.

To study task environment learning in humans, the dissertation uses a simulated

environment proposed by Feit and Mettler [16] for first-person guidance experiments.

The system uses a monitor to display a simulated environment (a maze made of vertical

walls) unknown to a human subject. A subject can navigate in the environment using a

joystick that simulates a vehicle with unicycle dynamics. The system records the control

inputs, vehicle trajectory, and human gaze location in the 3-D environment displayed

on the screen.

In this dissertation, the hypothesis for human environment learning is tested by eval-

uating human guidance data using a benchmark subgoal graph and extracting guidance

primitives from the data. If the hypothesis that interaction patterns aid task learning

is correct, a skilled pilot will show emergence of focused, distinct, and cost-optimal

interaction patterns than a novice pilot.

1.5 Dissertation Outline and Contributions

Figure 1.3 shows the organization of this dissertation. The contributions of this disser-

tation are presented next.

1.5.1 Computational Investigation of Environment Learning (Chap-

ters 3 and 4)

Guidance of an autonomous UAV (unmanned aerial vehicle) can be formulated as a tra-

jectory optimization problem using optimal control [17]. Such formulations, however,

are NP-hard [18]. For real-time guidance applications in unknown and uncertain envi-

ronments, the optimization problem has to be solved repeatedly and online. Therefore,

an entire (infinite-horizon) trajectory optimization is not a practical solution for online

operations. Receding horizon (RH) control [19, 20, 21, 22, 9, 23] is a practical solution

to UAV guidance problems. In RH planning, a finite-horizon trajectory optimization

based on current vehicle and immediate environment states is solved repeatedly. A cost-

to-go (CTG) function is used to approximate the cumulative cost of discarded tail of the

global trajectory. The CTG accounts for the global environment and task parameters.

The minimum of total cost (CTG + cost of the finite-horizon trajectory) gives a target
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point called the active waypoint (AWP) [23]. The RH planner follows the finite-horizon

trajectory to the AWP. The closer the cost-to-go is to its true value, the more optimal

(closer to the infinite-horizon optimal control solution) the receding horizon solution

and the shorter the planning horizon is [22].

In the past, a number of approaches have been used to compute the CTG map for

RH planning. Bellingham et. al [19] used a CTG function based on a visibility graph to

account for obstacles. The CTG function in [19] is defined at the graph’s vertices, using

a shortest path algorithm. Mettler and Bachelder [20] used an offline computed CTG

map based on a cell decomposition of the 3-D environment, which was related to vehicle

turning radius and flight path angle. The CTG map in [20] incorporates vehicle state

information. The offline CTG map is used for online RH planning. Mettler et. al [9]
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introduced the concept of spatial value function (SVF) that describes optimal cost-to-

go (CTG) and velocity vector at a point in geographical space. The guidance policy

over geographical space can be called as spatial guidance behavior. The SVF accounts

for effects of vehicle dynamics and environment characteristics such as obstacles layout

and length-scale. Note that the SVF term refers to the CTG and both terms are used

interchangeably in the dissertation. An approximate optimal SVF map is computed

using discretized state-space (geographical space and vehicle dynamics) and dynamic

programming [9].

When the environment is unknown or partially known, the CTG map has to be

updated repeatedly as the task progresses and the environment is learned through on-

board sensors. Mettler et. al [9] presented a sensory-predictive guidance system based

on an integration of RH trajectory optimization and SVF. The integration of sensing

and planning processes in [9] is done using a local SVF map that is defined over the

domain of online trajectory optimization in RH planning. The local SVF map adapts

to online sensory data. The sensory-predictive guidance system in [9] enables adaptive

behavior, based both on local and global information. The learning autonomous guid-

ance framework presented in Chapter 3 is based upon the sensory-predictive guidance

system in [9].

The previous work [9, 23], however, did not study the guidance performance coupled

with the learning process. This dissertation uses the proposed framework to formally

investigate this learning process, and simultaneously analyze the associated information

processing (propagation and assimilation) over repeated local SVF updates and succes-

sive runs. With this approach it is possible to determine how guidance performance

and various aspects of dynamic behavior evolve as the SVF is learned over successive

runs. The analysis leads to a better understanding of the type of abstractions needed to

achieve sparse description of guidance policy over complex geographical environments.

Another issue this research addresses is that the AWP selection process, in the pre-

vious approaches [20, 21, 22, 9, 23] , requires solving the online trajectory optimization

for a set of points (AWP candidates) in the local CTG map. Numerical optimization

such as nonlinear programming would be intractable. In this dissertation an approxi-

mate cost-to-come (CTC) map is introduced. This map is computed using the same set

of quantized state-space as for the CTG function, however, it only spans the reachable
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space (which is contained in the sensory space), i.e., the space vehicle can reach from its

current state within a finite time horizon. The CTC map provides a lower bound on the

actual cost-to-come and allows efficient computation of the AWP. This information is

then used for the trajectory generation. Note that with this framework the CTC could

also be learned or improved based on performance data. The framework also provides

the capability to validate the performance of the finite-horizon trajectory with respect

to the CTC map.

1.5.2 Human Environment Learning (Chapters 5 and 6)

This research investigates how humans learn a new task environment in goal-directed

guidance tasks. The dissertation presents an analysis framework that models the task

space as a graph network of subgoals. The graph framework provides a formal assess-

ment of task environment learning by tracking the emergence of subgoals, connectivity

between subgoals, and convergence of CTG at subgoals. The framework uses a hier-

archical clustering method to identify guidance primitives (IPs) in human trajectory

data. The method is applied to track the emergence of guidance primitives as a subject

learns the task environment over successive trials. The dissertation presents a compar-

ison study between skilled and novice pilots. The study highlights the characteristics

of a skilled subject, which assist skilled subjects in efficient environment learning and

performance.

1.5.3 Autonomous Guidance: Subgoal-Graph Framework (Chapter 7)

Chapter 7 uses the subgoal-graph framework used to analyze human environment learn-

ing in guidance tasks to present an autonomous guidance framework for navigation in

unknown environments. The framework learns a topographical representation of the

task space. The method is an improvement to the autonomous guidance and learning

framework presented in Chapter 3, which learns the environment as SVF, i.e., a grid

based representation of the task space. The graph representation is efficient in terms of

storage memory requirements and computations.
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Chapter 2

Research Background

This chapter provides the background on autonomous guidance and models of human

guidance behavior to highlight the significance of the formulation and approach used in

this dissertation. Section 2.1 gives an overview of autonomous path planning techniques

in unknown environments. Section 2.2 discusses existing models of human drivers/pilots,

visual guidance, spatial navigation, decision-making, and cognitive limitations (e.g.,

working memory).

2.1 Background: Autonomous Guidance

A number of motion planning algorithms for autonomous UAV guidance have been pro-

posed in the past (see the survey paper by Goerzen et. al [24]). This section briefly

reviews the graph search techniques, practical planning techniques for dynamic systems,

learning and path planning, optimization approaches (such as model predictive or reced-

ing horizon control), SLAM (simultaneous localization and mapping), and topological

map learning methods. This section is taken from article [25].

2.1.1 Graph Search Techniques

Graph search techniques are common for robotic path planning [26]. Dijkstra’s [27] and

A* [28] algorithms are used for path planning in known terrains. These graph search

methods use a heuristic (e.g. distance) to anticipate the remaining cost to reach the

goal, and minimize the sum of the anticipated cost and the cost of the path travelled so

14
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far. For path planning in unknown terrains, the path has to be recomputed (updated)

iteratively as the task progresses and unknown obstacles are revealed through onboard

sensors. Stentz [29] proposed the D* algorithm for optimal and efficient re-planning in

partially known environments. D* is a dynamic version of A*, which updates local path

based on the local changes in the environment rather than re-computing the entire path

from start to goal.

Graph search methods have been applied for path-planning of UAVs. For example,

Bortoff [30] proposed a two step path-planning algorithm for UAVs to trade-off stealth

versus path length through a set of enemy radar sites. The first step is to find an optimal

path on Voronoi graph built around the radar locations. The second step accounts for

the UAV dynamics using the graph solution as initial conditions. Bellingham et. al [31]

presented a method based on visibility graph for an optimal task allocation of a fleet

of UAVs to visit specified waypoints, minimizing a cost function such as time. Graph

search techniques in general provide an optimal sequence of nodes (spatial waypoints) in

a graph but do not account for vehicle dynamics and limits on maneuvering capabilities.

2.1.2 Practical Planning Techniques for Dynamic Systems

Path planning for autonomous vehicles requires techniques that can generate dynami-

cally feasible plans exploiting vehicle dynamic capabilities. Fox et al. [32] proposed a

dynamic window approach derived from the motion dynamics of a robot. The dynamic

window refers to a reduced velocity space consisting of velocities that are reachable

within a short time interval from the current velocity state, considering its acceleration

constraints. LaValle and Kuffner [33] described a method for kinodynamic planning

in the configuration space using rapidly exploring random trees (RRT). RRT based

methods try to find the shortest feasible path in the vehicle’s visible set by randomly

sampling control actions. Techniques in [32, 33] directly account for vehicle dynamics

in path planning unlike graph search methods. However, these techniques are ad hoc in

their formulation and implementation [9] and don’t provide a formulation for learning

the optimal guidance behavior.
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2.1.3 Learning Techniques

Learning techniques have been applied for autonomous guidance in unknown complex

environments [34, 35, 36]. Michels et al. [34] used supervised learning to estimate depth

of a scene using monocular visual cues on single images of outdoor environments, and

reinforcement learning to generate steering commands based on the depth estimates.

Abbeel et. al [35] trained a controller on human pilot demonstrations of helicopter

maneuvers. The controller was demonstrated on a real RC helicopter to perform au-

tonomous aerobatic maneuvers. Reinforcement learning applied in [35] is focused on

control and maneuvering, which is disconnected from the environment. Richards and

Boyle [36] combined receding horizon control with reinforcement learning, which learns

a cost function and improve performance over multiple surveillance tasks in known envi-

ronments. The method in [36] randomly switches between exploration and exploitation,

and the probability of exploration decays as more trials are performed. The authors

in [36] tested the algorithm in a known 2-D obstacle field. The cost-to-go function used

in [36] is based on the Euclidean distance from the goal, which does not account for the

vehicle dynamics.

This dissertation uses the SVF [9] that accounts for vehicle dynamics as well as en-

vironmental constraints. An unknown complex 3-D environment is used to demonstrate

learning processes. The dissertation investigates the evolution of SVF with learning,

and what spatial features emerge in SVF as a result of learning.

2.1.4 Optimization Based Techniques

Optimization based techniques, with state and control constraints, for trajectory gener-

ation are costly and impractical to use online, if the trajectory over an entire problem

space has to be optimized at once. Model predictive control [37, 38] uses a model of a

system to predict the future evolution of the system. A performance index is optimized

with respect to a sequence of future moves, given the operating constraints. The first

of such optimal moves is applied to the system and the process is repeated at each time

step. Such a method makes it practical to account for constraints on states and con-

trols in online operations [37]. Model predictive control has been applied to trajectory

planning of UAVs (e.g. [39, 40]).
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Receding horizon (RH) trajectory optimization is similar to model predictive con-

trol. In RH optimization, a finite-horizon trajectory optimization problem is solved

repeatedly based on the current vehicle state and immediate environment. Successful

results have been achieved in simulation and experiments on a number of aerial vehicle

platforms [41, 42, 43, 44]. However, as pointed out in [9], one of the key challenges in

the formulation of RH planning is the selection of cost-to-go (CTG) function used to

approximate the cumulative cost of the discarded tail of trajectory. The closer the CTG

is to the actual CTG, the closer the RH based approximation of the original optimal

control problem is to the infinite-horizon optimal control problem [22].

Mettler et. al [9] presented the concept of spatial value function (SVF) relating

the optimal guidance solution and geographical space. The SVF describes the optimal

cost-to-go from a given point in geographical space to the goal, accounting for obsta-

cles and vehicle dynamics. It represents the complete information needed for guidance

throughout the geographical space. An approximate optimal SVF is computed using

quantized state-space and dynamic programming [9], which is described in Chapter 3.

The authors in [9] presented a sensory-predictive guidance system that integrates SVF

with RH planning, using the concept of local SVF. Onboard sensory data is fused with

the local SVF to integrate sensing and planning processes. Dadkhah and Mettler [23]

used a risk map update function to iteratively update the environmental occupancy

probability map based on sensory data. The updated occupancy map is used to update

the local SVF map using a dynamic version of Dijkstra’s algorithm [45]. This disser-

tation evaluates and validates the sensory-predictive guidance system using an indoor

flight simulation setup. The study shows that a global convergence is achieved through

local updates across a number of successive runs.

2.1.5 SLAM (Simultaneous Localization and Mapping)

SLAM [46] is a technique to simultaneously map an environment using sensors onboard

a vehicle and keep track of its position in the environment. An accurate estimate of the

vehicle position is required to build an accurate map of the environment and vice versa.

Solving for both the vehicle position and the environment map is not trivial in presence

of noise in vehicle’s navigation and errors in sensors. SLAM techniques use iterative

feedback between environment mapping and vehicle position estimation to increase the
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consistency between both vehicle position and environment map estimates. SLAM has

been applied for environment learning and autonomous navigation of robots and UAVs

in unknown environments [47, 48].

SLAM in general focuses on learning the geographical aspects (topology, landmarks

etc.) of the environment and vehicle state in the environment. This dissertation uses an

approach that learns optimal guidance policy over geographical space. In uncertain and

unknown environments, a SLAM algorithm has to be used to produce the local environ-

ment data that is assimilated into the local SVF by the proposed learning framework.

However, integration of the learning framework with SLAM is out of scope for current

study. To focus on behavior learning processes, it is assumed that the vehicle state is

known.

2.1.6 Topological Map Learning

Meyer and Filliat [49] presented a survey on topological map learning methods. Topo-

logical maps abstract spatial environments as graphs describing relationships between

different landmark locations. A common-sense knowledge of space is a topological de-

scription of paths and places [50]. Topographical maps have been used for path planning,

e.g., [51, 52, 53, 54]. Mataric [51, 52] used a dynamic approach to detect landmarks for

topological mapping. In the dynamic approach, onboard sensors monitor for consisten-

cies in the sensory data as a robot moves next to objects in an environment. Thrun [53]

used an approach in which topological maps are generated on top of grid-based maps.

The approach in [53] combines properties from both maps, which are accuracy and effi-

ciency for grid-based and topological maps, respectively. Ranganathan and Dellaert [54]

presented a Bayesian inference method to estimate the posterior probability distribution

on the space of all topologies, using online measurements. The authors in [54] demon-

strated the algorithm with different sensors in different environments. Topographical

maps using connectivity information between landmarks are an efficient representation

of space for path planning. A question, however, is what environmental elements are

critical to topological maps that account for vehicle dynamics and its interaction with

the environment.

The learning framework presented herein uses grid-based maps since they allow to

describe information about the spatial guidance behavior as SVF (CTG) map. The
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understanding gained from the investigation of learning and information assimilation

processes helps determine what environmental elements are relevant from a guidance

perspective. This knowledge, in turn, can be used to define the appropriate data struc-

ture. These results will be discussed in Chapter 4 following the simulation results.

2.2 Background: Human Guidance, Navigation, and Decision-

Making

This section gives an overview of existing models of human driver/pilot control, visual

guidance, and cognition. The section also discusses background on human spatial navi-

gation, memory, and representation. Next, the section provides a background on human

decision-making, learning, and cognitive limitations such as working memory, which are

relevant factors in learning of new environments and route planning.

2.2.1 Driver Modelling

Study and modelling of human drivers is relevant to improving automated vehicles and

human-machine interfaces. A human driver has three primary components: cognition

(planning), visual perception (visual guidance), and control. This section discusses

models that focus on human control or cognitive processes. Visual guidance in humans

is discussed in subsequent Section 2.2.2.

Optimal Control

In the past, human drivers/pilots have been generally assumed to operate as an optimal

controller and modelled using conventional control techniques, e.g.,[55, 56, 57, 58, 59,

60, 61, 62, 63, 64, 65, 66]. Tuskin [55] analyzed human tracking of moving targets and

proposed a “nearest linear law”, i.e., a human control input responds to instantaneous

values and the rate of change of error. Mcruer [56, 58, 59] studied human control in

certain closed-loop dynamic systems. McRuer and Krendel [56] proposed two models of

human control, which are precognitive and pursuit. In precognitive model, a human can

accurately predict the output based on an input, and therefore the human operates as

an open-loop controller. In pursuit model, the human requires feedback such as visual



20

to manipulate its control, i.e., a closed-loop controller. McRuer and Jess [58] proposed

a crossover model to describe that human pilot response has a limited bandwidth.

Kleinman et. al [61] modelled humans’ psychophysical limitations using time delays.

Hess [62, 63, 64, 66] worked towards developing mathematical models of an adaptive

human pilot. Hess [63] presented a human pilot model for pursuit tracking tasks. Hess

and Modjtahedzadeh [64] used feedback control design principles to model a driver

steering behavior for lane-keeping driving task on a curving road. Hess [66] presented a

system identification of human pilot behavior in time-varying dynamic systems. It used

a real-time, pilot-in-the loop simulation environment for the identification based on an

output error model estimation algorithm. Zeyada and Hess [65] presented a framework

to investigate how pilots perceive and utilize visual, proprioceptive, and vestibular cues

in a ground-based flight simulator. This helped to develop a pair of metrics that can be

used to assess a simulator fidelity.

Human behavior modeling as a control element gives a mathematical solution to

certain tasks. Mathematical models of manual control, however, do not capture the total

task of driving an automobile [67]. Therefore, mathematical models in general are not

applicable for explaining human behavior in real-world spatial tasks such as navigating

in real-world terrains (cities, forests, etc.), driving/piloting in a real-world environment,

maneuvering a tool in a surgical task, etc. Also, it is not possible to comprehend human

behavior and related cognitive mechanisms based on theoretic-control models.

Machine Learning

Machine learning techniques such as hidden markov models (e.g., [68, 69, 70]) and

neural-networks (e.g., [71]) have been applied to model human driver control and per-

ceptual behavior. Pentland and Liu [68] developed a computational model of human

driver behavior using Hidden Markov Models. Oliver and Pentland [69] used a Smart-

Car with a real-time data acquisition system that recorded drivers’ controls such as

the brake, gear, and steering wheel angle. The system used video signals to capture a

driver’s head and viewpoint. The authors in [69] examined the experimental data, us-

ing the computational framework presented in [68], to learn Hidden Markov Models for

driver maneuvers, such as turning and changing lanes. The models in [68, 69] predicted

drivers’ maneuvering behavior around 1 second before maneuvers took place, with a



21

high accuracy. Liu and Salvucci [70] used Hidden Markov model to predict a driver’s

intended actions based on a sequence of internal mental states. Each mental state con-

sisted of a characteristic pattern of behavior and environmental state. The authors used

the driver’s visual scanning behavior as another source of information about the driver’s

state. Suzuki et. al [71] applied a neural-network modeling to analyze human-pilot con-

trol inputs during the landing phase in the visual approach on a flight simulator. The

neural network was trained to simulate the inputs of a human pilot, based on the time

history of visual cues and control inputs.

Machine learning methods are applicable to model real-world tasks and account for

a large number of dimensions (a large portion of total task) unlike mathematical models.

However, it is not simple to understand cognitive mechanisms related to driving tasks,

using statistical models.

Cognitive Models

Driving is a multi-tasking activity including low-level control (e.g., steering, acceler-

ating/braking) and high-level planning (e.g., maintaining situational awareness), and

requires attention management among various elements [72]. For example, a driver has

to regularly switch his/her attention between inside-car displays and scanning the road

to maintain situational awareness. Therefore, cognitive psychology has been applied to

model human driver behavior, e.g., [73, 74, 75, 76, 77]. For example, Bellet and oth-

ers [73, 77] presented a cognitive architecture of driver’s mental representation in car

driving tasks. The architecture is primarily based on concepts of long-term and working

memories, situational awareness, and action-perception cycle. Song et. al [74] presented

a hybrid model that includes levels such as strategic, tactical, and operational. In the

hybrid model [74], a driver uses the information from a perception module to decide the

type (level) of behavior to activate.

Cognitive models are generally comprehensive and account for human factors (e.g.,

memory limitations), unlike theoretic-control or machine learning models. However,

they do not explain versatile and agile spatial skills of a skilled human driver/pilot.

This research is based on the concept that a skilled pilot exploits the invariants (pat-

terns) in guidance, control, and perceptual processes in interactions with the task en-

vironment [8]. These invariants (interaction patterns) are used as units for organizing
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planning, perception, and control behavior in the task space. These patterns exploit

symmetries in the task space, which makes spatial planning robust and efficient.

Human-Inspired Controllers

Humans and animals are in general good at navigating around complex obstacles in

real-world environments. In the past, researchers have studied obstacle avoidance be-

havior of humans. For example, Fajen and Warren [78, 79] presented the method of

“point attractors” to model human obstacle avoidance behavior and route selection in

goal-directed path planning. The point attractors model uses a superposition of goal

attractions and obstacle repulsions. The method controls second derivative of steering

angle unlike steering angle in potential methods in [80], which generates smooth tra-

jectories. The authors concluded that in humans route selection can be modelled as

local steering dynamics (obstacle avoidance behavior), and does not require an advance

planning of global route based on an explicit representation of the world, i.e., a common

approach in robotics. However, Patla et. al [81] showed that in cluttered environments

humans route selection cannot be modelled as a reactive planning but involve a global

planning such as visual scanning of clusters of obstacles and avoid them. The point

attractors method has been used for modeling autonomous navigation in obstacles us-

ing human driving data (e.g., [82]). Expert human drivers such as race car drivers can

make high-speed off-road turns. Such control skill is relevant for agile military vehicles

operating in rough terrains. Huang et. al [83] presented an experimental platform and

pattern recognition method for characterizing human control during tight turns with

sliding in high-speed off-road driving. Burns et. al [84] used human control data in a

simulated driving task in an obstacle field to train a receding horizon controller.

A drawback of human-inspired controllers such as “point attractors” is that the

methods in general focus on steering and obstacle avoidance behavior, which is un-

doubtedly an important aspect in designing autonomous guidance systems, but do not

address the problem of learning new environments and global task planning in large

environments with limited environment visibility. The methods do not answer how hu-

mans despite limited memory and information processing capacities learn and plan agile

guidance and navigation tasks in complex unknown spatial environments.
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2.2.2 Visual Perception in Driving/Locomotion

Vision is a primary source of perception of the world in humans and most animals.

This subsection gives a brief overview of studies about roles of human vision in guid-

ance/driving tasks and self-locomotion.

Ecological Perception

Gibson [1] introduced the theory of “ecological perception”. He argued that perception

of visual world is not mere sensation of external (visual) stimuli but directly extracts

information from the visual world, relevant to the activities. As Rosenbaum [85] quoted:

The visual system, in this theory, need not decipher the structure of the

external world by piecing together bits of visual evidence, as some have

argued. Rather, according to this theory of ecological perception, the optic

array contains adequate information to make the structure of the external

environment immediately and unambiguously apparent.

The ecological perception provides affordances that are opportunities of action in

an environment [1]. The interaction between an animal (human) and an environment

is mediated by affordances. Perception is action-specific, i.e., the action abilities of a

perceiver is reflected in perception [86].

Visual Kinesthesis

Vision has an important role in estimating one’s own body movement, i.e., kinesthesis.

Lee [87, 88] studied visual kinesthesis using a swinging room example in which human

subjects stood in a room that was actually an inverted box made of four walls and

ceiling. When the room (box) was swayed, the subject swayed too as he/she perceived

himself/herself falling forwards or backwards. One explanation for the subjects’ be-

havior in swinging room is the optic flow [89] that carries the information of subject’s

bearing relative to the environment.

Lee [2, 3] used the optic flow theory to present the concept of time-to-closure of a gap

(e.g., distance, force, etc.). The author showed how the simplest type of information,

i.e. time-to-collision, would be sufficient for a driver to control braking, rather than
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information about distance, speed, or acceleration/deceleration. The time-to-closure

gap reduces the problem complexity of interception tasks such as braking or landing.

Visually-controlled locomotion (or visual guidance) is discontinuous since the visual

system of a species should be free to perform functions other than the locomotion [90,

91]. For example, experimental studies on moving hands to grasp objects [92] and

catching a ball [93] have showed that visual-motor control is intermittent. Jeannerod

and Prablanc [92] concluded that future trajectory is planned in advance and executed

as open-loop without any visual input. The visual feedback is consulted again when

more precision is required.

