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This dissertation strives to devise novel yet easy-to-implement estima-

tion and inference procedures for economists to solve complicated real world

problems. It provides by far the most optimal solutions in situations when

sample selection is entangled with missing data problems and when treatment

effects are heterogenous but instruments only have limited variations.

In the first chapter, we investigate the problem of missing instruments

and create the generated instrument approach to address it. Specifically, When

the missingness of instruments is endogenous, dropping observations can cause

biased estimation. This chapter proposes a methodology which uses all the

data to do instrumental variables (IV) estimation. The methodology provides

consistent estimation with endogenous missingness of instruments. It firstly

forms a generated instrument for every observation in the data sample that:

a) for observations without instruments, the new instrument is an imputation;
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b) for observations with instruments, the new instrument is an inverse propen-

sity score weighted combination of the original instrument and an imputation.

The estimation then proceeds by using the generated instruments. Asymp-

totic theorems are established. The new estimator attains the semiparametric

efficiency bound. It is also less biased compared to existing procedures in the

simulations. As an illustrative example, we use the NLSYM data set in which

IQ scores are partially missing, and demonstrate that by adopting the new

methodology the return to education is larger and more precisely estimated

compared to standard complete case methods.

In the second chapter, we provide Lasso-type of procedures for reduced

form regression with many missing instruments. The methodology takes two

steps. In the first step, we generate a rich instrument set from the many miss-

ing instruments and other observed data. In the second step, IV estimation is

conduced based on the generated instrument set. Specifically, the (very) many

generated instruments are used to approximate a “pseudo” optimal instrument

in the reduced form regression. The approach has been shown to have effi-

ciency gains compared to the generated instrument estimator developed in the

first chapter. We also compare the finite sample behavior of the new estima-

tor with other Lasso estimator and demonstrate the good performance of the

proposed estimator in the Monte Carlo experiments.

The third chapter estimates individual treatment effects in a triangu-

lar model with binary–valued endogenous treatments. This chapter is based

on the previous joint work with Quang Vuong and Haiqing Xu. Following the
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identification strategy established in (Vuong and Xu, forthcoming), we propose

a two-stage estimation approach. First, we estimate the counterfactual out-

come and hence the individual treatment effect (ITE) for every observational

unit in the sample. Second, we estimate the density of individual treatment

effects in the population. Our estimation method does not suffer from the

ill-posed inverse problem associated with inverting a non–linear functional.

Asymptotic properties of the proposed method are established. We study its

finite sample properties in Monte Carlo experiments. We also illustrate our

approach with an empirical application assessing the effects of 401(k) retire-

ment programs on personal savings. Our results show that there exists a small

but statistically significant proportion of individuals who experience negative

effects, although the majority of ITEs is positive.
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Chapter 1

Instrumental Variable Estimation with

Missing Instruments

1.1 Introduction

Missing instruments occur in instrumental variables(IV) estimation when

an instrumental variable has potentially missing values and is only available to

a subsample of observations. For example, in Acemoglu and Robinson (2001),

the mortality rate faced by early European settlers is used as an instrument

for a country’s institutions, but the mortality rate is missing for about 56%

of the sample1. However, the importance of missing instruments for empiri-

cal work has not been fully appreciated. Econometric literature has offered

only a few solutions for addressing the problem. The most common proce-

dure is simply dropping the observations with missing instruments in the IV

estimation. When the missingness of instruments depends on the endogenous

variable and/or other observed variables, existing solutions including dropping

observations can result in biased and imprecise estimation.

In this chapter, I propose a methodology to deal with missing instru-

ments. The methodology can provide consistent and less biased IV estimation

172 out of 163 countries with colonial origins have (estimated) mortality rates.
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even when the missingness of instruments is endogenous. The main idea is to

generate a new instrument, which is available to every observation in the data

sample, to replace the original one with missing issues. I present a three-step

estimation procedure. In the first step, a generated instrument is formed for

every observation in the data sample. The generated instrument is an imputa-

tion for individuals with missing instruments. The imputation is a predicted

value for the missing instrument using completely observed variables. The

generated instrument has a weighted combination form for individuals with

observed instruments. The weight is the inverse propensity score, which is the

probability of instrument being missing for the individual, after controlling

for other completely observed variables. The combination is between the ob-

served instrument and a predicted value of the instrument. The second and

third steps are analogous to a standard two-stage least square (2SLS) proce-

dure. The second step is a reduced form regression of the endogenous variable

on the generated instrument and other exogenous variables. The third step

is a structural estimation of the dependent variable on the fitted value of the

endogenous variable and other exogenous variables.

Under certain regularity conditions, I am able to show that the new

estimators is
√
n-consistent and asymptotically normal. My estimator belongs

to the class of semiparametric doubly robust estimators (SDREs)2 in terms

2I follow the terminology of Rothe and Firpo (2013) and say that a semiparametric
estimator based on doubly robust moment condition is SDRE if the moment condition
depends on two unknown nuisance functions, but still identifies the parameter of interest if
either one of these functions is replaced by some arbitrary value.
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of that the generated IV is a Doubly Robust IV (DRIV). Even if one of the

two nuisance parameters is misspecified, the DRIV remains valid. Another

common feature shared by SDREs is that the required convergence rate for

the nonparametric component is slower than n−1/4. I present explicit rate re-

sults for sieve estimation of the nuisance functions and argue that compared

to other two-step sieve estimation ((Chen, 2007), (Chen et al., 2008)), SDRE

can have a richer choice of sieve spaces. In terms of efficiency, I first calculate

semiparametric efficiency bounds under the model restrictions. Then I com-

pare the asymptotic variances of my estimator to the efficiency bounds and

prove that it attains the bounds under some conditions.

In the application, I revisit one empirical example of missing IQ scores

from Card (1995). I apply the new methodology for evaluating the return to

education in which IQ score is an instrument for ability, which is proxied by

the “Knowledge of the World of Work” (KWW) test score. the data set is the

young men cohort from the National Longitudinal Survey 1976 (NLSYM76),

in which IQ scores are missing about 30% of the sample. Card (1995) simply

omits the observations with missing data in the IV estimation. I adjust the

original IQ scores to generated IQ scores. Results show that by using generated

IQ scores, return to education is increased from 8.9% to 13.9%, while the

standard error reduces by 13%.

3



1.1.1 Related Literature

The methodology proposed in this chapter integrates ideas from the

doubly robust (DR) estimation literature and the generated regressors liter-

ature. My estimators are based on efficient moment conditions, which have

the doubly robust property. This approach has precedent in literature on

general missing data problems (e.g., (Robins et al., 1994), (Rotnitzky and

Robins, 1995), (Scharfstein et al., 1999), (Van der Laan and Robins, 2003),

(Bang and Robins, 2005), (Wooldridge, 2007), (Graham et al., 2012)). Recent

studies focus on semiparametric versions of DR estimation. Rothe and Firpo

(2013) provides theoretical results for estimates derived from DR moment con-

ditions. Belloni et al. (forthcoming) considers a semiparametric DR estimation

for treatment effects. They estimate the first stage nuisance parameters using

high dimensional machine learning methods. This chapter contributes to this

line of research by developing efficient estimation procedure only through ad-

justing the variable with missing values itself. In particular, I consider different

treatments to observations with and without missing data, while maintaining

the DR property of the estimator.

The new methodology is also related to semiparametric estimation us-

ing generated regressors. Newey (2009) proposes a two-step series estimation

of sample selection models, where the generated regressors from the first step

are used to approximate the correction term. Theoretical results that charac-

terize the influence of the generation step on the final estimator appear in e.g.

Escanciano et al. (2011), Mammen et al. (2012) and Hahn and Ridder (2013).
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This chapter applies the methodology and techniques about generated regres-

sors to the situation of generated instruments. I consider both parametric

and nonparametric estimation in the second step using generated instruments

formed in the first step.

This chapter differs from existing literature on missing instruments in

two major aspects. First, I consider the endogenous missingness of instru-

ments. Dahl and DellaVigna (2009) use a dummy variable approach to deal

with missing value for an instrument. They enter a zero for the missing value

and “compensates” by using dummies for “missingness”. Abrevaya and Don-

ald (forthcoming) adds the interaction of dummy for missingness of other ex-

ogenous variables to the instrument set of dummy variable approach and con-

siders an efficient GMM estimator. However, these two approaches implicitly

assume away the endogeneity issue of missing. They use a moment condition

in which the error term is mean-independent of the instrument, within the

subsample where the instrument is non-missing. Angrist et al. (2010) propose

a full-sample instrument using a linear projection of the partially observed

instrument on the covariates in the sub-sample with non-missing instrument.

Mogstad and Wiswall (2012) consider another full-sample instrument using

instead a nonlinear projection, which is a nonparametric approximation to a

conditional expectation. Neither of these two papers allows the dependence of

missingness on the dependent variable, or the endogenous variable.

Second, the starting point of the methodology in this chapter is the

efficient influence function under missing instruments. This chapter is then the

5



first to investigate efficient procedure to deal with missing instruments issue.

Chaudhuri and Guilkey (2013) illustrate the good finite sample performance

of an augmented inverse propensity score weighted estimator when there are

two missing instruments in the simulations. The chapter provides theoretical

foundations for estimators based on efficient influence function and proposes

an easy-to-implement procedure for execution.

1.1.2 Examples of Missing Instruments

Here I list several empirical examples in which instrumental variables

have missing values, besides the aforementioned missing mortality rates ((Ace-

moglu and Robinson, 2001)) and missing IQ scores ( (Card, 1995)). The first

example is the return to education. Some researchers use family background

variables, e.g. parental education, as instrument for education ((Heckman and

Li, 2004), (Flabbi et al., 2008) ,(Wang, 2013)). However, parental education

is only available for individuals whose parents are present in the same house-

hold3. The IVs are missing for the rest of the population whose parents are

living apart.

The second example is the quantity/quality model. The missing in-

struments issue occurs in Angrist et al. (2010) when they combine different

instrument sets across partially-overlapping parity-specific subsamples.

The last example is Mendelian Randomization4. Recent studies in

3Due to typical survey designs, information on parental characteristics is asked only when
they are present in the same household.

4See Burgess et al. (2015) for a comprehensive survey on the methodology of Mendelian

6



health economics and epidemiology examine the causal effect of a risk fac-

tor (e.g. obesity, early-childhood depression) on educational attainment. In

Smith and Hemani (2014), von Hinke Kessler Scholder et al. (2011), Kang

et al. (2016), they use genetic variation as instruments. In one of the datasets

they use, the Wisconsin Longitudinal Study (WLS), only 47% of the original

sample have complete genetic data.

This chapter is organized as follows. Section 1.2 presents the IV model

with missing instruments, the observational equivalence of the model with

moment equations. Section 1.3 specifies the three-step procedure as well as the

Gen-IV estimator. Section 1.4 establishes asymptotic results of the estimator.

It also states the semiparametric efficiency bounds and discusses efficiency of

the Gen-IV estimator. Section 1.5 provides simulation evidence of finite sample

behavior of the estimators. Section 1.6 details the empirical application of

return to education. Section 1.7 concludes the paper.

1.2 Model, Identification and the Generated Instrument

Consider the following standard linear regression model

Yi = Xiα + V
′

i β + εi, E(Viεi) = 0, E(Xiεi) 6= 0, i = 1, ..., n

Where Xi is an endogenous regressor and Vi is a dv-vector of exogenous re-

gressor. The first element of Vi is 1. There exists an instrument Zi which can

Randomization.

7



be (partially) missing. Zi satisfies

E(Ziεi) = 0 (1.1)

Let Di denote the missing indicator for Zi,

Di =

{
1, if Zi is missing

0, otherwise

For notational convenience, I In the following, I make distinction among

three cases of i.i.d. data samples. The full data sample consists of (Yi, Xi, Vi, Zi, Di)
n
i=1,

which is the data sample we would want to collect on all the individuals

i = 1, ..., n. The observed data sample is (Yi, Xi, Vi, (1−Di)Zi, Di)
n
i=1 which

is the actually observed data sample. The complete data sample consists of

((1−Di)Yi, (1−Di)Xi, (1−Di)Vi, (1−Di)Zi)
n
i=1, which is the subsample of

data where the instrument Zi is observed for every individual5.

Let Wi ≡ (Yi, Xi, V
′
i )
′
, i.e. containing all the completely observed vari-

ables. The missing indicator Di satisfies the “missing at random” (MAR)

assumption,

Assumption 1 (MAR). Di ⊥ Zi|Wi

In the example of missing IQ scores, MAR indicates that the missing-

ness of IQ scores doesn’t depend on the level of IQ scores, after conditioning on

completely observed variables like wage, education and gender. In the missing

5One can instead write the complete data sample as (Yi, Xi, Vi, Zi, Di)
nc

i=1. nc is the num-
ber of individuals with complete data. This writing won’t change the estimation procedure
proposed in this paper.
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mortality rates example, MAR implies the propensity scores of missing mor-

tality rates should be close for similar countries. Such kind of conditional inde-

pendence assumption is also extensively used in econometrics and statistics to

achieve identification with missing data. Examples include inference in models

with attrition or nonresponse (e.g. (Little and Rubin, 2014), (Robins and Rot-

nitzky, 1995), (Rotnitzky and Robins, 1995), (Wooldridge, 2002),(Wooldridge,

2007)), the estimation of treatment effects (e.g. (Heckman and Vytlacil, 2007)

and the references therein), the recovery of comparability over time of statistics

calculated using data collected with different methodology.

Remark 1. MAR allows the dependence of missing indicator Di on completely

observed variable Wi. Consider the following example,

Di = 1(%0 + %1Yi + %2Xi + %3Vi ≤ ui)

%0, %1, %2 and %3 are scaler constants, and ui is an error distributed by the

standard logistic distribution. Di depends on Yi, Xi and Vi as long as %1, %2,

%3 6= 0. ButDi satisfies MAR. I call the missingness endogenous if %2
1+%2

2+%2
3 6=

0.

The propensity score of Zi being missing is defined as the conditional

probability of Zi on the completely observed variable Wi,

p(Wi) ≡ P(Di = 1|Wi)

The propensity score p(Wi) is assumed to have overlap,

9



Assumption 2 (Overlap). 0 ≤ p(Wi) < 1− ν, for some ν > 0.

This assumption effectively guarantees that, for any given value w ∈W,

where W ⊂ Rdv+2 is the support of Wi, there is positive probability that the

instrument is observed. For large enough sample size n, there will be enough

individuals with instruments near any point w for local methods to work.

Given Assumption 1 and Assumption 2, the following lemma establishes

an observational equivalence result between the IV model with single missing

instrument and moment conditions. It is an extension to the equivalence result

for a general missing data problem in Graham (2011).

Lemma 1 (Identification). Let Z̃i ≡ (Zi, V
′
i )
′

be the instrument set. The sin-

gle missing instrument problem under Assumption 1 and 2 is observationally

equivalent to the following moment restrictions.

E

(
1−Di

1− p(Wi)
Z̃iεi

)
= 0 (1.2)

E

(
p(Wi)−Di

1− p(Wi)
|Wi

)
= 0 (1.3)

I follow terminology in Graham (2011) to call (1.2) the “identifying mo-

ment” and (1.3) the “auxiliary moment”. The estimation method of inverse

propensity score weighting (IPW) merely utilizes the identifying moment and

regards the moment condition (1.3) as auxiliary since it only helps in estimat-

ing the nuisance parameter p(Wi). See for example Hirano et al. (2003) for

reference. Doubly robust methods, however, adopt a certain combination of

(1.2) and (1.3) for estimation. It is well known that a conditional moment

10



restriction is equivalent to infinite number of unconditional moment restric-

tions6. Thus conditional moment (1.3) is equivalent to unconditional moment

E

(
p(Wi)−Di

1− p(Wi)
g(Wi)

)
= 0 (1.4)

for any measurable function g(·) ∈ L2(W).

In the context of single missing instrument, I choose g(Wi) = E(Z̃i|Wi)εi,

where εi = εi(Wi) = Yi−X∗
′
i θ, and consider the doubly robust, inverse propen-

sity score weighted combination of identifying moment (1.2) and unconditional

moment (1.4). Specifically, the moment condition I am going to use for esti-

mation is

E

(
1−Di

1− p(Wi)
Z̃iεi −

p(Wi)−Di

1− p(Wi)
E(Z̃i|Wi)εi

)
= 0

=⇒ E

(
1−Di

1−p(Wi)
Zi − p(Wi)−Di

1−p(Wi)
E(Zi|Wi)

Vi

)
εi = 0

Let Zi ≡ 1−Di
1−p(Wi)

Zi− p(Wi)−Di
1−p(Wi)

E(Zi|Wi). I call Zi the generated instrument. As

a result, the actual instrument set used in estimation is Z̃i = (Zi, V
′
i )
′
. The

following lemma shows that the generated instrument Zi is a valid IV.

Lemma 2 (Validity of Generated IV). The generated instrument Zi is a valid,

full data instrument in terms of that it satisfies the excluded restriction.

E(Ziεi) = 0 (1.5)

where Zi = 1−Di
1−p(Wi)

Zi − p(Wi)−Di
1−p(Wi)

E(Zi|Wi).

6Several examples pointing out this equivalence include Bierens (1982), Chamberlain
(1987), and Donald et al. (2003).
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Note that the generated IV Zi contains two nuisance parameters p(Wi)

and E(Zi|Wi). The following corollary summarizes the Doubly Robust (DR)

property7 of Zi.

Corollary 1 (Doubly Robust IV). The generated IV Zi remains valid, i.e.

E(Ziεi) = 0 if either p(Wi) or E(Zi|Wi) is misspecified.

1.3 Estimation and the Gen-IV Estimator

Assume that the true value of the parameters of interest θ0 = (α0, β0)
′

lies in the interior of the compact parameter space Θ ∈ Rdv+1. The estimation

is based on the sample analog of moment condition:

E(Z̃iεi) = 0 (1.6)

where Z̃i is the generated instrument set. I propose a three-step semipara-

metric procedure for the estimation of θ based on (1.6). In the first step, the

generated instrument Zi is estimated nonparametrically, denoted as Ẑi. The

second step is a reduced form regression of the single endogenous variable Xi

on the generated instrument set
̂̃
Zi = (Ẑi, V

′
i )
′
, which includes the estimated

instrument Ẑi and other exogenous variables Vi. The third step is a structural

estimation of the dependent variable Yi on exogenous variable Vi and the fitted

value X̂i obtained in the second step. The following presents the estimation

procedure in detail.

7A formal definition of DR is given in (Bang and Robins, 2005): An estimator is DR
if it remains consistent when either (but not necessarily both) a model for the missingness
mechanism or a model for the distribution of the complete data is correctly specified.
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Step 1 Estimation of generated instrument

The generated instrument Zi = 1−Di
1−p(Wi)

Zi − p(Wi)−Di
1−p(Wi)

E(Zi|Wi) contains

two nuisance parameters which are the propensity score p(Wi) and the con-

ditional expectation E(Zi|Wi). Let h(Wi) ≡ E(Zi|Wi), hereafter. We first

estimate p(Wi) and h(Wi) nonparametrically and then form the generated

instrument by plugging in the nuisance estimates. In the following, I use sub-

script c and m to refer to observations belonging to the complete data sample

and subsample with missing instruments,respectively. Individuals in the the

complete data sample are indexed by i = 1, ..., nc, while those in the missing

instrument sample are indexed by j = 1, ..., nm. It holds n = nc + nm.

Assumption 1 implies that the full data instrument Zi is mean indepen-

dent of the missing indicator Di, controlling for completely observed variable

Wi,

h(Wi) = E(Zi|Wi) = E(Zi|Wi, Di = 0)

Hence we can use the complete data sample for the estimation of h(·). Let

{ql(w), l = 1, 2, ...} be a sequence of known sieve basis functions, such as

power series, splines, Fourier series, etc. Let H denote the sieve space spanned

by ql(w)

H =

{
h(w) = q(w)

′
π =

∞∑
i=1

ql(w)πl

}
A sieve least square estimator for h(w) is

ĥ(w) =
nc∑
i=1

Zciq
kh(n)(Wci)(Q

′

hQh)
−1qkh(n)(w)

13



where

qkh(n)(w) = (q1(w), ..., qkh(n)(w))
′

and

Qh = (qkh(n)(Wc1), ..., qkh(n)(Wcnc))
′

for some integer kh(n), with kh(n)→∞ and kh(n)/n→ 0 when n→∞.

A sieve least square estimator for the propensity score p(w), proposed

in Hahn (1998) is:

p̂(·) = arg min
p(·)∈Sn

1

n

n∑
i=1

(Di − p(Wi))
2/2

Sn =

s(w) = qkp(n)(w)
′
π =

kp(n)∑
j=1

qj(w)πj

 for some known basis (qj)
∞
j=1

where Sn is the sieve space spanned by the basis functions qj, j = 1, ..., kp(n).

The regularity conditions derived in this paper are based on the sieve esti-

mation of the two nuisance functions. However, my estimation methodology

doesn’t restrict the choice for estimation techniques to sieve only. One can use

other nonparametric estimation, like kernel methods in obtaining p̂(·) and ĥ(·).

In particular, machine learning methods, such as Lasso and random forests,

are also suitable choices for estimating the two functions8.

Furthermore, one can use parametric estimation for p̂(·) and ĥ(·) as

well, which is potentially more appealing in empirical studies. h(Wi) can

8A valuable insight provided in Belloni et al. (forthcoming) is that, doubly robust moment
conditions are key ingredients in deriving honest inference when machine learning methods
are adopted for nuisance estimation
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simply be a fitted value in a linear regression of instrument Zi on Wi in the

complete data sample:

ĥ(Wi) = W
′

i ξ̂

and p(Wi) can be parametrized as

p(Wi) = p(Wi;φ)

for a finite dimensional parameter φ. Estimates of φ can be obtained by

maximizing

Πn
i=1{p(Wi;φ)}Di{1− p(Wi;φ)}1−Di

and p̂(Wi) = p(Wi; φ̂). Limited dependent variable estimation like Probit and

Logit can execute the estimation well.

As a result, the generated instrument Zi is constructed by plugging in

ĥ(Wi) and p̂(Wi),

Ẑi =
1−Di

1− p̂(Wi)
Zi +

Di − p̂(Wi)

1− p̂(Wi)
ĥ(Wi) (1.7)

Note that in the subsample with missing instruments, the generated instru-

ment is an impuation

Ẑmi = ĥ(Wmi)

On the other hand, in the complete data sample, the generated in-

strument is an inverse propensity score weighted combination of the original

instrument Zi and the estimated conditional expectation ĥ(Wi),

Ẑci =
1

1− p̂(Wci)
Zci −

p̂(Wci)

1− p̂(Wci)
ĥ(Wci)
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Step 2 Reduced form estimation

The reduced form estimator τ̂ is an OLS estimator,

τ̂ = arg min
τ∈B

1

n

n∑
i=1

(
Xi −

̂̃
Z

′

iτ

)2

=

(
n∑
i=1

̂̃
Zi
̂̃
Z

′

i

)−1 n∑
i=1

̂̃
ZiXi

where B ⊂ Rdv+1 is a compact set, and
̂̃
Zi = (Ẑi, V

′
i )
′
.

Step 3 Structural estimation

I define the Gen-IV estimator θ̂GenIV as follows

θ̂GenIV = (α̂, β̂)
′

= arg min
θ∈Θ

1

n

n∑
i=1

(
Yi − X̂iα− V

′

i β
)2

=

(
n∑
i=1

X̂∗iX
∗
i

′

)−1 n∑
i=1

X̂∗i Yi

=

(
n∑
i=1

̂̃
ZiX

∗
i

′

)−1 n∑
i=1

̂̃
ZiYi

where X̂i =
̂̃
Z

′

iτ̂ and X̂∗i = (X̂i, V
′
i )
′
.

I leave the large sample properties of θ̂GenIV to Section 4.

1.4 Asymptotic Results

In this section, I present large sample properties of Gen-IV estimator.
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1.4.1 Large Sample Properties of Gen-IV Estimator

For Gen-IV estimator, the asymptotic results established in this section

is a generalization of the single missing instrument case. Namely, suppose now

there is a fixed set of instruments Ai = A(Zi) ≡ (A1(Zi), A2(Zi), ..., At(Zi))
′

satisfying unconditional independence assumption E(Aiεi) = 0. The number

of instruments t doesn’t increase with the sample size n. And t is relatively

small compared to the sample size, t << n.

I also allow the “structural” equation to have a general separable non-

linear form Yi = g(X∗i ; θ)+εi. g(·) is a known function, which can be nonlinear

in Xi and/or Vi. In the single missing instrument case considered in Section

2, g(X∗i ; θ) = X∗
′
i θ.

With fixed instrument set Ai, Step 2 and Step 3 in Section 2.2 are

now altered by a standard GMM procedure9 with estimated instrument set

Ẑi ≡ (Ẑi1, ..., Ẑit)
′

and weighting matrix G. The GMM version of Gen-IV

estimator with fixed instrument set Ai is

θ̂GenIV =

(
X∗

′ ̂̃
ZĜ
̂̃
Z

′

X∗
)−1(

X∗
′ ̂̃
ZĜ
̂̃
Z

′

Y

)

in matrix notation, where Ĝ is a consistent estimate of G, and
̂̃
Zi = (Ẑi, V

′
i )
′
.

9In the exact-identification case as in Section 2, the proposed three-step procedure coin-
cides with a GMM procedure using generated instrument. The coincidence is analogous to
that between a standard 2SLS and GMM.

17



1.4.1.1 Notation

Before listing regularity conditions, I first introduce some notations.

Denote W ≡ X × Y × V = Rdv+2 = Rdw to be the support of the completely

observed variables Wi = (Xi, Yi, Vi), and W is allowed to be unbounded. For

any 1×dw vector a = (a1, ..., adw) of nonnegative integers, write |a| =
∑dw

i=1 ai.

