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g INTRODUCTION

The Super Cryogenic Dark Matter Search (SuperCDMS) is an
experiment that looks for dark matter, specifically weakly-
interacting massive particles (WIMPs) via nuclear recoils with
germanium and silicon atoms. Currently, the SuperCDMS SNOLAB
dark matter detector, the successor to SuperCDMS Soudan, is
being developed for placement at the SNOLAB research facility in
Canada.l!l As the sensitivity of this detector is increased, the
suppression of neutron backgrounds through the traditional
methods of using highly radiopure materials and passive shielding
becomes much more difficult.!?] Single-scatter neutron events can
produce nuclear recoils that are indistinguishable from WIMP
interactions.!!) These events can be detected by replacing some of
the passive neutron shielding with an active neutron veto
composed of a metal-loaded plastic scintillator.

EXPERIMENTAL OBJECTIVES

1. To load metal dopants with high neutron cross-sections in
plastic scintillator, namely Gd(i-Pr); and Gd(TMHD)..

2. To characterize properties relevant
propagation in scintillator samples.
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3. To determine a neutron capture efficiency for the fabricated
samples.
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Figure 1: The shielding components for
SuperCDMS SNOLAB are depicted.

Figure 2: The desired mechanism to
discriminate between WIMP detections
and neutron scatters is shown above.!!]

PROPOSED VETO DESIGN

While a lot of background can be removed by placing the
SuperCDMS SNOLAB experiment underground, additional
shielding as shown in Figure 1 is required. Irremovable radioactive
contaminants within the detector shielding materials will produce
neutrons. These neutrons can singly scatter off of nuclei in the
detectors, creating signals similar to that of the proposed WIMP
signal.ll However, an active neutron veto can be used to
differentiate between such events. As shown in Figure 2, Gd atoms
in an active veto surrounding the detectors would capture these
neutrons, producing gammas detected by the plastic scintillator.
Thus, an active veto would allow for WIMP-neutron discrimination
on an event-by-event basis, as opposed to the existing statistical,
background rate-based method. Simulations show a uniform
doping of 1% wt. Gd in polystyrene will give 87% veto efficiency
while a Gd resin applied to the surface of each segment of
scintillator at 10% wt. will only give a 77% veto efficiency. 3] Thus,
to minimize cost and maximize efficiency, the plastic scintillator
should be uniformly doped with gadolinium.

~

g MATERIALS AND METHODS A

To fabricate scintillators, about 60g of styrene was combined with the desired dopant concentration.!4
Then, the fluors, PPO and POPOP, were added to at 1% wt. and 0.1% wt. respectively. Benzoyl peroxide was
added at 0.8% wt. to act as an initiator for the polymerization of styrene. The mixture was sonicated for up to 30
minutes and then de-gassed via the bubbling of nitrogen gas for 60 minutes. The vial was placed in a 60°C water
bath for 5 days and then cooled slowly to room temperature over the course of an additional 24 hours.
Polymerized samples were then machined and polished, as shown in Figure 3. Wavelength-shifting (WLS) fibers,
shown in Figure 3d, were embedded in some samples to examine properties relevant to the construction of an
active veto. Maximum loadings of 0.15% wt. Gd(i-Pr); and 0.25% wt. Gd(TMHD), were achieved, significantly
less than expected from previous publications.>®! Additional heating and sonication prior to and throughout the
polymerization process did not improve the solubility of either compound, but instead decreased the quality of
the resulting scintillator.
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a) DMP-01 b) DMP-02 C) DMP-03 d DMP-03
0% Gd 0% Gd, with WLS fiber 0.055% Gd, Gd(i-Pr), 0.055% Gd, Gd(TMHD),

Figure 3: Three different Gd loadings are shown above in Figures 3a-3c. These samples were machined to be (2.50 + 0.02) cm in diameter
with lengths of (11.1 £ 0.1) cm. In Figure 3d, a WLS fiber was embedded by cutting the sample in half and machining a groove down the
center. The Kuraray (300)M WLS fiber was cemented in the grove, and the two sample halves were cemented together

RESULTS

Scintillator emission spectra:

Emission spectra for the samples shown in Figures 3a-3c are displayed in Figure 4. The peak emission
wavelength for all samples was located at (431.0£0.5)nm, a value consistent with typical spectra of plastics in
which POPOP is used as the secondary fluor.!®! Additionally, both doped samples had a local maximum at
(441.0£0.5)nm. The sample loaded with Gd(TMHD),, DMP-04, also emitted more power over all wavelengths
than either of the other two samples. As DMP-04 is slightly cloudier than DMP-01 and DMP-04, it was thought
that increased scattering off of undissolved particles allowed more light to reach the monochromator.
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Figure 5: Attenuation lengths of (14.1+1.0)cm for DMP-01,
(7.73+£0.49)cm for DMP-03, and (10.49+0.75)cm for DMP-04 were
determined. Reduced chi-squared values of the linear fits were
close to 1.

Figure 4: The samples corresponding to the three Gd loadings
above are shown in Figures 3a-3c. Error bars are shown when larger
than the line width.

Attenuation length measurement:

The attenuation length of the scintillator samples was determined using a muon telescope. The number of
photoelectrons deposited as a function of the distance of the muon coincidence cross-section from the face of
the PMT was plotted and fit using the chi-squared method. The attenuation lengths are shown in Figure 5. Initial
light output at 1 cm from the PMT face was increased for DMP-03 as compared to the other samples. However,
the attenuation lengths for both loaded samples were notably smaller than the unloaded sample. It should also
be noted that even the unloaded attenuation length, (14.1 + 1.0)cm, was not close to that of commercially
available plastic scintillators, which typically have attenuation lengths close to 150cm.!”]

-

CONCLUSIONS A

Two gadolinium compounds were loaded into plastic
scintillator with minimal success, not achieving concentrations
reported in prior literature.>®] Nonetheless, properties relevant to
the construction of an active neutron veto were measured. Light
output at 441nm was increased in both loaded samples as
compared to the unloaded sample. The attenuation lengths of
both loaded samples were notably smaller than that unloadec
sample. Consequently, a greater density of WLS fibers would neec
to be used in the construction of an active veto. Additiona
characterization measurements are currently being conducted to
determine the plastic’'s response to gammas, as well as a
measurement of the trapping efficiency of WLS fibers. Neutron
capture efficiency measurements are also being performed. This
work is being done in parallel with a computational analogue using
Geant4.

A metal-doped plastic scintillator has the potential to be
used with other particle detectors whose measurements are

| affected by background neutron levels, most notably neutrino | =

experiments. The ability to measure background levels will allow
SuperCDMS SNOLAB to make credible claims of dark matter
detection to a higher degree of precision as well as reduce the
expected run time.
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