Role of Vision in Driving Tasks

Car driving has been a popular platform for studying the role of vision in guidance

tasks. For example, Andersen and Sauer [94] proposed a DVA (driving by visual angle)

model for car following. The model uses visual angle formed by the leading vehicle and

the rate of change of the angle. Land and Lee [95] experimentally showed that when

steering on a curvy road, drivers look at tangent point on the inside curve, around

1-2 seconds ahead. The hypothesis was that the visual direction to the tangent is

an indicator for the curvature of the road and provides input for steering control. The

tangent point hypothesis was supported by Kandil et. al [96], Mars [97], etc. A different

theory for gaze behavior during steering on a curvy road and maintaining an instructed

road position is that drivers look at a future point on planned trajectory and not the

tangent [98]. However, if a driver does not have to maintain a particular position on

road, the driver will cut the corner and look at the tangent point [95, 98].

Salvucci and Gray [99] presented a two-point visual control model of steering, which

uses the visual direction of two points: 1) a ‘near’ point to monitor its lateral position

and 2) a ’far’ point to maintain lateral stability and infer steering angle to keep up

with the upcoming road profile. The two-point visual control model of steering [99] was

supported by experimental study presented by Neumann and Deml [100]. Vansteenkiste

et. al [101] studied visual behavior in bicycle steering. The authors in [101] presented

a gaze constraints model for goal-directed locomotion. The model in [101] is based on

needs of direct control and anticipation. Need of direct control requires more visual

attention near the vehicle and is used by novice drivers. Need of anticipation is required
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for hazard perception and is used at high-speeds. In case of high needs, visual attention

is mostly on relevant features due to increased attentional workload. When both needs

are low, visual behavior is unconstrained according to the model.

Visual Attention in Multi-Tasking

Drivers in general multi-task while driving, and they switch attention between in-car

displays and outside scenes. Johnson et. al [102] investigated visual attention while driv-

ing, which requires a human to attend to multiple simultaneous tasks. They presented

a soft barrier approach for modeling eye movements in human drivers. The results

showed that task priority and uncertainty, that grows when a task is not attended to,

are primary controlling factors in allocating gaze in driving. Kujala and Salvucci [103]

investigated how drivers divide attention between in-car displays and outside car scenes.

The authors proposed that drivers adjust their attention time on in-car displays based

on their driving performance on the road. For example, a driver decreases the visual

attention on in-car displays and looks more on the road if the driving performance

does not unfold as predicted. Mackenzie and Harris [104] presented a comparison of

eye movement behavior and hazard reaction times in a simulated driving task and in

a video-based (non-driving) hazard perception task. The results showed that drivers

were slower at detecting hazardous situations when driving than when not driving and

only seeing the video for hazard perception. The hypothesis in [104] was that drivers

have more cognitive (e.g., attentional) load due to dual-tasking (driving and checking

for hazardous conditions on the road). The higher cognitive load increases the reac-

tion time. Crundall and Underwood [105] performed experiments with experienced and

novice drivers, and showed that experienced drivers adapted visual strategies according

to the complexity of road while novice drivers did not. For example, experience drivers

scanned wider area as the complexity of road grew. Visual scanning of novice drivers

remained same for all types of roads. Underwood et. al [106] investigated why novice

drivers exhibit less scanning than experienced drivers. The authors experimented with

novice and experienced drivers, in which subjects watched recorded video of driving and

their eye movements were recorded. The analysis showed that novice subjects exhib-

ited less scanning than experienced ones, even in non-driving tasks. This leads to the

hypothesis that novice drivers’ limited scanning is not because of the limited mental
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capacity while driving simultaneously, but because of their poor mental model of the

driving task.

2.2.3 Spatial Memory and Representation

Humans and animals walk from one site to another in everyday life and it is rarely

aimless [85]. A dominant hypothesis has been the theory of spatial memory, which has

been investigated by studying rats’ movement in mazes (e.g. [107, 108, 109, 110, 111]).

However, before the theory of spatial memory, walking was thought to be a reflex chain,

i.e., a sequence of stimulus-response mechanisms, but the results from experiments with

rats in mazes argued against the reflex chain theory [109].

Cognitive Map

Tolman [109] proposed that a rat builds a mental (cognitive) map of the environment

(maze) describing routes, paths, and environmental relationships. He proposed that

rats use the cognitive map to determine (select) which responses will be released when

bombarded by various stimuli in navigating a maze, rather than responding based on

stimulus-response relationships.

Route vs. Survey Maps

Cognitive (mental) maps take two primary forms [109, 85]: strip-like (route) and com-

prehensive (survey) maps. A route map encodes a specific path as a series of locations

and turns. Such a map is not flexible to changes in the original environment or the start

position. The survey map encodes relative positions of landmarks in an environment,

and is more reliable than a route map for travelling between any two points in the

environment.

Studies on the theory of spatial memory (e.g., [109, 110, 111, 112]) show that survey

and route maps are selected based on the specific application. For example, if one takes

a particular route regularly, the travelling process becomes automatized and is better

explained by route maps [111, 112]. On the other hand, survey maps better explain the

behavior of rats in maze when a rat can find a food from a new start position [109, 110].
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Spatial Representation in Humans’ Brain

Researchers (e.g. [113, 114, 115, 116]) have investigated how humans store spatial re-

lationships within locations in an environment. For example, Stevens and Coupe [113]

experimented with human subjects. Based on their observations, they presented a model

that stores spatial relationships hierarchically and is governed by “storage-computation

trade off”. Spatial relationships that are not stored have to be determined by combin-

ing the stored spatial relations. Thorndyke [114] showed experiments in which human

subjects were asked to estimate distances between two points on a map while viewing

the map. Based on observations, the author in [114] proposed a model that expresses

the estimated distance of a route as a linear combination of the true distance and the

number of intervening points on the route. A highly cluttered map corresponds to a

large number of intervening points. The hypothesis in [114] was that a subject visually

scans along a route and judges the distance based on the scan time. At an intervening

point, the subject pauses the scan to check if the point is the destination. Therefore,

each intervening point takes a non-zero scan time and increases the overall scan time

on the route, which increases the resulting distance estimate. Hirtle [115] investigated

humans’ spatial representations of natural environments that do not have an obvious

or well-defined hierarchical structure. The analysis in [115] supported the view that a

mental model of a real-world environment is composed of both spatial and nonspatial

(non-Euclidean) information. The nonspatial information is stored in a hierarchical

data structure based on subjective quantities such as intuitively pleasing and stability

over time. McNamara [116] tested three classes of theories of the mental representa-

tion of spatial relations, which are nonhierarchical, strongly hierarchical (maximizing

storage efficiency by storing minimum spatial relations required to represent a layout

accurately), and partially hierarchical (storing many spatial relations that can be in-

duced by other stored spatial relations) theories. Human experiments in [116] supported

partially hierarchical representation of spatial relationships.

Thomson [90] presented a study of “blind” walking in humans. Subjects were first

showed the target for 5 seconds and then they had to walk blindfolded towards the

target. The results showed that performance degraded gradually with increasing target

distance (beyond 9 meters). They investigated two hypotheses, perceptual and memory

limitations, for the performance degradation. More experiments and analysis in [90]
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suggested that subjects use the spatial memory (like a mental map or image of the

environment) to move towards the target rather than a blind motor program to guide

themselves. However, the mental map fades with time (specially beyond 8 seconds).

Several experimental studies as discussed above have supported the concept of cog-

nitive (hierarchical survey) maps. However, there have been other theories of spatial

knowledge such as landmark-based, path-integration, etc. For example, Foo et. al [117]

presented navigation experiments in a virtual environment. The analysis in [117] showed

that humans rely on visible landmarks while navigating an environment. The authors

in [117] suggest that humans spatial knowledge not necessarily fall into any single class

(cognitive map, route map, path-integration, landmark-based, or etc.). This disserta-

tion uses a graph representation of task space, which is a form of cognitive map, based

on sensory-motor patterns to investigate human environment learning in guidance and

navigation. The framework based on sensory-motor patterns accounts for dynamic inter-

actions between the agent and the environment, whereas the above studies involve either

static or quasi-steady interactions and are discrete decision problems. The framework

also investigates how visibility of nodes in the graph representation affects environment

learning, which is similar to how much humans rely on visible landmarks.

Cognitive Robotics

Cognitive robotics [118] is inspired from human/animal spatial cognition. Jefferies and

Yeap [119] provided a survey on robotic and cognitive approaches for spatial mapping, to

motivate cross-fertilisation between the two areas. As stated in the survey, roboticists

work on “sensor problems” and the cognitive researchers focus on “knowledge prob-

lems”. The latter is defined as what people remember most when they visit new places

and how they organize spatial information to form knowledge of their environment [119].

To achieve high-level cognitive capabilities for robots, human or animal spatial cognition

has been studied and used to model environments. For example, Chakravorty and Junk-

ins [120] presented an “intelligent path planning” method in an uncertain environment.

The method uses sensors that allow the sensing of the environment non-locally, which is

inspired from human vision. Vasudevan et. al [121] proposed a hierarchical probabilis-

tic representation of space, based on high-level environment features such as household

objects and doors. The goal was to make robots represent an environment in a way that
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is comprehensible to humans. Manning et. al [122] presented a cognitive map-based

computational model for wayfinding, which consists of three primary modules: vision

(acquire and process visual information), cognitive map (store spatial information from

the vision), and route generation (generate a route using the cognitive map). The model

uses two parameters: vision and memory. The vision parameter accounts for accuracy

of visual information (e.g., scene in peripheral vision is less accurate). The memory

parameter accounts for that spatial memory fades with time. The wayfinding model

in [122] was able to capture a range of behavior from directed route search to random

walking.

2.2.4 Environment Representation

Humans’ spatial navigation capabilities outperform autonomous robots in versatility,

robustness, and effectiveness (e.g., success-rate). Spatial navigation in humans have

been studied in the past. For example, Chase [123] investigated how taxi drivers navigate

in large-scale urban environment that can not be perceived from a single vantage point.

The author found that drivers use a hierarchical representation of the environment,

which validates the theory of cognitive maps. Gillner and Mallot [124] studied the

effect of local visual information on human environment learning, using movement data

from experiments in a virtual maze. The results indicated that humans learn a maze

as a view graph, i.e., sequence of local views and movements. Information at a node

includes a recognized position, movement decisions, and expected next views for different

decisions. Spiers and Maguire [125] presented a study of taxi drivers, which involves

retrospective verbal reporting by drivers and gaze tracking. The method in [125] allows

to do a temporal analysis of thoughts and understand cognitive (thinking) processes

relevant to wayfinding.

Nested Environments

Most real-world environments are nested (e.g., a university campus, buildings in the

campus, and then laboratories in the building). A theory is that nested environments

are represented by a combination of different representations organized in a nested

hierarchy [113, 116, 126] providing efficient structure for cognitive processing. Wang

and Brockmole [126] presented an experimental study that concluded that humans don’t
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necessarily incorporate newly learned section of an environment into existing spatial

knowledge, but switch between spatial representations when they cross specific spatial

regions. At switching location, humans update their orientation information based on

new spatial representation.

Three-Dimensional Spatial Representation

Real-world environments are three-dimensional which makes its spatial representation

complicated. Jeffery et. al [127] suggested that 3-D world are not represented by a fully

volumetric map, but are represented by a combination of several planar representations

that correspond to the plane of locomotion. Representation in the orthogonal plane to

the plane of locomotion is based on some non-metric way, different from the represen-

tation in the plane of locomotion. The authors suggested that even animals that move

freely in 3-D world (e.g, birds) use such quasi-planar representations.

Body vs. World Frame

Learning an environment involves integrating first-person experiences into the global

environmental knowledge [128]. Therefore, the alignment between the head/ego-centric

frame (up,down,left,right) and the world-centric frame (north,south,east,west) affects

learning of an environment. The mental (cognitive) maps are generally based on the

world-centric frame and used for planning of global navigation. The ego-centric frame is

used for local (immediate) movements. May et. al [129] suggested that cognitive (sur-

vey) maps are processed to determine a route for navigational purposes. This process

has to deal with the mismatch between the map orientation and current head orienta-

tion (or direction of the perceived environment). The author showed that navigational

performance usually decreases with the orientation mismatch.

Route Selection (Wayfinding)

In everyday navigation tasks, humans have to select a route among many possibilities.

Researchers have investigated what factors influence route selection in humans. For

example, Golledge [130] experimentally investigated what selection criteria, other than

traditional ones such as minimum time, humans use to select a route in a map. Some
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non-traditional criteria are initial heading (direction of perception), number of stops on

a route, fewer turns, shortest leg first, aesthetically pleasing routes, etc. Hochmair and

Frank [131], for instance, showed that humans use a least-angle strategy at intersections,

i.e., select most straight lines, for wayfinding-decisions in unknown street networks.

Hartley et. al [132] showed that cognitive processes are different for travelling a new

(or less-travelled) route than a well-known (frequently-travelled) route. For well-known

routes, sequences of body movements (motor commands) get automated, which requires

less perceptual and attentional processing [133, 134].

Cues in Wayfinding

Darken and Sibert [135] presented a study involving humans in virtual space to in-

vestigate what cues can aid humans to improve wayfinding performances. Some cues

suggested in [135] are directions indicators, path restrictions, absolute reference points,

etc. Ruddle at. al [136] showed that if familiar objects are used as landmarks, the

wayfinding performance is better. Waller et. al [137] showed that for learning their

location, humans may rely more on distance information than bearing information of

landmarks, and suggested to account for this finding in modeling human place learn-

ing. Kato and Takeuchi [138] showed that a good sense of direction aids a human in

wayfinding by assisting in either using a global frame of reference (e.g., cardinal direc-

tions) or memorizing landmarks and their relative locations. Kelly et. al [139] studied

the effects of environmental geometry on wayfinding performance. The study in [139]

showed that visible angular corners help humans estimate spatial orientation. Vilar et.

al [140] experimentally showed that horizontal signage prove more helpful than vertical

signage in improving wayfinding performance of humans.

Asymmetry in Route Choices

Bailsenson et. al [141, 142] investigated why subjects choose different routes if start

and target locations are switched. The study in [141, 142] found that subjects prefer

routes that have longer and straighter initial segments, which are called hill-climbing or

initial segment strategy (ISS). Bruny et. al [143, 144] showed that some humans have

preference for routes that are Southbound. A possible explanation for the southern

preference is misperceptions of increased elevation in North direction [143]. Vreeswijk
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et. al [145] presented a study that shows that when travel times of two routes are within

a range, human drivers are biased with one route and are not willing to alter their choice

even if the traffic conditions and other factors change.

2.2.5 Decision-Making

Route selection in environment learning and spatial navigation involves decision-making,

i.e., selecting a route among many possibilities or choosing between exploring new op-

tions and exploiting known ones. Simon [146] described decision-making as “a search

process guided by aspiration levels. An aspiration level is a value of a goal variable

which must be reached or surpassed by a satisfactory decision alternative”. This sec-

tion presents a brief overview of various factors in human decision-making.

Bounded Rationality and Satisficing

In traditional optimal control, decision-making refers to optimization of an objective

function, which is called rational (optimal) behavior. In classical economics, humans

were usually modelled as “economic (rational) man” [146]. Simon [146] argued against

the economic man assumption and introduced the concept of bounded rationality that

accounts for the fact that human decision-making is constrained by limits on time,

available information, and cognitive processing capacities. He further introduced the

concept of satisficing that replaces the goal of maximizing an objective function [146].

A possible way of satisficing is to try available alternatives in a sequential order and

stop when an alternative that meets all criteria of an acceptable solution is found [146].

Simon [147, 146] also suggested that humans use the structures in task environment

for their decision-making. In the present research, the concept of invariants (patterns) in

agent-environment interactions in guidance tasks accounts for structure in the agent’s

behavior resulting from its interactions with environment. The interaction patterns

[7, 8] provide a way to abstract the search space which in turn can be represented as

a graph. This framework is used here to investigate to model human behavior and

decision-making in environment learning.
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Information Processing Model and Working Memory

Humans have limits on their memory and information processing, which is a primary rea-

son that humans are in general not optimizers but satisficers. Cowan [148] presented an

information processing model for humans, which consists of long-term memory storage,

working memory, and focus of attention. Due to limited cognitive processing capabil-

ities, humans can recall or remember only a limited amount of information at a time,

which is called working memory. It is defined as a subset of long-term memory. Both

bottom-up (involuntary factors: salient features in the perceived environment) and top-

down (voluntary factors: personal beliefs) factors contribute to what information is held

in working memory [149]. The information held in the working memory forms a basis

for decision-making.

To overcome working memory limitations, a hypothesis is that humans use chunking

mechanism [150]. In chunking, bits of information that have some type of similarity are

combined into larger units called chunks. For example, expert players in chess create

perceptual chunks of similar sub-configuration of pieces [151]. Another approach to

overcoming the limitations in working memory involves pruning decision trees by using

heuristics (e.g., Branch and Bound method [152]). Huys et. al [153] presented a study

of human decision-making in a sequential decision-making task. The results in [153]

showed that humans stop any further evaluation of a sequence if it exceeds a cost value

higher than a threshold.

Situational Awareness in Dynamic Systems

Guidance tasks in unknown environments require dynamic decision-making that is mak-

ing decisions repeatedly as new environment information unfolds. Decision-making in

dynamic systems require a sufficient level of situational awareness [154]. For human

decision-making in dynamic environments, such as a human pilot flying an aircraft,

Endsley [154] defined situational awareness as a three-stage process: perception, com-

prehension, and projection. The first step involves perception of status, attributes, and

dynamics of relevant elements in the environment. The second step, comprehension,

goes beyond simply being aware of the relevant elements in the environment and re-

quires understanding the significance of elements in light of desired goals. The last step
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“projection” entails predicting future actions of elements in the environment. All three

stages of SA are important for decision-making in dynamic systems.

Economic vs. Perceptual Choices

Human decision-making is in general investigated either on a computational or a neural

basis [155]. These approaches are called economic decision making (EDM) and percep-

tual decision making (PDM), respectively. In EDM, it is investigated how choices are

made based on a value of alternatives. In PDM, the investigation focuses on perceptual

properties (e.g., saliency) of alternatives. Towal et. al [156] presented a study that

shows that a combined model of EDM and PDM is more accurate for humans than

either model alone.

A number of studies have shown that gaze fixations create a bias in decision-

making [157, 158, 159, 156, 160]. For example, Shimojo et. al [157] modelled gaze

bias as a “cascade effect”. According to the cascade effect model, in starting the gaze

is evenly distributed between alternatives and it gradually shifts to the option that is

eventually selected. Krajbich et. al [158] showed that the probability of first-seen option

being selected increases with the duration of first fixation. The early gaze bias [158]

was observed by Sakellaridi et. al [160] in his study of visual exploration of city maps.

In [160], humans subjects were asked to look at a city map and asked to choose a target

(from given choices) to go to from a centre point on the map. The eye fixation analysis

in [160] showed that humans shown an early selection bias even from the beginning of

a trial.

Exploration vs. Exploitation

In learning or search tasks, exploration vs. exploitation is a well-known phenom-

ena [161]. Exploration refers to searching new/unknown regions of problem space in

order to find new solutions. Exploitation refers to repeating known (or already ex-

plored) solutions. In this dissertation, human subjects learn a task environment and find

time-optimal routes between specified start and goal states. Such task involves trying

different routes, which requires exploration-exploitation trade-off. In the experiments,

a run is marked as exploration when a subject takes a new route and exploitation when

a subject repeats a previously explored route. In general, there is no optimal policy for
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trading-off between exploration and exploitation [162]. A problem that is widely studied

in exploration vs. exploitation is multi-armed bandit problem (e.g., [163, 164, 165]) In

bandit problem, a person has to chose from a set of options with unknown rewards, and

has to maximize reward over a sequence of trials [165].

A number of studies (e.g., [166, 167]) have presented heuristics for exploration vs.

exploitation trade-off. For example, Auer [166] presented confidence bounds based on

statistics such as mean and variance, which can be used to guide exploration and ex-

ploitation. In this research, entropy is used to model human learning of CTG values at

subgoals that are nodes in a decision-making tree (graph representation of task space).

2.3 Engineering vs. Spatial Cognition

The above studies on spatial cognition in general focused on pedestrians or simple move-

ments. As stated by the author in [168], “simple forms of navigation, or way finding,

have been the main focus of spatial cognition but without accounting for the effects

of dynamics.” In agile guidance tasks, such as a pilot operating a high-speed vehicle

in a complex environment or surgeons under time pressure, the interactions between

vehicle dynamics and task environment play a role in determining what elements of the

environment are more relevant than others.

The overall behavior of a human pilot in a spatial environment is laid out by the

interactions between pilot control and cognitive characteristics and the environmental

characteristics such as scale and layout. Warren [13] used the term “behavioral dy-

namics” that represents the closed-loop agent-environment dynamics. The concept is

originally inspired from the Gibson’s idea of ecological perception [1]. Gibson’s eco-

logical approach suggests that a human or animal learns (represents) an environment

based on the task in hand and desired goals. Therefore, the study of spatial cognition

(representation and learning) should be integrated with the study of pilot dynamic and

perceptual behavior.

Mettler [168] highlighted that traditional optimal control formulation of trajectory

planning problems does not take advantage of the problem structures that play a fun-

damental role in humans’ and animals’ skills. The author proposed the idea that skilled
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human pilots possess a system to conceptualize spatial behavior that preserves the inter-

relation between movement dynamics and geometry and topology of the environment.

In subsequent studies, Kong and Mettler [7] studied the guidance behavior in com-

plex environments focusing on the agent-environment interactions. The study showed

that skilled operators organize their behavior according to interaction patterns. These

sensory-motor patterns represent units of behavior which satisfy the various system con-

straints and exploit the equivalences in the problem space. Furthermore, the interaction

patterns make it possible to abstract a task environment as a graph of subgoals. Such

graph framework can be elaborated to build a cognitive map to model and investigate

human learning and decision-making in complex task environments. This dissertation

uses the subgoal graph to investigate human environment learning and spatial naviga-

tion in guidance tasks where human subjects navigate using a complex dynamic vehicle.



Chapter 3

Autonomous Guidance and

Learning Framework

This chapter briefly reviews the mathematical formulation for optimal guidance problem

using receding horizon framework and the concept of spatial value function [9]. Next,

the chapter shows that the computation of SVF is an implementation of reinforcement

learning. Finally, the chapter presents the learning autonomous guidance framework

based on the sensory-predictive guidance system proposed in [9]. The chapter highlights

the algorithmic contributions of this dissertation. The chapter is taken from article [25].

3.1 Optimal Guidance Problem (OGP)

An optimal guidance problem determines a control trajectory u(·) for a vehicle travelling
from a state x to a goal state xgoal, which minimizes a cost function as following:

J(x,u(·)) =
∫ tf

0
g(x(t),u(t)) dt, (3.1)

where u(t) ∈ R
m and x(t) ∈ R

n are control and state vectors, respectively. g is the

instantaneous cost function. tf is the time to travel from state x to xgoal. f(x,u)

describes the vehicle dynamics. The optimal cost from state x to xgoal is called the

37
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optimal value function V ∗ at state x:

V ∗(x) = min
u(·)

J(x,u(·)). (3.2)

s. t. ẋ = f(x,u),

In receding horizon (RH) planning (Fig. 3.1), a finite-horizon trajectory from current

time t to time t+ tH is computed as following:

argmin
u∗

H
(·)
{
∫ τ=t+tH

τ=t
g(x(τ),u(τ))dτ + V ∗(x(t+ tH))}. (3.3)

u∗H(·) is the optimal control trajectory to drive the vehicle from the current state x(t) to

the state x(t+ tH). The cost-to-go from state x(t+ tH) to the goal state is represented

by the optimal value function at x(t+ tH).

Discarded tail

Finite-horizon trajectory

Goal state

Obstacle

Current vehicle state: x(t)

x(t + tH)

Figure 3.1: Receding horizon (RH) trajectory optimization.

3.1.1 Spatial Value Function (SVF)

The concept of spatial value function [9] was introduced to describe optimal spatial be-

havior for guidance. The state vector x is partitioned into two parts: 1) xp ∈ R
3: vehicle

position vector and 2) xv ∈ R
n−3: vehicle dynamic state such as velocity, acceleration,

and higher derivatives. The spatial value function V ∗S is defined over spatial position

vector xp as following:

V ∗S : xp 7→ min
xv

{V ∗(xp,xv)}, (3.4)

The value function is defined over the entire state-space x, while the spatial value

function defines the optimal cost-to-go value and corresponding dynamic state at any
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spatial location xp. v∗ is the optimal velocity vector in the inertial frame. A function

Υ∗ [9] is defined over the spatial position vector (xp) space as following:

Υ∗ : xp 7→ {V ∗S (xp),v∗(xp)}. (3.5)

Υ∗(xp) is the optimal cost (V ∗S ) and velocity vector (v∗) at location xp. These variables

describe the scalar cost-to-go (CTG) map and velocity vector field (VVF) for optimal

spatial behavior. SVF refers to the function Υ∗, i.e., CTG and VVF. The cost of the

discarded tail, V ∗(x(t+ tH)) in Eq. 3.3, is approximated by the SV F at xp(t+ tH).