Denote the |a|th derivative of a function l : W→ R as

Oal(w) =
∂|a|

∂wa11 · · · ∂w
adw
dw

l(w)

The Hölder space Λγ(W) is a space of functions with up to [γ] continuous

derivatives10, and the highest (γth) derivatives are Hölder continuous with the

Hölder exponent γ − [γ] ∈ [0, 1). The Hölder space is endowed with the norm

||l||Λγ = sup
w
|l(w)|+ max

|a|=[γ]
sup
w 6=w̄

|O|a|l(w)− O|a|l(w̄)|√
(w − w̄)′(w − w̄)

γ−[γ]

A Hölder ball Λγ
c (W) with radius c is defined as

Λγ
c (W) = {l ∈ Λγ(W) : ||l||Λγ ≤ c <∞}

Define a weighted sup-norm ||l||∞η ≡ supw∈W |l(w)(1 + ||w||2)−
η
2 | for some

η > 0. The role [1 + |w|2]−η·/2 plays is similar to that of a trimming procedure

in Kernel methods, where smaller weight is imposed upon larger values of

W . Denote Π∞nl to be the projection of l onto the sieve space Sn under

the norm || · ||∞η. A weighted Hölder ball Λγ
c (W, η) with radius c is then

Λγ
c (W, η) ≡ {l ∈ Λγ(W) : ||l||∞η ≤ c <∞}.

10[·] is the largest integer less or equal than γ.
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The two nuisance functions p(·) and h(·) belong to Hölder spaces Λγp(W)

and Λγh(W). The weighted sup-norms for the two spaces are || · ||∞ηp and

|| · ||∞ηh , respectively. To avoid tedious notation, I just let γ = γp = γh, and

η = ηp = ηh.

1.4.1.2 Consistency

The regularity conditions in the following assumption are required for

the consistency of Gen-IV estimator.

Assumption 3. Let Ĝ−G = op(1) for a positive semidefinite matrix G, and

the Jacobian Jθ ≡ − ∂
∂θ

E[Z̃ig(X∗i ; θ)], the following hold

(3.1) Jθ0 has full column rank equal to dv + 1.

(3.2) p0(·) belongs to Hölder ball S = {p(·) ∈ Λγ
c (W, η) : 0 < p ≤ p(w) ≤ p̄ <

1,∀w ∈W}, h0(·) is H(γ, η1)-smooth for some η1 ≥ 0.11

(3.3) E((1 + ||Wi||2)
η
) <∞ for some η > η1 ≥ 0.

(3.4) (i) E(||A(Zi)εi||2) <∞, E(||h0(Wi)εi||2) <∞, σ2
ε ≡ E(ε2i ) <∞.

(ii) E(||A(Zi)εi||(1+||Wi||2)
η
2 ) <∞, E(||A(Zi)||2) <∞, E(||h0(Wi)||2) <

∞.

11Refer to Appendix for definition of H(·, ·)-smooth.
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(3.5) There is a function b(·) s.t. b(δ)→ 0 as δ → 0 and

E

(
sup

||θ−θ̃||<δ
|g(X∗i ; θ)− g(X∗i ; θ̃)|2

)
≤ b2(δ)

E

(
sup

||θ−θ̃||<δ
|(Yi − g(X∗i ; θ̃))(1 + ||Wi||2)

η
2 |

)
≤ δ

for a small positive value δ.

(3.6) For any function l1 ∈ S, and any l2 ∈ Λγ
c (W.η), there are Π∞nl1 and

Π∞nl2 in the sieve spaces Sn and Hn such that

||l1 − Π∞nl1|| = op(1)

||l2 − Π∞nl2|| = op(1).

Also E[qkh(n)(W )
′
qkh(n)(W )] is non-singular uniformly in kh(n).

(3.1) is the usual rank condition for identification. (3.2)-(3.5) are stan-

dard conditions in the sieve literature. These conditions are tailored to ac-

commodate the two nuisance functions. I extend results in Chen et al. (2003)

Theorem 1, Pakes and Pollard (1989) Corrolary 3.2 and simultaneously con-

trol the influence of the two nuisance functions to the doubly robust moment

conditions. (3.3) is similar to that in Chen et al. (2008) and the weighting η is

needed since we allow the support of Wi to be unbounded. (3.6) requires that

the two nuisance functions are well approximated by the sieve terms under the

weighted sup-norm || · ||∞η. Note that the sieve spaces for estimating p(·) and

h(·) can be very different.
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Theorem 1. Under Assumption 1, 2 and 3, if kp(n)

n
→ 0, kh(n)

n
→ 0,kp(n) →

∞, kh(n)→∞, then the Gen-IV estimator θ̂GenIV is consistent, i.e. θ̂GenIV −

θ0 = op(1).

1.4.1.3 Asymptotic Normality

The next two assumptions are needed for the asymptotic normality of

θ̂GenIV .

Assumption 4. Let θ0 ∈ int(Θ), E
[
Z̃iZ̃

′
iε

2
i

]
be positive definite, the following

hold

(4.1) E
[
Z̃0i

∂g(X∗i ;θ)

∂θ

]
exists for θ ∈ Θδ ≡ {θ ∈ Θ : ||θ− θ0|| ≤ δ} and is contin-

uous at θ = θ0, where Z̃0i ≡
(

1−Di
1−p0(Wi)

A(Zi)
′
+ Di−p0(Wi)

1−p0(Wi)
h0(Wi)

′
, V

′
i

)′
.

(4.2) E
[
Z̃0i

∂g(X∗i ;θ)

∂θ

]
|θ=θ0 is of full (column) rank.

(4.3) E((1 + ||Wi||2))2η <∞.

(4.4) E(||A(Zi)εi||4) <∞, E(||h0(Wi)εi||4) <∞.

(4.5) For θ ∈ Θδ,

E

{
sup

||θ−θ0||≤δ

∣∣∣(A(Zi)− h0(Wi)) (1 + ||Wi||2)
η
2 εi

∣∣∣} < ∞

E

{
sup

||θ−θ0||≤δ
(1 + ||Wi||2)

η
2 |Yi − g(X∗i ; θ)|

}
< ∞

E

{
sup

||θ−θ0||≤δ

∣∣∣∣∣∣∣∣∂g(X∗i ; θ)

∂θ

∣∣∣∣∣∣∣∣ (1 + ||Wi||2)η

}
< ∞
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(4.6) There exist functions a1(·), a2(·), s.t. a1(δ)→ 0, a2(δ)→ 0, as δ → 0,

E

{
sup

||θ−θ̃||≤δ

∣∣∣A(Zi)(g(X∗i ; θ)− g(X∗i ; θ̃))
∣∣∣2} ≤ a2

1(δ)

E

{
sup

||θ−θ̃||≤δ

∣∣∣g(X∗i ; θ)− g(X∗i ; θ̃)
∣∣∣4} ≤ a4

2(δ)

Assumption 5. (5.1) Assumptions 3.1 and 3.2 hold with γ > dw/2, and η >

η1 + γ.

(5.2) Either (a) the growing speed of sieve terms

kp(n) = O(n
dw

2γ+dw ) (1.8)

kh(n) = O(n
dw

2γ+dw ) (1.9)

or (b) the L3(W)-norms of the two nuisance functions satisfy convergence

rates

||p(·)− p0(·)||3 = op(n
− 1

6 ), ||h(·)− h0(·)||3 = op(n
− 1

6 )

holds.

Remark 2. Similar to consistency, I extend Chen et al. (2003) Theorem 2 and

Pakes and Pollard (1989) Theorem 3.3 to a higher order asymptotics. To be

more specific, if the growing speed for sieve terms is set as in (1.8), the resulting

convergence rates for the two nuisance parameters would be ||p̂(·)− p0(·)||2 =

Op(n
− γ

2γ+dw ), ||ĥ(·)−h0(·)||2 = Op(n
− γ

2γ+dw ). These are the optimal rates in the

sense of Stone (1982). And these rates are achievable by a lot of sieve terms,

including othogonal series, splines, wavelets and sigmoid neural network sieve.
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However, if we can actually have a slower convergence rate requirement for the

nuisance functions than the optimal rates. (5.2) (b) is based on a second-order

expansion for the remaining terms and sieve spaces like cosine neural network

sieve, which is slower than the optimal rates (see other sieve space choices in

Chen and Shen (1998)) will still be suitable choices.

Theorem 2. Under Assumptions 1-4, the Gen-IV estimator θ̂GenIV has
√
n(θ̂GenIV−

θ0)⇒ N(0, VGenIV ), with

VGenIV = (J
′

θGJθ)
−1J

′

θGΩGenIVGJθ(J
′

θGJθ)
−1

Furthermore, if G = Ω−1
GenIV , then

√
n(θ̂GenIV − θ0)⇒ N(0, V0), with

V0 = (J
′

θΩ
−1
GenIV Jθ)

−1

where

ΩGenIV = E

(
1

1− p(Wi)
E(Z̃iZ̃

′

i |Wi)ε
2
i −

p(Wi)

1− p(Wi)
E(Z̃i|Wi)E(Z̃i|Wi)

′
ε2i

)
In practice, the standard errors are calculated according to the sample

analog of the asymptotic variance. For example, ΩGenIV can be estimated as

Ω̂GenIV

=
1

n

n∑
i=1

(
1

1− p̂(Wi)
̂E(Z̃iZ̃

′
i |Wi)ε̂

2
i −

p̂(Wi)

1− p̂(Wi)
̂E(Z̃i|Wi)

̂E(Z̃i|Wi)
′ ε̂2i

)

Note that p̂(Wi) and
̂E(Z̃i|Wi) can be estimated using procedures proposed in

Section 1.3. ε̂ is a consistent estimate of the error term. At last,
̂E(Z̃iZ̃

′
i |Wi)

can be estimated within the complete data sample since

E(Z̃iZ̃
′

i |Wi) = E(Z̃iZ̃
′

i |Wi, Di = 0)
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according to MAR.

1.4.2 Efficiency

In this section, I first state the semiparametric efficiency bounds for all

the estimators derived through (2.1) under Assumption 1 and Assumption 2.

I then compare the efficiency bound with the asymptotic variance of Gen-IV

and shows that the estimator attains the bound if using optimal weighting

matrix in the GMM estimation.

1.4.2.1 Semiparametric Efficiency Bounds

I consider efficiency bound for regular and asymptotically linear(RAL)

estimators12.

Theorem 3. Let θ be defined by moment condition (2.1). Under Assumption 1

and Assumption 2, the asymptotic variance lower bound for all RAL estimator

of θ is (
Q
′
Ω−1
effQ

)−1

where Q = E(Z̃iX
∗′
i ) and

Ωeff = E

(
1

1− p(Wi)
E(Z̃iZ̃

′

i |Wi)ε
2
i −

p(Wi)

1− p(Wi)
E(Z̃i|Wi)E(Z̃i|Wi)

′
ε2i

)
(1.10)

12Although most reasonable estimators are RAL, regular estimators do exist that are not
asymptotically linear. However, as a consequence of Hájek (1970) representation theorem,
it can be shown that the most efficient regular estimator is asymptotically linear; hence, it
is reasonable to restrict attention to RAL estimators.
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If we compare the efficiency bound in Theorem 3 to the full data effi-

ciency bound when there is no missing instrument, we will find out that the

only difference between the two bounds lie in the Ω term. In the full data

efficiency bound, Ωfull = E(Z̃iZ̃
′
iε

2
i ). The difference between the two Ω terms

is

∆loss ≡ Ωeff − Ωfull = E

(
p(Wi)

1− p(Wi)
V ar(Z̃iεi|Wi)

)
≥ 0

where V ar(·|Wi) is the conditional variance. The term ∆loss quantifies the

information loss due to the missing instrument issue.

1.4.2.2 Efficiency of Gen-IV Estimator

The following Corollary states the efficiency of the Gen-IV estimator.

Corollary 2. The Gen-IV estimator attains the semiparametric efficiency

bound specified in Theorem 3.

A by-product in calculating the efficiency bound is the efficient influence

function. In this case, the influence function used to derive θGenIV coincides

with the efficient influence function.

1.5 Monte Carlo Experiments

The previous sections’ results suggest that using Gen-IV estimator to

deal with missing instruments should result in good estimation and inference

properties. In this section, I provide simulation evidence regarding these prop-

erties. The simulation design incorporates both exogenous and endogenous
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missing mechanisms. I compare the Gen-IV estimator with five existing esti-

mators and present the good performance of the new one.

1.5.1 Data Generating Process (DGP)

In this design, the simulations are based on a simple instrumental vari-

ables model data generating process (DGP) with single missing instrument Zi

(Di = 0 if observed):

Yi = β0 + α0Xi + β1Vi + εi

Xi = γ0 + γ1Zi + γ2Vi + υi

Di = 1(sin(%0Yi + %1Xi + %2Vi) + ui ≤ p)

(εi, υi) ∼ N

(
0,

(
1 ρευ
ρευ 1

))
(Zi, Vi) ∼ N

(
0,

(
1 ρzv
ρzv 1

))
ui ∼ Unif [0, 1]

where α0 = β0 = β1 = 1 are the parameters of interest. In all simulations,

γ0 = γ2 = 1, ρευ = 0.3, ρzv = 0.4.

For other parameters, I consider various settings. I use two different

specifications for the missing indicator Di. In the first specification (DGP1),

missingness is endogenous and depends on the dependent variable Yi, the en-

dogenous variable Xi, as well as the exogenous variable Vi. I set %0 = −0.25,

%1 = 0.5, %2 = 0.25. In the second specification (DGP2), the missingness

doesn’t depend on any observed variable, %0 = %1 = %2 = 0. This missing pat-

tern is referred to as the Missing-Completely-at-Random (MCAR) case in the
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statistics literature. For both DGP1 and DGP2, experiments are conducted

with the specifications for

n ∈ {250, 500}, p ∈ {0.25, 0.5}, γ1 ∈ {1, 0.3}

For each setting of the simulation parameter values, I report results

from six different estimators. The estimators could have a unified representa-

tion as

θ̂ =
(
X∗

′
PZ̃X

∗
)−1

X∗
′
PZ̃Y

PZ̃ = Z̃
(
Z̃
′
Z̃
)−1

Z̃
′

The full data estimator is the 2SLS estimator using the full data sample, in

which Z̃i = (Zi, V
′
i )
′
. The complete case estimator is the 2SLS estimator

using the complete data subsample, in which Z̃i = ((1 − Di)Zi, (1 − Di)V
′
i )
′
.

The GMM-Dummy estimator uses instrument set Z̃i = ((1 − Di)Zi, Di, V
′
i )
′
,

which is proposed in Dahl and DellaVigna (2009). The GMM-AD estimator,

proposed in Abrevaya and Donald (forthcoming), considers another GMM

estimator in which the iteraction of missing indicator and exogenous variables

(1 −Di)Vi is added to the instrument set, and Z̃i = ((1 −Di)Zi, Di, V
′
i , (1 −

Di)V
′
i )
′
. The IPW-IV estimator is an IV version of inverse propensity score

weighted estimator, the instruments set of which is Z̃i = ( 1−Di
1−p(Wi)

Zi, V
′
i )
′
.

1.5.2 Results

For each estimator, three summary statistics are reported: median

bias (MB), median absolute deviation (MAD), and root mean squared er-
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ror (RMSE). Table 1.1 and Table 1.2 contain the summary statistics for the

estimators for each of the experiments. The case I consider most relevant for

applications is in Table 1.1.

There is clear evidence that estimates of three estimators, the Complete

Case estimator, GMM-Dummy estimator, and GMM-AD estimator are very

biased. Both MB and MAD are much larger for these three estimators than

those of the rest. The estimates are even more biased when the instrument is

relatively weak, i.e. γ1 = 0.3. One possible reason for the biasedness is that all

the three estimators are based on the moment condition E((1−Di)Ziεi) = 0.

When the missing indicator Di depends on Wi , it is plausible that the moment

condition E((1 − Di)Ziεi) 6= 0. To see this more explicitly, note that under

Assumption 1 and using Law of iterated expectations,

E((1−Di)Ziεi) = E (E ((1−Di)Ziεi|Wi, Zi))

= E(E((1−Di)|Wi)Ziεi)

= E((1− p(Wi))Ziεi)

The full data moment function Ziεi is multiplied by the propensity

score 1 − p(Wi), which could results in the inconsistency of estimation based

on this moment equation. This also explains the necessity for the IPW-IV and

Gen-IV estimators to adjust the observed data moment function (1−Di)Ziεi

by the inverse of propensity score 1
1−p(Wi)

.

Since the error term εi can be consistently estimated via Gen-IV, one

can directly test the validity of using such moment condition based on the
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following null and alternative hypothesis:

H0 :E((1−Di)Ziεi) = 0

H1 :E((1−Di)Ziεi) 6= 0

Overall, the Gen-IV estimator dominates the IPW-IV estimator in the

perspective of every summary statistic. The performance of the Gen-IV esti-

mator is the closest to that of the infeasible Full data estimator among all the

estimators. Even when there is nearly one quarter of missing instruments, the

summary statistics for the full data estimator and the Gen-IV estimator are

still quantitatively similar.

To further explore how the missing proportion will influence the behav-

ior of estimators, I conduct a Wald-type test with “H0 : α0 = β0 = β1 = 1”

for a wide range of values of p, p ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}. I re-

port rejection frequencies of 5% level tests for each of the six estimators under

DGP1 in Table 1.3. The rejection frequencies for the three biased estima-

tors, Complete Case, GMM-Dummy and GMM-AD are quite high, even if the

missing proportion p is as low as 5%. When the instrument is relatively weak,

γ1 = 0.3, there are more than half of the iterations in which Complete Case,

GMM-Dummy, and GMM-AD estimators reject the null. However, there is no

clear conclusion about the patterns of Gen-IV estimator and IPW-IV estima-

tor. Both of them have similar rejection frequencies. And these frequencies are

quantitatively similar compared to the Full data estimator. One interesting

finding in Table 1.3 is that the rejection frequencies for Gen-IV estimator and
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IPW-IV estimator won’t change much as the missing proportion increases.

Table 1.2 summarizes the behavior of the six estimators under DGP2.

Since Di is completely exogenous, it holds that

E((1−Di)Ziεi) = E(1−Di) E(Ziεi)︸ ︷︷ ︸
0

= 0

In this case, all the estimators are consistent. There does not seem to exist a

best estimator in terms of MB and MAD. The Gen-IV estimator has slightly

smaller RMSE than the others. In particular, the advantage of the Gen-IV

estimator is more obvious when the missing proportion is higher, p = 0.5, or

when the instrument is stronger, γ1 = 1.

To compare the identifying power of instrument sets from different es-

timators, I draw distributions of the F statistic from reduced form regression

in Figure 1. These figures present density estimates of the F statistic when

instrument Zi is relatively weak γ1 = 0.3 under DGP1. Results show that

the identifying power of generated instruments is very close to the full data

instruments. On the other hand, restricting estimation within the complete

data sample will severely contaminate the identifying power of IV. Sometimes

when missing proportion is high (e.g., (c) n = 250, p = 0.5), researchers might

get wrong conclusion about the strength of the instrument, with suspicion of

weak instrument.

30



Figure 1.1: Distribution of the first-stage F statistic: DGP1
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(a) n = 250, p = 0.25
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(b) n = 500, p = 0.25
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(c) n = 250, p = 0.5
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(d) n = 500, p = 0.5
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Table 1.1: Summary Statistics for DGP1

α0 β0 β1
MB MAD RMSE MB MAD RMSE MB MAD RMSE

Sample A: n=250, p = 0.25,γ1 = 1
Full data -0.0016 0.0479 0.0726 0.0080 0.0652 0.0959 -0.0070 0.0874 0.1275
Complete Case 0.0961 0.1048 0.1333 -0.3174 0.3174 0.3501 -0.0037 0.0922 0.1525
GMM-Dummy -0.1353 0.1353 0.1700 0.1361 0.1436 0.1863 0.1867 0.1867 0.2552
GMM-AD -0.1328 0.1328 0.1637 0.1212 0.1245 0.1811 0.1797 0.1797 0.2454
IPW-IV 0.0516 0.0721 0.1058 -0.0375 0.0755 0.1179 -0.0657 0.1182 0.1713
Gen-IV 0.0004 0.0553 0.0839 0.0018 0.0728 0.1029 -0.0064 0.1016 0.1451

Sample B: n=250, p = 0.25,γ1 = 0.3
Full data -0.0069 0.0997 0.1569 -0.0033 0.0967 0.1680 0.0071 0.1298 0.1958
Complete Case 0.0815 0.1168 0.1853 -0.2952 0.2952 0.3686 0.0269 0.1178 0.2079
GMM-Dummy -0.3654 0.3654 0.4214 0.3635 0.3635 0.4225 0.4120 0.4120 0.5023
GMM-AD -0.3345 0.3345 0.4053 0.3452 0.3452 0.4059 0.3847 0.3847 0.4844
IPW-IV 0.0579 0.1246 0.1869 -0.0580 0.1443 0.1990 -0.0713 0.1482 0.2322
Gen-IV -0.0205 0.1065 0.1744 0.0231 0.1184 0.1847 0.0198 0.1385 0.2171

Sample C: n=250, p = 0.5,γ1 = 1
Full data -0.0093 0.0482 0.0713 0.0072 0.0608 0.0965 0.0061 0.0816 0.1201
Complete Case 0.1231 0.1271 0.1530 -0.4731 0.4731 0.5205 0.0166 0.1022 0.1485
GMM-Dummy -0.2032 0.2032 0.2265 0.2174 0.2174 0.2415 0.2996 0.2996 0.3374
GMM-AD -0.1933 0.1933 0.2181 0.2048 0.2048 0.2329 0.2853 0.2853 0.3266
IPW-IV -0.0022 0.0658 0.0966 0.0232 0.0761 0.1176 0.0149 0.1002 0.1555
Gen-IV -0.0169 0.0695 0.0988 0.0155 0.0724 0.1044 0.0355 0.1124 0.1577

Sample D: n=500, p = 0.25,γ1 = 1
Full data 0.0025 0.0335 0.0482 0.0031 0.0464 0.0671 -0.0015 0.0601 0.0827
Complete Case 0.0953 0.0953 0.1139 -0.3249 0.3249 0.3417 -0.0019 0.0558 0.0926
GMM-Dummy -0.1380 0.1380 0.1540 0.1439 0.1439 0.1663 0.1996 0.1996 0.2243
GMM-AD -0.1362 0.1362 0.1498 0.1389 0.1389 0.1620 0.1921 0.1921 0.2189
IPW-IV 0.0530 0.0567 0.0829 -0.0467 0.0646 0.0944 -0.0729 0.0852 0.1220
Gen-IV -0.0005 0.0355 0.0586 0.0064 0.0508 0.0753 0.0078 0.0583 0.0944

Sample E: n=500, p = 0.25,γ1 = 0.3
Full data -0.0019 0.0688 0.1009 0.0095 0.0769 0.1096 0.0018 0.0851 0.1298
Complete Case 0.0870 0.1067 0.1559 -0.3149 0.3149 0.3516 0.0087 0.0976 0.1424
GMM-Dummy -0.3562 0.3562 0.3802 0.3671 0.3671 0.3884 0.4385 0.4385 0.4580
GMM-AD -0.3468 0.3468 0.3690 0.3585 0.3585 0.3770 0.4203 0.4203 0.4452
IPW-IV 0.0755 0.1071 0.1509 -0.0679 0.1031 0.1560 -0.1046 0.1401 0.1861
Gen-IV -0.0098 0.0805 0.1295 0.0107 0.0870 0.1350 0.0009 0.1027 0.1606

Sample F: n=500, p = 0.5,γ1 = 1
Full data 0.0024 0.0367 0.0518 -0.0058 0.0490 0.0703 0.0027 0.0639 0.0844
Complete Case 0.1260 0.1260 0.1519 -0.5170 0.5170 0.5276 0.0009 0.0765 0.1143
GMM-Dummy -0.1895 0.1895 0.2033 0.1892 0.1892 0.2137 0.2718 0.2718 0.2923
GMM-AD -0.1853 0.1853 0.1963 0.1847 0.1847 0.5070 0.2578 0.2578 0.2830
IPW-IV 0.0021 0.0538 0.0750 -0.0107 0.0650 0.090 -0.0016 0.0840 0.1172
Gen-IV 0.0053 0.0485 0.0716 -0.0091 0.0573 0.0860 -0.0058 0.0765 0.1100
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Table 1.2: Summary Statistics for DGP2

α0 β0 β1
MB MAD RMSE MB MAD RMSE MB MAD RMSE

Sample A: n=250, p = 0.25,γ1 = 1
Full data -0.0050 0.0519 0.0719 -0.0099 0.0673 0.1011 0.0050 0.0818 0.1236
Complete Case 0.0036 0.0509 0.0814 -0.0139 0.0777 0.1186 0.0070 0.0846 0.1326
GMM-Dummy 0.0040 0.0549 0.0826 -0.0201 0.0727 0.1102 0.0067 0.0881 0.1325
GMM-AD 0.0076 0.0531 0.0789 -0.0144 0.0718 0.1075 -0.0035 0.0922 0.1289
IPW-IV -0.0008 0.0553 0.0828 -0.0089 0.0755 0.1103 0.0123 0.0913 0.1333
Gen-IV -0.0017 0.0483 0.0764 -0.0077 0.0692 0.1031 0.0077 0.0873 0.1270

Sample B: n=250, p = 0.25,γ1 = 0.3
Full data -0.0025 0.0933 0.1521 0.0007 0.1041 0.1720 0.0034 0.1268 0.2004
Complete Case -0.0212 0.1062 0.1988 0.0201 0.1111 0.2163 0.0119 0.1460 0.2566
GMM-Dummy -0.0076 0.1145 0.1688 0.0032 0.1107 0.1819 0.0185 0.1296 0.2196
GMM-AD -0.0176 0.1038 0.1584 0.0016 0.1107 0.1722 0.0070 0.1262 0.2070
IPW-IV -0.0183 0.1256 0.1987 0.0166 0.1178 0.2188 0.0241 0.1532 0.2512
Gen-IV -0.0293 0.1104 0.1915 0.0145 0.1181 0.2120 0.0175 0.1482 0.2437

Sample C: n=250, p = 0.5,γ1 = 1
Full data 0.0120 0.0519 0.0814 -0.0028 0.0668 0.0976 -0.0123 0.0855 0.1326
Complete Case -0.0010 0.0672 0.1070 -0.0049 0.0824 0.1363 -0.0242 0.1074 0.1736
GMM-Dummy 0.0071 0.0634 0.1113 0.0007 0.0829 0.1220 -0.0099 0.1104 0.1743
GMM-AD 0.0055 0.0654 0.1086 -0.0127 0.0815 0.1206 -0.0146 0.1003 0.1673
IPW-IV -0.0025 0.0644 0.1184 -0.0005 0.0817 0.1304 0.0051 0.1060 0.1823
Gen-IV 0.0103 0.0670 0.0968 -0.0009 0.0698 0.1082 0.0047 0.0968 0.1543