For most practical problems, the SVF cannot be solved analytically. An approximate

SVF Υ is computed using computational techniques. Frazzoli et. al [169] presented the

motion primitive automaton (MPA) for vehicle guidance. The MPA defines a finite

library of motion primitives (MPs) that allow transition between two states (not nec-

essarily all pairs of quantized states) in a finite set of quantized states and controls.

Mettler and Kong [22] used grid-based MPs that are constrained to start from and

end at finite points in a quantized position space. The grid-based MPs discretize the

environment and use the MPA to generate a cost-to-go function that accounts for the

dynamics. With the grid-based MPs, the trajectory optimization problem (or com-

putation of SVF) is converted into a sequential decision problem that can be solved

using dynamic programming [170, 22]. The details of the grid-based MPs, used in this

dissertation, are given later in this chapter.

3.1.2 Reinforcement Learning of SVF

Sutton and Barto [171] defined reinforcement learning as following: “Reinforcement

learning is learning what to do–how to map situations to actions–so as to maximize a

numerical reward signal. The learner is not told which actions to take, as in most forms

of machine learning, but instead must discover which actions yield the most reward

by trying them” (section 1.1 in [171]). Elements of reinforcement learning are: state,

policy (action), reward function, and value function. Reinforcement learning uses value

functions over the state-space to search for optimal policies that maximize cumulative

reward from any state. The optimal value function and policy contain the information

needed to determine the best action for any possible state. Iterative methods such as
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value iteration and policy iteration are used to compute the optimal value function and

policy [171].

For guidance problems, the SVF describes the value function for reinforcement learn-

ing. The entire state-space (spatial position vector xp and vehicle dynamic state vector

xv) is discretized. For an optimal solution, each spatial position has to be assigned an

optimal dynamic state x∗v (e.g. velocity v∗) and optimal cost (SVF). The vehicle uses a

motion primitive mp from a finite libraryMPlibrary to transit from a state x to state x′.

In presence of noises and uncertainties in the system, Pmp
xx′ is the transition-probability

between states x and x′ if motion primitive mp is applied at state x. ct is the incremen-

tal cost (e.g. time) of a motion primitive, which is the reward function for reinforcement

learning. The optimal policy describes the optimal motion primitive at any position xp.

For the optimal SVF, the Bellman equation is true for any state x:

SV F (x) = min
mp∈MPlibrary

∑

x′

Pmp
xx′ [ct

mp
xx′ + SV F (x′)]. (3.6)

Eq. (3.6) is identical to Eq. (3.15) in [171]. To account for obstacles in the optimal

guidance solution, the transition between two spatial locations using a motion primitive

is prohibited if the primitive intersects an obstacle. Since this dissertation studies

a deterministic case, a motion primitive mp from a state x reaches a specific state

x′. Therefore, the probability term Pmp
xx′ is dropped for the analysis presented in this

dissertation.

In reinforcement learning, the value function is initialized randomly unless some

bootstrapping method is used and then value or policy iteration [171] is used to solve

Eq. (3.6). In this dissertation, the a priori SVF (CTG and VVF) accounts for known

obstacles, and is computed using a dynamic programming approach, such as Dijkstra’s

algorithm [27, 22] applied backwards from the goal state. As the system navigates

through the environment, it adapts Eq. (3.6) based on current sensory data about the

immediate environment. Ideally, the SVF should be updated throughtout the problem

space. However, only a local SVF based on the current vehicle state is updated due to

limited online computational resources. The dissertation uses successive runs to achieve

a consistent solution to Eq. (3.6) throughout the geographical space, which is illustrated

in Section 3.3 using an information propagation and assimilation model.
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3.2 Autonomous Guidance and Learning Framework

This section describes the sensory-predictive guidance system presented in [9] as a learn-

ing autonomous guidance framework. The section highlights the algorithmic contribu-

tions of this dissertation. Since the dissertation focuses on the SVF learning and guid-

ance behavior, it is assumed that the vehicle pose is known. The onboard sensor is a

laser scanner that gives a depth map in a specified range. For simulations presented in

this dissertation, the sensor is assumed to give an accurate depth map to help isolate

effects of sensing errors from the guidance behavior learning processes.

Figure 3.2: Planning cycle for the sensory-predictive guidance system [9].

Before presenting the learning framework, Fig. 3.2(a) illustrates the sensory and

reachable spaces for the receding horizon trajectory optimization with SVF (notations

based on [9]). The sensory space S(x(t)) represents the space around the vehicle current

state x(t), which can be covered by onboard sensors. The reachable space R(x(t), tH) [9]

is defined as a subset of the sensory space, which the vehicle can reach within a fixed

time horizon tH from its current state x(t), given the vehicle dynamic constraints (e.g.

maximum speed and acceleration). R(x(t), tH) is constrained to be inside the sensory

space for safety, as the system cannot see the environment outside the sensory space.

The local SVF Υx is defined over the reachable space R(x(t), tH) and is extracted from

the global SVF Υ as shown in Fig. 3.2(a). One can determine tH based on the sensing
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range and online computational resources, because the computation required for finite-

horizon trajectory optimization depends on its length (∝ tH).
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(b) Local SVF activation as working memory concept in Cowan's information-processing model [148].  

Vehicle
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H
)

x(t)

x(t)

Figure 3.3: Learning and information-processing structure for the sensory-predictive
guidance system in [9].

The central component of the learning framework shown in Fig. 3.3(a) is an online

data assimilation system that integrates current global SVF, depth sensory data, and

vehicle state. Online sensory data is used to update the local SVF map Υx so that

the information is available for subsequent operations. A set of CTC (cost-to-come)

maps, computed offline prior to the task and stored in long-term memory, are used to

approximate the cost of the finite-horizon trajectory, i.e., the first term in Eq. (3.3).

The concept of offline computed CTC maps is a contribution of this dissertation and is

described later in this section. The CTC and the local SVF maps are overlapped in the
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reachable space to determine the optimal active waypoint (AWP) that serves as local

goal state for the online finite-horizon trajectory optimization.

The learning framework in Fig. 3.3(a) can be related to the information-processing

system proposed by Cowan [148], as shown in Fig. 3.3(b). In Cowan’s information-

processing model, the working memory represents a subset of the long-term memory.

The subset is activated by sensory inputs. In the guidance system shown in Fig. 3.3(a),

sensory inputs provide the reachable space for the vehicle, which determines the local

SVF. The local SVF operates as a form of working (short-term) memory since the

guidance system uses the local SVF information to select the current goal state, i.e,

AWP, for the online trajectory optimization, which, in turn, determines the control

action. Finally, AWP is similar to the focus of attention in the information-processing

model. The planner selects an optimal AWP and plans a trajectory to the AWP.

3.2.1 Real-Time Sensory and Guidance Processes

The learning framework consists of a real-time sensory guidance planning cycle [9] that

includes the following four operations in the given order: 1) environment sensing, 2)

SVF update, 3) AWP candidates selection, and 4) finite-horizon trajectory optimization.

Each operation is described further in this section.

Environment Sensing

This step has no new development. Only for completeness, a brief description is given

about this step. The environment is discretized into rectangular cells and each cell

has an occupancy probability (0-1). A priori occupancy map accounts for the known

obstacles. The autonomous guidance system uses the same procedure as presented by

Dadkhah and Mettler [23] to update the occupancy probability map in the sensory

space. A laser scanner mounted on the vehicle measures the depth map in sensory

range. The depth map is converted to an occupancy probability map using a risk map

update equation proposed by Marlow and Langelaan [172]. This study assumes an ideal

sensor for a baseline study to concentrate only on learning and planning mechanisms.

For an ideal sensor, the occupancy probability of a cell is either 0 or 1 as the sensor

provides an accurate depth map within its sensory range.



44

SVF Update

The algorithm used to update the SVF is adapted from [23]. A new development in this

dissertation is the use of the concept of maneuvering environment scale ratio proposed

in [173] as a basis to generate saturated motion primitives.

The spatial value function (CTG and VVF) is updated based on changes in the

occupancy probability map as shown in Fig. 3.2(b). The velocity vectors behind the

obstacle diverge from that region creating a repelling manifold [11], which causes high

cost-to-go values in that region. Dadkhah and Mettler [23] presented an algorithm

for the SVF update using the dynamic version of Dijkstra’s algorithm [45] combined

with motion primitives. Rather than re-computing the SVF map over the entire task

environment, the algorithm is used to adjust the SVF locally. The details of grid-based

motion primitives for time-optimal solutions, used in this dissertation, are given next.

For a mass-point vehicle, amax, vmax, and vzmax are maximum horizontal accelera-

tion, maximum horizontal speed, and maximum vertical speed, respectively. This study

does not consider vertical acceleration. Also, vertical and horizontal motions are as-

sumed to be independent of each other. Horizontal and vertical spatial resolutions are

dxy and dz, respectively. For finite-state representation, horizontal and vertical speeds

are discretized into finite sets vl and vzl, respectively. nv and 2nvz+1 are the number

of discrete speed levels in sets vl and vzl, respectively. rmin is the minimum turning

radius at maximum speed vmax. The number of horizontal speed levels nv and the set

of discrete horizontal speed levels vl are given by:

nv =
rmin
dxy

=
1

dxy

vmax
2

amax
, (3.7)

vl(i) =
√

amax i dxy ∀ i = 1, ..., nv.

Minimum turning radius rmin = v2max/amax is a critical length relating to the dy-

namic fit [173] between vehicle maneuvering capabilities (e.g. maximum speed and

acceleration) and length-scales of maneuvers required for time-optimal performance.

For example, if the vehicle is flying in an environment section that constrains the vehi-

cle to take a turn of radius r < rmin, the vehicle will use a speed v < vmax due to the

limited acceleration amax. In environment sections with large length-scales (≥ rmin),

the vehicle will use maximum speed for time-optimal performance. This dissertation
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uses a spatial resolution dxy so that rmin is an integer multiple of dxy. For a desired

number of horizontal speed levels, spatial resolution dxy is determined according to

Eq. (3.7).
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Figure 3.4: Horizontal motion primitives.

Figure 3.4 shows an example of grid-based MPs for horizontal motion. MPs enable

transition between states in the discretized state-space. In Fig. 3.4, the vehicle is at (0,0)

and its speed level is v1 = vl(i), i ∈ [1, ..., nv] parallel to the grid. It can go straight, turn

right, or left. Figure 3.4 shows only left turning given the symmetry in planar motion.

A grid-based motion primitive is constrained to start at (0,0) and end at (I, J) where

I ∈ [1,...,nv] and J is 0, I/2, or I. J = I/2 is possible only if I is an even number.

J = 0, I/2, and I correspond to straight motion, π/4 turn, and π/2 turn, respectively.

The heading resolution is π/4, i.e., the heading can either be parallel or diagonal to

the grid. Such heading resolution makes sure that MPs are symmetric to rotation. For

instance, if the direction of v1 is diagonal to the grid, the tree of MPs starting from

(0,0) is achieved by rotating the tree shown in Fig. 3.4 by π/4 and increasing the length

scale by
√
2. v2 is the speed level at the end of a motion primitive. For a MP, v1 is any

speed level from 1 to nv. Due to the acceleration constraint, v2 can only be a speed

level from 1 to m where m ≤ nv as acceleration required for maneuvering from v1 to
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v2 = vl(m+1) is greater than amax. Time-optimal solutions, for a mass-point model with

speed and acceleration limits and no jerk limit, use either maximum speed or maximum

acceleration at all times, which is a saturated behavior [173]. A MP is saturated if it

uses either maximum acceleration to maneuver (turning, accelerating/decelerating) or

maximum speed in straight line. For time-optimal solutions, this dissertation considers

only the transition to v2 = vl(m). For each v1 ∈ vl, a tree of saturated MPs as shown

in Fig. 3.4 is computed.

The vertical speed set is vzl = [-vzmax,...,-2vzmax/nvz,-vzmax/nvz, 0, vzmax/nvz,

2vzmax/nvz,...,vzmax]. As no vertical acceleration is considered, the vehicle can change

altitude from z to z ± dz from any vertical speed level to the other one. Depending on

the vehicle a designer is trying to model, climb/descent rates can be restricted based on

the horizontal speed level.

The incremental cost of each motion primitive is defined based on the cost function

that has to be optimized For example, the cost can be time, path-length, control energy,

a function of these, etc. In this dissertation, the cost is time. For three-dimensional

motion, a pair of horizontal and vertical MPs is applied. As the two motions are

independent, the cost of a pair of horizontal and vertical MPs is either the cost of

horizontal or vertical MP depending on which one is higher. The described MPs form

the library MPlibrary used in Eq. (3.6).

Note that a designer can add zero speed in the set vl. In this dissertation, zero

horizontal speed is not used since the smallest transition (straight path or turn) is

between two neighbor grid points and such transition is possible at minimum speed

vl(1) =
√
amax dxy > 0 within the acceleration limit amax.

AWP Candidates Selection

This step includes an algorithmic development in this dissertation. After the SVF

update, the guidance system (Figs. 3.2 and 3.3) selects an active waypoint (AWP) in

the reachable space, to plan a finite-horizon trajectory from the vehicle current state

to the AWP (see the first term in Eq. 3.3). Dadkhah and Mettler [23] used a weighted

sum of the following costs to select the best AWP:

1. Composite cost: cost-to-come (CTC) to the AWP from the vehicle current state

+ cost-to-go (CTG) to the goal from the AWP.
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2. Risk measure function: occupancy probability at the AWP.

3. Penalty: to avoid frequent changes in the flight direction and altitude, cost terms

to penalize the difference between previous and current AWPs’ altitude and head-

ing.

The best candidate for AWP has the lowest value for a weighted sum of the three cost

functions. As this dissertation focuses on a baseline case with a perfect sensor and zero

noise, it considers only the objective function (flight-time) for selecting the best AWP

as following:

min
xp

CTC(x(t),xxp) + CTG(xp),

subject to xp ∈ R(x(t), tH),
(3.8)

where xxp is the optimal state (velocity), represented by the SVF, at spatial position

xp. CTG(xp) represents the cost-to-go from xxp to the goal state. CTC(x(t),xxp)

represents the cost-to-come to xxp from the current state x(t).

The CTG(xp) for any position in the reachable space is extracted from the SVF map.

Computation of CTC(x(t),xxp) is a two point boundary value problem. The vehicle

starts from the current state and reaches the AWP with the terminal velocity assigned

by the SVF (VVF) at the AWP position. The vehicle is modeled as a point mass

and its dynamics are described by a state-space discrete-time system with second-order

constraints on speed and acceleration (described later in this section). Such trajectory

optimization problem has in general no analytical solution and is solved using a nu-

merical approach. In previous approaches presented in [20, 21, 22, 9, 23], CTC map

is computed by executing an online numerical optimization method for each xp in the

reachable space. Such approach, however, is costly if number of points in the reachable

space are large enough.

Dadkhah and Mettler [23] used a heuristic based on the Hamiltonian solution for a

uniformly accelerated point mass model, to provide the lower bound on CTC. However,

the method in [23] has two drawbacks: 1) The velocity constraint can be violated due

to the uniform acceleration; 2) The method does not account for the terminal velocity

at the AWP. This dissertation presents a computationally cheap approach to account

for the CTC map. The approach is to compute CTC maps offline for all possible vehicle

states, store them in long-term memory, and recall them online based on the current
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vehicle state (Fig. 3.3(a)). The total number of vehicle states is finite, i.e., combinations

of all speed levels and heading angles in the quantized state-space. A CTC map is an

inverted SVF map in the vehicle body frame as shown in Fig. 3.5(b), which describes the

optimal cost and velocity fields that start from the vehicle current state and travel to

any point in the reachable space. The CTC map for a start state is computed using the

same motion primitives and dynamic programming as used in the SVF computation.

Thus, a CTC map accounts for the velocity and acceleration constraints. A library of

CTC maps for all possible vehicle states is computed offline. A CTC map is computed

for free space (no obstacles) in a fixed volume, equal to the sensory volume, around the

vehicle pose that is the origin or CTC=0. Note that the AWP is in the reachable space

that is a subset of the sensory space. For online operation, a CTC map based on the

current vehicle velocity is recalled and transformed, using a translation and rotation,

into the global coordinates.

Figure 3.5: Overlapping of CTG and CTC maps in the visible space.

The offline computed CTC maps do not account for obstacles in the reachable space,

as shown in Fig. 3.5(b). For safety, the reachable space is divided into unsafe region

Ur(x(t)) and visible space V is(x(t)) as shown in Fig. 3.5(c). The following constraint

is applied with Eq. (3.8):

xp ∈ V is(x(t)). (3.9)

Figure 3.5(c) shows the overlapping of CTC and CTG maps in the visible space. At

any point in the visible space, the velocity for CTC map is not necessarily the same
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as the velocity for the SVF map. The velocity vector for SVF at any point gives the

optimal direction that the vehicle velocity direction should align with in order to reach

the goal in minimum time and avoid obstacles. Therefore, the vehicle should reach the

AWP with the velocity direction assigned by the SVF (CTG) at the AWP position. To

ensure the velocity alignment, any xp that does not satisfy the following condition is

not an AWP candidate:

&|ψctg − ψctc| ≤ ψdiff , (3.10)

where ψctg and ψctc represent velocity directions for CTG and CTC maps, respec-

tively. ψdiff is the allowed difference between the two velocity directions, as shown

in Fig. 3.5(c). ψdiff in this study is 450 as that is the heading resolution for MPs.

Finally, a list of AWP candidates that satisfy constraints (3.9) and (3.10) is computed.

Cost function in Eq. (3.8) is used to sort the AWP candidates list in increasing order of

cost. The sorted list is AWPlist.

If the sensor is not ideal and there are disturbances in the system, a single point as

AWP is not appropriate. In a probabilistic model, the guidance system should select an

active region where the probability of cost being minimum is above a specified threshold.

The baseline case, presented in this dissertation, uses a single point as immediate goal

(AWP).

Finite-Horizon Trajectory Optimization

This step has no new development. Just like step 1, a brief description is given about

this step for the purpose of completeness. The last step of the planning cycle is to

compute an optimal trajectory to the AWP. The finite-horizon trajectory optimization

is a two-point boundary value problem. The aircraft used in the simulations in this

dissertation is based on Blade-Cx2 coaxial indoor helicopter (see [174] for the helicopter

model system identification). The vehicle dynamics are approximated by a discrete-time

linear state-space system as shown in Eq. (3.11). State vector x consists of horizontal

acceleration, 3-D velocity, and 3-D position. Input vector u consists of the velocity

command in each direction. ∆t is the time-step (sampling time). N is the number of
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time-steps between the current state and AWP.

xk+1 = Axk +Buk, k ∈ [1, ..., N ],

x = [ax vx x ay vy y z vz]
T, u = [ux uy uz]

T,
(3.11)

umax and uzmax represent the maximum velocity commands in horizontal and vertical

directions, respectively. The horizontal and vertical motions are assumed to be inde-

pendent of each other. The dynamic constraints are as following:

ax
2 + ay

2 ≤ amax2 ; vx
2 + vy

2 ≤ vmax2 ; ux
2 + uy

2 ≤ umax2

|vz| ≤ vzmax ; |uz| ≤ uzmax
(3.12)

The number of time-steps N has to be minimized to achieve the minimum time tra-

jectory. The initial state is the vehicle current state. The final condition includes AWP

position and horizontal speed. This dissertation uses a mixed integer linear programing

(MILP) formulation [19, 23] to solve the trajectory optimization problem . The MILP

formulation uses a binary decision variable bk that is 1 only at one time-step k = H

between 0 and N , as shown in Eq. (3.13). M is a large number. At k = H (bH = 1),

AWP is reached.

min
k=N
∑

k=1

M(N + 1− k)(1− bk),

k=N
∑

k=1

bk = 1.

(3.13)

ǫp and ǫv are the allowed errors for the position and velocity vectors at the AWP (see

[23] for details). The MILP problem is solved using CPLEX [175]. N is given as:

N =

⌈

CTC at AWP

∆t

⌉

+N0 (3.14)

N0 is a specified margin due to model mismatch between CTC computation (based

on MPs) and online trajectory optimization (state-space system that includes control

effects). N0 for simulation experiments presented in current study is 5.

Note that if the time does not have to minimized, convex programming can be used

to find whether a feasible trajectory exists for a horizon N (bN = 1) or not. Minimum

number of time-steps (N = H) can be found by bisection method (a sequence of convex
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programming). Convex programming is faster than MILP. This study, however, sticks

to the MILP formulation since the test simulation is run offline and the average compu-

tation time of MILP is 0.17 s (shown in Chapter 4) due to the small planning horizon N

(mean is 9.5 and standard deviation is 3.6, Figure 4.3). Therefore, convex programming

does not seem essential at this point.

Safety of Finite-Horizon Trajectory

Finite-horizon trajectory planning accounts for the environment in the current sensory

space. Outside of the sensory space, the guidance system can only account for obstacles

that are either a priori known, or learned during the task. A critical scenario is when

the best AWP is close to the boundary of sensory space and right outside the boundary

an unknown obstacle exists. In such a case, exercising the entire predicted trajectory to

the AWP has a collision risk. Therefore, the guidance system exercises only a fraction of

the predicted finite-horizon trajectory. Htrack is the number of time-steps the guidance

system exercises:

Htrack = min (H,Hmax). (3.15)

Hmax is the maximum horizon that the guidance system is allowed to exercise between

two consecutive AWPs (or planning cycles). A designer can determine Hmax based on

how large the sensing range is and how fast planning cycles can be completed. The

following relationship should hold for safety:

Hmax ×∆t× vmax = α× (sensing range), 0 < α < 1. (3.16)

Eq. (3.16) indicates that maximum distance travelled along finite-horizon trajectory

should be less than the sensing range.

An AWP is selected based on the CTG and CTC maps that are based on MPs.

The finite-horizon trajectory optimization uses a discrete-time linear state-space model

that include control effects. Due to model mismatch between AWP selection and online

trajectory optimization, the trajectory may not be safe. Ideally, the online trajectory

optimization should include environmental constraints such as obstacles. However, ac-

counting for those in the online optimization would be computationally expensive as

obstacles are cluttered and not necessarily convex. The guidance system presented in

this dissertation iterates through the list AWPlist that is arranged in increasing order
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of total cost (CTG + CTC), and checks if the trajectory to an AWP is safe. The first

AWP with a safe trajectory is selected and the corresponding velocity commands are

sent to the vehicle (Fig. 3.3). niter is the number of iterations to find the safe AWP.

This dissertation uses the following safety criteria for a finite-horizon trajectory: “At

any time-step of the finite-horizon trajectory, there should be no obstacle within dis-

tance dminstop = v2max/(2amax) along the velocity direction (tangent to the trajectory)”.

dminstop is the minimum distance required to come to a full stop at the maximum speed.

3.3 Information Propagation and Assimilation Model

Planning in unknown environments requires learning the map online and re-planning

the path. For re-planning, the guidance system has to propagate and assimilate the

environment information, received through onboard sensors within the sensory space,

into the global spatial value function so that the information can be used for current

and future planning. The global SVF update, however, is not practical for online oper-

ations because the computational complexity of SVF computation grows exponentially

with the size (volume) of geographical space. Thus, a limited processing speed in online

operations puts an upper limit on the size of spatial volume for the SVF update in each

planning cycle. This section presents an information propagation range that models the

limit on information processing (propagation and assimilation of environment informa-

tion into the SVF) in real-time guidance operations. The section first uses a quasi 1-D

example to illustrate the role of the information propagation range in learning the SVF

over a succession of runs. Next, the model is illustrated with the learning autonomous

guidance framework.

3.3.1 Agent Definition and Sample Problem

Agent A in Fig. 3.7 represents the guidance system. r1 and r2 are the agent’s sensory

and information propagation ranges, respectively. The agent can detect only immediate

environment that lies within range r1. The environment information acquired within

range r1 can only be propagated and assimilated into the SVF within range r2 from the

agent position. The information propagation range represents an upper limit on the

volume of the local SVF update. For a discretized environment, the computation time
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of local SVF update can be related to the number of cells in the local SVF volume,

by an empirical analysis. A designer can determine the information propagation range

based on the computational platform (processor speed, memory size, etc.) used for

online operations, the spatial resolution chosen for the environment, and the average

time available for local SVF update between two consecutive planning cycles.
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Figure 3.6: Quasi 1-D problem: (a) no obstacle (b) obstacle is present. The agent can
move only in xy plane.

Figure 3.6 illustrates a simple quasi 1-D problem. The agent has to reach the goal

G from the start location S in minimum time. The optimal solution is to travel along

the line SG. If an obstacle O is introduced on SG, the optimal solution is to go around

O in the xy plane as shown in Fig. 3.6(b). For the presented problem, the true CTG

map along SG in absence of obstacle O is a continuous and monotonically decreasing

function from S to G (Fig. 3.6(a)). In the presence of obstacle O, the CTG map between

O and G remains unaffected but it shifts up between S and O, causing a discontinuity

at O (Fig. 3.6(b)). If the presence of obstacle O is unknown prior to the task, the a

priori CTG map would be the same as shown in Fig. 3.6(a).

For the quasi 1-D problem, the SVF update (information propagation and assimi-

lation) rate is assumed to be infinite, i.e., a new environment information that falls in

the agent’s sensory range is detected and assimilated instantaneously into the SVF in
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Figure 3.7: Learning through run 1.

the agent’s propagation range.

3.3.2 Learning Process

Figure 3.7 illustrates the learning process through the first run starting from S. The

agent A moves towards G following the negative gradient of the a priori CTG map.

The circles representing the sensory and propagation ranges also move with the agent.

When the sensory perimeter intersects (detects) the obstacle O the very first time,

the CTG map is updated (environment information is assimilated into the CTG map)

within the information propagation range. The CTG map beyond the information

propagation range is unaffected, therefore only a line-segment shifts up as shown in Fig.

3.7. However, the agent still keeps moving towards G as guided by the negative gradient

of CTG map. Following the first run, the agent learns the presence of the obstacle,

but this information has not been propagated throughout the whole environment, and

therefore, has not been assimilated properly into the global SVF (CTG) map.

Figure 3.8 depicts the learning process taking place through successive runs, and

shows that the CTG map is eventually learned throughout the whole environment. For

the quasi 1-D problem presented in Fig. 3.6, a single run followed by offline processing
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would be sufficient. For complicated 2-D or 3-D environments, it may take multiple

runs just to capture sufficient knowledge about the environment.

The sensory range r1 and the information propagation range r2 are independent of

each other. However, if r2 is less than r1, the environment that lies between the two

ranges is perceived by the onboard sensors but is not assimilated into the local SVF.

In such a case, the environment information between the two ranges is useless because

the current planning cannot account for the information. To avoid wasting the sensory

resources, the following condition should hold:

r1 ≤ r2 (3.17)

Information propagation range serves as an upper limit for the sensory range. A poor

(slow) computational platform for online information processing limits the use of good

sensors.

3.3.3 Application in Learning Autonomous Guidance Framework

The information propagation and assimilation model is illustrated in Fig. 3.9 for the

proposed learning autonomous guidance framework. Figure 3.9 shows an illustration of

the information propagation in space via local SVF updates and successive runs. Ncycles

is the number of planning cycles in the global trajectory. In the ith planning cycle, the

SVF is updated in a spatial volume Voli around the vehicle position. Note that Voli

corresponds to the information processing range r2. The length of a planning cycle is

proportional to Htrack, and is less than r2 (Eqs. (3.15), (3.16), and (3.17)). A high-speed
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vehicle will travel the finite-horizon trajectory (Htrack) faster, and therefore will require

faster computations of planning cycles, i.e., a higher SVF update rate.

The SVF update in Voli indicates that Eq. (3.6) is consistent in Voli. The SVF

information embedded (learned) in Voli is propagated back and assimilated into Voli−1

during local SVF update in Voli−1 in the consecutive run, if the following condition

holds:

Voli−1 ∩Voli 6= ∅ (3.18)

Condition (3.18) ensures that the environmental information embedded in the SVF over

a spatial volume is not trapped locally, and propagates through space over successive

planning cycles and runs. If successive runs are simulated along a trajectory (or going

through the same region in the environment), the SVF eventually converges (Eq. 3.6

becomes consistent) in the region around the trajectory. In each run, the information in

Voli is propagated back to Voli−1. Therefore, the number of runs required for the SVF

convergence is nearly proportional to the path length between start and goal locations,

and inversely proportional to the guidance system’s sensing and information propagation

ranges. For instance, if computational resources for information processing are infinite

(r2 is infinite), the SVF can be updated globally in each planning cycle and global

convergence can be achieved at the end of the first run.

1
2

3

Ncycles

GoalStart
r2

∝Htrack≤Hmax< r2

Figure 3.9: Information propagation in the environment over successive runs, via local
SVF updates.



Chapter 4

Computational Investigation of

Environment Learning

The guidance scheme presented in Chapter 3 is evaluated using an indoor flight simula-

tion system. A detailed model of Akerman Hall at the University of Minnesota is used.

Relevant sections of the indoor environment are labeled as shown in Fig. 4.1 for future

reference. The chapter is taken from article [25].

4.1 Method and Baseline Test Case

In this dissertation, the evaluation focuses on a baseline test case designed to isolate the

effects pertaining to learning and planning from sensing. The baseline setup assumes

an ideal sensor (perfect depth map over specified sensor range), perfect tracking of

the computed trajectory (perfect navigation and estimation, no control uncertainties

or disturbances) and a static environment. The start and goal locations are shown in

Fig. 4.1.

The a priori environment knowledge contains only the goal state, i.e., the a priori

SVF does not account for any obstacles. The purpose of the simulation demonstration

is to investigate how the performance of the system evolves with learning the SVF

over successive runs from the specified start to goal states. The guidance system is

simulated until SVF convergence is achieved from the same pre-specified start state.

Each run is fed the SVF (CTG and VVF) map learned in the preceding run (the first

57
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Figure 4.1: Simulated indoor environment (Akerman Hall, University of Minnesota).

run starts from the a priori SVF map). The objective function used for the SVF is the

minimization of flight-time. An optimal SVF map, computed for the true environment,

is used as a benchmark [176] to evaluate the learned performance through successive

runs. Benchmark CTG at the start location is 28.3 s.

Figure 4.1 shows the specified start and goal locations situated in Lab and Hallway2,

respectively. There are two choices after exiting Lab: take Stairs1 or follow Hallway1.

The optimal trajectory (shown by red in Fig. 4.1) takes Stairs1 after exiting Lab. The

green trajectory in Fig. 4.1 is a local optimal (suboptimal) solution when the Stairs1

is blocked. The benchmark flight-times for the optimal and suboptimal trajectories are

28.3 and 42.9 s, respectively.

The parameters for the guidance system are given in Table 4.1. The information

propagation volume is assumed to be the same as the sensory volume. Matrices A and

B for the discrete-time linear state-space system shown in Eq. (3.11) and speed levels

used for the MPs are given in the Appendix. The baseline case is run offline to focus

on learning processes therefore time-lag, due to non-zero computation time of planning

cycles, is not considered in current study. This section investigates how flight-time,

flight dynamic performance, information processing, SVF, and vehicle control/dynamic

behavior in body frame evolve and converge over successive runs.
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Table 4.1: Parameters for the guidance simulation

Parameter Value

vmax 1.5 m/s
amax 1.5 m/s2

umax 1.5 m/s
vzmax 0.5 m/s
uzmax 0.5 m/s
dxy 0.25 m
dz 0.2 m
nv 6
nvz 2

ψdiff 450

N0 5
Hmax 5

∆t 0.2 s
ǫp 0.05 m
ǫv 0.05 m/s

Sensory volume (∼ r1) 6 × 6 × 2 m3 (center at the vehicle)
Information propagation volume (∼ r2) 6 × 6 × 2 m3 (center at the vehicle)

4.2 Performance Objective

Figure 4.2 shows the trajectories for successive runs. In the first two runs, the guidance

system takes Hallway1 but in run 3 it takes Stairs1 after exiting Lab. In runs 4 and 5,

the system again takes Hallway1. Trajectories in the starting runs are erratic, and not

close to the optimal. For runs 6 to 20, the system takes Stairs1. Trajectories for runs

15 to 20 are similar.

Figure 4.3 shows the performance criteria (flight-time) for runs 1 to 20. The bench-

mark flight-time is 28.3 s, which is the benchmark CTG at the start location. For the

first six runs, the flight-time is large (45-65 s) as the system often takes Hallway1 after

exiting Lab. The route to the goal from Hallway1 is longer than the route from Stairs1

(see Fig. 4.1). The system takes Stairs1 in run 3 but it takes a temptative route as

shown in Fig. 4.2. The flight-time eventually converges to 34.8 s. The learned CTG at

the start location, after a run finishes, gives a prior estimate of flight time for the next
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Figure 4.2: Trajectories for runs 1, 2, 3, 4, 5, 10, 15, 18, 19, and 20.
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run. Figure 4.3 shows the learned (in the preceding run) CTG at the start location for

all runs. The gap between the learned CTG and the benchmark CTG at the start loca-

tion converges to zero over successive runs. The gap between simulated and benchmark

flight-times should ideally converge to zero. Figure 4.3 shows that there remains a gap of

6.5 s (23 % of the benchmark flight-time) between simulated and benchmark flight-times

even after flight trajectories and performance converge. This is due to model mismatch.

The simulation uses a discrete-time linear state-space model that includes factors such

as time-delay in response of applied control while the SVF (CTG) is computed using

motion primitives that idealize the system behavior [176].
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Figure 4.3: Flight-time, number of planning cycles, and average planning horizon length
for successive runs.

Figure 4.3 shows the number of planning cycles (Ncycles) and the average planning

horizon length (Havg) for successive runs. Ncycles varies in almost the same fashion

as the flight-time does over successive runs. Havg changes only slightly from around

7 to 8 over successive runs. Flight-time for a run is approximately Havg × Ncycles.

Havg remains almost constant over successive runs. Therefore, it can be stated that

flight-time is almost proportional to the number of planning cycles (or AWPs).
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4.3 Flight Dynamic Performance

Figure 4.4 shows the distribution of horizontal acceleration (at and an are tangential

and normal accelerations, respectively) and speed for runs 1, 5, 10, and 20. Speed

distribution is almost the same over successive runs. The system uses higher speeds

(> 0.9× vmax) 49.8, 56.7, 47.8, and 50.1 % of total flight-time for runs 1, 5, 10, and 15,

respectively. The acceleration distribution in Fig. 4.4 shows that the system is using

maximum acceleration to turn more frequently in run 1 than it does in latter runs. In run

20, the dynamic behavior shows a new mode of zero acceleration. The zero-acceleration

mode corresponds to flying in a straight path. The emergence of the zero-acceleration

mode in latter runs is explained as follows. In run 1, the system does not know the

environment and it takes sharp (an ≈ amax) turns to avoid unknown obstacles when

they are revealed for the first time in the vehicle’s path. In latter runs, the system

has learned the environment and updated the SVF to account for the obstacles. The

learned SVF enables the system to account for global environment knowledge in the

finite-horizon trajectory planning. Therefore, in latter runs, the system flies more in

straight lines and takes sharp turns less frequently. For a Dubins vehicle, the policy is

consistent with turn-straight-turn behavior for time-optimal performance [177].
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4.4 Information Processing

In a planning cycle, the SVF update assimilates the sensory data into the local SVF

map. The amount of change in the SVF (CTG) map represents the amount of processed

information in a planning cycle. Due to the quantization of 3-D space into cells, the

CTG change can be measured as the number of cells that change their CTG. To present

the statistics of CTG change (update), the absolute change in CTG is divided in the

following ranges: i) >1 s, ii) 0.5-1 s, iii) 0.2-0.5 s, iv) 0.1-0.2 s, and v) 0.01-0.1 s.

Figure 4.5 shows the number of cells that change their CTG in each planning cycle for

runs 1, 5, 10, and 20. The large changes (>1 s) in CTG map are dominant in starting

runs, indicating a large amount of information being processed in those runs. After

about 10 successive runs, the CTG map does not show any significant change. The

learning process eventually converges and no new information is processed.
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Figure 4.5: Statistics for absolute changes in CTG map for runs 1, 5, 10, and 20.

4.5 Learning SVF

The SVF represents the information needed to determine the optimal guidance behavior

over the geographical space. This subsection investigates how the SVF evolves in space

with learning over successive runs. The following discussion focuses on the environment

section joining the Lab, Stairs1, and Hallway1 sections as shown in Fig. 4.6. The

environment section is a critical decision point; therefore, investigating the SVF in that

section can answer why the guidance system chooses Stairs1 or Hallway1 in a run.

Figure 4.7 shows the CTG map at two horizontal planes z = 1.0 and 1.8 m, in the
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environment section shown in Fig. 4.6. The figure also shows the optimal choice between

Hallway1 and Stairs1 after Lab exit for the next run, based on the CTG learned in a run.

The a priori CTG map is a constant slope plane. The low cost region along Hallway1

justifies the system’s decision to take Hallway1 after exiting the Lab in run 1. As the

CTG evolves with learning over runs 1 and 2, the low cost region shifts from Hallway1

to Stairs1. Therefore, the system chooses Stairs1 in run 3. The low cost region shifts

back to Hallway1 after learning in run 3, which makes the system choose Hallway1 in

runs 4 and 5. After learning in run 5, the low cost region shifts towards Stairs1 and

remains so for all runs beyond 5. Therefore, the guidance system chooses Stairs1 in all

runs beyond 5. The CTG map after run 20 is close to the benchmark CTG (see the last

two columns in Fig. 4.7).

Figure 4.6: Environment section joining Lab, Stairs1, and Hallway1.

Note that the noisy CTG map (Fig. 4.7) is an artifact due to the quantized state-

space that turns the optimization problem into a combinatorial problem of discrete

spatial positions and fixed trajectory (motion) segments. Also, the horizontal and ver-

tical motions are independent of each other and therefore may not saturate together. If

one motion is saturated, the other motion has multiple solutions for the same optimal

cost [176].
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Figure 4.7: CTG at two horizontal planes (z = 1.0 and 1.8 m) in the environment
section shown in Fig. 4.6.

4.5.1 SVF Convergence

A gap E between the benchmark (true optimal) and the learned CTG values for a cell

in discretized 3-D space is defined as following:

E = |CTGlearned − CTGbenchmark

CTGbenchmark
| × 100 %. (4.1)

Figure 4.8 shows the statistical distribution of the gap E, between the benchmark

and the learned CTG maps after run 20, for the obstacle-free environment. A high gap

(assume > 5%) in a region indicates that the learned CTG has not converged to its

benchmark value in that region. Fig. 4.8 shows that the learned CTG map has not

converged to its benchmark value in 17.5 % of the free environment.

4.5.2 Flight Without Environment Sensing (FWES)

A flight without environment sensing (FWES) is a test case that simulates the guidance

system from the specified start to goal locations without relying on the environment

sensing. FWES is simulated after the SVF is learned and converged. In FWES, the

guidance system relies on the learned SVF map. For perfect learning, the performance

of FWES is expected to be close to the optimal (benchmark) solution.
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Figure 4.9: Trajectories for the FWES, benchmark solution, and run 20.
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To verify the learned SVF, a FWES is simulated using the SVF learned after run

20. Figure 4.9 shows the trajectories for FWES, benchmark solution, and run 20, which

are similar. For the FWES, the system takes Stairs1 after exiting Lab. The flight-time

for FWES is 33.6 s, which is close to the flight-time of 34.8 s achieved after learning

over successive runs (see Fig. 4.3).

4.6 Evolution in Control Behavior

This section investigates if patterns emerge in control behavior as a result of learning.

Vehicle control/dynamic behavior is represented by mapping its overall dynamic per-

formance in the body frame. The analysis in vehicle body frame helps investigate the

evolution in control behavior. The global trajectory is a series of finite-horizon tra-

jectory segments computed during each planning cycle. Figure 4.10 illustrates how to

transform trajectory segments for all planning cycles into the vehicle body frame.

The longitudinal-lateral axes are attached to the vehicle. For example, a trajec-

tory is made of three segments, or planning cycles, that are P1, P2, and P3 as shown

in Fig. 4.10. All segments are transformed into the vehicle body frame through an

appropriate translation and rotation. Further, the mirror symmetry about the longitu-

dinal axis is taken care of by taking mirror images of P2 and P3. The transformation

technique in Fig. 4.10 maps the global dynamic behavior in the vehicle body frame.

Aíî

Pi= finite-horizon trajectory for  ith planning cycle

Longitudinal

L
a
te

ra
l

P1

P2 P3

Translation + rotation

into vehicle body frame

Mirror symmetry about 

longitudinal axis 

P1

P2

P3

P1
P2

P3

Figure 4.10: Transformation of trajectory segments for all planning cycles into the
vehicle body frame.
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Figure 4.11: AWP distribution in the vehicle body frame for runs 1, 5, 10, and 20.

The vehicle state, in current study, includes position and velocity. The position

and velocity direction are irrelevant to vehicle dynamic behavior in its body frame due

to translation, rotation, and mirror symmetry, as shown in Fig. 4.10. Only vehicle

speed may have a relationship with its dynamic behavior in the body frame, and the

relationship is not necessarily linear. Current analysis uses the following three regimes

of speed for mapping the behavior in the body frame: 1) ≥ 1.2 m/s, 2) ≥ 1.0 m/s &

< 1.2 m/s, and 3) < 1.0 m/s.

Figure 4.11 shows the distribution of AWPs in the vehicle body frame for runs 1,

5, 10, and 20. The spatial maps for velocity and cost (time-to-go) in the vehicle body

frame are extracted using the spatial averaging technique presented in [12]. The spatial

resolution for the mapping is 0.2 m and averaging window is 0.4 m. Figure 4.12 shows

the velocity and cost (time-to-go) maps in the vehicle body frame for runs 1, 5, 10,

and 20. With learning over successive runs, the dynamic behavior gets segregated in

the body frame based on the vehicle speed. At high speeds (≥ 1.2 m/s), the vehicle

often flies straight. At lower speeds, the vehicle flies in curved paths and the curvature

increases as the vehicle speed decreases.

4.7 Iterations for Safe AWP

In a planning cycle, the guidance system iterates through the list AWPlist until it finds

a safe AWP. niter represents the number of iterations. Table 4.2 shows the statistics of

niter across all planning cycles, for runs 1, 10, and 20. The ideal performance is that it

takes only one iteration in all planning cycles. The mean niter is around 2, which implies

that it takes two iterations on average to find a safe AWP. The median is 1 for all runs.
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of # of runs and speed.



70

In run 20, 79 % of all planning cycles require only one iteration to find safe AWPs. The

low frequencies of niter ≥5 (Table 4.2) implies that there are few specific planning cycles

that require large number of iterations to find a safe AWP. These specific planning cycles

occur in particularly complex parts of the environment, e.g. see the loopy part of the

trajectory in run 1 inside Lab and on Stairs2 in Fig. 4.2. Frequency of niter ≥5 reduces

for latter runs indicating that the guidance system learns and plans a safer trajectory

(compare the trajectories for runs 1 and 20 in Fig. 4.2).

Table 4.2: Statistics for the number of iterations (niter) to find a safe AWP.
Number of iterations Run #

1 10 20 Ideal

Mean 2.3 1.7 1.7 1
Variance 13.1 1.9 5.1 0
Median 1 1 1 1
Median frequency (%) 69 71 79 100
Frequency (%) of niter ≥5 10 7 4 0

This study assumes a static environment but does not make any assumption about

the environment layout, length-scale, obstacle shape and configuration. As discussed

in [173], the dynamic fit between a vehicle dynamic scale (e.g., vmax and amax) and

the environment length-scale (e.g., street width and curvature) dictates the vehicle

performance in the environment. Therefore, a designer should check the compatibility

of a vehicle with its task environment.

Schouwenaars et. al [178] proposed basis states for safety guarantees in RH planning.

A basis state is which a vehicle can remain in for indefinite period of time without

hitting any obstacle. For example, a vehicle can loiter in a circle. To guarantee safety,

the guidance algorithm presented in this dissertation can be extended to include a

condition that the finite-horizon trajectory should always end in a basis state.

4.8 Emergence of Spatial Features in SVF

This subsection investigates what spatial features emerge in the SVF with learning over

successive runs. Figure 4.13 draws a comparison between the a priori CTG and the

learned CTG after run 20 at the horizontal plane z = 4.7 m in a relevant environment
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section. The a priori CTG map is an inclined plane with a constant slope. C is an area

on the plane z = 4.7 m, as shown by the dashed area with dotted lines. If a vehicle

starts from any location c ∈ C and follows the negative gradient of the a priori CTG

map, the vehicle would hit the wall shown by the green boundary in Fig. 4.13. The a

priori SVF (CTG) map does not account for the environment. The CTG map after run

20 has accounted for the environment and spatial features emerge in the learned SVF,

as shown in Fig. 4.13.

y

A priori CTG                                            CTG at Run 20
Learning over

successive runs
Valley 

(attracting

manifold)
Ridge 

(repelling

manifold)

Direction to goal

z = 4.7  m

x (m)

y (m)

C
T

G
 (

s)

x

Figure 4.13: A priori vs learned CTG maps at a horizontal plane z = 4.7 m in the
junction of Stairs1 and Hallway2.

The spatial features in SVF are called subgoals, attracting manifold, and repelling

manifold [10, 7]. At a subgoal, optimal trajectories from a set of other locations converge

and continue as one beyond the subgoal. An attracting manifold is a valley-like structure

in the cost map, and it represents a relatively low cost region in space. A repelling

manifold is a ridge-like structure in the cost map, and represents a relatively high cost

region in space, e.g. behind an obstacle. If a vehicle starts from a location c ∈ C and

follows the negative gradient of the learned CTG map, it would go along the curvature

as shown by the black dashed curve in the rightmost plot of Fig. 4.13. The vehicle goes

along the valley in the cost map and avoids collision with the wall (green boundary).

Trajectories from all locations c ∈ C converge at subgoal sg. The converged (learned)

SVF map shows spatial features as expected.
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4.9 Discussion

This section discusses the significance of results shown in the previous section. It also

shows the statistics of computation time for each part of the guidance algorithm.

4.9.1 Dynamic Performance

The results (Fig. 4.4) show that the modes in dynamic behavior change with learning

over successive runs. In the last run, the vehicle uses more straight motion and less

turning, in comparison to run 1. Speed behavior over successive runs, as can be seen

in Fig 4.4, stays almost the same. A reason may be that the vehicle maneuvering

capability overpowers the maneuvering requirements specified by the task environment

length-scale. For the test vehicle in the simulations, the minimum turning radius at the

maximum speed is 1.5 m and the minimum stopping distance is 0.75 m. The simulation

environment is cluttered and has different length-scales in different regions but the

environment rarely constrains the vehicle to fly through a region that has a width less

than 1 m (Lab exit is 1 m wide). Such a relationship between vehicle dynamics and

environment scale is called “underfit” [173]. For instance if the maximum speed is

10 m/s and the maximum acceleration stays the same as 1.5 m/s2, the speed profile

is expected to show a significant variation with learning over successive runs. Speed

behavior is expected to switch from frequent abrupt variations in speed to a constant

profile with less frequent accelerating/decelerating as the system learns the task over

successive runs.

4.9.2 SVF Convergence

Results show that the learned SVF has not converged in 17.5 % of the obstacle-free

environment. However the performance converges by run 20 and no significant change

in the CTG map is recorded. Note that all runs are simulated from the same start

position. The environment, where the SVF has not fully converged, is not significant

to the task for the specified start and goal locations, which can be explained as follows.

The guidance system starts with the a priori SVF map in run 1. The a priori SVF

map is the optimal SVF for the unknown (no obstacles) environment. The guidance

system is designed to always follow a trajectory that is optimal based on the current
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SVF map. As changes in the environment are recorded by the onboard sensors, the

system updates the SVF map and starts following the updated optimal trajectory. If

a section of the task environment does not affect the optimal trajectory, that section

would not be explored (for example, the Hanger in the simulations presented in this

study). This enables the system to avoid the regions of space that are insignificant to

the task. It is intuitive that the sensory range also plays a role in the overall learning

performance. For example, with a sufficiently large sensory range, the system would be

able to map the Hanger while turning from Stairs2 to Hallway2 during runs 1, 2, 4, and

5. The proposed framework allows the study of these effects.

4.9.3 Metric to Topological Representation: Spatial Features in SVF

Results (Fig. 4.13) show that spatial features emerge in the learned and converged

SVF as a result of learning. The presented framework uses a metric representation

for the SVF. Kong and Mettler [10, 11] showed, using a Dubins optimal solution for

reaching a specified goal in an obstacle field, that the optimal guidance behavior (SVF)

can be abstracted as a graph using subgoals. The optimal trajectory from any spatial

position can be represented by a sequence of subgoals. In a further study with remote

human pilots, Kong and Mettler [7] showed that human pilots organized their spatial

guidance behavior using subgoals. Subgoals allow human pilots to develop a general

strategy represented by a finite set of guidance trajectories, which are applicable in

similar environments or configurations. Between two subgoals, an appropriate trajectory

from the finite set is selected and applied.