Sample D: n=500, p = 0.25,γ1 = 1
Full data 0.0007 0.0310 0.0504 0.0033 0.0420 0.0665 -0.0052 0.0598 0.0865
Complete Case -0.0029 0.0376 0.0593 -0.0023 0.0459 0.0785 -0.0006 0.0714 0.1010
GMM-Dummy -0.0053 0.0405 0.0604 0.0027 0.0474 0.0761 0.0039 0.0733 0.0988
GMM-AD -0.0012 0.0399 0.0600 -0.0018 0.0474 0.0760 -0.0050 0.0693 0.0983
IPW-IV -0.0057 0.0387 0.0605 0.0006 0.0466 0.0761 0.0056 0.0728 0.0991
Gen-IV 0.0006 0.0338 0.0548 0.0026 0.0459 0.0718 -0.0006 0.0667 0.0913

Sample E: n=500, p = 0.25,γ1 = 0.3
Full data 0.0039 0.0752 0.1037 -0.0026 0.0786 0.1121 0.0089 0.0967 0.1270
Complete Case -0.0111 0.0803 0.1186 0.0006 0.0828 0.1286 0.0157 0.1000 0.1464
GMM-Dummy -0.0065 0.0868 0.1213 -0.0059 0.0888 0.1298 0.0078 0.1003 0.1494
GMM-AD -0.0037 0.0828 0.1154 -0.0002 0.0830 0.1247 0.0031 0.1017 0.1424
IPW-IV -0.0088 0.0843 0.1225 0.0291 0.0861 0.1307 0.0200 0.1019 0.1499
Gen-IV -0.0115 0.0820 0.1177 -0.0046 0.0838 0.1261 0.0236 0.0988 0.1441

Sample F: n=500, p = 0.5,γ1 = 1
Full data -0.0020 0.0360 0.0512 0.0006 0.0397 0.0680 0.0027 0.0545 0.0789
Complete Case 0.0040 0.0454 0.0706 -0.0032 0.0552 0.0909 -0.0024 0.0743 0.1113
GMM-Dummy 0.0132 0.0487 0.0757 -0.0147 0.0529 0.0875 -0.0126 0.0705 0.1109
GMM-AD 0.0043 0.0474 0.0711 -0.0118 0.0519 0.0843 -0.0109 0.0619 0.1056
IPW-IV 0.0083 0.0485 0.0754 -0.0144 0.0540 0.0872 -0.0147 0.0670 0.1108
Gen-IV 0.0027 0.0418 0.0639 -0.0118 0.0507 0.0806 -0.0047 0.0636 0.0943
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Table 1.3: Rejection Rates: DGP2

p Full data Complete Case GMM-D GMM-AD IPW-IV Gen-IV

Sample A: n = 500, γ1 = 1
5% 0.06 0.79 0.35 0.345 0.065 0.06
10% 0.05 0.77 0.415 0.41 0.075 0.065
20% 0.065 0.89 0.57 0.535 0.08 0.08
30% 0.02 0.96 0.6 0.59 0.04 0.045
40% 0.065 0.97 0.705 0.68 0.13 0.08
50% 0.025 0.995 0.69 0.665 0.115 0.04
60% 0.075 0.98 0.775 0.775 0.09 0.055
70% 0.08 0.995 0.79 0.785 0.185 0.11

Sample B: n = 500, γ1 = 0.3
5% 0.045 0.69 0.88 0.87 0.055 0.065
10% 0.035 0.755 0.945 0.89 0.035 0.03
20% 0.035 0.905 0.965 0.95 0.035 0.03
30% 0.03 0.97 0.985 0.985 0.065 0.05
40% 0.08 0.985 0.99 0.99 0.075 0.065
50% 0.06 0.975 0.99 0.995 0.07 0.065
60% 0.01 0.995 0.99 0.995 0.04 0.04
70% 0.045 0.99 0.995 0.995 0.035 0.065
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1.6 Application

In this section, I apply the new estimation methodology to study the

causal effect of education in labor market outcomes. It is well understood in

the literature that education is endogenous. One of the famous candidate in-

struments for education is the college proximity. Card (1995) uses an indicator

for the presence of an accredited 4-year college in the local labor market as an

instrument for education.

Other factors like ability affect both education and wage at the same

time. Ability then enters into the wage regression as an important confounder.

And there has been a long tradition in the literature to use “Knowledge of the

World of Work” (KWW) test score13 as a measure of “ability”, which can date

back to Griliches (1976), Griliches (1977). A potential criticism about KWW

is that it is treated as an error-free measure of “‘ability”. To address this

criticism, IQ score is used to instrument for the KWW score.

I use the following specification in this section:

lwagei = β0 + β1 Educationi︸ ︷︷ ︸
IV :college proximity

+α KWWi︸ ︷︷ ︸
IV :IQ score

+other controls
′
γ + εi

where education and KWW score are instrumented by college proximity and

IQ score, respectively. The dependent variable is the log of weekly wage.

13In the NLSYM76 dataset, the KWW test items were questions on the job activities of 10
specific occupations, the education requirements for these 10 occupations, and the relative
earnings of 8 different pairs of occupations, with a total of 28 items.
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1.6.1 Data and Missing Instruments

The data sample consists of 2,963 observations on male workers from

the National Longitudinal Survey of Young Men (NLSYM) in 1976. Other

control variables include years of experience (and its square), an SMSA indi-

cator (=1 if living in an SMSA in 1976), a South indicator (=1 if living in

the south in 1976), and a black-race indicator. Regions dummies include 9

region indicators and family background consists of 14 variables representing

mother’s and father’s education, indicators for missing father’s or mother’s

education, interactions of mother’s and father’s education, and dummies for

family structure at age 14.

The IQ data are missing for 923 observations. The complete data sam-

ple, where IQ scores are observed, has 2,040 observations.

Simulation studies in the previous section suggest that Complete Data

method only works when the instrument is MCAR. Table 1.4 checks the de-

pendence of the missing indicator on completely observed variables by running

Logit and Probit regression of Di on Wi. Significant coefficients are found for

KWW, education, experience (and its square) and the South indicator. And

results are robust if we include family background as well as the region dum-

mies. There is clear evidence that IQ is not MCAR, which implies that the

results under Complete Data method might not be reliable.
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Table 1.4: Checking for MCAR of IQ

Missingness of IQ Score, (D)

Logit-I Probit-I Logit-II Probit-II Logit-III Probit-III
(1) (2) (3) (4) (5) (6)

Wage -0.1685 -0.0927 -0.1633 -0.0890 -0.1618 -0.0886
(0.1221) (0.0708) (0.1227) (0.0711) (0.1243) (0.0718)

Ability(KWW) -0.0307*** -0.0181*** -0.0285*** -0.0167*** -0.0275*** -0.0160***
(0.0072) (0.0042) (0.0073) (0.0043) (0.0074) (0.0043)

Education -0.2529*** -0.1385*** -0.2285*** -0.1253*** -0.2338*** -0.1286***
(0.0223) (0.0125) (0.0235) (0.0132) (0.0237) (0.0133)

Experience -3.1546*** -1.8111*** -3.2040*** -1.8415*** -3.2598*** -1.8744***
(0.3019) (0.1739) (0.3033) (0.1745) (0.3050) (0.1754)

Experience squared 5.3667*** 3.0849*** 5.4426*** 3.1322*** 5.5355*** 3.1863***
(0.5236) (0.3016) (0.5258) (0.3025) (0.5286) (0.3040)

Black 0.8172*** 0.5018*** 0.7046*** 0.4317*** 0.7160*** 0.4411***
(0.1188) (0.0708) (0.1239) (0.0737) (0.1251) (0.0744)

SMSA -0.0258 -0.0110 -0.0138 -0.0058 -0.0008 0.0015
(0.1037) (0.0605) (0.1045) (0.0609) (0.1077) (0.0626)

South 0.4307*** 0.2461*** 0.3959*** 0.2287*** 0.2604 0.1450
(0.1020) (0.0597) (0.1032) (0.0602) (0.2082) (0.1207)

Constant 49.8121*** 28.4567*** 51.1235*** 29.2531*** 52.1515*** 29.8705***
(4.3385) (2.4941) (4.3757) (2.5105) (4.4036) (2.5246)

Family background N N Y Y Y Y
Region dummies N N N N Y Y
N 2,963 2,963 2,963 2,963 2,963 2,963

1.6.2 Results

Table 1.5 reports the IV estimation results. Column (1) treats KWW as

exogenous, as one of the specifications considered in Card (1995). It is served as

a benchmark for the other two IV results. Column (2) is the procedure adopted

in Card (1995) where IV estimation is conducted only to the complete data

sample. Column (3) is based on the generated IQ scores. Results show that

the return to education is insignificant using Complete Data method. Instead,

the proposed method in this paper will restore the significance of return to

education. Meanwhile, the standard errors of most of the coefficients are

smaller compared to Column (2).
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Table 1.5: Instrumental Variables Estimation of Return to Education

Weekly log(Wage)(Dependent variable)

KWW KWW KWW
Exogenous Endogenous Endogenous

2SLS Complete Case Gen-IV
(1) (2) (3)

Education 0.136** 0.089 0.131**
(0.078) (0.085) (0.076)

KWW -0.014 0.037 -0.142
(0.089) (0.249) (0.220)

Experience 0.063*** 0.059** 0.096***
(0.019) (0.035) (0.032)

Experience Square -0.117 -0.112 -0.220**
(0.108) (0.105) (0.092)

Black -0.172*** -0.138 -0.256**
(0.036) (0.119) (0.116)

SMSA 0.091** 0.117*** 0.123***
(0.044) (0.025) (0.023)

South -0.145*** -0.102*** -0.148***
(0.028) (0.032) (0.028)

Constant 4.040*** 4.278*** 4.180***
(0.657) (0.654) (0.539)

Family Background Y Y Y
Region Dummies Y Y Y
N 2,963 2,040 2,963

1.7 Conclusion

I study consistent and efficient IV estimation when instruments are

missing endogenously. Under a conditional version of “missing at random”

assumption, I am able to generate new instruments for every observation in

the original data sample. With a generated instrument set, the identifying

power of the infeasible full data instrument can be largely restored, making

valid inference possible.
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Empirical researchers need to be more cautious when facing missing

instruments in the data set. If endogenous missingness exists, simply ignoring

the observations with missing instruments may result in insignificant coeffi-

cients of interest and very large standard errors. Furthermore, the diagnosis

about the strength of IV could also be wrong.

There are several directions for future research. First, it is interest-

ing to investigate other missing data problems in IV estimation. Examples

include missing endogenous variables and missing dependent variables. In-

ference methods under other more complicated situations e.g. IV estimation

entailing missing instruments and weak instruments would also worth a try.

Second, one can develop formal tests on the consistency of Complete Data

methods based on certain moment conditions. Also, the theoretical results in

this paper has focused on monotone missing patterns of instruments. The idea

of generated instruments can be extended to multiple/non-monotone missing-

ness of instruments.
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Chapter 2

Methods for Optimal Instruments with Many

Missing Instruments

2.1 Introduction

In this chapter, I study another case of missing instruments, i.e. many

missing instruments. It occurs in empirical studies when one has a rich in-

strument set but each instrument can have missing values. The methodology

developed in this chapter is an extension to the generated instrument approach

in Chapter 1. I also propose a three-step estimation procedure. In the first

step, many generated instruments are formed and estimated. These generated

instruments are used to improve the efficiency of IV estimation or approximate

the infeasible optimal instruments in the spirit of Amemiya (1974), Chamber-

lain (1987), and Newey (1990). Although the improvement in efficiency is at-

tractive, there are two potential problems with generating many instruments.

The first problem is the well-known “many-instrument” problem where the

IV estimators based on many instruments may have poor properties.1 The

second problem is the possible large estimation error in the formation of the

many generated instruments. Keeping these two problems in mind, in the

1These poor properties include inaccurate inference and large standard errors. See Bekker
(1994), Hansen et al. (2012), Chao et al. (2012) for discussions on these problems.
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second step, I develop a shrinkage-based method for estimating the reduced

form regression of the endogenous variable on the many generated instruments.

My method can accomplish selection among many generated instruments and

parameter estimates within one step. At the same time, it controls for the

estimation bias brought by first-step estimation. I extend the methods of Bel-

loni et al. (2012) to a pseudo-approximation of the optimal instruments. The

IV estimation proceeds in the third step by regressing the dependent variable

on the pseudo-approximation.

The approach is new and easy for implementation. It recovers the full

data instrument set from the original many missing instruments. The new

instrument set does not suffer from missing data issues again. I also allow

a flexible instrument set in which the number of instruments can be increas-

ing with the sample size and can even exceed the sample size. At the same

time, every instrument in the instrument set could have missing values. Both

Muris (2011) and Chaudhuri and Guilkey (2013) consider multiple missing

data problems including missing instruments. But the instrument set is fixed

in their settings. To my knowledge, this is the first paper in the literature to

study many missing instruments. In particular, I am able to show that under a

“pseudo” sparsity condition and several regularity conditions, the parameters

of interest are estimated at the parametric rate.

This paper also makes several theoretical contributions. First, I cal-

culate semiparametric efficiency bounds under conditional moment equality

when the conditioning variable has missing data. Hristache and Patilea (2014)
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characterize the semiparametric efficiency bounds for conditional moment re-

striction models with different conditioning variables as a decreasing sequence

of unconditional moment restriction models. An iterative procedure for ap-

proximating the efficient score when this is not explicit is provided. My paper

complements this strand of literature by analytically characterizing the op-

timal instruments and I also provide a direct approximation of the optimal

instruments under certain conditions.

This chapter is organized as follows. Section 2.2 presents the IV model

with many missing instruments. Section 2.3 proposes the three-step estima-

tion approach as well as the Pen-Gen-IV estimator. Section 2.4 establishes
√
n-consistency of the proposed estimator and states the semiparametric effi-

ciency bounds. It also discusses the efficiency of the proposed estimator and

characterizes the “pseudo” optimal instruments. Section 2.5 provides simula-

tion evidence of finite sample behavior of the Pen-Gen-IV estimator. Section

2.6 concludes the chapter.

2.2 The Many Missing Instruments Case

In the previous chapter, I consider the single missing instrument case,

in which the full data moment condition is

E(Z̃iεi) = 0 (2.1)

The instrument set Z̃i satisfies the unconditional independence assumption

and the parameter of interest θ is exactly identified. In this section, I proceed
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by investigating an over identification case when the instrument set Z̃i satisfies

the conditional independence assumption,

E(εi|Z̃i) = 0 (2.2)

Estimation based on conditional moment restriction like (2.2) has been rigor-

ously studied in the literature, e.g. Amemiya (1974), Newey (1990), Blundell

and Powell (2003), Chen and Pouzo (2015), Chernozhukov et al. (2015), to

name a few. The choice of instrument set is more flexible under (2.2) than

(2.1), since every measurable function A(Z̃i) (assuming expectation exists) will

qualify as an instrument in the sense that E(A(Z̃i)εi) = 0. It is also known that

setting A(Z̃i) = D(Z̃i) ≡ E(X∗i |Z̃i) will minimize the asymptotic variance of θ

under full data moment condition E(εi|Z̃i) = 0. D(Z̃i) is called the optimal in-

strument in the literature. In our case, let Di ≡ D(Z̃i) = (E(Xi|Z̃i), V
′
i )
′
. For

notational convenience, I assume that there are no other exogenous variables

and Vi only contains a constant term (Vi = 1). With some abuse of notation,

let Zi ≡ (Zi, 1)
′
. Then Di = D(Zi) = E(Xi|Zi).

The many missing instruments case hence refers to the situation in

which (i) a rich instrument set A(Zi) = (A1(Zi), ..., At(Zi))
′

is used to approx-

imate the full data optimal instrument E(Xi|Zi); (ii) every instrument Ak(Zi)

in the instrument set has missing values, k = 1, ..., t. For example, in the miss-

ing IQ case, empirical researchers may want to add (a) higher order polynomi-

anls (IQ, IQ2, IQ3, ...) and/or (b) interaction terms (IQ× Fathereduc, IQ×

Mothereduc, IQ × Family Background, IQ × Region Dummies, ...) to the
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instrument set2. Each instrument in (a) or (b) can be viewed as a function of

IQ scores, and is thus a missing instrument.

Similar to Lemma 1, there is an observational equivalence between the

IV model with many missing instruments and conditional moment restrictions,

Lemma 3 (Identification(2)). The many missing instruments problem with

conditional independence assumption (2.2) under Assumption 1 and 2 is ob-

servationally equivalent to the following conditional moment restrictions.

E

(
1−Di

1− p(Wi)
εi|Zi

)
= 0 (2.3)

E

(
p(Wi)−Di

1− p(Wi)
|Wi

)
= 0 (2.4)

Conditional moment restriction (2.3) is equivalent to infinite number

of unconditional moment restrictions. Any measurable function A(·) ∈ L2(Z),

where Z is the support of Z, satisfies

E

(
1−Di

1− p(Wi)
A(Zi)εi

)
= 0 (2.5)

Also recall the equivalence of (2.4) with unconditional moment

E

(
p(Wi)−Di

1− p(Wi)
g(Wi)

)
= 0 (2.6)

The moment condition I am going to use for estimation is then based upon

the inverse propensity score weighted combination of (2.6) and (2.5):

E

 1−Di

1− p(Wi)
D(Zi)︸ ︷︷ ︸
A(Zi)

εi +
Di − p(Wi)

1− p(Wi)
E (D(Zi)|Wi) εi︸ ︷︷ ︸

g(Wi)

 = 0 (2.7)

2Other family background variables may include family structures and various interac-
tions of parental education and family structures.
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where D(Zi) = E(Xi|Zi) is the full data optimal instrument.

Remark 3. The moment condition used in the single missing instrument case

E

(
1−Di

1− p(Wi)
Ziεi +

Di − p(Wi)

1− p(Wi)
E(Zi|Wi)εi

)
= 0

can be viewed as a special case of moment condition (2.7) in the sense that

only one full data instrument Zi is used to approximate E(Xi|Zi).

Notice that without imposing further restrictions, the full data reduced

form regression equation can be written as

Xi = D(Zi) + νi, E(νi|Zi) = 0.

When Zi has missing values, a direct approximation of D(Zi) through instru-

ment set A(Zi) = (A1(Zi), ..., At(Zi))
′

is impossible. Moment condition (2.7)

suggests an indirect, pseudo approximation of the full data optimal instru-

ment by generated instruments. Namely, consider a reduced form regression

equation

Xi = Ai (D(Zi), Zi,Wi, Di; p, h) + νi, E (νi|Zi) = 0 (2.8)

where Ai (D(Zi), Zi,Wi, Di; p, h) = 1−Di
1−p(Wi)

D(Zi) + Di−p(Wi)
1−p(Wi)

E(D(Zi)|Wi). I

call Ai(·; p, h) the observed data optimal instrument to distinguish from the

full data optimal instrument D(Zi). To see why we can have such reduced

form regression, recall that by Assumption 1, E(Ai(·; p, h)|Wi) = E(D(Zi)|Wi),

and E(D(Zi)|Wi) + E(νi|Wi) = E(Xi|Wi) = Xi, since Wi includes Xi.
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2.3 Estimation

According to moment condition (2.7), I now propose a three-step pro-

cedure for the estimation of θ. This procedure differs from the previous three-

step estimation with single missing instrument in two ways. First, in the first

step, there is now a (very) large list of generated instruments to be estimated.

Second, I now consider a nonparametric reduced form regression instead of

the parametric specification in the single missing instrument case. Specifi-

cally, I extend Belloni et al. (2012)’s Lasso-based methods on estimating the

full data optimal instrument, to accommodate the (very) many generated in-

strument setting and to approximate the observed data optimal instrument.

The following details the three-step estimation.

Step 1 Estimation of many generated instruments

Suppose a very large list of instruments,

Ai ≡ A(Zi) ≡ (A1(Zi), ..., At(Zi))
′

is chosen to estimate the full data optimal instrument D(Zi). The number

of instruments t is possibly much larger than the sample size n (t >> n). t

can also be increasing with the sample size n. As mentioned in Belloni et al.

(2012), by allowing t to be much larger than the sample size, we are able to

consider many more instruments than in Newey (1990) and Hahn (2002). The

purpose of this is to get a better approximation of the optimal instrument to

improve estimation efficiency.
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Following Step 1 in Section 2.2, we know how to form a generated

instrument given a single instrument Ak(Zi). With t missing instruments, the

generated instrument set Zi forms as

Zi ≡ (Zi1, ...,Zit)
′

Zik =
1−Di

1− p(Wi)
Ak(Zi) +

Di − p(Wi)

1− p(Wi)
E(Ak(Zi)|Wi), k = 1, ..., t.

The nuisance parameters p(Wi) and h(Wi) ≡ E
(
(A1(Zi), ..., At(Zi))

′ |Wi

)
can

be estimated either parametrically or nonparametrically. For example, we can

still conduct sieve least square estimation. The estimates for the nuisance

functions are denoted by p̂(Wi) and ĥ(Wi), respectively. The estimated gen-

erated instrument set Ẑi is obtained by plugging in the nuisance parameter

estimates:

Ẑi =
1−Di

1− p̂(Wi)
A(Zi) +

Di − p̂(Wi)

1− p̂(Wi)
ĥ(Wi) (2.9)

Note that the number of nuisance parameters is t+1, including the propensity

score p(Wi), and t conditional expectations E(Aik|Wi), k = 1, ..., t.

Step 2 Penalized Reduced Form Estimation

Armed with the estimated generated instrument set Ẑi, we are able to imple-

ment the reduced form regression specified in (2.8). The penalized reduced

form estimator τ̂pen is defined as the minimizer of the optimization program

τ̂pen = arg min
τ∈Rt

1

n

n∑
i=1

(
Xi − Ẑ

′

iτ
)2

+
λ

n

t∑
j=1

|ζjτj| (2.10)
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where λ is the penalty term, and ζ = (ζ1, ..., ζt)
′

is a vector specifying penalty

loadings. Suppose {φn} is a sequence satisfying φn = op(1) and log(1/φn) =

Op(log(p ∨ n)). Then

λ ≡ c
√
nΦ−1(1− φn/(2t)) (2.11)

ζj ≡

√√√√ 1

n

n∑
i=1

(Z2
ijν

2
i ) j = 1, ..., t. (2.12)

In practice, we use estimates of the penalty loadings ζ̂. Refer to the appendix

for algorithm obtaining ζ̂. Sometimes, when the true value of τ0 is close to

zero, the optimization procedure in (2.10) may fail to choose any generated

instrument. There are two reasons for this. First, the regularization by the l1-

norm employed in (2.10) shrinks the estimated coefficients toward zero. This is

the so called “shrinkage bias” in the Lasso literature. Second, there is another

source of estimation bias brought by the estimated generated instruments. I

call this bias the “generated bias”, which is a common drawback shared by

estimation based on generated regressors, see e.g. Mammen et al. (2012), Hahn

and Ridder (2013).

Aiming to remove some of the bias, I propose the following procedure

for the estimation of τ and regard (2.10) merely as a model selecting procedure.

I denote this estimator by τ̂ . Define T̂pen to be the support of τ̂pen,

T̂pen = support(τ̂pen) = {j ∈ (1, ..., t) : |τ̂pen j| > 0}

The support for τ̂ , denoted by T̂ , on the other hand, can contain other variables

of interest. For example, even if some generated instruments are not chosen,
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one can still add them back to T̂ out of empirical relavance. One can also add

other non-missing instruments to T̂ . As a result, the reduced form estimator

τ̂ is defined as the minimizer of the optimization program

τ̂ = arg min
τ∈Rt:τ

T̂ c
=0

1

n

n∑
i=1

(
Xi − Ẑ

′

iτ
)2

The advantage of this penalized reduced form estimation is that it allows the

identities of the relevant full data instruments to be unknown. And it builds

on the fact that if a single missing instrument Ak(Zi) is a valid full data

instrument, then Zik would be a valid generated instrument. By selecting

among generated instruments, we can then get right choice of the full data

instruments. In other words, we are indirectly approximating the full data

optimal instrument D(Zi) through the pseudo-approximation of Ai(·; p, h).

A key condition that guarantees the effective use of this large gen-

erated instrument set is sparsity, which says that the observed data optimal

instrument Ai(·; p, h) can be well approximated by a small number of unknown

generated instruments. The sparsity is summarized in the following condition.

Condition 1. (Sparsity) The infeasible Ai ≡ A(D(Zi), Zi,Wi, Di; p.h) is well

approximated by a function of unknown s ≥ 1 generated instruments:

Ai = Z
′

iτ + ai,

t∑
j=1

1{τj 6= 0} ≤ s = o(n)

and
√

1
n

∑n
i=1 a

2
i = Op(

√
s/n).

Condition 1 requires that there are at most s generated instruments to

approximate Ai(·; p, h) up to approximation error ai, chosen to be no larger
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than the conjectured size
√
s/n of the estimation error of the infeasible esti-

mator that knows the identity of the true generated instruments, the “oracle

estimator”.

However, the true generated instrument set Zi is infeasible, and we use

estimated generated instrument set Ẑi in the penalized reduced form regres-

sion. The procedure implicitly requires that the nuisance parameters are well

estimated to get a good approximation of Zi. Denote the fitted value obtained

in this step as

Âi ≡ Âi(·; p̂, ĥ) = Ẑ
′

iτ̂

Step 3 Structural estimation

The structural estimation is similar to that in the single missing instrument

case. I define the Pen-Gen-IV estimator θ̂PenGenIV as follows

θ̂PenGenIV =

(
n∑
i=1

ÂiX
∗′
i

)−1 n∑
i=1

ÂiYi

I leave the consistency and asymptotic normality results of θ̂PenGenIV to the

next section.

2.4 Asymptotic Results

In this section, I present large sample properties of Pen-Gen-IV esti-

mator.
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2.4.1 Large Sample Properties of Pen-Gen-IV Estimator

The following assumptions are needed for the asymptotic normality of

the Pen-Gen-IV estimator.

Assumption 6 (Condition Sparse Eigenvalues). Let M̂ be the estimated em-

pirical Gram matrix, M̂ = 1
n

∑n
i=1 ẐiẐ

′
i. We define the minimal and maximal

m-sparse eigenvalues of M̂ as follows:

φmin(m)(M̂) = min
ξ∈Ψ(m)

ξ
′
M̂ξ and φmax(m)(M̂) = max

ξ∈Ψ(m)
ξ
′
M̂ξ

where Ψ(m) = {ξ ∈ Rt :
∑t

i=1 1{ξi 6= 0} ≤ m, ||ξ||2 = 1}.