If subgoals can be directly learned in real-time without requiring the metric repre-

sentation of SVF, the guidance system would be more efficient in terms of computation,

storage, and planning. Graph representation using subgoals only stores a directed graph

of subgoals, not the optimal policy (cost and velocity maps) at every position in a quan-

tized space. In a graph representation of SVF, the system has to compute the current

optimal subgoal based on the current state and extract the SVF or optimal policy to

generate controls to reach the subgoal. Such a direct learning of subgoals can enable

an efficient use of onboard sensory resources. For example, onboard sensors can focus

near obstacle corners that are subgoal candidates [179, 180, 181], instead of investing

the sensory resources uniformly over the sensory space.
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4.9.4 Computation Time

The guidance system presented in this dissertation repeatedly computes a planning

cycle that includes environment sensing, SVF update, AWP candidates selection, and

finite-horizon trajectory optimization. The computer used for the simulations has 32-bit

Ubuntu 12.04 LTS, Intel Quad Core 2 CPU, and 3.8 GB memory. Each operation costs

a non-zero computation time. For the baseline case presented in this study, environment

sensing involves reading from the true environment occupancy probability map, so is

a quick process. AWP candidates selection is also a quick process, as a CTC map is

recalled from the long-term memory. It is the SVF update and the trajectory optimiza-

tion that take significant computation times. Figure 4.14 shows the computation time

statistics for SVF update and trajectory optimization (MILP in CPLEX). The runtime

statistics in Fig. 4.14 are computed for the data from all runs. The spatial volume of

the SVF update is 6 × 6 × 2 m3 that has 5760 cells, given spatial resolution dxy =

0.25 m and dz = 0.2 m (Table 4.1). The number of motion primitives in the MPlibrary

are 217. The average computation time for the SVF update is 0.50 s with a standard

deviation of 0.20 s. Sampling time for the online trajectory optimization is ∆t = 0.2 s

(Table 4.1). Trajectory optimization takes 0.17 s on average with a standard deviation

of 0.16 s. As it was mentioned earlier in Section 3.2, bisection convex programming can

be used for the trajectory optimization, which would be faster than MILP formulation.

The SVF update requires maximum runtime. One solution to reduce the runtime

is to use a lower resolution for geographical space or vehicle dynamics (less number of

MPs). However, it is a trade-off between the accuracy of SVF and the runtime of SVF

update. The less the latter is, the closer the framework is to a real-time application.

4.9.5 Situational Awareness

In the presented learning and guidance framework, the central component is the on-

line data assimilation (learning of SVF) that is functionally similar to the central stage

“comprehension” in Endsley’s SA model [154]. The online data assimilation takes en-

vironmental information from onboard sensors and incorporates the information into

a guidance policy, i.e., SVF, in light of specified task objectives. Once the environ-

ment information is interpreted as guidance policy, the framework predicts a local goal
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Figure 4.14: Computation time statistics for SVF update and trajectory optimization
(MILP in CPLEX).

state, i.e., AWP, to determine the best immediate control action. The selection of AWP

is similar to “projection” stage in the SA model [154]. Thus, the presented learning

and guidance framework delineates the three stages (perception, comprehension, and

projection) of SA.

4.9.6 Future Directions

The current framework has to be extended to account for practical considerations such

as time-delay, path-tracking errors, uncertainties in the environment sensing due to a

practical sensor model, and disturbances in the control that are always present in the

integration of sensing, planning, and control.

Chapter 7 presents a modification of the learning framework that learns a topological

representation of the task environment using subgoal-graph, instead of learning the table

representation of SVF. The subgoal-graph framework is used to evaluate human task

learning and decision making during navigation in unknown environments in Chapters 5

and 6.



Chapter 5

Human Environment Learning:

Experiments and Analysis

Framework

This chapter first presents the experiment system used for human guidance experiments.

Next, the chapter presents a mathematical formulation of guidance task, interaction

patterns, memory structure for representing and learning a guidance task, and agent-

environment system. Finally, the chapter introduces an analysis framework using the

proposed memory structure for environment learning and representation. This chapter

is taken from article [182].

5.1 Experiments and Data

This section gives an overview of the experiment system and human data used for the

investigation of human environment learning.

5.1.1 Experiment System

The guidance experiments were conducted on the system introduced in [16] (see in

Fig. 5.1(a)). The system consists of a monitor to display a simulated task environment,

a joystick to control flight behavior and navigate in the environment, and a gaze tracking

76
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device to record 3-D gaze location. The system provides a first-person view with a

limited field of view (600) to human subjects. The longitudinal and lateral control

inputs (ulon and ulat, respectively) correspond to forward speed (v) and turn-rate (ω).

There is a delay between speed command ulon and vehicle speed v. Turn-rate is inversely

proportional to the speed. Vehicle dynamic model is given in Section 5.2.

5.1.2 Experiments

Figure 5.1(b) shows the task environment used for the guidance experiments. The

environment is quasi 3-D and made of vertical walls. The experiments in this dissertation

involve only horizontal (planar) motion. Eight subjects participated in the experiments.

The task objective was to find fastest (minimum-time) routes between pre-specified start

and goal locations as shown in Fig. 5.1(b). Before the experiment, the subjects had no

knowledge of the environment layout and the goal was described to them as an archway

(visually distinguishable from obstacles/walls) situated north of their start orientation.

Subjects performed multiple runs from the same start location. At the end of each run,

flight-time was displayed on the monitor as a feedback about their performance. Each

subject was instructed to try at least 20 runs or as many runs as he/she required to

explore the environment in order to find the fastest route. At the end of the experiment,

each subject was asked which route was the best (fastest).

Start

Goal

x (m)

y (m)

(a)                                                                      (b)

Tobii eye 

tracker

Gaze location

indicator

Controller

Speed 

command

Turn

command

Figure 5.1: (a) First-person guidance experiment system proposed in [16] and (b) Task
environment used for human guidance experiments presented in this dissertation.
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Trajectories for subjects' best route

Figure 5.2: Trajectories for all runs for subjects 1 to 8.

Figure 5.2 shows trajectories for all runs for subjects 1 through 8. For each subject,

trajectories on his/her best route are shown in red. Figure 5.3 shows the flight-times for

runs on the best route for each subject. Subject 1 achieved the best overall flight-time

of 31.0 s.

5.2 Mathematical Formulation

This section first presents a mathematical formulation of guidance task and interaction

patterns. Next, the formulation is used to model memory structure for representing

and learning a guidance task environment. Finally, it presents the agent-environment

system and its components.
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Figure 5.3: Flight-times for runs on best routes for subjects 1 to 8. S.D. is the standard
deviation.

5.2.1 Guidance Task

In a guidance task, an agent travels from a state x ∈ χ ⊆ R
n to a given goal state xg,

using control u ∈ U ⊆ R
m. Vehicle dynamics are described by:

ẋ = f(x,u), (5.1)

xp ∈ W ⊂ χ,

where xp is spatial position vector and W is allowed workspace (e.g., position and

orientation). The time to reach the goal is represented by tf . A control trajectory ←−u
drives the agent from a start state x to the goal state xg. The corresponding state

trajectory is represented by ←−s . The set of all feasible trajectories from all start states

satisfying constraints χ andW is represented by
←−
S , which represents guidance behavior.

An optimal trajectory (←−u ∗ and ←−s ∗) minimizes a cost function J (e.g., time-to-go)

as follows:

Min
←−u

∫ tf

0
J(x(t),u(t))dt. (5.2)

The set of←−s ∗ from all start states is represented by
←−
S ∗ ⊂ ←−S , which represents optimal
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guidance behavior. Optimal spatial guidance behavior
←−
S ∗p is defined over spatial posi-

tion vector xp space.
←−
S ∗p is the set of optimal trajectories from all xp ∈ W. Spatial value

function (SVF) describes optimal guidance policy (e.g., cost-to-go (CTG) and velocity

maps) over geographical space for
←−
S ∗p.

5.2.2 Interaction Patterns

Kong and Mettler [7] described two equivalence relations that are fundamental to the

organization of spatial behavior: subgoals (g’s) equivalence and the symmetry group

guidance primitives (π’s), in
←−
S ∗p. These two equivalences provide the elements to for-

mally describe patterns in interactions between agent dynamics and environment.

A subgoal g ∈ χ is a state that two trajectories←−s ∗i and←−s ∗j , in
←−
S ∗p, meet at and then

follow a same trajectory to the goal. Trajectories related by a same subgoal g are said

to be equivalent, i.e.,←−s ∗i ∼S ←−s ∗j . Subgoals divide the task spaceW into partitionsW i’s

such that trajectories from all xp ∈ W i converge to the same subgoal gi. Therefore,

trajectory ←−s ∗ from a point can be represented as a sequence of subgoal states.

A trajectory segment is a continuous portion from a trajectory←−s ∗i . If two trajectory

segments πi and πj are equivalent after a rigid-body transformation (translation and

rotation), the segments are related to same guidance primitive, i.e., πi ∼G πj . The

guidance primitive library Π is as follows:

Π = {π1, π2, ...} (5.3)

A trajectory ←−s ∗ can be represented as a string of guidance primitives.

5.2.3 Subgoal Graph

The optimal guidance solution over spatial position vector, which is
←−
S ∗p, can be ab-

stracted as a directed graph of subgoals represented by G as follows:

G = [g0 g1 g2 .. gk .. gN ], (5.4)

(gk)c = gi & CTGi < CTGk,

where N is the number of subgoals. Goal is represented by g0 = xg. CTGk is cost-to-go

to the goal state (g0) from subgoal gk. CTG0 is zero. Each subgoal (other than goal)
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gk has one child subgoal gi, i.e., there is a directed edge in the graph from node gk to

gi. Graph edges are represented by a connection matrix Q as follows:

Q = [Qki](N+1)×(N+1), k ∈ [0 .. N ], i ∈ [0 .. N ]; (5.5)

Qkk = 0 ∀ k ∈ [0 .. N ];

Q0i = 0 ∀ i ∈ [0 .. N ];

∀ k ∈ [1 .. N ], ∃! i (Qki = 1, Qkj = 0 ∀ j 6= i).

The matrix element Qki is 1 only if gi is the child subgoal of gk, otherwise Qki is 0.

State vector x is position xp and dynamic (e.g., velocity and higher derivatives) state

xv. In presented experiments, position vector is [x y] and dynamic state is velocity [v ψ]

where v and ψ are velocity magnitude and direction, respectively. A subgoal gk is

xgk = [xgk ygk vgk ψgk ]. The position xpgk = [xgk ygk ] is associated with obstacle

boundaries (or corners in polygonal obstacle fields)[Give ref.]. The subgoal velocity

xvgk = [vgk ψgk ] depends on its child subgoal state x(gk)c = [x(gk)c y(gk)c v(gk)c ψ(gk)c ] as

follows:

Min
vgk , ψgk

∫ x(gk)c

xpgk

J(x(t),u(t))dt (5.6)

For a low-order dynamics (e.g., no acceleration constraint), velocity direction ψ(gk)c will

overlap with edges in the visibility graph of subgoal positions, which is as follows:

ψ(gk)c = tan−1
[

y(gk)c − ygk
x(gk)c − xgk

]

. (5.7)

Formulation for subgoal velocity (Eq. 5.6) is a two-point boundary value optimiza-

tion, which is usually solved using numerical techniques. With a finite and efficient (e.g.,

non-repeating and optimized cost) library Π of guidance primitives as units for motion

planning, the optimization problem in Eq. 5.6 can be converted into finding a sequence

of guidance primitives to transition between subgoals. The computational cost in such

approach depends on |Π|.

5.2.4 Learning

Subgoal Graph

In unknown environments, the agent has to learn the subgoal graph G. The task

environment in presented experiments is made of polygonal obstacles, and therefore
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subgoal positions are assumed to be associated with obstacle corners. The connection

matrix for the agent is a probability distribution as follows:

i=N
∑

i=0

Qki = 1, (5.8)

where Qki is the probability that gi is the child subgoal of gk. An approximation of a

priori Qki is as follows:

Qki =







1/M, if V (k, i)=1

0, if V (k, i)=0,
(5.9)

where M is the number of subgoals that are connected with gk in visibility graph

V . With environment learning, the child subgoal is learned, i.e., Qki shifts to 1 for a

particular i and zero for all others.

Guidance Primitive Library

ΠF is the set of trajectory-segments π, i.e., motion primitives, that satisfy the vehicle

dynamics f and state constraints χ. Two same trajectories are represented by a same

π. ΠW ⊆ ΠF is the set of trajectory-segments that emerge from interactions with

environment constraints W. Π∗W ⊆ ΠW includes trajectory-segments that are optimal

for a cost function (e.g., time).

Before the environment is learned, agent’s library Π can be assumed to be:

Π ⊂ ΠF . (5.10)

When agent interacts with the task environment, Π becomes:

Π ⊂ ΠW . (5.11)

As agent learns optimal control (e.g., a skilled pilot), Π becomes:

Π ⊂ Π∗W . (5.12)

When the task environment is learned, the library consists of trajectory segments that

are specific for the task environment.

Learning can be assessed by changes in Π. Environment learning can be mea-

sured by two quantities: 1) reduction in |Π| (cardinality of guidance primitive library),
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2) constancy of each primitive π. Because of noises and uncertainties in real world,

trajectory-segments in same π do not overlap completely but are within a threshold

error (e.g., a limit on area between two trajectory segments).

5.2.5 Agent-Environment System

Figure 5.5 shows an example of first-person view of the task environment. The agent-

environment system has three elements: 1) vehicle dynamics (forward speed v and

turnrate ω), 2) human gaze vector ~rg (distance rg and angle θg in agent’s body frame),

and 3) environment cues .

Vehicle Dynamics

The forward speed v and turnrate ω are controlled by longitudinal (ulon) and lateral

(ulat) inputs, respectively. Turnrate is limited based on vehicle speed. Vehicle dynamics

model is as follows:








ẋ

ẏ

ψ̇









=









v cosψ

v sinψ

min(ulat/v, ωmax)









(5.13)

v̇ = kacculon − kdragv,

where ωmax is the maximum allowed turn-rate. kacc and kdrag are acceleration and drag

coefficients, respectively. vmax is the maximum speed. In experiments, the values are

set as the following:

vmax = 5.2 m/s; ωmax = 37.6 deg/s; (5.14)

kacc = 0.12 m/s2; kdrag = 0.88 1/s.

Data sampling time ∆t is 0.02 s.

Environment Cues

A cue is a signal used to gain information about some property of the surrounding

world. Cues can be visual, auditory, or different sensory types. Visual cues are domi-

nant for humans. In this research, the simulated task environment is made of polygonal
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Figure 5.4: Speed turnrate envelope of the vehicle used in human experiments.

obstacles that have two primary features, edges and corners. To keep the environmental

cues simple enough for analysis, the simulated environment is presented otherwise ho-

mogeneously, i.e., uniform colors for walls and ground, and no other landmarks. Even

in an environment composed of polygonal walls, many types of cues are possible, such

as a gap between two walls, a point on the edge, lateral or longitudinal distance from

the walls. A human subject may use any of these cues to assess his/her state relative

to the environment, maintain a safe distance from obstacles, or perceptual guidance

(e.g., Tau guidance). For global planning, however, a subject activates a subgoal and

approaches the subgoal. Obstacle corners serve as candidates for subgoals. Therefore,

the corners or endpoints of the known/learned obstacle boundary can be described as

global navigation cues (GNCs) that aid global path planning and navigation.

An instantaneous navigation cue (INC) is an end point on the visible obstacle bound-

ary as shown in Figure 5.5(b). An INC is represented by cI = [rcI θcI ] where rcI and

θcI are cue distance and bearing angle in agent’s body frame.
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(b) Top view

Gaze

Figure 5.5: Agent-environment system measurements.

Patterns

Figure 5.6: Agent-environment dynamics.
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Agent-Environment Dynamics

Warren [13] described closed-loop agent-environment dynamics (Fig. 5.6) using the fol-

lowing formulation:

ẋ = f(x, k(x, h(g(x)))), (5.15)

. The agent is considered to be embedded in the environment. In the closed-loop model

Eq. 5.15, g(.) describes how the agent state affects the environment state e. For example,

environment state can be defined by relative position and orientation of obstacles and

navigation cues cI ’s (subgoal heuristics), which depend on the agent’s current state.

Next, perceptual processes i = h(e) use environment cues to extract information i. For

example, relative bearing of obstacles can be used to estimate motion gap for perceptual

guidance. Navigation cues are used for subgoal selection (decision-making) using a priori

known and learned knowledge about task structure (subgoal graph). Next, the agent

applies control u = k(i) based on a guidance primitive πk from its guidance primitive

library Π, and moves gaze in a coupling with πk.

5.3 Analysis Framework

This section first uses a Dubins vehicle to illustrate the subgoal graph for the task

environment used in human guidance experiments. Second, the section applies the

subgoal graph model presented in Section 5.2 for human data processing. Third, it

presents an optimal (benchmark) decision-making model to evaluate human decision-

making. Fourth, the section presents an exploration metric. Finally, a clustering method

to extract guidance primitives is presented.

5.3.1 Benchmark Subgoal Graph

This dissertation uses the time-optimal solution for a Dubins vehicle (speed and turning

radius of vmax = 5.2 m/s and 1 m, respectively) as a benchmark solution for the task

environment shown in Fig. 5.1(b). Figure 5.7 shows the optimal cost(time)-to-go and

velocity vector field for the benchmark solution. The structures such as subgoals and

repelling manifold, as described in [10], can be seen in the velocity map in Fig. 5.7. For

the optimal Dubins solution, subgoal locations coincide with obstacle corners.
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Figure 5.7 also shows the subgoal graph representation, based on the benchmark

solution in Fig. 5.7, for the task environment. A subgoal graph is a directed graph

as shown in Fig. 5.7. Terms ‘subgoal’ and ‘node’ are used interchangeably in this

dissertation. The solution from each point in free space goes to a subgoal and then it

follows a sequence of subgoals (nodes). For example, the subgoal sequence from the

start location is start→ 33→ 28→ 26→ 18→ 11→ 9→ 5→ 2→ 1(goal) .

An optimal subgoal graph satisfies the dynamic programming formulation (Algo-

rithm 1 in [181]) as follows:

CTGk = min
i∈[0 .. N ]\k

(DCki + CTGi) ∀k ∈ [1 .. N ], (5.16)

where DCki is the incremental cost-to-go from subgoal gk to subgoal gi. DC is (N +

1)× (N +1) matrix. A transition from gk to gi is allowed only if the optimal trajectory

from gk to gi in the absence of obstacles is collision-free in the presence of obstacles.

5.3.2 Human Data Processing

N Nodes, CTG, DC, and Q are a priori unknown to subjects. Subjects arguably learn

these quantities over successive runs. This section describes how to extract learned

cost-to-go and node connectivity information from human data.

A characteristic of a time-optimal trajectory is that it passes close to obstacle cor-

ners. This attribute can also be seen in human trajectories (see Fig. 5.2). This char-

acteristic of time-optimal solutions enable the presentation of a human trajectory as a

sequence of subgoals [k1 k2 .. ki ki+1 .. 0], where ki is the index of subgoal gki in the

benchmark subgoal graph. Human cost-to-go at a subgoal gki is represented by CTG′ki
and is extracted from a trajectory as follows:

CTG′ki = t0 − tki , (5.17)

where t0 and tki are times at goal and at trajectory point closest to the subgoal gki ’s

position, respectively. CTG′ki from a run is tracked in a list CTG′ki list. For a human

subject, Q′ is initiated as a zero matrix. In each run, Q′ is updated as follows:

Q′kiki+1
= Q′kiki+1

+ 1. (5.18)
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Subgoal graph for the benchmark solution

Figure 5.7: Benchmark solution: Dubins optimal solution, subgoal graph, and connec-
tion matrix.
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Incremental cost between consecutive subgoals in human trajectory is extracted as fol-

lows:

DC ′kiki+1
= tki+1 − tki . (5.19)

DC ′kiki+1
from each run is stored in a list DC ′kiki+1 list

.

In the presented framework, human environment knowledge is represented by cost-

to-go at nodes (CTG′klist), travelling cost from one node to another (DC ′kilist), and

number of times a segment from one node to another has been travelled (Q′ki). The

following are definitions regarding human knowledge about the environment, which will

be used to present a decision-making rule later in this section:

UKN = unknown nodes
[All nk s.t. CTG'klist = ∅]

KN = known nodes
[All nk s.t. CTG'klist ≠ ∅]

CNk = connected nodes from nk

[Nodes that have been travelled to 

at least once from current node nk, 

i.e.,  all ni s.t. Q'ki > 0]

VIS = visible nodes
[Nodes that are visible 

from current node]

Figure 5.8: Known, unknown, connected, and visible nodes.

Definition 1 Unknown Nodes (UKN) is the set of all nodes that have never been

visited, and is presented as follows:

UKN = {k ∈ [1 .. N ] : CTG′klist = ∅} (5.20)

Definition 2 Known Nodes (KN) is the set of all nodes that have been visited at least

once, and is presented as follows:

KN = {k ∈ [1 .. N ] : CTG′klist 6= ∅} (5.21)
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Definition 3 Connected Nodes at a node nk, represented by CNk, is the set of all nodes

that have been travelled to from the node nk, and is presented as follows:

CNk = {i ∈ [0 .. N ] : Q′ki > 0} (5.22)

Visible Nodes

In the presented experiments, subjects have a limited field of view (600) which is ex-

pected to affect their exploratory behavior and choices of routes. A subject has to

decide which node to go to after the current node. To study the effect of visibility

on decision-making, the set of nodes that are visible from the current node ncurr is

tracked in V IS. t∗ is the time at which trajectory is closest to ncurr. This dissertation

uses a time window tw around t = t∗ to evaluate all nodes visible at any instant from

t = t∗ − tw/2 to t = t∗ + tw/2. They are then stored in V IS. If tw is too big, there are

too many overlaps and variables are confounded. A very small tw is unrealistic from

human attention span standpoint. Therefore, it is necessary to identify tw that explains

human behavior and decision-making at nodes. At this point, tw is set to 1 s.

5.3.3 Decision-Making Model

This section presents Dijkstra’s algorithm for shortest path search in human-learned

subgoal graph. The algorithm gives a decision-rule to evaluate human decision-making

in navigation tasks.

Decision Cases at a Node

At a node, there are two primary types of behavior possible (see table 5.1): exploration

or exploitation, which correspond to trying a new solution or repeating a known solution,

respectively. In exploration mode, a subject at a current node nk goes to a next node ni

that was never visited from nk (Q
′
ki = 0 or ni 6∈ CNk) in preceding runs. In exploitation

mode, the subject goes to a next node ni that was previously visited from the current

node nk (Q′ki > 0 or ni ∈ CNk) in one or more preceding runs.

Table 5.1 shows the three types of decision-making scenarios (called cases A, B, and

C) at a current node nk. In case A, there is no connected node (|CNk| = 0) from node

nk, i.e., there is no node ni that Q
′
ki > 0. In cases B and C, there are only one connected
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Table 5.1: Choice at a node nk.

Decision case Choices

A) |CNk| = 0 Exploration: go to any node

B) |CNk| = 1 1) Exploitation: go to the node ni ∈ CNk

2) Exploration: go to a new node ni 6∈ CNk

C) |CNk| > 1 1) Exploitation: go to a node ni ∈ CNk (what is the decision-rule?)
2) Exploration: go to a new node ni 6∈ CNk

node (|CNk| = 1) and two or more connected nodes (|CNk| > 1), respectively, from

node nk. Frequency of case A reduces and increases for cases B and C as a subject

learns the environment over successive runs.

Decision-Making Model

Figure 5.9 presents a decision-making model based on the Dijkstra’s shortest-path search

method proposed in [27]. The model is used to select the best node to go in case C

(table 5.1). The decision-making model has two parameters: discount factor (γ) and

maximum depth (Dmax) for graph pruning. In a run, the model uses the CTG′klist ,

DC ′kilist , and Q
′ information extracted from data in preceding runs. At any node, the

model uses Dijkstra’s algorithm to search for the shortest path to the goal node. The

graph is expanded from a node using Q′ information. The cost of an edge is given by

a function f(DC ′kilist). This function, for instance, can be mean, minimum, maximum,

or median. In this dissertation, f is the minimum function, i.e., a greedy approach.

Humans’ limited working memory is accounted for by setting a maximum search depth

Dmax. If the goal is not found after expanding the graph to depth Dmax, the cost-to-go

from a node nk at depth Dmax is approximated by f(CTG′klist). The model also uses a

discount factor γ (0 < γ ≤ 1). The cost at depth d is weighted by γdepth. Therefore, the

lower the discount factor, the less importance the model gives to the cost at a depth.

Discount factor models if a subject is biased towards immediate (local) cost than global

cost.
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Depth=0

Current node ni
List of leaf nodes (LLN) = [ni]

Cost-to-come to ni (CTCi) = 0

- Minimum cost-to-come (CTC) node nj 
  in LLN   

- For k=1:N

     If CM'(j,k) > 0

        If nk ∈ LLN

           If CTCk > γdepth f(DC'(j,k)) + CTCj 
           - CTCk = γdepth f(DC'(j,k)) + CTCj 
           - (nk)parent = nj
           End

        Else

           - Add nk in LLN

           - CTCk = γdepth f(DC'(j,k)) + CTCj 
           - (nk)parent = nj
        End

     End

  End

- Remove nj from LLN

- Depth=Depth+1

Goal ∈ LLN?

Yes

  Depth > Dmax?

No

- Total cost-to-come to 

  goal through each node 

   nk in LLN

  = f(CTG'k list) + CTCk
- Choose the node with 

  minimum total cost

- Extract sequence 

  from the current node 

  to the minimum cost 

  node, using parent 

  information.

Yes

No

 Extract sequence 

 from the current

 node to the goal 

 node, using 

 parent information.

Go to the first node in the sequence

Graph-pruningDijkstra's algorithm

Figure 5.9: Decision-making model: Dijkstra’s algorithm with discount factor γ and
graph pruning at maximum depth Dmax.
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5.3.4 Exploration Metric

Learning or search tasks in general involves trade-off between exploration (learning new

knowledge) and exploitation (using current knowledge to make optimal decisions) [161].

In this dissertation, the connection matrix extracted from human data is used to quantify

exploration behavior. Q′ki gives the number of times the segment associated with the

edge nk → ni is taken by a subject. This information is used to determine Mh which

represents the number of segments that are taken h times. An exploration metric EM

is calculated as follows:

EM =
h=∞
∑

h=1

(

Mh

h

)

(5.23)

A large EM corresponds to when a subject explores many different segments only a

few times (e.g., once or twice) and a small EM results from a subject taking a subset

of edges many times. EM is a measure of exploration behavior of a subject.

5.3.5 Extracting Guidance Primitives (GPs)

In human data, it is observed that at large distances from obstacle corners subjects

mostly travel in straight lines at high speeds. Agent-environment interactions take

place when subjects pass close to obstacle corners. The hypothesis for task environment

learning is that a pilot learns invariant perceptual and guidance strategies, i.e., guidance

primitives [7], in interactions with the task space. The analysis of guidance behavior in

this dissertation focuses on trajectory segments in vicinity of corners. For this purpose,

trajectories are aggregated and described in a common reference frame. Fig. 5.10 shows

the corner-frame used to investigate the guidance primitives. The corner-frame axes are

the bisectors of angles formed by walls (boundaries) that meet at the corner.

First, candidate guidance primitive (GP) segments are extracted as follows. Trajec-

tory segments are transformed into corner frame by translations, rotations, and reflec-

tions. Time-origin (tc = 0) for a trajectory in corner frame is set at the closest point

to the corner (see Fig. 5.10). A trajectory segment si in corner frame is a sequence of

points as follows:

si = {.., (xicl yicl), ..}, l ∈ [1 .. L], (5.24)

tc(1) = −T, tc(L) = T,
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Trajectory

rmin

Closest point to

corner (tc= 0)   

Obstacle corner

xc

yc

Figure 5.10: An example trajectory in corner-frame.

where 2T is the time-duration of trajectory segment considered for subsequent analysis

of candidate GPs. L is the number of discrete points in time-duration 2T . Distance dijs

between two trajectories si and sj is defined as follows:

dijs =
l=L
∑

l=1

w

√

(xicl − x
j
cl)2 + (yicl − y

j
c l)

2, (5.25)

w = 1− |tc(l)− T |
2T

.

The distance in Eq. 5.25 is based on points that have the same time-instant, which

distinguishes trajectories that are similar in geographical space but have different motion

behavior (e.g., speed and turnrate). Points on trajectory segments are weighed based

on how far they are from closest point to corner.

Distance dIJπ between two clusters πI and πJ is the average distance between all

pairs of trajectories si ∈ πI and sj ∈ πJ as follows:

dIJπ =
1

|πI ||πJ |

i=|πI |
∑

i=1

j=|πJ |
∑

j=1

dijs , (5.26)

where |πI | is the number of trajectories in Ith cluster, i.e., πI . Trajectories are clustered

using the bottom up hierarchical clustering. Each trajectory starts as a single cluster.

As moving up the hierarchy, two closest (minimum dIJπ ) clusters are merged. The process

is repeated until a specified number of clusters is achieved.



Chapter 6

Human Environment Learning:

Results and Analysis

This chapter presents an analysis of human data using the framework proposed in

the previous section. First, it presents general observations that focus on planning,

exploration, convergence in CTG at subgoals, and evolution in control and gaze behavior

with environment learning. Finally, the chapter presents a quantitative analysis of

guidance primitives associated with interaction patterns that emerge with environment

learning. This chapter is taken from article [182].

6.1 Planning (Decision-Making)

Figure 6.1 shows the decision model accuracy (for Dmax =∞ and γ = 1) and mean and

standard deviation of flight-time for each subject’s last three runs on their best route.

Model accuracy and flight-time correspond to operator rationality and performance,

respectively. It is reasonable to assume that a better model accuracy should result in a

lower flight-time. The best line fit between model accuracy and flight-time is shown by

the dotted line in Fig. 6.1. Subject # 1 is the best, i.e., maximum accuracy (87.5 %)

and best flight-time (mean and standard deviation are 31.7 s and 0.5 s, respectively).

Subject # 8 is an outlier and achieves the second best flight-time (mean and standard

deviation are 33.1 s and 0.5 s, respectively) despite the worst model accuracy (56.3 %).

Subject # 7 shows the worst flight-time (mean and standard deviation are 36.9 s and

95
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1.6 s, respectively) and second worst model accuracy (57.1 %).
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Figure 6.1: Flight-time on a subject’s best route vs the model accuracy.

6.1.1 Exploration vs. Exploitation

Figure 6.2(a) shows the exploration metric (EM) for all subjects. Subject # 8 has the

largest EM = 21.3. Figure 6.2(b) shows the distribution of segments based on their

trial frequency. Subject # 8 tries several segments few times unlike other subjects.

This high exploration tendency of subject # 8 may be a reason why the subject has the

lowest model accuracy (56.3 %) despite the second best flight-time (mean is 33.1 s) on

its best route.

6.1.2 Visibility

The simulation system models the environment that is within the field of view (600) of

an operating subject. A node is visible if it is in the field of view and not obscured or

hidden by obstacles. Figure 6.3 shows the number of occurrences that the next node
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Figure 6.2: (a) Exploration metric (EM) and (b) Distribution of segments based on
trial frequency.
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nnext chosen by a subject is ∈ V IS, 6∈ V IS, or V IS = {}. It can be seen that subjects

often (mean frequency is 93 % for all subjects) choose visible nodes when there is any.
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Figure 6.3: Number of occurrences for nnext ∈ V IS, nnext 6∈ V IS, and no visible nodes
for all subjects.

6.2 Environment Learning

This section compares subjects # 1 and # 7 who give best and worst flight-times, re-

spectively, for environment learning analysis. Figure 6.4 shows speed time-histories for

first and last runs on best routes of subjects # 1 and # 7. In starting runs, subjects

slow down as they approach any obstacle corner (or subgoal gk) because parent subgoal

(gk)p and therefore subgoal velocity [vgk ψgk ] are unknowns in starting runs. As the en-

vironment is learned, subgoal network and velocities are learned. In later runs, subjects

reduce speed, when approaching a subgoal gk, based on turning required to align with

the next (parent) subgoal (gk)p.

Figure 6.6(a) shows frequencies of high-speeds (≥ 90 % of vmax) for starting (1-15)

and final (16-last) runs for subjects # 1 and # 7. The frequencies are computed using

trajectory data near corners (within time-window T = 2τ from a corner, where τ = 1.13
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Figure 6.4: Speed trajectories for first and last runs on best routes of subjects # 1 and
# 7.
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Figure 6.5: Gaze trajectories for first and last runs on best routes of subjects # 1 and
# 7.
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s is the time-constant for the vehicle command-to-speed model). For subject # 1, the

frequency of high-speeds increases from 38.2 % to 54.0 % from starting to final runs.

For subject # 7, the frequency increases from 27.7 % to 41.1 %. Figure 6.6(b) shows the

mean minimum distance (rmin) from obstacle corners for starting and final runs for the

both subjects. In final runs, mean rmin for subjects # 1 and # 7 are 0.2 m and 0.9 m,

respectively. These results suggest that Subject # 7 shows higher obstacle avoidance

behavior than subject # 1.
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Figure 6.6: (a) Frequency of high-speeds near corners and (b) Mean rmin for starting
(1-15) and final (16-last) runs for subjects # 1 and # 7.

6.2.1 Gaze

Figure 6.5 shows gaze trajectories for first and last runs on best routes of subjects # 1

and # 7. Figure 6.7 shows the frequency of gaze within 1 m of obstacle corners, i.e.,

subgoal heuristics, for the runs shown in Fig. 6.5. Visual attention in starting runs is

scattered (e.g., regularly scanning sideways) for both subjects. In the last run, subject

# 1 primarily (28.9 % of total time) focuses gaze near obstacle corners. Subject # 7

attends to obstacle corners with almost half the frequency (13.8 % in the last run) of

subject # 1, and he/she focuses gaze at future points on the path. An explanation for

such gaze behavior of subject # 7 is that the subject is occupied with stabilizing the

vehicle on a reference path due to his/her novice control skills, which is showed later in

the analysis of guidance primitives.
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Figure 6.7: Frequency of gaze within 1 m of corners in first and last runs on best routes
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Figure 6.8: Benchmark, mean, and standard deviation of CTG for subjects # 1 and #
7 at nodes on their best routes.
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6.2.2 CTG at Subgoals

Figure 6.8 shows the benchmark CTG and mean and standard deviation of CTG for

subjects # 1 and # 7 at nodes on their best routes. The average gap between the

benchmark CTG and subject # 1’s mean CTG is 26.5 %. For subject # 7, the gap

is 49.3 %. Mean standard deviation in CTG’s at nodes for subjects # 1 and # 7 are

5.4 and 7.3 %, respectively. Subject # 1 shows better convergance in CTG at subgoals

(nodes) than subject # 7.

6.3 Guidance Primitives (Quantitative Analysis)

Figures 6.9 and 6.10 show trajectory segments in the corner frame for runs 1-15 and

16-last for subjects # 1 and # 7, respectively. Time-window T is 2τ where τ = 1.13 s is

the time-constant for the vehicle command-to-speed model. The trajectories are divided

into five clusters (πi, i ∈ [1 5]) using hierarchical clustering (Eqs. 5.25 and 5.26). In runs

1-15, clusters are numbered in decreasing order of frequencies. In runs 16-last, clusters

are numbered according to their similarity with the clusters in runs 1-15. The similarity

between two clusters is measured as the average distance between all pairs of trajectory

segments in the clusters (Eq. 5.26). Figure 6.11 shows the trajectory segments in the

global environment for both the subjects.
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Figure 6.9: Subject # 1: trajectories in corner frame and clusters’ frequencies for runs
1-15 and 16-last.

The frequencies of clusters in runs 1-15 and 16-last for subjects # 1 and # 7 are

shown in Figs. 6.9 and 6.10, respectively. For subject # 1, clusters are not distinct in
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Figure 6.10: Subject # 7: trajectories in corner frame and clusters’ frequencies for runs
1-15 and 16-last.
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Figure 6.11: Subjects # 1 and 7: trajectory clusters 1-5 in global environment for runs
1-15 and 16-last.
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runs 1-15. The behavior follows more distinct clusters in runs 16-last (see trajectories

in Fig. 6.9). In runs 1-15, there are three dominant clusters with frequencies of 40.6,

31.3, and 19.8 %, respectively. In runs 16-last, there is one dominant mode with the

frequency of 56.6 %. For subject # 7, trajectories in runs 16-last are spread across

clusters. Subject # 1 has a guidance primitive library (Π) with better differentiated

behaviors than subject # 7.

Figures 6.12 and 6.13 show trajectories, mean trajectory (colored based on mean

speed value), time-histories of mean speed and turnrate, and gaze distribution for the

clusters for runs 1-15 and 16-last for subjects # 1 and # 7, respectively. For a cluster,

overall mean speed V and uncertainty in speed profile Uv are computed as follows:

V =

∫ T
−T wvmdtc
∫ T
−T wdtc

, (6.1)

Uv =

∫ T
−T wσvdtc
∫ T
−T wdtc

,

w = 1− |tc − T |
2T

,

where vm and σv are mean and standard deviation in speed, respectively. V and Uv for

subjects # 1 and # 7 for the clusters (guidance primitives: πi, i ∈ [1 5]) for runs 1-15

and 16-last are shown in table 6.1. The table also shows the V and Uv for the guidance

primitive library Π, which are weighted sum of V and Uv for clusters πi’s based on their

frequencies, in runs 1-15 and 16-last for the both subjects. The mean speed for subject

1 in runs 16-last is 4.3 m/s with the standard deviation of 0.2 m/s, which are 3.7 m/s

and 0.5 m/s, respectively, for subject # 7.

Subject # 1 shows consistent (repeatable) control behavior unlike subject # 7. This

observation supports that subject # 1 has consolidated the behavior in his/her memory.

Also, the behavior consolidated in subject # 1’s memory is effective and safe, which

are supported by high speeds used by the subject (Figs. 6.6(a) and Fig. 6.12) and close

distances to corners (Fig. 6.6(b)), respectively.

Gaze distribution in Figs. 6.12 and 6.13 are computed using gaze data from tc = −T
to tc = 0 because corner is not visible beyond tc = 0. In runs 1-15, subject # 1 focuses

gaze near corners with the frequency of 10-20 %. In runs 16-last, the frequency increases

to 20-40 %, which is almost four times the frequency (5-10 %) of subject # 7. Subject
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# 7 looks at future points on the path instead of focusing at corners, which is consistent

with observations in Fig. 6.5.

Subject # 1 who achieves lower flight-time and better differentiated and converged

guidance primitives than subject # 7, focuses gaze at corners. There are two possible

reasons for subject # 1’s focus at corners. One reason is based on bottom-up visual

processing, i.e., corners are salient visual features. Another reason is top-down planning

strategy where corners are heuristics for subgoals. Subject # 1’s gaze focus at corners

in π1 is 40-45 % whereas it is almost the half (20 %) in π3. The trajectories in π1

involve higher turning of vehicle around the corner than the trajectories in π3. This

observation supports that the attention at corners is not only due to saliency but also

because corners serve as subgoal heuristics.

Table 6.1: Overall mean (V ) and uncertainty (Uv) of speed profile for clusters # 1 to
# 5 (guidance primitives: πi, i ∈ [1 5]) and all clusters together (guidance primitive
library Π) for subjects # 1 and # 7 for runs 1-15 and 16-last.

Runs π1 π2 π3 π4 π5 Π

1-15 Sub. # 1: V (Uv) m/s 3.4(0.3) 3.8(0.6) 4.6(0.2) 4.6(0.3) 4.1(0.3) 3.8(0.4)
16-last Sub. # 1: V (Uv) m/s 3.3(0.4) 4.6(0.0) 4.6(0.2) 3.8(0.2) 4.4(0.0) 4.3(0.2)
1-15 Sub. # 7: V (Uv) m/s 3.2(0.8) 3.0(0.3) 4.4(0.2) 4.8(0.0) 5.1(0.0) 3.4(0.5)

16-last Sub. # 7: V (Uv) m/s 3.4(0.8) 3.2(0.6) 4.8(0.1) 4.8(0.1) 4.3(0.0) 3.7(0.5)

6.3.1 Specific Insights about Human Spatial Behavior

Proficient subjects demonstrate highly repeatable control behavior over vehicle dynam-

ics and its interaction with the spatial environment. These subjects exhibit clearly

formed interaction patterns. The interaction patterns allow subjects to focus their at-

tention on the high-level elements of the task such as subgoals needed to elaborate plans

and process relevant environment elements. In contrast, unskilled subjects are mostly

focused on basic vehicle controls. Therefore they allocate most of their attention to the

low-level functions such as stabilizing the vehicle along a path and avoiding collision.

The interaction patterns aid planning and ultimately learning, because the largely

automated performance of guidance behavior enable filtering the information that is
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relevant to the execution but is not relevant to the larger task specification, and extract

information elements that are relevant to learning the task at hand. This suggest that

the interaction patterns are assimilated in procedural memory similar to other sensory-

motor patterns studied in human and animal motor control.



Chapter 7

Subgoal-Graph Framework for

Human Environment Learning:

Simulation Validation

This chapter uses simulations to validate the subgoal-graph representation and decision-

making algorithm that are applied in the analysis of human learning of unknown envi-

ronments in guidance tasks in Chapter 5. The chapter presents an autonomous guidance

system for navigation in unknown environments based on the subgoal-graph represen-

tation and decision-making algorithm. The autonomous guidance system is simulated

for the same guidance task (e.g., maze environment, minimum-time criteria) as used in

the human experiments. The results from successive runs in the maze environment are

analyzed for the emergence of guidance primitives (interaction patterns). Finally, the

chapter presents a brief discussion of advantages of the subgoal-graph autonomous guid-

ance system and relations of the presented guidance system to existing path planning

methods.

7.1 Assumptions and Modeling

This section first presents the assumptions made in the autonomous guidance system.

Second, the section presents a modeling of the onboard sensor and system’s memory

110
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for the task. Third, the section briefly revises 1) the modeling of environment cues

for subgoal candidates, which is presented earlier in Section 5.2.5 in Chapter 5 and 2)

the concept of subgoal graph. Finally, it presents the vehicle dynamic model used in

simulations.

7.1.1 Assumptions

The task environment is two-dimensional and made of polygonal obstacles. The task

is to find the fastest (minimum-time) route between pre-specified start and goal states

over successive trials. The environment (e.g., obstacle-field) is unknown before the trials

start. The system uses a laser scanner on-board vehicle, which gives a depth map or a

visible boundary in a specified range, as shown in Fig. 7.1. Rfov and θfov are radius and

angle, respectively, of field of view of the depth sensor. In simulations presented in this

chapter, sensor parameters Rfov and θfov are determined using gaze data from human

experiments presented in chapters 5 and 6, which is discussed later in this chapter.

c1 Visible area

Figure 7.1: Example: instantaneous navigation cues (INCs) or subgoal candidates (SCs).
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Human Gaze vs. Depth Sensor

The environment sensing with a depth sensor (e.g., laser scanner) is in general uniform

in the sensor’s field of view. In contrast, humans focus their gaze (or visual attention)

at a point location and actively steer their gaze based on the specific task. A method

to model the point attention is to use a weight function that increases the uncertainty

in environment sensing at a location (e.g., probability of the location being occupied by

obstacles) in proportion to the distance between the location and the gaze point [183].

In this dissertation, the sensing is assumed to be uniform in sensor’s field of view.

Perfect Sensing and Path-Tracking

For simulations presented in this chapter, the depth sensor is assumed to be perfect. A

perfect sensor provides accurate obstacle boundary in visible space (Fig. 7.1). The path-

tracking or control implementation is assumed to have zero noise. The assumptions of

perfect sensor and path tracking are made to remove confounding factors arising from

sensing and tracking errors. The focus of simulations presented in this chapter is to

validate environment learning framework based on the subgoal-graph memory structure

presented in Chapter 5.

7.1.2 Task Memory

The guidance system’s memory has two components: long-term memory and working

memory. The long-term memory stores the goal state and subgoal-graph (subgoals,

CTG at subgoals, connectivity among subgoals). The working memory represents the

information used in current planning, which are: 1) connected subgoals, 2) visible sub-

goals, and 3) visible obstacle boundary and space. At any instant of time, the system

recalls a subset of the subgoal-graph, which is connected to the preceding subgoal, re-

trieved from the long-term memory. The system also uses visible subgoal candidates

or subgoals in planning (decision-making). The autonomous system remembers only

the visible environment (obstacle boundary). Online trajectory planning plans a safe

trajectory based on the visible space.
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7.1.3 Environment Cues for Subgoal Candidates

For an optimal control (e.g., Dubins) solution, subgoals coincide with the obstacle cor-

ners [10]. Therefore, the corners are described as global navigation cues (GNCs). The

instantaneous navigation cues (INCs) are the end points of the visible obstacle bound-

ary, as shown in Fig. 7.1. An INC ci is either an obstacle corner (GNC) or not. INCs

are instantaneous subgoal candidates represented by set SC. For the example shown in

Fig.7.1, SC is {c1, c2, c3, c4}. SC ′ ⊂ SC are INCs that are corners. SC ′′ ⊂ SC are

INCs that are not corners. For the example shown in the figure, SC ′ and SC ′′ are {c2}
and {c1, c3, c4}, respectively.

If the vehicle travels towards an INC ci ∈ SC ′′, the INC shifts as shown in Fig. 7.2.

Eventually, the INC coverges to a GNC (obstacle corner). This is described as tracking

an INC to a GNC.

t=t1 t=t2 > t1 t=t3 > t2 

Tracking an INC ci ∈ SC" to a GNC (obstacle corner)

c1

Figure 7.2: Example: tracking an INC ci ∈ SC ′′ to a GNC (obstacle corner).

7.1.4 Subgoal Graph

In the proposed autonomous guidance system, knowledge of the task environment is

represented by a graph of subgoals G. A subgoal gk coincides with a corner. For

avoiding collisions, a subgoal is placed at a safe distance dsafe from the corner along the

bisector of two walls meeting at the corner, as shown in Fig. 7.3. Terms subgoal and

node are used interchangeably.
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dsafe Obstacle corner

ηt

ηn

η: bisectors

Subgoal (gk)

vg
k

Figure 7.3: Subgoal at safe distance dsafe from obstacle corner.

Prior to run 1, the system knows the goal state g0 but does not know the environment

layout (obstacles). After a trial is completed (goal is reached), the graph knowledge is

updated using the same method applied in human data processing (see Section 5.3.2). A

trajectory is presented as a sequence of subgoals. The connection matrix (Q), cost-to-go

from a subgoal gk to the goal (CTGklist), and incremental cost between two subgoals gk

and gi (DCkilist) are updated at the end of each trial. At a subgoal gk, known (KN),

unknown (UKN) and connected (CNk) nodes are defined as in Section 5.3.2.

7.1.5 Vehicle Model

The vehicle used in simulations presented in this chapter is a point-mass with a discrete-

time linear state-space model as follows:















x

y

vx

vy















k+1

=















1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1





























x

y

vx

vy















k

+















0 0

0 0

∆t 0

0 ∆t















[

ax

ay

]

k

, (7.1)

where ∆t is the time-step. The velocity and acceleration constraints are as follows:

vx
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2 < vmax
2 (7.2)
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2,
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where vmax and amax are maximum speed and maximum acceleration, respectively.

vmax and amax for simulations presented in this chapter are determined based on the

dynamic envelope of vehicle used in human experiments, which is discussed later in the

chapter.

7.2 Autonomous Guidance System

This section presents the autonomous guidance system for navigation in unknown en-

vironments. The task is to learn minimum-time routes from specified start to goal

locations over successive runs. The guidance system operates in two stages as shown

in Fig. 7.4: exploration and consolidation. In the exploration stage, the system learns

subgoal graph network (G and Q) of the task environment over successive runs. The

guidance system explores subgoals that are visible, i.e., in sensor range and field of view.

Thus, visibility of subgoals influence what portion of subgoal network is explored. In a

related work [179], authors use visibility graph as heuristics at planning level to validate

hierarchical framework for human guidance behavior presented in [8]. The exploration

stage is terminated when no new subgoal sequence from start to goal is found. The

termination condition is discussed later in this section.

After the exploration stage terminates, the system uses the learned subgoal graph,

an optimal graph search method, and a heuristic cost function based on straight-line

distances between subgoals to extract subgoal sequences (routes) that are candidates

for time-optimal route. In the consolidation stage, the candidate subgoal sequences are

arranged in an order of increasing cost. The system learns optimal cost-to-go on each

candidate route (subgoal sequence). The system repeats the first route over successive

runs and in each run it updates state (e.g. velocity) at subgoals based on cost-to-go data

from preceding runs. When the cost-to-go is converged on the first route, the system

switches to the second route and repeats the same process. If a pair of consecutive

subgoals, i.e., an edge in subgoal graph, is common in two routes and the subgoal

states for the pair are already learned on one route, the system exploits the learned

information. The consolidation stage ends when optimal cost-to-go is learned on all

candidate routes (subgoal sequences).
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Figure 7.4: Subgoal-graph based autonomous guidance system: exploration and consol-
idation stages.
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7.2.1 Exploration Stage

In the exploration stage, the guidance system consists of a real-time planning cycle as

shown in Fig. 7.4. The cycle has three components: 1) environment-sensing, 2) decision-

making (subgoal selection), and 3) trajectory planning. The central component is the

decision-making rule that determines subgoal for trajectory planning. In trajectory

planning, the system plans an active waypoint (AWP) in the visible area and plans a

trajectory to the AWP. Each component is described in detail next.