For any constant C, there exist 0 < κ1 < κ2 < ∞, κ1 and κ2 do not

depend on n but may depend on C, s.t. with probability approaching 1, as

n→∞,

κ1 ≤ φmin(Cs)(M̂) ≤ φmax(Cs)(M̂) ≤ κ2

Assumption 6 imposes restrictions on the estimated Gram matrix. It

requires that there exists some m ×m submatrix of the large t × t matrix is

bounded. The following assumption is about several moment restrictions of

the reduced error νi and generated instrument Zi.

Assumption 7. Recall the reduced form Xi = Ai + νi, the following hold

(7.1) E(ν4
i ) <∞, ||Zi||∞ ≤ Kn a.s., where K2

ns log2(n) log2(s log n)log(t∨n) =

o(n).

(7.2) maxj≤t E|Z3
ijν

3
i | = O(K†n), where K†n

2
log3(t ∨ n) = o(n).
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Before presenting the next assumption, we need to introduce some new

notation. Let τ̂ ? be the estimator obtained through using the true generated

instrument Zi instead of the estimated one Ẑi, i.e.

τ̂ ? = arg min
τ∈Rt

1

n

n∑
i=1

(
Xi − Z

′

iτ
)2

+
λ

n

t∑
j=1

|ζjτj|

and Â?
i ≡ Z

′
iτ̂
?.

Assumption 8. The following hold

(8.1)
√

1
n

∑n
i=1(Â?

i − Âi)2 = Op(
√

s log(t∨n)
n

)

(8.2) ||τ̂ ? − τ̂ ||2 = op(
√

s2 log(t∨n)
n

).

Assumption 9. Let Ξ0 be a diagonal matrix of ideal penalty loadings. Ξ0 ≡

diag(ζ1..., ζt). Let Ξ̂ be the empirical loadings. Ξ̂ is asymptotically valid in the

sense that

lΞ0 ≤ Ξ̂ ≤ uΞ0

for u > l ≥ 0.

Note that the penalty loadings we use for estimation will satisfy As-

sumption 9. We also impose the following moment restrictions on the full data

instruments Zi, the structural error εi, the generated instrument Zi and the

size of the instrument set t.

Assumption 10. The following hold
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(10.1) The eigenvalues of Q̃ = E(D(Zi)D(Zi)
′
) are bounded uniformly from

above and away from zero, uniformly in n.

(10.2) The conditional variance E(ε2i |Zi) is bounded uniformly from above and

away from zero, uniformly in i and n.

(10.3) Normalize the instruments so that E(Ẑ2
i ε

2
i ) = 1 for each 1 ≤ j ≤ t and

for all n, for some p1 > 2, p2 > 2, uniformly in n,

max
1≤j≤t

E(|Ẑijεi|3)+E(||Di||p12 |εi|2p1)+E(||Di||p12 )+E(|εi|p2)+E(||Xi||p12 ) = Op(1)

(10.4) The following growth conditions hold: (a) s log(t∨n)
n

n
2
p2 → 0, (b) s2 log2(t∨n)

n
→

0, (c) max1≤j≤t
1
n

∑n
i=1(Ẑ2

i ε
2
i ) = op(1), (d) log3 t = o(n).

Assumption (10.1) is a generalization of Assumption (3.1). It ensures

that the identification is strong. Assumption (10.2) requires that the struc-

tural errors are bounded heteroscedastically. Assumption (10.3) imposes sev-

eral moment restrictions. Assumption (10.4) guarantees that the impact of

the estimation of generated instrument on the IV estimator is asymptotically

negligible.

Theorem 4. Under Assumptions 1-10, the Pen-Gen-IV estimator
√
n(θ̂PenGenIV−

θ0)⇒ N(0, Ṽ0), with

Ṽ0 = (Q̃
′
Ω−1
PenGenIV Q̃)−1
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where Q̃ = E(D(Zi)D(Zi)
′
) and

ΩPenGenIV

= E

(
1

1− p(Wi)
E(D(Zi)D(Zi)

′ |Wi)ε
2
i −

p(Wi)

1− p(Wi)
E(D(Zi)|Wi)E(D(Zi)|Wi)

′
ε2i

)

2.4.2 Efficiency

In this section, I establish two sets of efficiency results. The first set

of results contains semiparametric efficiency bounds for the estimation of θ

defined by moment condition (2.2), under Assumption 1 and Assumption 2. I

also provide an analytical solution to the optimal instruments and discuss its

relationship to the full data optimal instruments under (2.2). The second set

of results include comparison between the asymptotic variance of the estimator

and the semiparametric efficiency bounds. I state the conditions under which

the Pen-Gen-IV estimator attains the efficiency bounds.

2.4.2.1 Efficiency Bounds and Efficiency of Pen-Gen-IV Estimator

The semiparametric efficiency bounds for the estimation of θ under the

conditional independence assumption is provided in the following theorem.

Theorem 5. Let θ be defined by moment condition (2.2). Under Assumption 1

and Assumption 2, the asymptotic variance lower bound for all RAL estimator

of θ is (
E(A∗(Zi)D(Zi)

′
)
′
(

E(SeffS
′

eff )
)′

E(A∗(Zi)D(Zi)
′
)

)−1
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where D(Zi) = E(Xi|Zi), and

Seff =
1−Di

1− p(Wi)
A∗(Zi)εi +

Di − p(Wi)

1− p(Wi)
E(A∗(Zi)|Wi)εi (2.13)

where Seff is the efficient score vector. A∗(Zi) is the unique solution to

E

[
1

1− p(Wi)
A(Zi)ε

2
i −

p(Wi)

1− p(Wi)
E(A(Zi)|Wi)ε

2
i |Zi

]
= D(Zi) (2.14)

I call A∗(Zi) the “star-optimal” instrument. Note that A∗(Zi) is a full

data instrument. It might be different from the full data optimal instrument

D(Zi). A special case when A∗(Zi) coincides with D(Zi) is provided in the

following remark.

Remark 4. If there is zero possibility of missing, i.e. p(w) = 0 for ∀w ∈ W,

and assuming conditional homoskedasticity,

E
[
ε2i |Zi

]
= Ψ (2.15)

for a constant, positive number Ψ, then (2.14) shrinks to

A(Zi)E
[
ε2i |Zi

]
= D(Zi)

The star-optimal instrument A∗(Zi) equals to the full data optimal instrument

D(Zi) up to a constant Ψ.

A∗(Zi) = D(Zi)Ψ
−1 (2.16)

The existence and uniqueness of A∗(Zi) has implication about the ef-

ficiency of the Pen-Gen-IV estimator θ̂PenGenIV . Compare the efficient score
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vector in (2.13) with the moment condition (2.7), we will see that whether

the Pen-Gen-IV estimator is efficient or not will depend on the equivalence

between A∗(Zi) and D(Zi). The following Corollary provides a sufficient con-

dition under which the equivalence holds.

Corollary 3. The Pen-Gen-IV estimator is efficient if

E

(
p(Wi)

1− p(Wi)
(E(E(Xi|Zi)|Wi)−Xi)ε

2
i |Zi

)
= 0 (2.17)

then

A∗(Zi) = D(Zi).

The efficiency of the Pen-Gen-IV estimator won’t depend on the con-

ditional homoskedasticity assumption as in (2.15). However, a direct test on

the conditional moment (2.17) is infeasible, since the conditioning variable Zi

has missing values. One can seek a pseudo-approximation of the conditional

expectation in the spirit of Ai to Di. But this is beyond the scope of the

current paper.

2.4.2.2 The Star-optimal Instrument A∗(Zi)

In this subsection, we seek to find an explicit expression for the optimal

instruments. This has been done in two ways. Firstly, we can solve for an

analytical solution to Equation (2.14), which is possible by utilizing theory

of integral equations. The results are provided in Lemma 4. Secondly, if

the conditional expectations in (2.14) are approximated by some series, e.g.
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power series, splines, etc. with mild restrictions, we are able to obtain an

approximation for the optimal instruments, see Lemma 5.

Assume that after adjusted by the inverse of propensity score, it still

holds conditional homoskedasticity,

E

[
ε2

1− p(W )
|Z
]

= Ω̃

then (2.14) can be rewritten into

A(z) = h(z) + Ω̃−1

∫
K(z, t)A(t)dt (2.18)

where

h(z) = Ω̃−1D(z)
′
, andK(z, t) =

∫
p(w)

1− p(w)
ε2fW |Z(w|z)fZ|W (t|w)dw for ∀z, t.

Notice that (2.18) is a Fredholm integral equation of the second kind, see

e.g. Zemyan (2012). The following lemma applies the Fredholm Theorem and

presents the optimal instruments explicitly.

Lemma 4 (Analytical). Suppose that the assumptions in Theorem 5 hold with

the adjusted conditional homoskedasticity, then we have

A∗(z) = h(z) + Ω̃−1

∫
R(z, t; Ω̃−1)h(t)dt (2.19)

The resolvent kernel

R(z, t; Ω̃−1) =
∞∑
m=1

Ω̃1−mKm(z, t)
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where K1(z, t) = K(z, t), and

Km(z, t) =

∫
Q(sm)fW |Z(s1|z)fZ|W (t|sm)

m−1∏
i=1

Q(si)E
[
fW |Z(si+1|Z)|W = si

]
dsm

when m ≥ 2, with Q(si) = p(si)
1−p(si)ε

2.

Proof. See Appendix B.0.3.

Lemma 5 (Approximation). Suppose that all the assumptions in Lemma 4

hold. In addition, for a large N , K(z, t) can be approximated by
∑N

i=1 ai(z)bi(t),

where each function ai(z) and bi(t) is continuous and the sets {ai(z)}, {bi(t)}

are linearly independent, then the optimal instruments

A∗(z) = h(z) +
N∑
i=1

ciai(z) (2.20)

where ci = Ω̃−1
∫
bi(t)A(t)dt.

2.5 Monte Carlo Experiments

In this section, I present the small sample behavior of the Pen-Gen-IV

estimator. I consider three cases of missing many instruments. I compare the

performance of the new estimator to other Lasso-type of estimators as well as

to the Gen-IV estimator developed in Chapter 1.

2.5.1 Data Generating Process (DGP) with Many Missing Instru-
ments

In this design, the simulations are based on an IV model with many

missing instruments. In particular, the number of instruments can exceed the

58



sample size.

Yi = α0Xi + εi

Xi = Z
′

iΓ + υi

Di = 1(sin(%0Yi + %1Xi) + ui ≤ p)

(εi, υi) ∼ N

(
0,

(
1 ρευ
ρευ 1

))
Zi = (Zi1, ..., Zi100)

′
∼ N(0,ΣZ)

ui ∼ Unif [0, 1]

where α0 = 1 is the parameter of interest. In all the simulations, %0 = −1,

%1 = 1, ρευ = 0.6. The variance-covariance matrix3 ΣZ is specified as E(Z2
ih) =

1, and Corr(Zih, Zij) = 0.5|j−h|, for ∀h, j ∈ {1, 2, ..., 100}, j 6= h.

I use three different settings for the reduced form coefficients, Γ. I

follow Belloni et al. (2012) to name the three settings “exponential”, “Cut5”

and “Cut20”. In the first exponential design, Γ = γ1(1, 0.82, ..., 0.899)
′
, in

which the coefficients on instrument decreases exponentially. In the Cut5 and

Cut20 designs, Γ = γ1(ιs,0n−s)
′
, where ιs is a 1 × s vector of ones and 0n−s

is a 1 × (n − s) vector of zeros, for s = 5 and s = 20, respectively. All these

three designs satisfy the Sparsity condition. Experiments are conducted with

the specifications for

n ∈ {100, 250}, p ∈ {0.25, 0.5}, γ1 ∈ {1, 0.3}

3Other variance-covariance structures are also considered. The simulation results are
qualitatively similar, thus omitted. See Appendix C for reports on a polynomial-type in-
struments set, in which Z1h ∼ N(0, 1), and Zih = Zhi1, for h ∈ {2, 3, ...100}.

59



similar to the single missing instrument case.

2.5.2 Results

Table 2.1 compares performance of three estimators. The Full data

Lasso and Complete Case Lasso both utilize methods in Belloni et al. (2012)

for selecting among instruments. This table reveals that the Pen-Gen-IV es-

timator has significant smaller bias than Complete Case Lasso in most of the

cases. When the instrument set is relatively strong γ1 = 1, the summary

statistics of Pen-Gen-IV are very similar to Full data Lasso.

Finally, I conduct a comparison between the two estimators developed

in this paper in Table 2.2. The Gen-IV (Full) uses the full instrument set and

forms a generated instrument set with 100 IVs. In contrast, Gen-IV (Single)

adopts the first full data instrument Zi1; Gen-IV(5) adopts (Zi1, ..., Zi5)
′
; Gen-

IV(5)-mis uses (Zi16, ..., Zi20)
′
. Note that in Cut5 design, (Zi1, ..., Zi5)

′
is the

true instrument set. And Gen-IV(5) is based on a correct specification on

instruments. It is not surprising that Gen-IV(5) outperforms other estimators,

though Pen-Gen-IV is still the second best. Similar fashion is found about

Gen-IV (5) in Exponential and Cut20. This is because in these two cases,

the first five full data instruments are still the most relevant ones. In the

remaining cases, Pen-Gen-IV estimator is superior to the others, which is

evidence that the shrinkage-based methods have good performance in selecting

among generated instruments.
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Table 2.1: Summary Statistics for Many Missing instruments

Exponential S = 5 S = 20
MB MAD RMSE MB MAD RMSE MB MAD RMSE

Sample A: n=100, p = 0.25,γ1 = 1
Full data Lasso 0.0105 0.0265 0.0380 0.0015 0.0186 0.0282 0.0017 0.0087 0.0139
Complete Case Lasso 0.0285 0.0381 0.0557 0.0115 0.0256 0.0391 0.0021 0.0145 0.0220
Pen-Gen-IV 0.0177 0.0275 0.0442 0.0076 0.0223 0.0325 0.0052 0.0097 0.0152

Sample B: n=100, p = 0.25,γ1 = 0.3
Full data Lasso 0.0783 0.0892 0.3373 0.0389 0.0599 0.0996 0.0303 0.0354 0.0522
Complete Case Lasso 0.4260 0.4260 1.1891 0.2516 0.2516 0.2984 0.0870 0.0870 0.0953
Pen-Gen-IV 0.3859 0.3859 0.4544 0.2570 0.2570 0.2832 0.0827 0.0827 0.1205

Sample C: n=100, p = 0.5,γ1 = 1
Full data Lasso 0.0192 0.0222 0.0319 0.0175 0.0227 0.0268 0.0055 0.0122 0.0138
Complete Case Lasso 0.0673 0.0673 0.0914 0.0329 0.0329 0.0697 0.0087 0.0120 0.0182
Pen-Gen-IV 0.0513 0.0513 0.0529 0.0182 0.0265 0.0346 0.0121 0.0153 0.0191

Sample D: n=100, p = 0.5,γ1 = 0.3
Full data Lasso 0.1728 0.1952 0.2412 0.1489 0.1489 0.1511 0.0644 0.0645 0.0739
Complete Case Lasso 0.4989 0.4989 0.8074 0.4142 0.4145 0.3906 0.1430 0.2038 0.3340
Pen-Gen-IV 0.3093 0.4394 0.4469 0.3778 0.3778 0.3914 0.1305 0.1305 0.1353

Sample E: n=250, p = 0.25,γ1 = 1
Full data Lasso 0.0105 0.0192 0.0258 0.0018 0.0127 0.0186 -0.0014 0.0063 0.0084
Complete Case Lasso 0.0413 0.0413 0.0522 0.0265 0.0265 0.0346 0.0041 0.0073 0.0156
Pen-Gen-IV 0.0159 0.0226 0.0337 0.0084 0.0159 0.0224 0.0025 0.0062 0.0155

Sample F: n=250, p = 0.25,γ1 = 0.3
Full data Lasso 0.0416 0.0841 0.1017 0.0222 0.0571 0.0685 0.0088 0.0147 0.0334
Complete Case Lasso 0.4009 0.4009 0.4024 0.2277 0.2277 0.2415 0.0548 0.0548 0.0726
Pen-Gen-IV 0.2623 0.3564 0.9499 0.1074 0.1074 0.1301 0.0598 0.0598 0.0769

Sample G: n=250, p = 0.5,γ1 = 1
Full data Lasso -0.0048 0.0128 0.0129 -0.0072 0.0119 0.0129 -0.0000 0.0038 0.0060
Complete Case Lasso 0.0595 0.0595 0.0601 0.0293 0.0293 0.0313 0.0115 0.0132 0.0123
Pen-Gen-IV 0.0232 0.0345 0.0398 0.0052 0.0120 0.0145 -0.0006 0.0052 0.0273

Sample H: n=250, p = 0.5,γ1 = 0.3
Full data Lasso 0.0397 0.0581 0.1080 0.0220 0.0318 0.0878 0.0260 0.0260 0.0294
Complete Case Lasso 0.4732 0.4732 0.4937 0.3177 0.3177 0.3003 0.0695 0.0695 0.0784
Pen-Gen-IV 0.3166 0.3166 0.3396 0.1632 0.1632 0.2156 0.0632 0.0632 0.0642

2.6 Conclusion

I provide Lasso-type of procedure for reduced form regression with

many missing instruments. After generating a rich, full data instrument set,

these many generated instruments are used to approximate the infeasible full

data optimal instruments, via a so called “pseudo” approximation.

This chapter states clearly that if the full data instrument satisfies
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Table 2.2: Comparison of Gen-IV and Pen-Gen-IV

Exponential S = 5 S = 20
MB MAD RMSE MB MAD RMSE MB MAD RMSE

Sample A: n=100, p = 0.25,γ1 = 1
Gen-IV (Full) 0.0804 0.0804 0.0842 0.0525 0.0525 0.0563 0.0077 0.0080 0.0124
Gen-IV (Single) -0.0511 0.0609 0.0734 0.0223 0.0633 0.0971 0.0019 0.0420 0.1480
Gen-IV (5) 0.0197 0.0337 0.0403 0.0236 0.0297 0.0331 0.0098 0.0207 0.0339
Gen-IV (5)-mis 0.0979 0.1081 0.3403 0.0972 0.1399 0.1737 0.0177 0.0340 0.0452
Pen-Gen-IV 0.0598 0.0598 0.0628 0.0361 0.0361 0.0406 0.0061 0.0103 0.0193

Sample B: n=100, p = 0.25,γ1 = 0.3
Gen-IV (Full) 0.3700 0.3700 0.3777 0.3068 0.3068 0.3017 0.0915 0.0915 0.1081
Gen-IV (Single) 0.0842 0.2291 0.6007 -0.0366 0.2905 0.5472 0.0230 0.1980 0.5209
Gen-IV (5) 0.1329 0.1471 0.2220 0.0772 0.1243 0.1451 -0.0408 0.0541 0.0845
Gen-IV (5)-mis 0.5638 0.5841 0.6290 0.4360 0.5452 0.5837 0.0623 0.0786 0.1095
Pen-Gen-IV 0.3683 0.3959 0.4239 0.2706 0.2706 0.2882 0.0860 0.0860 0.0920

Sample C: n=100, p = 0.5,γ1 = 1
Gen-IV (Full) 0.0530 0.0530 0.0708 0.0295 0.0295 0.0450 0.0081 0.0127 0.0165
Gen-IV (Single) 0.0421 0.0847 0.1393 0.0229 0.1095 0.1508 0.0387 0.0903 0.1915
Gen-IV (5) 0.0101 0.0280 0.0488 -0.0048 0.0255 0.0357 0.0202 0.0460 0.0483
Gen-IV (5)-mis 0.0226 0.0982 0.2452 0.0746 0.1152 0.1569 -0.0019 0.0218 0.0276
Pen-Gen-IV 0.0364 0.0416 0.0611 0.0185 0.0261 0.0424 0.0068 0.0130 0.0170

Sample D: n=250, p = 0.5,γ1 = 1
Gen-IV (Full) 0.0599 0.0599 0.0684 0.0395 0.0395 0.0444 0.0058 0.0081 0.0112
Gen-IV (Single) 0.0017 0.0324 0.0556 0.0128 0.0376 0.0540 -0.0288 0.0550 0.1837
Gen-IV (5) -0.0011 0.0256 0.0328 0.0009 0.0239 0.0263 0.0005 0.0172 0.0296
Gen-IV (5)-mis 0.1610 0.1733 0.3389 0.1293 0.1293 0.2865 -0.0076 0.0152 0.0253
Pen-Gen-IV 0.0230 0.0361 0.0391 0.0024 0.0219 0.0284 0.0010 0.0058 0.0255

Sample E: n=250, p = 0.5,γ1 = 0.3
Gen-IV (Full) 0.3543 0.3543 0.3647 0.2790 0.2790 0.2848 0.0903 0.0903 0.0945
Gen-IV (Single) -0.0101 0.1210 0.3325 -0.0510 0.2175 0.3601 0.0298 0.1345 0.5228
Gen-IV (5) 0.1075 0.1215 0.1768 0.0565 0.0869 0.1077 0.0360 0.0699 0.1049
Gen-IV (mis) 0.6230 0.6230 0.6886 0.5866 0.5866 0.6387 0.0394 0.0777 0.1098
Pen-Gen-IV 0.3267 0.3267 0.4407 0.1244 0.1372 0.1843 0.0594 0.0593 0.0696

the more restricted conditional independence assumption, a more efficient IV

estimation with generated instruments is available. Namely, we can then adopt

a flexible generated instrument set, the number of instruments in which can be

very large, and can be increasing with the sample size. The shrinkage-based

methods I develop can select among (very) many generated instruments to

avoid overfitting, and at the same time controlling for the “generated bias”.
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Chapter 3

Estimation of Heterogeneous Individual

Treatment Effects with Endogenous

Treatments

3.1 Introduction

Nonseparable triangular models have been studied extensively in the re-

cent econometric literature, thereby allowing researchers to understand the na-

ture of instrumental variables in the presence of endogeneity. See e.g. Chesher

(2003, 2005) and Imbens and Newey (2009). One appealing feature of non-

separable models is that the non-additive error in the causal relationship im-

plies that the ceteris paribus effects of covariates on the outcome variable

“vary across individuals that, measured by covariates, are identical,” Chesher

(2003). Such heterogeneous causal effects are referred as “individual treatment

effects”(ITE) in the literature. See e.g. Rubin (1974), Heckman et al. (1997)

and Heckman and Vytlacil (2005).

Estimating ITE and its distribution is crucial for evaluating a social

program, especially in view of the political issues associated with it (see Heck-

man et al., 1997). From an individual’s perspective, however, her ITE is more

helpful for evaluating her treatment participation decision than an average

effect. While the “average person” may benefit from a particular treatment,
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some individuals may experience little benefit or even some loss from partici-

pating, in which case alternative treatment options may be preferred. Indeed,

while the individual treatment effects of 401(k) retirement programs on per-

sonal savings are mostly positive in our sample, our empirical analysis indicates

that there are individuals who experience negative benefits from participating

to 401(k) retirement programs.

In this paper, we consider a triangular model with a binary endogenous

regressor. Because of the self–selection issue, individuals who are treated are

different from those who choose not to be treated. We address this issue with

a binary valued instrumental variable (see e.g. Imbens and Angrist, 1994).

Limited variations of instrumental variables have been emphasized in the re-

cent treatment effect literature. Moreover, natural experiments (e.g. Angrist

and Evans, 1998; Post et al., 2008) and eligibility for treatment participa-

tion (e.g. Angrist, 1990; Abadie, 2003) provide commonly used binary–valued

instrumental variables.

The distribution of heterogeneous treatment effects has also been stud-

ied using quantiles. For instance, Abadie et al. (2002) and Froelich and Melly

(2013) estimate the quantile treatment effects (QTE) for the complier group,

a subpopulation defined by Imbens and Angrist (1994) under binary–valued

instruments. For the population QTE, Chernozhukov and Hansen (2004) pro-

pose a GMM–type approach in a linear quantile specification. Subsequently,

Chernozhukov and Hansen (2006, 2008) generalize Chernozhukov and Hansen

(2004)’s estimation procedure by using quantile regression methods. In a fully
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nonparametric setting, Horowitz and Lee (2007) and Gagliardini and Scaillet

(2012) modify Chernozhukov and Hansen (2004)’s moment conditions using

the Tikhonov regularization to deal with the ill–posed inverse problem for

deriving asymptotic properties of their estimators.

Our approach is novel and simple to implement. Instead of solving the

moment conditions in Chernozhukov and Hansen (2005), we use the quantile

invariance condition to match the realized outcome with its counterfactual

outcome for every observational unit in the sample through a so-called coun-

terfactual mapping. Specifically, our approach recovers the ITE for every in-

dividual in the sample and does not suffer from the ill–posed inverse problem

associated with inverting a non–linear functional. In particular, we show that

the ITEs are estimated uniformly at the parametric rate. Given the recovered

ITEs, we estimate the density by kernel methods and establish its asymptotic

properties. Though it might be possible to obtain a density estimate from

QTE estimates, this would involve a more complicated two–stage procedure

and a delicate trimming scheme (see e.g. Marmer and Shneyerov, 2012).

We apply our approach to study the effects of 401(k) retirement pro-

grams on personal savings. Introduced in the early 1980s, the 401(k) retire-

ment programs aim to increase savings for retirement. Endogeneity arises

as individuals with a higher preference for savings are more likely to partici-

pate and also have higher savings than those with lower preferences (see, e.g.,

Poterba et al., 1996). Following e.g. Abadie (2003) and Chernozhukov and

Hansen (2004), we use 401(k) eligibility as an instrumental variable for 401(k)
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participation. We estimate the ITEs for every individual in the sample as well

as its density. Our results show that there exists a small but statistically signif-

icant proportion (about 8.77%) of individuals who experience negative effects,

although the majority of ITEs is positive. It has been argued in the litera-

ture that some individuals could suffer from the program due to the Crowding

Out Effect. We offer a complementary explanation as individuals with nega-

tive ITEs are more likely to be younger, single, from smaller and lower income

families but with higher family net financial assets than the rest of the sample.

The structure of the paper is organized as follows. In Section 2, we

introduce the triangular model and discuss its identification and estimation.

Section 3 provides Monte Carlo experiments to illustrate the performance of

our proposed estimator. Section 4 derives its asymptotic properties. Section

5 applies our estimation method to assess the effects of 401(k) retirement pro-

grams on personal savings. Proofs of our results are collected in the Appendix.