Environment Sensing

The onboard depth sensors give visible obstacle boundary. The subgoal candidates SC

(or INCs) are the endpoints of the visible boundary.

Decision-Making (Subgoal Planning/Switching)

The decision-making component plans subgoal for trajectory planning. For decision-

making, there are two scenarios: a) the vehicle has reached at a subgoal gk and has

to decide the next subgoal gk+1, b) the current subgoal is hindered by known (visible)

obstacle boundary and a new subgoal has to be found.

In the scenario (a), the system checks if there is a connected subgoal from gk, i.e.,

|CNk| > 0. In case of CNk = {}, if the straight line joining the current vehicle position

and the goal does not intersect the visible obstacle boundry, the goal is the next subgoal.

If the goal is hindered by the visible obstacle boundary, the system chooses next subgoal

from SC. If |SC ′| > 0, the system selects a ci from SC ′. For a ci ∈ SC ′, state ci

is position ci and velocity at ci. The a priori speed at ci is assumed to be zero or

minimum speed allowed because the next subgoal is unknown from ci. The a priori

velocity direction is parallel to the bisector ηt (see Fig. 7.3). The system chooses ci that

minimizes the total cost as follows:

min
ci∈SC′

CTCci
p + CTGci

p, (7.3)

where CTCci
p and CTGci

p are a priori estimates of cost-to-come to ci from the current

state and the cost-to-go from the ci to the goal state. The values are based on straight-

line distance and maximum speed. If SC ′ = {}, the system selects a ci from SC ′′ using
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the optimization as follows:

min
ci∈SC′′

CTCci
p + CTGci

p. (7.4)

A ci ∈ SC ′′ is a temporary subgoal because the cue (subgoal) position shifts on the

boundary. The cue position shifts because the visible portion of edge expands as vehicle

approaches towards the cue as shown in Fig. 7.2. Eventually, the cue converges to a

corner (GNC) that is a stable subgoal.

If case of |CNk| > 0 in the scenario (a), if there is a visible corner (subgoal candidate)

that is not explored from the current subgoal, i.e., |SC ′/CNk| > 0, the system selects

a ci ∈ SC ′/CNk that minimizes a priori estimate of cost-to-go to the goal, which is the

following:

min
ci∈SC′/CNk

CTCci
p + CTGci

p, (7.5)

If the node ci is explored in past runs, the term CTGci
p is replaced by f (CTGilist).

The a priori cost values CTCci
p and CTGci

p are based on straight line distance and

are lower bounds for the optimal cost. As |CNk| > 0, the current node gk has been

explored in past runs and CTGklist that represent cost-to-go to the goal from gk is not

empty. Therefore, the algorithm rejects nodes ci’s in Eq. 7.5 that gives total cost more

than the minimum cost-to-go achieved from the current node gk, which is written as

the following constraint for Eq. 7.5:

CTCci
p + CTGci

p < min (CTGklist) . (7.6)

Condition 7.6 discards to explore solutions that can not give a lower cost than the

minimum cost achieved so far. Thus the condition limits graph search, which is similar

to branch and bound [152].

The further process is if no ci ∈ SC ′ \CNk satisfies the constraint 7.6 and therefore

no subgoal is found from Eq. 7.5. In this case, the system checks if there are INCs, i.e.,

|SC ′′| > 0. With learning, the system memorizes only GNCs (corners/subgoals) and

not the INCs. The INCs can be any point on obstacle boundaries and storing them

therefore will require a larger memory than required for GNCs. If an INC is selected

as subgoal, it eventually converges to a GNC. In later phase of exploration, INCs can

be ignored as they may converge to GNCs that are already explored in past runs. The
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system remembers how many times INCs have been selected as subgoals from a node

gk, which is represented by nINCk . Nk represents the maximum number of times the

system is allowed to select an INC as subgoal from a node gk.

If the condition nINCk < Nk is not satisfied, the system selects next subgoal from

CNk, which is as follows:

min
gi∈CNk

f (DCkilist) + f (CTGilist) , (7.7)

where function f can be maximum, minimum, median, mean, mean of last few (e.g.,

three) trials, etc. For example, maximum and minimum functions represent conservative

and greedy approaches, respectively. Median function models that the system relies on

the cost value with highest probability. Mean function models the overall average cost.

Assuming that the system has a limit on memory and it can store experiences from only

a certain number of past trials, f can be mean of last few trials. In this dissertation, f

is the minimum function.

Note that Eq. 7.7 represents exploitation as the system selects a subgoal that has

been explored from the current subgoal in previous trials, i.e., gk ∈ CNk. In starting

runs, the system will select solutions using equations 7.3, 7.4, or 7.5. Eventually, after

the subgoal-graph is learned, the decision-making algorithm does not find a new subgoal

that can give a better solution than the best one learned so far. Therefore, the algorithm

starts exploiting (Eq. 7.7).

In the scenario (b) when current subgoal gk is hindered by visible obstacle boundary,

a new subgoal has to be found. The new subgoal is selected from SC. The process is

the same as described in the second paragraph (Eqs. 7.3 and 7.4). If |SC ′| > 0, the

new subgoal is selected from SC ′ using Eq. 7.3. If a node (corner) ci ∈ SC ′ is tried in

previous runs, the CTGci
p in Eq. 7.3 is the CTG at the subgoal gj ∈ G that corresponds

to the corner ci. If SC
′ = {}, the new subgoal is selected from SC ′′ using Eq. 7.4.

Trajectory Planning

After the decision-making process computes a subgoal, the vehicle has to plan a tra-

jectory to the subgoal from its current state. There are three steps involved in the

trajectory planning: 1) compute time-optimal active waypoint (AWP) [23] within a fi-

nite horizon from the vehicle current state using a heuristic cost map that is computed
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offline and stored in long-term memory, 2) apply a numerical optimization method to

compute time-optimal trajectory to the AWP using state-space model (7.1) of vehicle

dynamics, and 3) execute first Ns steps of the trajectory. AWP is an intermediate point

to reach the subgoal, and is placed within a finite horizon and visible space as shown

in Fig. 7.5. The execution of first Ns steps is a receding horizon planner [9]. If Ns is

small, the frequency of trajectory update (recomputation) will be high.

Visible area

Figure 7.5: Illustration: AWP in a finite horizon from vehicle current state.

The trajectory optimization from the current state x to the AWP is a two point

boundary value problem [19, 23] as presented in Chapter 3. The vehicle used in simu-

lations presented in this chapter has nonlinear constraints (Eq. 7.2). For a vehicle with

nonlinear constraints, there are in general no analytical solutions to two point boundary

value problems. An approach is to use numerical methods as the simulations presented

in Chapter 3 uses the CPLEX [175] for online trajectory optimization. For the vehicle

model used in this chapter, the input and state vectors are [ax ay] and [x y vx vy],

respectively. The discrete-time state-space model is given by Eq. 7.1.

The AWP minimizes the total cost-to-go to the subgoal from the current state,

which is the sum of cost-to-come (CTC) to the AWP from the current state and cost-

to-go (CTG) to the subgoal gk from the AWP. The optimization for AWP selection is

formulated as follows:

min
xp,v

CTC(x,xp,v) + CTG(xp,v, gk), (7.8)

where xp is a spatial position in the finite horizon and visible space (Fig. 7.5), and v
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is the velocity at xp. The CTG(xp,v, gk), i.e., the cost-to-go to the subgoal gk from

the AWP state [xp v], is approximated based on the straight line distance between

AWP and subgoal, speeds at AWP and subgoal, and maximum acceleration amax. The

CTC(x,xp,v), i.e., the cost-to-come to the AWP state from the current state x, is

uploaded from offline computed maps in vehicle body-frame. The CTC maps are com-

puted using the CPLEX for all combinations of discretized xp and v in the finite horizon

in vehicle body-frame, for all vehicle speeds in the discretized space. In online planning,

an appropriate CTC map based on vehicle current speed is uploaded, and translated

and rotated based on vehicle current location and heading angle (velocity direction),

respectively. For safety, dAWP that is the distance between AWP and closest obstacle

along the velocity direction at AWP has to satisfy the following condition:

dAWP ≥ |v|2 2amax + dsafe. (7.9)

Eq. 7.9 is used as a constraint to reject AWP candidates in Eq. 7.8.

Termination Condition for Exploration Stage

In an environment with finite number of obstacles, there are a finite number of distinct

(not homotopic) routes between any two points. To achieve completeness [184], a brute

and direct approach is to learn all subgoal sequences from start to goal. In this disser-

tation, the task is to find minimum-time routes. Therefore, the guidance system uses a

graph pruning approach as shown by Eq. 7.6. The equation discards to explore subgoal

connections (graph edges) that can not give a lower cost than the best cost achieved in

previous runs. This pruning approach is similar to branch and bound [152].

Random sampling such as RRT [33] is a popular approach for exploring solutions in

a probem space. In the guidance system presented in this chapter, no random factor is

used to decide exploration vs. exploitation in selection of subgoals.

At the beginning of the exploration stage, the subgoal graph includes only the goal

state as the obstacle field is unknown. At the end of each run in the exploration stage, the

trajectory to the goal and corresponding subgoal sequence are used to update the graph

knowledge such as subgoal connectivity Q′. Eventually, the subgoal selection (decision-

making) algorithm does not find any new subgoal and decides to exploit known/learned

subgoals as shown by Eq. 7.7. If the travelled subgoal sequence in a run is a repeated
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one, i.e., the sequence is identical to the one in a previous run, the exploration stage is

terminated.

7.2.2 Consolidation Stage

In the exploration stage, the system learns the subgoal graph and therefore, implicitly

learns the different routes, i.e., subgoal sequences, from the specified start to the goal.

However, during exploration, flight-times of routes are not minimized because of the

following two reasons: 1) speeds at subgoals are assigned to be zero or minimum and

2) trajectory segments between consecutive subgoals are not always direct. The system

assigns zero or minimum speed at subgoals as the environment beyond subgoals is in

general unknown in starting runs. This is a conservative strategy but is consistent with

the observed behavior from the speed data of the starting runs in human experiments

(Chapters 5 and 6). In the exploration stage, when INCs (ci ∈ SC ′′) are selected as

subgoals, the system successively updates subgoals as INCs move on obstacle boundaries

and eventually coincide with GNCs (see Fig. 7.2). This subgoal-shifting behavior makes

trajectories longer, which result in higher flight-times.

In the consolidation stage, subgoal positions are known and subgoal sequence ex-

ecuted in a run is specified before the run starts. This resolves the issue of indirect

trajectories between consecutive subgoals. The first issue, i.e., zero or minimum speeds

at subgoals, is resolved by finding cost(time)-optimal velocities at subgoals. The sub-

goal velocities are iterated and updated based on changes in cost-to-go over successive

runs.

Candidate Subgoal Sequences for Consolidation Stage

Figure 7.6(a) shows an example of subgoal graph learned in the exploration stage. Fig-

ure 7.6(b) shows the subgoal sequences (routes) S1, S2, and S3 taken in the exploration

stage. One can extract all subgoal sequences from start to goal from the learned sub-

goal graph. There may be subgoal sequences that are never taken in the exploration

state. For example, Fig. 7.6(c) shows the sequences (routes) S4 and S5 that are not

taken in the exploration stage. Extracting all subgoal sequences from start to goal is

a combinatorial problem and is exponentially complex in time. In this dissertation,
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candidate subgoal sequences for the consolidation stage are extracted using a method

of perturbation along an optimal subgoal sequence, which is described next.
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Figure 7.6: Example: subgoal graph and subgoal sequences learned in the exploration
stage of the subgoal-graph based autonomous guidance system in unknown environ-
ments.

Path length of a subgoal sequence is the total straight-line distance between subgoals,

and is represented by Ls. The straight-line distance between subgoals is a heuristic for

time-to-go. The system applies Dijkstra’s algorithm on the learned subgoal graph to

compute an optimal, i.e., shortest path, subgoal sequence from start to goal. Ls
∗ is the

path length of optimal subgoal sequence. Next, the system finds subgoal sequences that

have path length within a threshold of the path length of the optimal subgoal sequence,

e.g., Ls ≤ 1.1Ls
∗. This dissertation uses a method of perturbation along the optimal

subgoal sequence. Ng is the number of subgoals between start and goal in the optimal

subgoal sequence S = Start → g1 → ... gk−1 → gk → gk+1 ... → gNg → g0.

Sk
l = gk → gk+1 → ... → gk+l−1 is a subsequence from subgoal gk (k ∈ 1, ..., Ng) and

of length l (l ≤ Ng − k+1). The system iteratively increases k from 1 to Ng and l from

1 to Ng − k + 1. For each Sk
l, the system searches an alternate subsequence between

gk−1 and gk+l using Dijkstra’s algorithm and subgoal graph knowledge. The alternate

subsequence is rejected if the total path length from start to goal gets more than 1.1Ls
∗.
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Invalid Subgoal Sequences for Consolidation Stage

Figure 7.7 shows an example of invalid subgoal sequence for the consolidation stage.

A subgoal sequence S = Start → ... gj → gk → gi ... g0 is invalid if the angle α

between any pair of consecutive edges gj → gk and gk → gi is smaller than π. Otherwise,

the sequence is valid. The angle α is on the side that does not have obstacle corner

associated with the subgoal gk, as shown in Fig. 7.7. The invalid subgoal sequences from

the exploration stage are converted to valid subgoal sequences using the learned subgoal

graph connectivity Q′. It is checked using Q′ if a valid subsequence gj → ....→ gi exists.

For example in Fig.7.7(c), there exists gj → gk′ → gi that is valid and replaces the invalid

subsequence gj → gk → gi for the consolidation stage. If no valid subsequence is found,

the subgoal sequence is rejected for processing in the consolidation stage.

gi

gj

gk

gi

gj

gk

gi

gj

gk'

α
α

α

(a) Valid subgoal sequence           (b) Invalid subgoal sequence (c) Converting invalid subgoal 

sequence in (b) to a valid one

α >= π α < π α >= π 

Figure 7.7: Illustration: invalid subgoal sequence.

Order Subgoal Sequences

The candidate subgoal sequences are arranged based on the number of common edges

(pairs of consecutive subgoals) and path lengths. The subgoal sequences are numbered

as S1 to SNs , where Ns is the number of sequences. S1 is the shortest path length

subgoal sequence. S2 is the subgoal sequence that has maximum number of common

edges with S1. If there are two or more subgoal sequences that have same number of
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common edges with S1, the subgoal sequence with smallest path length is chosen as S2.

Then, S3 is selected based on maximum number of common edges with S2 and smallest

path length. This process goes on until all candidate subgoal sequences are numbered.

The cost(time)-to-go based on straight-line distance is a lower bound for true cost(time)-

to-go. A subgoal sequence SI(I ∈ [1 Ns]) is iterated until the cost-to-go on the route

converges, which is described in the following section. Then the system switches to the

next subgoal sequence SI+1 as shown in Fig. 7.4.

Optimization of Cost-to-go of a Subgoal Sequence

For a subgoal sequence SI = Start → ... gj → gk → gi ... g0, speeds at subgoals

are set as zero or minimum speed in the exploration stage, which results in higher

cost(time)-to-go. The velocity direction at subgoals are parallel to the bisector ηt (see

Fig. 7.3). vgk represents the velocity at a subgoal gk. For a planar motion, vgk is [vgk

ψgk ], where vgk and ψgk are subgoal speed and velocity angle, respectively.

Velocities at the start and goal are given. Velocities at subgoals between the start

and goal are variables and have to be optimized as follows:

min
... , vgj

, vgk
, vgi

, ...
CTGSI , (7.10)

where CTGSI is the cost-to-go of a trajectory through the subgoal sequence SI . CTGSI

is the total sum of costs of trajectory segments between consecutive subgoals as follows:

CTGSI =
∑

DCki, (7.11)

where DCki is the cost-to-go of trajectory segment going from gk to gi (Fig. 7.8). Cost

DCki depends on subgoal velocities vgk and vgi :

DCki = f(vgk ,vgi). (7.12)

Similarly, cost DCjk depends on vgj and vgk :

DCjk = f(vgj ,vgk). (7.13)

Velocity at subgoal gk, i.e., vgk , affects DCjk and DCki that are costs of consecutive

segments gj → gk and gk → gi, respectively. In simulations presented in this chapter,
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subgoal velocity directions are assumed to be parallel to the bisector ηt (see Fig. 7.3)

because the direction ηt is the safest. Therefore, the variable to be optimized is vgk that

satisfies the following condition:

∂ (DCjk +DCki)

∂vgk
= 0. (7.14)

βk`

θk`

lk`

vgi

vgk

Trajectory segment

from gk to gi

Figure 7.8: Subgoal velocities vgk and vgi and trajectory segment from subgoal gk to
gi.

The consolidation stage executes successive runs on a subgoal sequence to find

cost(time)-optimal speeds (Eq. 7.14) at subgoals. For a sequence SI , the first run is

simulated with subgoal speeds [... , v1gj , v
1
gk
, v1gi , ...] that are computed using a heuris-

tic function described later in this section. The heuristic function is a lower bound

for optimal speeds. Travel-time in general reduces for higher speeds. The speeds are

increased stepwise over successive runs until flight-time stops decreasing and starts in-

creasing.

The speeds [... , v1gj , v
1
gk
, v1gi , ...] are not necessarily optimal, and have to be

optimized over successive runs. [... , Cgj , Cgk , Cgi , ...] are binary variables that are

initially zero. When the optimal value of vgk is found, Cgk becomes one. The optimal

velocity at a subgoal gk depends on the child subgoal gi. If subgoal edge gk → gi has

occured in an already consolidated subgoal sequence S1 to SI−1, the subgoal velocity at

gk, i.e., v
1
gk
, is set the value learned in consolidation of previous subgoal sequences.

At the end of first run, costs of consecutive segments are extracted from the trajec-

tory data and represented as [... , DC1
jk, DC

1
ki, ...]. The second run is simulated with
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increased values [... , v2gj , v
2
gk
, v2gi , ...] that are as follows:

v2gk = min(v1gk +∆v, vmax) ∀ gk ∈ SI \ {Start, Goal}, (7.15)

where ∆v is the incremental change in speed. Costs from the second run are [... , DC2
jk, DC

2
ki, ...].

Now the speeds [... , v3gj , v
3
gk
, v3gi , ...] for the third run are updated as follows:

v3gk =















min(v2gk +∆v, vmax), if Cgk = 0 and
(

DC2
jk +DC2

ki

)

<
(

DC1
jk +DC1

ki

)

v1gk (speed is converged), if Cgk = 0 and
(

DC2
jk +DC2

ki

)

≥
(

DC1
jk +DC1

ki

)

v2gk (speed is converged), if Cgk = 1

(7.16)

Binary variables Cgk ’s are updated from zero to one if the corresponding speeds reach

vmax or converge. Successive runs for SI are simulated until speeds at subgoals (gk ∈ SI)

converge and Cgk ’s become one. Then, the consolidation stage switches to the next

subgoal sequence SI+1, and repeats the iteration process in Eq. 7.16. The number of

runs (N runs
SI

) required for consolidating a subgoal sequence SI is bounded as follows:

N runs
SI

≤
vmax −min(... , v1gj , v

1
gk
, v1gi , ...)

∆v
(7.17)

≤ vmax
∆v

.

The prior speeds [... , v1gj , v
1
gk
, v1gi , ...] used in the first run for iterative consolidation

of a subgoal sequence are computed as follows. Figure 7.8 shows a trajectory segment

from gk to gi. The objective is to find vgk and vgi such that the cost DCki is minimized:

min
vgk

, vgi

DCki. (7.18)

As the subgoal velocity directions are fixed to be parallel to the bisector ηt, Eq. 7.18

reduces to as follows:

min
vgk , vgi

DCki. (7.19)

If the speed vgi is known, Eq. 7.19 reduces to as follows:

min
vgk

DCki. (7.20)
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This chapter uses a heuristic solution of Eq. 7.20, which is as follows:

vgk = kakbkc, (7.21)

ka = min(vmax,
√

2amaxmax(lki − dsafe, 0)),

kb = min(max(1− |βki|
π/2

, 0), 1),

kc = min(max(1− |θki|
π/2

, 0), 1).

The velocity at goal (g0) is given. Speeds [... , v1gj , v
1
gk
, v1gi , ...] are computed using

Eq. 7.21 and going backwards from the goal.

7.3 Simulations

The subgoal-graph guidance system presented in the previous section is simulated in

the maze environment used for human guidance experiments presented in Chapters 5

and 6. This section presents the simulation results and investigates the emergence of

guidance primitives as a result of environment learning over successive runs. The sec-

tion compares the guidance primitives from autonomous simulations with the guidance

primitives extracted from human data presented in Chapter 6.

7.3.1 Task Definition and Parameters

The task environment is as shown in Fig. 5.7. The start and goal states are the same as

in the human guidance experiments. In autonomous experiments, the goal location is

known to the system. In the human experiments, subjects were described that the goal

is an archway located Northbound from the start. The obstacles are a priori unknown.

The system has to find minimum-time route to the goal from the specified start location.

Successive trials are simulated to evaluate the task environment learning process.

The parameters of the simulations are given in table 7.1. The vehicle used in the

simulations has the same vmax = 5.2 m/s as in human experiments. For the vehicle

used in human experiments, turnrate is inversely proportional to speed (see Fig. 5.4).

Maximum turnrates at maximum and minimum speeds are 37.5 deg/s and 14.5 deg/s,

respectively. The maximum acceleration amax in simulations in this chapter is 2.3 m/s2
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Table 7.1: Parameters for subgoal-graph guidance system simulations

Parameter Value

Rfov 20 m
θfov 600

dsafe 3 m
vmax 5.2 m/s
amax 2.3 m/s2

dminstop = v2max/2amax 5.9 m
Finite horizon for AWP selection 2dminstop=11.8 m

∆v 1 m/s
∆t 0.2 s
ǫp 1.05 m
ǫv 0.05 m/s
Ns 2

that is based on the average turnrate ((37.5+14.5)/2 = 26 deg/s) and vmax. Parameters

(∆t, ǫp, and ǫv) of online trajectory optimization with CPLEX are the same as in

simulations presented in Chapter 5.

The simulations in this chapter uses a point-mass model (Eq. 7.1 and 7.2) for online

trajectory optimization to AWPs and subgoals. The model does not account for vehicle

heading and therefore the heading is free to have any value at zero speed. In presented

simulations, therefore, the minimum speed at AWPs and subgoals is set as a small

but non-zero value (1 m/s). Vehicle turnrate in human experiments is limited, which

ensures vehicle heading and field of view rotates smoothly. In current simulations, a

trajectory to AWP may have sharp changes in heading at zero speeds. Therefore, an

AWP candidate in Eq. 7.8 is rejected if trajectory computed from online solver CPLEX

does not satisfy the following condition at all time-steps:

|ψ(t+∆t)− ψ(t)| ≤ ∆ψmax, (7.22)

where ψ(t) is the heading at time t, and ∆ψmax is the maximum allowed change in

heading in time ∆t. In simulations presented later in this chapter, ∆ψmax is θfov/2 =

300.
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Sensor Parameters

Sensor field of view θfov is 60
0 that is same as in human experiments. Sensor range Rfov

is determined based on human gaze data distribution. Figure 7.9 shows distributions

of gaze distance rg for all human subjects. The figure also shows mean gaze distance.

The maximum mean distance is around 20 m for subject # 2. Therefore, sensor range

Rfov in simulations is set 20 m.
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Figure 7.9: Human environment learning experiments: distribution of gaze distance
data.

7.3.2 Results

Simulations are run for the parameters shown in table 7.1. Figure 7.10 shows the runs

from the exploration stage. The system terminates the exploration stage after run 7 as

the subgoal sequence in run 7 is a repeated one from run 2. Flight times are shown in

Fig. 7.11. The system finds four distinct routes that are not homotopic to each other.

Figure 7.12(a) shows the subgoal graph learned in the exploration stage. Fig-

ure 7.12(b) shows the three subgoal sequences (S1, S2, and S3) that are extracted from

the learned graph using Dijkstra’s shortest path search algorithm and the perturbation
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method along the optimal solution. The consolidation stage executes the three subgoal

sequences. Figures 7.13 and 7.11 show the trajectories and flight-times, respectively,

for runs 8-25 from the consolidation stage. The best flight-time (38.4 s) is achieved on

subgoal sequence S1.

Dynamic Behavior: Speed

Figure 7.14 shows speed trajectories for the first run in exploration stage and the last

run in consolidation stage on the three subgoal sequences (S1, S2, and S3). In runs in the

exploration stage, the system slows down frequently as the environment and subgoals

are not known. This behavior is conservative as observed in human experiments in

Chapters 5 and 6. In the consolidation stage, the system learns subgoals and time-

optimal velocities at subgoals, and high speeds are used frequently.