3.2 Model, Identification and Estimation

3.2.1 The triangular model

Following Chesher (2005), we consider a nonseparable triangular model

with an outcome equation and a selection equation:

Y = h(D,X, ε), (3.1)

D = 1{ν ≤ m(X,Z)}. (3.2)
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Here Y ∈ R is the outcome variable, D ∈ {0, 1} is an endogenous dummy

that indicates the treatment status, X ∈ SX ⊆ Rk is a vector of observed

covariates (not necessary exogenous) and Z ∈ {0, 1} is a binary instrumental

variable for D, i.e., Z⊥(ε, ν)|X. The two latent random variables ε and ν

are scalar valued disturbances. Moreover, the function h and m are unknown

structural relationships. In particular, h is continuous and strictly increasing

in ε.

The key feature in the above triangular model is the nonseparability of

h in the error term ε. With a nonseparable h, the ceteris paribus effects on

the outcome variable from covariates “vary across individuals that, measured

by covariates, are identical,” Chesher (2003). In the treatment effect litera-

ture, such heterogeneous causal effects are referred as “individual treatment

effects”(ITE), i.e.,

∆ ≡ h(1, X, ε)− h(0, X, ε).

See e.g. Rubin (1974) and Heckman et al. (1997). After controlling for X, the

ITE ∆ is still a random object since it depends on the latent variable ε. Our in-

terest is to recover the ITE for each individual from her observables (Y,D,X),

and to estimate the probability density function of ITE in the population. In

particular, a decision-maker can use the former to evaluate an individual’s par-

ticipation choice, while the latter characterizes the distribution of treatment

effects, which has been central in the program evaluation literature (see e.g.

Heckman et al., 1997).
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We now provide two examples to illustrate the nonseparability of the

structural relationship h.

Example 2.1 (Additive error with generalized heteroscedasticity): Let

Y = h∗(D,X) + σ∗(D,X) · ε,

where h∗ is a real-valued function, σ∗ is a positive function that captures

the heteroscedasticity in the disturbance, and ε ∈ R has zero mean and unit

variance, unconditionally. This model is a generalization of a nonparametric

regression model with heteroskedastic errors studied by e.g. Andrews (1991).

The difference is that the heteroscedasticity term σ∗ depends on the endoge-

nous binary variable D. In particular, when σ∗ is a constant, the above speci-

fication becomes an additive nonparametric regression with some endogenous

regressor as studied by e.g. Newey and Powell (2003) and Darolles et al. (2011).

Example 2.2 (Semiparametric transformation model): Consider

Γ(Y ) = X ′β + γD + ε,

where (β′, γ)′ ∈ Rk+1 and Γ : R → R is an unknown monotone function.

See Horowitz (1996) when (X,D) is exogenous. A parametric example of the

monotone function Γ is the Box–Cox transformation when Y is positive:

Γ(y) =

{
yλ−1
λ
, if λ 6= 0;

log y, if λ = 0,

where λ ∈ R is a model parameter. Such a transformation is useful when

the dependent variable has a limited support. Indeed, the transformed depen-

dent variable can have an unlimited support thereby ensuring a linear model
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specification with its usual assumptions. Various extensions of the Box–Cox

transformation have been developed in the literature (see e.g. Sakia, 1992),

where monotonicity is a common feature in all these transformations. Re-

cently, Chiappori et al. (2015) have studied the case where some variables

such as D is endogenous.

3.2.2 Identification

Vuong and Xu (forthcoming) establish identification of the triangular

model (1)-(2) in a constructive way and show that it only requires binary

variations of the instrumental variable Z. Given the monotonicity of h, the

ITE can be written as a function of the observables (Y,D,X):

∆ = D × (Y − φ0X(Y )) + (1−D)× (φ1X(Y )− Y ), (3.3)

where φdX(·) for d = 0, 1 are defined as the counterfactual mappings that

depend on covariates X and the value of d, namely,1

φ0X(y) = h(0, X, h−1(1, X, y)), ∀ y ∈ Sh(1,X,ε)|X ,

φ1X(y) = h(1, X, h−1(0, X, y)), ∀ y ∈ Sh(0,X,ε)|X .

By definition, φdX are monotone functions mapping Sh(d′,X,ε)|X onto Sh(d,X,ε)|X ,

where d′ = 1− d, and we have φ0X = φ−1
1X .

To obtain the ITE for an individual with (Y,D,X) = (y, d, x) ∈ SY DX ,

it suffices to identify the counterfactual mapping φd′x(y), where d′ = 1 − d.

1The function h−1(d, x, ·) denotes the inverse of h(d, x, ·). Hereafter, for a generic random
variable W with distribution FW , we denote its support by SW , defined as the closure of
the open set S o

W ≡ {w : FW (w) is strictly increasing in a neighborhood of w}.
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Let p(x, z) = Pr(D = 1|X = x, Z = z) be the propensity score function. For

expositional simplicity, suppose SXZ = SX × {0, 1} and p(x, 0) 6= p(x, 1) for

all x ∈ SX . W.l.o.g., throughout we assume p(x, 0) < p(x, 1). Moreover, for

any y ∈ R and d = 0, 1, let

Cdx(y) ≡ Pr(Y ≤ y;D = d|X = x, Z = 0)− Pr(Y ≤ y;D = d|X = x, Z = 1)

Pr(D = d|X = x, Z = 0)− Pr(D = d|X = x, Z = 1)
.

(3.4)

Imbens and Rubin (1997) show that Cdx(·) is the conditional distribution func-

tion of h(d,X, ε) given the complier group, namely, {X = x,m(x, 0) < ν ≤

m(x, 1)}. Let Cdx be the support of Cdx(·). It is straightforward to see that

Cdx ⊆ Sh(d,X,ε)|X=x. Next, we present the identification of φdx established in

Vuong and Xu (forthcoming).

Theorem 6. (Vuong and Xu, forthcoming) In the triangular model (1)-(2),

suppose (i) h is continuous and strictly increasing in ε; (ii) Z is conditionally

independent of (ε, ν) given X, i.e., Z⊥(ε, ν)|X with p(x, 0) 6= p(x, 1) for all

x ∈ SX ; (iii) conditional on X, the joint c.d.f. Fεν|X is continuous; (iv) Cdx =

Sh(d,X,ε)|X=x for d = 0, 1 and x ∈ SX . Then, Sh(d,X,ε)|X=x = SY |D=d,X=x, and

the counterfactual mapping φdx is identified by

φdx(y) = C−1
dx

(
Cd′x(y)

)
, ∀ y ∈ SY |D=d′,X=x

where Cdx(·) is continuous on R and strictly increasing on C ◦dx ≡ S ◦
Y |D=d,X=x

for d = 0, 1, and d′ = 1− d.

In Theorem 6, condition (i) – (iii) are standard in the triangular model

literature. The support condition (iv) requires that, conditional on X = x,
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the subpopulation m(x, 0) < ν ≤ m(x, 1), i.e., the complier group introduced

in Imbens and Angrist (1994), contains the same information on individual

treatment effects as the whole population. It is weak as it is satisfied as soon

as (ε, ν) has a rectangular support given X. See Vuong and Xu (forthcoming).

It is testable since Cdx is identified by (3.4). When (iv) fails to hold, the coun-

terfactual mappings are partially identified on intervals. It is worth pointing

our that (iv) is needed for identification of ITE even if one assumes the error

term ε was observed in the data.

With φdx identified, we can use (3.3) to construct the counterfactual

outcome for any individual in the population from her observables (Y,D,X).

Moreover, the probability distribution of ITE is also identified under the con-

ditions in Theorem 6.

3.2.3 Estimation

We now develop nonparametric estimators of the counterfactual map-

pings φdx for d = 0, 1 and the probability density function f∆ of ITE. On one

hand, φdx can be used to construct the ITE for any individual in the pop-

ulation from her observables (Y,D,X). On the other hand, the probability

density function is a convenient way to characterize the distribution of the

ITE when the ITE is continuously distributed.2 Our estimation approach is

2Under Condition (i)–(iii), the ITE can have a mass point when φdx has slope one in
some intervals contained in its support, i.e., φ1x(y) = g(x)+y on some [a, b] ⊆ Sh(0,x,ε)|X=x.
Then, conditional on X = x, ITEs take the same value g(x) for all ε ∈ {e : h(0, x, e) ∈ [a, b]}.
Hence, ITE has a mass point at g(x). Such a case, however, can be detected given the
identification of φx.
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fully nonparametric. To present the basic ideas, we assume that the covariates

X are discrete random variables with a finite support. Our analysis can be

extended using e.g. the kernel method to the case where X are continuous at

the cost of exposition.

Let {(Yi, Di, X
′
i, Zi)

′ : i = 1, · · · , n} be an i.i.d. sample generated from

the underlying structure of the triangular model. Our proposed estimation

procedure takes two steps: First, for a given value of (y, d, x) ∈ SY DX , we

estimate the counterfactual mapping φd′x(y) by a simple estimator that mini-

mizes a convex population objective function. In the second step, we construct

a pseudo sample of the counterfactual outcomes for all individuals in the sam-

ple and then nonparametrically estimate the density function f∆ using the

kernel method. We introduce some notation. Fix x ∈ SX . For simplicity,

we suppress the dependence on X = x in the following discussion. For each

(y0, y1) ∈ R2 and z ∈ {0, 1}, let

ρ0(y0, y1; z) = E
[
|Y − y0|(1−D)

∣∣X = x, Z = z
]

− E
[
sign(Y − y1) ·D

∣∣X = x, Z = z
]
· y0

ρ1(y0, y1; z) = E
[
|Y − y1|D

∣∣X = x, Z = z
]

− E
[
sign(Y − y0) · (1−D)

∣∣X = x, Z = z
]
· y1.

where sign(u) ≡ 2× 1(u > 0)− 1.

For d = 0, 1, let

Qd(y0, y1) = (−1)d ×
[
ρd(y0, y1; 0)− ρd(y0, y1; 1)

]
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be the population objective function. Such an objective function is motivated

by the quantile regression method in Koenker and Bassett (1978). To see

this, note that the quantile invariant condition in Chernozhukov and Hansen

(2005) implies that for (y0, y1) ∈ R2 satisfying y1 = φ1x(y0) (equivalently,

y0 = φ0x(y1)), we have

Pr(Y ≤ y1;D = 1|X = x, Z = 0) + Pr(Y ≤ y0;D = 0|X = x, Z = 0)

= Pr(Y ≤ y1;D = 1|X = x, Z = 1) + Pr(Y ≤ y0;D = 0|X = x, Z = 1).
(3.5)

In the next lemma, we show that (3.5) is indeed the first–order condition

of the population objective function Q0(·, y1), which is continuously differen-

tiable and weakly convex on R. We also show that Q0(·, y1) is strictly con-

vex on S ◦
Y |D=0,X=x and minimized uniquely on R at y0 = φ0x(y1) whenever

y1 ∈ S ◦
Y |D=1,X=x. A similar argument also holds for the population objective

function Q1(y0, ·).

Lemma 6. Suppose the conditions in Theorem 6 hold. Then, for d = 0, 1

and yd ∈ R, the function Qd′(y0, y1) is continuously differentiable and weakly

convex in yd′ ∈ R where d′ = 1 − d. Moreover, if yd ∈ S ◦
Y |D=d,X=x, then

Qd′(y0, y1) is strictly convex in yd′ ∈ S ◦
Y |D=d′,X=x, and uniquely minimized on

R at φd′x(yd).

Lemma 6 provides a basis for our nonparametric estimation of the counterfac-

tual mappings φ0x(·) and φ1x(·). It is worth pointing out that each minimiza-

tion is a one–dimensional optimization problem.
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We are now ready to define our estimator. For expositional simplicity,

let SY |D=d,X=x be a compact interval [y
dx
, ydx]. For d = 0, 1, (y0, y1) ∈ R2 and

z ∈ {0, 1}, let d′ = 1− d and

ρ̂d(y0, y1; z) =

∑n
j=1 |Yj − yd| × 1(Dj = d;Xj = x;Zj = z)∑n

j=1 1(Xj = x;Zj = z)

−
∑n

j=1 sign(Yj − yd′)× 1(Dj = d′;Xj = x;Zj = z)∑n
j=1 1(Xj = x;Zj = z)

× yd.

Moreover, let

φ̂d′x(yd) = arg min
yd′∈[y

d′x,yd′x]

Q̂d′(y0, y1), ∀ yd ∈ SY |D=d,X=x.

where Q̂d′(y0, y1) = (−1)d
′ ×
[
ρ̂d′(y0, y1; 1) − ρ̂d′(y0, y1; 0)

]
. For simplicity, we

assume the support [y
d′x
, yd′x] is known. See e.g. Guerre et al. (2000) for

nonparametric estimation of the support [y
d′x
, yd′x] if it is unknown.

Given the sample {(Yi, Di, X
′
i, Zi)

′ : i = 1, · · · , n}, we can construct the

counterfactual outcome for every individual in the sample from her observables

(Yi, Di, Xi). Namely,{
ĥ(0, Xi, εi) = φ̂0Xi(Yi), if Di = 1;

ĥ(1, Xi, εi) = φ̂1Xi(Yi), if Di = 0.

Thus, we can estimate the ITE by (3.3), i.e., for i = 1, · · · , n,

∆̂i =

{
Yi − ĥ(0, Xi, εi), if Di = 1;

ĥ(1, Xi, εi)− Yi, if Di = 0.
(3.6)

In particular, we can construct a pseudo sample {∆̂i : i = 1, · · · , n} from the

observed sample {(Yi, Di, X
′
i, Zi)

′ : i = 1, · · · , n}.
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It is worth pointing out that the first–stage estimation is computa-

tionally simple and does not suffer from an ill–posed inverse problem (see e.g.

Horowitz and Lee, 2007). In particular, to solve the one–dimensional optimiza-

tion problem for each individual’s counterfactual outcome, the practitioner can

use a grid search algorithm that is simple but highly robust. As is shown be-

low, the first–stage estimation bias φ̂dx(·)− φdx(·) uniformly converges to zero

at the parametric rate of
√
n, given that all the covariates X are discrete

variables.3

Next, we follow Guerre et al. (2000) to estimate the density function

f∆ by the kernel method. To clarify ideas, let [δ, δ] be a subinterval of the

ITE’s support. Then, we define the density estimator:

f̂∆(δ) =
1

nh

n∑
i=1

K

(
∆̂i − δ
h

)
, ∀δ ∈ [δ + h, δ − h],

where h is a bandwidth and K is a kernel with a compact support. Because

the kernel estimator f̂∆ suffers from boundary issues, then we restrict the

estimation of f∆ to the inner subset [δ + h, δ − h].

3.3 Monte Carlo Experiments

To illustrate the finite sample performance of the proposed estimator,

we conduct a Monte Carlo study. For simplicity, we do not include other

covariates X in the specification. Following the conditions in Theorem 6, the

3If Xi contains continuous random variables, then we need to smooth over Xi as otherwise
there may not be enough observations for which Xj = Xi.
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data generating process is given by

Y = h(D, ε), D = 1(γ0 + γ1 · Z + ν ≥ 0),

where h(d, ε) = (ε + 1)2+d for d = 0, 1,4 and (ε, ν) conforms to a joint dis-

tribution with uniform marginal distributions on [0, 1] and Gaussian copula

with correlation coefficient 0.3.5 Because h(d, ·) is continuous and strictly in-

creasing in ε, Condition (i) in Theorem 6 is satisfied. We set γ0 = −0.7 and

γ1 = 0.1, 0.2 and 0.3, respectively. The value of γ1 determines the size of the

compliers group, i.e., −γ0− γ1 ≤ ν < −γ0. Hence, the larger γ1, the more “ef-

fective” the instrumental variable Z. In our setting, ∆ = ε(ε+1)2 is distributed

on [0, 4] with mean 1.417 and median 1.125 in the population. Moreover, we

set Z = 1{ξ ≥ 0} where ξ ∼ N(0, 1) is independent of (ε, ν). Conditions

(ii)–(iv) in Theorem 6 are satisfied. In particular, condition (iv) holds since

Fεν|X has a rectangular support as noted in Vuong and Xu (forthcoming).

Table 3.1 reports the finite sample performance of our ITE estimates

in terms of the Root Mean Squared Error (RMSE). Specifically, for each size

n = 1000, 2000, 4000 we draw {(εi, νi, ξi) : i = 1, · · · , n} to obtain a sample

(Yi, Di, Zi) of size n. We then compute the true ITE ∆i by h(1, εi)−h(0, εi) and

its estimate ∆̂i by (3.6) for each individual (Yi, Di, Zi). To obtain the RMSE for

each such individual’s ITE, we draw another 200 samples {(Y (r)
i , D

(r)
i , Z

(r)
i ) :

4We also consider other functional forms for h(d, ·), e.g., h(0, ε) = ln(ε+ 1) and h(1, ε) =
(ε+ 1)2. The results are qualitatively similar.

5A copula is a multivariate probability distribution of random variables, each of which
is marginally uniformly distributed on [0, 1]. The Gaussian copula is constructed from a
multivariate normal distribution. See e.g. Nelsen (2007).
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i = 1, · · · , n} from {(ε(r)i , ν
(r)
i , ξ

(r)
i ) : i = 1, · · · , n} for r = 1, · · · , 2000. These

are used to repeatedly estimate the ITEs for the individuals in the original

sample by ∆̂
(r)
i = [Yi − φ̂(r)

0 (Yi)]Di + [φ̂
(r)
1 (Yi) − Yi](1 − Di) where φ̂

(r)
d is the

estimate of φd using the r–th new drawn sample. Thus, we obtain the RMSE of

∆̂i by
√

1
200

∑200
r=1

[
∆̂

(r)
i −∆i

]2
. For comparison, we also provide the RMSE of

the LATE over the 200 replications/samples within curly brackets as proposed

by Imbens and Angrist (1994).6 By comparing their RMSEs from Table 3.1,

a surprising result is that estimating treatment effects at individual level (i.e.

ITE) is not more difficult than to estimate treatment effects at aggregated

level (e.g. LATE) for every sample size. As sample size increases, both the

bias and standard error decrease at the expected
√
n–rate. The estimation

error (i.e. its size and standard deviation) depends on the sample size n and

the compliers group’s proportion γ1. Specifically in the different designs, the

finite sample performance of the ITE estimator depends on the value of n · γ2
1 .

For example, the performance of our estimator under (n, γ1) = (1000, 0.2) is

similar to that under (n, γ1) = (4000, 0.1). This observation is consistent with

our asymptotic properties established in the next section.

Figures 3.1 and 3.2 illustrate the performance of the ITE estimates for

the n individuals with D = 0 and D = 1, respectively. In particular, we

6For our Monte Carlo setting, the LATE reduces to
[E(Y |Z = 1)− E(Y |Z = 0)] / [p(1)− p(0)] = 1.5351, 1.4912, 1.4449 for γ1 = 0.1, 0.2, 0.3,
respectively. Moreover, the LATE is estimated by

[
Y (1)− Y (0)

]
/ [p̂(1)− p̂(0)] for a given

sample, where Y (z) and p̂(z) are the sample means of Y and D given Z = z, respectively,
for z = 0, 1. In particular, unlike ITE and its estimate, LATE and its estimate do not vary
across individuals by definition.
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Table 3.1: Finite sample performance of ITE

Sample size γ1 = 0.1 0.2 0.3

Ave. RMSE 1.2918 0.6076 0.4071
1,000 Std. RMSE (0.5279) (0.2912) (0.2231)

LATE RMSE {1.0448} {0.5159} {0.3619}
Ave. RMSE 0.9343 0.4381 0.2670

2,000 Std. RMSE (0.4289) (0.2122) (0.1511)
LATE RMSE {0.6639} {0.3759} {0.2532}
Ave. RMSE 0.6059 0.3245 0.18313

4,000 Std. RMSE (0.2839) (0.1455) (0.0985)
LATE RMSE {0.5057} {0.2220} {0.1790}

plot the ITE estimates versus the true ITE. The green solid line is the mean

and the dotted lines give the 90% confidence interval computed from the 200

repetitions. The grey solid line is the 45–degree diagonal. The ITE estimates

for the group D = 1 behave better than the estimates for D = 0. This

observation is also consistent with our asymptotic results in the next section:

The performance of ∆̂ of an individual with D = d depends on the density

function of h(d′, x, ε), evaluated at her quantile in the distribution, conditional

on the compliers group (and X = x as well). In our setting, the conditional

density of h(0, ε) given the compliers group is larger uniformly at all quantiles

than that of h(1, ε), which leads to a more accurate estimator ∆̂ for the group

D = 1. For comparison, we also plot the true value of LATE with the 90%

confidence interval of its estimate in grey color columns. Overall, estimates of

ITE and LATE behave similarly. Note that for any individual in the group

D = 1, our estimator of the ITE behaves better than LATE.

For the density estimator, we choose the bandwidth h = (lnn/n)1/7
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Figure 3.1: True and estimated ITE for D = 0

and the pdf of the standard normal as the Kernel function. Figure 3.3 shows

the performance of our density estimator f̂∆. The black dotted line is the true

density of the ITE and the green one is the average of our density estimates

f̂∆ over the 200 repetitions. We also provide the 5% and 95% percentiles of

estimated densities using blue dotted lines, which gives the (pointwise) 90%

confidence band. Figure 3.3 shows again the importance of the size of the

complier group through nγ2
1 .
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Figure 3.2: True and estimated ITE for D = 1

3.4 Asymptotic Properties

We now establish the asymptotic properties of our proposed nonpara-

metric estimators. We first show the uniform
√
n–consistency of the counter-

factual mapping estimator φ̂dx, and we give its limiting distribution. We then

establish the asymptotic properties of our density estimator f̂∆ taking into

account the first-step estimation of ∆.

For estimation, we strengthen Conditions (i) and (iii) in Theorem 6,
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Figure 3.3: Estimated density of ITE

respectively, to

Condition (i)’: h is continuously differentiable and strictly increasing in ε.

Condition (iii)’: The conditional distribution of (ε, ν) given X is absolutely

continuous with respect to Lebesgue measure. Moreover, the conditional den-

sity function fε|X(·|x) is continuous for all x ∈ SX .

Under Conditions (i)’, (ii) and (iii)’, the conditional distribution FY |DXZ is

absolutely continuous with respect to Lebesgue measure and its density fY |DXZ
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is also continuous. Therefore, the complier distribution Cdx(·) defined by (3.4)

is also absolutely continuous with respect to Lebesgue measure for d = 0, 1.

Let cdx(·) be its density.

To simplify the exposition, we introduce the following assumption.

Assumption 1: For every (d, x) ∈ SD,X , (i) SY |D=d,X=x = [y
dx
, ydx], where

y
dx

and ydx are finite, and (ii) infy∈Cdx cdx(y) > 0. Moreover, (iii) X is a vector

of discrete random variables with a finite support.

When SY |D=d;X=x has an unbounded support, we can always apply a known

strictly increasing bounded continuous transformation to Y to satisfy Assump-

tion 1-(i). Assumption 1-(ii) requires that the density cdx be bounded away

from zero on its support. It can be relaxed at the cost of technical compli-

cations due to e.g. some trimming. As indicated earlier, Assumption 1-(iii)

can be relaxed to allowed for continuous variables in X by introducing some

smoothing methods such as kernel ones.

The next theorem establishes the uniform consistency of the counter-

factual mapping estimator φ̂dx(·) on its full support. It also gives its
√
n–

asymptotic distribution. For d = 0, 1 and y ∈ Cdx, let c∗dx(y) = cdx(y)·[p(x, 1)−

p(x, 0)] be the scale–adjusted complier density and Rdx(y) = Pr(h(d,X, ε) ≤

y|X = x) be the probability rank of y in the distribution of h(d, x, ε) given

X = x. Under the monotonicity of h and the definition of φd′x, we have

Rdx(y) = Pr(Y ≤ y;D = d|X = x) + Pr(Y ≤ φd′x(y);D = d′|X = x)

where d′ = 1− d.
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Theorem 7. Suppose the conditions in Theorem 6, Conditions (i)’, (iii)’ and

Assumption 1 hold. Then, for d = 0, 1 and d′ = 1− d, we have

sup
y∈SY |D=d;X=x

|φ̂d′x(y)− φd′x(y)| = op(1).

Moreover, the empirical process c∗d′x(φd′x(·))×
√
n
(
φ̂d′x(·)− φd′x(·)

)
converges

in distribution to a zero–mean Gaussian process with covariance kernel

Σd′x(y, y
′) =

Rdx(min{y, y′})−Rdx(y)×Rdx(y
′)

Pr(Z = 0|X = x) Pr(Z = 1|X = x)
.

The uniform convergence of φ̂d′x includes the boundaries, which is due to

Assumption 1-(ii). Moreover, letting y = y′ in Σd′x gives the asymptotic

variance of c∗d′x(φd′x(y))×
√
n φ̂d′x(y) as follows:

σ2
d′x(y) ≡ Rdx(y)−R2

dx(y)

Pr(Z = 0|X = x) Pr(Z = 1|X = x)
.

As y approaches its boundaries, the asymptotic variance decreases to zero.

Therefore, we obtain a more accurate estimate of the counterfactual outcome

when it is closer to the boundary points. We also note that the asymptotic

variance of φ̂d′x(y) is inversely proportional to c∗2d′x(φd′x(y)) = c2
d′x(φd′x(y)) ×

[p(x, 1)− p(x, 0)]2, but is independent of the magnitude of ITE.

Theorem 7 is important for several reasons. First, given an arbitrary

triplet (y, d, x), we can provide a
√
n–consistent estimate φ̂d′x(y) of the counter-

factual outcome φd′x(y) whenever y ∈ SY |D=d,X=x and x ∈ SX . Its standard

error is given by

1
√
n× ĉd′x(φ̂d′x(y))[p̂(x, 1)− p̂(x, 0)]

√
R̂dx(y)− R̂2

dx(y)

P̂r(Z = 0|X = x)P̂r(Z = 1|X = x)
.
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where R̂dx(y) and P̂r(Z = z|X = x) are sample frequencies, and

ĉdx(·)× [p̂(x, 1)− p̂(x, 0)] = (−1)df̂Y |DXZ(·|d, x, z) P̂r(D = d|X = x, Z = 0)

− (−1)df̂Y |DXZ(·|d, x, z)P̂r(D = d|X = x, Z = 1), (3.7)

in which f̂Y |DXZ(y|d, x, z) is a kernel density estimator and P̂r(D = d|X =

x, Z = z) are sample frequencies. Equation (3.7) follows from differentiating

(3.4). Second, given the uniform
√
n–consistency of φ̂d′x, it follows that ∆̂i

also uniformly converges to ∆i at the
√
n–rate.

Next, we turn to the asymptotic properties of our density estimator f̂∆.

Assumption 2: (i) On some interval [δ, δ] of S∆, the density function f∆

admits up to P–th continuous bounded derivatives with P ≥ 1. Moreover,

infδ∈[δ,δ] f∆(δ) > 0. (ii) The kernel K(·) is a symmetric P -th order kernel

with support [−1,+1] and twice continuously bounded derivatives.7 (iii) The

bandwidth h ∝ (lnn/n)1/(2P+2).

The first part of Assumption 2-(i) is a high level condition requiring that the

random variable h(1, X, ε) − h(0, X, ε) has a smooth density function condi-

tional on X = x. It is satisfied if h(d, x, ·) for d = 0, 1 and the density of ε

given X areP–th continuously differentiable. The second part of Assumption

2-(i) is standard for kernel estimation. Assumptions (ii) and (iii) relate to the

choice of the kernel function K and bandwidth h, respectively. In particular,

7A P -th order kernel is a function integrating to one and satisfying
∫
upK(u)du = 0 if

1 ≤ p ≤ P − 1 and <∞ if p = P .
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following Guerre et al. (2000), the bandwidth in (iii) leads to oversmoothing

relative to the optimal bandwidth, i.e., h∗ ∝ (lnn/n)
1

2P+1 (see Stone, 1982).

Given Assumption 2 and the uniform convergence of ∆̂ to ∆ at the
√
n–rate, we show in the Appendix that the first–step estimation error is

asymptotically negligible in f̂∆. Thus, we obtain the following result.

Theorem 8. Suppose the conditions in Theorem 7 and Assumption 2 hold.

Then,

sup
δ∈[δ+h,δ−h]

|f̂∆(δ)− f∆(δ)| = Op

(
(lnn/n)

P
2P+2

)
.

Note that the convergence rate in Theorem 8 is uniform over the expanding

interval [δ + h, δ − h]. It is slower than the optimal convergence rate if the

ITEs were observed, which is (lnn/n)
P

2P+1 (see Stone, 1982).

3.5 Individual Effects of 401(k) Programs

In this section we apply our estimation method to study the effects

of 401(k) retirement programs on personal savings. The 401(k) retirement

programs were introduced in the early 1980s to increase savings for retirement.

Since then, they became increasingly popular in the US. It has been argued

in the literature that participants might self–select into the programs non-

randomly (see, e.g., Poterba et al., 1996). People with a higher preference for

savings are more likely to participate and have higher savings than those with

lower preferences.
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Following e.g. Abadie (2003) and Chernozhukov and Hansen (2004),

we use 401(k) eligibility as an instrumental variable for 401(k) participation.

This is because 401 (k) plans are provided by employers. Hence, only workers

in firms that offer such programs are eligible so that the monotonicity in (3.2)

is satisfied.8

3.5.1 Data

The dataset consists of 9,275 observations from the Survey of Income

and Program Participation (SIPP) of 1991 as in Abadie (2003). The observa-

tional units are household reference persons aged 25-64 and spouse if present.

The included households are those with at least one member employed, with

Family Income in the $10k – $200k interval. Eligibility for 401(k) outside the

interval is rare as noted by Poterba et al. (1996).

Table 3.2 presents the summary statistics of the full sample as well as

by eligibility and participation status. The dependent variable is the Family

Net Financial Assets (FNFA), the treatment variable is the participation in

401(k), and the instrumental variable is the eligibility for 401(k). About 28%

in the sample participate in the program and 39% are eligible for it. Other

covariates include family income, age, marital status and family size. Similar to

Chernozhukov and Hansen (2004), age and income are grouped into categorical

8Imbens and Angrist (1994) define monotonicity as: Di(z1) ≤ Di(z2) for all i, where
Di(z) is the potential treatment status at Z = z. In our application, Z is 401(k) eligibility
and Di(0) = 0. Therefore, Di(0) ≤ Di(1) a.s., i.e., Imbens and Angrist (1994)’s monotonic-
ity condition holds. Moreover, Vytlacil (2002) show that such a condition is observationally
equivalent to the functional monotonicity in (3.2).
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Table 3.2: Summary statistics

Entire sample By 401(k) participation By 401(k) eligibility
Participants Non-participants Eligibles Non-eligibles

Treatment
401(k) Participation 0.2762 0.7044 0.0000

(0.4472) (0.4564) (0.0000)
Instrument
401(k) Eligibility 0.3921 1.0000 0.1601

(0.4883) (0.0000) (0.3668)
Outcome variable
FNFA 19.0717 38.4730 11.6672 30.5351 11.6768
(in thousand $) (63.9638) (79.2711) (55.2892) (75.0190) (54.4202)
Covariates:
Family income 39.2546 49.8151 35.2243 47.2978 34.0661
(in thousand $) (24.0900) (26.814.2) (21.6492) (25.6200) (21.5106)
Age 41.0802 41.5133 40.9149 41.4845 40.8194

(10.2995) (9.6517) (10.5323) (9.6052) (10.7163)
Married 0.6286 0.6956 0.6030 0.6772 0.5972

(0.4832) (0.4603) (0.4893) (0.4676) (0.4905)
Family size 2.8851 2.9204 2.8716 2.9079 2.8703

(1.5258) (1.4681) (1.5472) (1.4770) (1.5565)

variables 0, 1, 2 and 3 by using the 1st, 2nd and 3rd quartiles.

Table 3.3 provides the mean and standard error (in parentheses) of the

outcome variable FNFA by percentiles sorted according to covariates. Clearly,

FNFA is monotone increasing in family income and age. According to family

size, FNFA is maximized at family size 2 and decreases with family size when

it is larger than 2. Moreover, married households have higher FNFA than

unmarried ones on average.

In Table 3.4, we provide OLS and 2SLS estimates as a benchmark for

comparison with our ITE estimates. Our results replicate the estimates in

Abadie (2003). The OLS estimates in column (1) show a significantly positive
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Table 3.3: Average FNFA (in thousand $) sorted according to covariates

Family income Age Married Family size
By percentile < 0.25 2.29 4.29 By value 0 12.83

(18.83) (21.08) (50.55)
0.25–0.5 7.68 14.49 1 22.76 13.59

(29.16) (62.78) (70.45) (47.59)
0.5–0.75 16.63 21.43 2 29.11

(53.15) (67.33) (82.70)
> 0.75 49.76 36.86 3 19.17

(104.87) (87.31) (66.86)
4 17.53

(56.83)
> 4 12.51

(52.46)

association between participation in 401(k) and net financial assets given co-

variates. Furthermore, the 2SLS estimates in column (3) confirms the positive,

but attenuated treatment effects after controlling for endogeneity of partici-

pation. It turns out that FNFA increases rapidly with family income and age,

and is lower for married couples and larger families.

3.5.2 ITE Estimates

To begin with, we first check the support condition for identification,

i.e. Condition (iv) in Theorem 6. Because those who are not eligible for 401(k)

(i.e. Z = 0) cannot participate in the program, then C1x(·) = Pr(Y ≤ ·|D =

1, X = x, Z = 1) by (3.4) and FY |D=1,X=x = FY |D=1,X=x,Z=1. It follows that

C1x = SY |D=1,X=x for all x ∈ SX . Hence, to check Condition (iv), it suffices

to verify the support condition for d = 0. To do so, we estimate the density

function c0x by (3.7) and the density function fY |DX(·|0, x) directly from the

data.
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Table 3.4: OLS and 2SLS estimates of 401(k) participation

OLS 2SLS
First stage Second stage

Participation in 401(k) 13.5271 9.4188
(1.8103) (2.1521)

Constant 10.0421 0.0567 9.0076
(10.9142) (0.0464) (10.9559)

Family income (in thousand $) 0.9769 0.0013 0.9972
(0.0833) (0.0001) (0.0838)

Age -2.3100 -0.0048 -2.2386
(0.6177) (0.0023) (0.6201)

Age squared 0.0387 0.0001 0.0379
(0.0077) (0.0000) (0.0077)

Married -8.3695 -0.0005 -8.3559
(1.8299) (0.0079) (1.8290)

Family size -0.7856 0.0006 -0.8190
(0.4108) (0.0024) (0.4104)

Eligibility for 401(k) 0.6883
(0.0080)

Note: The dependent variable is family net financial assets (in thousand $). Family in-
come and age enter into the regression as continuous variables. The sample includes 9,275
observations from the SIPP of 1991. The observational units are household reference per-
sons aged 25-64, and spouse if present, with Family Income in the $10k-$200k interval.
Heteroscedasticity robust standard errors are given in parentheses.

Fix the subgroup of individuals whose income is between the 25% and

50% percentile, age between 40 and 48 years old, and family size smaller than

3.9 Figure 3.4 plots the density estimate ĉ0x using the green solid line, and the

density estimate f̂Y |DX(·|0, x) using the blue dotted line. From Figure 3.4, the

two distributions roughly share the same support.

9We repeat this for other values of covariates. The results are qualitatively similar.
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Figure 3.4: Verifying the support condition
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Moreover, as shown in Vuong and Xu (forthcoming), the main restric-

tions imposed by our model require that Cdx(·) defined by (3.4) should be

monotone increasing for d = 0, 1 and all x ∈ SX . We plot estimates of C0x(·)

and C1x(·) in Figure 3.5 for the subgroup of Figure 3.4. Both of them are

increasing functions globally.

Table 3.5 reports summary statistics of the ITE estimates in our sample.

From Table 3.5, the ITE has a mean of $22.45k and median Q2 of $8.83k,

indicating a long right tail of the ITE distribution. The mean of ITE is larger

than the average treatment effects (ATE) of OLS and 2SLS, which are $13.53k

and $9.42k, respectively, while the median of ITE turns out to be smaller

than these two ATEs. The differences reflect the distortion due to the linear
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Figure 3.5: The model restriction
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specification used in OLS and 2SLS, as well as the selection bias.

Table 3.5: Summary of ITE estimates (in thousand dollars)

Min Max Mean Std. Q1 Q2 Q3.
-918 1,533 22.45 102.77 3.10 8.83 20.90

Figure 3.6 provides the ITE density estimates for the full sample along

with 95% pointwise bootstrap confidence intervals. The participation effects

of 401(k) on net financial assets are distributed on the interval [-$10k, $60k],

with a mode around $4k. As the bootstrap confidence intervals indicate, the

ITE density is quite well-estimated. Figures 3.7 to 3.10 plot the ITE density

estimates conditional on income, age, family size and family status, separately.

In particular, the ITE density given income shifts to the right with a slight

increase in variance as income increases, revealing that ITEs for individuals

with high income is larger though more heterogeneous than for those whose

income are low. Thus, the benefits from participating to 401(k) retirement

programs on personal savings increase as Family Income increases. Though
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not as pronounced, the same trend is found when conditioning on age, family

size and family status.

Figure 3.6: Estimated densities of ITE for full sample
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A striking feature of Figures 3.6 to 3.10 is that there exists a small

but statistically significant proportion (about 8.77% in the full sample) of in-

dividuals who experience negative effects, although the majority of ITEs is

positive.10 This is especially the case for young individuals (age percentile

below 0.25) where such a proportion is 15.93%. Such a finding is new. In

particular, Table 3.6 provides the summary statistics of the subgroup with

negative ITEs, compared with the subgroup with positive ITE and the entire

10For such an empirical evidence, one could investigate it alternatively by using the (con-
ditional) quantile treatment effects for the complier group (see e.g. Abadie et al., 2002;
Froelich and Melly, 2013) at low quantiles. We thank Isaiah Andrews for this point.
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Figure 3.7: Estimated densities of ITE by income category

sample. Individuals with negative ITEs are more likely to be younger, single,

and from smaller families with lower family income. A puzzling feature is that

the subgroup with negative ITEs has a larger FNFA than the rest of the sam-

ple, though the large standard error (113.92) indicates a large heterogeneity

among this group. Our conjecture is that the majority of this group use their

savings to invest aggressively in their own businesses or in financial markets.

Figure 3.12 uses a classification tree to summarize the benefits and

losses of participation decisions for all individuals in the sample: Among those

who are eligible, 5.67% of them participate in 401(k) but have negative ITEs,

93



−20 −10 0 10 20 30 40

0.
00

0.
02

0.
04

0.
06

0.
08

Age percentile <0.25

Estimated ITE

P
ro

ba
bi

lit
y 

de
ns

ity
 fu

nc
tio

n

−20 −10 0 10 20 30 40 50

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Age percentile 0.25−0.5

Estimated ITE

P
ro

ba
bi

lit
y 

de
ns

ity
 fu

nc
tio

n

0 20 40 60

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Age percentile 0.5−0.75

Estimated ITE

P
ro

ba
bi

lit
y 

de
ns

ity
 fu

nc
tio

n

−20 0 20 40 60

0.
00

0.
01

0.
02

0.
03

0.
04

Age percentile >0.75

Estimated ITE

P
ro

ba
bi

lit
y 

de
ns

ity
 fu

nc
tio

n

Figure 3.8: Estimated densities of ITE by age category

while 27.52% do not participate but would benefit from the 401(k) program.

There are also 90.55% of non-eligible individuals who would benefit from the

program if they participate. In monetary terms, the 401(k) program provides

an average increase of $29.62k in FNFA to the 2,356 participants with positive

ITEs and an average decrease of $19.42k in FNFA to the 206 participants with

negative ITEs. That is a net increase of $65.7939 million in total in FNFA for

the 401(k) program based on our sample of 9,275 households.

From Figure 3.12, about 93.12% of those who are eligible but do not

participate in 401(k) programs have positive ITEs. How should one interpret
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Figure 3.9: Estimated densities of ITE by family size category
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Figure 3.10: Estimated densities of ITE by marital status category

this empirical evidence? Do these eligible nonparticipants have low preference

for savings, or low ability for managing their financial assets? Our ITE es-

timates show that the average ITE for the group of eligible nonparticipating

households is $40.36k, which is significantly larger than $25.68k, the average

ITE of the participating group. This evidence suggests an adverse selection

issue: Households who benefit more are less likely to participate. To shed some

light on this second puzzling finding, Figure 3.11 provides density estimates
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Table 3.6: Summary statistics assorted according to ITE

Negative ITE Positive ITE Entire sample

Participation in 401(k) 0.2534 0.2784 0.2762
(0.4352) (0.4482) (0.4472)

FNFA (in thousand $) 21.9558 18.7946 19.0717
(113.9247) (56.9039) (63.9638)

Family income 30.5890 40.0872 39.2546
(in thousand $) (16.8846) (24.5117) (24.0900)
Age 34.8327 41.6805 41.0802

(9.2949) (10.1917) (10.2995)
Married 0.5572 0.6354 0.6286

(0.4970) (0.4813) (0.4832)
Family size 2.6421 2.9084 2.8851

(1.4826) (1.5280) (1.5258)
Number 813 8,462 9,275

of the potential outcome φ̂0X(Y ) for not participating to the 401(k) program

for the participating group as well as the group of eligible nonparticipants.

An interesting feature is that the distribution of participants’ counterfactual

FNFA (i.e., their savings without participating to 401(k) programs) are bi-

modal: Without participating to 401(k) programs, those participants would

either do quite well or extremely poorly on their savings. In contrast, for the

group of eligible but not participating households, the FNFA conforms to a

unimodal distribution.

Finally, we can consider the following counterfactuals: Given that we

recover the ITE for each individual, we can entertain a situation in which each

eligible individual chooses his/her best option regarding participation. The

401(k) program would lead to a total increase of $116.4681 million in FNFA

coming from the 2,356 eligible households with positive ITEs and the 1,001
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Figure 3.11: Densities of potential outcome of nonparticipation

eligible households with positive ITEs who did not participate. In addition, if

the 401(k) program was available to all households, under the same scenario

where each household is perfectly informed and make the correct decision,

the 401(k) program will gain an additional $120.8375 million in FNFA due to

those 5,105 non-eligible households with positive ITEs. This would lead to the

maximum gain of $237.3056 million in FNFA for the 401(k) program from the

9,275 households in our sample.
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Figure 3.12: Classification Tree for 401(k) Participation Decisions
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3.6 Concluding Remarks

In this chapter, we invent a novel method in estimating Individual

Treatment Effects (ITE) with heterogeneity and limited variations in the in-

struments. Our estimation approach based on “counterfactual mapping” can

be extended to a lot of other scenarios. For example, one can consider continu-

ous covariates or a mix of discrete and continuous variables. One can also study

the estimation of ITE when the dependent variable is discrete. Throughout

the chapter, we maintain the strict monotonicity assumption in the triangular

model. Researchers can relax this assumption and conduct partial identifica-

tion instead.
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Appendix A

Appendix for Chapter 1

A.1 Proofs

A.1.1 Proof of Theorem 1

Proof. Define L2(W) := {l : W→ R : ||l||2 =
√∫

l(w)2fW (w)dw <∞} as the

Hilbert space. Denote M(θ; p, h) and Mn(θ; p, h) to be the population moment

condition and sample moment condition, respectively.

M(θ, p, h) = E

{[
1−Di

1− p(Wi)
A(Zi) +

Di − p(Wi)

1− p(Wi)
h(Wi)

]
εi

}
Mn(θ, p, h) =

1

n

n∑
i=1

{[
1−Di

1− p(Wi)
A(Zi) +

Di − p(Wi)

1− p(Wi)
h(Wi)

]
εi

}

Following the sieve literature, we first give a definition of H(·, ·)-smooth.

Definition 1. A function h(·) is H(γ, η)-smooth if it belongs to a weighted

Hölder ball Λγ
c (W, η) for some γ > 0 and η ≥ 0.

Denote such weighted Hölder ball as H, hereafter. The following lemma

states the high-level conditions required for consistency, which is an extension

to Chen et al. (2003) (CLK hereafter)Theorem 1, and Pakes and Pollard (1989)

Corollary 3.2.
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Lemma 7. Suppose that θ0 ∈ Θ satisfies M(θ0, p0, h0) = 0, and that

(A3.1) ||Mn(θ̂, p̂, ĥ)|| ≤ infθ∈Θ ||Mn(θ, p̂, ĥ)||+ op(1);

(A3.2) For all δ > 0, there exists ε(δ) > 0 such that inf ||θ−θ0||>δ ||M(θ, p0, h0)|| ≥

ε(δ) > 0;

(A3.3) For any given p ∈ P, uniformly for all θ ∈ Θ, M(θ, p, ·) is continuous

w.r.t. || · ||∞η in h at h = h0; similarly, for any given h ∈ H, uniformly

for all θ ∈ Θ, M(θ, ·, h) is continuous w.r.t. || · ||∞η in p at p = p0;

(A3.4) ||p̂− p0||∞η = op(1), ||ĥ− h0||∞η = op(1);

(A3.5) For all sequences of positive numbers {δn} with δn = op(1),

sup
θ∈Θ,||p−p0||∞η≤δn,||h−h0||∞η≤δn

||Mn(θ, p, h)−M(θ, p, h)||
1 + ||Mn(θ, p, h)||+ ||M(θ, p, h)||

= op(1)

Then, θ̂ − θ0 = op(1).

(A3.1) and (A3.2) are directly satisfied by identification of θ.

For ∀p(·) ∈ P, ∀w ∈W, 0 < 1
1−p ≤

1
1−p(w)

≤ 1
1−p̄ <∞, we have

|M(θ, p, h)−M(θ, p0, h0)|

= |E((
1

1− p(W )
− 1

1− p0(W )
)(1−D)A(Z)ε

+ (
D − p(W )

1− p(W )
h(W )ε− D − p0(W )

1− p0(W )
h0(W )ε))|
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≤ 1

(1− p̄)2
E(||A(Z)ε||(1 + ||W ||2)

η
2 ) sup

W∈W
|(p(W )− p0(W ))(1 + ||W ||2)−

η
2 |

+ |E
(

(
D − p(W )

1− p(W )
− D − p0(W )

1− p0(W )
)h(W )ε

)
|

+ |E
(
D − p0(W )

1− p0(W )
(h(W )− h0(W ))ε

)
|

≤ 1

(1− p̄)2
E(||A(Z)||2ε2)

1
2 (E(1 + ||W ||2)η)

1
2 ||p(·)− p0(·)||∞η

+
1

(1− p̄)2
E
(
||h(W )ε||(1 + ||W ||2)

η
2

)
× ||p(·)− p0(·)||∞η

+
1 + p̄

1− p̄
E|(h(W )− h0(W )ε)|

≤ 1

(1− p̄)2
E(||A(Z)||2ε2)

1
2 (E(1 + ||W ||2)η)

1
2 ||p(·)− p0(·)||∞η

+
1

(1− p̄)2
(E||h(W )ε||2)

1
2 (E(1 + ||W ||2)η)

1
2 × ||p(·)− p0(·)||∞η

+
1 + p̄

1− p̄
||h(·)− h0(·)||∞η(σ2

ε )
1
2 (E(1 + ||W ||2)η)

1
2

where the last inequality holds because of (A3.4) is satisfied by Chen et al.

(2008) Proposition B.1(i) and Chen et al. (2005) Appendix A. In addition, for

a small positive number δ > 0

E sup
||θ−θ̃||<δ,||p(·)−p̃(·)||∞η<δ,||h(·)−h̃(·)||∞η<δ

|( 1

1− p(W )
ε− 1

1− p̃(W )
ε̃)A(Z)

+ (
D − p(W )

1− p(W )
h(W )ε− D − p̃(W )

1− p̃(W )
h̃(W )ε̃)|
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≤E

(
sup

||θ−θ̃||<δ,||p(·)−p̃(·)||∞η<δ
|( 1

1− p(W )
ε− 1

1− p̃(W )
ε+

1

1− p̃(W )
ε− 1

1− p̃(W )
ε̃)A(Z)|

)

+ E

(
sup

||θ−θ̃||<δ,||p(·)−p̃(·)||∞η<δ
|(D − p(W )

1− p(W )
− D − p̃(W )

1− p̃(W )
)h(W )ε|

)

+
1 + p̄

1− p̄
E

(
|h(W ) sup

||θ−θ̃||<δ
|g(X; θ)− g(X; θ̃)||

)

+
1 + p̄

1− p̄
E

(
| sup
||h̃−h||∞η<δ

ε̃(h̃(W )− h(W ))|

)

≤E

(
sup

||p(·)−p̃(·)||∞η<δ

1

(1− p̄)2
( sup
W∈W

|(p(·)− p̃(·))(1 + ||W ||2)−
η
2 |||A(Z)ε||(1 + ||W ||2)

η
2 )

)

+ E

(
( sup
||θ−θ̃||<δ,||p(·)−p̃(·)||∞η<δ

| A(Z)

1− p̃(W )
(g(X; θ̃)− g(X; θ))|)

)

+
1 + p̄

1− p̄
E(||h(W )||)2

{
E

(
sup

||θ̃−θ||<δ
|g(X∗; θ)− g(X∗; θ̃)|2

)} 1
2

+
1 + p̄

1− p̄
E

∣∣∣∣∣ sup
||θ̃−θ||<δ

ε̃(1 + ||W ||2)
η
2 (1 + ||W ||2)−

η
2 (h̃(W )− h(W ))

∣∣∣∣∣
≤ 1

(1− p̄)2
||p̃(·)− p(·)||∞ηE

(
||A(Z)ε||(1 + ||W ||2)

η
2

)
+

1

1− p̄
(E||A(Z)||2)

1
2 E

(
sup

||θ−θ̃||<δ
|g(X; θ̃)− g(X; θ)|2

) 1
2

+
1 + p̄

1− p̄
E(||h(W )||)2

{
E

(
sup

||θ̃−θ||<δ
|g(X∗; θ)− g(X∗; θ̃)|2

)} 1
2

+
1 + p̄

1− p̄
||h̃(·)− h(·)||∞ηE

(
sup

||θ̃−θ||<δ
|ε̃(1 + ||W ||2)

η
2 |

)
≤const.δ + const.a(δ) + const.b(δ) + const.δ
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where the last inequality is due to Assumption 3. Thus we verify an alternative

condition to (A3.5) (See CLK Remark 1.). Hence (A3.5) is satisfied.

A.1.2 Proof of Theorem 2

Proof. Define Θδ ≡ {θ ∈ Θ : ||θ − θ0|| ≤ δ}, Pδ ≡ {p ∈ P : ||p − p0||∞η ≤ δ}

and Hδ ≡ {h ∈ H : ||h − h0||∞η ≤ δ} for some small δ. Let Γ1(θ0, p0, h0) =

∂M(θ0, p0, h0)/∂θ be the ordinary derivative of M(·, p0, h0) w.r.t θ evaluated

at θ0. We first introduce the following definitions of pathwise derivatives.

Definition 2. Let λ = (λp, λh). The pathwise derivatives w.r.t p(·) and h(·)

are defined as

Γ
(k)
2,p(θ0, p0, h0)[λp] = ∂ktM(θ0, p0 + tλp, h0)|t=0

Γ
(k)
2,h(θ0, p0, h0)[λh] = ∂ktM(θ0, p0, h0 + tλh)|t=0, k = 1, 2

Γ2,ph(θ0, p0, h0)[λp][λh] = ∂tp,thM(θ0, p0 + tpλp, h0 + thλh)|tp=0,th=0

The Gen-IV estimator has the semiparametric doubly robust property,

in the sense that the first and second order pathwise derivatives w.r.t. p(·) and

h(·) are zero. Such finding is in consistent with estimators using semiparamet-

ric doubly robust moment conditions, see e.g. Rothe and Firpo (2013).The

following proposition states this property.

Proposition 1 (Double Robustness). Γ
(k)
2,p(θ0, p0, h0)[λp] = Γ

(k)
2,h(θ0, p0, h0)[λh] =

0, k = 1, 2.
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Before proving the asymptotic normality of θ, we first state the high-

level conditions required for asymptotic normality, summarized in the following

lemma.

Lemma 8. Suppose that θ0 ∈ Θδ satisfies M(θ0, p0.h0) = 0 that θ̂−θ0 = op(1),

and that

(A4.1) ||Mn(θ̂, p̂.ĥ)|| = infθ∈Θδ ||Mn(θ, p̂.ĥ)||+ op(
1√
n
)

(A4.2) (i) The ordinary derivative Γ1(θ, p0, h0) in θ of M(θ, p0, h0) exists for

θ ∈ Θδ, and is continuous at θ = θ0; (ii) the matrix Γ1 ≡ Γ1(θ0, p0, h0)

is of full (column) rank.