Learning of Speeds at Subgoals

Figure 7.15 shows speeds at subgoals (nodes) for the four sequences S1, S2, and S3 in the

consolidation stage. The figure shows the learning of time-optimal speeds at subgoals

over successive runs. The speeds are updated iteratively using cost information achieved

over successive runs (Eq. 7.16). Flight-times on subgoal sequences decrease significantly

at the end of consolidation stage. For example, flight-time on S1 decreases from 58.6 s

in the exploration stage to 40.0 s in the consolidation stage.
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Subgoals

Figure 7.10: Subgoal-graph guidance simulations: trajectories for runs 1-7 from the
exploration stage.
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Figure 7.11: Subgoal-graph guidance simulations: flight-times for runs 1-7 (exploration
stage) and 8-25 (consolidation stage).
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(a) Subgoal graph learned in exploration stage.

(b) Candidate subgoal sequences extracted from the learned subgoal graph, 

which are to be processed in consolidation stage.

S1 (Ls= 136.5 m)                              S2 (Ls= 140.3 m)                              S3 (Ls= 136.8 m)

Figure 7.12: Subgoal-graph guidance simulations: (a) subgoal graph learned in the
exploration stage and (b) subgoal sequences S1, S2, and S3 extracted from the learned
subgoal graph to be executed in the consolidation stage.

Figure 7.13: Subgoal-graph guidance simulations: trajectories for runs 8-25 from the
consolidation stage.
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Figure 7.14: Subgoal-graph guidance simulations: speed trajectories for the first run in
exploration stage and the last run in consolidation stage on subgoal sequences S1, S2,
and S3.
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Figure 7.15: Subgoal-graph guidance simulations: speed at subgoals for successive runs
on subgoal sequences S1, S2, and S3.
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Extracting Guidance Primitives

This section applies the clustering method presented in Chapter 5 to extract guidance

primitives from trajectory data from subgoal-graph autonomous guidance simulations.

A trajectory cluster represents a guidance primitive π. Figures 7.16 and 7.17 show

trajectory segments around corners from runs in exploration and consolidation stages,

respectively. The number of clusters for trajectories in exploration and consolidation

stages are four and three, respectively. The number of clusters are decided based on the

change in cumulative spread of clusters (CSπ) as the number of clusters (Nπ) increases

(see Fig. 7.18). The cumulative spread of clusters CSπ is computed as follows:

CSπ =

I=Nπ
∑

I=1

∑

si,sj∈πI ,i 6=j

dijs , (7.23)

where dijs is the distance (Eq. 5.25) between two trajectory segments si and sj in Ith

cluster πI (see Chapter 5 for more details).

In the exploration stage, the four clusters are numbered in decreasing order of fre-

quencies. In the consolidation stage, the three clusters are numbered according to their

similarity (Eq. 5.26) with the clusters from the exploration stage. Figure 7.19 shows

speed mean and variance for clusters in exploration and consolidation stages. Speed

in the exploration stage reduces near corners more than it does in the consolidation

stage. The speed variance near corners is higher in the consolidation stage because the

subgoal speeds in starting runs are set to be lower values (Eq. 7.21). The subgoal speeds

incrementally update to higher values until the speed and flight-time converge.

Figure 7.20 shows trajectory clusters from simulations’s consolidation stage and

human subject # 1’s runs 16-last. The clusters from simulations and human data

are matched based on distance dIJπ as defined by Eq. 5.26. Fig. 7.20 also shows the

speed map for average trajectory and frequency of each cluster. Trajectory clusters

from simulations and human data are significantly different. For instance, the human

subject’s most frequent cluster (frequency of 56.6 %) is identical to the least frequent

cluster (frequency of 16.0 %) in the simulation results. The frequency of the most

frequent cluster # 1 in simulations is 47.2 %, which is identical to human subject’s

cluster # 2 (frequency of 13.2 %). The cumulative distance dIJπ between the most

frequent cluster in simulations and the corresponding identical cluster of the human
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Figure 7.16: Subgoal-graph guidance simulations: trajectory clusters in corner frame
for trajectory data from runs 1-7 (exploration stage).

Figure 7.17: Subgoal-graph guidance simulations: trajectory clusters in corner frame
for trajectory data from runs 8-25 (consolidation stage).
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(a) Exploration stage                                                           (b) Consolidation stage
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Figure 7.18: Number of clusters (Nπ) vs. cumulative spread of clusters (CSπ) for
trajectories in corner frame as shown in Fig. 7.16 and 7.17.

subject is the maximum of 197.1 m.

Figure 7.21 shows the trajectory clusters for simulations and human subject # 1 in

the global task environment. Identical clusters are shown in same colors. Most frequent

clusters for both simulations and human subject, which have frequencies of 47.2 % and

56.6 %, respectively, are on the route S1 (Fig. 7.12). In simulations, the safety distance

is set as 3 m (table 7.1). Whereas the subject # 1 has mean minimum distance (rmin)

of 0.2 m from obstacle corners (see Fig. 6.6). Therefore, the simulation trajectories on

route S1 are not as straight as those are for the human subject. This observation is

also evident in trajectory cluster π1 (frequency of 47.2 %) for simulations vs. cluster π3

(frequency of 56.6 %) for subject # 1.

Table 7.2 shows variances of the trajectory clusters shown in Fig. 7.20. The variance

σπ of a trajectory cluster π is computed as follows:

σπ =
1

|π|

i=|π|
∑

i=1

dims
2
, (7.24)

where dims is the distance of a trajectory si ∈ π from the mean trajectory of the cluster

(e.g., mean trajectories are shown in Fig. 7.20). The distance dims is computed using

Eq. 5.25. Trajectory resolutions for simulations and the human subject are 0.2 s (see
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Figure 7.19: Speed mean and variance trajectories for clusters for runs 1-7 (exploration
stage) and 8-25 (consolidation stage).
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Simulations

Subject # 1

Distance  

between 

clusters (m) 

(Eq. 5.26)

�����                                            ����0                                          ����1        

π
2
 (47.2 %) π3 (36.8 %) π4 (16.0 %)

π2 (13.2 %) π1 (15.8 %) π3 (56.6 %)

Figure 7.20: Clusters from simulations’s consolidation stage and human subject # 1’s
runs 16-last are matched based on distance dIJπ (Eq. 5.26). Identical clusters are placed
in same column. Speed map for average trajectory for each cluster is also shown.

Figure 7.21: Identical clusters from simulations’s consolidation stage and human subject
# 1’s runs 16-last are shown in the global task environment. Identical clusters are shown
in same colors.
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table 7.1) and 0.02 s (see section 5.2.5), respectively. Therefore, for a scaled com-

parison between variances of simulations and human subject’s clusters, dims for human

trajectories are scaled down by a factor of 0.2/0.02 = 10.

Table 7.2: Variances of trajectory clusters from simulations’s consolidation stage and
human subject # 1’s runs 16-last. The identical clusters between simulations and the
subject are in same rows.

Simulations Subject # 1

π2 (32.4 m) π2 (19.1 m)
π3 (71.7 m) π1 (51.0 m)
π4 (69.2 m) π3 (59.3 m)

Table 7.2 shows that the human subject’s trajectory clusters have smaller variances

in comparison to the clusters from simulations. Fig. 7.20 shows that the human subject

executes a trajectory cluster for an intended behavior. For example, the subject uses

π1 for high angle turns around corners, and π2 and π3 for passing corners in almost

straight lines at different angles. In simulations, the trajectory clusters do not show

such organization of behavior. For example, the trajectories seem to diverge after they

pass corners. The consistency of human trajectory clusters support that the clusters

represent interaction patters in their interaction with the task environment. A future

work is to investigate and capture the direction change in human interaction patterns.

Simulation vs. Human Performance

Table 7.3 summarizes the comparison between simulation results and best human sub-

ject (# 1). Both the simulation system and the human subject perform twenty-five

runs, and choose same route S1 (Fig. 7.12) as their best routes. The human subject

achieves better flight-time (31.0 s) than simulation (38.4 s) on the route S1. The simula-

tion system explores four distinct (non-homotopic) routes whereas the subject explores

seven routes (Fig. 5.2). The frequency of the subject # 1’s most dominant guidance

primitive in final runs is 56.6 % while the frequency of the second most frequent guid-

ance primitive is 15.8 %. For the simulation results, frequencies of the most and second

most frequent guidance primitives are 47.2 % and 36.8 %, respectively. It is to note
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that there are some basic differences between human subject’s experiments and simu-

lations. Two of those differences are the following: 1) vehicle dynamics in simulations

is an approximation of the dynamic model used in human experiments, 2) simulations

use numerical trajectory optimization whereas humans use perceptual guidance policies

such as tau-control [2, 3].

Table 7.3: Subgoal-graph guidance system simulation’s vs. human subject # 1’s per-
formance

Performance metric Simulation Human subject # 1

Best flight-time (s) 38.4 31.0
Best route (routes as named in Fig. 7.12) S1 S1

Runs 25 25
Number of explored routes 4 7

Frequency of most (and second most)
frequent guidance primitive (%) 47.2 (36.8) 56.6 (15.8)

7.4 Discussion

This section first discusses the advantages of the subgoal-graph guidance system over

the SVF system [9, 23] presented in Chapter 3. Next, the section presents a brief

comparison with existing boundary tracking and topology based path planning methods

(e.g., Voronoi diagrams), and highlights contributions of the subgoal-graph guidance

system presented in this dissertation.

7.4.1 Subgoal-Graph vs. Occupancy Map and SVF Based System

The autonomous guidance system (Fig. 3.3) presented in Chapter 3 is based on metric

representation of the environment. The environment is modeled as an occupancy map

over a grid. The guidance policy is represented as spatial value function (SVF) map

over the grid. The memory and computational requirements increase as the task domain

size increases, the grid size reduces, or the size of motion primitive library increases.



143

The occupancy map representation of spatial environments does not seem realizable for

humans.

The subgoal-graph guidance system, presented in this chapter, models the global

environment as a subgoal graph. The task environment memory structure based on

subgoal graph G combines connection matrix Q, cost-to-go CTG at subgoals, and incre-

mental cost DC between connected subgoals. This representation requires less memory

than a global occupancy map and SVF. For example for the test environment used in

simulations, total number of convex corners that are potential subgoal candidates is 54.

Therefore, the size of subgoal-graph memory structure is a few metrices with maximum

size of 54 × 54. On the contrary for occupancy map representation, if grid size is 1 m,

the space is represented as a matrix of the size of 140 × 130. The memory requirements

increase for higher grid resolutions. Studies in the past (e.g., [7, 8]) have supported the

hypothesis that human pilots use subgoals to abstract a task space in guidance tasks.

Sparse Representation of Task Space

The subgoal-graph guidance system only relies on known/learned subgoal graph G and

visible obstacle boundary. In contrast, the SVF guidance system is based on an occu-

pancy map representation of task space. The simulation results for the subgoal graph

system show that the system finds a near-optimal solution using the sparse representa-

tion of task space.

7.4.2 Comparison with Existing Path Planning Methods

Feit and Mettler [180] presented a constrained optimal control formulation for the con-

cept of subgoals in path planning and guidance tasks. The authors presented an algo-

rithm that computes a path as a sequence of subgoals between start and goal states.

The algorithm assumes full knowledge of obstacles in the environment. It checks if a

path is free or obstructed by obstacles. In the latter case, the algorithm introduces new

subgoals on the path, which are points on obstacle boundaries tangent to the distorted

path. In this dissertation, the subgoal-graph guidance system does not assume full

knowledge of obstacles. The system learns subgoal graph and builds graph knowledge

over successive trials.
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Boundary Tracking

Boundary tracking/following is an early approach used in mobile robots, in which a robot

moves along an obstacle boundary keeping a minimum distance from it. As Mataric [185]

stated, “The avoiding behavior is simply a survival mechanism while boundary follow-

ing is the basis of the robot’s perception of the world.” Bug algorithm [186, 187] is a

tactile boundary tracking/following method in unknown obstacle fields, which assumes

zero sensing range. Past studies have shown that even human pilots exhibit boundary

tracking behavior when they are close to a boundary (e.g., physical boundary as ground

or control boundary as maximum speed limit) [188]. Pilots’ boundary tracking behavior

result in pilot induced oscillations. The subgoal-graph guidance system, presented in

this chapter, selects an end point of visible boundary as instantaneous or temporary

subgoal and moves towards it, which can be described as a form of boundary following.

As the system approaches the end point of the visible boundary, the boundary expands

until a corner is seen, i.e., tracking an INC to GNC as shown in Fig. 7.2. The corner

serves as a steady subgoal and the system reaches to it.

Roadmap or Topological Path Planning

Topological representation of task space requires less memory and computation than

metric grid maps. The grid map approach becomes computationally intractable for

high-dimensional configuration spaces. Roadmap or topological map representation of

a problem space reduces the path planning into a graph search problem [24]. Some of

graph search algorithms are Dijkstra [27], A* [28], D* [29], etc. For example, three

types of roadmap or topological path planning approaches are: probabilistic roadmaps

(e.g., [189, 190, 191, 192]), visibility graphs (e.g., [193, 194, 31, 195, 196]), and Voronoi

graphs (e.g., [197, 198, 30, 199, 200, 201]).

In probabilistic roadmap methods (PRMs), random samples in configuration space

are used as nodes in a graph representation of problem space. When goal is found, an

optimal path between start and goal configurations is computed using a graph search al-

gorithm (e.g., A*). PRMs have been successfully implemented in manipulator problems

that have in general high-dimensional and complex configuration space [191, 24]. PRMs

are often used in obstacle fields that are known in advance [192]. The subgoal-graph
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guidance system presented in this chapter is based on subgoals that are invariants in

agent-environment interactions in goal-directed guidance and navigation tasks. Prior

work [7, 8] has showed that subgoals are used by human pilots to organize their spatial

planning.

Visibility graph based path planning is often applied in environments that have poly-

hedral obstacles [193]. The vertices of obstacles are nodes in the visibility graph. Two

vertices are connected if they are visible to each other. In Voronoi roadmap methods,

a robot finds paths that are equidistant from surrounding obstacles. The graph nodes

are placed at intersections of such paths. Both visibility and Voronoi graph based path

planning have been applied in mobile robots and UAVs (e.g., [31, 30]). The subgoal

graph used in this dissertation is a subset of visibility graph in a polygonal obstacle field.

A subgoal is associated with the optimal state (e.g., velocity) at the subgoal position.

Also, the subgoal-graph guidance system presented in this chapter uses no memory of

obstacle field in learning the subgoal graph. The system only knows the learned subgoal

graph and visible obstacles. The graph connectivity is extracted at the end of each trial

using the executed path that is remembered along with the corners (subgoal candidates)

passed by.

7.4.3 Limitations

First limitation of the subgoal-graph guidance system presented in this chapter is that

the system assumes 2-D polygonal obstacles. In real-world environments, obstacles are

in general 3-D and not always polygonal. Second, the system assumes static environ-

ment. Third, the environment sensing and path tracking (control implementation) are

assumed to be accurate.

7.4.4 Generalization

This dissertation uses the subgoal-graph representation and a guidance primitive extrac-

tion method to evaluate human environment learning in guidance tasks. The evaluation

framework can be extended and applied to other spatial guidance and control tasks

such as surgery because the elements, e.g., interaction patterns, used for modeling hu-

man guidance are common to other spatial tasks. For example for surgical tasks, Li
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et. al. [202] showed that expert surgeons exploit interaction patterns to organize spatial

behavior.



Chapter 8

Conclusions and Future

Directions

8.1 Conclusions

This dissertation starts with an evaluation and validation of learning processes in the

sensory-predictive guidance system [9, 23] that uses a receding horizon trajectory opti-

mization associated with the spatial value function (SVF). The SVF guidance system is

simulated for a baseline case with ideal sensing and zero noise in the system. The task

is to find a time-optimal trajectory between specified start and goal states. Successive

runs are simulated with each run using the SVF learned in the preceding run. The

learned SVF describes the information necessary to determine the optimal guidance be-

havior over geographical space. The presented framework enables learning simultaneous

to operation in unknown or partially known environments. This approach is more effi-

cient than learning the environment and subsequently using this information for online

trajectory planning. For some real-world applications such as exploring an unknown

territory, learning and subsequent planning may not be feasible. Learning and subse-

quent task operation would require mapping the whole environment, as it is generally

not possible to predict which part of the environment would be significant to the task

performance. The guidance system presented in this study computes the trajectory

using up-to-date environment information obtained by combining the information from

onboard sensors with existing information. A key benefit is that the local information is

147
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integrated in the global context and therefore the guidance system can provide reactive

behaviors that are consistent with the long-term goal.

In the simulations of the SVF guidance system, the learning process is observed and

analyzed at several levels such as: environment knowledge, spatial features in the SVF,

and dynamic/control behavior. The guidance system updates the occupancy probability

map for the environment based on sensory data. As the environment knowledge alone

is not sufficient for optimal spatial guidance, the system assimilates the environment

knowledge into the SVF, i.e., spatial guidance behavior. Spatial features (subgoals,

attracting and repelling manifolds) emerge in the SVF. These spatial features account

for how vehicle dynamics interact with the environment characteristics (layout, scale,

etc.). To test the learned SVF, a test case in which the guidance system does not

rely on environment sensing and uses the learned SVF is simulated. The guidance

system performs close to the optimal as the spatial features in the learned SVF allow

the vehicle to navigate around the obstacles in a fashion compatible with the vehicle

dynamics. Analysis of the acceleration profile shows that the vehicle uses less turning in

latter runs. The guidance policy used in latter runs is more straight-line movement and

less turning. For learning at the control level, this dissertation investigates the velocity

and cost maps in the vehicle body frame. Patterns emerge in the control behavior in

body frame. A segmentation in the behavior in the body frame is observed based on

the vehicle speed. The vehicle flies straight at high speeds. The lower the vehicle speed

the higher the turning curvature is.

In the second part, this dissertation extends prior concept of the interaction patterns

to formulate hypothesis and an analysis framework for environment learning in goal-

directed guidance tasks in unknown obstacle fields. The dissertation presents a graph

framework based on subgoals that are patterns in sensory-motor behavior in interaction

with the spatial environment and task elements to analyze human environment learning

in agile guidance tasks. The graph representation of task environment enables a formal

assessment of human learning of the following three elements: task environment struc-

ture (subgoal graph), optimal behavior (cost-to-go) across graph, and sensory-motor

primitives. The framework uses an optimal graph search method to evaluate human

decision-making (subgoal selection) in navigation tasks. The presented model allows

testing an operator’s rationality and accuracy of the model. Finally, the framework
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uses a clustering method to extract guidance primitives and study their emergence as a

result of task environment learning over multiple trials.

The analysis framework is applied on human data collected from guidance experi-

ments in a simulated quasi three-dimensional environment. The subjects had no priori

knowledge of the obstacle-field. Each subject performed multiple trials between pre-

specified start and goal locations to find minimum-time routes. The data analysis

revealed that control skill level of an operator effects learning of unknown task environ-

ments. For an operator with reliable control over vehicle dynamics, better differentiated

and concentrated control and perceptual policies, i.e., guidance primitives, emerge as

interaction patterns. The well formed guidance primitives due to reliable control skills

relieve an operator’s attention from low-level task elements such as stabilizing the ve-

hicle. The operator can focus his/her attention at high-level task elements such as

subgoals for planning and learning.

In the third (last) part, the dissertation extends the subgoal graph framework used

for analysis of human environment learning, and presents an autonomous guidance algo-

rithm for goal-directed navigation in unknown environments. The subgoal graph based

autonomous guidance system is simulated and results show that the system successfully

finds a near-optimal route between pre-specified start and goal locations. The system

uses a sparse representation, i.e., subgoal graph and visible obstacle boundary, of the

environment.

8.2 Future Directions

This section briefly presents future research directions.

8.2.1 Autonomous Guidance

The subgoal graph guidance system presented in this dissertation uses a state-space

dynamic model and numerical optimization for online trajectory planning to AWPs. A

future direction is to use a perceptual guidance policy such as Tau-gap guidance [3] to

generate human-like guidance behavior.
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8.2.2 Human Guidance

A potential area of future research is to study how human operators transfer and use

their knowledge about the environment and task elements if they start from a differ-

ent location or they navigate in a different environment with similar structures such

as layout and gap between obstacles. The hypothesis is that subjects will exploit the

interaction patterns they learned in previous tasks. Such studies can provide an un-

derstanding about how human operators transfer their knowledge among problems that

have similar task structure.
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Appendix A

Appendix

A.1 Autonomous Guidance Simulation (Chapter 4)

Following are the parameters for simulations presented in Chapter 4.

Matrices A and B in Eq. (3.11) are (see [174] for details):

A =



































−0.0561 −2.3351 0 0 0 0 0 0

0.0649 0.6445 0 0 0 0 0 0

0.0099 0.1715 1 0 0 0 0 0

0 0 0 −0.0561 −2.3351 0 0 0

0 0 0 0.0649 0.6445 0 0 0

0 0 0 0.0099 0.1715 1 0 0

0 0 0 0 0 0 1 0.1377

0 0 0 0 0 0 0 0.4493
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B =



































2.3351 0 0

0.3555 0 0

0.0284 0 0

0 2.3351 0

0 0.3555 0

0 0.0284 0

0 0 0.0623

0 0 0.5507



































(A.2)
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Horizontal and vertical speed levels for motion primitives used in Chapter 4 are:

nv = 6 ; vl = [0.61 0.87 1.06 1.22 1.37 1.50] m/s

nvz = 2 ; vzl = [−0.5 − 0.25 0 0.25 0.5] m/s
(A.3)


	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction
	Preceding Work
	Spatial Value Function (SVF)
	Spatial Structures (Patterns) in SVF
	Human SVF
	Interaction Patterns: Human Pilot
	Functional Model of Human Guidance

	Research Questions
	Hypothesis
	Approach Overview
	Autonomous Guidance
	Human Guidance

	Dissertation Outline and Contributions
	Computational Investigation of Environment Learning (Chapters 3 and 4)
	Human Environment Learning (Chapters 5 and 6)
	Autonomous Guidance: Subgoal-Graph Framework (Chapter 7)

	List of Publications by Chapters

	Research Background
	Background: Autonomous Guidance
	Graph Search Techniques
	Practical Planning Techniques for Dynamic Systems
	Learning Techniques
	Optimization Based Techniques
	SLAM (Simultaneous Localization and Mapping)
	Topological Map Learning

	Background: Human Guidance, Navigation, and Decision-Making
	Driver Modelling
	Visual Perception in Driving/Locomotion
	Spatial Memory and Representation
	Environment Representation
	Decision-Making

	Engineering vs. Spatial Cognition

	Autonomous Guidance and Learning Framework
	Optimal Guidance Problem (OGP)
	Spatial Value Function (SVF)
	Reinforcement Learning of SVF

	Autonomous Guidance and Learning Framework
	Real-Time Sensory and Guidance Processes

	Information Propagation and Assimilation Model
	Agent Definition and Sample Problem
	Learning Process
	Application in Learning Autonomous Guidance Framework


	Computational Investigation of Environment Learning
	Method and Baseline Test Case
	Performance Objective
	Flight Dynamic Performance
	Information Processing
	Learning SVF
	SVF Convergence
	Flight Without Environment Sensing (FWES)

	Evolution in Control Behavior
	Iterations for Safe AWP
	Emergence of Spatial Features in SVF
	Discussion
	Dynamic Performance
	SVF Convergence
	Metric to Topological Representation: Spatial Features in SVF
	Computation Time
	Situational Awareness
	Future Directions


	Human Environment Learning: Experiments and Analysis Framework
	Experiments and Data
	Experiment System
	Experiments

	Mathematical Formulation
	Guidance Task
	Interaction Patterns
	Subgoal Graph
	Learning
	Agent-Environment System

	Analysis Framework
	Benchmark Subgoal Graph
	Human Data Processing
	Decision-Making Model
	Exploration Metric
	Extracting Guidance Primitives (GPs)


	Human Environment Learning: Results and Analysis
	Planning (Decision-Making)
	Exploration vs. Exploitation
	Visibility

	Environment Learning
	Gaze
	CTG at Subgoals

	Guidance Primitives (Quantitative Analysis)
	Specific Insights about Human Spatial Behavior


	Subgoal-Graph Framework for Human Environment Learning: Simulation Validation
	Assumptions and Modeling
	Assumptions
	Task Memory
	Environment Cues for Subgoal Candidates
	Subgoal Graph
	Vehicle Model

	Autonomous Guidance System
	Exploration Stage
	Consolidation Stage

	Simulations
	Task Definition and Parameters
	Results

	Discussion
	Subgoal-Graph vs. Occupancy Map and SVF Based System
	Comparison with Existing Path Planning Methods
	Limitations
	Generalization


	Conclusions and Future Directions
	Conclusions
	Future Directions
	Autonomous Guidance
	Human Guidance


	References
	 Appendix A.  Appendix
	Autonomous Guidance Simulation (Chapter 4)