(A4.3) For all θ ∈ Θδ the pathwise derivatives Γ2,ph(θ, p0, h0)[p − p0][h − h0]

of M(θ, p0, h0) exists in all directions [p − p0] ∈ P, [h − h0] ∈ H;

and for all (θ, p, h) ∈ Θδn × Pδn × Hδn with a positive sequence δn =

o(1): (i) ||M(θ, p, h) −M(θ, p0, h0) −
∑

k=1,2

∑
j=p,h

1
k!

Γ
(k)
2,j (θ, p0, h0)[·] −

Γ2,ph(θ, p0, h0)[p−p0][h−h0]|| ≤ c1||p−p0||3∞η + c2||h−h0||∞η||p−p0||2∞η
for constants c1 and c2 ≥ 0; (ii) ||

∑
k=1,2

∑
j=p,h

1
k!

Γ
(k)
2,j (θ, p0, h0)[·] +

Γ2,ph(θ, p0, h0)[p− p0][h− h0]−Γ2,ph(θ0, p0, h0)[p− p0][h− h0]|| ≤ o(1)δn.

(A4.4) p̂ ∈ P, ĥ ∈ H with probability tending to one; and ||p̂− p0||∞η = op(n
− 1

6 )

and ||ĥ− h0||∞η = op(n
− 1

6 ).

(A4.5) For all sequences of positive numbers {δn} with δn = o(1),

sup
||θ−θ0||≤δn,
||p−p0||∞η≤δn,
||h−h0||∞η≤δn

√
n||Mn(θ, p, h)−M(θ, p, h)−Mn(θ0, p0, h0)||

1 +
√
n(||Mn(θ, p, h)||+ ||M(θ, p, h)||)

= op(1).
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(A4.6) For some finite matrix V0,
√
n{Mn(θ0, p0, h0)+Γ2,ph(θ0, p0, h0)[p̂−p0][ĥ−

h0]} ⇒ N(0, V0). Then,
√
n(θ̂ − θ0)⇒ N(0,Ω),

where Ω ≡ (Γ
′
1V Γ1)−1Γ

′
1V V0V Γ1(Γ

′
1V Γ1)−1.

Proof. The proof is very similar to that of Theorem 2 in CLK and Theorem 3.3

in Pakes and Pollard (1989) for
√
n-normality. The major difference is that we

define the linearization Ln(θ) = Mn(θ0, p0, h0)+Γ1(θ−θ0)+Γph2 (θ0, p0, h0)[p̂−

p0][ĥ− h0].

It then can be proved that ||Mn(θ̄, p̂, ĥ)− Ln(θ̄)|| = op(n
−1/2), where

√
n(θ̄−θ0) = (Γ

′

1V Γ1)−1Γ
′

1V
√
n
[
Mn(θ0, p0, h0) + Γph2 (θ0, p0, h0)[p̂− p0][ĥ− h0]

]
is the minimizer of Ln(θ), combined with

√
n(θ̂− θ̄) = op(1). This and condi-

tion (A4.6) imply that
√
n(θ̂ − θ0)⇒ N(0,Ω).

We now prove the theorem by checking conditions in Lemma 8 one

by one. First, note that by Theorem 1, Assumption 4.1 and 4.2, (A4.1) and

(A4.2) are satisfied.

For (A4.3)(ii),∣∣∣∣∣
∣∣∣∣∣∑
k=1,2

∑
j=p,h

1

k!
Γ

(k)
2,j (θ, p0, h0)[·]

∣∣∣∣∣
∣∣∣∣∣

≤ ||E{(1−D)(p(W )− p0(W ))(A(Z)− h0(W ))ε

(1− p0(W ))2

+
(1−D)(p(W )− p0(W ))2(A(Z)− h0(W ))ε

(1− p0(W ))3
}||
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+

∣∣∣∣∣∣∣∣E{D − p0(W )

1− p0(W )
(h(W )− h0(W ))ε

}∣∣∣∣∣∣∣∣
≤ 1

(1− p̄)2
E
∣∣∣(A(Z)− h0(W ))(1 + ||W ||2)

η
2 ε
∣∣∣ sup
W∈W

|(p(W )− p0(W ))(1 + ||W ||2)−
η
2 |

+
1

(1− p̄)3
E
∣∣(A(Z)− h0(W ))(1 + ||W ||2)ηε

∣∣ ( sup
W∈W

|(p(W )− p0(W ))(1 + ||W ||2)−
η
2 |
)2

+
1 + p̄

1− p̄
E
∣∣∣(1 + ||W ||2)

η
2 ε
∣∣∣ sup
W∈W

|(h(W )− h0(W ))(1 + ||W ||2)−
η
2 |

≤ 1

(1− p̄)2
E sup
||θ−θ0||≤δ

∣∣∣(A(Z)− h0(W ))(1 + ||W ||2)
η
2 ε
∣∣∣ ||p− p0||∞η

+
1

(1− p̄)3
E sup
||θ−θ0||≤δ

∣∣∣(A(Z)− h0(W ))(1 + ||W ||2)
η
2 ε
∣∣∣ ||p− p0||2∞η

+
1 + p̄

1− p̄
E sup
||θ−θ0||≤δ

∣∣∣(1 + ||W ||2)
η
2 ε
∣∣∣ ||h− h0||∞η

≤const.δ + const.δ2 + const.δ

where the last inequality is due to Assumption 4.

||Γph2 (θ, p0, h0)[p− p0][h− h0]− Γph2 (θ0, p0, h0)[p− p0][h− h0]||

=

∣∣∣∣∣∣∣∣E(1−D)(p(W )− p0(W ))(h(W )− h0(W ))(g(X∗; θ0)− g(X∗; θ))

(1− p0(W ))2

∣∣∣∣∣∣∣∣
≤ 1 + p̄

(1− p̄)2
× sup

W∈W
|(p(W )− p0(W ))(1 + ||W ||2)−

η
2 | × ...

...× sup
W∈W

|(h(W )− h0(W ))(1 + ||W ||2)−
η
2 | × ...

...× ||θ − θ0||E
{
||∂g(X∗; θ̄)

∂θ
||(1 + ||W ||2)η

}
=||p− p0||∞η||h− h0||∞η||θ − θ0||E

{
||∂g(X∗; θ̄)

∂θ
||(1 + ||W ||2)η

}
≤||p− p0||∞η||h− h0||∞η||θ − θ0|| sup

||θ−θ0||<δ
E

{
||∂g(X; θ)

∂θ
||(1 + ||W ||2)η

}
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where θ̄ is between θ and θ0.

Thus, under Assumption 4, Proposition B.1(i) of CLK, Proposition A.1

of CHT, (A4.3)(ii) is satisfied.

For (A4.5), we instead check a sufficient condition which is an extension

of Andrews (1994)’s “type IV class” from θ ∈ Θ to (θ, p, h) ∈ Θ×P×H. Recall

ε̃ = y−g(X; θ̃) and ε̃−ε = g(X; θ)−g(X; θ̃). Let δ be a small positive number.

E{ sup
||θ̃−θ||<δ,
||p̃−p||∞η<δ,
||h̃−h||∞η<δ

| 1−D
1− p(W )

A(Z)ε+
D − p(W )

1− p(W )
h(W )ε

− 1−D
1− p̃(W )

A(Z)ε̃+
D − p̃(W )

1− p̃(W )
h̃(W )ε̃|2}

≤E{ sup
||θ̃−θ||<δ,||p̃−p||∞η<δ,||h̃−h||∞η<δ

2

∣∣∣∣ 1−D
1− p(W )

A(Z)ε− 1−D
1− p̃(W )

A(Z)ε̃|
∣∣∣∣2

+ 2

∣∣∣∣D − p(W )

1− p(W )
h(W )ε− D − p̃(W )

1− p̃(W )
h̃(W )ε̃

∣∣∣∣2}
≤4E

{
sup

||p̃−p||∞η<δ

∣∣∣∣( 1

1− p(W )
− 1

1− p̃(W )
)A(Z)ε

∣∣∣∣2
}

+ 4E

{
sup

||θ̃−θ||<δ

∣∣∣∣ A(Z)

1− p̃(W )
(g(X∗; θ̃)− g(X∗; θ))

∣∣∣∣2
}

+ 8E

{
sup

||p̃−p||∞η<δ

∣∣∣∣(D − p(W )

1− p(W )
− D − p̃(W )

1− p̃(W )
)h(W )ε

∣∣∣∣2
}

+ 8E

{
sup

||θ̃−θ||<δ

∣∣∣∣D − p̃(W )

1− p̃(W )
h(W )(ε− ε̃)

∣∣∣∣2
}

+ 4E

{
sup

||h̃−h||∞η<δ

∣∣∣∣D − p̃(W )

1− p̃(W )
(h(W )− h̃(W ))ε̃

∣∣∣∣2
}
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≤ 4

(1− p̄)2
E

{
sup

||p̃−p||∞η<δ
|(p(W )− p̃(W ))A(Z)ε|2

}

+
4

(1− p̄)2
E

{
sup

||θ̃−θ||<δ

∣∣∣A(Z)(g(X∗; θ̃)− g(X∗; θ))
∣∣∣2}

+
8

(1− p̄)2
||p̃− p||2∞ηE

∣∣∣(1 + ||W ||2)
η
2h(W )ε

∣∣∣2 +
8(1 + p̄)2

(1− p̄)2
E

{
sup

||θ̃−θ||<δ
|h(W )(ε− ε̃)|2

}

+
4(1 + p̄)2

(1− p̄)2
E

{
sup

||h̃−h||∞η<δ

∣∣∣(h(W )− h̃(W ))(1 + ||W ||2)−
η
2 (1 + ||W ||2)

η
2 ε̃
∣∣∣2}

≤ 4

(1− p̄)2
||p̃− p||2∞η

[
E(1 + ||W ||2)2ηE|A(Z)ε|4

]1/2
+

4

(1− p̄)2
E

{
sup

||θ̃−θ||<δ

∣∣∣A(Z)(g(X∗; θ̃)− g(X∗; θ))
∣∣∣2}

+
8

(1− p̄)2
||p̃− p||2∞η(E(1 + ||W ||2)2ηE|h(W )ε|4)1/2

+
8(1 + p̄)2

(1− p̄)2
(E|h(W )|4)1/2

[
E

{
sup

||θ̃−θ||<δ
|ε̃− ε|4

}]1/2

+
4(1 + p̄)2

(1− p̄)2
||h̃− h||2∞ηE

∣∣∣(1 + ||W ||2)
η
2 ε̃
∣∣∣2

≤const.δ2 + const.δ2ν + const.δ2 + const.δ2ν + const.δ2

where the last inequality is due to Assumption 4.3, 4.4 and CHT’s Proposition

B.1(i).

About the covering numbers, let N(δ,Λγ
c (W, η), || · ||∞η) denote the

covering number of the weighted Hölder ball under the adjusted Hölder norm

|| · ||∞η (i.e. the minimal number of N for which there exist δ-balls {l : ||l −

uj||∞η ≤ δ}, j = 1, ..., N to cover Λγ
c (W, η)). Using Van Der Vaart and Wellner
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(1996) Theorem 2.7.1, we know that

logN(δ,Λγ
c (W, η), || · ||∞η) ≤ const.δ−

dw
γ

Then assumption... implies that∫ ∞
0

√
N(δ,Λγ

c (W, η), || · ||∞η)dδ <∞

which means that the class {l(·), l(·) ∈ Λγ
c (W, η)} is a FW -Donsker class, and

which satisfies the stochastic equicontinuity condition.

Now we check (A4.3)(i) and (A4.4). It is standard in the sieve litera-

ture( see e.g. CLK, CHT, Ai and Chen (2003)) to replace (A4.3)(i) and (A4.4)

by a sufficient condition∣∣∣∣∣
∣∣∣∣∣M(θ, p, h)−M(θ, p0, h0)−

∑
k=1,2

∑
j=p,h

1

k!
Γ

(k)
2,j (θ, p0, h0)[·]− Γ2,ph(θ, p0, h0)[p− p0][h− h0]

∣∣∣∣∣
∣∣∣∣∣

= op(n
− 1

2 )

(A.1)

Since

Γ
(1)
2,p(θ0, p0, h0)[p− p0] = E

{[
(1−D)(p(W )− p0(W ))(A(Z)− h0(W ))

(1− p0(W ))2

]
ε

}
Γ

(2)
2,p(θ0, p0, h0)[p− p0] = E

{[
2(1−D)(p(W )− p0(W ))2(A(Z)− h0(W ))

(1− p0(W ))3

]
ε

}
Γ

(1)
2,h(θ0, p0, h0)[h− h0] = E

[
D − p0(W )

1− p0(W )
(h(W )− h0(W ))ε

]
Γ

(2)
2,h(θ0, p0, h0)[h− h0] = 0

Γ2,ph(θ0, p0, h0)[p− p0][h− h0] = E

{[
(1−D)(p(W )− p0(W ))(h(W )− h0(W ))

(1− p0(W ))2

]
ε

}
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Now∣∣∣∣∣
∣∣∣∣∣M(θ, p, h)−M(θ, p0, h0)−

∑
k=1,2

∑
j=p,h

1

k!
Γ

(k)
2,j (θ, p0, h0)[·]− Γ2,ph(θ, p0, h0)[p− p0][h− h0]

∣∣∣∣∣
∣∣∣∣∣

=||E{(1−D)(A(Z)− h0(W ))(p(W )− p0(W ))

1− p0(W )

(
1

1− p(W )
− 1

1− p0(W )

)
ε

−
[

(1−D)(p(W )− p0(W ))(A(Z)− h0(W ))

(1− p0(W ))2

]
ε

−
[

(1−D)(p(W )− p0(W ))2(A(Z)− h0(W ))

(1− p0(W ))3

]
ε

+

[
(1−D)(p(W )− p0(W ))(h(W )− h0(W ))

(1− p0(W ))2

]
ε}||

=||E{[ (1−D)(p(W )− p0(W ))2(A(Z)− h0(W ))

(1− p0(W ))2(1− p(W ))

− (1−D)(p(W )− p0(W ))2(h(W )− h0(W ))

(1− p0(W ))2(1− p(W ))

− (1−D)(p(W )− p0(W ))2(A(Z)− h0(W ))

(1− p0(W ))3
]ε}||

=||E{[ (1−D)(A(Z)− h0(W ))(p(W )− p0(W ))3

(1− p0(W ))3(1− p(W ))

− (1−D)(p(W )− p0(W ))2(h(W )− h0(W ))

(1− p(W ))(1− p0(W ))
]ε}||

≤ 1

(1− p̄)4
E

∣∣∣∣∣ sup
θ∈Θ:||θ−θ0||≤δ

||(1−D)(A(Z)− h0(W ))ε|| × (p(W )− p0(W ))3

∣∣∣∣∣
+

1

(1− p̄)3
E

∣∣∣∣∣ sup
θ∈Θ:||θ−θ0||≤δ

||(1−D)ε|| × (p(W )− p0(W ))2(h(W )− h0(W ))

∣∣∣∣∣
≤ 1

(1− p̄)4
sup

θ∈Θ:||θ−θ0||≤δ

{
sup
W
||(A(Z)− h0(W ))ε|| × E|p(W )− p0(W )|3

}
+

1

(1− p̄)3
sup

θ∈Θ:||θ−θ0||≤δ

{
sup
W
||ε|| ×

[
E|p(W )− p0(W )|3

] 2
3
[
E|h(W )− h0(W )|3

] 1
3

}
≤const. (||p(·)− p0(·)||3)3 + const. (||p(·)− p0(·)||3)2 (||h(·)− h0(·)||3)
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By Assumption 5, ||p(·) − p0(·)||3 = op(n
− 1

6 ) and ||h(·) − h0(·)||3 = op(n
− 1

6 ),

condition (A.1) holds.

Instead, we can rewrite the last two inequalities,∣∣∣∣∣
∣∣∣∣∣M(θ, p, h)−M(θ, p0, h0)−

∑
k=1,2

∑
j=p,h

1

k!
Γ

(k)
2,j (θ, p0, h0)[·]− Γ2,ph(θ, p0, h0)[p− p0][h− h0]

∣∣∣∣∣
∣∣∣∣∣

≤ 1

(1− p̄)4
E

∣∣∣∣∣ sup
θ∈Θ:||θ−θ0||≤δ

||(1−D)(A(Z)− h0(W ))ε|| × (p(W )− p0(W ))3

∣∣∣∣∣
+

1

(1− p̄)3
E

∣∣∣∣∣ sup
θ∈Θ:||θ−θ0||≤δ

||(1−D)ε|| × (p(W )− p0(W ))2(h(W )− h0(W ))

∣∣∣∣∣
≤const.

(
E(p(W )− p0(W ))4

) 1
2
(
E(p(W )− p0(W ))2

) 1
2

+ const.
(
E(p(W )− p0(W ))4

) 1
2
(
E(h(W )− h0(W ))2

) 1
2

≤const.||p(·)− p0(·)||
3− dW

2γ

2 + const.||p(·)− p0(·)||
2− dW

2γ

2 ||h(·)− h0(·)||2

where the last inequality is due to the following inequalities, for any s ∈ [dw
4
, γ),

(
E(p(W )− p0(W ))4

) 1
4 ≤const. (||p(·)− p0(·)||2 + ||Os{p(·)− p0(·)}||2)

||Os{p(·)− p0(·)}||2 ≤const.||p(·)− p0(·)||
1− s

γ

2

By optimal convergence rate property of sieve estimators (see e.g. Shen and

Wong (1994), CHT), kp,n = O(n
dW

(2γ+dW ) ), kh,n = O(n
dW

(2γ+dW ) ), and γ > 1
2
dW ,

imply that

||p(·)− p0(·)||2 =Op(n
− γ

2γ+dW ), ||h(·)− h0(·)||2 = Op(n
− γ

2γ+dW ),

||p(·)− p0(·)||
3− dW

2γ

2 =op(n
−1/2), ||p(·)− p0(·)||

2− dW
2γ

2 ||h(·)− h0(·)||2 = op(n
−1/2)

For (A4.6), from the above argument and γ > 1
2
dW ,
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Γ2,ph(θ, p0, h0)[p̂− p0][ĥ− h0] = E

{[
(1−D)(p̂(W )− p0(W ))(ĥ(W )− h0(W ))

(1− p0(W ))2

]
ε

}
≤ const.||p̂(·)− p0(·)||2||ĥ(·)− h0(·)||2

= op(n
−1/2)

Hence, (A4.6) is satisfied since

√
n{Mn(θ0, p0, h0) + Γ2,ph(θ0, p0, h0)[p̂− p0][ĥ− h0]}

=
1√
n

n∑
i=1

{
(1−Di)A(Zi)

1− p0(Wi)
+
Di − p0(Wi)

1− p0(Wi)
E(A(Zi)|W = Wi)

}
+ op(1)

A standard GMM estimator θ will satisfy

√
n(θ̂ − θ0)

= −
(

Γ
′

1GΓ1

)−1

Γ
′

1G
1√
n

n∑
i=1

{
(1−Di)A(Zi)

1− p0(Wi)
+
Di − p0(Wi)

1− p0(Wi)
E(A(Zi)|W = Wi)

}
+op(1)

thus Theorem 2 is established.

A.1.3 Proof of Theorem 3

Proof. I follow the structure of the semiparametric efficiency bound derivation

of Newey (1990) as well as CHT. Define a factorization of the propensity score

p(w;ψ) = P(D = 1|W = w;ψ). The joint density function for Y,X,D,Z is

given by

f(y, x, d, z;ψ) = f(w;ψ)p(w;ψ)d(1− p(w;ψ))1−df(z|w;ψ)1−d
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The resulting score function is then given by

Sψ(d, w, z) = (1−d)
∂

∂ψ
log f(z|w;ψ)+

d− p(w;ψ)

p(w;ψ)(1− p(w;ψ))

∂

∂ψ
p(w;ψ)+

∂

∂ψ
log f(w;ψ)

Using results in Newey (1990), the tangent space is

{(1− d)
∂

∂ψ
log f(z|w;ψ) + l(w)(d− p(w;ψ)) +

∂

∂ψ
log f(w;ψ)}

where l(w) ∈ L2(W).

The moment condition (2.1) is equivalent to the requirement that for

any matrix E of dv+1×dv+t the exactly identified system of moment conditions

hold EE(Z̃iεi) = 0. Differentiating under the integral gives

∂θ(ψ)

∂ψ
= − (EQ)−1 E

(
EZ̃iεi

∂ log f(Wi, Zi;ψ)

∂ψ′

)
where Q = E(Z̃iX

∗′
i ). Therefore, any regular estimator of θ is asymptotically

linear with influence function of the form

− (EQ)−1
EZ̃iεi

Hence for any given matrix E, the projection of the above influence function

onto the tangent set is

− (EQ)−1

(
1−Di

1− p(Wi)
Z̃iεi +

Di − p(Wi)

1− p(Wi)
E(Z̃i|Wi)εi

)
= − (EQ)−1

Z̃iεi

Since E(Z̃iεiSψ(Di,Wi, Zi)
′
) = E(Z̃iεi

∂ log f(Wi,Zi;ψ)

∂ψ′
). Hence the asymptotic

variance corresponding to the efficient influence function for given E is

(EQ)−1
EΩeffE

′
(Q
′
E
′
)−1 (A.2)
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where Q = E(Z̃iX
∗′
i ) and

Ωeff = E

(
1

1− p(Wi)
E(Z̃iZ̃

′

i |Wi)ε
2
i −

p(Wi)

1− p(Wi)
E(Z̃i|Wi)E(Z̃i|Wi)

′
ε2i

)
(A.2) is minimized at E = Q

′
Ω−1
eff . Thus the asymptotic efficiency becomes(
Q
′
Ω−1
effQ

)−1

A.2 Implementation Algorithms

1 Create the indicator of missingness for each observation,

D =

{
1 if instrument is missing

0 if instrument is observed

2 Do a logit or probit estimation for propensity score, or in general,
let

P(D = 1|X,Y ) = p(X,Y ;ψ)

We would maximize

Πn
i=1 {p(wi, ψ)}di {1− p(wi, ψ)}1−di

denote by ψ̂n.

3 For D = 0 sample, regress Z on W , get predicted value for the
whole sample

Ẑ = W
′
ξ̂

4 Form the new instrument by

Zi =
1− di

1− p(di, ψ̂n)
zi +

di − p(di, ψ̂n)

1− p(di, ψ̂n)
ẑi

5 Do 2SLS, GMM, LIML, etc. based on the new IV.
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Appendix B

Appendix for Chapter 2

B.0.1 Proof of Theorem 4

Proof. Let Υ = 1
n

∑n
i=1(Ξ0)−1Ziνi, where Ξ0 = diag(ζ1, ..., ζt). The specified

penalty loadings in (2.11) will imply that

P(
√
n||Υ||∞ ≤ Φ−1(1− φn

2t
)) ≥ 1− φn

P(
2λ

n
≥ C0||Υ||∞)→ 1

where Φ(·) is the CDF of a standard normal distribution, and C0 is some

positive constant.

By Belloni et al. (2012) (BCCH, hereafter) Lemma 6 and Assumption

7.8, if 2λ
n
≥ c||Υ||∞, where c ≡ 1

2
C0, and Ξ̂ satisfies Assumption 9 with u ≥

1 ≥ l > 1
c
, then √√√√ 1

n

n∑
1

[Z
′
i(τ̃ − τ0)]2 ≤ (u+

1

c
)
λ
√
s

nκc0
+ 2cs

||Ξ0(τ̂ − τ0)||1 ≤ 3c0

√
s

κ2c0

(
(u+

1

c
)
λ
√
s

nκc0
+ 2cs

)
+

3c0n

λ
c2
s

where κc0 = minτ∈Rt:||Ξ0τTc ||1≤c0||Ξ0τ ||1,||τ ||2 6=0

√
s
√

1
n

∑n
1 (Z
′
iτ)2

||Ξ0τT ||1
, and c0 = uc+1

lc−1
. Note

that the quantity κc0 controls the modulus of continuity between the prediction

norm
√

1
n

∑n
1 (Z

′
iτ)2 and the l1-norm ||τ ||1 within a restricted region.
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Since the sequence {φn} is specified as φn = op(1) and log( 1
φn

) =

Op(log(t∨n)). It turns out that λ = C0

√
nΦ−1(1− φn

2t
) = Op(c

√
n log( t

φn
)). Ξ̂

is a asymptotically valid penalty loading. From Assumption 9 we know that

Υ = Op(
√

s
n
). Hence√√√√ 1

n

n∑
1

(Z
′
i(τ̂ − τ0))2 = Op(

1

κc0

√
s log( t

φn
)

n
+

√
s

n
)

By the arguments in Bickel et al. (2009),

κc0 = Op(κc)

where κc ≥ 1
b
κ( bc

a
)(M), a = min1≤j≤t |ζj| and b = max1≤j≤t |ζj|. We’ve just

showed that √√√√ 1

n

n∑
i=1

(Â? −Ai)2 = Op(

√
s log(t ∨ n)

n
).

By Assumption 8.1 and Cauchy-Schwartz inequality, we know that√√√√ 1

n

n∑
i=1

(Âi −Ai)2 ≤

√√√√ 1

n

n∑
i=1

(Âi − Â?
i )

2+

√√√√ 1

n

n∑
i=1

(Â? −Ai)2 = Op(

√
s log(t ∨ n)

n
)

For the l1-rate, by Assumption 7, Assumption 8 and Lemma 6 in Appendix C

from BCCH,

||τ̂ − τ ||1 ≤ ||τ̂ − τ̂ ?||1 + ||τ̂ ? − τ ||1

Now by Theorem 4 of BCCH, Theorem 3 is established.

B.0.2 Proof of Theorem 5

Proof. Let θ = (α, β)
′
. I follow closely the structure of semiparametric effi-

ciency bound derivation for general missing data problems of Tsiatis (2007).
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Let S ≡ (W,Z) be the full data, where W = (X, Y ). Introduce

GD(S) as a mapping from S to a subset of its elements whenever D = d,

i.e. G0(S) = S; G1(S) = W . The full-data Hilbert space HF consists of

all two-dimensional, mean-zero measurable functions of S with finite vari-

ance equipped with the covariance inner product. While the observed data

Hilbert space H is the space of all all two-dimensional, mean-zero measur-

able functions of {D,GD(S)} equipped with the covariance inner product.

First assume that the missing probabilities are unknown and are modeled as

P(D = d|S = s) = $(d,Gd(S), ψ), d = 0, 1, where ψ is an unknown parame-

ter. The probability of missing depends on S only through the observed data,

due to (1). The joint density for the full data is parametrized as pS(·, θ, η),

where η is unknown. The observed-data likelihood for a single observation is∫
{s:Gd(s)=gd}

P(D = d|S = s, ψ)pS(s, θ, η)dνS(s) =

∫
{s:Gd(s)=gd}

$(d,Gd(S), ψ)pS(s, θ, η)dνS(s)

= $(d,Gd(S), ψ)

∫
{s:Gd(s)=gd}

pS(s, θ, η)dνS(s)

where νS(·) is a dominating measure for S. The log-likelihood for a single

observation is given by

log$(d,Gd(S), ψ) + log

∫
{s:Gd(s)=gd}

pS(s, θ, η)dνS(s)

The two nuisance parameters η and ψ are separated in the log-likelihood, hence

the nuisance tangent space Λ will be the direct sum of two spaces. Let Λψ and

Λη be the spaces generated by the score vector w.r.t. ψ and η, respectively.

Hence

Λ = Λψ ⊕ Λη
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More formally, Λψ is defined as

Λψ ≡
[
B2×qSq×1

ψ {D,GD(S), ψ0}for all B2×q]
where B is any constant 2× q matrix and

Sq×1
ψ =

∂ log$(D,GD(S), ψ0)

∂ψ

By Theorem 7.1 of Tsiatis (2007), the nuisance tangent space Λη can be ex-

pressed as

Λη = E{ΛF |D,GD(S)}

where ΛF denotes the full-data nuisance tangent space.

The orthogonality of the two spaces is shown in Theorem 8.2, i.e. Λψ ⊥

Λη. Hence a typical element of Λ⊥ can be found by taking an arbitrary element

h ∈ Λ⊥η and computing

h− Π(h|Λψ) = Π(h|Λ⊥ψ ) (B.1)

Under the assumption that $(d,Gd(S), ψ) ∈ (0, 1), it is shown in Theorem 7.2

of Tsiatis (2007) that the space Λ⊥η consists of all elements that can be written

as

(1−D)ϕF (S)

$(0, G0(S), ψ)
+

1−D
$(0, G0(S), ψ)

${1, G1(S), ψ}L{G1(S)} −DL2{G1(S)}︸ ︷︷ ︸
augmentation term

(B.2)

where L{G1(S)} is an arbitrary two-dimensional measurable function of G1(S)

and ϕF (S) is an arbitrary element of ΛF⊥. A by-product in deriving (B.2) is
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that Λ⊥η can be written as the direct sum of two linear subspaces, i.e.

Λ⊥η =
(1−D)ΛF⊥

$(0, G0(S), ψ)
⊕ Λ2 (B.3)

where Λ2 consists of elements with expression of augmentation term in (B.2).

Combine (B.1) and (B.3), the observed-data influence functions for θ can be

written as

ϕ{D,GD(S)} =

{[
(1−D)ϕF (S)

$(0, G0(S), ψ)
+ L2{1, G1(S)}

]
− Π{[·]|Λψ}

}
where Π{[·]|Λψ} is the projection onto Λψ. By Theorem 10.1, 10.2 in Tsiatis

(2007), the optimal observed-data influence function is obtained by choosing

L2{1, G1(S) = −π[ (1−D)ϕF (S)
$(0,G0(S),ψ)

|Λ2]. Furthermore, the projection onto the aug-

mentation space Λ2 is the unique element
{
p(W )−D
1−p(W )

}
h0

2(W ) ∈ Λ2, where

h0
2(W ) = E(ϕF (S)|W )

In addition, Λψ ∈ Λ2, the projection Π{[·]|Λψ} is then absorbed into the aug-

mentation term. Hence, the optimal observed-data influence function becomes

(1−D)ϕF (S)

1− p(W,ψ)
− p(W,ψ)−D

1− p(W,ψ)
E(ϕF (S)|W )

for any fixed ϕF (S) ∈ ΛF⊥, where $(0, G0(S), ψ) is simplified as 1− p(W,ψ),

given that $(0, G0(S), ψ) +$(1, G1(S), ψ) = 1.

From e.g. Amemiya (1977), Newey (1990), a typical element in ΛF⊥ is

given as A(Z)ε, where A(Z) is a valid instrument. Define a linear operator

L(·) ∈ Λ⊥, L(·) : L2(Z)→ H,

L(A(Z)) =
(1−D)A(Z)ε

1− p(W,ψ)
− p(W,ψ)−D

1− p(W,ψ)
E(A(Z))|W )ε (B.4)
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Our goal is to find the efficient influence function. It suffices to restrict our

attention to the class of influence functions L(A(Z)) with A(Z) a valid in-

strument. Such class of linear functions will consist a linear subspace pf H,

denoted as Hopt. The search for efficient influence function is within Hopt. One

implication of (B.4) is that the efficient score vectors have similar relationship

as

Seff{D,GD(S)} =
(1−D)BF

eff(S)

1− p(W,ψ)
− p(W,ψ)−D

1− p(W,ψ)
E(BF

eff(S)|W )

In addition, by Lemma 11.1 in Tsiatis (2007), BF
eff(S) exists and is the unique

solution to the equation

Π
[
M−1{BF

eff(S)}|ΛF⊥] = SFeff(S)

where SFeff(S) is the efficient score when there is no missing. When assuming

conditional homoskedasticity, i.e. E[ε2|Z] = Ω,

SFeff(S) = D(Z)
′
Ω−1ε

up to a constant matrix. The following lemma establishes M−1.

Lemma 9. The inverse operator M−1 is given by

aF (S) = M−1{BF (S)} =
BF (S)

1− p(W,ψ)
− p(W,ψ)

1− p(W,ψ)
E(BF (S)|W )

Proof. The existence and uniqueness of M−1 has been shown in Theorem 10.6,

where

M(aF ) ≡ (1− p(W,ψ))aF + p(W,ψ)E(aF |W )
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We only need to show that M(aF ) = BF . Plug in aF , we get

M(aF ) = (1− p(W,ψ))

[
BF (S)

1− p(W,ψ)
− p(W,ψ)

1− p(W,ψ)
E(BF (S)|W )

]
+ p(W,ψ)E([·]|W )

= BF − p(W,ψ)E(BF |W ) + p(W,ψ)
1− p(W,ψ)

1− p(W,ψ)
E(BF |W )

= BF

And from previous literature on optimal instruments, we know that

Π[aF (S)|ΛF⊥] = E[aF (S)ε|Z]Ω−1ε

for any aF (S) ∈ HF . Hence, BF
eff(S) is the solution to

E

[(
BF (S)

1− p(W,ψ)
− p(W,ψ)

1− p(W,ψ)
E(BF (S)|W )

)
ε|Z
]

Ω−1ε = D(Z)
′
Ω−1ε

⇒ E

[(
BF (S)

1− p(W,ψ)
− p(W,ψ)

1− p(W,ψ)
E(BF (S)|W )

)
ε|Z
]

= D(Z)
′

(B.5)

Since BF
eff(S) has the form A(Z)ε, (B.5) becomes

E

[(
A(Z)

1− p(W,ψ)
− p(W,ψ)

1− p(W,ψ)
E(A(Z)|W )

)
ε2|Z

]
= D(Z)

′

We denote the solution to this equation as A∗(Z). Hence the observed-data

efficient score vector is

Seff{D,GD(S)} =
(1−D)A∗(Z)ε

1− p(W,ψ)
− p(W,ψ)−D

1− p(W,ψ)
E(A∗(Z)|W )ε

=

[
(1−D)A∗(Z)

1− p(W,ψ)
− p(W,ψ)−D

1− p(W,ψ)
E(A∗(Z)|W )

]
ε

The efficient influence functions is then

ϕeff(S) = − (E [A∗(Z)D(Z)])−1 Seff{D,GD(S)}

122



The asymptotic covariance matrix for θ is E
[
ϕeff(S)ϕeff(S)

′]
, i.e.

(E [A∗(Z)D(Z)])−1 E
[
Seff{D,GD(S)Seff{D,GD(S)

′
] (

E
[
A∗(Z)

′
D(Z)

′
])−1

B.0.3 Proof of Lemma 4

Given the existence and uniqueness of the optimal instruments, by The-

orem 2.3.1(Successive Approximation) from Zemyan (2012), the resolvent ker-

nel

R(z, t; Ω̃−1) =
∞∑
m=1

Ω̃1−mKm(z, t)

where K1(z, t) = K(z, t), and for m ≥ 2, Km(z, t) =
∫
Km−1(z, s)K(s, t)ds.

We proceed the proof by induction. For m = 2,

K2(z, t) =

∫
K1(z, s)K(s, t)ds

=

∫ [∫
Q(w)fW |Z(w|z)fZ|W (s|w)dw

∫
Q(v)fW |Z(v|s)fZ|W (t|v)dv

]
ds

=

∫ ∫
Q(w)Q(v)fW |Z(w|z)

(∫
fZ|W (s|w)fW |Z(v|s)ds

)
fZ|W (t|v)dwdv (Fubini’s)

=

∫ ∫
Q(s1)Q(s2)fW |Z(s1|z)

(
E[fW |Z(s2|Z)|W = s1]

)
fZ|W (t|s2)ds1ds2

Suppose for m = n,

Kn(z, t)

=

∫
Q(sn)fW |Z(s1|z)fZ|W (t|sn)

n−1∏
i=1

Q(si)E
[
fW |Z(si+1|Z)|W = si

]
dsn
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Then for m = n+ 1,

Kn+1(z, t) =

∫
Kn(z, s)K(s, t)ds

=

∫ [∫
Q(sn)fW |Z(s1|z)fZ|W (s|sn)

n−1∏
i=1

Q(si)E
[
fW |Z(si+1|Z)|W = si

]
dsn

]
×...

...×
[∫

Q(sn+1)fW |Z(sn+1|s)fZ|W (t|sn+1)dsn+1

]
ds

=

∫
Q(sn+1)Q(sn)fW |Z(s1|z)

[∫
fZ|W (s|sn)fW |Z(sn+1|s)ds

]
× ...

...×
n−1∏
i=1

Q(si)E
[
fW |Z(si+1|Z)|W = si

]
fZ|W (t|sn+1)dsn+1

=

∫
Q(sn+1)fW |Z(s1|z)fZ|W (t|sn+1)× ...

...×
n∏
i=1

Q(si)E
[
fW |Z(si+1|Z)|W = si

]
dsn+1

with Q(si) = p(si)
1−p(si)ε

2.
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Appendix C

Appendix for Chapter 3

C.0.1 Proof of Lemma 6

Proof. First, we differentiate Q0(y0, y1) with respect to y0. Noting that ∂E|W −

w|/∂w = 2FW (w)− 1 for a continuous distribution FW (·), we obtain

∂

∂y0
E
[
|Y − y0|(1−D)|X = x, Z = z

]
=

∂

∂y0
E
(
|Y − y0|

∣∣D = 0, X = x, Z = z
)
× Pr(D = 0|X = x, Z = z)

= 2 Pr(Y ≤ y0;D = 0|X = x, Z = z)− Pr(D = 0|X = x, Z = z).

Moreover, we have

E[sign(Y − y1) ·D|X = x, Z = z]

= −2 Pr(Y ≤ y1;D1 = 1|X = x, Z = z) + Pr(D = 1|X = x, Z = z).

It follows that

∂

∂y0
Q0(y0, y1) = 2[Pr(Y ≤ y0;D = 0|X = x, Z = 0)− Pr(Y ≤ y0;D = 0|X = x, Z = 1)]

+ 2[Pr(Y ≤ y1;D = 1|X = x, Z = 0)− Pr(Y ≤ y1;D = 1|X = x, Z = 1)]

= 2[p(x, 1)− p(x, 0)]× [C0x(y0)− C1x(y1)],

where the last step comes from the definition of Cdx in (3.4). Fix y1 ∈ R. Note

that C0x(·) is weakly increasing on R and strictly increasing on C o
dx = S ◦

Y |D=0,X=x
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by Theorem 1. Moreover, because p(x, 0) < p(x, 1),1 then Q0(·, y1) has a weakly

and strictly increasing derivative on R and C o
dx, respectively. Therefore, Q0(·, y1)

is weakly and strictly convex on R and C o
dx, respectively, for arbitrary y1 ∈ R.

Furthermore, if y1 ∈ S ◦
Y |D=1,X=x, we have C0x(y0) = C1x(y1) if and only if y0 =

φ0x(y1) by Theorem 6. Thus, y0 = φ0x(y1) uniquely solves the first–order condition

∂
∂y0

Q0(y0, y1) = 0 whenever y1 ∈ S ◦
Y |D=1,X=x. A similar argument also applies to

the population objective function Q1(y0, ·).

C.0.2 Proof of Theorem 7

Proof. Fix X = x. All the following argument is conditional on X = x. For

simplicity, we suppress the dependence on x, e.g., we use φd for φdx, omit the term

1(Xi = x) in the estimation, and X = x in the conditional probability Pr(Y ≤

y;D = d|X = x;Z = z). Moreover, we only show the results for d = 0. The proof

for the case d = 1 can be derived similarly.

First, we show uniform consistency. By Angrist et al. (2006), it suffices to

show that sup(y0,y1)∈B ‖Q̂0(y0, y1)−Q0(y0, y1)‖ = op(1) for any compact set B ⊂ R2.

By the law of large number, we have pointwise convergence, i.e., ‖Q̂0(y0, y1) −

Q0(y0, y1)‖ = op(1). Then, it suffices to show the stochastic equicontinuity of the

empirical process ρ̂0(·, ·; z) − ρ0(·, ·; z), which directly follows the general argument

in Koenker and Xiao (2002). Next, we establish the limiting distribution of the

1When such a rank of p(x, z) is unknown, we can modify the objective function by
Q̃0(y0, y1) = [p(x, 1) − p(x, 0)] × Q0(y0, y1). The additional term p(x, 1) − p(x, 0) changes
the sign of Q̃0(·, y1) based on the relative rank of p(x, z) while its scale does not matter for
the optimization of Q̃0(·, y1).
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process.

Taking the directional derivative, we have

d

dt
Q̂0(y0+t, y1)

∣∣∣
t↓0

=
2
∑n

i=1 1(Yi ≤ y0;Di = 0;Zi = 0)∑n
i=1 1(Zi = 0)

−
2
∑n

i=1 1(Yi ≤ y0;Di = 0;Zi = 1)∑n
i=1 1(Zi = 1)

+
2
∑n

i=1 1(Yi ≤ y1;Di = 1;Zi = 0)∑n
i=1 1(Zi = 0)

−
2
∑n

i=1 1(Yi ≤ y1;Di = 1;Zi = 1)∑n
i=1 1(Zi = 1)

+ ξn(y0).

where the remainder term ξn(y0) is bounded by

n ·
∑n

i=1 1(Yi = y0)∑n
i=1 1(Zi = 0)×

∑n
i=1 1(Zi = 1)

.

By the computational properties of linear programming in Koenker and Bassett

(1978, Theorem 3.3), we have ξn(y0) = Op(n
−1) uniformly in y0 ∈ R. We can derive

a similar expression for d
dtQ̂0(y0 − t, y1)

∣∣∣
t↓0

. Note that d
dtQ̂0(φ̂0(y1) + t, y1)

∣∣∣
t↓0
≥ 0

and d
dtQ̂0(φ̂0(y1)− t, y1)

∣∣∣
t↓0
≥ 0 as φ̂0(y1) minimizes Q̂0(·, y1). Hence, we have

∑n
i=1 1(Yi ≤ φ̂0(y1);Di = 0;Zi = 0)∑n

i=1 1(Zi = 0)
−
∑n

i=1 1(Yi ≤ φ̂0(y1);Di = 0;Zi = 1)∑n
i=1 1(Zi = 1)

+

∑n
j=1 1(Yi ≤ y1;Di = 1;Zi = 0)∑n

i=1 1(Zi = 0)
−
∑n

j=1 1(Yi ≤ y1;Di = 1;Zi = 1)∑n
i=1 1(Zi = 1)

= Op(n
−1)

uniformly in y1.

Following the convention, we introduce some notation from the empirical

process literature: For W = (Y,D,Z)′ and a generic function g, let En[g(W )] =

n−1
∑n

i=1 g(Wi) and Gn[g(W )] = n−1/2
∑n

i=1

{
g(Wi)−E[g(Wi)]

}
. Hence, the above

condition can be rewritten as

√
n

{
En1(Y ≤ φ̂0(y1);D = 0;Z = 0)

En1(Z = 0)
+

En1(Y ≤ y1;D = 1;Z = 0)

En1(Z = 0)

}

−
√
n

{
En1(Y ≤ φ̂0(y1);D = 0;Z = 1)

En1(Z = 1)
+

En1(Y ≤ y1;D = 1;Z = 1)

En1(Z = 1)

}
= op(1)
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uniformly in y1 ∈ R. It follows that

√
n E
{

1(Y ≤ φ̂0(y1);D = 0;Z = 0) + 1(Y ≤ y1;D = 1;Z = 0)
}

En1(Z = 0)

−

√
n E
{

1(Y ≤ φ̂0(y1);D = 0;Z = 1) + 1(Y ≤ y1;D = 1;Z = 1)
}

En1(Z = 1)

+
Gn
[
1(Y ≤ φ̂0(y1);D = 0;Z = 0) + 1(Y ≤ y1;D = 1;Z = 0)

]
En1(Z = 0)

−
Gn
[
1(Y ≤ φ̂0(y1);D = 0;Z = 1) + 1(Y ≤ y1;D = 1;Z = 1)

]
En1(Z = 1)

= op(1). (C.1)

Because En1(Z = z) = Pr(Z = z) +Op(n
−1/2), then by Taylor expansion,

1

En1(Z = z)
=

1

Pr(Z = z)
− 1

Pr2(Z = z)
× [En1(Z = z)− Pr(Z = z)] +Op(n

−1).

Thus,

√
n E
{

1(Y ≤ φ̂0(y1);D = 0;Z = z) + 1(Y ≤ y1;D = 1;Z = z)
}

En1(Z = z)

=
√
n E
{

1(Y ≤ φ̂0(y1);D = 0) + 1(Y ≤ y1;D = 1)
∣∣Z = z

}
− E

{
1(Y ≤ φ̂0(y1);D = 0) + 1(Y ≤ y1;D = 1)

∣∣Z = z
}
× Gn1(Z = z)

Pr(Z = z)
+ op(1)

=
√
n E
{

1(Y ≤ φ̂0(y1);D = 0) + 1(Y ≤ y1;D = 1)
∣∣Z = z

}
− E

{
1(Y ≤ φ0(y1);D = 0) + 1(Y ≤ y1;D = 1)

∣∣Z = z
}
× Gn1(Z = z)

Pr(Z = z)
+ op(1)

where the last op(1) term is uniform in y1 due to the uniform convergence of φ̂0 to

φ0.
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Let ϕ(·, y1) = 1(Y ≤ ·;D = 0) + 1(Y ≤ y1;D = 1). Therefore, (C.1) implies

√
n E
[
ϕ(φ̂0(y1), y1)|Z = 0

]
−
√
n E
[
ϕ(φ̂0(y1), y1)|Z = 1

]
= −

Gn
[
ϕ(φ̂0(y1), y1)× 1(Z = 0)

]
En1(Z = 0)

+
Gn
[
ϕ(φ̂0(y1), y1)× 1(Z = 1)

]
En1(Z = 1)

+
E [ϕ(φ0(y1), y1)|Z = 0]

Pr(Z = 0)
× Gn1(Z = 0)− E [ϕ(φ0(y1), y1)|Z = 1]

Pr(Z = 1)
× Gn1(Z = 1) + op(1).

Note that E [ϕ(φ0(y1), y1)|Z = z] = R1(y1) which does not depend on z. Hence,

√
n E
[
ϕ(φ̂0(y1), y1)|Z = 0

]
−
√
n E
[
ϕ(φ̂0(y1), y1)|Z = 1

]
= −

Gn
[
ϕ(φ̂0(y1), y1)× 1(Z = 0)

]
En1(Z = 0)

+
Gn
[
ϕ(φ̂0(y1), y1)× 1(Z = 1)

]
En1(Z = 1)

+
R1(y1)

Pr(Z = 0)
× Gn1(Z = 0)− R1(y1)

Pr(Z = 1)
× Gn1(Z = 1) + op(1).

Moreover, the derivative of E [ϕ(·, y1)|Z = z] is the derivative of Pr(Y ≤ ·;D =

0|Z = z). Thus, using (3.4) and the definition of c∗dx(·), a Taylor expansion gives

√
n E
[
ϕ(φ̂0(y1), y1)|Z = 0

]
−
√
n E
[
ϕ(φ̂0(y1), y1)|Z = 1

]
= c∗0(φ̃0(y1))×

√
n [φ̂0(y1)−φ0(y1)]

where φ̃0(y1) is between φ0(y1) and φ̂0(y1). Note that c∗0(φ̃0(y1)) = c∗0(φ0(y1))+op(1)

uniformly in y1. It follows that

[c∗0(φ0(y1)) + op(1)]×
√
n [φ̂0(y1)− φ0(y1)]

= −
Gn
[
ϕ(φ̂0(y1), y1)× 1(Z = 0)

]
En1(Z = 0)

+
Gn
[
ϕ(φ̂0(y1), y1)× 1(Z = 1)

]
En1(Z = 1)

+
R1(y1)

Pr(Z = 0)
× Gn [1(Z = 0)]− R1(y1)

Pr(Z = 1)
× Gn [1(Z = 1)] + op(1).

Because ϕ is Donsker, by the empirical process theorem (see e.g. Van Der Vaart

and Wellner, 1996), we have the equicontinuity of the function class ϕ(·, ·). Hence,
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uniformly in y1,

Gn
[
ϕ(φ̂0(y1), y1)× 1(Z = z)

]
= Gn [ϕ(φ0(y1), y1)× 1(Z = z)] + op(1),

which converges to a zero-mean Gaussian process. Thus, we obtain

[c∗0(φ0(y1)) + op(1)]×
√
n [φ̂0(y1)− φ0(y1)]

= −Gn

{
[ϕ(φ0(y1), y1)−R1(y1)]×

[
1(Z = 0)

Pr(Z = 0)
− 1(Z = 1)

Pr(Z = 1)

]}
+ op(1) (C.2)

where the right–hand side converges to a zero-mean Gaussian process. Therefore,

c∗0(φ0(·))×
√
n[φ̂0(·)−φ0(·)] converges in distribution to a zero-mean Gaussian pro-

cess.

Its covariance kernel Σ0(y, y′) for y ≤ y′ is obtained as

Σ0(y, y′) = E

{
[ϕ(φ0(y), y)−R1(y)]×

[
ϕ(φ0(y′), y′)−R1(y′)

]
×
[

1(Z = 0)

Pr(Z = 0)
− 1(Z = 1)

Pr(Z = 1)

]2
}

= E

{
[ϕ(φ0(y), y)−R1(y)]× ϕ(φ0(y′), y′)×

[
1(Z = 0)

Pr(Z = 0)
− 1(Z = 1)

Pr(Z = 1)

]2
}

= E

{[
ϕ(φ0(y), y)−R1(y)ϕ(φ0(y′), y′)

]
×
[

1(Z = 0)

Pr(Z = 0)
− 1(Z = 1)

Pr(Z = 1)

]2
}

=
[
R1(y)−R(y)R1(y′)

]
× E

[
1(Z = 0)

Pr(Z = 0)
− 1(Z = 1)

Pr(Z = 1)

]2

where the second and third equalities use the definition of ϕ(φ0(y1), y1), and the

fourth equality uses E [ϕ(φ0(y1), y1)|Z = z] = R1(y1). The expression for Σ0(y, y′)

given in the theorem follows upon noting that

E

[(
1(Z = 0)

Pr(Z = 0)
− 1(Z = 1)

Pr(Z = 1)

)2
]

=
1

Pr(Z = 0) Pr(Z = 1)
.
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C.0.3 Proof of Theorem 8

Proof. We have f̂∆(δ)− f∆(δ) = [f̂∆(δ)− f̃∆(δ)] + f̃∆(δ)− f∆(δ), where

f̃∆(δ) =
1

nh

n∑
i=1

K
(∆i − δ

h

)
, ∀δ ∈ [δ + h, δ − h],

is the infeasible kernel estimator of f∆(δ). From standard kernel estimation, we

have

sup
δ∈[δ+h,δ−h]

|f̃∆(δ)− f∆(δ)| = Op
(
hP
)

since h = (lnn/n)
1

2P+2 leads to oversmoothing. Thus, it suffices to show that the

same uniform convergence rate holds for |f̂∆(δ)− f̃∆(δ)|. We actually show that

sup
δ∈[δ+h,δ−h]

|f̂∆(δ)− f̃∆(δ)| = op
(
hP
)

so that the first step estimation error is negligible given our choice of bandwidth.

From a second-order Taylor expansion we have

f̂∆(δ)− f̃∆(δ) =
1

nh2

n∑
i=1

K ′
(∆i − δ

h

)
(∆̂i −∆i) +

1

2nh3

n∑
i=1

K ′′
(∆†i − δ

h

)
(∆̂i −∆i)

2

where ∆†i is between ∆̂i and ∆i. Since supi |∆̂i−∆i| = Op(n
−1/2) from Theorem 8,

we have

∣∣∣ 1

nh2

n∑
i=1

K ′
(∆i − δ

h

)
(∆̂i −∆i)

∣∣∣ ≤ Op(n− 1
2h−1)× 1

nh

n∑
i=1

∣∣∣∣K ′(∆i − δ
h

)∣∣∣∣
where the summation is a nonparametric estimator of f∆(δ)×

∫
|K ′(u)|du. There-

fore,

1

nh2

n∑
i=1

K ′
(∆i − δ

h

)
(∆̂i −∆i) = Op(n

− 1
2h−1) = Op(h

P /(lnn)1/2)
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which is an op
(
hP
)
. Furthermore, because K ′′ is bounded, we have

∣∣∣ 1

nh3

n∑
i=1

K ′′
(∆†i − δ

h

)
(∆̂i −∆i)

2
∣∣∣ = Op(n

−1h−3)

which is also an op
(
hP
)

provided P ≥ 1. Therefore, the first-step estimation error

is negligible.
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